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H I G H L I G H T S

• Antiseizure drugs affect the generation and spread of epileptic hyperexcitability.

• They have actions on voltage-gated sodium, calcium and potassium ion channels.

• Also affect excitatory and inhibitory neurotransmission and neurotransmitter release.

• New small molecule drugs, such as cannabinoids, continue to be licensed for epilepsy.

• Future therapies likely to be targeted to known pathogenic or genetic defects.
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A B S T R A C T

Antiseizure drugs (ASDs) prevent the occurrence of seizures; there is no evidence that they have disease-mod-
ifying properties. In the more than 160 years that orally administered ASDs have been available for epilepsy
therapy, most agents entering clinical practice were either discovered serendipitously or with the use of animal
seizure models. The ASDs originating from these approaches act on brain excitability mechanisms to interfere
with the generation and spread of epileptic hyperexcitability, but they do not address the specific defects that are
pathogenic in the epilepsies for which they are prescribed, which in most cases are not well understood. There
are four broad classes of such ASD mechanisms: (1) modulation of voltage-gated sodium channels (e.g. phe-
nytoin, carbamazepine, lamotrigine), voltage-gated calcium channels (e.g. ethosuximide), and voltage-gated
potassium channels [e.g. retigabine (ezogabine)]; (2) enhancement of GABA-mediated inhibitory neuro-
transmission (e.g. benzodiazepines, tiagabine, vigabatrin); (3) attenuation of glutamate-mediated excitatory
neurotransmission (e.g. perampanel); and (4) modulation of neurotransmitter release via a presynaptic action
(e.g. levetiracetam, brivaracetam, gabapentin, pregabalin). In the past two decades there has been great progress
in identifying the pathophysiological mechanisms of many genetic epilepsies. Given this new understanding,
attempts are being made to engineer specific small molecule, antisense and gene therapies that functionally
reverse or structurally correct pathogenic defects in epilepsy syndromes. In the near future, these new therapies
will begin a paradigm shift in the treatment of some rare genetic epilepsy syndromes, but targeted therapies will
remain elusive for the vast majority of epilepsies until their causes are identified.

1. Introduction

Drugs used in the treatment of epilepsy are taken chronically to
prevent the occurrence of seizures. In broad terms, they influence
fundamental brain excitability mechanisms to suppress abnormal hy-
perexcitability and hypersynchronous activity in brain circuits.
Antiseizure drugs (ASDs) do not necessarily have specific actions re-
lated to the underlying pathogenic mechanisms in epilepsy, which in

most cases are not understood. In the past two decades, the molecular
defects in many genetic epilepsies have been characterised and there is
an intense interest in the development of disease-specific targeted
therapies. Early examples of this effort include everolimus, an inhibitor
of mTOR signalling used in tuberous sclerosis, and cerliponase alfa,
used in the treatment of the CLN2 form of Batten disease. Focus is also
being directed toward antisense approaches and gene therapies with
viral vectors, but small molecules that interact with diseased proteins,
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such as ion channels with gain or loss of function mutations, are also
being investigated. A theoretical advantage of such mechanism-based
therapies is that they have the potential to not only reduce the occur-
rence of seizures but also to prevent or reverse comorbidities, such as
neurological impairments that are common in such syndromes.

Early ASDs were identified serendipitously when they were ad-
ministered to people with epilepsy (bromide was introduced in 1857
and phenobarbital in 1912). Testing in animal models led to the dis-
covery of phenytoin in 1936 and has been notably successful ever since,
with more than 30 distinct molecular entities entering clinical practice
as a result of this approach. Several other ASDs were rationally devel-
oped based on mechanism (e.g., tiagabine, vigabatrin, perampanel) and
others represent minor chemical modifications of existing drugs (e.g.,
fosphenytoin, various benzodiazepine forms, oxcarbazepine, eslicarba-
zepine acetate, brivaracetam). None of these drugs have been demon-
strated to have disease modifying properties; they simply treat symp-
toms (reduce the occurrence of seizures). As such, the term
“antiepileptic drug” has fallen out of favour, having been replaced by
the designation “antiseizure drug” as used in this article.

Recurrent seizure activity is the manifestation of intermittent and
excessive hyperexcitability in localised cortical or limbic circuits in
focal-onset epilepsies or more diffuse networks in generalized epi-
lepsies. Four broad classes of ASD mechanism have recently been re-
cognised: (1) modulation of voltage-gated ion channels; (2) enhance-
ment of GABA-mediated inhibitory neurotransmission; (3) attenuation
of glutamate-mediated excitatory neurotransmission; and (4) modula-
tion of neurotransmitter release via a presynaptic action (Table 1;
Rogawski and Cavazos, 2020). A fifth class represents the mechanism-
targeted agents, exemplified by everolimus. There is obvious overlap in
these mechanistic classes, particularly for those drugs in class 1 and
class 4, where alteration in ionic currents that underlie neuronal ex-
citability has downstream effects on neurotransmitter release at sy-
napses, with glutamate release seemingly diminished to a greater extent
than that of GABA (Prakriya and Mennerick, 2000). Some ASDs are

likely to prevent seizures via actions on multiple cellular targets; the
combination of effects may contribute to efficacy while limiting adverse
effects mediated by any individual mechanism. The mechanism of ac-
tion of several ASDs, including the important agents valproate and le-
vetiracetam, remain elusive even after several decades of clinical use
(Löscher, 2002). Nevertheless, the primary mechanisms of action of the
majority of currently used drugs is now reasonably well delineated;
these are discussed in detail below.

2. Modulation of voltage-gated ion channels

2.1. Blockade of voltage-gated sodium channels

Voltage-gated sodium channels are responsible for depolarisation of the
nerve cell membrane during the upstroke of action potentials and are cri-
tical to the propagation of action potentials across the surface of neuronal
cells. They are expressed throughout the neuronal membrane, on dendrites,
soma, axons, and nerve terminals (Catterall, 2017). Density of expression is
highest in the axon initial segment where action potentials are generated.
Voltage-gated sodium channels comprise a single 260 kDa α-subunit pro-
tein that is arranged into four homologous domains (I-IV) each consisting
of six transmembrane segments (S1–S6) (Catterall and Swanson, 2015).
The S4 segment of each domain has a high proportion of charged amino
acids and acts as the voltage sensor, while the S5 and S6 segments contain
hydrophobic residues that line the intrinsic channel pore. In the central
nervous system, the α-subunit is commonly associated with two accessory
β-subunit proteins (β-1 and β-2) that can influence channel kinetics and the
voltage-dependence of gating, but which are not essential for the sodium
conducting properties of the channel (Hull and Isom, 2018).

Of the nine mammalian sodium channel α-subunit genes, five are
expressed in the brain: SCN1A, SCN2A, SCN3A, SCN5A and SCN8A,
encoding the channels NaV1.1, NaV1.2, NaV1.3, NaV1.5 and NaV1.6,
respectively (Catterall, 2017). NaV1.3 expression is largely restricted to
the early stages of development; NaV1.5, the main cardiac sodium-

Table 1
Molecular targets of clinically used antiseizure drugs.

Molecular Target Antiseizure Drugs That Act on Target

Voltage-gated ion channels
Voltage-gated Na+ channels phenytoin, fosphenytoina, carbamazepine, oxcarbazepineb, eslicarbazepine acetatec, lamotrigine, lacosamide, cenobamate;

possibly, rufinamide, topiramate, zonisamide
Voltage-gated Ca2+ channels ethosuximide
Voltage-gated K+ channels retigabine (ezogabine)

GABA-mediated inhibition
GABAA receptors phenobarbital, primidone, benzodiazepines including diazepam, lorazepam, clonazepam, midazolam, clobazam; stiripentol;

possibly, topiramate, felbamate, cenobamate, retigabine (ezogabine)
GAT-1 GABA transporter tiagabine
GABA transaminase vigabatrin
Carbonic anhydrase acetazolamide, topiramate, zonisamide; possibly lacosamide

Synaptic release machinery
SV2A levetiracetam, brivaracetam
α2δ subunit of voltage-gated Ca2+

channels
gabapentin, gabapentin enacarbild, pregabalin

Ionotropic glutamate receptors
AMPA receptor perampanel

Disease specific
mTORC1 signalling everolimus
Lysosomal enzyme replacement cerliponase alfa (recombinant tripeptidyl peptidase 1)

Mixed/unknown valproate, felbamate, cenobamate, topiramate, zonisamide, rufinamide, adrenocorticotrophin, cannabidiol

Table adapted from Rogawski and Cavazos (2020).
a Fosphenytoin is a prodrug for phenytoin.
b Oxcarbazepine serves largely as a prodrug for licarbazepine, mainly S-licarbazepine.
c Eslicarbarbazepine acetate is a prodrug for S-licarbazepine.
d Gabapentin enacarbil is a prodrug for gabapentin.
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channel isoform, is also expressed throughout the brain but its role is
not well understood, and NaV1.1 is the major voltage-gated sodium
channel in inhibitory interneurons (Whitaker et al., 2000; Wang et al.,
2017). In contrast, the NaV1.2 and NaV1.6 channels are expressed in the
axon initial segment of principal excitatory neurons, the former pre-
dominating in the immature brain and the latter becoming increasingly
prevalent during development (Whitaker et al., 2000). The NaV1.6
channel also carries a significant proportion of the persistent sodium
current that has been implicated in burst firing and ictogenesis
(Stafstrom, 2007). Under normal physiological conditions, depolarisa-
tion of the neuronal membrane leads to a transient inward sodium
current which rapidly inactivates. However, a small proportion of so-
dium channels appear to undergo rare, late openings in response to
depolarisation and give rise to a sodium current that fails to inactivate,
and is thereby termed “persistent” (Crill, 1996). The existence of this
non-inactivating sodium current is relevant to the pharmacology of
some ASDs (see below).

Voltage-gated sodium channels exist in one of three basic con-
formational states; (i) at hyperpolarised potentials the channel is typi-
cally found in a resting, closed state, (ii) when depolarised the channel
transitions to an open state that is permeable to sodium ions, and (iii)
following depolarisation the channel enters a closed, non-conducting
inactivated state (Catterall, 1992; 2017). During a single round of de-
polarisation, channels cycle through these states in turn – resting to
open, open to inactivated, inactivated to resting – and the ability of
individual channels to contribute to subsequent membrane depolar-
isations is governed by the rate at which they revert from the in-
activated to resting state. Two distinct inactivation states of the voltage-
gated sodium channel are now recognised; a fast inactivated state that
is conferred by a “hinged lid” formed from the intracellular loop be-
tween domains III and IV that transiently (milliseconds duration) blocks
the ion pore following short depolarisations, and a slow inactivated
state that is conferred by a longer lasting (seconds duration) con-
formational change in the α-subunit protein which is observed fol-
lowing prolonged depolarisations (Silva, 2014). Modification of slow
inactivation has been proposed as a mechanism for certain ASDs, but
recent work calls this notion into question (Jo and Bean, 2017).

Blockade of voltage-gated sodium channels is the most common
mechanism of action among currently available ASDs. The established
agents phenytoin and carbamazepine are archetypal sodium channel
blockers, an effect they share with the newer drugs lamotrigine, oxcar-
bazepine, lacosamide, and S-licarbazepine, which is the active metabolite
of the prodrug eslicarbazepine acetate (Ragsdale et al., 1991;
Mantegazza et al., 2010). Rufinamide also acts at least in part via vol-
tage-gated sodium channels, possibly with modest preferential activity
on NaV1.1 and NaV1.6 (Gilchrist et al., 2014), but other mechanisms are
likely given its distinctive clinical profile. Topiramate, felbamate and
zonisamide have also been reported to block sodium channels, as one of
several possible mechanisms. Despite their structural dissimilarities,
there is believed to be a common binding site for ASDs on the α-subunit
of the voltage-gated sodium channel, which is found on the inner pore
region of domain IV, transmembrane segment S6 (Kuo, 1998). Differ-
ences in efficacy and adverse effects of selective sodium channel blocking
ASDs are explained by differences in their rates of binding (i.e., their
affinities) and also in their mechanisms of unbinding or dissociation (Kuo
et al., 1997). Much of the work in this area has focused on differences
between phenytoin and carbamazepine, with the former appearing to
possess a slower onset of binding and a similarly slow dissociation that is
driven by deactivation of the channel (Kuo and Bean, 1994). As such,
phenytoin appears to have a more pronounced and longer lasting effect
than carbamazepine on high frequency action potential firing.

Another common feature of ASDs with sodium channel blocking
properties is their preferential affinity for the channel protein when it
exists in the inactivated state (Schwarz and Grigat, 1989). Binding
slows the conformational recycling process, producing a shift of sodium
channels into the inactivated state from which recovery is delayed.

Thus, ASDs effectively extend the ‘refractory’ period of the channel. As
a result, these drugs produce a characteristic use- and frequency-de-
pendent reduction in channel conductance, resulting in a limitation of
repetitive neuronal firing, with little effect on the generation of single
action potentials or on low frequency (< 1 Hz) firing (Macdonald and
Kelly, 1995). This is exemplified in experimental studies in which
sustained repetitive action potential firing can be used as a bioassay for
sodium channel blocking activity (Macdonald and McLean, 1986).

An extreme example of slow binding to the inactivated state is
presented by lacosamide. Phenytoin and carbamazepine inhibit re-
petitive firing of cultured neurons in vitro within 100 ms, whereas la-
cosamide, which also inhibits repetitive action potential firing, does so
on a time scale of 1 s or more (Errington et al., 2008). This divergence
was initially thought to be due to a preferential effect of lacosamide on
slow inactivation of the sodium channel (Rogawski et al., 2015), an
action that is also proposed for S-licarbazepine (Hebeisen et al., 2015).
However, a more recent analysis suggests that the effects of lacosamide
in this regard actually reflect very slow binding to the fast inactivated
state of the channel (Jo and Bean, 2017). Since seizure discharges occur
on the timescale of seconds, it is possible that the slow action of laco-
samide might confer an even greater selectivity for seizure-related ac-
tion potential firing than non-seizure-related firing, such that efficacy
or tolerability might be improved. However, there is scant evidence that
lacosamide has improved clinical effectiveness (Baulac et al., 2017).

In addition to effects on transient sodium currents, some ASDs can
also block the persistent sodium current, which arises as a result of rare,
late openings of NaV1.6 channels in particular (Chatelier et al., 2010).
Although the persistent current comprises only a small percentage of
total sodium conductance in any single round of depolarisation, pro-
longed late openings can contribute significantly to a persistent depo-
larisation that is reminiscent of the paroxysmal depolarising shift which
characterises epileptiform activity (Walker and Surges, 2016). There is
evidence that phenytoin blocks the persistent sodium current and to a
potentially greater degree than the transient current that underlies
normal action potential generation (Segal and Douglas, 1997). Like-
wise, cenobamate, which, at the time of writing, has become the latest
ASD to be approved by the FDA for use in focal-onset seizures, inhibits
the persistent sodium current more potently than the transient sodium
current (Nakamura et al., 2019), although it appears to have additional
effects on GABAA receptors at marginally higher concentrations (dis-
cussed below). Other sodium channel blocking ASDs, including carba-
mazepine and topiramate, may also block the persistent sodium cur-
rent, with a potency that can approximate or even exceed their effect on
the transient sodium current (Sun et al., 2007). As such, inhibition of
the persistent sodium current could contribute to the ability of these
various agents to suppress sustained depolarisations while sparing
single action potentials and low frequency firing.

2.2. Blockade of voltage-gated calcium channels

Voltage-gated calcium channels are involved in neuronal burst
firing and are responsible for the control of neurotransmitter release at
presynaptic nerve terminals. Like sodium channels, voltage-gated cal-
cium channels comprise a single α1-subunit protein, typically
170–240 kDa, which again comprises four homologous domains each
with six transmembrane segments (Catterall, 2000). Molecular studies
have identified ten different α1-subunits (CaV1.1–1.4, CaV2.1–2.3,
CaV3.1–3.3), at least seven of which are known to be expressed in
mammalian brain (Trimmer and Rhodes, 2004). In addition, there are a
number of accessory proteins, including β- and α2δ-subunits, that
modulate the function and cell-surface expression of the α1-subunit but
which are not essential for basic channel functionality (Dolphin, 2012).

There are four main types of voltage-gated calcium channel in
mammalian brain, commonly grouped into two classes on the basis of
their biophysical properties and patterns of cellular expression
(Catterall, 2000). L-type, P/Q-type and N-type belong to the class of

G.J. Sills and M.A. Rogawski Neuropharmacology 168 (2020) 107966

3



high-voltage-activated calcium channels that respond to strong depo-
larisations and are involved in the processing of synaptic inputs at the
somatodendritic level (L-type) and in presynaptic neurotransmitter re-
lease (P/Q- and N-type). The L-type channel comprises α1-subunits
from the CaV1 family, while P/Q-type and N-type channels are formed
from CaV2.1 and CaV2.2 α1-subunits, respectively (Trimmer and
Rhodes, 2004). In contrast, the low-voltage-activated T-type calcium
channel (comprising α1-subunits from the CaV3 family) opens in re-
sponse to modest depolarisations at or below resting membrane po-
tential, rapidly inactivates, and gives rise to transient (hence T-type)
currents that participate in intrinsic oscillatory activity (Suzuki and
Rogawski, 1989). The T-type channel is highly expressed on the soma
and dendrites of thalamic relay and reticular neurons where it has been
shown to underpin the rhythmic 3 Hz spike-wave discharges that are
characteristic of absence seizures (McCormick and Contreras, 2001).

Voltage-gated calcium channels represent an important target for
several ASDs. The efficacy of ethosuximide in absence epilepsy is believed
to be mediated predominantly by blockade of T-type calcium channels in
thalamocortical neurons, with preferential affinity for channels in the
inactivated state (Coulter et al., 1989; Gomora et al., 2001), but there is
also evidence that this drug can block the persistent sodium current and/
or calcium-dependent potassium currents (Leresche et al., 1998). Zoni-
samide is also believed to block T-type calcium channels as one of several
proposed mechanisms of action (Suzuki et al., 1992) and there is anec-
dotal evidence that valproate, another effective antiabsence agent, can
also block this channel type (Broicher et al., 2007).

Gabapentin and pregabalin also interact with voltage-activated
calcium channels but the role of calcium channels in the antiseizure
mechanism of these drugs is uncertain. Although gabapentin was ori-
ginally designed as a GABAmimetic that could freely cross the blood-
brain barrier, it is now accepted that it and the related gabapentinoid
pregabalin are devoid of GABAergic activity and instead bind with high
affinity to α2δ-1 subunits of the voltage-gated calcium channel (Thorpe
and Offord, 2010). This binding interaction is believed to account for
the therapeutic activities of the drugs. The binding site on α2δ-1 for
gabapentinoids has been modelled based on a recent cryo-electron
microscopy structure (Kotev et al., 2018). It is presumed that binding of
the gabapentinoids causes a conformational change in α2δ-1 that alters
its association with other proteins. It has long been assumed that the
primary role of α2δ-1 is as a partner of calcium channel α1-subunits,
and there is extensive evidence that α2δ-1 promotes insertion and re-
tention of α1-subunits in the plasma membrane (Hendrich et al., 2008;
Dolphin, 2013). However, the binding interaction between α2δ-1 and
α1 is weak, and calcium currents in brain neurons are unaffected by
knockout of α2δ-1. Moreover, it has not been possible to reliably show a
robust effect of gabapentin and pregabalin on calcium channel currents,
raising the question of the role of calcium channels in the mechanism of
action of these drugs. Although inhibition of presynaptic calcium
channels with a consequent reduction in release of excitatory neuro-
transmitter is an appealing mechanism to explain the antiseizure ac-
tivity of gabapentinoids, the experimental evidence is not supportive.
Nevertheless, there are studies that demonstrate an inhibition of ex-
citatory synaptic potentials at brain synapses, but the mechanism is
obscure (Cunningham et al., 2004; Dooley et al., 2007). Recent studies
indicate that α2δ-1 associates with other proteins, including NMDA
receptors (Chen et al., 2018b). While inhibition of NMDA receptors
could contribute to the antiseizure activity of gabapentinoids, this is
unlikely to be the sole activity of the drugs as their profile in animal
seizure models and clinical activity does not correspond with that of
NMDA receptor antagonists. Interactions of α2δ-1 with other as yet
unidentified targets could conceivably play a role.

Other ASDs have less selective but perhaps more conventional in-
hibitory effects on specific types of high-voltage-activated calcium
channel. Lamotrigine blocks N- and P/Q-type calcium channels on
presynaptic nerve terminals (Wang et al., 1996), an effect which likely
explains early evidence that the drug is able to reduce synaptic release

of glutamate, and levetiracetam appears to exert a partial blockade of
N-type calcium currents (Lukyanetz et al., 2002), suggesting an effect
on an as yet unidentified sub-class of this channel type. Likewise,
phenobarbital and topiramate can block L- and N-type calcium currents
(Ffrench-Mullen et al., 1993; Zhang et al., 2000), although their effects
on calcium channels at therapeutic concentrations are modest com-
pared to effects on other likely antiseizure mechanisms (Löscher and
Rogawski, 2012), and other ASDs, including oxcarbazepine and felba-
mate, also have actions, albeit less well characterised, on high-voltage
activated calcium channels (Stefani et al., 1995; 1996).

2.3. Potentiation of voltage-gated potassium channels

Voltage-gated potassium channels are critical determinants of neu-
ronal excitability, responsible for repolarising the cell membrane in the
aftermath of action potential firing and regulating the balance between
input and output in individual neurons. As a group, they are highly
heterogeneous. More than 40 voltage-gated potassium channel α-sub-
units are recognised, most of which are structurally similar to a single
domain of the α-subunit of voltage-gated sodium and calcium channels
(Gutman et al., 2005). They are classified into 12 subfamilies (KV1 to
KV12), with individual channels comprising four α-subunits from the
same subfamily arranged around a central potassium ion pore, typically
in a ‘two plus two’ configuration (Kuang et al., 2015). Two major func-
tional classes of voltage-gated potassium channel are extensively de-
scribed in the literature; A-type (mostly KV4) channels that rapidly ac-
tivate and inactivate, and delayed rectifier channels that open (after a
short delay) in response to depolarisation and which do not fully in-
activate (Christie, 1995). This latter class comprises KV1 to KV3 channels
that are expressed on dendrites, axons and nerve terminals and which
repolarise the neuronal cell membrane after action potential firing. This
class also includes KV7 channels that are expressed in the soma and axon
initial segment and are responsible for the M-current, which determines
the threshold and rate of neuronal firing and modulates the somatic re-
sponse to dendritic inputs (Robbins, 2001). Mutations in the KCNQ
genes, which encode KV7 channels, are associated with a spectrum of
seizure disorders ranging from benign familial neonatal convulsions to
severe epileptic encephalopathies (Maljevic and Lerche, 2014).

Retigabine (known as ezogabine in the USA) is an ASD that exerts its
effects by activation of the KV7 class of voltage-gated potassium channels,
is specific for channels containing KV7.2 to KV7.5 subunits, and has par-
ticular affinity for channel assemblies containing dimers of KV7.2/KV7.3
and KV7.3/KV7.5 subunits (Tatulian et al., 2001). These channels underlie
the M-current in seizure-prone regions of the brain, such as cerebral
cortex and hippocampus. Retigabine enhances the M-current, increasing
the rate at which it is activated by depolarisation and decreasing the rate
at which it is subsequently deactivated (Gunthorpe et al., 2012). It also
enhances the M-current at resting membrane potential, hyperpolarising
the cell membrane and reducing overall excitability of neurons. This ef-
fect of retigabine is mediated by binding of the drug within the pore of the
channel. A single amino acid (Trp236) located in the activation gate of
the KV7 α-subunit protein is essential and all four subunits in the channel
assembly must contain a tryptophan residue at position 236 for retigabine
sensitivity (Schenzer et al., 2005). Retigabine was originally licensed in
the USA and Europe in 2011 for the treatment of focal seizures in adults
(Porter et al., 2012). Its use was later restricted due to the emergence of
idiosyncratic adverse effects and although subsequently withdrawn by the
manufacturer, there remains interest in the use of retigabine as a precision
therapy in severe epileptic encephalopathies due to mutations in the
KCNQ genes (Ihara et al., 2016).

3. Potentiation of inhibitory neurotransmission

GABA is the predominant inhibitory neurotransmitter in the mam-
malian central nervous system and is released at up to 40% of all sy-
napses in the brain. GABA is synthesised from glutamate by the action
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of the enzyme glutamic acid decarboxylase (GAD) and, following re-
lease from nerve terminals, acts on both GABAA and GABAB receptors,
with a net inhibitory effect.

The GABAA receptor is a ligand-gated ion channel and a member of
the classical “Cys-loop” receptor family that comprise five independent
protein subunits arranged around a central ion pore that is, in this case,
permeable to chloride and bicarbonate ions (Olsen and Sieghart, 2009).
Nineteen GABAA receptor subunits have been identified to date, sixteen
in brain (α1-6, β1-3, γ1-3, δ, ε, θ, π) and three additional subunits in
retina (ρ1-3), which come together as heteromeric pentamers to form
functional channels (Sieghart, 1995). Heterogeneity in subunit com-
position suggests that countless thousands of GABAA receptors might
potentially exist but, in reality, only a handful of channels appear to be
expressed in mammalian brain, the most common configuration con-
taining two α1-subunits, two β2-subunits, and one γ2-subunit
(Baumann et al., 2002). GABAA receptors mediating transient, rapidly
desensitising currents at the synapse (phasic inhibition) typically
comprise two α-, two β-, and one γ2-subunit, whereas those at extra-
synaptic sites and mediating long-lasting, slowly desensitising currents
(tonic inhibition) preferentially contain α4-and α6-subunits and a δ-
subunit in place of the γ2-subunit (Belelli et al., 2009). In contrast to the
GABAA receptor, GABAB receptors are coupled, via a G-protein, to po-
tassium channels that mediate slow hyperpolarisation of the post-
synaptic membrane (Bowery, 1993). This receptor is also expressed on
presynaptic nerve terminals where it acts as an autoreceptor, with ac-
tivation limiting further GABA release.

GABA is removed from the synaptic cleft into nerve terminals and
glial cells by a family of transporter proteins, encoded by members of
the SLC6 gene family and denoted GAT-1, GAT-2, GAT-3, and BGT-1,
that transport GABA down an electrochemical gradient driven by so-
dium and chloride ions (Borden, 1996). GAT-1 is the major GABA
transporter expressed on both presynaptic nerve terminals and glial
cells in cerebral cortex and hippocampus, with GAT-3 expression pre-
dominantly restricted to glia (Ribak et al., 1996; Lee et al., 2006).
Following carrier-mediated re-uptake, GABA is either recycled into the
readily releasable neurotransmitter pool or inactivated by conversion to
succinic acid semialdehyde in a reaction catalysed by the mitochondrial
enzyme GABA-transaminase.

3.1. Allosteric modulation of GABAA receptors

Binding of neurotransmitter GABA to GABAA receptors induces
opening of the chloride ion channel that is intrinsic to the receptor. By
contrast, ASDs that act on the GABAA receptor are largely positive al-
losteric modulators. They do not open the receptor in the absence of
GABA, although barbiturates can do this at high concentrations (Rho
et al., 1996), but rather increase the response to synaptically released
GABA, thereby enhancing inhibitory neurotransmission (Czuczwar and
Patsalos, 2001). While barbiturates (i.e., phenobarbital, primidone) and
benzodiazepines (i.e., diazepam, lorazepam, clonazepam and clo-
bazam) share this effect, they bind to distinct sites on the receptor
complex, possess different subunit specificities, and differentially in-
fluence the opening of the chloride channel.

The five subunits of GABAA receptors are organised in a barrel-like
fashion with subunits arranged like staves in a specific configuration,
forming the central chloride ion pore. For example, the most abundant
synaptic GABAA receptor isoform consisting of (α1)2(β2)2(γ2)1 has
subunits arranged –α1+-–γ2+-–β2+-–α1+-–β2+ counter-clockwise
when viewed from the extracellular space. Each subunit has two sur-
faces that contact neighbouring subunits; the interface surfaces are
designated principal (+) and complementary (−). The last β2 subunit
(+)-interface contacts the initial α1 subunit (−)-interface to close the
circle. Each GABAA receptor binds two molecules of GABA at sites that
are situated at the two β+-α– subunit interfaces (Baumann et al., 2003).
Benzodiazepine drugs also have a well-characterised binding site: one
per receptor complex, at the α+-γ2– subunit interface (Sigel and Buhr,

1997). Identification of the binding site for barbiturate drugs has been
challenging, and to date all studies addressing this issue have in-
vestigated anaesthetic barbiturates (or analogues) and not pheno-
barbital, which is used in epilepsy therapy because it is less sedating at
doses that confer antiseizure activity (Löscher and Rogalbwski, 2012).
Recent studies indicate that barbiturates also bind at intramembrane
subunit interfaces, which for these agents are γ+-β– and α+-β– (Chiara
et al., 2013; Olsen, 2018) and at least one additional interface
(Maldifassi et al., 2016). All GABAA receptors containing at least one α-
and one β-subunit appear susceptible to allosteric activation by barbi-
turates, with only minor differences in relative sensitivity based on
individual subunit composition (Hevers and Lüddens, 1998). Im-
portantly, barbiturates act on δ-subunit containing extrasynaptic
GABAA receptors that mediate tonic inhibition (Feng and Macdonald,
2010). Neurotransmitter GABA acts as a “partial agonist” on αβδ
GABAA receptors (low efficacy activation even at saturating con-
centrations) and GABA currents generated by these receptors are
markedly enhanced by barbiturates. However, it remains to be proven
that positive allosteric modulation of extrasynaptic GABAA receptors is
a relevant antiseizure mechanism.

In contrast to barbiturates, benzodiazepines display a high degree of
subunit selectivity, they do not activate GABAA receptors in the absence
of GABA even at high concentrations, and they exclusively act on sy-
naptic GABAA receptors. Benzodiazepine-sensitive GABAA receptors are
typically comprised of two α-subunits (chosen from α1, α2, α3 or α5),
two β-subunits (either β2 or β3), and a γ2 subunit, whereas the δ-sub-
unit-containing GABAA receptors that mediate tonic inhibition at extra-
synaptic sites, are insensitive to benzodiazepines, as are those containing
α4-and α6-subunits (Farrant and Nusser, 2005; Sigel and Ernst, 2018).
There are also functional distinctions between barbiturates and benzo-
diazepines, with the former increasing the duration of chloride channel
opening in response to a given amount of GABA and the latter increasing
the frequency of channel opening (Twyman et al., 1989).

Several other ASDs exert their effects, at least in part, by an allosteric
action at the GABAA receptor. These include stiripentol, an orphan drug
that is licensed for Dravet syndrome, which is able to positively modulate
all GABAA receptor isoforms including those containing δ-subunits
(Fisher, 2011), and which extends the duration of chloride channel
opening in response to synaptically-released GABA in manner similar to
that observed with barbiturates (Quilichini et al., 2006). Indeed, a recent
study indicated that stiripentol binds with high affinity to the γ+-β– and
α+-β– interfaces as do barbiturates (Jayakar et al., 2019). Felbamate and
topiramate also promote GABA responses at the GABAA receptor (Rho
et al., 1997; Simeone et al., 2006a; 2006b; 2011), as one of several
mechanisms of action, but these effects do not appear to occur by binding
at barbiturate interaction sites (Jayakar et al., 2019). Cenobamate, which
contains the alkyl carbamate moiety as does felbamate and retigabine,
has also been shown to be a weak positive allosteric modulator of GABAA

receptors in hippocampal neurons, with effects on both phasic and tonic
inhibitory currents and on recombinant synaptic and extrasynaptic
GABAA receptor isoforms that do not appear to occur via an interaction
with the benzodiazepine binding site (Sharma et al., 2019). Finally, le-
vetiracetam also has effects at the GABAA receptor, indirectly influencing
receptor function by blocking its negative allosteric modulation by β-
carbolines and zinc (Rigo et al., 2002). The relevance of this action to the
clinical activity of the drug is uncertain.

3.2. Modulation of GABA disposition

Vigabatrin and tiagabine are products of a rational drug discovery
approach which was, in their cases, aimed at boosting inhibitory neu-
rotransmission mediated by GABA (Löscher and Schmidt, 1994). Both
drugs act by altering the disposition of GABA after it is released in the
process of synaptic inhibition, albeit by different mechanisms.

Vigabatrin is an irreversible inhibitor of the mitochondrial enzyme
GABA-transaminase, which is responsible for the catabolism of GABA
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(Jung et al., 1977). It causes a marked increase in whole brain GABA
concentrations that outlast the presence of the drug and that are only
restored to normal levels following the synthesis of new enzyme protein
(Schechter et al., 1977). Interestingly, inhibition of GABA-transaminase
appears to cause a paradoxical reduction in vesicular GABA content and
a corresponding reduction in inhibitory postsynaptic potentials that are
carried by phasic GABAA receptors (Overstreet and Westbrook, 2001).
The anticonvulsant action of the drug is instead believed to be mediated
by an increase in cytosolic GABA concentrations in presynaptic nerve
terminals that leads to a reversal of the GABA transporter, spill-over of
GABA into the extrasynaptic space, and activation of the tonic GABAA

receptor current (Wu et al., 2003).
Unlike vigabatrin, tiagabine exerts its effects at synapses where it

acts as a potent, selective and competitive inhibitor of GABA re-uptake
(Krogsgaard-Larsen et al., 1987). The tiagabine molecule is based on
nipecotic acid, a well-known experimental GABA transport inhibitor,
coupled to a lipophilic side chain that facilitates blood-brain barrier
penetration. It is selective for the GAT-1 GABA transporter, blocking
both neuronal and glial GABA re-uptake, and its pharmacological ef-
fects mirror the regional distribution of this protein, with a more pro-
nounced action in hippocampus and neocortex (Borden et al., 1994;
Meldrum and Chapman, 1999). While vigabatrin results in a wholesale
elevation in brain GABA concentration, tiagabine causes a transient
prolongation in the presence of synaptically-released GABA within sy-
napses. Functionally, this leads to an increase in inhibitory postsynaptic
potentials mediated by phasic GABAA receptors but the potential for
spill-over into extrasynaptic regions and activation of tonic GABAA

receptor currents exists, particularly following sustained exposure to
high concentrations of the drug (Schousboe et al., 2011).

Several other ASDs have also been reported to influence GABA dis-
position by either increasing synthesis or release of this neurotransmitter
or by inhibiting its breakdown. This remains the single most convincing
mechanism by which valproate exerts its anticonvulsant effects (Löscher,
2002). It has been reported to enhance the expression of glutamic acid
decarboxylase, to promote the release of GABA from presynaptic term-
inals, and to prevent the catabolism of GABA by inhibition of GABA-
transaminase (Löscher, 1999). There is also limited evidence that
valproate can act as a positive allosteric modulator at the GABAA re-
ceptor (Ticku and Davis, 1981). Chronic but not acute valproate treat-
ment has also been found to increase the expression of neuropeptide Y
(NPY) in the thalamus and hippocampus. NPY is expressed in a subset of
GABAergic interneurons in these brain regions, has antiseizure properties
and could be an endogenous regulator of seizures. However, in animal
models, valproate exerts antiseizure effects rapidly, thus the effect on
NPY expression is unlikely to be a primary mechanism for seizure pro-
tection (Brill et al., 2006). Other drugs with a proposed action on GABA
disposition include topiramate and gabapentin, with much of the evi-
dence in this regard derived from 1H-magnetic resonance spectroscopy
studies in human epilepsies (Kuzniecky et al., 2002). Efforts to replicate
these findings experimentally have been largely unsuccessful however,
questioning their validity and whether they represent true mechanisms
of action of these drugs or simply epiphenomena of other CNS effects
(Leach et al., 1997; Sills et al., 2000).

3.3. Inhibition of carbonic anhydrase

The acid-base balance and maintenance of local pH is critical to
normal functioning of the nervous system. Various isoenzymes of car-
bonic anhydrase play an important role in this regard, eleven of which
are expressed in brain (Ruusuvuori and Kaila, 2014). These enzymes are
responsible for catalysing the bi-directional conversion of carbon di-
oxide and water to bicarbonate and hydrogen ions (CO2 + H2O ↔
HCO3

− + H+). Inhibition of carbonic anhydrase reduces the buffering
properties of the HCO3

−/ CO2 buffer system, leading to acidosis at the
whole-organism level, including in the brain. The fall in brain pH
suppresses neuronal excitability.

The bicarbonate gradient has an important influence on the function
of GABAA receptors, which are permeable to both chloride and bi-
carbonate ions. Neuronal pH regulation leads to an accumulation of
HCO3

−, and the consequent efflux of negatively charged bicarbonate
ions via the GABAA receptor has a depolarising effect on the postsynaptic
membrane which, under normal physiological conditions, is out-weighed
by an outward current carried by influx of chloride ions, causing hy-
perpolarisation (Staley et al., 1995). However, during intense activation
of GABAergic synapses, the chloride gradient collapses, leading to de-
polarisation mediated by GABA that is dependent on bicarbonate ion flux
and also by a rise in extracellular K+ resulting from neuronal anion
regulatory mechanisms. Inhibition of carbonic anhydrase diminishes the
intraneuronal supply of bicarbonate and provides a degree of protection
against this paradoxical GABAA receptor-mediated excitation and its
downstream consequences (Hamidi and Avoli, 2015).

Acetazolamide is a classic carbonic anhydrase inhibitor that has been
employed as an antiseizure agent with some success, particularly in
paediatric epilepsies and in the treatment of catamenial epilepsy, but
whose use is limited by the development of tolerance (Reiss and Oles,
1996). Topiramate and zonisamide share this mechanism of action but
are significantly less potent than acetazolamide. There is also evidence to
suggest that lacosamide may inhibit carbonic anhydrase, but this finding
requires further verification (Temperini et al., 2010). Inhibition of car-
bonic anhydrase can be considered as a supplementary rather than pri-
mary mechanism of action for these ASDs and the extent to which it
contributes to the clinical activity of these compounds remains unclear.

4. Blockade of excitatory neurotransmission

Glutamate is the principal excitatory neurotransmitter in the
mammalian brain. Following release from glutamatergic nerve term-
inals, it exerts its effects on three specific subtypes of ionotropic re-
ceptor in the postsynaptic membrane, designated according to their
agonist specificities; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
acid (AMPA), kainate and N-methyl-D-aspartate (NMDA) (Hollmann
and Heinemann, 1994). Ionotropic glutamate receptors (iGluRs) are
heteromeric tetramers constructed from four individual protein sub-
units in a dimer-of-dimers configuration (Tichelaar et al., 2004). In the
mammalian brain there are four AMPA receptor subunits (GluA1-
GluA4), five kainate receptor subunits (GluK1-GluK5) and seven NMDA
receptor subunits (GluN1, GluN2A-GluN2D, GluN3A, GluN3B), al-
though splice variants of several subunits add to the complexity
(Traynelis et al., 2010). In addition to acting on iGluRs that mediate fast
excitatory responses, synaptically-released glutamate also activates
metabotropic glutamate receptors (mGluRs), which are G-protein-cou-
pled receptors that control cellular excitability and other cellular pro-
cesses via second messenger signalling on a longer time scale (Reiner
and Levitz, 2018). Some mGluRs function similarly to GABAB receptors
in that they act predominantly as autoreceptors on glutamatergic
terminals, limiting glutamate release (Schoepp, 2001).

All iGluRs respond to glutamate binding by increasing cation con-
ductance resulting in neuronal depolarisation. Most AMPA and kainate
receptors are permeable only to sodium ions, although AMPA receptors
that lack a GluA2 subunit also conduct calcium (Dingledine et al.,
1999). In addition to serving as the main mediators of fast excitatory
synaptic transmission in brain, AMPA receptors are also critical to
seizure generation (Rogawski, 2013). In contrast, while activation of
kainate receptors can induce seizures, these receptors do not appear to
play a pivotal role as kainate receptor knockout does not impair seizure
generation (Fritsch et al., 2014). NMDA receptors are freely permeable
to both sodium and calcium ions and, owing to a voltage-dependent
blockade by magnesium ions at resting membrane potential, are only
activated during periods of prolonged depolarisation, as occurs during
epileptiform discharges (Dingledine et al., 1999). Glutamate is removed
from the synapse into nerve terminals and glial cells by a family of
specific sodium-dependent transport proteins (EAAT1–EAAT5) and is
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inactivated by the enzymes glutamine synthetase (glial cells only) and
glutamate dehydrogenase.

Despite many decades of intense effort across many CNS disease
areas, there are only a handful of currently licensed drugs that possess a
selective action at glutamate receptors. One of those is perampanel, an
ASD that exerts its effects by non-competitive block of AMPA receptors
(Rogawski and Hanada, 2013). It has no known effect on other receptor
types, glutamate or otherwise. Perampanel binds to the AMPA receptor
at a site on the extracellular domain of the channel protein, close to the
interface with the phospholipid membrane, and distinct from the glu-
tamate recognition site (Yelshanskaya et al., 2016). Binding of per-
ampanel induces a conformational change in AMPA receptor subunits
that limits their ability to translate agonist (i.e. glutamate) binding into
channel opening (Yelshanskaya et al., 2016). The net result is to reduce
fast excitatory neurotransmission and thereby limit seizure generation
and the ability of seizure discharges to spread. Blocking the receptor
that has primary responsibility for fast excitatory neurotransmission
might be expected to have negative consequences in terms of toler-
ability. However, at therapeutic doses, perampanel is believed to block
only a small proportion of the AMPA receptor current, sufficient to
retard epileptiform discharges while sparing most normal synaptic
transmission (Rogawski and Cavazos, 2020). Because of the critical role
of AMPA receptors in brain function, perampanel has a low therapeutic
window: increasing the dose even slightly can result in adverse neu-
rological effects.

In addition to perampanel, several other ASDs exert their effects, in
part, by an action on glutamatergic neurotransmission. Blockade of the
NMDA subtype of glutamate receptor is believed to contribute to the
pharmacological profile of felbamate (Rho et al., 1994) and topiramate
has been shown to block the effects of kainate application in primary
hippocampal neuron cultures, indicating inhibitory effects at either
AMPA or kainate receptors (Gibbs et al., 2000). Levetiracetam inhibits
AMPA-mediated currents in cortical neurons at therapeutic concentra-
tions (Carunchio et al., 2007), and phenobarbital has also been reported
to block AMPA receptors in a competitive manner, albeit at con-
centrations towards the upper end of its clinical range (Jin et al., 2010).

5. Modulation of neurotransmitter release

Several ASDs, most notably lamotrigine, have been reported to se-
lectively reduce the release of glutamate from presynaptic nerve
terminals (Leach et al., 1991). Although this phenomenon has been
observed experimentally, it likely reflects an inhibitory action on pre-
synaptic sodium and/or calcium channels rather than any specific effect
on the synaptic vesicle release machinery in glutamatergic terminals. A
more direct effect on neurotransmitter release may be produced by the
ASD levetiracetam and its recently licensed analogue brivaracetam.

Levetiracetam was developed and licensed for the treatment of
epilepsy with no clear indication of how it acts at the cellular level. A
specific binding site for the drug in mammalian brain was later iden-
tified and determined to be synaptic vesicle protein 2A (SV2A) (Lynch
et al., 2004). This protein is now considered to be the primary target of
both levetiracetam and brivaracetam. Both drugs bind to SV2A, with
brivaracetam being more potent and selective in this respect, and have
little or no affinity for SV2B or SV2C, the other members of the SV2
protein family (Gillard et al., 2011). There is a striking correlation
between SV2A binding affinity and the anticonvulsant efficacy of a
series of levetiracetam analogues in audiogenic seizure sensitive mice,
which strongly suggests that this is the site via which they exert their
antiseizure effects (Kaminski et al., 2008). The anticonvulsant efficacy
of levetiracetam is also diminished in heterozygous SV2A+/- mice
(expression of SV2A protein reduced by 50%), which lends further
support to the notion that SV2A is the primary target for seizure pro-
tection (Kaminski et al., 2009). However, despite intense investigation,
the precise physiological role of SV2A is still unclear and it remains to
be determined how drug binding influences SV2A.

SV2A belongs to the major facilitator superfamily of 12-transmem-
brane domain transporters, although no transport function has thus far
been identified (Mendoza-Torreblanca et al., 2013). SV2A protein is
highly expressed in presynaptic nerve terminals where it contributes to
the complex protein interactions involved in synaptic vesicle release
and recycling. It appears to interact with synaptotagmin, which acts as
the calcium sensor in presynaptic terminals, and has been proposed to
regulate the probability of vesicle fusion with the presynaptic mem-
brane by altering sensitivity to calcium (Janz et al., 1999; Custer et al.,
2006). Levetiracetam appears to enter nerve terminals via recycled
synaptic vesicles, where it then binds to selected amino acids (Phe658,
Gly659 and Val661) that lie within the 10th transmembrane domain of
the SV2A molecule but it does not appear to cause a major conforma-
tional change in protein structure, suggesting a modest effect on protein
function (Lynch et al., 2008). Exposure to levetiracetam limits release
of both glutamate and GABA from rat brain slices in an activity-de-
pendent manner, with greatest effect on rapidly-discharging neurons
which would be consistent with selective suppression of epileptiform
activity (Meehan et al., 2012). Homozygous SV2A knockout in mice
leads to a lethal seizure phenotype, suggesting that the presence of the
protein acts to retard seizure generation (Crowder et al., 1999). As such,
it is assumed that levetiracetam and brivaracetam facilitate the action
of SV2A but there is no data that unequivocally support this conclusion.
Likewise, it remains unclear whether binding of the drugs to SV2A leads
to altered packaging, trafficking, membrane fusion or recycling of ve-
sicles within the nerve terminal.

6. Cannabinoids

Cannabidiol (CBD), a non-psychoactive plant-derived cannabinoid,
was found empirically to be effective in the treatment of certain epileptic
encephalopathies, including Dravet syndrome and Lennox-Gastaut syn-
drome as well tuberous sclerosis complex (TSC) (Hess et al., 2016; Chen
et al., 2019). CBD exhibits broad-spectrum antiseizure activity in animal
seizure models, although relatively high doses are required (Consroe et al.,
1982; Jones et al., 2010; Klein et al., 2017). Unlike the structurally related
cannabinoid Δ9-tetrahydrocannabinol (THC), which acts as an agonist of
CB1 (central nervous system) and CB2 (immune system) cannabinoid re-
ceptors, CBD is not a CB1 or CB2 receptor agonist. Moreover, whereas the
CB1 receptor antagonist rimonabant blocks the antiseizure activity of THC,
it does not block the antiseizure activity of CBD, confirming that the effect
of CBD on seizures is not due to an action on brain CB1 receptors (Wallace
et al., 2001). The basis of the antiseizure activity of CBD is unknown.
Among the targets that have been proposed are G-protein coupled receptor
GPR55, transient receptor potential cation channel TRPV1, voltage-gated
sodium channels, and equilibrative nucleoside transporter ENT1. CBD is
an antagonist of GPR55 (IC50, 0.4 mM), which is an orphan G-protein
coupled receptor activated by endocannabinoids and some plant-derived
and synthetic cannabinoid ligands (Ryberg et al., 2007; Marichal-Cancino
et al., 2017). Deletion of GPR55 in mice produces no conspicuous gross
phenotypic, behavioural or pathological changes and there have been no
mention of changes in seizure susceptibility, which would be expected if
inhibition of GPR55 is an antiseizure mechanism (Wu et al., 2013; Bjursell
et al., 2016). Nevertheless, GPR55 is expressed in brain regions relevant to
epilepsy, including the dentate gyrus and other regions of the hippo-
campus where it is present in both interneurons and excitatory neurons
(Balenga et al., 2011; Kaplan et al., 2017). CBD has demonstrated clinical
efficacy in the treatment of seizures associated with Dravet syndrome,
which is often caused by mutations in NaV1.1 voltage-gated sodium
channels that are predominantly expressed in inhibitory interneurons.
Reduced sodium current in interneurons and impaired inhibitory function
is believed to be the pathogenic mechanism in Dravet syndrome cases
associated with haploinsufficiency of the SCN1A gene that encodes NaV1.1
(Parihar and Ganesh, 2013). CBD (albeit at high doses) protects against
thermally-induced seizures (modelling febrile seizures) in a Scn1a+/–

mouse model of Dravet syndrome (Kaplan et al., 2017). Moreover, CBD
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was found to increase action potential generation in hippocampal GA-
BAergic interneurons in Scn1a+/– mice, which in turn increased the fre-
quency of inhibitory events in dentate granule cells. An antagonist of
GPR55 occluded the action of CBD, raising the possibility that CBD may
exert an antiseizure action in Dravet syndrome through effects on GPR55.

CBD has also been reported to be an agonist of TRPV1, a non-se-
lective cation channel, which is predominantly expressed in nociceptive
neurons of the peripheral nervous system but may also be expressed in
brain regions relevant to epilepsy including the dentate gyrus of the
hippocampus (Iannotti et al., 2014). CBD was found to activate and
rapidly desensitize TRPV1 and to reduce epileptiform activity in hip-
pocampal brain slices. A link between the agonist effect on TRPV1 and
antiseizure activity was not established. Indeed, TRPV1 activation with
capsaicin enhanced excitatory transmission in the dentate gyrus of mice
with experimental temporal lobe epilepsy, suggesting that TRPV1 ac-
tivation could be pro-epileptic (Bhaskaran and Smith, 2010). Moreover,
knockout of TRPV1 did not markedly impact chemoconvulsant seizures
in neonatal mice (Kong et al., 2014).

CBD has also been found in patch clamp recordings to be a non-
selective inhibitor of recombinant voltage-gated sodium channels at con-
centrations that could be relevant therapeutically (Ghovanloo et al.,
2018). Moreover, CBD appeared to stabilize the sodium channel in-
activated state as is the case for conventional sodium channel blocking
ASDs. Nonselective sodium channel blockers are well recognised to ag-
gravate seizures in Dravet syndrome (Brunklaus et al., 2012) and are
contraindicated in the condition (Wirrell et al., 2017). Therefore, it is
noteworthy that in large-scale clinical trials conducted to support approval
of CBD in the United States for the treatment of Lennox-Gastaut syndrome
and Dravet syndrome there was a greater prevalence of seizure worsening
when CBD was used in patients with Lennox-Gastaut syndrome who were
not taking clobazam and in patients with Dravet syndrome who were not
taking clobazam and stiripentol (Rogawski, 2019). The sodium channel
blocking action of CBD could possibly account for the worsening, which
seems to be masked by concomitant administration of a positive mod-
ulator of GABAA receptors. In clinical trials, CBD had reduced therapeutic
efficacy when used in the absence of clobazam. While pharmacodynamic
factors could contribute to the favourable interaction between CBD and
clobazam, a pharmacokinetic drug-drug interaction almost certainly plays
a role. CBD is an inhibitor of CYP2C19 and causes a marked (2.5 to 3-fold)
increase in plasma concentrations of norclobazam, an active metabolite of
clobazam (Geffrey et al., 2015; Rogawski, 2019).

An effect on adenosine dynamics is among the most plausible me-
chanisms proposed to explain the antiseizure activity of CBD. In studies
of cannabinoid actions on immune function, it was found that CBD
potently inhibits (IC50, 0.12 mM) ENT1, one isoform of the most
abundant family of mammalian plasma membrane transporters of nu-
cleosides including adenosine (Carrier et al., 2006). ENT1, which acts
as an equilibrative bidirectional transporter, is widely distributed
throughout the body and is present in the brain. Block of ENT1 by CBD
could theoretically enhance extracellular adenosine. Inasmuch as ade-
nosine is well recognised to inhibit seizure mechanisms, this is a rea-
sonable hypothesis to explain the antiseizure activity of CBD but no
supporting evidence has as yet been presented.

7. Disease-specific mechanisms

7.1. mTORC1 signalling

In epilepsies caused by a specific genetically defined abnormality, a
therapy that functionally reverses the molecular defect should prevent
the occurrence of seizures and possibly also treat associated co-
morbidities. Everolimus, which is approved for the treatment of focal
seizures associated with TSC, is such a disease-specific therapy.

Malformations of cortical development are a common cause of epi-
leptic encephalopathies and pharmacoresistant seizures. Many of these
epileptic encephalopathies are believed to be due to dysfunction in the

mTOR (mechanistic target of rapamycin) signalling cascade (Jeong and
Wong, 2018). mTOR is a protein kinase that is a central cell growth
regulator (Kim and Guan, 2019). mTOR forms the catalytic subunit of
mTORC1, which is a cytosolic protein complex that in addition to mTOR
includes the core components Raptor (regulatory-associated protein of
mTOR) and mLST8 (mammalian lethal with Sec13 protein 8) as well as
certain inhibitory proteins. Drugs that inhibit mTORC1, such as rapa-
mycin (sirolimus) and the rapalog everolimus, have various clinical roles
including prevention of organ transplant rejection and slowing cancer
growth and spread. Rapamycin and everolimus bind to the cyclophilin
protein FKBP12, a peptidyl-prolyl isomerase (Houghton, 2010). The ra-
pamycin-FKBP12 complex then allosterically inhibits mTORC1 by
binding to mTOR (when it is associated with Raptor and MLST8).

Tuberous sclerosis is caused by loss-of-function mutations in the TSC1
gene encoding the protein hamartin or in the TSC2 gene encoding tu-
berin (Hasbani and Crino, 2018). The mutations lead to constitutive
mTOR activation, resulting in abnormal cerebral cortical development
with multiple focal structural malformations (Lasarge and Danzer, 2014).
The substrate for the development of epilepsy is believed to be cortical
tubers and peri-tuberal cortical tissue with dysmorphic neurons, giant
cells, reactive astrocytes and disturbed cortical layering (Jeong and
Wong, 2018). The precise basis for epileptogenesis in the presence of
these diverse cellular abnormalities is not understood. However, the re-
cognition that mTOR signalling pathway hyperactivity is the basis for the
seizure disorder in TSC led to the investigation of mTOR inhibitors
everolimus and sirolimus in clinical trials with favourable results
(Curatolo et al., 2018). Apart from TSC, mTOR dysregulation has been
implicated in a large spectrum of genetic and acquired epilepsies, par-
ticularly those associated with malformations of cortical development
(Jeong and Wong, 2018). However, to date, there is no evidence that
everolimus is effective in epilepsies other than those associated with TSC.

7.2. Lysosomal enzyme replacement

Neuronal ceroid lipofuscinoses (Batten disease) are a group of in-
herited disorders caused by deficiencies in lysosomal enzymes in which
there is progressive intellectual and motor function deterioration with
refractory seizures (Johnson et al., 2019). One of these conditions,
neuronal ceroid lipofuscinosis type 2 (CLN2), is caused by lack of a
functional tripeptidyl peptidase 1 (TPP-1) enzyme, which serves as a
lysosomal exopeptidase that acts on a broad range of protein substrates.
Individuals with CLN2 disease exhibit refractory myoclonic seizures,
ataxia, developmental arrest and regression, central hypotonia with
appendicular spasticity, and rapidly progressing motor decline. Symp-
tomatic treatment is provided by cerliponase alfa, a recombinantly
engineered human TPP-1 proenzyme delivered by intraventricular in-
fusion that replaces the enzyme in the brain (Schulz et al., 2018).
Cerliponase alfa is taken up by target cells in the brain and is translo-
cated to the lysosomes through the cation independent mannose-6-
phosphate receptor (M6P/IGF2 receptor). The proenzyme is activated
in lysosomes and the activated proteolytic form cleaves tripeptides from
the N-terminus of lysosomal proteins.

Cerliponase alfa treatment has been demonstrated to slow the pro-
gressive motor deterioration in CLN2 disease and improve survival
(Schulz et al., 2018). There also appears to be improvement in seizures
but one-half of children studied did exhibit seizures during treatment.
In clinical trials, children remained on antiseizure medications and the
long-term effect of the treatment on seizures is uncertain. EEG ex-
aminations showed new epileptiform activity suggesting continued
disease progression.

8. Mechanisms in nonepileptic conditions

ASD are commonly used for the symptomatic treatment of diverse
nonepileptic conditions, notably pain conditions, migraine, and many
psychiatric disorders (Kaufman, 2011). In some cases, the mechanisms
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accounting for the antiseizure activity of these drugs are also relevant to
their activity in nonepileptic conditions. For example, benzodiazepines
are used in the treatment of anxiety and panic disorders, alcohol
withdrawal, insomnia, and spasticity, and are also frequently used for
sedation. All of these effects are due to the actions of benzodiazepines
as positive allosteric modulators of synaptic GABAA receptors. Sodium
channel blockade can explain the activity of carbamazepine and ox-
carbazepine in trigeminal neuralgia (Di Stefano and Truini, 2017) and
the antiarrhythmic activity (and cardiotoxicity) of phenytoin (Vaughan
Williams, 1984).

The analgesic activity of gabapentinoids in the treatment of neu-
ropathic pain likely results from an interaction with α2δ-1 as has been
proposed for their antiseizure effect (Chincholkar, 2018). At the system
level, the efficacy of these drugs in chronic pain is thought to relate to
the depression of presynaptic excitatory input onto dorsal horn neurons
through interactions with α2δ-1, which is upregulated after injury
(Rogawski and Löscher, 2004). In addition, gabapentinoids may influ-
ence descending facilitation and inhibition, may induce anti-in-
flammatory effects, and may influence cortical mechanisms mediating
the affective components of pain. The interaction partners of α2δ-1 that
account for these diverse effects may be similar or different from those
mediating the antiseizure actions.

In other instances, it is less clear that the antiseizure mechanism
relates to the therapeutic actions in nonepileptic conditions. For ex-
ample, there is no firm evidence that sodium channel blockade un-
derlies the efficacy of sodium channel blocking ASDs, notably carba-
mazepine and lamotrigine, in the treatment of bipolar mania
(Johannessen Landmark, 2008). Similarly, the cellular effects that ac-
count for the efficacy of valproate in bipolar disorder and in migraine
(Rogawski and Löscher, 2004; Rosenberg, 2007) are as equally obscure,
if not more so, as those that are responsible for its antiseizure activity.
The mechanism of action of topiramate in migraine prophylaxis is also
not understood.

9. Polytherapy and polypharmacology

An ever-improving understanding of the primary mechanisms by
which ASDs exert their effects reignites interest in the concept of rational
polytherapy in epilepsy. Although ~50% of people with epilepsy can
expect to achieve good seizure control with ASD monotherapy, a small
but significant proportion of individuals require treatment with two or
more drugs (Kwan and Brodie, 2006). There has long been an interest in
how to deploy ASDs in combination therapy so as to optimise efficacy and
tolerability (Ferrendelli, 1995; Brodie and Sills, 2011). There is extensive
evidence of synergism between drugs from studies in experimental ani-
mals (Czuczwar et al., 2009) but results in such studies have not trans-
lated into clinical practice. Combinations have therefore been selected
based on clinical experience. Indeed, prior to the 1980s, the combination
of phenytoin and phenobarbital was routinely used without much scien-
tific justification. Today, the best accepted combination is that of
valproate and lamotrigine, which appears to possess a mutually beneficial
pharmacokinetic and pharmacodynamic interaction (Brodie and Yuen,
1997; Pisani et al., 1999). However, a fundamental understanding of the
mechanistic basis of ASD synergy has been elusive (Jonker et al., 2007).
There has been a longstanding belief that combining drugs with distinct
mechanisms is preferable to combining drugs that act on the same target
(Giussani and Beghi, 2013) but the evidence for this is mostly lacking
(Deckers et al., 2000). There has, however, been some support from post-
hoc subgroup analyses of clinical trial data in which subjects are cate-
gorized according to the mechanistic classification of their baseline ASDs.
Analysis of the pivotal clinical trial data obtained in support of registra-
tion of the sodium channel blocking ASD lacosamide found that ad-
junctive use of lacosamide when one or more sodium channel blocking
ASDs was a background medication resulted in less robust efficacy and
greater adverse effects than when used in patients whose baseline re-
gimen did not include a sodium channel blocker (Sake et al., 2010).

While much has been written about rational polypharmacy in epi-
lepsy, it has also been recognised that a single drug molecule may exert
more than one antiseizure action at therapeutic concentrations, thus
exhibiting “polypharmacology” (Reddy and Zhang, 2013). The com-
bined effects on persistent sodium currents and GABAA receptors that
are observed with cenobamate (Nakamura et al., 2019; Sharma et al.,
2019) may be an example of this phenomenon. There is some evidence
that cenobamate offers a greater opportunity for seizure freedom in the
treatment of focal-onset epilepsies than other ASDs (Krauss et al.,
2020). Whether this will be confirmed with widespread use remains to
be determined. If it is, the polypharmacology of cenobamate could be
the key to its ability to overcome pharmacoresistance. A range of drugs
including valproate, felbamate, topiramate, zonisamide, rufinamide,
adrenocorticotrophin, and cannabidiol are listed in Table 1 as poten-
tially having multiple mechanisms; in some cases, inclusion in the list is
based on lack of understanding of the mechanism, whereas in others
(e.g., felbamate, topiramate and zonisamide) there is credible evidence
of polypharmacology.

10. Summary and conclusions

For much of the history of the drug treatment of epilepsy, only a
limited group of agents (bromide, phenobarbital, phenytoin, primidone,
ethosuximide, carbamazepine and valproate) were available to clinicians.
A turning point occurred in 1989 with the licensing of vigabatrin in the
United Kingdom and Ireland. The subsequent 30 years has seen an ex-
plosion in the number of small molecule ASDs approved by regulatory
authorities throughout the world. Virtually all of these agents were
identified by screening in animal models that are unbiased as to me-
chanism. While the new ASDs are chemically extremely diverse and while
their mechanisms of action, to the extent known, are also relatively di-
verse, the overall outcome in terms of seizure freedom has not improved
(Chen et al., 2018a). During this period, there have also been remarkable
advances in our understanding of how ASDs affect excitability mechan-
isms at the cellular level. Unfortunately, this knowledge has not been
successfully applied to the development of agents with better efficacy.

Even with the advances that have been made, our understanding of
ASD mechanisms remains incomplete. Nowhere is this more evident than
in the case of valproate, where more than 50 years after its first use in the
treatment of epilepsy there is still debate as to which if any of the drug's
diverse and often subtle cellular effects relate to clinical efficacy
(Löscher, 2002). In this article, we have focused on the primary me-
chanism(s) of action of ASDs, where these are known. Many drugs used
currently in the treatment of epilepsy have additional, less well-char-
acterised pharmacological effects that manifest at therapeutic con-
centrations and that might contribute to the drug's overall clinical pro-
file. It is also possible that these actions are pharmacologically
demonstrable but not of clinical relevance. There is no sure fire way to
determine whether a specific drug action is or is not contributory to
clinical activity. Some such effects of uncertain relevance include en-
hancement of GABAA-receptor conductance by carbamazepine and phe-
nytoin (Granger et al., 1995), modulation of serotonergic (Dailey et al.,
1997) and purinergic transmission (Marangos et al., 1987) by carba-
mazepine, and alterations in the brain concentrations and turnover of a
range of amino acid neurotransmitters by valproate (Löscher, 1993).

While substantial attention has been directed to elucidating anti-
seizure mechanisms, the cellular actions that underlie the adverse ef-
fects of ASDs remain relatively unexplored. There is a tendency to as-
sume that the mechanisms accounting for seizure protection are the
same as those that are responsible for side effects. This may be true in
some cases, i.e., dizziness, nystagmus and diplopia observed with so-
dium channel blocking ASDs are likely caused by inhibition of high-
frequency action potential firing in vestibular and oculomotor circuits
(Gittis et al., 2010). Likewise, the tendency of GABAergic ASDs to cause
somnolence is likely due to the same actions that confer antiseizure
effects: enhanced availability of GABA or positive allosteric modulation
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of GABAA receptors (Brohan and Goudra, 2017). However, there are
many specific CNS-related adverse effects of individual ASDs, such as
cognitive impairment caused by topiramate and aggressivity caused by
levetiracetam and perampanel, that may or may not be attributable to
the same mechanisms that are responsible for their antiseizure effects
(Hansen et al., 2018). Moreover, it is noteworthy that systemic toxi-
cities, including blood dyscrasias, hepatotoxicities, and hypersensitivity
reactions occur with many ASDs as a result of drug actions unrelated to
the therapeutic mechanisms of action (Leeder, 1998).

In recent decades, the science of epilepsy has seen dramatic progress
as advances in genetics have led to an explosion in the understanding of
the pathophysiological bases of certain rare epilepsy syndromes and
epileptic encephalopathies. We are just now beginning to see the
emergence of therapies that target the underlying disease mechanisms
in these syndromes, exemplified by everolimus in the treatment of tu-
berous sclerosis-associated focal seizures. There is now cause for opti-
mism that we are entering a new paradigm where it will be possible to
engineer specific treatments for some genetically-defined epilepsies
using disease-mechanism targeted small molecules, antisense, gene
therapy with viral vectors, and other biological approaches. In fact,
there is good reason to believe that in certain genetic syndromes,
therapies personalized to an individual patient's specific mutation(s)
will be possible. These therapies, or derivatives thereof, may ultimately
prove to have utility in more common polygenic epilepsies, where the
underlying pathophysiology is a result of complex genetic variation at
multiple loci, but where a specific genetic variant nonetheless plays a
contributory role. However, until the causes of the common epilepsies
are better understood, most patients suffering from epilepsy are un-
likely to reap the benefits of this technological revolution.

Dedication

The authors dedicate this article to the memory of Professor Brian S.
Meldrum, a colleague, collaborator, dear friend, and a giant in epilepsy
and antiseizure drug research.
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