Gas Exchange in Fish How do fish breath?

BONY FISH

How is the structure of the gills related to its function?

BONY FISH

http://www.s-cool.co.uk/a-level/biology/gas-exchange/revise-it/gas-exchange-in-fish

Blood flows between gill plates under pressure in opposite direction of blood in capillaries. As blood always meets water with higher O2 content it removes 80% of O₂ from water.

Water flows past the gills in the opposite direction to the blood (**countercurrent flow**) – so they can extract oxygen at **3xs the rate a human can**.

Fish head dissection

http://www.youtube.com/watch?v=pNZQEmGpuk

How many filaments?

 You will have to work out how many filaments a fish has in your Unit Standard

How will you do it?

Step 1: count the number of filaments in a cm piece of gill arch

Step 2:

Aim

To understand the physiological adaptations of fish for gas exchange

In depth – Bony fish

General – Cartilaginous fish

A Fishy Issue

Problem of water as an exchange medium

Problems:-

- Water has ~20x less oxygen per cm3 than air
- Water is denser/more viscous (777 x's) than air

So fish need.....

- An efficient surface to obtain oxygen
- Mechanisms to maximise water movement over the surface

There are 2 different types of fish:

Do you know the differences?

Cartilaginous

Bony

COMPARISIONS

CARTILAGINOUS

- Have a skeleton made up of cartilage.
- Most live in the sea.
- Blood travels through the gills in the SAME direction as the water :- PARALLEL FLOW

BONY

- Are by far the most numerous.
- Live in both fresh and salt water .
- Blood in the gill capillaries flows in the OPPOSITE/ACROSS direction to the water flowing over the *gill plates* in COUNTER-CURRENT FLOW.

BONY FISH

Animation of process

The ventilation mechanism for forcing water over the gill is: Water flows in:

Structure	What is does
Mouth	
Operculum	
Buccal cavity floor	
Volume	
Pressure	

BONY FISH

Animation of process

The ventilation mechanism for forcing water over the gill is: Water flows in:

Structure	What is does
Mouth	Opens
Operculum	Closes
Buccal cavity floor	Lowered (making cavity larger)
Volume	increases
Pressure	decreases

GETTING OXYGEN FROM WATER: FISH GILLS

- Gills covered by an operculum (flap)
- Fish ventilates gills by alternately opening and closing mouth and operculum
 - → water flows into mouth
 - → over the gills
 - → out under the operculum
- Water difficult to ventilate
 - → gills near surface of body

Ventilation of Gills in Bony Fish

TO TAKE IN WATER

Pressure within the mouth decreases when:

The mouth opens and the floor of the mouth cavity is lowered increasing the size of the mouth

The **OPERCULUM** (gill cover) closes the opening at the back of the throat (pharynx)

Water rushes into the mouth

FOR WATER TO PASS OUT:-

Pressure within the mouth decreases when:-

The mouth closes and the floor of the mouth cavity is raised decreasing the size of the mouth

The **OPERCULUM** (gill cover) opens and due to the increase in pressure, the water flows out over the gills.

PARALLEL FLOW (Cartilaginous)

BONY FISH

http://www.s-cool.co.uk/a-level/biology/gas-exchange/revise-it/gas-exchange-in-fish

Blood flows between gill plates under pressure in opposite direction of water (countercurrent flow). Blood always meets water with higher O2 content it removes 80% of O2 from water.

3xs the rate of humans

COUNTER-CURRENT FLOW (Bony)

How it works!

We are going to represent water flow over the gill plate/lamellae

Volunteers -

You are water or red blood cells....

- -4 water molecules with slowly walks across lamellae
- At the end of the lamellae go back to the start and pick up more oxygen
- -4 RBCs in capillary take O₂ from water as it goes past you through lamellae -At end of lamellae, go back to start and give up all oxygen

Countercurrent flow

Draw two lines – a blue line starting from 100% oxygen saturation (on the left) and a red line started from 0% (on the right)

Which is which?

COMPARISIONS

CARTILAGINOUS

- Just behind head 5 gill clefts open at gill slits
- Water in the mouth is forced over the slits when floor of the mouth is raised.

BONY

- 4 pairs of gills and each gill is supported by a gill arch.
- Along each arch there are thin plates called lamellae + on these there are gill plates where gaseous exchange happens
- The gills are covered by a flap called the OPERCULUM

Additional Diagrams

GETTING OXYGEN FROM WATER: FISH GILLS

(a) Gill arches

 Each gill made of four bony gill arches.

Gill arches lined with hundreds of gill filaments that are very thin and flat.

GETTING OXYGEN FROM WATER: FISH GILLS

- Gill filaments are have folds called *lamellae* that contain a network of *capillaries*.
- Blood flows through the blood capillaries in the *opposite direction* to the flow of water.

Each gill arch has many filaments Each filament has many lamellae