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 Abstract So far human development has been based on the accelerated  exploitation 
of resources such as air, water, and earth, from which most human resources derive. 
Until recently those global commons were considered valueless and were therefore 
exploited in the belief of unlimited availability. Recently, the accumulation of major 
environmental issues has challenged this behaviour. On one hand we are witnessing 
the continuous rise in the price of raw materials and a strong demand for recyclable 
materials, while on the other hand we are producing more waste. Hence we should 
not expect Earth to produce more but we should do more with what Earth produces, 
and adopt a sustainable waste management. We must wake up to the fact that 
the growing mass of waste generated by industrial activities is becoming critical 
because it causes serious damage to human health and the environment. We must 
start to consider wastes like resources and be inspired by Nature, where surpluses 
are metabolized by the system itself. If we adopt this principle in production, it will 
favor the development of zero-emission production, because the waste – or output 
– of one process is used as a resource – or input – for another production process. 
This leads us to a change of perspective that goes in the direction of thinking by 
connections. Thinking by connections means for instance that industries organize 
themselves into local sustainable networks. In such networks waste products from 
one industry is sold as a resource to another industry, and thus benefits both of 
them. In these systems the flows of material and energy generate internal con-
nections. Waste enriched with new values becomes a resource and is available for 
producing new products strictly connected to the local know-how. By applying the 
systemic approach the cultural identity of the territory where the crops are grown is 
reinforced, the biodiversity is conserved and the quality of the products generated is 
improved. This concept of thinking by connections therefore creates positive effects 
on the territory in both environmental and economic terms.

C. Ceppa (*) 
DIPRADI – Department of Architectural and Industrial Design,  
Politecnico di Torino, Turin, Italy 
e-mail: clara.ceppa@polito.it
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Keywords Biodiversity • Nature • Systemic design • Output-input • Connections • 
Reuse of wastes • Local flows of materials • Open production system • Ecosystem

1  Introduction

Capitalistic development has primarily been based on the accelerated exploitation of 
all resources, human and natural (Zorzoli 1985): water, air and earth, indispensable 
resources for human survival, seemed to have no value and were exploited in the 
belief of unlimited availability (Ceppa et al. 2008). In classic economic theory, in 
fact, these three elements were considered resources available to humanity at no 
cost. However, the accumulation of environmental problems has challenged this 
theory: the bad smell of air and rivers, urban smog and the excessive growth of algae 
have demonstrated that clean air and water must be valued. Currently these resources 
cannot be considered free for the taking (Gerstenfeld 1994).

While we tend to deal daily with solid urban waste by means of differentiated 
collection, we pay less attention to the waste produced by agro-food sector. This 
occurred because we have always thought of production processes as a linear 
sequence of actions, independent from one another, implemented to produce a com-
modity. Moreover most farms use enormous amounts of synthetic fertilizers and 
pesticides because these are viewed as far removed from our personal lives. 
Nonetheless the mass media are now focusing more on the impact and extent of this 
phenomenon, even on our daily life. This ecological assessment must be followed 
by an economic assessment: the aforementioned residues contain a significant 
amount of intrinsic properties and potentials that were not exploited but they were 
dumped or drained off into sewers and water courses. However, the resources saving, 
viable through a recovery of byproducts, leads to the enrichment and diversi-
fication of the industrial apparatus of the farming and food sector. Therefore it 
becomes urgent to devise new forms of agriculture; a new agriculture that intro-
duces sustainable methods to distribute the resources not yet annihilated by agro-
industrial methods: biodiversity, age-old skills and methods.

2  Environment: State of Art

The pressure of humans on natural resources in the last half-century has become 
more intensive and widespread than ever (Boggia and Pennacchi 2003): in the past 
50 years humans have changed ecosystems more rapidly and extensively than in 
any other comparable period of human history, mainly to meet the growing demand 
for food, water, timber, fiber and fuel. This production effort has stressed the Earth 
to such an extent that water resources are now scarce; biodiversity is diminishing 
before our eyes, especially agro-biodiversity, with a systematic reduction of animal 
breeds and plant varieties that for centuries have contributed to sustaining entire 
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areas in a Human-Nature union that was perfectly sustainable; lands have died or 
become desertified due to the excessive use of chemicals.

Today agriculture consists of the intensification of a few crops, all at the cost of 
losing that magnificent genetic diversity resulting from millennia of trial and error. 
Actual extensive monoculture (Deb 2004) eliminates both the good and bad grasses 
and, to make room for itself, it eliminates the flora and fauna belonging to the eco-
system into which the monoculture is introduced: woods, hedges, beneficial insects, 
birds, amphibians. All of these disappear to be replaced by countless hectares of 
vineyard, olive groves and corn fields (Petrini 2005). The sundry book Fatal Harvest 
(Kimbrell 2002) provides statistics on the decline of biodiversity in the United 
States: “between 1902 and 1983: 80% of tomato varieties became extinct; 93% of 
lettuce varieties, 86% of apples, 90% of corn and 96% of sweet corn. Of the more 
than 5,000 existing varieties of potatoes, only four make up the overwhelming 
majority of those cultivated for commercial purposes in the United States. Two types 
of peas occupy 96% of American crops and six types of corn, 71% of the total”.

Agriculture has a substantial impact on the environment in developing countries 
and industrialized countries alike. The major problems caused by agriculture are soil 
erosion, salinization and pollution caused by pesticides and fertilizers (Boggio et al. 
2008) which also spoil the ground water. We are talking about a sector that is a 
widespread source of pollution because it spreads pollution throughout the territory. 
In this case too, sometimes due to a lack of technical know-how, there is a tendency 
to overutilize certain products, e.g. pesticides, without taking into account the exter-
nalities that unwise use can cause (Lanza 2002).

The breakpoint has long been surpassed so it is clear that we must take a radical 
change of course and adopt a profound change in our mentality: agriculture must 
be deindustrialized and it must be our priority to restore the Earth, natural farming 
environment and biodiversity. Life on our planet is linked to biodiversity and the 
existing connections between various forms of life: our own survival depends on 
the natural abundance of biodiversity.

3  Possible Solutions

The time has come to realize that our current productive activities squander most of 
the resources they take from Nature. To give an example, when we extract cellulose 
from wood to make paper, we cut down an entire forest but use only 20–25% of the 
trees while the remaining 70–80% are discarded as waste. Palm oil makes up only 
4% of the overall biomass of the palm tree; coffee beans make up only 4% of coffee 
bushes. Breweries extract only 8% of the nutritional elements contained in barley or 
rice for fermentation (Capra 2004). It’s happening because the current setup of pro-
duction is “linear”: the process is a sequence of independent phases unconnected to 
each other and the raw materials mainly come from third countries.

The focus of production is mainly on the “product” and not on the “process”: this 
setup prevents a vision of the production process in its entirety and consequently 
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hides the possible connections there may be between the phases within a given 
process or between two different production processes. These incur a cost to the 
environment but also economic and social costs to the entire community. We have 
to consider that the waste from production processes, currently thrown away and 
not valorized, abound in precious resources for other manufacturing activities; 
hence we should not expect the Earth to produce more but we should do more with 
what the Earth produces (Pauli 1996) and we should learn from Nature (Benyus 
1997) system where there is not the concept of waste.

Underlying this attitude of respect and reverence for Nature is a philosophical ori-
entation that does not consider human beings above or beyond the natural world and 
does not attribute an exclusively instrumental or utilitarian value to Nature but considers 
the living world as interconnected and interdependent and recognizes the intrinsic 
value of all living beings. This school of thought is called “deep ecology” (Capra 
1996). Deep ecology fully expresses the meaning of Oikos, the “Earth family”, which 
is the Greek root of the word “ecology”. Humanity also belongs to Oikos along with 
plants, animals and microorganisms, and humans should therefore behave in a way 
that does not interfere with the intrinsic capacity of the global community of living 
beings to sustain life through a vast network of relations that for the last three billion 
years has evolved and diversified itself without ever going awry (Capra 2004).

This is the essential meaning of ecological sustainability: the concept of sustain-
ability was introduced at the beginning of the 1980s by Lester Brown, founder of the 
Worldwatch Institute, who defined a sustainable society as “a society that is able to 
meet its own needs without harming the opportunities of future generations” (Brown 
et al. 2001). Several years later, the Report of the World Commission on the Environ-
ment and Development (the Brundtland Report) used the same expression to illustrate 
the notion of sustainable development: “Humanity has the capacity to achieve sustain-
able development, i.e. satisfy the needs of the present without harming the opportunities 
of future generations to meet what will become their own needs”. (Capra 2004).

The key to reach an operative definition of ecological sustainability are found in 
understanding the fact that sustainability does not refer to a state of immobility but 
a dynamic process of co-evolution. The first step to take in our effort to build sus-
tainable communities must be that of becoming “ecologically literate” (Capra 
1996); in other words we must make an effort to understand the organizational 
principles common to all the living beings which ecosystems have developed for 
the purpose of sustaining the web of life and use them as guidelines in the construc-
tion of sustainable human communities and open industrial systems where the 
scraps of one process become resources for another process.

Observing Nature and imitating it means humbly recognizing our dependency 
on it and our non-priority role in the web of life in which we interact, as a specific 
individuality, with an enormous number of living systems. Humans are only one 
part of that complex fabric of interactions which is Nature, live within it and depend 
on it (Barbero and Campagnaro 2008). It is necessary to create an ecocompatible 
society based on a lifecycle of products that is consistent with the environmental 
needs and equipped with a socioeconomic apparatus capable of responding to 
human needs while consuming few resources (Lanzavecchia 2000). If we stop and 
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think that over 90% of the water used in a brewery does not end up in the bottle, 
and over 20% of the grain after threshing is buried, we can understand how dramati-
cally urgent it is to start practicing this principle (Pauli 1996).

In response to this situation today there is a new science emerging called agro-
ecology which is essentially based on the supposition that ecosystems, as they are, 
have all the internal means they need for self-regulation and automatically carrying 
out operations such as recycling nutrients or fighting against harmful insects 
and disease (Petrini 2004). A good definition of agroecology is provided by 
Miguel Altieri (Petrini 2005), Professor of Agroecology at the University of Berkeley: 
“… agroecology seeks a format of dialogue between different kingdoms, traditional 
know-how and Western science, and puts them on the same level.”

In fact cultivating crops and breeding animals requires a gentle handling of them 
and the environment and a respect for the local biodiversity, the traditional know-
how and the rhythms of Nature. Autochthonous varieties and breeds are preferable 
because their survival guarantees the biodiversity that allows the natural system to 
self-regulate in the best way possible. Safeguarding territorial biodiversity and 
developing local resources leads to the generation of a balanced social and eco-
nomic system that responds to needs for well-being of the people living in that 
setting according to the rhythms of natural cycles (Bistagnino 2008c).

4  Systemic Design to Apply to Industry the Dynamics  
and Cycles of Nature

In a world of growing complexity like the one we live in today it is becoming ever 
more obvious that the economic, environmental, technological, political and 
social problems of our times are systemic and cannot be solved within the current 
fragmented and reductionist model of our academic disciplines and our social 
institutions (Capra 2007). Therefore we must turn to Nature, the System par 
excellence, to understand the complexity of a system made up of relations 
between different beings and the continuous evolving flow of matter; moreover 
in Nature there is no such thing as waste and even surpluses are metabolized by 
the system itself.

If these conditions, which are fundamental for a living system, are adopted in 
production, they will favor the development of a zero-emissions production pre-
cisely because the waste (output) of one process is used as a resource (input) for 
another production process. This leads us to a change in perspective that goes in the 
direction of thinking by connections (Barbero and Campagnaro 2008). Therefore 
the production process will no longer be seen as a sequence of actions independent 
of each other but will be considered in its entirety.

The systemic concept is based on a model that recognizes a reality made up of 
qualities that are often not quantifiable, connections that are apparently invisible but 
indispensable for life, not “things” but systems of relations that give concreteness 
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to that which we observe, from the infinitely small to the infinitely large: electrons, 
atoms, cells, tissues, organs, living species, social communities, ecosystems. 
Each of these is a complex system that exists by virtue of the relations among its 
components that live on the basis of connections with other equal systems and the 
reciprocity that joins them to a specific context. Relations between the whole and 
its parts, between the whole and that which “contains” the whole, subjected to 
constant redefinition according to nonlinear dynamics. However we must avoid 
thinking that the systemic philosophy is unripe and immature. Its origins involved 
the likes of Leonardo da Vinci whose studies were based on the systematic observa-
tion of Nature, the importance of relationships and the description of phenomena. 
And this was at least 100 years before the mathematics and mechanistic concepts 
of Descartes and Galileo. In The Science of Leonardo Fritjof Capra, defines this 
great man as the “ante litteram systemic thinker” who observed everything, from 
the gears of machinery to the muscles of the human body, from the dynamics of 
water in motion to the study of air flows, including sound in relation to the shape 
of musical instruments. His way of intellectually knowing phenomena was to ana-
lyze the context and ascertain the possible cause-effect relationships between the 
natural forms and anatomic structures of animals. Four hundred years later 
Einstein’s theories of the quantum and relativity restored a meaning to Leonardo’s 
intuitions with the necessary “corrections”, and made a tremendous contribution to 
going beyond mechanistic thought in favor of an ecological paradigm. From that 
moment on – and we are talking about the beginning of the twentieth century – 
systemic thought occurred and developed almost simultaneously in many different 
disciplines, from “shape” psychology to biology up to and even after after World 
War II in the theory of Cybernetics (Barbero and Campagnaro 2008).

For Leonardo da Vinci understanding a phenomenon meant putting it in relation 
to another phenomenon through an infinity of patterns and observations. Many of 
these were taken from Nature, whose exceptional genius and creativity he admired 
to the point of stating that “in its inventions nothing is lacking and nothing is super-
fluous” (Capra 2007). This attitude of seeing Nature as a model and a guide has 
been adopted today by systemic designers who study patterns and flows in the natural 
world and attempt to incorporate those principles to design and production 
methodologies (Capra 2004). Therefore we retrieve the cultural and practical capa-
bility to delineate and program the flow of material from one system to another in 
a continuous metabolization that reduces ecological impact and generates a notable 
economic flow (Bistagnino 2008b).

Even in the science disciplines of the past 25 years there has been a new sys-
temic understanding of life according to its organizational models and basic pro-
cesses. It is the constant flow of energy and matter through a web of chemical 
reactions that allow a living organism to generate, repair itself and endure (Greco 
and Scaffidi 2007).

Until today people always thought of the production process as a sequence of 
actions independent of each other for the purpose of producing goods; however, 
unfortunately, this model creates a substantial amount of waste (Ceppa 2008c). 
Currently the focus of project is on the product and on the quantity produced, but 
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often this is to the detriment of quality: in a little more than one century, along with 
the industrialization process, a sort of technocratic dictatorship has been established 
in which economy prevails over culture, profit prevails over politics and quantity is 
the major, if not the only, yardstick for human activities (Petrini 2005). It becomes 
necessary to give up the exclusive focus on the product and the product lifecycle 
and extend our gaze, and therefore our competence, to the entirety of relationships 
generated by the production process (Bistagnino 2008b).

The vision of systemic design challenges current industrial organization and 
frees itself of a consumerist approach that focuses exclusively on the product. 
Systemic design proposes a new paradigm that considers humans the center of an 
“ecological context” and recognizes the interdependence between social and natu-
ral structures: a scenario in which the role of life becomes essential once again, in 
biological and cultural terms alike (Bistagnino 2008a).

This new paradigm rejects the dominant anthropocentrism of Western culture 
and seeks the foundations for a renewed and more balanced relationship with 
Nature (Bartolommei 1995). The approach of systemic design can activate a new 
economic model based on the planning of open production cycles; it is a methodol-
ogy applies to industry the dynamics and cycles of Nature. Productive activities can 
reflect the way Nature functions. In Nature has no waste and its surpluses are 
metabolized by the system (Bistagnino 2008b).

Today it is precisely environmental degradation, the lack of resources and the 
myth of unlimited development that have forced us to think about and reconsider 
the role of humans in society. We do not play the role of director but rather we are 
part of an interconnected and interdependent system. Being aware of this means 
thinking and acting to create a sustainable future in which we can meet the needs 
of everyone without jeopardizing the needs of generations to come (Pellizzoni 
2001), not only in terms of material resources but also in terms of cultural diversity 
and growth. This requires a radical change in our perception of reality, starting with 
a redefinition of the basic values shared by society (Balbo and Signori 2008).

5  Case Study

5.1  Fruit Growing: Current Situation

The systemic approach, or Systemic Design, is extensive and can be applied to various 
production sectors.

In specific terms I would like to mention the case study on fruit growing in 
Piedmont (Italy) in the district of Cuneo. It is characterized by the monoculture of 
peaches occupying 4,716 hectares of land, apples occupying 3,297 hectare and 
pears occupying 740 hectares. Each apple tree produces approximately 32 kg of 
apples, each peach tree 22 kg of peaches and each pear tree 30 kg of pears.

These three production lines (Fig. 1) are comparable to each other and therefore 
can be analyzed together. The productive systems are then observed on the basis of 
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their induced internal and external relations: procurement and conversion of the 
material, management of the output on a territorial level, the use of energy, control 
of emissions. The system is then redesigned to make them ramified, complex, mul-
tipolar and strongly related to the territory. This approach affords a view with 
renewed and extremely important theme-related perspectives such as access to raw 
materials (Barbero and Campagnaro 2008).

Analysis of the first phase of the production chain, cultivation, clearly shows a 
notable use of chemical pesticides, weed killers and insecticides to protect the trees 
from potential disease and external enemies. However, these substances also lower 
the quality of the product. Traces of synthetic substances remain on the fruit and 
weaken the health of the humans who consume it (Ceppa 2008b). Subsequently the 

Fig. 1 Scheme of the current linear productive process; every productive phase needs resources 
and produces wastes. Moreover the problems are pointed out
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pruning scraps are chopped up and scattered on the land to fertilize it but, since they 
are contaminated by these residues of synthetic substances previously used on the 
trees, they significantly contaminate the soil.

It is important to note that the current production sequence produces scraps that 
are considered ‘special’ by Legislative Decree No. 152 2006 now integrated by 
Legislative Decree No. 16/01/08 no. 4, Italy. Special waste must be eliminated 
according to particular regulations with extremely high costs. If they are brought to 
the landfill they would increase the amount of leachate into the land. This waste 
consists of all the fruit discarded during the selection phase because it does not 
fulfill the assessment criteria, in addition to the peels, seeds and pulp residues deriving 
from various processes for producing nectars, juices and purees. Throwing away 
this waste also means not using intrinsic active ingredients that are rich with potential 
benefits. What is absurd and contradictory is that these active ingredients are 
created synthetically in the cosmetics and pharmaceuticals industry.

It is therefore clear that now significant amounts of usable material is stocked at 
the dumps or eliminated in a way that causes a negative impact on the environment 
and high overheads. It is equally undeniable that even in this productive sequence 
the focus of the production is on the product, or rather on the quantity of the product 
and not on its quality. We have to change this view and put humans at the center of 
the entire question. In this way we would offer quality products that are enriched 
with ethical and social values (Ceppa 2008a).

5.2  Fruit Growing: Systemic Approach Application

We must start with the realization that organic waste thrown away and not valued 
contains large quantities of precious resources for other manufacturing processes. 
The Systemic Design leads industries to organize themselves into local sustainable 
groups in such a way that the waste products of one can be sold as a resource to 
another and benefit both of them (Pauli 2000). Ecodesigner Michael Braungart 
(Germany) and William Mc Donough (USA) (1998) state that in order to build 
sustainable industrial societies, the principle of ecodesign and the cycle of material 
resulting from it must be extended beyond the simple sphere of organic waste. 
Waste enriched with new values becomes a resource and made available for producing 
new products strictly connected to the local know-how (Barbero et al. 2008).

The availability of new resources drives research to find new fields of applica-
tion suitable to the territory being analyzed; in fact, by applying the systemic 
approach we can see how the cultural identity of the territory where the crops are 
grown is reinforced, the biodiversity is conserved and the quality of the products 
generated is improved (Bistagnino 2008a). This creates positive effects on the 
 territory in both environmental and economic terms. Seeing the entire production 
chain from the systemic perspective allows us to completely reutilize the output. So 
the pruning scraps are completely reutilized after being chopped: one part is used 
to create the substrate for growing autochthonous varieties of mushrooms, for 
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human consumption and animal feed (e.g. cattle, pigs) in a rediscovery and 
 reinforcement of local traditions (Fig. 2). Another portion becomes sawdust and the 
remaining portion is put into a biodigestor to produce biogas.

An interesting proposal is systemic cultivation that does not use any synthetic 
pesticides but natural methods that are equally effective. These methods exploit the 
beneficial behavior of insects, birds, herbs, fungi and bacteria to keep disease away 
from the plants being cultivated. These can prevent disease of fruit trees. According 
to this method the fruit trees are planted next to host trees and flowers that attract 
insects which are harmful to fruit. This method produces high quality products that 
are completely natural with no traces of chemical substances harmful to humans.

The fruit that falls from the trees, which today is not picked up but left to rot on 
the ground, is used to feed livestock. Moreover the output deriving from the food 
processing industry is totally reused in other processes. The discarded fruits are put 
into a biodigestor, the pulp residues along with the peelings and seeds are used to 
produce energy bars and supplements for human consumption and food for feeding 
pigs and cattle (Ceppa 2008c). The peels and seeds from the cleaning of the fruit 
can be used to extract a percentage of pectin, a valuable organic compound used in 
the food, pharmaceutical and cosmetics industries.

Interesting fields of application for these new materials, available but previously 
considered waste, give them value and make it possible to obtain more products from 
any given field with the same amount of land area and number of trees than the current 
linear system does. All of this was possible because the outputs were considered raw 
materials filled with potential: this allows the so-called scraps to become materials 
worthy of proper, rational and targeted management for being reused as raw materials for 

Fig. 2 Scheme of the new system proposed: flows of material and new products are put in evidence
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other production processes. All of this was made possible thanks to a change in 
perspective for viewing the problem. The systemic approach produced higher economic 
profits and better quality products abounding in vital social and ethical values because 
attentive to human and animal health as well as respect for the environment. We can see 
its benefits to the environment and the economy, benefits generated by a possible transi-
tion towards a systemic nonlinear type of productive and territorial culture.

6  Conclusion

The perspective of systemic design requires take a closer look at our current industrial 
model and remove it from a consumerist vision that exclusively sees the product. 
Then we can propose a new paradigm that considers humans the center in an “eco-
logical context” which recognizes the interdependence between social and natural 
structures. The presented project concretely integrate production culture and design 
research in order to reveal the connections and congruencies, today still hidden, 
between artificial production and Nature; the application of the systemic approach in 
these areas enables us to reconsider the current industrial setup and distance ourselves 
from the consumerist vision, associated exclusively with the figure of “the product.” 
The sustainability “indicators” in a sustainable production system are not economic 
growth, development or competitive advantage but the entire lifecycle of the product 
and the way it relates within the context in which it is located. The aspirations of our 
generation and the opportunities/possibilities for future generations depend on these 
sustainability factors. Sustainable production must correspond to sustainable con-
sumption: the task of design is to realize and verify this correspondence and pursue 
it when developing products and services. Systemic Design methodology can help us 
to reduce the pressure of human activity on the environment: in fact, it can transform 
a cost into a benefit, a waste product into a resource. In this way it becomes possible 
to create a network, i.e. a system that can feed and support itself, of companies (and 
producers) that can exchange resources and competencies with consequent gain for 
all the operators involved in the network of relationships (Fig. 3).

Determining new uses for the outputs that still exist locally reinforces the link 
between the local companies, increases their earnings, and results in a new and 
significant impact on the local community. The contribution of systemic design to 
the valorization and protection of the territory is therefore vital. By using the 
 territory and resources we advance a kind of development that gives priority to the 
local community and allows the creation of ecological productive networks.

The induced links between companies minimize the use of external resources, 
allow more clarity on the traceability of the industries involved and help determine 
strategies for potential additional tools for local development. The network offers 
concrete possibilities to transform waste into materials worthy of appropriate, 
rational and targeted management, and more importantly, profitable reuse: this 
reinforces the concept according to which an efficacious protection of the environ-
ment is not in conflict with the economic growth of businesses. The greatest inno-
vation offered by this methodology consists of raising the awareness of producers 
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that the problem of waste can be solved by activating complex relations in which 
the outputs of one productive process connect the nodes, which are local compa-
nies, of a network in which know-how, well-being, material and energy transit.

It creates the context for a set of links between energies and materials, produc-
tive systems that are self-sufficient in terms of energy, production and procurement. 
The safeguard of territorial biodiversity and the development of local resources, 
favored by a systemic approach lead to the generation of a balanced social and 
economic system that relates to people’s needs for well-being according to the 
rhythms of natural cycles.
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Abstract Corn, Zea mays L., grown in many areas of the United States suffers 
from a variety of insect species that attack virtually all parts of the growing plant. 
Many conventional pest management programs have been developed to combat 
these insects with varying degrees of success. In the mid-1990s, the commercial 
introduction and subsequent widespread adoption of Bt transgenic hybrids has all 
but transformed conventional corn pest management programs. The initial target of 
Bt corn, which contains insecticidal protein encoding genes from Bacillus thuringi-
ensis (Bt), were stalk boring insects, such as the European and southwestern corn 
borers. Within a few years of the introduction of Bt hybrids for stalk boring insects, 
Bt hybrids targeting western and northern corn rootworms were introduced. Since 
their introduction, however, Bt corn hybrids have come under considerable scrutiny. 
They have been reported to produce higher yields as well as lower pesticide expo-
sure to humans, non-target organisms, and the environment. Questions, however, 
have been raised on such issues as contamination of the food chain, resistance 
development, the overall sustainability of the technology, and more recently, the 
high costs of Bt hybrids relative to non-Bt hybrids. The present chapter delves into 
some of the issues and challenges surrounding the continued use of Bt corn hybrids 
and the strategies employed to address such issues.
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1  Introduction

Corn, Zea mays L., is one of the world’s most important crops, with the total 
production of more than 791 million metric tons in 2007–2008 (USDA 2009a). The 
United States (U.S.) ranks first among corn growing nations, with a production of 
over 331 million metric tons in 2007–2008, which is about 42% to the total corn 
production in the world (USDA 2009).

Considering the economic importance of this crop throughout the world and the 
U.S., insect pests associated with this crop have received a considerable amount of 
attention among researchers, growers, policy makers and industry. In North 
America, about 90 insect pests are found to be associated with this crop (Steffey 
et al. 1999); however, only a few are considered economically important. 
Economically important pests of corn can be broadly divided into two groups on 
the basis of their feeding patterns and plant parts where damage occurs: stalk-
tunneling and root-feeding. Among the stalk-tunneling insects, European corn borer, 
Ostrinia nubilalis (Hübner), (Lepidoptera: Crambidae), and southwestern corn 
borer, Diatraea grandiosella Dyar, (Lepidoptera: Crambidae) (Metcalf and Metcalf 
1993; Mason et al. 1996; Calvin and Van Duyn 1999; Knutson and Davis 1999; 
Tiwari et al. 2005a, b) are the most important.

The major root-feeding insects on corn are the northern corn rootworm, 
Diabrotica barberi Smith and Lawrence, western corn rootworm, D. virgifera 
virgifera LeConte, and Mexican corn rootworm, D. virgifera zeae Krysan and 
Smith (Coleoptera: Chrysomelidae) (Branson et al. 1982; Levine and Oloumi-
Sadeghi 1991). In addition, there are secondary soil insects, which include several 
species of wireworms (Coleoptera: Elateridae), seedcorn maggot (Diptera: 
Anthomyiidae), annual white grubs (Coleoptera: Scarabaeidae), and true white 
grubs (Coleoptera: Scarabaeidae). Depending on the particular species, they can be 
found feeding on the roots or other belowground parts of the plant (Hunt and Baker 
1982; Youngman et al. 1993; Keaster and Riley 1999; Eckenrode and Webb 1999; 
McLeod et al. 1999; Tiwari et al. 2005a, b).

Historically, management of insect pests in corn has focused on cultural and 
conventional chemical control programs (Hyde et al. 2000). However, over the past 
decade, pest management programs for economically important insects have 
changed dramatically with the commercial availability of Bacillus thuringiensis 
transgenic corn hybrids (Bt hybrids). Under some conditions, pest management 
programs targeting economically important insects have been reduced to simply 
planting Bt hybrids. However, some growers choose not to plant Bt hybrids in areas 
where historically low pest pressures occur. Instead, growers rely on such practices 
as crop rotation, application of conventional insecticides, and asynchrony between 
crop susceptibility and pest infestation.

In 2004, adoption of Bt hybrids led to a 10.57 million kilogram reduction in the 
use of pesticides (Drury et al. 2008), thereby reducing the environmental impact 
associated with pesticide use and greenhouse gas emissions (Brookes and Barfoot 
2008). In addition, Bt hybrids have played a role in increasing net economic benefits 
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at the farm level (Brookes and Barfoot 2008). Other advantages of planting Bt 
hybrids include: less need for scouting (Obrycki et al. 2001; Crowder et al. 2006), 
protection against lepidopteran pests extending to storage (Giles et al. 2000), and 
lower levels of fungal pathogens and mycotoxins in the absence of stalk borer 
damage (Munkvold et al. 1999). However, planting Bt hybrids has raised concerns, such 
as increased cost input (Hyde et al. 1999), resistance development (Obrycki et al. 
2001) and effects of Bt toxins on non-target organisms (Hilbeck et al. 1998; Höss 
et al. 2008; Prihoda and Coats 2008). Efforts have been made to address the afore-
mentioned concerns using scientific research and regulatory approaches. Studies 
have reported that planting Bt hybrids result in higher returns than non-Bt hybrids 
under the following conditions: high pest pressure and late plantings (Hyde et al. 
1999; Pilcher and Rice 2003; Wolf and Vogeli 2009).

The issue of insect resistance development to Bt toxins has been addressed by the 
United States Environmental Protection Agency’s (USEPA) mandated Insect 
Resistance Management (IRM) plan. An IRM plan for Bt transgenic corn requires that 
a specified percentage of acreage be planted with a regular, non-transgenic corn 
hybrid. If above threshold levels of target pests are found in the non-Bt hybrid refuge, 
they can be managed with conventional management programs. Studies on the non-target 
effects of Bt toxins have yielded inconsistent results among the different taxonomic 
classes of non-target organisms (Hansen and Obrycki 2000; Höss et al. 2008).

2  Insect Pests of Corn

For the purpose of this chapter, we will focus our discussion on insect pests that are 
directly or indirectly impacted by currently available Bt hybrids.

2.1  Stalk Tunneling and Leaf/Ear Feeding Insects

Among stalk tunneling insects, European corn borer, Ostrinia nubilalis (Hübner), 
(Lepidoptera: Crambidae) (Mason et al. 1996; Calvin and Van Duyn 1999), and 
southwestern corn borer, Diatraea grandiosella Dyar, (Lepidoptera: Crambidae) 
(Metcalf and Metcalf 1993; Knutson and Davis 1999) are among the most impor-
tant pests that occur throughout most of the corn growing areas of the U.S. Crop 
losses and management costs for European corn borer are reported to exceed $1 
billion annually in the U.S. (Mason et al. 1996). Annual losses from southwestern 
corn borer are estimated at several million dollars (Morrison et al. 1977). In some 
corn growing areas, common stalk borer, Papaipema nebris Guenée, (Lepidoptera: 
Noctuidae) is also considered as an occasional pest (Solomon 1988) (Figs. 1 and 2).

The first and second instars of European corn borer feed on leaves in whorl-stage 
corn causing a shothole-like appearance. The late third instar starts tunneling into the 
stalks, ears, or ear shanks, with the majority of larvae having bored into the stalks by 
the fourth instar (Fig. 3). The southwestern corn borer causes injury similar to 
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Fig. 1 Mature larva of the common stalk borer, Papaipema nebris, boring into a corn plant early 
in the growing season. Feeding within the stalk causes deformed or stunted plants that often lead 
to the death of the plant

Fig. 2 Damage by common stalk borer larvae resulting in the stunted and abnormal growth of 
corn plants. Severe damage to the central part of the plant results in the death of central whorl. 
This condition has been referred as ‘dead heart’
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European corn borer, except for one major difference. The mature larva girdles the 
stalk at the base just above the soil surface late in the season. This late season girdling 
often results in severe stalk lodging during harvest or from high winds (Knutson and 
Davis 1999). The southwestern corn borer larva overwinters in a cell, it has made at 
the base of stalk just below the soil surface (Knutson and Davis 1999).

Other insect pests that feed on corn leaves or the ear include fall armyworm, 
Spodoptera frugiperda (J. E. Smith) and corn earworm, Helicoverpa zea (Boddie). 
Of these, fall armyworm is of greater economic importance (Buntin et al. 2001). 
Both pests are found during the whorl stage; however, injury also continues to later 
stages (Buntin et al. 2001). Unlike the corn earworm, which restricts feeding to the 
ear tips, the fall armyworm is capable of causing severe leaf and kernel damage late 
in the season (Archer and Bynum 1998).

2.2  Seed and Root Feeding Insects

As mentioned previously, the major root-feeding insects on corn are the northern corn 
rootworm, western corn rootworm, and Mexican corn rootworm. Crop losses and 
management costs attributed to corn rootworms have been estimated to cost U.S. growers 
over $1 billion annually (Rice 2004). This estimate is now considered to be an under-
estimate since a soybean variant of the western cornworm has evolved resistance to 
crop rotation in the central U.S. corn belt (Gray et al. 2009).

Feeding injury on corn roots begins with the first instar. Early instars feed on root 
hairs and outer root tissue, while older instars burrow and feed in the inner root core. 

Fig. 3 Stalk tunneling by late third and later instars of European corn borer, Ostrinia nubilalis, 
in field corn. Similar tunneling can also be seen in ears or ear shanks
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Heavy infestation by corn rootworms can seriously weaken the root system, impeding 
the transport of water and nutrients from the roots to aboveground plant parts, as 
well as lead to stalk lodging (Chiang 1973; Levine and Oloumi-Sadeghi 1991; 
Tollefson and Levine 1999; Sutter 1999). After feeding for several weeks, the third 
instar pupates in a small earthen cell. Adults are active from mid- to late-summer, 
during which time they mate, feed on corn silk, pollen, and kernels of exposed ear 
tips (Youngman and Tiwari 2004).

In addition, numerous species of secondary soil insects are considered sporadic 
pests of germinating corn seeds or early stage corn (Hunt and Baker 1982; 
Youngman et al. 1993; Keaster and Riley 1999; Eckenrode and Webb 1999; 
McLeod et al. 1999; Tiwari et al. 2005a, b). Important secondary soil insects include 
several species of ‘annual’ and ‘true’ white grubs (Fig. 4) (Coleoptera: Scarabaeidae), 
wireworms (Coleoptera: Elateridae), and seedcorn maggot (Diptera: Anthomyiidae). 
Damage caused from wireworms, annual white grubs, and seedcorn maggot is 
primarily due to feeding on the germinating corn seed and emerging roots 
(Youngman et al. 1993). Damage caused by true white grubs is primarily restricted 
to the developing corn roots (Hunt and Baker 1982; McLeod et al. 1999).

3  Bacillus Thuringiensis (Bt)

Bacillus thuringiensis is a rod-shaped, gram positive, spore forming bacterium that 
is isolated from various habitats worldwide (Schnepf et al. 1998). B. thuringiensis 
produces a proteinaceous parasporal crystalline inclusion body formed within the 
bacteria during sporulation (Gill et al. 1992). The crystalline inclusion body con-
tains from one to several d-endotoxins that are responsible for causing death in 
certain species of insects, yet are harmless to humans and most non-target insects.

Current classification of Bt toxins is based on the nomenclature system devel-
oped by Crickmore et al. (1998). This nomenclature assigns a name to each holo-
type sequence based on the degree of evolutionary divergence as estimated by 
phylogenetic tree algorithms. Currently 204 holotype sequences for insecticidal 
proteins have been identified in various strains of B. thuringiensis, of which 195 are 
Cry and nine are Cyt d-endotoxins (Crickmore et al. 2010). Based on holotype 
sequences, Cry endotoxins are currently divided into 60 families (from Cry1 to 
Cry60) and Cyt endotoxins are divided into two families (from Cyt1 to Cyt2) 
(Crickmore et al. 2010).

3.1  Mode of Action of B. Thuringiensis

The insecticidal activity of B. thuringiensis occurs after a susceptible insect ingests 
the crystalline inclusion body. After reaching the midgut, the ingested crystalline 
inclusion body is solubilized by the alkaline environment and enzymatic proteases, 
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resulting in the release of one or more d-endotoxins (Lambert and Peferoen 1992; 
Gill et al. 1992; Schnepf et al. 1998; Moellenbeck et al. 2001; Ferré and Van Rie 
2002; Whalon and Wingerd 2003). Trypsin-like or chymotrypsin-like proteases in 
the insect gut start acting on the released endotoxins and continue to act until a 
trypsin resistant core protein is reached (55–75 kDa) (Schnepf et al. 1998; 
Moellenbeck et al. 2001; Ferré et al. 2008). This is followed by the protease-
resistant core protein passing through the peritrophic membrane and binding to 
specific receptor (membrane protein complex) on the apical brush border of midgut 
columnar cells. This binding results in pore formation, cell swelling, cell lysis and 
ultimately insect death. Binding between the protease-resistant core protein and 
receptors on midgut columnar cells is highly species specific, so insects lacking the 
specific receptors are not harmed (Dorsch et al. 2002). Failure or reduction of the 
protease-resistant core protein to bind with a specific receptor on the apical brush 
border of the midgut columnar cells is one of the mechanisms of resistance devel-
opment (Ferré and van Rie 2002).

3.2  Bt Hybrids

The first transgenic corn hybrid containing a modified short sequence of genes from 
B. thuringiensis against an insect pest was registered by the USEPA in 1995 
(Shelton et al. 2002) under the names of “KnockOut®” (Syngenta Seeds [formerly 
Novartis Seeds]) and “NatureGard®” (Mycogen Seeds). Both hybrids contain event 
176, Cry1Ab endotoxin, for European corn borer and other Lepidoptera pests. 
However, Bt hybrids with event 176 are no longer registered (Glaser and Matten 
2003). In 1996, Bt hybrids containing event Bt11 under the name of “AgrisureTM CB” 
by Northrup King, and event Mon810 under the name of “YieldGard®” by 
Monsanto were commercially released; both events encoded the Cry1Ab endo-
toxin. In the years following, the USEPA registered two more Bt events for use in 
corn (Youngman and Tiwari 2004): event TC 1507 in 2001 developed jointly by 
Pioneer/Dupont and Dow AgroSciences under the name “Herculex™ I Insect 
Protection” and event Mon863 in 2003 developed by Monsanto under the name 
“YieldGard® Rootworm”. Event TC 1507, Cry1F endotoxin, targeted black 
cutworm, fall armyworm, and European corn borer, and event Mon863, Cry3Bb, 
targeted corn rootworms.

The USEPA has since registered stacked Bt hybrids designed to control two 
different types of insects, such as “YieldGard® Plus” (Monsanto) in October 2003, 
and “Herculex® XTRA Insect Protection” (Dow AgroSciences and Pioneer 
Hi-Bred International) in October 2005. YieldGard® Plus contain events Mon 
810 and Mon 863, encoding for Cry1Ab1 and Cry3Bb1 endotoxins, respec-
tively (USEPA 2005a). Herculex™ XTRA Insect Protection contains event DAS-
59122-7 encoding for Cry34Ab1 and Cry35Ab1 endotoxins, and event TC1507 
encoding for Cry1F endotoxin (USEPA 2005b). Cry34Ab1 (14 kDa) and 
Cry35Ab1 (44 kDa) endotoxins are a relatively new class of insecticidal 
proteins identified from a B. thuringiensis strain PS149B1 that acts against corn 



23Transgenic Bt Corn Hybrids and Pest Management in the USA

rootworms (Herman et al. 2002; Gao et al. 2004). In October 2006, the USEPA 
registered Agrisure™ RW Rootworm-Protected Corn (Syngenta Seeds). Agrisure™ 
RW Rootworm-Protected Corn contains event MIR604, which produces a modified 
Cry3A (mCry3A) endotoxin (USEPA 2006). The modified Cry3A gene, recreated 
from B. thuringiensis subsp. tenebrionis, with its optimized expression in corn 
claims to have enhanced activity against larvae of the western corn rootworm and 
northern corn rootworm (USEPA 2006). In 2007, the USEPA registered Agrisure™ 
CB/RW (Syngenta Seeds) as another stacked hybrid conatining events Bt11 and 
MIR604 expressing Cry1Ab and mCry3A endotoxins, respectively (USEPA 2008). 
The most recent addition to the list is SmartStax™ (Monsanto and Dow 
AgroSciences) as another stacked hybrid containing events MON 89034, TC1507, 
MON 88017 and DAS-59122-7 expressing Cry1A.105 and Cry2Ab2; Cry1F; 
Cry3Bb1; and Cry34Ab1 and Cry35Ab1 endotoxins, respectively (USEPA 2009). 
According to Ostlie et al. (1997), Bt hybrids exhibit different levels of protection, 
depending on the type of genetic event and promoter used in developing a hybrid. 
The genetic event, in addition to a promoter, affects the amount, type, and location 
of the production of the endotoxin in the plant. For example, Bt hybrids with events 
Bt11 and Mon810 provide protection against first and second generation European 
corn borer larvae. Bt hybrids containing event 176 provide less acceptable protec-
tion against second generation larvae. As Ostlie et al. (1997) pointed out; events 
Mon810 and Bt11 express the Cry1Ab endotoxin in all plant tissues with the excep-
tion of root tissues, whereas event 176 expresses endotoxin only in green tissue and 
pollen. In addition, Ostlie et al. (1997) noted that Bt hybrids with events Bt11 and 
Mon810 provided 93% control of southwestern corn borer, whereas Bt hybrids with 
event 176 provided only 19% control of this pest.

Bt hybrids containing event Mon863 continue to produce endotoxins throughout 
the plant (Vaughn et al. 2005). In a laboratory study conducted by Vaughn et al. 
(2005), Bt hybrids containing event Mon863 (encoding for Cry3Bb1 endotoxin) 
exhibited a declining trend in root expression of Cry3Bb1 endotoxin from the 
V4 to V9 growth stage; however, this declining trend had no negative effect on corn 
roots despite rootworm pressure. In a study cited by Rice (2004), YieldGard® 
Rootworm (event Mon863) and YieldGard® Plus (stacked hybrid) (events Mon 810 
and Mon 863) were tested against the soil insecticide terbufos (Counter 20CR) and 
several non-Bt hybrids in protecting corn roots from damage caused by corn root-
worms. The study showed that the Bt hybrids were 100% consistent in protecting 
corn roots from economic damage, whereas Counter 20CR was only 63% consis-
tent. Moreover, little or no protection from corn rootworm feeding was detected in 
the non-Bt hybrids.

4  Insect Resistance Management

Adoption of Bt corn hybrids worldwide has increased tremendously since the first 
commercial release in 1995. In 2009, 85% of the corn acreage in the U.S. was under 
Bt hybrids; this includes all the available transgenic Bt hybrids (USDA 2009b) 
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(Fig. 5). The increased acreage under Bt hybrids has benefited growers in several 
ways, such as fewer applications of insecticides, higher yields and less exposure to 
humans and environment from insecticides. However, it has presented some new 
challenges. One of the most important challenges presented by the increasing acre-
age under Bt hybrids is the risk of developing resistance to Bt expression in the 
target insects (Gould 1998; Zhao et al. 2003). Scientists, pest management practi-
tioners, and environmental regulators have responded to this challenge by developing 
insect resistance management strategies (IRM) for the purpose of delaying 
development of resistance to Bt events in the target pests (Hyde et al. 2000; Glaser 
and Matten 2003; Zhao et al. 2003; Bates et al. 2005; Bourguet et al. 2005). 
Considering the importance of this issue, the USEPA mandated that all companies 
registering Bt hybrids develop and deploy IRM strategies to delay the development 
of resistance in target pests.

During the early stages of developing IRM strategies, several tactics were 
designed and developed (Roush 1997). One strategy is the planting of Bt hybrids, 
which express moderate levels of toxin to delay the development of resistance in 
the target pest (Bates et al. 2005). The idea behind using a moderate level of toxin 
was to maintain survival of a susceptible proportion of the population. Another 
tactic to mitigate resistance development is planting Bt hybrids expressing a high 
level of toxin (high-dose strategy) (Zhao et al. 2003). The idea being that the 
expression of endotoxin is high enough to kill any heterozygous resistant larvae, 
which would otherwise survive and reproduce. Planting Bt hybrids expressing a 
high level of toxin in addition to planting a non-Bt refuge has become the primary 
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Fig. 5 Increase in the acreage under Bt corn hybrids from 2000 to 2009 in the United States. The 
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element of IRM strategies (Dalecky et al. 2006; Tabashnik 2008; USEPA 2005a, b). 
A Scientific Advisory Panel Subpanel to FIFRA defined high dose as “25 times the 
toxin concentration needed to kill susceptible larvae” (USEPA 1998). The Subpanel 
also defined structured refuges to “include all suitable non-Bt host plants for a 
targeted insect that are planted and managed by people”. However, Bt hybrids 
containing the event Mon863, which produces Cry3Bb endotoxin that targets corn 
rootworms, as well as other Bt hybrids targeting corn rootworms are reported to 
express low-moderate levels of toxin (Siegfried et al. 2005; Vaughn et al. 2005; 
Meihls et al. 2008).

4.1  High-Dose Toxin and Refuge Strategy for Single Event 
Bt Hybrids against Corn Borers

This strategy involves two components: planting Bt corn hybrids, which express a 
high dose of toxin; and refuge planting of non-Bt corn hybrids. This strategy has 
shown to be an effective way of delaying the development of resistance to Bt toxins 
(Alstad and Andow 1995; Gould 1998; Zhao et al. 2003; Bates et al. 2005; Dalecky 
et al. 2006; Eizaguirre et al. 2006). Under this strategy, the Cry1Ab toxin produced 
by Bt hybrids is high enough to kill all susceptible homozygous, and most of 
the resistant heterozygous target pests. The few resistant heterozygous individuals 
remaining will most likely breed with susceptible homozygous individuals from 
refuge areas. The effect of which being a greatly diminished production of resistant 
heterozygous individuals in subsequent populations (Gould 1998; Vacher et al. 
2003; Bourguet et al. 2005). Another advantage of the high-dose toxin approach is 
maintaining host plant damage below the economic threshold (Bates et al. 2005). 
The USEPA has mandated various plans on the size and layout of refuge planting 
based on agronomic conditions and the target pest (USEPA 2001; USEPA 2005a, b) 
(Fig. 6).

According to the USEPA requirements, refuge area requirements for Bt hybrids 
targeting European corn borer, southwestern corn borer, and other lepidopteran 
pests has been divided into two categories: non-cotton growing areas and cotton 
growing areas (Youngman and Tiwari 2004). The USEPA requirements state that 
growers in non-cotton growing areas may plant up to 80% of their corn hectares 
using a Bt hybrid, with the remaining 20% serving as the refuge (USEPA 2000). 
In cotton growing areas, growers may plant up to 50% of their corn hectares using a 
Bt hybrid, with the remaining 50% serving as the refuge (USEPA 2000). The large 
percentage of refuge in cotton areas was recommended to prevent resistance devel-
opment in corn earworm populations (Gould et al. 2002) given that corn is a major 
host source for corn earworm development in the mid-Atlantic.

A refuge may be located within, adjacent, or up to 0.8 km (0.5 mile) from the Bt 
hybrid field. Distance of refuge from the Bt hybrid field is based on information on 
insect flight and oviposition behavior (Glaser and Matten 2003). The purpose of 
which is to promote random mating between susceptible moths from refuge areas 
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with resistant survivors from Bt hybrid fields. A refuge up to 0.8 km (0.5 mile) 
away from the Bt hybrid field must not be treated with any insecticides for corn 
borers. If the refuge is to be treated for corn borers, it must be within 0.4 km (0.25 
mile) of the Bt hybrid field. Also, sprayable formulations of Bt insecticides cannot 
be applied to the refuge. A refuge can be planted as strips (i.e., strips that are at least 
6 and preferably 12 adjacent rows wide) within the Bt hybrid field, or as blocks 
within, adjacent, or away from the Bt hybrid field. A minimum of six rows was 
based on a simulation modeling of insect movement and mating (Onstad and Guse 
1999). In addition, a refuge can be planted as a field perimeter or as end rows 
(Fig. 4). Mixing seeds of Bt hybrids and non-Bt hybrids is not recommended for 
managing corn borers (Youngman and Tiwari 2004).

4.2  Moderate-Dose Toxin and Refuge Strategy for Single Event 
Bt Hybrids against Corn Rootworms

The IRM strategy for Bt hybrids targeting corn rootworms is similar to the IRM 
strategy for Bt hybrids targeting European corn borer and other lepidopterans 
(Youngman and Tiwari 2004). According to Gray (2001), an IRM strategy involving 
numerous within-field refuge strips would be more effective than separate block 
refuges in the case of Bt hybrids targeting corn rootworms. Gray (2001) noted that 
pre-mating dispersal of adult corn rootworms away from their field of emergence 

Within field blocksAdjacent fields

Field perimeterWithin field strips

Bt hybrid Non-hybrid 

Fig. 6 Different layouts of non-Bt refuge and Bt corn hybrid plantings for insect resistance man-
agement. The United States Environmental Protection Agency has mandated various plans on the 
size and layout of refuge planting by non-Bt corn hybrids to delay the development of resistance 
against Bt toxins
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is very limited compared with European corn borer where mating occurs in tall 
grass outside of cornfields, with subsequent egg laying occurring randomly across 
the landscape.

In certain areas of the Midwest Corn Belt, where crop rotation as a cultural 
control option is no longer effective against larvae of western and northern corn 
rootworms, it has been recommended to use a refuge for first-year corn if a Bt corn 
rootworm hybrid targeting corn rootworms is planted. Western corn rootworm has 
adapted to crop rotation by switching from corn to soybean to lay eggs (Gray et al. 
1998; Rondon and Gray 2004). Northern corn rootworm has adapated to crop rota-
tion by extending egg diapause from one to two years (Krysan et al. 1984; Levine 
et al. 1992; Gray et al. 1998). In both cases, planting a Bt corn rootworm hybrid is 
recommended as one of the best ways to manage the rotation resistant problem 
associated with corn rootworms (Onstad et al. 2003).

4.3  Refuge Planting for Stacked Bt Hybrid against Corn Borers 
and Corn Rootworms

According to the USEPA, refuge area requirements for stacked Bt hybrids targeting 
corn borers and corn rootworms have been divided into two categories: non-cotton 
growing areas and cotton growing areas (USEPA 2005a, b). USEPA requirements 
state that growers in non-cotton growing areas may plant up to 80% of their corn 
hectares using a Bt hybrid targeting corn borers, with the remaining 20% serving as 
the refuge (USEPA 2005a, b). However, in cotton growing areas, growers may only 
plant up to 50% of their corn hectares using a Bt hybrid targeting corn borers, with the 
remaining 50% serving as the refuge (USEPA 2005a, b). The refuge may be planted 
in two ways: either as a common refuge for both corn borers and corn rootworms or 
as separate refuges for corn borers and corn rootworms (USEPA 2005a, b).

The common refuge involves planting corn hybrids that do not contain Bt events 
for either corn borers or corn rootworms. The refuge area must represent at least 
20% (in non-cotton growing areas) and 50% (in cotton growing areas) of a grower’s 
corn hectares (i.e., sum of stacked Bt hybrid hectares and refuge hectares). The 
refuge can be planted as a block, perimeter strips, or in-field strips. If perimeter or 
in-field strips are planted, the strips must be at least six, and preferably 12 adjacent 
rows wide. The common refuge can be treated with a soil-applied or seed-applied 
insecticide to control rootworm larvae and other soil pests. In addition, the refuge 
may be treated with a non-Bt foliar insecticide for control of late season pests if 
pest pressure reaches an economic threshold; however, if corn rootworm adults are 
present at the time when foliar applications are made then the stacked Bt hybrid 
acres must be treated in a similar manner.

The second option is planting separate refuge areas for corn borers and corn 
rootworms. A corn borer refuge involves planting corn hybrids that do not contain 
Bt events for corn borers on at least 20% of the hectares in non-cotton growing 
areas, and on at least 50% of the hectares in cotton growing areas. These refuge 
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areas are based on the total corn hectares a grower plants each season (i.e., the sum 
of stacked Bt corn hybrid hectares and corn borer refuge hectares), and must be 
planted within 0.8 km (0.5 mile) mile of the stacked Bt hybrid field. The corn borer 
refuge can be treated with a soil-applied or seed-applied insecticide for corn root-
worm larval control, or a non-Bt foliar-applied insecticide for corn borer control if 
pest pressure reaches an economic threshold.

A corn rootworm refuge involves planting corn hybrids that do not contain Bt 
events for corn rootworm, but can be planted with Bt corn borer hybrids. The corn 
rootworm refuge must represent at least 20% in non-cotton growing areas, and 
50% in cotton growing areas. These refuge areas are based on the total corn hect-
ares a grower plants each season, i.e., the sum of stacked Bt corn hybrid hectares 
and corn rootworm refuge hectares. The refuge can be planted as an adjacent 
block, perimeter strips, or in-field strips. The corn rootworm refuge can be treated 
with soil-applied or seed-applied insecticides to control rootworm larvae and other 
soil pests. The refuge can also be treated with a non-Bt foliar insecticide for con-
trol of late season pests; however, if rootworm adults are present at the time when 
foliar applications are made then the stacked Bt hybrid field must be treated in a 
similar manner.

4.4  Limitations with the High-Dose Toxin and Refuge Strategy

The high-dose toxin and refuge planting strategy for preventing resistance develop-
ment in the target insect is based on three strict assumptions: inheritance of resis-
tance is recessive in the target insect population (Liu et al. 2001), low presence of 
resistance alleles (<10−3) in the target insect population (Roush and Miller 1986), 
and random or preferential mating between susceptible individuals from the refuge 
and resistant individuals from the Bt hybrid field (Vacher et al. 2003, Bates et al. 
2005). However, there are examples where inheritance of resistance to Bt toxins is 
found to be incomplete or non-recessive, such as in a strain of Helicoverpa armigera 
to Cry1Ac toxin (Akhurst et al. 2003), H. zea to Cry1Ac toxin (Burd et al. 
2003), and O. nubilalis to the Bt toxins in Dipel ES (Dipel ES contains Cry1Aa, 
Cry1Ab, CryIAc, Cry2A, and Cry2B endotoxins of Bt. Cry1Ab and Cry1Ac) 
(Huang et al. 1999). The idea behind the high-dose toxin refuge strategy is that it 
targets individuals with incompletely dominant resistance or heterozygous resis-
tance (Bourguet et al. 2000). In a study conducted in 1997, strains of pink boll-
worm, Pectinophora gossypiella, collected from 10 Arizona cotton fields revealed 
that the estimated frequency of a major resistance allele to Cry1Ac toxin has 
increased to 0.16 (Tabashnik et al. 2000). In cotton, the variable developmental 
period found between resistant larvae of P. gossypiella on Bt transgenic cotton 
hybrids expressing Cry1Ac toxin and susceptible larvae on non-Bt transgenic 
cotton hybrids could lead to non-random mating between resistant and susceptible 
individuals (Liu et al. 2001). In a study on pre-copulatory dispersal and mating in 
O. nubilalis, it was found that females prefer mating near the emergence site before 
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dispersal (Dalecky et al. 2006). In a similar study conducted by Bailey et al. (2007), 
they found that the mean (± SEM) distance flown by O. nubilalis adults was 
5.05 ± 7.3 m in 12 h from the release site. This could be a limiting factor for random 
mating to take place between resistant and susceptible individuals. However, no 
significant violations have been reported to date with respect to target pests sub-
jected to the high-dose refuge strategy (Bates et al. 2005; Tabashnik et al. 2008).

There are new issues facing the high-dose refuge strategy in terms of adhering 
to the physical limitations. Contamination of Bt hybrid seeds with non-Bt hybrid 
seeds as a result of off-types may promote more rapid development of resistance 
(Gould 1998; Bates et al. 2005). The movement of the target insect between Bt 
hybrids and other non-Bt host plants or weedy plants can lead to ingestion of inter-
mediate doses of toxin by the target insect, which may eventually expedite the 
development of resistance (Gould 1998). In addition, pollen mediated gene flow 
from Bt hybrids to non-Bt hybrids (refuge) has been found to result in low to moderate 
levels of Bt toxin in refuge plants (Chilcutt and Tabashnik 2004).

5  Resistance Monitoring

Resistance monitoring has been an integral part of the IRM strategy to detect the 
development of resistance in target insects to Bt hybrid toxins. Several methods 
have been suggested for monitoring the development of resistance: annual damage 
reports by growers, direct monitoring of insect population susceptibility, dose–
response bioassays, diagnostic/discriminating dose bioassays, F

2
 screen, feeding 

disruption assays, and feral assays (Venette et al. 2000; Bourguet et al. 2005). 
However, the dose–response and diagnostic/discriminating dose bioassays are 
currently the most widely used methods (Bates et al. 2005; Bourguet et al. 2005; 
Huang 2006; Huang et al. 2007).

The dose–response bioassay as described by Bourguet et al. (2005) measures 
the change in EC

50
 and LC

50
 values in a natural population of the target pest 

over a period of time. This is done by exposing insects to a series of Bt toxin 
concentrations, and then using probit analysis to determine EC

50
 and LC

50
 values. 

The dose–response bioassay is more efficient in detecting high levels of resis-
tance or resistance conferred by a dominant allele than in detecting early devel-
opment of resistance conferred by a recessive allele (Bates et al. 2005; Huang 
et al. 2007). In addition, the dose–response bioassay can test large number of 
insects in a relatively efficient manner (Ferré et al. 2008).

The diagnostic/discriminating dose bioassay is based on the use of a single dose 
of a Bt toxin (i.e., the diagnostic/discriminating dose) (Huang 2006). The most 
commonly used diagnostic/discriminating dose is the LC

99
 value for susceptible 

strains, which is developed from a dose–response bioassay (Huang 2006). This 
single dose method is more efficient in detecting dominant resistance alleles or 
recessive resistance alleles at high levels (Huang et al. 2007). However, some of the 
limitations with the diagnostic/discriminating dose method are the need for a large 
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sample size (Roush and Miller 1986) and decreased efficiency at detecting recessive 
alleles resistant to Bt toxins (Venette et al. (2000). Bourguet et al. (2005)) noted that 
this method is unlikely to detect early stages of resistance development.

Given that both the dose–response and diagnostic/discriminating dose bioassays 
are not suitable for detecting low levels of recessive alleles resistant to Bt toxins, 
suggestions have been made to integrate other resistance monitoring tools into the 
program. The F

2
 screen and DNA marker methods are reported to have higher 

sensitivity for detecting low levels of recessive alleles resistant to Bt toxins (Huang 
1997).

6  Role of Insecticides after Stacked Bt Hybrids

Following the commercial release of Bt hybrids for corn borers and corn root-
worms, there has been a marked shift in the use of insecticides in corn production 
(Pilcher et al. 2002; Wilson et al. 2005; Brookes and Barfoot 2006). A multi-state 
survey was conducted over three years on corn grower use of insecticides to control 
European corn borer in the Midwest Corn Belt (Pilcher et al. 2002). Pilcher et al. 
(2002) reported that the percentage of growers that decreased their insecticide use 
has nearly doubled from 13.2% in 1996 to 26.0% in 1998. Rice (2004) estimated 
that planting Bt hybrids against corn rootworms will alone result in about a 75% 
reduction in insecticide use targeting corn rootworms. In a 2001 survey conducted 
among corn growers across five states, Wilson et al. (2005) reported that the 
perceived benefits of using Bt hybrids were reduced grower exposure to insecticides 
(69.9%) and lower levels of insecticide active ingredient in the environment 
(68.5%). At the national level, the planting of Bt hybrids has resulted in a reduction 
of insecticide active ingredient by 0.6 million kilogram and an annual environmental 
impact quotient (EIQ) by 21 million field EIQ/ha units from 1996 to 2005 
(Brookes and Barfoot 2006). EIQ is calculated in terms of field value per hectare 
using various toxicological and environmental impact data for each pesticide 
(Kovach et al. 1992).

Although planting Bt hybrids has resulted in a significant reduction in the use of 
conventional insecticides on corn, it has not totally eliminated the use of insecticides 
in the majority of corn growing areas of the U.S. In fact, a high percentage of 
commercial Bt hybrids today come with insecticide-protected coated seeds, which are 
primarily treated with systemic neonicotinoids targeting secondary soil insects 
(Mullin et al. 2005; Magalhaes et al. 2007). In those situations where growers 
decide not to plant Bt hybrids, it is recommended that growers use pre-plant sampling 
methods to identify fields at risk to secondary soil insects (Keaster and Riley 1999, 
McLeod et al. 1999; Youngman et al. 1993). The most common methods for managing 
secondary soil insects are soil-applied insecticides or planting insecticide-protected 
coated seeds (Andersch and Schwarz 2003). The rate and type of insecticides used 
in either method depends on the target insect. Insecticides belonging to the organo-
phosphate, carbamate, pyrethroid, or phenylpyrazole classes have been the 
most commonly used as soil-applied insecticides (Andersch and Schwarz 2003). 
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Due to several disadvantages associated with the conventional soil-applied 
insecticides (Altmann 2003; Andersch and Schwarz 2003), planting insecticide-
protected coated seeds to manage early season secondary soil insects is now 
increasing and becoming more widely adopted. Imidacloprid, clothianidin, thiame-
thoxam and tefluthrin are the main insecticides used by seed companies to treat 
corn seeds for protection against early season feeding injury to germinating seeds 
and newly emerging roots (Mullin et al. 2005; Magalhaes et al. 2007).

With the widespread use of neonicotinoid seed protectants on Bt hybrid corn 
seeds, there is a growing concern for monitoring resistance development in insects 
that are the target of these seed protectants (Magalhaes et al. 2007), in addition to 
evaluating the indirect effects of neonicotinoids on non-target organisms (Mullin 
et al. 2005). Development of resistance to neonicotinoids has been documented in 
several insect species. Specific examples include whiteflies Bemisia tabaci 
(Gennadius) and Trialeurodes vaporariorum (Westwood), brown planthopper 
Nilaparvata lugens (Stal), Colorado potato beetle Leptinotarsa decemlineata (Say) 
and mango leafhopper Idioscopus clypealis (Lethierry) worldwide (Elbert et al. 
2008). The development of resistance to neonicotinoids in adults and larvae of the 
Colorado potato beetle (Zhao et al. 2000; Nauen and Denholm 2005) raises two 
points for concern with respect to the continued, widespread use of neonicotinoid 
seed treatments on Bt corn rootworm hybrid seeds. First, the Colorado potato beetle 
and corn rootworms belong to the same taxonomic family (Chrysomelidae); and 
second, the Colorado potato beetle and corn rootworms share a similar history of 
developing resistance to insecticides in the major insecticide classes: chlorinated 
hydrocarbons, organophosphates, and carbamates. Although, in most cases, manage-
ment of corn rootworm larvae is not intended through the use of neonicotinoid seed 
treatments where Bt corn rootworm hybrids are planted. Nevertheless, neonicoti-
noids still serve as an important tool for managing corn rootworms in refuge plantings 
and areas where growers choose not to plant Bt hybrids for corn rootworms.

A study was conducted to examine the effects of seed treatments associated with 
Bt hybrids expressing Cry3Bb1 and Cry1Ab/c endotoxins on several species of 
carabid beetles (Mullin et al. 2005). They found that adult beetles representing 16 
carabid species, which had fed on the pollen of Bt corn hybrids suffered no signifi-
cant toxicity, whereas beetles representing 18 carabid species suffered nearly complete 
mortality when exposed to corn seedlings grown from imidacloprid, thiamethoxam 
or clothianidin treated seeds.

In order to manage the increasing selection pressure from using seed treatment 
insecticides, Magalheas et al. (2007) provided a baseline tool for predicting and 
monitoring the early signs of resistance development among geographically distinct 
populations of western corn rootworm. High-dose and refuge strategy could be 
employed to delay resistance to neonicotinoids as suggested by Zhao et al. (2000) 
in their study reporting resistance development in L. decemlineata to imidacloprid. 
They reported that resistance to imidacloprid is an incompletely recessive trait. 
According to Elbert et al. (2005), efforts should be made to follow IRM guide-
lines for managing resistance development to neonicotionoid insecticides. The idea 
being to optimize the use of this technology against the target insects while 
simultaneously reducing their impact on non-target species.
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7  Conclusion

Bt transgenic corn hybrids have become an integral part of corn production in 
most of the corn growing areas of the world (Bates et al. 2005; James 2008; 
Tabashnik 2008). Its continued adoption worldwide speaks of increasing confi-
dence among corn growers for this technology. Higher returns from planting Bt 
hybrids as a result of increased yield and fewer insecticide applications (Pilcher 
et al. 2002; Wilson et al. 2005; Brookes and Barfoot 2006; James 2008) are the 
primary factors. Implementation of a robust IRM strategy, which is the first one 
of its kind to be implemented on such a large scale, further boosts the confidence 
of growers for the sustainable use of this technology. In addition, a regular moni-
toring plan for resistance development in the target pest is a necessary step 
against resistance development, the overall aim of which is to secure the long-
term usefulness of the Bt technology. Implementation of these strategies has 
contributed much to the fact that no cases of failure in the Bt corn hybrid technology 
have been reported since its commercial introduction in 1995. In addition to Bt 
hybrids, the increasing trend in the use of insecticide-protected coated seeds, 
makes it imperative that IRM plans be developed and implemented for the target 
pests of this technology as well.
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Abstract The deployment of DNA-based marker systems promises to accelerate 
the improvement of crop productivity worldwide. Numerous DNA fingerprinting 
assays, and more recently whole genome sequence information, have been utilized 
extensively for employing intrinsic genetic polymorphisms in the genomes of 
higher plants in phylogenetic studies, genetic mapping, and comparative genomic 
analysis. DNA markers set the stage for initiating genomic-based breeding strate-
gies with several advantages over the phenotypic based selection procedures used 
in conventional breeding programs. In maize, successful applications have been 
exemplified by marker assisted introgression of novel genomic regions associated 
with anthesis-silking interval, marker-based diagnosis of plants containing the 
opaque2 gene associated with quality, and marker-based prediction of hybrid vigor. 
New rice varieties are developed using DNA markers associated with genes and 
quantitative trait loci (QTLs) to provide resistance to both biotic stress, e.g. bacte-
rial blight and blast, and abiotic stresses, and to improve yield and quality. A wheat 
variety ‘Patwin’ was developed through marker assisted selection for stripe and leaf 
rust resistance genes Yr17 and Lr37, respectively. The stay-green trait conferring 
resistance to drought in sorghum has been explored at length. In tomato, cotton, 
potato, soybean and other crops, many genes conferring resistance against various 
biotic stresses have been incorporated from wild relatives using DNA markers. 
Wider adaptation of marker assisted breeding is limited by the narrow genetic base 
of elite gene pools for many plants. Multiple investigations reveal conservation of 
QTLs among some crop species, offering opportunities to gain information from 
one crop to improve others.
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Abbreviations

QTLs Quantitative trait loci
QTN Quantitative trait nucleotide
RFLP Restriction fragment length polymorphism
PCR Polymerase chain reaction
RAPD Random amplified polymorphic DNA
SCAR Sequence characterized amplified region
STS Sequence tagged site
CAPS Cleaved amplified polymorphic sequence
SSR Simple sequence repeat
AFLP Amplified fragment length polymorphism
SRAP Sequence-related amplified polymorphism
SNPs Single nucleotide polymorphisms
NILs Near-isogenic lines
RILs Recombinant inbred lines
DH Doubled haploid
ILs Introgression lines
BC Backcross population
MAS Marker assisted selection
MAB Marker-assisted backcrossing
CPS Conventional phenotypic selection
BB Bacterial blight
CBB Common bacterial blight
AB Ascochyta blight
MSV Maize streak virus
CLCuD Cotton leaf curl disease
PSbMV Pea seed-borne mosaic virus
TuYV Turnip yellows virus
FW Fusarium wilt
VW Verticulum wilt
SDS Sudden-death syndrome
ER Extreme resistance
CMS Cytoplasmic male sterility
OA Osmotic adjustment

1  Introduction

Conventionally, plant breeders recombine traits present in different parental lines of 
cultivated and or wild species into single improved genotypes, through various 
breeding schemes. Multiple investigations illustrate that combination of complex 
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characters encoded by multiple genes with additive effects and recessive genes, or 
pyramiding of small-effect genes influencing the same trait, are difficult to achieve 
through classical breeding methods (Beckmann and Soller 1986).

Recent developments in DNA marker approaches have brought a new dimension 
into the traditional area of plant breeding (Moose and Mumm 2008) through devel-
oping association between traits and genomic loci which pave the way for evolving 
new varieties in much less time (Xu and Crouch 2008). Polygenic traits that were 
previously difficult to analyze using conventional plant breeding methods, are now 
easily tagged by identifying tightly linked DNA markers. Marker-assisted selection 
(MAS) is a method of indirect selection of a trait by identifying the desired plants 
through such tightly linked DNA marker(s) (Ribaut and Hoisington 1998). DNA 
markers not only allow the easy and reliable identification of breeding lines, hybrids 
(Bastia et al. 2001), and cultivars (Mohanty et al. 2001), but also facilitate the moni-
toring of introgression from wild to elite cultivars (Paterson et al. 2003), assessment 
of genetic diversity and relatedness (Iqbal et al. 1997; Mukhtar et al. 2002; Rahman 
et al. 2002b, 2008b; Milligan 2003; Asif et al. 2006), gene pyramiding (Kuchel et al. 
2005; Wang et al. 2007), genetic mapping (Mohan et al. 1997), analysis of quantita-
tive trait loci (QTLs) (Paterson et al. 2003) and MAS (Ribaut and Hoisington 1998; 
Francia et al. 2005). DNA markers can provide means of detecting and resolving 
complications such as linkage drag (Young and Tanksley 1989), and suppression of 
recombination and segregation distortion (Jiang et al. 2000) which make DNA markers 
indispensable for crop improvement (Winter and Kahl 1995).

2  Benefits of Marker Assisted Selection

Marker-assisted breeding or marker aided selection can greatly enhance the effi-
ciency and effectiveness of plant breeding relative to conventional methods. Once 
tightly linked molecular markers for a gene or QTL of interest have been identified 
(Collard et al. 2005), breeders can select true-to-type genotypes at an early stage of 
plant growth, avoiding the need to conduct large scale field trials. Plants with desir-
able traits that are difficult to evaluate in non-target environments (including the 
greenhouse), can be selected. Traits with low heritability can be selected with more 
accuracy. Pyramiding or combining of useful and multiple genes become much 
easier. Transfer of undesirable genes is avoided by reducing the chances of linkage 
drag, which is a serious problem during introgression of genes from wild species. 
Generally, the MAS procedure is time friendly and cost effective in developing 
crop varieties.

3  Pre-requisite for Marker Assisted Selection

A number of DNA fingerprinting assays (Semagn et al. 2006; Agarwal et al. 2008), 
such as restriction fragment length polymorphism (RFLP, Botstein et al. 1980), ran-
dom amplified polymorphic DNA (RAPD, Williams et al. 1990), amplified fragment 
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length polymorphism (AFLP, Vos et al. 1995), simple sequence repeats (SSRs, Tautz 
and Renz 1984) and single nucleotide polymorphism (SNPs, Collins et al. 1998) are 
now available for utilizing in MAS (Francia et al. 2004; Xu and Crouch 2008). 
Restriction fragment length polymorphism markers are reliable markers in linkage 
analysis and crop breeding, however, these are time consuming, expensive and 
require large amount of DNA for restriction and hybridization analysis (Paterson 
et al. 1993). RAPD is much faster and cheaper than RFLP analysis and uses only 
small amounts of DNA (Rahman et al. 2002b), but tend to be genotype-specific and 
can be difficult to reproduce in different labs. Microsatellites are extremely poly-
morphic, codominant in expression and generally robust. Amplified fragment 
length polymorphism is reliable and requires a minimum of a prior information 
(Vos et al. 1995), however, it is technically intricate and expensive. Single nucle-
otide polymorphisms are the most elemental DNA marker, directly reflecting 
nucleotide differences among genotypes, and are coming to be preferred over other 
marker systems as advances in DNA sequencing facilitate their discovery and uti-
lization, because of their high occurrence in various genomes and codominance 
(Lindblad-Toh et al. 2000).

Besides cost, major limitations to the development of MAS might include lim-
ited understanding of genetic phenomena such as gene networks, epistasis, and 
genotype by environment interactions that complicate the relationship between 
genotype and phenotype. However with rapidly evolving marker technologies, the 
use of MAS approaches in crop improvement appears very promising (Ribaut and 
Betran 1999; Ribaut and Ragot 2007).

4  Utility of DNA Markers for Improving Crop Genomes

Different genes controlling agronomically important traits have been mapped and 
tagged with molecular markers which form the basis for initiating MAS (Francia et al. 
2004) in different crop plants (Table 1 and 2). The large number of QTL mapping 
studies for diverse crop species have provided an abundance of DNA marker-trait 
associations, which have the potential to improve efficiency and precision of con-
ventional plant breeding via marker-assisted selection (Collard and Mackill 2008). 
A comprehensive review of the application of MAS in molecular breeding programs 
would now be voluminous—in the following sections, a few examples are studied.

4.1  Family: Poaceae

4.1.1  Maize

Successful applications of MAS have been reported in maize (Zea mays) for intro-
gressions of novel genes (Ragot et al. 1995), for diagnosing plants containing a single 
gene (opaque2 gene associated with quality) (Dreher et al. 2003) and for improving 
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simple (Ho et al. 2002; Morris et al. 2003) or  complex traits (Bouchez et al. 2002; 
Willcox et al. 2002).

Predicting hybrid performance in maize without making and evaluating thousands 
of single-cross combinations has been a goal of many hybrid breeding programs 
using DNA markers and/or phenotypic data (Stuber et al. 1999). QTLs associated 
with seven major traits were mapped using a cross B73/Mo17. Heterozygotes con-
taining a QTL for grain yield have shown hybrid vigor relative to the respective 
homozygotes with only one exception suggesting not only overdominance or pseu-
dooverdominance but also showing a significant role of the identified QTLs in 
heterosis. This conclusion was reinforced by a high correlation between grain yield 
of genotypes and the proportion of heterozygous markers across their genomes 
(Stuber et al. 1992).

In maize, under drought, which causes ~15% yield losses annually, a delay in 
silking before or during flowering results in long anthesis-silking interval (ASI). 
Correlation has been found between reduced anthesis-silking interval and improved 
yields under drought stress. DNA markers were identified for four genomic regions 
in maize for the expression of both yield and anthesis-silking interval (Ribaut et al. 
1997). Three of these regions contributed alleles for short anthesis-silking interval 
corresponding to high grain yield, while one of the genomic regions showed allelic 
contribution for short anthesis-silking interval with low grain yield. In another study, 
drought tolerance in CML247, an elite tropical inbred line, was improved through 
introgressing five genomic regions from a donor line Ac7643 using MAS. Some 
genotypes performed two to four times better than the control genotype, and were 
selected for developing new cultivars (Ribaut et al. 2004).

Marker-assisted backcrossing, described in tomato (Paterson et al. 1988), has 
been utilized in maize to monitor the transfer of favorable alleles linked with QTLs 
(foreground selection) and to accelerate the return to the recipient genotype of the 
rest of the genome (background selection) (Bouchez et al. 2002). Seedling emer-
gence was increased in sweet corn through monitoring the transfer of a QTL with 
positive impact on yield (Yousef and Juvik 2002). Comparison of multiparental 
connected designs to biparental populations for MAS and phenotypic selection in 
maize was done. QTLs detected for flowering time and grain yield in maize con-
firmed the advantage of multiparental connected designs over biparental popula-
tions (Blanc et al. 2008).

For improving resistance to Diatraea spp, a kind of insect pest, MAS was found 
less efficient than conventional phenotypic selection, however, combining marker 
and phenotypic data increased the relative efficiency by 4% in comparison to con-
ventional phenotypic selection. Marker assisted selection for improving host plant 
resistance against Diatraea spp. seems to be of little promise unless additional 
QTLs with large effects are available or the costs of marker assays are considerably 
reduced (Bohn et al. 2001).

Maize streak virus disease is responsible for poor maize production in tropical 
Africa, contributing up to 100% yield loss. QTLs conferring resistance to maize 
streak virus in maize populations of S4 families has been mapped using a cross 
MAL13 (resistant source)/MAL9 (susceptible genotype). Resistance was evaluated 
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in replicated field trials under artificial inoculation while selecting using 
 microsatellite markers (Lagat et al. 2008).

Categorization of genetic diversity is valuable for assisting breeders in parental 
line selection and breeding system design. Lu et al. (2009) identified high-quality 
markers by screening maize inbred lines with single nucleotide polymorphism 
(SNP) markers while germplasm-specific biasing effects were not detected. Pairwise 
comparisons across three distinct sets of germplasm, CIMMYT (394), China (282), 
and Brazil (94), suggested that utilization of genetic diversity existing in the center 
of origin was limited in the development of elite lines from these diverse breeding 
pools. Long-term selection for hybrid performance has contributed to significant 
allele differentiation between heterotic groups at 20% of the single nucleotide poly-
morphism loci. There were considerable levels of genetic variation between different 
breeding pools which was reflected by missing and unique alleles. There were two 
SNPs which were developed from the same candidate gene associated with the 
divergence between two respective Chinese heterotic groups. A linkage disequilib-
rium block of 142 kb was indicated by associated allele frequency change at two 
SNPs and their allele missing in Brazilian germplasm. SNP markers have been 
proven to be powerful for diversity analysis and also a practicable approach to 
unique allele discovery and use in maize breeding programs (Lu et al. 2009).

4.1.2  Rice

Bacterial blight is one of the most destructive diseases of rice, causing up to 50% 
losses in yield. Sequence tagged site markers associated with three bacterial blight 
resistant genes, xa5, xa13 and Xa21 (Chunwongse et al. 1993; Huang et al. 1997) 
were pyramided through marker-assisted backcrossing in a high yielding suscepti-
ble rice cv. PR106 (Singh et al. 2001). In another investigation, two genes Xa7 and 
Xa21 were pyramided for the improvement of resistance to bacterial blight in 
hybrid rice using MAS (Zhang et al. 2006).

Basmati rice is highly susceptible to bacterial blight, and transfer of resistant 
genes from non-Basmati sources through cross-hybridization requires strict moni-
toring for recovery of the essential Basmati quality traits. Background analysis 
using mapped SSRs was integrated with foreground selection to identify superior 
lines combining the distinctive quality features of Basmati with useful resistant 
genes (xa13 and Xa21) derived from a non-Basmati resistant donor line IRBB55. 
One of the lines (Improved Pusa Basmati 1) has been commercialized in India, 
developed through MAS (Gopalakrishnan et al. 2008). Similarly, microsatellite 
markers associated with three major resistance genes (Xa21, xa13 and xa5) were 
introgressed into an elite indica rice variety (Samba Mahsuri) through marker-
assisted backcrossing (Sundaram et al. 2008).

Blast, caused by a fungus Magnaporthae grisea, is one of the most detrimental 
diseases of rice. Three major genes (Pi1, Piz-5 and Pita) conferring resistance to the 
disease were fine-mapped on chromosomes 11, 6 and 12, respectively, pyramided 
through MAS using tightly linked RFLP markers (Hittalmani et al. 2000). Enhanced 
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expression of resistance was observed in genotypes containing at least two or three 
genes together.

A total of 76 QTLs associated with morphological traits and yield components 
were identified using a population developed from a cross between Oryza rufi-
pogon var IRGC 105491 and O. sativa ssp. japonica cv. Jefferson (Thomson et al. 
2003). Novel alleles derived from O. rufipogon have stable effects in multiple 
genetic backgrounds and environments. In another study, 42 QTLs were identified 
for 12 agronomic traits in rice, among which 14 QTL alleles derived from O. rufipogon 
had beneficial impacts on yield components in O. sativa background (Septiningsih 
et al. 2003). Some QTLs reported in rice together with QTLs identified in maize 
(Thomson et al. 2003) appeared well conserved across the grass families 
(Septiningsih et al. 2003) and may be useful in initiating MAS in other members of 
the grass family.

Root traits exhibit positive associations with yield and its components under 
drought conditions. Through MAS four QTLs linked with deeper root systems were 
introgressed from Azucena (japonica variety) into IR64, which increased root 
length by 12–27% (Shen et al. 2001). A QTL for osmotic adjustment mapped on 
chr-8 in rice under drought (Robin et al. 2003), showed correspondence with a 
region containing QTLs for relative water content under water stress condition on 
chr-7 (Morgan and Tan 1996) and chr-1 (Teulat et al. 2003) of wheat and barley, 
respectively. Similarly, a QTL for osmotic adjustment in rice was found on chr-3 
which is syntenic to maize chr-1. This maize region was associated with various 
physiological and agronomic traits influencing drought tolerance (Zhang et al. 
2001). These investigations indicate the conservativeness of these regions associ-
ated with better performance under drought in wheat, rice, barley and maize. Here, 
DNA markers can be used for diagnosing plants containing QTLs for favorable 
allele (Nguyen et al. 2004).

Spikelet sterility is often caused by the lack of viable pollen at low temperature. 
A tight association was found between a single nucleotide polymorphism (alternative 
oxidase gene, OsAOX1a) with two closely linked QTLs (Ctb

1
 and Ctb

2
) conferring 

tolerance to low temperature in anthers (Abe et al. 2002). One of the QTLs (Ctb
1
) has 

been physically mapped and seven candidate genes were recognized for this QTL. 
The identified single nucleotide polymorphism can be useful in MAS for diagnosing 
plants containing QTL for cold tolerance (Saito et al. 2004).

Two QTLs with major effects, one (qSNC-7) on chr-7 for shoot Na+ reduction 
and second (qSKC-1) on chr-1 for shoot K+ accumulation were pyramided in three 
F

3
 lines derived from a cross IR64 (moderate tolerant)/Azucena using MAS (Lin 

et al. 2004). In another study, a QTL explaining 19.6% of the variation for K+ 
uptake was identified on chr-9 (Koyama et al. 2001). A major QTL designated 
Saltol on chr-1 (explaining 43% of the variation for seedling shoot Na+/K+ ratio) 
was identified (Bonilla et al. 2002). Seven QTLs associated with salt stress explain-
ing less than 20% of the variation for seedling traits were mapped (Prasad et al. 
2000). Several QTLs for shoot length and number of tillers per plants under saline 
conditions were reported (Takehisa et al. 2004). All these QTLs were assembled in 
one genotype through marker-assisted backcrossing scheme.
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Marker-assisted selection has successfully been employed for improving the 
 quality of rice grain by introgressing a Waxy gene allele derived from Minghui-63 
into Zhenshan-97A using tightly linked microsatellite and RFLP markers. A total 
of 118 AFLPs were used in background selection to recover the genetic background 
of Zhenshan at unlinked loci (Zhou et al. 2003a). Introgression of one QTL for 
grain number, and one QTL for plant height were pyramided into the same genetic 
background, which resulted in higher yield of the newly bred rice strain (Ashikari 
et al. 2005).

Blast disease is a destructive fungal disease of rice. Race-specific resistance to 
blast disease has not proven to be an effective technology. Cloning of a previously 
unknown type of gene that confers non–race-specific resistance has been reported 
and further it has been successfully used in breeding. A proline-rich protein that 
includes a putative heavy metal–binding domain and putative protein-protein inter-
action motifs is encoded by Pi21. Wild-type Pi21 causes slowing down of the 
plant’s defense responses, which can support optimization of defense mechanisms. 
This slowing down process is inhibited by deletions in its proline-rich motif. Pi21 
is separable from a closely linked gene conferring poor flavor. The resistant pi21 
allele, which is found in some strains of japonica rice, was able to improve blast 
resistance of rice (Fukuoka et al. 2009).

The stub-spreading trait, which is also designated as ‘tiller angle’, is one of the 
determinants of plant type. This trait is quite important in rice due to its contribu-
tion to yield performance. The Spk(t) gene is a major contributor of the trait in the 
cross of ‘Kasalath’ (indica) and ‘Nipponbare’ (japonica). The Spk(t) gene was 
isolated by a map-based cloning strategy by Komori et al. 2009. Spk(t) and spk(t) 
transcripts were shown to encode identical 259-aa proteins of unknown function 
after sequence analysis of cDNA clones from the locus; however, the structure of 
the 3¢-untranslated region of each allele is quite different. Further transgenic experi-
ments in rice verified that the difference is caused by a single-nucleotide polymor-
phism at the 3¢-splicing site specific to the Spk(t) allele which perform a crucial role 
in phenotypic expression. This information will be useful for rice breeding, in addi-
tion to revealing the molecular mechanism underlying allele differentiation at the 
Spk(t) locus.

4.1.3  Wheat

Leaf rust, caused by a fungus Puccinia recondita, is one of the major causes of 
yield losses in wheat (Triticum aestivum L.). Two slow rusting genes Lr34 and Lr46 
were found effective against different pathotypes of the fungus (Singh et al. 1998). 
Hypersensitive resistance responses have been derived by combining Lr34 with any 
of the other Lr genes (Kolmer 1996; Kloppers and Pretorius 1997). Molecular 
markers have been identified for Lr34 (Suenaga et al. 2003) and other leaf rust 
genes (Huang and Gill 2001), which can be utilized in breeding for enhanced resis-
tance against the rust. The first wheat variety containing stripe rust resistance gene 
Yr17 and leaf rust resistance gene Lr37 developed through marker assisted 
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 selection, is ‘Patwin’ which has been commercialized by the University of 
California at Davis (http://www.plantsciences.ucdavis.edu; Helguera et al. 2003). 
In another study, two cereal cyst nematode resistance genes from Aegilops variabi-
lis in wheat (Barloy et al. 2007) and introgression of leaf rust resistance genes Lr1, 
Lr9, Lr24, Lr47 into bread wheat cultivars through MAS (Nocente et al. 2007) have 
been reported. Yellow or stripe rust caused by Puccinia striiformis f. sp. tritici (Pst), 
is one of the most devastating wheat diseases. Triticum aestivum × Haynaldia vil-
losa 6VS/6AL translocation lines carrying the Yr26 gene on chromosome 1B are 
resistant to most races of Pst. Microsatellite and sequence tagged site based marker 
loci (Xwe173 and Xbarc181) were used in MAS for incorporating Yr26 into wheat 
cultivars (Wang et al. 2008). Recently, two genes Yr5 and Yr15 imparting resistance 
against stripe rust at all stages of wheat plant. Previously reported markers for these 
genes were not effective in diagnosing resistant plants. Newly identified sequence 
tagged site marker STS7/8 and Xbarc349 and Xbarc167 flanking the Yr5 gene were 
not equally effective in all genetic backgrounds. However, microsatellite markers 
Xbarc8 and Xgwm413 flanking the Yr15 appeared to be diagnostic in all genetic 
backgrounds with one exception (Murphy et al. 2009).

Resistance to a newly emerged strain of stem rust (Ug99), another devastating 
disease of wheat (Triticum aestivum L.) worldwide, has been deployed through 
transferring Sr40 gene from T. timopheevii ssp. armeniacum to wheat. A marker 
locus Xwmc344 closely linked to Sr40 (0.7 cM) was identified followed by the 
identification of two markers Xwmc474 (~2.5 cM) and Xgwm374 in the flanking 
region of the gene, which could be useful in marker-assisted integration and pyra-
miding of Sr40 into elite wheat breeding lines (Wu et al. 2009).

The stem rust resistance gene Sr39 is known to provide resistance to all pres-
ently known pathotypes of Puccinia graminis f. sp. tritici (Pgt) including Ug99 
(TTKSK) and was introgressed together with leaf rust resistance gene Lr35 
accounting for adult plant resistance to P. triticina (Pt), into wheat from Aegilops 
speltoides. Due to the anticipated but not documented negative agronomic effects 
associated with Ae. speltoides chromatin it has not been used extensively in wheat 
breeding. Mago et al. (2009) reported the production of a set of recombinants with 
shortened Ae. speltoides segments through induction of homoeologous recombina-
tion between the wheat and the Ae. speltoides chromosome. Simple PCR-based 
DNA markers have been developed for resistant and susceptible genotypes 
(Sr39#22r and Sr39#50s). These markers can facilitate the pyramiding of amelio-
rated sources of Sr39 with other stem rust resistance genes that are effective against 
the Pgt pathotype TTKSK and its variants in further breeding programmes.

A new race of the pathogen named TTKSK (syn. Ug99) and its derivatives 
detected in East Africa are for a threat to many characterized and uncharacterized 
stem rust resistance genes. Global wheat production is threatened by the emergence 
and spread of those races. Genes Sr25 and Sr26 transferred into wheat from 
Thinopyrum ponticum were found effective against these new races. The co-domi-
nant markers for Sr25 and Sr26 have been authenticated with 37 lines with known 
stem rust resistance genes. This information can be further utilized in breeding 
programmes (Liu et al. 2010).
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Three QTLs associated with resistance to powdery mildew were mapped 
(Liu et al. 2001), and microsatellite markers associated with Pm4a and Pm5e 
(Huang et al. 2003; Ma et al. 2004) and STS_241, Me8/Em7_220 and Xgwm382 
associated with another resistance gene Pm4b were identified which could be used 
for MAS in wheat breeding programmes (Yi et al. 2008). A major QTL conferring 
resistance to scab disease was validated with microsatellite markers which were 
used for initiating MAS in wheat breeding program (Zhou et al. 2003b).

A gene for Al tolerance, Alt
BH

 was identified on the long arm of chr-4D in bread 
wheat (Riede and Anderson 1996) and one of the microsatellite markers (Bmag353) 
linked to this locus (Raman et al. 2003) was used to probe Al tolerant F

3
 plants with 

more than 95% accuracy. Miftahudin et al. (2002) discovered that there are con-
served genomic region on the long arm of homoeologous chr-4 for Al tolerance 
among wheat (Alt

BH
), rye (Alt3) and barley (Alp), showing a high level of synteny 

among chromosomes 4DL, 4RL and 4HL, which will be useful source in MAS in 
many cereals (Nguyen et al. 2003).

Polymorphisms in sequences of coding and promoter regions of a locus Glu-1, 
involved in conferring bread making quality in wheat, were identified (Ma et al. 
2003; Radovanovic and Cloutier 2003). Multiplexed PCR was established for dis-
crimination of major HMW glutenins in single assay. Two specific PCR based mark-
ers were also validated and used to distinguish alleles at Glu-B1x locus for improving 
the bread making quality through MAS (Xu et al. 2008a).

Durum wheat (Triticum turgidum L. subsp. durum, 2n = 4x = 28, AABB), known 
for making pasta products, has received less attention than bread wheat in genetic 
and genomic studies. A tetraploid wheat doubled haploid population consisting of 
146 lines was derived from a cross T. tugidum var Lebsock/T. turgidum subsp. carth-
licum accession PI 94749 (Chu et al. 2010). This population was further used to 
construct linkage maps of all 14 chromosomes comprising of 280 microsatellite 
markers, and also for identification of QTLs associated with tan spot resistance. 
Results of this study together with those of other similar studies have shown that the 
wheat–P. tritici-repentis pathosystem involves more factors than presently published 
host-toxin interactions. The doubled haploid population and genetic maps would set 
a stage for genetic analysis of important agronomic traits (Chu et al. 2010).

4.1.4  Barley

Two major QTLs (QTL1 and QTL2) associated with malt extract percentage, 
alpha-amylase activity, diastatic power, and malt beta-glucan content identified on 
chr-1 and chr-4 of barley (Hordeum vulgare), showed stable expression across dif-
ferent ecological zones. Survey of RFLPs Brz and Amy2 associated with QTL1 
found effective in selection of desirable barley plants (Han et al. 1997). In another 
investigation, QTLs identified for grain and malt quality traits were located on chr-
3, chr-6 and chr-7, with QTLs discovered on chr-7 most useful in selecting superior 
genotypes (Igartua et al. 2000). High yielding near isogenic lines containing 
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conventional malting quality were developed using restriction fragment length 
polymorphism-based marker-assisted backcrossing by transferring QTL associated 
with yield. In multilocation tests, one line coupling high yielding potential of one 
parent (Baronesse) with malting quality of the other parent (Harrington) was 
selected (Schmierer et al. 2005).

Two tightly linked QTLs for tolerance to low temperature found on chr-5 of 
barley (Francia et al. 2004) co-occurred with QTLs regulating levels of mRNA 
(Vagujfalvi et al. 2003) and protein accumulation encoded by cold-regulated (COR) 
genes. Two tightly linked RAPD, and sequence tagged site markers derived from 
the sequence of wheat RFLPs, were surveyed in two sets of winter and spring bar-
ley genotypes and in doubled haploid lines for the assessment of frost tolerance 
level (Toth et al. 2004). Both type of DNA markers effectively distinguished the 
frost tolerant and susceptible genotypes in MAS.

Three DNA markers (RAPD, SCAR and STS) tightly linked to a gene (Ruhq) 
conferring resistance to covered smut disease in hulled barley were used for intro-
gressing the gene into hulless barley (Grewal et al. 2008) through doubled haploidy 
and marker-assisted backcrossing procedures. Similarly, a gene (Run8) imparting 
resistance to loose smut disease was also introgressed into a hulless barley cultivar 
through double haploidy and marker-assisted backcrossing methods. One line 
(HB390) developed through MAS was evaluated in the Western Canadian Hulless 
Barley Co-operative yield trials before commercial release in Canada. In another 
study, Schmalenbach et al. (2008) generated a set of introgression lines in spring 
barley by three rounds of backcrossing, two to four subsequent selfings, and, in 
parallel, MAS. The effectiveness of these introgression lines set was demonstrated 
by verification of QTLs controlling resistance to powdery mildew (Blumeria 
graminis f. sp. hordei L.) and leaf rust (Puccinia hordei L.).

Development of robust, allele-specific PCR markers for codominant SNP geno-
typing on agarose gels by temperature-switch PCR has been demonstrated by 
Hayden et al. (2009). A total of 87 TSP markers were developed in barley for 
assessing gene diversity and were evaluated regarding efficacy for marker develop-
ment, assay reliability and genotyping accuracy. The temperature-switch PCR 
markers provided good coverage of the genome, usability and ease in scoring and 
interpreting and assay automation. temperature-switch PCR markers are expected 
to provide similar advantages in breeding for any animal or plant species (Hayden 
et al. 2009).

4.1.5  Sorghum

Sorghum is a C4 grass, and is a source of food, feed, fiber and biofuel, especially 
in the semi-arid tropics. Its genome (~730 Mbp) has been sequenced, and the infor-
mation can be transferred to its closet relatives (maize, wheat etc.) for developing 
fine genetic linkage map which will pave the way for initiating MAS in the grass 
family (Paterson et al. 2009).
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Stay-green in sorghum is one of the most important mechanisms conferring 
drought resistance, for which several QTLs (Stg1, Stg2, Stg3 and Stg4) were identi-
fied using various populations (Haussmann et al. 2002; Sanchez et al. 2002; Harris 
et al. 2007). Out of these, Stg2 was used to develop sorghum NILs through marker-
assisted backcrossing (Sanchez et al. 2002). Later, 18 different near isogenic lines 
were developed through MAS that contained introgressed regions of the four major 
stay-green loci, Stg1–Stg4.

Tolerance to early season cold is a quantitative trait, and several QTLs linked 
with microsatellite markers were identified. These microsatellite markers were 
validated for initiating MAS for tolerance to early-season cold in various genetic 
backgrounds and environments (Knoll and Ejeta 2008).

A RAPD marker OPJ01
1437

 associated with resistance to Anthracnose disease 
was mapped and converted into serquence characterized amplified region (SCJ01) 
which showed correspondence to contig-3966 located on chr-8 of sorghum genome 
which could be used in diagnosing resistant plants (Singh et al. 2006).

One of the most damaging insect pests of sorghum at the seedling stage is the 
shoot fly. A microsatellite marker-based linkage map was constructed using recom-
binant inbred lines of the cross 296B (susceptible) × IS18551 (resistant) by Satish 
et al. (2009). A total of 29 QTLs were detected by multiple QTL mapping viz., four 
each for leaf glossiness and seedling vigor, seven for oviposition, six for dead-
hearts, two for adaxial trichome density and six for abaxial trichome density. For 
most of the QTLs, resistance alleles were contributed by IS18551; however, at six 
QTLs, alleles from 296B also contributed to resistance. Some QTLs identified in 
this study corresponded to QTLs/genes for insect resistance at the syntenic maize 
genomic regions, which implies conservation of insect resistance loci between 
these crops. The QTLs identified in the study will offer a foundation for MAS 
programs for improving shoot fly resistance in sorghum.

4.2  Family: Malvaceae

4.2.1  Cotton (Gossypium sp.)

Cotton is the world’s most important natural textile fiber (Rahman et al. 2008a). 
Sustainability in lint production and its quality can be obtained by employing mod-
ern genomic tools to discover DNA polymorphisms and their utility in MAS 
(Rahman et al. 2009). Community resources like an integrated web database 
(Gingle et al. 2006), cotton microsatellite database (Blenda et al. 2006), and com-
parative QTL resource (Rong et al. 2007) along with sequencing data for Gossypium 
can accelerate the progress towards initiating marker assisted selection in cotton 
improvement programs (Chen et al. 2007).

Two QTLs (t
1
 and t

2
) were found on chr-6 and chr-25, respectively, for dense 

leaf pubescence in cotton. Other QTLs with significant phenotypic variation in leaf 
pubescence were designated as t

3
, t

4
, t

5
 (Wright et al. 1999). In another study 
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RAPDs and microsatellite markers linked to hairiness, nectariless and red leaf 
color traits were identified (Rahman et al. 2002a; Rahman et al. 2003; Ali et al. 
2009). Water stress is one of the major factors for reduction in cotton production. 
Different QTLs have been found that can be potentially be utilized for MAS in 
cotton under water stress conditions (Saranga et al. 2001; Paterson et al. 2003; 
Ullah 2009).

One RAPD marker linked with gene which restore male-fertility was discovered 
in upland cotton. This marker was sub-cloned, sequenced, and mapped to a cotton 
high density RFLP map (Lan et al. 1999). Furthermore, RAPD markers associated 
with two dominant restorer genes (Rf

1
 and Rf

2
) were identified in two cotton lines 

of D
2
 genome which are useful in MAS for developing restorer parental lines 

(Zhang and Stewart 2004; Feng et al. 2005).
Four RAPDs and two microsatellite markers associated with resistance to cotton 

leaf curl disease (CLCuD) were identified (Rahman 2002; Rahman et al. 2006). 
These markers were utilized in monitoring the transfer of resistance in succeeding 
generations which resulted in the development of two resistant cotton lines 
NIBGE-2 (Rahman and Zafar 2007b) and NIBGE-115 (Rahman and Zafar 2007a). 
In another study, three RFLP markers associated with resistance to the virus disease 
were identified using an interspecific F

2:3
 population [G. barbadense (highly sus-

pectible genotype)/G. hirsutum (resistant genotype)] (Aslam et al. 1999).
Fusarium wilt causes yellowing, wilting, defoliation, vascular tissue damage and 

ultimately death in cotton. An intraspecific (G. hirsutum) F
2
 population was devel-

oped by crossing a highly resistant cultivar ZMS35 with a susceptible cultivar 
Junmian-1 to find linked markers associated with fusarium wilt resistance. 
Molecular mapping identified a fusarium wilt resistance gene closely linked with 
an microsatellite marker JESPR304_

280
 on chromosome D3 (c17). With composite 

interval mapping, four QTLs were detected. Among them, one major QTL 
(LOD > 20) was tagged near marker JESPR304 within an interval of 0.06–0.2 cM, 
and explained over 52.5–60.9% phenotypic variance. It provides an opportunity to 
conduct MAS to develop fusarium wilt resistant cultivars (Wang et al. 2009).

DNA markers linked to fiber quality traits can be utilized for MAS in cotton 
(Zhang et al. 2003; Asif 2009). QTLs for fiber strength were identified using a 
population from a cross between Gossypium hirsutum (TM-1) and a G. anomalum 
introgression line 7,235 (Zhang et al. 2003). Nine DNA markers (three microsatel-
lite markers and six RAPD markers) were linked to two QTLs for fiber strength 
mapped into one linkage group. One major ‘QTLFS1’ explaining 30% of pheno-
typic variation was transfered in four different genetic backgrounds using the 
linked RAPD and microsatellite markers. Later on, one of the random amplified 
polymorphic DNA markers converted into reliable SCAR (SCAR431

1920
) was suc-

cessfully applied to large scale screening for the presence or absence of the major 
QTL linked with fiber strength in cotton molecular breeding program (Guo et al. 
2003). Recently, Chen et al. (2009) fine mapped this major fiber strength QTL on 
Chr-24 (D8).

Restriction fragment length polymorphism markers in an interspecific (G. hirsutum x 
G. barbadense) population associated with some important fiber quality related 
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QTLs were identified (Chee et al. 2005a, b; Draye et al. 2005). Markers associated 
with the QTLs coming from G. barbadense may help in MAS breeding for high 
quality lint production in cotton (Chee et al. 2005b). Also, microsatellite markers 
were successfully used to monitor the introgression of genomic regions derived 
from G. barbadense into G. hirsutum which escalated 12–20% increase in fiber 
length (Mumtaz 2007). Amplified fragment length polymorphisms associated with 
fiber and agronomic traits were identified in cotton recombinant inbred lines which 
could also be used in MAS (Jixiang et al. 2007).

Wu et al. (2009) evaluated recombinant inbred lines developed from F
2
-derived 

families and their two parental lines, ‘HS 46’ and ‘MARCABUCAG8US-1-88’, for 
two years. Microsatellite markers were used to construct 26 linkage groups, span-
ning 965 cM, out of these 24 linkage groups were assigned to chromosomes. Fifty-
six QTLs (LOD > 3.0) associated with 14 agronomic and fiber traits were located 
on 17 chromosomes. One QTL associated with fiber elongation was located on 
linkage group LGU01. Nine chromosomes in the A subgenome harbored 27 QTLs 
with 10 associated with agronomic traits and 17 with fiber traits. Eight chromo-
somes in the D sub-genome contained 29 QTLs with 13 associated with agronomic 
traits and 16 with fiber traits. Chromosomes number 3, 5, 12, 13, 14, 16, 20, and 26 
of which contain important QTLs for both yield and fiber quality compared to other 
chromosomes. These QTLs were detected in intraspecific regions thus may have 
utility in MAS (Wu et al. 2009).

4.3  Family: Solanaceae

4.3.1  Tomato

In pioneering experiments elucidating the possibilities of using DNA markers in 
crop improvement programs, four markers representing three chromosomal regions, 
controlling the soluble solids and pH, were introgressed from wild tomato 
(L. chmielewskii) in cultivated tomato species (L. esculentum, Tanksley and Hewitt 
1988). In another study, six QTLs controlling fruit mass, four QTLs for the concen-
tration of soluble solids and five QTLs for fruit pH were mapped using a population 
derived from intraspecific backcross (Paterson et al. 1988).

A QTL for increased soluble solid contents was introgressed into cultivated 
tomato from L. chmielewskii chr-1, and near isogenic lines were developed through 
marker-assisted introgression (Frary et al. 2003). Similarly, marker-assisted back-
crossing method was used for recovering five QTLs linked with fruit quality traits 
into three different genetic backgrounds of cultivated tomato. It was demonstrated 
that three backcrosses were enough to recover much of the recipient genome 
(Lecomte et al. 2004).

Molecular markers are valuable diagnostic tools for tracing the recessive or 
incompletely dominant resistant genes. Identification of five RAPD markers, 
converted into SCARs (Paran and Michelmore 1993), and two RFLP markers 
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(Huang et al. 2000) around a gene Ol-1 conferring incomplete dominance resis-
tance to tomato powdery mildew (Oidium lycopersicum) disease set the stage for 
map-based cloning and MAS (Huang et al. 2000). Resistance to Blackmold, caused 
by the fungus Alternaria alternata, has been found in a wild tomato (L. chees-
manii), and was recovered in cultivated tomato species using RFLP and PCR-based 
markers (Robert et al. 2001).

Tomato cultivars are sensitive to drought especially at seed germination and 
early seedling growth stages. Four QTLs impacting germination rate under drought 
were identified using a population derived from a cross between a commercial line 
of L. esculentum and L. pimpinellifolium (Foolad et al. 2002). These QTLs could 
potentially be used to increase the germination rate in tomato through marker 
assisted breeding.

Molecular markers linked to phenotypically important traits which are difficult 
and/or costly to measure are very useful. Biological assays for evaluation of disease 
traits are often influenced by environmental factors, and scoring is difficult. The 
development and/or evaluation of molecular marker assays for the Verticillium 
genes Ve1 and Ve2, the tomato mosaic virus Tm1 (linked marker), the tomato mosaic 
virus Tm2 and Tm2 2 genes, the Meloidogyne incognita Mi1-2 gene, the Fusarium I 
(linked marker) and I2 loci was described by Arens et al. (2010). Marker assays 
showed an advantage over biological tests in that the results were clearer.

In tomatoes the Sw-5 locus is reported to be responsible for the best levels of 
broad-spectrum Tospovirus resistance. Sw-5b represents the actual resistance gene 
out of the five paralogues of this locus (denoted Sw-5a through Sw-5e). A panel of 
seven PCR primer pairs matching different sequences within a genomic region 
spanning the Sw-5a and Sw-5b genes cluster was evaluated. Primers efficiency was 
evaluated by employing tomato isolines with and without the Sw-5 locus. A single 
and co-dominant polymorphism between susceptible and resistant isolines was 
produced by one primer pair. After sequence analysis of these amplicons it was 
found that they were specific for the Sw-5 locus and their differences were due to 
insertions/deletions. A conserved sequence of the promoter region of the functional 
Sw-5b gene, being located in position −31 from its open reading frame was encom-
passed by the polymorphic SCAR amplification. An almost complete correlation 
was found between resistance under greenhouse/field conditions and the presence 
of the marker after evaluation in field assays and with a collection of accessions 
known to be either susceptible or resistant to tospoviruses. This primer pair was 
found to be a useful tool in MAS (Dianese et al. 2010).

4.3.2  Potato (Solanum sp.)

Chip color in potato is influenced by the sucrose synthase gene. A polymorphic allele 
associated with chip color has been identified and used in marker assited selection for 
developing potato cultivars (Kawchuk et al. 2008). For better water-use efficiency, a 
QTL representing introgressed fragment from S. pennellii was used for diagnosing F

2
 

plants with introgressed fragment in marker assisted breeding (Xu et al. 2008b).
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Genes conferring resistance to viruses, bacteria, nematodes, and fungi have been 
positioned on the molecular map of potato using DNA markers, and the QTLs 
associated with resistance genes were identified to launch marker-assisted breeding 
(Naess et al. 2000; Gebhardt and Valkonen 2001). Some of the QTLs for resistance 
to different pathogens were linked to each other and/or to resistance hotspots. 
Mapping potato genes with sequence similarity to cloned R genes from other plants 
and other defense-related genes has revealed linkages between candidate genes, 
R genes, and QTLs associated with resistance, suggesting that the “candidate gene 
approach” is useful for detecting important DNA markers in potato.

A wild potato (S. stoloniferum) carries the Ry
sto

 gene that confers extreme resis-
tance to Potato virus Y. This gene was introgressed into cultivated potato using 
RFLP based cleaved amplified polymorphic sequence and microsatellite markers 
(Song et al. 2005; Valkonen et al. 2008). Tomato Ve1 and Ve2 gene sequence infor-
mation (conferring resistance to verticillium wilt) was used to amplify candidate Ve 
gene orthologs from both verticillium wilt resistant and susceptible diploid potato 
hybrids. On the basis of this information a cleaved amplified polymorphic sequence 
marker associated with verticillium wilt resistance was developed and effectively 
used to select verticillium wilt resistant plants in diploid potato populations (Bae 
et al. 2008).

Solanum tuberosum ssp. andigena gene Ry 
adg

 provides extreme resistance to Potato 
virus Y. This gene was genetically mapped to chromosome XI and PCR-based DNA 
markers linked with this gene were also identified. Advanced tetraploid russeted potato 
clones developed by the U.S. Pacific Northwest Potato Breeding (‘Tri-State’) Program 
with Ry 

adg
 Potato virus Y resistance were used to assess the usefulness of molecular 

markers linked to Ry 
adg

. These markers can further be used as a tool for selecting 
Potato virus Y resistance in a tetraploid potato breeding program which are a better 
alternative to artificial inoculation followed by ELISA. Marker assisted selection can 
simplify generating Potato virus Y resistant potato varieties (Ryon et al. 2009).

4.4  Family: Fabaceae

4.4.1  Soybean

An important yield QTL was identified in an accession of Glycine soja (PI 
407305) by evaluating a BC

2
 population (HS-1 and PI 407305), which was intro-

gressed into six genetic backgrounds through marker assisted backcrossing. 
This QTL contributed 9.4% yield advantage to two of the six genetic backgrounds 
(Concibido et al. 2003).

To widen the narrow genetic base of elite soybean germplasm (G. max), five back-
cross populations (BC

2
F

4
, 468 lines) derived from a cross of G. max cv. A2008/G. 

soja acc. 468916, tested for 2 years at two different locations. Four yield QTLs, one 
lodging QTL, four QTLs for maturity, and five QTLs for plant height were identified. 
Most QTLs mapped to regions where QTLs with similar effects were previously 
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mapped. Alleles derived from G. max cultivar conferred higher yield than alleles from 
G. soja (Wang et al. 2004). Also, microsatellite marker Sat_107 closely associated 
with the four-seeded pod (4SP) locus was effective in selecting plants for this trait 
(Zhu and Sun 2006). Understanding the mechanism of canopy wilting in soybean 
may lead to yield improvement during drought. Charlson et al. (2009) used recombi-
nant inbred lines population to identify QTLs for canopy wilting under three environ-
ments. Four QTLs on molecular linkage groups (MLGs) A2, B2, D2, and F were 
detected, which collectively accounted for 47% of phenotypic variation.

Seed yield mega-environment-universal and specific QTL (QTL
U
 and QTL

SP
, 

respectively) were identified in a RIL population derived from a cross between a 
Chinese and a Canadian soybean. Seven seed yield QTL were identified of which 
five were mega-environment universal QTL and two were mega-environment-specific 
QTL. Four yield QTL

U
, tagged by microsatellite markers (Satt100, Satt277, Satt162 

and Sat_126), were co-localized with a QTL associated with an agronomic trait. 
It was suggested that successful introgression of productivity alleles from plant 
introductions into adapted germplasm could be facilitated by use of both QTL

U
 and 

QTL
SP

 (Palomeque et al. 2009a, b)
Resistance to sudden-death syndrome (caused by Fusarium solani) is controlled 

by multiple QTLs. A total of six loci involved in resistance to sudden-death syn-
drome showed additive gene action, elucidating that cultivars with durable resis-
tance can be developed via gene pyramiding through MAS (Iqbal et al. 2001).

A series of resistance genes (Rps) have been identified against root and stem rot 
(caused by Phytophthora sojae), however, only Rps8 has been mapped. Tightly 
linked microsatellite markers were identified in the Rps8 region. Later it has been 
shown that the Rps8 gene is located closely to the disease resistance gene-rich Rps3 
region (Sandhu et al. 2005), which can potentially be used for MAS in soybean.

A comparative genomic approach was used to fine map Rsv4 gene, conferring 
resistance to soybean mosaic virus, indicating the use of comparative mapping in 
MAS (Hwang et al. 2006).

A total of six single nucleotide polymorphisms tightly linked to QTLs for resis-
tance to southern root-knot nematode (Meloidogyne incognita) were identified. 
Among these, SNP358 and SNP199 markers could be used effectively in MAS for 
developing resistance agains the disease. Application of single nucleotide polymor-
phisms also enhanced the efficiency and cost-effectiveness of MAS in soybean.

Resistance to soybean aphid is controlled by a single dominant gene ‘Rag1’ that 
was mapped to soybean linkage group M between the microsatellite markers 
Satt435 and Satt463. These markers were exploited in MAS for breeding resistance 
against aphid (Li et al. 2007).

Phytoestrogen content and profile in soybean fluctuate in different environments 
and genotypes. However, the final seed content is largely controlled by the geno-
type (40–60% of the variation), mainly by a set of about 6–12 loci (Kassem et al. 
2006). Heritability of phytoestrogen content is moderate, thus, direct selection 
(without DNA markers) has not been very effective. Through MAS phytoestrogen 
amounts increased well above the level found in elite cultivars, exemplifying the 
role of MAS toward the improvement of phytoestrogen content (Lightfoot 2008).
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4.4.2  Common Beans

Common bacterial blight caused by Xanthomonas campestris pv. Phaseoli is 
responsible for signifcant reduction in yield of common bean (Phaseoius vulgaris) 
worldwide. A SCAR marker BC420 linked to a QTL conferring resistance to com-
mon bacterial blight, found reliable for MAS across different genetic backgrounds 
(Yu et al. 2000; Park and Yu 2004; Liu et al. 2005), and this marker was used to 
transfer the QTL in advanced bean lines, exhibiting improved resistance to com-
mon bacterial blight (Mutlu et al. 2005). This marker has been extensively used in 
MAS breeding programmes in different countries (Fourie and Herselman 2002; 
Mutlu et al. 2005; Liu et al. 2008). Effectiveness of MAS was tested for resistance 
to white mold (Sclerotinia sclerotiorum) using two recombinant inbred lines (Ender 
et al. 2008). Random amplified polymorphic DNA and AFLP markers were sur-
veyed for selection of a major QTL associated with resistance and plant architec-
tural avoidance traits. Based on two years of field evaluation under white mold 
pressure, ten recombinant inbred lines generated through MAS, revealed signifi-
cantly less disease than the control. This study supported the usefulness of MAS to 
enhance selection for a complex trait in common bean.

4.4.3  Peas

Powdery mildew, caused by Erysiphe pisi, is a major limitation factor for yield 
losses (up to 15%) in peas (Pisum sativum), a widely grown grain legume. Three 
genes, er1, er2 (later mapped on linkage group III, Katoch et al. 2009) and Er3, 
conferring resistance to powdery mildew were identified (Fondevilla et al. 2007). 
DNA markers linked to resistance genes provide an alternative to disease screening 
for pyramiding of powdery mildew resistance genes in pea. Random amplified 
polymorphic DNA, SCAR, AFLP and microsatellite markers tightly linked to these 
resistance genes have been identified and mapped for MAS (Tiwari et al. 1998, 
1999; Janila and Sharma 2004; Ek et al. 2005; Fondevilla et al. 2007; Katoch et al. 
2009). Two SCAR makers linked to Er3 gene were successfully used to distinguish 
homozygous resistant F

2
 plants (Fondevilla et al. 2008).

The number of offspring to be propagated, selected and tested can be reduced by 
merging MAS with breeding strategies. Potato breeding includes the testing of 
resistance to viral pathogens such as pea seed-borne mosaic virus. Resistance to the 
common strains of pea seed-borne mosaic virus is conferred by a single recessive 
gene (eIF4E), localized on LG VI (sbm-1 locus). Smykal et al. (2010) have ana-
lyzed donors of resistant varieties and breeding lines for variation in the eIF4E 
genomic sequences. After complete investigation of the eIF4E gene structure and 
mutations responsible for pea seed-borne mosaic virus resistance PCR-based and 
gene-specific single nucleotide polymorphism and co-dominant amplicon length 
polymorphism markers were developed. Sequence data and/or allele specific DNA 
markers were tested on potato accessions. Allele specific markers which were 
developed were successfully surveyed on a wide range of pea varieties and breeding 
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lines. Due to the better authenticity of these markers in comparison with the symp-
tomology and ELISA, testing these molecular markers will considerably speed-up 
pea seed-borne mosaic virus diagnosis and resistance breeding processes in pea 
(Smykal et al. 2010).

4.4.4  Chickpea

Ascochyta blight caused by Ascochyta rabiei is a fungal disease in chickpea (Cicer 
arietinum). Over the last decade, attempts have been made to tag ascochyta blight 
resistance genes with DNA markers (Santra et al. 2000; Tekeoglu et al. 2002; Taran 
et al. 2007; Anbessa et al. 2009). Despite many reports of QTLs for resistance to 
ascochyta blight (Cho et al. 2004; Cobos et al. 2006; Iruela et al. 2007; Taran et al. 
2007), applications of MAS for improving resistance against the disease are not com-
mon (Anbessa et al. 2009) due to moderate sources of resistance conferred by differ-
ent genes originating from various cultivated species. Four divergent moderately 
resistant cultivars and one highly susceptible genotype were used followed by survey-
ing with microsatellite markers, and five QTLs explaining 14–56% each of the phe-
notypic variation, were identified. These QTLs could be pyramided in one genotype 
for enhancing resistance against the disease (Anbessa et al. 2009). In another study, 
three QTLs were identified that contributed to resistance to an Indian isolate of asco-
chyta blight. QTL1 was mapped to LG3 linked to marker TR58. QTL2 and QTL3 
were both mapped to LG4 close to four microsatellite markers. Markers TA146 and 
TR20, linked to QTL2 were revealed to be significantly associated with ascochyta 
blight resistance at the seedling stage in this half-sib population. The markers linked to 
these QTLs can further be utilized in marker-assisted breeding for ascochyta blight 
resistance in chickpea (Kottapalli et al. 2009).

4.5  Family: Brassicaceae

4.5.1  Brassica

Cytoplasmic male sterility and its corresponding nuclear fertility restorer genes, Rfo, 
were introgressed from radish to Brassica species, which were extensively utilized 
in developing canola hybrid seed. Sequence alignment of genomic clones of Rfo 
from a canola restorer line R2000, and a non-restorer line Nexera 705 revealed three 
homologous sequences of Rfo. Based on sequence polymorphisms between the 
restorer and non-restorer lines, Rfo allele-specific PCR markers were developed. 
One of the allele-specific markers was useful for selecting Rfo alleles during marker-
assisted introgression in canola hybrid development (Hu et al. 2008).

A single base change in the Bn-FAE1.1 gene in the A-genome and a two-base dele-
tion in the Bn-FAE1.2 gene in the C-genome virtually eliminate erucic acid from 
canola. The single base change in the Bn- FAE1.1 gene was detected as a single 
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nucleotide polymorphism marker, while the two base deletions in the Bn-FAE1.2 
gene were detected as a SCAR marker. These molecular markers have been 
employed in marker-assisted breeding of canola/rapeseed (Rahman et al. 2008c).

Turnip yellows virus which is aphid transmitted has become a serious pathogen 
in many rapeseed (Brassica napus L.) growing areas. To get comprehensive infor-
mation on the genetics of Turnip yellows virus resistance derived from the resyn-
thesised B. napus line ‘R54’ and to develop closely linked markers 3-year’ field 
trials were conducted. Bulked-segregant marker analysis identified two closely 
linked microsatellite markers along with six closely linked and three co-segregating 
AFLP markers. Two AFLP markers were further converted into co-dominant 
sequence tagged site markers, making possible the efficient marker-based selec-
tion for Turnip yellows virus resistance (Juergens et al. 2010).

4.6  Family: Cucurbitaceae

4.6.1  Cucumber

Application of MAS breeding in cucumber (Cucumis sativus) has great potential to 
increase selection efficiency for improving yield components. DNA markers associ-
ated with yield components were identified and were utilized in MAS during back-
cross breeding (Fazio et al. 2003a, b; Fan et al. 2006). Markers utilized for MAS 
were linked to QTLs for earliness, gynoecy, length to diameter ratio, and multiple 
lateral branching. Phenotypic selection improved multiple lateral branching and 
length to diameter ratio and MAS continued improvement of these traits as well as 
gynoecy. Recently, using four cucumber populations, Robbins and Staub (2009) 
found both MAS and phenotypic selection to be useful for multi-trait improvement, 
but their effectiveness depended upon traits and populations under selection. 
Generally, phenotypic selection was most effective for gynoecy, earliness, and fruit 
length to diameter ratio, while MAS was effective for multiple lateral branching and 
increased yield (fruit per plant).

Warty fruit is one of the most important external quality traits related to the market 
values of cucumber. A single dominant gene, Tu (Tuberculate fruit), has been 
shown to be determinant of the warty fruit trait. Zhang et al. (2010) developed an 
F

2
 population from the cross of S06 × S52 and further utilised for the mapping of 

the Tu/tu locus. Bulked segregant analysis was combined with the sequence-related 
amplified polymorphism and microsatellite markers, consequently 15 markers 
(nine SRAPs and six microsatellite markers) linked to the Tu/tu locus were identi-
fied. Three markers closely linked to the Tu/tu locus were successfully converted 
into SCARs. The Tu/tu locus was mapped between the co-dominant microsatellite 
marker SSR16203 and the SCAR marker C_SC933, at a genetic distance of 1.4 and 
5.9 cM, respectively, locating the Tu/tu locus on cucumber chr-5. The C_SC69 and 
C_SC24 markers were validated with 62 cucumber lines of diverse origins, showing 
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that the two SCAR markers can be used for MAS of the warty fruit trait in cucum-
ber breeding. The knowledge provided in this study can further facilitate the map-
based cloning of the Tu/tu gene.

5  Conclusion

Recent advances in DNA marker assays set the stage for further invigorating and 
streamlining MAS for plants containing many traits of interest. However, there 
remain numerous factors which hinder the speed of MAS for recovering polygenic 
traits, including the unit and capital costs of high throughput genotyping systems, 
and prolonged and labor intensive methods for identification of marker-trait asso-
ciations. Further technological innovations coupled with continually-improving 
automation are still needed to fully exploit the potential of MAS. High-throughput 
SNP detection systems may have a great influence on future mapping studies and 
marker assisted-based breeding. Recent advances in DNA sequencing and SNP 
genotyping promise to streamline new association-based approaches to QTL map-
ping and quantitative trait nucleotide (QTN), expediting the possibilities of (a) 
identifying functional variants directly in genes (gene based markers) and not at 
anonymous markers and (b) whole genome scans. Both approaches rely on the detec-
tion of linkage disequilibrium (LD - nonrandom association between alleles at 
linked loci) and take advantage of recombination events accumulated over many 
generations. Similarly, QTL meta-analyses, integrating information for one trait 
from different populations, and mapping QTLs on multiparental populations, hold 
promise for reducing the gap between marker-based QTL discovery and the practi-
cal application of MAS in plant breeding.
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Abstract Since 1940 the use of synthetic pesticides has led to considerable progress 
in agriculture and human health. In particular synthetic pesticides were used to 
protect crops and to fight against disease vectors. As a result it has been possible 
to feed most of the world population by increasing yields. Beside the beneficial 
effects for farmers by making their work easier and reducing harvest losses; and 
benefial effects for humanity by providing abundant food with improved sanitary 
quality, the intensive use of pesticides has given rise to serious health issues. Indeed 
pesticides can be very toxic and are responsible of farming diseases such as can-
cers and neurodegenerative diseases. Besides, with the increase of their efficiency 
and their selectivity, pesticides become also more and more expensive for farmers. 
However, in developed countries, there is a rapid change from subsistence farming 
to intensive farming, which is able to feed more people.

In the past the regulatory framework for pesticide use was less restricting and 
this led to cases of abuse. In addition, our societies were less aware of the risks of 
pesticide use for the environment. A major issue is the persistence of pesticides in 
soils and waters. Indeed pesticides are biocides. Their lack of selectivity could lead 
to an important risk for living organisms and humans by contamination of drinking 
water and food. The presence of these biocides or their metabolites in soil, water, 
plants and even the atmosphere, together with their potential pharmacodynamic 
properties, can have harmful effects on the environment and on human health. In 
countries belonging to the European Union, regulations aim to reduce risks at the 
lowest level, but it is not the case everywhere. Some problems should now be 
overcome.

Phytoremediation can reduce pollution and decrease the impact of pesticides 
on the environment. Two examples of substances are discussed in this review 
to illustrate the risk for the environment and remediation by plants to reduce it. 
First, the review focused on 1,1,1-trichloro-2,2,bis(p-chlorophenyl)ethane (DDT), 
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an organochlorine insecticide used with a large success against human disease vectors 
or in crop protection against some coleopterans such as potato beetles. Its intensive 
use had contaminated huge areas in the world. Now, it is classified as a persistent 
organic pollutant (POP), due to its too slow degradation. Plants and associated 
microorganisms can degrade DDT but metabolites, dichlorodiphenyldichloroeth-
ylen (DDE), and dichlorodiphenyldichloroethan (DDD) are of identical persistence. 
The uptake by plants is very weak, and plant use could not resolve the DDT pollution. 
The second example is atrazine, an herbicide of the s-triazine group. It was 
largely used in crops such as maize. Now, atrazine and some metabolites are mainly 
pollutants of hydraulic networks. It is suspected to be an endocrine disruptor. Plants 
can help to reduce atrazine pollution by accelerating its microbial degradation but 
some degradative compounds, deethylatrazine (DEA) or deisopropylatrazine 
(DIA), polluted also water. However, plants could be useful to reduce water pollu-
tion because they can reduce run-off of atrazine derivates. Both examples showed 
the direct action of plants on pesticides by their capacity to take up, accumulate or 
detoxify organic substances or by their indirect action by stimulation of soil micro-
bial activity in the breakdown of organic compounds.

The use of plants is then presented in the form of examples describing their 
capacity to prevent pesticide pollution and the use of buffer zones between fields 
and hydraulic networks. The efficiency of vegetative filter strips (VFS) to protect 
water from pesticide run-off contamination leads the authorities to require them in 
good farming practice. Plants could be also used in the depuration of farming 
wastes. Macrophyte-planted constructed wetlands are efficient to purify farming wastes 
but their setting is critical.

The variety of contaminated biotopes, as the number of pesticides to depurate, 
is large. This means that the plant choice must be done among many plants. High 
variability of plant tolerance does make choice more difficult. Three types of plants 
are particularly useful: graminae in buffer zones, trees such as poplar or willow in 
riparian zones or in phytoremediation processes due to large evapotranspiration 
capacities, and aquatic plants for waste depuration processes. The difficulties to 
find a polyvalent wild plant, lead to search for new methods to select plants more 
efficiently. The new genetic engineering technologies are a few developed because 
they can prove possible to broaden the scope even more. The conclusion consists 
of a brief glimpse of benefits of the use of plants and their limits.

Keywords Phytoremediation • Pesticides • DDT • Herbicides • Atrazine • Rhizosphere 
• Metabolism • Vegetative filter strips • Constructed wetlands

Abbreviations

ATZ Atrazine: 2-chloro-4-(aminoethyl)-6-(aminoisopropyl)-s-1,3,5-triazine
BAF Bioconcentration factor (ratio of total plant concentration vs. soil 

concentration)
CHC Clay-humic complex
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DEA  Deethylatrazine
DIA  Deisopropylatrazine
DIDA  Didealkylatrazine
HO-A  Hydroxyatrazine
DDD  Dichlorodiphenyldichloroethan
DDE  Dichlorodiphenyldichloroethylen
DDMU  1-Chloro-2,2-bis(p-chlorophenyl)ethane
DDT  1,1,1-Trichloro-2,2,bis(p-chlorophenyl)ethane
SDDT  Sum of DDT and its metabolites
DIMBOA  2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one
GUS  Groundwater Ubiquity Score
GST  Glutathione transferase
HCH  Hexachlorocyclohexane
K

oc
  The partition coefficient of the compound in organic matter vs. water

OCPs  Organochlorine pesticides
PCP  Pentachlorophenol
RCF  Root concentration factor (ratio of root concentration vs. soil concentration)
TSCF  Transpiration stream concentration factor (ratio from xylem concen-

tration vs. soil concentration)
VFS  Vegetative filter strip.

1  Introduction

The very rapid increase and massive use of chemicals in crop protection and in the 
management of various parasitic diseases of humans such as malaria and typhus 
have led to the contamination of farmland and natural areas by persistent agrochemi-
cals (McKone and Ryan 1989). The enthusiasm for these products reflected the 
beneficial effects for farming and people. Their effectiveness facilitated the work of 
farmers for example by making manual weeding unnecessary and affording better 
protection of crops against insect pests and fungal diseases. This meant that popula-
tions had more regular and more abundant food supplies with improved sanitary 
quality. The use of these compounds allowed a rapid, effective response to a problem 
of human health or of the durability of farming. Even if there have been situations 
of abuse, agrochemicals have reduced certain difficulties in food crop farming.

Furthermore, with the exception of subsistence farming, no farming system has 
been able to maintain economically profitable agriculture without measures to pro-
tect against pests. It is probable that so-called organic farming systems do not have 
the capacity to provide sufficient food for the entire population of the world. Thus 
no developed agricultural country does without the use of pesticides, whatever the 
method used to manage farming.

As a result, during a period in which the environment was merely a secondary 
preoccupation for our societies, the main concern in farming was to produce food-
stuffs in sufficient quantities. The problems involved in the use of pesticides such 
as the toxicity of compounds for users and risks that their use and dispersal involved 
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for the environment were long underestimated and not taken into consideration 
(Mackay and Fraser 2000). However, these problems have been a major issue for 
our developed societies for some time. The two main reasons for concern as regards 
to these substances are their dispersal in the environment via water (run-off and 
infiltration) and via air (volatility of the compounds and dispersal by polluted soil 
particles) together with the persistence of some of them.

Two substances are emblematic examples of this: atrazine and 1,1,1-trichloro-
2,2,bis(p-chlorophenyl)ethane (DDT). The latter was the main insecticide used on 
a large scale in farming and forestry and also for the control of mosquito vectors of 
malaria and typhus. After a few years, it was dispersed over the whole planet, 
including the poles (Furgal et al. 2003). Its weak biodegradation makes it persistent 
in the environment, with a half-life estimated at several decades (Crowe and Smith 
2007). Furthermore, it accumulates in the adipose tissue of animals exposed to it. 
These observations led to fear of serious risk to fauna -especially birds- and to its 
banning in the developed countries, even for fighting malaria. However, high levels 
are still found tens of years after it was forbidden in these countries.

Atrazine, a more recent herbicide used extensively in maize growing and along 
lines of communication (especially railways), is found in aquatic environments 
after leaching from the soil. It is suspected of causing endocrinal disturbances, 
especially in batrachians (Hayes et al. 2002) and has been forbidden in many coun-
tries for this reason. However, it is still found in watercourses after being banned 
for several years. Movement in aquatic environments is the main cause of contami-
nation by pesticides as inflow by run-off is continuous (Klöppel et al. 1997).

Substances referred to as ‘persistent’ are therefore currently forbidden in agricul-
ture. However, contamination by them must be remediated. Secondly, even though 
the substances currently used are less persistent, there is still a risk of dispersion and 
the non-agricultural environment should be protected from these new compounds.

As a result, the development of sustainable agriculture requires first the restora-
tion of the quality of the environment by eliminating the pesticide contamination, 
secondly the elimination of initial pollution by limiting use to what is strictly neces-
sary and by creating barriers between the application site, fields, and its surroundings, 
no crop biotopes. This review describes the facilities used to implement these 
rehabilitation procedures and to protect environments in which plants form the 
main remediation agents.

2  Environmental Pollution

2.1  Organochlorine Pesticides (OCPs)

Organochlorines pesticides, such as DDT, lindane or chlordane, display persistence 
in the environment and strong bioaccumulation in organisms and are hence classified 
as persistent organic pollutants (POPs) (annexe A, Stockolm convention, 2001), 
compounds for which methods to remediate the environment must be found in 
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addition to a ban on their use (Turusov et al. 2002; Wania and Mackay 1996; 
Gonzalez et al. 2005). Historically, DDT is the first pesticide pointed out for an 
environmental risk, as the causal agent of the decrease of bird population since 
1945. DDT was an insecticide used at massive doses against mosquitoes, vectors of 
some diseases such as malaria. Now, it is widely dispersed in the environment. The 
remanence of DDT, with a half-life superior to several ten of years, results from its 
slow degradation by soil microorganisms. Metabolism does not efficiently contribute 
to its disappearance because the major metabolites, DDE (dichlorodiphenyldichlo-
roethylen) and DDD (dichlorodiphenyldichloroethan) have the same physico-
chemical properties and breakdown resistance than DDT (Fig. 1). Natural decrease 
of these compounds, that is to say natural remediation, by the bacterial flora already 
present in environments is therefore not effective. So, DDT and metabolites 
together are considerate as “total DDT” (S DDT). The compounds are strongly 
lipophilic, with log K

ow
 values between 5.5 and 6.9. They thus strongly adsorb on 

soil particles. Furthermore, the phenomenon is enhanced by alternate drying and 
wetting phases, a weathering phenomenon that results in decreased bioavailability 
of hydrophobic compounds for plants and animals in time (Lunney et al. 2004). 
S DDT concentrations magnified in food chain and these lipophilic compounds are 
stored in body fat. In birds, the main effect, eggshell thinning is due to DDE but the 
mechanism is not elucidated. S DDT is toxic for insects but also for aquatic animals. 
For mammals and humans, they are less toxic but they are given as endocrine disruptors 
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and as probable carcinogens (EPA class B2) although some data was debatable 
(Rogan and Chen 2005). DDT is an emblematic compound of the organochlorine 
pesticide contamination but other OCPs, lindane, hexachlorocyclohexane (HCH), 
chlordane, or chlordecone for example exhibit a similar persistence in the environ-
ment and they are listed on the annexe A of the Stockholm convention (2001).

In plants, these compounds tend to be adsorbed on root systems and are very 
weakly taken up. Several studies have therefore focused on the use of plants to 
attempt to reduce concentrations in soils and hence the impact on the environment. 
All land and aquatic (water, sediments) environments are contaminated and studies 
have been performed on both land and aquatic plants (Tao et al. 2005).

Plants have a direct effect on the soil concentrations of OCPs. In sediments 
contaminated by DDT and chlordane, in which giant bulrush (Schoenoplectus cali-
fornicus) grew, analysis of the rhizospheric soil fraction revealed a decrease in OCP 
concentrations in comparison with a non rhizospheric fraction (Miglioranza et al. 
2004). Calvelo-Pereira et al. (2006) also found a substantial decrease in HCH con-
centration in the rhizosphere. The root system caused uneven distribution of con-
taminants in the soil, with less contamination of the rhizosphere in comparison with 
the level in unplanted soil. Thus, in spite of their adsorption on sediment and 
organic matter, OCPs can be available to the plant. However, the root concentration 
factor (RCF: ratio of root concentration vs. soil concentration) of this compound is 
fairly similar to that calculated according to their physicochemical constants. For 
example, b-HCH was measured at 0.35 in artichoke (Cinara scolymus) when the 
calculated value was 0.32, indicating weak bioaccumulation in these plants 
(Calvelo-Pereira et al. 2008). Other mechanisms for plant polluted-soil interaction 
can be evocated. The root system may increase gas exchanges and hence the vola-
tilization of HCH or increase water movements, resulting in the movement of 
contamination to another environment. Root exudates are thought to also contribute 
to an increase in its solubility in water.

The hydrophobicity of these compounds also limits their translocation in plants. 
In common reed (Phragmites australis), the ratio between the shoot concentration 
and the root concentration was lower than 0.75 for DDT (Chu et al. 2006). Products 
of the breakdown of DDT, DDE, DDD and 1-chloro-2,2-bis(p-chlorophenyl)ethene 
(DDMU) displayed a similar adsorption and translocation profile. Only 20% of root 
concentration was available for the translocation of DDT to shoots (Chu et al. 
2006). The largest fraction of these hydrophobic molecules was only adsorbed on 
the hydrophobic structures of the roots. The various OCPs generally possess a large 
number of isomers, for example o,p¢-DDT, p,p¢-DDT and o,o¢-DDT, or a-, b-, g- 
and d-HCH in HCH whose isomer g, the most potent isomer, is known as lindane. 
Their accumulation in shoots depended also on the isomer. Hence in common reed, 
o,p¢-DDT was absorbed more rapidly than the isomer p,p¢-DDT (Chu et al. 2006). 
The selective accumulation process of o,p¢-DDT would result from its greater 
hydrophobicity. The isomer feature then operated in the opposite direction as the 
most hydrophilic compounds were better transferred to shoots: the RCF is 0.35 and 
0.24 for b-HCH and a-HCH and log K

ow
 values are 4.15 and 3.94, respectively. By 

contrast, the TSCF (TSCF = ratio from xylem concentration vs. soil concentration) 
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of b-HCH is smaller than that of a-HCH (Shimizu et al. 2005. There does not 
appear to be a physiological mechanism enhancing the preferential accumulation 
(Abhilash et al. 2008). The possibility that this difference may reflect local isomers 
in the soil following redistribution according to volatility and lipophily cannot be 
ruled out. However, White et al. (2002) demonstrated the existence of enantioselec-
tive processes of technical chlordane, a mixture of a − (cis)chlordane, g-(trans)
chlordane and oxychlordane (trans-nonachlor), accumulation in various tissues of 
zucchini whereas in contrast translocation in the soil is non-enantioselective.

Most plants display this model of uptake/translocation profile. However, plants 
of the genus Cucurbita, and especially the species Cucurbita pepo (courgette and 
some pumpkins), take up and translocate organochlorine compounds more effec-
tively than other plants. This effectiveness of OCPs absorption by the genus 
Cucurbitaceae was reported by Lichtenstein et al. in 1965 and has been confirmed 
on many occasions. Courgette and pumpkin both display a bioaccumulation factor 
(BAF = ratio of total plant concentration vs. soil concentration) greater than 1 for S 
DDT without any isomer selective accumulation (Lunney et al. 2004). Furthermore, 
the capacity of courgette to translocate DDT residues is greater than that of other 
plants. Dzantor et al. (2000) compared the absorption of S DDT by courgette and 
the graminae tall fescue and rye grass. They showed that S DDT was absorbed by the 
graminae but with very small translocation into the plant. In contrast, strong 
concentrations were found in courgette roots and also in the foliage with a translo-
cation factor higher than 1. Courgette is also known for its very effective accumula-
tion of weathered chlordane via a soil-to-plant uptake pathway (Mattina et al. 
2000). This is a very significant observation because generally DDT or other OCP 
contaminations are ageing contamination, consequently with hard difficulty to 
extract contaminant from soil. The composition of root exudates, in which the pro-
portion and nature of organic acids are different to those of other plants, may 
explain this greater capacity of courgette absorption by a better dissolution of soil 
residues of DDT.

Surprisingly, courgette flowers display preferential accumulation of the isomer 
2,4-DDE and this pattern is also observed in alfalfa (Medicago sativa). That is 
thought to be the result of a preferential metabolism pathway. DDT metabolism 
displayed by plants is generally identical to that of the soil microfauna that leads to 
the formation of DDD, DDE and DDMU. However, these metabolic pathways are 
not an effective means of breaking down the substance. The parent molecule is not 
fully broken down and the fate in the environment and the toxicological features of 
the metabolites display the same profile as DDT (Aigner et al. 1998).

Contamination of environments by DDT and other POPs is long-lasting. The 
weak degradability of these compounds can explain their high half-life, in addition 
to a weak availability due to soil adsorption. This shows the requirement for the 
environment to be protected from these contaminants and also to use alternative 
methods to natural attenuation to reduce effects of POPs. Degradation by micro-
organisms of the rhizosphere will not be sufficient since it leads to non degradable 
metabolites. The weak efficiency of plants to take up POPs limits their use, except 
for some species that should be deeply investigated.
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2.2  Atrazine

Atrazine (2-chloro-4-(aminoethyl)-6-(aminoisopropyl)-s-1,3,5-triazine) is a 
photosynthesis-inhibitor herbicide, used in pre- and post-emergence control of 
annual broad-leaved weeds and annual grasses mainly in maize and sorghum but 
also for sugar cane, vines, lemon and banana among other crops. It is also used in 
non-food crops and at industrial sites such as roads and railways. It was applied 
intensively during 40 years and several tens of thousands of metric tonnes of atra-
zine are used every year (30,000 t year−1 in US). The substance was found to be a 
major contaminant of water, polluting both surface water (Garmouna et al. 1998) 
and underground water (Davoli et al. 1987), resulting in its banning in European 
Union in 2004. Atrazine is suspected to be an endocrine disruptor, particularly in 
male frogs (Hayes et al. 2003) and to synergize the amphibian-sensitivity to virus 
infections, causing the decline of the amphibian population in the world (Forson 
and Storfer 2006).

The average half-life of atrazine in soil (DT
50

) is 40 days (Yanze-Kontchou and 
Gschwind 1995) but depending on the various environments may be as long as 
166 weeks, for example in sandy loam soils (Bowmer 1991). The affinity of atrazine 
for soil organic matter is weak, with a K

oc
 ~ 100 cm3/g (K

oc
 is the partition coefficient 

of the compound in organic matter vs. water), whence its great mobility in the soil. 
The association of DT

50
 with K

oc
 give a GUS index (Groundwater Ubiquity Score or 

GUS = log (DT
50

) (4 − log K
oc

) for atrazine greater than 3.56. This shows a strong 
potential risk of the dispersion of atrazine in aquatic environments (Gustafson 
1989). It is confirmed by its strong and persistent presence in aquatic environments. 
Even though it has been banned since several years in European Union and in spite 
of its rapid disappearance from the areas sprayed, the repeated use of atrazine has 
resulted in atrazine and its metabolites being still in aquatic environments.

Atrazine is considered to break down with some difficulty in the soil (Kaufmann 
and Kearney 1970). Plant cover plays an important role by involving the rhizo-
sphere. The atrazine degradation is very low in bare soil besides vegetated soil 
(Anderson and Coats 1995). Microorganisms break down atrazine into deethylatra-
zine (DEA), deisopropylatrazine (DIA) and didealkylatrazine (DIDA) or hydroxya-
trazine (HO-A) (Fig. 2). However, the regular use of atrazine in some soils during 
several years caused the adaptation of the bacterial communities to the degradation 
of the substance; this resulted in accelerated degradation of the herbicide and com-
plete mineralization (Houot et al. 2000). Accelerated degradation is a metabolic 
process by which bacteria use atrazine as a single energy-source. Other degradative 
pathways such as dealkylation are co-metabolism processes in which bacteria use 
soil organic matter as energy-source. So, the accelerated degradation is very efficient 
in soils with a low organic matter. Hence, although full mineralization may be effec-
tive (Barriuso and Houot 1996), it is generally weak in fields (Lin et al. 2008).

The microbial dechlorination pathway could form a barrier to the dispersion of 
the herbicide, with HO-A more effectively adsorbed in the clay-humic complex 
(CHC). In contrast, the dealkylated metabolites are as mobile as atrazine and finally 
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reach aquatic environments, contributing to “atrazine” aquatic pollution. There is 
no risk of the bioaccumulation of atrazine or dealkyl-metabolites in food chains, 
due to its weak hydrophobicity (Lynch et al. 1982). However, the contamination 
levels observed in water are such as to lead to exposure that appears to be harmful 
for the environment (Solomon et al. 1996). These concentrations vary from a few 
tens of ng L−1 to a few tens of mg L−1 and the half-life is greater than 170 days 
(Radosevich et al. 1995). The degradation of atrazine, into HO-A and dealkylated 
metabolites, occurs mainly in sediment (Goswami and Green 1971). The first 
effects of atrazine in an aquatic environment are related to its herbicidal activity. 
Changes in CO

2
 absorption by algae and in the structure of periphyton communities 

have been demonstrated with concentration of several mg L−1 (Larsen et al. 1986; 
Munoz et al. 2001). The exposure of macrophytes to atrazine in the amounts 
observed in watercourses causes a significant reduction in their biomass, whether 
this follows acute exposure after a period of strong leaching, for example, or at 
smaller chronic doses (Cunningham et al. 1984; Kettle et al. 1987). These effects 
on aquatic plants must have effects on secondary consumers such as aquatic herbivores. 
In addition, it has been shown that atrazine has a direct effect on aquatic vertebrae 
and this would appear to be a more serious environmental concern through distur-
bance to the endocrinal system (Moore and Waring 1998; Hayes et al. 2003).

Due to its K
ow

 of 2.75, atrazine is easily absorbed by roots and then translocated 
by the xylem flow to shoots. The sensitivity of plant to atrazine results from a difference 
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in the degradation pathways in susceptible and tolerant plants. In the latter, including 
maize, atrazine is rapidly dechlorinated to HO-A, which is not phytotoxic, in presence 
of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), a substance present 
naturally in maize roots (Raveton et al. 1997). Nearby this chemical degradation takes 
place enzymatic degradation. Atrazine may undergo dechlorination via glutathione 
conjugation or be dealkylated like in microorganisms. Dealkylated metabolites, DEA 
or DIA, are not entirely devoid of phytotoxicity (Edwards and Owen 1989) and deal-
kylation pathways are preponderant in susceptible plants.

Only a small fraction of the amount applied (1,000–1,500 g ha−1) is used for the 
herbicidal activity; the dose required to kill weeds at a plantlet stage is very low. 
Moreover, the crops such as maize can only take up 10% of the field dosage 
required to have good treatment efficiency. The rest is dispersed in soil and may 
reach aquatic compartments. Due to its solubility and degradation, atrazine disap-
pears rapidly from sprayed fields, but the environmental consequences stay several 
years after the end of its use since it is still detected in water compartments. So, the 
use of atrazine or pesticides with similar risk for the aquatic environment requires 
measures to protect water areas.

2.3  DDT/Atrazine Comparison

Work carried out on DDT and atrazine makes it possible to draw up a table showing 
interaction of plants with the environment and pollution by pesticides (Table 1). It 
also gives an idea of the possible use of plants either in the remediation of pesticide-
contaminated soil -phytoremediation- or by circumventing pollution.

Table 1 Comparison of Characteristics of DDT and Atrazine

DDT Atrazine

Physico-chemical 
characteristics

PM, g mole−1 354 216
K

ow
6.36 2.75

Sw, mg L−1 3.3 10−3 30
Polluted biotopes All biotopes Fields, Water networks
Geo-localisation Diffuse in global 

environment
Watersheds

Persistence Half-life >10 years 15–100 days
Degradation by 

microorganisms
Metabolites DDE, DDD DEA, DIA, HO-A
Metabolite 

persistence
Soil and sediments 

like DDT
Soil: HO-A
Water: Atrazine, DEA, (DIA)

Bioaccumulation Biomagnification no
Environmental 

impacts
Shell thickness Endocrine disruptor
Bird decline Frog decline

Plant fate Uptake Low High
Phytotoxicity No High (except for maize)
Metabolites – HO-A, DEA, DIA
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The both examples given above, DDT and atrazine of environmental contamination 
by pesticides underline two things: first, the quality of environments polluted by 
persistent pesticides should be restored and, second, environments should be 
protected at the source from any further pollution. Natural attenuation or microbial 
degradation is not the solution to remediate environment. So for that, plants could 
exhibit any efficiency. Although agricultural pollution is not the single cause of 
contamination of ecosystems by organic pollutants and pesticides particularly, only 
solutions limiting pesticide pollution in agriculture are described here.

3  Remediation of the Environment

3.1  Remediation Processes

Remediation processes can be physical, chemical, biological or a combination. 
Common methods of remediation are: incineration, thermal desorption and more 
recently landfarming, bioremediation, radical oxidative processes and phytoreme-
diation, which will be discussed below (cf 3.2.).

3.1.1  Physico-Chemical Methods

For incineration and thermal desorption, contaminated soils are directly or indirectly 
heated to vaporize hazardous contaminants that are thereafter burnt, condensed or 
trapped on granular activated carbon. Physico-chemical methods are rather expensive 
because soils should be excavated and require a lot of energy. However, these pro-
cesses have proven to be effective and of low environmental and health risk. The clean 
soil is generally not returned to the site after treatment and is considered as wastes.

Recent fast-developing processes are photochemical and photocatalytic methods 
using ultraviolet light, ozone, or hydrogen peroxide alone or in combination with 
metallic catalysts such as titanium dioxide or iron salts, in Fenton reactions. These 
methods are generally used to treat water, except some attempts to decontaminate 
soils by the use of Fenton reactions. They are costly because they require pumping 
of water, particularly for groundwater.

3.1.2  Biological Methods

Landfarming comes from natural attenuation and involves the controlled applica-
tion of wastes to a soil or a soil/vegetation system. It is a cheap remediation process 
but its efficiency, like natural attenuation, is limited.

Bioremediation relies on the enhancement of bacterial growth to improve the 
degradation of the contaminants. Two strategies can be used, biostimulation that 
supplies limiting nutrients like nitrogen or carbon to enhance the development of 
indigenous microorganisms, and bioaugmentation, which provides non indigenous 
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strains able to metabolize the contaminants. These methods can be applied in situ, 
without soil excavation. However, bioremediation proceeds ex situ to homogenize 
the contaminated soil.

3.2  Phytoremediation

Phytoremediation consists of various processes describing the mechanisms by 
which plants could reduce the contamination of the soil. These mechanisms have 
been much-described (Kömives and Gullner 2000; Karthikeyan et al. 2004; Pilon-
Smits 2005). Two major processes are involved, depending on whether the pesti-
cide processing takes place outside or within the plant. These processes are 
(i) rhizodegradation and (ii) phytoextraction (Fig. 3).

3.2.1  Rhizodegradation

In the first case, the root system acts as a support for the soil microflora. The root 
exudates, consisting of sugars, amino acids, and organic acids, enhance the devel-
opment of a cortege of bacteria and fungi forming the rhizosphere that leads to an 
increase of the microbial biomass versus a not planted soil (Bowen and Rovira 
1999; Weyens et al. 2009). The effectiveness of bacteria and fungi in the degradation 
of organic compounds has long been used in remediation processes (Pothuluri and 
Cerniglia 1994). In phytoremediation, the use of soil microflora in the rhizodegra-
dation process therefore consists in enhancing bacterial or fungal development to 
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increase the capacity of the soil to break down pesticides (Anderson et al. 1993). 
Thus, the degradation of pentachlorophenol (PCP) by a strain of Sphingobium chlo-
rophenolicum was enhanced in the presence of wheat (Dams et al. 2007). Plants 
may also modify the structure of the microbial communities involved in breaking 
down these compounds. Soil used for a maize crop contained a larger number of 
bacterial strains that mineralized atrazine than bare soil (Alvey and Crowley 1996). 
From these observations, efficient strains to break down pesticides have been 
selected and inoculated to soil contaminated by atrazine; nevertheless, the effi-
ciency of the method in fields is very weak because the supremacy of such strains 
is hard to maintain against the pressure of endogenous bacterial communities 
(Tucker et al. 1995).

Beside the rhizodegradation, the rhizosphere could play another role in phyto-
remediation: a rhizostabilization. This mechanism is involved for mineral compounds 
such as heavy metals (Cunningham et al. 1995). The modification of the oxi-
doreduction state and the pH of the soil in the rhizosphere by the effect of micro-
organisms and by root exudates results in the modification of the speciation of 
metals, which could lead to their precipitation or their binding to organic matter 
-especially with humic acids- in a more stable, less water-soluble form. This stabi-
lization process does not seem to play an important role for organic compounds. 
For the latter, stabilization process takes another form: organic compounds such as 
organochlorines, which are extremely hydrophobic and possess a log K

ow
 greater 

than 3.5, are adsorbed on the lipophilic structures of the root system. The adsorp-
tion can lead to a substantial accumulation on root surfaces and immobilizes the 
compound at root levels. Here, we talk in terms of phytostabilization, a mechanism 
that consists in extracting a compound from the soil. This mechanism, like rhizo-
stabilization, is generally considered as reducing pollution and causing few envi-
ronmental problems (Alexander 1999). However, the process may prove to be 
transitory. On the death of the plants, the compounds may be released into the 
environment once again when the roots decompose. To be truly effective, the pro-
cess should lead to the co-degradation of compounds and roots by the soil micro-
flora, or by the strong binding of these compounds to clay-humic complexes. 
However, it should be checked by monitoring that stability does not cause fresh 
subsequent pollution of the site (Mills et al. 2006).

In rhizofiltration or phytopumping, plants have the capacity to evapotranspirate 
great volumes of water, for example poplar and willow are used to concentrate 
contaminants close to the root systems. In addition, rhizodegradation or plant 
uptake could be used. Pollution will be limited to a fewer volume of soil.

3.2.2  Phytoextraction

This second kind of process requires the pesticide uptake by plants. Subsequently, 
the fate of pesticides within plants determines more precisely the type of phytore-
mediation process: phytoaccumulation, phytodegradation, phytovolatilization. The 
ability of plants to take up pesticides with moderate hydrophobicity - log K

ow
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between 0.5 and 3.5 - is well documented (Briggs et al. 1982). This range is the 
optimum K

ow
 range to have a good activity/concentration ratio for systemic pesti-

cides. Out of the range, plants also absorb some pesticides, even if the concentra-
tions found within plant do not represent an agronomic interest. Several studies, 
conducted in particular under hydroponic culture conditions or sometimes using 
axenic plants, have demonstrated the capacity of plants for rapid remediation of 
solutions with a high pesticide load (Gao et al. 2000; Flocco et al. 2004). This 
capacity is related to several parameters; these include the physico-chemical char-
acteristics of the molecule and in particular its lipophily, but also those of the plant 
chosen, such as the water pumping capacity, the structure and the depth of roots. 
Once it was absorbed by the plant, the pesticide is immobilized in the roots, trans-
ferred to the aerial parts via a translocation mechanism or metabolized. The accu-
mulation in roots is generally inefficient for remediation because, even if the 
contaminant concentration in soil decreases, it is generally difficult to collect roots 
to definitively suppress soil contamination. Sometimes, for some plants it is an 
efficient process, and also for molecules with a high K

ow
, like ethion (K

ow
 = 5.07). 

The elimination of ethion in water by water hyacinth (Eichhornia crassipes) is 
mainly the result of its capacity for absorbing this insecticide. Only a small percent-
age of the elimination of the insecticide is the result of microbial degradation. The 
leaves and roots contribute to accumulation but root concentration is higher than 
leaf ones. As the root system can form 50% of the biomass of water hyacinth (float-
ing plants) and whole plants (leaves and roots) can be harvested for subsequent 
elimination of the pesticide (Xia and Ma 2006), root accumulation in hyacinth is a 
good phytoremediation process. However, accumulation in leaves is preferable 
because shoots can be easily harvested.

After absorption by roots, a pesticide of medium hydrophobicity can be trans-
ferred to the xylem vessels and translocated via the evapotranspiration stream to the 
shoots, leading to the accumulation of the substance in leaves. For example, more 
than 85% of imidacloprid, a true xylemien compound, taken up by sunflower 
(Helianthus annuus) shoots is transferred to leaves (Laurent and Rathahao 2003). 
The accumulation mechanism is effective in reducing concentrations in the soil and 
referred to as phytoextraction or phytoaccumulation. Like absorption, the shoot 
accumulation is strongly dependent on the hydrophobicity of the compound with 
an optimum log K

ow
 around 2 (Briggs et al. 1982). Much study has been devoted to 

the translocation of pesticides in crop plants, which are being considered for use in 
phytoremediation because of their generally high growth rates (Vila et al. 2007). 
This remediation technique is often used with aquatic plants for the decontamina-
tion of water. For example, Typha latifolia is effective in reducing methyl parathion 
contamination of water and also of sediment (Amaya-Chavez et al. 2006). Sweet 
flag (Acorus gramenius) and pickerel weed (Pontederia cordata) took up simazine, 
an herbicide of the triazine family and effectively translocated it into the foliage 
(Wilson et al. 2000). Some part of a pesticide translocated to shoots could be 
adsorbed in the vessel macromolecules (lignin or cellulose), depending on its lipo-
phily. The use of trees, as poplar or willow, takes into account this mechanism to 
remediate pollutants in addition to phytopumping. Phytoaccumulation requires 
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harvest of shoots after pesticide accumulation period; thereafter the crops will be 
processed by burning or composting.

The efficiency of pesticide translocation to leaves can be used to remediate 
medium polluted by volatile pesticide. The volatilization way is considered like a 
phytoremediation process by diluting compounds in the atmosphere. In this case, 
compounds translocated via the evapotranspiration stream to leaves and stomata are 
expulsed in the atmosphere with plant transpiration. This is tentatively used to 
remediate water resource polluted by trichloroethane, an industrial solvent, and 
could be used for some pesticide with a high volatility such as triflutrin.

Phytoaccumulation is seldom an isolated mechanism. Like microflora, plants 
possess a broad spectrum of enzymes able to metabolize chemicals and the pre-
dominance of accumulation or degradation leads to bioaccumulation of the pesti-
cide or not. Lindane is not metabolized by perennial ryegrass (Lolium perenne L.), 
thus leading to its accumulation. In contrast, trifluralin is rapidly metabolized by 
this plant and no accumulation occurs (Li et al. 2002). Just as ethion is absorbed by 
water hyacinth, it is then rapidly degraded, without accumulation.

Plants usually metabolize pesticides into more polar compounds which are com-
partmentalized into vacuoles or as bound residues in cell walls. The metabolism of 
pesticides in plants has much in common with that of animals and this led 
Sandermann (1994) to describe plant cells as a ‘green liver’. Metabolism consists 
of three phases according to the nature of the reactions involved. The first are the 
primary metabolic reactions (phase I), mainly via oxidation and hydrolysis that 
convert biologically active chemicals into generally less toxic or less effective com-
pounds. Alkyl- or aryl hydroxylations are the most frequently observed reactions, 
generally performed by cytochrome P450 enzymes or peroxidases. Sometimes, 
phase I reactions, particularly hydrolysis, are used to convert agrochemicals (pro-
pesticides) to active compounds (pesticides) within plants. Esterification of pesti-
cides is often used to improve penetration through plant cuticle.

Phase II consists in the fixation of endogenous molecules such as amino acids, 
sugars, glutathione and malonic acid on the primary metabolite. The conjugation is 
a natural regulation mechanism that enables the plant to increase the water-solubility 
and mobility of potentially toxic compounds. The most commonly described 
reactions are glycosylation, generally with a glucose unit, especially when the 
functional groups –OH, -NH, -SH or –COOH are present, and glutathione conjuga-
tion, catalyzed by glutathione transferases (GSTs), involving often the shift of halogen 
or nitro group on the parent molecule or the molecule scission.

Phase III converts secondary metabolites in more complex soluble conjugates, 
by addition of some carbohydrate units and malonic acid-sugar conjugation, or in 
non extractable residues in cell walls. Phase III is often associated to cell compart-
mentation of tertiary metabolites. Conjugates are stored in the vacuole or excreted 
to the intercellular space where pesticide moieties are polymerized with cell wall 
macromolecules. The copolymerization by parietal peroxidase enzymes of pesticide 
metabolites, generally aromatic or heteroaromatic compounds with hydroxyl, amine 
or sulphydryl functions, with cinnamic alcohols, lignin precursors, is the main path-
way for the formation of these residues (Sandermann et al. 1983). These metabolites 
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are thus stabilized in the structure of the plant. In rape, some atrazine residues are 
incorporated in cell walls, probably as HO-A (Dupont and Khan 1993). In roots, 
this pathway may lead to a phytostabilization of pesticides and may prevent the 
dispersion of pesticide residues after the plant death or shoot harvest. Bound 
residues are subsequently degraded in the soil at the same time as lignin by 
lignolytic fungi such as white rot fungi (Trejo-Hernandez et al. 2001). The latter are 
able to degrade aromatic cycles bound to lignin and are expected to degrade also 
pesticide residues (Higson 1991). Few compounds can be completely mineralized 
by plant metabolism. The main reason is that most pesticides contain one or more 
aromatic cycles that are difficult to open by plant enzymes. Moreover, chemical 
activation by phase I metabolism and subsequent conjugation lead to accumulation 
of more hydrosoluble conjugates in vacuoles or cell walls, removing the chemicals 
from enzymes. If metabolism only detoxifies pesticides and isolates pesticides from 
the subsequent metabolic steps, it requires plant harvest as for the phytoaccumula-
tion process.

Phytoremediation as described above seems a good process to remediate soil or 
water contaminated by pesticides. However some limits exist. It is a long process, 
not able to answer to an urgent situation. Due to phytotoxicity, plants do not support 
too high pesticide concentrations. The lack of universality of a specific plant toward 
pesticides due to selectivity of accumulation, metabolization and pesticide toler-
ance, prevents to remediate multi-pollutions with only one plant species. The “mise 
en place” of a phytoremediation plan is thus difficult to set up and requires diversi-
fying the plant screening to choose the better plant system.

Moreover, accumulation does not dispense to harvest shoots at the end of the 
process and to carry out a supplementary treatment to finally destroy pesticides. 
Generally, the degradation of pesticides in plants requires also plant harvest because 
plant metabolism is not able to mineralize pesticides and plants accumulate pesti-
cide residues as new chemicals.

Phytoremediation processes have however good advantages by contrast to other 
techniques because they allow the conservation of the soil cultivability and a stable 
environment. It requires few incomes except during the installation phase, but after 
the process could work with a low maintenance. Therefore, this is a process well 
adapted to some situations and should be carefully examined when a remediation 
plan is needed.

4  Protection of the Environment

After the question of their efficiency, one of the main current concerns of pesticide 
users or authorities is to avoid the contamination of water, the final destination of 
pesticides (Tingle et al. 1997). This consists first of all in using better sprayers and 
spraying wisely to avoid dispersing chemicals in the environment. Field protection 
consists in establishing a barrier between the sprayed crops and the aquatic environ-
ment. This barrier is often a vegetative filter strip (VFS) lay out along the water 
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network adjoining fields. The second type of protection is the treatment of effluents 
before their discharge into water network. Plants can be used in fields to run-off or 
drift interception or at farms for the treatment of unused spraying effluents, which 
remain in tanks and rinsing water.

4.1  Vegetative Filter Strips (VFS)

The installation of vegetative filter strips consists in setting non cropped zones 
between crop fields and the water network. The untreated area keeps the treated 
area remote from the surface water. First, surface water is protected from pesticide 
drift. Second, the main purpose is to limit the transfer of pesticides in solution or 
adsorbed on suspended particles in run-off water. VFS are generally planted with 
perennial grass or wood, or devoted to indigenous plants, or riparian forest. Several 
studies have demonstrated the effectiveness of the protection afforded by the sys-
tem (Mersie et al. 1999; Borin et al. 2010). The control of the run-off is often 
superior to 90%.

Phytofiltration is the main principle of these facilities. The root systems of plants 
form a barrier to run-off water, increasing the time it takes to reach the watercourse. 
This allows the redepositing of loaded particles in suspension, better infiltration of 
water and reducing the leaching. The residual water flowing from the vegetative 
strip into the water network has a smaller pesticide load than the flows upstream of 
the strip. The effectiveness of such systems depends on the pesticide of interest, the 
geopedological field conditions, the width of the strip, the entry flow rate, and also 
the plant used. Mersie et al. (2003) showed that tall fescue (Festuca arundinacea) 
was more effective than switchgrass (Panicum virgatum L.) to reduce the concen-
tration of endosulfan at small flows of runoff. However, there was no difference at 
higher flows as the effectiveness of the system itself decreased.

Apart from these purely physical phenomena, it is probable that rhizodegrada-
tion and phytoaccumulation phenomena are also involved and, together with 
adsorption on the soil, be factors that contributed to a reduction of pesticide con-
centrations (Mersie et al. 2003). However, few studies have quantified the remedia-
tion role of plants in the fate of pesticides in the environment (Cousins and Mackay 
2001) and particularly in VFS.

Increasing the width of the strip can be envisaged to increase VFS effectiveness  
(De Snoo and De Wit 1998). But this would result in a too large loss of usable 
agricultural area (Hewitt 2000). Water network can be developed with aquatic 
plants. Macrophyte role in the abatement of pollution in drainage canals has now 
been demonstrated (Bennett et al. 2005). The parts of helophytes above the surface 
of the water intercept spray drift and reduce deposits on the surface of the water 
(Linders et al. 2000). Juncus capensis seems to be particularly effective as it has 
been reported to reduce the quantity of azinphos-methyl reaching the surface of 
the water by 75% (Dabrowski et al. 2005). In addition, the submerged part of the 
plants improves the system by absorbing pesticides in solution in the water 
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(Hand et al. 2001). This type of development is more effective than making VFS 
wider. Several countries now include setting of VFS in their good farming practices 
For example, French regulations require a strip 5 m wide.

4.2  Constructed Wetlands

Protection of the environment also involves the treatment of the contaminated 
wastes resulting from crop spraying (tank residues, water of sprayers, etc.). These 
effluents were previously discharged into aquatic environments, leaving the latter 
to purify contaminants (Williams 2002). In addition to a reduction of effluent 
volumes, numerous processes are now available for treating them using physico-
chemical methods (electro-Fenton oxidation, Ti0

2
 oxidation) or biological tech-

niques (biobed). The creation of constructed wetlands is an interesting alternative 
that realizes the natural environmental process in a controlled and restricted area 
(Moshiri 1993). This procedure is already used to reduce water pollution of mine 
wastes and in urban sewage treatment. Wastes flow into a constructed wetland 
planted with macrophytes. These plants were reported to have a pumping effect, 
reducing the volume of effluent, with contaminants adsorbed on periphyton (Kadlec 
and Knight 1996). As in VFS, plants filter the water, enhancing the sedimentation 
of contaminants and serving as a support for the microorganisms that dissipate 
pesticides (Luckeydoo et al. 2002). Moore et al. (2006) showed the importance of 
plants to remove most of methyl-parathion in a constructed wetland while only 
small amounts of this insecticide were trapped in the sediment of a non-planted 
constructed wetland. Bulrush (Scirpus validus) improved the abatement of simazine 
and metolachlor by 30 to 50% in comparison with bare wetland and 90% depuration 
efficiency was reached (Stearman et al. 2003). The system had proved its efficiency 
but its setting is critical to size for the waste volume to treat. It is also critical for 
the phytotoxicity risk due to herbicide contamination or to the accumulation of 
some elements such as copper largely used as fungicide on numerous crops.

5  Choice of Plants

5.1  Depuration Capacity

With very rare exceptions, the absorption of organic compounds by plants is a passive 
phenomenon that depends mainly on the hydrophobicity of the molecules (Briggs 
et al.. 1982). However, the effectiveness or the success of a phytoremediation plan 
depends on the plant used. The fate of a chemical in a plant is affected by several 
characteristics of this plant: the root system structure and physical interaction with 
the soil, the biochemical composition of roots or exudates, the evapotranspiration 
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capacity of the plant and its metabolic capacity and also its development (Chaudry 
et al. 2002). Finally for the sustainability of a system, the most important point is 
plant tolerance to pollutants, even if this depends to a considerable degree on the 
parameters above. This is essential for herbicides but also applies to other pesti-
cides whose central effect is not the phytotoxicity. Numerous plants have been 
tested to find those with the best potential. A choice can be made among certain 
trees in reason of their strong evapotranspiration, large biomass and long lives, 
among macrophytes for their adaptation to aquatic environments and among culti-
vated plants -generally large-scale crops- for their rapid growth and the close 
knowledge of their interactions with pesticides.

The use of trees, or dendroremediation, is mainly conducted using usually hybrid 
poplar (Populus sp.) but other trees such as willow (Salix sp.) have also been tested 
(Volk et al. 2006). Poplar is particularly suitable as it rapidly forms substantial 
biomass. Its roots can penetrate deeply into the soil and it is considered to be com-
paratively resistant to various stresses (Bittsanszky et al. 2005). These trees are well 
suited to soils with comparatively high moisture content and have strong transpira-
tion capacity. This means that they can take up large quantities of water -the ‘pumping’ 
phenomenon-. They drain a large soil volume, bringing pesticides into the root 
system zone (Liste and Alexander 2000). As trees are long-lived, absorbed com-
pounds are stored for long periods of time (Trapp et al. 2001). Depending on their 
hydrophobicity, some pesticides can be adsorbed on the lipophilic structures of 
xylem vessels and accumulate in trunks and branches. Simonich and Hites (1997) 
found numerous organochlorine pesticides during the analysis of the bark of trees 
of various species. Phytoremediation trials with Lombardy black poplar (Populus 
nigra italica) are currently running at a site contaminated by chloroacetanilides. 
The tree is tolerant to these herbicides as it metabolizes them rapidly into glutathi-
one conjugates. Poplar leaves are particularly rich in glutathione and glutathione 
transferases (Gullner et al. 2005). Pesticides metabolized into bound residues to cell 
wall macromolecules are often considered to be biologically stable. Bound residues 
can subsequently be broken down with the lignin by soil fungi (Ferrey et al. 1994). 
The long duration of exposure and the large biomass of the trees thus mean that 
removal of pollutants from soils and substantial storage can be expected.

In contrast, particular attention must be paid to compounds of middle-lipophily. 
They are translocated to leaves in the evapotranspiration stream. Due to the low 
mineralization of pesticides by plants, they accumulate in leaves. This results in a 
‘futile cycle’ of no interest as regards to remediation and with an increased risk of 
environmental dispersal. When leaves become senescent or fall down, pesticides or 
metabolites can be dispersed in the environment once again.

Root systems of trees colonize large soil volumes, sometimes to a great depth 
(Tsao 2003), and bring high levels of organic carbon to the soil. The microorganism 
biomass is thus increased in the rhizosphere. A large proportion of pesticide dissi-
pation can then be the result of rhizodegradation. Thus 15% of atrazine can be 
mineralized to form CO

2
 by the rhizosphere of poplars (Nair et al. 1993).

A second category of plants used consists of aquatic species or macrophytes. 
The choice of these is an obvious one as pollution by pesticides reaches aquatic 
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environments in many cases. Two zones are to be considered: the water, in which 
the contaminant is in solution or adsorbed on suspended matter; the sediment, in 
which pollution of longstanding origin is sometimes found. Distribution of pesti-
cides in this biotope, the bioavailability for plants and the part of plant that takes up 
the compound are very varied. In water, exposure of the plant to pollutants ranges 
from all parts, including roots, for free-floating aquatic macrophytes such as water 
hyacinth (Eicchornia crassipes) to only the stems or the lower part for emerging 
macrophytes such as common reed (Phragmites australis). Roots and rhizomes are 
anchored in sediment to varying depths (Brix and Schierup 1989). It is thus prob-
able that the choice of the type of macrophyte will have a considerable impact on 
the dissipation of pesticides in solution.

Of three free-floating plants, duckweed (Lemna minor), elodea (Elodea 
canadensis) and yellow cabomba (Cabomba aquatica), duckweed seems to have 
the greatest potential in absorption capacity for depurate a water contaminated by 
a mixture of three pesticides, dimethomorph, flazasulfuron and copper sulphate 
(Olette et al. 2008). However, these plants only generate a small amount of biomass 
that limits their intrinsic potential in contrast with water hyacinth, with its large 
roots and plant biomass. Water hyacinth has demonstrated its effectiveness in han-
dling organophosphorus pesticides (Xia et al. 2001) but it grows rapidly, carrying a 
risk of spreading in an environment where it may be undesirable. It is currently 
considered to be invasive.

Numerous plants can be used and have been tested to remediate polluted sedi-
ments (Karthikeyan et al. 2004). Those most commonly used are reed mace (Typha 
latifolia) and reed (Phragmites sp.). These plants have roots embedded in sediment, 
good evapotranspiration capacity and strong growth for rapid colonization of the 
environment. Reeds have high remediation capacity for nitrogen and phosphorus 
nutrients, and so they are often planted in wetlands at waste treatment stations 
(Bragato et al. 2006). Phragmites australis has enzymatic potential that also sug-
gests a strong remediation capacity for organic compounds and especially pesticides 
(Pflugmacher et al. 1999). Reed mace also has good uptake capacity for pesticides 
such as methyl-parathion (Amaya-Chavez et al. 2006). However, translocation is 
small for compounds such as DDT, with a translocation factor of less than 1. Twenty 
percent of root accumulation consists of adsorption on roots (Chu et al. 2006).

In addition to the higher plants, algae can play a role in remediation. The 
cyanobacteria Nostoc ellipsosporium and Anabaena degrade lindane and other 
organic compounds (Kuritz and Wolk 1995). The periphyton that covers the solid 
surfaces of aquatic biotopes and especially the submerged parts of plants may thus 
play a role similar to that of the rhizosphere. However, very little is known about 
this role.

Cultivated plants, especially graminae, are also of interest for phytoremediation 
purposes. They often display strong vegetative growth and the impact of pesticides 
is well known. One of the other merits of such plants is that cultivation methods are 
well known (Dzantor et al. 2000).

The prime use of graminae is in the establishment of vegetative filter strips. The 
density of stems and the fibrous structure of the root systems efficiently slow run-off 
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flow and enhance the infiltration of this water. However, not all graminae develop 
in the same way. From the two graminae recommended for vegetative filter strips, 
the root system of switchgrass (Panicum virgatum L.) is more developed than that 
of tall fescue (Festuca arundinacea Schreb) as it has longer, thicker roots. 
Effectiveness is affected by that. When the run-off flow is small, tall fescue enables 
better infiltration of endosulfan (Mersie et al. 2003).

Graminae such as ryegrass (Lolium perenne L.) display greater remediation 
potential for PCP than a dicotyledonous such as radish (Raphanus sativus) (Lin 
et al. 2006). As the plants take up very little PCP, the differences would seem to be 
accounted for by the effect of the roots on the microbial biomass or on the selection 
of bacterial strains degrading PCP. The development of a denser root system in 
ryegrass probably results in better exploration of the soil and hence a larger surface 
area available for the rhizosphere.

The effect of selection exerts by plants on the rhizospheric bacterial flora that 
degrade pesticides is shown by the effectiveness of some plants in triazine remedia-
tion. Soil planted with kikuyu grass (Pennisetum clandestinum), a C4 plant, dis-
played a higher rate of degradation of simazine and atrazine than when it was 
planted with tall fescue, rye grass or winter onion (Allium sp.) (Singh et al. 2004). 
The phytotoxicity of triazines for C3 plants, unlike the more tolerant C4s, may have 
a negative effect on the development of the rhizosphere (Karthikeyan et al. 2004).

In addition to graminae, a few trials have been conducted on the use of legumi-
nous such as alfalfa (Medicago sativa) and soya (Glycine max). Fletcher et al. 
(1990) showed that soya can be of interest in treating soils contaminated by bro-
moxynil and other nitrobenzenes. However, few current projects address the use of 
leguminous, probably because they are more susceptible to environmental stresses 
than the graminae.

As noted above (cf 2.1), Cucurbita pepo - courgettes and pumpkins - have a 
strong affinity for organochlorine pesticides and could play an interesting role to 
remediate these compounds, a particularly recalcitrant class of pesticides. The spe-
cies Cucurbita pepo is the only member of the Cucurbitaceae family to display this 
ability (Lunney et al. 2004). Furthermore, it varies from one subspecies to another 
and even from one variety to another. White et al. (2003) compared 21 varieties of 
the subspecies C. pepo ssp. pepo and C. pepo ssp. texana and showed that ssp. pepo 
extracted five times more S DDT than ssp. texana and that ‘Goldrush’, the most 
effective variety, displayed a BAF greater than nine in roots and stems. This result 
would appear to be correlated with the exudation of an organic acid with a low 
molecular weight that in the subspecies pepo is the only carrier of phosphorus. This 
plant is thus a good candidate for the phytoremediation of organochlorines. This 
shows the importance of choosing plants at both species and varietal levels.

In addition, weak translocation can be harmful for the phytoremediation of a 
compound. Here again, plants such as the Cucurbitaceae may display considerable 
merits. The plant cover forms 90% of the total weight of these plants and increases 
by mass alone the extraction capacity of the compound from the soil. This mecha-
nism has been demonstrated for DDT and chlordane in spite of their low TSCF and 
it can also be used for other compounds (Mattina et al. 2000).
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5.2   Phytotoxicity Problems

The effectiveness of remediation often depends on the plant-pesticide combination. 
For example, comparison of the effectiveness of the three plants elodea (Elodea 
canadensis), parrot feather (Myriophyllum aquaticum) and duckweed (Spirodela 
oligorrhiza) on three organophosphorus compounds (malathion, demeton-S-methyl 
and crufomate) shows that duckweed is more effective than elodea in accumulating 
malathion. In contrast, the opposite trend is observed for demeton-S-methyl (Gao 
et al. 2000). In this case, the differences are caused by differences in absorption and 
in metabolism.

In other cases, the choice of plant is influenced by the phytotoxicity of the com-
pounds. This is one of the main questions to be evaluated in phytoremediation. 
Carmo et al. (2008) made this their priority in the development of a plan for the 
remediation of areas contaminated by picloram, an herbicide. Like the efficiency of 
remediation, the phytotoxicity depends on the plant-pollutant combination, espe-
cially in the case of herbicides. For example, maple trees are susceptible to simaz-
ine but not to atrazine. As both triazines act on the same target, differences are 
probably due to differences in the metabolism (Karthikeyan et al. 2004). Herbicides 
are basically substances displaying the greatest phytotoxicity, leading to the limita-
tion of their flow into systems. Olette et al. (2008) showed that more than 40 mg L−1 
flazasulfuron has a phytotoxic effect, limiting phytoremediation potentials to fairly 
small flows. Other organic compounds, without intrinsic phytotoxic effect, become 
phytotoxic, as a result of strong accumulation. This is the case of DDT in tobacco 
(Nicotiana tabacum) (Rosa and Cheng 1973).

The interaction of pesticides with other compounds present in the environment 
can lead to phytotoxic effects; this notably concerns some metals. Copper is used 
in large quantities as a fungicide for some crops and can bring out the phytotoxicity 
of organic compounds. Copper, due its beneficial effect on plant growth, improves 
PCP dissipation by microorganisms in the rhizosphere but inhibits bacterial activity 
thus increasing PCP phytotoxicity at high concentrations. Interaction with metals is 
often complex. For example, lead causes a change in the absorption of atrazine by 
rice; the ratio of atrazine to Pb2+ may cause a decrease or, in contrast, an increase 
in absorption (Su and Zhu 2005).

5.3  Transgenic Plants

Progress in biotechnology has enabled the genetic engineering of organisms for 
some twenty years. More than 70% of the genetic modifications to plants grown in 
open fields have been aimed at obtaining herbicide-tolerant crop plants. The genes 
introduced code either for a target protein that is tolerant to an herbicide, or for an 
enzyme that metabolizes the herbicide (Duke 1996). The potential of these enzymes 
for the removal of contaminants from the environment was soon anticipated. However, 
in contrast with the genes introduced in cultivated plants where the exogenous 
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enzyme is relatively specific to a given herbicide, in phytoremediation the genes 
introduced are aimed more at a lack of specificity. Indeed, the metabolic pathways 
involving broad spectrum enzymes -cytochrome P450 oxidoreductases (Morant 
et al. 2003) or GSTs (Pflugmacher et al. 2000)- were targeted for engineering 
plants. For example, Inui et al. (2001) transferred genes coding human or rodent 
P450 cytochromes in potato and rice. The co-transfer of genes coding several dif-
ferent human P450 cytochromes, CYP1A1, CYP2B6 and CYP2C19, broadens the 
spectrum of metabolic activity in rice (Kawagashi et al. 2006). With a few rare 
exceptions, mammal P450 cytochromes have greater catalytic activities than those 
of plants. This gives hope for achieving good phytoremediation effectiveness for a 
broad range of pesticides if they are expressed correctly in the engineered plant 
(Inui and Ohkawa, 2005). GSTs contribute to the degradation of numerous herbicides 
in tolerant wild plants. Poplars resistant to chloroacetanilides have been bred by 
transferring a gene coding a GST (Kömives et al. 2003). These transgenic plants 
mainly target herbicides. However, more recently, a bacterial enzyme hydrolysing 
organophosphorus insecticides has been introduced in tobacco and is effective in 
breaking down these compounds (Wang et al. 2008). Other more specific enzymes 
have been transferred to some plants to address more targeted contaminants. 
Several recent reviews describe in greater detail the development of these plants 
genetically modified for phytoremediation (Eapen et al. 2007; Doty 2008). Now, 
the main problem concerning these genetically modified plants is the non-acceptance 
of this technology by people.

6  Conclusion

The persistence in the environment of some organic compounds used for crop 
protection in farming shows that plant cover alone is not sufficient for the effective 
natural disappearance of these substances.

However, there are several advantages in the use of plants for controlling pollution 
by pesticides either to abate pollution in an environment or to prevent it. The most 
noteworthy include the low cost of the application and maintenance of the procedure 
in comparison with the other techniques and the conservation of the environment by 
the remediation technique. A point that should be taken into account is that the 
 process is relatively slow.

The development of planted zones on farms -vegetated filter strips or wetlands- 
is the most pertinent protective approach as this strongly reduces discharge of 
pesticides into the environment.

The effectiveness of such systems with regard to natural environments lies in the 
possibility for investors to select the most suitable plants or associated bacteria for 
the organic compounds targeted. However, much research remains to be conducted 
to optimize these systems. Indeed, most studies are performed with hydroponic 
crops and this does not cover the phenomena involved in the uptake of pesticides 
from the soil and hence the true bioavailability of the compounds for plants.
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Another important problem is the multiple organic or metallo-organic contaminations 
of environments, whether simultaneous at polluted sites or sequential in vegetated filter 
strips. Multiple contaminations require plants that are tolerant to numerous compounds 
of very varied kinds.

The use of transgenic plants displaying tolerance to several pesticides is a promising 
alternative in the search for tolerant wild plants. However, public acceptance of this 
type of plants has not been achieved, especially with regards to plants having incor-
porated animal genes whose products of expression seem nevertheless stronger and 
have broader substrate specificity.

The pesticide tolerance, as the selectivity of pesticides, is not unanimously 
shared by plants. Therefore, the main difficulty for phytotechnologies applied in 
agriculture is the absence of a universal plant.
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Abstract Sustainable land use is the management of the natural environment and 
the built environment to conserve the resources that help to sustain the current local 
human population and that of future generations. This review serves three purposes. 
First, it gives an introduction to the concept of sustainability in relation to land use, 
assessing what is “unsustainable” and what is “sustainable.” The environmental, 
historical, and social context is described for understanding current land-use practices. 
But this will not suppress the demand for viable developmental processes and 
the potential collateral effects in order to avoid resource depletion. Where natural 
resources exist, exploitation needs to be adjusted to carrying capacity – that is, it 
must be determined to what degree the environment is capable of absorbing the 
impact of the development. As agricultural soil is the foundation for nearly all land 
uses, soil quality stands as a key indicator of sustainable land use. Second, land use 
and its mismanagement of arable areas by farmers and grazing areas by livestock 
is addressed as one of the major causes of soil degradation. This result from ero-
sion, decline in fertility, changes in aeration and soil-water content, salinization, or 
a change in soil flora or fauna. By reflecting the basic functioning capacity of the 
soil, it is the measure of many potential uses. On the other hand, management policy 
will have to adapt agriculture to climate change by encouraging flexibility in land 
use, crop production, and farming systems. In doing so, it is necessary to consider 
the multifunctional role of agriculture and to strike a versatile balance between eco-
nomic, environmental, and social functions in different regions and sectors. Also, 
attention needs to be paid to all issues concerning agricultural strategies in order to 
mitigate climate change through a reduction in emissions of greenhouse gases, 
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by increasing carbon sequestration in agricultural soils and mediating the growth of 
energy crops as substitutes for fossil fuels. Third, it concludes that sustainable land 
use in agricultural systems involves readjusting unsuitable land use and promoting 
the appropriate use of land for sustainable systems. This review discusses some of 
the fundamental tasks and examines why sustainable land-use practices and inno-
vations need to be adopted, providing a perspective of close  collaboration among 
scientists, land managers, and policymakers.

Keywords Land management • Sustainability • Sustainable agriculture • Soil 
 quality • Climate change

1  Introduction

The landscape is defined as an area perceived by people, which acquires a character 
as the result of action and interaction of natural and/or human factors (CE 2000). 
It is recognized as part of the natural, historical, cultural, and scientific heritage. 
According to McGlade (2004), in the past few decades, landscapes all around the 
world have undergone severe degradation which has led to dramatic changes in the 
physical aspect of the earth. Loss of biodiversity, abandonment of agricultural lands, 
and acceleration of soil degradation are the results of these changes, which are pos-
ing threats to environmental security defined by the United Nations as the relative 
stability of earth’s natural ecosystems to withstand human activity. Researchers have 
developed indicators to study and classify landscape changes (Banko et al. 2003; 
Olsen et al. 2007). These are parameters that provide information about the state of 
an environment, thus bearing implications far beyond those directly associated with 
the value of any single parameter (OECD 2003). Landscape indicators have a crucial 
function in research and decision-making, contributing practical information con-
cerning the objectives of sustainable development, and can be used at international 
and national levels (Piorr 2003; OECD 2003; Fry et al. 2009).

Land use according to the definition of Vink (1975) “is any kind of permanent or 
cyclic human intervention. Land carries ecosystems. Land use is the application of 
human control, in a relatively systematic manner, to the key elements within the eco-
system, in order to derive benefit from it.” Land in agriculture represents soil that has 
fertility. Water and fertility are not only kinds of land characters, but also the vital ele-
ments of the land ecosystem. Thus, the management of land and water in any agricul-
tural pattern and region seeks to satisfy human needs while controlling soil and water 
for lasting development of agriculture (Montero and Brasa 2005; Bossio et al. 2010).

In this sense, “Sustainable” means enduring and continuing, i.e. enduring and 
continuing socio-economic development, as well as the resources and environment 
on which socio-economic growth relies. Therefore, the sustainable agricultural 
development of a certain region should first manage the sustainable use of land and 
water, and thus adopt the basic pattern of using and maintaining natural resources, 
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and implement the technical change and mechanism reform to ensure the require-
ment of nowadays human being and their offspring to farming products (Tait and 
Morris 2000; Di Pietro 2001; Sattler, et al. 2010). Such endurable development vin-
dicates the resources of land, water, animal and plant genes, and is of no degradation 
in environment, rational application in technology, survival in economy and accept-
able by the human society (Lyson 2002; Bharat et al. 2005; Zhou and Shao 2008).

Van Paassen et al. (2007) views sustainable land use as a complex issue that 
involves uncertainties about the dynamics of the biophysical system and the social 
system and is subject to multiple perspectives. The capacity to identify options for 
sustainable and equitable development depends on the acquisition of knowledge 
and skills for (1) holistic analysis of the biophysical system dynamics; (2) examina-
tion of the multiple positions, perceptions, values, beliefs, and interests of the rel-
evant stakeholders; (3) assessment of the action needed to fill the gap between the 
desired socio-technical system and the perceived real-world situation. In this con-
text, sustainable land use is the management of the natural and the built environ-
ment to conserve the resources needed to sustain the present human population of 
the area as well as that of future generations.

In industrialised Western society it is sometimes hard to realise how fundamen-
tal the land is to our life on earth. The land has to absorb much of our waste and is 
the catchment and filter for our water (Loehr 1974; Snowdon et al. 1989). It has to 
supply us with minerals and materials for our agriculture and industry and also 
provide us with recreation (Williams and Shaw 2009; Angus et al. 2009). However, 
this land and its resources are finite, as is its capacity to absorb waste and abuse.

Land is not inert material, a stable growing medium, or cache of minerals, but 
rather a living community upon which all life on earth depends. It is living in the 
sense that it is the home, above and below ground, to many millions of species. The 
maintenance of this life is important for its own sake because it is part of a natural 
system, a complex web of biological and chemical interactions in which a change 
in one component results in change in many others. Therefore, our management of 
the living earth is critical because of reactions, including those related to our own 
home environment. In addition, land and the consequences of its management, 
wields heavy impact throughout our society: on our food supply, water, air, employ-
ment, the quality of our living environment, recreation, and ultimately our very 
health and survival (Williams and Shaw 2009).

Also, sustainability refers to the longevity of the health of an agricultural land-
use system and hence the ability of this system to maintain a productive capacity. 
The urgent challenge for our world is, therefore, to develop practices which deliver 
a sustainable and stable global system, one which minimises the consumption of 
finite resources and minimizes the generation of waste and pollution, one which 
satisfies the needs of the humans while maintaining the natural world. It is impera-
tive that new land-management systems be developed which, instead of dealing 
with individual problems in isolation, properly address the far-reaching impact that 
they have on all these combined critical issues of sustainability (Haberl et al. 2004; 
Lamberton 2005). Consequently, a key criterion for a healthy ecosystem is that it is 
sustainable, especially in maintaining healthy soil over time. For many years, 
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 soil-conservation policy and law was the main legal area to manage and control soil 
and land degradation. An important global conventions, treaties, and strategies for 
sustainable development during the 1990s have been developed, i.e., United 
Nations Conference on Environment and Development 1992; Convention on the 
Conservation of Biological Diversity 1992; Commission on Global Governance, 
etc. These have been implemented variously around the world to reform natural-
resource and resource-management laws and policies.

Agricultural land use has the potential to damage or destroy the natural-resource 
base, thereby threatening future development. Often, the focus on short-term eco-
nomic gain and the disregard for long-term impacts and needs lead to environmen-
tal degradation. Clearly, part of the solution lies in a shift in demands from society, 
e.g. via changes in diet and lifestyle, just as the agricultural sector has a responsibil-
ity to find ways to reduce the negative environmental impact. Agriculture, rooted in 
the natural-resource base and serving as a major contributor to development, is at 
the forefront of shaping the concept of sustainable development (WSSD 2002).

Furthermore, natural ecosystems, the components of which are the results of 
natural selection, are sustainable; most are productive, pest resistant, and nutrient 
retentive. Thus, they are appropriate models on which to base the design of new 
systems of land use for different environments (Ewel 1999). In this context, each 
environment requires a different solution in the quest for land-use systems that are 
ecologically, socially, economically, and politically sustainable.

The current situation with agriculture is not sustainable because its practice 
consumes non-renewable environmental resources, especially soil and ancient 
groundwater (Edmunds 2003; Zentner et al. 2004). A century of petroleum-driven 
agriculture has yielded some striking mismatches between land use and the envi-
ronment. The native ecosystems are time-proven survivors, and it is logical to learn 
from them and imitate their useful traits. Naturally occurring ecosystems are long-
term products of evolution and the accommodation of organisms to environment: 
they change with time, as both environment and biota change, and they run on solar 
power, thus making them self-sustaining. By contrast, modern agriculture is com-
pletely dependent upon fossil energy fuels, machinery, fertilisers, pesticides, and all 
the industries that support them (Hatfield 1997). Nature’s solar powered systems 
make eminent sense for the future of food production, making the situation even 
more critical that most agricultural scientists are ill-equipped to take advantage of 
the knowledge these systems offer.

Land quality has been defined as “the condition and capacity of land, including 
its soil, climate, topography and biological properties, for purpose of production, 
conservation, and environmental management” (Pieri et al. 1995). Therefore, land-
quality assessment is of prime importance for decisions on sustainable land uses 
and the conservation of ecosystems of high biodiversity value. In order to maintain 
the agricultural production potentiality of land resources, the fundamental element 
is better management of land. This involves identifying land properties and land-
use options, understanding current land-use patterns, and appraising economic and 
ecological benefits for sustainable land use (Dengiz and Baskan 2009). The rational 
management of land resources represents one of the most urgent and challenging 
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policy issues in many countries (Gustafsson 1986; Mitchell et al. 2004; Tefera and 
Sterk 2010). It is an issue that cuts across many different policy interests, such as 
environment, agriculture, rural and regional development, each of which influences 
and is affected by the nature and problem of land resources.

2  Sustainability

The principle of sustainability has, for experts of many different fields, become the 
beacon for finding the way out of the growing conflicts between environment and 
economy. In the clash between land use and conservation, payments for environ-
mental services may be an appropriate approach to encourage and improve sustain-
able land use [Convention on Biological Diversity (CBD) Art. 10. Sustainable use 
of components of biological diversity, and Art. 11. Incentive measures in the sense, 
United Nations, 1993]. In this sense, action requires three types of criteria to be 
met: (i) social, (ii) economic, and (iii) environmental.

The concept of payments for environmental services, despite its drawbacks, has 
several advantages that make it a particularly suitable incentive measure. If pay-
ment schemes could be designed carefully and were compatible with ecological, 
economic, and social aspects of sustainability, they could constitute quite a power-
ful instrument to promote sustainability. Somewhat simplified, this goal requires (i) 
choosing environmental services based on ecological criteria, (ii) an economic 
mechanism which ensures efficient pricing of these services, and (iii) a public 
framework which ensures transparency and implementation of these measures.

In addition, the importance attached to sustainability represents the convergence 
of a variety of forces reflecting, on the one hand, society’s recognition of increasing 
demands placed upon a finite resource base and rapid changes in the quality of 
natural resources and, on the other, the political necessity to act with respect to 
these pressures and changes. Although this concept lacks a uniform definition, 
general consensus holds that sustainability must be multidimensional, incorporat-
ing ecological, social, political, and economic perspectives (Tisdell 1988; Simon 
1989; Smit and Brklacich 1989).

The desire for sustainability in land-use decision making, reflects an increasing 
public concern on the question: can the existing resource base supply a growing range of 
goods and services demanded of it without quantitative or qualitative declines in one or 
more of its social, economic, or biophysical functions (WCS 1980; FAO 1984; WCED 
1987)? Answering such a question requires not only regional specification of the issues, 
but also of the approaches that reconcile theory and practice (Yin and Pierce 1993).

In this context, integrated resource management is an approach by which 
resource planners, interest groups, and communities attempt to share different per-
ceptions of resource values, resolve conflicts over various resource uses, and coor-
dinate a broad range of agencies and institutions (Manning 1986). According to 
Mitchell (1986), integrated resource management is a comprehensive, systematic, 
and coordinated approach aimed at achieving the sustainable use of natural 
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resources. One of the necessary conditions for sustainable land use is that numerous 
constituents and stakeholders must be recognized as well as multiple objectives that 
the land base serves. While there are numerous obstacles to achieving these goals, 
including conflicting or nonexistent policy and lack of communication among 
groups, two factors impede progress. On the one hand, there is a lack of compara-
tive information and, on the other, there is the problem that most methods fre-
quently applied to natural-resource analysis are one-dimensional, ignoring the 
importance of intersectorial relations (Smit and Brklacich 1989).

Yin and Pierce (1993) developed an integrated research system, based upon  systems 
analysis and mathematical programming modelling, which was created for the purpose 
of multi-goal and multi-sector land-use assessment. This analysis procedure is 
 purposely kept general and is composed of four main steps, as shown in Fig. 1.

 1.   The process begins with an identification of goals. In the public sector, the pano-
ply of land-resource goals is the product of the preferences of decision makers 
at various levels of government and of interest groups, communities, and other 
stakeholders. These goals could include: (i) sustainability of regional resource 
production to meet future domestic and export needs; (ii) economic efficiency 
that may maximize returns or minimize costs; (iii) soil-erosion control in land 
development; and (iv) general habitat and wetland conservation.

 2.   Information is required on the quantity, quality, and distribution of the land-resource 
base. To this end, assessments need to make concerning the capability and/or suit-
ability of the land uses under consideration, within the context of technological and 
other socio-economic factors that might sway productivity and land use.

Goals, Priorities and Weights
Economic, environmental, production, recreation,

and wetland production

Land resource assessment model
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activities 
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Fig. 1 Research framework for integrated research system by Yin and Pierce (1993)
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 3.   An important ingredient in the exploration and assessment of the impacts of 
policy change or economic-environmental changes is the specification of sce-
narios. Scenarios may represent a baseline condition, a continuation of the exist-
ing situation, or different assumptions about the growth and distribution of 
certain land uses.

 4.   For the evaluation and comparison of these land resource-use alternatives, and 
for the determination of the implications for various goals, powerful analytical 
techniques are needed. Goal programming is one technique capable of integrat-
ing several objectives and sectors. It can deal with different measurement units 
and identify trade-offs among alternatives. Unlike linear programming methods, 
which search for optimal solutions, goal programming seeks a solution that comes 
as close as possible to the satisfaction of multiple goals (Yin and Pierce 1993).

On the other hand, as an important basis of sustainable development, sustainable 
land use is inevitably a key topic for researchers, policymakers, and the public. 
With the definition of the criteria and standards of sustainable land use, evaluation 
for sustainable land use is the core of research on this issue.

However, in the last few decades, research on evaluation for sustainable land use 
developed slowly, with an extensive basis on the five principles of sustainable land 
use proposed by FAO (1993). Other related disciplines are greatly needed to deepen 
the evaluation.

Land productivity evaluation systems are developed to predict the crop growing 
potential of lands on the basis of their attributes (Young 1987; McConnell and 
Quinn 1988; Bedrna 1989; Zhang et al. 2004). In European countries have adopted 
land evaluation methods based on land and soil parameters (Bouma 2002; De la 
Rosa et al. 2004; De la Rosa 2005). A soil-evaluation system, where the relative 
production land potential is quantitatively expressed together with measurements of 
soil degradation or amelioration with an integrated method, could be developed to 
express various land quality/land productivity relationships. This approach could 
help decision makers – together with land users and environmental scientists – to 
choose profitable and sustainable land-use types and methods at local as well as at 
regional levels.

Land-use sustainability implies not only the sustainability of a land-use model 
and biological production on a temporal scale, but also includes the optimisation of 
land-use patterns on the spatial scale. However, with traditional evaluation for sus-
tainable land use focusing on the social, economic or ecological benefits of regional 
land use, all can be categorized as the research on the temporal scale, lacking analy-
ses concerning the effects of spatial patterns (Peng et al. 2003). Taking spatial het-
erogeneity and ecological holism as its theoretical core, landscape ecology can be a 
great help to create a synthetic evaluation for sustainable land use on temporal as 
well as spatial scales, with a strong function in the analysis of the spatial patterns of 
regional land use (Peng et al. 2006; Wang and Yang 1999). However, although many 
authors have explored the combination between landscape ecology and sustainable 
land use or land management (Ericksen et al. 2002; Gulinck et al. 2001; Piorr 2003), 
or have delved further into landscape sustainability (Antrop 2006; Botequillha and 
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Ahern 2002; Paoletti 1999; Haines 2000), few studies have been conducted directly 
for evaluation for sustainable land use in terms of landscape ecology, and only Peng 
et al. (2006) has proposed a framework of landscape ecological evaluation for sus-
tainable land use by dividing land-use sustainability into three aspects, such as 
landscape productivity, landscape threatening and landscape stability.

According to the ESA (2006) land use in Europe has changed drastically during 
the last 50 years, especially in regards to human well-being and economic develop-
ment, which has unfortunately caused serious environmental problems (EEA 
2005). The assessment of the impact inflicted by these land-use changes on sustain-
ability is currently a major challenge for the policy makers and the scientific com-
munity. One approach developed to address this challenge is Sustainable Impact 
Assessment and its application at the policy level. The Impact Assessment guide-
lines of the European Union (CEC 2005) and the renewed and comprehensive EU 
Sustainable Development Strategy launched in June 2006 (CEU 2006) certainly 
represent valuable measures for achieving sustainable development within the ter-
ritory of Europe.

Probably the newest aspect is that the guidelines clearly state that the Sustainable 
Impact Assessment should perform a real integration of economic, environmental, 
and social issues across policy areas. On the one hand, this may give the socio-
economic issues additional weight in decision-making and help them to maintain 
the integrity of the environmental assessment. On the other hand, the Sustainable 
Impact Assessment appraisal more closely reflects actual policy decision making, 
and is required by the European Union. Therefore, integrating the two procedures 
makes sense in terms of efficiency.

2.1  Land-Use Functions

Land-use functions (LUFs) are defined as the private and public goods and services 
provided by the different land uses, which summarise the most relevant economic, 
environmental and societal aspects of a certain region (Neville 1993; Verburg et al. 
2009; Sterk et al. 2009). Some of the “non-commodity” functions can be consid-
ered as externalities or public goods. This definition is consistent with the definition 
of multi-functionality used by the OECD (2003). Each land-use function is charac-
terised by a set of key indicators that assess the “impact issues” defined in the 
European Union Impact Assessment Guidelines (CEC 2005).

The land-use functions concept therefore allows translation of the European 
assessment into an integrated regional-impact assessment, i.e. the individual values 
of the indicators characterising a region that are derived from the model chain are 
added in order to assess the impact on the land-use functions. In short, the impact on 
land use predicted by modelling of policy cases can be measured by changes in a set 
of key indicators that comprise the land-use functions, and can be summarised in one 
single value per land-use function. Consequently, the land-use functions express in 
a compressed way the impact caused by a policy option on the functionalities of the 
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main land uses in a region and deals with the progress from Impact Assessment to 
Sustainable Impact Assessment (Pérez et al. 2008). The outcomes for sustainability 
are predicted by comparing the values of the indicators with their corresponding 
sustainability limits/thresholds and by analysing how the policy option stimulates or 
hinders the land-use function.

2.2  Evaluation Indexes/Indicators for Sustainable Land Use

The sustainability of land use depends not only on the stabilization of land-use 
patterns and the optimisation of biological and non-biological productions from 
land use, but is driven also by human demands, which result in pressure on 
regional land use (Cornforth 1999; Lefroy et al. 2000; Ghersa et al. 2002; Osinski 
et al. 2003). In broad terms, the greater the human demands for regional land use 
are, the higher the aim of sustainable land use is, and the lower the feasibility of 
sustainable land use will be. Therefore, based on the method of Analytical 
Hierarchy Process, the application of theories of landscape ecology, the indexing 
system for evaluating regional sustainable land use, can be constructed from three 
aspects: landscape productivity, landscape threat, and landscape stability (Peng 
et al. 2007) (Table 1). The index system will help to reveal the distance between 
the aim of sustainable land use and the status quo of current land use, and will 
indicate the potential for achieving the sustainability aim in the temporal scale of 
human generation.

Landscape productivity reflects the capacity of land production, including 
 biological productivity, economic benefits, and potential yield of land use. The 
higher landscape productivity, the greater the land production is, and the higher the 
possibility to achieve sustainable land use.

Table 1 Indexes for evaluating sustainable land use based on Analytical Hierarchy Process

Evaluation rule (weight) Evaluation indexes (weight)

Landscape threatening (0.35) Population density x
1
 (0.125)

Land-use degree x
2
 (0.125)

Cropping index x
3
 (0.100)

Landscape productivity (0.40) Total production value of industry 
and agriculture per unit area

x
4
 (0.125)

Yield of crops per unit area x
5
 (0.125)

Yield of economic crops per unit area x
6
 (0.075)

Fertilizer use per area x
7
 (0.075)

Landscape stability (0.25) Landscape diversity x
8
 (0.100)

Landscape fragmentation x
9
 (0.075)

Landscape contagion x
10

 (0.0375)
Landscape fractal dimension x

11
 (0.0375)
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Landscape threat is the pressure which is imposed on land use through human 
activities and which reflects human demands for land use. The more that humans 
demand from land use, the greater the pressure on land use; the higher the aim of 
sustainable land use, the greater the difficulty to achieve sustainable land use. Three 
indexes are chosen to evaluate landscape threat: population density, land-use 
degree, and cropping index. The higher the value of the three indexes is, the higher 
landscape threat is.

Landscape stability means the ability to maintain the stability of landscape pat-
terns and functions (Skopek et al. 1991a, b). The greater the landscape stability is, 
the stronger the landscape resistance is against external disturbance, the stronger 
the landscape resilience is to regain ecological balance after disturbances, and the 
stronger the possibility is to maintain spatial patterns and landscape functions 
(Peng et al. 2007). Generally, in medium-developed agricultural landscapes, the 
increase of landscape heterogeneity is good to maintain landscape stability.

According to landscape ecology, landscape patterns determine landscape func-
tions. Four landscape parameters are chosen to measure the stability of landscape 
patterns: landscape diversity, landscape fragmentation, landscape contagion, and 
landscape fractal dimension. The greater the landscape diversity and landscape 
fractal dimension is, the stronger the landscape stability, landscape fragmentation 
and landscape contagion have the opposite relationship. Definitions and more 
explanations on these metrics were given by Gustafson (1998). Consistent with 
Analytical Hierarchy Process, four judgment matrixes with the level from 1 to 9 are 
constructed to calculate the weight of indexes, including the rule layer and the 
index layer (Table 1; Peng et al. 2007).

As stated by Forman (1990) and Barrett (1992), the landscape is the most appro-
priate spatial scale for sustainable environmental planning and management. From 
research in landscape ecology, it can be concluded that land use and landscape ecol-
ogy closely correlate with each other. Wang (1993) pointed out that landscape 
 ecology shows strong consistency with the concept of sustainable development, 
which can be regarded as an important theoretic foundation for sustainable land use.

Research on sustainable land use is effective only when it is conducted on a cer-
tain spatial and temporal scale, and the scale of human generation should have pre-
cedence over other temporal scales (Peng et al. 2006). Meanwhile, sustainable land 
use not only indicates the sustainability of land use forms on a temporal scale, but 
also the optimisation of patterns on a spatial scale. To a certain extent, traditional, 
social, economic, and environmental research on sustainable land use only took 
analyses on a temporal scale into account, and lacked the spatial analysis of land-use 
patterns. Taking spatial patterns as well as ecological correlations into account, land-
scape ecology is helpful for a synthetic analysis; evaluation, and management of 
sustainable land use both on spatial and temporal scales. In short, landscape ecology 
provides a new approach for sustainable-land-use research with a focus on spatial 
dimensions. Although the common general definition of sustainable development 
touches upon nearly all areas of ecological, economic, and social development, 
adequate management rules of resource use including a multifunctional land devel-
opment have been derived from it (Daly 1990; Pearce and Turner 1990).
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The general problem of ecological as well as socio-economic effects due to 
multifunctional land use and the consecutive decision making reveal the enormous 
complexity of the issue. To construct a model which represents the most important 
features of the particular state, the complex ensembles of the different elements in a 
system, and the multiple webs of actions, reactions, and interactions have to be con-
densed into an applicable pattern. An approach to reach such a practicable model can 
be based on indicators (Steiner et al. 2000; Lefroy et al. 2000; Ghersa et al. 2002; 
Wiggering et al. 2006). These are variables or indices, which represent, integrate, 
and characterize information embodied in comprehensive data sets (Müller and 
Wiggering 2003), which are often not directly measurable. Indicators are suitable 
tools whenever the primary information of an object is too complex to be handled 
without aggregations. Consequently, indicators should not be established by consid-
ering pragmatic arguments alone, but also by referring to an optimal theoretical 
background. This demand is especially important because in many cases indirect 
effects, chronic interactions, accumulative reaction chains and complex interaction 
webs can lead to the most evident consequences for the performance of the particular 
system processes. Thus, a holistic approach is an important prerequisite for a reliable 
indication of complex systems with different scales. Opschoor and Reijnders (1991), 
explicitly described the necessary process on how to derive indicators to characterise 
the so-called functions of scale limits (Daly 1992).

Broadly, the conceptual approaches can become strictly divided into two under-
lying strategies: (a) the economic orientation and (b) the ecological orientation 
(Rennings and Wiggering 1997). Still, a consequent merging of these interest-ori-
ented approaches has taken place only to a minor degree.

Thus, it is important to focus on the need to strengthen the discussion on multifunc-
tional land development and land use. Therefore the socio-economic and ecological 
perspectives should be brought together for solving, for example, the problems within 
rural areas, forcing sustainable and a subsequent multifunctional land development.

Multi-functionality within this context necessarily has to draw emphasis on both 
commodity and non-commodity outputs. This is why economic action is always 
accompanied by ecological and social issues. Sustainable production schemes at the end 
depend on the relative prices of commodity and non-commodity outputs. Thus, social 
utility resulting from different degrees of jointness of production can be an indicator for 
the degree of multifunctional land use and of sustainable use of resources.

Wiggering et al. (2006) pointed out the importance of the fact that indicators for 
assessing sustainable land development often focus on either economic or ecologic 
aspects of landscape use. The concept of multifunctional land use helps merge these 
two focuses by emphasising the rule that economic action per se is accompanied by 
ecological utility: commodity outputs (e.g., yields) are paid for in the marketplace, 
but non-commodity outputs (e.g., landscape aesthetics) so far are public goods with 
no markets.

On the other hand, according to Di Pietro (2001), the agro-system managing 
land-use practices at the landscape level, seems to be more ecologically sustainable 
than the one using an individual organization of agricultural practices at field level, 
according to the two indicators of ecological sustainability of agricultural land use 
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proposed (contribution of fields’ environmental features to land use, and diversity 
of environmental resources used by farms). Many authors have stressed the ques-
tion of the appropriate scales for sustainability (Lowrance et al. 1986; Fresco and 
Kroonenberg 1992; Allen and Hoekstra 1992). Di Pietro (2001) suggested that new 
and more appropriate levels of organization are needed in order to analyse the man-
agement of sustainable relationships between agriculture and the environment. 
They also pointed out that agricultural policies should shift from the field to the 
landscape-unit level. The focus on a spatial scale larger than fields or farms shows 
that a local management level of agricultural policies, including all the stakeholders 
involved in rural development is necessary in order to ensure ecologically sustain-
able agricultural land use.

3  Land Use and Soil

Water and wind erosion are degrading forces, often resulting from man-induced 
effects that have occurred in many places and continue to advance (Lal 1994; Song 
et al. 2005). Worldwide, human-induced soil degradation has affected 24% of the 
inhabited land area. About 1.5 × 109 ha of land is cultivated. Of this area, about 
12 × 106 ha or 0.8% is destroyed and abandoned every year because of non-sustain-
able farming practices and natural erosion, which triggers a chain reaction (Fig. 2). 
Overall, soil is being lost from land areas 10–40 times faster than the rate of soil 
renewal, imperilling future human food security and environmental quality 
(Pimentel 2006). Water erosion is responsible for 2/3 of the erosion, and wind ero-
sion 1/3. In terms of soil weight, 7.5–9.3 × 109 t year−1 is eroded worldwide by wind, 
corresponding to about 5 t ha−1 year−1 on average. The expected level of erosion in 
the year 2040 is 45–60 × 109 t year−1, and an 85% reduction is desired (Rennings 
and Wiggering 1997). The agricultural sector has a challenge to produce sufficient, 
more diverse and safe food, fibre products, and feedstocks for biofuel in a sustain-
able manner. This has to be achieved in an increasingly competitive and globalized 
economy. Meeting these challenges requires significant changes in the way agricul-
ture and the value chain are organized (Roetter et al. 2007).

Some of the major changes affecting agriculture are: (1) globalization of trade, 
stimulating rapid expansion of the production of high value agricultural commodi-
ties; (2) increasing impact of consumer preferences on agricultural production 
activities and quality standards; (3) urbanization processes, industrial development 
and access to information technology, leading to a reduction in cultivated area, 
especially in the land area for less-remunerative production; and (4) impact of 
global environmental changes, particularly climate-change-induced risks on deci-
sion making, and the increasing societal concern with respect to the conservation 
and use of biodiversity and agrobiodiversity.

Farmers have traditionally been concerned with keeping their soils in good 
 condition because they understand that soil health has a direct impact on crop 
 performance. Managers need information on dynamic soil properties to test whether 
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current systems of land use and management are sustainable or whether change is 
needed. The community, as well as farmers, is concerned as to whether agriculture 
is sustainable and whether the dynamic soil properties are being degraded by cur-
rent management practices.

Agricultural land is under severe threat in many parts of the European Union 
from alternative land uses and inadequate land-use practices (Foley et al. 2005; Lal 
2007). At particular sites for housing and industry as well as the expanding trans-
port network, the environmental value of land depreciates, sometimes entirely. 
Agriculture, by contrast, in many cases preserves land, although negative pressure 
may be exerted on the soil quality.

The damaging effects on soil fall into three categories:

 (i) Physical degradation, such as erosion, desertification, waterlogging, and 
compaction

 (ii) Chemical degradation, such as changes in acidity, salinisation, contamination 
by pesticides, heavy- metal pollution, etc.

 (iii) Biological degradation, including changes to micro-organisms and to the soil 
organic matter content

In particular, in south-eastern Spain the main agricultural driving forces for soil 
erosion are unsustainable agricultural practices on sloping lands, such as lack of 
effective erosion-control measures in production systems including certain types of 
intensive fruit production and olive trees, soil compaction through the use of heavy 

Poor soil protection by plant cover, surface crusting, and
compacting, which exposure to runoff and to large 

surface wind velocities

Inappropriate land use and over-harvesting by agriculture

Low soil fertility and efficiency in use of available water

Decrease of vegetative biomass production and biological
activity as a consequence of low availability of energetic

 carbon required to support heterotrophic organisms  

Trigger soil erosion by water and wind promoting land
degradation, which enhances the creation of desert land

Fig. 2 Impact of inappropriate land use by agriculture
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machinery, cropping systems that leave soil bare during the rainy season, burning 
of crop residues, removal of river bank trees and scrub and non-soil-protecting 
monocultures (De Graaff and Eppink 1999; Fleskens and de Graaff 2008; García 
2010; Van Wesemael et al. 2003; Tolon et al. 2010).

At the same time, certain farming systems, such as managed grazing, the pres-
ence of hedges and trees, and traditional rotation patterns, may be essential to 
maintain soil quality. Several agri-environment programmes have the conservation 
of soil resources as their goal. These include programmes for assuring certain crop 
rotations and in particular the promotion of organic farming. Programmes also exist 
to guard against erosion and fire risk, particularly in relation to abandoned land. 
Afforestation can also make an important contribution to reduce soil erosion.

Despite positive results achieved in areas covered by agri-environmental or 
afforestation measures, soil erosion is increasing. About 115 million ha in Europe 
are suffering from water erosion and 42 million ha from wind erosion. Particular 
problems exist in the Mediterranean region (Montanarella 2008; Table 2).

The problems of soil degradation and soil destruction are caused by the competi-
tion between different forms of land use. Therefore, new perceptions and concepts 
for sustainable land use should be developed, which conform to the constraints of 
nature. In this context, sustainable land use and soil protection can be defined as the 
spatial (local or regional) and temporal harmonisation of all the main uses of soil 
and land, minimising irreversible effects. This is a political rather than a scientific 
issue. As pointed out above, soil is affected by physical, chemical, and biological 
degradation, the main effects of which are shown in Table 3. Some agricultural 
activities contribute to these negative effects. However, it should borne in mind that 
industry, urbanization, road construction, fire, other human activities and, more 
generally, demographic pressure and climate changes are also major factors.

The most significant forms of physical degradation of the soil due to agriculture 
are erosion, desertification, water-logging and compaction. Land-use practices such 
as deforestation, overgrazing, some agricultural cultivation practices, and removal 
of vegetative cover or hedgerows can exacerbate these situations (Durán and 
Rodríguez 2008; Descroix et al. 2008; Fernández et al. 2009; García 2010). The 
increasing demand for water and sometimes excessive mechanization and plough-
ing are further causes of such degradation.

Table 2 Human-induced soil erosion in Europea (Million ha)

Water erosion

Light Moderate Strong Extreme Total

Loss of top soil 18.9 64.7 9.2 - 92.8
Terrain deformation 2.5 16.3 0.6 2.4 21.8
Total 21.4 81.0 9.8 2.4 114.5 (52.3%)

Wind erosion
Loss of topsoil 3.2 38.2 - 0.7 42.2
Total 3.2 38.2 - 0.7 42.2 (19.3%)
a Includes European part of the former Soviet Union. Source: EEA, European Environmental 
Agency
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Table 3 Estimated areas affected by major soil threats in Europe

Threata

Area affectedb 
(Million ha)

Percentage of total 
European land area

Pesticides 180 19
Nitrates and phosphates 170 18
Water erosion 115 12
Acidification 85 9
Wind erosion 42 4
Soil compaction 33 4
Salinisation 3.8 0.4
Organic-matter loss 3.2 0.3
a Different threats can affect the same land area so that numbers 
 cannot be added up
b Area covers all land uses
Source: EEA, European Environmental Agency

The following processes characterize chemical degradation: acidification, salini-
zation and contamination by micro-pollutants, such as pesticides and their metabo-
lites, heavy metals and nutrients, i.e. nitrogen and phosphorous (Gzyl 1999; Goudie 
2003; Hernández et al. 2003; Arias et al. 2008). However, some pesticides may stay 
in the soil for some time without serious consequences for the environment. 
Toxification and eutrophication are two results of pollution.

Related agricultural practices are: over-use of manure and mineral fertilizers, 
emissions of pollutants by intensive livestock production, spreading of sewage 
sludge on agricultural soils and the use of pesticides with unintended side-effects 
(slow degradation).

Finally, in relation to biological degradation, it should be remembered that the 
quality of the soil is defined primarily by its biological activity, which is affected 
by humus mineralization and changes in biodiversity. Lowering the organic matter 
content makes soil more susceptible to compaction, erosion, and other forms of 
physical degradation. Inappropriate land-use practices, especially in agricultural 
fields, are most often the reason for this problem. The unintended side effects of 
pesticide use on soil vitality can explain many changes in biodiversity. However, 
this occurrence must be considered in conjunction with the forms of degradation 
described above.

3.1  Soil Quality

Soil quality appears to be an adequate indicator for sustainable land management, being 
the foundation for nearly all land uses (Parr et al. 1992, 1994; Herrick 2000; Nael et al. 
2004; Marzaioli et al. 2010; Cotching and Kidd 2010). Soil quality, by definition, 
reflects the capacity to sustain plant and animal productivity, maintain or enhance water 
and air quality, and promote plant and animal health. By reflecting the basic capacity of 
the soil to function, it involves many potential uses (Dexter 2004a, b, c).
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The soil-quality concept evolved throughout the 1990s in response to increased 
global emphasis on sustainable land use with a holistic focus, emphasizing that sus-
tainable soil management requires more than soil-erosion control. In the mid-1980s, 
the Canadian Senate Standing Committee on Agriculture prepared a report on soil 
degradation and revived the concept (Gregorich 1996). Larson and Pierce (1991) 
defined soil quality as the capacity of a soil to function within the ecosystem bound-
aries and to interact positively with surrounding ecosystems. They also proposed a 
quantitative formula for assessing soil quality and suggested that such assessments 
could help determine how soils responded to various management practices. 
Assessment tools for indexing soil quality at various scales were pursued to show 
the multiple functions (i.e. nutrient and water cycling, filtering and buffering of 
contaminants, decomposition of crop residues and other organic matter sources, and 
recycling of essential plant nutrients) that soils provide as the foundation for sustain-
able land management (Karlen et al. 2003). Worldwide research and technology 
transfer efforts have increased awareness that soil resources have both inherent char-
acteristics determined by their basic soil formation factors and dynamic characteris-
tics influenced by human decisions and management practices.

Early on, Warkentin and Fletcher (1977) suggested developing a soil-quality 
concept because of the multiple functions of soil resources, e.g. food and fibre 
production, recreation, and recycling or assimilation of wastes or other by-products. 
These researchers emphasized that (1) soil resources are constantly being evaluated 
for many different uses; (2) multiple stakeholder groups are concerned about soil 
resources; (3) society’s priorities and demands on soil resources are changing; and 
(4) soil resource and land-use decisions are made in a human or institutional con-
text. They also stated that because of inherent differences among soils, there is no 
single measure that will always be useful for evaluating soil quality.

According to Arshad and Coen (1992) and Haberern (1992), soil quality began to 
be interpreted as a sensitive and dynamic way to document soil condition, response 
to management, or resistance to stress imposed by natural forces or human uses.

Traditional soil survey, classification, and interpretation have defined Land 
Capability Classes, a Story Index, and other Land Inventory and Monitoring indices 
based primarily on inherent soil properties (Karlen et al. 1997). Each is important 
and useful for certain applications, but none is the same as indexing dynamic soil 
quality. The inherent differences among soils, complexity of environments within 
which soils exist, and the variety of soil- and crop-management practices being 
used around the world currently preclude establishing a specific rating or value 
against which all soils can be compared.

Therefore, indexing dynamic soil quality involves the following steps: The first 
is selecting appropriate soil-quality indicators for the efficient and effective moni-
toring of critical soil functions (e.g. nutrient cycling; water penetration, retention, 
and release; supporting plant growth and development) as determined by the spe-
cific management goals for which an evaluation is being made (Karlen et al. 2003). 
These indicators form a minimum data set that can be used to determine how well 
the critical soil functions associated with each management goal. For each indicator 
is then scored, often using ranges established by the soil’s inherent capability to set 
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the boundaries and by the shape of the scoring function. This step is required so that 
biological, chemical, and physical indicator measurements with totally different 
measurement units can be combined, e.g. earthworms per unit area, pH, bulk den-
sity, etc. The indicator scoring can be undertaken in a variety of ways (e.g. linear 
or nonlinear, optimum, more is better, more is worse) depending upon the function. 
For some management goals the same indicator may be included under different 
functions and even scored in different ways, i.e. “more is better” for NO

3
-N sup-

porting plant growth but “less is better” in relation to leaching process. The unitless 
values are combined into an overall index of soil quality and can be used to com-
pare effects of different practices on similar soils or temporal trends on the same 
soil (Karlen et al. 2003). Andrews and Carroll (2001) suggested to understand the 
complete value of dynamic soil-quality assessment, that it be viewed as one of the 
components needed to quantify agroecosystem sustainability (Fig. 3).

However, the soil-quality concept has not been universally accepted (Sojka and 
Upchurch 1999), even though efforts to develop and use soil-quality assessment as 
a tool to evaluate sustainability are based on a belief that soil scientists must take a 
more active role in balancing production and environmental quality within agroeco-
systems (Karlen et al. 2001).

Water
Quality 

AGRICULTURAL SUSTAINABILITY 

Environmental 
Quality 

Economic 
Sustainability 

Social 
Viability 

ENVIRONMENTAL QUALITY 

Soil 
Quality 

Air 
Quality 

SOIL QUALITY 

Physical
Factors 

Chemical
Factors Biological

Factors 

Fig. 3 Hierarchical relationship of soil quality to agricultural sustainability
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In this sense, studies conducted in the irrigated central valley of California 
(Andrews et al. 2002a, b) and the Georgia Piedmont (Andrews and Carroll 2001) 
demonstrate that soil quality indexing can be a useful tool for assessing sustain-
ability of soil and crop management practices for a wide variety of soils. This is 
because the nonlinear scoring functions can be easily modified to accommodate 
soil differences due to their inherent characteristics, e.g. Mollisols in the Midwest 
of the US typically have higher soil organic-matter levels than Ultisols in the south-
east. Furthermore, the relative index of inherent soil quality (Sinclair et al. 1996), 
criticized by Sojka and Upchurch (1999) as being biased toward US Midwestern 
Mollisols, is an accurate reflection of the soil-resource potential in the absence of 
human intervention and external input of energy resources. The lack of correlation 
between inherent soil quality and economic value of the products produced is 
expected, because high productivity in areas with low inherent soil quality can be 
achieved only by creating a highly rated dynamic soil quality, by investing in exter-
nal energy inputs, and producing high-value crops. Thus, two of the most important 
factors associated with the soil-quality concept are that soils have both inherent as 
well as dynamic properties and processes, and that soil-quality assessment must 
reflect biological, chemical, and physical properties, processes and their interac-
tions (Karlen et al. 2003).

On the other hand, according to Herrick (2000), few land managers have adopted 
soil quality as an indicator of sustainable land management because there are a number 
of constraints to adoption. Specifically, this author addresses the following issues:

 1.   The demonstration of causal relationships between soil quality and ecosystem 
functions, including biodiversity conservation, biomass production and conser-
vation of soil and water resources. The true calibration of soil quality requires 
more than merely comparing values across management systems.

 2.   Increase the power of soil quality indicators to predict response to disturbance. 
Although there are many indicators that reflect the current capacity of a soil to 
function, there are few that can predict the capacity of the soil to continue to 
function under a range of disturbance regimes. Both resistance and resilience 
need to be considered.

 3.   The increase in accessibility of monitoring systems to land managers. Many 
existing systems are too complex, too expensive, or both.

 4.   Integration of soil quality with other biophysical and socio-economic indicators. 
Effective early-warning monitoring systems will require not just the inclusion 
of both biophysical and socio-economic indicators, but also the development of 
models that incorporate feedback between soil quality and socio-economic con-
ditions and trends.

 5.   The placing of soil quality in a landscape context. Most ecosystem functions 
depend on connections through time across different parts of the landscape.

In this context, existing definitions of soil quality and sustainable land manage-
ment have several elements in common, and an approach is proposed by Bouma 
(2002) to define a land-quality indicator for sustainable land management focused 
on agricultural land use which integrates elements of yield, risk, and environmental 
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quality using simulation modelling. Also, socio-economic and political conditions 
are crucial when defining land quality and sustainable land management, as land 
qualities have so far implicitly been focused on the field and farm level. Thus, pro-
posed land quality reflects yields, production risks as simulations are made for 
many years, and soil and water quality associated with the production process.

4  Land Use and Agriculture

According to Buringh (1989) between 11% to 12% of the land surface is generally 
suitable for food and fiber production, 24% is used for grazing, forests occupy 
about 31% and the remaining 33% has too many constraints for most uses. The 
farmland with humans are competing for land and the areas allocated to different 
land uses reflect the outcome of this competition (Ellison 2006). The world’s land 
area is about 13 thousand million ha, or 29% of the total land surface area of the 
earth. There is about 3.5 × 109 ha of pasture available worldwide (Seip and Wenstop 
2006). Forest land for production of timber, woods and pulp occupy about 0.57 ha 
per capita, arable land about 0.57 ha per capita, and pasture land used for dairy and 
cattle about 0.25 ha per capita (Seip and Wenstop 2006).

To increase agricultural production, farmers in almost all agricultural systems 
have to increase soil fertility, remove weeds, and apply pesticides and water, which 
clearly has a heavy impact on the environment. The single most important draw-
back of agricultural use of land is that soils become more exposed to high a risk of 
water erosion. Also, agriculture affects the environment in different ways: (1) It 
entails the loss of soil and its fertility in removing nutrients by harvesting crops 
without replacement (this is called soil mining), and this has several consequences 
especially in marginal areas; (2) agricultural input causes pollution by pesticides 
and other chemicals; (3) modern agriculture affects large landscape areas by level-
ling fields and changing surface structure and soil structure by heavy machinery 
(land areas from natural habitats to cultivated land), consequently the man-made 
impact on soil is often the precursor to natural disaster, and (4) land-use for agri-
culture and farming may conflict with land as protected reserves or land used for 
recreation.

Farmers often increase the risk of soil erosion and runoff, which pollutes lakes 
and rivers. Non-sustainable farming practices influence future soil quality, and may 
cause permanent soil loss and desertification. According to Seip and Wenstop 
(2006), typical soil-loss rates in the USA are 17 t ha−1 year−1. The runoff accompa-
nying the erosion is 75 mm year−1, 2 t ha−1 year−1 of organic matter, and 15 kg ha−1 
year−1 available nitrogen. This translates into an overall reduction in crop productiv-
ity of 8%, assuming that water and nutrients are not replaced. Replacement costs 
for nutrients and water amount to US $196 ha−1 year−1. The economic cost of soil 
losses caused by water erosion in the USA has been estimated at $7.410 × 109 annu-
ally. Assuming that soil is lost mainly from cropland and pastures (176 × 106 ha in 
USA), this corresponds to $44 ha−1 year−1 or $34 capita−1 year−1.
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The relationship between agriculture and the natural environment are complex. 
Agriculture is of vital importance to many societies and is the sector with the most 
intensive interaction between humans and the environment. Agriculture has, by its 
very nature, a strong impact on the natural environment and the natural environment 
sets limits on agricultural production systems. According to De Wit et al. (1987), 
simply put, changes in agriculture affect the natural environment and vice versa.

Agricultural land use has the potential to damage or destroy the natural resource 
base, thus undermining future development potentials. It is often the focus on short-
term economic gain and disregard of long-term impact and needs that lead to envi-
ronmental degradation. Clearly, part of the solution lies in a change in demands 
from society, e.g. via changes in diet and lifestyle, but also the agricultural sector 
has a responsibility to find ways to reduce the negative environmental impacts. 
Agriculture, based on natural resources, and serving as a major contributor to devel-
opment, is at the forefront of shaping the concept of sustainable development 
(WSSD 2002).

Understanding of the characteristics of soil organic matter and soil nutrients is 
important for refining agricultural management practices and for improving sus-
tainable land use (Cambardella et al. 1994; Wang et al. 2003). Agricultural practice 
influences the nutrient balance of agricultural soils, for example by application of 
fertilizer or manure. In areas with intensive husbandry, manure application may be 
so massive that runoff and leaching from the soil enriches waters above their toler-
ance limit (Durán et al. 2004; Rodríguez et al. 2009a). The three most important 
cycles in relation to soil management and soil sustainability are the cycles of nitro-
gen (N), phosphorus (P), and organic matter. The first two cycles relate to agricul-
ture, but also to nutrient enrichment of rivers, lakes and forests. The third also 
relates to the soil as a “fixed enriched nutrient film” for plant nutrition, which also 
has a risk of transport by erosion and runoff.

Irrigated land area has increased, and the use of purchased inputs, e.g., fertilizers, 
crop protection agents, and new technologies has grown, leading to increased pro-
duction per hectare (Fang et al. 2005). Several environmental problems are related 
to high input levels that result in nutrient and pesticide leaching. The combination of 
high inputs and advanced technologies clearly has consequences for the sustainabil-
ity of agro-ecosystems. Overuse and misuse of agro-chemicals works in two ways, 
it pollutes soil and water needed to sustain production and it directly and indirectly 
harms human health (Arias et al. 2008; Gheysari et al. 2009; Palacios et al. 2009).

The negative environmental impact of fertilizers has been the subject of research 
as well as both scientific and public debate for several decades, concentrating 
mainly on intensive farming systems in the developed world (especially Western 
Europe and North America); systems which have spread much more recently in 
tropical regions. Also in this research, a systems approach was followed. Initially, 
starting with understanding of the effect of the biophysical environment and the 
role of management at the plot and field scale, the analyses moved up to the farm 
and regional scales, to include socio-economic aspects of farm-level decision mak-
ing. Following this approach, trade-offs and possible synergies of management and 
policy options can be identified.
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Agriculture is regularly criticized because of its adverse effects on biological 
diversity. The threat to biological diversity is twofold. The largest losses of wild 
biodiversity are those associated with habitat destruction and fragmentation, mainly 
the result of conversion of natural vegetation for agricultural purposes. Moreover, 
the environmental impacts of agricultural activities leading to physical, chemical 
and biological degradation of the environment shrink biodiversity.

However, agriculture also contributes to biodiversity, as the biological diversity 
in agricultural crop species and varieties and livestock species and breeds is on one 
hand the result of adaptation to environmental conditions, while economic, social, 
and cultural factors also play a role in their diversification. This diversity in crop 
and livestock species, varieties and breeds provides the genetic base for enhancing 
productivity. However, changes in agricultural production resulted in the cultivation 
of only high-yielding varieties. The mainstream in biodiversity focuses on the so-
called hotspots or regions that accommodate large numbers of species at the risk of 
extinction (Myers et al. 2000). Because of the low success rate of this approach, 
efforts have recently been concentrated more on the economic value of biodiversity 
(Odling 2005).

Global climate change is currently one of the most pressing developmental prob-
lems worldwide (Arnell 1999; Hitz and Smith 2004). The specific effects of climate 
change are local, and they vary for different systems, sectors and regions. However, 
in a larger sense, climate change has an overarching effect on development. In addi-
tion to the urgency of reducing emissions of greenhouse gases to the atmosphere, 
attention needs to be placed on adapting systems to the changing environmental 
conditions.

Clearly, agricultural land use will be affected by climate change and variability 
(Olesen and Bindi 2002; Hitz and Smith 2004; Henseler et al. 2009). Houghton et al. 
(2001) concluded that in the tropics, yields would decrease with even a small increase 
in temperature. Semi-arid and arid areas are particularly vulnerable to changes in 
temperature and rainfall. Shifts in agro-ecological zones will, in some regions, require 
dramatic changes in production systems. Climate change will also have an indirect 
effect on crop production via changes in water availability and in susceptibility to and 
incidence of pests and diseases (Chakraborty et al. 2000; Thomson et al. 2010). High 
intra- and inter-seasonal variability in food supplies is often the result of unreliable 
rainfall and insufficient water for crop and livestock production.

Most climate-change studies have focused on either reductions in emissions or 
response strategies to the adverse effects of climate change and climate variability. 
Recently, however, the climate-change issue has been subsumed under the larger 
challenge of sustainable development (Swart et al. 2003; Wilbanks 2003). As a 
result, climate policies can be more effective when consistently embedded within 
broader strategies designed to make national and regional development paths more 
sustainable. Such policies deal with issues such as land-resource management, and 
energy and water access and affordability (Easterling et al. 2004; Halsnaes and 
Verhagen 2007).

It is well known that agricultural production affects other land uses, directly via 
competition for land and water or indirectly via inadequate management, leading to 
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degradation and pollution of soil, water, and the atmosphere. Often the focus on 
short-term needs or economic gains and the disregard of long-term impacts underlie 
decisions leading to degradation and pollution; in other cases, the lack of awareness 
or know-how is to blame. This observation is not new, but so far, solutions and 
pathways to move to more environmentally friendly production systems have not 
been very successful. However, by not only focusing on environmental issues but 
also considering economic and social criteria, a more harmonious picture of prob-
lems and possible solutions could emerge.

In addition, it is crucial to know the landscape functions and the influence of 
agriculture on these functions. In this sense, according to Herrmann and Osinski 
(1999), there is a need for knowledge of the different assets of landscapes in com-
bination with the potential impact of agriculture (Table 4).

Therefore, it is important to focus on the different potentials of the landscape or 
the functions it can fulfil. The availability and sensitivity to land-use forms that 
could endanger the assets, need to be considered.

4.1  Sustainable Soil Management in Drylands

Drylands with its particular climate regimes are not very favourable to crop produc-
tion (Gupta 1995). Low total rainfall (300–500 mm year−1 or less) and high vari-
ability in rainfall patterns, present particularly difficult challenges for growing 
crops (Inanaga et al. 2005). The drylands cover about 54 million km2 of the globe 
(UNSO/UNDP 1997) of which semi-arid areas are the most extensive (18%) fol-
lowed by arid areas (12%), dry sub-humid lands (10%) and hyper-arid lands 
(7.5%). It bears noting that various land-cover types are found in drylands, ranging 
from shrubland, forests, and croplands to urbanized settlements.

Since water is the limiting factor for agricultural production, the primary prob-
lem is the most effective means of storing the natural precipitation in the soil. Some 
plants require much less water than others. Others mature early, and in that way 
become desirable for dryland farming. Rainfed farming as currently practiced in 
drylands, is a system of low inputs combined with soil- and water-conservation 
practices and risk-reducing strategies (Martínez et al. 2006; Francia et al. 2006; 
Durán et al. 2008, 2009). This farming system can be sustainable if practiced prop-
erly. Although water shortage is the main limiting factor, successful dryland farm-
ing under rainfed conditions should also maintain reasonable practices to minimize 
other limiting factors such as poor nutrient status, weeds, and biotic stress, which 
can reduce crop efficiency in using the limited moisture.

Soils in dryland regions have low organic-matter contents due to the characteristi-
cally low plant biomass, and are thus predominantly mineral soils. Many of the soils 
have lower clay content than those in wetter regions. In practice, it is very rare to 
find soils with ideal texture, reaction, fertility and organic content in drylands. 
Therefore, there is a need to manage and improve dry soils so that they can perform 
to their full potential. In sustainable systems, the soil is viewed as a delicate and living 
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medium that must be protected and nurtured to ensure its long-term productivity 
and stability. A healthy soil is a key component of sustainability as it produces 
healthy crops with optimum vigour which are less susceptible to environmental 
stress. Proper soil management can help prevent some pest problems caused by crop 
stress or nutrient imbalance. Improved soil and farm management can also signifi-
cantly increase the amount of water a soil can store for the next growing season.

Soil erosion continues to be a serious threat to crop production in drylands (Parr 
et al. 1990). Numerous practices have been developed to keep soil in place, which 
include reducing or eliminating tillage, use of cover crops, plant strips and manag-
ing irrigation to reduce runoff. Many environmentalists assume that erosion can be 
stopped by planting trees. However, this depends on the way the trees are planted 
and managed, as benefits in soil and water protection do not accrue automatically 
by having trees on the land (Douglas 1998). It is the litter below the trees rather than 
the tree canopy itself that provides the bulk of the protection against erosion. If the 
litter is removed for mulch, fodder, fuel, etc., then the conservation benefits from 
planting trees are seriously reduced. According to Sanchéz (1987) trees are not 
always more efficient at protection than annual crops which can provide adequate 
cover within 30–45 days and pastures within 2–6 months. Lal (1979) pointed out 
that when mulched, or managed with low tillage, annual crops give the same results 
for soil loss as do secondary forests.

In the context of good watershed management, well-managed rotational crop-
ping or well-managed pasture may be preferable alternatives to poorly managed 
forest land (Shaxson 1992). The risk of soil loss by water and wind erosion can also 
be reduced significantly by protecting the soil surface with at least a 30–35% cover 
of straw or gravel mulch.

In dryland areas the water received as rain or snow can be easily lost before it can 
be used by a crop. Water taken up by weeds or lost to evaporation are the two most 
negative fates of water that must be avoided if precipitation-use efficiency is to be 
improved. Where economically feasible, irrigation is the most direct means for com-
bating drought conditions and intensifying agricultural production. However, for 
sustainability, irrigation must be practised in such a way as to avoid such hazards as 
soil erosion, salinization, leaching and disease infection. Sustainable irrigation must 
be based on knowledge of the crop, soil properties and the potential evapotranspira-
tion of the specific crop at the site. Supplemental irrigation is defined as the applica-
tion of a limited amount of water to rainfed crops when precipitation fails to provide 
the essential moisture for normal plant growth (Oweis et al. 1998, 2000).

Studies at ICARDA (International Center for Agricultural Research in the Dry 
Areas) showed that two or three irrigations (80–200 mm) increased grain yield in 
wheat by 36–450%, and produced similar or even higher grain yields than under 
fully irrigated conditions (Perrier and Salkini 1991). Supplemental irrigation is 
widely practised in Syria, and in southern and eastern Mediterranean countries. 
Water harvesting is a broad term describing various methods of collecting runoff 
from large contributing areas and concentrating it for use in a smaller crop area. 
Mulching is a method involving dense covering of the soil surface with gravels 
(Inanaga 2002) or with woody or non-woody plant stem, branch or leaf fragments 
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or residues (Martínez et al. 2006; Francia et al. 2006; Durán et al. 2008, 2009; 
Rodríguez et al. 2009a, b). It is effective in reducing evapo-transpiration and surface 
runoff of rain water, thereby increasing its percolation to the soil for use by crops.

Water-saving polymers have also been formulated and manufactured to provide 
better moisture management capabilities and longer lasting effects on crop perfor-
mance (Fernández et al. 2001; Ouchi 2001). Polymer crystals are incorporated into 
the soil preplant or at planting. These crystals absorb moisture and transform into 
gel-like nuggets of water and nutrients to meet the needs of plants when root-zone 
conditions turn dry. The polymers expand many times their original size, retaining 
moisture and water-soluble nutrients until plants need them. However, a major 
potential limitation to the use of polymers is the high cost.

4.2  Sustainable Soil Management and Climate Change

As environmental quality increasingly deteriorates due to agricultural practices, the 
importance of protecting and restoring soil resources is being recognized by the 
world community (Lal 1998, 2001; Barford et al. 2001). The sustainable manage-
ment of soil received strong support at the Rio Summit in 1992, as well as in 
Agenda 21 (UNCED 1992), the United Nations Framework Convention on Climate 
Change (UNFCCC 1992), and the Kyoto Protocol (UNFCCC 1998). These conven-
tions are indicative of recognition by the world community of the strong link 
between soil degradation and desertification on the one hand, and loss of biodiver-
sity, threats to food security, increases in poverty, and risks of accelerated green-
house effects and climate change on the other.

The growth of the global population has placed increased strains on agriculture 
to produce more food--the world population has grown by one billion people in the 
past 12 years, exceeding six billion in 2000, and is projected to swell to nine billion 
by 2050 (Brown 2004). More than 90% of this growth has taken place in developing 
countries, in sharp contrast to Western Europe, North America, and Japan, where the 
population growth is low or at a standstill. Increasing demand for food has resulted 
in increased soil disturbance, increased fossil-fuel consumption to produce agricul-
tural products, and increased biomass burning. Therefore, the application of adaptive 
soil-conservation measures under the effects of climate change is needed.

In this sense, soil organic matter plays a key role in building and sustaining soil 
fertility, affecting physical, chemical and biological soil properties. Higher tem-
peratures due to climate change will accelerate the turnover rate of organic matter. 
The effects are likely to be highest during winter, and increased turnover may lead 
to the build-up of inorganic nitrogen in the soil and greater risk of NO

3
 leaching. 

The overall effect of climate change on soil organic matter levels and NO
3
 leaching 

will depend on how climate change affects soil moisture during the summer season 
(Leirlos et al. 1999), on the counteracting effect of increased carbon (C) inputs 
from the growth-enhancing effect of increased atmospheric CO

2
, and on increased 

NO
3
 uptake by the vegetation (Ineson et al. 1998a, b). Depending on the current 
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situations this may lead to augmented CO
2
 emissions, which probably will be most 

pronounced from peat soils and also affect the use of these soils for agricultural 
purposes (Hartig et al. 1997; Chapman and Thurlow 1998). Ineson et al. (1998b) 
and Kamp et al. (1998) reported that N

2
O emissions may also increase under some 

conditions affected by changes in temperature, soil moisture, and C input. Drier soil 
conditions will become more vulnerable to wind erosion, especially if winds inten-
sify. Higher evaporation will also exacerbate the risk of soil salinisation in regions 
where total rainfall is restricted (Yeo 1999). According to Favis and Guerra (1999), 
an expected increase in rainfall, caused by stronger temperature gradients and more 
atmospheric moisture, may result in more frequent high-intensity precipitation 
events, increasing soil erosion.

According to Lal (2004a, b, c) proper soil management has great potential to con-
tribute to C sequestration, since the carbon sink capacity of the world’s agricultural 
and degraded soil is about 50–66% of the historic carbon loss of 42–72 Pg (1 Pg = 1015 
g of C). The C sequestration implies transferring atmospheric CO

2
 into long-lived 

pools and storing it securely so that it is not immediately re-emitted. Soil organic 
carbon stocks, through the addition of high amounts of biomass to the soil, cause 
minimal soil disturbance, conserve soil and water, improve soil structure, enhance 
activity and species diversity of soil fauna, and strengthen the mechanism of elemen-
tal cycling, as was pointed out by Lal (2004a, b). Proper sustainable land-use prac-
tices that improve soil quality through enhancing the SOC stock will become more 
noticeable, since soil management determines the level of food production, and, to a 
great extent, the state of the global environment. Thus the current pressure on the land 
resources of the world is vitally important especially under climate change.

In this sense, soil organic matter, which includes a vast array of carbon com-
pounds originally created by plants, microbes, and other organisms, helps to main-
tain soil fertility and plays a variety of roles in the nutrient, water, and biological 
cycles (Tiessen et al. 1994; Reeves 1997). Soil organic matter is also crucial for its 
normal function of supporting crop growth naturally, providing a place for water, 
air, and biological ecosystems to exist in the soil.

Many authors (Duff et al. 1995; Mitchell et al. 1996; Reeves 1997) with long-
term studies have consistently shown the benefits of manuring, adequate fertiliza-
tion, and crop rotation for maintaining agricultural productivity by increasing  
C input into the soil.

Under the effects of climate change on agricultural productivity in Europe, 
Olesen and Bindi (2002) have estimated that in northern areas the changes may 
have positive effects on agriculture through introduction of new crop species and 
varieties, higher crop production and expansion of suitable areas for crop cultiva-
tion. Disadvantages may include a greater need for plant protection, the risk of 
nutrient leaching and the turnover of soil organic matter. In southern areas the dis-
advantages will predominate. The possible increase in water shortage and extreme 
weather events may cause lower harvestable yields, higher yield variability and a 
reduction in suitable areas for traditional crops (Olesen and Bindi 2002). These 
effects may reinforce the current trends of intensification of agriculture in northern and 
Western Europe and extension in the Mediterranean and south-eastern parts of Europe. 
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Thus, policy will have to support the adaptation of European agriculture to climate 
change by encouraging the flexibility of land use, crop production, farming 
systems, etc. In doing so, it is necessary to consider the multifunctional role of 
agriculture, and to strike a variable balance between economic, environmental, and 
social functions in different European regions. Policy will also need to be con-
cerned with agricultural strategies to mitigate climate change through a reduction 
in emissions of CH

4
 and N

2
O, an increase in C sequestration in agricultural soils, 

and the growing of energy crops to substitute for fossil energy use, as pointed out 
above. In this context, Cowie et al. (2007) proposed different strategies of land-use 
change in order to mitigate the effects of climate change.

4.3  Cropland and Soil-Carbon Sequestration

Cultivated soils store great amounts of soil organic carbon, being one of the sinks 
for atmospheric CO

2
. Plant biomass and soils store about 500 Pg and 1,100 Pg C, 

respectively, on the global scale; C stored in soils is mainly in the form of soil 
organic matter (IPCC 1996). As for the C dynamics of croplands, crops accumulate 
carbon, resulting in CO

2
 fixation by photosynthesis and C consumption by respira-

tion. Part of the net crop C accumulation is removed through the harvesting process, 
while other types of crop residues, including litter and roots, remain in the crop-
land. These crop residues through the mineralization process are decomposed to 
CO

2
 or transformed to organic matter in the soil by microbial agents, which strongly 

depend on the C:N ratio (Rodríguez et al. 2009b).
One of the major factors in C loss from croplands is soil respiration, including 

microbial decomposition and root respiration. In this sense, according to Magdoff 
(1992) the soil respiration rate is influenced by soil type, climatic conditions, 
amount and quality of soil organic matter input, and soil management. The CH

4
 

emission from paddy fields is another process of soil-carbon loss, and the leaching 
of organic carbon, such as root exclusion.

As stated by Weil and Magdoff (2004), the increase of soil organic matter can 
enhance the diversity of the prokaryote community, as well as biomass. Prokaryotes 
are an enormous component of the biological carbon pool in the Earth’s carbon 
cycle. Whitman et al. (1998) estimated the number of prokaryotes and the total 
amount of their cellular carbon on Earth to be 4–6 × 1030 cells and 350–550 Pg of 
C, respectively. Prokaryotes also possess a vast metabolic diversity and, thus, con-
tribute to all aspects of C cycling in agricultural soils.

Wood et al. (2000) pointed out that globally, agricultural soils account for less 
than one-fourth of the soil organic carbon pool, and organic carbon levels are 
related to climate, topography, and soil texture. Also, this author reported that soils 
in the USA, Asia, and Europe are considerably richer in soil organic carbon (12.2, 
12.6, and 14.6 kg C m−2, respectively) than in sub-Saharan Africa (7.7 kg C m−2).

There are some difficulties involved with increasing or decreasing soil organic 
carbon, and continuing on an indefinite basis by using the same soil management 
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or land-use practices. In this sense, Bellamy et al. (2005) found that carbon loss 
from soils across England and Wales during a 25-year study period (1978–2003) 
occurred at a mean rate of 0.6% per year, also, the relative rate of C loss increased 
with soil carbon content and was more than 2% per year in soils with a carbon 
content greater than 100 g kg−1. These authors considered the relationship between 
the rate of carbon loss and soil carbon content to be irrespective of land use, con-
cluding that the carbon loss was linked to climate change. By contrast, Schulze and 
Freibauer (2005) maintain that the land-use factor plays a primary role and climate 
change a secondary factor.

Agricultural measures are needed for carbon storage in croplands. However, the 
applicability of these might differ according to the soil type and region. In this 
sense, according to Follett et al. (2005) some recommended management practices 
for soil C sequestration in croplands could be as follows: (i) adopting conservation 
tillage, surface-residue management, and mulch farming; (ii) cultivating crops with 
deep root systems; (iii) developing and cultivating high-lignin plants, especially in 
debris and roots; (iv) eliminating summer fallow and incorporating legumes and 
other appropriate cover crops in rotation; (v) applying animal manure and non-toxic 
anthropogenic biosoil; (vi) enhancing biological N fixation; and (vii) increasing 
crop biomass production.

According to Lal (2004d) the rate of increase in soil organic carbon stock, 
through land-use change and adopting recommended management practices, fol-
lows a sigmoidal curve that attains the maximum 5–20 years after the adoption of 
recommended management practices, and continues until organic carbon attains a 
new equilibrium. In addition, the soil-management practices directly affect the soil 
organic carbon pool by changing the carbon balance of input and output of organic 
carbon. A comparison of soil-management practices that increase soil carbon 
stocks is shown in Table 5.

Figure 4 depicts a simplified flow diagram of C pools and fluxes in a forest 
system. The C fluxes enter into biomass through photosynthesis, after which the 
biomass components go either into soil or to biomass extraction or remain as stand-
ing biomass in the vegetation. The C emissions are then emitted back into the 
atmosphere through the extracted biomass, e.g., firewood, timber, fodder, animal 
beds, poles, paper and pulp, etc. Some part of the biomass component enters the 
soil as organic matter, thereby enhancing the soil organic carbon in soil profiles, or 
decomposes, contributing to the emissions. Therefore, there are different levels of 
biomass and soil organic carbon under different land uses. Once the changes in land 
use or extraction of biomass take place, C stocks in biomass and soil are affected 
with significant implications for C sequestration. At a given point of time, any C 
pool in Fig. 4 acts as a sink or source, depending on whether the net result of 
sequestration and emission is positive or negative.

In this context, Upadhyay et al. (2006) concluded that land-use changes and 
forests/soil degradation are affected mostly by complex interactions of ecologi-
cal, biophysical, socio-economic, and institutional factors. Also, it is not possi-
ble to find unambiguous cause-effect linkages that would have a universal 
application.
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On the other hand, Oelbermann et al. (2004) reported that agroforestry systems 
have the potential to sequester atmospheric C in trees and soil while maintaining 
sustainable productivity, estimating aboveground components to be 2.1 × 109 Mg C 
year−1 in tropical and 1.9 × 109 Mg C year−1 in temperate biomes.

4.4  Soil Management for Sustainable Use

The soil management to maximize the benefits from soil organic carbon will 
require serious compromises in order to achieve agricultural sustainability. Some 
inappropriate practices such as complete debris removal for seed bed preparation, 
reducing manure application, single and continuous cropping, and the elimination 
of winter crops have significantly reduced organic matter input to cropland, and the 
enhancement of soil respiration by increasing N fertilizer application is resulting in 
a significant decline in soil organic matter.

Woody litter
(sink or source) 

Non-woody litter
(sink or source) 

Soil organic matter
(sink or source) 

Soil organic C at 
different soil profiles

(sink)

Wood products
(sink or source)

Woody biomass
(sink)

Non-woody products
(sink)

Carbon fixation

Natural mortality-
input of thinning 
and harvest debris

Litter and soil 
decomposition

Based on 
decay factors 
of the products

Atmospheric CO2

Fig. 4 Carbon pools and fluxes in a land-based ecosystem (Source: Cannell 1995)
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The soil organic carbon has become the most important indicator of soil quality 
under sustainable land use because of its impact on other physical, chemical, and 
biological indicators of soil quality (Reeves 1997; Bationo and Buerket 2001). 
Long-term studies have consistently shown the benefit of manure, adequate fertil-
ization, and crop rotation on maintaining agricultural productivity by increasing 
C input into the soil, as pointed out by Mitchell et al. (1996) and Reeves (1997).

The recent actions of many governments to develop more environmentally 
friendly farming practices, and the importance of surplus reduction have led to 
widespread interest in organic farming and environmental conservation farming 
(Hansen et al. 2001; Wood et al. 2006; Shi-ming and Sauerborn 2006). Under con-
servation management techniques, traditional agricultural methods are combined 
with modern farming techniques, while conventional inputs such as synthetic pes-
ticides and fertilizers are excluded or at least reduced (Rigby and Cáceres 2001; 
Wood et al. 2006). Soil fertility is built up by cover crops, compost, and animal 
manure. In south-eastern Spain extensive areas cultivated with rainfed tree crops 
(i.e., olives, almonds, and vines) are mainly confined to hilly marginal lands with 
shallow soils which are very prone to erosion under traditional soil-management 
systems but erosion can be significantly reduced by the use of plant strips (i.e., 
cereals, legumes, and aromatic and medicinal plants) running across the hillslope 
(Fig. 5). Also, soil erosion could be prevented by planting the taluses of terraces 
with covers of plants having aromatic, medicinal, and mellipherous properties. This 
increased the feasibility of making agricultural use of soils on steep slopes.

The organic matter in the soil has many benefits for agroecosystems, and its 
increase can mitigate some problems associated with soil management systems. 
According to Miura and Ae (2005), during the fallow season, a fertile soil some-
times causes nitrate (NO

3
) leaching into groundwater. Even with organic agricul-

ture, the soil may cause NO
3
 leaching, depending on soil management, because it 

is difficult to synchronize the N mineralization from manure, compost, or crop resi-
dues with the crop growth (Rodrígues et al. 2006). Therefore, soil-management 
strategies for sustainable agriculture should focus not only on increasing soil 
organic matter, but also on the uptake or storage of soil residual nutrients in order 
to prevent excess plant nutrients from leaching into the water bodies.

The NO
3
 leaching occurs mainly in the rainy period, when there is high precipi-

tation and relatively little evaporation, resulting in downward movement of soil 
water. According to Rodríguez et al. (2009a), the NO

3
 concentration in leachates 

was often over 10 mg L−1, and the highest concentration was observed in the rainy 
period in a subtropical production area with over 50 mg L−1, which exceed the 
concentration limit. Similar findings for high N concentration in leaching waters 
from orchard terraces with cherimoya trees was reported by Durán et al. (2006). On 
the other hand, even organic farming may promote excess NO

3
 concentration due 

to the accumulation of soil residual nutrients from long-term organic-matter input 
in the field.

Reinken (1986), in a 6-year field study, demonstrated that there were no differ-
ences between organic and non-organic methods detected in total-N or protein in 
a number of vegetables and three varieties of apples. The soil management for 
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sustainable use should be compatible with increasing soil organic matter to 
improve the soil quality for sustaining food productivity and to control soil residual 
nutrients that aggravate environmental problems. To control soil residual nutrients 
by increasing organic carbon, it will be necessary to employ fertilization techniques 
to synchronize with crop growth using post-planting application and soil testing to 
determine the optimum fertilizer application for the expected soil organic matter 
and organic material mineralization.

The cultivation of cover crops is a more attractive measure, since cover 
crops have been shown to prevent N leaching to groundwater by accumulating 
excess soil N (Wagger and Mengel 1988; Gu et al. 2004). Cover cropping is 
the only technique for improving the N cycle in cultivated soil that recycles the 
soil residual N and turns it into nutrients for subsequent crops. In this sense, 
according to Komatsuzaki and Mu (2005) the rye cover accumulated soil N as 
the soil residual N level rose. Similar prevention in controlling the N transport 
in agricultural runoff was found by using plant strips and plant covers on 

Fig. 5 Gullies in hillslopes with olive (a) and almond (c) orchards, in terraces with avocado 
orchards (e). Soil erosion prevention by intermittent plant strips in olive (b) and almond (d) 
orchards, in the taluses of orchard terraces (f)
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cultivated slopes and in orchard terraces, respectively (Durán et al. 2008; 
Rodríguez et al. 2005, 2009a). Cover crops have many other benefits as well, 
such as supplying soil organic matter, adding biological fixed N, suppressing 
weeds, and breaking pest cycles (Peet 1996; Sarrantonio 1998). They may also 
be able to enhance soil ecological diversity and perform essential activities to 
enhance soil health.

Soil organic carbon has the potential to improve soil structure, provide essential 
plant nutrients, and has an important role in pollution prevention, groundwater 
protection, and the promotion of biodiversity. However, soil organic carbon is reac-
tive and an increase in organic carbon may also have negative impacts on local 
environments if the soil is not properly managed. To meet the growing demand for 
and pressures on soil and water resources, it will be essential to develop and adopt 
ecofriendly, and sustainable soil-management practices.

On the other hand, Bauhus et al. (2002) reported that changes in soil organic 
carbon, fail to meet several of the attributes of what is commonly regarded as a 
good ecological indicator. Of particular concern are the changes in soil organic 
carbon resulting from charcoal inputs, which are difficult to interpret with regard to 
soil fertility. Without further qualifications, the changes in soil organic carbon can-
not be recommended for implementation as an indicator of sustainable soil manage-
ment in native eucalypt forests.

Even though soil-management measures for sustainable use may be benefiting 
the public as a whole, there may be little or no direct benefit to the farmer. Thus, 
when developing a soil-management strategy for sustainable agro-ecosystems, 
some political and social approaches will be needed.

The United Nations Framework Convention on Climate Change recognizes that 
management of the terrestrial biosphere can contribute to mitigation of climate 
change. Within the context of climate-change policy, emission and removal of 
greenhouse gases resulting from direct human-induced impacts on the terrestrial 
biosphere are accounted for within the sector known as land use, land-use change, 
and forestry. Besides their relevance to the United Nations Framework Convention 
on Climate Change objectives, measures undertaken in the land use, land-use 
change, and forestry sector are relevant to several other multilateral environmental 
agreements that have entered into force during recent years, particularly the United 
Nations Convention to Combat Desertification (UNCCD-United Nations 1994) and 
the Convention on Biological Diversity (CBD-United Nations 1993).

In this context, land use, land-use change, and forestry measures implemented 
to mitigate greenhouse-gas emissions may also affect, positively or negatively, 
desertification and the conservation of biodiversity (Table 6). Reversing land deg-
radation builds resilience in natural and managed systems, sustaining production 
and protecting biodiversity. Activities that promote adaptation to climate change 
can also contribute to the conservation and sustainable use of biodiversity and sus-
tainable land management. Measures that protect or enhance biomass and soil 
organic matter stocks tend to deliver benefits for all three environmental 
objectives.
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5  Land-Use Change

Land-use change is a complex, dynamic process that links together natural and 
human systems. It has direct impacts on natural resources: soil, water, and the 
atmosphere (Meyer and Turner 1994) and is thus directly related to many environ-
mental issues of global importance. The large-scale deforestations and subsequent 
transformations of agricultural land in many areas are examples of land-use change 
with impact that will likely be strong on biodiversity, soil degradation and the 
earth’s ability to support human needs (Lambin et al. 2003). Land-use change is 
also one of the important factors in the climate-change cycle and the relationship 
between the two is interdependent; changes in land use may affect the climate, 
while climatic change will also influence future land use (Dale 1997; Watson et al. 
2000). In addition, Vanacker et al. (2003) reported that land use changes are com-
plex relationships arising out of a wide variety of social objectives, such as the need 
for food, housing, recreation, or energy. Driving forces of land-use change have 
been grouped into a number of broad categories, such as economics, drought, earth-
quake, cropping trends, new technologies, and government policies, to name just a 
few (Heilig 1996; Reid et al. 2000; Geist and Lambin 2002). According to Shao 
et al. (2005), these all can be grouped into four factors: biophysical, institutional, 
technological, and economic, which cannot be understood independently.

Land-use change, as one of the main driving forces of global environmental 
change, is central to the sustainable development debate. The types of land use are 
distinguished as land-cover conversion, i.e. the complete replacement of one cover 
type by another, and land-cover modification, i.e. more subtle changes that affect 
the character of the land cover without changing its overall classification (Turner 
et al. 1993; Lambin et al. 2000). Land-use change happens at every spatio-temporal 
scale. However, the literature on LUC indicates that land-use changes are affecting 
many aspects of the earth’s systems (Velázquez et al. 2003; Lespez 2003; Tomich 
et al. 2004; Mahe et al. 2005).

The impact of land use, land-use change, and forestry on climate-change mitiga-
tion, protection of biodiversity, and desertification is shown in Table 6 according to 
Cowie et al. (2007), which are a result of the influence of human intervention on 
the underlying processes that drive greenhouse-gas emissions, integrity of natural 
ecosystems, and land degradation, respectively. Although some land use, land-use 
change, and forestry measures can be detrimental to conservation of biodiversity or 
mitigation of land degradation, there are many opportunities for synergistic interac-
tions. For example, many dryland ecosystems are sites of significant biodiversity; 
conservation and restoration of this habitat, while protecting these ecosystems, also 
increases C stocks, and reduces land degradation (Cowie et al. 2007).

Table 7 shows the soil erosion and runoff rates under different land uses at the 
watershed “El Salado” (SE, Spain). Vegetation under different land uses can reduce 
erosion by developing a canopy to intercept raindrops. In doing so, the raindrop 
loses the energy to erode the soil. Also, the litterfall increase soil organic matter and 
roughness of the ground while roots of the vegetation knit the soil together, reducing 
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Table 7 Average soil erosion and runoff for different land-use types at the Salado watershed

LUT
Plant cover/Management 
technique

Slope 
(%)

Soil erosion (Mg 
ha−1 year−1)

Runoff 
(mm year−1)

Forest Pinus sylvestris 36 0.02 0.1
Pinus nigra 33 0.01 0.1
Pinus pinaster 22 0.01 0.2
Pinus halepensis/Pinus pinea 45 0.03 0.2

Farmland Olive/conventional tillage 30 5.7 11
Olive/No-tille with barley strips 30 2.1 19.8
Almond/Bare soil with herbicide 35 12.3 58
Almond/No-till with thyme strips 35 0.4 5
Almond/No-till with barley strips 35 1.7 23.8
Almond/No-till with lentil strips 35 5.2 47.8
Rainfed wheat 36 3.8 56.5

Shrubland Ulex parviflorus 22 0.01 0.1
Lavandula stoechas L. 13 2.6 102
Lavandula lanata L. 15 2.0 51
Origanum bastetatum L. 15 1.6 36
Genista umbellata Poiret 13 1.5 50
Thymus baeticus Boiss. 13 1.4 56
Santolina rosmarinifolia L. 13 0.7 44
Salvia lavandulifolia Vahl. 13 0.5 33
Thymus serpylloides Bory 13 0.2 17
Rosmarinus officinalis L. 36 0.05 3.2

Grassland/
degraded 
land

Nativespontaneous vegetation 36 0.08 2.1
Bare soil 13 7.8 154

the runoff velocity and increasing infiltration. Therefore, the current erosion rates 
are affected by human activity, in particular the clearing of natural vegetation for 
agricultural purposes, and are believed to be significantly higher than those found 
under native vegetation.

Since Roman times, the sloping and mountainous land in southern Europe has 
been used for olive orchards, which continue provide a major source of income and 
employment for local populations. The production systems were economically and 
environmentally sustainable, but recent developments have so badly affected them, 
that they are now unproductive and environmentally disastrous. In this context, the 
main objective of the OLIVERO project (www.olivero.info) was to analyse the 
future of these olive-production systems on sloping and mountainous land in the 
European Mediterranean basin (Stroosnijder et al. 2008). According to the OLIVERO 
project this concerns the following social, economic, and environmental develop-
ments: (1) migration of rural population to coastal and urban areas; (2) European 
Union support to the olive sector in the form of production subsidies encouraging 
flat-land farms more than hillside farms with no incentives for more sustainable land 
and water use; (3) increasing production in and competition from countries outside 



146 V.H.D. Zuazo et al.

Europe, where olive area in the last decade expanded by 9% compared to 3% in the 
European Union; (4) intensification of olive cultivation on flat land to withstand this 
competition (while originally one of the best land-use options on hilly rainfed land, 
olive production has now migrated to flat irrigated land, thereby replacing horticul-
tural crops; (5) losing in production competition with flat land, the sloping and 
mountainous olive plantation systems are no longer well managed and cause envi-
ronmental havoc (annual soil erosion losses of 80 t ha−1 are unlikely and flood risks 
are now extremely high); (6) abandonment of sloping and mountainous olive planta-
tion systems has sharply increased fire incidence in southern Europe.

The future of these sloping and mountainous olive plantation systems is likely 
to follow one of the three paths of land use: (1) some will be gradually abandoned 
or transformed into nature conservation areas; (2) some will follow in the olive 
production intensification patterns typical in the valleys (now possible with drip 
irrigation); and (3) others will continue to be managed in a more extensive way, 
maybe supplementing olive production income with other activities, e.g. off-farm 
employment and tourism.

In all three cases attention needs to be paid to sustainable land husbandry and in 
particular to improving and conserving the soil and water resources (Xiloyannis 
et al. 2008; Metzidakis et al. 2008). While there are new sustainable technologies 
for hilly land and the European Union has now begun considering the environmen-
tal issues, there is a clear need to come up with the right technological packages 
and policy incentives for the different areas concerned (De Graaff et al. 2008; 
Goméz et al. 2008). Thus, most programmes involved in monitoring and assessing 
environmental conditions are ultimately associated with issues of sustainability.

The quality of water, soil and air resources, ecosystem processes and functions, 
as well as the climate system itself through greenhouse-gas fluxes and surface 
albedo effects have all undergone profound changes in the past century (Turner 
1989; Burel et al. 1993; Fu et al. 1994; Olsson et al. 1997; Leitch and Harbor 1999). 
These changes are likely to be even more momentous in this century. Determining 
the effects of land-use change on the earth’s system depends on an understanding 
of past land-use practices, current land use patterns, and projections of future land 
use, as affected by human institutions, population size and distribution, economic 
development, technology, and other factors. Therefore, land use is receiving 
increased attention in life-cycle assessments (Pennington et al. 2004; Brentrup et al. 
2004; Tan 2005; Wagendorp et al. 2006). Whereas, a few years ago, most land-use 
change research had been focused on why – i.e. why land-use change takes place 
– including explanations and driving forces of land-use change, the focus is now 
mostly on what – i.e. what is being affected by land-use change.

Modern environmental change is dominated by human influences, which are 
now powerful enough to exceed the bounds of natural variability. The main source 
of global environmental change is human-induced changes in land use. Therefore, 
land use is often a driver of environmental and climatic change, and a changing 
environment in turn affects land use practices (Shaw et al. 2002; Levy et al. 2004; 
Baker 2005). Although there has been progress in monitoring and understanding 
environmental change (Zavaleta and Hulvey 2004; Van Beek and Van Asch 2004), 
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it is still impossible to explain the underlying processes and mechanisms of 
ecological impact of land-use change. Additionally, it is clear that these changes 
will be increasingly manifested in important and tangible ways, such as loss of 
biodiversity, diminished land productivity, land degradation, water contamination, 
and receding groundwater tables.

Currently, the most fundamental obstacle to progress in understanding and pre-
dicting human impact on environmental changes lies in the lack of a comprehensive 
and integrative theory of human-land relationships. According to Tenge et al. (2004) 
and Olgerts et al. (2005) the recent growth of research into land use change has 
revealed the inadequacy of current theories. The theoretical explanation of land-use 
change seeks ultimately to understand the underlying forces driving changes.

5.1  Soil Organic Carbon Loss and Land Management 
to Restore Organic Carbon

Many long-term experiments on land-use change demonstrated significant changes 
in soil organic carbon (Smith et al. 1997, 2000, 2001, 2002). A recent modelling 
study examining the potential impact of climate and land-use change on soil organic 
carbon stocks in Europe confirmed that land-use change has a larger net effect on 
soil organic carbon storage than projected climate change (Smith et al. 2005).

In line with Guo and Gifford (2002), meta-analysis of long-term experiments, 
showed that converting forest land or grassland to croplands caused significant loss 
of soil organic carbon, whereas conversion of forest to grassland did not result is 
organic carbon loss.

The largest per-area losses of soil organic carbon occur where the C stock are 
largest, for example in highly organic soils such as peat lands, either through drain-
age, cultivation, or liming. Organic soils hold enormous quantities of soil organic 
carbon, accounting for 329–525 Pg C, or 15–35% of the total terrestrial C (Maltby 
and Immirzi (1993), with about one fifth (70 Pg) located in the tropics.

In this sense, according to Nykänen et al. (1995), Lohila et al. (2004) and 
Maljanen et al. (2001; 2004), the cultivated peat fields in Europe can lose signifi-
cant amounts of soil organic carbon through oxidation and subsidence from 0.8 to 
8.3 t C ha−1 year−1. Consequently, the potential soil organic carbon loss from land-
use change on highly organic soils is very large. In short, soil organic carbon tends 
to be lost when converting grasslands, forest or other native ecosystems to crop-
lands, or by draining, cultivating or liming highly organic soils. Soil organic carbon 
tends to increase when restoring grasslands, forests or native vegetation on former 
croplands, or by restoring organic soils to their native condition. Where the land is 
managed, the best management practices that boost C inputs to the soil or reduce 
losses help to maintain or raise soil organic carbon levels Smith (2004) (Table 8).

The rate of C input into the soil is related to the productivity of the vegetation 
growing on that soil, measured by Net Primary Production, which varies with cli-
mate, land cover, species composition and soil type. Moreover, the Net Primary 
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Production shows seasonal variation due to its dependence on light and tempera-
ture. For example the broadleaf temperate forests are highly productive for part of 
the year only (Malhi et al. 2002). According to Jones and Donnelly (2004), over 
longer time periods, a proportion of Net Primary Production enters the soil as 
organic matter either via plant leachates, root exudates, or by decomposition of lit-
ter and fragmented plant structures, where it is converted back to CO

2
 and CH

4
 via 

soil-heterotrophic respiration processes.
In this context, soil C sequestration can be achieved by increasing the net flux 

of C from the atmosphere to the terrestrial biosphere by increasing global C inputs 
to the soil via increasing the Net Primary Production, by storing a larger proportion 
of the C from Net Primary Production in the longer-term C pools in the soil, or by 
reducing C losses from the soils by slowing decomposition. According to Smith 
et al. (2005) for soil C sinks, the best options are to increase C stocks in soils that 
have been depleted in C, i.e. agricultural soils and degraded soils, or to halt the loss 
of C from cultivated peat lands. From the studies in European cropland (Smith et al. 
2000), US cropland (Lal et al. 1998), global degraded lands (Lal 2001) and global 

Table 8 Activities and practices for soil carbon sequestration

Activity Practice/specific management change

Cropland management Agricultural/increased productivity
Agricultural/rotations
Agricultural/catch crops
Agricultural/less fallow
Agricultural/more legumes
Agricultural/de-intensification
Agricultural/improvement of cultivars
Nutrient management/fertilizer placement
Nutrient management/fertilizer timing
Tillage/reduced tillage
Tillage/no-tillage
Residue management/reduced residue removal
Residue management/reduced residue burning
Upland water management/irrigation
Upland water management/drainage
Set-aside and land-use management/set aside
Set-aside and land-use management/wetlands
Agroforestry/tree crops, shelterbelts, etc.

Grazing-land management Livestock grazing intensity
Fertilization
Fire management
Species introduction
More legumes
Increased productivity

Organic soils Restoration/rewetting/abandonment

Degraded lands Restoration
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estimates (Cole et al. 1996; IPCC 2000), a global soil C-sequestration potential of 
0.9 ± 0.3 Pg C year−1 was estimated by Lal (2004a, b), between a 1/3 and 1/4 of the 
annual increase in atmospheric C levels. Moreover, Lal (2004a) estimated that over 
50 years, the level of C sequestration would restore a large part of the C lost from 
soils historically.

The most recent report by Smith et al. (2007) estimated that the technical poten-
tial for soil organic carbon sequestration globally is about 1.3 Pg C year−1, but this 
is very unlikely to be met.

Most of the estimates for the sequestration potential of activities in agricultural 
soils, listed in Table 9, range from about 0.3–0.8 t C ha−1 year−1, but some estimates 
are outside this range (IPCC 2000; Lal 2004a; Smith et al. 2000; Follett et al. 2000; 
Nabuurs et al. 1999; Smith et al. 2007). In addition, when considering soil 
C-sequestration options, it is important also to consider other side effects, including 
the emission of other greenhouse gases. Smith et al. (2007) showed that soil C 
sequestration accounts for about 90% of the total global mitigation potential avail-
able in agriculture by 2030.

Soil-C sinks are not permanent and will continue only for as long as appropriate 
management practices are maintained. If a land-management or land-use change 
is reversed, the C accumulated will be lost, usually more rapidly than it was accu-
mulated (Smith et al.1996). Also, soil C sinks increase most rapidly soon after a 
C–increasing land-management change has been implemented, but soil-C levels 
may decrease initially if there is significant disturbance, e.g. when land is affor-
ested. Sink strength (i.e. the rate at which C is removed from the atmosphere) in 
soil becomes weaker with time, as the soil-C stock approaches a new equilibrium. 
At equilibrium, the sink has saturated: the C stock may have increased, but the sink 
strength has decreased to zero (Smith 2004). According to IPCC (2000) this 
process is termed “sink saturation,” that highly variable phenomenon. The period 
for soils in a temperate location to reach a new equilibrium after a land-use change 
is about 100 years (Jenkinson 1988) but tropical soils may reach equilibrium 
more quickly. Soils in boreal regions may take centuries to approach a new 
equilibrium.

Land management can profoundly affect soil-C stocks and careful management 
can be used to sequester soil C. As with all human activities, the social dimension 
needs to be considered when implementing soil C-sequestration practices.

In addition, it is crucial to understand the processes that determine soil-C losses 
and the fate of the C once lost from the soil in order to provide sustainable solutions for 
mitigating these C losses as part of sustainable land use and balancing of carbon budgets. 
Table 9 shows an indication of the estimated gains or losses of soil C for a range of 
land-use changes, as detailed by Freibauer et al. (2004) and Soussana et al. (2004). 
The degree of uncertainty in this data is either due to lack of relevant studies, e.g. 
forest to grassland pasture, or to variations caused by contrasting management 
regimes on the same land-use type, particularly arable and grasslands (Soussana 
et al. 2004).

Consequently, modern sustainable land use has to augment soil-C sequestra-
tion, applying available management practices that could be implemented to 
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Table 9 Potential changes in soil carbon storage in terms of conversion of land-uses

Land-use change
Net C rate (uncertainty) 
(× 103 kg C ha−1 year−1) Source

Arable to ley/arable 
rotation

1.6 Smith et al. (1997)

Arable to grassland 
(50 year)

0.3–0.8 IPCC (2000)

Arable to grassland 
(35 year)

0.63 Jenkinson et al. (1987)

Arable to grassland 
(15–25 year)

0.3–1.9 ± 0.6, (100%) Vleeshouwers and Verhagen (2002); 
Guo and Gifford (2002); Murty 
et al. (2002)

Arable to grassland short 
leys (20 year)

0.35 Soussana et al. (2004)

Arable to permanent 
pasture

0.27 Post and Kwon (2000)

Arable to forestry 
(115 year)

0.52 + 1.53 (C in veg.) Hooker and Compton (2003)

Arable to forestry 0.62 + 2.8 (C in veg.) Smith et al. (2000); Falloon et al. 
(2004)

Arable to forestry 
(25 year)

0.3–0.6, > 50% Guo and Gifford (2002); Murty et al. 
(2002)

Arable to forestry 0.5–1.4, > 50% Maljanen et al. (2001)
Permanent crops 

to arable
−0.6 and 1.0–1.7, >50% Smith et al. (1996); Guo and Gifford 

(2002); Murty et al. (2002)
Grassland-arable 

(20 year)
−0.95 ± 0.3, 95% CI Soussana et al. (2004)

Grassland-arable −1.0 to −1.7, >50% Smith et al. (1996); Guo and Gifford 
(2002); Murty et al. (2002)

Grassland-afforestation 
(90 year)

0.1 ± 0.02, 95% CI Soussana et al. (2004)

Moorland-grassland −0.9 to −1.1 Soussana et al. (2004)
Forestry-arable −0.6 Guo and Gifford (2002); Murty et al. 

(2002)
Forestry-grassland −0.1 ± 0.1, 95% CI Soussana et al. (2004)
Native vegetation- 

grassland
0.35 Conant et al. (2001)

Peat land-cultivation −2.2 to −5.4 Freibauer et al. (2004)
Wetland-arable 

(temperate and boreal)
−1.0 to 19 Watson et al. (2000)

Wetland restoration 0.1–1.0 Watson et al. (2000)
Revegetation on 

abandoned arable
0.3–0.6, >50% Poulton (1996)

Revegetation on wetlands 
from arable

2.2–4.6, >50% Kamp et al. (2001)

Revegetation on wetlands 
from grassland

0.8–3.9, >50% Kamp et al. (2001)

Conservation >2.2, >50% Freibauer et al. (2004)

+ indicates soil C gains; − indicates soil C losses
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protect and enhance existing C sinks now as well as in the future. In this context, 
Smith and Powlson (2003) developed arguments for soil sustainability but the 
policy options are equally applicable to soil C sequestration. Since such prac-
tices are consistent with, and may even be encouraged by, many current interna-
tional agreements and conventions, their rapid adoption should be encouraged as 
widely as possible.

Table 10 shows a number of small- and large-scale measures that may be con-
sidered when following the “best-practice guidelines” under varied land-uses 
prevalent in the United Kingdom (Post and Kwon 2000; Carling et al. 2001; Conant 
et al. 2001; Farmer and Nisbet 2004; Forestry Commission Scotland 2006; 
Freibauer et al. 2004; Jones and Donnelly 2004; Lal 2004b, c; Smith 2004; 
Soussana et al. 2004; Stott and Mount 2004).

5.2  Effects of Land-Use Change on Soil and Water

Land use is one of the main factors, as it influences the distribution of elements, 
particularly processes and affects morphological, chemical, and physical soil condi-
tions (Leifeld and Kogel 2005; Mando et al. 2005).

Soil physical parameters like aggregates, particle-size distribution, bulk den-
sity, etc., are key factors in the functioning of soil with their abilities to support 
plant and animal life, and to moderate environmental quality with particular 
emphasis on soil-carbon sequestration and water quality. Although they often 
depend on the parent material, that is, their development and aggregation occur 
within the context of natural pedogenic processes and activities (Pulleman and 
Marinissen 2004; Montero 2005), many land-management practices are known to 
influence soil physical properties by altering the microsite of the soil and near-
ground temperature and moisture regimes as well as wet-dry and freeze-thaw 
cycles. These include cultivation, crop type, and the application of organic 
wastes. The effects of cropping systems on soil physical properties are often 
related to the increase in SOM related the action of growing plant roots with both 
aggregate formation and breakdown. Cultivation generally tends to break down 
aggregates. The stability of soil aggregates often diminishes for the growth of 
annual crops, such as wheat or corn. Residue quantity had a larger effect on 
splash detachment, shear strength, and aggregate stability than that of residue 
type. Long-term pastures are ideal for improving soil aggregation as well. 
Additionally, changes in temperature and moisture levels resulting from land use 
affect microbial and biotic activities, which in turn alter decomposition rates 
(Sveistrup et al. 2005).
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Table 10 Land management options that could increase soil C poolsa

Croplands Convert marginal cropland to native vegetation, grasslands or forestry; 
improve crop production and erosion control; improve management of 
set-aside and field margins; improve farming on eroded soils, erosion 
control buffer strips, riparian filters; reduced or no-tillage; improved 
waste management; eliminate bare fallow; organic amendments, 
increased efficiency of animal manure, sewage sludge and composting; 
inter-sowing and increased duration of grass leys; improve crop rotations; 
use perennial crops; use deeper rooting crops; use bioenergy crops; 
improve water and nutrient (fertilizer) management; increase number of 
agroforestry systems; do not use highly organic soils for cropping.

Grasslands Convert cultivated lands to well-managed permanent grasslands, species 
selection; decrease erosion and degradation; eliminate disturbance, e.g. 
fire protection in established pastures; increase forage production by 
improved fertilization, irrigation, inter-sowing of grasses and legumes; 
improve grazing and livestock management with controlled light-to-moderate 
stocking density; moderately intensify nutrient-poor permanent 
grasslands; introduce earthworms, improve soil structure; maintain a 
diverse plant community with a dense rooting system.

Forestry Forest and Water Guidelines by the Forestry Commission, “best practice” 
guidelines; increase forest stock; continuous-cover forestry to encourage 
natural regeneration; conserve soil and water resources; improvement of 
site preparation and planting techniques to decrease erosion; streamside 
management with uncultivated buffer zones to stabilize soil and reduce 
acidification; design of forest roads and network of drains, culverts 
and sediment catch pits; reduction of disturbances from wind and fire; 
minimisation of soil and water impacts and reduction of 
clear-felling operations to phased felling; minimisation of nitrate 
leaching, enhancement of base cation retention by early revegetation; 
use of species with high NPP or increase of the number of actively 
sequestering younger forests; application of nutrients and micronutrients 
as fertilizers or biosolids; aesthetic planting of previously native trees 
and shrubs, increase of biodiversity; maintenance of open bog and 
moorland habitats; extension of guidelines to include conservation, 
landscape, and recreation; planting of trees on mineral soils in preference 
to highly organic soils.

Peat lands and 
wetlands

Wetland protection, restoration and revegetation on bare peats; prevention 
of wind and water erosion; reduction of peat extraction and disturbance; 
preserve biodiversity; rehabilitate acidified surface waters; afforestation 
only in appropriate areas; controlled burning; aesthetic planting of 
previously native trees and shrubs; where possible block drains and 
restoration of the water table.

NPP Net Primary Production; a Dawson and Smith (2007)

Essential indicators of soil quality, e.g., soil fertility, soil moisture, soil pollu-
tion, etc., play an important role in affecting soil chemical, physical, and biological 
properties. Accumulating evidence suggests that changes in land use significantly 
influence the main soil-quality parameters (Eswaran and Kimble 2003; Riley et al. 
2005). Conversion from forest to agricultural land strongly impacts soil nutrients 
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and microbial biomass, e.g., soil organic matter, total nitrogen, water-holding 
capacity, and pH (Sharma et al. 2004; Agustin et al. 2004). Land-use structure 
types of slope farmland-grassland-forest and terrace-grassland-forest have a better 
capacity to maintain soil nutrients (Zalidis et al. 2002; Fu et al. 2003; Gregor and 
Anette 2002).

Soil moisture is a critical environmental variable, as it plays a key part in 
land surface and atmospheric interactions. It alters energy balances near the soil 
surface and the rate of water cycling between land and atmosphere. For example, 
it significantly affects infiltration, evapotranspiration, and surface as well as 
subsurface runoff processes (Ronda et al. 2002). However, most cases demon-
strate that land use, a human disturbance to land-surface characteristics, 
including the construction of dams, and intensification and expansion of agri-
cultural practices, are considered as explanatory factors for the observed 
soil-moisture behaviour (Mahmood and Hubbard 2003, 2004; Wilson et al. 
2005). Extremely dry or wet conditions enhance and reduce, respectively, the 
forcing of land use on soil-moisture variability at an annual time scale. Thus, 
large-scale interannual climate variations and land use jointly affect soil-moisture 
variability at this scale.

Land-use practices are assumed to have a major impact on both the quality and 
the cycle of water resources (Hundecha and Bárdossy 2004; Dawes et al. 2004). 
Hydrological effects of land use are unveiled in several ways both directly and 
indirectly. For instance, these water-balance responses follow land use change 
results in land and river salinisation, changes flood frequency and flow regime, 
and augments surface waterlogging, with all the ecological and economic conse-
quences (Sullivan et al. 2004; Jewitt and Garratt 2004; Dawes et al. 2004). 
Intensive cultivation and livestock husbandry will have negative hydrological 
effects through the application of fertilizers, pesticides, herbicides, and land drain-
age. Water quality is likely to be degraded by agricultural intensification through 
NO

3
 and PO

4
 concentrations because of heavy concentrations of inorganic fer-

tilizers (Clarke et al. 2002). Pesticides will also cause health risks to humans and 
wildlife when washed by rainfall into water bodies and underground water, 
bringing about possible water toxicity (Ares 2004; Berenzen et al. 2005). Farm 
wastes such as manure and slurries from farm livestock and pesticide containers 
are all potential sources of both surface and groundwater pollution (Smith et al. 
2004; Grey et al. 2005).

The impact of land-use change on the hydrologic cycle involves primarily 
evaporation, runoff, and erosion. The total evaporation from a given land use is 
influenced by aerodynamic resistance to transportation of vapour between the 
evaporating surface and the atmosphere. The balance between the atmospheric 
and radiation demand leads to the occurrence of water at the evaporating surface 
(Sullivan et al. 2004). Depending on the rate of extraction, the extent of the 
free-water surface in lakes and swamps can be reduced. Also altered may be the 
availability of soil water to plants in the case of the deep-rooted plants that will 
replace shallow-rooted grasses, provoking declines in the water availability during 
the dry season These changes in the availability of water at the evaporating 
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surface alter the evaporation rate, leading to changes in the near-surface atmospheric 
conditions; this, depending on the extent of the land use, can lead to a basin-scale 
climatic change (Schneider et al. 2004; Hope et al. 2004). At the same time, 
replacing grasses with taller vegetation will increase the aerodynamic roughness 
and lower aerodynamic transport resistance. Agricultural operations normally 
involve soil-structure disruptions, upsetting the balance between percolation and 
runoff. These activities affect the timing of runoff and determine the velocity at 
which net rainfall reaches water bodies. Infiltration rates will be augmented as a 
result of greater porosity during tillage and reduced considerably towards har-
vesting due to soil compaction by raindrops (Rhoton et al. 2003; Lado et al. 2004; 
Gómez et al. 2001). The planting of trees can affect seasonal flows through 
increased interception of water and greater transpiration. However, removal of 
the vegetation cover and exposure of the soil surface increases the susceptibility 
of the soil to erosion through the detachment of soil particles, compaction, and 
sealing of soil surface (Gemma et al. 2003; Huisman et al. 2004; Bartholy and 
Pongracz 2005).

5.3  Impact of Land-Use Change on Biodiversity

At present, loss of biodiversity, inducing high rates of extinction and a worldwide 
depletion of biological diversity at the genetic, species and ecosystem levels, can be 
linked to the destruction of natural habitats as a result of land-use change at differ-
ent scales (farmland expansion, deforestation, urbanization, etc.), and is presently 
considered one of the most urgent environmental problems (Chemini and Rizzoli 
2003; Medley 2004; Zebisch et al. 2004). The ecological consequences of biodiver-
sity loss have aroused considerable interest and controversy during the past decade. 
Major advances have been made in describing the relationship between species 
diversity and ecosystem processes, in identifying functionally important species 
and in revealing underlying mechanisms (Loreau et al. 2001; Brown et al. 2001; 
Wardle et al. 2003).

Undoubtedly, underlying processes and mechanisms that result in biodiversity 
loss remain poorly understood. Our limited knowledge has come mainly from studies 
of terrestrial habitats that have been transformed by human activities. The single 
most important fact concerning biological diversity is that it is not evenly distrib-
uted over the planet (Jeanneret et al. 2003; Solé et al. 2004).

Conversion, degradation, and fragmentation threaten the integrity of ecosys-
tems worldwide. Today, biological species live in steadily more fragmented 
(“island”) habitats isolated from each other within a matrix of human construc-
tions. Land use and habitat conversion are, in essence, a zero-sum game: land 
converted into farmland to meet the global food demand comes from forests, 
grasslands, and other natural habitats (Tilman et al. 2001; Jenkins 2003; Hietala 
et al. 2004). This process is known as forest or habitat fragmentation. This frag-
mentation, including both the shrinking of the habitat area as well as the its spatial 
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reshaping, has been generally recognized as the primary destroyer of biodiversity 
and ecosystem function. The consequences of fragmentation for species viability 
vary from species to species, in some cases depleting genetic variation, in others 
imposing dispersal barriers and thwarting key biotic interactions (Hale et al. 2001; 
Van Rossum et al. 2004; Rissler et al. 2004). Barriers, such as intervening patches 
of unfavourable habitats, roads or dams on waterways, may prevent recolonization 
from populations in other habitat patches. Habitat corridors (i.e. linear features 
which connect blocks of habitat) have generally been shown to benefit the move-
ment of animals, palliating the damage caused by fragmentation. For example, the 
expansion of shrubs and forests have depressed several grassland species, such as 
rock partridge; some arthropod communities of grassland have also been affected, 
while many forest species should find new opportunities (Jeanneret et al. 2003; 
Rustigian et al. 2003; Hudgens and Haddad 2003). However, the majority of species 
are likely to experience negative impacts from habitat disturbance, especially as 
patch sizes decline below a minimum required for population viability. 
Fragmentation can also make species more vulnerable to disease and storms, and 
perturb relationships between predators and prey (Holland et al. 2003). Additionally, 
although tropical rain forests harbour over half of all species diversity, the many 
other ecosystems that contain the remaining 50% also deserve consideration 
(Bruner et al. 2001; Achard et al. 2002). These include tropical dry forests, tundra, 
temperate grasslands, polar seas, and mangroves, which all contain unique expres-
sions of biodiversity with characteristic species, biological communities, and 
distinctive ecological and evolutionary phenomena.

Schmitzberger et al. (2005) investigated the relationship between biodiversity 
and farming activities in selected Austrian agricultural landscapes, confirming the 
negative effect of intensive (especially agricultural) land use on biodiversity. 
A close link between interests of farmers, land-use intensity, and biodiversity can 
be established (Reidsma et al. 2006; Giupponi et al. 2006). High-production farms 
supported the lowest nature values on their land, whereas both traditional and inno-
vative farm businesses maintained higher biodiversity within their landscape.

5.4  Land-Use Change and Driving Forces

Most simply, the interactions between humans and the environment are represented 
by the flow of ecosystem goods and services, the utilization of which usually has 
environmental repercussions for ecological systems (Bicík et al. 2001; Serra et al. 
2008). In terms of the DPSIR (Driving Forces, Pressures, State, Impact, and 
Response) approach of the European Environment Agency (EEA 1999); human 
needs “drive” the use of ecosystem structures and processes. The utilization causes 
“pressures” on the “state” of the ecological systems. These pressures result in: (a) 
further changes of the systems and (b) alterations of the ecosystems’ capacity to 
supply ecosystem services. This last step feeds back into the human sphere. Humans 
rely on ecosystem goods and services and thus evaluate their sustainable provision.
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The societal response to changes in the state of the environment differs to a 
large extent with the degree that the human actors consider essential ecosystem 
services at risk.

Land-use changes are modelled based on (proximate) driving factors and the 
resulting changes in land-use patterns are used to calculate a set of indicators that 
reflect the effects on selected environmental or socio-economic variables (impacts) 
(Reidsma et al. 2006; White and Engelen 2000). The impact of land-use change 
may affect future land-use changes as a consequence of such feedback. According 
to Bossel (1999), such feedback blurs the distinction between impacts and drivers. 
Examples include soil degradation that affects future land use when soil suitability 
is a driving factor of land-use change as well. Large-scale deforestation may alter 
climate conditions and, hence, influence vegetation patterns and the occurrence of 
forest fires. These may affect land requirements and reclamation potential (Foley 
et al. 2003). Such feedback can also act through the socio-economic system: inten-
sified land-use practices can generate higher income which, in turn, can trigger 
investments in further intensification or expansion of the farmed area. It is impor-
tant to distinguish between positive (amplifying) and negative (attenuating) feed-
back. Positive feedback is self-reinforcing and concerns interactions between the 
effects and drivers of land-use change that extend the reach of these changes 
(Lambin et al. 2003). Unsustainable soil use after deforestation may lead to a higher 
rate of future deforestation as a consequence of soil degradation.

Negative feedback refers to effects of land-use change that attenuate further 
change: the response of environmental degradation following deforestation may 
lead to innovative and more sustainable land conversions, slowing down the rate of 
forest conversion. Some types of feedback can result in a gradual modification of 
the land-use system, while others can suddenly provoke the transformation or col-
lapse of the system when it reaches a point of no return. An example is a total ban 
on logging of mountain forests after a disastrous flood event.

When feedback mechanisms lead to a timely attenuation of the change or associ-
ated impact (negative feedback) the system itself shows a certain degree of resil-
ience to the change. In the case of a positive feedback, leading to unsustainable 
land-use practices and negative impact on key indicators, intervention from policy 
may be needed to fine tune the feedback process (Lambin et al. 2003).

Feedback mechanisms between land-use change impact and driving factors 
operate over different temporal and spatial scales. Whereas some types of feedback 
operate locally, e.g. nutrient depletion of the soil, many feedback mechanisms oper-
ate over larger scales such as the landscape scale: as a consequence of off-site 
effects of erosion/sedimentation processes, through market mechanisms, or even 
through the global climate system (Foley et al. 2003). Differences in temporal scale 
result from a delay in response.

The most common feedback mechanism in dynamic modelling approaches is 
the dependence of land-use change at time t on land use at time t − 1. Such depen-
dence on current and historic land use is essential to represent the land-use pattern, 
since conversion possibilities and costs greatly differ according to the type of land 
use. This kind of feedback leads to being path-dependent in land-use simulations 
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(Manson 2001; Verburg et al. 2004). Less common in land-use modelling is the 
simulation of feedback between impact on socio-economic and environmental con-
ditions and the driving factors of land-use change. However, such feedback is 
essential for a more complete understanding of the dynamics of the land-use system 
and possible pathways that lead to amplification or attenuation of the changes.

For example, to illustrate the potential of including feedback between types of 
impact and drivers of land-use change an example is given for a region in southern 
Spain (Verburg 2006). This case study considers feedbacks between land-use decisions 
and landscape processes (erosion and sedimentation). The modelling approach accounts 
for land-use conversions that change the processes of erosion and sedimentation as a 
result of alterations in water infiltration, management (tillage erosion), and vegetation 
cover. Thus, erosion and sedimentation processes, in turn, sway land-use decisions.

According to Verburg (2006) this feedback mechanism involves different 
processes:

 1.   Erosion and sedimentation processes change the soil depth and consequently 
determine the suitability for agricultural purposes. Soils in the area are mostly 
shallow and soil depth is decisive in agricultural land-use choices.

 2.   If soil depth becomes too shallow for agricultural purposes the land will be 
abandoned. Swift changes in soil depth are occurring especially in areas where 
gullies are cut by runoff and highly erosive conditions.

 3.   Erosion and sedimentation features can often be distinguished by the appear-
ance of gullies or rills, and down-slope fields may be covered by sediments. 
Depending on the perception of these features by farmers, land-use decisions 
are affected by lowering the perceived suitability of the location.

The conflicts between biodiversity conservation and human activities are 
becoming increasingly apparent in all European landscapes. The intensification of 
agricultural and forestry practices, land abandonment, and other land uses such as 
recreation and hunting are all potential threats to biodiversity that can lead to con-
flicts between stakeholder livelihoods and biodiversity conservation. To address the 
global decline in biodiversity, there is, therefore, a need to identify the drivers 
responsible for conflicts between human activities and the conservation of European 
biodiversity and to promote the reconciliation of conflicting interests. Human 
activities can, in many ecosystems, be beneficial to biodiversity. In grasslands and 
agricultural landscapes for example, low-intensity management can promote high 
densities of species (Bignal and McCracken 1996, 2000; Farina 1997; Blanco et al. 
1998; Robinson et al. 2001). In Europe, the trajectory and maintenance of the bio-
diversity of many ecosystems depends directly on traditional types of land use 
(Dömpke and Succow 1998). However, there is increasing evidence of a global 
decline in biodiversity (Pimm and Raven 2000; Myers and Knoll 2001; Brooks 
et al. 2002; Singh 2002). Although many factors are responsible for this decline, the 
root cause is invariably some form of human activity, mainly associated with 
changes in land use. To address the global decline in biodiversity there is, therefore, 
a need to identify the drivers leading to conflicts between human activities and the 
conservation of biodiversity, and to promote the management of these conflicts.
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On the other hand, Antrop (1997) pointed out that for densely populated areas 
where landscapes change rapidly, and not always according to planning rules, the 
concept of traditional landscapes offer two approaches which can be use for 
improving landscape management, landscape architecture and planning. Firstly a 
general framework of spatial landscape units reflects differences in historical devel-
opment, which are linked to the local natural conditions. This can be compared to 
the current situation, and remnants of the old landscapes can be detected and 
mapped. Secondly, the idealised model descriptions may be used as holistic tools 
to evaluate the landscapes values and to define ensembles. Thus, ensembles form 
landscape holons may be used as anchor places to start landscape restoration in a 
wider area.

5.4.1  Agricultural- and Forest-Policy Drivers

Agriculture including arable land and permanent grassland is one of the most 
important forms of land use, covering about 43% (137 million ha) of the European 
Union, with 12 million or more people depending directly on agriculture (Potter 
1997). The European Union’s Common Agricultural Policy, set up in 1962 to deal 
with food shortages following the Second World War, is now the main policy driver 
behind conflicts between agricultural practices and biodiversity. The Common 
Agricultural Policy initially aimed to boost productivity and provide more food at 
a lower cost for European Union countries, while also achieving a fair standard of 
living for farmers. This was achieved through stabilisation of markets (through a 
single market with common prices) and a more autonomous approach with less 
reliance on imports and preference given to member states as well as free move-
ment of goods. Habitat degradation or loss, food overproduction, social discontent 
leading to rural depopulation (Comins et al. 1993; Grove and Rackham 2001) and 
the cost associated with the accession of another ten countries to the EU in 2004 all 
led to pressure for the reform of the Common Agricultural Policy (Bignal 1999).

Starting in the mid-1980s, pressure has been building to divert money away from 
direct subsidies for production and into environmental protection and rural develop-
ment, and this trend is likely to continue for the foreseeable future. Despite great 
variations between European Union member states, agri-environment schemes now 
cover a total of 20% (27 million ha) of the agricultural land in the European Union 
(EC 1998) but receive only about 4% (1.7 billion €) of the European Agricultural 
Guidance and Guarantee Fund (Donald et al. 2002).

Conflicts with the protection of forest biodiversity in Europe are due primarily 
to changing demands concerning forests and forestry. Major conflicts can be linked 
to overall changes in forest management, such as changes in ownership patterns, 
transportation systems or even changes in planning strategies. Forestry systems 
have also changed significantly with intensive harvesting methods, the shortening 
of crop-rotation times, plantation forestry (often using exotic species) and the 
increased use of biocides. As with agriculture, technological advances have also 
been instrumental in enabling a wider use of machinery for timber harvesting, and 
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infrastructure development such as roads for easier transportation of timber. This 
intensification of forestry practices and the increasingly multi-purpose role of for-
ests have all contributed to a number of initiatives to better understand the status of 
forests in Europe, their threats, and priorities in conservation.

Examples include the work programme on Forest Biological Diversity at the 
sixth Conference of the Parties in The Hague in 2002 and the work undertaken by 
the Ministerial Conference on the Protection of Forests in Europe (MCPFE). 
Although the Treaties of the European Union make no provision for a comprehen-
sive common forestry policy, the management, conservation, and sustainable devel-
opment of forests are nevertheless vital concerns of existing common policies such 
as the Common Agricultural Policy and rural development, environment, trade, 
internal market, research, industry, development cooperation, and energy policies. 
Forests are also a component of specific environmental issues such as the European 
Union Biodiversity Strategy, Natura 2000, and the implementation of the Climate 
Change Convention.

6  Towards Sustainable Soil Use by Agriculture

Soil degradation and irreversible destruction of agricultural soils are advancing at an 
alarming rate, threatening the food security of an expanding world population. The 
decomposition of soil organic matter favours climatic change and loss of an impor-
tant CO

2
-sink. The state of knowledge-report describes the extent of agricultural-soil 

degradation, its biophysical and socio-economic causes and economic impacts. In 
previous sections the causes behind the failure and success of soil conservation proj-
ects are analysed. It is evident that the failures are not simply because land users lack 
efficient technology to protect the soil better; the major causes are insufficient par-
ticipation in technological development and the lack of favourable socio-economic, 
institutional, and legal conditions. For implementing sustainable agricultural soil use 
on broader scale to it is essential create a more favourable agro-political framework 
such as economic incentives for farmers, and participatory approaches in soil-related 
research and technology development focusing on soil management.

6.1  Conservation Tillage and Sustainable Soil Use

Conservation tillage generally refers to the maintenance of a cover of crop debris 
on the soil surface either to reduce the amount of tilling (reduced till or minimal 
till) or eliminate it altogether (no-till). However, due to regional, technical, eco-
nomical and institutional differences, the term “conservation tillage” is understood 
differently in various parts of the world. The US Conservation Technology 
Information Center developed the first widely accepted definition of conservation 
tillage as “any tillage and planting system that covers at least 30% of the soil 
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 surface with crop residue, after planting, in order to reduce soil erosion by water” 
(CTIC 1999). Mannering and Fenster (1983) pointed out that “a common charac-
teristic of any conservation tillage is its potential to reduce soil and water loss rela-
tive to conventional tillage.” Conservation agriculture in Europe according to 
ECAF (1999) refers to “several practices, which permit the management of the soil 
for agrarian uses, altering its composition, structure and natural biodiversity as little 
as possible and defending it from degradation processes (such as soil erosion and 
compaction) and generally it includes any practice, which reduces, changes or 
eliminates soil tillage and avoids residue burning to maintain enough surface resi-
due throughout the year.”

Consequently, conservation tillage may be interpreted as “any system that boosts 
good crop yields while at the same time maintaining soil fertility, minimizing soil 
and nutrient loss, and saving energy-fuel inputs.”

Wittmus et al. (1973) give a broad, well-accepted definition of conservation till-
age as “tillage systems that create as good an environment as possible for the 
growing crop and that optimise the conservation of soil and water resources, con-
sistent with sound economic practices,”. In this context, the long-term impact of 
conservation-tillage practices can promote sustainable land use, improving nutrient 
availability and yield response.

Moreover, Fowler and Rockstrom (2001) pointed out that effective and accept-
able conservation tillage must be identified and characterised in terms of soil, cli-
mate, and socio-economic conditions.

Long-term research on conservation tillage has been carried out for at least 30 
years, especially in the semiarid and semi-humid regions with dryland farming, 
where it was concerned with crop production without supplemental irrigation. 
Many authors (Riley et al. 1994; Uri et al. 1998; Uri 2000; Hussain et al. 1999; 
Rasmussen 1999; Williams et al. 2005; Bravo et al. 2007, García et al. 2007) have 
reported several benefits for achieving sustainable land use from conservation-till-
age systems: (1) economical benefits, i.e. labour, energy, machinery cost, and time 
saved, (2) positive effects in controlling soil erosion, and soil and water conserva-
tion, and (3) increases in soil organic matter.

Also, due to different weather and soil conditions, research has also reported low 
nutrient availability and inconsistent yield response with conservation tillage. In the 
USA for areas with low annual rainfall and on soils with low water-holding capac-
ity (light, well-drained silty loam soils), it has been suggested that the positive 
aspects of conservation tillage outweigh the negative aspects. On land with drought 
stress and serious erosion problems, the added water should increase yield potential 
at more southern latitudes. Meanwhile moldboard plowing or chiselling often has 
the highest returns on dark, poorly drained silty-clay loams at northern latitudes, 
where the extra water may delay planting and reduce yield potential; and the lower 
temperature early in the growing season with surface residue systems could delay 
growth in the northern USA (Griffith et al. 1986).

However, Riley et al. (1994) reported some adverse effects of straw mulches on 
poorly drained soils, and poor results were found after early sowing on silt soil with 
reduced tillage, probably due to waterlogging at seed germination, with results in 
dry years being better than in wet years.



161Sustainable Land Use and Agricultural Soil

Studies have also documented potential benefits associated with conservation 
tillage: (1) potential carbon sequestration (Uri et al. 1998) with smaller C emis-
sions due to slow oxidation under low temperatures with no-till; (2) potential 
nutrient availability where adequate fertilizer inputs were generally more critical 
with conservation-tillage systems (particularly no-till) than with conventional till-
age systems and over the long term, requirements could decline as a result of 
accumulation and mineralization of soil organic matter (Rasmussen 1999); and (3) 
potential yield response, given that even though the crop yield with no-till was not 
usually reduced (Guérif et al. 2001), yields could be equivalent or higher com-
pared to those from conventional tillage practices (Lindwall and Anderson 1981; 
Karunatilake et al. 2000).

In semi-arid regions under rainfed agricultural systems, water was the most 
limiting factor in crop production. Also crop yields with different tillage systems 
varied from year to year due to weather fluctuations. According to Lampurlanes 
et al. (2002) in terms of yields, the best tillage system is often a function of the 
weather that year. Durán et al. (2008) reported a reasonable almond yield in semi-
arid slopes under no-till with intermittent plant strips. Therefore, weather condi-
tions in the growing season also appear influence the success of these systems. 
Eckert (1984) reported that non-tilled corn yielded more in drier than in normal 
years, whereas in the moderately well-drained soils of Ohio the yields with mould-
board plow were higher in wetter rather than in regular years. Hussain et al. (1999) 
also reported that no-till yields were 5–20% lower than with the moldboard plow in 
wet years, but were 10–100% higher in relatively dry years. Lal and Ahmadi 
(2000), after monitoring the effects of three tillage methods on maize yield in silty 
loam soil for 11 years in central Ohio, USA, found that there were no consistent 
trends in grain yields from year to year. However, a chisel-plow treatment out-
yielded no-till and mouldboard-plowing. Cantero et al. (1995) reported that in 
drought years, no-till had a yield advantage over the fully tilled fallow and blade 
plow tillage methods.

Due to regional differences in climate conditions and soils, there is no universal 
tillage or cropping system that is best for all situations. Nevertheless, changes in 
soil structure could affect the relative success of conservation tillage (Karunatilake 
et al. 2000). Studies in Canadian zones of black and grey soils, showed yield 
increases with no-till over conventional tillage from 0% to 23% for barley, spring 
and winter wheat, flax, canola and field pea (Lafond et al. 1996; Arshad et al. 1994; 
Borstlap and Entz 1994). In the north-central and north-eastern USA, weather and 
soil type strongly affected the relative success of reduced and non-tillage methods 
with fine-textured and poorly drained soils generally posing the greatest challenge 
to their adoption (Johnson and Lowery 1985; Lal et al. 1989; Cox et al. 1990). In 
Europe, according to Butorac (1994), it has been determined that well-drained 
soils, light to medium in texture with a low humus content, respond best to conser-
vation tillage. The most obvious environmental advantage of reduced tillage is its 
role in minimizing erosion risks (Riley et al. 1994). Further expansion of conserva-
tion tillage on highly erodible land will result in a smaller impact on the environ-
ment and an increase in social benefits; nevertheless, the expected gains are likely 
to be modest (Uri et al. 1998).
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Therefore, to develop sustainable land use, meet environmental quality, and 
allow for food-production needs (reducing the risk of yield failure) and provide a 
system that is integrated, applicable and advanced, technologies are needed to 
ensure successful acceptance and adoption of conservation methods. These include 
the need for better understanding of soil conservation and environmental protec-
tion, the need for better knowledge of the long-term impact of site-specific tillage 
practices, and the need to develop appropriate practical technologies.

6.2  Soil Biodiversity as the Key for Sustainable Soil Use 
in Agriculture

The feedback between soil C and atmospheric CO
2
 is a process which is still not 

fully understood. However, it is generally accepted that the soil biota plays the 
dominant part in this complex interaction. Soil biological processes therefore can 
clearly have a strong effect on the global C cycle (Yoo et al. 2006; Bolinder et al. 
2007). This is because soils contain approximately twice the amount of C as is 
found in the atmosphere, and fluxes totalling in the hundreds of giga-tonnes of C 
occur between the soil and the atmosphere on an annual basis (Schimel 1995).

In this context, Bellamy et al. (2005) found that an estimated 13 million t of C are 
lost from United Kingdom soils annually. This is the equivalent of 8% of total United 
Kingdom carbon emissions. As losses of soil organic carbon were found to be inde-
pendent of soil properties, this has lead to the formation of the hypothesis that the 
stability of soil organic carbon depends on the activity and diversity of soil organisms 
(Schulze and Freibauer 2005). Studies at different latitudes have shown that the rate 
of soil organic matter decomposition doubles for every 8–9°C increase in mean 
annual temperature (Ladd et al. 1985). While this is greater than the predicted 
increases due to climate change, all other things being equal, it is apparent that 
increased global temperatures will speed up soil organic matter decomposition rates. 
This then has the potential to feedback into even greater losses of CO

2
 from soil.

Soil biodiversity can also have indirect effects as to whether the soil functions 
as a C sink or source. It has been demonstrated repeatedly that soil biodiversity 
affects the erodibility of a soil due to a number of mechanisms including extracel-
lular exudates, and physically binding soil particles together with fungal hyphae. 
This process is important with regard to climate change as it has been shown that 
soil erosion can turn soil from a C sink to a C source (Lal et al. 2008).

Today’s society needs to recognise the need to restore and/or improve under-
standing: of the multiple goods and services provided by the different levels and 
functions of agricultural biodiversity; of the relationship between diversity, resil-
ience, and production in agro-ecosystems; and of the impacts of traditional and 
newer practices and technologies on agricultural biodiversity as well as on the sus-
tainability and productivity of agricultural systems. Special attention should be paid 
to the role of soil and other below-ground biodiversity in supporting agricultural 
production systems, especially in nutrient cycling.
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Soil is a dynamic, living matrix that is an essential part of the terrestrial ecosys-
tem. It is a critical resource not only to agricultural production and food security 
but also to the maintenance of most life processes (Hohl and Varma 2010).

Soils contain enormous numbers of diverse living organisms assembled in com-
plex and varied communities. Soil biodiversity reflects the variability among living 
organisms in the soil ranging from the myriad of invisible microbes, bacteria, and 
fungi to the more familiar macro-fauna such as earthworms and termites. Plant 
roots can also be considered soil organisms in view of their symbiotic relationships 
and interactions with other soil components (Grayston et al. 1997; Nandasena et al. 
2004). These diverse organisms interact with one another and with the various 
plants and animals in the ecosystem forming a complex web of biological activity. 
Environmental factors, such as temperature, moisture, and acidity, as well as 
anthropogenic actions (in particular, agricultural and forestry management prac-
tices), affect soil biological communities and their functions to different extents. In 
addition, according to Brussaard et al. (2007a), there is evidence that soil biodiver-
sity confers stability under stress and disturbance, but the mechanism is not yet 
fully understood. It appears to depend on the kind of stress and disturbance and on 
the combination of stress and disturbance effects.

Soil organisms are an integral part of agricultural and forestry ecosystems; and 
they play critical roles in maintaining soil health, ecosystem functions, and produc-
tion (Greenslade 1992; Park and Cousins 1995). Each organism has a specific role 
in the complex web of life in the soil:

 1. The activities of certain organisms affect soil structure especially the so-called 
“soil engineers” such as worms and termites through mixing soil horizons and 
organic matter and increasing porosity. This directly determines vulnerability to 
soil erosion and availability of the soil profile to plants.

 2. The functions of soil biota are central to decomposition processes and nutrient 
cycling (Paoletti et al. 1993). They therefore affect plant growth and productivity 
as well as the release of pollutants in the environment, for example the leaching 
of NO

3
 into water resources.

 3. Certain soil organisms can be detrimental to plant growth, for example, the 
build-up of nematodes under certain cropping practices. However, they can also 
protect crops from pest and disease outbreaks through biological control and 
reduced susceptibility (Grewal et al. 2005).

 4. The activities of certain organisms determine the C cycle, the rates of C sequestra-
tion and gaseous emissions and SOM transformation (Carney and Matson 2005).

 5. Plant roots, through their interactions with other soil components and symbiotic 
relationships, especially Rhizobium bacteria and Mycorrhiza, play a key role in 
the uptake of nutrients and water, and contribute to the maintenance of soil 
porosity and organic-matter content, through their growth and biomass 
(Duponnois et al. 2008).

 6. Soil organisms can also be used to reduce or eliminate environmental hazards 
resulting from accumulations of toxic chemicals or other hazardous wastes. This 
action is known as bioremediation (Jasper 1994).
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The interacting functions of soil organisms and the effects of human activities in 
managing land for agriculture and forestry affect soil health and quality (Park and 
Cousins 1995). Therefore, soil quality is the capacity of a specific kind of soil to func-
tion, within the boundaries of natural or managed ecosystems, to sustain plant and 
animal production, maintain or enhance water and air quality, and support human 
health and habitation. The concept of soil health includes the ecological attributes of 
the soil, which have implications beyond its quality or capacity to produce a particular 
crop. These attributes are chiefly those associated with the soil biota: its diversity, its 
food-web structure, its activity, and the range of functions it performs. Soil biodiver-
sity per se may not be a soil property that is critical for the production of a given crop, 
but it is a property that may be vital for the continued capacity of the soil to support 
that crop (Andrén and Balandreau 1999; Dollacker and Rhodes 2007).

The sustained use of the earth’s land and water resources and therefore plant, 
animal and human health is dependent upon maintaining the health of the living 
biota that provide vital processes and ecosystem services. However, current tech-
nologies and developmental support for increased agricultural production have 
largely ignored this fundamental management component. The improved manage-
ment of soil biota could be key factor in maintaining soil quality and health and in 
achieving the goals of agricultural production and food security under sustainable 
land use and land-resource management.

Farming communities are concerned with land-management issues such as 
water availability to plants, access to sources of fuel and fodder, control of soil ero-
sion and land degradation, especially avoiding soil nutrient depletion and pollution 
of air, soil, and water resources. At the global scale, the aggregated effects of these 
issues are embedded in the concerns of the international conventions on desertifica-
tion, climate change, and biodiversity.

Nonetheless, farmers are essentially driven not by environmental concerns, but 
by economics, by issues of costs and returns, and thus efficiency in terms of labour 
and energy as well as the use of materials. A central paradigm for the farmer for the 
maintenance and management of soil fertility, without undue reliance on costly and 
often risky external inputs, is to undertake management practices in order to influ-
ence soil biological populations and processes in such a way as to improve and 
sustain land productivity. The means to create a more favourable environment 
within the soil and soil biological community for crop production involves site-
specific decisions concerning crop selection and rotations, tillage, fertiliser and 
planting practices, crop residues and livestock grazing. These and many other fac-
tors influence ecological interactions and ecosystem function.

Capturing the benefits of soil biological activity for sustainable and productive 
agriculture requires a better understanding of the linkages among soil life and eco-
system function and the impacts of human interventions (Pankhurst and Lynch 
1995; Doran and Zeiss 2000; Doran et al. 2002). The complex interaction among 
soil, plant and animal life, environmental factors, and human actions must be effec-
tively managed as an integrated system (Pankhurst and Lynch 1995; Welch and 
Graham 1999). Greater attention to the management of soil biological resources –a 
hitherto neglected area in mainstream agriculture – will require a collaborative 



165Sustainable Land Use and Agricultural Soil

effort among scientists and farmers’ and across ecological zones and countries, 
building on successful experiences.

The application of biotic indicators for evaluation of sustainable land use is 
applied on various levels, including the continental field as well as the individual 
agricultural enterprise (Osinski et al. 2003). Apart from the ecological evaluation of 
agricultural enterprises and agrarian policy measures, indicators are also used in envi-
ronmental reporting and evaluation as well as in planning or simulation models in 
administrative and scientific fields. Already for a long period of time, indicators have 
been used as assessment criteria in landscape planning to make decisions regarding 
land use. Due to the standards the European Union commission requires from the 
member states in this regard, the application of indicators to assess the effects of agri-
environment programs has gained prominence (Osinski et al. 2003).

6.2.1  The Benefits of Appropriate Soil-Biota Management

Soil organisms contribute a wide range of essential services to the sustainable func-
tioning of all ecosystems. They act as the primary agents of nutrient cycling, regu-
lating the dynamics of soil organic matter, soil-carbon sequestration, and 
greenhouse-gas emissions; modifying soil physical structure and water regimes, 
enhancing the amount and efficiency of nutrient acquisition by the vegetation and 
enhancing plant health. These services are not only essential to the functioning of 
natural ecosystems but constitute an important resource for sustainable agricultural 
systems (Andrén et al. 1999; Powell 2007). Direct and indirect benefits of improv-
ing soil biological management in agricultural systems include economic, environ-
mental and food security benefits (Cassman and Harwood 1995; Pimentel 1998; 
Brussaard et al. 2007b) (Table 11).

The options whereby farmers can actually manage soil biodiversity to enhance 
crop production include indirect processes, such as composting or the control of 
pathogens, and direct interventions, such as microbial inoculation.

 (i) Direct methods of intervening in the production system seek to alter the abun-
dance or activity of specific groups of organisms through inoculation and/or 
direct manipulation of soil biota. Inoculation with soil beneficial organisms, 
such as nitrogen-fixing bacteria, Mycorrhiza and earthworms, have been shown 
to enhance plant nutrient uptake, bolster heavy-metal tolerance, improve soil 
structure and porosity, and reduce pest damage.

 (ii) Indirect interventions are means of managing soil biotic processes by manipu-
lating the factors that control biotic activity (habitat structure, microclimate, 
nutrients and energy resources) rather than the organisms themselves. Examples 
of indirect interventions include most agricultural practices such as the applica-
tion of organic material to soil, tillage, irrigation, green manuring and liming, 
as well as cropping-system design and management. These must not be con-
ducted independently, but in a holistic fashion, because of the recurrent interac-
tions between different management strategies, hierarchical levels of 
management, and different soil organisms (Swift 1999).
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Table 11 Benefits and impact from soil-biota management in agricultural systems

Benefits Impacts

Economic Appropriate soil-biota management reduces input costs by enhancing 
resource use efficiency (especially decomposition and nutrient 
cycling, N fixation and water storage and movement). Less 
fertiliser may be needed if nutrient cycling becomes more efficient 
and less fertiliser is leached from the root zone. Fewer pesticides 
are needed where a diverse set of pest-control organisms is 
active. As soil structure improves, the availability of water and 
nutrients to plants also improves. It is estimated that the value of 
“ecosystem services” (e.g. organic waste disposal, soil formation, 
bioremediation, N

2
 fixation and biocontrol) provided each year 

by soil biota in agricultural systems worldwide may exceed US $ 
1,542 billion (Pimentel et al. 1997).

Environmental Soil organisms filter and detoxify chemicals and absorb the excess 
nutrients that would otherwise become pollutants when they reach 
groundwater or surface water. The conservation and management of 
soil biota help to prevent pollution and land degradation, especially 
through minimising the use of agro-chemicals and maintaining/
enhancing soil structure and cation-exchange capacity. Excessive 
reduction in soil biodiversity, especially the loss of keystone species 
or species with unique functions, for example, as a result of excess 
chemicals, compaction or disturbance, may have catastrophic 
ecological effects, leading to loss of agricultural productive capacity.

Food security Appropriate soil-biota management can improve crop yield and quality, 
especially through controlling pests and diseases and enhancing 
plant growth. Below-ground biodiversity determines resource use 
efficiency, as well as the sustainability and resilience of low-input 
agro-ecological systems, which ensure the food security of much 
of the world’s population, especially the poor. In addition, some 
soil organisms are consumed as an important source of protein by 
different cultures and others are used for medicinal purposes. For 
example, in the Amazon basin, terrestrial invertebrates are used as 
food, and especially, as sources of animal protein, a strategy that 
takes advantage of the abundance of these highly renewable elements 
of the rainforest ecosystem (Paoletti et al. 2000).

Soil biota can have both positive and negative effects on agricultural produc-
tion (Pankhurst et al. 2003; Weijtmans et al. 2009). Negative impacts often occur 
when soil-management systems are not well balanced with their environment. For 
example, inherent soil processes such as mineralization can no longer supply 
adequate amounts of nutrients for crop production because of long-term (continu-
ous) removal, leaching, erosion, or volatilisation. Consequently, such biological 
processes have in many systems been supplemented by the use of commercially 
available inorganic nutrient sources. However, with decreasing SOM content, and 
associated properties such as water retention and cation-exchange capacity, the 
ability of the soil to retain nutrients and make them available as and when 
required, is significantly reduced. Thus, soil-quality or soil-health evaluations 
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need to focus not only on chemical (fertility) considerations, but also on the 
dynamic soil condition – a combination of physical, biological and chemical 
characteristics – which is directly affected by recent and current land-use deci-
sions and practices. Land managers can balance potential positive and negative 
impacts of their decisions on soil biota only through understanding the effects of 
individual components and their interactions within the agricultural system. This 
includes understanding the numerous and intricate interactions among climate, 
soil type, plant species and diversity, soil biological community, and soil-man-
agement systems.

The potential of using different components of soil biota and their activity as 
biological indicators has been cited by different authors. Such indicators include 
soil microbial biomass, soil enzyme activity, soil micro-fauna, including bacteria 
(eubacteria and archaebacteria), fungi, algae and plant-root pathogens, soil 
micro-fauna (protozoa, nematodes), macro-fauna, total soil biodiversity, etc. Soil 
organisms have been shown to be potentially useful indicators of soil health 
because they respond to soil management in time scales (months/years) that are 
relevant to land management (Pankhurst 1994). For example, changes in micro-
bial biomass, or abundance of selected functional groups of micro-organisms, e.g. 
Mychorrizal fungi, may be detected well in advance of changes in soil organic 
matter content or other soil physical or chemical properties (Sparling 1997). One 
of the major difficulties in the use of soil organisms per se, or of soil processes 
mediated by soil organisms, as indicators of soil health has been methodological: 
what to measure, how and when to measure it, and how to interpret changes in 
term of soil function. Despite those difficulties, there have been major advances 
in our understanding of the soil biota and its functioning at the community level 
(Pankhurst et al. 1997).

There has been recent progress in acknowledging that soil health, by its broadest 
definition, is inseparable from issues of sustainability. The challenge ahead is to 
develop holistic approaches for assessing soil quality and health that are useful to 
producers, specialists, and policy makers in identifying agricultural and land-use 
management systems that are profitable and will sustain finite soil resources for 
future generations. The benefits of paying more attention to soil health and its 
assessment include its potential use in: the evaluation of land-use policy and of 
practices that degrade or improve soil resources; and in the identification of critical 
landscapes or management systems and of gaps in our knowledge base and under-
standing of sustainable management.

Soil biota provide key ecosystem services that are responsible for naturally 
renewable soil fertility, for mediating C sinks in the soil and many other func-
tions. The conservation of healthy communities of soil biota and prudent use of 
specific soil organisms through biological soil management can be used to 
maintain and enhance soil fertility and ensure productive and sustainable agri-
cultural systems (Matson et al. 1997). Moreover, the consequences of neglect-
ing or abusing soil life will weaken soil functions, and contribute to greater loss 
of fertile lands and an over-reliance on chemical means for maintaining agricul-
tural production.
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6.3  Organic Farming for Sustainable Soil Use by Agriculture

Organic farming is a type of sustainable agriculture in which no synthetic pesticides 
or industrial fertilizers are used (MacCormack 1995; Rigby and Cáceres 2001). At 
organic farms, ecological balance is the abiding principle. Organic food is more than 
a trendy industry that provides healthful produce to co-ops and upscale markets.

The concept of sustainability has to date been very loosely applied to agricul-
ture, so that to some it means ensuring profitability while to others it means wild-
life protection (Rodiek and DelGuidice 1994; Rigby and Cáceres 2001). Only by 
taking a comprehensive view of what sustainable land management actually means 
will it be possible to develop a farming system which addresses all the issues; the 
issue is not just profit and wildlife but also resources and pollution, animal wel-
fare, quality-food production, and health. Organic farming addresses all these 
issues, with success.

Reliance on legumes, particularly clover, for N fixation in the fertility-building 
phase of crop rotations and in pastures avoids the need for energy-consuming N 
fertilisers. This is the greatest factor contributing to a farming system that is more 
energy efficient on the basis of weight of food produced per hectare. Furthermore, 
the fact that N fertilisers are not used means that organic farming has a lower output 
of greenhouse gases and consequently has less impact on climate change.

Soil minerals are utilised more efficiently in organic farming; emphasis on 
encouraging soil biota and its ability to make nutrients more available, together 
with the avoidance of products that inhibit nutrient availability such as super phos-
phate, all contribute to a lower level of resource input, without any consequent 
depletion of soil reserves. Synthetic pesticides are prohibited in organic farming, 
avoiding chemical water pollution, with obvious benefits for drinking water and 
wildlife. Crop rotations which include 2 or 3 years of clover and grass ley will build 
soil organic matter, aid structure, act as a C sink and reduce soil erosion (Döring 
et al. 2005; Hole et al. 2005; Fließbach et al. 2007). Organic rotations reduce NO

3
 

leaching and consequent groundwater pollution due to the reduced cultivation and 
lower levels of N in the system. The effective storage and appropriate rates and 
timing of manure application that are a requirement of organic farming, minimize 
pollution risks. In addition, in recent years abundant research has been carried out 
on organic agriculture’s effects on biodiversity (Youngberg et al. 1984; Isart and 
Llerena 1995; Van Elsen 2000).

The requirement to base organic livestock management on a health plan ensures 
that there is a properly planned strategy on stocking rates, breeding for health, 
natural rearing systems, spacious housing conditions and appropriate feeding 
regimes. Apart from this focus on management, organic livestock husbandry 
makes effective use of complimentary treatments such as homeopathy. It also puts 
animal medication firmly in its rightful place as an adjunct to good management, 
used only where necessary and never to enable over-intensification. All this results 
in the highest welfare standards, reduced reliance on medication and wormers, 
reduced antibiotic use, and consequently less risk of the building up of resistant 
strains of disease.
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Mäder et al. (2002) reported results from a 21-year study of agricultural and 
ecological performance of biodynamic, bioorganic, and conventional farming sys-
tems in Central Europe, and showed that crop yields were 20% lower in the organic 
systems, although input of fertilizer and energy was reduced by 34–53% and pesti-
cide input by 97%. Therefore, enhanced soil fertility and higher biodiversity found 
in organic plots may render these systems less dependent on external inputs.

6.3.1  Organic Farming and the Environment and Economy

Research on organic farming demonstrates numerous environmental benefits due 
both to active management of wildlife habitats and the natural consequences of the 
farming system (Rodiek and DelGuidice 1994; Rigby and Cáceres 2001; Hole et al. 
2005; Fließbach et al. 2007):

More abundant soil biota and bird populations due to the absence of pesticides • 
and slug pellets
Increased invertebrate, and therefore bird, populations resulting from the lower • 
use of wormers
Higher levels of beneficial wildlife species due to the encouragement of wildlife • 
generally and natural predators in particular, and a more varied landscape
Generally smaller fields and more spring-sown crops and a mix of arable land • 
and grass leys
Increases in soil organic matter, acting as a C sink• 
Prohibition of the use of genetically engineered crops and products• 

Financial viability is fundamental to any farming system if it is to succeed in the 
commercial world. Especially those systems that have and important impact on rural 
economy (Lobley et al. 2009). Organic farming has developed an effective marketing 
scheme, establishing itself as the leader in the field of sustainability and appealing to 
a wide range of consumers willing to pay a premium for a quality product (Bourn and 
Prescott 2002; Roussos and Gasparatos 2009). It has done this through establishing a 
rigorous set of production standards which are inspected and accepted throughout the 
world. It has been able to compensate for lower yields and higher production costs by 
commanding higher prices and developing innovative marketing strategies

According to Haring et al. (2004), in the last 10–15 years the total organic pro-
duction in Europe nearly tripled whereas approximately 4–5% of the total agricul-
tural area is organically cultivated. Organic sales in Europe are growing in a food 
market still far from being satisfied and it offers great potential for providing the 
financial incentive to more farmers to adopt sustainable organic-farming methods 
(Bonny 2006). However, the market cannot be seen in isolation from conventional 
farming, which still receives governmental support that encourages unsustainable 
practices. Nor can it be seen in isolation from the positive drive to support wildlife 
conservation and environmentally friendly farming. In addition, Sauer and Park 
(2009) reported a positive relationship between subsidy payments and an increase 
in farm efficiency, technology improvements and a decreasing probability of 
organic market exit which was also confirmed for off farm income.
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In developing countries organic farming is proving a viable proposition because 
it is less dependant on the purchase of inputs which are often not affordable by 
small farmers and it avoids the devastating health consequences of pesticides result-
ing from use without adequate information, education, or personal protection.

From the above, it is clear that organic farming already delivers on many key 
elements of sustainability, but the system as we know it has not yet found all the 
answers. Indeed, it as an evolving system and no one has demonstrated that it actu-
ally achieves sustainability. In practice, organic farming fails to deliver in several 
respects due in large part to the small amount of research and development that has 
gone into it compared with that for high input conventional agriculture.

This is not to dismiss the efforts of many others working to address the problems 
of sustainability where serious steps are being taken to change the farming 
approach – for example those using minimal cultivations or introducing new crop 
rotations which are not routinely dependant on pesticide inputs. Significant benefits 
can be achieved, albeit often only addressing a single issue in the process; for 
instance, a high standard of conservation management may be good for many spe-
cies of wildlife, particularly those found in the non-cultivated areas of a farm but it 
does nothing to address the wider issues of sustainability.

Organic farming offers available system on which to build a sustainable future 
(Rigby and Cáceres 2001; Sandhu et al. 2008). Although there are many good 
aspects of organic farming systems, there are also negative ones as well, i.e., the 
control weeds in row crops such as corn, much more tillage is necessary, which can 
make organic farming much more prone to erosion in certain cases compared to 
regular no-till. However, it has been demonstrated that it is a system which farmers 
can adopt, it is successful, it produces good-quality, healthy food (i.e., vegetables 
and fruits), it is beneficial to biodiversity, and it reduces pollution risks. However, 
organic farming may gradually result in lower yields and indirectly induce an 
increase of the products’ value. Most importantly it conserves soil quality and is 
working towards achieving a resource-conserving closed system. The biological, 
management, and systems approach offers the most robust basis for sustainable 
land management, and its implementation is essential.

7  Concluding Remarks

Sustainable use of land resources is of vital importance for the quality of human life 
and ultimately for human survival. Soil is becoming a scarce commodity and an 
object of competition among different sectors using it and this competition is grow-
ing. Such development will ultimately lead to land degradation and pollution of 
other resources, including ecosystems. The crucial and most important concerns to 
be addressed both politically and technically involve the search for sustainable 
solutions. The immediate answer is through drastic changes in the methods of using 
and managing land resources.
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Failure to find the appropriate linkage between soil, food, and environmental 
security derives mainly from mismanagement. When addressing environmental 
security issues, there is a need to manage land resources more prudently, in quantity 
as well as quality, and reduce degradative pressures. Management of environmental 
parameters should be given a priority aimed at a better food supply, livelihoods and 
nature in a sustainable manner. Integrated approaches must be taken into account, 
not only scientific and technical ones, but also the socioeconomic and environmen-
tal aspects. A new generation of efficient land-use management systems should be 
designed while sustaining ecosystems and the environment. New technologies and 
management techniques will play an important role in meeting the challenge of 
demographic outburst and increased food demand. A tremendous gap still exists 
between research and its implementation.

In addition, new research is needed to design technologies that would conserve 
natural resources (particularly land) in a way which is environmentally friendly, 
technically appropriate, economically viable, and socially acceptable. This will be 
possible by rectifying management and usage practices of land resources allocated 
to the agricultural sector. Based on this review, a sustainable land-planning division 
should be created, one which would discourage undue encroachment on virgin land 
as well as in agricultural areas for environmental protection in order to seek balance 
and harmony between people and land.

Some reflections of this review paper in relation to sustainable soil management 
for building and maintaining healthy agricultural soils include:

Delivering smarter agricultural land-use and natural-resource management in • 
ways that make much more of an area’s economic potential
Protects and renews soil fertility and the natural-resource base• 
Integrates natural biological cycles and controls• 
Optimises the management and use of on-farm resources• 
Reduces the use of non-renewable resources and purchased production inputs• 
Minimizes adverse impacts on health, safety, biodiversity, water quality, and the • 
environment
The soil should be covered to protect it from erosion and temperature extremes• 
Mouldboard ploughing speeds the decomposition of organic matter, destroys • 
earthworm habitats, and increases erosion
To build soil organic matter in farming lands• 
Reducing diffuse pollution and achieving more cost-effective management of • 
water and soils
Enabling rural and urban communities alike to enjoy a high quality of life based • 
on their environment
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Abstract The effect of drought stress on crop growth and yield has become more 
common worldwide in the last two decades. The reproductive stage is the most criti-
cal stage for drought stress during crop growth, because it strongly impacts yield and 
seed quality. Improving crop growth and yield under drought is thus a major goal 
of plant breeding. Drought stress negatively affects flower pollination by decreas-
ing the amount of viable pollen grain, increasing the unattractiveness of flowers to 
pollinators, and decreasing the amount of nectar produced by flowers. Consequently 
crop seed set is lowered. Moreover, drought stress affects crop yield by reducing 
grain yield and all yield components. The correlation is clear between crop pollina-
tion, seed set and yield. Drought stress not only affects seed production, but also 
affects seed quality such as germination and vigor tests. In this chapter we review 
the currently available information on pollination, yield, and yield components and 
seed quality under drought. We give an outlook towards the physiological and bio-
chemical processes involved in the reduction of crop yield in response to drought 
stress at the reproductive stage. We focus on physiological processes of plant repro-
ductive organs in response to drought stress at anthesis and the attractiveness of the 
flowers to pollinators. Here we help plant breeders to select drought tolerant traits 
by understanding the correlations between pollination, yield, yield components and 
seed quality under drought stress at reproductive stage and to explain how drought 
stress effects final yield and seed quality during this stage.
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1  Introduction

The environmental stresses resulting from drought, temperature, salinity, air pollution, 
heavy metals, pesticides and soil pH are major limiting factors in crop production 
(Hernandez et al. 2001; Lawlor and Cornic 2002). Among others, drought stress is 
a main abiotic stress that limits crop production (Forster 2004). Drought can be 
defined as the absence of adequate moisture necessary for a plant to grow normally 
and complete its life cycle (Zhu 2002). Drought occurs every year in many parts of 
the world, often with devastating effects on crop production (Ludlow and Muchow 
1990). Worldwide losses in crop yields from drought stress probably exceed the 
losses from all other abiotic stresses combined (Barnabas et al. 2008). Because 
water resources for irrigating crops are declining worldwide, the development of 
more drought-resistant or drought-tolerant cultivars and greater water-use efficient 
crops is a global concern (Ludlow and Muchow 1990). In the last several decades, 
the most productive agricultural regions were exposed to drought stress in most 
years and in occasional years with severe drought. Commonly, drought stress 
synchronizes with extreme temperature, leading to even greater severity of drought 
stress (Barnabas et al. 2008).

Drought stress affects crop growth and yield during all developmental stages. 
The effect of drought on yield is highly complex and involves processes as diverse 
as reproductive organs, gametogenesis, fertilization, embryogenesis, and seed 
development stress (Barnabas et al. 2008). Reproductive development at the time 
of flowering is especially sensitive to drought stress (Zinselmeier et al. 1995, 1999; 
Samarah et al. 2009a, b). Therefore, an understanding of how a reproductive 
process affected by drought is of particular interest for improving drought tolerance 
(Samarah et al. 2009a, b). During flowering early crop yield potential, i.e. the number 
of grains per land area, is determined. Final crop yield is primarily determined by 
resource availability and the number of grains is adjusted in the plant to match the 
resource-defined yield level (Sinclair and Jamieson 2006). Manipulation of flowering 
time might also have considerable significance as a management tool to avoid yield 
reductions that might commonly occur from drought stress during anthesis in a 
growing region (Tewolde et al. 2006).

Improvements in seed yield must be a result of underlying physiological changes 
in crop plants. Physiological changes are interpreted here in the broadest sense as 
any change to the growth, development, morphology, anatomy or physiology of a 
crop. Nevertheless, a physiological change such as flowering time has been 
important for yield progress and for breeders to effectively select for desirable trait 
expression to maintain crop adaptation and optimal yield. Flowering time has been 
particularly important for yield improvement in water-limited environments 
(Richards 1991). In this environment, flowering must not only be early enough to 
escape the detrimental effects of early drought on flower set but tolerant enough to 
reach maximum seed yield during later drought. It is clear that drought induces 
structural, physiological and molecular abnormalities in the processes leading to the 
development of gametes. These abnormalities can greatly influence the success of 
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fertilization because of the production of dysfunctional male and female gametophytes, 
even if fertilization took place under optimum environmental conditions.

The flowering period of a crop is a critical growth stage and a yield determinate 
factor in normal growing seasons and in drought stressed regions in particular. An 
understanding of how crop plants respond to drought stress during reproductive 
stage is important in maximizing yields in water-limited regions. In regard of the 
effect of drought at reproductive stage on seed quality, this is no much information 
available. Most of reported research on the effect of drought on seed quality has 
been on plants exposed to drought stress during seed filling stage. In this chapter, 
we summarized the current research and findings related to the effect of drought on 
pollination, attractiveness of flowers to pollinators, yield, yield components and 
seed quality. The physiological changes in the reproductive organs in plants 
exposed to drought stress during anthesis are also discussed.

2  Effect of Drought Stress on Crop Pollination

2.1  Effect of Drought on Pollen Grain Viability

Drought stress is a main abiotic stress that limits crop pollination by reducing 
pollen grain availability (Agren 1996; Trueman and Wallace 1999), increasing pollen 
grain sterility (Schoper 1986; Al-Ghzawi et al. 2009), decreasing pollen grain 
germination and pollen tube growth (Lee 1988). Drought stress can also reduce 
megagametophyte fertility (Young et al. 2004), inhibit the differentiation of young 
microspores (Satake 1991), lower the number of dehisced anthers (Sawada 1987), 
repress anther development (Nishiyama 1984), and decrease seed set and seed 
development (Al-Ghzawi et al. 2009).

The viability of maize pollen is related to its water content and to the drying 
conditions of the atmosphere (Buitink et al. 2002). The relative water content of 
corn pollen affects pollen speed and survival (Aylor 1999). Drought stress has 
induced adverse effects on male gametophyte development resulting in fewer num-
bers of viable pollen in rice (Sheoran and Saini 1996). A rapid pollen germination 
(after 5 min) has been reported for many plant species, e.g. Brassica Oryza sativa 
L. (Wang et al. 2000), Cucurbita pepo, Parietaria judaica, Zea mays (Pacini 2000), 
due to the pollen rapid imbibitions (Pacini 2000). In a review article, Saini and 
Westgate (2000) highlighted evidence for physiological and hormonal signals ema-
nating from the parent plants, especially carbohydrate availability and metabolism, 
as well as hormonal based signal. In wheat, barley, and rice, Abscisic acid (ABA) 
was implicated as a cause of pollen sterility (Boyer and Westgate 2004). In maize, 
the decrease in the sugar stream due to losses in photosynthetic rate under drought 
stress appeared to be critical for the development of the female inflorescence 
(Boyer and Westgate 2004). Artificially feeding sucrose to the stems in maize at 
low water potentials can prevent many ovaries from aborting (Boyle et al. 1991; 
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Zinselmeier et al. 1995, 1999), indicating that drought stress may decrease seed set 
by increasing ovary abortion due to lowering the photosynthate supply to ovaries 
during their development. In other studies sucrose artificially fed to replace the 
photosynthate missing during the exposure to low water potentials overcome the 
negative effect of drought (Zinselmeier et al. 1995, 1999).

Starch is considered a major energy source for pollen development and germi-
nation (Clément et al. 1994), hence the absence of this energy source could lead 
to pollen sterility. The level of starch has been reduced in anthers from plants 
exposed to water stress (Sheoran and Saini 1996). The carbohydrate content in 
maize can also be low enough to limit silk osmotic adjustment (Westgate and 
Boyer 1985a). Because of the disturbances in the carbohydrate metabolism, the 
internal pollen wall, which consists of pectocellulose, is unable to develop 
normally and insufficient amounts of reserve nutrients (starch) are stored in the 
cytoplasm of vegetative cells in the pollen grains (Sheoran and Saini 1996). Under 
drought stress, stored carbohydrates may become the predominant source of trans-
ported materials, contributing as much as 75–100% to the grain yield (van 
Herwaarden et al. 1998). This phenomenon raised an interesting hypothesis about 
the potential competition for hydrolyzed carbohydrates between the vegetative 
organs and the grain for the purposes of osmotic adjustment and starch synthesis, 
respectively (Plaut et al. 2004).

Pollen grain is sensitive to drought stress because it’s early stage in reproductive 
growth and its need sufficient water and energy to complete growth/development 
process. Drought stress affects on pollen grain viability by blocking the process of 
pollen grain germination and development (Lee 1988). This process is also affected 
by the increase in level of ABA and limiting sources of energy such as sugar, starch 
and carbohydrate under drought stress (Boyer and Westgate 2004). All of these 
factors lead to increase the number of pollen grain sterility, abnormal pollen grain 
and pollen grain abortion.

2.2  Effect of Drought on Ovary Development

Increasing evidence indicates that ovary abortion can account for substantial kernel 
losses when maize experiences low water potential near the time of pollination 
(Westgate and Boyer 1985b, 1986; Boyle et al. 1991; Zinselmeier et al. 1995, 
1999; Andersen et al. 2002). The failure of silks to elongate can lead to the 
completion of pollen shed before silks emerge, which and consequently decreases 
kernel numbers (Herrero and Johnson 1981). When maize plants are exposed to 
drought stress, silks may prematurely dry reducing pollination and consequently 
reducing the capability of the pistillate flower to produce seeds (Schoper et al. 
1986). In soybean, ovary abortion was caused by only 2 or 3 days of low water 
potential, which was enough to inhibit leaf photosynthetic rates (Westgate and 
Boyer 1986).
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Several studies have reported that ovary abortion under drought stress was 
related to breakdown of ovary starch (Zinselmeier et al. 1999; Andersen et al. 2002) 
or the delivery mechanisms of sugars more than the release mechanisms of sugars 
from the carbohydrate reserves in the parent plants. Acid invertase, the main 
enzyme to process sucrose, had less activity at low water potential than at high 
water potential (Zinselmeier et al. 1995; Zinselmeier et al. 1999; Andersen et al. 
2002). Acid invertase activity was not fully restored by feeding sucrose to the stems 
(Zinselmeier et al. 1999), suggesting that moisture stress and invertase activity may 
be influenced by each other and not just indirectly through photosynthetic supply 
of sugar. Intermediates for starch biosynthesis downstream of the invertase step 
were depleted at low water potential and not fully restored by the sucrose feeding 
(Figs. 1 and 2), which implicated acid invertase as a limiting step in starch biosyn-
thesis (Zinselmeier et al. 1999).

Development of the ovary is one of the most vulnerable phases in response to 
drought stress (Boyer and Westgate 2004) and it’s very sensitive to insufficient 
energy sources. The accumulation of non-reducing sugars and the failure of 
starch accumulation affects on ovary development. Failure of silks elongation, 
abnormality and ovary abortion are the main result from limited energy sources 
in this phase.

Silking Time (days) Pollination

−5 −4 −3 −2 −1 0 1 2

High ψw
Rapid Ps

High starch

Low ψw

Low Ps
Down-regulate

(sucrose)
Starch depleted

Up-regulate RIP2
Up-regulate
(senescence)

a b c d e

Low
sucrose

Slowed
develop
-ment
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Fig. 1 Summary of events leading to abortion of maize ovaries when plants are subjected to low 
water potential around the time of pollination. (a) Photosynthesis providing sucrose to give about 
1 mg of dry mass on the day of pollination to ovaries containing 3 mg of dry mass. About 0.4 mg 
of the dry mass is starch shown as black area in ovary wall. (b) Low water potential enough to 
inhibit photosynthesis curtails sucrose delivery. (c) Genes for sucrose processing are down-regu-
lated. (d) Lack of sucrose triggers starch breakdown, maintaining glucose for a short time. About 
the time glucose concentrations fall, RIP2 is up-regulated. (e) With a continued lack of glucose, 
certain senescence genes are up-regulated, leading to irreversible loss in development. (Image is 
taken from McLaughlin and Boyer 2004).
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Fig. 2 Evans Blue staining of maize ovaries when low water potential occurred around the time 
of pollination. Control: high water potential (a and b). No stain visible. (c and d) Low water 
potential plus sucrose infusion. No stain visible. (e and f) Low water potential. No stain detectable 
in (e) but stain is apparent in (f). Stain in (f) is present in nucellus and around vascular tissue in 
upper pedicel 2 day after pollination. (g and h) Magnified view of nucellus in (e and f). No stain 
detected in (g) but present in individual cells in (h). The black bar on the abscissa indicates when 
water was withheld from the soil. Plants were rewatered on day 0. The white bar indicates when 
sucrose was infused into stems starting on day 4 and continuing each day to include day 0. Scale 
bars: a–f = 1 mm; G and H = 0.1 mm. Image is taken from McLaughlin and Boyer 2004.
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2.3  Effect of Drought on Flower Characteristics

Flowering is one of the most important growth stage affected by drought stress. 
Drought stress interferes with flower period, flower opening, nectar production, and 
turgor maintenance of floral organs (Mohan Ram and Rao 1984). The trend for 
reduced flower size under drought stress is mirrored in populations of Clarkia 
unguiculata distributed along a natural moisture gradient (Jonas and Geber 1999). 
Water stress detrimentally affects flower induction, pollen production and subse-
quently leads to failure of fertilization and hence grain set (Sheoran and Saini 
1996). Water stress during flower induction and inflorescence development leads to 
a delay in flowering (anthesis), or even complete inhibition of flowers (Wopereis 
et al. 1996; Winkel et al. 1997). Craufurd and Peacock (1993) have reported a delay 
in flower initiation caused by water stress in species of Pennisetum and Sorghum. 
Very few studies have been done to determine the effects of drought on the process 
of floral induction in cereals per se, which is difficult to separate from post-induction 
floral development in many cases (Saini and Westgate 2000). Drought stress 
reduces mean petal size, nectar secretion and pollen production in flowers of 
Raphanus raphanistrum (Strauss et al. 1996).

The magnitude of flower abortion varies with the position on the plant, being 
greater in the branches, the lower part of the main stem and the top nodes of the 
main stem (Wiebold et al. 1981). In soybean, within individual racemes, the 
proximal positions exhibit a higher pod-set percentage than do the distal positions 
(Kokubun and Honda 2000). Decreased photosynthetic rate might have reduced the 
allocation of assimilates to reproductive organs, which could have been a reason for 
the increased rates of flower abortion in water-deficient plants, as indicated by 
Raper and Kramer (1987).

The appropriate matching of the pattern of flower/inflorescence development, 
the time of flowering, flowering opening and period to the temporal variation in 
water availability is recognized as one of the most important traits conferring adap-
tation to drought (Bidinger et al. 1987; Passioura 1996). The effects of drought on 
floral meristems (induction and initiation) are among the least understood aspects 
of crop reproductive development under water-limited conditions. Drought stress 
leads to a delay in flowering (anthesis), accelerate flower/inflorescence growth, 
development and abortion.

2.4  Effects of Drought on Flower Attractiveness to Pollinators 
and Nectar Production

Flower attractiveness to pollinators can be negatively affected by drought stress, 
which could be attributed to many factors (Al-Ghzawi et al. 2009). Drought stressed 
flowers may have different food-based cues which decrease foraging made by 
honeybees (Pernal and Currie 2002). The time required for flower development 
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under drought stress was less than the time usually required by normal plants 
(Al-Ghzawi et al. 2009), which might reduce flower size and nectar production 
(Zimmerman and Pyke 1988; Lee and Felker 1992; Campbell 1996) and nectar 
sucrose content (Wyatt et al. 1992). Non-stressed flowers produced with supple-
mental watering increased nectar volume in Delphinium nelsonii (Zimmerman 
1983), Polemonium foliosissimum (Zimmerman and Pyke 1988), and Asclepias 
syriaca (Wyatt et al. 1992) and increased nectar sucrose content in Asclepias syri-
aca (Wyatt et al. 1992), which were cues that attract pollinators. Comparisons 
between growing seasons that differ in precipitation also suggested that nectar pro-
duction by Prosopis landulosa (Lee and Felker 1992) and by Ipomopsis aggregate 
(Campbell 1996) was greater in wet years than in dry years. In support of this find-
ing, McLaughlin and Boyer (2004) reported that glucose, an immediate product of 
sucrose hydrolysis by invertase, was depleted in ovaries undergoing abortion at low 
water potential. The prevention of abortion with exogenous sucrose applications 
observed by Boyle et al. (1991) and Zinselmeier et al. (1995, 1999) suggests that 
certain abortion-inducing genes could be sugar-responsive. Koch (1996) and Sheen 
et al. (1999) identified a number of sugar responsive genes in plants. Water avail-
ability had little effect on nectar sugar concentration (Wyatt et al. 1992; Campbell 
1996). Nectar production also depended on plant age in natural populations of 
Lobelia cardinalis (Devlin et al. 1987). A similar pattern of pollinator behavior 
would be expected for plants of E. angustifolium under drought stress, especially 
because bumble bees preferentially visit and remain longer at fireweed flowers with 
enriched nectar  volume (Galen and Plowright 1985).

Well-watered plants were reported to produce much more nectar and pollen 
(Zimmerman and Pyke 1988) and were characterized by increased nectar sucrose 
(Wyatt et al. 1992). Bees normally fly to flowers that produce abundant nectar 
and pollen under drought stress (Al-Ghzawi et al. 2009). Boose (1997) found that 
clones of Epilobium canum produced less nectar when watered every other day 
with approximately half the amount of water that the control plants received 
daily. The attractiveness of plant species to pollinators depend on flower and 
nectar characteristic (Al-Ghzawi et al. 2009) such as flavor, color, nectar volume, 
sugar concentration and aroma. The attractiveness is important to ensure the suc-
cessful transport of pollens to the stigmas of pistilate flowers by bees during 
nectar collection. Insect pollination regularly contributes to the increase in plant 
seed set (Al-Ghzawi et al. 2009). The persistence of less attractive flowers may 
be partially explained by selective pressures of the abiotic environment on floral 
traits (Campbell 1996). Al-Ghzawi et al. (2009) reported that drought stress 
imposed during flowering stage affects on visitation number, number of inflores-
cences and flowers, pollen grain weight, viability of pollen grain and seed set for 
Trigonella moabitica in Jordan. They also reported that wild bees had more num-
ber of visitations to flowers grown under severe drought stress than honeybees 
(Al-Ghzawi et al. 2009).

Flower attractiveness to pollinators depends on nectar quality/quantity and type 
of visitor. Nectar quality/quantity (flavor, color, nectar volume, sugar concentration 
and fragrance) are adversely affected by drought stress, this leads to reduce number 
of bees visitings to flower and reduce amount of nectar produced. Wild bees can 
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adapt with flower exposed to drought stress and visit it more than honeybees 
(Tables 1 and 2).

Table 1 Effects of drought stress on pollination traits

Pollination traits Effects related to drought References

Pollen grain availability Decrease number of pollen 
grain availability

Agren 1996; Trueman and 
Wallace 1999; Sheoran 
and Saini 1996

Pollen grain sterility Increase number of pollen 
grain sterility

Schoper 1986; Al-Ghzawi 
et al. 2009

Pollen grain germination 
and pollen tube growth

Decrease number of pollen 
grain germination and 
reduce pollen tube growth

Lee 1988; Pacini 2000

Megagametophyte  
fertility

Decrease megagametophyte 
fertility

Young et al. 2004

Young microspores Inhibit young microspores Satake 1991
Dehisced anthers Decrease number of dehisced 

anthers
Sawada 1987

Anther development Decrease anther development. Nishiyama 1984
Ovary abortion Increase number of ovary 

abortion
Westgate and Boyer 1986

Ovules fertilized and 
developed

Decrease number of ovules 
fertilized and developed

Boyle et al. 1991; Zinselmeier 
et al. 1995, 1999; Andersen 
et al. 2002

Silks to elongation Reduce silks to elongate Herrero and Johnson 1981
Flower size Reduce flower size Jonas and Geber 1999
Flower induction Detrimentally flower induction Sheoran and Saini 1996
Flower induction and 

inflorescence  
development

Delay in flowering (anthesis), 
or even complete inhibition

Wopereis et al. 1996; 
Winkel et al. 1997

Flower attractiveness Decrease flower attractiveness Al-Ghzawi et al. 2009

Table 2 The role of biochemical contents in response to drought stress

Biochemical contents Effects related to drought References

Abscisic acid (ABA) Increase pollen sterility, ovary  
abortion and inhibits cell  
division in the embryo

Boyer and Westgate 2004; 
Liu et al. 2005; Setter and 
Flannigan 2001

Sugar Important for development  
of the female inflorescence

Boyer and Westgate 2004

Artificially feeding 
sucrose

Can prevent many ovaries from  
aborting and replace the  
photosynthate missing

Boyle et al. 1991; Zinselmeier 
et al. 1995, 1999

Starch Major energy source for pollen  
development and germination

Clément et al. 1994

Carbohydrate Silk osmotic adjustment Westgate and Boyer 1985a
Acid invertase The main enzyme to process  

sucrose
Zinselmeier et al. 1995, 1999; 

Andersen et al. 2002
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3  Effects of Drought on Seed Set

Drought stress is a main constraint to agricultural production including terminal 
stresses observed in low rainfall areas of the world. The abortion of potentially 
viable immature seeds and fruits between anthesis and dispersal has gained 
increased attention from plant ecologists during the last two decades. Soil water 
deficits that occur during the reproductive growth are considered to have the most 
adverse effect on crop yield (Costa-Franca et al. 2000; Samarah 2004; Samarah 
et al. 2009a, b). Drought stress imposed on plants leads to decrease yield through 
reducing seed set (Westgate and Boyer 1986; Al-Ghzawi et al. 2009). Low seed set 
percentages are regularly related to several factors such as reducing pollen grain 
availability (Agren 1996; Trueman and Wallace 1999), increase ovary abortion 
(Boyer and Westgate 2004), increase pollen grain sterility (Schoper 1986; Westgate 
and Boyer 1986; Al-Ghzawi et al. 2009), slow stigma and style elongation 
(Westgate and Boyer 1985b), reducing time of pollination (Westgate and Boyer 
1986), lower pollen grain germination activity, pollen tube growth, and less devel-
opment of fertilized seeds (Lee 1988). A clear correlation between seed set and 
limitation of resources and pollen availability has been demonstrated (Trueman and 
Wallace 1999). Water deficit in the meiotic stage also reduced grain set in self-
pollinated wheat (Saini and Aspinall 1981) and rice (Sheoran and Saini 1996).

Grain yield and seed set reductions in small grains under drought stress are 
likely due to ovary abortion or pollen sterility (Boyer and Westgate 2004). An 
increase in Abscisic acid content in the generative organs is one of the factors 
suggested to play a role in seed abortion and yield reduction in response to 
drought stress (Liu et al. 2005). In soybean, pod set was positively correlated 
with photosynthetic rate and negatively correlated with the Abscisic acid in pods 
(Liu et al. 2004). Elevated Abscisic acid content in crop reproductive structures 
positively associated with kernel/pod abortion, presumably via inhibition of cell 
division in the young ovaries (Liu et al. 2003; Setter et al. 2001). In addition, 
exogenous application of Abscisic acid to developing maize ovaries inhibited 
cell division in the embryo and endosperm, and this effect was probably due to 
a depression of cell cycle gene expression by high levels of Abscisic acid (Setter 
et al. 2001). On the other hand, Selote and Khanna-Chopra (2004) suggested 
that high levels of Reactive Oxygen Species (ROS) and an inefficient anti-oxi-
dant system in the panicle may be the cause of drought induced spikelete steril-
ity in rice. Similarly, enhanced anti-oxidative activities have been shown to 
confer better drought tolerance in wheat (Sairam and Saxena 2000). Other 
reports have also demonstrated that the involvement of programmed cell death 
and oxidative stress resulted in pollen sterility on Cytoplasmic Male Sterility 
(CMS) in rice (Li et al. 2004; Jiang et al. 2007; Wan et al. 2007).

Pod number per plant at maturity is a main yield determinant in soybean 
(Dybing et al. 1986). Drought stress occurring during flowering and early pod 
development significantly increased the rate of pod abortion and consequently 
decreased final seed yield of soybeans (Westgate and Peterson 1993; Liu et al. 2003). 
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Reproductive potential in soybean may be due to considerably reduced abscission 
of developing flowers and pods soon after anthesis during pro-embryo develop-
ment [3–5 day after anthesis (DAA)] (Peterson et al. 1990) even under optimal 
environmental conditions. This stage is one of active cell division in the young 
ovules, coinciding with a rapid pod expansion (Peterson et al. 1992), which is 
particularly sensitive to drought stress (Westgate and Peterson 1993). Experimental 
evidence from cereals (e.g. maize) and grain legumes (e.g. lupine) has suggested 
important roles of the factors in regulating kernel/pod set under drought condi-
tions (Palta and Ludwig 1997; Saini and Westgate 2000; Setter et al. 2001). In 
cereals, several lines of evidence have suggested that drought-induced large con-
centrations of Abscisic acid in the reproductive structures exert a negative effect 
on fruit/seed set (Westgate and Boyer 1986; Setter et al. 2001). In soybean, Liu 
et al. (2004) showed that ABA in flowers and pods was increased by drought 
stress and was associated with a reduction in pod set. These studies suggest that 
drought stress leads to increase ABA concentration causing pod abortion. Liu 
et al. (2004) found that ABA affected pod set directly via the processes within the 
ovary (i.e. cell division) or indirectly via influencing the availability of photosyn-
thate sugar. A similar argument had been previously raised for seed abortion in 
wheat (Waters et al. 1984).

Charles-Edwards et al. (1986) suggested that number of seeds per plant of 
soybean was positively and linearly correlated with leaf photosynthetic rate. 
This hypothesis was supported by the work of Egli and Yu (1991) and Jiang and 
Egli (1993) using source–sink manipulations. On the other hand, several studies 
have shown that water deficits imposed during the reproductive development of 
dry beans can decrease number of flowers and pods per plant and number of 
seeds per pod (Loss and Siddique 1997). Pod abortion in soybean under drought 
stress has been observed in a range between 21% and 65% (Mwanamwenge 
et al. 1999). In general, number of pods per plant seems to be the most yield 
component affected by drought stress during flowering and can reduce final 
grain yield up to 70% depending on the duration and intensity of the stress 
period (Lopez et al. 1996).

Another possible mechanism by which severe-drought stress reduced seed set 
is by reducing the expression of the soluble acid invertase (Ivr2), which decreases 
the hexose-to-sucrose ratio in ovaries (Andersen et al. 2002). Pre-anthesis stem 
reserve accumulation could be another potential factor that determines seed num-
ber under drought stress. In wheat, pre-anthesis stem reserve accumulation is 
considered to be a significant factor affecting flower and grain development 
under stress conditions (Blum 1998). Water shortage results in inhibitions in 
the photosynthetic processes causing reductions in nutrient supply (sucrose) to 
the reproductive organs (Campbell 1996). An insufficient supply can block the 
development of reproductive structures and cause kernel abortion (Westgate and 
Boyer 1986). Large amounts of carbohydrate were moved from the stems to the 
grain that made up for the lack of current photosynthesis (Westgate and Boyer 
1985a). As a result, there was often a relationship between the dry matter in the 
grain at the end of the season and that in the parent (Yang et al. 2001).
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Seed set is affected by all development and growth processes in reproductive 
stage such as pollen grain and ovary development under drought stress. It’s strongly 
correlated with yield, e.g. final number of seeds per kernel is one of the indicator 
for seed set percentage. Also, it’s sensitive to biochemical contents such as ABA 
and energy sources. Inadequate energy source such as sugar and increase level of 
ABA leads to reduce seed set percentage by increase number of seed abortion and 
abnormality (Liu et al. 2004).

4  Effects of Drought on Seed Yield

Many researchers have found that the reduction in number of spikes per plant under 
drought stress was due to the increase in the number of sterile spikes per plant and 
the decrease in the number of fertile spikes per plant in six-row barley (Mogensen 
1992; Sanchez et al. 2002; Samarah 2004; Samarah et al. 2009a). A reduction in 
number of grains per spike has been reported for barley (Agueda 1999; Mogensen 
1992; Samarah 2004; Samarah et al. 2009a) and wheat (Garcia 2003) under drought 
stress. Otegui and Slafer (2004) reported that the grain number in wheat was 
primarily determined by the number of fertile florets, while in maize, a monoecious 
crop, the critical step was grain set, which depended on the success of fertilization. 
Low water potential near the time of pollination decreased the ratio of yield to dry 
matter because kernel numbers diminished (Boyer and Westgate 2004).

The individual grain weight in cereals was also reduced by drought stress, which 
could be attributed to shorter grain filling duration and lower accumulation of dry 
matter in the growing kernels (Agueda 1999; Sanchez et al. 2002; Garcia 2003; 
Samarah 2004; Samarah et al. 2009a) or as a result of the reduction in the rate and 
duration of starch accumulation in the endosperm (Brooks et al. 1982). Samarah 
(2004) reported that the developing grain from barley plants grown under mild- and 
severe-drought stress treatments had lower grain weight and a faster loss of grain 
moisture content that those from the well-watered plants.

Declines in total grain yield under the drought stress treatments are due to the 
reduction in grain yield components, such as grain number per spike (Agueda 1999; 
Garcia 2003; Samarah 2004; Samarah et al. 2009a), and spike number per square 
meter (Agueda 1999; Sanchez et al. 2002; Garcia 2003; Samarah et al. 2009a) and 
individual grain weight (Mogensen 1992; Samarah et al. 2009a).

Grain set and consequently grain number were highly correlated with grain yield 
in barley (Samarah 2004). Yield loss in chickpea due to inadequate soil moisture 
availability varied between 36% and 42% depending on geographic location and 
climatic condition during the crop season (Saxena et al. 1993). Grain yield 
reductions ranging from 20% to 70% of the control have been observed in rice under 
water-deficit treatment during the reproductive stage (Lilley and Fukai 1994). Full 
supplementary irrigation increased chickpea yield by 65% (Oweis et al. 2004) and 
by 100% (Zhang et al. 2000) as compared with rainfed conditions. However, the 2/3 
supplementary irrigation of chickpea level resulted in optimum water use efficiency 
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(Oweis et al. 2004). Limited supplemental irrigation can play a major role in 
increasing and stabilizing the productivity of spring-sown chickpea (Soltani et al. 
2001). Water stress during flowering may reduce the harvest index by 60%, largely 
due to reduction in grain set (Ekanayake et al. 1989). There was a significant cor-
relation (P < 0.001) between water use and seed yield of chickpea (R2 = 0.75) 
(Anwar et al. 2003).

Drought stress during reproductive stage reduced crop yield by decreasing seed 
yield and yield components. The reduction in crop yield under drought stress could 
be due to the accelerated days to flowering, shorter grain filling duration and lower 
accumulation of dry matter. The increase in number of sterile floret and spike is 
the main result from drought stress and it’s correlated with seed set percentage 
(Table 3).

5  Effect of Drought Stress on Seed Quality

Drought stress not only affects seed production, but many researchers found that 
drought stress during reproductive growth lowered seed germination and vigor. 
Seed quality, estimated by standard germination, was lower for seeds harvested 
from plants grown under drought than seeds harvested from irrigated plants 
(Drummond et al. 1983). Smiciklas et al. (1992) reported that drought stress at 
beginning of seed fill (R

5
) reduced seed germination percentage, seedling dry 

weight, and increased the electrical conductivity of seed leachate. The reduction 

Table 3 Effects of drought stress on yield and yield components traits

Yield traits Effects related to drought References

Grains per spike Decrease number of 
grains per spike

Agueda 1999; Mogensen 1992; Garcia 2003; 
Samarah 2004; Samarah et al. 2009a

Fertile florets Decrease number of 
fertile florets

Otegui and Slafer 2004

Fertile spike 
per plant

Decrease number of 
fertile spike per plant

Mogensen 1992; Sanchez et al. 2002; Samarah 
2004; Samarah et al. 2009a

Sterile spikes per 
plant

Increase number of 
sterile spikes

Mogensen 1992; Sanchez et al. 2002;  
Samarah 2004

Spikes per plant Decrease number of 
spikes per plant

Mogensen 1992; Sanchez et al. 2002; Samarah 
2004; Samarah et al. 2009a

Individual grain 
weight

Decrease weight of 
individual grain

Mogensen 1992; Agueda 1999; Sanchez et al. 
2002; Garcia 2003; Samarah 2004; Samarah 
et al. 2009a

Grain yield Decrease grain yield Agueda 1999; Garcia 2003; Samarah 2004; 
Samarah et al. 2009a

Spike number per 
square meter

Decrease spike number 
per square meter

Agueda 1999; Sanchez et al. 2002; Garcia 
2003; Samarah et al. 2009a

Straw yield Decrease straw yield Agueda 1999; Sanchez et al. 2002; Garcia 
2003; Samarah 2004; Samarah et al. 2009a

Harvest index Decrease harvest index Ekanayake et al. 1989; Samarah et al. 2009a
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in germination percentage under the stress was approximately 9% compared with 
non-stressed plants (Smiciklas et al. 1992). Abnormal seedlings represented the 
majority of the non-germinated seeds that were obtained from drought-stressed 
plants (Smiciklas et al. 1989). Drought stress imposed on soybean during seed fill 
(R

5
) decreased standard germination by 5%, seed vigor, as estimated by the 

decrease in seedling dry weight, by 12%, and an increase in electrical conductiv-
ity of seed leachate by 19% (Dornbos and Mullen 1985). In four field experiments 
conducted at Stoneville, Mississippi, using soybean maturity groups IV, V, and 
VI, Heatherly (1993) reported that non-irrigated plants produced seeds with low 
standard germination (less than 70%) in all experiments when irrigation was with-
held at different periods during reproductive growth (R

1
 to R

6
). Irrigation (from 

flowering through seed fill) was required to improve seed germination in all 
experiments (Heatherly 1993).

Other researchers reported that drought stress during seed development 
reduced seed vigor but had no effect on seed germination (Yaklich 1984; 
Fougereux et al. 1997; Iannucci et al. 1996, Samarah and Alqudah 2009). Drought 
stress during soybean pod fill reduced seed vigor, as measured by the accelerated 
aging test, but had no effect on lab and field emergence (Yaklich 1984). A reduc-
tion in seed vigor, estimated by electrical conductivity and cold tests, was 
observed in pea seeds obtained from plants exposed to drought stress during the 
entire reproductive period, but seed germination was not affected (Fougereux 
et al. 1997). They reported that the decrease in seed quality was higher when 
drought stress occurred during the seed filling stage. Moisture stress imposed 
upon four forage legumes, berseem clover (Trifolium alexandrium L.), crimson 
clover (T. incarnatum L.), Persian clover (T. resupinatum L.) and squarrosum 
clover (T. squarrosum L.), reduced yield and yield components but had no effect 
on germination, germination rate index, seedling growth rate, and accelerated 
aging test Iannucci et al. (1996). However, seedling dry weight was significantly 
reduced under moisture stress (Iannucci et al. 1996). Seed vigor in berseem 
 clover, estimated as germination after the accelerated aging test, was also reduced 
when plants were exposed to water deficit during seed fill (Iannucci et al. 1996). 
Late-terminal drought stress imposed on barley plant after beginning of seed 
 filling period had no effect on standard germination, but significantly reduced 
seed vigor of barley as estimated the germination after accelerated aging test 
(Samarah and Alqudah 2009).

Other researchers reported that drought stress during seed development had no 
effect on seed germination and vigor. Vieira et al. (1992) found that drought stress 
imposed at beginning seed stage (R

5
) or full seed stage (R

6
) had no effect on seed 

quality, as estimated by seed germination, accelerated aging, and cold tests, across 
four cultivars of determinant and indeterminant soybean cultivars and 3 years of 
study, except for a slight reduction in 3-day germination and electrical conductivity. 
They attributed the reduction in 3-day germination in some of the drought stress 
treatments to the occurrence of hard seeds. Drought stress had little effect on seed 
quality unless it was severe enough to produce shriveled, shrunken, and miss-
shaped seed (Vieira et al. 1991; Vieira et al. 1992). The proportion of shriveled, 
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small, undeveloped soybean seeds that developed under drought stress in a two-
year study was small and could be removed by conditioning to improve the quality 
of the remaining seeds (Vieira et al. 1991, Vieira et al. 1992). In peanut, water 
deficit during seed development slightly lowered seed germination, but had no 
effect on seedling vigor (Ketring 1991).

Recently Samarah et al. (2009c) found that the germination and vigor of soybean 
as estimated by the germination after accelerated aging test affected soybean seed 
quality by increasing the proportion of small-sized category seed (consisted of 
shriveled, wrinkled, undeveloped, and misshaped seeds), which had lower germina-
tion than large seeds due to exposed to drought stress. These results were in consist 
with Vieira et al. (1991), who reported that drought stress reduced seed quality if 
the stress sever enough to produce small, shriveled, wrinkled, undeveloped, and 
misshaped seeds. However, Samarah et al. (2009c) also found that the medium 
seeds produced under drought stress had lower germination. Drought stress reduced 
seed quality not only by increasing the production of small and medium seeds, 
which had lower germination, but also by decreasing seed vigor (AA-germination) 
of large, full, round seeds from severe-stressed plants compared with gradually-
stressed and well-watered plants.

6  Conclusion

Drought stress has a great impact on the reproductive development of crops and 
consequently on final seed yield. The degree of drought stress is clearly determining 
factor for pollination, seed set, yield and quality in all species, but the response of 
species to drought stress varies. The complexity of both crop reproduction and plant 
stress responses makes it difficult to construct a simple model of ways in which 
successful reproductive development and high yield can be achieved under drought 
stress. However, where the final yield is concerned, all breeding manipulation strat-
egies/approaches used in crop improvement under drought stress have to focus 
finally on flowering and/or grain development. Breeding strategies to improve 
crops yield should be based on improved response of crops to drought stress 
especially during reproductive stage when the reproductive organs are developing. 
Increase level of ABA and insufficient energy sources such sugar, starch and carbo-
hydrate under drought stress negatively affects crop pollination processes in several 
approaches. One of these approaches is blocking of pollen grain/ovary growth and 
development; increase number of pollen grain/ovary abortion and sterility. The 
second approach is by decreasing quality/quantity of nectar and decreasing flower 
attractiveness to pollinator. The strong correlation between success of pollination 
process and yield is clear by seed set percentage. Increase level of ABA leads to 
decrease seed set percentage under drought stress. Drought stress decreases seed 
yield by decreasing the current photosynthetic supply and inducing reproductive 
organ abortion during reproductive development. Clear effects of drought stress on 
yield and yield components are by decreasing fruit and seed number per plant and 
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seed number per fruit, and decreasing seed individual weight. Seed quality is also 
another important trait affected by drought stress which decreases germination 
percentage and seed vigor (germination after accelerated aging test, cold test and 
electrical conductivity test of seed leachates). Understanding the correlation between 
pollination process, seed set, yield, yield components and seed quality can have a 
substantial influence on crop improvement, including the drought tolerance of 
reproductive processes, in the coming years. Also, it may be possible to prevent the 
irreversible effects of drought stress on the pollination, seed set, yield and seed 
quality (Fig. 3).
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Abstract In the past decade it has repeatedly been shown that agriculture is a 
major source of environmental pollution. The environmental risk of industrial 
agriculture led to the concept of sustainable agriculture. Ecological fertiliza-
tion integrates agricultural and environmental goals and is adjusted to the 
environmental conditions. Ecological fertilization is based on the principle that 
mineral fertilization should only be applied to the soil in the quantities and at 
the time required by the crop, thus avoiding damage to the environment. The 
present review provides a detailed description of the principles of ecological 
fertilization, such as accurate matching of nutrients to crop requirements, optimal 
condition in soil, favorable fertilizer use, and reducing nutrient losses. We 
review also practical systems such as integrated farming, site-specific fertiliza-
tion, and organic farming. The most important legislations and regulations are 
also discussed.

Keywords Fertilizer • Nutrient • Soil • Environment • Integrated farming

1  Principle of Ecological Fertilization

In the past decade it has repeatedly been shown that agriculture is a significant 
source of environmental pollution. Rapid intensification of livestock produc-
tion, a result of the focus on increasing productivity from the 1950s onwards, 
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has contributed to a large increase in nutrient surpluses (Ramirez and Reheul 
2009). The high levels of application of chemical fertilizers, due to the avail-
ability of these inputs at relatively low prices, has not only led to high and 
stable yields but also resulted in pollution of soil, water and air. Inefficient 
nutrient use and the concomitant nutrient enrichment of agro-ecosystems have 
contributed to agriculture’s impact on aquatic systems (Mander and Forsberg 
2000). Goossense and Meeuwissen (1990) concluded that nitrogen emissions to 
the environment in the form of nitrate leaching to the groundwater and volatil-
ization of ammonia and nitrous oxides, mainly originated from animal manure 
both from excretions and application of slurry. Like excessive nitrogen fertilisa-
tion, this may lead to nitrate leaching. The NO

x
-gaseous loss is also important 

by mineral fertilizers and is an assumed consequence of the intensive denitrifi-
cation (Nótás et al. 2007). Conflicts between agricultural and environmental 
requirements with respect to phosphorus are discussed by Neeteson (1991) in 
view of recent evidence on the risk of P loss by erosion. Intensive arable farming 
is characterized by short rotations of high-return crops with high and stable 
yields. Inputs of fertilizers and pesticides strongly increased during the past 
decades. This made on one side the food production relatively stable, but on the 
other side also caused environmental problems. The high level of inputs is a 
consequence of aiming maximum crop yields, disease and pest free products 
and low labour requirements (Spiertz 1991).

The environmental risk of high intensive agriculture led to the concept of 
sustainable agriculture. Plant production and fertilization in sustainable agri-
culture have to be happen ecological correctly adapting to ecological parameters 
and avoiding environmental pollution, but also making sure the nutrient input 
to soil and so the food production (Lichtfouse et al. 2008). Sustainable agricul-
ture implies successful management of resources for agriculture to satisfy 
changing human needs while maintaining or enhancing the quality of the envi-
ronment and conserving natural resources (Technical Advisory Committee 
1989). Sustainable development is development, that meets the needs of the 
present without compromising the ability of future generations to meet their 
own needs (World Commission on Environment and Development 1987). 
Ecological fertilization integrates agricultural and environmental goals and is 
adjusted to the environmental conditions. Similar nutrient management princi-
ples are followed by organic farming, environmentally friendly fertilization and 
sustainable agriculture. Ecological fertilization is based on the principle that 
mineral fertilization should only be applied to the soil in the quantities and at 
the time required by the crop, thus avoiding damage to the environment, in 
contrast to organic farming, which is based on stricter principles and com-
pletely bans the use of mineral fertilizers. The present work provides a detailed 
description of the principles behind ecological nutrient management and the 
practical techniques for their implementation. Mention will also be made of 
legal regulations.
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2  Realization of the Principle

2.1  Accurate Matching of Nutrients to Crop Requirements

This requires that the environmental conditions (soil, temperature, rainfall, etc.) should be 
correctly assessed as a basis for the choice of variety and the planning of yield levels. The 
same is true of precision crop production or site-specific mineral fertilization, but at a 
higher technical level. The latter requires a precise knowledge of soil heterogeneity and 
its causes, which can only be achieved using geostatistics to evaluate the sampling sites.
The critical level concept (Fig. 1) may be in principle a valuable standard for diag-
nosis of the nutritional status of crops (Ulrich and Hills 1967). For many crops criti-
cal levels have been proposed for different plant parts. Adriano (2001) gives a 
comprehensive overview of these levels. The fertilization level applied to the plant 
stand must be chosen so as to prevent both nutrient deficiencies and luxury uptake, 
as excessive nutrient supplies may cause damage in several ways, leading to toxicity 
in the crop and leaching from the soil, while also being uneconomical. An alternative 
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approach to crop N management is to place more emphasis on the physiology of 
the crop during its growing season, aiming at a crop canopy that will intercept the 
maximum amount of light. This approach would place less emphasis on final yield 
or N uptake as the objective in seeking to estimate the amount of fertilizer N to be 
applied.

2.2  Optimal Conditions in Soil

2.2.1  Accurate Determination of Soil Nutrient Supply

Soil testing is a useful tool for nutrient management, as it provides an accurate 
gauge of nutrient levels in the soil and enables farmers to match nutrient application 
to crop needs. The greater the frequency of soil testing, the greater the likelihood 
that application rates match crop needs, hence soil tests at least once every three 
years may avoid over or under fertilization. This is an indicator of interest and 
awareness, even if recommended fertilizer application rates are not always followed 
(Paris and Reille 1999).

Now that reserves of P and K being built-up on many soils, the question can be 
asked, “To what extent should these reserves be accumulated and how can the 
reserves be maintained?” The Olsen P and exchangeable K at which yield 
approaches closely to the asymptote, can be considered the critical value. Below the 
critical value the loss of yield is a financial loss to the farmer. Above the critical 
value, there is no justification to further increase the available P and K because this 
is an unnecessary expense, and for P there is a risk of loss to water leading to the 
unacceptable consequences of eutrophization. From the concept of critical values 
and maintaining soils at these levels, there has developed advice to replace P and K 
removed in the harvested crop, i.e. maintenance or replacement fertilization. There 
is relatively little data on the length of time it takes for readily available P and K 
levels to decline under normal farming systems when P and K is not applied. The 
rate of decline will depend on the initial value, the amount of nutrient removed in 
the harvested crop, the size of the less readily available pool and the rate of transfer 
of nutrient from this to the readily available pool. In addition to exploiting nutrient 
reserves in subsoil, greater attention to soil cultivation and improved soil structure 
will allow plant roots to explore a larger volume of soil for nutrient acquisition 
(Johnston et al. 2001).

Measurements of mineral N in soil (N
min

) have been used for several decades in 
some countries of continental Europe to guide advice to farmers on the quantity or 
timing of N fertilizer to be applied to a crop. Mineralization of organic N in soil is 
a key process in determining the quantity of N available to a crop, and hence the 
quantity of inorganic fertilizer required. The various factors which enhance or 
deplete the soil mineral N pool are summarized by Hofman and Cleemput et al. 
(1992): mineralization, rainfall, fertilizers, nitrogen fixation, immobilization, vola-
tilization, denitrification, leaching, runoff erosion, plant uptake.
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2.2.2  Consideration of Subsoil Nutrient Content

Malhi et al. (2009) found, that cropping systems that employed some form of fallow 
or green manure partial-fallow tend to accumulate more nitrate-N in the rooting 
zone (0–90 cm) than systems that are continuously cropped. Similarly, application 
of fertilizer N in excess of crop needs as occurred with the high input systems 
increased nitrate-N in the rooting profile, and contributed to leaching into the sub-
soil. Estimating the plant available nitrogen, the N

min
 method is used, which is 

measuring the ammonium and nitrate content of soil until 90 cm depth. The calcu-
lation of N fertilizer application rate has to be based on these data (Wehrmann and 
Scharpf 1979, Wiesler and Horst 1994).

Nitrate analysis show that there was only a few kg of nitrate-N in some horizons 
of the 3 m profile on control areas. As the N fertilizer rates rose, there was a rapid 
increase in the quantity of nitrate-N detected in the soil. The maximum nitrate 
accumulation was recorded at a depth of around 2 m in all cases, while the nitrate 
distribution curve also showed a minimum, generally at a depth of 40–80 cm. 
Nitrogen uptake by the roots had a perceptible effect on nitrate migration up to a 
depth of around 100 cm. At lower depths the majority of the nitrate is no longer 
available to the crop, so its further fate depends primarily on the downward move-
ment of excess water. A considerable rate of nitrate accumulation can also be 
expected in soil horizons below 3 m at N rates of 180 kg ha−1 or more (Fig. 2) 
(Füleky and Debreczeni 1991; Füleky 1999).

In response to higher rates of mineral fertilizer the P content increased not only 
in the ploughed layer, but also in the 20–40 cm layer, and to some extent even at a 
depth of 40–60 cm. As the P balance became more positive there was a steep rise in 
the soluble P content of the 0–20 cm layer. The increase was less steep in the 
20–40 cm, but the effect of mineral fertilization on the P content was still perceptible 
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Fig. 2 Relation between N-balance and nitrate-N content of soil (Füleky 1999)
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in the 40–60 cm layer. At greater depths mineral fertilization had no detectable 
effect on the readily available P content of the soil (Füleky and Debreczeni 1991; 
Füleky 1999).

Rising rates of K mineral fertilizer caused a steep increase in the AL-soluble 
K content of certain soil layers. The effect of potassium fertilization, unlike that 
of phosphorus, could still be detected in the 60–80 cm soil layer (Fig. 3) 
(Füleky and Debreczeni 1991; Füleky 1999). The correlation between the nutri-
ent balance calculated for a given field and the results of soil analysis is not 
sufficiently exploited in fertilizer recommendations. The results of long-term 
field experiments prove that the quantity of both less (phosphorus, potassium) 
and more (nitrogen) mobile nutrients accumulated in the soil, as detected by 
soil analysis, is in close correlation with calculated nutrient balances. In the 
case of more mobile elements, calculations must be made not only for the 
ploughed layer, but also for deeper horizons, and the nutrient contents of deeper 
soil layers must be taken into consideration when determining the mineral fer-
tilizer rate. The curve shown in the figure can be used to predict not only the 
rate of nutrient accumulation, but also the extent of soil exhaustion. In general 
the P and K balances remain in the linear range for 20–30 years, only reaching 
a plateau and tending towards a constant soil analytical value after a long period 
of exhaustion

2.2.3  Maintain Optimal pH

It is now generally accepted that in much of Europe where liming materials are 
generally available, that the pH of arable soils should be maintained at pH 6.5 and 
that of productive grassland at pH 6.0 in water.

Fig. 3 Relation between K-balance and easily soluble K-content of soil (Füleky 1999)
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Russell (1973) discussing in detail the effect of soil acidity and alkalinity on 
plant growth, concluded that the effects of acidity over the normal pH range in 
temperate agricultural soils are due, not to the direct effects of the hydrogen ion 
concentration in the soil or soil solution, but to secondary causes. Principal 
among these is the effect of soil pH on the concentration of Al, Mn and Fe in 
soil solutions. A large Al concentration is the most common cause of the failure 
of agricultural crops grown on acid soils. Having established the soil pH values 
below which crop growth may be restricted on mineral soils and the effects of 
changes in pH on crop yields, most recent research effort has concentrated on 
determining the rates of loss of CaCO

3
 from soils. Little Ca is lost in the har-

vested parts of arable crops. Most of the loss of Ca from agricultural soils is as 
a balancing cation for anions, nitrate, sulphate, chloride, bicarbonate, lost in 
water draining through the soil profile. This Ca must be replaced (Johnston et al. 
2001).

Fertilizers, particularly if they are applied in large quantities for a long 
period, may cause unfavourable changes in the soil. Even without the applica-
tion of fertilizers, intensive crop production may gradually acidify the soil as the 
result of root respiration. This is clear from the changes in the control plot in 
Fig. 4. This is aggravated nowadays by the substantial rate of acid deposition. 
Fertilizers, especially those containing NH

4
+, may also contribute to soil acidifi-

cation. The drop in pH can be prevented by regular or occasional liming. This 
pH-reducing effect of mineral fertilization can be attributed to the migration of 
Ca and Mg ions away from the ploughed layer (Fig. 5). Parallel with acidifica-
tion, there may also be a rise in the quantity of soluble toxic microelements in 
the soil (Stefanovits et al. 1999).

Fig. 4 Acidifying effect of environmental factors and mineral fertilization between 1972 and 
1989 (Stefanovits et al. 1999)
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2.2.4  Increasing Organic Matter

It is very important to know the dynamics of soil organic matter. If the soil 
organic matter decomposes it provides mineral nitrogen and mineral phosphate, 
which - assuming K is adequate - might be sufficient for the crop. A major aim 
of organic farming is to build up organic matter in the soil for this purpose, by 
return of all organic wastes and by restorative crops. However, if this mecha-
nisms is used to supply nutrient to a crop it implies that a pro rate amount of 
organic matter must be lost, the carbon being converted to CO

2
. This loss can 

only be accepted to a limited extent, on grounds of general soil physical proper-
ties such as soil structure, water-holding capacity and erosion resistance. In any 
case, the decomposition of soil organic matter can provide only a limited 
amount of mineral N and P in any one year, because soil organic matter decom-
position is controlled by the weather and the soil organic matter level, and cannot 
be manipulated closely (Tinker 2001).

The soil organic nitrogen was being build up by heavy manure additions, but as 
soon as these ceased in 1871, soil organic nitrogen declined as it was mineralized. 
It is impressive to see how long the manure effect can continue, with a greater rate 
of release than in the original soil, but as the rate of release declines, so will the 
crop yield. From the slope of the line, it seems that initially approximately 1 t N ha−1 
was released in 40 years, or 25 kg N ha−1 a−1 (Fig. 6).

2.2.5  Mobilization of Nutrient Stock

Soils are inoculated with bacteria which apparently increase the plant availability 
of native and applied soil phosphorus. Several species of microorganisms are 

Fig. 5 AL-soluble Ca, Mg and Mn contents of the soil after 14 years of mineral fertilization 
(Stefanovits et al. 1999)
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effective in this respect, but the one principally employed is Bacillus megatherium 
var. phosphaticum. The increase in available soil phosphorus results primarily from 
the decomposition of organic phosphorus compounds. The treatment is most effective 
on neutral to somewhat alkaline soils and on those high in organic matter (Tisdale 
et al. 1985). Coherently, various “bio-fertilizers” for a high P-acquisition are 
increasingly offered worldwide. Many bio-fertilizers contain phosphate-solubilizing 
bacteria like Bacillus and Pseudomonas spp. for an improved chemical P-availability 
or phytohormone active algae extracts to stimulate root development for a better 
spatial P-acquisition (Bákonyi et al. 2008).

2.3  Favourable Fertilizer Use

2.3.1  Critical Value Concept

In the past, when the land was regularly used to grow crops without mineral 
fertilizer or sufficient organic manure, the nutrient balance was constantly nega-
tive and the natural nutrient-supplying capacity of the soil was exhausted 
(exhaustive nutrient management). Nutrient management aimed at soil fertility 
replenishment on soils with poor or very poor supplies of phosphorus and potas-
sium involves a single high dose of mineral fertilizer or the regular application 
of fertilizer rates somewhat higher than the quantity extracted by the crop, in 
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order to bring the fertility level into the medium, good or very good category. 
After the medium, good or possibly very good category has been reached, nutri-
ent rates that ensure fertility maintenance are sufficient, as further replenishment 
would be both uneconomical and environmentally dangerous (Figs. 7 and 8) 
(Füleky 1999).

Fig. 7 Build-up, maintenance and exhausting fertilization (Füleky 1999)

Fig. 8 Quantity of phosphorus fertiliser active agents recommended for a 1-ton yield of winter 
wheat on brown forest soil, as a function of soil phosphorus supplies (Füleky 1999)
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Past research on phosphate has emphasized the need to maintain the plant-available 
concentration of P in soil above a critical value to ensure that crop yield is nit lim-
ited by a lack of P (Johnston et al. 1986; Johnston and Poulton 1992). For many 
crops and soil typed NaHCO

3
-extractable P (Olsen-P) of 20–30 mgkg−1 appears to 

be a critical value below which crop yield decline even if other nutrients are in 
plentiful supply. Concentrations in surface water as low as 20 mg Pl−1 can cause 
algal growth and eutrophication under some circumstances. In the Broadbalk 
Experiment the soil Olsen P value above which P movement became serious was 
about 60 mg kg−1 (Heckrath et al. 1995).

From the concept of critical values and maintaining soils at these levels, there 
has developed advice to replace P and K removed in the harvested crop, i.e. main-
tenance or replacement fertilization. There is relatively little data on the length of 
time it takes for readily available P and K levels to decline under normal farming 
systems when P and K is not applied. The perception that on arable soils there had 
been a build-up of P reserves, together with known differences in the responsive-
ness of crops to P and K fertilizers, was reflected in the rationing of P and K fertil-
izers. With the introduction of cultivars with increasing yield potential and 
agrochemicals to control weeds, pests and diseases, farmers justifiably began to use 
more N together with P and K fertilizers. The effects of this increase in fertilizer 
use are reflected in results indicate that most of soils growing arable crops now have 
good reserves of P and K (Johnston et al. 2001).

2.3.2  Calculation of Nutrient Balance

A means of obtaining initial information on the fate of a nutrient within an agricul-
tural system is to construct a budget, taking account of as many inputs and outputs 
as possible and of changes in its stock within the soil. Long-term experiments are 
a valuable resource for calculating nutrient budgets to provide an indication of the 
likely losses under a range of managements. In addition to monitoring inputs and 
outputs of nutrients, long-term experiments provide the possibility of detecting and 
quantifying slow trends in the stock of a nutrient within the soil: this cannot be done 
in experiments lasting only a few years (Füleky and Debreczeni 1991; Powlson 
1997). Sylvester-Bradley et al. (1987) compared the estimated N inputs to and 
outputs from the winter wheat crop in England and Wales for the period 1974 to 
1986. This showed that, until about 1980, the average input of N in fertilizer 
roughly equaled offtake in the crop. After this fertilizer inputs increased more rap-
idly than offtake, with input exceeding offtake by about 30 kg N ha−1 a−1 during the 
1980s. Another form of nutrient budget can be calculated for an individual farm. 
Watson and Stockdale (1997) describe a Whole Farm Nutrient Budget system in 
which as many internal flows within the farm as possible are measured or estimated 
in addition to movements to and from the farm. To be able to optimize the nitrog-
enous fertilizer rate applied to agricultural crops, the soil’s available N must be 
known, particularly that provided by the organic matter’s N mineralization. The 
methodology proposed to achieve this aim is based on determining the soil’s mineral 
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N balance (Sanchez et al. 1998). Velasco et al. (2008) reports that the annual N 
balance in integrated agricultural systems is positive due mainly to concentrate feed 
inputs.

Öborn et al. (2003) introduces seven basic requirements for an appropriate use 
of element balances: Define the user and purpose: what is the objective of the 
element balances, what is the required accuracy and what is the proper methodology. 
Description of the system, its surroundings and the elements to be considered: 
what are the boundaries of the system, is the system homogeneous, are there 
subsystems and what kind of element species are involve. Description of the meth-
odology and data acquisition strategy: which type of balance is being used, what 
are the data sources and what is the method and frequency of data collection. 
Description of the state of the (sub)system(s), e.g. in terms of depletion or enrich-
ment. Description of the inputs of the (sub)system(s) over well-defined periods. 
Description of the outputs of the (sub)system(s) over well-defined periods. Check 
for consistency, completeness and correctness of the element balance by internal 
and external peer reviews.

2.3.3  Nutrient Management Plan

Nutrient management plans include requirements for the: Application of nutrients, 
including the rate and uniformity of spreading, of both chemical fertilizer and live-
stock manure, to restrict nutrient losses to water to an acceptable level. Maintenance 
of a minimum quantity of vegetative cover during (rainy) periods that will take up 
the nitrogen from the soil that would otherwise cause nitrate pollution of water. 
Establishment of fertilizer plans on a farm-by farm basis and the keeping of records 
on fertilizer use. Prevention of water pollution from run-off and the downward 
water movement beyond the reach of crop roots in irrigation systems.

In addition, nutrient management plans include land management elements, 
such as the use of crop rotation systems and the proportion of the land area 
devoted to permanent crops relative to annual tillage crops. The method of calcu-
lation for the use and frequency of soil tests is expressed as the promotion of 
farms conducting soil tests at different frequencies. A nutrient farm management 
plan is an indicator of farmer awareness of environmental issues, but nutrient 
plans are also introduced because of legislation (e.g. the European Union Nitrate 
Directive).

Nutrient management plans normally include restrictions on the: periods when 
the application of fertilizer is inappropriate; application of fertilizer to steeply slop-
ping ground; fertilizer application to ground water saturated, flooded, frozen or 
snow-covered; conditions for application of fertilizer near water courses and capac-
ity and construction of storage containers for livestock manure, including measures 
to prevent water pollution by run-off and seepage into the groundwater of liquids 
containing livestock manure and effluents from stored plant materials such as 
silage.
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2.3.4  Using Crop Models

Systems, based on dynamic models of N transformations, offer powerful means of 
exploring ways of minimizing N loss within farming systems.

If agriculture is to be economical in the long term, achieving maximum profits 
with high yield stability while avoiding damage to the environment, it is in the 
interests of farmers to employ a site-specific crop production technology elabo-
rated for the given territory based on local environmental and economic condi-
tions, and taking into consideration known yield-reducing factors. An extremely 
important aspect of this is to consider the climate, the soil and the (variable) 
potential of the given crop when planning nutrient supplies, based on the desired 
yield (income) level. The following models can be applied in this planning 
process: Empirical models: At present the extension service generally makes 
fertiliser recommendations in the light of correlations based on the results of field 
experiments. These empirical or statistical models are constructed by determining 
the relationship between the yields obtained in experiments and certain measured 
variables. Dynamic yield simulation models: These are mechanistic models con-
sisting of mathematical correlations that describe the processes determining the 
behaviour of the system, and are constructed by dissecting the system, quantifying 
the major processes and mechanisms, and rebuilding the system. In yield simula-
tion models each process needs to be quantified in adequate detail in terms of 
both plant status (phenophase, leaf area size, nitrogen content, etc.) and the envi-
ronmental factors influencing the process. The database required to run yield 
simulation models consists of four main fields: climatic and meteorological data, 
soil and relief data, vegetation, yield and production technology data, socio-economic 
data. Decision-making models: More and more frequently, yield simulation models 
are integrated with expert systems, allowing decision-making systems to be 
created, the demand for which is rapidly increasing in agriculture (Penning de 
Vries et al. 1989).

During the last 20 years there has been a strong move to provide information on 
a field-specific basis. Developments in the modeling of N cycle processes and the 
advent of computerized record keeping by farmers have facilitated this. A system 
being developed specifically for arable crops is SUNSDIAL: Simulation of 
Nitrogen Dynamics in Arable Land. Defining the N requirement of a crop, as 
required in all current decision support modeling systems, is not simple. In 
SUNDIAL the target N uptake of a crop is calculated from expected crop yield 
using empirically-derived parameters obtained from an analysis of field experi-
ments with a range of arable crops. However, it is recognized that the link between, 
say, grain yield or total dry matter of a cereal and total N uptake is not direct; espe-
cially at higher values for N uptake there is considerable scatter. This is interpreted 
as an example of “luxury” uptake on N in which the crop absorbs additional N, if 
it is available, up to a maximum capacity during growth; this extra N does not nec-
essarily lead to additional yield compared to a crop obtaining only just sufficient N 
(Powlson 1997).
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2.3.5  Recycling Organic Materials

Long and short term soil improvement of manure and compost application are 
next: Improves soil structure. This improves water infiltration, mitigating against 
run-off which causes flooding and diffuse pollution, and also improves root pene-
tration which increases crop yield. Improves water holding capacity through 
increased levels of organic matter. Makes the soil more drought resistant as organic 
matter can hold up to 20 times its weight in water. Increases levels of organic mat-
ter. In addition to improving structure and water holding capacity, soil organic 
matter increases the capacity of soils to bind chemicals, buffer the release of pol-
lutants and regulate the supply of nutrients. It is lost from the soil through miner-
alization, erosion and land use change. Helps control soil erosion. Soil erosion has 
negative impacts on water quality and can lead to damaged habitats, sedimentation 
and loss of carbon. It can also have an economic impact on farmers (Sjöström 
2008).

The nutrient content of organic manures must be taken into account when plan-
ning nutrient applications. Recycling to land and decomposition in the soil is the 
best practical environmental option in most circumstances for many organic materi-
als as it effectively closes the carbon and nutrient cycles, returning the carbon, 
nitrogen, phosphorus and other nutrients to the soil they came from. Not everything 
in the material is good for the soil, nor for the environment: Some organic materials 
can include pollutants (for example metals, persistent organic pollutants, biocides 
and nanoparticles) that can accumulate in the soil to levels where they become toxic 
and can impair the long-term functioning of the soil. It is also important to stress 
the harmful substances do not only exist on organic manures, but also in other 
materials which are added to soil - for example in fertilizers. When proper attention 
is given to the composition of manures and decisions on rates, timing and applica-
tion methods are made correspondingly, the nitrogen fertilizer replacement value of 
manure can be strongly enhanced. This should lead to a further reduction of mineral 
N fertilizer use, N surpluses and pollution (Schröder 2005).

To be able to optimize fertilizer plans and to maximize the utilization of nitrogen 
in manure, new techniques for application and new technologies for treatment have 
been introduced. Application of slurry with trailing hoses is recommended in win-
ter cereal and injection is recommended on bare soil and grass. Broadcast spreading 
of slurries is prohibited. About one third of the total amount of slurry is injected 
(Birkmose 2009).

The recycling of plant nutrients in agriculture through the use of organic 
manures, biosolids and other organic wastes is discussed with special reference 
to phosphorus and its efficient use in crop production. The two end-products at 
sewage treatment works are the solid and the liquid. The liquid effluent contains 
water-soluble inorganic P and low-molecular weight organic P and both are bio-
available. It is this fraction of P that created problems associated with eutrophi-
cation in rivers. Currently this P can be removed by adding salts of calcium, iron 
or aluminum. There are conflicting results about the availability of this precipi-
tated P to plants. Iron and aluminum phosphates may age and with time the 
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phosphate in these compounds may become less available for uptake by roots 
(Johston 2008).

Managing food waste successfully is a commercial opportunity as well as being 
environmentally virtuous. Anaerobic digestion (biofertilizer plants) and food waste 
disposers have been found to have nearly equivalent global warming potential and 
better than the alternatives such as landfill, incineration or centralized composting. 
Wastewater treatment can recover 95% of the P from urban wastewater and concen-
trate it into the sewage sludge that, after appropriate treatment, can be applied to 
land as nutrient-rich soil improver (biosolids) (Evans 2008).

Granstedt et al. (2008) defines Ecological Recycling Agriculture as an agricul-
ture system based on local and renewable resources that integrate animal and crop 
production on each farm of farms in close proximity. As a result a large pail of the 
nutrient uptake in the fodder is effectively recycled.

2.4  Reducing Nutrient Losses

2.4.1  Reducing Nitrate Leaching by Cover Crops

Cover crops are legumes, cereals, or an appropriate mixture grown specifically to 
protect soil against erosion; ameliorate soil structure; enhance soil fertility; and sup-
press pests. Cover crops are not grown for harvest, but rather to fill gaps in either 
time or space when cash crops would leave the ground bare (Lal et al. 1991).

N supplies can only be reduced in the fall if growing plant material with high N 
requirements and a high input rate exist in the field at the same time (Fig. 9). 
To solve these problems, special cover crop mixtures were tested. These cover 
crops have a high N consumption rate at the same time when the uptake rate of corn 
plants is decreasing considerably (Estler 1991).
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Fig. 9 Growing cover crops in the late fall can prevent leaching of surplus nitrogen 
(Estler 1991)
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Almost 20 years ago it was demonstrated that the presence of an actively growing 
crop was an effective means of decreasing winter leaching (Widdowson et al. 1987). 
In one extreme case, over-winter loss appeared to decrease from well over 
100 kg N ha−1 in the presence of late-sown winter wheat to about 30 kg N ha−1 where 
wheat was sown unusually early in September. Growing cover crop during winter 
is a method of decreasing leaching in the period when soil would otherwise be bare 
before sowing a spring crop. A more radical approach is to regard crop cover as an 
integral part of arable management and use an undersown cover crop even when the 
following crop is to be sown in autumn. It must be recognized that some crops and 
agricultural activities have greater environmental impacts than others. It will 
certainly be impossible to prevent all drainage or runoff water from every field from 
exceeding the EU 50 mg l−1 nitrate limit at all times. It is therefore necessary to 
consider water resources at the catchment and regional scale, recognizing that high 
nitrate water from some areas will be diluted by lower nitrate water from others. To 
some extent the modeling approach used for rotation planning, described above, 
can be used but there is also a need for policy makers to be able to conduct scenario 
testing using less detailed information for large areas of land. In a maritime climate 
any nitrate remaining in soil after harvest, plus that mineralized in autumn, is at 
considerable risk of being lost by leaching during the subsequent winter. From the 
standpoint of water quality it is therefore essential to aim at management practices 
that decrease the quantity of nitrate in soil in autumn. From agricultural standpoint 
it is also sensible to avoid unnecessary loss of a plant nutrient (Powlson 1997). 
Catch crop promotes the sustainability of agricultural systems by reducing soil 
erodibility and nutrient losses by nutrient uptake and transfer to the following main 
crops (Rinnofner et al. 2008). Doubling the catch crop area yielded a decrease in 
nitrate leaching (Decrem et al. 2007).

2.4.2  Crop Rotation

Crops differ greatly in the quantity of nitrate and readily mineralisable organic N 
left in soil after harvest and also in their ability to capture inorganic N left from the 
previous crop. Consequently a change in the sequence of crops grown in a rotation 
can have a significant effect on the quantity of nitrate leached during winter. to 
simulate N transformations in a large number of crop rotations that optimize N use 
and minimize loss (Smith and Glendining 1996). In areas of a field that, for some 
reason, regularly give higher crop yields, offtake of P, K and trace elements will be 
greater than in the rest of the field leading to a decline in soil reserves. It would then 
become necessary to replace these nutrients by increased applications applied 
selectively to these areas. It is well documented that ammonia losses from urea can 
be significant in warm dry climates but this is rarely the situation in spring in the 
UK and northwest Europe. Losses by denitrification (or leaching when it occurs 
in spring) may well be less from urea than from ammonium nitrate as the peak 
concentration of nitrate in soil is smaller. A possible strategy for minimizing losses 
of fertilizer N by leaching or denitrification is to apply part of the total dose to crop 
foliage instead of to the soil.
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2.4.3  Buffering Strips

The low-lying areas of land that often lie between farmland and water courses can 
act as buffers by removing nutrients from the waters moving through them. Buffer 
strips remove nutrients by many postulated mechanisms, but two are clearly defined 
and dominant in nitrate removal: denitrification and nutrient uptake into plants 
growing in the strip. The uptake of nutrients by vegetation is important because it 
removes phosphate as well as nitrate and offers the facility to manage nutrient 
removal by managing the vegetation in the buffer strip. Grass is the most common 
form of vegetation although it may be possible to select other species that are more 
efficient. Wooded strips also exist and planted poplars have been suggested as good 
buffers (Haycoc and Pinay 1993; Correll 1997).

2.4.4  Expanded Fertilizer Margin

Where soil type and local hydrology are appropriate it may be possible to design 
an expanded field margin to act as a buffer zone to decrease nutrient movement to 
surface waters as described above. Even where this is not possible, having wider 
uncropped and unfertilized field margins may have a role in decreasing total nutri-
ent loss from farmland to both surface-and ground waters. There is economic logic 
in regarding these areas as “set-aside” so that the crop is not sown in the edge areas, 
fertilizers and pesticides are not applied and grass or other plants are allowed to 
grow (Powlson 1997). Addiscott et al. (1991) suggested a surround of 15 m as a 
means of decreasing N-fertilizer use but with a proportionally smaller decrease in 
crop production.

2.4.5  Drainage Manipulation

A variation on the principle of buffer strips is the temporary restriction of flow in 
field drains where these have been installed in clay soils. This can be used to retain 
water in such soils early in the autumn/winter drainage season and is likely to have 
two important results. First, the cracks that develop in such soils during summer 
will close more quickly than normal, thus decreasing the extent to which a pulse of 
nitrate (and phosphate or autumn applied herbicide) moves through drains to 
surface waters by by-pass flow. Second, it is likely to create sub-soil conditions 
conducive to denitrification, thus decreasing the amount of nitrate at risk to leaching 
(Powlson 1997; Catt 1996).

2.4.6  Use of Slow-Release Fertilizers

The intensive use of N fertilizers in agriculture and horticulture together with nitri-
fication inhibitors should be beneficial for the environment. However, to justify 
their higher price, these fertilizers must also offer economic advantages to the 
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farmer to make them a viable alternative to conventional N fertilizers (Pasda et al. 
2001; Carrasco-Martin 2008).The use of DMPP (3,4-dimetilhylpyrazole phos-
phate) nitrification inhibitors with urea reduced nitrate leaching. There were no 
differences in grain yield between treatments with and without DMPP at the same 
rate of N (Diez-Lopez et al. 2008).

2.4.7  Key Environmental Indicators

Key environmental indicators are widely used in financial accounting. Key environ-
mental indicators are used more and more in relation to describing the conditions 
within crop production both concerning efficiency, sustainability and direct envi-
ronmental effect. By doing this over a number of years is it possible to show the 
results of actions taken. Key environmental indicators elucidate actual changes that 
have been achieved on the farm. It is also possible to use environmental indicators 
as a basis for assessing and planning for future improvements (Törner and 
Drummond 1999). At present, key environmental indicators are used also for plant 
nutrient utilization and efficiency: N utilization (input/output), P utilization (input/
output), P in circulation (recycled P/total input P), Balance (total surplus respective 
deficit), Crop production, Cattle, pigs/N losses, Housing, storage losses.

Figure 10 shows the flow of plant nutrients for the whole farm and each produc-
tion area.
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Fig. 10 The flow of plant nutrients (Törner and Drummond 1999)
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Conservation in agriculture maintain the regenerative capacity of renewable 
resources; shift form the use of non-renewable to renewable resources and phase 
the use of non-renewable recourses. Maintaining the renewable resource base 
implies concern about the biological diversity of agro-ecosystems and the genetic 
diversity of crop and animal species. As has been pointed out already many agro-
ecosystems rely upon suppression of biodiversity to favor the production process, 
but this is not incompatible with biodiversity within areas – for example the field 
margin or the hedgerow may be relatively undisturbed (Garret 2001).

3  Legislations, Regulations

3.1  Nitrate Directive

The purpose of Nitrate Directive (EU 1991) is protection of water bodies against 
pollution induced by nutrient from agricultural sources, and reducing the present 
nitrate pollution of water bodies. It is worth considering the subject of nitrate 
leaching. The amount of manure nitrogen leached following application to crop 
or land is principally related to the application rate and timing, the readily 
available-N content and the amount of rainfall following application. With pig 
manures, ammonium-N is rapidly converted in the soil to nitrate-N. Manure 
application during the autumn or early winter period should be avoided, as there 
is likely to be sufficient over-winter rainfall to leach a significant proportion of 
this nitrate before the crop is able to use it. Delaying applications until late winter 
or spring will reduce nitrate leaching and increase crop uptake and utilization of 
the nitrogen (Huxtable 2006). The basic options for nitrate remedial action are: 
closure of sources, blending with low nitrate water, treatment to remove nitrate 
(Croll 1994).

Whole farm manure N loading limit: Established a limit of 170 kg ha−1 of total N from 
livestock manures (deposited during grazing and by spreading) per calendar year, 
averaged across the farmed area. Closed period (organic manures): Prohibits the 
spreading of organic manures with high available nitrogen content during specified 
periods. The length of the closed periods ranges from 3 to 5 months, and it applies 
to all soil types. Manure storage: Requires farms to provide sufficient storage facili-
ties to store all slurry produced by livestock during a period of 6 months for pigs and 
5 months for cattle, and to store all poultry manure for a period of 6 months. Closed 
period (manufactured nitrogen fertilizers): Prohibits the spreading of manufactured 
nitrogen fertilizer during specified periods unless there is a crop nitrogen require-
ment. Crop nitrogen requirement limit: Requires farmers to plan their applications 
of nitrogen to crops and to comply with an upper cap on nitrogen applications (N max), 
assuming a set level of efficiency of nitrogen supply from any organic manure applica-
tions. Spreading locations: Requires farmers to undertake a written assessment to 
identify areas of land at risk of runoff and causing water pollution. Applications of 
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nitrogen fertilizer and organic manures to areas of land identified as posing a high 
risk of runoff are prohibited. Spreading techniques: Prohibits the use of high trajec-
tory application techniques for spreading slurry. Additionally, applications of 
organic manure to bare soil or stubble will require incorporation into the soil in 
certain situations.

Record-keeping: Establishes a requirement to keep a record of all N applica-
tions to land to facilitate compliance checking, and all to keep records of livestock 
numbers kept on the holding.

3.2  Waste Directive and Sewage Sludge Directive

The European Waste Directive (EU 2008) requires establishments and undertakings 
carrying out waste recovery or disposal activities. Compliance with the Quality 
Compost Protocol means that quality compost can be used on land without the need 
for waste management controls from the point at which it is dispatched to the 
customer This is provided that: the quality compost is produced using only source-
segregated input materials listed in the Quality Protocol; the quality compost is 
destined for appropriate use in land restoration and soft landscape operations, hor-
ticulture and agriculture; the producer must obtain certification from the Composting 
Association; and the producer must keep copies of contracts of supply or informa-
tion to customers which include a declaration of conformation with the Quality 
Protocol (Davis 2008).

The European Commission has indicated that it may review the Sewage Sludge 
Directive (EU 1986) to make sure that using sewage sludge for its nutrient content 
does not cause problems. The Sewage Sludge Directive aims to prevent harmful 
effects on soil, vegetation, animals and man and forms the basis for the regulation 
of sludge spreading in the EU. The metal content of sludge depends on the source 
and the inputs. Much work has been carried out to reduce the levels, and this is now 
having marked effects.

3.3  Good Agricultural Practice

Good Agricultural Practices of the FAO (2005) are a collection of principles to 
apply for on-farm production and post-production processes, resulting in safe 
and healthy food and non-food agricultural products, while taking into account 
economical, social and environmental sustainability. Good Agricultural 
Practices may be applied to a wide range of farming systems and at different 
scales. They are applied through sustainable agricultural methods, such as inte-
grated pest management, integrated fertilizer management and conservation 
agriculture.
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Good Agricultural Practices are related to soil in following points: reducing ero-
sion by wind and water through hedging and ditching, application of fertilizers at 
appropriate moments and in adequate doses, i.e., when the plant needs the fertilizer, 
to avoid run-off (see nitrogen balance method), maintaining or restoring soil 
organic content, by manure application, use of grazing, crop rotation, reduce soil 
compaction issues by avoiding using heavy mechanical devices, maintain soil 
structure, by limiting heavy tillage practices, insitu greening manuring by growing 
pulse crops like cowpea, horse gram, sunhemp etc.

3.4  Soil Protection Strategy

Soil is a fundamental and ultimately finite resource. Although there are policy 
measures in place to protect our soils, many are still being degraded. Soil 
should also be seen as a non-renewable resource and needs to be utilized in a 
way that does not endanger it for future generations. The European Union 
adopted a Thematic Strategy for Soil Protection (EU 2006) aimed at raising 
awareness of potential threats and promoting an improved and more systematic 
response by Member States. The strategy focuses first of all on the low organic 
matter content of European soils. Consequences of SOM decline are: release of 
greenhouse gases, negative effects on biodiversity, including soil biodiversity, 
reduced water infiltration due to changes in soil structure, hence higher flood 
risk, reduced absorption of pollutants and increased water and air pollution, 
increased erosion. This has effects, such as: loss of fertile soil, loss of soil fertility, 
damage to infrastructures due to excessive sediment load, diffuse pollution of 
surface water, negative effects on aquatic ecosystems and thereby biodiversity, 
restrictions on land use and hindering future redevelopment and reducing the 
area of productive and valuable soil available for other activities: agricultural 
and forestry production, recreation, etc.

4  Practical Systems

4.1  Integrated Farming

Integrated farming optimizes multiple goals in nutrient management such as: 
maintenance of farm income and employment, protection of environment, land-
scape and valuable habitats, improvement of well-being and health of consumers 
by providing high-quality food, prevention of pollution and contamination (Spiertz 
and Zadoks 1989).

To develop systems for sustainable agriculture at the farm level, there is a need for 
a strategy of integrated nutrient management which fits in the integrated farming 
system. This strategy involves according to Vereijken (1991): soil fertility must be 
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maintained at the appropriate level, not too low to attain stable yields and not too 
high to guarantee healthy crops with a low need of pesticides, dosage and applica-
tion method of nutrients must lead to maximum utilization by the crops and to 
minimum emissions to the environment, chemical fertilizers should be substituted 
as much as possible by manure for the following reasons: to improve or at least 
maintain the physical, chemical and biological soil fertility, to balance of inputs and 
outputs of nutrients at the farm and regional level, especially in regions with inten-
sive animal production resulting in less adverse effects on the environment and 
nature, to reduce costs and increase yield, to save non-renewable resources, espe-
cially energy for nitrogen fertilizer production.

The differences between nutrient management practices in intensive, integrated 
and bio farming are illustrated in Table 1. As pointed out by Csathó et al. (1998), 
sustainable nutrient management must concentrate on the fertilisation of the crop, 
rather than that of the soil.

Paris and Reille (1999) summarizes the JSR farm, as an example farm phosphate 
and potash fertilizer policy, which is normally based on: building up – applying 
more than crop removal in a low index situation; maintenance – replacement of 
nutrients removed by the crop and running Down – applying fewer nutrients than 
crop removal in a high index situation.

4.2  Site Specific Fertilization

Site-specific information technologies help to improve fertilizer efficiency and 
reduce negative environmental impacts (Torbett et al. 2008). To mitigate the ongo-
ing consequences of soil deterioration, atmospheric CO

2
 enrichment and NO

3
–

pollution of ground and surface waters, N fertilization should be managed by 
site-specific assessment of soil N availability (Khan et al. 2007).

Table 1 Description of the major fertilization variables in arable farming (Spiertz 1991)

Farming system

Intensive Integrated Organic

Fertilization Emphasis on 
mineral 
fertilization

Mainly organic Excusive use 
of manure

P and K dressing >withdrawal by crops =withdrawal by crops None
N dressing Economic optimum =withdrawal None
Green manure Grass Grass-clover mixture Grass-clover mixture
Organic manure Only before potatoes Frequently Frequently, exclusively 

from own farm
Sugar-beet tops Ploughed Ploughed Ploughed
Straw Sold or ploughed Ploughed Using in loose to 

produce manure
Biodynamic 

preparations
None None Several
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Precision farming is simply described as the adoption of the more precise man-
agement systems made possible by the use of modern technology. Essentially the 
technologies employed include the ability to provide an accurate location within the 
field, to make measurements within the field and potentially to be able to take 
actions variably within the field. Ideally such technologies should be largely auto-
matic, since manual systems for location, measurement and action control are likely 
to introduce costs which could make the system uneconomic and unfeasible. It has 
been the recent automation of these components of the system which have made it 
potentially viable, even though there may have been an existing desire for more 
precise management, as illustrated by the efforts to apply lime variably according 
to manually measured variation of pH (Dawson 1996). The use of an N cycle model 
to give advice on fertilizer applications is based on the recognition that the N 
dynamics of different field vary. In fact there can also be significant variations 
within a field, often because of variations in soil type, drainage status, or the con-
tent of a nutrient other than N. The technology to vary fertilizer applications within 
a field in accordance with a predetermined map now exists, as does the facility for 
constructing yield maps from the output of a combine harvester.

Precision farming is thus not a new system of farming but is a more precise 
management opportunity, made possible by the development and adoption of new 
technologies. The methods (Figs. 11, 12, and 13) are as follow: soil sampling and 
analysis, mapping soil variables, assessment of the growing crop, nutrient offtakes 
by crops, mapping yields and offtakes, matching fertilizer applications and offtakes 
(Bryson 2005).

Having produced the yield map, it can be used as the basis of the fertilizer applica-
tions map, in which different rates of fertilizer are calculated for each yield band.
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Figure 14 demonstrates the difference in the positioning of tramlines for a 24 m 
spray boom. Tramlines can be better positioned using a GPS system at minimal cost 
to the farm manager. Correct tramline positions reduce the risk of spray ove-lap. In 
addition to economic savings, improved product placement will help to reduce 
environmental pollution.

N-Sensor is a tractor-mounted tool that allows growers to measure a crop’s nitro-
gen requirement as the tractor passes across the field and to vary the fertilizer 
application rate accordingly. The N-Sensor ensures that the right and optimal rate 
of nitrogen fertilizer is applied at each individual part of the field. It has become the 
benchmark technology for precision agriculture. N-Tester is a hand-held device that 
measures the nitrogen status of a crop from the chlorophyll content of its leaves.

4.3  Organic Farming

Organic farming results in the maximization of the use of natural resources by 
optimizing nutrient recycling in the soil-crop-animal system and omission of the 
use of pesticides and chemical fertilizers (Spiertz and Zadoks 1989).

Fundamental differences in principles in soil fertility and soil productivity manage-
ment between conventional and organic farming can be identified for the following 
areas: Soil nutrient management, e.g. focus on fertilization of single crops vs. focus on 

22m

24m

Fig. 14 Difference in the 
positioning of tramlines: cor-
rect tramline positions reduce 
the risk of spray over 
(Bryson 2005)
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nutrient management in crop rotations and at the farm level, dominance, dominance 
of single fertilization events versus. integrated nutrient management systems, 
highly soluble N and P fertilizers vs. prohibition of those fertilizers. Soil humus 
management: e.g. limited vs. optimized amounts, ranges and processing techniques 
of organic fertilizers and other organic matter input (Müller 2010).

5  Conclusion

In order to achieve ecological fertilization, the following data are required: The 
requirements of the crop to be cultivated and the dynamics of nutrient uptake, in 
order to determine the correct application date, method and quantity of fertiliser. 
From the practical point of view, it is important to know the critical range for each 
crop, to avoid environmentally dangerous over-fertilisation. If soil patches are to be 
given different rates of mineral fertiliser, it is essential to compile crop or yield maps. 
These are primarily used in precision nutrient management. The exact knowledge of 
the nutrient-supplying capacity of the soil also makes a decisive contribution to 
ecological fertilisation. The nutrient content must be determined not only in the 
ploughed layer, but also in the subsoil root zone, to ensure that these nutrient quanti-
ties (especially nitrate) are utilised by the crop and not leached into the groundwater. 
Continual efforts must be made to improve soil analysis methods in order to obtain 
an increasingly objective picture of the nutrient content available to the plants. Limit 
values or critical values, above which a substantial drop in the fertiliser effect can be 
expected, must be constantly reviewed to avoid applying unnecessary mineral ferti-
liser. Soil maps prepared using precise, geostatistical methods are also an efficient 
aid to nutrient management in precision crop production.
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Abstract Homegardens are a species-rich and complex multistrata agroecosystem 
in the tropics. Those traditionally managed farming systems are of immense value in 
rural socioeconomy. The basic functions of tropical homegardens are generation of 
products for subsistence and earning cash income in areas with good market struc-
ture. Homegardens also provide a range of environmental services. In Bangladesh at 
least 20 million people maintain homegardens. Despite high social, ecological and 
economic functions, science of homegarden systems is not advanced. In this article 
I review the major advances in homegarden research. For that purpose I compared 
Bangladeshi homegardens with that of other tropical regions. Research findings on 
Bangladesh homegardens show that with a varying landholding size the homegar-
dens differ in structure and composition across various agroecological regions of 
the country. Studies also report species richness from less than one hundred to more 
than four hundred occupying different strata. High socioeconomic performance, use 
of low external inputs, high dependency on household labor force and traditional 
– sometimes indigenous – management techniques are reported as some common 
characteristics in most homegardens of Bangladesh.

Keywords Biodiversity • Sustainability • Structural characteristics • Silvicultural 
treatments • Food security • Income security

1  Introduction

Homegardens are a characteristic feature of rural areas in many countries throughout 
all continents of the tropics. A general definition of tropical homegardens has been 
provided by Fernandes and Nair (1986) as a land use practice involving deliberate 
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management of multipurpose trees and shrubs in intimate association with annual 
and perennial agricultural crops, and invariably, livestock, within the compounds 
of individual houses, the whole crop-tree-animal unit being intensively managed 
by family labor. Homegarden has been receiving increasing attention from scien-
tists of various disciplines, especially agriculturists, ethnobotanists and human 
ecologists, because of its immense importance in conservation of plant genetic 
resources and social and economic roles played in rural landscapes of the tropics. 
Presence of abundant homegardens are reported from countries across the conti-
nents such as Nepal (Sunwar et al. 2006), India (Peyre et al. 2006), Sri Lanka 
(Hochegger 1998), Cuba (Wezel and Bender 2003)), Mexico (Blanckaert et al. 
2004; Heriberto et al. 2008), Brazil (Albuquerque et al. 2005), Ethiopia (Abebe 
et al. 2006), Sudan (Gebauer 2005), Yemen (Ceccolini 2002), Tanzania (Soini 
2005; Hemp 2006), Guatemala (Azurdia and Leiva 2004), Costa Rica (Zaldivar 
et al. 2002) and several regions of Indonesia (Abdoellah et al. 2006; Arifin et al. 
1998). Locally homegardens are known in various names, e.g. Kebun-Talun and 
Pekarangan in Indonesia (Christanty et al. 1986), Chagga homegardens in 
Tanzania (Soini 2005), and Shamba in West Africa (Kumar and Nair 2004). 
Various other terms are also used by researchers to designate homegardens, for 
example kitchen garden (Brierley 1985), homestead forest (Rahman et al. 2005a), 
compound farms (Okafor and Fernandes 1987), homestead agroforestry (Leuschner 
and Khaleque 1987) and mixed garden horticulture (Terra 1954). In most available 
literature homegardens are reported to be predominantly a rural landuse system, 
although some recent studies indicated the presence of homegardening or concep-
tually similar farming systems in urban and peri-urban settings as well (Thaman 
et al. 2006; Drescher et al. 2006). Though homegardens are characteristic feature 
of the tropics, homegardens from temperate zone are also reported (e.g. Vogl and 
Vogl-Lukasser 2003; Gold and Hannover 1987). Nair and Kumar (2006) provided 
a comprehensive global distribution of homegardens, based on a selected 135 
studies for the period 1990– 2003, in what they call ‘state-of-the-art in tropical 
homegardens’ book.

Homegardens are small-scale social-ecological systems embedded in larger 
social-ecological systems and managed through dynamic, constantly adapted 
traditional ecological knowledge largely embedded in local sociocultural and 
physical environment (Buchmann 2009). Even in the face of social and demo-
graphic changes in and around rural landscapes, homegardens itself remain rela-
tively stable because of its diversification of accessible resources and such 
diversification serves as insuring roles against risks and disturbances (Abebe 
2005; Kehlenbeck 2007). Until now the existing studies have provided a detailed 
account of homegardens in the tropics. ‘While some of them are at best scientific 
descriptions of a set of pattern (characteristics of systems at specific locations), 
some deal with examining homegardens in the context of current trends and 
issues in landuse systems, such as environmental integrity, carbon sequestration, 
biodiversity conservation, economic valuation of intangible benefits, and social 
equity, to name a few. Only very few of these are scientific analyses, however’ 
(Nair 2006).
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As in many other tropical countries homegardens are age-old and traditional 
land use systems in Bangladesh maintained by at least 20 million people and land 
area covered by this farming system is 270,000 ha (GOB 1992) throughout rural 
areas. A homegarden in Bangladesh contains a house, a bare space, and a cultivated 
space. Usually the cultivated space (the garden) is located surrounding the house, 
in front of the house as front yard or behind the house as back yard. Douglas (1981) 
described homegardens of Bangladesh as a multi-storied vegetation of shrubs, bam-
boos, palms and trees surrounding homesteads that produce materials for a multi-
tude of purposes, including fuel, shelter, structural materials, fruits and other foods, 
fodder, resins and medicines. Due to its social, economic, ecological and environ-
mental benefits, homegardens are receiving progressively higher concentration by 
scientists, practitioners and policymakers. The Forest Policy of Bangladesh also 
recognized the importance of homegardens in rural livelihood. Despite such con-
cerns research into this traditional farming system is not well advanced. There are 
only few in-depth studies conducted on various homegarden aspects. The purpose 
of this paper is to review existing literature especially on various structural and 
functional issues of homegardens in Bangladesh. It also attempts to compare 
Bangladeshi homegardens with that of other tropical regions in several aspects. The 
next section of this article provides an overview of the country’s climate, prevailing 
landuse systems and a brief account of forest resources. The subsequent sections 
analyses homegarden typology, structural characteristics, species composition and 
biodiversity, socioeconomic contribution and application of indigenous knowledge 
in management. Building on these characteristics, sustainability of homegarden 
systems has been assessed towards the end.

2  Bangladesh: Country Overview

2.1  Location and Climate

Bangladesh is a country of Indian subcontinent situated in the tropics and almost 
surrounded by different provinces of India in the west, north, and east, in the south-
east part, a small portion has boundary with Myanmar, and the Bay of Bengal 
encompasses the whole south. The absolute location of Bangladesh lies between 
20°34¢ and 26°38¢ north latitudes and 88°01¢ and 92°41¢ east longitudes. The climate 
is greatly influenced by the presence of the Himalayan mountain range in the north, 
and Bay of Bengal in the south. Climatically, Bangladesh falls in tropical and sub-
tropical zones, influenced mainly by latitude. The hill region, being comparatively 
of low altitude, does not exhibit well-marked altitudinal zone (GOB 1992). The 
mean annual rainfall varies from as low as 1,500 mm in the western region to as high 
as 5,000 mm in the northeast and eastern region. About 80% of the rainfalls in the 
country occur during monsoon. An average temperature during summer is around 
28 °C, with a maximum of about 40 °C, while the temperature average during winter 
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is around 18 °C, with a minimum of 7 °C. Although Bangladesh is predominantly a 
riverine country, droughts are not uncommon, and are seen to occur in a cycle of 
5–10 years especially in the northern and northwestern part of the country.

2.2  Landuse Systems and Forest Resources

The total area of Bangladesh is approximately 14.40 million hectare (M ha), of which 
12.46 M ha are land surface and 0.94 M ha are rivers and other inland water bodies. 
Among the landuse categories agriculture accounts for about 64% of the total land area 
and forest areas that include classified forest types, village woodlots, the rubber gar-
dens and unclassified state forests (USF, under jurisdiction of district office instead of 
forest department) altogether accounts for 17.8% of the country’s land area. Table 1 
summarizes the land area of Bangladesh according to different landuse categories.

One of the peculiarities of the country’s forest resources distribution of 
Bangladesh is that the resources are very eccentrically distributed (Rahman 2005). 
It will be a surprise to learn that 28 districts have no public forests at all (GOB 
1992) and more than 90% of the government forests are concentrated within 12 
districts in the east and southeastern region of the country. On the basis of geo-
graphical location, climate, topography and management principles, the forests of 
Bangladesh can broadly be classified into: Hill forests, Mangrove forests, Plain 
land sal forests (dominated by Shorea robusta, commonly known as sal), 
Unclassified state forests, Coastal forests and Homestead forests as shown in 
Table 1. Forestlands include 87% state forest (2.24 M ha) and 13% private forest 
(0.34 M ha). The state forest includes 67.86% classified forests (1.52 M ha) and 
32.14% unclassified forests (0.72 M ha). Of the classified forests, 42.11% is hill 
forests (0.64 M ha), 7.89% is plain land Sal forests (0.12 M ha), and 50% is 
 mangrove forests (0.76 M ha). On the other hand, of the private forests, 79.41% is 
homestead forests or homegardens comprising 0.27 M ha and rest 20.59% is rubber 
and tea gardens covering 0.07 M ha (GOB 1992).

Table 1 Summary of land area of Bangladesh by landuse 
categories

Landuse category
Total area 
(M ha)

%

Agriculture 9.25 64.2
Classified Forests 1.49 10.3
Unclassified State Forests 0.73 5.1
Village Woodlotsa 0.27 1.9
Plantation Tea and Rubber 0.07 0.5
Housing and Settlements 1.16 8.1
Water Area 0.94 6.5
Other Uses 0.49 3.4

Total 14.40 100

Source: GOB (1992)
aincludes fruit trees
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3  Structure and Characteristics of Homegardens

Homegardens of the tropics exhibit remarkable variation in structure, species 
composition, area allocated for production and level of dependency on this farming 
system. The structural characteristics vary from region to region depending on local 
and regional physical environment, ecological characteristics, degree of commer-
cialization, local socioeconomy and socio-cultural variations (Abdoellah 1990; 
Kumar and Nair 2004; Abdoellah et al. 2006). Owners’ specific needs and prefer-
ences are additional determinants of the homegarden structural characteristics 
(Abdoellah et al. 2006). The following sections give an overview of structural char-
acteristics of tropical homegardens with specific emphasis on Bangladesh (Fig. 1).

3.1  Size, Typology and Spatial Configuration of Homegardens

Homegarden size varies to an extent depending on total landholding size of the 
farmers, farmers’ wealth status, and level of intensity of production, among other 
things. Average size of homegardens ranged from 0.05 ha to 0.16 ha with a mean 
of 0.08 ha in six districts of southwest Bangladesh (Kabir and Webb 2007). 
Homegarden size reported from other regions of Bangladesh include 0.04–0.43 ha 
in the off-shore island Swandip (Alam and Masum 2005), 0.05–0.21 ha in central 
region (Rahman et al. 2005a), 0.06–0.13 ha in northeastern region (Rahman et al. 
2005b), and 0.02–0.25 ha with an average of 0.12 ha across various landholding 
size classes in northwestern Bangladesh (Alam 2008).

Fig. 1 An illustration of typical homegarden components in Bangladesh. The illustration shows 
arrangement of various homegarden components including the living quarter, cattle shed, vegeta-
ble garden and tree vegetation
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Usually homegardens occupy the highest flood-free land adjacent to the home-
stead. Ali (2005) described four types of homegardens in terms of horizontal 
arrangements of their components: discrete type homegardens located on small 
mounds built separately about 200 m away from one another; centrifugal type, 
where homegardens occupy the outer courtyards extending upto 50 m from the liv-
ing quarter; centripetal type, in that homegardens occupy the inner courtyard and 
are irrigated by household sources; and concentric type, where homegardens 
occupy lands adjacent to the homesteads upto 50 m as well as around the rural 
settlement upto 200 m away from the living quarter (see Fig. 2).

3.2  Vertical Stratification

Tropical homegardens create multistoried vegetation of different strata. Trees, 
shrubs, palms, herbs, climbers and ground vegetation can easily be identified in 
different layers (Fig. 3). Three to five layers are reported in different studies. The 
height of different strata varies to an extent depending on the species composition 
and regional climate and soil characteristics that determine tree growth. Different 
species are dominant in different strata. In the homegardens of Andamans, for 
example, top storey is occupied by areca nuts and with few forest species reaching 
upto a height of 16 m (Pandey et al. 2007). In contrast, 88.6% of the plant indi-
viduals of commercial crop, e.g. Allium fistulosum, Ipomoea batatas, Brassica 
sinensis, in Indonesian homegardens belong to ground storey (<1 m tall) 
(Abdoellah et al. 2006).

(Millat-e-Mustafa et al. 1996) summarized the vertical structure of homegardens 
of Bangladesh by stratifying individual plants into six strata and concluded that 
homegardens in general display consistent vertical structure throughout the coun-
try. On per hectare basis total number of individual plants across different regions 
varied from 1,189 to 2,462. However, densities of individual plants were much 
higher in the lower three strata, than in the other (Table 2).

Village 

settlement

Family 

homestead

Inner 
home yard

Homegardens

CentripetalCentrifugalDiscrete Concentric

Fig. 2 Typology of homegardens according to their location in relation to rural settlement
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4  Species Composition and Biodiversity

Irrespective of geographical areas, within the similar ecological region, the species 
present in the homegardens do not vary significantly (Nair 2006). Exception may 
occur in case of the species that are not common outside their limited geographical 
areas of distribution. However, the dominant species of tropical highlands will be 
different to those in tropical lowlands because of the variation in ecological charac-
teristics. Such high species diversity has been a major driving force in sustaining 
the homegardens for centuries irrespective of geographical distribution. Nair (2006) 
summarizes commonly reported homegarden plants of the tropics (Table 3).

The limited number of studies has revealed high species diversity in the homegar-
dens of Bangladesh. Millat-e-Mustafa et al. (1996) documented 92  different trees 
species in the traditional homegardens. Kabir and Webb (2007) documented 419 
different species of trees, shrubs, herbs and climbers in the southwestern region. In 
the southwestern Bangladesh, where topography is coastal plain and soil is sandy 
and saline, the most important tree species available in the homegardens include 
Cocos nucifera, Areca catechu, Psidium guajava and Spondias pinnata. Shrubby 
species occurring with highest relative frequencies include Citrus limon, Eupatorium 

Vertical structure of homegardens

Tree layerGround layer

Grass/Climbers
 taro,yam,beans

Shrubs:
pineapple, maize,

turmeric 

Top storey:
cashew nut,

jackfruit, coconut 

Lower storey:
papaya, lemon,

banana

Fig. 3 Vertical structure of tropical homegardens showing various species components in differ-
ent layers

Table 2 Vertical distribution of plants (range of values) in traditional homegardens in Bangladesh 
(Millat-e-Mustafa 1996)

Region

Total 
individuals 
ha−1

Vertical strata

S
0
a S

1
S

2
S

3
S

4
S

5

Southwestern 1,909–2,462 424–704 368–693 337–719 158–265 38–225 17–136
Northwestern 1,189–2,078 139–614 325–742 86–230 52–225 150–426 81–128
Eastern 1,389–2,380 271–583 435–742 233–348 163–231 69–471 12–2,150
Central northern 1,754–2,314 325–478 377–793 337–756 91–323 145–231 35–355
a Number of individuals
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odoratum and Clerodendrum inerme (Kabir and Webb 2007). The soils developed 
from Madhupur clay in central Bangladesh support a wide range of homegarden 
species including Artocarpus heterophyllus, Mangifera indica, Cocos nucifera 
Tectona grandis, Anthocephalus chinensis and Litchi chinensis (Rahman et al. 
2005a). Tropical moist deciduous forest, commonly known as Sal (Shorea robusta) 
forest has also developed on the terraced soil of this region (Alam et al. 2008).

The statistics of Forestry Master Plan of Bangladesh (GOB 1992) indicate that man-
gos constitute highest percentage among the fruit species in the homegardens of the 
country. Non-fruit trees altogether constitute about 17% of the total plant individuals, 
and bamboos occur in highest abundance (30%) among the non-tree species (Fig. 4).

Table 3 Commonly reported plants in homegardens of humid tropical lowlands (Nair 2006)

Category Species in homegardens

Root and tuber 
crops

Colocasia esculenta (taro), Dioscorea alata (greater yam), 
Dioscorea esculenta (sweet yam), Ipomoea batatas(sweet 
potato), Manihot esculenta(cassava), Xanthosoma spp.(tannia or 
cocoyam)

Other food crops Ananas comosus(pineapple), Arachis hypogaea(peanuts), Cajanus 
cajan(pigeon pea), Passiflora edulis(passion fruit), Phaseolus, 
Psophocarpus and Vigna spp. (beans and other legumes), 
Saccharum officinarum (sugarcane), Zea mays (corn = maize), and 
various vegetables

Fruit and nut 
yielding 
perennials

Anacardium occidentale (cahew nut), Annona spp. (soursop and 
sweetsop), Averrhoa carambola (carambola), Artocarpus 
heterophyllus(jackfruit), A.altilis (breadfruit), Carcia papaya 
(papaya), Citrus spp.(lemon,lime orange, tangerin), Cocos nucifera 
(coconut), Ficus spp. (edible figs), Mangifera indica (mango), 
Musa spp. (bananas and plantains), Persea americana (avocado), 
Psidium guajava(guava), Spondias dulcis (vi apple,hogplum), 
Syzygium malaccense(Malay apple), Tamarindus indica(tamarind)

Spices, Social 
beverages, and 
stimulants

Areca catechu (betel nut), Cinnamomum zeylanicum (cinnamon), 
Curcuma longa (turmeric), Cymbopogon citrates (lemon grass), 
Piper betel (betel vine), Piper methysticum (kava), Zingiber 
officinale (ginger)

Fig. 4 Composition of various tree species in the homegardens of Bangladesh (GOB 1992)
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5  Management

The management of homegardens in Bangladesh is mostly traditional and some-
times indigenous in nature. Farmers manage their homegardens based on their 
generation-old experience that has passed on from their ancestors.Scientific man-
agement option, improved silvicultural practices and state-of-the-art knowledge 
base is inaccessible for them. Although the existing forest policy of the country 
recognizes the importance of homegardens, virtually no government intervention 
can be seen to improve overall system performance.

The farmers select species for planting based on its intended end use. Previous 
studies confirmed that rural people show special preference for fruit bearing species 
(Alam 2009; Rahman et al. 2005a; Alam and Masum 2005). A high preference for 
fruit species may be attributed to their multipurpose usage such as food, fodder, 
fuelwood and timber. For example, the main fruit species grown in the homegardens 
of Bangladesh are jackfruit and mango that contribute to the household by providing 
food, cash income, leaves as fodder and valuable timber (Rahman et al. 2005a).

The homegardens in Bangladesh are subject to light to moderate silvicultural 
treatments. Farmers manually carry out soil working and weeding, watering, mulch-
ing, and fencing for better survival and establishment of the plants, especially in the 
early stages of garden establishment. Of the tree level management, farmers carry 
out different cultural practices including thinning, pruning, and pollarding.Pruning 
is popular among the farm holders because a substantial amount of fuelwood can be 
collected besides inducing tree growth. In addition, sanitation pruning is done for 
some species like coconut and betel nut in the hope of reducing disease susceptibil-
ity. Dead branches and debris are also removed for the same reason. Light pollarding 
is done to induce flowering and fruiting of some horticultural species.

6  Socioeconomic Role

People have been cultivating a wide range of plants of various species and life forms 
in and around their living place for alternative source of forest products and environ-
mental as well as cultural services since the time when they started plant domestica-
tion in the early stage of human history. The current form and composition of 
homegardens is an outcome of farmers’ numerous practices of ‘trial and error’.

Homegardens with their high species diversity are basically maintained for sub-
sistence production throughout the rural tropics. A wide spectrum of multiple 
products including vegetables, fruits and spices are produced year round. Hence, 
the homegardens contribute towards food security (Fernandes and Nair 1986) and 
nutritional security (Nair 2006) of the rural poor (Fig. 5). Such multiple products 
are sometimes sold in the local market when those are in excess and when the farm-
ers are in crisis for cash. The farmers become inspired of selling homegarden 
products in the regions with good market access (Abebe et al. 2006). Findings 
reported in literature from tropical countries indicate a wide range of contribution 
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of  houmegarden products to household economy; such contribution range from 0% 
(Méndez et al. 2001) to 50% (Trinh et al. 2003) of the annual family income.

Homegardens of Bangladesh supply 70% of timber and 90% of fuelwood and bam-
boo requirement in the country annually (Singh 2000). They are also a major source of 
forest products, and play an important role in the economic life by supplying the bulk 
of wood and other forest products in the local and regional market (GOB 1998).

The average annual value of gross production of homegardens in Bangladesh is 
US$228.2 per household (US$2670.9/ha), of which US$89.2 (39.1%) is used by 
the household and US$138.9 (60.9%) is sold. The overall contribution of income 
derived from homegarden products to average household income has been esti-
mated to be 11.8% (Rahman et al. 2005a).

7  Marketing of Products

Marketing is one of the most important phases of any natural resource management 
system. Unfortunately, this phase in homegarden resources management failed to 
gain any attention form resource managers, policy makers, and even from academic 
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Fig. 5 Multiple production and service functions of the tropical homegardens (Kehlenbeck et al. 
2007)



255Tropical Homegardens in Bangladesh: Characteristics and Sustainability

researchers. In refereed literature sources there exist almost no information 
 regarding marketing of homegarden products in Bangladesh.

An explorative research revealed that the main market outlets for timber and 
timber products were sawmills located at local markets or nearby urban town, 
local fairs, and distant urban settlements (Rahman 2005). After buying the stand-
ing trees from the homestead owners, middlemen/suppliers employ labors to fell, 
process trees and gather them around nearby roads or riverbanks (Fig. 6). Axes 
and handsaws are used in felling, debranching, and sizing of the trees. Then 
middlemen channel down the logs to sawmill setup at nearby local market or 
urban places or to the wholesalers usually based in the same places. Middlemen 
usually use carts, human pulled-vans, and country boats to distribute the logs up 
to sawmills (see Fig. 7 that shows stacking of homegarden timber in the saw-
mills). Sometimes trucks are used depending on the volume of logs and  distance 
of the sawmills. It was reported that price of timber varied according to species, 
quality, location of area, demand for the products, season and so on. In Table 4, 
it may be noticed that, in general, timber prices were highest in central region 
followed by those of northeastern and southern regions. The average producers’ 
price was highest for teak (Tectona grandis) followed by mahogany, jackfruit 
(Artocarpus heterophyllus), blackberry (Syzygium grande), silkoroi (Albizia pro-
cera), rain tree (Albizia saman), kadam (Anthocephalus chinensis), and mango 
(Mangifera indica).

Fruits and vegetables in Bangladesh are grown for two purposes: subsistence 
and commercial. Subsistence-based production occurs mostly in the smallhold-
ers’ homegardens, where as commercial production is the sole domain of the 
large landholders in their large homestead land as well as in special areas allo-
cated for vegetables or fruit orchards. Vegetables grown in the homegardens are 
rarely sold in the market since those are produced on subsistence-based. The 
fruits after meeting the family demand are sold in the local market directly or 
through the middleman. Land area devoted for fruit growing in Bangladesh is 

Fig. 6 Freshly harvested timber from homegardens, ready for transporting to sawmill
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about 202,024 ha and about 80% of the total fruits are grown exclusively in the 
homegarden (Hossain 2004). An FAO survey (mentioned in Hossain 2004) 
shows that about 36% of retailers, 27% of traders and 22% of consumers buy 
fruits directly from the farmer who usually sell fruits in the weekly markets 
(locally called hats) and partly in the roadside and daily markets (locally called 
bazaar) (Fig. 8).

Table 4 Average sale and producer prices of main timber in different regions of Bangladesh

Forest 
products

Bagerhat area (n = 30) 
(Southwest region)

Gazipur area

(n = 30) (Central 
region)

Sylhet area 
(n = 30) (Northeast 
region)

All area 
(n = 90)

Sale 
(cft)

Sale  
value 
(BDT)

Sale 
(cft)

Sale  
value 
(BDT)

Sale 
(cft)

Sale  
value 
(BDT)

Sale 
(cft)

Sale 
value 
(BDT)

Mango 5.3 650.0 5.0 830.0 3.2 489.0 4.5 656.3
Rain tree 6.7 1283.3 0.4 88.0 4.2 813.3 3.8 728.2
Jackfruit 1.8 563.3 6.7 2152.7 1.5 443.3 3.3 1053.1
Mahogany 6.3 1993.3 0.0 0.0 0.0 0.0 2.1 664.4
Kadam 0.0 0.0 0.0 0.0 2.8 410.0 0.9 136.7
Blackberry 0.0 0.0 1.3 313.3 0.7 176.7 0.6 163.3
Teak 1.0 413.3 0.7 333.3 0.0 0.0 0.6 248.9
Silkoroi 0.0 0.0 0.3 83.3 0.3 73.3 0.2 52.2
Others 2.8 553.3 0.3 58.7 0.0 0.0 1.0 204.0
Total 24.0 5456.7 14.6 3859.3 12.8 2405.7 17.1 3907.2

Source: (Rahman 2006)
BDT Bangladeshi Taka (1 US$ = 59.76 BDT in 2004), cft cubic feet (1 m3 = 35.2 cft)

Fig. 7 Logs brought from nearby homegardens, ready for conversion in the sawmill
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8  Sustainability of the System

8.1   Sustainability: Concept and Indicators

The term ‘sustainability’ has become a common keyword in most environmental and 
development analysis. The current-day concept of sustainability is the retrieval of the 
ancient wisdom dictating that ‘you don’t eat your seed corn’ (Nair 2006). Most often 
the terms sustainability or sustainable development are defined from the texts of 
Brundtland Report (WCED, 1987) as “development that meets the needs of the pres-
ent without compromising the ability of future generations to meet their own needs.” 
CGIAR (1988) defined sustainability of agricultural systems as the successful man-
agement of resources for agriculture to satisfy changing human needs while maintain-
ing or enhancing the quality of the environment and  conserving natural resources.

In most literature, sustainability of a system is described in terms of ecological 
and socioeconomic descriptors and indicators. While the ecological indicators 
include soil fertility, water availability, efficiency in the use of sunlight, nutrient 
cycling, and biodiversity of the systems (Huxley 1999; Torquebiau 1992; 
Kehlenbeck 2007), the socioeconomic indicators include labor requirement, 
resource inflows and outflows, and maintenance of food security and welfare 
(Abebe 2005; Torquebiau 1992; Conway 1985, 1987; Wiersum 1990).

8.2  Characteristics of Homegardens as Sustainable  
Agroforestry System

Based on the criteria, descriptors and indicators of sustainability, homegardes are des-
ignated as a sustainable agricultural system. Kumar and Nair (2006) mentioned tropical 
homegardens as ‘time-tested example of sustainable agroforestry’. Soemorowoto and 

Fig. 8 Farmer carrying homegarden produced fruit (Jackfruit) to the local market
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Conway (1992) designated ‘sustainability’ as one of the four sets of system  properties 
of homegardens and ‘because the homegarden is one of the world’s oldest forms of 
agroecosystem, it must be regarded, at least in general terms, as highly sustainable’. 
The three factors that contribute to homegarden sustainability include its dependency 
on solar and human workforce; closed nutrient cycle together with reduced soil ero-
sion; and high biodiversity at genetic level (Soemorowoto and Conway 1992). 
However, by saying that ‘homegarden is a sustainable farming system’ it should not 
assume that the structure and characteristics of homegardens are stable (Abebe et al. 
2006; Kumar and Nair 2004). Like any other landuse system it is sensitive -and thus 
respond- to changes brought about by socioeconomic dynamics and market force.

Homegardens are multistrata systems resembling virgin tropical forest. Such 
multilayered vegetation structure with high species and genetic diversity ensures 
efficient utilization of resources (e.g. sunlight and soil nutrient), maintains soil 
quality, ensures efficient nutrient cycling, and ultimately conserves environment as 
a whole. Hence the multistrata forest-like system conserves and maintain resource 
base for future utilization and thus maintains sustainability of the system.

Homesteads in many countries, as in Bangladesh, are established on slightly 
raised land compared to adjacent level ground. Because of such characteristics, the 
homegardens remain flood free and are least vulnerable to many environmental 
disasters. Moreover, homestead land together with the homegarden is sold as last 
asset of the farmer.

Homegardens with a number of components such as fruits, vegetables, bamboos, 
spices and wood products ensures a year round production of a wide spectrum of 
products. Such variety of homegarden products ensures food security and nutri-
tional security of the family throughout the year. Additionally, during economically 
hard times the homegarden products are sold in the nearby market, thus contribut-
ing to income security.

Based on generation-old experience, the experiences of his forefathers passed on 
him and trial-error practice, farmers know which species grows best in his soil. 
Furthermore he knows best how to spatially arrange the species on the land. Such 
application of traditional wisdom to a large extent contributes towards sustainabil-
ity of homegardens.

8.3  Threats to Sustainability

Many physical and functional characteristics of the homegardens of the tropics are 
dynamic because of the changes brought about by sociocultural and economic 
changes, population growth, product commercialization, and change in the market 
structure. Recent trend of homegarden intensification due to progressive commercial-
ization in many societies is creating concerns on long-term sustainability of the system 
(Karyono 2000; Kehlenbeck 2007; Abdoellah et al. 2006). Due to commercialization 
there is evidence of erosion of homegarden biodiversity due to that fact the many own-
ers tend to exclude and eliminate those species, which do not meet financial expecta-
tion. Additionally, commercialization of homegardens also affects several of its social 
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functions. The study of Abdoellah et al. (2006), for example, found that commercial 
homegardens, in contrast to subsistence homegardens, keep less vacant space where 
children could find their playground. This is because the homegardener in commercial 
gardens wish to maximize utilization of their available land area for commercial pro-
duction. The same study observed that commercial homegardens maintain more fenc-
ing to prevent ‘trespassing’ by neighbors and other community people. Such practice 
is quite unusual for non-commercial traditional homegardens. Hence impacting social 
functions negatively means reduction of chances of better sustainability. The other 
factors hampering homegarden sustainability include, but not limited to, heavy use of 
agrochemicals, dependency on hired labor, and risk of market fluctuation for com-
mercial products, scarcity of land, high population density and impact of urbanization 
(Soemorowoto and Conway 1992; Karyano 1990; Michon and Mary 1994; Kehlenbeck 
and Maass 2004; Arifin et al. 1998). Nevertheless, the most important characteristics 
that will ensure future sustainability is the capacity of this farming system to cope with 
the changing circumstances rapidly. The diversity of the annual and perennial vegeta-
tion, high performance in household socioeconomy, traditional management, low 
dependence on external inputs, and closed nutrient cycling are the other characteristic 
features responsible for the stability of this traditional farming system.

9  Conclusion

Based on a rigorous literature review and my previous research experience across 
various agroecological regions of the country this paper provided insights into vari-
ous compositional and functional issues of tropical homegarden with particular 
emphasis on Bangladesh. Although a number of studies are reported in literature 
dealing with a number of structural and functional issues, none touched new thrust 
areas. Hence, future efforts in scientific investigation on Bangladesh homegardens 
should focus on ecological basis in the functioning of the homegardens, carbon 
sequestration potentials and valuation of non-market benefits. Furthermore, the find-
ings of this article showed that homegardens are managed based on traditional wis-
dom and internal inputs without any support from external sources. Hence future 
extension endeavors should be aiming at introducing high yielding verities of plant 
species and make those easily available with lower price. Government agencies and 
non-government organizations with their strong grassroots-level network should 
work closely with the farmers to provide advisory and material support.
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Abstract Soil microorganisms can be used to decrease the input of fertilizers, 
pesticides and other chemicals. Among soil microorganisms, arbuscular mycor-
rhizal (AM) fungi and Rhizobium spp. can promote plant growth and control plant 
fungal diseases. However these microorganisms are not yet used in commercial 
biocontrol products. Integration of arbuscular mycorrhizal fungus with Rhizobium 
sp. thus appears to be a promising approach for sustainable agriculture. Arbuscular 
mycorrhizal fungi and root-nodule bacterium Rhizobium are two root symbi-
onts. Arbuscular mycorrhizal fungi increases soil nutrients and water absorption, 
while root-nodule bacteria fix atmospheric nitrogen and produce antibiotics and 
phytoalexins. These microbes modify the quality and abundance of rhizosphere 
microflora and alter overall microbial activity of the rhizosphere. They induce 
changes in the host root exudation pattern. A procedure for successful develop-
ment of these microorganisms is required by selection and screening of efficient 
isolates. Knowledge of culture systems that are adapted to their establishment and 
multiplication is needed. Arbuscular mycorrhizal fungi provide specific niches for 
bacteria. Arbuscular mycorrhizal bacteria improve nutrient acquisition in plants. 
Arbuscular mycorrhizal bacteria may contribute to ability of arbuscular mycor-
rhizal fungi to inhibit pathogens, acquire mineral nutrients and modify plant root 
growth. Combined use of these microorganisms is more beneficial than their use 
alone. These symbionts also interact with other beneficial microorganisms syner-
gistically and can be exploited for sustainable agriculture.
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1  Introduction

The beneficial plant-microbe interactions in the rhizosphere are primary determi-
nants of plant health (Jeffries et al. 2003). Among the different plant symbionts 
arbuscular mycorrhizal (AM) fungi and root nodule bacterium Rhizobium spp. are 
the two important root symbionts. They play a key role in natural ecosystems and 
influence plant productivity, plant nutrition and disease resistance (Demir and 
Akkopru 2007). Mycorrhizas benefit the host through mobilization of phosphorus 
from non mobile sources, whereas Rhizobium fixes N

2
 (Scheublin and Heijden 

2006). The synergistic interactions of these microorganisms enhanced the abilibilty 
of major plant nutrients especially N and P (Barea et al. 2002).

Since these root symbionts, as well as the soil-borne pathogens, share common 
niche and influenced the growth of plant (Azcon-Aguilar and Barea 1996; Akhtar 
and Siddiqui 2008c) but it is very difficult to generalize their activity because of 
complex interaction taking place between the arbuscular mycorrhiza, fungal patho-
gens and Rhizobium (Dar et al. 1997; Aysan and Demir 2009). The main goal of 
this review is to focus on the effect of these root symbionts on the growth of plant 
and mechanisms involved in the suppression of fungal diseases.

1.1  Arbuscular Mycorrhizal (AM) Fungi

Arbuscular mycorrhizal (AM) fungi are ubiquitous in distribution and occur over a 
wide range of agro climatic conditions (Harrier and Watson 2004). They form sym-
biotic association with the roots of the 80% of the terrestrial plants (Smith and Read 
2008). The AM fungi were previously included in the phylum Zygomycota, order 
Glomales (Redecker et al. 2000) but recently they have been placed into the phylum 
Glomeromycota (Schußler et al. 2001) comprising about 200 described species 
(Brachmann 2006). They are characterized by the presence of extra radical mycelium 
branched haustoria like structure within the cortical cells, termed arbuscules, and 
are the main site of nutrient transfer between the two symbiotic partners (Fig. 1) 
(Dickson and Smith 2001; Smith and Read 2008). The arbuscles formation gener-
ally provides a large surface area for nutrient transfer, due to the invagination of the 
host plasma membrane which is closely associated with the fine arbuscular hyphal 
branches (Dickson and Smith 2001). AM fungi colonize plant roots and penetrate 
into surrounding soil, extending the root depletion zone and the root system. They 
supply water and mineral nutrients from the soil to the plant while AM benefits 
from carbon compounds provided by the host plant (Siddiqui and Pichtel 2008; 
Smith and Read 2008). AM fungi are associated with improved growth of host 
plant species due to increased nutrient uptake, production of growth promoting 
substances, tolerance to drought, salinity and synergistic interactions with other 
beneficial microorganisms (Akhtar and Siddiqui 2008c).
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Arbuscular mycorrhizal associations are the most frequent symbioses found in 
nature because of their broad association with plants and cosmopolitan distribution 
(Harley and Smith 1983). Agricultural practices such as tillage and fertilization can 
affect the structure of AM fungal communities; tilling can reduce either AMF spore 
density (Kabir et al. 1998) or AM fungal colonization of crops (McGonigle et al. 
1990). The soil environment, plant physiological conditions and mycorrhizal can be 
greatly changed through different tillage or fertilization systems. Any agricultural 
operation that disturbs the natural ecosystem will have repercussions on the mycor-
rhizal system (Mosse 1986). The preceding crops affect growth and yield of subse-
quent crops (Karlen et al. 1994). The inclusions of non-mycorrhizal crops within 
rotations decrease both AM fungal colonization and yield of subsequent crops 
(Douds et al. 1997; Arihawa and Karasawa 2000). In addition to crop sequence, 
varietals selection, cultivation and following have been shown to affect mycorrhizal 
activity (Hetrick et al. 1996; McGonigle and Miller 2000). Sieverding (1991) found 
that in agroecosystems with monocultures, conventional tillage, high application of 
soluble phosphate, nitrogen and pesticides the number of fungal species decreases 
more than 50% in comparison to native ecosystems. No-tillage systems often are 
characterized by the accumulation of crop residues on the soil surface, leading to 
greater carbon, nitrogen and surface water compared to conventional tillage (Doran 
and Linn 1994). Mycorrhizal communities are site specific and each AMF species 
can be affected in several ways by different agricultural management practices, so 
generalization is difficult. The effect of fertilizers on AMF diversity has been stud-
ied in different agroecological conditions (Johnson 1993; Sieverding 1991). 
Johnson et al. (2003) have pointed out differences among AM fungal taxa in their 
strategies for the acquisition of nutrients. AM fungal colonization in roots change 
across different phenological stages of wheat (Mohammad et al. 1998; Schalamuk 
et al. 2004). Several studies have found temporal variation in the diversity of myc-
orrhizal communities of natural ecosystems (Lee and Koske 1994; Merryweather 
and Fitter 1998; Eom et al. 2000). Therefore, uses of AM fungi in the biocontrol 
for sustainable agriculture require knowledge of culture systems which may affect 
their establishment and multiplication in the field.

Fig. 1 Microscopic visualization of Arbuscular mycorrhizal fungi (a) showing vesicles and 
hyphae; (b) showing arbuscules in the maize root
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1.2  Root-Nodulating Bacteria

Symbiotic N
2
-fixation is not only limited to the leguminous plants but also a 

number of non-leguminous plant can interact with N
2
-fixing bacteria (Saikia and 

Jain 2007). Allen and Allen (1947) reported that among the Fabaceae, Mimosoideae 
(11.8%), Caesalpinioideae (3.3%) and Papilionoideae (84–89%) had the capacity 
to form nodules. However, another study showed that more than 90% of the 
Papilionoideae and Mimosoideae are nodulated whereas less than 25% of 
Caesalpinoideae form nodules (Hirsch et al. 2001). The root-nodule bacteria belong 
to genera Rhizobium, Sinorhizobium, Bradyrhizobium, Mesorhizobium and 
Azorhizobium collectively termed as rhizobia (Fig. 2) (Barea et al. 2005). These 
bacteria interact with legume roots leading to the formation of N

2
-fixing nodules 

(Spaink et al. 1998; Sprent 2002). Rhizobial nodule formation is a complex process 
that requires a continuous and adequate signal exchange between the plant and the 
bacteria (Perret et al. 2000; Bartsev et al. 2004; Soto et al. 2006). In this symbiotic 
association, plant provides an energy source and ecological niche for the bacteria 
and in return bacteria provide a source of fixed nitrogen to plant (Vance and 
Johnson 1981).

The legumes and their association with Rhizobium spp. in broad sense have 
always been extremely important agronomically. In the Legume- Rhizobium inter-
action, once a plant has formed nodules, further nodulation is suppressed in other 

Fig. 2 Pea roots showing 
nodules
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parts of the root system by a long distance signal exchange, which means that the 
nodulation is autoregulated (Okakira and Kawaguchi 2006). Rhizobium occurs 
free-living in the soil but does not fix nitrogen in this situation. Its association with 
leguminous roots and formation of nodules seems obligatory to fix nitrogen. The 
stages involved in root nodule formation include (1) recognition and attachment, 
(2) penetration and travel, (3) bacteroid formation and development of mature nodule. 
(1) in recognition and attachment variety of organic metabolites secreted by the 
roots of legume plants, the rhizobia migrate towards and grow in the rhizosphere 
and build up to high population density. A series of flavonoid signals are there in 
organic metabolites that lead to the exchange of recognition signals thus attracting 
specific rhizobia species to specific legume root-hairs. All species of Rhizobium 
(and Bradyrhizobium) possess specific adhesion protein called rhicadhesin on their 
surface. Rhicadhesin is a calcium-binding protein and binds calcium complexes on 
the surface of root hairs. Lectins, carbohydrate containing proteins, also contribute 
in Rhizobium-Legume attachment. (2) After attachment, the root hair curls as a 
result of the action of substances, excreted by the Rhizobium species called nod-
factors. Some physiologists believe that curling is also affected by indole acetic 
acid. After curling of the root-hair, the bacteria penetrate and enter the root-hair and 
induce the plant to develop a cellulosic tube, called infection thread, which extends 
inward to the root-hair. The Rhizobium cells then spread within the infection thread, 
move into the underlying root cells, and are released into cytoplasm of the host cell 
through the action of an organizer produced by the interaction between the rhizo-
bial polysaccharides and component of root cells. Nod factors now stimulate root 
cell division eventually leading to the development of the root nodule. (3) When the 
bacteria are released from the infection thread into the host cell cytoplasm, they get 
transformed into swollen, irregular-shaped, branched structures called bacteroids 
which then become surrounded singly or in small groups by a plant-derived membrane, 
called peribacteroid membrane, to form structures called ‘symbiosome’ (http://
www.studentsguide.in/microbiology/biological-nitrogen-fixation/root-nodule-for-
mation-in-rhizobium-legume-association.htm)

2  Mechanism of Fungal Disease Suppression

The persistence of fungal plant pathogens in the soil is the most important problem 
worldwide, often resulting in reduced yields and occasionally causes major crop 
damage. Agrios (2005) reported that more than thousands of fungi are known to 
cause diseases of plants and are common in soil, air and on plant surfaces through-
out the world. The fungal pathogens that persist in the soil matrix and in residues 
on the soil surface, and are as the main cause for soil borne diseases. The soil is a 
reservoir of inoculum of these pathogens, the majority of which are widely distrib-
uted in agricultural soils. Damage to root and crown tissues is often hidden in the 
soil; thus, these diseases may not be noticed until the above ground parts of the 
plant are severely affected, showing symptoms such as stunting, wilting, chlorosis 
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and death. Fungal diseases are difficult to control because they are caused by pathogens 
which can survive for long periods in the absence of the normal crop host, and 
often have a wide host range including weed species. The occurrence of AM fungi 
and plant pathogenic fungi in roots of different crops and their dependence for 
nutrition on the host generally result in the interaction of AM fungi, plant patho-
genic fungi and host plant. Association of these organisms generally exert opposite 
effects on the host. Thus it is desirable to test the mutual effects of these organisms 
on plant growth and yield. Plant diseases can be controlled by manipulation of 
indigenous microbes or by introducing antagonists to reduce the disease-producing 
propagules (Linderman 1992). With the increasing cost of inorganic fertilizers and 
the environmental and public health hazards associated with pesticides and patho-
gens resistant to chemical pesticides, AM fungi may provide a more suitable and 
environmentally acceptable alternative for sustainable agriculture. Several reviews 
exploring the possibilities of AM fungi in the biocontrol of plant diseases include 
(Linderman (1994); Siddiqui and Mahmood (1995a); Azcon-Aguilar and Barea 
(1996); Mukerji (1999); Barea et al. (2005); Akhtar and Siddiqui (2008c)). 
Therefore, the interactions between different AM fungi and fungal pathogens vary 
with the host plant and the cultural system. Similarly, the protective behavior of 
Rhizobium against the plant diseases has also been reported by various workers 
(Perret et al. 2000; Bartsev et al. 2004; Barea et al. 2005; Soto et al. 2006). The 
interactions of these root symbionts with fungal pathogens have been summarized 
in tabular forms (Tables 1 and 2).

3  Reason for Reduced Damage of Fungal  
Pathogens by AM Fungi

Some of the reasons for reduced damage of fungal pathogens by AM fungi are as 
follows.

3.1  Improved Nutrient Status of the Host Plant

The obvious contribution to reduction of root diseases is increased nutrient uptake 
particularly phosphorus and other minerals, because AM symbiosis results in more 
vigorous plants and thus become more resistant or tolerant to pathogen attacks 
(Linderman 1994). Davis (1980) found this type of response on Thielaviopsis 
root-rot of citrus, where AM plants were larger than nonmycorrhizal plants until 
the latter were fertilized with additional phosphorus. Graham and Menge (1982) 
observed a similar effect, where AM fungi or added P reduced wheat take-all dis-
ease caused by Gaeumannomyces graminis, and speculated that enhanced P status 
of the plant causes a decrease in root exudates used by the pathogen for spore ger-
mination and infection. AM symbiosis increase uptake of P and increased P v in 
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plant reduce disease severity caused by Aphanomyces euteiches in pea (Bodker 
et al. 1998). Declerck et al. (2002) suggested a similar effect whereby AM fungi 
or added P reduced root-rot of bananas caused by Cylindrocladium spathiphyylii. 
It has been hypothesized that direct competition between root pathogens require 
host nutrients for reproduction and development and this competition may be the 
cause of their inhibition (Dehne 1982; Smith 1988). Greater tolerance of AM 
plants is also attributable to increased root growth and phosphate status of the 
plant (Cameron 1986). In addition to P, AM fungi can enhance the uptake of Ca, 
Cu, Mn, S and Zn (Pacovsky et al. 1986; Smith and Giananizzi-Pearson 1988). 
Host susceptibility to pathogens and tolerance to disease can be influenced by the 
nutritional status of the host and the fertility status of the soil (Cook and Baker 
1982). Increase in plant growth after root colonization by AM fungi is due to 
improvement in the mineral nutrient status of host plant. Depending on the host 
plant and AM fungus isolate, colonization of the root system can increase phos-
phorus nutrition and other mineral nutrients (Clark and Zeto 2000). However, in 
some cases enhanced mineral nutrition of mycorrhizal plants has no affect against 
pathogens (Graham and Egel 1988). Therefore, enhanced mineral nutrition of AM 
plants does not account for all protection conferred by AM fungi to host plant 
(Caron et al. 1986a).

3.2  Change in Root Growth and Morphology

The colonization by AM fungi results in morphological changes to the root, 
leading to an increased surface area of root (Aguin et al. 2004). Roots offer 
structural support to the plants and function in absorption of water and supply 
mineral nutrients for a wide range of microorganisms (Curl and Truelove 1986). 
Changes in root morphology will ultimately affect the plant’s responses to other 
organisms (Yao et al. 2009). AM fungal-colonized roots are more highly 
branched, i.e., the root system contains shorter, more branched, adventitious 
roots of larger diameters and lower specific root lengths (Schellenbaum et al. 
1991; Berta et al. 1993). The AM inoculated plants possess a strong vascular 
system, which imparts greater mechanical strength to diminish the effects of 
pathogens (Schonbeck 1979).

Dehne et al. (1978) observed increased lignifications in the endodermal cells of 
mycorrhizal tomato and cucumber plants and speculated that such responses may 
account for reduced incidence of Fusarium wilt (Fusarium oxysporum f. sp. lyco-
persici). Becker (1976) reported a similar effect on pink root of onion (Pyrenochaeta 
terrestris). Mycorrhizal plants produced wound-barriers at a faster rate than non-
mycorrhizal plants and increased wound barrier formation inhibited Thielaviopsis 
black root-rot of mycorrhizal holly (Ilex crenata) plants (Wick and Moore 1984). 
The AM fungi reduce disease severity caused Cylindrocarpon destructans in straw-
berry (Paget 1975) and these examples emphasize the significance of AM fungi in 
bioprotection against fungal pathogens.
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3.3  Competition for Colonization Sites and Host Photosynthates

AM fungi and soil-borne plant pathogens occupy similar root tissues and there may 
be direct competition for space if colonization is occurring at the same time (Smith 
1988). If AM fungi and plant pathogens are colonizing the same host tissues there 
may be competition for space because both usually develop within different cortical 
cells of roots (Azcon-Aguilar and Barea 1996). Davies and Menge (1980) observed 
localized competition between AM fungi and Phytophthora. They observed reduced 
development of Phytophthora in AM-colonized and adjacent uncolonized root sys-
tems, and pathogens never penetrated arbuscule-containing cells (Cordier et al. 
1996). Similarly Aphanomyces was suppressed on pea roots by AM fungi only when 
the two organisms were present on the same root (Rosendahl 1985). Vigo et al. 
(2000) observed that the numbers of infection sites were reduced within mycorrhizal 
root systems and colonization by the AM fungus had no effect on the spread of 
necrosis. AM fungi are dependent on the host as a carbon source and 4–20% of the 
host net photosynthate is transferred to the AM fungus (Smith and Read 2008).

3.4  Microbial Changes in the Mycorrhizosphere

The roots colonized by AM fungi differ from non-mycorrhizal roots in terms of 
microbial community composition of the rhizosphere (Marschner et al. 2001). These 
differences have been attributed to alterations in root respiration rate and quality and 
quantity of exudates. Plant root systems colonized by AM fungi differ in their effect 
on the bacterial community composition within the rhizosphere and rhizoplane. The 
number of facultative anaerobic bacteria, fluorescent pseudomonads, Streptomyces 
species and chitinase producing actinomycetes differ depending on the host plant 
and the isolate of AM fungus (Harrier and Watson 2004). In addition, extra radical 
hyphae of AM fungi provide a physical or nutritional substrate for bacteria. AM 
symbiosis can also cause qualitative and quantitative changes in rhizospheric micro-
bial populations; the resulting microbial equilibria could influence the growth and 
health of plants. These changes may result from AM fungus-induced changes in root 
exudation patterns (Azcon-Aguilar and Bago 1994; Smith et al. 1994; Bansal et al. 
2000). Changes in microbial populations induced by AM formation may lead to 
stimulation of the microbiota which may be antagonistic to root pathogens. AM 
establishment can change both total microbial populations and specific functional 
groups of microorganisms in the rhizoplane or the rhizosphere soil (Meyer and 
Linderman 1986; Linderman 1994). Numbers of pathogen-antagonistic actinomy-
cetes were greater in the rhizosphere of AM plants than in nonmycorrhizal controls 
(Secilia and Bagyaraj 1987). The authors showed that pot cultures of G. fascicula-
tum harbored actinomycetes antagonistic to F. solani than those of non-mycorrhizal 
plants. Other studies indicate that pathogen suppression by AM fungi involves 
changes in mycorrhizosphere microbial populations. Caron et al. (1986a,b,c) showed 
a reduction in Fusarium populations in mycorrhizosphere soil of tomatoes and a 
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corresponding reduction in root-rot in AM plants compared with non-AM plants, 
probably due to the increased antagonism in the AM mycorrhizosphere.

AM fungi provide numerous benefits to their hosts (Harrier and Watson 2004). 
In addition, AM fungi provide specific niches such as spores, extra radical hyphae 
and intraradical mycelia for population of bacteria (Schußler 2002). It seems that 
bacteria associated with AM fungal spores play an important role in the develop-
ment of AM fungi. Those AMB (Arbuscular mycorrhiza associated bacteria) that 
help in the development of mycorrhizal symbiosis are termed as Mycorrhiza Helper 
Bacteria (MHB) (Garbaye 1994). It has been suggested that AMB can also function 
as Plant Growth Promoting Bacteria (PGPB) because they improve the nutrient 
acquisition in plants (Artursson et al. 2006). Some AMB are multifunctional and 
production of extracellular enzymes and bioactive compounds are likely mecha-
nisms for their multifunctional activities (Bharadwaj et al. 2008a) and AMB may 
contribute to ability of AM fungi to inhibit pathogens, acquire mineral nutrients and 
modify plant root growth.

3.5  Activation of Plant Defense Mechanisms

The activation of specific plant defense mechanisms as a response to AM coloniza-
tion is an obvious basis for the protective behavior of AM fungi. The elicitation, via 
an AM symbiosis of specific plant defense reactions, could predispose the plant to 
an early response to attack by a root pathogen (Gianinazzi-Pearson et al. 1994). In 
relation to plant defense relevant compounds include phytoalexins, enzymes of the 
phenylpropanoid pathway, chitinases, b-1,3-glucanases, peroxidases, pathogenesis-
related (PR) proteins, callose, and phenolics (Gianinazzi-Pearson et al. 1994). 
Phytoalexins are low-molecular-weight, toxic compounds usually accumulating 
with pathogen attack and are released at the sites of infection (Morandi et al. 1984; 
Morandi 1996). Both phenylalanine ammonium-lyase (PAL), the first enzyme of 
the phenylpropanoid pathway, and chalcone isomerase, the second enzyme specific 
for flavonoid/isoflavonoid biosynthesis, increased in amount and activity during 
early colonization of plant roots by AM fungi (Lambais and Mehdy 1993; Volpin 
et al. 1994, 1995). These results suggest that AM fungi initiate a host defense 
response which is subsequently suppressed. Chitinases are little or only transiently 
induced by AM colonization (Dumas-Gaudot et al. 1992a,b). It has been reported 
that increased levels of chitinase activity are only detected in AM roots at the begin-
ning of colonization (Spanu et al. 1989; Bonfonte-Fasolo and Spanu 1992; Lambais 
and Mehdy 1993). A decrease in b-1,3 endoglucanase activity has also been 
reported at specific stages during mycorrhiza development (Lambais and Mehdy 
1993). These observations suggest a systemic suppression of the defense reaction 
during the establishment of the AM association. PR proteins are synthesized only 
locally and in very low amounts during AM colonization, although these molecules 
were regularly distributed around the arbuscular hyphae (Balestrini et al. 1994). 
The increased lignification of root endodermal cells induced by AM colonization 
has been suggested to play an important in the plant defense mechanism (Dehne 
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1982). However, these compounds could sensitize the root to pathogens and 
enhance mechanisms of defense to subsequent pathogen infection; the results of 
Benhamou et al. (1994) strengthened this hypothesis. It was evident from their 
results that mycorrhizal carrot roots afford increased protection against Fusarium 
oxysporum f. sp. chrysanthemi. In mycorrhizal roots, growth of the pathogen was 
usually restricted to the epidermis and cortical tissues, whereas in non-mycorrhizal 
roots the pathogen developed further, infecting even the vascular stele. Fusarium 
hyphae within mycorrhizal roots exhibited a high level of structural disorganiza-
tion, characterized by the massive accumulation of phenolic-like compounds and 
the production of chitinases. This reaction was not induced by non-mycorrhizal 
roots, suggesting that the activation of plant defense responses by mycorrhiza for-
mation provides a certain protection against the pathogen (Azcon-Aguilar and 
Barea 1996). These results need to be confirmed on different plants, and must 
clearly show that AM infection makes the root more responsive to pathogen attack, 
i.e., promoting a quicker and stronger reaction against the pathogen.

AM fungal spores appear to host certain sets of AMB (Arbuscular mycorrhiza 
associated bacteria) of which some can contribute to resistance by AM fungi 
against plant pathogens (Bharadwaj et al. 2008b). During mycorrhization forma-
tion, modulation of plant defense responses occurs potentially through cross-talk 
between salicylic acid and jasmonate dependent signaling pathways. This modula-
tion may impact plant responses to potential enemies by priming the tissues for a 
more efficient activation of defense mechanisms (Pozo and Azcon-Aguilar 2007).

In contrast to the weak defense response towards AM fungi found in AM hosts, 
it is noteworthy that in myc- pea mutants, AM fungi trigger a strong resistance 
reaction. This suggests that the AM fungi are able to elicit a defense response, but 
that symbiosis-specific genes somehow control the expression of the genes related 
to plant defense during AM establishment (Gianinazzi-Pearson et al. 1994, 1995, 
1996). It is curious, in this context, that the constitutive expression of several PRs 
in tobacco plants did not affect either the time course or the final level of coloniza-
tion by Glomus mosseae, which was only reduced in plants constitutively expressing 
an acidic isoform of tobacco PR-2, a glucanase (Vierheilig et al. 1996).

4  Reason for Reduced Damage for the Fungal Pathogens 
Caused by Root-Nodule Bacteria

Some of the possible reasons for reduced fungal pathogens are as follows.

4.1  Physiological and Biochemical Changes

The root-nodule bacteria which fix atmospheric nitrogen are reported to produce 
toxic metabolites inhibitory to many plant pathogens (Haque and Ghaffar 1993). 
Rhizobium japonicum secretes rhizobitoxine, which is inhibitory to charcoal root 
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fungus, Macrophomina phaseolina (Chakaraborty and Purkayastha 1984). 
Chakaraborty and Chakaraborty (1989) reported an increased level of phytoalexin 
(4-hydroxy-2,3,9-trimethoxypterocarpan) when pea seeds were bacterized with 
Rhizobium leguminosarum prior to inoculation with Fusarium solani f. sp. pisi. 
This phytoalexin may have an important role in cross-protection against many 
pathogens. Breil et al. (1996) reported that Rhizobium spp. have the capability to 
produce trifolitoxin having antimicrobial activity against the pathogens. Roslycky 
(1967) reported production of an antibiotic bacteriocin by rhizobia. Some antibiot-
ics properties of rhizobia have also been reported by others workers (Drapeau et al. 
1973; Tu 1980).

4.2  Change in Root Growth and Morphology

Rhizobium had the ability to increase the nodulation in leguminous plant which 
increases in plant vigor besides protecting roots from the attack of pathogen (Tilak 
et al. 2006; Huang and Erickson 2007). Kumarasinghe and Nutman (1977) reported 
that the root hairs treated with Rhizobia revealed thickening of the walls which was 
sometimes associated with arrays of vesicles of neighboring cytoplasm. The nodu-
lation process in rhizobia-legume symbiosis requires a sequence of highly regulated 
and coordinated events, initiated by an exchange of specific signaling compounds 
between both partners. Subsequently, rhizobia invade the host by means of an infec-
tion thread formed from curled root hairs that grows towards an emerging mer-
istematic nodule zone in the root cortex (Albrecht et al. 1999).

4.3  Activation of Plant Defence Mechanisms

The accumulation of phytoalexins is observed in plants treated with Rhizobium 
possess biological activity against fungal pathogens (Dar et al. 1997). Arfaoui et al. 
(2007) reported that Rhizobium spp. induced the expression of defense-related 
genes involved in phytoalexin synthesis and made the seedlings primed for subse-
quent infections by pathogen. Similar, results have been also reported in Rhizobium 
treated alfalfa against Colletotrichum trifolii and Phoma medicaginis (Boddu et al. 
2004; Volpin et al. 1995). Saunders and O’Neill (2004) observed an increase in the 
accumulation of defense related genes in alfalfa seedlings that had been challenged 
with Colletotrichum trifolii. It has obvious from various reports that the defense 
related genes has been often associated with disease resistance in many pathosys-
tems which confers the findings of earlier workers (Ellis et al. 2002; Pritsch et al. 
2000). Phenolic acids are carbon-based compounds present in plants and are known 
to confer resistance either directly or indirectly through activation of post infection 
responses in the hosts (Harborne 1988). The presence of Phenolics were observed 
in Rhizobium treated seedlings against the fungal pathogens (Nicholson and 
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Hammerschmidt 1992; Mishra et al. 2006). Phenolics had the ability to bind to 
protein thus forming soluble and insoluble complexes (Hagerman and Robbins 
1987). This phenolic-protein interaction is responsible for the putative function of 
phenolics in plant defense mechanism (Mole and Waterman 1987). Accumulation 
of phenolics viz. gallic, ferulic and tannic has the antifungal and antioxidative prop-
erties (Madhavi et al. 1997). Similarly, Cinnamic acid is a key product of the 
phenylpropanoid pathway synthesized from phenylalanine through catalysis by 
phenylalanine ammonia lyase (PAL) and plays a vital role in host resistance under 
pathogenic stress (Singh and Prithviraj 1997).

Plant defenses against fungal pathogens are dependent upon an early recognition 
of the invader and the initiation of appropriate signaling processes, which may be 
play an important role in the activation of multi-cascade defense-responses. The 
defense related genes are responsible for encoding variety of proteins that might be 
controlling the secondary metabolism, pathogenesis related proteins and regulatory 
proteins that control the expression of other defense-related genes involved in 
signal transduction pathways (Dixon et al. 1994; Ramalingam et al. 2003). The 
interaction between plant pathogens and their hosts is a complex process that 
involves a continuous exchange of information between the two organisms (Dixon 
and Lamb 1990). Enhancement of resistance can be accomplished by inoculating 
the plant with an inducer before it is infected by a pathogen. Arfaoui et al. (2006) 
reported that pre-treatment of chickpea seeds with Rhizobium spp. reduced the 
incidence of Fusarium wilt and induced significant increases in the activity of sev-
eral defense-related enzymes phenolic compounds (Arfaoui et al. 2005).

5  Inoculum Production

AM fungi and Rhizobium had the capability to increase soil nutrients and water 
absorption as plant symbionts and also protect the plants from root pathogens under 
different pathosystems (Akhtar and Siddiqui 2008a; Avis et al. 2008). Beside these 
microorganisms also offers an alternative to chemical control and now used as a 
potential tool in the moderns agricultural system.

The main obstacle is to produce large quantities of inoculum because of their 
obligate nature. Traditionally, AM fungi are propagated through pot-culture. 
Starting fungal inoculum, usually made of spores and colonized root segments, are 
incorporated to a growing substrate for seedling production (Brundrett et al. 1996). 
The fungi spread in the substrate and colonize root seedlings. Both colonized sub-
strates and roots can then serve as mycorrhizal inoculum. Bagyaraj (1992) found 
that mixture of Perlite: Soilrite mix (1:1 v/v) is the best substrate and the Chloris 
gayana (Rhodes grass) to be the best host for the mass propagation of mycorrhizal 
inocula, while the pesticides Captan and Furadan added to the pot cultures at half 
the recommended level checked contaminants with no effect on the mycorrhizal 
fungi. This technique is very useful for the production of clean mycorrhizal inoculum 
with high potentiality in a short span of time. Soil-less similar culture systems such 
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as aeroponic cultures enable the production of cleaner spores and facilitate uniform 
nutrition of colonized plants (Jarstfer and Sylvia 1999). The successful propagation 
of some AM fungal strains on root-organ culture allowed the cultivation of monoxenic 
strains that can be used either directly as inoculum or as starting inoculum for large-
scale production (Fortin et al. 2002).

The large-scale production of AMF inoculum, requires control and optimization 
of both host growth and fungal development. The microscopic sizes of AMF, 
together with the complex identification processes also contribute to the pitfalls of 
inoculum propagation. The inoculum propagation process entails the following 
stages.

 1. Isolation of AMF pure culture strain.
 2. Choice of a host plant.
 3. Optimum growing conditions

In vitro bulk production of AMF inoculum is promising, offering clean, viable, 
contamination-free fungi. The cost of in vitro inoculum may appear prohibitive 
compared to the cost of a greenhouse-propagated one, but its use as starting inocu-
lum is a warranty of purity. Their common purpose is mainly to provide research 
and industry scientists with pure and reliable material for starting inoculum produc-
tion for both fundamental researches and applied technologies (Dalpe 2004). Mass 
production of AM fungi has been achieved with several species with increased 
spore production on monoxenic cultivation. Chabot et al. (1992) were able to pro-
duce 25 spores/ml in 4 months incubation time. St-Arnaud et al. (1996) produced 
1000 spores/ml in 3–4 months time. Similarly, Douds (2002) produced 3250 
spores/ml in 7 months while Adholeya (2003) was able to produce 3000 spores/ml 
in 3 months incubation time through monoxenic based inoculum production.

Fungal viability and mycorrhizal efficiency can be maintained for several months 
at room temperature (68 – 77°F) especially when semi-dry inocula are kept in their 
plastic containers or packaging. Long-term storage (up to 1 – 2 years) may be 
conducted at 41°F cold temperature storage. More sophisticated and expensive 
preservation techniques are performed by research culture collections. These 
include the maintenance of inoculum on living plant-host grown on sterile growth 
substrate with regular check for mono-specificity of the cultivated strains, storage 
in liquid nitrogen tanks (Douds and Schenck 1990), and freeze-drying under vacuum.

Similarly, the presence of Rhizobia in the rhizosphere presumably protects the 
host roots from pathogens, besides fixing atmospheric nitrogen. The use of 
Rhizobia with mycorrhizal fungi is more beneficial for reducing the damage caused 
by pathogens (Akhtar and Siddiqui 2008a). The most common inoculums produc-
tion is to incorporate the Rhizobial cells with a carrier that can act as sort of coating 
for the legume seeds as they are sown. This coating may often be peat, charcoal 
base an enable both prolonged survival of the inoculums (both in storage and in the 
field) and close contact between legume seed and inoculums. Sometime the carrier 
is stuck to the seed with gum Arabic or similar resinous compounds as a true seed 
coating. Sometimes applied in granules and sometime sprayed into the seed fur-
rows as a slurry suspension.
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6  Conclusion

The use of AM fungi and Rhizobium will also increase the nitrogen and phosphorus 
uptake and in turn reduce the use of agrochemicals. The agrochemicals are very 
costly and had side effects on human health and environment. With the use of these 
symbionts farmers can save the capital and can achieve sustainable agriculture. For 
effective and persistent disease management the need is to evaluate these symbionts 
in the natural system under field conditions. The use of mixed inoculum of AM 
fungus and Rhizobium can be more effective and give better results than use of a 
single species. Selection of superior indigenous AM fungus and Rhizobium may 
have an adaptive advantage to the soils and environment in which pathogen and 
host co-occur as compared to non-indigenous mycorrhizal symbionts. Moreover, 
bioprotection of fungal diseases by mycorrhizal fungi and Rhizobia is a complex 
process which can be accomplished by a multigenic interaction between hosts and 
biocontrol agents and pathogens. The challenge for developing more sustainable 
production systems in the future includes gaining a better understanding for the 
mechanisms involved and the plant, fungal pathogens, symbionts and environmen-
tal factors together dictate the scale and timing of their expression.
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Abstract Irrigation water is one of the most critical and scarce resource for 
 agricultural production in arid and semiarid regions. Enhancing productivity in 
arid regions largely depends upon the ability to enlarge water resource by better 
rainwater management and development of groundwater. The lack of good water 
supplies for irrigated agriculture in now becoming a major issue that is forcing 
farmers to use low quality waters. Nonetheless injudicious use of sodic and saline 
waters poses grave risks to soil health by deteriorating soil physical, chemical and 
biological properties. Development of salinity, sodicity and toxicity problems not 
only reduces crop productivity but also limits crop choice. It is therefore imperative 
that irrigation development plans are carefully drawn and executed to sustain crop 
production and to minimize salinization and deterioration of soil physical condi-
tions over the long-term. Alternative options have now emerged to safely use waters 
otherwise designated unfit. This has led to the replacement of too conservative 
water quality standards by site-specific guidelines where factors like soil texture, 
rainfall and crop tolerance have been given due consideration. Nevertheless, appro-
priate selection of crops, improvement in water and fertility management, mainte-
nance of soil structure and tail water return systems are still necessary. Examples of 
the available technologies and practices for sustaining irrigation with these waters 
are given in this article. Economic development, social preferences and resource 
endowments are region-specific, and are thus expected to influence the selection 
and adoption of technology packages. Although the emphasis is placed on experi-
ences in India, such practices are appropriate for many other arid and semi-arid 
regions where irrigated agriculture is confronting the similar challenges.
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Abbreviations

EC Electrical conductivity
ECe EC of the saturated extract
RSC Residual sodium carbonate
ESP Exchangeable sodium percentage
SAR Sodium adsorption ratio

1  Introduction

Sustained development of surface and groundwater resources for irrigation plays a 
vital role in the production and productivity of food and fiber crops in arid and 
semi-arid climates. One major problem facing irrigated agriculture nowadays is the 
dwindling supplies of good quality water. Large parts of Australia, the Indian sub-
continent, China, countries in the Middle East, parts in north and south America 
and Europe and substantial parts of North Africa lack sufficient supplies of good 
quality irrigation water (Seckler et al. 1998). Generally, the areas characterized by 
water scarcity are underlain with aquifers of poor quality (Minhas and Tyagi 1998) 
which can be saline, sodic or saline-sodic. Saline groundwater usually exist in the 
areas with high aridity, with high water table and water logged areas and in the 
vicinity of seawater in coastal regions, while sodic waters are prevalent in semi-arid 
regions with annual rainfall of 500–700 mm. With limited access to surface water 
supplies, many farmers in arid and semi-arid regions of the world are left with no 
other alternative except to utilize these poor quality ground waters for supplemental 
irrigation. Moreover, many more areas with good quality aquifers are threatened by 
contamination from nitrates and pesticide residues (Grattan and Oster 2003; Shah 
and Deb Roy 2002). With large scale installations of surface/sub-surace drainage 
systems, the volumes of saline drainage effluents are also increasing. In land locked 
areas, the only alternative is to promote their in-situ utilization.

Improper management of poor quality waters, without careful regard to their 
overall salinity and ionic composition of the irrigation water sources pose grave 
risks to soil conditions and the environment (Minhas and Gupta 1992; Gupta and 
Abrol 2000; Minhas and Bajwa 2001; Choudhary et al. 2004). Estimates are that 
about 10 m ha of irrigated land in the world suffers from secondary salinization and 
sodification (Szabolcs 1994). Excessive use of even good quality canal water has 
led to increased pace of secondary salinization and turned large areas along the 
Westside of the San Joaquin Valley in California to be unproductive (Wichelns and 
Oster 2006). This occurs when saline water tables are close to the surface and over 
irrigation will cause these water tables to rise into the crop root zone. A similar situ-
ation occurs in the northwest plains of Indo-Gangetic basin (Minhas and Samra 
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2003) and China’s yellow river basin (Gupta and Abrol 2000; Qadir et al. 2006). 
Salt and irrigation induced land degradation is also occurring in the Aral Sea Basin 
in Central Asia: considered to be the largest environmental change caused by 
humanity in recent times (Cai et al. 2003).

Projections indicate the global need to produce more food and fiber for the world’s 
expanding population with decreasing supplies of good quality water. Such an 
increased demand will lead to further increases in the use of marginal-quality water 
and land resources (Bouwer 2000; Gupta and Abrol 1990). Particularly vulnerable are 
less-developed, arid and semiarid countries, where problems of soil and water quality 
degradation are common (Sharma and Minhas 2005; Qadir et al. 2007).

This review includes irrigation strategies that foster sustainable crop production 
as well as alleviating environmental, off-site hazards of using saline and sodic 
waters. Emphasis is placed on research experiences in India. Salinity/sodicity in 
this region is characterized by high bicarbonates and differs from other places in 
the world where saline/sodic conditions are dominated by chloride or sulfate 
(Grattan and Oster 2003). Therefore there are similarities among remedial strate-
gies, but there are clear differences regarding high pH and high HCO

3
−. Because 

many arid and semi-arid places in the world, other than India and Asia, are charac-
terized by this type of carbonate-dominated salinity and sodicity, it is important to 
review such management strategies to address this set of problems.

2  Salinity and Sodicity

The most important criterion for evaluating given water is its total salt concentra-
tion. The quantities of salts dissolved in irrigation water are usually expressed in 
terms of EC, mg L−1 (ppm) or mmol

c
 L−1, the former being most popular because of 

ease and precision in its measurement. Some of the irrigation waters have a ten-
dency to produce alkalinity/sodicity hazards depending upon the absolute and rela-
tive concentrations of specific cations and anions contained in them. The parameters 
for knowing the potential of irrigation waters to create these hazards are: Sodium 
Adsorption Ratio [SAR = (Na)/√(Ca + Mg)/2]; Residual Sodium Carbonate 
[RSC = (CO

3
2− + HCO

3
−) − (Ca2+ + Mg2+)], concentrations expressed in mmol

c
 L−1 

and new adjusted SAR denoted as (adj. R
Na

) [adj. R
Na

 = Na/√[(Ca
x
 + Mg)/2, where 

Ca
x
 represents the Ca in applied water modified due to salinity (ionic strength) and 

HCO
3

−/Ca2+ ratio] (Ayers and Westcot 1985). Ground waters having high contents 
of toxic ions such as boron, fluoride, nitrate, selenium etc. also become problematic 
for irrigating crops and have consequence of entering human food chain.

Information on chemical composition is necessary but alone is not sufficient to 
decide its potential use for crop production at a specific location. Several other fac-
tors such as nature of crop to be grown, soil characteristics (texture and mineral-
ogy), climate and other water management and cultural practices are equally 
important and should be taken into consideration. Based on the characteristic fea-
tures of majority of ground waters and the above indices those describe the nature 
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of hazards on soils and crops, poor quality irrigation waters have been broadly 
grouped into saline and sodic waters.

There is a clear distinction between impacts of soil salinity and sodicity; the 
former being related to salt concentration and the latter to salt composition. Salinity 
refers to the concentration of salts in the irrigation water or soil that is sufficiently 
high to adversely affect crop yields or crop quality. Sodicity, on the other hand, is 
related to the proportion of sodium in the water, or adsorbed to the soil surface, 
relative to calcium and magnesium. The higher this proportion, the higher the sod-
icity. Sodicity can cause dispersion due to poor structural stability in water contrib-
uting to the deterioration of soil physical properties. Physical degradation of soils 
is manifested through increased surface crusting that impacts seedling emergence, 
reduced infiltration affecting water holding capacity of soil profile, increased soil 
strength impacting root penetration and reduced aeration resulting in anoxic condi-
tions for roots. Due to these effects, making tillage and sowing operation becomes 
more difficult (Oster and Jaywardane 1998). In irrigated agriculture, salinity in 
irrigation waters is commonly expressed in terms of EC (dS m−1). EC values range 
from 0.6 for fresh water to 1.5–3.0 for brackish water to about 45 dS m−1 in sea 
water (Maas 1990; Hillel 2000). In India, saline water are defined as water having 
EC > 2 dS m−1 (Minhas 1996; Bajwa and Choudhary 1996). For salinity appraisal 
of the soils, EC of the saturated extract (ECe) is generally used. An ECe of 4 dS 
m−1 separates a saline soil from a non saline one.

Irrigation with sodic waters leads to increase in sodicity and sodium saturation 
in soils. The increase in exchangeable sodium percentage (ESP) adversely affects 
soil physical properties including water infiltration and soil aeration. Under the 
monsoonal climate, the sodicity development upon irrigation with sodic waters 
depends upon equilibrium between precipitation of calcite and other salts during 
irrigation to crops especially in winter season crops and their dissolution with rain 
water. Thereby, the sodicity (ESP) build up could be adequately predicted (Minhas 
and Sharma 2006) based upon the annual quantities of sodic waters applied (D

iw
), 

the rainfall (D
rw

) at the site and the evapo-transpiration demands of the crops grown 
in sequence as ESP = (D

iw
/D

rw
) (√(1+ D

rw
/ET) (adj.R

Na). Thus based upon the ion 
chemistry of water (R

Na
), the parameters like D

iw
, D

rw
 and ET of crops and their 

sodicity tolerance, cropping patterns can be appropriately adjusted.
Sodic irrigation water has SAR higher than 10 and RSC higher than 2.5 mmol

c
 

L−1 (Minhas and Gupta 1992). However these values are only guidelines since spe-
cific values will depend upon the crop, soil chemical and physical characteristics and 
climate. The sodicity of soil is characterized by the exchangeable sodium percentage 
(ESP). An ESP of 15 or more separates a sodic soil from a non-sodic soil. The ESP 
and SAR are related to one another and for most practical purposes are numerically 
equivalent in the range of 3 to 30 (US Salinity Laboratory Staff 1954).

Waters that are generally classified as unsuitable for irrigation (Ayers and 
Westcot 1985) might be used safely depending upon the salinity and composition 
of the water, soil characteristics and management strategies adopted (Ayers and 
Westcot 1985; Minhas and Gupta 1992; Bajwa et al.; 1998; Tyagi and Sharma 
2000; Minhas and Bajwa 2001; Qadir et al. 2003; Grattan and Oster 2003; 
Choudhary et al. 2004). This has led to replacement of conservative water quality 
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standards with site specific guidelines, where factors like soil texture, rainfall, sub-
surface drainage, and crop tolerance have been given due consideration (Minhas 
and Gupta 1992; Table 1). Effective use of saline and sodic waters requires infor-
mation on the soil-crop-drainage-irrigation management system to maintain salin-
ity and sodicity within permissible limits.

2.1  Consequences of Salinity and Sodicity

Plant growth is affected adversely with saline irrigation primarily through the 
impacts of excessive salts lowering the osmotic potential of the soil solution 
(osmotic effects). Excessive concentration and absorption of individual ions 

Table 1 Guidelines for using poor quality irrigation waters

A. Saline water (RSC < 2.5 mmolc L−1)

Soil texture (% Clay) Crop tolerance Upper limits of EC (dS/m) in rainfall regions (mm)

<350 350–550 550–750

Fine (>30) Sensitive 1.0 1.0 1.5
Semi-tolerant 1.5 2.0 3.0
Tolerant 2.0 3.0 4.5

Moderately fine 
(20–30)

Sensitive 1.5 2.0 2.5
Semi-tolerant 2.0 3.0 4.5
Tolerant 4.0 6.0 8.0

Moderately coarse 
(10–20)

Sensitive 2.0 2.5 3.0
Semi-tolerant 4.0 6.0 8.0
Tolerant 6.0 8.0 10.0

Coarse (<10) Sensitive – 3.0 3.0

Semi-tolerant 6.0 7.5 9.0

Tolerant 8.0 10.0 12.5

B. Sodic waters containing RSC > 2.5 mmolc L−1 and EC < 4.0 dS/m)

Soil texture (% Clay)

Limits of

Remarks
SAR 
(mmol/L)1/2

RSC 
(mmol

c
 L−1)

Fine (>30) 10 2.5–3.5 (1) When the waters have 
Na < 75% (Ca + Mg > 25%) or 
rainfall is > 550 mm, use the upper 
limits of the RSC

Moderately Fine 
(20–30)

10 3.5–5.0 range

Moderately coarse 
(10–20)

15 5.0–7.5

Coarse (<10) 20 7.5–10.0

Source: Minhas and Gupta, 1992
(i) Textural criteria should be applicable for all soil layers down to at least 1.5 m depth.
(ii) In areas where ground water table reaches within 1.5 m, at any time of the year or a hard 
subsoil layer is present in the root zone, the limits of next finer textural class should be used.
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e.g. Na, Cl, B etc. may prove toxic and cause specific injury to plants (specific ion 
effects) and/or retard the absorption of other essential plant nutrients. The reduced 
water availability at high salinity thus causes water deficits for plants and the plant 
growth gets inhibited when soil solution concentration reaches a critical concentra-
tion value often referred to as threshold salinity. Under the field situations, the first 
reaction of plants to the use of saline waters is reduction in the germination but the 
most conspicuous effect is the growth retardation of crops. A general conclusion 
can be that the detrimental effects of salinity include reduced initial growth result-
ing in smaller plants. These smaller plants with lesser leaf area in turn are able to 
produce lesser assimilates for their conversion to seeds. In other terms, a comple-
mentary development of vegetative and reproductive phases is necessary for higher 
yields as translocation of assimilates once developed may remain unaffected by 
salinity, provided the environmental factors remain favourable during flowering. It 
is now evident from long term experiments on saline water use that an interplay of 
factors like nature and content of soluble salts, soil type, rainfall, water-table condi-
tions, nature of crops grown and the water management practices followed, govern 
the resultant salinity build up vis-a-vis crop performance.

The extent of salinity or sodicity in the soil depends upon EC, SAR and RSC of 
irrigation water. Accumulation of the salts are dependent upon climatic conditions, 
water table depth, the crops grown and practices of soil-water management adopted 
to meet leaching requirements (Minhas and Gupta 1992).

Salt accumulation in the soil depends on to a large extent on soil texture which 
influences the hydraulic properties of the soil. In soils that contain less than 10% 
clay, ECe often remains lower than that of the irrigation water. Manchanda et al. 
(1989) reported that concentration factors, ECe/EC (ratio of ECe to that of the 
irrigation water) were 0.76, 1.12 and 1.8 for soils having clay contents <10%, 
10–20% and >20%, respectively. While working with rice-wheat system, Minhas 
et al. (2007a) concluded that the ECe/EC ratios were between 1.1 and 1.8 for soils 
deprived of rainfall simulating drier arid area, where it was almost 1 for soils 
exposed to rain simulating semi-arid region receiving rainfall. The SAR of the satu-
ration paste extract, (SARe) was between 1.6 and 2.0 times the SAR of the irriga-
tion water and 2.0–2.3 times SAR with and without rainfall. The ESP was also in 
the higher range (16.2–27.4) in plots sheltered from rainfall than in plots exposed 
to rain (15.8–23.3) (Minhas et al. 2007a). These results suggest additional irrigation 
water is needed to meet the leaching requirement in arid areas with low rainfall in 
order to reduced salt build up in the soil. Whereas under monsoonal climates, rain-
fall that normally falls during summer months would be sufficient to leach the soil 
profile to keep salinity at a tolerable level.

Irrigation with sodic waters during the dry season and leaching during the rainy 
season when coupled with crop-induced calcite dissolution results in a cycle of 
precipitation and dissolution of calcite that limits sodicity build up in soils (Minhas 
and Gupta 1992; Bajwa et al. 1998; Choudhary 2003; Minhas et al. 2007a). Under 
the monsoonal climate, a major build-up of salts and Na in the surface soil layers 
occurs during irrigation of winter crops with sodic water (Bajwa et al. 1983, Bajwa 
and Josan 1989a; Bajwa et al. 1992; Josan et al., 1998; Choudhary et al. 2004, 
Minhas et al. 2007b). A quasi-stable salt balance can be reached within 4–5 years 
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of sustained sodic water irrigation (Minhas and Gupta 1992) while the continual 
rise in pH and exchangeable sodium percentage (ESP) is very slow (Choudhary 
et al. 2004, 2006b). However, soil ESP values under saline-sodic water irrigated 
soils was observed to continue to increase in a 10-year field study while these sta-
bilized under sodic water irrigation after 4 years (Choudhary et al. 2004).

Even after long-term use of sodic waters containing high residual carbonate, 
subsurface soil layers are unaffected for the most part, due to little leaching of 
sodium (Fig. 1a). The increase in sodicity (higher ESP) in the rice-wheat system is 
higher than in the millet-wheat because of increased input of sodic water (Bajwa 
and Josan 1989b). Data on wheat yields with variable kharif crops from the experi-
ments (Bajwa et al. 1983; Bajwa and Josan 1989a, b) suggested that an increase in 
RSC keeping the SAR in the range of 30–40, decreased the wheat yields, especially 
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and (b) saline-sodic irrigation after 10 years (1989–90 to 1998–99) (FYM-farmyard manure)
(Source: Choudhary et al., 2004)
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when grown following rice. The decline in wheat yields was not appreciable even 
with waters having high SAR (25–52) and RSC (>8.0 mmol

c
 L−1). Thus, it becomes 

evident that deterioration in soil physical properties and decline in wheat yields 
with the use of sodic water is higher when rice is grown in rotation. So it is usually 
feared that rice-wheat system may not be sustainable with the use of sodic waters. 
However, a critical evaluation of ion chemistry of sodic waters used in most of the 
micro-plot experiments, Minhas et al. (1996) indicated that proportion of cations, 
mainly the amounts of calcium in artificially prepared waters were much less than 
the naturally occurring sodic waters. In addition, attaining desired plant population 
in rice compared to any other kharif crop with sodic waters, higher and uniform 
salt leaching, availability of canal water to facilitate conjunctive use with sodic 
water and sufficient rainfall (500–550 mm) besides better economics are some of 
the reasons that farmers in many semi-arid areas prefer rice-wheat as the most 
favored cropping system while using naturally occurring sodic waters (Minhas and 
Bajwa 2001).

Long-term irrigation with saline-sodic water (RSC – 10 mmol
c
 L−1, SAR – 31.2, 

EC – 2.90 dS m−1) resulted in higher buildup of Na and soluble salts compared to 
sodic (RSC- 10 mmol

c
 L−1, SAR – 19.8, EC – 1.43 dS m−1) water (Choudhary et al. 

2004) (Fig. 1). When gypsum was applied at each irrigation to supply 7.5 mmol
c
 

L−1 Ca2+ to decrease the RSC to 2.5 mmol
c
 L−1, both under sodic and saline-sodic 

waters, ESP of the soil decreased (Fig. 1). Application of farmyard manure had a 
complimentary effect on efficiency of gypsum in reducing ESP of the soil, although 
it was less efficient than gypsum when applied alone. Due to higher electrolyte 
concentration, more Na moved to deeper layers and higher values of ESP in soil 
layers were observed under the saline-sodic water treatment. These trends were 
similar in presence and absence of applied amendments. In lower soil layers, ESP 
declined sharply under no amendment treatment and gradually under the amended 
treatments (Fig. 1).

In cotton-wheat cropping system, Choudhary and Ghuman (2008) observed that 
the build-up of Na and increase in pH was significantly reduced when one or two 
canal water irrigation(s) were alternated with irrigation with sodic water. The ESP 
under high RSC water treatment (RSC – 10 mmol

c
 L−1, SAR – 14.9) was similar in 

the 0–15 and 15–30-cm soil layers (30.5). It was relatively higher than that in the 
30–60-cm (24.2) layer. The opposite trend, however, was observed when canal 
water irrigation was alternated with sodic water irrigation and relatively higher ESP 
values were observed in the lower layers than in the surface layer.

In order to achieve optimum plant growth, adequate physical properties of soils 
must be maintained by using various combinations of crop, soil and water amend-
ments (Choudhary et al. 2004, 2006a, b; Minhas et al. 2007a, b). The primary 
concerns are the permeability of soils to air and water movement into and through 
soils and the ability to prepare seedbeds with a tilth that fosters seed germination 
and emergence. Adverse effects on crop growth are further supplemented through 
surface build up of salts (Minhas and Bajwa 2001). Such changes have a direct 
impact on the activities of plant roots and soil microbes negatively impacting crop 
growth and yield (Grattan and Grieve 1999a; Mengel and Kirkby 2001).
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3  Managing Saline and Sodic Waters

Despite the difficulties associated with use of saline and sodic water for irrigating 
crops and the potential for reduced soil permeability, the fact remains these can be 
a valuable resource (Murtaza et al. 2009). Consequently, if the challenges of sus-
taining global food supplies are met, it is essential that these poor-quality waters are 
used correctly to sustain crop production.

Two major approaches can improve and sustain crop productivity in saline and 
sodic environments. One approach is modifying the environment to suit the plant 
and the other is modifying the plant to suit the environment. Both these approaches 
have been used, either individually or in combination, but the former has been used 
more extensively because it facilitates alternative production inputs. The later is not 
been that successful at this time because of the complexity of crop salt tolerance 
and difficulty in developing crops with high salt tolerance (Läuchli and Grattan 
2007). It is likely that salt tolerance is controlled by a number of genes. The devel-
opment of management options requires sensitivity analysis of the parameters 
affecting crop yield (Zeng et al. 2001). Most of the past research has treated saline–
sodic water use in the context of root zone salinity/sodicity management to main-
tain an environment favorable to crop production (Minhas and Gupta 1992; Bajwa 
et al. 1998, Choudhary et al. 2006a). This has led to the development of manage-
ment practices at the field level without considering their implications and practi-
cality at the larger regional (i.e. farm/irrigation-system/river-basin) level. However, 
in order to sustain agricultural production, a salinity balance has to be maintained 
at the field and basin levels (Tyagi 2003).

Practical options for safe use of poor quality waters for sustainable crop produc-
tion should aim at improving physical and chemical properties for soils receiving 
saline and/or sodic waters and controlling buildup of salinity/sodicity in the soil. 
Such an approach will not only add an additional water source in arid and semi-arid 
areas, but also can minimize the rising water table problem at the same time.

Management strategies to sustain productivity using saline and sodic waters 
include crop selection, irrigation management strategies, chemical/organic amende-
ments and fertility management. No single management practice is able to control 
salinity and sodicity of irrigated soils in itself but rather a combination of practices 
are required. Each management option is described separately for better under-
standing in the following sections.

3.1  Salt Tolerance and Crop Selection

Crops differ considerably in their ability to tolerate salinity/sodicity. These crop-
specific differences can be exploited for selecting crops that can produce satisfactory 
yield under given level of root zone salinity and sodicity (Minhas and Gupta 1992; 
Choudhary et al. 1996a, b; Koyoma et al. 2001). General guidelines have been given 
for selection of crops based on their relative tolerance to salinity (Maas and Grattan 1999) 
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and sodicity (Gupta and Abrol 1990). Crops requiring less water over the season 
such as oilseeds can tolerate high levels of salinity/sodicity in the irrigation water. 
Most of the pulses and vegetables are sensitive to salinity. Cotton, on the other hand, 
is a salt tolerant crop but it is sensitive during crop emergence. The successful use 
of saline/sodic waters generally requires crops that are semi-tolerant to tolerant to 
these abiotic stresses (such as mustard, wheat, cotton). In addition, crops with low 
irrigation water requirements should also be selected whereas crops like rice, sug-
arcane and forages that are salt sensitive or require large quantities should be avoided 
(Minhas and Bajwa 2001; Choudhary 2003). The changes in tolerance to osmotic 
stress can also occur due to several factors such as ageing and presence of other toxic 
constituents along with salinity (Minhas et al. 1996: Katerji et al. 2000).

Minhas and Gupta (1992) compared the tolerance of wheat from experimental 
results under two conditions; (i) sodic soils undergoing reclamation and (ii) soils 
ESP increasing when irrigated with sodic waters. Lower plant tolerance was 
observed under the latter condition. The differential availability of Ca2+ seemed to 
play an important role as during reclamation of alkali soils. Calcium furnished by 
gypsum to reduce soil ESP also provided a source of calcium for the crop whereas 
in soils having their ESP increased, calcium concentrations declined, and therefore 
was less available to the crop, due to its precipitation as calcite.

Apart from variations of different crops to tolerate salinity/sodicity, crop culti-
vars also vary widely in salt tolerance. Usually, there is a negative correlation 
between tolerance of cultivars and their potential yields but it is not always the case. 
Cultivars having high yield potential continue to be viable and should be the pre-
ferred choice even under saline environments (Minhas and Gupta 1992). Typical 
example is that of very popular and high yielding wheat cultivar ‘PBW 343’ grown 
in northwest India can be grown with irrigation waters having RSC up to 6.5 mmol

c
 

L−1 without any substantial loss in grain yield (Choudhary et al. 2007). While 
screening large number of triticale line in soils irrigated with high RSC waters, two 
groups of lines performed better. One group of high yielders under non-stressed 
conditions recorded higher yields than other lines at higher RSC levels in absolute 
terms despite having lower relative yield. Other group, on the other hand, showed 
higher relative tolerance and yielded progressively higher at higher RSC levels than 
at no or low RSC levels (Choudhary et al. 2003).

Sodicity also affects crop nutrition. Crop varieties having higher tolerance have 
also been able to maintain low Na/K ratio in shoots by restricting Na uptake (Gill 
and Qadir 1998). Tolerance of a cultivar to irrigation with sodic waters (EC < 2 dS 
m−1, RSC > 5.0 mmol

c
 L−1) also depends upon ability of the plants to exclude Na and 

absorb nutritionally adequate amounts of Ca (Choudhary et al. 1996b). Wheat and 
barley cultivars possessing penetrative root systems and capable of producing 
higher number of spikes per unit area with bolder grains could produce high yields 
even at an ESP of 40–50 in 0–30 cm soil developed due to long-term irrigation with 
sodic waters (Choudhary et al. 1996a, b).

Investigations using three cotton cultivars under long-term irrigation with sodic 
waters having RSC (5 to15 mmol

c
 L−1) increased the ESP by16–56 (0–30 cm soil) 

as compared to plots irrigated with canal water. Seed-cotton yield under ESP of 56 
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was 69% for the tolerant cultivar (F-846) and 29% for the sensitive cultivar (F-505) 
relative to the plants irrigated with non-sodic canal water (Choudhary et al. 2001). 
The tolerant cultivar produced heavier bolls than did the other two cultivars in the 
highly sodic environment. High RSC waters adversely affected fiber quality (2.5% 
span length, micronaire value and bundle strength) in the sensitive cultivar at an 
ESP of 56 but not in the tolerant cultivar.

For sugarcane crop, a cultivar tolerant to salinity possessed a higher number of 
millable canes and a larger single cane weight resulting in higher cane yield in a 
saline water-irrigated soil (EC 3.5 –4.0 dS m−1), for both planted and ratoon crops, 
compared to sensitive cane cultivars (Kuldeep-Singh et al. 2007). In terms of juice 
quality, the tolerant cultivar was able to maintain higher obrix and sucrose content 
resulting in higher commercial cane sugar and sugar recovery in a saline stressed 
environment. Salinity has been found to improve crop quality in a number of other 
cases (Maas and Grattan 1999). However there are cases where salinity reduces 
crop quality as well.

Plant biotechnology approaches with the aim of producing transgenic crops with 
enhanced salt tolerance and performance under field conditions is a very attractive 
approach to sustaining crop production under saline and sodic environments. To 
date, success stories are very limited (Wani 2009). Assuming genetic engineering 
for production of salt tolerance is successful, these transgenic crops could provide 
us with tolerant crops that show superior productivity on salt-affected soils in com-
parison with existing varieties and cultivars.

3.2  Use of Amendments

3.2.1  Chemical Amendments

The adverse effects of irrigation with sodic water on physico-chemical properties 
of soils can be mitigated by the application of amendments that liberate free Ca2+. 
These can etiher be amendments containing Ca such as gypsum or acidifying mate-
rial to dissolve calcite. The need for gypsum application for ameliorating the sodic-
ity effects occurring due to irrigation with high RSC-SAR waters is of the recurring 
nature. Application of gypsum has earlier been recommended when RSC of the 
irrigation water exceeded 2.5 mmol

c
 L−1 (Bhumbla and Abrol 1972). However, later 

researches have shown that factors such as the level of the deterioration of the soil, 
cropping intensity and the water requirements of the crops will ultimately decide 
the amount of gypsum required. Sharma et al. (2001) evaluated the sustainable 
yield index (SYI), which indicates that minimum yield as a fraction of the maxi-
mum observed yield. Graded doses of gypsum varying from 12.5% to 100% of 
gypsum requirement were applied to evaluate its impact on sustainability of rice 
and wheat yields in sodic water irrigated soils. Sustainable yield index varied from 
0.57 to 0.65 in rice and from 0.54 to 0.65 in wheat (Table 2).
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Sustainable yields of crops in rice-wheat system, irrigated with sodic water are 
possible with occasional application of gypsum and farmyard manure (Minhas 
and Bajwa 2001). Among rabi crops, response of mustard to gypsum was more 
than wheat and barley. Gypsum in order to supply 2.5 and 5.0 mmol

c
 L−1 to sodic 

irrigation water for wheat and rice, respectively, was sufficient for maintenance 
of higher yields (Bajwa and Josan 1989a). Once the role of gypsum is established 
for sustaining crop production with the use of sodic waters, questions regarding 
its mode, amount and time of application have to be answered. Bajwa et al. 
(1983) observed that gypsum applied at each irrigation was more effective in 
increasing maize yields in maize-wheat sequence irrigated with water having 
RSC of 8 mmol

c
 L−1 as compared to its single dose applied annually. For rice-

wheat system irrigated with water of RSC 6.8 mmol
c
 L−1, response to gypsum 

either applied as one dose or at each irrigation was the same (Bajwa and Josan 
1989a). With higher RSC water (10.3 mmol

c
 L−1), while the improvement in 

wheat yield was similar for two modes of gypsum application, rice responded 
better to gypsum when it was applied with each irrigation. It occurred because 
more water was applied to rice leading to appreciable increase in soil sodicity 
during the seasons affecting rice yields. In case of wheat, depth of irrigation water 
applied being smaller, increase in soil sodium saturation was not sufficient to 
adversely affect its yields. Comparing the time of application of gypsum, Yadav 
and Kumar (1994) observed that its application before the onset of monsoons 
(rainy season) was better than its application before pre-sowing irrigation of rabi 
crops and at each irrigation. Pyrites has also been used for amending the deleteri-
ous effects of high RSC waters. Chauhan et al. (1986) observed that pyrite appli-
cation before the sowing of wheat crop has proved better than its split application 
at each irrigation or mixing it with irrigation water. More reaction time and better 
oxidation of pyrite resulted in more reduction in pH and soil sodium saturation 
when it was applied before sowing.

Table 2 Crop yield and sustainable yield index (SYIa) for rice and wheat as affected by rate of 
gypsum application under sodic water irrigation

Treatments Gypsum applied Crop yield (Mg ha−1)
Sustainable yield 
index (SYI)

(% GRb) (Mg ha−1) Rice Wheat Rice Wheat

0  0 4.01 3.55 0.57 0.54
12.5  1.25 4.22 3.75 0.60 0.60
25.0  2.50 4.13 3.68 0.60 0.58
50.0  5.00 4.26 3.82 0.61 0.62
75.0  7.50 4.22 3.83 0.62 0.62
100.0 10.00 4.48 3.94 0.62 0.63
Canal water Nil 4.46 3.85 0.65 0.65
LSD (p = 0.05) 0.24 0.16
a SYI = (Y − S)/Y

max
, where Y average yield, S standard deviation, Y

max
 the maximum yield in the 

study area (6 Mg ha−1 for rice and 5 Mg ha−1 for wheat)
b GR Gypsum requirement (Source: Sharma et al., 2001)
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3.2.2  Gypsum Beds

The high cost on gypsum demands its efficient utilization. The use of gypsum beds 
technique (Pal and Poonia 1979) improves its solubility and application efficiency. 
Such a practice will also reduce the costs involved in powdering, bagging and proper 
storage of the material before its actual use. The gypsum bed is constructed with 
brick-cement-concrete, the size of which depends primarily on the discharge of 
sodic well water. A net of iron bars covered with wire net (2 mm × 2 mm) is fitted at 
the height of 10–20 cm from the bottom of the bed floor and this supports a bed of 
gypsum clods. Well water then passes through the gypsum bed before exiting into 
the irrigation channel (Pal and Poonia 1979). The dissolution of gypsum is affected 
by factors such as size distribution of gypsum fragments, the flow rate, the salt con-
tent and chemical composition of water (Kemper et al. 1975; Singh et al. 1986). The 
calcium picked up by the passing well waters depends upon the contact time and 
surface area of the gypsum clods. Typical increases range from 3 to 5 mmol

c
 L−1 but 

seldom exceed 8 mmol
c
 L−1 (Singh et al. 1986). Usually the height of gypsum bed 

recommended to bring RSC within permissible limits is 30–60 cm.

3.2.3  Organic Materials

Farmyard manure and other organic materials have not only the nutritive value, but 
play an important role in structural improvements, which further influences leach-
ing of salts and reduce their accumulation in the root zone. The other advantages of 
these materials in saline water irrigated soils are in terms of reducing the volatilisa-
tion losses and enhancing nitrogen-use efficiency and the retention of nutrients in 
organic forms for longer periods also guards against their leaching and other losses. 
Therefore, the addition of farmyard manure and other organic/green manure should 
be made to the maximum possible extent.

Organic materials can improve sodic soil conditions through mobilization of Ca2+ 
from CaCO

3
 and hasten the reclamation process. Choudhary et al. (2006a) conclu-

sively found that with mobilization of Ca2+ from CaCO
3
 during decomposition of 

organic materials such as farmyard manure, green manuring (Sesbania aculeata), 
the need of gypsum required for controlling the harmful effects of sodic water irriga-
tion can be reduced or eliminated while sustaining the yields of rice and wheat 
grown in calcareous soils. The application of crop residues such as wheat straw 
before rice transplanting, although was less effective than farmyard manure and 
green manuring in increasing rice yield over the unamended sodic water treatment 
but was at par with green manuring in its residual effect on following wheat yield.

In sugarcane crop, farmyard manure was observed to be more effective under 
saline-sodic (38% increase) than under sodic water irrigation (23% increase) 
(Choudhary et al. 2004). However, the combined effects of gypsum and manure 
applied together were beneficial only under sodic water irrigation. Relative to canal 
water irrigation treatment, there was no decline in yield up to an ESP of 12 beyond 
which a significant reduction in cane yield occurred. An ESP of 10–12 can be 
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maintained under long-term sodic water irrigation through combined application of 
gypsum and manure. In case of saline-sodic irrigation, sugar yield under farmyard 
manure treatment (10.8 Mg ha−1) was equivalent to that under the gypsum plus 
manure treatment but was significantly higher than under the gypsum treatment 
(9.0 Mg ha−1). This suggests that cane and sugar yields with good quality juice can 
be sustained by applying gypsum/farmyard manure or both under sodic and only 
farmyard manure under saline-sodic water irrigation.

3.3  Fertilizer Management

The relations between salinity and mineral nutrition of plants are extremely com-
plex and it is no easy task to reconcile results from salinity-nutrition experiments 
conducted in the field vs. the greenhouse; in soils vs. solution cultures; using single 
salts vs. mixed salts; under one set of environmental conditions vs. another set; or 
studies conducted over the short-term vs. the long-term. Nevertheless by account-
ing for these differences in experimental parameters, one can begin to see more 
consistencies in salinity-nutrient interactions and obtain a better understanding of 
the overall salinity-nutrient relations in plants (Grattan and Grieve 1999b).

Plant performance, usually expressed as a crop yield or plant biomass, may be 
adversely affected by salinity-induced nutritional disorders. In the field, additions 
of nutrients have increased the growth of both glycophytes and halophytes, pro-
vided that the plants were not experiencing severe salt stress. Relief of the growth-
limiting stress, salinity or nutrient deficiency, promotes growth more than relief of 
the next limiting factor. Therefore, addition of a limiting nutrient may increase, 
decrease or have no effect on crop/plant performance, depending on the severity of 
salinity stress. Consequently, interpretation of plant salt tolerance expressed on a 
relative basis under variable soil fertility can be misleading.

Salinity-induced nutritional disorders may develop on plants from the effect of 
salinity on nutrient availability, competitive uptake, transport or partitioning within 
the plant. For example salinity reduces phosphate uptake and accumulation in crops 
grown in soils primarily by reducing phosphate availability; whereas in solution 
cultures reductions may be due to a competitive process. Salinity dominated by Na+ 
salts not only reduces Ca2+ availability but reduces its transport and mobility to 
growing regions of the plant, thereby affecting the quality of both vegetative and 
reproductive organs (Choudhary et al. 1996b, 2001). These disorders are aggra-
vated when transpirational demands are high. Salinity can directly affect nutrient 
uptake as has been observed in the reduction in K+ uptake by Na+ or NO

3
− uptake 

by Cl−. The occurrence of these disorders ultimately affects crop yield or quality 
that depends upon the plant species and the experimental conditions where the 
study was conducted.

Salinity can cause a combination of complex interactions affecting plant metab-
olism or susceptibility to injury. In several studies it has been shown that salinity 
increases the internal requirement for a particular nutrient. Examples were given for 
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N in the halophyte Spartina alterniflora, P in tomato, and K+ in spinach. In other 
studies, it was shown that salinity can cause plants that are deficient in an element 
to have a lower cellular tolerance for a specific ion. Moreover there are undoubtedly 
a multitude of other interactions yet to be found.

Despite a large number of studies that demonstrate that salinity reduces nutrient 
uptake and accumulation or affects nutrient partitioning within the plant, little evi-
dence exists that adding nutrients at levels above what is considered optimal in 
non-saline environments improves plant growth or crop yield in saline environ-
ments. Swarup and Yaduvanshi (2004) observed that applying additional quantities 
of fertilizer N to overcome adverse effects of high salinity may not pay off well 
when the salinity is a growth limiting factor. Nutrient additions, on the other hand, 
have been more successful in improving crop quality. For example Ca2+ additions 
to soils or as foliar sprays can sometimes correct disorders caused by Na-induced 
Ca2+ deficiency.

Nutrient additions may also reduce the incidence of injury. An adequate supply 
of Ca2+ maintains membrane integrity and selectivity thereby reducing Na+ and Cl− 
toxicity in tree and vine crops. Benefits from added Ca2+ are usually observed in 
solution culture studies when NaCl is the sole salinizing agent. There are also stud-
ies that have shown that increased concentrations of NO

3
− can reduce Cl− toxicity 

in certain tree crops. While these studies may have practical implications, there is 
a danger that this practice may increase NO

3
− concentrations in the groundwater 

(Grattan and Grieve 1999a, b). Chloride also reduces the availability of soil P to 
plants. Therefore, soils irrigated with Cl− rich waters respond to higher amounts of 
P fertilizers. Phosphorus can also help mitigate the adverse effects of Cl− in crops 
(Manchanda et al. 1982). For soils irrigated with SO

4
2− rich waters, P levels recom-

mended for normal non-saline soils are sufficient.
It is reasonable to believe that numerous salinity - nutrient interactions are 

occurring at the same time but whether they ultimately affect crop yield or quality 
depends upon the salinity level and composition of salts, the crop species, the nutri-
ent in question and a number of environmental factors.

3.4  Irrigation Management

3.4.1  Leaching Requirement for Maintaining Root Zone Salinity

Salts accumulate in the root-zone of plants with each saline water irrigation and 
reach detrimental levels causing reduction in crop yields if leaching does not take 
place. The properly designed surface irrigation methods can maintain favorable salt 
and water regime in the root-zone.

Leaching requirement is the minimal fraction of total water applied that must 
pass through the root zone to prevent the reductions in crop yields below the accept-
able level. This concept is of particular importance for the situations of no or little 
rainfall where nearly the steady state conditions can be achieved. Field studies 
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 conducted in Imperial and San Joaquin valley of California demonstrated that 
saline waters (EC 4–9 dS m−1) can be used for achieving acceptable yields of salt 
tolerant crops such as sugar beet, cotton and sugarcane provided some leaching is 
facilitated through pre-plant irrigation with fresh water (Rhoades 1999; Pitman and 
Läuchli 2002). Feasibility of crop irrigation with saline water, however, needs to be 
evaluated on long-term basis for each crop species with allowance of leaching of 
soil between cropping seasons to control soil salinity (Goyal et al. 1999a, b).

In continental monsoon climate, concentration of rains in a short span of 
2–3 months is the most uncontrolled factor causing non-steady state conditions. 
Under such situations, salt tolerance at critical stages of crop change with patterns 
of salinization and initial distribution of salinity in soils (Minhas and Gupta 1993). 
International Water Management Institute (IWMI) studies in Pakistan have also 
shown that rather than having one specific threshold value for salt tolerance, crops 
react differently depending upon the time of imposed salinity. Irrigation water con-
sumed by evapo-transpiration leaves the remaining soil water more concentrated 
with salts. The leaching requirement increases with salinity of the irrigation water 
and the sensitivity of the crop for salinity (Kijne 2003).

A general recommendation is the application of excessive water to meet the leach-
ing requirement and maintain a desirable salt balance in the soil having adequate drain-
age. In drier arid areas with low rainfall, 15–20% more water for each irrigation should 
be applied while crops are irrigated with saline water to promote leaching as compared 
to good quality water. This may not be the case in areas with monsoon type climate 
(Minhas and Gupta 1992; Minhas 1996). While using saline-sodic water (ECw = 3.2 
dS m−1, SAR = 21, and RSC ³ 4 mmol

c
 L-1), about, 30–50% higher salinity build up 

even in light textured soil was observed when 50% extra water was applied to meet the 
leaching requirement in rice-wheat and maize-wheat systems in monsoonal South 
Asia (Bajwa et al. 1983; Bajwa and Josan 1989a). The general strategy to use more 
efficiently the monsoon rainwater for leaching and reduce the salt build up in the root 
zone soil seems to be more useful in areas receiving more than 400 mm rainfall. 
However, in the event of sub-normal rainfall year, a heavy pre-sowing irrigation with 
good quality water should be applied so that the accumulated salts during the preced-
ing rabi season are pushed beyond the root zone (Minhas and Gupta 1992).

3.5  Conjunctive Use of Poor and Good Quality Waters

In arid and semi-arid regions, canal water supplies are most often not assured or in 
short supply such that farmers are forced to use saline/sodic waters to meet the crop 
water requirements. Available options to practice conjunctive use of salty and fresh 
water are blending or using them separately in cyclic mode. Different quality waters 
can be blended in the supply network making tailor-made water available for each crop 
and all soil conditions. Blending is promising in areas where freshwater supplies can 
be made available on demand. The potential of blending two different water supplies 
depends on the crops to be grown, salinities/sodicities and quantity of fresh water 
 supplies and economically acceptable yield reductions (Minhas and Gupta 1992).
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Allocation of the two waters separately, if available on demand, can be done to 
different fields, seasons or crop growth stages so that salinity/sodicity stresses are 
minimized during sensitive growth stages in the crop. Therefore, the cyclic use of 
multi-quality waters can be made inter- or intra-seasonal (Minhas et al. 2007b). 
Cyclic use is more common and offers several advantages over blending as better 
quality water can be used for pre-sowing and early stages of crop growth and then 
switching to saline water later on when the already established crop is able to toler-
ate relatively higher salinity levels (Minhas and Gupta 1993). Rhoades et al. (1992) 
have advocated the seasonal cyclic use, called ‘Dual Rotation’ strategy where non-
saline water is used for salt/sensitive crops/initial stages of tolerant crops to leach 
out the accumulated salts from irrigation with salty waters to previously grown 
tolerant crops. This strategy may work better in arid climate with very low rainfall 
but it is of natural occurrence in the monsoonal climate. Here the salt accumulations 
mainly occur with saline irrigation to winter crops while the added salts get leached 
with concentration of rainfall (July-September) during summer season crops. 
Rhoades (1999) proposed that blending low salinity water with high salinity waters 
can result in loss of consumable water, particularly for salt-sensitive or moderately 
salt sensitive crops. Moreover, crop production can be optimized from the same 
total water supply if the two water sources are used sequentially rather than 
blending the two. At the same level of weighted average salinity of the irrigation 
water, the yields of different cyclic modes were higher than the estimated yields 
from mixing the two (Minhas and Gupta 1992; Sharma and Minhas 2005).

In case of irrigation water having high residual alkalinity, the strategy that would 
either minimize the precipitation of calcium carbonate or maximize the dissolution of 
precipitated calcium would be the best choice (Bajwa and Josan 1989c; Minhas and 
Bajwa 2001). Blending of surface waters with high RSC ground water usually in 
equilibrium with naturally occurring calcite, should result in under-saturation with 
respect to calcite. Consequently, application of blended water or application of higher 
quality waters in cyclic mode should have a tendency to pick up calcium through 
dissolution of native calcite. Minhas et al. (2007b) evaluated the sustainability yield 
index of rice and wheat when sodic and good quality waters were used either by 
blending or by their alternate inter- or intra seasonal use. The sustainability yield 
index (SYI) is the minimum guaranteed yield as referenced to the maximum observed 
yield (Y

max
) with good quality water was calculated as SYI = (Y-S)/Y

max
 where‘Y’ is 

the average yield and ‘S’ the standard deviation. The SYI ranged between 0.52 and 
0.75 and 0.79–0.95 for rice and wheat, respectively. Marginal improvements in the 
yield index with cyclic uses over blending indicate a higher sustainability with the 
former. Furthermore, blending requires the creation of additional facilities for blend-
ing the two water supplies. When sodic and good quality waters were rotated inter-
seasonally, the dilution effects of monsoonal rains in NW India helped to optimize 
greater use of sodic water for rice compared to wheat (Minhas et al. 2007b).

Alternating irrigations with good quality and sodic waters maintained the ESP at 
relatively lower levels, maintained reasonably good soil physical-condition of soil 
and helped in sustaining adequate crop yields (Bajwa and Josan 1989c; Choudhary 
et al. 2006b; Choudhary and Ghuman 2008). Perusal of data in Table 3 shows that 
when irrigated with sodic water, yields of wheat grown following rice were lower 
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than when grown after cotton crop. Field observations further suggest that farmers 
with some access to canal water supplies are able to sustain the yields of rice and 
wheat whereas yield of these crops declined on farmers’ fields that did not have 
access to such waters (Minhas et al. 1996). However, in such situations particularly 
in arid climate, canal water supplies may not always be available at the time of sow-
ing and the farmers are left with no alternative except to use sodic ground water for 
irrigation to avoid delay in sowing. This can have devastating effects on cotton stand 
establishment. Therefore, the long-term effects of sodic water applied as the first 
(pre-sowing) irrigation in cyclic modes were investigated in cotton based cropping 
systems (Choudhary and Ghuman 2008; Choudhary et al. 2006b).

Choudhary and Ghuman (2008) observed a greater decline in seed-cotton yield 
(16.5% year−1) than that in wheat yield (5.9% year−1) when irrigated with sodic 
water (SW, RSC 10.1 mmol

c
 L−1, SAR 14.9, EC 1.4 dS m−1). Higher crop yields 

were observed when the irrigation started with canal water (CW) and involved only 
one irrigation with sodic water in a cycle (2CW:SW, CW:SW). The yields were also 
higher in an irrigation cycle starting with sodic water but followed by 2 irrigation 
with canal water (SW:2CW). However, when irrigation was initiated with sodic 
water involving only one irrigation with canal water in a cycle (SW:CW, 2SW:CW), 
the decline in seed-cotton yield was relatively greater (18–23%) than that in wheat 
yield (10%). This suggests that in a cyclic strategy involving sodic water, pre-
sowing irrigation of cotton should be performed with good-quality canal water to 
ensure higher yields. However, if canal water is not available at the time of planting 
cotton crop, sustainable seed-cotton yields can also be achieved even with pre-
sowing irrigation with sodic water, provided the deterioration in soil properties is 
prevented (ESP £ 10 in the root zone) by applying CW irrigation later (Table 3).

Winter crops like wheat and sunflower can be grown reasonably well even with 
pre-sowing irrigation using sodic water. These crops responded to the total proportion 

Table 3 Effect of cyclic use of sodic and canal water on crop yields (Mg ha−1) under various crops 
and cropping systems

Rice–wheata Cotton–wheat b Cotton–Sunflower b

IrrigationTreatments Rice Wheat Cotton Wheat Sunflower

Canal water (CW) 6.78 5.43 1.32 5.20 3.28
Sodic water (SW)c 4.17 3.08 0.95 4.43 2.55
2CW:SWd 6.67 5.22 1.26 5.10 2.99
CW:SW 6.30 5.72 1.21 4.95 2.88
CW:2SW 5.72 4.85 1.15 4.70 2.67
SW:2CW 1.22 4.82 3.01
SW:CW 1.08 4.70 2.80
2SW:CW 1.02 4.75 2.69
LSD (p = 0.05) 0.60 0.50 0.18 0.21 0.22
a1981–1985;
b1996–2002;
c RSC > 5 mmol

c
 L−1

d Cyclic use of two irrigations with canal water followed by one with sodic water
(Source: Bajwa and Josan, 1989c; Choudhary et al. 2006b; Choudhary and Ghuman, 2008)
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of sodic water applied rather than the order of sodic water and canal water used in a 
cyclic strategy (Choudhary et al. 2006b; Choudhary and Ghuman 2008) (Table 3). 
These results are of considerable agronomic significance when canal water supplies 
progressively decrease from the head reach to the tail reach in a canal command 
(Tyagi 2003) and are not available at the time of sowing of a crop. The water deficien-
cies coupled with decreasing water quality from head to tail reaches calls for spatial 
re-allocation of canal water to facilitate pre-irrigation and conjunctive use options 
using good quality canal water. It will help sustain crop productivity and raise the 
farm income of the beleaguered farmers at the tail end in most of the arid regions. 
Furthermore, occasional application of farmyard manure and gypsum in combination 
with alternate irrigation with saline-sodic (SAR > 10, RSC >2.5 mmol

c
 L−1) and fresh 

water in cyclic manner could effectively reclaim saline-sodic soils following rice–
wheat crop rotation (Murtaza et al. 2009). The proposed strategy offers the additional 
advantage of integrated water resources management by using low quality water for 
soil reclamation while saving better-quality water for producing high-value crops.

Higher proportions of sodic water used in blending/cycle can also degrade the 
quality of the harvested product. Examples include a reduction in potato grade and 
weight loss during storage as well as the smaller seeds and lower oil content in the 
case of sunflower (Chauhan et al. 2007).

3.6  Irrigation Intervals

A general recommendation under saline and sodic soil conditions is to apply light 
and frequent irrigations to overcome the adverse effects of soluble salts on plants 
and poor hydraulic properties on soils. Sharma (2008) reported that frequent yet 
light irrigations of saline water are beneficial in that these would minimize the 
quantities of total water and salts applied. However, under arid conditions, higher 
transpiration rates from wetter soils kept closer to field capacity due to frequent, 
saline irrigations may lead to increased salinity in the soil solution (1.5–2.0 folds), 
thereby taking away the benefits of higher irrigation frequency (Minhas 1996; 
Bajwa et al. 1998; Choudhary 2003).

In a long-term study, Bajwa et al. (1993) reported that crop responses to shorter 
irrigation intervals under involving sodic and saline-sodic waters depended upon 
the season in which crop was grown (through moderating soil temperature) and its 
relative salt and Na tolerance.

3.7  Method of Irrigation

The distribution of water and salts vary with the method of irrigation. The method 
adopted should create and maintain favorable salt and water regimes in the 
root zone so that water is readily available to plants without affecting growth and 
yield. Surface irrigation methods such as border strips, check basins and furrow are 
the oldest and most commonly practiced in India. For saline water irrigated soils, 
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the furrow irrigation and bed planting system was better than conventional planting 
in cotton-wheat and pearl millet-wheat rotations (Sharma 2008). Adoption of mea-
sures for better intake of rainwater (tillage to open up soil) and its conservation in 
soil via checking unproductive evaporation losses (soil/straw mulching) is recom-
mended during monsoon season

Surface irrigation methods generally result in excessive irrigation and non-uni-
formity in water application. Consequently the on-farm irrigation efficiency is low 
(60–70%). High energy pressurized irrigation methods such as sprinkler and drip 
are typically more efficient as the quantity of water to be applied can be adequately 
controlled, unlike surface irrigation systems. Sprinklers help distribute water uni-
formly even on undulating soils and those with variable infiltration rates due to soil 
type variability. Sprinklers also increase the efficiency of salt leaching (Minhas and 
Gupta 1992). Saline water use through sprinklers, however, may cause leaf burn 
due to accumulation of toxic quantities of salt. This is particularly true for sensitive 
crops that exhibit high rates of foliar salt absorption during periods of high evapora-
tive demand. Water use efficiency, although decreased with salinity, was higher 
when applied by using the sprinkler than by surface.

Drip irrigation has revolutionized the production of some high value crops and 
orchards in countries like Israel using saline water. Because regular and frequent 
water applications are possible with drip irrigation, crops have performed better 
using this system as opposed to others because a lower soil-water salinity is main-
tained near the drip emitter where root density is high (Kahlon et al. 2004; Rajak 
et al. 2006). Hence the drip system seems to be the best method for irrigation using 
saline/sodic waters because it avoids leaf wetting and injury to plants and maintains 
optimum conditions for water uptake by roots. Drip irrigated crops have also been 
found to show higher water uptake by their roots resulting in higher water use effi-
ciency and yield of vegetables. Recently while using waters having high residual 
alkalinity for irrigating tomatoes, Choudhary et al. (2010) reported superiority of 
drip over furrow irrigation in terms of yield, size and quality of fruits.

Drip irrigation has some disadvantages too. For example clogging of drippers 
can occur due to salt precipitation. This requires periodic acidification of the irriga-
tion water. In addition, not much advantage of drip irrigation was observed for 
crops grown during hot summers having high evaporative demands with excessive 
loss of water from the wetted surface. Accumulated salts cause difficulties in the 
planting of subsequent crops because leaching of salts are often required using 
flood or sprinkler irrigation.

4  Social Aspects and Cost of Sustaining Irrigation  
with Saline and Sodic Waters

Several water quality issues pose similar challenges to water resource managers. 
Agricultural drainage water containing salts and other constituents must be 
 disposed, reused, evaporated in ways that support irrigated agriculture without 
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harming the environment. In many areas, the salts in drainage water by one region 
degrade the quality of water downstream. Such problems can occur within or 
between political jurisdictions. The problem caused by selenium in drainage water 
in California pertain largely to that state, while the salt load in drainage water from 
Arizona’s Welton-Mohawk district degrades water quality in California and 
Mexico. Public officials have been working for many years on irrigation and drain-
age issues that involve interaction among farmers, districts, and states.

The main question ‘Is irrigation sustainable’. The answer to this question is 
clear-cut yes, but the society must be ‘willing to pay the price’ (Clemings 1996). 
The science and technology of managing saline and sodic waters have been studied 
for many years. Technology is available to sustain crop production using these 
waters in most of the arid and semi-arid regions. However, the cost of sustaining 
crop production will vary among regions and over time with public preferences. 
This cost will vary according to resource endowments, economic development of a 
region and social preferences.

In many areas, complex water quality problems must be solved to sustain irriga-
tion over decades and longer. The concentration of naturally occurring elements 
(selenium, arsenic and boron) must be reduced in agricultural drainage water to 
protect the quality of groundwater and surface water. Farmers can reuse drainage 
water, rather than discharging it to public water ways. Farmers can blend drainage 
water with fresh water supplies or use it in conjunction with fresh water irrigations 
(Grattan and Oster 2003). A combination of strategies may be the best solution.

It is reasonable to wonder why so many irrigation schemes are characterized by 
salinity, water logging and persistent groundwater draft when harmful impact of 
these problems have been understood for years (van Schilfgaarde 1994). The pri-
mary reason is the fundamental disconnect between public or social objectives and 
farm level goals with regard to irrigation (Knapp 1999). Furthermore, many pub-
licly funded irrigation schemes have been formulated to generate regional eco-
nomic activity without looking at impacts these can have particularly in the regions 
having canal network and brackish groundwater.

Irrigation with saline and sodic waters can only be sustainable if salts and drain-
age water are adequately removed from the underground environment and managed 
to minimize environmental damage. In Indian Punjab, installation of a large number 
of shallow tube wells in central parts is causing withdrawals that exceed the 
recharge rate in that region. With this continued practice, there is danger of deterio-
rating ground water quality and quantity. In the North Western region of India 
where in some places salinity coexists with water logging, sub-surface drainage is 
often required to reclaim the salinized area. In that case, the cost of installing sub-
surface drainage should be added to the cost of reclamation. Nevertheless, such 
awareness should help farmers and policy makers decide whether to persist with 
irrigated agriculture or not. The other possibility is to evaluate the feasibility of 
saline aquaculture in such areas (Sehgal et al. 2000).

Wichelns and Oster (2006) summarized the future of sustainable irrigation and 
posed challenges to public officials and researchers in twenty-first century: (1) 
continue to support yield-enhancing agricultural technologies and methods to 
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 mitigate the environmental impacts of irrigated agriculture, (2) continue to reform 
policies that fail to encourage efficient use of scarce resources, (3) continue to 
inform public officials about the potential implications of policy decision that influ-
ence farm-level strategies, and (4) provide policy recommendations based on good 
science and a meaningful understanding of farm-level goals, opportunities, and 
constraints, and of the environmental impacts of irrigation.

5  Conclusion

Saline and sodic ground waters constitute an important resource in water scarce 
arid and semi-arid regions. Production of more food, feed, energy and fiber for the 
world’s expanding population will depend on further exploitation of these low qual-
ity waters in irrigated agriculture. Improper use of poor quality waters can pose 
grave risks to soil chemical and physical quality and the environment. For safe use 
of saline and sodic waters on sustainable basis, options include the management of 
crop/cultivars, irrigation water, chemical and organic amendments, soil fertility 
management, and need to be considered in an integrated manner. In future, under-
standing the process of salt tolerance and its improvement through genetic engi-
neering is the most likely means of propagating crop cultivation with these waters. 
Modifications in canal water deliveries for facilitating presowing irrigation in the 
afflicted areas have a potential to enhance the use of these low quality waters. Cost 
of sustaining crop production using these waters will vary among regions according 
to resource endowments, economic development and social preferences.
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Abstract Climate change represents a significant threat to global biodiversity and 
ecosystem integrity. Climate change is expected to have also impacts on forest ecol-
ogy. It is thus important to make assessments of possible impacts of climate change 
on forests in different regions to allow respective governments and communities 
to adapt. Climate change is projected to affect individual organisms, populations, 
species distributions and ecosystem composition and functions. This impact can be 
both direct by temperature increases, precipitation and sea level changes, and indi-
rect, for instance by changing the intensity and frequency of wild fires. Processes 
such as habitat loss, modification and fragmentation and the spread of non-native 
species will result from the impacts of climate change. India has 14 major forest 
types classified based on climate and altitude. 72% of forests are tropical moist 
deciduous, dry deciduous and evergreen forests. The major scenario of climate 
change in India is deduced from greenhouse gas increase. This scenario forecasts 
a general increase in temperature and rainfall in all regions. This could result in 
increased productivity and shift forest type boundaries along altitudinal and rainfall 
gradients, with species migrating from lower to higher elevations and the drier for-
est types being transformed into moister types. Thus, climate change could cause 
irreversible damage to unique forest ecosystems and biodiversity, rendering several 
species extinct, locally and globally.

Studies of ecological changes and sea level rise should be done to provide con-
tinuous inputs for necessary management intervention. Sustainable development of 
local communities, effective management of natural resources with concerns for 
conserving biodiversity, and rehabilitation of degraded ecosystems in the context of 
climate change phenomenon are all closely associated with one another. Forest plan-
ning and development programmes have to be based on traditional knowledge and 
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ensure people’s participation to appropriately adopt various policy and management 
practices to minimize the adverse impacts and vulnerability to climate change.

Keywords Indian forest • Tropical forest • Climate change • Biodiversity • Butterfly  
• Birds • Tree line migration • Invasion • Phenology • Greenhouse gas • Temperature

1  Introduction

Global biodiversity is changing at an unprecedented rate as a complex response to 
several human-induced changes in the global environment (Sala et al. 2000). 
Biological diversity is generally taken to mean the combination of genetic varia-
tion, species richness and taxonomic diversity, and ecosystem diversity (IUCN/
UNEP/WWF 1991). Landscape diversity is often added to the definition (Noss and 
Cooperrider 1994; Markham 1996).

Biodiversity at all levels is currently being lost at an unprecedented rate. Just one 
measure of this loss is the rate of species extinctions. Background extinction rates 
through geological time have been roughly estimated at the rate of one mammal 
and two birds every 400 year (Groombridge 1992; Markham 1996). Documented 
extinctions for the last 400 year already include 58 mammals and 115 birds (WRI 
1994; Markham 1996). This is undoubtedly a major underestimate. Highest levels 
of biodiversity are in the tropics, particularly the tropical forests, and estimates for 
the total number of species range between 5 and 30 million, less than two million 
of which have been described (Wilson 1988; Markham 1996). The top end of this 
range is based largely on estimates of insect species richness in tropical forests. 
Current rates of extinction from the tropical forest biome alone have been estimated 
as between 1% and 11% per decade’ (Groombridge 1992; Markham 1996).

In fact, ecologists are becoming increasingly concerned with maintaining diver-
sity at all levels, from phenotype to community patchiness and landscape heteroge-
neity. In aiming to reduce the impacts of climate change, a greater understanding of 
the role of biological diversity in ecosystem functioning will be required (Walker 
1992; Markham 1996). Human-induced climate change adds another layer to the 
already complex interplay of forces, natural and anthropogenic, that shape the natu-
ral world. Nature has long been regarded as stable, or constant in its make-up. It is, 
in fact, highly dynamic, with most ecosystems being in some form of transient state, 
albeit on a range of time scales. The need to prepare for adaptation to climate change 
is highlighting this issue for the scientific community and the public at large. Current 
attempts to understand the importance and functioning of biological diversity and 
the influence of climate change are hampered by ongoing environmental degrada-
tion. Principal causes of biodiversity loss worldwide include habitat destruction, 
pollution, invasive species, and overexploitation of resources such as fisheries and 
forests. High amongst the driving forces behind these problems are demographic 
change and population growth, inequitable consumption patterns, inefficient energy 
use and commodity trade structures. The net result of these many stresses is a loss 
of biological diversity (Markham 1996). In recent years, biologists have begun to 
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shift their attention from species-based conservation approaches towards strategies 
that are centered upon the maintenance of the full range of undiminished ecosystem 
processes and biological diversity (Agardy 1994; Markham 1996).

The ability of ecosystems to respond to and recover from disturbance is termed 
as resilience, and there is considerable evidence that species diversity strengthens 
resilience, especially where redundancy or overlap in functional groups of species 
within ecosystems exists (Tilman and Downing 1994; Markham 1996). Where 
several species are able to perform the same functions in an ecosystem, they will 
exhibit different tolerances to disturbance. This redundancy provides a buffer 
against change (Walker 1995; Markham 1996). Loss of biodiversity, therefore, will 
most likely reduce ecological resilience and ability to adapt to climate change. The 
maintenance of biological diversity, redundancy and resilience is vital for the miti-
gation of global climate change impacts (Markham 1996).

Several ecological changes have been linked to regional climate change. These 
changes have occurred at all levels of ecological organization: population and life-
history changes, shifts in geographic range, changes in species composition of 
communities and changes in the structure and functioning of ecosystems. There 
have been changes in the types, intensity and frequency of disturbances that are 
influenced by regional climatic factors, either anthropogenic or natural, and land-
use practices, and these in turn affect the productivity of and species composition 
within an ecosystem, particularly at high latitudes and high altitudes (IPCC 2001; 
TERI 2002). Frequency of pest and disease outbreaks has also changed, especially 
in forested ecosystems. The types of terrestrial ecological impacts and evidence of 
their occurrence from other parts of the world are given below.

2  Ecological Impacts of Climate Change

2.1  Species’ Range Shifts

Most species’ ranges are regulated by climatic factors. This is particularly true for 
certain taxa such as insects and amphibians. Studies have shown that there have 
been range shifts in a number of species. It has been shown that of 35 non-migra-
tory butterflies in Europe, 63% have demonstrated a range shift to the north by 
35–240 km in the past century, while only 3% have shifted to the south (Parmesan 
et al. 1999; TERI 2002).

Parallel studies with breeding birds in Britain have indicated that there has been 
a northward shift in the margins of species’ ranges by an average of 18.9 km over 
the past 20 years. The investigators attribute this shift to climate change for a 
number of reasons; recent changes in the timing and success of bird reproduction 
are associated with warmer springs; the overall spatial distribution of British birds 
is correlated with temperature; summer temperature is a significant predictor 
of breeding distribution of 45% bird species; and the observed range shifts 
have occurred during a period of climate warming (Thomas and Lennon 1999; 
TERI 2002).
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Researchers have found that in 26 sites surveyed in the Swiss Alps, the relation-
ship between species richness and elevation showed a pronounced shift to higher 
elevations over the past 40–90 years, consistent with the effects of warming. The 
rate of upward shift was estimated to be 1–4m per decade (McCarty 2001; TERI 
2002). Studies have also found dieback in mountain trees that are consistent with 
the effects of climatic warming (McCarty 2001; TERI 2002).

2.2  Tree Line Migration

Tree line is defined as the elevation (in meters above sea level) of the uppermost 
individual of any tree species with a minimum height of 2 m. The 2 m criterion 
implies that individuals are not entirely snow covered and thus they record the free-
air climate all year-round at a level above ground that is equivalent to standard 
meteorological screens (Kullman 2001; TERI 2002). There are two types of 
changes that have been observed at the tree line: phenotypic change and genotypic 
change. The former is where trees at their limits grow bigger and taller and the lat-
ter is where newly established genetic individuals grow to tree size at ever higher 
elevations during periods of ameliorating climate.

Researchers have found that in the Southern Scandese mountains of Sweden, 
tree-limit has risen by more than 100m and forest expansion into alpine tundra, 
stand out as unexpected and virtually unpredicted anomalies given regional geoeco-
logical trends since the Holocene (Kullman 2001; TERI 2002). They surmise that 
for the twentieth century, tree-limits in this region may be higher and climate 
warmer than for any other century during the past 4,000 years. At the southern and 
eastern periphery of the Scandes, many mountains with a previously unforested 
alpine summit area have become entirely covered with birch/conifer stands. 
Previous alpine tundra, subalpine meadows and heaths in the area have been con-
verted into a complex mosaic of tundra and more or less dense tree stands with 
even-aged young stems and a few larger trees from the nineteenth century or earlier 
(Kullman 2001; TERI 2002).

2.3  Community Composition Change

Broad patterns of terrestrial vegetation types are determined by a combination of 
temperature and precipitation (IPCC 1996). Examples of climate-driven changes 
in community composition include the shift from arid grasslands to desert shrub 
land in the South-western United States. The shift has been attributed to changes 
in precipitation patterns, and is accompanied by the local extinction of several 
formerly abundant animal species (McCarty 2001; TERI 2002).

In the short grass steppes of Colorado, United States it has been found that there 
has been a significant decline in the net primary productivity of the dominant native 
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grass Bouteloua gracilis. This decline in productivity is correlated with a rapid 
increase in temperature in the area. Broadleaved plants in turn have shown a significant 
increase in productivity and abundance in the area (McCarty 2001; TERI 2002).

2.4  Invasion of Exotics

With climate change, non-native species from adjacent areas may cross frontiers 
and become new elements of the biota. While human activities result in long 
distance species’ movements, subsequent reproduction and spread in a new loca-
tion could imply a change in site conditions that lead to a more favorable situa-
tion for the invading species, possibly due to climate change (Walther et al. 
2002; TERI 2002). Clear evidence of a climate trigger appears in cases where a 
suite of species with different histories of introduction spread en masse during 
periods of climatic alteration. In some sub-Antarctic islands, for instance, it is 
estimated that introduced species account for 50% or more of the higher plant 
diversity and a considerable proportion of the insect and mite fauna. In southern 
Switzerland it has been observed that there has been a vegetation shift from 
indigenous deciduous to exotic broad-leaved vegetation. The shrub layer is 
dominated by the exotics which appear to benefit from the milder winters 
(Walther et al. 2002; TERI 2002).

2.5  Changes in Phenology

Changes in the phenology of plants and animals are perhaps the most obvious and 
well studied ecological impacts of climate change. For instance, the spawning and 
pond arrival time of amphibians in temperate countries have been shown to happen 
earlier at the rate of about 9–10 days per 1°C increase in temperature (Beebee 
1995; TERI 2002). In the southern Scandese, during 1997 and 1998, birches near 
the tree limit displayed annual shoots with a length of 20–30 cm i.e. about three 
times greater than the normal value for these sites (Kullman 2001; TERI 2002).

Similar growth progression is demonstrated at some sites close to the birch 
tree limit where Salix spp. in some cases have reached tree-size during the past 
few years (Kullman 2001; TERI 2002). Analysis of over 30 years of data in 
Europe has revealed that leaf unfolding has advanced by 6 days and autumnal 
events such as leaf coloring have been delayed by 4.8 days. This implies that the 
average annual growing season has lengthened by 10.8 days since the early 1960s 
(Menzel and Fabian 1999; TERI 2002). Satellite data also indicates an increase 
in photosynthetic activity of terrestrial vegetation between 1981 and 1991 in 
northern high latitude areas (450–700N) (Myneni et al. 1997; TERI 2002).

Hence, the major ecological changes liked to climate change include species 
range shifts, tree line migration, community composition change, invasion of exot-
ics and changes in phenology.
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3  Climate Change and Forests

These ecosystem changes also have serious implications for the livelihoods of 
human communities. In addition to their crucial ecological role, forests make a 
considerable contribution to the Indian economy. In 1999–00, forestry and log-
ging accounted for nearly 1.10% of GDP at current prices (CSO 2000; TERI 
2002). Moreover, non-timber forest products provide about 40% of total official 
forest revenues and 55% of forest based employment. Nearly 55 million people 
living in and around forests in India depend upon non-timber forest products as a 
critical component for their sustenance (TERI 1998; TERI 2002).

Climate change can be expected to have significant impacts on forest ecology 
(including biodiversity), forest distribution and productivity (Krisehbaum et al. 
1996; Ravindranath and Sukumar 1998). The projected impacts of climate change 
on forests also have implications for forest product flows and trade and forest 
management (Solomon et al. 1996; Ravindranath and Sukumar 1998). In this con-
text, it is important to make assessments of likely impacts of climate change on 
forests in different countries and regions to allow respective governments and 
communities to adapt to these impacts. Such assessments are all the more impor-
tant in tropical countries in which the local communities depend significantly on 
forests for their livelihoods and where rates of deforestation are high (Ravindranath 
and Sukumar 1998).

Forests have significant ecological and economic role for Indian populace. 
Climate change is expected to have severe implications for forest ecology so it is 
important to assess the impacts of climate change on forests so as to allow the popu-
lation and governments to devise suitable mitigation strategies.

4  Indian Forest Types and Area

India has a geographical area of 328 Mha, of which 64 Mha are under forest (>10% 
tree cover). The altitudinal distribution of geographic and forest area (FSI 1988) 
shows that 78% of geographic and 66% of forest area is at altitudes less than 600m 
above sea level (asl). Only 37% and 20% of geographic area is under forests in the 
altitudinal range of 600–1,800, and 1,800–4,000 m asl, respectively (Ravindranath 
and Sukumar 1998).

The forests of India are broadly classified in to 14 major types (FSI 1988), based 
on climate and altitude. Table 2 gives the major Indian forest types. Of these, the 
tropical forests occupy 51 Mha, or 80% of the forested area. In particular, the 
 tropical moist deciduous and dry deciduous forests are extensive and account for 
64% of the total forest area. Tropical, wet evergreen forest is also significant with 
8% of the total forest area (Ravindranath and Sukumar 1998).
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4.1  Potential Impacts of Climate Change on Vegetation

Climate change is expected to make impacts on boundaries of forest types and 
areas, primary productivity, species populations and migration, occurrence of pests 
and disease, and forest regeneration. There are two models which have been used 
to assess the impacts of climate change on vegetation on a global scale: (i) The 
BIOME model (Prentice et al. 1992; Ravindranath and Sukumar 1998) is an equi-
librium model which defines a set of plant functional types characterized by mini-
mal sets of climate thresholds.

Solomon et al. (1993) and Ravindranath and Sukumar (1998), using BIOME 
and different future climate scenarios under doubling of CO

2
 projects the area 

under tropical forests to expand in the range of 11–16% depending on the climate 
model used, (ii) the IMAGE model (IMAGE 2.0, Alcamo 1994; Ravindranath and 
Sukumar 1998) goes further by incorporating the BIOME vegetation classification 
into a model of interacting human population, land –use, vegetation, and climate. 
Its application is most useful where land use changes are important. Using 
IMAGE, Zuidema et al. (1994) projected the area under tropical forests to decline 
by 24% by 2020 and 48% by 2050, compared to the 1990 area (Ravindranath and 
Sukumar 1998).

When annual forest productivity is considered, according to one study (Melillo 
et al. 1995; Ravindranath and Sukumar 1998) the annual growth is likely to increase 
in all zones due to fertilization effect from increasing atmospheric CO

2
 and increase 

in water use efficiency. Conversely, forests may also suffer growth losses from effects 
of increasing climate stress on growth, from increased stress induced mortality and 
other factors (Solomon and Leemans 1990; Ravindranath and Sukumar 1998).

Paleo-vegetation and climate data are one means of understanding how natural 
vegetation is likely to respond to future climate change. Pollen analytical studies in 
the Western Ghats (Vasanthy 1988; Caratini et al. 1991; Ravindranath and Sukumar 
1998) and stable arbon isotope analysis of peats dated upto about 20,000 year BP 
(Sukumar et al. 1993, 1995; Ravindranath and Sukumar 1998) are the main sources 
of information. However, rigorous data needed to analyze climate change impacts 
on the tropical forest regions of the sub-continent are as yet not available 
(Ravindranath and Sukumar 1998).

5  Projected Changes in Climate over India and Impact 
on Forests

Any assessment of the potential impacts of climate change on forests requires a 
climate change model and a vegetation change model. While the former projec-
tions can be obtained from the several General Circulation Models in use  currently, 
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the latter – which links climate with vegetation such as BIOME and IMAGE – 
have limitations when applied to India. Due to inadequate climatic data sets for the 
Western Ghats in southern India, BIOME fails to adequately discriminate between 
the diverse natural vegetation types here. IMAGE makes unrealistic projections of 
forest cover change in the country. This restricts us to make qualitative statements 
about climate change impacts on forest types in India (Ravindranath and Sukumar 
1998).

Assessments of regional changes in climate parameters are more important than 
the global mean changes; further seasonal changes are of consequence as compared 
to the mean annual changes. The commonly considered scenario of climate change 
in India is based on green house gas increase. It is therefore important to speculate 
on the possible impact on forests in the country based on this scenario (Ravindranath 
and Sukumar 1998).

6  Climate Change Under Greenhouse Gas Forcing

The climate parameters used in this scenario are largely based on projections made 
by Hulme and Viner (1995) for the 2060s. The method used by them has three 
components: (a) an observed climatology based on Legates and Willmott (1990) 
at an original resolution of 0.5 latitude/longitude which has been reduced to 2.5 
latitude by 3.75 longitude (b) a simple upwelling-diffusion energy balance model 
for the Assessment of Greenhouse Gas Induced Climate Change (or MAGICC, 
Wigley 1994) and (c) a coupled ocean-atmosphere General Circulation Model of 
the Hadley Centre (U.K. Meteorological Office (Murphy 1995; Murphy and 
Mitchell 1995). The scenario construction is flexible enough to handle uncertainty 
both in future greenhouse gas emissions and also in the value of climate sensitiv-
ity. The projections of Hulme and Viner (1995) are given in Table 1. The param-
eters considered are changes in temperature, rainfall, length of dry season, soil 
moisture and interannual variation in rainfall. The projections considered are for 
southern, central, northwestern and northeastern zones of India (Ravindranath and 
Sukumar 1998).

6.1  Temperature

The southern peninsular India is projected to experience relatively moderate 
increases of 2.0–2.5°C in winter (DJF; December, January, February), 3.0–3.5°C 
during early summer (MAM; March, April, May) and 0.5–1.0°C during the sum-
mer monsoon (JJA; June, July, August) season. Central and northern India may 
experience warming in the region of 3.0–3.5°C during all seasons (Ravindranath 
and Sukumar 1998).
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6.2  Rainfall

The Indian subcontinent is dominated by southwest (June to September) and north-
east October to December) monsoonal rains. According to projections for the 
Southwest monsoon season, rainfall will generally increase in the southern (10–30%), 
central (50–70%) and northeast (10–30%) regions. During the Northeast monsoon 
season, rainfall is projected to increase by 50–70% in southern India, where this is of 
significance. Projected increases in other parts of the country are probably not of 
much consequence during this period. Thus, the rainfall is generally expected to 
increase in the Southwest as well as Northeast monsoons though at varying intensities 
(Ravindranath and Sukumar 1998).

6.3  Length of Dry Season

The dry season length (defined as number of months with less than either 50 or 100 
mm rainfall) is generally expected to decline over central India, but increase in parts 
of southern India. In other regions there is no significant change.

6.4  Soil Moisture

Soil moisture is crucial for a range of ecological processes such as seed germina-
tion, natural regeneration, growth rates of plants and decomposition rates. Soil 
moisture is projected to increase marginally by 15–25% over parts of southern and 
central India. This increase is confined to the monsoon months of June through 
November. During the rest of the year there is either no change in soil moisture or 
a marginal decline, even though rainfall is expected to increase by 30–50%. This 
could possibly be due to the increase in temperature leading to enhanced evapo-
transpiration (Ravindranath and Sukumar 1998).

6.5  Interannual Variablility

Changes in interannual variability of rainfall are important for a wide range of 
biological and hydrological processes. The interannual variability for the Indian 
subcontinent is projected to decline is some regions and experiences no change in 
others (Ravindranath and Sukumar 1998).

Hence under green house gas forcing scenario a general increase in temperature 
and rainfall in all regions is indicated. This could potentially result in increased 
productivity and shift forest type boundaries along altitudinal and rainfall gradients, 
with species migrating from lower to higher elevations and the drier forest types 
being transformed to moister types.
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7  Potential Impacts of Climate Change on Forests Under 
Hulme and Viner (1995) Scenario

7.1  Southern Indian forests

The forests in southern India are mainly in two distinctive belts, one along the 
Western Ghats and the other along the Eastern Ghats. The former tract is biologi-
cally more diverse and has been much more extensively studied than the latter. The 
Western Ghats rise to over 2,000 m asl and their complex topography contributes 
to a wide spectrum of tropical vegetation types, from wet evergreen forest along the 
western slopes receiving high rainfall (typically greater than 2,000 mm/annum) and 
montane stunted evergreen forest and grassland (at altitudes higher than 1,800 m 
above mean sea level) through semievergreen, moist deciduous, deciduous and dry 
thorn forest in areas of lower rainfall to the east of the ghats (Ravindranath and 
Sukumar 1998). Increased temperatures of 2.0–3.5°C during winter and summer 
would potentially stress vegetation through increased evapo-transpiration. The 
increased rainfall, however, coupled with elevated CO

2,
 increasing water use effi-

ciency, could compensate for this loss. In the balance, the marginal increase in soil 
moisture projected for this region could result in increased productivity in all forest 
types. Further a shift in vegetation type boundaries could be expected along a west-
east gradient with moist forest types expanding farther east and along an altitudinal 
gradient, with species adapted to the warmer, lower elevations migrating to higher 
altitudes. An increase in dry season length could also place forest types such as dry 
and moist deciduous forests at increased risk of dry season fires (Ravindranath and 
Sukumar 1998).

The montane regions of the Western Ghats featuring a mixture of stunted ever-
green forest and grasslands with sharp ecotones are a sensitive indicator of the past 
climate change (Sukumar et al. 1993, 1995).

The montane regions (higher than 2,000 m asl) of the Western Ghats in southern 
India feature stunted evergreen forests interspersed with grasslands. The forests are 
largely confined to the sheltered folds of the mountains and stream courses, while the 
grasslands cover the hill slopes (Sukumar et al. 1995). The forests comprise of C3 
plant types which include most dicotyledonous plants and temperate grasses while the 
grasslands have C3 or C4 plant types that comprise mainly of the tropical grasses.

The vegetational history of this ecosystem in relation to climate change during 
the late Quaternary through stable-carbon isotope analysis of peat deposits as indi-
cators of C3 or C4 plant types was studied. It was found that the grasslands of C4 
type were predominant during the last glacial maximum [20–18, thousand years 
before present (Kyr BP)] and again during 6–3.5 Kyr BP as a result of lower rainfall 
and possibly CO

2
 levels. These periods were characterized by low atmospheric CO

2
 

levels (Robinson 1994; Sukumar et al. 1995), lower mean temperatures and low 
rainfall over the Indian subcontinent. While forests and possibly C3 grasslands 
expanded during the deglaciation, attaining their peak distribution at 10 Kyr BP. 
This period was characterized by higher global CO

2
 levels (Robinson 1994; 
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Sukumar et al. 1995), higher temperature and higher precipitation from the Indian 
summer monsoon.

The shift in C3 and C4 plant types seems related to change in moisture and 
atmospheric CO

2
 with lower moisture and CO

2
 levels favoring the latter plant 

types. The oscillating climate and vegetation has influenced the structure and 
composition of the montane ecosystem. It is therefore important to study the 
implications of climate change on the tropical montane ecosystem. Over the 
next few decades, mean temperatures in the tropics are expected to increase by 
at least 1–2°C as a result of increase in atmospheric CO

2
, methane and other 

green-house gases (IPCC 1992; Sukumar et al. 1995). General Circulation 
models predict an intensification of the Indian summer monsoon as a conse-
quence of the increased temperature (Hulme and Viner 1995) which is consis-
tent with the palaeoclimate record. These climatic changes can be expected to 
favor the expansion of C3 vegetation over C4 vegetation for several reasons. 
Higher CO

2
 levels would enhance photosynthesis rates in C3 plants to a greater 

extent than in C4 plants. Higher temperatures would lower the incidence of 
frost and promote the survival of C3 forest plants. Higher precipitation and soil 
moisture would favor the growth of C3 plants. Thus, the montane evergreen 
forest can be expected to expand into the grasslands while C3 grasses and herbs 
could potentially replace C4 grasses in the grasslands (Heaney 1991; Sukumar 
et al. 1995).

The human impact on the natural vegetation such as conversion of grasslands to 
monoculture plantations of wattle and eucalyptus may, however, interfere with 
natural succession caused by global climate change. Endemic mammals such as the 
Nilgiri tahr would face increased risk of extinction due to reduction in area under 
natural grassland (Sukumar et al. 1995).

7.2  Coastal areas

Mangrove forests are an important constituent of coastal wetlands. On account of 
their unique location between sea and land, they are greatly influenced by tidal and 
fresh water regimes, and hence are fragile in nature (Jagtap et al. 2004).

Logging operation, aquaculture, reclamation of swamps, paddy cultivation on 
the east coast of India and salt production on the west coast are the main reasons 
for degradation, resulting into shrinking of tidal forests throughout the Indian coast 
(Singh 2000; Singh 2003). Among various types of coastal wetlands, tidal mudflats 
(23,620 km2) and mangroves (4,871 km2) have major share. India harbors some of 
the best mangroves in the world which are located in the alluvial deltas of rivers 
such as the Ganga, the Mahanadi, the Godavari, the Krishna and the Cauvery as 
well as on the Andaman and Nicobar groups of Islands (Singh 2000; Singh 2003). 
Over a dozen Marine Protected Areas in India cover over half of the total  mangroves 
of the country. Out of eight states and union territories which support mangroves, 
West Bengal (2,115 km2), Gujarat (1,031 km2), Andaman and Nicobar Islands (966 
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km2), Andhra Pradesh (397 km2), Orissa (215 km2) have maximum areas of 
 mangroves (FSI 1999; Singh 2003).

The climate, salinity, tidal fluctuation, substrate or soil, and wind velocity are 
major factors which determine extent and type of tidal forest. Climatic factors like 
temperature fluctuation, humidity, precipitation, number of rainy days, regular 
wind flow, radiation and fresh water flow in the region act as the most significant 
factors for development and succession of mangroves (Singh 2003).

The concentration of green house gases and aerosols has increased by nearly 
31% during last millennium which may further increase in the current century at 
faster rate. Global temperature rise is expected between 1.4°C and 5.8°C by 2100 
which is higher than increase during last century. Similarly continental precipita-
tion increased by 5–10% over the twentieth century in the Northern Hemisphere, 
although decrease is also recorded in some regions (IPCC 2001). Global mean sea 
level has also increased and projected a much higher rate in twentieth century 
(Singh 2003).

Impact on highly diverse and productive ecosystems such as mangrove forests 
will depend upon the rate of sea level rise relative to growth rates and sediments 
supply, space for and obstacle to horizontal migration, changes in climate-ocean 
environment. Sea level rise will affect mangroves by eliminating or modifying their 
present habitats and creating new tidally inundated areas to which some mangrove 
species may shift (IPCC 2001; Singh 2003).

A study by Ellison and Stoddart 1991 predicted that in case of scenario of rela-
tive sea level rise of 9–12 cm/100 years the mangroves not receiving significant 
levels of sediment input will be stressed, and at rates of sea level rise greater than 
12 cm/century will begin to retreat.

Most predictions suggest that future rises in relative sea level will be of the order 
of 100–200 cm/100 years. If this projection becomes reality, mangroves of the 
world may suffer serious loss and majority of the species may fail to adapt new 
environment. The extensive mangrove systems of the Sundarbans in the Bay of 
Bengal are examples of river dominated systems where relative sea level may rise 
less owing to the influx of large amount of silt.

Scenario of overall impact would be different on islands where mangroves are 
already restricted in area by coastal topography and tidal amplitude. Mangroves in 
these areas, especially in Andaman and Nicobar Islands may come under stress or 
may not persist in moderate to high rate of sea level rise. As about 260 km of the 
coast of Andaman and Nicobar Islands are lined with mangroves and they have 
restricted scope of adjustment in response to sea level rise, the impact of climate 
change on extent and species composition of mangroves may be devastative when 
sea level rise exceed about 10 cm/100 years (Singh 2003).

Considering sea level rise, the mangroves from Kasargod Taluka (Kerala, India), 
were evaluated for their structure, composition and likely impacts of predicted  climate 
variation. The mangrove cover in Kerala, though sparse, is relatively better represented 
in the Kasargad Taluka. Patchy and fringing type of vegetation could be attributed to 
the microtidal nature, relatively steep topography of the coast. About −0.45 km sup (2) 
of mangrove area was estimated from the study region. The flora was represented by 
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seven spp and dominated by Avicennia officinalis. The stand density varied from 
276–583 nos. ha sup (−1) with relatively high (720 nos. ha sup (−1)) towards the 
upstream regions of kayals and backwaters. Substratum mainly composed of sand 
(37.7–95.9%) with rich (0.41–2.48%) organic carbon. Benthic faunal density ranged 
from 130–396 nos 10 cm sup (−2) and was dominated by polychaetes and nematodes. 
The mangroves exist approx. greater than 1 m above present low water level. Increased 
sea level may drastically impact mangrove habitats by altering the hydrological fea-
tures and related processes. The vertical rise in the water column due to sea level rise 
and the limitations of landward margins may result in water logging, ultimately killing 
mangroves and associated fauna (Jagtap et al. 2004).

An extensive hypersaline mudflat occurs between mangrove line and main coast 
in Kachchh in Gujarat, which are on rise due to siltation and tectonic movement. In 
the background of this fact, sea level rise of 12 cm/100 years or even more may not 
have any negative impact. Increased land accretion may also contribute to rise on 
mudflats. Thus, this region may have least impact of sea level rise, but when rela-
tive rise is very high, the mangroves may shift towards the Rann of Kachchh, which 
was part of the sea in the past. Other mangrove areas do not have such an extensive 
barrier to allow this scale of adjustment against sea level rise (Singh 2003).

Mangroves in tropical region are extremely sensitive to global warming because 
strong temperature dependence of physiological rates places many tropical species 
near their optimum temperature. Increased species diversity at the community level 
will add to the competitive ability of mangrove communities as a whole. Outside 
the present latitudinal limits for mangroves, comparable saline coastal environ-
ments are generally occupied by salt marsh vegetation. It is likely, given the more 
herbaceous nature of the vegetation in these communities that mangroves will com-
pete such species in the medium to long term and that a gradual replacement of salt 
marsh vegetation by scrubby mangroves, first of Avicennia and later of Rhizophora 
may be expected to occur (Pernetta 1993; Singh 2003).

It is also expected that average global rainfall will increase with marked regional 
variations (IPCC 2001; Singh 2003). If this happens, climate change is likely to 
lead to an increase in species migration pole wards. This may result into better 
environment for mangroves in semi-arid region like Gulf of Kachchh. In absence 
of accurate prediction on extent and rate of climate change, it is not possible to 
develop a model for likely scenario of mangroves in India. Many species are sensi-
tive to fast changes, especially to anthropogenic disturbance and sea level rise. If 
pace of sea level is high, these species may not be successful to compete and may 
loose in favor of hardy and great colonizer, especially Avicennia marina, A. alba, 
Acanthus ilicifolius and Suaeda sp. in semi-arid in Gujarat and A. officinalis and 
other species in the moist region. It is expected that species diversity may suffer in 
some areas, especially in Andaman and Nicobar Islands (Singh 2003).

Mangrove ecosystems act as multiple use ecosystems (provide sink for carbon; 
barrier against cycle, storm and salty winds, coastal land stability; sustainable agricul-
ture behind shelter belt and fulfill basic needs of coastal community (Singh 2003).

Orissa has a wealth of mangroves along its coasts. Bhitarkanika, an important 
mangrove in Orissa harbors 62 out of 80 species of mangroves of the world. It is 
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also a habitat of 215 species of both migratory and resident birds and nesting 
ground of olive ridley turtles (Khalid et al. 2008). But, mangroves are vulnerable to 
climate change due to sea level rise together with increasing anthropogenic pres-
sure. Increasing temperature can affect mangroves by changing species composi-
tion, changing flowering season, and by increasing productivity (Khalid et al. 
2008). Mangroves can act as efficient shields against cyclonic waves; therefore 
there conservation is a must for any adaptation framework to be developed for 
coastal Orissa (Khalid et al. 2008).

Strict protection of existing mangroves against encroachment and cutting and its 
expansion by regenerating potential intertidal areas through plantation of suitable 
species, including vulnerable and threatened species appears to be necessary man-
agement options.

Adaptability capability of the species, which may not adapt quickly to climate 
change, can be improved through management intervention, especially by facilitat-
ing their regeneration in new areas. The scientific studies and consistent monitoring 
the ecological changes and sea level rise should be done to provide continuous 
inputs for necessary management intervention. The response of tidal vegetation to 
climate change will vary from area to area and hence area specific plan based on 
inputs of continuous monitoring of changes should be prepared for implementation 
(Singh 2003).

7.3  Central Indian forests

In states such as Madhya Pradesh and Maharashtra are mostly moist deciduous and 
dry deciduous forests. Increase in rainfall and soil moisture during the Southwest 
monsoon could potentially transform these to moister vegetation types. Sal (Shorea 
robusta) forest characteristic of the moister belt could replace teak (Tectona gran-
dis) forest in the drier belt (Ravindranath and Sukumar 1998).

7.4  Northwest Indian forests

Northwest Indian forests are mostly dry deciduous and dry thorn forests. No change in 
soil moisture storage is indicated for this region. Thus, there may be no scope for any 
significant change in forest type or productivity (Ravindranath and Sukumar 1998).

7.5  Northeast India

Northeast India has a wide spectrum of tropical and subtropical forests and grass-
lands associated with the flood plains of rivers. The climate change scenario for 
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northeast India is not very clear. There seems to be much greater variability in the 
various climatic parameters over even a small area. This region already experiences 
very heavy rainfall, and any small changes in rainfall may not be of much conse-
quence for vegetation. The projected increase in temperature, however, in all sea-
sons, is likely to result in shifts of lower altitude tropical and sub-tropical forests to 
higher altitude temperate forest regions, resulting in contraction or die off of some 
temperate vegetation types (Ravindranath and Sukumar 1998).

Predicting the effect of climate change on rain forest ecosystem structure and 
function on a broader scale is equally difficult in the absence of precise studies. The 
impact of climate change would, to a large extent, be location specific, because of 
the complex interactions.involved. Global warming is often associated with increase 
or decrease in rainfall regime and soil moisture conditions (Ramakrishnan 1998).

The predicted temperature changes are generally in the range of 23°C. The sce-
nario constructed by Hulme and Viner (1995) suggests the following changes in the 
Indian subcontinental region, an increase in rainfall, in some areas up to 50%, a 
possible reduction in the dry season length by several months, and a consequent 
increase in soil moisture depending upon the soil characteristics.

High rainfall, thus, could accentuate environmental stress caused through per-
turbation in the upland areas by rapidly depleting the soil of its nutrient pool 
through run off and infiltration losses as shown in northeastern India. An extreme 
example of the above phenomenon is Cherrapunji in the state of Meghalaya in 
northeastern India (Ramakrishnan 1992; Ramakrishnan 1998). The harsh climate, 
with much of the annual average rainfall of 1,150 cm (with a very high 2,250 cm 
in an exceptional year, as in 1974) coming down in about 4–5 months during the 
monsoon, is further compounded by a highly leached fragile soil. The sacred 
grove of Mawsmai, protected for reasons of traditional religious beliefs, is a sad 
reminder of what Cherrapunji looked like in the past. Though the forest is stunted 
because it is supported by an unbalanced soil derived from limestone, the trees 
and shrubs form a dense multilayered canopy protecting the soil from the ravages 
of the extreme climate. Had it not been for the traditions of the Khasis, even this 
sacred grove – which is believed to be the abode of their Gods and the spirits of 
their dead ancestors, and therefore acts as a taboo for removal of even dead twigs 
from the forests – would have disappeared long ago. Unfortunately, many of these 
groves, which were part of every village in the Khasi Hills, have already disap-
peared with the arrival of the modern value system. With that, we have almost lost 
a unique way of preserving this national heritage of rain forest ecosystems 
(Ramakrishnan 1998).

The Cherrapunji ecosystem, which now stands desertified due to deforestation, 
is now unable to recover to its original state, as represented by the relict sacred 
grove. The fact that jhum around Cherrapunji is banned by the village council is 
suggestive of the part played by this land use in creating the present landscape. 
The sharp boundary between the sacred grove and the balded landscape indicates 
that the system will not recover through natural processes of revegetation. Artificial 
restoration could carry enormous initial costs. Linked with this drastic loss in 
biological diversity is immense human suffering. Water is a scarce commodity 
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during dry months, despite its distinction as one of the wettest spots on earth along 
with the nearby Mawsengram (Ramakrishnan 1992; Ramakrishnan 1998). All the 
water flows down the plains because of the absence of vegetation cover. Soil ero-
sion is therefore intense, and water holding capacity of the soil is low. This, in 
turn, leads to inability of the system to recover with a forest cover. For fuelwood, 
the tribal villager has to trek long distances of up to 10 km or more. The ruins of 
abandoned villages remind one of the population migrations of the past, which 
occurred under adverse ecological circumstances. The tribe, which is traditionally 
bound to the land and forests, has been forced to seek other avenues for survival 
(Ramakrishnan 1998).

With reduction in the rainfall, degradation of the rain forest could result in 
an Imperata cylindrica dominated, tall grass arrested successional stage. In the 
northeast Indian context, these grasslands often have exotic weeds such as 
Eupatorium spp. And Mikania micrantha, along with other native grasses such 
as Thysanolaena maxima and Saccharum spp. These grasslands are highly sus-
ceptible to fire. Indeed, species such as Imperata cylindrica and Mikania 
micrantha are fire adapted to such an extent that regeneration of these two are 
closely linked with frequent fire events (Ramakrishnan 1992). Sustainable live-
lihood for these traditional inhabitants, and sustainable development of the 
region as a whole, is therefore critical for conserving the tropical rain forest 
ecosystem for its biodiversity and value as a carbon sink (Ramakrishnan 1998) 
(Tables 1 and 2).

Sustainable development of local communities, effective management of 
natural resources with concerns for conserving biodiversity, and rehabilitation of 
degraded/ altered ecosystems in the context of climate change phenomenon are 
all closely interlinked with one another. Ecological issues are tied up with social, 
economic, anthropological, and cultural dimensions, since the guiding principles 
of sustainable development cut across these very disciplinary realms, with obvi-
ous tradeoffs.

Table 2 Major Indian forest types (Ravindranath 
and Sukumar 1998)

1. Subalpine and alpine
2. Himalayan moist temperate
3. Montane wet temperate
4. Sub tropical, broad leveled hill
5. Subtropical dry evergreen
6. Sub tropical pine
7. Tropical dry evergreen
8. Littoral and swamp
9. Tropical thorn

10. Tropical semi evergreen
11. Tropical wet evergreen
12. Tropical dry deciduous
13. Tropical moist deciduous
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While forest based economic activities and cash crop plantation programs may 
be the most appropriate long-term alternatives to shifting agriculture in northeast 
India, there is no option except to have a redeveloped agro-ecosystem package for 
the region which employs traditional knowledge and technology as the starting 
point for a short term strategy (Ramakrishnan 1992, 1998).

The long term strategy has to be reconciled with short term requirements. Further, 
institutional arrangements have to ensure peoples’ participation through a bottom up 
approach for their organization, ensuring that each household takes part in the deci-
sion making process at the lowest level in the hierarchy, and with special dispensation 
for the weaker and more vulnerable sections of the society (Ramakrishnan 1998).

7.6  Impact of Climate Change on Phenology of Tropical Forests

Climate change will influence many aspects of the biology of tropical organisms, 
but the effects on plant phenology could be of particular significance. The great 
majority of tropical plant species show some degree of periodicity in growth and 
reproduction, whether or not the periodicity is annual (Longman and Jenik 1987; 
van Schaik et al. 1993; Corlett and Lafrankie 1998). The timing of periodic events 
may be essential for cross-pollination and escape from herbivores (Aide 1993; 
Corlett and Lafrankie 1998) or seed predators (Augspurger 1981; Corlett and 
Lafrankie 1998). Climate change will happen during the life time of individual 
long-lived plants and changes in phenology may be the major short-term response. 
Climate change may result in mistiming of life history events in relation to the new 
climatic seasonality or the loss of synchronization. The periodicity of plant growth 
and reproduction, in turn, has a profound impact on those animal species – the 
majority – that depend on periodically available plant resources: young leaves, 
 pollen, nectar, fruits, and seeds. Unfortunately for our ability to predict the impact 
of global warming on tropical forests, phenological patterns in the tropics are both 
far more diverse than in extra tropical ecosystems and far less understood (Corlett 
and Lafrankie 1998).

The climate change scenario predicts a warming of 1.5–2.5°C. The response of 
rainfall patterns to global warming in the scenario varies over the region, but there 
is generally an increase in dry season length in seasonal Southeast Asia (Corlett and 
Lafrankie 1998). This increase is well within the range of current interannual vari-
ability, although the new extremes will presumably be outside this range. If plant 
responses to the end of the dry season are, as seems probable, largely opportunistic, 
significant mistiming of phenological events as a result of a moderate increase in 
dry season length is unlikely. In the more open forest types, however, plants must 
also be phonologically adapted to the current fire regime (Rundel and Boonpragob 
1995; Corlett and Lafrankie 1998) and may be sensitive to the impact of climate 
change on fire timing, frequency, and intensity. The increase in dry season length 
in southern India will also threaten evergreen forests that are not phenologically or 
otherwise adapted to fire.
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The large decrease in dry season length predicted for much of the Indian mon-
soon region is more likely to have a major direct impact on plant phenology. A dry 
period of inadequate length or intensity may fail to trigger flowering (Foster 1983; 
Corlett and Lafrankie 1998) or to synchronize it, and may also fail to reduce herbi-
vore populations during the main period of leaf expansion. The impact of a short-
ened dry season would be greatest where the dry season is already weak, but the 
scenario suggests that, within tropical Asia, weak dry seasons will generally be 
strengthened or unchanged and only the strongest dry seasons significantly weak-
ened (Corlett and Lafrankie 1998).

7.7  North Indian Forests

A regional study in Himachal Pradesh in northern India based on the output of 
BIOME model assessing the impacts of climate change on the temperature and 
sub-tropical forest vegetation has shown that there would be significant changes in 
the cover and location of different forest types. The extent to which the biomes 
shift, shrink or expand would also depend on their sensitivity to climate change. 
The study concluded that if the present trends (arising out of anthropogenic pres-
sures) continue, the negative repercussions of climate change are likely to be severe 
(Deshingkar et al. 1997; Ravindranath and Sukumar 1998).

The Himalayan states account for one third of the total forest cover in the 
country with a predominantly agro-pastoral population. The Himalayan ranges 
represent a unique amalgamation of geology, geomorphology, soils and drainage 
systems. The environmental importance of these areas lies not only in their rich 
bio-diversity value at the global level but also in their fundamental role in the 
long range ecological security and perpetuity of the entire Indian subcontinent’s 
glaciers and river systems. The degradation and deforestation in Himalayas 
would destroy the abode of rich bio-diversity and also trigger negative conse-
quences on the productivity of the alluvial plains of India and the productivity of 
deltaic regions in the east where the river waters merge with international waters 
in the Bay of Bengal (TERI 2002).

The Uttarkashi Forest Division in Uttaranchal state was studied for potential 
impact of climate change on forestry. The most striking evidence that was observed 
during the field study was the change in phenolgy of various species especially so 
for the flowering of Rhododendron sp. It was observed that in both Mukhem and 
Dharasu ranges.

Rhododendron has been flowering about 15 days earlier and that the flowers 
appear to be smaller than they were 15–20 years ago. This was attributed to the 
change in rainfall patterns. Another phenological change noted in these areas was 
the earlier leafing and fruiting of oak trees. The reason given for this was the reduc-
tion in snowfall and increase in temperature. The changes in the area of the birch 
(Bhoj) forest that have been observed around Bhojwasa are mainly due to biotic 
pressure from ashram residents and the heavy traffic of pilgrims and tourists to the 
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area. Many trees have been cut down for fuel and for using the bark as paper. Natural 
disaster has also taken its toll on the birch forests near Bhojwasa. In Dharaali, it was 
observed that the lower limit of Bhoj (Betul utilis) trees had shifted further uphill.

In the Gomukh area residents noted that they had observed a significant increase 
in herbaceous species growing around that area. Kail (Pinus wallichiana) trees at 
mid to upper slope between Harsil and Gangotri have been drying. This phenom-
enon reportedly began about 2–3 years ago and was observed by the study team at 
the Saat Tal area above Dharaali village Dharali Block, compartment 4. It is sur-
mised that this drying is being caused by a disease, a fungal one which affects only 
Kail and younger trees are affected more than older ones. One of the reasons for the 
occurrence of disease in these areas could be the favourable climatic conditions i.e., 
increase in moisture or humidity or milder winter in the region.

One of the observations made at lower elevations was that in the area around Saur 
village, Jalkurgad Block (compartment- 29), Chir (Pinus roxburghii) had begun to 
grow in areas formerly occupied by oak. About 50 years ago, the stand used to be 
about 90% oak and mixed species and only 10% pine cover, according to local elders. 
Now they say the proportion of pine had increased to 50% by replacing the other 
species. The pine at this site appeared to be about 30 years of age. The respondents 
attributed this change mainly to a gradual increase in temperature and the consequent 
drying out of the soil. The study team also made the observation of similar Chir inva-
sion into formerly oak forest in Bhukki block, compartment 1 and 2, near Bhatwari 
village The participants in the survey in Bhatwari noted that there has been a signifi-
cant decline (about 40%) in the area covered by oak. Respondents said that this was 
due to the pressure on oak for fodder and fuel and also due to increased incidence of 
forest fires (man-made) and grazing which inhibit regeneration of oak. Thus, in the 
region biotic pressure has allowed the establishment of Chir in an oak forest by frag-
menting it and opening up the canopy. It is very likely that favorable climatic condi-
tions of reduced snowfall and general warming in the area has further led to drying 
of the soil which has enabled Chir to spread even faster into oak stands.

In Bhareti Khand, Dharasu range, Forest Department staff noted a shift from 
Chir forest to a more xerophytic assemblage, consisting of species like Ficus and 
Mallotus philippensis on the east facing slope. The Forester for this area surmised 
that there may at one time have been an oak forest in this area due to the presence 
of oak stumps and a natural spring (which are usually found in oak areas). This site 
could provide evidence of progressive community type shifts over a century as the 
climate gets warmer and drier.

Participants at the sites in Dharasu and Mukhem ranges noted an increase in the 
population of exotic species that have invaded the area. The Forest Dept. staff at 
Bhareti Khand in Dharasu noted the spread of Parthenium spp., Lantana camara 
and kalabans in recent years. In the Chaurangi-Saur-Dhauntri area in Mukhem 
range, participants noted the rapid spread of kalabans in disturbed areas. The study 
team observed that the species has formed a dense carpet at the herb layer along 
forest edges and in open field areas.

This species was not observed at the higher altitude sites earlier to this. Most 
respondents reported a great decrease in density of tree cover and increasing 
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fragmentation of forests, accompanied by local species extinction. They attributed 
most of these changes to increased biotic pressure.

It was concluded that vegetative change due to climatic factors has begun to 
occur in the area and long term monitoring through monitoring plots should also be 
established in other sensitive ecotypes in the study area such as alpine meadows, so 
that the pace and direction of climate-driven vegetation change can be detected and 
characterized (TERI 2002).

8  Recent Assessments of Climate Change Impact  
on Indian Forests

Global assessments have shown that future climate change is likely to significantly 
impact forest ecosystems. The present study makes an assessment of the impact of 
projected climate change on forest ecosystems in India. This assessment is based on 
climate projections of Regional Climate Model of the Hadley Centre (HadRM3) 
using the A2 (740 ppm CO

2
) and B2 (575 ppm CO

2
) scenarios of Special Report on 

Emission Scenarios and the BIOME4 vegetation response model. The main conclu-
sion is that under the climate projection for the year 2085, 77% and 68% of the for-
ested grids in India are likely to experience shift in forest types under A2 and B2 
scenario, respectively. This includes loss of area under a given forest type and 
replacement by another type from the prevailing forest type. In other words, over half 
of the vegetation is likely to find itself less optimally adapted to its existing location, 
making it vulnerable to adverse climatic conditions and to biotic stresses. Indications 
are a shift towards wetter forest types in the north-eastern region and drier forest types 
in the north-western region in the absence of human influence. Further, the actual 
negative impact may be more than what is initially expected from the above descrip-
tion. This is because different species respond differently to the changes in climate. 
Thus, one expects that a few species may show a steep decline in populations and 
perhaps even local extinctions. This, in turn, will affect the other taxa dependent on 
the different species (i.e. a ‘domino’ effect) because of the interdependent nature of 
the many plant–animal–microbe communities that are known to exist in forest eco-
systems. This could eventually lead to major changes in the biodiversity. The positive 
impact of projected climate change, under the A2 and B2 scenario, is the projected 
increase in NPP. Thus, the projected climate impacts are likely to have significant 
implications for forest management in India (Ravindranath et al. 2006).

9  Conclusion

Climate change represents a significant threat to global biodiversity and ecosystem 
integrity. It can be expected to have significant impacts on forest ecology (including 
biodiversity), forest distribution and productivity. Since the projected impacts of 
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climate change on forests also have implications for forest product flows and trade 
and forest management. So, it is in this context, it is important to make assessments 
of likely impacts of climate change on forests in different countries and regions to 
allow respective governments and communities to adapt to these impacts. Several 
ecological changes have been linked to regional climate change. These changes 
have occurred at all levels of ecological organization: population and life-history 
changes, shifts in geographic range, changes in species composition of communi-
ties and changes in the structure and functioning of ecosystems. India has 14 major 
forest types classified based on climate and altitude. Of these 72% are tropical 
moist deciduous, dry deciduous and evergreen forests. The BIOME and IMAGE 
models have been used to assess the impacts of climate change on vegetation on a 
global scale. However, both these General Circulation Models have limitations 
when applied to India. Assessments of regional changes in climate parameters are 
more important than the global mean changes. The commonly considered scenario 
of climate change in India is based on green house gas increase. It is therefore 
important to speculate on the possible impact on forests in the country based on this 
scenario. Under this model a general increase in temperature and rainfall in all 
regions is indicated. This could potentially result in increased productivity and shift 
forest type boundaries along altitudinal and rainfall gradients, with species migrat-
ing from lower to higher elevations and the drier forest types being transformed to 
moister types. Considering the potential impacts of Climate change on forests 
under Hulme and Viner (1995) scenario for the evergreen forests in south India 
increased temperatures of 2.0–3.5 °C during winter and summer would potentially 
stress vegetation through increased evapo-transpiration. The increased rainfall, 
along with elevated CO

2,
 increasing water use efficiency, could compensate for this 

loss. In the balance, the marginal increase in soil moisture projected for this region 
could result in increased productivity. Further a shift in vegetation type boundaries 
could be expected along a west-east gradient with moist forest types expanding 
farther east and along an altitudinal gradient, with species adapted to the warmer, 
lower elevations migrating to higher altitudes. An increase in dry season length 
could also place forest types such as dry and moist deciduous forests at increased 
risk of dry season fires. The montane evergreen forest can be expected to expand 
into the grasslands while C3 grasses and herbs could potentially replace C4 grasses 
in the grasslands (Heaney 1991; Sukumar et al. 1995).

The human impact on the natural vegetation such as conversion of grasslands to 
monoculture plantations of wattle and eucalyptus may, however, interfere with 
natural succession caused by global climate change. Endemic mammals such as the 
Nilgiri tahr would face increased risk of extinction due to reduction in area under 
natural grassland.

Impact on highly diverse and productive ecosystems such as mangrove forests 
will depend upon the rate of sea level rise relative to growth rates and sediments 
supply, space for and obstacle to horizontal migration, changes in climate-ocean 
environment. Sea level rise will affect mangroves by eliminating or modifying their 
present habitats and creating new tidally inundated areas to which some mangrove 
species may shift.
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Central Indian forests are mostly moist deciduous and dry deciduous forests. 
Increase in rainfall and soil moisture during the Southwest monsoon could poten-
tially transform these to moister vegetation types. Sal (Shorea robusta) forest 
characteristic of the moister belt could replace teak (Tectona grandis) forest in the 
drier belt.

Northwest Indian forests are mostly dry deciduous and dry thorn forests. No 
change in soil moisture storage is indicated for this region. Thus, there may be no 
scope for any significant change in forest type or productivity. In case of Northeast 
India the projected increase in temperature, however, in all seasons, is likely to 
result in shifts of lower altitude tropical and sub-tropical forests to higher altitude 
temperate forest regions, resulting in contraction or die off of some temperate veg-
etation types

Studies in the North Indian forests suggested that reduced snowfall, general 
warming in the area and change in rainfall patterns have resulted a change in phe-
nolgy of various species especially so for the flowering of Rhododendron sp, drying 
of the soil which has enabled Chir to spread even faster into oak stands, occurrence 
of fungal diseases leading to drying of Kail trees and progressive community type 
shifts over a century as the climate became warmer and drier (shift from Chir forest 
to a more xerophytic assemblage, consisting of species like Ficus and Mallotus 
philippensis). Also an increase in the population of exotic species (Parthenium spp., 
Lantana camara and kalabans) has been observed in the area.

Global assessments have shown that future climate change is likely to signifi-
cantly impact forest ecosystems in India based on climate projections of Regional 
Climate Model of the Hadley Centre (HadRM3) using the A2 (740 ppm CO

2
) and 

B2 (575 ppm CO
2
) scenarios of Special Report on Emission Scenarios and the 

BIOME4 vegetation response model. It has been concluded that under the climate 
projection for the year 2085, 77% and 68% of the forested grids in India are likely 
to experience shift in forest types under A2 and B2 scenario, respectively. This 
includes loss of area under a given forest type and replacement by another type 
from the prevailing forest type due to adverse climatic conditions and biotic 
stresses. Indications are a shift towards wetter forest types in the north-eastern 
region and drier forest types in the north-western region in the absence of human 
influence.

Thus, climate change could cause irreversible damage to unique forest ecosys-
tems and biodiversity, rendering several species extinct, locally and globally.

Long term monitoring through monitoring plots should also be established in 
sensitive ecotypes, so that the pace and direction of climate-driven vegetation 
change can be detected and characterized. Sustainable development of local com-
munities, effective management of natural resources with concerns for conserving 
biodiversity, and rehabilitation of degraded/ altered ecosystems in the context of 
climate change phenomenon are all closely interlinked with one another. Forest 
planning and development programmes have to be based on traditional knowledge 
and ensure people’s participation to address the likely impacts of climate change 
and appropriately adopt various policy and management practices to minimize the 
adverse impacts and vulnerability to climate change.
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