
1

DMI – ST.EUGENE UNIVERSITY
(Run by sisters of Daughters of Mary Immaculate and Collaborators)

Institute of Virtual and Distance Learning

Module Code : 777PH24

Module Name : MICRO PROCESSOR, MICRO

 CONTROLLER AND EMBEDDED

 SYSTEM

Programme : M.ED. IN PHYSICS EDUCATION

2

UNIT TOPICS PAGE NO

I

8086 MICRO PROCESSOR (16 BIT)

05

II

ADVANCED PROCESSOR

38

III

MICROCONTROLLER (8051)

77

IV

ADVANCED MICROCONTROLLER

101

V

INTRODUCTION TO EMBEDDED HARDWARE

AND SOFTWARE.

145

3

CONTENT

UNIT 1 8086 MICRO PROCESSOR (16 BIT)

Overview of 8085 – Architecture - ALU Operations – Registers - 8085 Pin

Description - Address and Data Buses - Addressing Modes for 8085 – Types

-Instruction Set for 8085 - Features of 8086 Micro processor - Architecture

of 8086 – Register - Addressing Modes of 8086 - Types - Instruction Set of

8086 - Pin Diagram.

UNIT II ADVANCED PROCESSOR

Architecture of 80286 - Features of 80286 - Register of 80286 - Functional

blocks – Register – Interrupt - Architecture of 80386 - Features of 80386 –

Architecture - Memory Management Unit - Pin Diagram - Pin Description -

Register Organization - Addressing Modes – Segmentation - Paging

Operation - Architecture of 80486 - Pin Definitions.

UNIT – III MICROCONTROLLER (8051)

Introduction - Features of 8051 - Difference between Micro processor and

Microcontroller - Architecture of 8051 – Registers - Interrupt Control - Pin

Diagram - Addressing Modes – Types - Instruction set - Interfacing with

seven segment display Circuit – Program – LCD.

UNIT 4 ADVANCED MICROCONTROLLER

 ARM Architecture – Registers - Block Diagram - Pin Diagram -

Instruction Set - Addressing modes - THUMB Instruction - PIC Architecture

– Memory – Registers - USART or UART – Oscillators - Memory

Organization of PIC16F877 - Peripheral Features - Pin Diagram - Instruction

Set - Register Operations - PC Architecture - Operation of Memory - Bus

Characteristics - Addressing Modes - Instruction Formats.

UNIT 5 - INTRODUCTION TO EMBEDDED HARDWARE AND

SOFTWARE

4

Logic Gates - Timing diagram - Instruction Cycle - Machine cycle - Flip

Flop – Hazards – Memory - Micro processor Buses - Memory Access –

Interrupts - Real-Time Operating Systems - Features of RTOS - Challenges

in RT Systems Design - properties of RT Systems – Optimality.

5

UNIT 1

8086 MICRO PROCESSOR (16 BIT)

OVERVIEW OF 8085

The 8085 is a conventional von Neumann design based on the Intel 8080.

Unlike the 8080 it does not multiplex state signals onto the data bus, but the

8-bit data bus is instead multiplexed with the lower 8-bits of the 16-

bit address bus to limit the number of pins to 40. State signals are provided

by dedicated bus control signal pins and two dedicated bus state ID pins

named S0 and S1. Pin 40 is used for the power supply (+5 V) and pin 20 for

ground. Pin 39 is used as the Hold pin. The PROCESSOR was designed

using nMOS circuitry, and the later "H" versions were implemented in Intel's

enhanced nMOS process called HMOS ("High-performance MOS"),

originally developed for fast static RAM products. Only a single 5 volt

power supply is needed, like competing PROCESSOR and unlike the 8080.

The 8085 uses approximately 6,500 transistors.

 The 8085 incorporates the functions of the 8224 (clock generator)

and the 8228 (system controller) on chip, increasing the level of integration.

A downside compared to similar contemporary designs (such as the Z80) is

the fact that the buses require de-multiplexing; however, address latches in

the Intel 8155, 8355, and 8755 memory chips allow a direct interface, so an

8085 along with these chips is almost a complete system.

The 8085 has extensions to support new interrupts, with three maskable

vectored interrupts (RST 7.5, RST 6.5 and RST 5.5), one non-maskable

interrupt (TRAP), and one externally serviced interrupt (INTR). Each of

these five interrupts has a separate pin on the PROCESSOR, a feature which

permits simple systems to avoid the cost of a separate interrupt controller.

https://en.wikipedia.org/wiki/NMOS_logic

6

The RST 7.5 interrupt is edge triggered (latched), while RST 5.5 and 6.5 are

level-sensitive. All interrupts are enabled by the EI instruction and disabled

by the DI instruction. In addition, the SIM (Set Interrupt Mask) and RIM

(Read Interrupt Mask) instructions, the only instructions of the 8085 that are

not from the 8080 design, allow each of the three maskable RST interrupts to

be individually masked. All three are masked after a normal CPU reset. SIM

and RIM also allow the global interrupt mask state and the three independent

RST interrupt mask states to be read, the pending-interrupt states of those

same three interrupts to be read, the RST 7.5 trigger-latch flip-flop to be

reset (cancelling the pending interrupt without servicing it), and serial data to

be sent and received via the SOD and SID pins, respectively, all under

program control and independently of each other.

SIM and RIM each execute in 4 clock cycles (T states), making it possible to

sample SID and/or toggle SOD considerably faster than it is possible to

toggle or sample a signal via any I/O or memory-mapped port, e.g. one of the

port of an 8155. (In this way, SID can be compared to the SO ["Set

Overflow"] pin of the 6502 CPU contemporary to the 8085.)

Like the 8080, the 8085 can accommodate slower memories through

externally generated wait states (pin 35, READY), and has provisions

for Direct Memory Access (DMA) using HOLD and HLDA signals (pins 39

and 38). An improvement over the 8080 is that the 8085 can itself drive

a piezoelectric crystal directly connected to it, and a built-in clock generator

generates the internal high amplitude two-phase clock signals at half the

crystal frequency (a 6.14 MHz crystal would yield a 3.07 MHz clock, for

instance). The internal clock is available on an output pin, to drive peripheral

devices or other CPUs in lock-step synchrony with the CPU from which the

signal is output. The 8085 can also be clocked by an external oscillator

(making it feasible to use the 8085 in synchronous multi-PROCESSOR

7

systems using a system-wide common clock for all CPUs, or to synchronize

the CPU to an external time reference such as that from a video source or a

high-precision time reference).The 8085 is a binary compatible follow up on

the 8080. It supports the complete instruction set of the 8080, with exactly

the same instruction behavior, including all effects on the CPU flags (except

for the AND/ANI operation, which sets the AC flag differently). This means

that the vast majority of object code (any program image in ROM or RAM)

that runs successfully on the 8080 can run directly on the 8085 without

translation or modification. (Exceptions include timing-critical code and

code that is sensitive to the aforementioned difference in the AC flag setting

or differences in undocumented CPU behavior.) 8085 instruction timings

differ slightly from the 8080—some 8-bit operations, including INR, DCR,

and the heavily used MOV r,r' instruction, are 1 clock cycle faster, but

instructions that involve 16-bit operations, including stack operations (which

increment or decrement the 16-bit SP register) generally 1 cycle slower. It is

of course possible that the actual 8080 and/or 8085 differs from the

published specifications, especially in subtle details. (The same is not true of

the Z80.) As mentioned already, only the SIM and RIM instructions were

new to the 8085.

FEATURES OF 8085

 It is a 8-bit general purpose Micro processor

 Capable of addressing 64 k of memory

 It is a 40 pins IC

 Requires +5 v power supply

 Can operate with 3 -5MHz clock frequency.

 50% of duty cycle.

8

ARCHITECTURE:

The architecture of Intel 8085 consists of three main sections:

1. Arithmetic and logic unit.

2. Timing and control unit.

3. Registers.

The ALU operations are

1. Addition

2. Subtraction

3. Logical AND

4. Logical OR

5. Logical EXCLUSIVE OR

6. Complement (logical NOT)

7. Increment (add 1)

8. Decrement (subtract 1)

9. Left shif

Fig : Architecture of Intel 8085

Arithmetic and Logic Unit (ALU)

The ALU performs the following arithmetic and logical operations. It

9

consists of Temporary register, Flag Register, and Accumulator. One

operand in A and another operand in Memory or general purpose register.

After perform the operation result stores result of operation stored in

Accumulator. Depend upon the Result Flag register will be changed.

Timing and Control Unit (Brain of the Micro processor):

It controls the operation of different units of the CPU. It controls the data

flow between CPU and Memory, CPU and peripheral devices. It provides

control, status and reset signals to perform any memory and input output

related operation.

Registers

1. Accumulator

2. Six 8-bit General Purpose Register: B, C, D, E, H, and L.

3. Temporary Register- W and Z register which is not available to

programmer. Because it is used internally located above B and C register

4. Special Purpose Register

 Instruction Register

 Accumulator

 Flag Register

 Stack pointer-16 bit

 Program counter- 16 bit

 Memory Address Register

Instruction Register

They can be combined as register pairs BC, DE, and HL - to perform some

16 - bit operations. The programmer can use these registers to store or copy

data into the registers by using data copy instructions.

10

Accumulator

The accumulator is an 8-bit register that is a part of arithmetic/logic unit

(ALU). This register is used to store 8-bit data and to perform arithmetic and

logical operations. The result of an operation is stored in the accumulator.

The accumulator is also identified as register A.

Flag Register:

The status each flip flop is known as Flag register. The ALU includes five

flip-flops, which are set or reset after an operation according to data

conditions of the result in the accumulator and other registers. They are

called Zero (Z), Carry (CY), Sign (S), Parity (P), and Auxiliary Carry (AC)

flags; they are listed in the Table and their bit positions in the flag register

are shown below.

D7 D6 D5 D4 D3 D2 D1 D0

S Z X AC X P X CY

The most commonly used flags are Zero, Carry, and Sign. The Micro

processor uses these flags to test data conditions.

Sign Flag

After the arithmetic or logical operation D7 bit is 1.sign flag will be set.

Otherwise Reset.

Zero Flag

when arithmetic operation results is zero, the Zero (Z) flag is set to one

Auxiliary Carry Flag: The flag is set overflow out of bit 3

Parity Flag

Number of one‘s present in accumulator. If there is even number of one‘s

Even parity will set. If there is odd number of one‘s odd parity will set.

Carry Flag

The flag is set if there is overflow out of bit 7.

11

Program Counter (PC)

This 16-bit Special Purpose register deals with sequencing the execution of

instructions. This register is a memory pointer. The function of the program

counter is to point to the memory address from which the next byte is to be

fetched. When a byte (machine code) is being fetched, the program counter

is incremented by one to point to the next memory location.

Stack Pointer (SP)

The stack pointer is also a 16-bit register which is used to point memory

location called stack. It sequence of memory location in R/W memory. The

beginning of the stack is defined by loading 16-bit address in the stack

pointer.

Memory Address Register (MAR)

It holds the address of next program instruction. Then MAR feeds the

address bus with address of the memory location of the program instruction

which will be executed.

Instruction Register/Decoder

Temporary storage for the current instruction of a program. Latest instruction

sent here from memory prior to execution. Decoder then takes instruction

and ‗decodes‘ or interprets the instruction. Decoded instruction then passed

to next stage.

System Bus:

It is a collection of wire which is used to transfer the data from source to

destination.

Types:

1. Address BusIt transfer 16 bit address

2. Data BusIt carry 8 bit data

3. Control BusIt carry control signals

12

Data Bus:

Data bus carries data in binary form between Micro processor and other

external units such as memory. It is used to transmit data i.e. information,

results of arithmetic etc between memory and the Micro processor. Data bus

is bidirectional in nature. The data bus width of 8085 Micro processor is 8-

bit i.e. 28 combination of binary digits and are typically identified as D0 -

D7. Thus size of the data bus determines what arithmetic can be done. If only

8-bit wide then largest number is 11111111 (255 in decimal). Therefore,

larger numbers have to be broken down into chunks of 255. This slows

Micro processor.

Address Bus: The address bus carries addresses and is one way bus from

Micro processor to the memory or other devices. 8085 Micro processor

contain 16-bit address bus and are generally identified as A0 - A15. The

higher order address lines (A8 - A15) are unidirectional and the lower order

lines (A0 - A7) are multiplexed (time-shared) with the eight data bits (D0 -

D7) and hence, they are bidirectional.

Control Bus: Control buses are various lines which have specific functions

for coordinating and controlling Micro processor operations. The control bus

carries control signals partly unidirectional and partly bidirectional. The

following control and status signals are used by 8085 PROCESSOR:

13

(i) 8085 PIN DESCRIPTION:

ALE (output)

Address latch enable, during the first clock state of a machine cycle, it

become high and enables the address to get latched either in to the memory

or external latch. The falling edge of ALE is set to guarantee set-up, can hold

times for the address information. The falling edge ALE can also be used to

strobe the status information.

RD (active low output)

The Read signal indicates that data are being read from the selected I/O or

memory device and that they are available on the data bus.

14

WR (active low output)

The Write signal indicates that data on the data bus are to be written into a

selected memory or I/O location.

IO/M (output)

It is a signal that distinguished between a memory operation and an I/O

operation. When IO/M= 0 it is a memory operation and IO/M= 1 it is an I/O

operation.

S1 and SO (output)

These are status signals used to specify the type of operation being

performed; they are listed in below table.

 Fig : S1 and SO (output)

The Micro processor performs primarily four operations:

I. Memory Read: Reads data (or instruction) from memory.

II. Memory Write: Writes data (or instruction) into memory.

III. I/O Read: Accepts data from input device.

IV. I/O Write: Sends data to output device.

Address and Data Buses

 A8 - A15 (output, 3-state): Most significant eight bits of memory

addresses and the eight bits of the I/O addresses. These lines enter

into tri-state high impedance state during HOLD and HALT modes.

15

 AD0 - AD7 (input/output, 3-state): Lower significant bits of memory

addresses and the eight bits of the I/O addresses during first clock

cycle. Behaves as data bus

 Power Supply & Clock Frequency

• Vcc: +5 V power supply

• Vss: Ground reference

• X1, X2: A crystal having frequency of 6 MHz is

connected at these two pins

• CLK: Clock output

 Externally Initiated and Interrupt Signals

• RESET IN: When the signal on this pin is low, the PC is set

to 0, the buses are tri-stated and the PROCESSOR is reset.

• RESET OUT: This signal indicates that the PROCESSOR is

being reset. The signal can be used to reset other devices.

• READY: When this signal is low, the PROCESSOR waits for

an integral number of clock cycles until it goes high.

• HOLD: This signal indicates that a peripheral like DMA

(direct memory access)

• HLDA: This signal acknowledges the HOLD request.

• INTR: Interrupt request is a general-purpose interrupt.

• INTA : This is used to acknowledge an interrupt.

• RST 7.5, RST 6.5, RST 5,5 - restart interrupt:

• These are vectored interrupts and have highest priority than

INTR interrupt.

• TRAP: This is a non-maskable interrupt and has the highest

priority.

16

 Serial I/O Signals

• SID: Serial input signal. Bit on this line is loaded to D7 bit of

register A using RIM instruction.

• SOD: Serial output signal. Output SOD is set or reset by

using SIM instruction.

ADDRESSING MODES FOR 8085

The method of specifying the data or operand to be operated.

Types:

1. Immediate Addressing Mode

2. Register Addressing Mode

3. Direct Addressing Mode

4. Indirect Addressing Mode

5. Implied Addressing Mode

Immediate Addressing Mode

The data is present in the instruction itself is called Immediate Addressing

Mode.

Ex: MVI A, 03H-^The data 03 is moved to accumulator.

ADI 03H^The data 03 is added immediately to the accumulator.

Register Addressing Mode

The data is moved from one register to another register is called Register

Addressing Mode .

Ex: MOV A, The data is moved from one register to another register ADD

CThe data present in C register is added with data present in accumulator

and saved in accumulator.

Direct Addressing Mode

The address of the operand always exist within the instruction.

17

Ex: LDA 4500H -Load the content of the memory location 4500 in to the

accumulator.

STA 4600HStore the content of the accumulator in the memory location

4600.

Indirect Addressing Mode

The content of the register is used to specify the address of the operand

Ex: MOV A, MMove the content of the memory location whose address is

given in H and L register in the accumulator.

ADD M Addition of the content of the memory location whose address is

given in H and L register and in the accumulator.

Implied Addressing Mode

Opcode specifies the address of the operand.

EX: CMAcomplements the content of the accumulator RALRotate the

content of the accumulator left through carry.

Instruction set for 8085

The command applied to the Micro processor to perform a specific function.

Types:

1. Data Transfer Instruction

2. Arithmetic Instructions

3. Logical Instructions

4. Branching Instructions

5. Stack Input/output and Machine Control Instructions

Data Transfer Instruction

The data is copied from source to Destination without any change.

Ex:MOV A,B MOV A,B The data is moved from one register to another

register

18

MVI A,03H-The data 03 is moved to accumulator.

LDA 4500H -Load the content of the memory location 4500 in to the

accumulator STA 4600H- Store the content of the accumulator in the

memory location 4600.

Arithmetic Instructions

To perform arithmetic operation such as addition, subtraction, Increment and

decrement.

EX: ADD CThe data present in C register is added with data present in

accumulator and saved in accumulator.

SUB The data present in B register is subtracted with data present in

accumulator and saved in accumulator.

INR BThe content of B register incremented by one DCR CThe content

of C register decremented by one..

Logical Instructions:

The group of instruction perform logical operation such as AND,OR,

Exclusive-OR, Rotate, Compare, and Complement with the content of the

accumulator.

Ex: ANA BThe data present in the B register AND with data present in

accumulator and stored in the accumulator.

ORA M The data present accumulator Ors with data present in the

memory pointed by HL register pair and stored in the accumulator.

CMAComplement the content of the accumulator.

RLCRotate the content of the accumulator left by one position.

Branching Instructions

The instruction changes the sequence of program execution using

conditional, unconditional jumps, subroutine call and return

19

EX: JMP 4500HThe Program execution jump to the specified address.

JC -Jump on carry

JNZ -Jump on non zero

RETReturn from subroutine unconditionally.

Stack input /output and Control Instructions

It is used to manipulate stack related operation and Input/output

Machine control operation. EX: PUSH BPush the content of register

B and C to the stack.

POP HPop off stack to register H and L pair.

NOPNo operation HALTHalt and Enter wait state.

2. Features of 8086 Micro processor

 It is 16 bit PROCESSOR.

 It is designed using HMOS technology in , available in three clock

rates:5,8,10MHZ.

 It has 29000 transistors.

 8086 is packed 40 Pin IC.

 It doesn‘t have internal clock circuit.

 33% of duty cycle.

 Its operating frequency is 5 V.

 It has fourteen 16 bit registers.

 It has 16 bit data bus and 20 bit address bus(1 MB memory)

2. ARCHITECTURE OF 8086

20

It is Pipelined architecture. The 8086 CPU is divided into two

functional units: Bus Interface Unit (BIU) , Execution Unit (EU)

The Bus Interface Unit (BIU)

The BIU handles all data and addresses on the buses for the execution unit

such as it sends out addresses, fetches instructions from memory,

reads/writes data from ports and memory. It contains the bus interface

logic, Segment register, stack pointer, base pointer, index pointer, memory

address logic and 6 byte Instruction queue (FIFO). BIU fetches the

instruction code from memory and stores in the queue.

Instruction Queue

To increase the execution speed, BIU fetches as many as six instruction

bytes ahead to time from memory. The prefetched instruction bytes are

held for the EU in a first in first out group of registers called a instruction

21

queue. When the EU is ready for its next instruction, it simply reads the

instruction from this instruction queue. This is much faster than sending

out an address to the system memory and to send back the next instruction

byte. Fetching the next instruction while the current instruction executes is

called pipelining.

Execution unit (EU):

It consists of ALU, General purpose register, Flag register, Instruction

decoder, Pointer and index register and the control unit which are required to

execute an instruction. EU gets the opcode of the instruction from instruction

queue. Then it will be decoded and executed .BIU and EU are independent.

The overlapping operation of BIU and EU functional unit of a Micro

processor is called pipelining.

Register:

It has fourteen 16 bit register .All the register subdivide in to

1. Data Register

2. Segment Register

3. Pointer Register

4. Index register (program counter)

5. Flag register

6. Data register

It has four 16 bit general purpose register (AX, BX, CX, DX)

16 bit Register 8 bit High-order Register 8 bit lower order Register

AX AH AL

BX BH BL

CX CH CL

DX DH DL

22

AX register:

 It serves as accumulator.

 It performs I/O operation and process data through AX,

AH, AL.

 Result stored in accumulator.

 For 16 bit multiplication/division AX contain one word

operand.

 For 32 bit multiplication/division AX contain lower order

word operand.

BX register

It acts as a index register

for MOVE operation.

Base register for data

memory address.

CX register

 CX register can be used as a count register for string

operation.

 It will have the count.

 It has large number of iteration.

 CX holds desired number of repetition and it automatically

decremented by one after the execution of instruction.

 CX become zero , the execution instruction is terminated.

DX register

 DX can be used as a port address for IN and OUT instruction.

 The DX can be used in I/O instruction, Divide, Multiple

Instruction.

 In 32 bit multiplication/division instruction DX is used to

23

hold the higher order word operand.

Segment Registers:

The BIU contains four 16-bit segment registers, one MB memory. Each

divided in to 16 parts which are called segments. Each segment occupies the

64KB memory space.

They are:

 Code segment (CS) register

 Data segment (DS) register

 Stack segment (SS) register

 Extra segment (ES) register

These segment registers are used to hold the upper 16 bits of the starting

address for each of the segments. The part of a segment starting address

stored in a segment register is often called the segment base.

1. Code Segment (CS)

The CS register is used for addressing a memory location in the Code

Segment of the memory, where the executable program is stored.

2. Data Segment (DS)

The data segment register points to the data segment of the memory, where

24

data is stored

3. Stack Segment (SS)

It is used to addressing stack segment of the memory in which data is stored.

4. Extra Segment (ES)

It can be used as another data segment of the memory.

Pointer and Index register:

1. Stack Pointer(SP)

2. Base Pointer(BP)

3. Source Index(SI)

4. Destination Index(DI)

5. Instruction Pointer(IP)

Flag register

S- Sign Flag : This flag is set, when the result of any computation is

negative.

Z- Zero Flag: This flag is set, if the result of the computation or comparison

performed by the previous instruction is zero.

P- Parity Flag: This flag is set to 1, if the lower byte of the result contains

even number of 1‘s.

C- Carry Flag: This flag is set, when there is a carry out of MSB in case of

addition or a borrow in case of subtraction.

T- Tarp Flag: If this flag is set, the PROCESSOR enters the single step exe.

mode.

Interrupt Flag: If this flag is set, the maskable interrupt are recognized by

the CPU, otherwise they are ignored.

D- Direction Flag: This is used by string manipulation instructions. If this

15 1

4

1

3

1

2

1

1

10 9 8 7 6 5 4 3 2 1 0

X X X X OF DF IF TF SF ZF X AF X PF X CF

25

flag bit is ‗0‘, the string is processed beginning from the lowest address to

the highest address, i.e., auto incrementing mode. Otherwise, the string is

processed from the highest address towards the lowest address, i.e., auto

incrementing mode.

C-Auxilary Carry Flag: This is set, if there is a carry from the lowest

nibble, i.e, bit three during addition, or borrow for the lowest nibble, i.e, bit

three, during subtraction.

O- Over flow Flag: This flag is set, if an overflow occurs, i.e, if the result of

a signed operation is large enough to accommodate in a destination register.

The result is of more than 7-bits in size in case of 8-bit signed operation and

more than 15-bits in size in case of 16-bit sign operations, then the overflow

will be set.

3. Addressing modes of 8086

The method of specifying the data to be operated.

Types:

1. Immediate Addressing mode:

2. Register Addressing mode:

3. Direct addressing mode

4. Register indirect addressing mode

5. Based addressing mode

6. Indexed addressing mode

7. Based Indexed addressing mode

8. Based Indexed with displacement addressing mode

9. String addressing mode

10. Branch addressing mode

11. Direct IO port addressing

12. Indirect IO port addressing

26

13. Relative addressing mode

14. Implied addressing mode

Immediate Addressing mode

The 8 bit or 16 bit data is provided in the instruction itself.

EX: MOV BX, 5000H^Load 5000H in to BX register.

MOV CX, 4500H^ Store 4500H in to CX register.

Register Addressing mode

The data in a register or in a register pair specified by the instruction.

EX: MOV AL, BL^The content present in BL register is copied to AL

register.

MOV AX, BX^The content present in BX register is copied to AX register.

Direct addressing mode

The instruction or operand specifies the memory address where data is

located.

EX: MOV AX, [5000H] ^copies the 2 byte of data starting from memory

location DS*10+5000H to AX register. LSB^Data from DS*10+5000H,

MSB^ Data from DS*10+5001H, MOV AX, SS: [2000H]: Similarly to

access the memory from Stack segment.

Register indirect addressing mode

 The instruction specifies the register containing the address where the

data is located. Where data is located. This addressing mode works with SI,

DI, BX and BP registers.

EX: MOV AL, [BX]^The Data present in BX register pointed to memory

location (which default indicates the data segment) is moved to AL register.

MOV AL, CS:[SI]^ The Data present in SI register pointed to memory

location which indicates the code segment is moved to AL register.

27

Based addressing mode

The 8-bit or 16-bit instruction operand is added to the contents of a base

register (BX or BP), the resulting value is a pointer to location where data

resides.

EX: MOV AL, [BX+8 Bit DISP]^The content of memory location pointed

by physical address (PA) of the base register BX with displacement is copied

to AL register.

MOV AH, [BP+8 Bit DISP]^ The content of memory location pointed by

physical address (PA) of the base register BP with displacement is copied to

AH register.

Indexed addressing mode

The 8-bit or 16-bit instruction operand is added to the contents of an index

register (SI or DI), the resulting value is a pointer to location where data

resides.

EX: MOV AL, CS: [SI+DISP]^ The content of memory location pointed by

physical address (PA) of the index register SI with displacement which is

present in code segment is copied to AL register.

MOV AL, SS: [DI+DISP]^ The content of memory location pointed by

physical address (PA) of the index register DI with displacement which is

present in stack segment is copied to AL register.

Based Indexed addressing mode

The contents of a base register (BX or BP) is added to the contents of an

index register (SI or DI), the resulting value is a pointer to location where

data resides.

EX: MOV AL, [BX+DI]^ The content of memory location pointed by

physical address(PA) of the summation base register BX and index register

DI is copied to AL register.

MOV AL, [BP+SI The content of memory location pointed by physical

28

address (PA) of the summation base register BP and index register SI is

copied to AL register.

Based Indexed with displacement

The 8-bit or 16-bit instruction operand is added to the contents of a base

register (BX or BP) and index register (SI or DI) with displacement value,

the resulting value is a pointer to location where data resides.

EX: MOV AL, [BX+DI+DISP]^The 16-bit operand is added to the contents

of a BX and DI with displacement ,the resulting value is a pointer to location

of AL. MOV AL, [BP+SI+DISP]^ The 16-bit operand is added to the

contents of a BP and SI with displacement ,the resulting value is a pointer to

location of AL.

String Addressing Mode

String is a byte or word s which are stored in memory.

EX: MOV SBThe memory source address is the SI register in the data

segment. The memory of destination address is the DI register in the extra

segment.

Branch Addressing Mode

 Intra segment mode^ Intra segment Direct, Intra segment Indirect

 Inter segment mode^ Inter segment Direct, Inter segment Indirect

EX: JNC START If CY=O, then PC is loaded with current PC contents plus

8 bit signed value of START, otherwise the next instruction is executed.

Direct IO port addressing

It is used to access data from standard IO-mapped devices or ports. In the

direct port addressing mode, an 8-bit port address is directly specified in the

instruction.

EX: IN AL, [09H] The content of the port with address 09H is moved to

the AL register.

29

Indirect IO port addressing

It is used to access data from standard IO mapped devices or ports. In the

indirect port addressing mode, the instruction will specify the name of the

register which holds the port address.

EX: OUT [DX],AXThe content of the AX is moved to the port whose

address is specified by the DX register.

Relative Addressing mode

The effective address of a program instruction is specified relative to

instruction pointer(IP) by an 8 bit signed displacement.

EX: JZ 0AH^Jump on Zero

Implied Addressing mode

The instruction itself will specify the data to be operated by the instruction.

EX: CLCclear flag CMC complement carry flag

INSTRUCTION SET OF 8086:

The command applied to the Micro processor to perform a specific function.

TYPES:

1. Data transfer Instruction

2. Arithmetic and Logical Instruction

3. Branch Instruction

4. Loop Instruction

5. Process control Instruction

6. Flag Manipulation Instruction

7. Shift and Rotate Instruction.

8. String Manipulation Instruction

Data transfer Instruction

 The data is copied from source to Destination without any change. i.e

register to register Memory to register; register to memory, Data given

30

immediately to register or memory. [MOV,LDS,XCHG,PUSH,POP]

EX: MOV AX, SIThe content of SI is moved to the AX register. XCHG

DH, CLThe content of CL register is exchanged with content of DH

register.

Arithmetic and Logical Instruction

It performs the arithmetic, logical, increment, decrement, compare and scan

instruction.[ADD,SUB,MUL,DIV,INC,CMP,DAS,AND,OR,NOT,TEST,X

OR]

EX: ADC BH,CLThe content of BH register ,the AL register and the carry

flag are added. The result is stored in the BH- register.

XOR BX,DXThe content of the BX and DX registers are Exclusive ORed

.This result is stored in BX register.

Control Transfer Instruction

 Branch Instruction

 Loop Instruction

Branch Instruction

The instruction will transfer the control of execution to the specified address.

The JUMP, CALL, interrupt and Return belongs to the Branch instruction.

EX: JNC 4500HJump if no carry to the memory location 4500H

CALL -This Instruction is used to transfer execution to a subprogram or

procedure. There are two basic types of CALL: Near and Far.

JCXZ Instruction Jump if the CX register is zero

Loop Instruction

These instructions have REP prefix with CX used as count register,

31

and they can be used to implement unconditional and conditional

loops. The LOOP, LOOPNZ, LOOPZ instruction belong to this Loop

instruction. It is used to implement different delay loops.

EX: LOOP Instruction Loop to specified label until CX = 0

LOOPE / LOOPZ loop while CX 0 and ZF = 1

Process control Instruction

The instruction control the machine status CLC, CMC, CLI, STD, STI, NOP,

HLT, WAIT and LOCK instruction.

EX:CLCCarry flag is reset to zero.

CMCCarry flag is complemented.

HLTHalt the program execution.

WAITWait for test line active.

Flag Manipulation Instruction

All the instruction which directly affect the flag registers come under this

group of instruction. Instructions like CLD, STD, CLI, and STI belong to

this category.

EX:STD: Set direction Flag

STC: Set Carry Flag

Shift and Rotate Instruction: The instruction involves in the bitwise

shifting OR Rotation in either direction with or without a count in CX.

The example instructions are RCL, RCR, ROL, ROR, SAL, SHL, SAR

and SHR.

EX: ROR AX, CL Rotate word or byte operand right by CL times. So

CF and OF flag gets affected.

SAL AX, CL Shift word or byte operand CL times.

32

Note: Shift and Rotate examples comes under Logical

String Instruction

These instructions involve various string manipulation operations

like load, move, scan, compare, store .

EX: MOVS, LODS and STOS.

EX: LODSW Instruction Load string byte into AL or Load string word

into AX

MOVSW Instruction Move string byte or string word.

5. PIN DIAGRAM

33

 AD7-AD0 : address/data bus(multiplexed)

memory address or I/O port no : whenever ALE = 1

data : whenever ALE = 0

high-impedance state : during a hold acknowledge

 A15-A8 : address bus

high-impedance state : during a hold acknowledge

 AD15-AD8 : address/data bus(multiplexed)

Memory address bits A15 - A8 : whenever ALE = 1

 Data bits D15 - D8 : whenever ALE = 0

 high - impedance state : during a hold acknowledge

 AD15 - AD0 Address/Data Bus

 A19 - A16 Address/Status

 A19/S6 - A16/S3 : address/status bus(multiplexed)

 Memory address A19 - A16, status bits S6 - S3

 High - impedance state : during a hold acknowledge

 S6 : always remain a logic 0

 S5 : indicate condition of IF flag bits

 S4, S3 : show which segment is accessed during current bus

cycle

 S4, S3 : can used to address four separate 1M byte memory

banks by decoding them as A21, A20

 TEST‘(BUSY‘) : tested by the WAIT instruction

 WAIT instruction function as a NOP : if TEST‘= 0

 WAIT instruction wait for TEST‘ to become 0:if TEST‘=1

 INTR: Interrupt request

It is a level triggered input which is sampled during the last clock

cycle of each instruction to determine the PROCESSOR should enter

34

in to interrupt vector look up table located in the system memory.

 It is internally masked by software

 NMI : Non-maskable interrupt

 similar to INTR except that no check IF flag bit

 if NMI is activated : use interrupt vector 2

 RESET :

Reset signal active high for minimum of four clock cycles.

 The signals terminate its present activity and the system is

reset.

 VCC(power supply) : +5.0V, ±10%

 GND(Ground) : two pins labeled GND

 MN/MX‘ : select either minimum or maximum mode

Low—Maximum

High--Minimum

 BHE‘/S7 : bus high enable

 Enable the most significant data bus bits(D15 - D8) during

read or write operation

 Status of S7 : always a logic 1

 Minimum Mode Pins: MN = 1(directly to +5.0V) next IO/M‘(8088)

or M/IO‘(8086) : select memory or I/O

 Address bus : whether memory or I/O port address

 WR: write signal(high impedance state during hold ack.)

strobe that indicate that output data to memory or I/O during WR‘=0

: data bus contains valid data for M or I/O

 RD‘: Control signal read operation (it is an active low signal)

 Depends upon the status of S2 pin it will read the memory of

I/O or memory.

35

UNIT II

ADVANCED PROCESSOR

Review of PROCESSOR and its types-80286-80386-80486-Introduction to

Pentium family-MMX architecture and instruction set- core 2duo and core 2

quad PROCESSOR.

1. ARCHITECTURE OF 80286

Features of 80286

 The 80286 is the first family of advanced Micro processor with

memory management and protection mode.

 It is 16 bit PROCESSOR with 134000 transistors.

 The CPU, with its 24-bit address bus is able to address up to 16

Mbytes of physical memory.

 It has 12.5 MHz, 10 MHz and 8 MHz clock frequencies.

36

 Average speed is 0.21 instructions per clock cycle.

 It compatible with 8086 in terms of instruction set.

 It has two operating modes namely real address mode and virtual

address mode.

 In real address mode, the 80286 can address up to 1Mb of physical

memory address.

 In virtual address mode, it can address up to 16 Mb of physical

memory address space and 1 GB of virtual memory address space.

 The instruction set of 80286 includes the instructions of 8086 and

80186.

 It has some extra instructions to support operating system and

memory management.

 In real address mode, the 80286 is object code compatible with 8086.

 In protected virtual address mode, it is source code compatible with

8086.

 It is five times faster than the standard 8086.

Register of 80286

The 80286 contains almost the same set of registers, as in 8086, namely

1. Eight 16-bit general purpose registers

2. Four 16-bit segment registers

3. Status and control registers

4. Instruction Pointer

Functional blocks

1. Address Unit (AU)

2. Bus Init (BU)

3. Instruction Unit (IU)

4. Execution Unit (EU)

37

Address Unit:

 The address is responsible for calculating the physical address (PA

or MA) of instructions and data accessed. PA29 bit, off set 16

bit.

 The address lines derived by this unit may be used to address

different peripherals.

 The PA handed over to the bus unit (BU) of the CPU.

Bus Unit:

 It has 16-bit data bus, 24 bit address bus and control bus. It performs

all external operation.

 Latches and drivers of address bus transmit address from A19-A0 for

read and write operation.

 It will fetch instruction bytes from the memory.

 Instructions are fetched in advance and stored in a queue to enable

faster execution of the instructions. This concept is called instruction

pipelining.

 It controls the prefetcher module. These prefetched instructions are

arranged in a 6-byte instructions queue.

Instruction Unit:

 The 6-byte pre-fetch queue forwards the instructions arranged in it to

the instruction unit (IU).

 The instruction unit accepts instructions from the prefetch queue and

an instruction decoder decodes them one by one.

 The output of the decoding circuit drives a control circuit in the

execution unit, which is responsible for executing the instructions

received from decoded instruction queue.

38

Execution Unit:

 The decoded instruction queue sends the data part of the instruction

over the data bus.

 The EU contains the register bank used for storing the data as scratch

pad, or used as special purpose registers.

 The ALU, the heart of the EU, carries out all the arithmetic and

logical operations and sends the results over the data bus or back to

the register bank.

Register:

The architecture has fifteen registers. It is grouped in to four categories are

below.

1. General purpose registers

2. Segment registers

3. Base and Index registers

4. Status and control registers

General purpose Registers:

It is used to store arithmetic and logical operations. They are AX, BX, CX ,

DX can be used either as 16 bit words or split in to pair of 8 bit registers.

Segment Registers:

It is used to select the segment of memory that is immediately addressable

for code, stack and data.

Base and Index Registers:

General purpose register can also used to determine offset address of

operand in memory. It holds base address or indexes to particular location

within a segment.

39

Status and control registers:

It is 16 bit special purpose register are used of record and control of the

80286 PROCESSOR. The instruction pointer contains the offset address of

the next sequential instruction to be executed.

Flag Word Description:

Status Flag:

1. Carry Flag (CF)^D0 set on carry/borrow produced ,when

adding/subtracting bits.

2. Parity Flag (PF)^D2 set on even number of ones.

3. Auxiliary carry Flag (AF)^D4 set on carry or borrow to LSB to MSB

otherwise cleared.

4. Zero Flag (ZF)^Set on D6 is zero

5. Sign Flag (SF)^Set on D7 is one

6. Overflow Flag (OF)^Too large or small numbers.

Control Flag:

1. Trap Flag (TF)^Set, a single interrupts occurs after the next

instruction executes.TF is cleared by the single step interrupt.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X NT

IOPL

IOPL

OF DF IF TF SF ZF X AF X PF X CF

D32 D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19

D17 D16

X X X X X X X X X X X X X TS EM MP PE

40

2. Interrupt Flag (IF)^Set, Maskable interrupt will cause the CPU to

transfer control to an interrupt vector specified location.

3. Direction Flag (DF)^Causes string instruction to auto decrement the

appropriate index registers when set. Clearing DF causes auto

increment.

Machine Status Word:

1. Task switch^ TS is set, This flag indicates the next instruction using

extension will generate exception7, permitting the emulation of

PROCESSOR extension is for the current task.

2. PROCESSOR Extension (EM)^The emulate PROCESSOR extension

flag causes a PROCESSOR extension absent exception and permits

the emulation of PROCESSOR extension by CPU.

3. Monitor PROCESSOR Extension (MP)^The monitor process

extension flag allows WAIT instruction to generate a PROCESSOR

extension not present in the extension.

4. Protection enable (PE) ^Protection enable flag places the 80286 in

protected mode, PE is set. This can only be cleared by resetting the

CPU.

Other Flag:

1. Nested Flag

2. I/O privilege level

Interrupt:

The Interrupts of 80286 may be divided into three categories,

41

1. External or hardware interrupts

2. INT instruction or software interrupts

3. Interrupts generated internally by exceptions

While executing an instruction, the CPU may sometimes be confronted with

a special situation because of which further execution is not permitted. While

trying to execute a divide by zero instruction, the CPU detects a major error

and stops further execution. In this case, we say that an exception has been

generated. In other words, an instruction exception is an unusual situation

encountered during execution of an instruction that stops further execution.

The return address from an exception, in most of the cases, points to the

instruction that caused the exception. As in the case of 8086, the interrupt

vector table of 80286 requires 1Kbytes of space for storing 256, four-byte

pointers to point to the corresponding 256 interrupt service routines (lSR).

Each pointer contains a 16-bit offset followed by a 16-bit segment selector to

point to a particular ISR. The calculation of vector pointer address in the

interrupt vector table from the (8-bit) INT type is exactly similar to 8086.

Like 8086, the 80286 supports the software interrupts of type 0 (INT 00) to

type FFH (INT FFH).

Maskable Interrupt INTR :

This is a maskable interrupt input pin of which the INT type is to be

provided by an external circuit like an interrupt controller. The other

functional details of this interrupt pin are exactly similar to the INTR

input of 8086.

Non-Maskable Interrupt NMI :

It has higher priority than the INTR interrupt. Whenever this interrupt is

received, a vector value of 02 is supplied internally to calculate the pointer to

the interrupt vector table. Once the CPU responds to a NMI request, it does

42

not serve any other interrupt request (including NMI). Further it does not

serve the PROCESSOR extension (COPROCESSOR) segment overrun

interrupt, till either it executes IRET or it is reset. To start with, this clears

the IF flag which is set again with the execution of IRET, i.e. return from

interrupt.

Single Step Interrupt

As in 8086, this is an internal interrupt that comes into action, if trap flag

(TF) of 80286 is set. The CPU stops the execution after each instruction

cycle so that the register contents (including flag register), the program status

word and memory, etc. may be examined at the end of each instruction

execution. This interrupt is useful for troubleshooting the software. An

interrupt vector type 01 is reserved for this interrupt.

CLK:

This is the system clock input pin. The clock frequency applied at this pin is

divided by two internally and is used for deriving fundamental timings for

basic operations of the circuit. The clock is generated using 8284 clock

generator.

 Signal Description of 80286

43

D15-D0 :

These are sixteen bidirectional data bus lines.

A23-A0 :

These are the physical address output lines used to address memory or I/O

devices. The address lines A23 - A16 are zero during I/O transfers

BHE :

This output signal, as in 8086, indicates that there is a transfer on the higher

byte of the data bus (D15 - D8) .

SISO :

These are the active-low status output signals which indicate initiation of a

bus cycle and with M/IO and COD/INTA, they define the type of the bus

cycle.

M/IO:

This output line differentiates memory operations from I/O operations. If this

signal is it ―0‖ indicates that an I/O cycle or INTA cycle is in process and if

it is ―1‖ it indicates that a memory or a HALT cycle is in progress.

COD/lNTA :

This output signal, in combination with M/ IO signal and S1 , S0

distinguishes different memory, I/O and INTA cycles.

LOCK

This active-low output pin is used to prevent the other masters from

gaining the control of the bus for the current and the following bus cycles.

This pin is activated by a "LOCK" instruction prefix, or automatically by

44

hardware during XCHG, interrupt acknowledge or descriptor table access

READY

This active-low input pin is used to insert wait states in a bus cycle, for

interfacing low speed peripherals. This signal is neglected during HLDA

cycle.

HOLD and HLDA

This pair of pins is used by external bus masters to request for the control of

the system bus (HOLD) and to check whether the main PROCESSOR has

COD/INTA mo SI so Bus Cycle

l(High) 0 0 0 Will not occur

1 0 0] I/O read

1 0 1 0 I/O write

1 0 1] None; not a status cycle

1 1 0 0 Will not occur

1 1 0] Will not occur Memory instruction

read

1 1 1 0 Will not occur

1 1 1] None; not a status cycle

45

granted the control (HLDA) or not, in the same way as it was in 8086.

INTR :

Through this active high input, an external device requests 80286 to suspend

the current instruction execution and serve the interrupt request. Its function

is exactly similar to that of INTR pin of 8086.

NMI :

The Non-Maskable Interrupt request is an active-high, edge-triggered input

that is equivalent to an INTR signal of type 2. No acknowledge cycles are

needed to be carried out.

PEREG and PEACK (PROCESSOR Extension Request and

Acknowledgement)

PROCESSOR extension refers to coPROCESSOR (80287 in case of 80286

CPU). This pair of pins extends the memory management and protection

capabilities of 80286 to the PROCESSOR extension 80287. The PEREQ

input requests the 80286 to perform a data operand transfer for a

PROCESSOR extension. The PEACK active-low output indicates to the

PROCESSOR extension that the requested operand is being transferred.

BUSY and ERROR:

PROCESSOR extension both are active-low input signals indicate the

operating conditions of a PROCESSOR extension to 80286. The BUSY goes

low, indicating 80286 to suspend the execution and wait until the BUSY

become inactive. In this duration, the PROCESSOR extension is busy with

its allotted job. Once the job is completed the PROCESSOR extension drives

the BUSY input high indicating 80286 to continue with the program

46

execution. An active ERROR signal causes the 80286 to perform the

PROCESSOR extension interrupt while executing the WAIT and ESC

instructions. The active ERRORsignal indicates to 80286 that the

PROCESSOR extension has committed a mistake and hence it is reactivating

the PROCESSOR extension.

CAP :

A 0.047 pf, 12V capacitor must be connected between this input pin and

ground to filter the output of the internal substrate bias generator. For correct

operation of 80286 the capacitor must be charged to its operating voltage.

Till this capacitor charges to its full capacity, the 80286 may be kept stuck to

reset to avoid any spurious activity.

Vss :

This pin is a system ground pin of 80286.

Vcc :

This pin is used to apply +5V power supply voltage to the internal circuit of

80286. RESET the active-high RESET input clears the internal logic of

80286, and reinitializes it

Reset

The active-high reset input pulse width should be at least 16 clock cycles.

The 80286 requires at least 38 clock cycles after the trailing edge of the

RESET input signal, before it makes the first opcode fetch cycle.

47

Real Address Mode

It act as a fast 8086.Instruction set is upwardly compatible. It address only 1

M byte of physical memory using A0-A19.In real addressing mode of

operation of 80286, it just acts as a fast 8086. The instruction set is upward

compatible with that of 8086.The 80286 addresses only IMbytes of physical

memory using A0- A19. The lines A20-A23 are not used by the internal

circuit of 80286 in this mode. In real address mode, while addressing the

physical memory, the 80286 uses BHE along with A0- A19. The 20-bit

physical address is again formed in the same way as that in 8086. The

contents of segment registers are used as segment base addresses. The other

registers, depending upon the addressing mode, contain the offset addresses.

Because of extra pipelining and other circuit level improvements, in real

address mode also, the 80286 operates at a much faster rate than 8086,

although functionally they work in an identical fashion. As in 8086, the

physical memory is organized in terms of segments of 64Kbyte.An exception

is generated, if the segment size limit is exceeded by the instruction or the

data. The overlapping of physical memory segments is allowed to minimize

the memory requirements for a task. The 80286 reserves two fixed areas of

physical memory for system initialization and interrupt vector table. In the

real mode the first 1Kbyte of memory starting from address 0000H to

003FFH is reserved for interrupt vector table. Also the addresses from

FFFF0H to FFFFFH are reserved for system initialization. The program

execution starts from FFFFH after reset and initialization. The interrupt

vector table of 80286 is organized in the same way as that of 8086. Some of

the interrupt types are reserved for exceptions, single-stepping and

PROCESSOR extension segment. When the 80286 is reset, it always starts

the execution in real address mode. In real address mode, it performs the

48

following functions: it initializes the IP and other registers of 80286, it

prepares for entering the protected virtual address mode.

Protected virtual address mode (PVAM):

80286 is the first PROCESSOR to support the concepts of virtual memory

and memory management. The virtual memory does not exist physically it

still appears to be available within the system. The concept of VM is

implemented using Physical memory that the CPU can directly access and

secondary memory that is used as storage for data and program, which are

stored in secondary memory initially. The Segment of the program or data

required for actual execution at that instant, is fetched from the secondary

memory into physical memory. After the execution of this fetched segment,

the next segment required for further execution is again fetched from the

secondary memory, while the results of the executed segment are stored back

into the secondary memory for further references. This continues till the

complete program is executed. During the execution the partial results of the

previously executed portions are again fetched into the physical memory, if

required for further execution. The procedure of fetching the chosen program

segments or data from the secondary storage into physical memory is called

swapping. The procedure of storing back the partial results or data back on

the secondary storage is called un swapping. The virtual memory is allotted

per task. The 80286 is able to address 1 G byte of virtual memory per task.

The complete virtual memory is mapped on to the 16Mbyte physical

memory.

 If a program is larger than 16Mbyte is stored on the hard disk and is to be

executed, if it is fetched in terms of data or program segments of less than

16Mbyte in size into the program memory by swapping sequentially as per

sequence of execution. Whenever the portion of a program is required for

49

execution by the CPU, it is fetched from the secondary memory and placed

in the physical memory is called swapping in of the program. A portion of

the program or important partial results required for further execution , may

be saved back on secondary storage to make the PM free for further

execution of another required portion of the program is called 80286 uses the

16-bit content of a segment register as a selector to address a descriptor

stored in the physical memory. The descriptor is a block of contiguous

memory locations containing information of a segment, like segment base

address, segment limit, segment type, privilege level, segment availability in

physical memory, descriptor type and segment use another task.

2. ARCHITECTURE OF 80386

50

Features of 80386:

 This 80386 is a 32bit PROCESSOR that supports 8bit/32bit data operands.

 The 80386 instruction set is upward compatible with all its predecessors.

 The 80386 can run 8086 applications under protected mode in its virtual 8086

mode of operation.

 With the 32 bit address bus, the 80386 can address up to 4Gbytes of physical

memory. The physical memory is organized in terms of segments of 4Gbytes at

maximum.

 The 80386 CPU supports 16K number of segments and thus the total virtual

space of 4Gbytes * 16K = 64 Terabytes.

 The memory management section of 80386 supports the virtual memory, paging

and four levels of protection, maintaining full compatibility with 80286.

 The 80386 offers a set of 8 debug registers DR 0-DR 7 for hardware debugging

and control. The 80386 has on-chip address translation cache.

 The concept of paging is introduced in 80386 that enables it to organize the

available physical memory in terms of pages of size 4Kbytes each, under the

segmented memory.

 The 80386 can be supported by 80387 for mathematical data processing.

Architecture:

The Internal Architecture of 80386 is divided into 3 sections.

 Central processing unit -Two types

 => Execution unit and Instruction unit

 Memory management unit

 Bus interface unit

51

Execution unit :

It has 8 General purpose and 8 Special purpose registers which are either used for

handling data or calculating offset addresses.

Instruction unit:

It decodes the opcode bytes received from the 16-byte instruction code queue and

arranges them in a 3- instruction decoded instruction queue. After decoding them pass it

to the control section for deriving the necessary control signals. The barrel shifter

increases the speed of all shift and rotate operations. The multiply / divide logic

implements the bit-shift-rotate algorithms to complete the operations in minimum time.

Even 32- bit multiplications can be executed within one microsecond by the multiply /

divide logic.

Memory management unit :

The Memory management unit consists of

 Segmentation unit

 Paging unit.

Segmentation unit:

It allows the use of two address components, viz. segment and offset for relocability and

sharing of code and data. The segments of size 4Gbytes. The Segmentation unit

provides a 4 level protection mechanism for protecting and isolating the system code

and data from those of the application program

The Paging unit :

It organizes the physical memory in terms of pages of 4kbytes size each. It works under

52

the control of the segmentation unit, i.e. each segment is further divided into pages. The

virtual memory is also organizes in terms of segments and pages by the memory

management unit. It converts linear addresses into physical addresses. The control and

attribute PLA checks the privileges at the page level. Each of the pages maintains the

paging information of the task. The limit and attribute PLA checks segment limits and

attributes at segment level to avoid invalid accesses to code and data in the memory

segments.

Bus control unit

It has a prioritize to resolve the priority of the various bus requests. which controls the

access of the bus. The address driver drives the bus enable and address signal A0 - A31.

The pipeline and dynamic bus sizing unit handle the related control signals.The data

buffers interface the internal data bus with the system bus.

53

Pin Diagram:

54

Pin Description:

CLK2: The input pin provides the basic system clock timing for the operation of 80386.

D 0 - D31: These 32 lines act as bidirectional data bus during different

access cycles A31 - A 2: These are upper 30 bit of the 32- bit address bus.

BE0 to BE 3: The 32- bit data bus supported by 80386 and the memory system of

80386 can be viewed as a 4- byte wide memory access mechanism. The 4 byte enable

lines BE 0 to BE 3, may be used for enabling these 4 blanks. Using these 4 enable signal

lines, the CPU may transfer 1 byte / 2 / 3 / 4 byte of data simultaneously.

W/R#: The write / read output distinguish the write and read cycles from one another.

D/C#: This data / control output pin distinguishes between a data transfer cycle from a

machine control cycle like interrupt acknowledge.

M/IO#: This output pin differentiates between the memory and I/O cycles.

LOCK#: The LOCK# output pin enables the CPU to prevent the other bus masters from

gaining the control of the system bus.

NA#: The next address input pin, if activated, allows address pipelining, during 80386

bus cycles.

ADS#: The address status output pin indicates that the address bus and bus cycle

definition pins (W/R#, D/C#, M/IO#, BE 0# to BE 3#) are carrying the respective valid

signals. The 80383 does not have any ALE signals and so this signals may be used for

latching the address to external latches.

READY#: The ready signals indicate to the CPU that the previous bus cycle has been

55

terminated and the bus is ready for the next cycle. The signal is used to insert WAIT

states in a bus cycle and is useful for interfacing of slow devices with CPU.

VCC: These are system power supply lines.

VSS: These return lines for the power supply

BS16#: The bus size - 16 input pin allows the interfacing g of 16 bit devices with the 32

bit wide 80386 data bus. Successive 16 bit bus cycles may be executed to read a 32 bit

data from a peripheral.

HOLD: The bus hold input pin enables the other bus masters to gain control of the

system bus if it is asserted.

HLDA: The bus hold acknowledge output indicates that a valid bus hold request has

been received and the bus has been relinquished by the CPU.

BUSY#: The busy input signal indicates to the CPU that the coPROCESSOR is busy

with the allocated task.

ERROR#: The error input pin indicates to the CPU that the coPROCESSOR has

encountered an error while executing its instruction.

PEREQ: The PROCESSOR extension request output signal indicates to the CPU to

fetch a data word for the coPROCESSOR.

INTR: This interrupt pin is a maskable interrupt that can be masked using the IF of the

flag register.

NMI: A valid request signal at the non-maskable interrupt request input pin internally

generates a non- maskable interrupt of type2.

RESET: A high at this input pin suspends the current operation and restart the execution

56

from the starting location.

N / C : No connection pins are expected to be left open while connecting the 80386 in

the circuit.

Register Organization:

The 80386 has eight 32 - bit general purpose registers which may be used as either 8 bit

or 16 bit registers. 32 - bit register known as an extended register, is represented by the

register name with prefix E. Example : A 32 bit register corresponding to AX is EAX,

similarly BX is EBX etc. The 16 bit registers BP, SP, SI and DI in 8086 are now

available with their extended size of 32 bit and are names as EBP, ESP, ESI and EDI.

AX represents the lower 16 bit of the 32 bit register EAX. BP, SP, SI, DI represents the

lower 16 bit of their 32 bit counterparts, and can be used as independent 16 bit registers.

The six segment registers available in 80386 are CS, SS, DS, ES, FS and GS. The CS

and SS are the code and the stack segment registers respectively, while DS, ES, FS, GS

are 4 data segment registers. The 16 bit instruction pointer IP is available along with 32

bit counterpart EIP.

Flag Register of 80386: It is a 32 bit register. Out of the 32 bits, Intel has reserved bits

D18 to D31, D 5 and D 3, while D1 is always set at 1.Two extra new flags are added to

the 80286 flag to derive the flag register of 80386. They are VM and RF flags.

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 NT IOPL IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF

D31-D17 reserved for Intel

D3

1

D3

0

D2

9

D2

8

D2

7

D2

6

D2

5

D2

4

D2

3

D2

2

D21 D20 D1

9

D1

8

D1

7

D16 D15

 VM RF

57

VM - Virtual Mode Flag:

If this flag is set, the 80386 enters the virtual 8086 mode within the protection mode.

This is to be set only when the 80386 is in protected mode. In this mode, if any

privileged instruction is executed an exception 13 is generated. This bit can be set using

IRET instruction or any task switch operation only in the protected mode.

RF- Resume Flag:

This flag is used with the debug register breakpoints. It is checked at the starting of

every instruction cycle and if it is set, any debug fault is ignored during the instruction

cycle. The RF is automatically reset after successful execution of every instruction,

except for IRET and POPF instructions. Also, it is not automatically cleared after the

successful execution of JMP, CALL and INT instruction causing a task switch. These

instructions are used to set the RF to the value specified by the memory data available at

the stack.

Segment Descriptor Registers:

This registers are not available for programmers, rather they are internally used to store

the descriptor information, like attributes, limit and base addresses of segments. The six

segment registers have corresponding six 73 bit descriptor registers. Each of them

contains 32 bit base address, 32 bit base limit and 9 bit attributes. These are

automatically loaded when the corresponding segments are loaded with selectors.

Control Registers:

The 80386 has three 32 bit control registers CR), CR 2 and CR 3 to hold global machine

status independent of the executed task. Load and store instructions are available to

access these registers. System Address Registers: Four special registers are defined to

refer to the descriptor tables supported by 80386. The 80386 supports four types of

descriptor table, viz. global descriptor table (GDT), interrupt descriptor table (IDT),

local descriptor table (LDT) and task state segment descriptor (TSS).

58

Debug and Test Registers: Intel has provide a set of 8 debug registers for hardware

debugging. Out of these eight registers DR 0 to DR 7, two registers DR 4 and DR 5 are

Intel reserved. The initial four registers DR 0 to DR 3 store four program controllable

breakpoint addresses, while DR 6 and DR 7 respectively hold breakpoint status and

breakpoint control information. Two more test register are provided by 80386 for page

caching namely test control and test status register.

ADDRESSING MODES:

The 80386 supports overall eleven addressing modes to facilitate efficient execution of

higher level language programs. In case of all those modes, the 80386 can now have 32-

bit immediate or 32- bit register operands or displacements. The 80386 has a family of

scaled modes. In case of scaled modes, any of the index register values can be

multiplied by a valid scale factor to obtain the displacement. The valid scale factor are 1,

2, 4 and 8.

The different scaled modes are as follows. Scaled Indexed Mode: Contents of the index

register are multiplied by a scale factor that may be added further to get the operand

offset.

Based Scaled Indexed Mode:

Contents of the index register are multiplied by a scale factor and then added to base

register to obtain the offset. Based Scaled Indexed Mode with Displacement: The

Contents of the index register are multiplied by a scaling factor and the result is added to

a base register and a displacement to get the offset of an operand.After reset, the 80386

starts from memory location FFFFFFF0H under the real address mode. In the real mode,

80386 works as a fast 8086 with 32- bit registers and data types. In real mode, the

default operand size is 16 bit but 32- bit operands and addressing modes may be used

with the help of override prefixes. The segment size in real mode is 64k, hence the 32-

bit effective addressing must be less than 0000FFFFFH. The real mode initializes the

59

80386 and prepares it for protected mode.

Memory Addressing in Real Mode:

In the real mode, the 80386 can address at the most 1Mbytes of physical memory using

address lines A 0-A19. Paging unit is disabled in real addressing mode, and hence the

real addresses are the same as the physical addresses. To form a physical memory

address, appropriate segment registers contents (16-bits) are shifted left by four

positions and then added to the 16-bit offset address formed using one of the addressing

modes, in the same way as in the 80386 real address modes. The segment in 80386 real

mode can be read, write or executed, i.e. no protection is available.Any fetch or access

past the end of the segment limit generates exception 13 in real address mode. The

segments in 80386 real mode may be overlapped or no overlapped. The interrupt vector

table of 80386 has been allocated 1Kbyte space starting from 00000H to 003FFH.

Protected Mode of 80386

All the capabilities of 80386 are available for utilization in its protected mode of

operation. The 80386 in protected mode support all the software written for 80286 and

8086 to be executed under the control of memory management and protection abilities

of 80386. The protected mode allows the use of additional instruction, addressing modes

and capabilities of 80386.

Addressing in protected mode:

In this mode, the contents of segment registers are used as selectors to address

descriptors which contain the segment limit, base address and access rights byte of the

segment. The effective address (offset) is added with segment base address to calculate

linear address. This linear address is further used as physical address, if the paging unit

is disabled. Otherwise the paging unit converts the linear address into physical address.

The paging unit is a memory management unit enabled only in protected mode. The

paging mechanism allows handling of large segments of memory in terms of pages of

60

4Kbyte size. The paging unit operates under the control of segmentation unit. The

paging unit if enabled converts linear addresses into physical address, in protected

mode.

Segmentation

Descriptor tables: These descriptor tables and registers are manipulated by the operating

system to ensure the correct operation of the PROCESSOR, and hence the correct

execution of the program. Three types of the 80386 descriptor tables are listed as

follows:

 Global Descriptor Table (GDT)

 Local Descriptor Table (LDT)

 Interrupt Descriptor Table (IDT)

Descriptors:

The 80386 descriptors have a 20-bit segment limit and 32-bit segment address. The

descriptor of 80386 are 8-byte quantities access right or attribute bits along with the base

and limit of the segments. Descriptor Attribute Bits: The A (accessed) attributed bit

indicates whether the segment has been accessed by the CPU or not. The TYPE field

decides the descriptor type and hence the segment type. The S bit decides whether it is a

system descriptor (S=0) or code/data segment descriptor (S=1).The DPL field specifies

the descriptor privilege level. The D bit specifies the code segment operation size. If

D=1, the segment is a 32-bit operand segment, else, it is a 16-bit operand segment. The

P bit (present) signifies whether the segment is present in the physical memory or not. If

P=1, the segment is present in the physical memory. The G (granularity) bit indicates

whether the segment is page addressable. The zero bit must remain zero for

compatibility with future process.

The AVL (available) field specifies whether the descriptor is for user or for operating

system. • The 80386 has five types of descriptors listed as follows:

61

1. Code or Data Segment Descriptors.

2. System Descriptors.

3. Local descriptors.

4. TSS (Task State Segment) Descriptors.

5. GATE Descriptors.

The 80386 provides a four level protection mechanism exactly in the same way as the

80286 does.

Paging operation:

Paging is one of the memory management techniques used for virtual memory

multitasking operating system. The segmentation scheme may divide the physical

memory into a variable size segments but the paging divides the memory into a fixed

size pages. The segments are supposed to be the logical segments of the program, but

the pages do not have any logical relation with the program. The pages are just fixed

size portions of the program module or data. The advantage of paging scheme is that the

complete segment of a task need not be in the physical memory at any time. Only a few

pages of the segments, which are required currently for the execution, need to be

available in the physical memory. Thus the memory requirement of the task is

substantially reduced, relinquishing the available memory for other tasks. Whenever the

other pages of task are required for execution, they may be fetched from the secondary

storage. The previous pages which are executed need not be available in the memory,

and hence the space occupied by them may be relinquished for other tasks.

Paging Descriptor Base Register:

The control register CR2 is used to store the 32-bit linear address at which the previous

page fault was detected. The CR 3 is used as page directory physical base address

register, to store the physical starting address of the page directory. The lower 12 bit of

the CR3 are always zero to ensure the page size aligned directory. A move operation to

CR 3 automatically loads the page table entry caches and a task switch operation, to load

62

CR 0 suitably.

Page Directory:

This is at the most 4Kbytes in size. Each directory entry is of 4 bytes, thus a total of

1024 entries are allowed in a directory. The upper 10 bits of the linear address are used

as an index to the corresponding page directory entry. The page directory entries point

to page tables.

Page Tables:

Each page table is of 4Kbytes in size and many contain a maximum of 1024 entries. The

page table entries contain the starting address of the page and the statistical information

about the page. The upper 20 bit page frame address is combined with the lower 12 bit

of the linear address. The address bits A12- A21 are used to select the 1024 page table

entries. The page table can be shared between the tasks. The P bit of the above entries

indicates, if the entry can be used in address translation. If P=1, the entry can be used in

address translation, otherwise it cannot be used. The P bit of the currently executed page

is always high. The accessed bit A is set by 80386 before any access to the page. If A=1,

the page is accessed, else un accessed. The D bit is set before a write operation to the

page is carried out. The D-bit is undefined for page director entries. The OS reserved

bits are defined by the operating system software. The User / Supervisor (U/S) bit and

read/write bit are used to provide protection. These bits are decoded to provide

protection under the 4 level protection models. The level 0 is supposed to have the

highest privilege, while the level 3 is supposed to have the least privilege. This

protection provide by the paging unit is transparent to the segmentation unit.

63

ARCHITECTURE OF 80486

It is 32 bit PROCESSOR. One of the most obvious feature included in a 80486 is a built

in math coPROCESSOR. This coPROCESSOR is essentially the same as the 80387

PROCESSOR used with a 80386, but being integrated on the chip allows it to execute

math instructions about three times as fast as a 80386/387 combination. 80486 is an

8Kbyte code and data cache. To make room for the additional signals, the 80486 is

packaged in a 168 pin, pin grid array package instead of the 132 pin PGA used for the

80386.

64

Flag Register of 80486:

31 18 17 16 Reserved for INTEL E F L A G Flags CF: Carry Flag

AF: Auxiliary carry

ZF: Zero Flag

SF : Sign Flag

TF : Trap Flag

IE : Interrupt Enable

DF : Direct Flag

OF : Over Flow

IOPL : I/O Privilege Level

NT : Nested Task Flag

RF : Resume Flag

VM : Virtual Mode AC :

 D15
D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

 0 NT IOPL IOPL OF DF IF TF SF ZF 0 AF 0 PF 1 CF

65

Alignment Check

The memory system for the 486 is identical to 386 Micro processor. The 486 contains

4G bytes of memory beginning at location 00000000H and ending at FFFFFFFFH. The

major change to the memory system is internal to 486 in the form of 8K byte cache

memory, which speeds the execution of instructions and the acquisition of data. Another

addition is the parity checker/ generator built into the 80486 Micro processor. Parity

Checker / Generator : Parity is often used to determine if data are correctly read from a

memory location. INTEL has incorporated an internal parity generator / decoder.

Parity is generated by the 80486 during each write cycle. Parity is generated as even

parity and a parity bit is provided for each byte of memory. The parity check bits appear

on pins DP0-DP3, which are also parity inputs as well as parity outputs. These are

typically stored in memory during each write cycle and read from memory during each

read cycle. On a read, the Micro processor checks parity and generates a parity check

error, if it occurs on the PCHK# pin. A parity error causes no change in processing

unless the user applies the PCHK signal to an interrupt input.

Interrupts are often used to signal a parity error in DS-based computer systems. This is

same as 80386, except the parity bit storage. If parity is not used, Intel recommends that

the DP0 - DP3 pins be pulled up to +5v.

Cache memory: The cache memory system stores data used by a program and also the

instructions of the program. The cache is organized as a 4 way set associative cache with

each location containing 16 bytes or 4 double words of data.

Control register CR0: It is used to control the cache with two new control bits not

present in the 80386 Micro processor. The CD (cache disable) , NW (non-cache write

through) bits are new to the 80486 and are used to control the 8K byte cache. If the CD

66

bit is a logic 1, all cache operations are inhibited. This setting is only used for debugging

software and normally remains cleared. The NW bit is used to inhibit cache write

through operation. As with CD, cache write through is inhibited only for testing. For

normal operations CD = 0 and NW = 0. Because the cache is new to 80486 Micro

processor and the cache is filled using burst cycle not present on the 386.

The 80486 contains the same memory-management system as the 80386. This includes

a paging unit to allow any 4K byte block of physical memory to be assigned to any 4K

byte block of linear memory. The only difference between 80386 and 80486 memory-

management system is paging. The 80486 paging system can disabled caching for

section of translation memory pages, while the 80386 could not. If these are compared

with 80386 entries, the addition of two new control bits is observed (PWT and PCD).

The page write through and page cache disable bits control caching.

The PWT controls how the cache functions for a write operation of the external cache

memory. It does not control writing to the internal cache. The logic level of this bit is

found on the PWT pin of the 80486 Micro processor. Externally, it can be used to

dictate the write through policy of the external caching. The PCD bit controls the on-

chip cache. If the PCD = 0, the on-chip cache is enabled for the current page of memory.

Note that 80386 page table entries place a logic 0 in the PCD bit position, enabling

caching. If PCD = 1, the on-chip cache is disable. Caching is disable regard less of

condition of KEN#, CD, and NW.

Test registers : TR3,TR5 Cache data register (TR3):

It is used to access either the cache fill buffer for a write test operation or the cache read

buffer for a cache read test operation. In order to fill or read a cache line (128 bits wide

), TR3 must be written or read four times. The contents of the set select field in TR5

determine which internal cache line is written or read through TR3. The 7 bit test field

selects one of the 128 different 16 byte wide cache lines. The entry select bits of TR5

67

select an entry in the set or the 32 bit location in the read buffer.

Control bits in TR5:

It is used to enable the

 Fill buffer or read buffer operation (00).

 Perform a cache write (01),

 Perform a cache read (10)

 Flush the cache (11).

The cache status register (TR4) hold the cache tag, LRU bits and a valid bit. This

register is loaded with the tag and valid bit before a cache a cache write operation and

contains the tag, valid bit, LRU bits, and 4 valid bits on a cache test read. Cache is tested

each time that the Micro processor is reset if the AHOLD pin is high for 2 clocks prior

to the RESET pin going low. This causes the 486 to completely test itself with a built in

self test or BIST. The BIST uses TR3, TR4, TR5 to completely test the internal cache.

Its outcome is reported in register EAX. If EAX is a zero, the Micro processor, the

COPROCESSOR and cache have passed the self test. The value of EAX can be tested

after reset to determine if an error is detected. In most of the cases we do not directly

access the test register unless we wish to perform our own tests on the cache or TLB.

Pin Definitions :

A 31-A2 : Address outputs A31-A2 provide the memory and I/O with the address during

normal operation. During a cache line invalidation A31-A4 are used to drive the Micro

processor.

A20 : The address bit 20 mask causes the 80486 to wrap its address around from

location 000FFFFFH to 00000000H as in 8086. This provides a memory system

that functions like the 1M byte real memory system in the 8086 PROCESSOR.

ADS: The address data strobe becomes logic zero to indicate that the address bus

contains a valid memory address.

68

AHOLD: The address hold input causes the Micro processor to place its address bus

connections at their high-impedance state, with the remainder of the buses staying

active. It is often used by another bus master to gain access for a cache invalidation

cycle.

BREQ: This bus request output indicates that the 486 has generated an internal bus

request. BE 3-BE 0 : Byte enable outputs select a bank of the memory system when

information is transferred between the Micro processor and its memory and I/O. The BE

3 signal enables D31 - D24 , BE2 enables D23-D16, BE1 enables D15 - D8 and BE 0

enables D 7-D 0

BLAST: The burst last output shows that the burst bus cycle is complete on the next

activation of BRDY# signal

BOFF : The Back-off input causes the Micro processor to place its buses at their high

impedance state during the next cycle. The Micro processor remains in the bus hold

state until the BOFF# pin is placed at a logic 1 level.

NMI : The non-maskable interrupt input requests a type 2 interrupt.

BRDY : The burst ready input is used to signal the Micro processor that a burst cycle is

complete.

KEN : The cache enable input causes the current bus to be stored in the internal.

LOCK : The lock output becomes a logic 0 for any instruction that is prefixed with the

lock prefix.

W / R : current bus cycle is either a read or a write.

IGNNE : The ignore numeric error input causes the coPROCESSOR to ignore floating

point error and to continue processing data. The signal does not affect the state of the

FERR pin.

69

FLUSH : The cache flush input forces the Micro processor to erase the contents of its

8K byte internal cache

EADS: The external address strobe input is used with AHOLD to signal that an external

address is used to perform a cache invalidation cycle.

FERR : The floating point error output indicates that the floating point coPROCESSOR

has detected an error condition. It is used to maintain compatibility with DOS software.

BS 8 : The bus size 8, input causes the 80486 to structure itself with an 8-bit data bus to

access byte-wide memory and I/O components.

BS16: The bus size 16, input causes the 80486 to structure itself with an 16-bit data bus

to access word-wide memory and I/O components.

PCHK : The parity check output indicates that a parity error was detected during a read

operation on the DP 3 - DP 0 pin.

PLOCK : The pseudo-lock output indicates that current operation requires more than

one bus cycle to perform. This signal becomes a logic 0 for arithmetic coPROCESSOR

operations that access 64 or 80 bit memory data.

PWT: The page write through output indicates the state of the PWT attribute bit in the

page table entry or the page directory entry.

RDY : The ready input indicates that a non-burst bus cycle is complete. The RDY signal

must be returned or the Micro processor places wait states into its timing until RDY is

asserted.

M / IO : Memory / IO defines whether the address bus contains a memory address or an

I/O port number. It is also combined with the W/ R signal to generate memory and I/O

read and write control signals.

70

The 80486 data bus, address bus, byte enable, ADS#, RDY#, INTR, RESET, NMI,

M/IO#, D/C#, W/R#, LOCK#, HOLD, HLDA and BS16# signals function as we

described for 80386. • The 80486 requires 1 clock instead of 2 clock required by 80386.

A new signal group on the 486 is the PARITY group DP 0-DP 3 and PCHK#. These

signals allow the 80486 to implement parity detection / generation for memory reads

and memory writes. During a memory write operation, the 80486 generates an even

parity bit for each byte and outputs these bits on the DP 0-DP3 lines.

A normal 80486 memory read operation to read a line into the cache requires 2 clock

cycles. However, if a series of reads is being done from successive memory locations,

the reads can be done in burst mode with only 1 clock cycle per read. To start the

process the 80486 sends out the first address and asserts the BLAST# signal high. When

the external DRAM controller has the first data bus, it asserts the BRDY# signal. The

80486 reads the data word and outputs the next address. Since the data words are at

successive addresses, only the lower address bits need to be changed. If the DRAM

controller is operating in the page or the static column modes then it will only have to

output a new column address to the DRAM.

In this mode the DRAM will be able to output the new data word within 1 clock cycle.

When the PROCESSOR has read the required number of data words, it asserts the

BLAST# signal low to terminate the burst mode. The final signal we want to discuss

here are the bus request output signal BREQ, the back-off input signal BOFF#, the

HOLD signal and the hold-acknowledge signal HLDA. These signals are used to control

sharing the local 486 bus by multiple PROCESSOR (bus master). When a master on the

bus need to use the bus, it asserts its BERQ signal .An external parity circuit will

evaluate requests to use the bus and grant bus use to the highest - priority master. To ask

the 486 to release the bus, the bus controller asserts the 486 HOLD input or BOFF#

input. If the HOLD input is asserted, the 486 will finish the current bus cycle, float its

buses and assert the HLDA signal. To prevent another master from taking over the bus

71

during a critical operation, the 486 can assert its LOCK# or PLOCK# signal.

The extended flag register EFLAG is illustrated in the figure. The only new flag bit is

the AC alignment check, used to indicate that the Micro processor has accessed a word

at an odd address or a double word boundary. Efficient software and execution require

that data be stored at word or double word boundaries.

72

UNIT – III

MICROCONTROLLER (8051)

Introduction to microcontroller-Architecture-Addressing mode-instruction set-

instruction execution- simple programs, Interfacing-seven segment LED and LCD,

ADC/DAC-water level control.

1. Introduction to microcontroller

The microcontroller is a single chip Micro processor system which consists of

CPU, data and program memory, serial and parallel I/O ports, timers and external

as well as internal interrupts. Microcontrollers are used in Printers, Fax machine,

Telephone, CD players, Process control, automation etc. There are few more

advantages of built in peripherals have smaller access times hence speed is more.

Hardware reduces due to single chip microcomputer system. Less hardware

reduces PCB size and increases reliability of the system.

Features of 8051:

1. On chip data memory-128 bytes

2. On chip program memory-4096 bytes.

3. Four register banks.

4. 64 kilobytes each program and external RAM addressability.

5. 32 bidirectional I/O lines organized as four 8-bit ports.

6. 16 bit Timer and counter.

7. One microsecond instruction cycle with 12 MHZ crystal

8. Signed -overflow detection and parity calculation

9. Multiple and divide in four micro second in Hardware

10. Full depth stack for subroutine return linkage and data storage.

73

2. Difference between Micro processor and Microcontroller

Micro processor Microcontroller

Micro processor is heart of Computer system. Micro Controller is a heart of embedded

system.

It is just a PROCESSOR. Memory and I/O

components have to be connected externally

Micro controller has external PROCESSOR

along with internal memory and i/O

components

Since memory and I/O has to be connected

externally, the circuit becomes large.

Since memory and I/O are present internally,

the circuit is small.

Cannot be used in compact systems and hence

inefficient

Can be used in compact systems and hence it

is an efficient technique

Due to external components, the entire power

consumption is high. Hence it is not suitable to

used with devices running on stored power

like batteries.

Since external components are low, total

power consumption is less and can be used

with devices running on stored power like

batteries.

Most of the Micro processor do not have

power saving features.

Most of the micro controllers have power

saving modes like idle mode and power saving

mode. This helps to reduce power

consumption even further.

Since memory and I/O components are all

external, each instruction will need external

operation, hence it is relatively slower.

Since components are internal, most of the

operations are internal instruction, hence speed

is fast.

Micro processor have less number of registers,

hence more operations are memory based.

Micro controller have more number of

registers, hence the programs are easier to

write.

Architecture of 8051:

ALU

All arithmetic and logical functions are carried out by the ALU. Addition,

subtraction with carry, and multiplication come under arithmetic operations.

Logical operations are AND, OR and exclusive OR (XOR) come under logical

operations.

Program Counter (PC)

A program counter is a 16-bit register and it has no internal address. The basic

function of program counter is to fetch from memory the address of the next

instruction to be executed. The PC holds the address of the next instruction residing

in memory and when a command is encountered, it produces that instruction. This

way the PC increments automatically, holding the address of the next instruction.

Hp
Typewritten text
74

75

Registers

Registers are usually known as data storage devices. 8051 microcontroller has 2

registers, namely Register A and Register B. Register A serves as an accumulator

while Register B functions as a general purpose register. These registers are used to

store the output of mathematical and logical instructions. The operations of

addition, subtraction, multiplication and division are carried out by Register A.

Register B is usually unused and comes into picture only when multiplication and

division functions are carried out by Register A. Register A also involved in data

transfers between the microcontroller and external memory.

Special Function Registers (SFRs)

1. Serial Port Data Buffer (SBUF)

2. Timer/Counter Control (TCON)

3. Timer/Counter Mode Control (TMOD)

4. Serial Port Control (SCON)

5. Power Control (PCON)

6. Interrupt Priority (IP)

7. Interrupt Enable Control (IE)

Timers and Counters

Synchronization among internal operations can be achieved with the help of clock

circuits which are responsible for generating clock pulses. During each clock pulse

a particular operation will be carried out, thereby, assuring synchronization among

operations. For the formation of an oscillator, we are provided with two pins

XTAL1 and XTAL2 which are used for connecting a resonant network in 8051

microcontroller device. In addition to this, circuit also consists of four more pins.

They are,Internal operations can be synchronized using clock circuits which

produce clock pulses. With each clock pulse, a particular function will be

accomplished and hence synchronization is achieved. There are two pins XTAL1

and XTAL2 which form an oscillator circuit which connect to a resonant network in

the microcontroller.

The circuit also has 4 additional pins :

1. EA: External enable

2. ALE: Address latch enable

3. PSEN: Program store enable and

4. RST: Reset.

 Quartz crystal is used to generate periodic clock pulses.

Internal RAM and ROM

ROM

A code of 4K memory is incorporated as on-chip ROM in 8051. The 8051 ROM is

a nonvolatile memory meaning that its contents cannot be altered and hence has a

similar range of data and program memory, i.e, they can address program memory

as well as a 64K separate block of data memory.

RAM

The 8051 microcontroller is composed of 128 bytes of internal RAM. This is a

volatile memory since its contents will be lost if power is switched off. These 128

bytes of internal RAM are divided into 32 working registers which in turn

constitute 4 register banks (Bank 0-Bank 3) with each bank consisting of 8 registers

(R0 - R7). There are 128 addressable bits in the internal RAM.

The 8051 microcontroller has four 8-bit input/output ports. These are:

PORT P0: When there is no external memory present, this port acts as a general

purpose input/output port. In the presence of external memory, it functions as a

multiplexed address and data bus. It performs a dual role.

PORT P1: This port is used for various interfacing activities. This 8-bit port is a

normal I/O port

Hp
Typewritten text
76

i. e. it does not perform dual functions.

PORT P2: Similar to PORT P0, this port can be used as a general purpose port

when there is no external memory but when external memory is present it works in

conjunction with PORT PO as an address bus. This is an 8-bit port and performs

dual functions.

PORT P3: PORT P3 behaves as a dedicated I/O port

Interrupt Control

An event which is used to suspend or halt the normal program execution for a

temporary period of time in order to serve the request of another program or

hardware device is called an interrupt. An interrupt can either be an internal or

external event which suspends the microcontroller for a while and thereby obstructs

the sequential flow of a program. There are two ways of giving interrupts to a

microcontroller - one is by sending software instructions and the other is by sending

hardware signals. The interrupt mechanism keeps the normal program execution in

a "put on hold" mode and executes a subroutine program and after the subroutine is

executed, it gets back to its normal program execution. This subroutine program is

also called an interrupt handler. A subroutine is executed when a certain event

occurs.

In 8051, 5 sources of interrupts are provided. They are:

 2 external interrupt sources connected through INTO and INT1

 3 external interrupt sources- serial port interrupt, Timer Flag 0 and Timer

Flag 1.

The pins connected are as follows

1. ALE (Address Latch Enable) - Latches the address signals on Port P0

2. EA (External Address) - Holds the 4K bytes of program memory

3. PSEN (Program Store Enable) - Reads external program memory

4. RST (Reset) - Reset the ports and internal registers upon start up

Hp
Typewritten text
77

78

Serial Data Communication

A method of establishing communication among computers is by transmitting and

receiving data bits is a serial connection network. In 8051, the SBUF (Serial Port

Data Buffer) register holds the data; the SCON (Serial Control) register manages

the data communication and the PCON (Power Control) register manages the data

transfer rates. Further, two pins - RXD and TXD, establish the serial network.The

SBUF register has 2 parts - one for storing the data to be transmitted and another

for receiving data from outer sources. The first function is done using TXD pin and

the second function is done using RXD pin.

There are 4 programmable modes in serial data communication. They are:

1. Serial Data mode 0 (shift register mode)

2. Serial Data mode 1 (standard UART)

3. Serial Data mode 2 (multiPROCESSOR mode)

4. Serial Data mode 3

PSW (Program Status Word)

Program Status Word or PSW is a hardware register which is a memory location

which holds a program's information and also monitors the status of the program

this is currently being executed. PSW also has a pointer which points towards the

address of the next instruction to be executed. PSW register has 3 fields namely are

instruction address field, condition code field and error status field. We can say that

PSW is an internal register that keeps track of the computer at every instant.

Generally, the instruction of the result of a program is stored in a single bit register

called a 'flag'. The are7 flags in the PSW of 8051. Among these 7 flags, 4 are math

flags and 3 are general purpose or user flags.

CY AC FO RS1 RSO OV - P

79

The 4 Math flags are:

• Carry (c)

• Auxiliary carry (AC)

• Overflow (OV)

• Parity (P)

The 3 General purpose flags or User flags are:

• FO

• GFO

• GF 1

Data Pointer (DPTR)

The data pointer or DPTR is a 16-bit register. It is made up of two 8-bit registers

called DPH and DPL. Separate addresses are assigned to each of DPH and DPL.

These 8-bit registers are used for the storing the memory addresses that can be used

to access internal and external data/code.

Stack Pointer (SP)

 The stack pointer (SP) in 8051 is an 8-bit register. The main purpose of SP is to

access the stack. As it has 8-bits it can take values in the range 00 H to FF H. Stack

is a special area of data in memory. The SP acts as a pointer for an address that

point to the top of the stack.

Data and Address Bus

A bus is group of wires using which data transfer takes place from one location to

another within a system. Buses reduce the number of paths or cables needed to set

up connection between components.

There are mainly two kinds of buses: -

 Data Bus

 Address

Bus Data Bus:

The purpose of data bus is to transfer data. It acts as an electronic channel using

80

FIGU
RE 2-2

8051
pinout
s

which data travels. Wider the width of the bus, greater will be the transmission of

data.

Address Bus:

The purpose of address bus is to transfer information but not data. The information

tells from where within the components, the data should be sent to or received from.

The capacity or memory of the address bus depends on the number of wires that

transmit a single address bit.

Pin Diagram:

One of the most useful features of the 8051 is that it contains four I/O ports (P0

- P3)

81

128 bytes of Internal RAM Structure (lower address space)

Port 0 (pins 32-39): P0 (P0.0~P0.7)

8-bit R/W - General Purpose I/O

Or acts as a multiplexed low byte address and data bus for external memory design

Port 1 (pins 1-8): P1 (P1.0~P1.7) Only 8-bit R/W - General Purpose I

Port 2 (pins 21-28): P2 (P2.0~P2.7)

8-bit R/W - General Purpose I/O

Or high byte of the address bus for external memory design Port 3

(pins 10-17): P3 (P3.0~P3.7)

General Purpose I/O

if not using any of the internal peripherals (timers) or external interrupts. Each port

can be used as input or output (bi-direction)

PSEN (out): Program Store Enable, the read signal for external program memory

(active low).

ALE (out): Address Latch Enable, to latch address outputs at Port0 and

Port2 EA (in): External Access Enable, active low to access external

program memory locations 0 to 4K RXD,TXD: UART pins for serial I/O

on Port 3 XTAL1 & XTAL2: Crystal inputs for internal oscillator.

8051 Clock and Instruction Cycle:

Port Pin Alternate Function

R3,0 RXD (serial input port)

P3h1 TXD (serial output port)

P3.2 INTO (external interrupt 0)

P3 3 INT1 (external interrupt 1)

P3.4 TO (Tinner 0 external input)

P3.5 T1 (Tinner 1 external input)

P3,e WR (external data memory write strobe)

P3.7 RD (external data memory read strobe)

82

In 8051, one instruction cycle consists of twelve (12) clock cycles.

Instruction cycle is sometimes called as Machine cycle by some authors.

The lower 32 bytes are divided into 4 separate banks. Each register bank has 8

registers of one byte each. A register bank is selected depending upon two bank

select bits in the PSW register. Next 16bytes are bit addressable. In total, 128bits

(16X8) are available in bit addressable area. Each bit can be accessed and modified

by suitable instructions. The bit addresses are from 00H (LSB of the first byte in

20H) to 7FH (MSB of the last byte in 2FH). Remaining 80bytes of RAM are

available for general purpose.

4. Addressing Modes

The method of specifying the data to be operated by the instruction is called

addressing mode.

128 bytes of Internal RAM Structure (lower address space)

83

Types:

1. Immediate addressing mode

2. Direct addressing mode

3. Register addressing mode

4. Register indirect addressing mode

5. Implied addressing mode

6. Relative addressing mode

Immediate addressing mode

 Where data is available in the instruction itself.

Example: ADD A, #77H The immediate data 77H is added to the data present in

the accumulator. MOV A, #33H^The immediate data 33H is given in the

instruction A register.

Register addressing mode

The instruction will specify the name of the register in which the data is available.

Example:

MOV R2, A - The content of the A register is moved to the register R2 of the

currently selected register bank.

Direct addressing mode

The address of the data is specified directly to the instruction. The direct address

can be the address of an internal RAM location (00H to &7FH) or the address of a

special function register.

Example:

MOV A, 07H^The address of the register R7 of bank-0 is 07.The instruction will

move the content the R7 register to the A-register (Accumulator).

Register indirect addressing mode

The instruction specifies the name of the register in which the address of the data is

available. The internal RAM locations (00H-7FH) can be addressed indirectly

through registers R1 and R0.The external RAM can be addressed indirectly

84

through DPTR.

Example:

MOV A,@R0^The internal RAM location R0 holds the address of the data. The

content of the RAM location addressed by R0 is moved to the A register.

Implied Addressing mode

The instruction itself specifies the data to be operated by the instruction

Example: CPL^ Complement the carry flag.

Relative addressing mode

The instruction specifies the address relative to the program counter. The

instruction will carry an offset whose range is-128 to +127.The offset is added to

the PC to generate the 16 bit physical address.

Example:

JC offset^ If carry is one, the program control jumps to the address

obtained by adding the content of the program counter and offset value

in the instruction.

85

Instruction Set :

Mnemonic Description Byte Cycle

Arithmetic Operations

ADD A,Rn Add register to accumulator 1 1

ADD A,direct

Add direct byte to accumulator

2 1

ADD A, @Ri Add indirect RAM to accumulator 1 1

ADD A,#data

Add immediate data to

accumulator 2 1

ADDC A,Rn

Add register to accumulator with

carry flag 1 1

ADDC A,direct

Add direct byte to A with carry

flag 2 1

ADDC A, @Ri

Add indirect RAM to A with carry

flag 1 1

ADDC A, #data

Add immediate data to A with

carry flag 2 1

SUBB A,Rn

Subtract register from A with

borrow 1 1

SUBB A,direct

Subtract direct byte from A with

borrow 2 1

SUBB A,@Ri

Subtract indirect RAM from A

with borrow 1 1

SUBB A,#data

Subtract immediate data from A

with borrow 2 1

INC A Increment accumulator 1 1

INC Rn Increment register 1 1

INC direct Increment direct byte 2 1

INC @Ri Increment indirect RAM 1 1

DEC A Decrement accumulator 1 1

DEC Rn Decrement register 1 1

DEC direct Decrement direct byte 2 1

DEC @Ri Decrement indirect RAM 1 1

INC DPTR Increment data pointer 1 2

MUL AB Multiply A and B 1 4

DIV AB Divide A by B 1 4

DAA Decimal adjust accumulator 1 1

86

 Mnemonics Description Byte Cycle

ANL A,Rn AND register to accumulator 1 1

ANL A,direct

AND direct byte to accumulator

2 1

ANL A,@Ri

AND indirect RAM to accumulator

1 1

ANL A,#data

AND immediate data to

accumulator 2 1

ANL direct,A AND accumulator to direct byte 2 1

ANL direct,#data AND immediate data to direct byte 3 2

ORL A,direct

OR direct byte to accumulator

2 1

ORL A,@Ri

OR indirect RAM to accumulator

1 1

ORL A,#data

OR immediate data to accumulator

2 1

ORL direct,A OR accumulator to direct byte 2 1

ORL direct,#data OR immediate data to direct byte 3 2

XRL A,Rn

Exclusive OR register to

accumulator 1 1

XRL A direct

Exclusive OR direct byte to

accumulator 2 1

XRL A,@Ri

Exclusive OR indirect

RAM to accumulator 1 1

XRL A,#data

Exclusive OR immediate data to

accumulator 2 1

XRL direct,A

Exclusive OR accumulator to direct

byte 2 1

CLR A Clear accumulator 1 1

CPL A Complement accumulator 1 1

RL A Rotate accumulator left 1 1

RLC A

Rotate accumulator left through

carry 1 1

RR A Rotate accumulator right 1 1

87

Boolean Variable Manipulation

Mnemonics Description Byte Cycle

CLR C Clear carry flag 1 1

CLR bit Clear direct bit 2 1

SETB C Set carry flag 1 1

SETB bit Set direct bit 2 1

CPL C Complement carry flag 1 1

CPL bit Complement direct bit 2 1

ANL C,bit AND direct bit to carry flag 2 2

ANL C,/bit

AND complement of direct

bit to carry 2 2

ORL C,bit OR direct bit to carry flag 2 2

ORL C,/bit

OR complement of direct bit

to carry 2 2

MOV C,bit Move direct bit to carry flag 2 1

MOV bit,C Move carry flag to direct bit 2 2

88

7.Interfacing with seven segment display Circuit Principle:

Seven segment displays internally consist of 8 LEDs. In these LEDs, 7 LEDs

are used to indicate the digits 0 to 9 and single LED is used for indicating

decimal point. Generally seven segments are two types, one is common

cathode and the other is common anode. In common cathode, all the

cathodes of LEDs are tied together and labeled as com. and the anode are

left alone. In common anode, seven segment display all the anodes are tied

together and cathodes are left freely. Below figure shows the internal

connections of seven segment Display.

Circuit Design:

Here, common cathode seven segment is used to display the digits. In this

circuit, pins a to h of the 7 segment are connected to the PORT 2 of the

microcontroller and com pin is connected to the ground through the 330 ohm

resistor. This resistor is used to drop the voltage. Since we are using common

cathode seven segment we need to send LOGIC 1 to the segments to glow.

Here dot is used for indicating the decimal point. Here all the cathodes of

LED‘s are connected to the Gnd pin. The operating voltage of this LED‘s is 2

to 3 V but from controller we will get 5 V so to drop the remaining voltage we

have to connect a to g pins to the controller through the resistor.

89

Digit Drive Pattern:

To display the digits on 7 segment, we need to glow different logic

combinations of segments. For example if you want to display the digit 3 on

seven segment then you need to glow the segments a, b, c, d and g. The below

table show you the Hex decimal values what we need to send from PORT2 to

Display the digits from 0 to 9.

90

Program:

MEMORY

ADDRESS
LABEL

OPCODE MNEMONICS COMMENTS

4100 START
21,2C,41 LXI H,412C

LOAD IMMEDIATE DATA IN TO HL

REGISTER PAIR

4103

16,0F MVI D,0FH

LOAD IMMEDIATE DATA 0FH TO D

REGISTER

4105

3E,10 MVI A,10H

LOAD IMMEDIATE DATA 10H TO THE

ACCUMULATOR

4107

D3,C2

OUT

CNT(C2H)

OUTPUT DATA FROM ACCUMULATOR IS

MOVED TO PORT

4109

3E,CC MVI A,CCH

LOAD IMMEDIATE DATA CCH TO THE

ACCUMULATOR

410B

D3,C2 OUT CNT

OUTPUT DATA FROM ACCUMULATOR IS

MOVED TO PORT

410D

3E,90 MVI A.90H

MOVE IMMEDIATE DATA 90H TO THE

ACCUMULATOR

410F

D3,C2 OUT CNT

OUTPUT DATA FROM ACCUMULATOR IS

MOVED TO PORT

4111 LOOP
7E MOV A,M

MOVE THE CONTENT OF MEMORY

LOCATION TO THE ACCUMULATOR

4112

D3,C0

OUT

DAT(C0H)

OUTPUT DATA FROM ACCUMULATOR IS

MOVED TO PORT

4114 CD,1F,41 CALL DELAY CALL THE DELAY PROGRAM

4117 23 INX H INCREMENT THE HL REGISTER PAIR

4118 15 DCR D DECREMENT D REGISTER

4119 C2,11,41 JNZ LOOP JUMP ON NO ZERO

411C C3,00,41 JMP START JUMP UNCONDITIONALLY(ST ART)

411F DELAY
06,A0 MVI B,0AH

MOVE IMMEDIATE DATA 0AH TO THE B

REGISTER

4121 LOOP1
0E,FF MVI C,FFH

MOVE IMMEDIATE DATA FFH TO THE C

REGISTER

4124 C2,23,41 JNZ LOOP2 JUMP ON NON ZERO

91

LCD:

16^2 LCD module is a very common type of LCD module that is used in 8051

based embedded projects. It consists of 16 rows and 2 columns of 5x7 or 5x8

LCD dot matrices. The module were are talking about here is type number

JHD162A which is a very popular one . It is available in a 16 pin package with

back light ,contrast adjustment function and each dot matrix has 5x8 dot

resolution.VEE pin is meant for adjusting the contrast of the LCD display and

the contrast can be adjusted by varying the voltage at this pin. This is done by

connecting one end of a POT to the Vcc (5V), other end to the Ground and

connecting the center terminal (wiper) of of the POT to the VEE pin. See the

circuit diagram for better understanding. The JHD162A has two built in

registers namely data register and command register. Data register is for

placing the data to be displayed , and the command register is to place the

commands. The 16*2 LCD module has a set of commands each meant for

doing a particular job with the display. We will discuss in detail about the

commands later. High logic at the RS pin will select the data register and Low

logic at the RS pin will select the command register. If we make the RS pin

high and the put a data in the 8 bit data line (DB0 to DB7) , the LCD module

will recognize it as a data to be displayed . If we make RS pin low and put a

data on the data line, the module will recognize it as a command.

R/W pin is meant for selecting between read and write modes. High level at

this pin enables read mode and low level at this pin enables write mode. E pin

is for enabling the module. A high to low transition at this pin will enable the

module.DB0 to DB7 are the data pins. The data to be displayed and the

command instructions are placed on these pins.LED+ is the anode of the back

92

light LED and this pin must be connected to Vcc through a suitable series

current limiting resistor. LED- is the cathode of the back light LED and this pin

must be connected to ground.

16x2 LCD module commands.

16x2 LCD module has a set of preset command instructions. Each

command will make the module to do a particular task. The commonly used

commands and their function are given in the table below.

Command Function

 06 Increment cursor

80 Force cursor to the beginning of 1
st
 line

 C0 Force cursor to the beginning of 2
nd

 line

 38 Use 2 lines and 5*7 matrix

 83 Cursor line 1 position 3

 3C Activate second line

 08 Display OFF, Cursor OFF

 C1 Jump to second line, positionl

 OC Display ON, Cursor OFF

 C1 Jump to second line, positionl

 C2 Jump to second line, position2

LCD initialization

The steps that has to be done for initializing the LCD display is given below

and these steps are common for almost all applications.

 Send 38H to the 8 bit data line for initialization

 Send 0FH for making LCD ON, cursor ON and cursor blinking ON.

93

 Send 06H for incrementing cursor position.

Send 01H for clearing the display and return the cursor.

Sending data to the LCD.

 The steps for sending data to the LCD module is given below. I have

already said that the LCD module has pins namely RS, R/W and E. It is the

logic state of these pins that make the module to determine whether a given

data input is a command or data to be displayed.

■ Make R/W low.

■ Make RS=0 if data byte is a command and make RS=1 if the data byte is

a data to be displayed.

■ Place data byte on the data register.

■ Pulse E from high to low.

■ Repeat above steps for sending another data.

94

he circuit diagram given above shows how to interface a 16*2 LCD module

with AT89S1 microcontroller. Capacitor C3, resistor R3 and push button

switch S1 forms the reset circuitry. Ceramic capacitors C1,C2 and crystal X1 is

related to the clock circuitry which produces the system clock frequency. P1.0

to P1.7 pins of the microcontroller is connected to the DB0 to DB7 pins of the

module respectively and through this route the data goes to the LCD module.

P3.3, P3.4 and P3.5 are connected to the E, R/W, RS pins of the

microcontroller and through this route the control signals are transffered to the

LCD module. Resistor R1 limits the current through the back light LED and so

do the back light intensity. POT R2 is used for adjusting the contrast of the

display.

95

UNIT 4

ADVANCED MICROCONTROLLER

PIC/ ARM-RISC architecture, PC, Architecture, memory-Addressing modes-

instruction set.

1. ARM ARCHITECTURE

The ARM is a 32-bit reduced instruction set computer (RISC)

instruction set architecture (ISA) developed by ARM Holdings. It was known

as the Advanced RISC Machine. Alcatel, Atmel, Broadcom are the companies

using ARM architecture. It has 16 bit thumb instruction set.

REGISTERS

ARM has 37 registers all of which are 32-bits long. It has one dedicated

program status register, five saved program status registers and thirty general

purpose registers. The current PROCESSOR mode governs which of several

banks is accessible. Each mode can access a particular set of r0-r12 registers

particular r13 (the stack pointer, sp) and r14 (the link register, lr), program

counter r15 (pc), cpsr Privileged modes (except System) can also access a

particular spsr (saved program status register).

96

97

Program Status Register:

 Condition code flags

 N = Negative result from ALU

 Z = Zero result from ALU

 C = ALU operation Carried out

 V = ALU operation overflowed

 Sticky Overflow flag - Q flag

 Indicates if saturation has occurred

 J bit

 J = 1 PROCESSOR in Jazelle state (Jazelle -

Direct byte code execution)

 Interrupt Disable bits.

 I = 1 Disables the IRQ.

 F = 1 Disables the FIQ.

 T Bit

 T = 0: PROCESSOR in ARM state > T = 1:

PROCESSOR in Thumb state

98

BLOCK DIAGRAM

99

Modes:

M [4:01 Mode Accessible register set

10000 User PC, R14..R0 CPSR

10001 FIQ PC, R14_fiq..R8_fiq, R7..R0 CPSR,

SPSR_fiq 10010 IRQ PC,R14_irq..R13_irq,R12..R

0

CPSR, SPSRjrq

10011 Superviso

r

PC, R14_svc..R13_svc,

R12..R0

CPSR,

SPSR.svc 10111 Aboit PC, R14_abt..R13_abt,

R12..R0

CPSR,

SPSR_abt 11011 Undefined PC,R14_und..R13_und,R12..

R0

CPSR,SPSR.un

d
Note: System: Privileged mode using the same registers as user mode

Program Counter (r15)

During the PROCESSOR is executing in ARM state at the time all instructions

are 32 bits wide word aligned. Therefore the pc value is stored in bits [31:2]

with bits [1:0] undefined (as instruction cannot be half word or byte aligned).

Instead the PROCESSOR is executing in Thumb state: Here all instructions are

16 bits wide. All instructions must be half word aligned. Therefore the pc value

is stored in bits [31:1] with bit [0] undefined (as instruction cannot be byte

aligned). Executing in Thumb state: When the PROCESSOR is executing in

Jazelle state: All instructions are 8 bits wide PROCESSOR performs a word

access to read 4 instructions at once.

Exception Handling

 When an exception occurs, the ARM: Copies CPSR into SPSR_<mode>

 Sets appropriate CPSR bits

 It will Change to ARM state or exception mode or disable interrupts

Stores the return address in LR_<mode>

 Sets PC to vector address

100

Vector address:

• To return, exception handler needs to:

 Restore CPSR from SPSR_<mode>

 Restore PC from LR <mode>

Pin Diagram:

101

Conditional Execution and Flags

ARM instructions can be made to execute conditionally by post fixing them with

the appropriate condition code field. This improves code density and performance

by reducing the number of forward branch instructions. By default, data processing

instructions do not affect the condition code flags but the flags can be optionally set

by using ―S‖. CMP does not need ―S‖.

102

Instruction Set

Branch instructions:

Branch : B{<cond>} label

Branch with Link : BL{<cond>} subroutine_label

The PROCESSOR core shifts the offset field left by 2 positions, sign-

extends it and adds it to the PC(± 32 Mbyte range)

Data processing Instructions:

It consists of:

23

31 28 27 25 24 0

1 0

Cond

1

L Offset

L -Link Bit 0-Branch 1- Branch with Link

Cond-Condition Field.

Arithmetic:

ADD ADC SUB SBC

Logical: AND ORR EOR BIC

Comparisons: CMP CMN TST TEQ

Data movement: MOV MVN

103

Note: These instructions only work on registers, NOT memory.

Syntax: <Operation>{< cond >}{S} Rd, Rn, Operand2

 Comparisons set the flags only - they do not specify the Rd

 Data movement does not specify Rn

 Second operand is sent to the ALU via barrel shifter.

104

The possible condition codes are listed below:

Suffix Description Flags tested

EQ Equal Z=1

NE Not equal Z=0

CS/HS Unsigned higher or same C=1

CC/LO Unsigned lower c=o

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow v=o

HI Unsigned higher c=uz=o

LS Unsigned lower or same C=0or Z=1

GE Greater or equal N=V

LT Less than N!=V

GT Greaterthan Z=0 & N=V

LE Less than or equal Z=1 or N=!V

AL Always

Note: AL is the default and does not need to be specified

Single bit rotate with wrap around from CF to MSB

The Barrel Shifter:

1. LSL : Logical Left Shift

2. ASR: Arithmetic Right Shift

3. LSR : Logical Shift Right

4. ROR: Rotate Right

5. RRX: Rotate Right Extended

Condition Codes

105

Using the Barrel Shifter:

The Second Operand

Register, optionally with shift operation, Shift value can be 5 bit unsigned

integer. Specified in bottom byte of another register. Used for multiplication by

constant immediate value representation should be a 8 bit number, with a range

of 0-255.Rotated right through even number of positions. Allows increased

range of 32-bit constants to be loaded directly into registers

Immediate constants:

 No ARM instruction can contain a 32 bit immediate constant

 All ARM instructions are fixed as 32 bits long

 The data processing instruction format has 12 bits available for operand

 The 4 bit rotate value (0-15) is multiplied by two to give range 0-30 in

steps of 2

 8-bits shifted by an even number of bit positions

Multiply:

Syntax:

MUL{<cond>}{S} Rd, Rm, Rs Rd = Rm * Rs

Eg: MUL r10,r2, r5

MLA r10, r2, r1, r5

106

No of Cycle:

2-5 cycles for ARM7, 1-3 cycles for Strong ARM, 2 cycles for ARM9 and one

cycle for accumulate and long.

Single register data transfer:

Address accessed by LDR/STR is specified by a base register plus an offset

LDR STR Word

LDRB STRB Byte

Syntax:

LDR{<cond>}{<size>} Rd, <address>

For word and unsigned byte accesses, offset can be

Unsigned 12-bit immediate value LDR r0, [r1,#8]

A register, optionally shifted by an immediate value LDR r0,[r1,r2]

LDR r0,[r1,r2,LSL#2]

This can be either added or subtracted from the base register LDR r0,[r1,#-8]

LDR r0,[r1,-r2]

LDR r0,[r1,-r2,LSL#2]

For half word and signed half word / byte, offset can be An unsigned 8 bit

immediate value (ie 0-255 bytes).

A register (unshifted).

107

Pre-indexed Addressing

STR r0, [r1,#12]

Post-indexed Addressing STR r0, [r1],#12

LDM / STM operation Syntax:

<LDM|STM>{<cond>}<addressing_mode> Rb{!}, <register list>

Addressing modes:

Increment after- LDMIA / STMIA Increment

before- LDMIB / STMIB Decrement after-

LDMDA / STMDA Decrement before-

LDMDB / STMDB Implementing stacks

with LDM and STM:

 Descending or ascending

The stack grows downwards, starting with a high address and progressing to a

lower one (a descending stack), or upwards, starting from a low address and

progressing to a higher address (an ascending stack).

 Full or empty

The stack pointer can either point to the last item in the stack (a full stack), or

the next free space on the stack (an empty stack).

Software Interrupt (SWI):

 Causes an exception trap to the SWI hardware vector

108

 The SWI handler can examine the SWI number to decide what operation

has been requested.

 By using the SWI mechanism, an operating system can implement a set

of privileged operations which applications running in user mode can

request.

Syntax:

SWI{<cond>} <SWI number>

PSR Transfer Instructions:

MRS and MSR allow contents of CPSR / SPSR to be transferred to / from a

general purpose register.

Syntax:

MRS{<cond>} Rd,<psr> ; Rd = <psr>

ARM Branches and Subroutines:

 B <label>

 PC relative. ±32 Mbyte range.

 BL <subroutine>

 Stores return address in LR

 Returning implemented by restoring the PC from LR > For non-

leaf functions, LR will have to be stacked

THUMB Instruction:

Thumb is a 16-bit instruction set. Optimized for code density from code

improved performance from narrow memory. Subset of the functionality of

109

the ARM instruction set. Core has additional execution state. Switch

between ARM and Thumb using BX instruction

For most instructions generated by compiler:

 Conditional execution is not used

 Source and destination registers identical

 Only Low registers used

 Constants are of limited size

 Inline barrel shifter not used

110

2. PIC Architecture:

The function of CPU in PIC is same as a normal microcontroller CPU. A PIC,

CPU consists of several sub units such as instruction decoder, ALU,

General Features

111

accumulator, control unit, etc. The CPU in PIC normally supports Reduced

Instruction Set Computer (RISC) architecture. RISC design is based on the

premise that most of the instructions. The computer decodes and executes are

simple. As a result, RISC architecture limits the number of instructions.

Execution Time is less.

Memory

The memory in a PIC chip used to store the data and programs (temporary or

permanently). PIC also has certain amount of memory space for RAM, ROM,

and EEPROM and other flash memory, etc. ROM memory is used for

permanent storage memory. The contents in the EEPROM changes during run

time and at that time it acts like a RAM memory. But the difference is after the

power goes off, the data remains in this ROM chip. This is the one of the special

advantages of EEPROM. In the PIC chip the function of EPROM is to store the

values created during the runtime.RAM memory is the one of the complex

memory module in a PIC chip. This memory associated with various type of

registers (special function registers and general purpose registers) and memory

BANK modules (BANK 0, BANK 1, etc.). Once the power goes off, the

contents in the RAM will be cleared. As like normal microcontrollers, the RAM

memory is used to store temporary data and provide immediate results. The

flash memory is a special type of memory where READ, WRITE, and ERASE

operations can be done many times.

Registers

Information is stored in a CPU memory location called a register. Registers can

be thought of as the CPUs tiny scratchpad, temporarily storing instructions or

112

data. Registers basically classified into the following.

General Purpose Register (GPR)

A general purpose register (or PROCESSOR register) is a small storage area

available on a CPU whose contents can be accessed more quickly than other

storage that available on PIC. A general purpose register can store both data

addresses simultaneously.

Special Function registers (SFR)

These are also a part of RAM memory locations. As compared to GPR, their

purpose is predetermined during the manufacturing time and cannot be

changed by the user. It is only for special dedicated functions.

Interrupts

Interrupt is the temporary delay in a running program. These delays stop the

current execution for a particular interval. This interval/delay is usually called as

interrupt. When an interrupt request arrives into a current execution program,

then it stops its regular execution. Interrupt can be performed by externally

(hardware interrupt) or internally (by using software).

BUS

BUS is the communication or data transmission/reception path in a

microcontroller unit. In a normal microcontroller chip, two types of buses are

normally available.

113

Data bus

Data bus is used for memory addressing. The function of data bus is interfacing

all the circuitry components inside the PIC chip.

Address bus

Address bus mostly used for memory addressing. The function of address bus is

to transmit the address from the CPU to memory locations.

USART or UART

These ports are used for the transmission (TX) and reception (RX) of

data. These transmissions possible with help of various digital data transceiver

modules like RF, IR, Bluetooth, etc. This is the one of the simplest way to

communicate the PIC chip with other devices.

Oscillators

Oscillator unit basically an oscillation/clock generating circuit which is

used for providing proper clock pulses to the PIC chip. This clock pulses also

helps the timing and counting applications. A PIC chip normally use various

types of clock generators. According to the application and the type of PIC used,

the oscillators and its frequencies may vary. RC (Resistor- Capacitor), LC

(Inductor-Capacitor), RLC (Resistor-Inductor-capacitor), crystal oscillators, etc

are the normal oscillators used with A PIC chip.

114

Stack

The entire PIC chip has an area for storing the return addresses. This area or unit

called Stack is used in some Peripheral interface controllers. The hardware stack

is not accessible by software. But for most of the controllers, it can be easily

accessible.

Input/ Output Ports

These ports are used for the interfacing various input/output devices and

memories. According to the type of PIC, the number of ports may change.

Advanced functioning blocks

These sections include various advanced features of a PIC chip. According to

the type of PIC, these features may change. Various advanced features in a

peripheral interface controller are power up timer, oscillator start up timer,

power on reset, watch dog timer, brown out reset, in circuit debugger, low

voltage programming, voltage comparator, CCP modules etc.

Memory Organization of PIC16F877

The memory of a PIC 1 6F877 chip is divided into 3 sections. They are

1. Program memory

2. Data memory and

3. Data EEPROM

115

Program memory

Program memory contains the programs that are written by the user. The

program counter (PC) executes these stored commands one by one. Usually

PIC1 6F877 devices have a 13 bit wide program counter that is capable of

addressing 8K*14 bit program memory space. This memory is primarily used

for storing the programs that are written (burned) to be used by the PIC. These

devices also have 8K*14 bits of flash memory that can be electrically erasable

/reprogrammed. Each time we write a new program to the controller, we must

delete the old one at that time. The figure below shows the program memory

map and stack.

 PROGRAM MEMORY MAP AND STACK

116

PIC16f877 Program Memory

Program counters (PC) is used to keep the track of the program execution by

holding the address of the current instruction. The counter is automatically

incremented to the next instruction during the current instruction execution.

The PIC16F87XA family has an 8-level deep 13-bit wide hardware stack. The

stack space is not a part of either program or data space and the stack pointers

are not readable or writable. In the PIC microcontrollers, this is a special block

of RAM memory used only for this purpose. Each time the main program

execution starts at address 0000 - Reset Vector. The address 0004 is ―reserved‖

for the ―interrupt service routine‖ (ISR).

PIC16F87XA Data Memory Organization

The data memory of PIC1 6F877 is separated into multiple banks which contain

the general purpose registers (GPR) and special function registers (SPR).

According to the type of the microcontroller, these banks may vary. The PIC1

6F877 chip only has four banks (BANK 0, BANK 1, BANK 2, and BANK4).

Each bank holds 128 bytes of addressable memory.

117

The banked arrangement is necessary because there are only 7 bits are available

in the instruction word for the addressing of a register, which gives only 128

addresses. The selection of the banks are determined by control bits RP1, RP0 in

the STATUS registers Together the RP1, RP0 and the specified 7 bits

effectively form a 9 bit address. The first 32 locations of Banks 1 and 2, and the

first 16 locations of Banks2 and 3 are reserved for the mapping of the Special

Function Registers (SFR).

Data EEPROM and FLASH

The data EEPROM and Flash program memory is readable and writable during

REGISTER FILE MAP

File Address File Address
OQh Indirect addr.*

1
* Indirect addr.*

1
* 80h

01 h TMRO OPTION_REG 81h
02h PCL PCL 82h
03h STATUS STATUS 83h

04 h FSR FSR 84 h
05h PORTA TRISA 85h
06h PORTB TRISB 86h
07h — — 87h

08h EEDATA EECON1 88h
09h EEADR EECON2

,1
> 89h

OAh PC LATH PCLATH 8Ah
OBh INTCON INTCON 8Bh

OCh 68

General

Purpose

Registers

(SRAM)

Mapped (accesses) in
Bank 0

8Ch

4Fh

CFh

50h

DOh

St
—- ____

1
—

7Fh

FFh

Bank 0 Bank 1

HU Unimplemented data memory location, read as 'O’.

I

118

normal operation (over the full VDD range). This memory is not directly

mapped in the register file space. Instead, it is indirectly addressed through the

Special Function Registers. There are six SFRs used to read and write this

memory:

 EECON1

 EECON2

 EEDATA

 EEDATH

 EEADR

 EEADRH

The EEPROM data memory allows single-byte read and writes. The Flash

program memory allows single-word reads and four-word block writes. Program

memory write operations automatically perform an erase-before write on blocks

of four words. A byte write in data EEPROM memory automatically erases the

location and writes the new data (erase-beforewrite). The write time is

controlled by an on-chip timer. The write/erase voltages are generated by an on-

chip charge pump, rated to operate over the voltage range of the device for byte

or word operations.

General Features

 High performance RISC CPU.

 ONLY 35 simple word instructions.

 All single cycle instructions except for program branches which are two

cycles.

 Operating speed: clock input (200MHz), instruction cycle (200nS).

119

 Up to 368*8bit of RAM (data memory), 256*8 of EEPROM (data

memory), 8k*14 of flash memory.

 Pin out compatible to PIC 1 6C74B, PIC 1 6C76, PIC 1 6C77.

 Eight level deep hardware stack.

 Interrupt capability (up to 14 sources).

 Different types of addressing modes (direct, Indirect, relative addressing

modes).

 Power on Reset (POR).

 Power-Up Timer (PWRT) and oscillator start-up timer.

 Low power- high speed CMOS flash/EEPROM.

 Fully static design.

 Wide operating voltage range (2.0 - 5.56)volts.

 High sink/source current (25mA).

 Commercial, industrial and extended temperature ranges.

 Low power consumption (<0.6mA typical @3v-4MHz, 20pA typical

@3v-32MHz and <1 A typical standby).

Peripheral Features

 Timer 0: 8 bit timer/counter with pre-scalar.

 Timer 1:16 bit timer/counter with pre-scalar.

 Timer 2: 8 bit timer/counter with 8 bit period registers with pre-scalar

and post-scalar.

 Two Capture (16bit/12.5nS), Compare (16 bit/200nS), Pulse Width

Modules (10bit).

 1 Obit multi-channel A/D converter

120

 Synchronous Serial Port (SSP) with SPI (master code) and I2C

(master/slave).

 Universal Synchronous Asynchronous Receiver Transmitter (USART)

with 9 bit address detection.

 Parallel Slave Port (PSP) 8 bit wide with external RD, WR and CS

controls (40/46pin).

 Brown Out circuitry for Brown-Out Reset (BOR).

Key Features

 Maximum operating frequency is 20MHz.

 Flash program memory (14 bit words), 8KB.

 Data memory (bytes) is 368.

 EEPROM data memory (bytes) is 256.

 5 input/output ports.

 3 timers.

 2 CCP modules.

 2 serial communication ports (MSSP, USART).

 PSP parallel communication port

Analog Features

 1 Obit, up to 8 channel A/D converter.

 Brown Out Reset function.

 Analog comparator module.

121

Special Features

 100000 times erase/write cycle enhanced memory.

 1000000 times erase/write cycle data EEPROM memory.

 Self programmable under software control.

 In-circuit serial programming and in-circuit debugging capability.

 Single 5V,DC supply for circuit serial programming

 WDT with its own RC oscillator for reliable operation.

 Programmable code protection.

 Power saving sleep modes.

 Selectable oscillator options.

Pin Diagram

122

PIC16F877 chip is available in different types of packages. According to the

type of applications and usage, these packages are differentiated. The pin

diagrams of a PIC16F877 chip in different packages. PIC1 6F877 has 5 basic

input/output ports. They are usually denoted by PORT A (R A), PORT B (RB),

PORT C (RC), PORT D (RD), and PORT E (RE). These ports are used for

input/ output interfacing. In this controller, PORT A is only 6 bits wide (RA-0 to

RA-7), PORT B , PORT C,PORT D are only 8 bits wide (RB-0 to RB-7,RC-0 to

RC-7,RD-0 to RD-7), PORT E has only 3 bit wide (RE-0 to RE-7).

All these ports are bi-directional. The direction of the port is controlled by using

TRIS(X) registers (TRIS A used to set the direction of PORT-A, TRIS B used to

set the direction for PORT- B, etc.). Setting a TRIS(X) bit1 will set the

corresponding PORT(X) bit as input. Clearing a TRIS(X) bit 0 will set the

corresponding PORT(X) bit as output.(If we want to set PORT A as an input,

just set TRIS(A) bit to logical „1 and want to set PORT B as an output, just set t

he PORT B bits to logical 0.)

 Analog input port (AN0 TO AN7): these ports are used for interfacing

analog inputs.

 TX and RX: These are the USART transmission and reception ports.

 SCK: These pins are used for giving synchronous serial clock input.

 SCL: These pins act as an output for both SPI and I2C modes.

 DT: These are synchronous data terminals.

 CK: Synchronous clock input.

 SD0: SPI data output (SPI Mode).

 SD1: SPI Data input (SPI mode).

 SDA: Data input/output in I2C Mode.

123

 CCP1 and CCP2: These are capture/compare/PWM modules.

 OSC1: Oscillator input/external clock.

 OSC2: Oscillator output/clock out.

 MCLR: Master clear pin (Active low reset).

 Vpp: programming voltage input.

 THV: High voltage test mode controlling.

 Vref (+/-): reference voltage.

 SS: Slave select for the synchronous serial port.

 T0CK1: clock input to TIMER 0.

 T1OSO: Timer 1 oscillator output.

 T1OS1: Timer 1 oscillator input.

 T1CK1: clock input to Timer 1.

 PGD: Serial programming data.

 PGC: serial programming clock.

 PGM: Low Voltage Programming input.

 INT: external interrupt.

 RD: Read control for parallel slave port.

 CS: Select control for parallel slave.

 PSP0 to PSP7: Parallel slave port.

 VDD: positive supply for logic and input pins.

 VSS: Ground reference for logic and input/output pins

Input/ Output Ports

In order to synchronize the operation of I/O ports with the internal 8-bit

organization of the microcontroller, they are, similar to registers, grouped into

five ports denoted by A, B, C, D and E. All of them have several features in

124

common: If a pin performs any of these functions, it may not be used as a

general-purpose input/output pin. TRIS register: TRISA, TRISB, TRISC etc

which determines the performance of port bits, but not their contents. By

clearing any bit of the TRIS register (bit=0), the corresponding port pin is

configured as an output. Similarly, by setting any bit of the TRIS register

(bit=1), the corresponding port pin is configured as an input. This rule is easy to

remember 0 = Output, 1 = Input.

PORTC and TRISC register

Port C is an 8-bit wide, bidirectional port. Bits of the TRISC register determine

the function of its pins. Similar to other ports, a logic one (1) in the TRISC

register configures the appropriate portC pin as an input. Port D is an 8 bit wide,

bidirectional port Bits .

PORTE and TRISE register

Port E is a 4-bit wide, bidirectional port. The TRISE registers bits determine the

function of its pins. Similar to other ports, a logic one in the TRISE register

configures the appropriate portE pin as an input. The exception is the RE3 pin

which is always configured as an input. Similar to ports A and B, three pins can

be configured as analog inputs in this case. The ANSELH register bits

determine whether a pin will act as an analog input (AN) or digital input/output:

RE0 = AN5

RE1 = AN6

RE2 = AN7

125

Instruction Set of PIC 16F877

The instruction set for the 16F8XX includes 35 instructions. The reason

for such a small number of instructions lies in the RISC architecture. It means

that instructions are well optimized from the aspects of operating speed,

simplicity in architecture and code compactness.

Instruction Execution Time

All instructions are single-cycle instructions. The only exception may be

conditional branch instructions (if condition is met) or instructions performed

upon the program counter. In both cases, two cycles are required for instruction

execution, while the second cycle is executed as an NOP (No Operation).

Single-cycle instructions consist of four clock cycles. If 4MHz oscillator is used,

the nominal time for instruction execution is 1gs. As for jump instructions, the

instruction execution time is 2gs.

 Data transfer Instruction

 Arithmetic and Logic Instruction

 Bit oriented Instruction

 Program Control Instruction

Data transfer Instruction:

The data is copied from source to Destination without any change.

EX: MOVLW k-^Move constant to W.

MOV WF f^Move W to F CLR W^ Clear W

126

Arithmetic and Logic Instruction:

To perform arithmetic operation such as addition, subtraction, Increment and

decrement. The group of instruction perform logical operation such as AND,

OR, Exclusive-OR, Rotate, Compare, and Complement the content.

EX: ADDLW k^ Add W and Constant

SUB LW k -^Subtract W from constant

IORLW k^Logical OR with W with constant

Bit oriented Instruction:

BC F f, b^Clear bit b in f

Program Control Instruction:

CALL k^Call subroutine

RETURN^Return from subroutine

127

Block Diagram of Diagram pre scalar

Register Operations:

 Stores values from other locations (registers and memory). It plays a role

in Addition and subtraction Shift or rotate data and to test contents for

conditions such as zero or positive.

Block Diagram of WDT pre scalar

128

3. PC ARCHITECTURE:

Operation of Memory:

 Each memory location has a unique address

 Address from an instruction is copied to the MAR which finds the

location in memory

 CPU determines if it is a store or retrieval

129

 Transfer takes place between the MDR and memory

 MDR is a two way register

Relationship between MAR, MDR and Memory:

Memory Capacity:

Determined by two factors Number of bits in the MAR

 LMC = 100 (00 to 99)

 2
K
 where K = width of the register in bits

Size of the address portion of the instruction

 4 bits allows 16 locations

 8 bits allows 256 locations

 32 bits allows

4,294,967,296 or 4 GB Important for performance

 Insufficient memory can cause a PROCESSOR to work at 50%

below performance Random Access Memory

130

DRAM (Dynamic RAM)

 Most common, cheap

 Volatile: must be refreshed (recharged with power) 1000‘s of

times each second SRAM (static RAM)

 Faster than DRAM and more expensive than DRAM

 Volatile

 Frequently small amount used in cache memory for high-speed

access used ROM - Read Only Memory

 Non-volatile memory to hold software

 Magnetic core memory

 EEPROM

 Electrically Erasable Programmable ROM

 Slower and less flexible than Flash ROM

 Flash ROM

Fetch-Execute Cycle

■ Two-cycle process because both instructions and data are in memory

■ Fetch

■ Decode or find instruction, load from memory into register and

signal ALU

■ Execute

■ Performs operation that instruction requires

■ Move/transform data

Transfer the address from the PC to the MAR Transfer the instruction to the IR

Address portion of the instruction loaded in MAR Actual data copied into the

accumulator Program Counter incremented

131

1. PC -> MAR

2. MDR -> IR

3. IR(address) -> MAR

4. A-> MDR*

5. PC + 1 -> PC

ADD Fetch/Execute Cycle

Transfer the address from the PC to

the MAR

Transfer the instruction to the IR.

Address portion of the instruction

loaded in MAR

Accumulator copies data into MDR

Program Counter incremented

 The physical connection that makes it possible to transfer data from one

location in the computer system to another

 Group of electrical conductors for carrying signals from one location to

another

 Line: each conductor in the bus

 4 kinds of signals

 Data (alphanumeric, numerical, instructions)

 Addresses

 Control signals

 Power (sometimes)

Bus Characteristics

 Documented agreement for communication

 Specification that spells out the meaning of each line and each signal on

each line

 Throughput, i.e., data transfer rate in bits per second > Data width in bits

carried simultaneously

132

H o s t / A G P

b r i d g e

AGP

b u s

V i d e o

c a r d

M o n i t o r

C P U l

E x t e r n a l

b u s u n i t

B a c k s i d e

C a c h e

b u s

E x t e r n a l C P U b u s

H o s t / P C I

b r i d g e

P C I / I S A

b r i d g e

P a r a l l e l

p o r t
i n t e r f a c
e

m e m o r y

M a i n

m e m o r y

P C I b u s

F l o p p y

d i s k d r i v e

USB

p o r t

i n t e r f a c e

S e r i a l

p o r t

i n t e r f a c e

Modem

rx

Pm

N e t w o r k

i n t e r f a c e

D i s k

c o n t r o l l e r

C D - R O M

H a r d d i s k

Mouse

PC Interconnections

133

4. Addressing Modes:

1. Immediate Addressing Mode

2. Direct Addressing Mode

3. Indirect Addressing Mode

4. Register Addressing Mode

5. Register Indirect Addressing Mode

6. Displacement (Indexed) Addressing Mode

7. Stack addressing mode

Immediate Addressing Mode:

Operand (address field) is part of instruction.

E.X. ADD 5^ Add 5 to contents of accumulator

Direct Addressing Mode:

Address field contains address of operand. Effective address (EA) = address

field (A). Single memory reference to access data. No additional calculations to

work out effective address. Limited address space

E.X: ADD A^Add contents of cell A to accumulator, Look in memory at

address A for operand

Indirect Addressing Mode:

Memory cell pointed to by address field contains the address of (pointer to) the

operand. EA = (A).In A, it find address (A) and look there for operand. Large

address space. EA = (((A))).so it is slower.

E.X: ADD (A) -^Add contents of cell pointed to by contents of A to

accumulator

Register Addressing Mode:

Operand is held in register named in address filed. EA = R. Limited number of

registers. Very small address field needed. Here the instruction fetching is fast.

EA = (R).Operand is in memory cell pointed to by contents of register R. Large

address space (2
n
).One fewer memory access than indirect addressing.

Displacement Addressing Mode:

EA = A + (R)

134

Address field hold two values

• A = base value

R = register that holds displacement

Base-Register Addressing Mode:

A holds displacement. R holds pointer to base address. R may be

explicit or implicit EA = A + R

A = base, R = displacement

Indexed Addressing Mode:

Types

1. Pre index addressing mode

2. Post index addressing mode

Post index Addressing Mode:

EA = (A) + (R)

Pre index Addressing Mode:

EA = (A+(R))

Stack Addressing Mode:

Operand is (implicitly) on top of stack

EX: ADD^Pop top two items from stack and add

Effective address:

Virtual or effective address is offset into segment. Starting address plus offset

gives linear address. This goes through page translation if paging enabled.

PCI Bus Connections Instructions Set:

It is method of specifying the data is called Instruction.

 Number of instructions

 Complexity of operations performed by individual instructions

 Data types supported

 Format (layout, fixed vs. variable length)

 Use of registers

Addressing (size, modes)

135

Instruction Formats: RISC

5.Instruction Types:

Data Transfer (load, store) Instruction:

 Most common, greatest flexibility

 Involve memory and registers

Syntax: Ld/St Indirect DR,BR Displacement (Note:Similarly all the instruction)

Arithmetic Instruction Instruction:

 Integers and floating point

 Operators + - / *
A

Logical or Boolean Instruction:

 Relational operators: > < =

 Boolean operators AND, OR, XOR, NOR, and NOT • Single

operand manipulation instructions

 Negating, decrementing, incrementing

136

Conditional Register Logical Instruction:

CR Dest Bit, Source Bit

Branch Instruction:

BR conditional options CR bit

BR: Branch

CR : Condition

DR: Destination Reg

SR: Source Reg

Additional Instruction set

 Bit manipulation instructions

 Flags to test for conditions

 Shift and rotate

 Program control

 Stack instructions

 Multiple data instructions

 I/O and machine control

137

UNIT 5

INTRODUCTION TO EMBEDDED HARDWARE AND SOFTWARE

Terminology-Gates-Timing diagram-Memory-Micro processor buses-

Direct memory access- Interrupts-Built interrupts-Interrupts basis-shared

data problems-Interrupt latency-Embedded system evolution trends-

Interrupt routines in an RTOS environment.

1. Gates:

AND Gate:

Logic diagram:

Truth table:

A B Y=AB

0 0 0

0 1 0

1 0 0

1 1 1

NOT GATE: Logic Diagram:

Truth table:

A Y=A'

0 1

1 0

138

OR GATE:

Logic Diagram:

NAND GATE:

Logic Diagram

A B Y=(AB)'

0 0 1

0 1 1

1 0 1

1 1 0

NOR GATE:

Logic Diagram:

Truth table:

A B Y=A+B

0 0 0

0 1 1

1 0 1

1 1 1

139

Truth table:

A B Y=(A+B)'

0 0 1

0 1 0

1 0 0

1 1 0

XOR GATE:

Logic diagram:

Truth Table:

XNOR GATE:

Logic Diagram

A B Y=A0B

0 0 0

0 1 1

1 0 1

1 1 0

140

Truth table:

Timing diagram

• Graphical representation of circuit behavior over time.

• It is used represent device specification and device performance.

• It plays a vital role in module or system specification.

• May be used as a tool in system analysis.

• It represents the clock cycle and duration, delay, content of address bus

and data bus, type of operation i.e. Read/write/status signals.

• It is one of the best ways to understand to process of micro-

PROCESSOR/controller/Embedded system.

• Easy to understand the working of any system, step by step working of

each instruction and its execution.

Instruction Cycle

The time required to complete execution of an instruction is called

instruction cycle.

Clock cycle

The speed of a computer PROCESSOR, or CPU, is determined by the clock

cycle, which is the amount of time between two pulses of an oscillator, The

higher number of pulses per second, will increase the speed of PROCESSOR.

The clock speed is measured in Hz, typically either megahertz (MHz) or

gigahertz (GHz). For example, a 4GHz PROCESSOR performs 4,000,000,000

clock cycles per second.

A B Y=AG>B

0 0 1

0 1 0

1 0 0

1 1 1

141

Machine cycle

The machine cycle is a 4 process cycle that includes reading and

interpreting the machine language, executing the code and then storing that

code. The four steps involved in Machine cycle are

1. Fetch - Retrieve an instruction from the memory.

2. Decode - Translate the retrieved instruction into a series of computer

commands.

3. Execute - Execute the computer commands.

4. Store - Read and write the results back in memory.

5. T-state: Each clock cycle is called as T-states.

Rules of machine cycles

1. If an addressing mode is direct, immediate or implicit then No. of

machine cycles = No. of bytes.

2. If the addressing mode is indirect then No. of machine cycles = No. of

bytes + 1. Address +1 to the No. of machine cycles if it is memory

read/write operation.

3. If the operand is 8-bit or 16-bit address then, No. of machine cycles =

No. of bytes +1.

4. These rules are applicable to 80% of the instructions of 8085.

Opcode fetch:

The Micro processor requires instructions to perform any particular action. In

order to perform these actions Micro processor utilizes opcode which is a part of

an instruction

142

Operation:

 During T1 state, Micro processor uses IO/M (bar), S0 and S1 signals are

used to instruct Micro processor to fetch opcode.

 Thus when IO/M (bar) =0, S0=S1= 1, it indicates opcode fetch

operation.

 At T2 state Micro processor uses read signal and make data ready from

that memory location to read opcode from memory and at the same time

program counter increments by 1 and points next instruction to be

fetched.

 In this state Micro processor also checks READY input signal, if this pin

is at low logic level i.e. '0' then Micro processor wait state immediately

between T2 and T3.

 At T3, Micro processor reads opcode and store it into instruction register

to decode it further.

 During T4 Micro processor performs internal operation like decoding

opcode and providing necessary actions.

 The opcode is decoded to know whether T5 or T6 states are required, if

they are not required then performs next operation.

143

Read and write timing diagram for memory and I/O Operation Memory

Read:

Operation:

• It is used to fetch one byte from the memory.

• It requires 3 T-States.

• It can be used to fetch operand or data from the memory.

• During T1, A8-A15 contains higher byte of address. At the same

time ALE is high. Therefore Lower byte of address A0-A7 is

selected from AD0-AD7.

• Since it is memory ready operation, IO/M (bar) goes low.

144

Memory Write:

Operation:

 During T2 ALE goes low, RD (bar) goes low. Address is removed from

AD0-AD7 and data D0-D7 appears on AD0-AD7.

 During T3, Data remains on AD0-AD7 till RD (bar) is at low signal.

 It is used to send one byte into memory.

 It requires 3 T-States.

 During T1, ALE is high and contains lower address A0-A7 from AD0-

AD7.

 A8-A15 contains higher byte of address.

 As it is memory operation, IO/M (bar) goes low.

 During T2, ALE goes low, WR (bar) goes low and Address is removed

from AD0- AD7 and then data appears on AD0-AD7.

 Data remains on AD0-AD7 till WR (bar) is low.

145

Operation:

• It is used to fetch one byte from an IO port.

• It requires 3 T-States.

• During T1, The Lower Byte of IO address is duplicated into higher order

address bus A8- A15.

• ALE is high and AD0-AD7 contains address of IO device.

• IO/M (bar) goes high as it is an IO operation.

• During T2, ALE goes low, RD (bar) goes low and data appears on AD0-

AD7 as input from IO device.

• During T3 Data remains on AD0-AD7 till RD (bar) is low.

IO Read:

IO Write:

Operation:

 It is used to writ one byte into IO device.

 It requires 3 T-States.

 During T1, the lower byte of address is duplicated into higher order

address bus A8- A15.

 ALE is high and A0-A7 address is selected from AD0-AD7.

 As it is an IO operation IO/M (bar) goes low.

 During T2, ALE goes low, WR (bar) goes low and data appears on

AD0-AD7 to write data into IO device.

 During T3, Data remains on AD0-AD7 till WR (bar) is low

Hp
Typewritten text
146

Example

AND Gate:

D Flip Flop:

Logic Diagram

Hp
Typewritten text
147

Timing Diagram for D flip flop:

Setup Time:

Setup time is the minimum amount of time the data signal should be held

steady before the clock event so that the data are reliably sampled by the

clock. This applies to synchronous circuits such as the flip-flop.

Hold Time:

The hold time is the amount of time that the system can continue to run

without resetting or rebooting during a power interruption.

Propagation Delay:

• The delay between an input transition and the resultant output

transition is called propagation delay

• Propagation delay is measured between the centers of the transition

time period

• Propagation delay for an output transition from high to low is tpHL

Hp
Typewritten text
148

• Propagation delay for an output transition from low to high is tpLH

• Notice that these two times are not necessarily the same for the

same device

• Notice the difference from Transition Times Timing Hazard

• Transient output behavior may not agree with predicted output due

to delay differences

• A glitch is the presence of extra signal transitions which are not

predicted from the logic equations

Static Hazards

• A static hazard is the possibility of a glitch when the output should

not change

• A static-1 hazard is present if changing a single input variable may

produce output transitions but the output logic function is high (1)

independent of this change.

Detection of Static-1 Hazards

• A properly designed OR-AND circuit will never have static-1

hazards.

• An AND-OR circuit may have static-1 hazards.

• These can be detected from a K-map.

• Check for adjacent min terms NOT covered by the same product

term (AND gate) in the actual realization.

Hp
Typewritten text
149

Static-0 hazard

• A static-0 hazard is present if changing a single input variable may

produce output transitions but the output logic function is low (0)

independent of this change.

While hazards produce unexpected transitions and may be

intermittent, proper design of synchronous sequential circuits

should tolerate hazards.

Detection of Static-0 Hazards

• A properly designed AND-OR circuit will never have static-0

hazards

• An OR-AND circuit may have static-0 hazards

• Check K-map for adjacent max terms NOT covered by the same

sum term (OR gate) in the actual realization

Dynamic Hazards

• the output is supposed to change, the presence of a glitch means the

output makes more than one transition

- low ^ high ^ low ^ high

- high ^ low ^ high ^ low

• Do not occur in properly designed two-level circuits

3. Memory:

It is one or more sets of chips that store data/program instructions, either

temporarily or permanently. It is critical processing component in any

computer.

Hp
Typewritten text
150

(OR)

Any sequential circuit has memory of a sort, since each flip-flop or latch

stores one bit of information. The term memory is usually reserved for that

part of a system where bits of information are stored in a structured way.

This is usually a 2-dimensional array in which one row of bits is accessed

 RAM

• ROM

• PROM

• EPROM

RAM:

• Volatile

RAM is packaged as a chip. Basic storage unit is a cell (one bit per

cell).

• DRAM and SRAM are volatile memories

• Used for temporary storage

• Typical ranges 256 MB - 4 GB

• Random Access means direct access to any part of memory

The specifications of the RAM

Bus speed: Measured in MHz, is that the volume of data in RAM can be

transmitted to the CPU once handled.

Retrieve data speed: Measured in billionths of a second (nanosecond), the time

interval between two data acquisition of RAM

Hp
Typewritten text
151

Capacity: Measured in MB (megabytes), showing a maximum level of stocks of

RAM when the RAM data completely empty.

RAM ECC (Error Correction Code): This is a technique to test and debug in case of a bit of

memory was incorrect value data during transport.

Bandwidth of RAM Single Channel

Band Width = Bus Speed *8 Ex: DDR-SDRAM 400 MHZ Band Width =

400 *8 = 3200MB/s.

Dual Channel

Band Width = Bus Speed * 2*8 = Bus Speed * 16 Ex: DDR 400 MHz =>

Bandwidth = 400*16 = 6400

SRAM (Static RAM)

• Memory behaves like latches or flip-flops

• Address must be stable before writing cell.

• Data must be stable before ending a write.

SRAMs typically use six transistors per bit of storage.

• Allow faster access than DRAM.

• The memory chips are made of the transistors (switches) and

capacitors.

• Transistor SRAM can hold state power.

• SRAM is

more expensive than

DRAM DRAM (Dynamic RAM)

• Memory lasts only for a few milliseconds

• Must refresh locations by reading or writing

Hp
Typewritten text
152

• DRAMs use only one transistor per bit

• 1/0 = capacitor charged/discharged

• DRAM is a type of RAM should regularly update the data (high

refresh rate).

• Dynamic RAM is mounted on the modules: DIMM, SIMM or

RIMM.

SIMM - Single In-Line Memory Module DIMM - Dual

Inline Memory Module RIMM - RAM bus DRAM

• Plugged directly into the motherboard

ROM:

• Nonvolatile Memories (ROM)

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off.

• ROM is memory but it is also a combination element.

• As a combination element it can perform logic functions.

• It is used to produce chips with integrated CMOS BIOS program

PROM (Programmable read only memory):

It is otherwise called as field programmable read-only memory (FPROM)

or onetime programmable non-volatile memory (OTP NVM) is a form of

digital memory where the setting of each bit is locked by a fuse or antifuse.

 Type of ROM that information is only installed once.

 The CD can be called PROM.

Hp
Typewritten text
153

EPROM (Erasable Programmable ROM):

It is programmable read-only memory (programmable ROM) that can be

erased and re-used. Erasure is caused by shining an intense ultraviolet light

through a window that is designed into the memory chip.

 Type of ROM that can erase and rewrite it

 CD-Erasable can be called EPROM

EEPROM (Electronic Erasable Programmable ROM):

It form enhance of EPROM, a difference compared to the EPROM

is able to write and remove the information again and again by software

rather than hardware. Application specific EEPROM is "flash BIOS". ROM

is the type of information can install or upgrade software.

Example: CD-Rewritable.

4. Micro processor Buses:

• A group of digital signals which carry multi-bit data

• With a single (or double) line representation in block diagram

• Shown on a logic diagram (schematic) with a single (sometimes

heavier) line

• Usually named using an indexed notation:

Data Bus:

Data bus carries data in binary form between Micro processor and

other external units such as memory. It is used to transmit data i.e.

information, results of arithmetic etc between memory and the Micro

processor. Data bus is bidirectional in nature

Hp
Typewritten text
154

Address Bus:

The address bus carries addresses and is one way bus from Micro

processor to the memory or other devices.

Control Bus:

Control buses are various lines which have specific functions for

coordinating and controlling Micro processor operations. The control bus

carries control signals partly unidirectional and partly bidirectional.

DIRECT MEMORY ACCESS

A DMA is required when a multi-byte data set or a burst of data or a block

of data is to be transferred between the external device and system or two

systems. A device facilitates DMA transfer with a processing element

(single purpose PROCESSOR) and that device is called DMAC (DMA

Controller). DMA based method useful, when a block of bytes are

transferred, for example, from disk to the RAM or RAM to the disk.

Repeatedly interrupting the PROCESSOR for transfer of every byte during

bulk transfer of data will waste too much of PROCESSOR time in context

switching. System performance improves by separate processing of the

transfers from and to the peripherals (for example, between camera memory

and USB port).

Hp
Typewritten text
155

Consider a system consisting of a CPU, memory and one or more

input/output devices. Assume one of the I/O devices is a disk drive and that

the computer must load a program from this drive into memory. The CPU

would read the first byte of the program and then write that byte to memory.

Then it would do the same for the second byte, until it had loaded the entire

program into memory.

• A DMA controller implements direct memory access in a computer

system.

• It connects directly to the I/O device at one end and to the system

buses at the other end. It also interacts with the CPU, both via the

system buses and two new direct connections.

• It is sometimes referred to as a channel. In an alternate

configuration, the DMA controller may be incorporated directly

into the I/O device.

Hp
Typewritten text
156

• To transfer data from an I/O device to memory, the DMA

controller first sends a Bus Request to the CPU by setting BR to 1.

When it is ready to grant this request, the CPU sets its Bus grant

signal, BG to 1.

• The CPU also tri-states it‘s address, data, and control lines thus

truly granting control of the system buses to the DMA controller.

 The CPU will continue to tri-state its outputs as long as

BR is asserted.

• The DMA controller includes several registers :-

 The DMA Address Register contains the memory address to

be used in the data transfer. The CPU treats this signal as

one or more output ports.

 The DMA Count Register, also called Word Count Register,

contains the no. of bytes of data to be transferred. Like the

DMA address register, it too is treated as an O/P port (with a

diff. Address) by the CPU.

 The DMA Control Register accepts commands from the

CPU. It is also treated as an O/P port by the CPU.

Process of DMA Transfer

• To initiate a DMA transfer, the CPU loads the address of the first

memory location of the memory block (to be read or written from)

into the DMA address register. It does his via an I/O output

instruction, such as the OTPT instruction for the relatively simple

CPU.

• Then it writes the no. of bytes to be transferred into the DMA count

register in the same manner. Finally, it writes one or more

Hp
Typewritten text
157

commands to the DMA control register.

• These commands may specify transfer options such as the DMA

transfer mode, but should always specify the direction of the

transfer, either from I/O to memory or from memory to I/O.

• The last command causes the DMA controller to initiate the

transfer. The controller then sets BR to 1 and, once BG becomes 1,

seizes control of the system buses.

DMA Transfer Modes

Modes vary by how the DMA controller determines

when to transfer data, but the actual data transfer process

is the same for all the modes.

BURST mode

• Sometimes called Block Transfer Mode.

• An entire block of data is transferred in one contiguous sequence. Once

the DMA controller is granted access to the system buses by the CPU, it

transfers all bytes of data in the data block before releasing control of

the system buses back to the CPU. This mode is useful for loading

programs or data files into memory, but it does render the CPU inactive

for relatively long periods of time.

CYCLE STEALING Mode

• The alternative for the systems in which the CPU should not be disabled

for the length of time needed for Burst transfer modes.

• DMA controller obtains access to the system buses as in burst mode,

using BR & BG signals. However, it transfers one byte of data and then

desserts BR, returning control of the system buses to the CPU. It

continually issues requests via BR, transferring one byte of data per

request, until it has transferred it‘s entire block of data.

Hp
Typewritten text
158

• By continually obtaining and releasing control of the system buses, the

DMA controller essentially interleaves instruction & data transfers. The

CPU processes an instruction, and then the DMA controller transfers a

data value, and so on.

• The data block is not transferred as quickly as in burst mode, but the

CPU is not idled for as long as in that mode.

• Useful for controllers monitoring data in real time.

Advantages of DMA

• Computer system performance is improved by direct transfer

of data between memory and I/O devices, bypassing the

CPU.

• CPU is free to perform operations that do not use system

buses.

Disadvantages of DMA

• In case of Burst Mode data transfer, the CPU is rendered

inactive for relatively long periods of time.

6. Interrupts

Interrupt means event, which invites attention of the PROCESSOR on

occurrence of some action at hardware or software interrupt instruction

event. In response to the interrupt, the routine or program, which is running

presently interrupts and an interrupt service routine (ISR) executes.

Interrupt Service Routines

ISR is also called device driver in case of the devices and called exception

or signal or trap handler in case of software interrupts

Hp
Typewritten text
159

• Copy peripheral data into a buffer

• Indicate to other code that data has arrived

Acknowledge the interrupt (tell hardware)

Longer reaction to interrupt performed outside interrupt routine

E.g: causes a process to start or resume running

Priority-based Scheduling

• Typical RTOS based on fixed-priority preemptive scheduler

• Assign each process a priority

• At any time, scheduler runs highest priority process ready to run

• Process runs to completion unless preempted Priority-Based Preempting

Scheduling

• Multiple processes at the same priority level

• Simply prohibit: Each process has unique priority

• Time-slice processes at the same priority

• Extra context-switch overhead

• No starvation dangers at that level

• Processes at the same priority never preempt the other

• More efficient

• Priority Inheritance

• Temporarily increase process‘s priority when it acquires a lock

• Level to increase: highest priority of any process that might

want to acquire same lock i.e., high enough to prevent it from

being preempted

Hp
Typewritten text
160

• Danger: Low-priority process acquires lock, gets high priority and

hogs the PROCESSOR.

• Low-priority processes should acquire high-priority locks.

• No equivalent result when locks and priority inheritance is used.

Interrupt approach for the port or device Interrupt approach for the

port or device functions

PROCESSOR executes the program, called interrupt service routine or

signal handler or trap handler or exception handler or device driver, related

to input or output from the port or device or related to a device function on

an interrupt and does not wait and look for the input ready or output

completion or device-status ready or set

Hardware interrupt

Examples — When a device or port is ready, a device or port generates an

interrupt, or when it completes the assigned action or when a timer

overflows or when a time at the timer equals a preset time in a compare

register or on setting a status flag (for example, on timer overflow or

compare or capture of time) or on click of mice in a computer , Hardware

interrupt generates call to an ISR

Software Interrupt:

When software run-time exception condition (for examples, division by 0 or

overflow or illegal opcode detected) the PROCESSOR-hardware generates

an interrupt, called trap, which calls an ISR. When software run-time

exception condition defined in a program occurs, and then a software

Hp
Typewritten text
161

instruction (SWI) is executed, then it is called software interrupt or

exception or signal, which calls an ISR .When a device function is to be

invoked, for example, open (initialize/configure) or read or write or close,

then a software instruction (SWI) is executed, then it is called software

interrupt to execute the required device driver function for open or read or

write or close operations.

Software can execute the software instruction (SWI) or Interrupt (INT n) to

signal execution of ISR (interrupt service routine). The n is as per the

handler address. Signal interrupt [The signal differs from the function in the

sense that execution of signal handler (ISR) can be masked and till mask is

reset, the handler will not execute on interrupt. Function on the other hand

always executes on the call after a call-instruction].

7. Shared Data problem:

Inconsistency in data used by a task and updated by an ISR; arises because

ISR runs at just the wrong time. Data is often shared because it is

undesirable to have ISRs do all the work - they would take too long to run.

ISRs typically -hand off some of the processing to task code. This implies

shared variables or communication between the ISR and the related task.

This problem arises when task code accesses shared data non-atomically.

Some data is common to different processes or tasks. Examples are as

follows: Time, which is updated continuously by a process, is also used by

display process in a system Port input data, which is received by one

process and further processed and analyzed by another process. Memory

Buffer data which is inserted by one process and further read (deleted),

Hp
Typewritten text
162

processed and analyzed by another process. Assume that at an instant when

the value of variable operates and during the operations on it, only a part of

the operation is completed and another part remains incomplete. At that

moment, assume that there is an interrupt. Assume that there is another

function. It also shares the same variable. The value of the variable may

differ from the one expected if the earlier operation had been completed.

Whenever another process sharing the same partly operated data, and then

shared data problem arises.

Solution:

Put a shared variable in a circular queue. A function that requires the value

of this variable always deletes (takes) it from the queue front, and another

function, which inserts (writes) the value of this variable, always does so at

the queue back. Disable the interrupts (DI) before a critical section starts

executing and enable the interrupts (EI) on its completion. DI— powerful

but a drastic option. An interrupt, even if of higher priority than the critical

function, gets disabled.

Use lock () a critical section starts executing and use unlock () on its

completion. A software designer usually not use the drastic option of

disabling interrupts in all the critical sections, except in automobile system

like software. Use IPC (Inter-Process Communication).

9. Interrupt Latency

In computing, interrupt latency is the time that elapses from when an

interrupt is generated to when the source of the interrupt is serviced. For

many operating systems, devices are serviced as soon as the device's

interrupt handler is executed.

Hp
Typewritten text
163

10. Embedded system

A combination of hardware and software which together form a component

of a larger machine. An example of an embedded system is a Micro

processor that controls an automobile engine. An embedded system is

designed to run on its own without human intervention, and may be

required to respond to events in real time.

Application

TV, Stereo, Remote control, Phone / mobile phone, Refrigerator,

Microwave, Washing machine, Electric tooth brush, Oven / rice or Bread

cooker, Watch, Alarm clock, Electronic musical instrument, Electronic toys

,Medical home equipment like blood pressure, thermometer.

11. Real-Time Operating Systems

A variant of OS that operates in constrained environment in which

computer memory and processing power is limited. Moreover they often

need to provide their services in definite amount of time. Hard, Soft & Firm

RTOS.

A variant of OS that operates in constrained environment in which

computer memory and processing power is limited. Moreover they often

need to provide their services in definite amount of time. Hard, Soft & Firm

RTOS.

Example: Flight Control System

Definition:

Real-time systems have been defined as those systems in which the

correctness of the system depends not only on the logical result of the

computation, but also on the time at which the results are produced.

Hp
Typewritten text
164

Role of an OS in real time systems

• Standalone Applications

• Often no OS involved

• Micro controller based Embedded Systems

• Some Real Time Applications are huge & complex

• Multiple threads

• Complicated Synchronization Requirements

• File system / Network / Windowing support

• OS primitives reduce the software design time

Features of RTOS

• Scheduling

• Resource Allocation

• Interrupt Handling

• Other issues like kernel size

Hard Versus Soft RTOS

Hard real time means strict about adherence to each task deadline.

When an event occurs, it should be serviced with in the predictable time at

all times in a given hard real time system. The preemption period for the

hard real time task in worst case should be less than a few seconds. A hard

RTOS is one, which has predictable performance with no deadline, even in

case of sporadic tasks (sudden bursts of occurrence of events requiring

attention). Automobile engine control system and anti lock brake are the

examples of hard real time systems. Provision of asynchronous IOs.

Provision of locks or spin locks. Predictions of interrupt latencies and

Context switching latencies of the tasks. Predictability is achieved by

Hp
Typewritten text
165

writing all functions which execute always take the same predefined time

intervals in case of varying rates of occurrences of the events.

Response in all the time slots for the given events in the system and

thus providing the guaranteed task deadlines even in case of sporadic and

periodic tasks. Sporadic tasks means tasks executed on the sudden-bursts of

the corresponding events at high rates, and periodic tasks mean task having

no definite period of event occurrence. Video transmission, each picture

frame and audio must be transferred at fixed rate. One in which deadlines

are mostly met. Soft real time means that only the precedence and sequence

for the task operations are defined, interrupt latencies and context switching

latencies are small but there can be few deviations between expected

latencies of the tasks and observed time constraints and a few deadline

misses are accepted.

The preemption period for the soft real time task in worst case may

be about a few ms. Mobile phones, digital cameras and orchestra playing

robots are examples of soft real time systems.

• A real time OS (function as standard OS, with predictable behavior

and well-defined functionality)

• A collection of RT tasks/processes (share resources,

communicate/synchronize with each other and the environment)

• Large and complex: Vary from a few hundred lines to 20 million lines

estimated for the Space Station Freedom

Hp
Typewritten text
166

• Concurrent control of separate system components devices operate in

parallel in the real- world, better to model this parallelism by concurrent

entities in the program

• Facilities to interact with special purpose hardware need to be able to

program devices in a reliable and abstract way

• Mixture of Hardware/Software: some modules implemented in

hardware, even whole systems, SoC.

• Extreme reliability and safety Embedded systems typically control

the environment in which they operate: failure to control can result

in loss of life, damage to environment or economic loss

• Guaranteed response times: we need to be able to predict with

confidence the worst case response times for systems; efficiency is

important but predictability is essential

Challenges in RT Systems Design

• Predictability: able to predict the future consequences of current

actions

• Testability: easy to test if the system can meet all the deadlines

• Cost optimality: e.g. Energy consumption, memory blocks etc

Main properties of RT Systems

Maintainability: Modular structure to ease system modification

Robustness: Must not collapse when subject to peak load, exception,

manage all possible scenarios

Fault tolerance: Hardware and software failures should not cause the system to

Hp
Typewritten text
167

crash - function down-grading

Performance Metrics

• Miss rate: percentage of jobs executed but completed late

• Loss rate: percentage of jobs discarded

• Invalid rate: sum of miss and loss rate.

• Makespan: If all jobs have same release time and deadline, then make

span = response time of the last job to execute.

• Max or average response times

Max or average tardiness/lateness

Scheduling Aperiodic and Sporadic Jobs

• Polling Server

• Deferrable Server

• Sporadic Server

• Generalized PROCESSOR Sharing

• Constant Utilization Server

• Preemptive Weighted Fair Queuing

• sporadic job: acceptance test

• scheduling of accepted job

Hp
Typewritten text
168

Priority Queues for Periodic/Sporadic/Aperiodic Jobs

• Aperiodic job: schedule job to complete ASAP

Correctness

• A correct schedule is one where all periodic tasks, and any

sporadic tasks that have been accepted, meet their deadlines

• A scheduling algorithm supporting aperiodic and/or sporadic jobs

is a correct algorithm if it only produces correct schedules for the

system

Optimality

• An aperiodic job scheduling algorithm is optimal if it minimizes

either:

• The response time of the job at the head of the aperiodic job queue.

• The average response time of all aperiodic jobs for a given queuing

discipline

Hp
Typewritten text
169

• A sporadic job scheduling algorithm is optimal if it accepts a new

sporadic job, and schedules that job to complete by its deadline, if and

only if the new job can be correctly scheduled to complete in time

• An optimal algorithm always produces a feasible schedule job

accepted

• Note: this is different from the definition of optimal on-line

algorithms discussed previously, as that definition required that all

offered jobs had to be accepted and completed in time

Scheduling Aperiodic Jobs

• Consider the simple case: scheduling periodic jobs along with a

system of periodic jobs

• Ignore sporadic jobs for now

• Two simple approaches:

• Execute the a periodic jobs in the background

• Execute the a periodic jobs by

interrupting the periodic jobs Advantages

• Clearly produces correct schedules

• Extremely simple to implement.

Disadvantages

Not optimal since it is almost guaranteed to delay execution of periodic jobs

in favour of periodic and sporadic jobs, giving unduly long response times

for the aperiodic jobs.

Hp
Typewritten text
170

