5. Fibrations and Fibration Sequences.

In this section we show that one can use topology to study simplicial objects, such as
simplicial sets, simplicial groups, simplicial rings, simplicial categories etc. A powerful
tool is the fibration sequence. It plays a similar role in homotopy theory as the long exact
homology sequence in homology theory.

1. Homotopies.

Definition. Two maps g, f : (X, A) — (Y, B) are called homotopic (notation: f~g)
if there is a map
H: (X xI,AxI)— (Y,B)

such that H|X x0=f and H|X x1=g.
Notation. One write f ~g¢g if f and g are homotopic.

It is easily verified that ~ defines an equivalence relation on the set of all functions
f:(X,A) — (Y,B). Given this equivalence relation, define

Definition. Let X,Y be two CW-complexes. Then denote

[X, Y] := set of homotopy classes of all maps X — Y.

Remark. For pairs of CW-complexes this set is denoted by [ (X, A),(Y,B) ].

Definition. The wedge sum X VY of two pointed spaces (X,x),(Y,y) is obtained
from the disjoint union X UY by identifying =1y, i.e.

XVY =(X,2) Uy—y (Y ).

The wedge product X AY (or: smash product) of two pointed spaces (X,*) and
(Y,*) is the quotient of the product X XY wunder the identification (z,%) ~ (x,y), for
all ze X,yeyY, ie.

XAY =X xY/XVY.

Definition. Let X be a CW-complex. Then

X 2 X AS!
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2 . Fibrations
is the suspension of X and
QX :=[(S, %), (X, %)]
is the path-space of X (with base point ).
Theorem. Let X,Y be CW-complexes. Then
EX,Y]=[X,QY]

Proof. This follows since CW-complexes are locally compact Hausdorff spaces, see e.g.
[Munkres, Topology, p.287]. <

Remark. Hom(XAA,Y) = Hom(X,Hom(A,Y)) (note the analogy to Hom(V&U, W) =
Hom(V,Hom(U, W)) for R-modules, so

smash product ~ tensor product.

Remark. In the same way one proves C(X x I,Y) = C(I,YX), ie. a homotopy
between two maps fo, f1 : X — Y can be viewed as a continuous path f; in the space
C(X,Y) =YX of continuous maps.
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S5 Fibrations 3

2. Fibrations and Homotopy.

Definition. A map p: E — B has the homotopy lifting property with respect to a
space X if, given a homotopy ¢:: X — B and a map §o : X — E lifting go (i.e.,
Pgo = go), then there is a homotopy g : X — E lifting g, i.e.

E

90/ lp

X xI 24

Definition.

(1) A Hurewicz fibration is a map having the homotopy lifting property with respect to
all spaces X.

(2) A Serre fibration is a map having the homotopy lifting property with respect to all
discs DF.

Proposition. For a fibration p: E — B the fibers
Fy=p~'(b)

over each path component of B are all homotopy equivalent.
Proof. [Hatcher, p. 405]

A path ~:1 — B gives rise to a homotopy g¢:F, ) — B with g;(F,)) = v(t). The
inclusion F, ) < E provides a lift go, so by the homotopy lifting prperty, we have a
homotopy ¢ : Fy) — E with §:;(Fy)) C Fyy), forall t. In particular, g; gives a
map L, : F,) — Fy1). The association

v = Ly
has the following basic properties:

(1) If y~~" rel 01, then L,~L..
In particular, the homotopy class of L. is independent of the choice of the lifting g; of
gt-

(2) For a composition of paths v4’, L., is homotopic to the composition L./ L.

From these statements it follows that L, is a homotopy equivalence with homotopy
inverse L, where % is the inverse path of +.
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4 . Fibrations

Before proving (1) note that a fibration has the homotopy lifting property for pairs (X x
I, X x0I) since the pairs (I xI,Ix{0}U 0l xI) and (I xI,Ix{0}) are homeomorphic,
hence the same is true after taking products with X.

To prove (1), let ~(s,t) be a homotopy from ~(t) to ~'(t), (s,t) € I x I. This
determines a family gg : Fy) — B with ge(Fy ) = 7(s,t). Let go and g1, be
lifts defining L, and L., and let gso be the inclusion F,) — FE, for all s. Using
the homotopy lifting property for the par (F, ) x I, F.,0y X 0I), we can extend these lifts
to lifts gs¢ for (s,t) € I x I. Restricting to ¢ =1, then gives a homotopy L~ >~ L.

Property (2) holds since for the lifts §; nad G} defining L, and L., we obtain a lift
defining L., by taking goy for 0 <t < % and g5, L., for % <t<1. ¢

Definition. Let f: X —Y be a map. Then define

Ep:={ (v,w) € X x YT | w(0) = f(z) }.
Proposition. The projection Ef —Y, (z,w)— w(l) is a fibration.

Proof. <

Proposition. FEvery map f : X — Y factors through a homotopy equivalence and a
fibration as follows

Ey
~/ N\, = fibration
X SN Y

Remark. Every map is a fibration, up to homotopy.

Definition. Let X be a CW-complex. We denote

X =[S0 X].

m,X is the n-th homotopy group of X. The composition m, X X 71, X — 7, X s
given by concatenation.

Definition. Let
f: X—=Y

be a map and let p: Ey —Y be as above. Then

p ' (y), yevy,

is called the homotopy fiber of the map f (all hootopy fibers are homotopy equivalent).
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S5 Fibrations 5

Theorem. [The Long Exact Homotopy Sequence for Serre Fibrations]
Suppose p: E — B s a Serre fibration and let F =p~1(b), b € B.
Then

(1) the map py:m(E,F) — m,B is an isomorphism, for all n > 1,
(2) if B s path-connected, there is a long exact sequence
oo > E 2 1B — w1 F — ... — mF — mE — 0.

Remark. The sequence is the same as

.= [ F] — [S"E] 2 [S", Bl — [S"L F] — ... = [S°, F] — [S°, E] — 0.

Proof.

ad (1).
ps« 1s surjective.

Let f : (I",0I") — (B,x) represent an element from m,B. The constant map
*:J"1 — x gives a commutative diagram

Jnfl L) E
! Ip
m 4. B

Since p is a fibration, we get a lift foIm — E. This lift satisfies f(dI™) C F since
f@I™)=x%. Then [ f]em,(E,F) and p.[f] =][f] since pf = f.

P« is injective.
Suppose fo, f1: (I", 00 J" 1) — (E,F) are maps with p.[fo] = p«[f1]. Let

G:(I"xI1,0I" xI)— (B,x)

be a homotopy from p fo to p fl. We have a commutative diagram

(I"x0u(JIxnHu(drx1) % E

il Lp

I x I &, B

Klaus Johannson, Unstable Homotopy Theory



6 . Fibrations

where é|[” Xi= f;, i =01, and C?L,]”_l x I the constant map to 5. By
the lifting property of p, we get a lift G : I" x I — FE. This gives a homotopy
fr (™01, Jv Y — (E,F,%) from fy to fi. So p. is injective.

ad (2).

In order to show (2) we plug 7, B in for m,(F,F) in the long exact sequence

= nF — 1B — (B, F) -2 tp 1 F — mp 1 B — ...

for the pair (E,F). The map m,E — m,(F,F) becomes the composition
B — (B, F) L r. B

and this is p, : 7, F — 7, B.

Finally, B is path-connected. Hence a path in FE from an arbitrary point = € E to
F can be obtained by lifting a path in E from p(x) to *. This proves surjectivity of
o — moE.

Corollary. 7, X =m,_10QX.

Proof. Use the long exact homotopy equivalence for the fibration QX — PX — X and
us the fact that m,PX =0, for all ¢ # 0, since PX is contractible. Thus we have

o T = 0= X -1 QX —0— ...

and the corollary follows from exactness. <

Corollary. 7352 = Z.
Proof. Apply the long exact sequence for the fibration

St — §3 5 §2

to obtain
— St — 1383 — m358? — St —

Since m35=0 = S, we have 7352 23S =7Z.
Proposition. If

F—F—B
1 a fibration with E contractible, then there is a weak homotopy equivalence

F — QB.
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S5 Fibrations 7

Proof. [Hatcher,p.408]

If we compose a contraction of E with the projection p: F — B then we have for each
point x € E apath 7, in B from p(z) to a basepoint by = p(xg), where z( is the
point to which FE contracts. This yields a map

E — PB, z— %,
whose composition with the fibration PB — B is p.

F - E 2 B

1 l =
OB — PB — B

By restriction this gives a map F — QB, where F = p~!(bg), and the long exact
sequence of homotopy groups for F — E — B maps to the long exact sequence for
QB — PB — B. Since E and PB are contractible, the five lemma implies that the
map f:F — QB is a weak homotopy equivalence. <
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8 . Fibrations

3. Fibrations and Homology.

There are no long exact homology sequences for fibrations. This is the reason why it is so
difficult to calculate the homotopy groups for fibrations. Here one needs spectral sequences
as replacement for the absent long exact homology sequence.

Definition. A spectral sequence is a collection

E = (E*,d") = (EF,,d")

of modules EF_ and maps df_ (so called differentials) such that

(1) df’s : Ef’s — f—k,s—i—k—l 1s & homomorphism with d’ﬁ+175 o df’s = 0.

(2) E** = H(E¥), where H(E) denotes the collection Hg, = kerdf,s/imdlﬁ_kys_(k“)
of homology modules.

Theorem. [Spectral Sequences for Fibrations]. For a fibration
F—-X—B

with B simply connected, there is a spectral sequence {E; d.} with

q?

(1) d,: EP? — Eptra=—r+l gnd EPY =ker d,/im d, = homology at EP.

(2) there is a filtration 0 C F} C ... C Fy' = H"X of H"X such that EP" P =~
B/

(3) BP9 = [?(B; HIF)).
Proof. [Hatcher] ¢

Remark. We make no attempt of proving this theorem, i.e., we will make no attempt to
construct a spectral sequence. Usually one does not need to know how a spectral sequence
is constructed. One only needs to know that it exists. All important information about
spectral sequences can be deduced from its very definition. However, one needs to get used
to spectral sequences.
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S5 Fibrations 9

4. Spectral Sequences and Convergence.

A spectral sequence may be viewed as the integer lattice Z* € R® in Euclidean space
which is organized in such a way so that it looks like a building. First, the lattice is
organized in levels of lattices:

The building = it has floors

The levels in turn are made up of chains of arrows obeying a certain rule:

A
®
A
®
A
®
A
®
A

The floors = they have flights of rooms

A
®
A
®
A
®
A
®
A

A
®
A
®
A
®
A
®
A

A
®
A
®
A
®
A
®
A

i

A
®
A
®
A
®
A
®
A

A
®
A
®
A
®
A
®
A

Remarks. Thus a spectral sequence may be viewed as a building full of rooms (represented
by dots) connected by one-way doors (represented by arrows) which allow to walk from
one room to another.

Remark. So, schematically, all spectral sequences look the same. Given the first page of
a spectral sequence, the modules of the second page are uniquely given. They are simply
the homology groups of the chain complex of the first page. The problem is to set up the
differentials of the second page. Whence they are given we are in business and we can form
the next level and so on.

Remark Let us consider the distribution of arrows more closely. So let us be given a page
full of chain complex. Thus instead of one chain complex (A;,0;) (for which we only
need one index), we now begin with a sequence (E, s,d, ) of chain complexes (for which
we need two indices). It is costumary to denote the modules E, s in a spectral sequence
by the letter E and the boundary maps d,, by the letter d. Given this page of
chain complexes we get a second page of chain complexes (E? dif,s), i.e. we get a new

r,87
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10 . Fibrations

module Eis and a new differential d, s, for every location (r,s). This time, however,
the boundary maps are called differentials. Note that we have introduces a third index
(written as an upper index) to record the page in which the module and the differential is
located. The differentials in the third page are even longer and even more tilted and so
on. We will speak of a spectral sequence if the new modules and boundary maps are given
according to the specific rules.

The Top Floor of Spectral Sequences. At the moment the definition of a spectral sequence
is to general to be useful. In fact, with this definition one still cannot see the point of the
construction.

What makes spectral sequences so useful in practice is that they satisfy some extra property
(depending on the problem they are supposed to solve).

For us the extray property that our spectral sequences satisfy is that they are all so called
first quadrant spectral sequences. This means that only the modules F,, with
p,q > 0 are non-trivial.

Given the above definition together with this extra property and something rather remark-
able turns up as indicated by the following picture:
¢ ¢ ¢

%
AL

| *1°]
| *1°]
B
The top-floor = here sit all the chiefs

o
o

SNS

The vertical columns indicate the sequence

E3

p,gr

E2

p,q’

Ep.q:
through the levels. Note that arrows get longer and longer. So with increasing r more
and more arrows start or end in modules that are outside of the upper-right quadrant and
that are therefore supposed to be 0. Thus more and more homology groups stavilize, i.e.
they do not change anymore for large enough r. Of course, r must be larger the larger
p,q is. So beginning with the origin we see the whole picture stablize. The vertical arrows
all end in modules EJ =~ — E7.

Klaus Johannson, Unstable Homotopy Theory



S5 Fibrations 11

Convergence of Spectral Sequences. It turns out that the top floor has its own combinatorial

structure

EOO

NN |

the order at the top = some chiefs are closer than others

The lines (p,q) with p+ ¢ =n all have the same modules. They are not quite equal to
H,(X), but they are equal to something close.

Remark. First quadrant spectral sequences are always convergent as we have seen. But
there are other spectral that are also konvergent, namely the bounded spectral se-
quences. A spectral sequence is bounded if all lines p+ ¢ = n, for all n, have only
finitely many non-zero terms. First quadrant are of course bounded but not vice versa. If a
spectral sequence if not bounded then it is hard to predict what it calculates. However, we
will only need first quadrant spectral sequences. So we do not worry about other spectral
sequences, whether bounded or not.

The groups in the top floor will not all be the homology of E but close. We will see that
for every group H,FE there will be a sequence of subgroups

0O=FfH,FCFH,EC..C hH,EFE=H,E

such that
E;’f’q =F,H,E/F, 1H,E.

We will have to see how this sequence F,H,FE is constructed and how one can make use
of it.

If the above sequence exists one says that the spectral sequence converges and one denotes
this with a special notation. More precisely, one writes

00
Ep,q = HP-HZ

if the spectral sequence converges in the above sense.

Remark. We will not have to worry about the difference of convergent and non-convergent
spectral sequences because our spectral sequences will al converge.
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5. The Wang Exact Sequence.

. Fibrations

The prove of the next theorem shows the spectral sequence method in action. The result
will be needed e.g. in the calculation of the homotopy groups of spheres.

The Wang-Sequence Theorem. Let f: E — S™, k> 2, be a fibration. Then there

s an exact sequence

k
s H,E—H, ,FYsH, F—H, \E—...

Proof. By property (1) of the fibration theorem, we have

E? = Hy(S™ HyF).

Now the base S™ is simply connected and

HoS™ =17, H,S™ = Z and H,S™ =0, p# 0,m.

Thus we have

E?n’q ~ H,,(S";H,F) = H,F, Eg,q ~ Hy ,(S™; H,F) = H,F, and

E?,=Hy(S" H,F) =0, p#0,k.

So the E?-floor has a rather simple appearance

floor E2: ¢+1
q

—

H,F
HyF
HyF
HyF

0

O OO O oo

1

O OO O oo

m—1

H,F
HyF
HyF
HyF

m

O OO O oo

m+1

By definition of the spectral sequence the abelian groups E; , of the next floor E3 above
E? is given by the quotient of the incoming arrow for Eg,q modulo the image of the
outgoing arrow. Now, if the arrows are shorter than m, the all incoming arrows end in 0
and all the outgoing arrows start in 0. In this case the kernels of the outgoing arrows are
equal to H,F' and the images of the incoming arrows is also equal to 0. So Egy = EZ’ g

By this reasoning we have

F?=F3=...=F™, Emtl = pm+2— |

— B>
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S5 Fibrations 13

All the floors up to the floor E™ look like the bottom floor. All the floors above E™*!
look like E™*!. Hence E* also looks like E™*!

Now, look at the m-th column of the m-th floor E™. We see differentials d" going from
the m-th column to the 0-th column. More precisely,

m . m m
d™ . Em’q — E07q+m71

Now, Eﬁfj;l = ker d™/im 0, where 0 denotes the null-homomorphism 0 — A. This
means

m+1 m am m
0 - Emaq - Em7q E03q+m71

is exact. Moreover, ng; U= Ker 0/im d™, where this time 0 denotes the null-
homomorphism A — 0. But ker 0 = Hyyp—1F = Ey",,,, ;. This means that

2 d" L204m—1 m+1
Em7q — F —>E0,q+m_1 — 0

is exact. Putting the two exact sequences together and using Eg}q’L = E, vields the
exact sequence

0— B, — E*m,q 25 E2 1 — B imo1 — 0 (1)

We claim (exercise) that there is yet another exact sequence

0 — ES, — Ho(E) = By — 0 @)
Now set ¢ =n—m andrecall E2 =E2 =H, ,F and E§ ., 1 =E§, ;=

H,_1F (by property (1) of the theo}em). Hence the exact sequence (1) becomes

0— E° — Hp P — Hyp  F — Eg5, 1 — 0

m,n—m

We next put this exact sequence together with (2) as follows

H.E 0
! !
0— EX,..m — HynF—-H, F — Ef,_;—0
! !
0 H, 1FE

Composition of maps yields:
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14 . Fibrations

anmF - anlF

N\

H, . FE

i.e. we get an exact sequence, for every n. All those sequences in turn yield the Wang
exact sequence from the theorem. <

For completeness we here mention yet another exact sequence associated to fibrations and
that can be obtained from spectral sequences.

The Gysin-Sequence Theorem. Let

s" —-FE-B
be a fibration with B simply connected and n # 0. Then there is an exact sequence

dn+1

.—~H, .B—HE > HB"~— H, , 1 — H, 1\E-2 ...

In particular, HyE = H,B, for 0<q<n.

Proof. The proof is similar to the proof of the Wang sequence. For more details see e.g.
[Weibel]. &
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S5 Fibrations 15

6. Calculations for Loop Spaces.

1.y~ ) ®L, for q=0
Example. H,(Q25";Z) = {O, olse .

nooy o J 2o ql(n—1),
Example. H,(Q25™Z) = {O, olse

Example. The cohomology of (25" has the following ring structure

H*(Qsm,Z) ~ {FZ[CL], if m 1is odd

Azla)l @ Ty [b], if m is even.

where TI'z[a] is a divided polynomial algebra and where Agla] is the exterior algebra,
la| =m — 1, |b| =2m — 2.

More generally, we have

Theorem. Let X be a simply connected space. Suppose H*(X,R) is a polynomial
algebra on a generator of degree m (n is then necessarily even). Then the loop space QX
is a cohomology (n — 1)-sphere.

Proof. Use Gysin sequence [Spanier, p. 513]. <

Theorem. Suppose X s a cohomology n-sphere for some n > 1 odd. Then the

cohomology ring H*QX has a basis consisting of elements {1,uy,us,...,} with degree
, !
w=1i(n—1) and up,Uu, = % Uptq-

Proof. From the Wang exact sequence [Spanier, p. 514].

Theorem. Suppose X is a simply connected space which is a rational cohomology n-
sphere with n > 1 odd. Then
H*(QX,Q)

is a polynomial algebra with one generator of degree n — 1.
Proof. [Spanier] ¢

as a group.

By the universal coefficient theorem, we have for the integral group
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16 . Fibrations

torsion group, if 0<qg#n-—2

2Qn. ~
Example. Hq(Q S 7Z) = {tOl“SiOIl group®Z, if g=n—2

7. Calculations for Eilenberg-MacLane Spaces.

Let K(Z,2) denote the Eilenberg-MacLane space whose only homotopy group is in degree
2. Then i

Z, for ¢q=0,1

o 1_
Example. H,(K(Z,1);Z) = H,S" = {0, else

Example. H,(K(Z,2);Z) = {%’ ﬁﬁi g E(Vizn. [Hatcher, p. 9]
Example. H*(K(Z,2);Z) = Z[z].
( 0, for q=14
0, for q =
s, for ¢ =06
Example. HY(K(Z,3);Z) = < 0, for ¢q=7

Zsy, for ¢ =38

Zox®, for ¢q=9

\ ..., .

This cannot be calculated forever without additional information. In rational coefficients
we have

Q[z], for n even

H*(K(Z’n>’@)g{1\@[x], for n odd.

Appendix.

Theorem. Let {EP9 d.} be a spectral sequence. Then there are bilinear products
EPY x E,.s,t — EPtTsatt

such that the following holds:

(1) Each differential d, is a derivation in the sense that

d(zy) = (dz)y + (—~1)Pz(dy), = € B
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S5 Fibrations 17

(This implies that the product EP1 x E%' — EPTS9tt ynduces a product E,..1lp,q X
Efjil — Efif’q“ and this is the product for E..1. The product in E., is the one
induced from the products in E, for finite r.)

(2) The product EE9 x Ey' — EPTS9T s (—1)95 times the standard cup product

HP(B,HqF)) x H*B, H,F)) — H?"*(B, HT"'F)).

3) The cup product in H*X restricts to maps F™ x F" — F™"  These induce
D s p+s

quotient maps
F ) < FOFS — B o

that coincide with the products EP™™P x E$~5 — EpFsmitn—p=s,

Proof. [Hatcher]. $
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