0

71

Fortschritte der Chemie organischer Naturstoffe

Progress in the
Chemistry of Organic
Natural Products

Founded by
L. Zechmeister

Edited by
W. Herz, G. W. Kirby,
R. E. Moore, W. Steglich,
and Ch. Tamm

Authors:

A. Andersen, S. B. Christensen,
D. Deepak, G. Gäde, A. Khare,
U. W. Smitt, S. Srivastav

Springer-Verlag Wien GmbH

Prof W Herz, Department of Chemistry, The Florida State University, Tallahassee, Florida, U S A
Prof G W Kirby, Chemistry Department, The University of Glasgow, Glasgow, Scotland
Prof R E Moore, Department of Chemistry, University of Hawan at Manoa, Honolulu, Hawan, U S A
Prof Dr W Steglich, Institut fur Organische Chemie der Universitat Munchen, Munchen, Federal Republic of Germany
Prof Dr Ch Tamm, Institut fur Organısche Chemie der Unıversitat Basel, Basel, Switzerland

This work is subject to copyright
All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or simılar means, and storage in data banks
(C) 1997 by Springer-Verlag Wien

Originally published by Springer-Verlag Wien New York in 1997
Library of Congress Catalog Card Number AC 39-1015
Typesettıng Thomson Press (India) Ltd, New Delhı

Graphic design Ecke Bonk
Printed on acid-free and chlorine-free bleached paper

With 11 partly coloured Figures

ISSN 0071-7886
ISBN 978-3-7091-7343-5 ISBN 978-3-7091-6529-4 (eBook)

Contents

List of Contributors IX
The Explosion of Structural Information on Insect Neuropeptides By G Gade 1
1 Introduction 1
2 General Methods Used for Isolation, Identification and Characterization of Insect Neuropeptıdes 8
21 Biological Assays 8
211 Adıpokınetıc Bioassay 8
212 Myotropic Bıassay 8
22 Liquid Chromatography 9
23 Edman Degradation Sequencıng, Mass Spectrometry and Peptıde Synthesıs 11
24 Immunological Technıques (RIA, ELISA, Immunocytochemıstry) 14
25 Molecular Bıological Technıques 15
3 The Insect Neuropeptides 17
31 Peptides Involved in Homeostasis and Metabolism 18
311 Adipokinetic and Hypertrehalosaemic Peptıdes 18
312 Diuretic and Antıdiuretic Peptides 29
32 Peptides Regulating Reproduction, Growth and Development 39
321 Pheromone Biosynthesis Actıvating Neuropeptides 39
322 Allatotropins and Allatostatins 45
3221 Allatotropins 45
3222 Allatostatıns 48
323 Prothoracicotropic Hormone, Bombyxin and Other Insulin-Related Neuropeptides 53
3231 Prothoracicotropic Hormone 54
3232 Bombyxın 57
3233 Locusta Insulın-Related Peptıde 61
324 Eclosion Hormones 62
325 Peptıdes Affectıng Gonad Actıvity 65
3251 Ovary Maturatıng Peptıde and Neuroparsin of Locusta migratoria 66
3252 Oostatic Hormones of Diptera 69
326 Diapause Hormones 71
33 Peptıdes Modifyıng Spontaneous Muscle Contractions Mytropic Peptides 73
331 Proctolın and Cardıostımulatory Peptıdes 73
332 Myokınıns 83
333 Sulfakınıns 85
334 Pyrokınıns/Myotropıns 86
335 Tachykınıns 88
336 Perıviscerokının 89
337 Accessory Glands- and Midgut Myotropıns and Others 90
338 Myoınhıbitory Peptıdes and Other FMRF amıde Related Peptıdes (FaRPs) 91
34 Chromatotropic Factors in Insects 94
4 Conclusions 96
Acknowledgments 97
References 97
Sesquiterpenoids from Thapsia Species and Medicinal Chemistry of the Thapsigargins
By S B Christensen, A Andersen, and U W Smitt 129
1 Introduction 130
2 Taxonomy of Thapsia 133
21 Thapsia garganica and Thapsia transtagana 133
22 Thapsia maxıma 133
23 Thapsia villosa 133
24 Thapsia gymnesica 145
3 Elucidation of the Structure of Thapsigargin 145
4 Proazulenic Slovanolides 146
5 Non-lactonic Sesquiterpenoids from Thapsia 148
6 Pharmacologıcal Actıvity of the Thapsigargıns 148
7 Molecular Pharmacology 149
8 Chemıstry of Thapsıgargin 151
81 Changes at $\mathrm{C}(8)$ 151
82 Changes at $\mathrm{C}(3)$ 153
83 Changes of the Vicinal Diol 155
84 Changes of Lactone Carbonyl Group 155
85 Changes at $\mathrm{O}(10)$ 157
9 Structure Actıvity Relatıonshıps 159
10 Metabolıc Catabolısm of Thapsıgargin 162
References 163
Pregnane Glycosides
By D Deepak, S Srivastav, and A Khare 169
1 Introduction 170
2 Isolation and Identification 170
21 Thin Layer and Column Chromatography 170
22 Sephadex LH-20 Chromatography 171
23 Flash Chromatography 171
24 Low Pressure Liquid Chromatography (LPLC) 171
25 Hıgh Performance Liquid Chromatography (HPLC) 172
3 Structure Elucidation 172
31 One-Dimensional NMR Spectroscopy 173
32 Two-Dimensional NMR Spectroscopy 177
33 Mass Spectrometry 181
34 I R Spectroscopy 183
35 U V Spectroscopy 183
36 Optical Rotatory Dispersion 183
37 Hydrolysis of Pregnane Glycosides 183
4 Pregnane Aglycons 185
5 Sugars of Pregnane Glycosides 185
51 General and Monosaccharides 185
52 Disaccharides from Pregnane Glycosides 185
53 Trisaccharıdes from Pregnane Glycosides 197
6 Biosynthesis of Pregnane Glycosides 197
7 Biological Actıvity 198
Acknowledgement 309
References 309
Author Index 327
Subject Index 341

List of Contributors

[^0]
The Explosion of Structural Information on Insect Neuropeptides

G Gade
Zoology Department, Unıversity of Cape Town, Rondebosch 7701, Republic of South Africa

Contents

1 Introduction 1
2 General Methods Used for Isolation, Identification and Characterization of Insect Neuropeptides 8
21 Biological Assays 8
211 Adipokinetic Bioassay 8
212 Myotropıc Bioassay 8
22 Liquid Chromatography 9
23 Edman Degradation Sequencing, Mass Spectrometry and Peptıde Synthesis 11
24 Immunological Technıques (RIA, ELISA, Immunocytochemıstry) 14
25 Molecular Bıological Technıques 15
3 The Insect Neuropeptides 17
31 Peptıdes Involved in Homeostasis and Metabolism 18
311 Adıpokınetıc and Hypertrehalosaemıc Peptides 18
312 Diuretic and Antidiuretic Peptides 29
32 Peptides Regulating Reproduction, Growth and Development 39
321 Pheromone Biosynthesis Actıvating Neuropeptides 39
322 Allatotropins and Allatostatins 45
3221 Allatotropins 45
3222 Allatostatıns 48
323 Prothoracicotropic Hormone, Bombyxin and Other Insulin-Related Neuropeptides 53
3231 Prothoracicotropic Hormone 54
3232 Bombyxın 57
3233 Locusta Insulın-Related Peptıde 61
324 Eclosion Hormones 62
325 Peptides Affectıng Gonad Actıvity 65
3251 Ovary Maturatıng Peptıde and Neuroparsin of Locusta migratoria 66
3252 Oostatic Hormones of Diptera 69
326 Diapause Hormones 71
33 Peptıdes Modifyıng Spontaneous Muscle Contractions Myotropic Peptıdes 73
331 Proctolin and Cardiostımulatory Peptides 73
332 Myokınıns 83
333 Sulfakınıns 85
334 Pyrokınıns/Myotropıns 86
335 Tachykınıns 88
336 Perıvıscerokının 89
337 Accessory Glands- and Midgut-Myotropins and Others 90
338 Myoinhibitory Peptides and Other FMRFamıde Related Peptıdes (FaRPs) 91
34 Chromatotropic Factors in Insects 94
4 Conclusions 96
Acknowledgments 97
References 97

1. Introduction

Insects form the largest class of the phylum Arthropoda. There are at least one mullion known species, so more than 50% of all existıng organisms on earth are insects. It is even thought that at least another million insect species have not yet been discovered. Insect-lıke forms inhabited the terrestrial and freshwater ecosystems about 300 mıllion years ago and therr basic features have been so successful that they were able to exploit almost every avarlable habitat except the true marine environment, which is occupied by their arthropod "cousins", the Crustacea.

Metazoan animals like insects had to develop systems for communication between cells, tissues and organs in order to coordinate their responses to internal and external stimuli and to regulate biochemical and physiological processes. Both the nervous and the endocrine systems are well-known cellular components for communication, recruiting chemical messengers for their tasks. In general, the nervous system is used for rapid communication, whereas the endocrine system is involved in the regulation of longer lasting responses. Both systems, however, quite often do not work in isolation from each other, but form a functional, integrated system. This is best seen in the action of the so-called neurosecretory cells
which synthesize and release specific chemical messengers, the neuropeptides (there are also aminergic neurosecretory cells, but these will not be dealt with here).

As early as 1922 the Polish scientist Kopeč (239) proposed that substances in the brain (in specific neurons though) control the processes necessary for moulting and metamorphosis, thus acting in distant parts of the body. He had extirpated brains from the gypsy moth, Lymantria dispar, and shown that the debrained larvae never pupate. This "brain hormone" is now known under the name prothoracicotropic hormone (PTTH), but its sequence in the gypsy moth is still not known.

Historically, the Scharrers coined the term neurosecretion to characterize the activities of those neurons which contained electron-dense granules of about 400 nm in diameter. Ernst Scharrer was studying vertebrate animals and discovered nerve cells with secretory activity in the fish, Phoxinus laevis (401), whereas his wife Berta Scharrer was studying invertebrate animals, including insects, in which she reported the presence of neurosecretory cells including those in the corpora cardiaca of the cockroach, Leucophaea maderae (398, 399). The Scharrers were the first to characterize the structural and functional similarities between the vertebrate hypothalamo(nervous)-hypophyseal system and the insect brain-corpora cardiaca-corpora allata complex (400).

Today we know that all nerve cells are secretory and that the distinction between "ordinary" neurons containing small synaptic vesicles and the neurosecretory neurons with large-cored vesicles is fluid. Between these two extremes - the ordinary neurons forming synapses and releasing their chemical messengers, the neurotransmitters, into the synaptic cleft, and the neurosecretory cells releasing relatively large quantities of their chemical mediators, the neuropeptides or neurohormones, into the general circulation - all kinds of graded intermediate cells can occur $(331,455)$. Some of these cells directly innervate endocrine or nonendocrine tissues and their function as modulators of nerve or muscle activity is discussed; their messengers may be called neuromodulators.

Although neurosecretory cells were co-discovered in insects, much more attention has been paid to the vertebrates, especially the mammalian system. Consequently, a wide variety of neuropeptides has been shown to be present in vertebrates and has been chemically characterized. For quite a few, even the precursor molecules are known and the gene structures have been elucidated. From these mammalian studies it soon became clear that peptides represent the largest single class of neuroregulatory substances $(195,433)$. After the first discovery, studies to identify (chemically) neuropeptides in insects lagged behind, but this has changed dramatically in the last ten years or so.

Before we outline the progress made in elucidating the primary structures of insect neuropeptides, we first have to discuss briefly the classical, epithelial endocrine glands of insects in the context of development and growth and, subsquently, the main localizations of neurosecretory cells and their release sites.

The life cycle of insects from the fertilized egg to the adult, reproduc-tively-active imago is characterized by growth. Since the insect body is encased in an external skeleton which would prevent growth its volume and surface area must increase from time to time. The growth of the integument is achieved by moulting. A new, larger cuticle is made and the old, confining cuticle is cast away. The latter process is called ecdysis or eclosion (when the resulting insect is an adult one). The whole period between two moults is called a moulting cycle. Changes in morphology, function and life strategy of an insect during its ontogenesis are named metamorphosis.

The morphological changes occurring during metamorphosis can vary quite drastically and three major evolutionary lineages can be distinguished:

1. Ametabolic insects like springtails (Collembola) and silverfishes/ firebrats (Zygentoma). Body forms of larvae and adults are identical except for the external genitalia and internal reproductive organs of the adults; adults have no wings and this group is called Apterygota.
2. Hemimetabolic insects like dragonflies (Odonata), cockroaches (Blattaria), grasshoppers (Caelifera) and bugs (Hemiptera). These insects undergo an incomplete metamorphosis. The larvae look very similar to adults, but the latter differ from the larvae in having functional wings. This group is known as Exopterygota.
3. Holmetabolic insects like beetles (Coleoptera), butterflies and moths (Lepidoptera), flies (Diptera) and bees and wasps (Hymenoptera). These insects undergo complete metamorphosis. The larvae look entirely different from the adults and prior to the adult stage a pupal stage is formed. This group is called Endopterygota in reference to the internal development of their wing imaginal disks.

Whichever lineage the insect belongs to, the general hormonal events during moulting are identical. Two non-peptide hormones, the ecdysteroids and the juvenile hormones produced in the two major classical, epithelial endocrine glands are responsible for moulting.

The first glands are the paired corpora allata which are located retrocerebrally and are connected to the brain via nerve fibers (Fig. 1). The corpora allata produce and release species-specific juvenile hormones (JH 0-III; JH B3), which chemically are acyclic sesquiterpenoid epoxides

Fig. 1. Schematic diagram of the endocrine system in insects. The epithelial glands (corpus allatum, prothoracic gland) as well as the neurosecretory cells and their release sites (corpus cardiacum, perisympathetic organ) are shown
(Fig. 2). The juvenile hormones are vitally involved in the regulation and control of certain steps of insect development like larval moulting, and also in adult sexual maturation and reproduction $(88,89,445)$.

The second classical, epithelial endocrine glands are the paired prothoracic glands located mainly in the thorax of the larval and pupal insect (Fig. 1). They mainly synthesize and release the steroid ecdysone which is subsequently converted into its active form (20-hydroxyecdysone) by the fat body and by epidermal cells (Fig. 2). The titre of 20-hydroxyecdysone is increased before each moult, but the titre of juvenile hormone determines
JH-O
JH-I

JH-II

JH-III

JHB_{3}

Ecdysone

Fig. 2. Structures of the juvenile hormones and main ecdysteroids
the character of the moult. The classical scheme that a high juvenile hormone titre leads to a larval/larval moult, a low titre to a larval/pupal moult and that without juvenile hormone a moult to the adult occurs, is today revised to a somewhat more complicated scheme which is explained in detail elsewhere (327). Activity of both gland pairs, however, is controlled and fine-tuned by neuropeptides which are produced in neurosecretory cells of the brain (see Sects. 3.2.2 and 3.2.3).

Whereas prothoracic glands are suggested to be the ecdysteroid source in immature stages, i.e. when ecdysteroids are involved in the
control of moulting, the gonads and the epidermis represent important sources during late pupal and adult stages, i.e. when control of reproduction is the main task (66). These alternative sources of ecdysteroids are likely to be regulated by neuropeptides as well.

In general most of the endocrine processes in insects are controlled by neuropeptides. The main centers for neurosecretory cells are in the pars intercerebralis and the median and lateral parts of the protocerebrum, which send axons to the corpora cardiaca (Fig. 1). These retrocerebral structures store and release the neuropeptides produced in the brain's neurosecretory cells and are therefore called neurohaemal organs (located in close proximity to the aorta, thus, ideal for release of neuropeptides into the circulation). In addition, the corpora cardiaca produce their own neuropeptides in their intrinsic neurosecretory cells. In addition to these more classical neurosecretory areas, neurosecretory cells are found throughout the central nervous system, the sympathetic nervous system (including the neurohaemal perisympathetic organs) and also within the peripheral nervous system $(331,366)$.

A great variety of processes in insects is known to be influenced or regulated by neuropeptides. These processes may be metabolic, behavioral, developmental or reproductive in character. The following list shows some major neuropeptide groups and their actions:

1. Myotropins, which modify spontaneous muscle contractions;
2. diuretic and antidiuretic peptides, which are involved in ion- and water balance;
3. adipokinetic and hypertrehalosaemic peptides, which control fat, carbohydrate and protein metabolism;
4. eclosion hormone which initiates behavioral patterns associated with ecdysis and its timing;
5. allatotropins/allatostatins, which stimulate/inhibit the synthesis of juvenile hormones by the corpora allata;
6. prothoracicotropic hormones, which stimulate moulting by initiating ecdysone biosynthesis and release by the prothoracic gland;
7. diapause hormone, which arrests development in eggs of certain moth species;
8. oostatic hormone, which inhibits maturation of the ovaries;
9. neuropeptides which activate the synthesis of sex pheromones.

Before details on the individual categories of neuropeptides are given, methods important in the research on neuropeptides are discussed very briefly and appropriate examples of the applications of these methods are described.

2. General Methods Used for Isolation, Identification and Characterization of Insect Neuropeptides

2.1. Biological Assays

The existence and detection during isolation of the majority of insect neuropeptides was initially monitored by bioassays. There is a whole range of bioassays available now, including those measuring physiological actions (like energy mobilization and diuresis) as well as behavioral events (like those for the eclosion hormone). As examples of bioassays, the very popular tests for adipokinetic and for myotropic substances are given here in some detail.

2.1.1. Adipokinetic Bioassay

In 1969 two research groups $(15,279)$ observed that injection of extracts from the corpora cardiaca of locusts increased the amounts of lipids (specifically: diacylglycerols) in the haemolymph. As a result, a bioassay was developed in which the concentration of total lipids was routinely measured in the haemolymph with a very reliable and simple method. In our laboratory, for example, we take a 1μ haemolymph sample from the migratory locust at time zero, then inject the insect with $10 \mu \mathrm{l}$ of the solution to be analyzed (either a corpus cardiacum extract from a locust or other insect or HPLC fractions after isolation procedures), and a second $1 \mu 1$ sample of haemolymph is taken 90 min later from the same insect. For analysis of the lipids the sulpho-phosphovanillin method (493; modified by 179) is used; the developed pink colour is easily read in a simple filter photometer at about 450 nm and the lipid concentration quantified by the use of a standard curve. An increase of the concentration of lipids in the post-injection sample compared to the pre-injection value is indicative of a positive response, e.g. the presence of an adipokinetic substance.

For further readings on this and related metabolic bioassays see (107, 449).

2.1.2. Myotropic Bioassay

In 1962, Davey (63) demonstrated that homogenates from corpora cardiaca of Periplaneta americana had an effect on the spontaneous contractile activity of the isolated hindgut by increasing the tonus, frequency and amplitude of contraction. Later, a preparation of the hindgut from the cockroach Leucophaea maderae was used for the successful
purification of a great number of myotropic peptides from L. maderae, the cricket, Acheta domesticus, and from Locusta migratoria $(169,176)$. For this, the digestive tract was carefully removed from the cockroach, all adhering tissues such as fat body, trachea and Malpighian tubules pulled away or trimmed off, the hindgut tied at the junction to the midgut and the latter plus foregut cut off. The posterior end of the rectum was tied with thread as well and then the whole preparation suspended in a muscle chamber (5 ml plastic disposable syringe barrel) filled with an aerated saline solution. The preparation was attached to a muscle transducer, which displayed the signal onto an oscillograph. Such a preparation needs about one hour for equilibration; thereafter, the pattern of spontaneous contractions is relatively constant and the preparation can be used for a whole day. Thus, up to 80 samples can be tested per day by monitoring the alteration of the pattern of spontaneous contractile activity (either stimulatory or inhibitory).

2.2. Liquid Chromatography

The introduction of high performance liquid chromatography (HPLC), using micron-sized particles of high mechanical strength as supports for column packing materials, therefore allowing a fast flow of liquid at high pressure, has provided a very versatile tool for purifying proteins and peptides. This is generally achieved at some stage during isolation by reversed-phase HPLC (RP-HPLC), a partition chromatography where the starting mobile phase is more polar than the stationary phase.

The support material is silica whose silanol groups are chemically derivatized with organosilanes such as octadecyl (C-18), for example. RPHPLC using various ion-pairing reagents such as trifluoroacetic acid (TFA) or heptafluorobutyric acid (HBFA) has been used widely for purifying neuropeptides because of its excellent resolution. For details of this and other LC methods readers are referred to appropriate reviews ($90,418,427$). Of course, for the isolation of insect neuropeptides it is important to know at the start roughly how much material is expected to be present and whether the peptide-producing tissue can be easily dissected or whether whole heads/animals have to be used for extraction. This will be briefly illustrated by three examples of isolation procedures.

Adipokinetic/hypertrehalosaemic peptides: Corpora cardiaca sometimes store these peptides in impressive quantities of 200 to more than 3000 pmol per gland. Therefore this tissue is dissected and then extracted with 80% methanol. Such methanolic extracts are applied to C-8 or C-18 RP-HPLC columns which are developed in a gradient mode with
acetonitrile/water/0.1\% TFA. With a single column step these peptides are sufficiently pure for structural work (107, 119). Almost all of the adipokinetic/hypertrehalosaemic peptides, which often differ only by a single amino acid residue, can be separated in a single run due to the spectacular resolving power of RP-HPLC (114).

Myotropic neuropeptides: Due to the low concentration of these peptides (maximally about 1 pmol per head) whole heads of cockroaches (Leucophaea maderae) were extracted in a mixture of methanol/ water/acetic acid ($90: 9: 1 ; \mathrm{v} / \mathrm{v}$) and subsequently extracted sequentially with ethyl acetate and hexane to remove lipids (for details see 177). The aqueous solution was lyophilized, dissolved in 0.1% TFA and prepurified on C-18 Sep-Pak cartridges. This extract was subsequently fractionated on a series of 4 HPLC columns with different separation characteristics. The first step was performed on a μ Bondapak phenyl column, developed with an acetonitrile/water/TFA gradient. Individual active fractions were processed on a C-1 column using the same solvents and thereafter on a C-18 column, again using the same solvents. The final purification step was HPLC in a normal phase mode (I-125 Protein Pak column); the gradient run from 95% to 75% acetonitrile containing 0.01% TFA. After the final step fractions were pure enough for sequencing.

Allatotropin: Schooley's group isolated eclosion hormone, diuretic hormone and allatotropin from whole heads of Manduca sexta in a very similar fashion $(212,213,214)$. As an example, the purification of allatotropin is given here (418). Due to the minute amounts of peptides expected, 10000 trimmed heads (eyes, proboscis and other chitinous parts were cut off, leaving brains, corpora cardiaca and corpora allata) of pharate adult moths were first defatted by homogenization in acetone. The extract was filtered, the acetone discarded and the residue re-extracted with a strongly acidic buffer (1 M acetic acid containing 20 mM HCl) containing protease inhibitors. After centrifugation the supernatant was chromatographed on a cation exchanger (sulphopropyl Sephadex C-25) which was eluted with 1 M acetic acid, 50 mM ammonium acetate (pH 4), and then with increasing concentrations (from 50 to 800 mM) of ammonium acetate (pH 7). Eclosion hormone was eluted in the 50 mM fraction, allatotropin in the 100 to 200 mM one and diuretic hormone between 400 and 800 mM $\mathrm{NH}_{4} \mathrm{OAc}$. Concentration and desalting of the sample occurred on a large cartridge column containing Vydac C-4 material. The allatotropin was eluted with 60% acetonitrile containing 0.1% TFA. The next step was a semipreparative Vydac C-4 column which was eluted with a $0-60 \%$ acetonitrile/water/TFA gradient. Allatotropin eluted between 17-19\% acetonitrile and this material was separated again on a semipreparative Vydac C-4 column, but with a gradient of $10-30 \%$ acetonitrile and 0.1%

HBFA as the ion-pairing reagent. An analytical cation exchange LC column (TSK SP-5PW), which was equilibrated with 20 mM sodium phosphate buffer (pH 6.25) and developed with a gradient $(0-0.5 \mathrm{M})$ of sodium chloride, was used next. The last step employed a Vydac C-18 analytical column which was eluted with a gradient (10-40\%) of acetonitrile/water/TFA and resulted in a sufficiently pure peak for sequence analysis.

2.3. Edman Degradation Sequencing, Mass Spectrometry and Peptide Synthesis

Edman degradation cleaves the N -terminal amino acid from a peptide or protein backbone and prepares the derivatized residue (the PTH amino acid) for identification. Automated sequencers became available in 1970. Since then continued improvements in peptide isolation techniques and sequencer technology have increased the speed of analysis and vastly reduced the amounts of peptides required in the sequencer reaction chamber. Today on-line microbore RP-HPLC separation and optimized identification of PTH amino acids enable the new generation of gas phase or pulsed liquid phase sequencers to operate in the range of about 10 pmol (262).

Many proteins and peptides contain post-translationally modified amino acids. A majority of insect neuropeptides, for example, are blocked at the N -terminus by a pyroglutamate residue. Since Edman degradation sequencing needs a free N -terminal amino acid, the pyroglutamate residue has to be cleaved enzymatically by pyroglutamate aminopeptidase. After separating the deblocked from the parent peptide via RP-HPLC the new des-pyroglutamate peptide can be automatically sequenced.

Other post-translational modifications such as phosphorylation, methylation, acetylation, sulfation or glycosylation can also be detected by specific preparations before Edman degradation or with mass spectrometry (see below) or a combination of both techniques (281).

Even with the newest generation of sequencers the "repetitive yield", i.e. the overall yield of one step in Edman degradation, is about 95%, which means that these machines only give sequencing results to a maximum length of about 30-40 residues. Thus, longer peptides or proteins first have to be chemically or enzymatically fragmented, the fragments isolated by RP-HPLC, and then analyzed in the sequencer. Fragmentation is facilitated by denaturing the protein/peptide under investigation. Guanidine hydrochloride is the denaturing detergent of choice. Since disulfide bonds may hinder digestion, disulfide bridges are cleaved by
reduction yielding two cysteines; subsequently the thiol groups are stabilized by alkylation with, for example, iodoacetic acid yielding S carboxymethyl cysteine.

Various enzymes are commercially available for enzymatic fragmentation. These are characterized as endopeptidases such as trypsin (specifically cleaving Lys and Arg residues) and endoproteinases Asp-N, Arg-C, Glu-C and Lys-C or as exopeptidases such as carboxypeptidases A, B, P and Y and pyroglutamate aminopeptidase (see above). For further details the reader is referred to the special literature $(163,226,448)$. Complementary to enzymatic digestions are chemical fragmentation methods. The most widely used cleavage chemical is cyanogen bromide which specifically cleaves Met-Xaa bonds thereby converting methionine into a C -terminal homoserine residue and creating a new amino terminus $\mathrm{NH}_{2}-\mathrm{Xa}$. For further reading see Kellner (226).

Mass spectrometric methods are nowadays continuously used solely or in combination with Edman degradation for elucidation of the primary structures of proteins and peptides. Mainly, mass spectrometry is used to measure the mass of the peptide/protein accurately, thereby confirming sequencing results achieved by other methods. A second goal of modern mass spectrometry is to give sequence assignments of smaller peptides or peptide fragments (for production of those see above), especially when post-translational modifications occur.

However, mass spectrometry is not infallible. For example, the amino acid residues Leu, Ile and hydroxypro have the same mass of 113 Da , thus mass spectrometry cannot differentiate between the three compounds. In such a case mass spectrometry has to be used in combination with Edman degradation sequencing. Thus both methods are complementary. A brief outline will illustrate the power of mass spectrometry. For further information the reader is referred to the following references ($12,280,387,428$ and 475).

During the last two decades tremendous improvements have been made with respect to mass spectrometry. Whereas formerly it was not possible to ionize larger proteins and analyze compounds with a mass greater than $1-2 \mathrm{kDa}$, the introduction of fast atom bombardment (FAB) mass spectrometry made it possible to ionize peptides and small polar proteins up to 15 kDa . In the FAB mode the peptide/protein is taken up in a glycerol matrix which is then bombarded with a beam of argon or xenon atoms resulting in protonated $[\mathrm{M}+\mathrm{H}]^{+}$or deprotonated $[\mathrm{M}-\mathrm{H}]^{-}$ion signals of the peptide depending on whether positive or negative mass spectra were generated. Because FAB is a relatively soft ionization procedure, the molecular ion is rather stable and is scarcely degraded to fragment ions. Thus, only a limited amount of structural information can
be obtained directly. However, for sequence analysis tandem mass spectrometry in the FAB mode can be used and has been the method of choice to sequence, for example, some members of the adipokinetic hormone family $(133,491)$, even to detect post-translational modifications like unusual glycosylation sites in such a peptide (128). In this method four sector mass spectrometers are used consisting of two double-focusing mass spectrometers with the geometry of two electric fields (E) and two magnetic fields (B) in either the BEEB or BEBE configuration. In the first double-focusing mass spectrometer (BE or EB) the peptide is ionized and the parent ion filtered to reach eventually the second instrument. In the free-field region between the two instruments the ion is fragmented by collision with helium or argon atoms (collision-induced decomposition $=$ CID; or collisionally activated dissociation $=\mathrm{CAD}$) producing the daughter or product ions which are detected and analyzed in the second double-focusing mass spectrometer (EB).

In the last 10 years new mass spectrometric techniques have been developed which are especially useful for molecular weight measurements, but may be employed for sequencing as well when modifications are used. The method of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry, for example, has outstanding sensitivity (1 pmol or less) and large biopolymers up to about 300 kDa can be determined when a time of flight mass analyzer is used. Characteristic for MALDI mass spectrometry is that short pulses of lasers emitting in the ultraviolet or infrared are focused on a suitable matrix (for example, sinapinic acid is quite often used for peptides), in which the peptide/protein is embedded. The laser energy is absorbed by the matrix molecules and transferred to the sample molecular layers. Thereafter ionization and desorption takes place. The ions are emitted and separated while they fly to the detector. Generally, the most intense signal is the singly charged molecular ion, but doubly and triply charged molecular ions appear as well.

In electrospray mass spectrometry the peptide/protein sample is dissolved in, for example, a mixture of methanol or acetonitrile and water, infused very slowly into a glass capillary at a constant flow rate and introduced into the electrospray source. At this source a spray of fine, highly charged droplets is created at atmospheric pressure in the presence of a strong electric field. The droplets are made to shrink until ions evaporate and enter the mass analyzer, which, most commonly with this technique, is a triple quadrupole. During the electrospray ionization process multiprotonated molecules $(\mathbf{M}+\mathrm{nH})^{\mathbf{n}+}$ are formed which give rise to a series of consecutive peaks at $(M+n) / n$ along the mass to charge scale of the ion spectra. The occurrence of multiply charged ions allows the determination of proteins up to more than 100 kDa ; the sensitivity for
the molecular mass of peptides has been shown to be in the picomole or even femtomole range.

Once the structural data are collected, peptides up to 30 to 50 amino acid residues can be synthesized by solid phase techniques using the modern generation of automated peptide synthesizers. The synthetic peptide, in turn, is carefully compared with the natural peptide with regard to chromatographic retention time in different solvent and support systems, mass spectrometric data and biological activity in the appropriate bioassay. Only when these parameters of the natural and synthetic peptide match can one be sure that the correct sequence was determined or assigned.

2.4. Immunological Techniques (RIA, ELISA, Immunocytochemistry)

Analytical immunochemical methods have been used widely to identify and quantify peptidergic substances in insects. The most important techniques in the context of this review are immunocytochemical methods, which detect qualitatively an insect peptide antigen in tissues and cells, as well as the quantitative radioimmunoassays (RIAs) and enzyme-linked immunosorbent assays (ELISAs), which selectively measure minute amounts of peptide antigens among a mixture of potentially interfering material found in complex biological samples such as haemolymph. Only when the concentration of a neuropeptide is increased in the haemolymph after some specific physiological challenge can a true neurohormonal role be established. Thus, the neuropeptide is then released from its production/storage sites into the general circulation to act on peripheral tissues.

Most immunochemical work in insects is carried out with polyclonal antibodies raised in rabbits, but some monoclonal antisera have now been prepared for insect work (265). Most important for the success of any immunochemical method is the availability of a high-titred antiserum. In peptide work a synthetic product is the best antigen; however, problems may be encountered with small peptides, because they are not immunogenic. In such a case they have to be conjugated covalently, using carbodiimide or glutaraldehyde, to a larger carrier molecule which is usually a protein such as thyroglobulin, bovine serum albumin or keyhole limpet haemocyanin. Further problems may occur when the peptide does not contain a reactive group. This is, for example, the case with most peptides of the $\mathrm{AKH} / \mathrm{RPCH}$-family. One possible solution is to synthesize chemical analogues: either a des-pGlu-analogue was used for conjugation $(49,84)$, or the pGlu residue was replaced by Tyr (422) or Glu (290), or the

N-terminal tetrapeptide (pGlu-Leu-Asn-Phe...) was conjugated via a diaminohexane spacer to thyroglobulin (421).

Another problem that may occur when using RIA is the preparation of a tracer, a radiolabelled antigen, with high specific activity. Conveniently, radioiodine is utilized to produce a tracer with high specific radioactivity; it is a gamma emitter which can easily be measured in inexpensive gamma counters. However, for example, most AKH/RPCH-family peptides do not contain an iodine-reactive molecule such as Tyr or His residues. Therefore, Moshitzky et al. (290) prepared a derivative, 4-hydroxy-phenylpropionyl-[Glu ${ }^{1}$]-Lom-AKH-I, which was subsequently iodinated with sodium ${ }^{125}$ I. Although such a molecule mimics the structure of the antigen and can be used in a RIA, it is not possible to use it for receptor binding studies. Structure-activity experiments (see Sect.3.1.1) have shown that the N-terminal pGlu is quite essential for exerting biological activity. Recently, a different radiolabelled AKH peptide, a derivative of a moth AKH (Mas-AKH), was made (492). First a peptide analogue with p-iodo-Phe at position 4 was synthesized, which was subsequently treated with tritium gas to produce a peptide analogue with tritium at the para position of Phe. The peptide had high specific activity and showed no difference in biological activity to the native non-tritiated peptide.

For further readings about applications of immunochemical methods in insect research and of problems and challenges of RIA, ELISA and immunocytochemistry the interested reader is referred to excellent articles in the book of Gilbert and Miller (139). The contribution of Schooneveld and Veenstra (423) in this book, for example, clearly indicates the possible limitations of immunocytochemical work and the caveats needed in interpretation of this histochemical technique. Therefore, positively-reacting cells in immunocytochemistry are generally called immunoreactive-"like"; which means that the specific antibody used has recognized a substance immunologically indistinguishable from the antigen. The true chemical identity has to await classical peptide purification and characterization or identification by molecular biological methods.

2.5. Molecular Biological Techniques

Advances in this particular field are extremely rapid and it is beyond the scope of this article to cover the different techniques. Some information in this respect with regard to insect neuropeptides can be found in several overviews (140, 395, 396).

It is clear, however, that the entire amino acid sequence of a large peptide or protein can nowadays be obtained more easily by deduction from its DNA sequence than determination of the amino acid sequence using protein chemical techniques. However, there are prerequisites and drawbacks as well: first, a partial amino acid sequence has to be known to construct oligonucleotide probes for screening a recombinant DNA (cDNA) or genomic DNA library to be sequenced for positive DNA clones. Sequencing of those DNA clones, in turn, will then give information on the identity of the amino acid sequence of the encoded peptide/protein. Second, DNA sequencing, as Edman degradation sequencing, is limited to the extent that post-translational modifications cannot be detected and identified.

One of the most successful applications of recombinant DNA techniques in insect research has been the provision of information on the amino acid sequences of neuropeptide precursor proteins. In some cases, as with many vertebrate neuropeptide precursors, other new peptide sequences were identified which occurred in the same precursor. In a recent short review, Girardie (140) states that the respective genes for insect neuropeptide hormones can be classified as three types:

1. The preprohormone consists of a signal peptide and the neuropeptide. Examples are the eclosion hormone precursor (183; Sect. 3.2.4) and the neuroparsin precursor (245; Sect. 3.2.5.1). This type of organization has not yet been demonstrated in vertebrates.
2. The preprohormone consists of a signal peptide, the neuropeptide and other structurally unrelated peptides. Examples are the bombyxin and another insulin-related peptide precursor (197, 246; Sect. 3.2.3.) and the precursors for the adipokinetic hormones of locusts $(329,424$; Sect. 3.1.1).
3. The preprohormone contains a signal peptide and multiple copies of the same and/or very similar neuropeptides (isoforms). Examples are the FMRFamide-related peptide precursor of the fruitfly Drosophila melanogaster (320, 402; Sect. 3.3.8) and the precursor for the allatostatins of the cockroach Diploptera punctata (71; Sect. 3.2.2.2).

Since neuropeptide precursors are metabolic intermediates and are present in even smaller amounts than their products, recombinant DNA techniques for elucidating their structures are almost a necessity. This is also true for the receptor proteins of insect neuropeptides which are obviously scarce and therefore extremely difficult to identify structurally by protein chemical methods. Up to now, only the receptor for the diuretic hormone from the Malpighian tubules of the moth, Manduca sexta, has been cloned and sequenced (384; Sect.3.1.2),
but future molecular biological work will undoubtedly reveal more receptor structures.

A third area in which molecular biological techniques are very helpful is the production of large peptides/proteins which are impossible or very difficult to synthesize chemically. For this, cDNA is expressed in cells which are infected with recombinant vectors like baculoviruses. Recently, the cDNA encoding human growth hormone was expressed in larvae of Bombyx mori employing B. mori nuclear polyhedrosis virus (a baculovirus) as an expression vector (206). The hormone was synthesized in the larvae and secreted into the haemolymph. It was confirmed that the recombinant growth hormone had the same molecular weight and amino acid sequence at its N -terminal region as the natural growth hormone. Moreover, the biological activity was comparable to that of natural growth hormone suggesting that the active structure of the recombinant growth hormone is identical with that of the natural one. Thus, this insect's larvae and baculovirus system has the potential as an efficient gene expression system for the industrial production of biologically active peptides/proteins including hormones, important for medical and pharmaceutical purposes.

Expression of insect neuropeptides in insects or cell cultures making use of recombinant baculoviruses has been achieved for eclosion hormone $(86,156)$ as well as for the pheromone biosynthesis activating neuropeptide (PBAN; 463). For further reading on this subject an article by MaEdA (267) is recommended.

3. The Insect Neuropeptides

In the next sections, the various neuropeptides of insects will be discussed. Attention is mainly focused on those whose primary structures are known. Since there has been an explosion of characterized neuropeptides during the last few years and since almost every month new information is published, it is entirely possible that the literature and structures dealt with in this review are not complete. This is not because of deliberate omission, but simply because the author has failed to spot those publications.

The various neuropeptides are categorized by their actions. However, quite a few of those peptides elicit more than one biological response, thus have pleiotropic actions. In general, such peptides are discussed with respect to their main action or to the action they are best known for. This also has a bearing on their nomenclature. Although no single nomenclature is perfect, the one proposed by Raina and GÄDE (368) is used here, but in some instances alternative names are included as well.

3.1. Peptides Involved in Homeostasis and Metabolism

3.1.1. Adipokinetic and Hypertrehalosaemic Peptides

Insulin and glucagon are well-known metabolic hormones of vertebrates which are involved in homeostasis of carbohydrate and lipid metabolism. The limited structural knowledge about insulin-like peptides in insects is discussed in Sect. 3.2.3. The first report on the existence of a glucagon-like factor in insects came from Steele (446). Extracts of corpora cardiaca elevated the concentration of the haemolymph sugar trehalose (hypertrehalosaemic effect). The active principle was shown to be peptidic and, because of limited sequence identity of mammalian glucagon and some of these metabolic peptides in insects (see later) and similarities in action, the term "trehalogon" was coined (447). In a recent review (148), however, it is argued that there is "no justification in claiming any homology or evolutionary relationship" between the insect peptides and vertebrate glucagons.

In 1969 a different effect of extracts of corpora cardiaca was reported in the locusts Schistocerca gregaria (279) and Locusta migratoria (15). Here the concentration of haemolymph lipids was elevated (adipokinetic effect). In 1976 the decapeptide adipokinetic hormone, now called Lom-AKH-I, was isolated from 3000 corpora cardiaca by size exclusion chromatography on controlled-pore glass and thin layer chromatography on silica gel (450). Structure elucidation was achieved by a combination of enzymatic cleavage and mass spectrometry. The structure (see Table 1) was clearly related to that of the previously described red pigment-concentrating hormone from the shrimp Pandalus borealis (Pab-RPCH) (92). This structural similarity was the reason for naming this group of peptides the AKH/RPCH-family of peptides. During recent years new members of this family have been described from many insect orders. Isolation was achieved mainly by single-step RP-HPLC (see Sect. 2.2) and structure elucidation was carried out by Edman degradation after deblocking the N -terminal pyroglutamate residue or by various mass spectrometric techniques, mainly FAB-MS. Due to the relatively high concentration of AKH-type peptides per corpus cardiacum, the entire primary structure was resolved using, for example, only 4 glands from the grasshopper Phymateus leprosus (127) which compares quite favorably with the high amount of material necessary during the first AKH structural study (450). About 30 different peptides are known at present (Table 1) and that makes this family one of the largest. Such peptides have been identified from representative species of most insect orders (106) and attempts have been made to use the sequence information to construct phylogenetic trees
Table 1 Prımary structures of peptıdes of the adıpokinetıc hormone/red pigment-concentrating hormone (AKH/RPCH) famlly

Code name	Species	Sequence	Reference(s)
Lom-AKH-I	Locusta migratorıa	pQLNFTPNWGTamıde	429, 450
	Schistocerca gregaria		450
Phm-AKH	Phymateus morbillosus	pQLNFTPNWGSamıde	Gade, Kellner, and Rinehart, unpublished
Del-CC	Decapotoma lunata	pQLNFSPNWGNamıde	118
Cam-HrTH-I	Carauslus morosus	pQLTFTPNW*GTamıde	128
Cam-HrTH-II	C morosus	pQLTFTPNWGTamıde	133
	Sipylotdea sipylus		105
	Extatosoma tlaratum		134
Phl-CC	Phymateus leprosus	pQLTFTPNWGSamıde	127
Taa-HoTH	Tabanus atratus	pQLTFTPGWGYamıde	200
Hez-HrTH	Heloothis zea	pQLTFSSGWGNamıde	198
Rom-CC	Romalea microptera	pQVNFTPNWGTamıde	122
Bld-HrTH	Blaberus discoidals	pQVNFSPGWGTamıde	160
	Nauphoeta cinerea		131
	Leucophaea maderae		134
	Gromphadorhina portentosa		134
	Blattella germanica		134,468
Plc-HrTH-I**, II	Platypleura capensis	pQVNFSPSWGNamıde	123
	Munza triment		123
	Cacama valavata		471
	Diceroprocta semicincta		471
	Magıcıcada sp		376
Mas-AKH	Manduca sexta	pQLTFTSSWGamıde	491
	H zea		199
	Bombyx morl		188

Table 1 (contınued)

Code name	Species	Sequence	Reference(s)
Psı-AKH	Pseudagrıon inconspıcuum	pQVNFTPGWamıde	202
	Ischnura senegalensis		202
Lıa-AKH	Libellula auripennis	pQVNFTPSWamıde	108
	Ceratogomphus pictus		Janssens, Kellner, and Gade, unpublished
	Pantala flavescens		Janssens, Kellner, and Gade, unpublished
Emp-AKH	Empusa pennata	pQVNFTPNWamıde	110
	Sphodromantis sp		110
Anı-AKH	Anax imperator	pQVNFSPSWamıde	124
	Aeshna subpupillata		Janssens, Kellner, and Gade, unpublished
	Anotogaster sleboldı		Janssens, Kellner, and Gade, unpublished
Pea-CAH-I	Perıplaneta amerıcana	pQVNFSPNWamıde	14, 394, 430, 478
	Blatta orıentalıs		134
	Leptınotarsa decemlineata		125
	Trinervitermes trinervoldes		257
	Mastotermes darwiniensıs		257
Grb-AKH	Gryllus bimaculatus	pQVNFSTGWamıde	132
	Acheta domestıcus		61, 481
	Gryllodes sigillatus		113
	R microptera		122
Tem-HrTH	Tenebrio molitor	pQLNFSPNWamıde	135
	Zophobas rugıpes		135
	Onymacris plana		116
	O rugatıpennis		116
	Physadesmia globosa		116
	Polyphaga aegyptıaca		126

[^1]$(117,130)$. It appears that Pab-RPCH is conserved in crustaceans; insect species, however, show a high degree of structural variability. All members are from 8 to 10 amino acids long, are N -terminally blocked by a pyroglutamate residue and C-terminally blocked by an amide. At position 4 (Phe or Tyr) and 8 (Trp) aromatic residues are present; most variations in constituent amino acids are conservative (Table 2). The majority of peptides is not charged under physiological conditions, but certain dipteran species and members of scarabaeid beetles contain peptides with a negatively charged Asp residue at position 7 (see Table 1). The family shows even more post-translational modification than only the blocked termini. For example, the stick insect Carausius morosus contains two decapeptides (see Table 1) one of which is glycosylated as shown by mass spectrometry (128). The glycosylation site is not the usual Ser/Thr (Oglycosylation) or Asn (N -glycosylation), but Trp is involved. Recently, it was reported that human RNase also uses Trp as a glycosylation site and, by ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ nuclear magnetic resonance spectroscopy, it was shown that the substituent was an aldohexopyranosyl residue which was C glycosidically linked to the C 2 atom of the indole ring of the tryptophan (168).

Moreover, in various cicada species from Africa and America two decapeptides have been found which are identical in structures judged by all methods used, including differences between D - and L-isomers. However, they can be separated on RP-HPLC $(123,376,471)$, thus have to be different. As yet it is not known which modification does occur.

Besides the hyperlipaemic and hypertrehalosaemic effects mentioned above, other activities of peptides of the AKH/RPCH family are known. The major ones are the following:

1. Stimulation of the frequency of the heart beat in Periplaneta americana (462) which led to the use of this action as a bioassay for the isolation of the peptides Pea-CAH-I and II $(14,394)$ and also to some structure-activity studies (13).
2. Increase in muscle tone and frequency of contraction of the spontaneous activity of the isolated leg of a locust; this bioassay was also successfully used to isolate Pea-CAH-I and II $(336,478)$.
3. Inhibition of protein synthesis in L. migratoria (42), which was also shown to occur in the cricket Acheta domesticus (61). In the cockroach B. discoidalis, however, the endogenous peptide Bld-HrTH stimulates the rate of protein biosynthesis by interacting cooperatively with juvenile hormone (223).
4. Inhibition of fatty acid synthesis in S. gregaria (145). A simpler, more convenient and rapid method measuring the inhibition in fat body of
Table 2. Common structural features of the AKH/RPCH-family peptides and variations. The frequency of occurrence of residues (in brackets) at each position is given. Analysis is based on the structure of the 30 family members given in Table 1

| Position | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | $\mathrm{pQ}(30)$ | $\mathrm{L}(18)$ | $\mathrm{N}(20)$ | $\mathrm{F}(29)$ | $\mathrm{T}(16)$ | $\mathrm{P}(25)$ | $\mathrm{N}(13)$ | $\mathrm{W}(30)$ | $\mathrm{G}(13)$ | $\mathrm{T}(5)$ |
| | | $\mathrm{V}(10)$ | $\mathrm{T}(10)$ | $\mathrm{Y}(1)$ | $\mathrm{S}(14)$ | $\mathrm{S}(2)$ | $\mathrm{G}(9)$ | Nmide | | |
| | $\mathrm{I}(2)$ | | | | $\mathrm{T}(2)$ | $\mathrm{S}(5)$ | | $\mathrm{N}(4)$ | | |
| | | | | | $\mathrm{A}(1)$ | $\mathrm{D}(2)$ | | $\mathrm{S}(1)$ | | |
| | | | | $\mathrm{W}(1)$ | | | | | | |
| | | | | | | | | | | |

L. migratoria of the synthesis of lipid from [$\left.1-{ }^{14} \mathrm{C}\right]$ acetate was developed recently $(253,254)$.
5. Inhibition of RNA synthesis in fat body of L. migratoria (232).
6. In B. discoidalis the peptide $\mathrm{Bld}-\mathrm{HrTH}$ is also thought to regulate the synthesis of haemes for mitochondrial cytochromes, although not directly; furthermore, Bld-HrTH appears to be responsible for the induction of gene expression for a cytochrome P450 enzyme (221).

In conclusion, the AKH/RPCH peptides exert multiple physiological effects in various insect model systems. Mainly, they act on the metabolic status of the fat body. Most physiological research is done on the functions of adipokinetic hormones in locusts during flight (112,146, 147). The hormones have direct effects on the mobilization of carbohydrates and lipids and/or the utilization of such substrates by the flight muscles, but have additional indirect effects on the transport of lipids as lipoproteins to the flight muscles and on the enzyme system of lipoprotein lipase in the flight muscles. This enzyme is responsible for "unloading" of the diacylglycerol from lipoproteins and making it finally available for oxidation to power the contraction of the flight muscles.

There are numerous reports, for locusts as well as other insects, on the involvement of AKH/RPCH peptides in activation of phosphorylase, of lipase, in the production of cyclic AMP, the usage of calcium for signal transduction etc., but this will not be discussed here. Rather short accounts on structure-activity relationships, biosynthesis, localization by immunocytochemical techniques, release and breakdown are given.

Studies on how the biological information is encoded within the structure of various members of the AKH/RPCH family and some synthetic analogues have been conducted employing bioassays. Such studies on structure-activity relationships have been done on the lipid-mobilizing activity in locusts $(109,115,150,151,451)$ and in M. sexta (101), on the carbohydrate-mobilizing activity in P. americana $(104,109,114,121)$ and B. discoidalis $(99,159)$ and on the phosphorylase-stimulating activity in M. sexta (489). Major differences apparently exist between those insects containing one endogenous peptide, M. sexta (Mas-AKH) and B. discoidalis ($\mathrm{Bld}-\mathrm{HrTH}$), and those containing two or three endogenous peptides, L. migratoria (Lom-AKH-I, II, III) and P. americana (Pea-CAHI, II).

The receptors in M. sexta and B. discoidalis are apparently more selective, since quite a few of the tested, naturally-occurring analogues (= bioanalogues) were poorly active in those systems. On the other hand, for most bioanalogues up to a 50 -fold higher dose was needed to achieve a half-maximal response (ED_{50} value) than for the endogenous peptides in
L. migratoria and P. americana. This may be indicative of the presence of more than one receptor type and, therefore, a broader spectrum of binding. Support for a multiple receptor hypothesis comes from various other experiments. For example, the three peptides from L migratoria have different potencies in different biological assays. Lom-AKH-III is more potent as an inhibitor of fatty acid uptake and RNA synthesis than Lom-AKH-I, but it is less potent in lipid-mobilization and activation of fat body phosphorylase $(253,338)$. Since optimal responses for the acetate uptake assay are obtained with locust fat bodies of young insects (<8-day adults), but for hyperlipaemia in older than 15-day adults, it is assumed that receptor populations may change during adult development (253). Moreover, certain single amino acid replacement analogues (at positions 1 and 2) for the endogenous peptide Pea-CAH-I in P. americana showed biphasic dose response curves characteristic of two receptors with differing affinities for the analogues (121).

Such single replacement studies also revealed that in the cockroaches P. americana (121) and B. discoidalis (99), the aromatic amino acid side chains at positions 4 and 8 are absolutely essential and that the amidated C-terminus and the pGlu at the N -terminus are very important as well. Since these are general structural features of the family it is very likely that all receptors are similar in that respect. Another result of these single replacement studies was that replacement at positions 6 and 7 in Pea-CAH-I had very little effect on the activity. These results are consistent with the prediction that a β-turn is formed around residues 5 to 8 (149, 477). The corner residues 6 and 7 would not directly interact with the receptor; however the turn would be present primarily to orient the N terminal pentapeptide residues and the C-terminal Trp-amide for interaction with the receptor (121). Studies on the conformation of some peptides of the AKH/RPCH family appear to confirm these predictions. Although in water such small peptides show a random coil conformation, increasing concentrations of SDS progressively stabilized the emergence of a single structure, as evidenced by circular dichroism spectroscopy, which would be described as a type of β-turn (477, O. Cusinato, A.F. Drake, G. Gäde and G. J. Goldsworthy, unpublished results). Nuclear magnetic resonance studies on the octapeptide Emp-AKH dissolved in dimethylsulfoxide indicated a β-turn encompassing residues 5 to 8 , with evidence of a β-sheet conformation for residues 1 to 5 (494).

The biosynthesis of adipokinetic hormones, including the genes and precursors, is best understood in the desert locust, Schistocerca gregaria (335). Direct protein isolation and sequencing methodology was used as well as molecular cloning. It is now believed that each adipokinetic hormone (even when three exist in one species, as in L. migratoria) is
encoded on a separate gene. Small mRNA's, each of about 500 nucleotide in length have been found for the decapeptide Lom-AKH-I and the octapeptide Scg-AKH-II; they encode the two precursor proteins, prepro-AKH-I of 63 amino acids and prepro-AKH-II of 61 amino acids. The organization of the two preprohormones is very similar: there is a $22-\mathrm{mer}$ signal peptide, followed by the sequence for either Lom-AKH-I (10 amino acids) or Scg-AKH-II (8 amino acids), followed by a Gly residue used for amidation and a Lys-Arg processing site and a 28 -mer peptide called the α-chain in prepro-AKH-I and called the β-chain in prepro-AKH-II. After cleavage of the signal peptide the linear prohormones form dimeric precursors by oxidation. There are three dimeric precursors P_{1}, P_{2} and P_{3} : two homodimers (2 pro-AKH-I and 2 pro-AKH-II) and a heterodimer (1 pro-AKH-I plus 1 pro-AKH-II). The processing of these dimeric precursors yields as products monomeric AKHs and dimeric AKH precursor-related peptides (APRPs), of which there are three different ones: APRP ${ }_{1}$, consisting of two α-chains, APRP $_{2}$ consisting of two β-chains and the heterodimer APRP $_{3}$ consisting of an α-chain and a β-chain. The steps necessary for the prohormone processing have recently been elucidated in an in vitro system (383). It has been shown that the corpora cardiaca contain an endoproteolytic activity which cleaves at the C-terminal side of the Arg residue at the processing site in each chain of the dimer. The product, the C-terminal extended AKH (AKH-Gly-LysArg), is subsequently digested by a carboxypeptided H -like enzyme removing Arg and then Lys. The next step is catalyzed by a peptidyl-glycine- α-amidating monooxygenase producing the amidated AKH from the glycine-extended peptide. It is also suggested that a structural motif, a so-called Ω loop, located 7 amino acids prior to the cleavage site, is necessary for action of the endopeptidase (382). When the structure of the precursor P_{1} was analyzed in solution by circular dichroism and nuclear magnetic resonance, no evidence for an Ω loop in the N -terminal region could be found (182). However, the authors found an α-helical structure at the C-terminal end where another putative processing site (Arg-Lys) is located. This site is not used in prohormone processing and the study thus supports the idea that cleavage sites do not lie in helical regions, but near flexible structures (182).

In another Schistocerca species, S. nitans, sequence analysis of cloned cDNAs derived from 550 nucleotide long mRNAs that code for the prepro-AKHs led to a very similar organisation as for S. gregaria (329).

The sequences of the three prepro-AKHs of L. migratoria have been deduced from three distinct cDNAs. Whereas the precursors for Lom-AKH-I and II are highly homologous to the precursors of their counterparts in the two Schistocerca species, the precursor for Lom-AKH-III is
different with respect to its "tail" region (the α - or β-chain) and resembles more, at least in length, the situation in non-locusts and crustaceans (see below) (23). In situ hybridization data revealed that mRNAs for the three AKHs of L. migratoria are co-localized in cell bodies of the glandular part of the corpus cardiacum. Remarkably, when the effect of flight activity on AKH gene expression was studied in L. migratoria, it became evident that the level of the Lom-AKH-III transcript was increased about 4 times and those for Lom-AKH-I and II 2 times (23). These differences of gene expression during flight constitute another example for the conclusion that the different AKHs of one species may be used for different functions.

The prepro-AKH sequence for M. sexta was deduced from the nucleotide sequence by using a genomic library for isolating the AKH gene (32). A 19 -mer signal peptide is followed by the sequence for the nonapeptide Mas-AKH and subsequent to that by a Gly residue (for amidation) and a classical Lys-Arg cleavage site which is followed by a C-terminal peptide of 34 amino acids. This C-terminal "tail" peptide may be the equivalent to the α - or β-chain in the locusts, but the sequences are unrelated. However, the "tail" contains a Cys residue 4 residues from the C-terminus, which may be used for oxidation to form a dimeric structure like the APRPs, but this has not yet been detected.

The fruitfly, Drosophila melanogaster, which contains a single octapeptide identical in sequence with the hypertrehalosaemic peptide of Phormia terraenovae (Pht-HrTH), contains the same overall architecture of its Pht-HrTH precursor as shown for the species above (328). The length of the C-terminal peptide, however, is 46 amino acids; this is even longer than those of the Lom-AKH-III and Mas-AKH precursor, but shorter than the ones for the Pab-RPCH precursor (see below).

The precursor for the only crustacean member of this family of peptides, the red pigment-concentrating hormone (Pab-RPCH), has the same general organization as the precursors from insects. The sequences for prepro-RPCH from the shore crab Carcinus maenas (258) and the blue crab Callinectes sapidus (231) have been deduced from nucleotide sequences using cDNA libraries from the neurosecretory X-organs of C. maenas or from eyestalk ganglia of C. sapidus. The signal peptide contains 25 amino acids in both species, followed by the 8 -mer RPCH sequence with Gly and a dibasic (Lys-Arg) processing site and a 74-(C. maenas) or 73-mer (C. sapidus) "tail" peptide. This so-called RPCH-precursor related peptide (RPRP in analogy to the insect APRPs) is much longer than the APRPs. It also contains cysteine residues and thus could form dimers, but it is not known if dimers exist.

That adipokinetic hormones are located in and synthesized by intrinsic neurosecretory cells of the corpus cardiacum in insects has also been
shown by immunocytochemical methods (49, 84, 420, 422). In locusts region-specific antibodies with high specificity for either Lom-AKH-I or Lom-AKH-II/Scg-AKH-II revealed that both peptides are co-localized in the same glandular cells of the corpus cardiacum and even in the same secretory granules $(68,162)$. The release of both Lom-AKH-I and II into the haemolymph during flight has been reported and it was suggested that the release is controlled by octopamine and cyclic AMP $(332,343)$. However, other groups could not find octopamine immunoreactive fibers in the locust corpus cardiacum (233) and were unable to show AKH release by octopamine (344). It was, however, demonstrated that locustatachykinin I (Lom-TK-I) immunoreactive axon terminals were situated in close contact with the glandular corpus cardiacum cells (309). Moreover, Lom-TK-I induced the release of Lom-AKH-I when monitored in an in vitro system.

In M. sexta the endogenous AKH (Mas-AKH) mobilizes lipids for flight in adults and activates phosphorylase in moulting and wandering larvae during starvation; thus in this species this neurohormone is also involved in energy metabolism and acts on fat body cells (490). By synthesizing a radiolabelled (tritiated) Mas-AKH analogue (see Sect. 2.4) it was shown that membrane fractions prepared from fat body cells of M. sexta specifically bind this analogue (492). No receptor binding, however, was found with membranes prepared from brains, heart or flight muscle tissue. Membrane fractions prepared from the pterothoracic ganglion resulted in, albeit low, specific binding. This result is in full agreement with a recent study in which the injection of Mas-AKH into the mesothoracic neuropile area increased the motor activity of those muscles which are innervated by motorneuron dendrites from this area (282).

Inactivation and metabolism of AKH-peptides, thus termination of the hormonal signal, in different insect species have been investigated to some extent. In the central nervous system of S. gregaria, for example, Lom-AKH-I can be inactivated by a membrane-bound endopeptidase which cleaves the $\mathrm{Asn}^{3} / \mathrm{Phe}^{4}$ bond (187). According to in vitro and in vivo studies of Rayne and O'Shea (381), such an endopeptidase is also present on the external surface of the desert locust's fat body cells. Both endogenous AKHs, Lom-AKH-I and Scg-AKH-II, are cleaved at the $\mathrm{Asn}^{3} / \mathrm{Phe}^{4}$ bond. The fragments, both of which are biologically inactive, are now susceptible to degradation by exopeptidases. Indeed, for the C-terminal fragments of Lom-AKH-I and Scg-AKH-II, breakdown by aminopeptidase activity, which apparently resides in the haemolymph, could be demonstrated, whereas the N-terminal fragments (pGlu-LeuAsn) were long-lived. Short characterization of the endopeptidase suggests a great deal of similarity to mammallian endopeptidase 24.11.

Exchanging Phe ${ }^{4}$ with Tyr ${ }^{4}$ in an analogue of Lom-AKH-I did not affect the activity of the endogenous endopeptidase (381). Since all members of the AKH/RPCH family contain either Phe^{4} or Tyr^{4} (see Table 1), it is safe to speculate that probably all peptides of this family are degraded by the same mechanism.

Another degradation process may take place in S. gregaria as well. Homogenates of the Malpighian tubules of this species or incubation of isolated Malpighian tubules take up and/or break down Lom-AKH-I (431). It is thought that the first step in the proteolytic degradation is catalyzed by a post-proline cleaving enzyme. Scg-AKH-II, however, containing no Pro ${ }^{6}$ residue, is broken down by another endopeptidase which cleaved between Phe^{4} and Ser^{5}. This action is similar to that of chymotrypsin (432). Once the endopeptidases have been active, the now unblocked new N - and C-terminus of the fragments can be attacked by exopeptidases of the leucine aminopeptidase and carboxypeptidase A or B-type. Such enzymes have been demonstrated in homogenates of Malpighian tubules (432). From these experiments it is assumed that AKHs can enter the Malpighian tubule cells and can be degraded there. Whether this breakdown by internalization is the major route of inactivation of AKHs is questionable. At least it is clear from the other set of experiments described above (381) that breakdown of AKHs by a cellsurface located endopeptidase is also occurring.

3.1.2. Diuretic and Antidiuretic Peptides

The osmotic composition of the haemolymph of insects is tightly regulated. The major organs responsible for fluid and ion secretion are the Malpighian tubules, but the hindgut (ileum and rectum) are important as well (Fig. 3). The insect's excretory system can be viewed in general to consist of two parts: the Malpighian tubules form and secrete the primary urine and the hindgut, specifically the rectum, determines, by reabsorption, the quality of the final excreted waste product. Thus, the primary urine from the Malpighian tubules enters the gut at the junction between the midgut and hindgut, where some may move forward for reabsorption in the midgut (72). The remaining major part mixes with the gut contents and moves in a posterior direction through the hindgut to the rectum, where most of the selective resorption and absorption of essential metabolites, including ions, and water occurs (266, 346, 347).

The primary urine produced by the tubules is isosmotic to the haemolymph. The driving force for fluid secretion is by active transport of cations achieved by a proton pump (an H^{+}-ATPase) and associated $\mathrm{Na}^{+} / \mathrm{H}^{+}$and $\mathrm{K}^{+} / \mathrm{H}^{+}$antiporters as well as Cl^{-}channels, all situated in

Anus

Fig. 3. Schematic diagram of the insect's excretory system indicating upon which part the different neuropeptides are acting
the apical or luminal membranes as reviewed in $(326,18)$. By this action, either potassium chloride (in nonblood-feeding insects like locusts, beetles, and ants) or sodium chloride (in bloodsucking insects like the bug, Rhodnius prolixus, the yellow fever mosquito, Aedes aegypti, and the tsetse fly, Glossina morsitans) are the major salts which occur in the tubule fluid in sometimes quite high concentrations. The possibly deleterious effect of this high ionic composition is counteracted by the hindgut, where a wellcontrolled ion reabsorption takes place. Specifically the rectum is capable of producing a excretory product that is hyper- or hypoosmotic to the haemolymph, because the relative rates of water and ion absorption can be varied.

Neuropeptides have been reported to control tubular excretion rates (diuretic effects) as well as to regulate rectal reabsorption (antidiuretic effects). For example, feeding in haematophagous (blood-feeding) insects apparently stimulates release of diuretic peptides resulting in increased secretion rates of the tubules and an overall water loss during this so-called post-prandial diuresis (266). In xeric species, however, although diuretic peptides are released, an increased overall water loss may not be noticed; here the accelerated rate of tubular secretion is "masked" by the equally stimulated (by antidiuretic factors) uptake of fluid in the hindgut. The latter scenario results, because of the higher rates of recycled fluid, in a better clearance of toxic wastes and metabolic products and it was on this account that Nicolson (325) proposed the term "clearance hormones" as opposed to diuretic hormones, especially for insects like the Namib Desert beetle which have to conserve water. Thus, as discussed by

Spring (435), the definition of "diuretic hormone" is quite ambiguous and has led to substantial confusion. This mainly stems from the different methods used to determine the action in biological assays, i.e. water loss from the whole insect, fluid secretion of Malpighian tubules in situ or by isolated tubules in vitro, measurement of the transepithelial potential in isolated perfused tubules or fluid reabsorption of the rectum in vitro (for details, see $326,435,476$).

Since the concentration of intracellular cyclic AMP (in some cases cAMP is even released into the incubation medium) in the Malpighian tubules is increased by the action of certain diuretic peptides, measurement of cAMP by RIA or competitive protein-binding assays is also frequently used to detect diuretic actions in intact tubules in vitro.

In what follows, studies will be reviewed which have dealt with isolation and successful sequence determination of diuretic peptides, but numerous articles on not fully-characterized diuretic peptides will not be discussed.

Using a vertebrate immunochemical approach (antibodies raised against the antidiuretic hormones of many higher vertebrates, e.g. arginine vasopressin), immunoreactivity was shown to occur mainly in the suboesophageal and thoracic ganglia of the migratory locust $(359,385)$. The material was also biologically active in one of the many diuretic assays: it affected the rate of amaranth excretion in the locust. For purification, 51000 ganglia of L. migratoria were homogenised, extracted and isolated on a RP-HPLC column eluted with a acetonitrile/TFA gradient resulting in two zones, F1 and F2, which were immunoreactive, but only F2 material increased dye excretion (419). A further 3 to 4 RP-HPLC steps, using different solvents and organic modifiers, purified both immunoreactive compounds sufficiently for peptide analyses. Surprisingly, both factors had identical amino acid composition and identical sequences, although retention times during the different purification steps were always different (358). Size-exclusion chromatography, however, revealed a relative molecular mass of about 700 for F1 and 1470 for F2 suggesting that the latter might be a dimer. Finally, it was shown that F 2 is the antiparallel dimer of F1, i.e. Cys ${ }^{1}$ of each chain in the dimer forms a disulfide bridge with Cys^{6} of the opposite chain (see Table 3). Comparison with vertebrate arginine vasotocin and arginine vasopressin showed 78 and 67% sequence homology (Table 3). Both native and synthetic F2 had biological activity in vitro on Malpighian tubules attached to the midgut, maintaining the urine production which in non-stimulated controls decreases gradually. Concentrations of about $10^{-9} \mathrm{M}$ were effective. Moreover, cyclic AMP production was stimulated by F2 (357). Because levels of AVP-like immunoreactivity in the haemolymph altered with
Table 3 Sequences of arginine vasopressin-like locust dıuretıc peptıde, of cortıcotropın releasing factor-related insect diuretıc peptıdes and comparıson with select vertebrate corticotropin releasing factor (CRF)-related peptides

Code Name	Specres	Sequence	Reference(s)
Mud-DP	Musca domestıca, Stomoxys calcitrans	NKPSLSIVNPLDVLRQRLLLEIARRQMKENTRQVELNRAILKNVamıde	50
Pea-DP	P americana	TGSGPSLSIVNPLDVLRQRLLLEIARRRMRQSQDQIQANREILQTIamıde	219
Lom-DP	L mıgratorıa	MGMGPSLSIVNPMDVLRQRLLLEIARRRLRDAEEQIKANKDFLQQIamide	220, 256
Acd-DP	A domesticus	TGAQSLSIVAPLDVLRQRLMNELNRRRMRELQGSRIQQNRQLLTSIamide	218
Mas-DP-I	M sexta	RMPSLSIDLPMSVLRQKLSLEKERKVHALRAAANRNFLNDIamıde	214
Mas-DP-II	M sexta	SFSVNPAVDILQHRYMEKVAQNNRNFLNRVamide	19
Urotensin-I	suckerfish	NDDPPISIDLTFHLLRNMIEMARIENEREQAGLNRKYLDEVamıde	251
Sauvagıne	frog	QGPPISIDLSLELLRKMIEIEKQEKEKQQAANNRLLLDTIamıde	288
Cortıcotropin releasing factor	rat	EEPPISLDLTFHLLREVLEMARAEQLAQQAHSNRKLMEIIamıde	388
Lom-AVP-lıke DP	L mıgratorıa		358
Arginıne vasopressın	vertebrates	CYFQNCPRGamide	
Argınıne vasotocın	vertebrates	CYIQNCPRGamıde	

relative humidity (359) and one of the three peaks in diuresis (measured as dye excretion) over a 24 h period was correlated with a higher titre of AVP-like peptide in the haemolymph, this peptide was named arginine vasopressin-like insect diuretic hormone. It was thought to be one, of possibly several, of the true diuretic hormones of L. migratoria. Unfortunately, neither stimulation of fluid secretion or production of cyclic AMP in isolated Malpighian tubules of L. migratoria could be demonstrated in doses of up to $10^{-6} \mathrm{M} / 10^{-7} \mathrm{M}$ by the synthetic antiparallel dimer F2, which was checked by chromatographic and mass spectrometric methods to be the authentic compound (56). Another synthetic locust diuretic peptide, however, which was previously isolated and characterized from whole heads or brains and corpora cardiaca of L. migratoria $(220,256)$ stimulated urine production in locust tubules 5 -fold and dramatically increased tubule cyclic AMP levels at $5 \times 10^{-8} \mathrm{M}(56)$. This L. migratoria diuretic peptide is one of a series of peptides which are all related to the mammalian corticotropin releasing factor (CRF) and which are therefore called CRF-related insect diuretic peptides. The first one of this series was isolated in parallel with eclosion hormone (see Sect. 3.2.4) from 10000 trimmed heads of pharate adults of Manduca sexta (214). Separation on SP-Sephadex was followed by cartridge and semi-preparative RP-HPLC on C-4 material with acetonitrile/TFA and 1-propanol/TFA, followed by ion exchange and subsequent purification on analytical and microbore C-4 with acetonitrile/HFBA and acetonitrile/TFA respectively. As a bioassay throughout purification, "post-eclosion diuresis" (voiding of urine in many lepidopteran species immediately after adult eclosion) in the butterfly, Pieris rapae, was used. Newly emerged adult butterflies were ligated behind the neck and beheaded; these insects were then injected with the material to be tested and the activity was scored when clear urine was excreted. The purified material, about 5 nmol from 10000 heads, was sequenced intact and also the tryptic fragments. This yielded a 41-mer peptide in its C-terminal amidated form, called here Mas-DP-I (Table 3). Of the two synthesized forms (amidated or acidic at the C-terminal), the amidated one had the same retention time on RP-HPLC and was about 1000 -fold more active than the acidic form in the Pieris assay. Furthermore, it promoted a pronounced loss of water through the gut and epidermis in pre-wandering, post-feeding M. sexta larvae, but had no direct effect on isolated tubules of these larvae (214). Later it was demonstrated that synthetic Mas-DP-I stimulated fluid secretion and production of cAMP in isolated Malpighian tubules of Acheta domesticus (53). Stimulation of fluid secretion and cAMP production invitro by Malpighian tubules of the butterfly, P. rapae, taken from adults within $1-12 \mathrm{~h}$ of eclosion, was shown by these authors as well. Data of

Troetschler and Kramer (458) revealed a decrease in fluid absorption from the rectum and an increase of intracellular levels of cyclic AMP in the rectum and Malpighian tubules of larval M. sexta in vivo by Mas-DP-I. Recently, the direct stimulating effect on Malpighian tubule secretion of adult M. sexta by synthetic Mas-DP-I in vitro was presented, and it was demonstrated that Mas-DP-I acts as an antidiuretic peptide on the cryptonephric complex of M. sexta larvae (8). Both effects appear to be mediated via cAMP.

Antisera raised against the N -terminal (Mas-DP-I I_{1-21}) and C-terminal (Mas-DP-I ${ }_{22-41}$) parts of the Manduca diuretic peptide both recognised the same two median neurosecretory cells on each side of the protocerebral groove of M. sexta larvae and a group of about 80 median neurosecretory cells in the adult (470). These data and the positive immunoreactivity of axons leading to the corpora cardiaca and axon terminals in these neurohaemal organs suggest that Mas-DP-I may be released into the haemolymph from these sites and act as a true neurohormone.

Three members of the CRF-related diuretic peptides, one each from Acheta domesticus, Locusta migratoria and Periplaneta americana, were isolated by Kay et al. $(218,219,220)$, using as their primary bioassay the production of cAMP by isolated Malpighian tubules in the species under investigation (or in the locust), but also checking the purified native peptide for stimulation of fluid secretion in its respective Malpighian tubules in vitro. Starting materials for the purification were whole heads (1000 from A. domesticus, 2000 from L. migratoria, and 800 from P. americana) which were frozen in liquid nitrogen and powdered. The powder was subsequently extracted with acidified methanol (87% methanol, 5% glacial acetic acid, 8% water) and the fluid concentrated by precipitation with 70% acetone. The resulting pellet was dissolved in 5 mM TFA and then fractionated on a Sep-Pak C-18 cartridge with successive steps of increasing acetonitrile concentration. Diuretic activity of the $40-45 \%$ acetonitrile fraction was further purified by HPLC employing a combination of three column chemistries: the first two steps involved RP-HPLC on a semipreparative C-8 and a diphenyl column using acetonitrile/TFA gradient, the next step was a normal size-exclusion Protein-Pak 125 column operated in normal phase, i.e. the peptides loaded in a non-polar solvent are forced into polar interactions with the packing material and are eluted with increasing polarity. To confirm purity and to concentrate the purified peptide from the previous step, the last step employed the diphenyl column again. This purification scheme was successful for all three species and in each case resulted in one pure diuretic peptide with an amidated C-terminus as established by auto-
mated Edman sequencing combined with either FAB or electrospray mass spectrometry. These peptides, called Acd-DP, Lom-DP and Pea-DP here, are 46 -mers and show striking sequence homology with Mas-DP-I (see Table 3). An identical diuretic peptide for L. migratoria was purified and sequenced (256), using 4600 dissected brains (without optic lobes) plus corpora cardiaca, and testing the fractions during isolation by an ELISA test developed for Mas-DP-I (103). Isolation was achieved by a modified protocol of the one employed to isolate Mas-DP-I (214); thus 7 chromatography steps were involved despite the relative purity of the starting material.

Essentially only one step of C-8 RP-HPLC purification was used to purify a second diuretic peptide from M. sexta when either complexes of corpora cardiaca/corpora allata or dissected clusters of neurosecretory cells from the medial protocerebrum were taken as starting materials (19). Edman sequencing, tryptic or endoproteinase Lys-C digests, in association with quadrupole Fourier transform mass spectrometry, identified the primary structure as an amidated 30-mer peptide (Mas-DP-II; Table 3). Biological activity was measured by determining weight loss in vivo of adult female M. sexta, which were decapitated 24 h after emergence, the wound sealed, and insects assayed the next day; such a weight-loss assay does not discriminate between various pathways for water loss and, thus, it was not known whether Malpighian tubules and/or the rectum were involved (19). This was clarified later in two separate studies (9, 20). Mas-DP-II elevates fluid secretion by isolated Malpighian tubules from adult moth at concentrations as low as 4 nM (20) or 0.05 nM (9). Cyclic AMP production in larval proximal and adult tubules was stimulated as well by Mas-DP-II (9), but, in contrast to the effect of Mas-DP-I (8), Mas-DP-II was not able to stimulate fluid uptake across the larval cryptonephric complex; thus no anti-diuretic effect was measured (9). These results are difficult to interpret since Reagan (384) had shown that Mas-DP-II binds to and activates Mas-DP-I receptors expressed in COS-7 cells (see below). The phenomenon may be explained by postulating the existence of different receptor subtypes for the distal (cryptonephric) and proximal larval tubules.

The last CRF-related peptide sequenced to date was purified from whole-body extracts of the blowfly, Musca domestica, (444 500 individuals) and, separately, the stable fly, Stomoxys calcitrans, (50). The biological activity was monitored by measuring the ability of fractions to stimulate cAMP production in isolated Malpighian tubules of adult M. sexta. Isolation was achieved by seven different column systems and the purified peptide was analyzed by automated Edman degradation and laser desorption and/or electrospray mass spectrometry. The sequence of
the 44 -mer shown in Table 3 resulted for the material from both insect species. Interestingly, in M.domestica the peptide was completely oxidized (Met residue) during isolation, whereas two peaks were isolated and sequenced from S. calcitrans, identified as the Met-oxidized and nonoxidized form. In a homologous bioassay, stimulating the rate of fluid secretion of M. domestica Malpighian tubules, the synthetic (Metoxidized) Mud-DP was active at 1 nM concentration. No elevated secretion by another target tissue, the salivary glands of the house fly, was observed.

To date, six insect diuretic neuropeptides are fully characterized which are related to the vertebrate corticotropin releasing factor/urotensin $\mathrm{I} /$ sauvagine family (see Table 3). These latter three peptides have at least 45% sequence identity with each other (252) and, with the exception of the much shorter Mas-DP-II, the insect CRF-like peptides have at least 40% sequence identity with each other and are about $20-30 \%$ identical with the vertebrate counterparts (52). When the precursor for Mas-DP-I was characterized (69), it became clear the prepro-Mas-DP-I and ovine prepro-CRF only show a low degree of homology (between $28-33 \%$) and a large gap is needed to align the mature and the preceding regions of both precursors (69). Moreover, the Mas-DP-I receptor was isolated by expression cloning in COS-7 cells; it possesses seven putative transmembrane domains common to other G-protein coupled receptors and, thus, is coupled to a cAMP second messenger system (384). There is a 31% sequence identity between the cloned Manduca receptor and the cloned human CRF receptor (44). Effects of vertebrate peptides (urotensin I, sauvagine and bovine CRF) on stimulation of fluid in A. domesticus tubules were significant (at $10^{-5} \mathrm{M}$) but small (20%) compared with the maximal possible stimulation in this tissue (53). These peptides also elicited small increases in cAMP production in cricket tubules (in vitro) (53). Similarly, sauvagine, human- and bovine CRF stimulated cAMP production in Manduca tubules at $10^{-5} \mathrm{M}$, but this effect was only 7% of the maximum (9). Thus, the limited sequence identity between insect and vertebrate peptides is also mirrored in their action.

Another group of insect neuropeptides, the myokinins (see Sect. 3.3.4), also have diuretic activity. For example, fluid secretion in isolated Malpighian tubules of A. domesticus is stimulated by achetakinins, but cAMP does not seem to be involved (54). The leucokinins of Leucophaea maderae depolarize the transepithelial voltage in isolated Malpighian tubules of Aedes aegypti (161). The latter bioassay served also as a tool to isolate similar peptides, culekinin depolarizing peptides, from the mosquito, Culex salinarius (158). Peptides belonging structurally to the kinin family (see Sect. 3.3.4) but are potent stimulators of secretion by

Malpighian tubules of M. sexta have also been isolated and sequenced from the abdominal ventral nerve cord of the adult lepidopteran insect, Heliothis zea (22). It is speculated that these myokinins are probably involved in post-feeding diuresis, to get rid of the excess water derived from the diet, whereas the CRF-related diuretic peptides are more likely to act as clearance peptides, removing metabolic waste products from the haemolymph by creating a high rate of fluid secretion (55). With respect to these different putative functions it has been proposed (see 50) that (1) there is no great evolutionary pressure on structure change for the CRF-related peptides, because metabolic waste management can be viewed as a basic function for all insect species. Thus, these peptides are relatively highly conserved; that (2) the source and physiological state of the diet is different for various species and, therefore, peptides involved in post-feeding diuresis may be more variable and may even be speciesspecific as seems to be the case for the myokinins.

Most of the primary urine formed in the Malpighian tubules is passed posteriorly into the hindgut which consists of the ileum and the rectum. Functionally, the ileum has the same task as the proximal tubules of the vertebrate kidney, removing large quantities of fluid without affecting the osmolarity of the urine. The rectum has the same function as the distal tubules, loop of Henle and collecting ducts of the vertebrate kidney, selectively reabsorbing water, ions and metabolites and, thereby determining the final composition of the excreta which can be hyper- or hypoosmotic (see 348, 349).

Much less is known about the regulation of ion and fluid reabsorption in the hindgut by neuropeptides than regulation of tubule fluid secretion. Except for neuroparsins, which may exert an antidiuretic action (see Sect. 3.2.5.1), no structural data on complete primary sequences have been published (see 11). A peptide was isolated from the corpora cardiaca of the desert locust, Schistocerca gregaria, by a four step separation technique on C-4, C-8 and phenyl-columns using acetonitrile/TFA gradients and partially sequenced (10). As a bioassay chloride transport was measured, since an apical electrogenic Cl^{-}pump is the major rectal ion transport process. Experimentally, ilea were mounted as flat sheets in Ussing-type chambers, voltage-clamped at zero and the short-circuit current (Isc) measured. The isolated peptide was called Scg-ITP (see Table 4), Schistocerca gregaria ion transport peptide. It has a molecular mass of 8652 (11) and its N-terminal 34 residues show sequence homology with the hyperglycaemic hormones of crustaceans (see Table 4). Interestingly, an immunocytochemical study of stick insect (Carausius morosus) brain and retrocerebral complex using an antiserum against Carcinus maenas hyperglycaemic hormone had revealed quite a few immunopositive cells
Table 4 Partıal sequence of desert locust ion transport peptıde (Scg-ITP) in comparison with part of the sequence from select crustacean hyperglycaemic

Code Name	Species	Sequence	Reference(s)
Scg-ITP	S gregaria	SFFDIQKGVYDKSIFARLDRI?EDYNLFREPQ	10
Cama*-CHH	C maenas	pQIYDTSCKGVYDRALFNDLEHVCDDCYNLYRTSY	
Orl-CHH	O limosus	pQVFDQACKGIYDRAIFKKLDRVCEDCYNLYRKPY	225
		224	

[^2](203). In light of the above results these previous data suggest that the stick insect also contains a neuropeptide which is related to the crustacean CHH-family and may be involved in ion transport in the insect.

3.2. Peptides Regulating Reproduction, Growth and Development

3.2.1. Pheromone Biosynthesis Activating Neuropeptides

Chemicals that are secreted by one individual and affect the physiology or behavior of another member of the same species are termed pheromones (208). Sex pheromones are produced by females of many species of Lepidoptera to attract conspecific males. A vast body of information has been accumulated on these sex pheromones, partly because they are vital to assure successful mating and therefore reproduction, partly because of their use in insect control. In 1959 the pheromone produced by the female silkworm moth, Bombyx mori, to attract males from a great distance was the first to be purified and identified chemically; it is $(10 E, 12 Z)$-hexadecadien-1-ol, with the trivial name bombykol (36).

Since it was observed that (a) sexual activity in both male and female Lepidoptera occurs at defined times of the day (mostly in the scotophase) and that (b) production and release of sex pheromones follows a diel periodicity (350), it was apparent that pheromone production was under hormonal control. This was shown to be true for the corn earworm moth, Helicoverpa (Heliothis) zea, by a factor from the brain (373). The factor appeared to be a peptide produced in the suboesophageal ganglion of the moth and released, at the onset of the scotophase, into the haemolymph via the corpora cardiaca to travel to the pheromone-producing cells in the ovipositors. There it stimulates production of $11 Z$-hexadecenal, the main pheromone component (370). The peptide was isolated and its structure determined from a total of about 20000 brain-suboesophageal gangliacorpora cardiaca complexes from adult male and female H. zea using either a sequence of four RP-HPLC steps (1. C-18; acetonitrile/TFA gradient; 2. C-8; acetonitrile/triethylammoniumphosphate gradient; 3. C-8; acetonitrile/TFA gradient; 4. C-18; acetonitrile/TFA gradient) or three HPLC steps (1. as above; 2. high performance size-exclusion chromatography on a series of 4 Protein-Pak I-125 columns isocratically developed with 40% acetonitrile and 0.1% TFA 3 . as 4 above) $(201,369)$.

The pheromonotropic activity was tested during isolation by a rather simple and very sensitive bioassay (373): female moths were ligated between head and thorax at least 3 h prior to the test, injected intra-
abdominally with the desired material during the scotophase; 3 h later the pheromone gland was extracted and the pheromone quantified by gas chromatography (374). After isolation, the major component was sequenced by automated Edman degradation using a pulse-liquid sequencer (also involving carboxypeptidase P to determine the carboxyterminus) and the structure confirmed by plasma desorption mass spectrometry $(201,369)$. The pheromonotropic neuropeptide, called pheromone biosynthesis-activating neuropeptide (Hez-PBAN) consists of 33 amino acids (Table 5), has a molecular weight of 3900 and only the C-terminal amidated form is biologically very active ($2-4 \mathrm{pmol} /$ female needed compared with at least 1000 pmol , when the C-terminus is a free acid) (375). The molecule has two methionine residues (Met^{5} and Met^{14}), which in the isolated native peptide were both oxidized to methionine sulfoxides; other peaks during the purification step apparently represented the mono- or disulfoxide forms of PBAN (201).

Hez-PBAN represents the first member of a new family of insect neuropeptides. The family now includes the pheromonotropic peptides from the silkworm Bombyx mori, Bom-PBAN-I and II, which were purified from $6 \times 10^{5}(=4.48 \mathrm{~kg}$ fresh weight) heads of adult male silkworms using an 11-step purification procedure $(229,230,316)$ and from the gypsy moth, Lymantria dispar, Lyd-PBAN, which was isolated from abut 2000 brain-suboesophageal ganglion complexes in a 5 -step HPLC purification protocol using the heterologous bioassay in H. zea (272). Whereas Bom-PBAN-I and Lyd-PBAN are also 33-mers, as is HezPBAN, and have about 82% homology in their primary sequence (see Table 5), Bom-PBAN-II consists of 34 amino acids; it has an additional Arg at the N -terminus compared with Bom-PBAN-I (see Table 5).

A much shorter peptide with pheromonotropic activity has been isolated from 32000 heads of the penultimate instar larvae of the army worm, Pseudaletia separata, by a 7 -step purification procedure using the heterologous bioassay in B. mori (275). This 18-mer pheromonotropin called Pss-PT has an identical C-terminal pentapeptide with the other PBANs (with the exception of Thr instead of Ser; see Table 5).

Interestingly, the same pentapeptide sequence (FXPRL-amide, where X is either T, S, G or V) has been found in certain myotropic peptides of the cockroach, Leucophaea maderae (294), and the locust, Locusta migratoria, which stimulate contraction of hind- or foregut and/or oviduct (406, 409, 410 ; see Sect. 3.3) and in the diapause hormones of B. mori (185,392 ; see Sect. 3.2.6). Furthermore, a peptide with the same sequence as Bom-PBAN-I has been isolated as the melanization and reddish colouration hormone (Bom-MRCH) of B. mori using an armyworm cuticle melanization test as a bioassay (277).

Code Name	Specries	Sequence	Reference(s)
Hez-PBAN	H zea	LSDDMPATPADQEMYRQDPEQIDSRTKYFSPRLamıde	369
Bom-PBAN-I or (-II)	B morı	(R)LSEDMPATPADQEMYQPDPEEMESRTRYFSPRLamıde	229, 230
Lyd-PBAN	Lymantria dispar	LADDMPATMADQEVYRPEPEQIDSRNKYFSPRLamıde	272
Pss-PT	Pseudaletıa separata	KLSYDDKVFENVEFTPRLamıde	275
Bom-DH	B morı	TDMKDESDRGAHSERGALCFGPRLamıde	185
Lem-PK	L maderae	pQTSFTPRLamıde	172
Lom-PK	L mıgratoria	pQDSGDGWPQQPFVPRLamıde	407

It was shown that the P. separata pheromonotropin induces cuticular melanization and also embryonic diapause (278). Further results support these data. Quantitative analyses of endogenous PBAN (or MRCH) levels by an enzyme linked immunosorbent assay (ELISA; 138), in head extracts and haemolymph of larvae of the noctuid moth, Spodoptera littoralis, which exhibits morphological color variations when reared under crowded (dark coloration) and isolated conditions (light coloration), suggest that the peptide is involved in color polymorphism (6). Thus, a group of peptides showing the FXPRL-amide at their C-terminus and therefore forming a peptide family are widely distributed among various insect groups and are responsible for regulating a number of functions in diverse physiological processes.

Structure-activity studies on both Bom- and Hez-PBAN and their fragments and analogues have revealed some interesting information on how these molecules will interact with their postulated receptor (243,317 , 371,372). The Arg residue at the N-terminus of Bom-PBAN-II is not important for activity; in fact, the whole N-terminal region of Hez-PBAN (amino acid 1-18) was not active in H. zea. However, C-terminal fragments (15-33, 19-33, 23-33, 28-33 and 29-33 for Hez-PBAN and 24-33, 25-33, 26-33, 27-33, 28-33, 29-33 for Bom-PBAN-I) display biological activity, indicating that the C-terminus is indispensable for activity. The C-terminal pentapeptide represents the smallest unit required for activity. The C-teminus has to be amidated; the free acid form was at least $1 / 100-$ fold less active. When the entire native PBANs which have their two (Hez-PBAN) or three (Bom-PBAN) methionine residues in the sulfoxide forms are assayed, they are more active than the non-sulfoxidized analogues. The increased activity of the sulfoxide forms is suggested to be due to stabilization of PBAN against enzymic deactivation. Interestingly, an internal pentapeptide fragment of Hez-PBAN, which was amidated at its C-terminus(Y-R-Q-D-P-amide) showed very high activity at the low dose of 1 pmol , but was inactive at 100 and 1000 pmol ; these results were ascribed to the possible presence of two different types of receptors which could trigger the pheromonotropic response.

Since the C-terminal pentapeptide was very active (Bom-PBAN-I 28-33-amide) each residue was substituted by other amino acid residues. It was shown that $\mathrm{Pro}^{31}, \mathrm{Arg}^{32}$ and Leu ${ }^{33}$ were essential, suggesting that this part is probably the binding site for a putative receptor. Designing cyclic peptides, containing Lys residues with the carboxyl portion of Bom-PBAN-I in order to get conformationally more rigid peptides, failed to produce very active analogues. However, the cyclo (-N-T-S-F-T-P-RL) analogue which was used in myotropic studies and shown to have a β-turn in the region of T-P-R-L (301) was as active as the C-terminal

28-33 amide fragment of Bom-PBAN-I. This again demonstrates clearly the close relationship of myotropic and PBAN peptides. During crossreactivity studies (244) it became apparent that the carboxyl-terminal hexapeptide of Bom-PBAN-I elicited myotropic activity comparable to the effect achieved by myotropic peptides, while intact Bom-PBAN-I exhibited much lower activity. All myotropic peptides assayed, however, had high pheromonotropic activity.

The Hez-PBAN gene has been elucidated (64). The genome clone of Hez-PBAN was isolated from a genomic library using two mixed probes which represented two overlapping amino acid regions of PBAN. The organization of the Hez-PBAN gene is very interesting since it suggests sequences for two additional, previously unknown insect neuropeptides with pheromonotropic and/or myotropic activity, and, therefore, the gene may represent a prohormone. The proposed open reading frame starts with M-E-F-T-P-R-L (thus including the well-known pentapeptide characteristic for this family) followed by a G (providing the amino group for amidation) and a distant cleavage site ($\mathrm{R}-\mathrm{R}$). Thereafter follows the sequence of residues 1 to 14 of PBAN interrupted from the remaining residues 15 to 33 by a 0.63 kilobase intron; the PBAN sequence is followed by G-R, a widely used prohormone processing site in which the G provides the amino group for amidation. Subsequently the sequence is T-M-N-F-S-P-R-L (thus again the characteristic pentapeptide) and is again followed by a putative processing site G-R. One may speculate that besides PBAN the two peptides with the C-terminal pentapeptide sequences F-T/S-P-R-L-amide (thus a hepta- and octapeptide) are released separately and may have specific functions, either in concert or independently of PBAN, for regulating pheromone production and/or ovipositor movement in H. zea females (64).

The search for the genes for PBAN and for the diapause hormone of B. mori (see Sect. 3.2.6), which contains the characteristic C-terminal pentapeptide, has resulted in finding a cDNA encoding a polyprotein precursor which can be processed not only into the diapause hormone, but also into PBAN and 3 other, functionally unknown, neuropeptides (termed: α, β, γ-suboesophageal ganglion neuropeptide) sharing the common C-terminal sequence F-X-P-R/K-L amide (where X is G, T, I or S) $(217,393)$. A schematic representation of the precursor peptide (217) showing a 23-mer signal peptide, the sequence of diapause hormone, the 3 putative peptides and of PBAN is shown in Fig. 4. Met ${ }^{1}$ to Cys^{23} is the signal peptide, amino acids $24-27$ represent the Bom-DH, followed by Gly for amidation and a processing site, Bom-PBAN-I is localized from residue 126 to 158 (and Bom-PBAN-II from 125 to 158) and the peptides with the conserved pentapeptide sequence were found at residues 118 to

Bombyx mori

| Sigmal
 prptide | Diapauke
 hormone | | α
 SGNP | β
 SGNP | PBAN | α
 SGNP |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Fig. 4. Schematic diagram of the precursor peptide of Bom-PBAN (pheromone bio-synthesis-activating neuropeptide). $\alpha, \beta, \gamma-\mathrm{SGNP}=\alpha, \beta, \gamma$-suboesophageal neuropeptide). Modified after (217)
$122,164-168$ and $99-103$. The last three peptides were synthesized and tested for diapause inducing activity, but were almost inactive (393); however, the authors report that one of the components $(\beta-S G N P=$ SVAKPQTHESLEFIPRL) has higher pheromonotropic activity than Bom-PBAN-I, but the other two peptides were far less active. Interestingly, when these authors re-interpret the gene sequence data of Hez-PBAN (64) by assigning the GTG codon not to Met^{1} for translation initiation, but to the usual Val residue, they find a sequence of an 18-mer peptide very similar to the Bom- β-SGNP and, surprisingly, to the pheromonotropin of P. separata (see Table 5). The Hez-PBAN gene did not code for a diapause hormone, which, of course, has never been found to exist in H. zea.

Which steps in the biosynthetic pathways of pheromones may be under control of PBAN is still under debate (see 375). In general, pheromone production in H. zea (major pheromone: 11Z-hexadecenal) and B. mori (pheromone: bombykol) commences with the production of palmitic acid followed by species-specific steps of desaturation/dehydrogenation, reduction of the acid to alcohol, and, if necessary, oxidation. It is suggested that in H. zea PBAN regulates the fatty acid biosynthesis or a step prior to it (205), whereas in B. mori PBAN promotes the reduction step of the acyl moieties to their corresponding alcohols (7).

The availability of synthetic PBAN made it possible to prepare antisera. A highly specific (directed to the N-terminal region of HezPBAN 1-33) antiserum was produced and used in an enzyme linked immunosorbent assay (ELISA) (138). It was demonstrated that 3-and 7-day old H. peltigera moths of both sexes had roughly the same content of PBAN ($\pm 5 \mathrm{pmol} /$ head); PBAN-like immunoreactivity was not present in the first three larval instars, but increased steadily as a function of development from the 4th instar larvae onwards.

Antisera raised against colloidally adsorbed synthetic Hez-PBAN and used in immunocytochemical studies showed three clusters of cells in the mandibular (4 cells), maxillary (12-14 cells) and labial neuromers (227). Axons from cells from the labial cluster project to the corpora cardiaca, a possible release site, and to the aorta. Thus there are some indications
that PBAN is a true neurohormone, although immunoreactivity has not yet been detected consistently in the haemolymph.

Developing a specific radioimmunoassay (RIA) for PBAN using $\left[{ }^{3} \mathrm{H}\right]$-Hez-PBAN and a specific PBAN antiserum was a prerequisite for showing PBAN-like immunoreactivity in various neuronal tissues from females of H. armigera (during scoto- and photophase) (367). Levels of immunoreactive-PBAN in corpora cardiaca, prothoracic and abdominal (excluding the terminal one) ganglia were higher during the peak hour of pheromone production, thus during the $4-5$ th hour of scotophase, than the levels in ganglia from insects in the 6-11th hour of photophase. This was interpreted as an increased passage of PBAN from the suboesophageal ganglion to the corpora cardiaca for possible release. In contrast, immunoreactive PBAN levels were higher in the terminal abdominal ganglion during the photophase which may reflect an accumulation before the onset of pheromone production. Future studies with detailed emphasis on the temporal distribution of PBAN have to be undertaken to provide a clear description of storage, passage and release of PBAN from the different neuronal tissues.

3.2.2. Allatotropins and Allatostatins

The corpora allata synthesize and release species-specific juvenile hormones. The activity of the corpora allata, in turn, is regulated by neurosecretory material from the brain (93). These are factors which stimulate or inhibit the biosynthesis of juvenile hormone, thus they are either allatotropins or allatostatins.

3.2.2.1. Allatotropins

For detection of active fractions during purification of the allatotropin from the lepidopteran moth, Manduca sexta, the following in vitro radiochemical bioassay was used $(94,457)$: Corpora allata of female moths, 0 to 4 h after eclosion, were analyzed for incorporation of the labelled methyl moiety from L-[methyl- ${ }^{14} \mathrm{C}$] methionine into juvenile hormone; the labelled hormone is secreted into the medium, then extracted and quantified (212). Using a variety of separation steps (see Sect. 2.2) finally 1.5 nmol of pure peptide was obtained from 10000 trimmed heads of pharate adult M. sexta (212). Automated sequence analysis revealed the presence of a 13-residue peptide which was shown to be amidated at the C-terminus (see Table 6). The biological activity of the synthetic peptide was not significantly different from the native peptide. Studies on N-terminal
Table 6 Amino acıd sequences of allatotropin ($A T$) and allatostatıns ($A S T$) determined by isolatıon* or deduced from cDNA

Code Name (Alternatıve Designations)	Species	Sequence	Reference(s)
Mas-AT	M sexta	GFKNVEMMTARGFamıde	*212
Mas-AST	M sexta	pQVRFRQCYFNPISCF	*240
$\begin{gathered} \text { Dıp-AST-1 (dıpstatın 1) } \\ \text { (Pea-AST-1) } \\ \text { (BLAST-1) } \end{gathered}$	Diploptera punctata P americana B germanica	LYDFGLamıde	71 Ding, Donly, Tobe, Bendena, unpublished *17
Dip-AST-2 (V, ASB2, dipstatın 2) (Pea-AST-2)	D punctata P americana	AYSYVSEYKRLPVYNFGLamıde	$\text { *352, } 71$ Ding, Donly, Tobe, Bendena, unpublished
Dıp-AST-3 (dıpstatın 3) (Pea-AST-3)	D punctata P americana	SKMYGFGLamıde	71 Ding, Donly, Tobe, Bendena, unpublished
Dıp-AST-4 (VII, dıpstatın 4)	D punctata	DGRMYSFGLamıde	*479, 71
Dıp-AST-5 (IV, dıpstatın 5) (BLAST-2)	D punctata B germanica	DRLYSFGLamıde	$\begin{aligned} & \text { *480, } 71 \\ & { }^{17} \end{aligned}$
Dıp-AST-6 (dıpstatın 6) (Pea-AST-6)	D punctata P americana	ARPYSFGLamıde	71 Ding, Donly, Tobe, Bendena, unpublished
Dıp-AST-7(I, dıpstatın 7)	D punctata	APSGAQRLYGFGLamıde	*480, 353, 71
Dıp-AST-8 (III, dıpstatın 8)	D punctata	GGSLYSFGLamıde	*480, 71
Dıp-AST-9 (II, dıpstatın 9)	D punctata	GDGRLYAFGLamıde	*480, 71
Dıp-AST-10 (dıpstatın 10)	D punctata	PVNSGRSSGSRFNFGLamıde	71
Dıp-AST-11 (VI, dıpstatın 11)	D punctata	YPQEHRFSFGLamıde	*479, 71
Dip-AST-12 (dıpstatın 12)	D punctata	PFNFGLamıde	71
Dip-AST-13 (dıpstatın 13)	D punctata	IPMYDFGIamıde	71
Pea-AST-4	P americana	SGNDGRLYSFGLamıde	Ding, Donly, Tobe, Bendena, unpublished
Pea-AST-5	P americana	DRMYSFGLamıde	Ding, Donly, Tobe, Bendena, unpublished

$\begin{array}{ll}\text { C vomitoria } & \text { GPPYDFGMamide } \\ \text { C vomitoria } & \text { GPXYDFGMamide }\end{array}$ X = hydroxyproline GXPYDFGMamide PYDFGMamide

GWRDLNGGWamide AWRDLSGGWamide AWERFHGSWamide
SPSGMQRLYGFGLamide GGSMYSFGLamıde
ADGRLYAFGLamıde
PVSSARQTGSRFNFGLamıde
SPQGHRFSFGLamıde
SLHYAFGLamıde
PYNFGLamıde PYNFGLamide
AGSDGRLYSFGLamide APSSAQRLYGFGLamide
DPLNEERRANRYGFGLamide LNEERRANRYGFGLamide ANRYGFGLamide NRPYSFGLamide GPPYDFGMamide

*474, Ding, Donly, Tobe, Bendena, unpubl Ding, Donly, Tobe, Bendena, unpublished *474, Ding, Donly, Tobe, Bendena, unpubl Ding, Donly, Tobe, Bendena, unpublished 수* 숯 수*

Pea-AST-7 (Pea-AST I)

 Pea-AST-8Pea-AST-9 (Pea-AST II)
Pea-AST-10
Blg-AST-3 (BLAST-3)
Blg-AST-4 (BLAST-4)
B germanica
Calliphora vomitorıa C vomitoria C vomitorta

Cav-AST-7 ([Hyp] $]^{2}$-Met-callatostatın) C
C
G
vomitoritoria
G
G bimaculatus
G
G bimaculatus
G
G bimaculatus
G Cav-AST-8 (des-G-P-Met-callatostatın) Grb-AST-A1
Grb-AST-A2 Grb-AST-A1
Grb-AST-A2 Grb-AST-B1 Grb-AST-B2 Grb-AST-B3 Grb-AST-B4 Grb-AST-B2 -
P americana
P americana
americana
a
a

B germanica
ט
Cav-AST-1 (Leu-callatostatın 1)
Cav-AST-2 (Leu-callatostatın 2)
Cav-AST-3 (Leu-callatostatın 3)
Cav-AST-4 (Leu-callatostatın 4)
Cav-AST-5 (Met-callatostatın 5)
Cav-AST-6 ([Hyp] ${ }^{3}$-Met-callatostatın)
truncated fragments suggested that the amino acids 6-13, an octapeptide, are the biologically active core. Interestingly, the synthetic compound was not active in the biosynthesis of juvenile hormone during other developmental stages (larval, pupal) of M. sexta. Furthermore, corpora allata from the beetle, Tenebrio molitor, the grasshopper, Schistocerca nitens, and the cockroach, Periplaneta americana, were not activated by the synthetic allatotropin, whereas the corpora allata of the noctuid moth, Heliothis virescens, were stimulated, suggesting order-specificity.

3.2.2.2. Allatostatins

During isolation of the allatostatins, the same bioassay as described above (Sect. 3.2.2.1) was used, but here the inhibition of juvenile hormone biosynthesis was monitored. Either the corpora allata of virgin females (480) or the glands from 10-day old pregnant females were incubated in vitro (353); both research groups obtained the material from the viviparous cockroach Diploptera punctata. Brains or brains/retrocerebral complexes of this cockroach comprised the starting material for purification in both studies. Purification was achieved in various steps by reversed-phase HPLC using C-18 and C-8 supports leading to apparent homogeneity of four peaks with allatostatic activity, allatostatins I to IV (480); or purification was successful with inclusion of pre-purification steps on C-18 Sep-Pak followed by Diol Sep-Pak which separated two types of allatostatins: one with a lower molecular mass, designated type A allatostatins, and the other with a higher molecular mass, designated type B allatostatins (352, 353). Later, two further allatostatins, VI and VII, were isolated from this cockroach (479). Both research groups employed Edman degradation sequencing techniques and mass spectrometry for structure elucidation. It became clear that the six allatostatins (I, II, III, IV, VI, and VII or Dip-AST-7, $-9,-8,-5,-11,-4$; for nomenclature and structure see Table 6) vary between 8 and 13 residues and apparently belong to a family of peptides. This is suggested by the highly conserved sequence at the C-terminus; $\quad \mathrm{Arg} /$ Ser-Leu-Tyr-Xaa-Phe-Gly-Leu-NH 2 . The larger allatostatin was identified by tandem mass spectrometry as an octadecapeptide (V or Dip-AST-2, Table 6) having an amidated three residue C-terminus identical with the termini of the other allatostatins (352).

The synthetic peptides had the same elution times as the native material and inhibition of juvenile hormone synthesis of more than 40% was achieved with $7 \times 10^{-7} \mathrm{M}, 10^{-8} \mathrm{M}$ and $10^{-9} \mathrm{M}$ (allatostatin III, II, IV and I respectively; 480). Allatostatin I also inhibits juvenile hormone synthesis in another, only distantly related cockroach, Periplaneta americana; thus there appears that no species specificity exists (480).

Cockroaches synthesize juvenile hormone III in their corpora allata. De novo synthesis starts from acetyl CoA through the classical isoprenoid pathway to farnesyl pyrophosphate (see 417). Studies by Pratt et al. (351, 352,353) revealed that allatostatins I and V were totally ineffective in the presence of $200 \mu \mathrm{M}$ farnesol, indicating that the action of allatostatins must be located at the beginning of the biosynthetic pathway. The same conclusion was drawn from experiments using allatostatins IV and VII (479).

Structure-activity studies showed that allatostatins lacking the Cterminal amide produce no detectable inhibition of juvenile hormone biosynthesis $(373,480)$. When allatostatin IV was truncated by either the first two or three residues from the N -terminus, the products had progressively reduced activity when compared with the parent molecule (441). Using the tridecapeptide allatostatin I Pratt et al. (354) found no activity at all when changes were made at the C-terminus: Gly ${ }^{6}$ (instead of Phe), Ala^{13} (instead of Leu), shortening of the peptide by the last two amino acids (des-Gly ${ }^{12}$ and Leu ${ }^{13}$), an extra Ala (amidated or not). All these results suggest that the C-terminal part of the molecule is important in signal transmission. However, when Lys ${ }^{7}$ or $\mathrm{D}-\mathrm{Arg}^{7}$ (instead of L-Arg) were bioassayed, the affinity was only marginally less than that of the unchanged peptide. A lower binding strength was observed, but the magnitude of the response was not reduced. Two N -terminally truncated analogues of allatostatin I, a decapeptide (= allatostatin I 4-13) and an octapeptide ($=$ allatostatin I 6-13) showed substantially lower affinities, but still the magnitude of the response ($>85 \%$ juvenile hormone inhibition at concentrations of $1 \mu \mathrm{M}$ or lower) was identical with that produced by the intact molecule indicating that the message segment in these peptides is still intact.

Some structure-activity studies were also performed with allatostatin V, the octadecapeptide. An N-terminal nona- or undecapeptide amide (allatostatin $\mathrm{V} 1-9$ or $1-11$) is completely inactive as is a peptide missing the Leu ${ }^{18}$ residue. These data indicate that the nine residue N -terminus of allatostatin V has no independent action on the corpora allata (352). This is interesting because this peptide shows a potential dibasic $\left(\mathrm{Lys}^{9}-\mathrm{Arg}^{10}\right)$ cleavage site. The C-terminal fragments (allatostatin V 9-18, 10-18 or 11-18) give full responses at high concentrations, but they are less potent than the intact molecule; this again shows that the message is encoded at the C-terminus (352). Thus, the current idea is that the N -terminus is important for high affinity binding to the allatostatin receptor and, given the N -terminal differences in the various allatostatins, that each one may bind to a different receptor subtype (354).

For one allatostatin (IV or Dip-AST-5) analogues have been synthesized in which either single residues were substituted by replacement with Ala, to study the importance of side chains, or the native L-amino acid at each position was replaced by its D-amino acid counterpart (157). Whereas replacement of $\mathrm{Tyr}^{4}, \mathrm{Phe}^{6}, \mathrm{Gly}^{7}$ or Leu^{8} with L-Ala reduced the biological potency of the analogues quite dramatically, replacements of $\mathrm{Asp}^{1}, \mathrm{Arg}^{2}$ and Leu ${ }^{3}$ were less effective and Ser^{5} had almost no effect. These data are quite consistent with the fact that the C-terminal pentapeptide is characteristic for this peptide family and that the position of Ser (in Dip-AST-5) is the position which is quite variable in the allatostatins (see Table 6). Substitution with D-amino acids again resulted in significant loss of biological potency, particularly for the residues which form the C-terminal pentapeptide. Since replacement by D-amino acids will also distort the structure of the peptide by reversal of symmetry of either the backbone or the side chain, such studies are of aid in assessing which residues are likely to be necessary for receptor interaction. The data were interpreted from a conformational point of view in the following way: the N -terminal region is either charged or polar and may have an α-helical structure, whereas the C-terminal pentapeptide region is hydrophobic and may have a β-strand structure. Moreover, there is a strong suggestion that residues $\mathrm{Phe}^{6}, \mathrm{Gly}^{7}$ and Leu^{8} form a type II β-turn. More precise information, however, can only be gathered when the allatostatin receptors have been isolated.

Polyclonal antibodies were raised in mice against allatostatin I (Dip-AST-7) coupled to bovine serum albumin. The presence of allatostatin in the corpora allata was shown by binding of these allatostatin antibodies to corpus cardiacum/corpus allatum tissue.

Specifically, immunocytochemistry identified allatostatin-positive axons which transverse the corpus cardiacum and branch extensively in the corpora allata (444). This result supports the hypothesis that the allatostatins are synthesized in neurosecretory cells of the brain and transported axonally to the corpora allata. Recent studies, therefore, attempted the isolation and purification of allatostatins from corpora allata instead of brains (444). The successful isolation of the same four allatostatins I to IV previously sequenced from the brain was reported after work-up of 6000 glands; identification was achieved by showing that the retention times were identical with those of the synthetic allatostatins in HPLC and by bioassays. No sequencing was reported. These results suggest the transport of peptidergic neurosecretory brain material to the corpora allata to inhibit the rate of juvenile hormone synthesis. Such a process is analogous to the release of hypothalamic peptidergic factors in vertebrates into the portal system and transport to the anterior pituitary.

Recently, a bioactive radioiodinated analogue of allatostatin I (Dip-AST-7) with a N -terminal azidosalicylamide group was synthesized. Such an analogue can be used for photoaffinity labelling (62). It was shown that membranes of corpora allata from virgin females of D. punctata, when incubated with this analogue and irradiated, contained two protein bands of 59 and 39 kDa after SDS gel electrophoresis which were specifically labelled; thus, these proteins are thought to be the putative receptor proteins for allatostatin. Very recently, an in vitro binding assay and a photoaffinity labelling assay were developed and the presence of receptors for allatostatins demonstrated in brain and corpora allata of D. punctata (488).

By isolation and sequencing methods not only were the seven allatostatins from the cockroach, D. punctata, determined, but also 2 resp. 4 allatostatins in the cockroaches, P. americana (474), and, Blattella germanica (17), as well as eight allatostatins (four Leu-, and four Metcallatostatins) in the blowfly, Calliphora vomitoria (75, 76, 77), six allatostatins in the cricket, Gryllus bimaculatus $(260,261)$, and one in the tobacco hornworm, Manduca sexta (240) (see Table 6).

The two allatostatins of P. americana are novel members of the allatostatin family, but molecular cloning led to the isolation of cDNA encoding for a total of 14 putative allatostatins (vide infra). Two of the four allatostatins of B. germanica are identical with isolated or cDNA-inferred allatostatins from D. punctata (see Table 6). Whereas the effective dose of P. americana allatostatins required to inhibit JH synthesis in this cockroach is similar to the dose required in D. punctata (474), the peptides from B. germanica are at least two orders of magnitude less effective in B. germanica (maximal inhibition at about $10^{-5} \mathrm{M}$) (17). The allatostatins of C. vomitoria are all unique members of the family, but despite having an inhibitory effect on JH synthesis in cockroaches, they do not affect the synthesis of JH bisepoxide, the endogenous JH of the blowfly itself. They are, however, potent inhibitors of gut motility in the blowfly $(75,82)$. There is also immunocytochemical evidence that immunopositive neurons from the abdominal ganglion project into certain areas of the hindgut, but there are no neural pathways from the brain to the corpus allatum $(75,82)$.

Two cricket allatostatins are novel members of the family. The effective concentration to inhibit JH synthesis in isolated corpora allata of crickets is somewhat higher when compared with the effect of the allatostatin of D. punctata in this species, but this can be explained by the different arrangement used for the assay procedure (261). The other four allatostatic neuropeptides of the cricket do not contain the highly conserved C-terminus found in all other allatostatins (260). These peptides

Diploptera punctata

Fig. 5. Schematic diagram of the precursor of the allatostatins from Diploptera punctata. Structures of peptides Dip-AST-1-13 are given in Table 6. Modified after (71)
consistently have the C-terminal amino acid sequence of G-X-W-amide ($\mathrm{X}=\mathrm{G}$ or S ; see Table 6).

The primary structure of the allatostatin of M. sexta does not contain the family-characteristic pentapeptide. This molecule is very effective in inhibiting JH synthesis in the tobacco hornworm and shows crossreactivity in another moth, H. virescens. The corpora cardiaca of adult females of the beetle, Tenebrio molitor, the grasshopper, Melanoplus sanguinipes, or the cockroach, P. americana, are not affected (240).

Recently, the sequence of a cDNA encoding the 370 amino acid long preproallatostatin polypeptide has been determined in D. punctata (71). The sequence deduced for this precursor confirms the identity of the seven previously isolated and sequenced allatostatins of this cockroach. Moreover, the existence of six new allatostatic peptides is predicted (see Table 6 and Fig. 5). Some of these predicted peptides contain the well-known pentapeptide motif Y-X-F-G-L amide, but in three (Dip-AST 10, 11, and 12) Tyr is substituted by Phe, and in Dip-AST-13 the C-terminal Leu is replaced by Ile. The polypeptide precursor also contains three acidic spacer regions (see Fig. 5) and in the third region sequences of two potential peptides with a C-terminal Ile occur. However, there is no indication that these peptides are amidated; since amidation is essential for allatostatic bioactivity, it is highly unlikely that these peptides belong to the allatostatin family.

Similar results have been obtained from a gene sequence of P. americana (see 443). The allatostatin precursor is 379 amino acids long and shares 71% amino acid identity with D. punctata. The coding regions of the two allatostatin genes are remarkably similar in structure and organization.

The precursor of P. americana contains 14 potential allatostatins, including the two which have been isolated and sequenced (474), which are also separated by acidic spacer regions. Five putative peptides of P. americana are identical in structure with those of D. punctata (see Table 6).

Southern blot analyses indicated the presence of a single copy of the gene per haploid genome in both cockroaches. In situ hybridization of brains from native female D. punctata and P. americana with their respective allatostatin gene showed that the allatostatin mRNA is strongly expressed by two pairs of large medial cells in the pars intercerebralis of the protocerebrum and some weaker signals have been found in other structures like lateral cells, for example.

3.2.3. Prothoracicotropic Hormone, Bombyxin and Other InsulinRelated Neuropeptides

Since the studies of KOPEČ (239) which demonstrated that the brain of the larval gypsy moth, Lymantria dispar, released a factor that induced pupation, the pivotal role of the brain in the control of moulting and metamorphosis has been well established. This so-called "brain hormone" of KOPEČ is now generally referred to as prothoracicotropic hormone (PTTH) because it stimulates the paired prothoracic glands to synthesize and release ecdysone.

At the beginning of the research to purify PTTH, heads of the easily accessible silkworm, Bombyx mori, were used as the source for extraction and the heterologous moth species, Samia cynthia ricini, served as the bioassay animal. When pupae of S. cynthia were debrained shortly after pupation, adult development stopped. When these debrained pupae were implanted with brains of B. mori or injected with B. mori brain extracts, the Samia pupae restarted their adult development. The same was true when debrained dormant pupae of B. mori were injected with brain extracts of B. mori or received implanted Bombyx brains (191). It was thus assumed that the "PTTH" from B. mori was not species specific and, because of technical advantages, brainless pupae of S. cynthia were first used to assay "PTTH" during purification of B. mori heads/brains. When after years of purification efforts an apparently pure form of "PTTH" was obtained (313), it could be established that the material was not active on brainless pupae of B. mori, but only on S. cynthia. Since the crude extract was active in both systems, a re-examination of the bioassay potencies during various purification steps revealed that the brain extract from B. mori contained two types of molecules: one, with a molecular weight of about 5 kDa , was active only on debrained S. cynthia pupae, while the other of about 30 kDa , was active on brainless B. mori pupae but not on those from S. cynthia (189). The smaller molecule is now called bombyxin and the 30 kDa peptide is the genuine or true PTTH.

3.2.3.1. Prothoracicotropic Hormone

After heroic efforts a 16 -step purification scheme was adopted for the isolation of PTTH from $5 \times 10^{5}(=3.7 \mathrm{~kg})$ B. mori heads (211) which yielded only $15 \mu \mathrm{~g}$ pure material. The N -terminus (amino acids 1 to 13) was sequenced from this material, but another batch of 3×10^{6} heads had to be used for purification to get most of the information for the primary structure, including the dimeric state of the molecule (210). Peptide sequencing of the purified PTTH and its enzymatic fragments resulted in a monomeric peptide of at least 104 amino acid residues (position 41 was unclear), but also showed microheterogeneity at the amino-terminus (apparently truncation of 6 and 7 residues) and similar slight variations at the carboxy-terminus (210).

An antibody raised against a synthetic peptide comprising the amino acids 1 to 15 of the N-terminus of PTTH (285) was used for screening an expression cDNA library which was constructed from mRNA of larval brains of B. mori (216). The amino acid sequence deduced from the nucleotide sequence revealed a B. mori PTTH hormone consisting of 109 amino acids; thus the 104 amino acids previously found by direct sequencing and 5 additional residues (R-Y-N-N-N) at the carboxy-terminus (for structure, see Table 7). The previously unidentified residue 41 turned out to be N , which in conjunction with the presence of T at position 43, a typical motif ($\mathrm{N}-\mathrm{X}-\mathrm{T}$) for asparagine N -glycosylation, suggest that a carbohydrate moiety is linked to the side chain of N^{41}. Therefore, it is very likely that PTTH is a glycoprotein, but the carbohydrate moiety is not yet known. The cDNA work also revealed that PTTH is first synthesized as a large precursor, the prepro-PTTH (see Fig. 6) consisting of 224 amino acids. The cDNA encodes for a signal peptide (29 amino acids) followed by a typical (K-R-K) processing site, then for two smaller peptides (21 amino acids $=\mathrm{p} 2 \mathrm{k}$ and 57 amino acids $=\mathrm{p} 6 \mathrm{~K}$) which are separated by and end with a proteolytic cleavage site ($\mathrm{K}-\mathrm{R}$ and $\mathrm{R}-\mathrm{K}-\mathrm{R}$) and whose functions are not known, followed by the PTTH subunit (109 amino acids). There are seven Cys residues present in the PTTH monomer and it is suggested that there exists one disulfide bridge between the monomers and three intrasubunit disulfide bonds to form the mature PTTH. When a portion of cDNA encoding the PTTH monomer was inserted into a plasmid vector and introduced into Escherichia coli, an active peptide that was indistinguishable from natural PTTH was expressed (190, 216, 311). This provided good evidence that the cloned cDNA indeed encodes PTTH of B. mori, that a dimer was apparently formed, and that glycosylation was not essential for biological activity. Recently, two allelic PTTH genes were cloned from a B. mori genomic
Table 7. Amino acid sequence of prothoracicotropic hormone monomer of Bombyx mori as deduced from cDNA

Code Name	Sequence	Reference
Bom-PTTH:	GNIQVENQAIPDPPCTCKYKKEIEDLGENSVPRFIETRNCNKTQQPTCR	216
	PPYICKESLYSITILKRRETKSQESLEIPNELKYRWVAESHPVSVACLCT	
	RDYQLRYNNN	
	$\mathrm{N}^{41}:$ Glycosylated?	

Fig. 6. Schematic diagram of the precursor of Bom-PTTH (prothoracicotropic hormone). p 2 K and $\mathrm{p} 6 \mathrm{~K}=$ peptides with mass of 2 or 6 kDa . B: Schematic representation of the Bom-prepro-PTTH-subunit gene. Modified after (190)

DNA library using the PTTH cDNA as a probe (3). The genes encode a precursor protein for the PTTH monomer and consist of five exons (see Fig. 6): Exon II contains regions encoding for the signal peptide, the p 2 k and p 6 k peptides and the first part of PTTH; the remaining part is encoded in exons III, IV and V. A single copy of the PTTH gene is found in the haploid genome of B. mori as evidenced by Southern hybridization experiments, indicating that the microheterogeneities found during peptide sequencing of PTTH have resulted either from post-translational processing or are some sort of artefacts produced during purification steps or products of denaturing conditions during storage.

The monoclonal antibody raised against the N -terminus ($1-15$) of PTTH was also used for immunocytochemical studies on brain-corpora cardiaca-corpora allata complexes of B. mori. Two pairs of dorsolateral neurosecretory cells in the brain were immunostained. Furthermore, immunoreactive-material was also detected in the axons of those neurosecretory cells which run to the corpora allata, a finding which indicates these structures as a possible release site (285). The same two pairs of dorsolateral neurosecretory cells in the brain contained mRNA for PTTH as shown by in situ hybridization with the PTTH cDNA probe (216). In the other moth species which is well known for its PTTH, the tobacco hornworm, Manduca sexta, very similar immunohistochemical results were achieved. A monoclonal antibody, very specific for M. sexta "big" PTTH (ca. 25.5 kDa), immunostained all four cells (two pairs) of the so-called L-NSC-III cells (neurosecretory cells located dorsally in each hemisphere of the protocerebrum); the axons of these cells traverse medially through the protocerebrum to the contralateral lobe and then pass posteriorly, via the nervi corporis cardiaci I and II, through the corpora cardiaca without branching to the corpora allata where the axon
terminals form a typical neurohaemal release site (330). Previously, only one of the cells each of the L-NSC-II pair was recognized as producing PTTH when a revolutionary new bioassay was used to measure the amount of PTTH activity (monitored as ecdysone production by in vitro incubation of prothoracic glands), in individual somata (5), but with this method the corpora allata were already identified as the release site for PTTH (4). In M. sexta, PTTHs appear to exist as two different size groups (similar to the "real" PTTH and bombyxin in B. mori): a "big" PTTH with different variants of about 25.5 kDa and a "small" heterogenous PTTH of about 7 kDa ; however, both forms directly stimulate prothoracicotropic glands of M. sexta in vitro (24). The "big" PTTH has been isolated from M. sexta brains using immunoaffinity chromatography (making use of the previously produced specific monoclonal antibody) and characterized by SDS-polyacrylamide gel electrophoresis, Western blot and partial sequencing (291). The mature PTTH is apparently a homodimer consisting of monomers of 16.5 kDa . Trypsin digestion of the monomer and isolation of these fragments on HPLC produced four peptides in sufficient quantities for sequencing. None of these sequences was similar to the PTTH sequence of B. mori. Furthermore, isolectric focusing performed on crude "big" PTTH from M. sexta yielded a pI of 5.2, while the PTTH of B. mori is a basic peptide (see 211, 216). Isolated B. mori PTTH also showed no biological activity in the in vitro prothoracic gland assay of M. sexta. Thus, B. mori PTTH, which is apparently present in M. sexta, as evidenced by 9% sequence similarity by independent PCR of genomic DNA and a L-NSC-III cDNA library (153), does not act as a prothoracicotropin in the tobacco hornworm. At the moment it is unclear what the function in M. sexta is, but because the Bombyx-like PTTH peptide and Manduca "big" PTTH are coexpressed in the L-NSC-III cells of M. sexta local release into the CNS (or into the haemolymph) and action as neuromodulators have been hypothesized (153).

3.2.3.2. Bombyxin

The function of the "small" PTTH is also not well understood. Although this molecule from B. mori, now called bombyxin, can induce adult development in brainless pupae of the saturniid moth, Samia cynthia and also stimulates in vitro the production of ecdysone in prothoracic glands of S. cynthia, adult development of a debrained pupae of B. mori is not induced $(189,313)$. After years of work a 15 -step purification scheme succeeded in isolating a pure form of bombyxin but with indications of more than one molecular form (313). Further studies revealed that at least
five molecular forms (bombyxin I to V) could be isolated and more are still to be discovered $(204,269,311,314)$. When the N -terminal 19 amino acids were sequenced, it became clear that the bombyxins are homologous to insulin (314). After sequencing it was shown that the molecule is a heterodimer and that the A-chain consists of 20 amino acid residues with about 50% homology to insulin, whereas the B-chain, a mixture of at least four microheterogeneous peptides, consists of 28 or 26 residues with about 30% homology to insulin (Table 8) (315). Bombyxin contains 6 Cys residues which are distributed as in insulin; they form one intra-(Cys A $^{6} \rightarrow$ Cys 11) and two interchain (Cys $\mathrm{A}^{7} \rightarrow \mathrm{Cys}^{10}$ and $\mathrm{Cys}^{20} \rightarrow \mathrm{Cys}^{22}$) disulfide bonds (269). Using interactive computer graphics and energy minimization techniques, and assuming homology with porcine insulin, a threedimensional model of bombyxin II has been constructed (204). The model proposes two important characteristics: Bombyxin can assume an insulinlike tertiary structure, mostly because the important hydrophobic core residues are identical in bombyxin and insulin, and, when this globular structure is formed, the surface residues in bombyxin are quite different from those in insulin which accounts for the inability of bombyxin to bind anti-insulin antibodies or insulin receptors.

After the structure of some forms of bombyxin were known, studies focused on the chemical synthesis of bombyxins. This faced difficult problems to find the conditions which would induce the formation of the disulfide bonds. The first attempts gave only low yields (270, 318), but recently, by stepwise, regio-selective formation of the three disulfide bonds, yields of $50-60 \%$ have been achieved (271). The synthetic peptides had the same biological activity as the natural bombyxins.

Having established a sequence for bombyxin-II, oligonucleotide probes were designed and a genomic library screened, resulting in the isolation of a genomic DNA encoding for the precursor preprobombyxin (197). The organization of the preprobombyxin gene is thus to code for a signal peptide, B-chain followed by dibasic processing site, C-peptide followed by dibasic processing site and A-chain; this overall structure is exactly the same as that of the preproinsulin genes (16); however, in contrast to the insulin gene family, the bombyxin gene has no intron. It is predicted - by homology to insulin - that the mature bombyxin is generated in the following way: translation of the preprobombyxin, cleaving off of the signal peptide, generating of the disulfide bridges and, finally, cutting off of the C-peptide.

Using a synthetic oligonucleotide 51-mer of the antisense DNA for the bombyxin-II A-chain, a cDNA library constructed from larval brains of B. mori was screened and a clone with the complete coding region for preprobombyxin as given above was isolated (2). The B. mori genome
Table 8 Primary structures of bombyxins-II and -IV, Locusta mıgratoria insulin-related peptide (Lom-IRP) and human insulin

Code Name	Species	Sequence	Reference(s)
A-chain			
Bom-Bombyxin-II	B mort	GIVDECCLRPCSVDVLLSYC	315,318
Bom-Bombyxın-IV	B morl	GVVDECCIQPCTLDVLATYC	269
Lom-IRP	L mıgratorıa	GVFDECCRKSCSISELQTYCG	165
Human insulin		GIVEQCCTSICSLYQLENYCN	
B-chain			
Bom-Bombyxın-II	B morl	pQQPQAVHTYCGRHLARTLADLCWEAGVD	
Bom-Bombyxin-IV	B morl	pQEANVAHHYCGRHLANTLADLCWDTSVE	
Lom-IRP	L mıgratorıa	SGAPQPVARYCGEKLSWALKLVCRGNYNTMF	
Human insulin		FVNQHLCGSHLVEALYLVCGERGFFYTPKT	

contains multiple copies of the bombyxin gene which contrasts strongly with vertebrate insulin genes (either a single or 2 copies found per haploid genome). Further studies on bombyxin genes revealed the presence of up to 30 gene copies $(190,283)$. These have been classified into the A, B and C families according to their sequence similarities (196). In some cases it was shown that four genes form a cluster in which two genes belonging to different families (A or B) are closely apposed with an opposite transcriptional orientation (215). Whether this unique spatial organization has a functional significance for coordinate and differential expression of the bombyxin genes is not yet known. Together with the lack of introns, it shows that differences exist among other members of the insulin gene family of vertebrates and, thus, that there are greater evolutionary distances between these insulin genes.

Knowledge of the primary structures of the bombyxins was also a prerequisite for producing antibodies to study the localization of bombyxin at the cell level. A monoclonal antibody against a synthetic bombyxin fragment corresponding to the N -terminus $1-10$ of the A-chain of bombyxin-I was used for immunohistochemical studies (284). Four pairs of large dorsomedial neurosecretory cells in the brain of B. mori were stained as well as their axons, which traversed to the contralateral lobe of the brain to enter the retrocerebral nerve. This nerve connects the brain with the corpus cardiacum (CC), but the stained axons passed through the CC to the corpora allata (CA) where they arborized and their terminals were preferentially located at the periphery of the CA. Thus, these neuroanatomical studies suggest that eight medial neurosecretory cells produce bombyxin, which is then transported to and released from the CA (284). The same cells also contain bombyxin mRNA as shown by in situ hybridization (311). So far bombyxin transcripts (as analyzed by Northern hybridization experiments) were only found in brain tissue of B. mori, but not in the suboesophageal ganglion, fat body, silk gland, Malpighian tubule, ovary or testis (215).

As to the putative function of bombyxin, the development of a radioimmunoassay (RIA) using monoclonal antibodies against natural bom-byxin-II was very helpful (283, 390). Interestingly, peak levels of ecdysteroids in the haemolymph before larval/larval and larval/pupal ecdysis were accompanied by increases in the titre of bombyxin-immunoreactive material suggesting that bombyxin has some, as yet not clearly defined, physiological role to play during development. Moreover, other experiments showed that bombyxin-immunoreactive material was released when feeding was used as a stimulus. Together with the observation that bombyxin immunoreactive material was released from the brain when glucose was injected into starved larvae, these results, comparable to
post-prandial release of insulin by a high glucose titre, indicate a role for bombyxin in regulating carbohydrate metabolism. The levels of trehalose, the major blood sugar of B. mori, were indeed decreased by injection of bombyxin into the haemolymph of neck-ligated larvae; but this hypotrehalosaemic effect was significant only 6 to 9 h after injection. Midgut trehalase, the enzyme that catalyzes trehalose to glucose, of larvae which were injected with bombyxin increased by 40% compared with controls. However, this effect was only present 6 h after injection, but not after 3 h .

3.2.3.3. Locusta Insulin-Related Peptide

During the search for developmental neurohormones in Locusta migratoria, a peptide was isolated from the neurosecretory (storage) part of the corpora cardiaca whose primary structure, as determined by automated sequencing of V8 protease and trypsin fragments and by liquid secondary-ion mass spectrometry, suggested that it was a spacer peptide (166). The sequence was used to design oligonucleotide probes with which a cDNA library prepared from mRNA of the pars intercerebralis of the locust brain was screened and several clones encoding a polypeptide of 145 amino acids were isolated (246).

This polypeptide serves as a precursor for a molecule with strong sequence similarity to mammalian insulins; its overall organization is signal peptide/B-chain/C-peptide/A-chain. There are seven cysteines in the A- and two in the B-chain as in other insulins and the Cys residues have identical positions as in other insulins. Moreover, most of the hydrophobic core residues are in positions similar to those in other members of the insulin family.

Using a more vigorous extraction procedure than previously (either with 1 M acetic acid or with 75% ethanol containing 0.2 M HCl compared to previous conditions of extraction in deionized water at pH 5.5), crude extracts of neurohaemal parts of locust CC were prepurified on C18 Sep-Pak cartridges. Subsequently fractions of molecular mass between 1 and 15 kDa were obtained on a ProteinPak I-125 gel-permeation column and this material separated on C8-RP-HPLC with an acetonitrile/TFA gradient (165). A peptide, here called Lom-IRP (Locusta migratoria insulin-related peptide) was characterized, after cleaving the disulfide bridges, the A - and B -chains sequenced by Edman degradation and masses confirmed by plasma-desorption mass spectrometry (see Table 8). These results, in conjunction with the previous cDNA cloning studies (246), led to the conclusion that the 145 -residue insulin precursor is posttranslationally processed into a 21 -residue A chain, a 31-residue

B-chain and 50-residue C-peptide. Furthermore, in contrast to the situation in B. mori (see above), there is only a single insulin present in L. migratoria and about 5 pmol (thus 10 times more than in B. mori) can be extracted from a single corpus cardiacum. The successful cloning of the Lom-IRP gene (242) showed that the gene is present as a single copy per haploid genome and consists of three exons separated by two introns, which is remarkably similar to the organization of the gene in vertebrates, but differs dramatically from the situation in B. mori (about 30 intronless genes/haploid genome; see above). Northern blot analyses revealed the presence of insulin transcripts in other tissues and organs (fat body, epidermis, midgut, mature oocytes, embryos) than the brain (241). After the finding of two transcripts of Lom-IRP, namely T1 and T2 which differ in their 5^{\prime} untranslated region, it is proposed that these are produced by alternative usage of two different promoters (242). It is clear at least that T1 and T2 are differentially expressed in the various tissues analyzed so far in L. migratoria: T1 is the specific one that is massively expressed in the brain, while T2 is found at low levels in all other tissues (242).

In vitro production of ecdysone by the prothoracic glands of L. migratoria is not increased by natural Lom-IRP; thus no physiological function for this peptide is known. It is speculated that this molecule, as insulin in vertebrates, has a role to play in anabolic processes leading to storage of energy (242).

3.2.4. Eclosion Hormones

Insect growth and metamorphosis are characterized by a series of moults in the course of which a new cuticle is produced. A neuropeptide that is secreted by neurosecretory cells in the brain and stored in the neurohaemal corpora cardiaca-corpora allata complex causes the shedding of the old cuticle at ecdysis and is therefore called eclosion hormone $(386,459)$. The hormone controls the ecdysis behavior not only in adult eclosion, but also in embryonic, larval and pupal ecdyses (460). Although its cellular targets and actions are diverse, not only triggering the aforementioned behavior, but also causing cuticle plasticization during the moult and even initiating programmed degeneration of certain intersegmental muscles which are not needed by the imago, the primary target of this peptide appears to be the central nervous tissue (425).

The physiology and biochemistry of eclosion hormone has been studied mainly in two lepidopteran moth species, the tobacco hornworm Manduca sexta and the silkworm Bombyx mori. Eclosion hormone was
first isolated from pharate adult heads of B. mor i by a complex purification scheme and the sequence of the 13 N -terminal amino acid residues was determined (312). Later it was found that the N-terminus of eclosion hormone is heterologous (319). Purification of eclosion hormone to homogeneity from B. mori was achieved from 777000 pharate adult heads (12 kg fresh weight!); this resulted in isolation of four molecular species of eclosion hormone which were called EH I-IV in the order of elution from reversed-phase HPLC and are here called Bom-EH I-IV (235). Although aliquots of each EH were subjected to automated Edman degradation, the amounts were too small to derive complete sequences. Therefore, the whole sequences of these eclosion hormones were constructed by combining sequence data. It appeared that two elosion hormones had 61 amino acid residues, whereas the other two showed a truncation of the two N -terminal residues Ser-Pro (see Table 9).

At the same time two other research groups had isolated eclosion hormone from Manduca sexta. Whereas Schooley's group used 10000 trimmed heads of pharate adults (213), Truman's group dissected brain neurohaemal organs from the heads of over 17000 pharate adults for extraction (268). Fractions from each purification step were injected into pharate adult Heliothis virescens moths 7 h before normal eclosion should occur. When eclosion took place within 3 h of injection, this fraction was judged as giving a positive response (213). Using different purification schemes both groups detected the same primary structure, a 62-mer peptide, determined by sequence analyses of the intact peptide and/or fragment peptides generated by various proteases or cyanogenbromide cleavage (Table 9). MARTI et al. (268) found that 20% of their preparation contained a peptide which lacked the N -terminal dipeptide Asn-Pro. Both studies thus confirmed a 62 -amino acid peptide for M. sexta, whose C-terminus is a free acid and has an extra Leu residue which was not detected in B. mori. However, subsequent studies on B. mori were successful in cloning the eclosion hormone gene; its nucleotide sequence indicated a 62 -mer containing a Leu at the C-terminus (453). When the eclosion hormone-encoding gene of M. sexta was isolated, it became clear that there is only one gene and eclosion hormone is the only product from the precursor molecule (183). The gene contains 7.8 kilobases and consists of three exons. Whereas exon I is non-translated, exon II contains a signal peptide (26 -mer) and the four N -terminal amino acids of eclosion hormone and exon III encodes the remainder of the peptide. Experiments using in situ hybridization showed expression of the eclosion hormone gene in two pairs of ventromedial neurosecretory cells of the brain of both larvae and developing adults only (183). Using a monoclonal antibody against a synthetic C-terminal fragment of B. mori eclosion hormone (EH
Table 9. Primary structures of eclosion hormones

Code Name	Species	Sequence	Reference(s)
Bom-EH-IV	B. mori	SPAIASSYDAMEICIENCAQCKKMFGPWFEGSLCAESCIKARGKDIPECESFASISPFLNKL	453, 236
Bom-EH-I	B. mori	$3-61$	
Bom-EH-II	B. mori	$1-61$	
Bom-EH-III	B. mori	3-62	NPAIATGYDPMEICIENCAQCKKMLGAWFEGPLCAESCIKFKGKLIPECEDFASIAPFLNKL
Mas-EH	M. sexta	213, 268	

49-61), immunohistochemistry revealed also two pairs of median neurosecretory cells of the brain in this species which produce eclosion hormone (234). The results were confirmed when the cDNA encoding B. mori eclosion hormone was isolated and sequenced (207). The pre-eclosion hormone molecule contains a 26 -mer signal peptide and the $62-\mathrm{mer}$ eclosion hormone; furthermore, in situ hybridization showed expression of the eclosion hormone gene in two pairs of neurosecretory cells of the brain of fifth instar larvae. Of interest is a comparison of the data on B. mori and M. sexta:

1. Primary sequences of eclosion hormones differ by 12 residues, thus 80\% sequence homology;
2. DNA sequence encoding eclosion hormone again shows about 80% homology;
3. in contrast, DNA sequences encoding the signal peptide (26-mer) and the non-translated region have less than 50% homology (207).

The gene encoding B. mori eclosion hormone (1-62) was chemically synthesized, inserted into a secretion vector and expressed in Escherichia coli, where it produced biologically active eclosion hormone (237). Recent studies on this recombinant eclosion hormone (237) and on native eclosion hormone from M. sexta (209) assigned the location of three disulfide bonds between $\mathrm{Cys}^{14}-\mathrm{Cys}^{38}$, $\mathrm{Cys}^{18}-\mathrm{Cys}^{34}$, and $\mathrm{Cys}^{21}-\mathrm{Cys}^{49}$. These results are consistent with the fact that, although Bom-EH and Mas-EH differ by 12 residues, the six cysteine residues and the residues before and after them are conserved in the two species (see Table 9). Additionally, biological activity was abolished by reductive alkylation, thus disulfide bridges are necessary for activity. Since both eclosion hormones are active in the heterologous species, arrangement of disulfide bonds was anticipated to be identical in both molecules, because it is apparently essential for correct receptor-binding.

Lastly, with the help of the recombinant Bom-EH it was shown that the molecular species I and II (3-61) (1-61) are very likely produced artefactually from EH III (3-62) and IV (1-62), possibly by digestion by a carboxypeptidase A-like enzyme present in the extract during purification (236).

3.2.5. Peptides Affecting Gonad Activity

Reproduction in insects is a very precisely regulated process in which hormones are involved (87). The key players of hormonal regulation are the true epithelial hormones, the ecdysteroids and juvenile hormones. In the adult stage these hormones do not interact with moulting, but control
the synthesis and uptake of yolk protein (vitellogenesis), the maturation of ovaries, and the development of eggs (oogenesis). Although the prothoracic glands degenerate at metamorphosis, other tissues in the adult insect (mostly the gonads, but fat body and integumental tissue as well) are the main ecdysteroid producers. Endocrine regulation of reproduction is very complex because different species have developed different physiological mechanics. In most insects the synthesis of vitellogenin is stimulated by JH, but it may not be the only stimulator. In many dipterans a pulse of ecdysteroids is needed to trigger vitellogenesis. Most Diptera have to take a proteinaceous meal before oogenesis as well; the amino acids of the ingested proteins are the precursors for the vitellogenin. However, also the stretching of the abdomen by the blood meal in the blood-sucking bug, Rhodnius prolixus, provides the physiological stimulus which initiates endocrine events.

In locusts, for example, growth of the oocytes is synchronized. Thus gonotrophic cycles occur which follow immediately upon each other; thus locusts produce and lay their eggs in batches. Both vitellogenin synthesis and the uptake of yolk proteins by the oocytes are stimulated by JH. However, new data have shown that peptide hormones play a role as well.

3.2.5.1. Ovary Maturating Peptide and Neuroparsin of Locusta migratoria

In the migratory locust it was shown that a factor residing in the nervous (neurosecretory) part of the corpus cardiacum leads to premature oocyte development when injected into young adult females (59). For purification, 2000 nervous parts of corpora cardiaca were extracted with 70% methanol and isolated via a Pharmacia Mono Q anion-exchanger; the active material was desalted and further purified by C-8 RP-HPLC $(142,144)$: Sequence determination was achieved by a combination of Edman degradation of the N -terminal intact peptide and various fragments produced by 2-iodobenzoic acid or tryptic digestion and quadrupole electrospray mass spectrometric measurements. The peptide, codenamed Lom-OMP (Locusta migratoria ovary maturating parsin; Table 10), consists of 65 amino acids, does not contain any cystein residues (thus there is no possibility to form dimers via disulfide bridges), but has a polyalanine sequence (8 Ala residues at positions 43 to 50). The existence of two isopeptides, due to a point mutation at position 26 (Ala or Ser), was noted by sequencing and mass spectrometry. A polyclonal antibody was raised and, by immunocytochemical staining, 250 acidophilic cells in the pars intercerebralis-corpora cardiaca gave a positive response. Injection
Table 10 Primary structures of ovary maturating peptide $(O M P)$ and neuroparsin of Locusta migratoria

Code Name	Specres	Sequence	Reference(s)
Lom-OMP	L mıgratoria	YYEAPPDGRHLLLQPAPAAPAVAPA(S/A)PASWPHQQRRQALDEFAAAAAAAAD AQFQDEEEDGGRRV	144
Lom-neuroparsin	L mıgratorıa	NPISRSCEGANCVVDLTRCEYGDVTDFFGRKVCAKGPGDKCGGPYELHGKCGVG MDCRCGLCSGCSLHNLQCFFFEGGLPSSC	142,167
γ		1-83	
β		3-83 (= Neuroparsin B)	
α		6-83 ($=$ Neuroparsin A)	

of the immune serum into young adult females blocks the rapid growth of oocytes. Although JH produced in the corpora allata stimulates the synthesis of vitellogenin in normal fat body, implantation of supplementary corpora allata does not induce normal oocyte growth when immunoneutralization had taken place prior to this treatment. Other preliminary experiments showed that Lom-OMP apparently does not stimulate the incorporation of vitellogenin into the oocytes, but rather, like JH and very likely synergistically, induces the expression of the vitellogenin genes.

The "counterpart" of Lom-OMP is a large peptide which causes an antigonadotropic effect (but also stimulates fluid reabsorption and elevates trehalose and lipids in the haemolymph) which is called Lomneuroparsin (100, 141, 289). Its name was coined because it was isolated from the neurosecretory part of the locust's corpus cardiacum and is produced by the A 1 type of the protocerebral median neurosecretory cells (141). The isolation procedure for this compound was as described for Lom-OMP; during the anion-exchange run two fractions, called neuroparsins A and B, were found which were further purified and characterized $(142,143)$. Whereas it was assumed initially that the neuroparsins were dimers containing 12 Cys residues and being microheterogenous at the N -terminus, it appeared later that they are monomers containing 6 intramolecular disulfide bridges (167). The latter authors fractionated the crude extract of nervous lobes of corpora cardiaca on C-18 RP-HPLC and analysed the purified peaks by liquid secondaryion and electrospray mass spectrometry. According to Hietter et al. (167), three main peptides could be found (see Table 10): the longest one consists of 83 amino acids (compound γ), whereas compounds β and α are two and five amino acids shorter from the N -terminus, respectively. In the terminology of Girardie et al. (143) the 83- and 81-mers are neuroparsin A and the 78 -mer is neuroparsin B . It is not yet known whether compounds α and β result from proteolytic cleavage by aminopeptidases from compound γ or, alternatively, whether all three peptides are synthesized in the corpus cardiacum and have each a different function.

When a cDNA library, prepared from mRNA of L. migratoria brains, was screened with appropriate probes, a cDNA encoding a precursor protein (107 amino acids) consisting of a signal peptide (22 amino acids), two processing sites (3 amino acids) and neuroparsin A (83 amino acids) was isolated and sequenced. The deduced amino acid sequence shows complete identity between residues 25 and 107 with the peptide sequence for neuroparsin A determined previously by Edman degradation (143).

3252 Oostatic Hormones of Diptera

Substances that inhıbit egg development and are therefore called antigonadotropins or oostatic hormones have been found in a number of insect species (27) Most of the research has been done on flies, mosquitoes and the blood-suckıng bug, Rhodnius prolixus Untıl very recently the only very limited information on the chemical nature of these factors has been reported for the latter two groups $(25,259)$ New data have been compiled for the mosquito Aedes aegyptl culminating in the elucidation of the prımary structure (27) Therefore, the present status of research of oostatic hormones is described in some detail only for this species

Egg development in anautogenous (insects which need a blood/ protein meal to produce eggs) mosquitoes like A aegyptı depends on digestion of ingested blood as well as on the release of an untıl now not wellcharacterized egg development neurosecretory hormone (EDNH) also called ovarian ecdysteroidogenic hormone (OEH) $(152,249,274)$ This EDNH is apparently produced in medial neurosecretory cells of the brain and stored in the corpus cardiacum (250) The peak of release of this neuropeptide is brief, its action is to stimulate the ovarian follicular cells to secrete ecdysone In contrast, the ovary of the mosquito controls its own growth and development, because an oostatic hormone fraction highly purified from ovaries was able to inhibit egg development and the biosynthesis of vitellogenin, the main yolk protein precursor in insects (25) Recently, one peptıde hormone has been purified from 30000 ovarıes of female A aegyptı by using low and high pressure liquid chromatography (28), Fourier transform mass spectrometry was critical for the proper characterization of the minute amounts available (29) The last step of isolation was on a RP-HPLC-C18 column, where a single peak with bioactivity was eluted Amıno acid analysis combined with tandem quadrupole mass spectrometry with ion cyclotron resonance revealed the primary structure of an unblocked decapeptide with the rather unusual C-termınal sequence of 6 proline residues (see Table 11) Surprısingly, a computer search found significant structural homology to mammalian, plant and several viral proteins that are either synthesized by double

Table 11 Primary structures of oostatic peptides (= trypsin modulating oostatic factors, TMOFs)

Code Name	Species	Sequence	Reference(s)
Aea-TMOF	Aedes aegyptı	YDPAPPPPPP	28,29
Neb-TMOF	Neobellieria bullata	NPTNLH	37
Neb-colloostatın	N bullata	SIVPLGLPVPIGPIVVGPR	38

stranded DNA viruses (Epstein Barr virus; Herpes simplex virus) or single stranded RNA viruses (Abelson murine leukemia viruses, and HIV-2, for example). The peptide directly modulates trypsin biosynthesis in the gut and indirectly regulates egg development and is therefore now called Trypsin Modulatory Oostatic Factor or Aea-TMOF.

Synthesis occurs in the follicular epithelium of the ovary and active secretion by the ovary, as shown by immunocytochemistry and in vitro incubations of ovaries (29) and by RIA and ELISA (31), is reported 24 to 48 hours after the blood meal. It is proposed that it is then bound to a receptor on the midgut epithelium cell where it acts, possibly via a repressor, by inhibiting trypsin synthesis. Trypsin biosynthesis, which was initiated during the first 24 hours after the blood meal, is then stopped, blood digestion cannot progress after some time, no more amino acids are transported to the fat body, and therefore no more vitellogenin can be made which will lead in the end to an arrest of egg development (30).

TMOF is rapidly hydrolyzed in intact mosquito having a half-life of about 1.6 h (29). The source of hormonal inactivation is suggested to reside in the thorax: when ligated abdomens were injected with synthetic Aea-TMOF, lower concentrations than injected into intact animals inhibited 90% of the trypsin-like enzyme biosynthesis (29). Some structureactivity studies using the test on ligated abdomens, where inactivation was not crucial, revealed the following: when the left-handed helix at the Cterminus was abolished by removing four or two of the Pro residues, the ED_{50} values were increased, thus the molecule was less active. Similarly, changing Tyr at position 1 with Asp at position 2 also increased the ED_{50}; thus, N - and C-termini are apparently important for biological activity (29).

Since natural or synthetic TMOFs are not species specific (26, 28), it was proposed that sequence-related TMOFs control trypsin biosynthesis in other insect species as well (29).

A peptide that inhibits trypsin-like synthesis by the midgut of liverfed female flies of the species Neobellieria (Sarcophaga) bullata was purified from 10000 ovaries of late vitellogenic state by using five HPLC steps and identified as a hexapeptide called Neb-TMOF (see Table 11) (37). Despite the difference in sequence to Aea-TMOF cross-reactivity was noted: Neb-TMOF is 6 -fold more active in the fly and Aea-TMOF is 5 -fold more active in the mosquito. This may probably be attributed to some properties of the physico-chemical structure; in both molecules an aromatic amino acid (Tyr in Aea-TMOF and His in Neb-TMOF) sticks out of the molecular axis (37). In contrast, the six C-terminal Pro residues in Aea-TMOF were predicted by computer modelling and NMR $(28,60)$ to form an α-helix, which is absent in Neb-TMOF.

Recently, a second peptide which displays oostatic activity has been purified from whole abdomens of adult N. bullata (38). This $19-m e r$ peptide is called Neb-colloostatin because it has a striking structural resemblance to a particular part of the sequence of preprocollagen of Drosophila (Table 11). Its effect is different from that of Neb-TMOF; trypsin biosynthesis is not inhibited. It is more likely that this peptide prevents yolk deposition in the penultimate oocytes.

3.2.6. Diapause Hormones

Diapause is defined as a spontaneous developmental arrest which occurs to adapt to changing environmental conditions. It is not restricted to a specific developmental stage in the life cycle; thus insects may enter diapause either in the embryonic, larval, pupal or imaginal stage $(67,485)$. Diapause is induced by a variety of environmental cues (e.g. temperature, humidity, photoperiod, diet) which are transduced by the neuroendocrine system to result in the various and complex adaptive responses of a physiological, biochemical and endocrinological nature.

In this chapter we are only concerned with embryonic diapause (egg diapause) occurring in the silkworm, Bombyx mori. Depending on the strain and environmental conditions, the number of annual generations varies in this species. Generalizing, one can say that a univoltine strain produces a single generation per year and all eggs enter diapause. Bivoltine or quadrivoltine strains which produce two or four generations annually lay eggs that undergo diapause when the female moth is subjected to high temperature $\left(25^{\circ} \mathrm{C}\right)$ and long-day photoperiods (16 h light: 8 h dark) during the embryonic stage; low temperature $\left(15^{\circ} \mathrm{C}\right)$ and short-day photoperiods (12 h light: 12 h dark), however, produce non-diapause eggs (484).

Early experiments had already demonstrated that the suboesophageal ganglion is involved in the nature of diapause. Neurosecretory cells of the suboesophageal ganglion secrete a substance which was called diapause hormone and promotes diapause. Attempts to isolate the active compound from huge quantities of dried heads of male adults using several conventional column chromatographic steps led to a highly purified sample of peptidic nature (192,193,194). Recently, the isolation proper and sequence determination was successfully executed (185). 55000 complexes of the suboesophageal ganglion and the first thoracic ganglion were dissected from day 1 old silkworm pupae, homogenized in ethanol and the pellet, after centrifugation, sequentially washed with ethanol, methanol/dichloromethane (1:1), 80% ethanol and 50% 2-propanol. This procedure did not extract the diapause hormone which was

Table 12. Primary structures of diapause hormones causing egg diapause in Bombyx mori

Code Name	Species	Sequence	Reference(s)
Bom-DH	B. mori	TDMKDESDRGAHSERGALCFGPRLamide	185
Bom-DH-I	B. mori	TDMKDESDRGAHSERGALWFGPRLamide	392

finally extracted by hot water. The aqueous extract was fractionated by reversed-phase HPLC into several broad peaks one of which contained biological activity. The pooled material was applied again to the RPHPLC including the ion-pairing reagent trifluoroacetic acid (0.5\%) into the organic solvent (2-propanol). Diapause hormone bioactivity was mainly found in one sharp peak. The yield of pure peptide was calculated to be less than 500 ng from the 55000 ganglia. Gas-phase sequencing revealed a 24 mer peptide (see Table 12) with one ambiguity at position 19 which was assumed to be Cys. The sequence from Arg^{15} to Gly^{21} was confirmed by sequencing a fragment after digestion with endoproteinase Glu-C. Sequencing showed that the N-terminus was not blocked, but it was not clear whether the C-terminus was amidated or not. Synthesis of both alternatives (free and amidated Leu at the C-terminus) solved this uncertainty: the peptide with the Leu as free acid had no biological activity when injected at the very high dose of $1 \mu \mathrm{~g} / \mathrm{pupa}$, whereas the amidated form eluted exactly at the same retention time as the native diapause hormone and was comparably biologically active.

The information of the primary structure of diapause hormone (DH) made it possible to isolate cDNA clones coding for DH. A cDNA library constructed from mRNA of suboesophageal ganglia was screened using oligonucleotide probes. Sequence data of the cloned cDNA encoding DH indicated the possibility that a second DH was produced in B. mori. Therefore, 110000 suboesophageal ganglia (plus first thoracic ganglia) were excised from day 2 to 3 pupae of a bivoltine race and the material purified as previously described (185) yielding a single peptidic compound which was characterized as having a Trp at position 19 (as predicted from the cDNA) instead of Cys which was previously found at this position (392). The synthetic Bom-DH (Trp^{19}) in its amidated form had the same retention time as the native molecule; it also has similar dose-response relationship in the biological assay as its Cys ${ }^{19}$ analogue. Thus, it was concluded that this new peptide containing Trp^{19} is a novel DH molecule. It is interesting to note that no cDNA clone was isolated which bears the codon for Cys ${ }^{19}$.

Interestingly, four out of five amino acids at the C-terminus are identical to those of the pheromone biosynthesis-activating neuropeptide from Helicoverpa zea and Bombyx mori (see Table 5), and of the locustamyotropins and locusta- and leucopyrokinins (see Table 13).

On a molecular level this was clearly shown when cDNA encoding DH was cloned and sequenced $(217,393)$: the cDNA encodes a polyprotein precursor from which DH is processed post-translationally together with PBAN and three other, shorter neuropeptides; all of these peptides share the common pentapeptide C-terminal sequence F -X-PR / K-L-amide (see also Sect. 3.2.1.). Using these molecular tools it was shown that the transcript of the diapause hormone polyprotein precursor was found in the suboesophageal ganglia of pupae and pharate adults, but brains, thoracic and abdominal ganglia had no positive reaction (391). In situ hybridization revealed 12 cells in the suboesophageal ganglia aggregated in three clusters.

3.3. Peptides Modifying Spontaneous Muscle Contractions: Myotropic Peptides

The majority of insect neuropeptides fully characterized thus far have the property of regulating the contractile activity of visceral and/or skeletal muscles. The first insect neuropeptide which was isolated and whose primary structure elucidated was proctolin $(34,439)$. The heroic efforts of isolation (11 steps were used starting with 125 kg of whole cockroaches) at a time when only quite insensitive techniques were available have been reported many times $(418,177)$ (Table 13).

3.3.1. Proctolin and Cardiostimulatory Peptides

Proctolin was present in extracts of the hindgut of the American cockroach Periplaneta americana and caused a slow graded contraction of the longitudinal muscles of the hindgut. Since then proctolin has been found, by using RIA, immunocytochemistry and/or HPLC, to be widely distributed among insects and other arthropods (333, 426). At first, proctolin was proposed to be a visceral muscle neurotransmitter (34). The pentapeptide, however, not only stimulated visceral muscles but also skeletal muscles (see 334). Moreover, most of the effects of proctolin can be attributed more to a neuromodulatory role than to the classical effect of a neurotransmitter or of a neurohormone; in an insect neuromuscular junction, proctolin acts as a cotransmitter with a second, conventional (possibly glutamate) neurotransmitter (334). Whereas the hindgut assay in
Table 13 Prımary structures of varıous myotropic peptides isolated from insects

Peptıde Name or Famıly Name	Code Name	Species	Sequence	Reference(s)
I Proctolin	Pea-proctolin	P americana	RYLPT	439
II Cardıoacceleratory neuropeptıdes				
Perıplanetın CC-1 (= hypertrehalosaemic peptıde I, see Table 1)	Pea-CAH-I	P americana	pQVNFSPNWamıde	$\begin{aligned} & 14,394,478 \\ & 430 \end{aligned}$
Perıplanetın CC-2 (= hypertrehalosaemıc peptıde II, see Table 1)	Pea-CAH-II	P americana	pQLTFTPNWamıde	394, 478, 430
Corazonın	Pea-corazonın	P americana	pQTFQYSRGWTNamıde	464
Hıs ${ }^{7}$-corazonın	Scg-corazonın	S gregaria	pQTFQYSHGWTNamıde	466
Crustacean cardıoactıve peptıde ($=\mathrm{CAP}_{2 \mathrm{a}}$)	Cama-CCAP	L mıgratoria M sexta T molitor Spodoptera eridania	PFCNAFTGCamıde	$\begin{aligned} & 438 \\ & 45,255 \\ & 102 \\ & 102 \end{aligned}$
Manduca cardıoacceleratory peptıde ($=\mathrm{CAP}_{2 \mathrm{~b}}$)	Mas-CAP	M sexta	pQLYAFPAVamıde	184
III Myokınıns				
a) Leucokınıns ${ }^{\text {a }} 170$				
Leucokının I, LK-I	Lem-M-I	L maderae	DPAFNSWGamıde	170
Leucokının II, LK-II	Lem-M-II	L maderae	DPGFSSWGamide	170
Leucokının III, LK-III	Lem-M-III	L maderae	DQGFNSWGamıde	171
Leucokının IV, LK-IV	Lem-M-IV	L maderae	DASFHSWGamıde	171
Leucokının V, LK-V	Lem-M-V	L maderae	GSGFSSWGamide	174
Leucokının VI, LK-VI	Lem-M-VI	L maderae	pQSSFHSWGamıde	174
Leucokının VII, LK-VII	Lem-M-VII	L maderae	DPAFSSWGamıde	175
Leucokının VIII, LK-VIII	Lem-M-VIII	L maderae	GADFYSWGamıde	175
b) Achetakınıns				
Achetakının I, AK-I	Acd-K-I	A domesticus	SGADFYPWGamıde	177
Achetakının II, AK-II	Acd-K-II	A domesticus	AYFSPWGamıde	177
Achetakının III, AK-III	Acd-K-III	A domesticus	ALPFSSWGamıde	177
Achetakının IV, AK-IV	Acd-K-IV	A domesticus	NFKFNPWGamıde	177
Achetakının V, AK-V	Acd-K-V	A domesticus	AFHSWGamıde	177

c) Locustakının	Lom-K	L mıgratorıa	AFSSWGamıde	413
d) Aedeskınıns				
Aedes leukokının 1	Aea-K-I	A aegyptl	NSKYVSKQKFYSWGamıde	467
Aedes leukokının 2	Aea-K-II	A aegyptı	NPFHAWGamıde	467
Aedes leukokının 3	Aea-K-III	A aegyptı	NNPNVFYPWGamıde	467
e) Culekınıns				
Culekının I, CDP-I	Cus-CDP-I	Culex salınarıus	NPFHSWGamıde	158
Culekının II, CDP-II	Cus-CDP-II	C salinarius	NNANVFYPWGamıde	51
Culekının III, CDP-III	Cus-CDP-III	C salinarius	WKYVSKQFFSWGamide	51
f) Helıcokınıns				
Helıcokının I	Hez-K-I	H zea	YFSPWGamıde	22
Helıcokının II	Hez-K-II	H zea	VRFSPWGamıde	22
Helicokının III	Hez-K-III	H zea	KVKFSAWGamıde	22
IV Sulfakınıns				
a) Leucosulfakınıns				
LSK	Lem-SK-I	L maderae	EQFEDY $\left(\mathrm{SO}_{3} \mathrm{H}\right) \mathrm{GH}$ MRFamıde	298
LSK-II	Lem-SK-II	L maderae	pQSDDY($\left.\mathrm{SO}_{3} \mathrm{H}\right) \mathrm{GH}$ MRFamıde	295
		P americana	pQSDDYGHMRFamıde	465
b) Locustasulfakının	Lom-SK	L mıgratorıa	pQLASDDY $\left(\mathrm{SO}_{3} \mathrm{H}\right) \mathrm{GH}$ MRFamıde	405
c) Perısulfakının	Pea-SK	P americana	EQFDDY($\left.\mathrm{SO}_{3} \mathrm{H}\right)$ GHMRFamıde	465
d) Dipteran sulfakınıns				
Neosulfakının I	Neb-SK-I	N bullata	FDDY($\left.\mathrm{SO}_{3} \mathrm{H}\right) \mathrm{GHMRF}$ amıde	98
(= Drosulfakının I)	(Drm-SK-I)	D melanogaster		321, 322,324
(= Callısulfakının I)	(Cav-SK-I)	C vomitoria		83
(= Lucısulfakının I)	(Luc-SK-I)	L cuprina		83
Neosulfakının II	Neb-SK-II	N bullata	${ }^{\text {n }}$ EEQFDDY $\left(\mathrm{SO}_{3} \mathrm{H}\right)$ GHMRFamıde	98
($=$ Callısulfakının II)	(Cav-SK-II)	C vomitorıa	GGEEQFDDY($\left.\mathrm{SO}_{3} \mathrm{H}\right) \mathrm{GH}$ MRFamide	83
($=$ Lucısulfakının II)	(Luc-SK-II)	L cuprina C vomitoria	GGEEQFDDY(?)GHMRFamıde	83

Table 13 (continued)

Peptide Name or Family Name	Code Name	Species	Sequence	Reference(s)
Drosulfakinin II	Drm-SK-II	D. melanogaster	GGDDQFDDY(?)GHMRFamide	324
V. Myotropins/pyrokinins				
a) Leucopyrokinin, LPK	Lem-PK	L. maderae	pQTSFTPRLamide	172
b) Locustapyrokinin I	Lom-PK-I	L. migratoria	pQDSGDGWPQQPFVPRLamide	407
Locustapyrokinin II	Lom-PK-II	L. migratoria	pQSVPTFTPRLamide	411
c) Locustamyotropin I	Lom-MT-I	L. migratoria	GAVPAAQFSPRLamide	410
Locustamyotropin II	Lom-MT-II	L. migratoria	EGDFTPRLamide	406
Locustamyotropin III	Lom-MT-III	L. migratoria	RQQPFVPRLamide	409
Locustamyotropin IV	Lom-MT-IV	L. migratoria	RLHQNGMPFSPRLamide	409
d) Helicomyotropin I	Hez-MT-I	H. zea	MEFTPRLamide	64
Helicomyotropin II	Hez-MT-II	H. zea	TMNFSPRLamide	64
e) Bommyotropin I ($=\alpha$-suboesophageal				
Bommyotropin II ($=\beta$-suboesophageal neuropeptide)	Bom-MT-II (Bom- β-SGNP)	B. mori	SVAKPQTHESLEFIPRLamide	393, 217
Putative bommyotropin III ($=\gamma$-suboesophageal neuropeptide)	Bom-MT-III	B. mori	TMSFSPRLamide	393, 217
VI. Tachykinins				
a) Locustatachykinin I	Lom-TK-I	L. migratoria	GPSGFYGVRamide	404
Locustatachykinin II	Lom-TK-II	L. migratoria	APLSGFYGVRamide	404
Locustatachykinin III	Lom-TK-III	L. migratoria	APQAGFYGVRamide	403
Locustatachykinin IV	Lom-TK-IV	L. migratoria	APSLGFHGVRamide	403
Locustatachykinin V	Lom-TK-V	L. migratoria	?PSWFYGVRamide	415
b) Callitachykinin I	Cav-TK-I	C. vomitoria	APTAFYGVRamide	263
Callitachykinin II	Cav-TK-II	C. vomitoria	GLGNNAFVGVRamide	263
c) Culetachykinin I Culetachykinin II	Cus-TK-I Cus-TK-II	C. salinarius C. salinarius	APSGFMGMRamide APWGFTGMRamide	51 51

References, pp. 97-128

VII Accessory glands- and midgut-myotropins				
a) Male accessory glands myotropin I	Lom-AG-MT-I	L migratoria	GFKNVALSTARGFamide	342
Male accessory glands myotropin II	Lom-AG-MT-II	L migratoria	AHRFAAEDFGALDTAamıde	341
Female accessory glands myotropin	Mud-AG-MT	Musca domestica	LLNALPLDALSSLTGamide	473
b) Midgut myotropin I	Mas-MG-MT-I	M sexta	AGPYTamide	487
Midgut myotropin II	Mas-MG-MT-II	M sexta	DIPPRamide	486
c) Oviductal motılity stımulatıng head peptıde	Led-OVM	L decemlineata	IAYKPEamide	434
VIII Perıviscerokının	Pea-PVK	P americana	GASGLIPVMRNamıde	356
IX Myounhibitory peptides and other FMRFamide related peptides (FaRPs)				
a) Locustamyoinhibitory peptide	Lom-MIP	L migratoria	AWQDLNAGWamide	408
Manducamyoinhibitory peptide I	Mas-MIP-I	M sexta	AWQDLNSAWamıde	21
Manducamyounhibitory peptide II	Mas-MIP-II	M sexta	GWQDLNSAWamıde	21
Locustamyounhibin	Lom-MIH	L migratoria	pQ ${ }^{\text {Y }}$ 'KQSAFNAVSamide	416
b) Myosuppressin and FaRPs				
Leucomyosuppressin	Lem-MS	L maderae	pQDVDHVFLRFamide	173
SchistoFLRFamide	Scg-FLRFamıde	S gregaria	PDVDHVFLRFamide	$\begin{aligned} & 389,412, \\ & 345 \end{aligned}$
		L mıgratoria		248
LocustaFaRP (locustamyosuppressin)	Lom-MS	L mıgratorıa	ADVGHVFLRFamide	345, 248
ManducaFLRFamide	Mas-FLRFamide	M sexta	pQDVVHSFLRFamude	228
Neomyosuppressın	Neb-MS	N bullata D melanogaster	TDVDHVFLRFamide	97, 323
LocustaFaRPs	Lom-FaRP-I	L migratoria	GQERNFLRFamide	345, 248
	Lom-FaRP-II	L mıgratoria	A ${ }^{\text {? }}$ RNFIRFamide	248
	Lom-FaRP-III	L megratoria	AFIRFamıde	248
Aedes head peptıde I	Aea-HP-I	A aegyptı	pQRPHypSLKTRFamide	273
Aedes head peptide II	Aea-HP-II	A aegyptı	TRFamide	273
CalliFMRFamıdes*				
CalliFMRFamide-I	Cav-FMRF-NH2-I	C vomitoria	SVQDNFIRFamide	78
		L cuprina		74

Table 13 (contınued)

CallıFMRFamıde-XVI($=14$)	Cav-FMRF-NH2-XVI	C vomitoria	APPQPSDNFIRFamıde	78, 74
CallıFMRFamıde-XVIa	Cav-FMRF-NH2-XVIa	L curprina	TPPQPSDNFIRFamıde	74
DroFMRFamıdes				
DroFMRFamide-I	Drm-FMRFNH2-I	D melanogaster	SVKQDFMHFamide	454
DroFMRFamıde-Ia	Drm-FMRFNH2-Ia	D virlls	SLKQDFMHFamıde	454
DroFMRFamıde-II	Drm-FMRFNH2-II	D melanogaster D virilss	SVKQDFMRFamıde	454
DroFMRFamıde-III	Drm-FMRFNH2-III	D melanogaster	TPAEDFMRFamıde	454
DroFMRFamıde-IV	Drm-FMRFNH2-IV	D melanogaster D virils	SDNFMRFamıde	454
DroFMRFamıde-V	Drm-FMRFNH2-V	D melanogaster D virlls	SPKQDFMRFamıde	454
DroFMRFamıde-VI	Drm-FMRFNH ${ }_{2}$-VI	D melanogaster	SAPQDVRSamide	454
DroFMRFamide-VIa	Drm-FMRFNH2-VIa	D virlls	SAPTEFERNamide	454
DroFMRFamide-VII	Drm-FMRFNH2-VII	D melanogaster	MDSNFIRFamide	454
DroFMRFamide-VIIa	Drm-FMRFNH2-VIIa	D virlls	MDSNFMRFamıde	454
DroFMRFamıde-VIII	Drm-FMRFNH2-VIII	D virllis	APPSDFMRFamide	454
DroFMRFamide-IX	Drm-FMRFNH ${ }_{2}$-IX	D virllis	APSDFMRFamıde	454
DroFMRFamide-X	Drm-FMRFNH2-X	D virllis	DPSQDFMRFamıde	454
(DroFMRFamide-XI see neomyosuppressin)	$\begin{aligned} & \text { (Drm-FMRFNH } \\ & =\text { Neb-MS) } \end{aligned}$	D melanogaster	TDVDHVFLRFamide	323

* Arabic numerals are assigned calliFMRFamide members in (78)
P. americana was (first) used to detect proctolin, later the far more sensitive (picomolar range) tests using the locust extensor tibia or the locust oviduct bioassays were implemented $(247,334)$. Using the latter preparation or the locust ovipositor muscles, a skeletal muscle preparation, proctolin's role as a contransmitter was clearly shown (333). There is no direct evidence for a role of proctolin as a neurohormone in insects, but immunocytochemistry shows proctolin-like immunoreactive neurons in the blowfly, with endings terminating outside the neural sheath (308), in the corpora cardiaca of a beetle and in moths $(65,472)$ or in the corpora allata of a moth (180).

Studies on the pharmacology of the proctolin receptor have been carried out by several groups who determined the myotropic effects of various proctolin analogues in different bioassay systems like the cockroach hindgut $(440,452)$, the desert locust foregut (154), the migratory locust oviduct (363) and the heart of the cockroach and the mealworm, Tenebrio molitor (238). Although species- or bioassay-specific responses occur, it can be generalized that activity depends on the full pentapeptide while the amino acids have to have the L-configuration. C - or N terminally truncated analogues (di-, tri- or tetrapeptides) were inactive and slight modifications at a single position resulted mostly in a complete loss of activity. Some analogues, however, for example [Ala ${ }^{4}$]-proline, had substantial activity in a particular bioassay, causing locust oviduct contraction in this case, but were inactive in others. A supra-analogue, which had twice the potency of proctolin in the cockroach hindgut assay and was 4 - and 1.5 -fold more active in the cockroach and mealworm heart assay respectively, contained a methoxygroup instead of the hydroxylgroup at the p-position of the aromatic side chain of Tyr^{2}. Phe^{2}, however, showed little or no activity, whereas analogues substituting the hydroxylgroup of Tyr^{2} with various nitrogen containing groups ($\mathrm{Phe}\left(p-\mathrm{NH}_{2}\right)$; $\operatorname{Phe}(p-$ $\left.\mathrm{NMe}_{2}\right)$; $\operatorname{Phe}\left(p-\mathrm{NO}_{2}\right)$) were all more active than proctolin in the cardiostimulatory assay. This was also true for the Phe(p-fluoro)-analogue in the locust foregut assay. In this system the $\operatorname{Tyr}\left(3^{\prime}\right.$ mono-iodo)-analogue had reasonable potency and, if still active when ${ }^{125}$ I-labelled, such a compound could be extremely useful for receptor binding studies. Another useful tool may be the $\operatorname{Tyr}(\alpha$-methyl)-analogue which reduced the maximum response of the locust foregut by 88% at a concentration of $10^{-6} \mathrm{M}$ and thus is an antagonist. Another antagonist was the tripeptide Arg-TyrThr, but, at higher concentrations $\left(10^{-5} \mathrm{M}\right)$, the reduction in the maximal response to proctolin was smaller. It is speculated that the tripeptide in high concentration reduces the rate of proctolin inactivation by enzymes either by competing with proctolin for the active sites of the proteolytic enzymes or by exerting end product inhibition. From a number of studies
on proctolin degradation using cockroach haemolymph $(441,442)$, cockroach tissue homogenates (364), membranes of desert locust synatosomes (186) and membrane preparations of migratory locust hindgut and ovary (360), the presence of aminopeptidase, carboxypeptidase and endopeptidase activity is known. Depending on the pH it became clear that, at pH 6, either a carboxypeptidase followed by an endopeptidase cleaves the Tyr-Leu bond or that immediately the endopeptidase degrades proctolin to yield Arg - Tyr + Leu - Pro + Thr, whereas, at pH 8, an aminopeptidase is apparently favoured which produces Arg + Tyr-Leu-Pro-Thr and later Arg + Tyr + Leu-Pro + Thr. The effects discussed above for the tripeptide Arg - Tyr - Thr, which were detected in vitro, could thus relate to the situation in vivo by the degradation product Arg + Tyr.

Tritiated proctolin, $\left[{ }^{3} \mathrm{H}\right]$ proctolin, was used to investigate binding to locust hindgut- and oviduct membranes and specific binding was shown (361, 362).

Besides proctolin, whose effect on the insect heart has been mentioned above, two peptides isolated from the corpus cardiacum of P. americana (Pea-CAH-I and II) have cardioacceleratory activity. These peptides, which belong to the adipokinetic hormone/red pigment-concentrating hormone family, also have hypertrehalosaemic activity in cockroaches and have been dealt with in Sect. 3.1.1.

The most potent cardiostimulatory peptide in P. americana is Peacorazonin. It was isolated from corpora cardiaca of this cockroach by RP-HPLC on a C-18 support using a water/acetonitrile gradient with TFA or HFBA as ion pairing agents and, after deblocking with pyroglutamate aminopeptidase, was shown to be a blocked undecapeptide (464) (Table 13). Subsequently, using an ELISA to monitor the presence of corazonin, the same molecule was shown by retention time on HPLC and amino acid composition to be present in the corpora cardiaca of the cockroach, Nauphoeta cinerea, and the tobacco hawk moth, Manduca sexta. The primary structure of a bioanalogue, [His ${ }^{7}$] corazonin instead of Arg^{7}, was determined for the material isolated from the corpus cardiacum of the desert locust, Schistocerca americana (466) (Table 13). Because of its isolation from corpora cardiaca and its distribution, as shown by immunocytochemistry with antisera specific to Pea-corazonin, in neurosecretory cells of the protocerebrum and their axon terminals in the storage part of the corpus cardiacum $(355,469)$, it is suggested that this peptide is released from the corpus cardiacum and acts as a neurohormone to control heart beat. Moreover, immunoreactivity was also found in interneurons of the brain and segmental body ganglia of P. americana (469). A similar distribution of Pea-corazonin immunoreactivity was found in another cockroach, Leucophaea maderae (355). In the blowfly

Phormia terraenovae, two cell groups (lateral and median) with immunoreactivity were found in the protocerebrum of all postembryonic stages and a large plexus of varicose fibres located in the wall of the aorta, a possible release site, was shown to contain peripheral processes as well (41). When brain-corpora cardiaca-aorta complexes of P. terraenovae were extracted, the material was identified by a Pea-corazonin specific ELISA to co-elute with authentic Pea-corazonin. This suggests that P. terraenovae also contains Pea-corazonin. Synthetic Pea-corazonin was also able to stimulate contraction of the hyperneural muscle of P. americana, but neither the oviduct nor the proctodeum. Interestingly, only the hyperneural muscle of P. americana is stimulated in a very sensitive way, but not those of other cockroaches such as Blatta orientalis, Blattella germanica (weakly), Blaberus craniifer, Blabtica dubia, Pycnoscelus surinamensis, Leucophaea maderae (weakly), Gromphadorhina portentosa and Nauphoeta cinerea (355). Since Pea-corazonin appears to be present in some of the species, another, as yet not discovered, target tissue and possibly another function has to be postulated for Pea-corazonin.

The heart of the moth, Manduca sexta, is modulated by a number of neuropeptides called cardioacceleratory peptides (CAPs) of which two groups $\left(\mathrm{CAP}_{1}\right.$ and $\left.\mathrm{CAP}_{2}\right)$ with at least two and three members, respectively, exist (461). It is believed that these peptides stimulate the heart immediately after adult emergence, facilitating wing inflation and are also active during flight to achieve adequate haemolymph circulation between abdomen and thorax. In larvae, the hindgut may be the primary target (461). Isolation of one of the CAP_{2} peptides was achieved by dissecting 6000 ventral abdominal nerve cords from pharate adult moths and, after heat-treatment, extraction in 0.5 M acetic acid. Pre-purification was on Sep-Pak (C-18 support), followed by a 6-step HPLC procedure (45), resulting finally in a pure peptide as judged by Edman sequencing and mass spectral analysis. The primary structure yielded an amidated nonapeptide containing cystein residues at positions 3 and 9 (45) (Table 13). An identical peptide had earlier been isolated and sequenced from 800 locust brain-suboesophageal ganglia-ventral nerve cord complexes; it was shown to have a potent myotropic effect on the locust hindgut (438). Purification had been achieved by antibody affinity chromatography followed by RP-HPLC using a RIA developed for the detection and quantification of the crustacean cardioactive peptide (Cama ${ }^{1}$-CCAP) (437). Thus, L. migratoria and M. sexta were shown to contain authentic Cama-CCAP in their nervous tissue. This peptide was subsequently also

[^3]sequenced in M. sexta (255), the southern armyworm, Spodoptera eridania, and the mealworm, Tenebrio molitor (102). The presence of Cama-CCAP in the latter beetle species was not too surprising, since CCAP-immunoreactive neurons in the ventral nerve cord and the brain (lateral neurosecretory cell) had been demonstrated previously (33). In the locust, the antiserum stained efferent and intersegmental neuronal systems in the ventral nerve cord, some of which are recognized as release sites (70). In the blowfly, only four cells in the fused thoracic-abdominal ganglion are immunopositive. Axons of these cells reach the hindgut (306) and the peptide may be involved in modulating hindgut myotropic activity. Recently, another cardioacceleratory peptide, $\mathrm{CAP}_{2 \mathrm{~b}}$, of M. sexta has been fully structurally elucidated (184). This N- and C-terminally blocked octapeptide has no sequence homology to $\mathrm{CAP}_{2 \mathrm{a}}$ ($=$ CamaCCAP) or any other insect neuropeptide (see Table 13).

During 1987/1988 12 novel myotropic peptides were isolated and characterized from head extracts of the cockroach, Leucophaea maderae, using the hindgut bioassay (see Sect. 2.1.2) and a four-step HPLC purification procedure (see Sect. 2.2) $(176,178)$. The same purification and bioassay system was used for the identification of five myotropic peptides from head extracts of Acheta domesticus $(176,178)$ and a very similar procedure yielded 21 novel neuropeptides from brain-corpora cardiacacorpora allata-suboesophageal ganglion complexes of Locusta migratoria (415). The peptides are now placed in distinct peptide families because of their structural similarities; additional members of these families have been elucidated in the meantime from other insect species and are all listed in Table 13.

3.3.2. Myokinins

To date eight myokinins from L. maderae, five from A. domesticus, three each from Aedes aegypti, Culex salinarius and Helicoverpa zea are known and a single one from Locusta migratoria (for original references see Table 13). They all share a common C-terminal pentapeptide sequence. $\mathrm{FX}^{1} \mathrm{X}^{2}$ WGamide (where $\mathrm{X}^{1}=\mathrm{H}, \mathrm{S}, \mathrm{N}, \mathrm{Y}, \mathrm{F}$ and $\mathrm{X}^{2}=\mathrm{S}, \mathrm{P}, \mathrm{A}$). The leucokinins stimulate the hindgut most potently by increasing the frequency and amplitude of spontaneous phasic contractions at lower concentrations and with a tonic component at higher concentrations (threshold concentration: 0.3 to $2.0 \times 10^{-10} \mathrm{M}$ for the various peptides) (294). Their effects on stimulating the muscles of the foregut and oviduct are about 100 - and 1000 -fold less $(57,58)$.

An antiserum against leucokinin I and synthetic leucokinin I labelled with ${ }^{125} \mathrm{I}$-Bolton-Hunter reagent were used to develop a sensitive RIA.

Low levels of immunoreactive material were measured in the ventral nerve cord of L. maderae, but high values (1.9 pmol) in the brain and largest amounts (6.6 pmol per tissue) in the corpora cardiaca-corpora allata complexes, whereas the titre in the haemolymph was in the nanomolar range (292). High-potassium depolarization combined with Ca^{2+}-induced release of about 2% of the stored material suggested that the leucokinins may act via the circulation as neurohormones.

The achetakinins are almost as potent on the cockroach hindgut (178), but the locustakinin is inactive on hindgut and oviduct of the locust (415). Achetakinins also exhibit an adipokinetic effect and cause inhibition of protein synthesis in the fat body of crickets and locusts, actions well known for peptides from the AKH/RPCH family (see Sect. 3.1.1).

Achetakinins have a diuretic effect in the cricket $(54,436)$ and, after raising antibodies in rabbits for immunocytochemistry and establishing a RIA, achetakinin-like immunoreactive material was found in brain and other nervous tissues. Activity was mainly in the retrocerebral complex of crickets (CC, CA and hypocerebral ganglion), and was detected in the haemolymph, where it increased 10 -fold in starved crickets (47). Moreover, achetakinin binding sites on the membranes of Malpighian tubules of the cricket have been studied by using a biologically active ${ }^{125} \mathrm{I}$-labelled analogue and specific binding sites have been demonstrated (48). Leucokinins are also known for their effect on Malpighian tubules of the mosquito, Aedes aegypti, where they cause a depolarization of the transepithelial potential (161). This bioassay, in conjunction with the cockroach hindgut myotropic assay, was actually used to monitor the separation of the myokinins from Culex salinarius (158). Diuretic and antidiuretic effects of locustakinin on locust tubules and rectum, respectively, have been shown as well (415). The novel kinins from H. zea, the helicokinins, were isolated from the abdominal ventral nerve cord and stimulated fluid secretion of the Malpighian tubules at concentrations below $10^{-11} \mathrm{M}$ (22).

Antisera raised against Lem-M-I recognized about 160 immunoreactive cell bodies from mainly interneurons and neurosecretory cells in the protocerebrum and optic lobes of L. maderae (307); neurosecretory cells in the protocerebrum have also been stained in the blowfly brain (304), and abdominal ganglia also contained immunoreactive neurons (40). In larvae of the lepidopteran species Agrotis segetum, immunoreactive fibers innervate the perisympathetic organ, which are known release sites (39). These data, in conjunction with the failure to detect immunoreactivity to leucokinin I in fibers directly innervating the hindgut of L. maderae, indicate that leucokinin may act as a neurohormone (307).

References, pp. 97-128

Structure-activity studies on Lem-M-VIII showed that truncated analogues, Lem-M-VIII (1-7) or Lem-M-VIII (5-8) are totally inactive; the core pentapeptide (FYSWG-amide) is as active as the parent molecule, but not its free acid (294). Replacements of Phe ${ }^{1}$ or Trp ${ }^{4}$ by Ala resulted in inactive analogues, but Trp^{1} and Phe^{4} are tolerated, thus aromatic groups are needed at these positions. While Ala analogues at positions 2,3 or 5 had reasonable activity, the $\mathrm{D}-\mathrm{Ala}^{2}$ analogue is inactive. A β-turn is predicted for the C-terminal region of the leucokinins. A conformationallyconstrained analogue of the core region, cyclo-[CFYSWCamide], retains activity although the threshold activity is now in the range of $9 \times 10^{-7} \mathrm{M}$ instead of $0.2 \times 10^{-10} \mathrm{M}$ (294). Since bioanalogues (naturally occurring peptides) tolerated various substitutions at positions 2 of the pentapeptide core region, a pseudopeptide analogue containing a reduced amide bond linkage ($-\mathrm{CH}_{2}-\mathrm{NH}$-instead of $-\mathrm{C}(\mathrm{O}) \mathrm{NH}-$) between residues 1 and 2 was synthesized, $\mathrm{F} \Psi\left[\mathrm{CH}_{2}-\mathrm{NH}_{2}\right]$ FSWGamide (299). The biological activity of this pseudopeptide is 1% when compared to its amide bond-containing counterpart (FFSWGamide). Thus it retains activity, but, most importantly, the pseudopeptide is stable to proteolytic digestion by aminopeptidase M, whereas its natural conterpart is not (299). This experiment proves that peptide mimetics, which may be extremely useful as potential insect pest control agents, are active and have an improved half life.

3.3.3. Sulfakinins

To date two sulfakinins each from L. maderae and Neobellieria bullata, and one each from L. migratoria and P. americana have been isolated and sequenced (Table 13). Moreover, the non-sulfated Lem-SK-II molecule has been sequenced from P. americana (465); Sulfakinins in Diptera (Drosophila melanogaster, Calliphora vomitoria, and Lucilia cuprina) have been deduced from cloning and sequencing the respective genes. It still has to be demonstrated that they are expressed in these species, but since identical or very similar peptides have been sequenced in another dipteran insect, N. bullata (98), expression in the other dipterans is very likely. In fact, very recently, the peptide from Calliphora vomitoria has been isolated from heads of this fly (83). The sulfakinin insect family is characterized by high conservation of the C-terminal decapeptide sequence: $X^{1} X^{2} D Y\left(\mathrm{SO}_{3} \mathrm{H}\right)$ GHMRFamide (where $X^{1}=F, S$ and $X^{2}=E, D$). They share sequence near-identity of the C -terminus with the human gastrin and the vertebrate hormone cholecystokinin (CCK):
gastrin II:... $\mathrm{Y}\left(\mathrm{SO}_{3} \mathrm{H}\right)$ GWMDFamide
$\mathrm{CCK}_{8}: \mathrm{DY}\left(\mathrm{SO}_{3} \mathrm{H}\right)$ MGWMDFamide

However, these vertebrate molecules were inactive on the cockroach hindgut, but introduction of Arg instead of Asp transformed them into active analogues in this bioassay (296). The structural homology between these vertebrate hormones and their insect counterparts and their analogous myotropic actions (gastrin and CCK also stimulate smooth muscle contractions in the intestine (see 295)) point to a long evolutionary history. It is also interesting to note in this context that the sulfakinins share sequence similarities with the so-called FMRFamide related peptides (FaRPs) which are dealt with later (see Sect. 3.3.8).

Structure-activity studies demonstrated that non-sulfated analogues were inactive, and the C-terminal hexapeptide is the smallest fragment ("active core") possessing about 10% of the myotropic activity of the parent molecule. Full activity requires the C-terminal octapeptide (294). The relative importance of amino acid residues within the active core region was established by synthesizing and bioassaying single (by Ala) replacement octapeptide analogues (297). All contractile activity on the hindgut was lost when the last (Phe), $-1(\mathrm{Arg})$ and -3 (His) positions were replaced. These and additional experiments suggested that aromaticity (-3 and last position) and basicity (-1 position) are critical for interaction with the putative receptor. Furthermore, although the presence of a sulfate group is required for biological activity, the position is less critical; it can be moved by one position towards the C-terminus without complete loss of activity (0.3% of parent molecule) and by one (still 38% active) or up to five (about 0.2% active) positions to the N -terminus (294).

3.3.4. Pyrokinins/Myotropins

This family, characterized by the carboxy-terminal sequence FXPRL (where $\mathrm{X}=\mathrm{T}, \mathrm{V}, \mathrm{S}$), consists of the myotropins (Lom-MT-I to IV) and two pyrokinins (Lom-PK-I and II) from L. migratoria, the pyrokinin (LemPK) from L. maderae, which was the first member of this family fully elucidated, as well as some peptides from H. zea and B. mori, which were deduced from cDNA work (see Table 13 for references). Lem-PK has the highest concentration ($1.4 \mathrm{pmol} / \mathrm{head}$) of all myotropic peptides in L. maderae, but had surprisingly weak activity on the hindgut (threshold concentration: 0.6 nM). However, it was active on the cockroach foregut and oviduct (178). The locustapyrokinins and -myotropins were all monitored during isolation by their effect on the cockroach hindgut, but the synthetic peptides were also shown to stimulate the oviduct of L. migratoria (415).

The structural requirements for Lem-PK were assessed by synthesizing a series of octapeptide analogues (293). Analogues with substitutions

Fig. 7. Structure of the cyclic analogue of Lem-PK (Leucopyrokinin)
of Thr^{2} by Leu ${ }^{2}$ or Ser ${ }^{3}$ by Thr ${ }^{3}$ retained most of their activity. This was not surprising since even a peptide truncated by the N -terminal tripeptide (pGlu-Thr-Ser) still had 30% of the parent molecule's activity; surprisingly the des-pGlu-analogue was even 40% more active than the intact Lem-PK. At the C-terminus the amide was essential and replacement of Pro ${ }^{6}$ by Gly^{6} or D-Ala ${ }^{6}$ or Arg^{7} by Lys ${ }^{7}$ resulted in very weak activity (all at least 1000 -fold less active).

Conformational information was gained by studying a cyclic, biologically active, Lem-PK analogue (see Fig. 7) in which the N - and C-termini are linked by an amide bond (301). Analyzing data from circular dichroism, nuclear magnetic resonance and molecular dynamics, the presence of a type 1β-turn in the active core region formed by residues Thr-Pro-ArgLeu was established for this conformationally restricted analogue; the biological activity is about 4% of the linear molecule suggesting that its C-terminal β-turn is the active pyrokinin conformation recognized by the specific receptor.

Additional members of this family containing the pentapeptide FXPRLamide sequence at their C-terminus are the insect hormones pheromone biosynthesis activating neuropeptides (PBAN) isolated from Heliothis zea, Bombyx mori, Pseudaletia separata, and Lymantria dispar (see Sect. 3.2.1) and the diapause hormone from B. mori (see Sect. 3.2.6). Cloning of the PBAN and PBAN/DH genes of H. zea and B. mori (64, 217, 393) led to the deduction of other peptides with the above C-terminal sequence (see Table 13); only one of these putative Bom "myotropins" contained Lys as the penultimate amino acid instead of Arg. Since structure-activity studies had revealed that the pentapeptide sequence is sufficient to elicit myotropic (293) and pheromonotropic (371) activity, it was not surprising to find that leucopyrokinin (294) and the locustamyotropins $(96,244)$ have considerable cross-activity in the pheromonotropic assay of the silkworm, B. mori. Lom-MT-II, for example, was even

100 -fold more active in this assay than the 33 -mer Bom-PBAN-I (244). Locustamyotropins also stimulate pheromone biosynthesis in Spodoptera litura (96). Furthermore, PBAN is also able to stimulate visceral muscle contractions in L. maderae and L. migratoria $(176,415)$. Since Bom-PBAN is the same molecule as the hormone responsible for cuticular melanization and epidermal reddish brown pigmentation, the so-called MRCH (277), and a similar "pheromonotropic peptide" with MRCH activity was isolated from P. separata (275), it was again in keeping with the "active core theory" that locustamyotropins induced larval cuticular melanization in P. separata (276).

Lastly, Lem-PK, Lom-PK-I and II, and Lom-MT-I and II all elicit significant diapause-inducing activity in B. mori (300). Lom-PK-I was even 3 -fold more potent than the native Bom-DH-I. Conversely, BomDHs elicited contraction of the hindgut, but were several orders of magnitude less active as native Lem-PK. All these results clearly show cross-reactivity for this peptide family in different physiological processes, myotropic, pheromonotropic, diapause inducing and cuticular melanization, suggesting homologous features of the receptor sites.

Antisera raised against Lom-MT-I and II and Hez-PBAN were used for studying the distribution of these immunoreactivities in the nervous system of L. migratoria and various other insects $(414,456)$. Since the antisera cross-react with all peptides of this family, interpretation of the results is difficult and, therefore, no further comments are given here, but the interested reader is referred to the literature (see above) or a recent review (415).

3.3.5. Tachykinins

To date nine members comprise the insect tachykinin family which is characterized by the C-terminal pentapeptide sequence $\mathrm{FX}^{1} \mathrm{GX}^{2}$ Ramide (where X^{1} is mostly Y but in one member each H and $T ; X^{2}$ is V except M in 2 members; see Table 13). The "true" tachykinins from vertebrates, of which the undecapeptide substance P is the most well-known member, contain the pentapeptide C-terminus of FXGLMamide ($\mathrm{X}=\mathrm{F}, \mathrm{Y}, \mathrm{I}, \mathrm{V}$). Substance P (RPKPQQFFGLMamide), for example, has been identified in mammals to act on many systems - as an excitatory neurotransmitter and as a modulator involved in regulating such diverse functions as sensory processing, control of movement, gastric motility, vasodilation and salination $(164,337)$. Because of some structural homology with the tachykinins, especially with the physalaemin subfamily of tachykinins (see 415), and because the first members were discovered to stimulate the hindgut of L. maderae these peptides were grouped together into
the insect tachykinin family (404). The Lom-TKs were also shown to stimulate the visceral muscles of locust foregut and oviduct (415). Moreover, they stimulate the slow excitatory motor neurons of the locust extensor tibiae (415) and display some pheromonotropic activity in B. mori (95).

Antisera against Lom-TK-I have been raised and applied to nervous tissue of various insect species, including L. migratoria, L. maderae, C. vomitoria and D. melanogaster (see 303, 305), to determine the cellular localization of tachykinins. Most of the immunoreactive neurons are interneurons. In L. migratoria immunoreactive neurons project to the intrinsic neurosecretory cells in the corpus cardiacum and make synapses there with these cells known to synthesize adipokinetic hormone (303); this is also corroborated by immunocytochemical studies on the electron microscopical level (309). The suggestion that the Lom-TK immunoreactive cells may be interneurons regulating Lom-AKH release is substantiated by the demonstration of release of Lom-AKH-I in vitro from isolated corpora cardiaca by authentic Lom-TK-I (309). In the blowfly, C. vomitoria, those neurons reacting to the Lom-TK-I antiserum were identical with those which were immunoreactive with antisera against kassinin, a member of the tachykinin family in frogs (263). This is explained by the structure of the native tachykinins in C. vomitoria, Cav-TK-I and II (see Table 13); whereas the C-terminal pentapeptide of Cav-TK-I is identical to Lom-TK-I, the C-terminus of Cav-TK-II is similar to kassinin.

Interestingly, peptides which were isolated from salivary glands of the mosquito, A. aegypti, and therefore called sialokinins I and II (I: NTGDKFYGLM; II: DTGDKFYGLM), contain the "true" tachykinin C-terminal pentapeptide FXGLM (43). It is not yet known whether they are produced in neurons.

3.3.6. Periviscerokinin

The perisympathetic organs of insects, first discovered in stick insects (365), have been identified as a major neurosecretory storage and release site of the ventral nerve cord. Using these organs as starting material for isolation, a peptide was purified from extracts of 1000 abdominal perisympathetic organs of male American cockroaches by a 3-step HPLC procedure. This peptide had an excitatory action on the hyperneural muscle of P. americana (356). After Edman degradation and mass spectral analysis, the structure of a unique undecapeptide, called periviscerokinin (Pea-PVK), was elucidated (Table 13). The synthetic amidated form, but not the free acid, was biologically active. Since
this compound was isolated from a neurohaemal site and is active on the isolated hyperneural muscle at low concentrations $\left(10^{-9} \mathrm{M}\right)$, it is believed that periviscerokinin has a physiological role. Immunocytochemical studies revealed Pea-PVK-like immunoreactivity in three cell clusters of the abdominal ganglia. These neurons project into the perivisceral organs (85).

3.3.7. Accessory Glands- and Midgut-Myotropins and Others

Peptides which stimulate the spontaneous contractions of the oviduct have been isolated by several (in the case of L. migratoria) or a single (in the case of M. domestica) HPLC step(s) from either male accessory reproductive glands of the migratory locust (Lom-AG-MT-I, II; 341, 342) or from female accessory sex glands of the house fly (Mud-AG-MT; 473) (Table 13). Lom-AG-MT-I resembles in structure the juvenile hormone biosynthesis stimulating peptide allatotropin from M. sexta (Mas-AT; see Sect. 3.2.2.1), but this compound had no allatotropic effect on the corpora allata of the desert locust (212). It is not known yet whether Lom-AG-MT-I stimulates the biosynthesis of juvenile hormone in locusts. The neuropeptide status of the Mud-AG-MT is not established, but Lom-AGMTs immunoreactive cells, stained with polyclonal antibody raised against each of the peptides (340), were not only found in the tubules of the glands, but also in cell bodies of proto- and deuterocerebrum, optic lobes, frontal ganglion, thoracic and the last abdominal ganglion (for Lom-AG-MT-I). The antiserum against Lom-AG-MT-II also stained cells of the central nervous systems, but double staining revealed the presence of Lom-AG-MT-I and II immunoreactive materials in distinct cell population and nerve fibres $(340,415)$.

It is well known that endocrine cells are present in the insect gut. Recently, two myoactive peptides isolated from the midgut of M. sexta have been sequenced (Mas-MG-MT-I and II), but, again, it is unclear whether they are synthesized in neurons $(486,487)$. The same is true of a peptide that stimulates the contraction of the oviducts of L. migratoria and was isolated from 10000 heads of the Colorado potato beetle, L. decemlineata, by a 4 -step HPLC procedure. After prepurification on Sep-Pak, a phenyl support, followed by C-1 and C-8 RP and subsequently normal phase Protein Pak 125 columns were used to achieve purification to homogeneity (434). Edman degradation resulted in the sequence of an amidated hexapeptide code-named Led-OVM (Table 13). The peptide had no influence on the contraction of the beetle's hindgut.

3.3.8. Myoinhibitory Peptides and Other FMRFamide Related Peptides (FaRPs)

The purification of 9000 brain complexes of L. migratoria led not only to the isolation of the contracting-stimulatory peptides (see previous section), but some fractions were also found which inhibited the contractions of the cockroach hindgut. Further purification lead to the isolation and identification of three myoinhibiting peptides which have structurally nothing in common with each other.

Locustamyoinhibitory peptide (Lom-MIP; see Table 13) is a blocked nonapeptide; the C-terminal tripeptide sequence, ... AGWamide, is identical with that of the locust adipokinetic hormone Lom-AKH-II (408). Immunocytochemical studies found immunoreactivity in neurons innervating the heart and oviduct of the locusts (415). This pattern corresponds well with the functional aspect of Lom-MIP, which was shown to suppress the spontaneous contractions of the hindgut and oviduct of L. migratoria as well. The same tissues seem to be targets for the partially sequenced tridecapeptide locustamyoinhibin (Lom-MIH) which is blocked at both termini (416) (Table 13). Two peptides structurally related to Lom-MIP have been isolated and sequenced from the ventral nerve cord of adult M. sexta (21). These nonapeptides, Mas-MIP-I and II (Table 13), significantly reduced the rate of peristalsis of the isolated anterior hindgut (ileum) of M. sexta at low concentrations ($10^{-9} \mathrm{M}$).

The other myosuppressins belong to the large family of FMRFamide related peptides (FaRPs), which is characterized by at least an RFamide sequence at the C-terminus; but mostly by an FLRFamide.

We have already discussed one of the "FaRPs" of insects - the sulfakinins which consistently contain the C-terminal sequence HMRFamide (see Sect. 3.3.3.). Myosuppressins (FLRFamides), which are structurally closely related, have been found in L. maderae, S. gregaria, L. migratoria, M. sexta and N. bullata/D. melanogaster (see Table 13). During isolation most of them were detected by monitoring HPLC fractions via a immunoassay using an FMRFamide antiserum. Functionally diverse actions were found. For example, Mas-FLRFamide may be involved in flight behavior patterns, since it increases the force of contraction of dorsal longitudinal flight muscles in M. sexta (228), whereas Scg-FLRFamide inhibits the heart rhythm, but also potentiates twitch tension in the extensor tibiae muscles of S. gregaria (389) and inhibits spontaneous contraction of the oviduct of L. migratoria $(248,345,412$; Table 13).

Three further FaRPs, here code-named Lom-FaRP I to III, have been isolated from ventral nerve cords of L. migratoria. Two of them, one not
yet fully sequenced, contain a FIRFamide C-terminus, whereas the other one has the known FLRFamide C-terminal sequence (248). These peptides had excitatory actions on the locust oviduct, indicating that the N -terminus of such FaRPs is important as well. Moreover, it is evident that a number of FaRPs exist in one species. This was very clearly shown for some dipteran species, where not only the peptides but the genes are known as well.

It had been shown by immunocytochemical studies that ventral neurosecretory cells of the thoracic ganglion of Calliphora vomitoria projecting axons into a neurohaemal area were immunoreactive against the vertebrate C-terminally extended enkephalin (YGGMRF; 81), against vertebrate gastrin/cholecystokinin which has the C-terminus WMDFamide (80) and against FMRFamide (264). YGGMRF and FMRF, but not the amidated forms, were active in inducing saliva excretion from isolated salivary glands (79), and this was true using partially purified extracts of the thoracic ganglia, which have been shown to contain YGGFMRFimmunoreactive material. Processing thoracic ganglia from the blowfly in a 5 -step HPLC procedure and using radioimmunoassays against YGGMRF and RFamide for monitoring the fractions, thirteen neuropeptides of varying length (7 to 11 residues) and ending C-terminally in FMRFamides, designated calliFMRFamides, and one (a dodecapeptide) ending in IRFamide, were isolated and sequenced (78). By cloning and sequencing a genomic DNA fragment encoding the FMRFamide prohormone it became clear that the prohormone contains 16 copies of potential FMRFpeptides and additionally two copies of FIRF peptides (74) (Figure 8, Table 13). Potential amidation (a Gly residue at the C-terminus of the putative peptide sequence) and cleavage sites (mostly single Arg residues) were found as well. This organization of the prohormone precursor divided into signal peptide, acidic spacer region, first FMRFamide peptide, spacer region and then a high amount of more FMRFamide-related peptides without spacers is very similar in all dipteran species investigated, but there are species-specific differences in the putative FMRFamide peptides in the precursor from C. vomitoria, Lucilia cuprina (see 74) and D. melanogaster and D. virilis $(46,320,402,454)$ (Fig. 8). Only one peptide, PDNFMRFamide, is present in all four species. Five peptides are shared between C. vomitoria and L. cuprina and four between the two Drosophila species (Table 13). In Drosophila another precursor of the FaRPs has been isolated; it contains two copies of FaRPs, the drosulfakinins I and II (322, see 3.3.3.). However, recently another FaRP, TDVDHVFLRFamide, was isolated and sequenced (323), which is not encoded on the two known precursors (Table 13). Thus, a third precursor appears to be present in Drosophila.

Lucilia cuprina

B

Drosophila melanogaster

Drosophila virilis

Fig 8 Schematic diagrams of the precursor peptides for FMRF amide-related peptides from various Diptera A The precursors of C vomitoria and L cuprina Roman numbers correspond to the Cav-FMRF amıde peptıdes given in Table 13 Modified after (74) B The precursors of D melanogaster and D virilis Roman numbers correspond to the Drm-FMRF amıde peptides given in Table 13 Modified after (454)

What does this molecular diversity mean? At the moment it is not known whether all the deduced peptides are expressed, but the studies on C. vomitoria show that at least 13 of 16 peptides are and, thus, it may be true for the remaining peptides in this and other species as well. It seems unlikely that of this array of peptides each has a different task, which would also mean a multiplicity of receptors. However, there is at least some evidence in the blowfly that certain calliFMRFamides are active secretagogues for the salivary glands, whereas others are inactive. In contrast, only two of these peptides are active on the heart of the blowfly increasing either the frequency alone or frequency and amplitude of the heartbeat (73).

In the mosquito Aedes aegypti two FaRPs were isolated and characterized from whole heads and designated Aea-HP-I and II (273, Table 13). Recent studies suggest that Aea-HP-I inhibits the host-seeking behavior (35). This behavior is employed by female mosquitoes to locate a vertebrate host for taking a blood meal, which, in turn, triggers the onset of
oogenesis. After initiation of oogenesis the female does not engage in host-seeking. Synthetic Aea-HP-I injected into non-oogenic females, which actively seek a host, inhibited this behavior. Based on RIA determinations the haemolymph titre of Aea-HP-I in females that had ingested a blood meal was increased.

3.4. Chromatotropic Factors in Insects

A true color change in insects within one developmental stage is rare. This is especially true for the physiological color change resulting from pigment movement, since most terrestrial insects have developed a robust cuticle to prevent water loss, and thus pigment movement in the underlying epidermal cells, even if it takes place, is not so obviously noticeable. Morphological color change is characterized by pigment concentration and mostly occurs during specific developmental stages such as moulting. Although studies have shown that hormonal regulation is involved in color change in some species, here only those examples where molecules have been structurally identified either by controlling the color change in insects or in crustaceans are briefly reported.

The only structural knowledge of a true neuropeptide regulating insect pigmentation is for the melanization and reddish coloration hormone (MRCH) from the silkmoth Bombyx mori (227). The penultimate instar larvae of Spodoptera separata served as bioassay animals. In this species cuticular melanization and epidermal reddish-brown pigmentation in morphological color change is regulated hormonally. The sequence analysis revealed that Bom-MRCH was the same molecule as Bom-PBAN (see Sect. 3.2.1.).

It was found around 1940 that extracts from insect nervous tissue caused body blanching in prawns and shrimps due to concentration of pigments in the chromatophores of these crustaceans; furthermore, extracts from heads of insects also caused dispersion of pigments in crabs (155). When the locust adipokinetic hormone I (Lom-AKH-I) was structurally characterized (450) and its similarity to the crustacean red pigmentconcentrating hormone (92) was noted, it became clear that the substances from insects causing "blanching" in crustaceans are the various members of the AKH/RPCH family (see Sect. 3.1.1.).

Using eyestalkless (the eyestalks are the source for synthesis and storage of endogenous crustacean neuropeptides) fiddler crabs, Uca pugilator, as bioassay animals by monitoring the dispersion of pigment in epidermal melanophores, pigment-dispersing factors were purified from
Table 14 Primary structures of crustacean pigment-dispersing hormones (α - and β-PDHs) and insect pıgment-dispersing factors (PDFs)

Code Name (Alternatıve Desıgnatıons)	Species	Sequence	Reference(s)
$\mathrm{Pab}-\mathrm{PDH}(\alpha-\mathrm{PDH})$	Pandalus boreals	NSGMINSILGIPRVMTEAamıde	91
	P jordant		379
Paj-PDH-I ($\left.=\mathrm{K}^{13}, \mathrm{~A}^{16}, \mathrm{D}^{17}-\alpha-\mathrm{PDH}\right)$	P jordanı	NSGMINSILGIPKVMADAamıde	379
Ucp-PDH (β-PDH)	Uca pugılator	NSELINSILGLPKVMNDAamıde	379
	Cancer magister		
	Callinectes sapıdus		
	Pacıfastacus lenıusculus		
$\operatorname{Prc}-\mathrm{PDH}\left(=\mathrm{E}^{17}-\beta-\mathrm{PDH}\right)$	Procambarus clarkı	NSELINSILGLPK VMNEAamıde	379
	Orconectes immunis		
Peaz-PDH ($\left.=\mathrm{L}^{8}, \mathrm{I}^{11}-\beta-\mathrm{PDH}\right)$	Penaeus aztecus	NSELINSLLGIPKVMNDAamıde	379
$\mathrm{Paj}-\mathrm{PDH}\left(=\mathrm{L}^{8}, \mathrm{~T}^{16}-\beta-\mathrm{PDH}\right)$	P jordant	NSELINSLLGLPKVMTDAamıde	379
Arv-PDH (Pillbug-PDH)	Armadillıdıum vulgare	NSELINSLLGAPRVLNNAamıde	379
Acd-PDF (Acheta-PDF)	A domesticus	NSEIINSLLGLPKVMTDAamıde	379
Rom-PDF (Romalea-PDF)	R microptera	NSEIINSLLGLPKLLNDAamıde	378
Pea-PDF (Perıplaneta-PDF)	P americana	NSELINSLLGLPKVLNDAamıde	287
Cam-PDF (Carausius-PDF)	C morosus	NSELINSLLALPKVLNDAamıde	286

whole heads of the cricket, Acheta domesticus (379), the grasshopper, Romalea microptera (378), and the American cockroach, Periplaneta americana (287) (see Table 14). The isolation procedure was very complex and used many chromatographic steps including partition-, gel filtrationand ion exchange chromatography. The result for each species was a compound which was characterized by protein chemical analysis to be an octadecapeptide, as was shown previously for the pigment dispersing hormones from crustaceans itself, the α - and β-PDHs of Pandalus borealis and U ca pugilator, respectively $(91,380)$. Antisera were raised either against crustacean β-PDH or against the Romalea-PDF. Immunocytochemical studies showed prominent PDH or PDF-immunoreactive neurons which are associated with the visual system in a variety of insects $(181,310,377)$ leading to the conclusion that the PDFs in insects have probably something to do with a circadian pacemaker system. At least their function in insects is not, as in crustaceans, to regulate pigment dispersion.

4. Conclusions

The last decade or so has seen an explosion of structural data on insect neuropeptides. This is well-documented in this review. Mainly this was possible because techniques for isolation and acquiring sequence information have been improved. It became clear that an array of methods, including Edman degradation sequencing, mass spectrometry and cDNA work, has to be used for arriving at the correct structures since posttranslational modifications occur quite often. Using one method alone would, in most cases, not have been sufficient for structure elucidation. Immunocytochemistry was also a helpful tool for localizing the site of peptide synthesis in the cells/tissues, especially when the starting materials for isolation were whole animals or whole heads. In this context we have to acknowledge that for the majority of neuropeptides we still do not know exactly whether they are true hormones or not. One way to demonstrate this would be to show their production or storage in known neurohaemal organs from which they can easily be released; another way would be to show an increased neuropeptide concentration in the haemolymph upon some physiological stimulus.

Because quite a few neuropeptides were pleiotropic, thus had different biological activities, future research will possibly reveal that the primary effect of some so-called myotropic peptides, for example, will be different from that described in the bioassay used for isolation purposes. The pyrokinins, for example, share the C-terminal sequence with the PBANs and the diapause hormones and cross-reactivity occurs (1). Thus, are the
pyrokinins also involved in pheromone production in vivo? Interestingly, a single mRNA in B. mori encodes for a large precursor protein from which the diapause hormone, PBAN and three putative pyrokinins can be produced (482). Moreover, expression of this gene was regulated by temperature which leads to the induction of diapause. Temperatureindependent, but stage-dependent regulation seems to be related to the production of pheromone (483). With the current interest of molecular biologists in insect endocrinology, much more of this type of research will occur in the future.

Another area that will be investigated quite actively during the next decade will involve characterization of receptors. Since only a few receptor molecules are probably present, protein purification methodology alone will not be successful and, again, molecular biological techniques will have to be used.

One aspect of great interest in insect neuropeptide research, which has not been dealt with in this review, is the exploration of alternative strategies to combat insect pests. This is very well outlined in a review by Keeley and Hayes (222). Among other strategies, one is to synthesize peptidomimetics, i.e., substances in which at least some of the peptide bonds susceptible to degradation by exo- or endo-peptidases in the insect's gut or haemolymph, have been replaced. Nachman and coworkers are very active in this field. Recently, they have synthesized a pseudodipeptide analogue of the C-terminal core pentapeptide of the pyrokinins/ PBANs/diapause hormones which had almost the same biological activity in the myotropic assay (cockroach hindgut) as the pentapeptide itself (302). This line of research will surely be intensified once pharmaceutical companies become fully convinced that insect neuropeptides may be useful as insecticides.

Acknowledgments

The author is indebted to A Lancha for her support during the initial phase of writing this review, to my colleagues Drs K -H Hoffmann (University of Bayreuth, Germany) and J H Spring (Unıversity of Southwestern Louısiana, Lafayette, LA, U S A) for reading and correctıng earlier drafts, to L Auerswald, M P -E Janssens and H G Marco for their help with typing and drawing of figures Financial support for the recent work was provided by the Foundation for Research Development and a University of Cape Town staff award

References

[^4]2 Adachi, T, S Takiya, Y Suzuki, M Iwami, A Kawakami, S Y Takahashi, H Ishizaki, H Nagasawa, and A Suzuki cDNA structure and expression of bombyxin, an insuln-like brain secretory peptide of the silkmoth Bombyx mori J Biol Chem 264, 7681 (1989)
3 Adachi-Yamada T, M Iwami, H Kataoka, A Suzuki, and H Ishizaki Structure and Expression of the Gene for the Prothoracicotropic Hormone of the Silkmoth Bombyx morl Eur J Biochem 220, 633 (1994)
4 Agui, N, W E Bollenbacher, N A Granger, and LI Gilbert Corpus Allatum is Release Site for Insect Prothoracicotropic Hormone Nature 285, 669 (1980)
5 Agui, N, N A Granger, LI Gilbert, and W E Bollenbacher Cellular Localization of the Insect Prothoracicotropic hormone In vitro Assay of a Single Neurosecretory Cell Proc Natl Acad Sci U S A 76, 5694 (1979)
6 Altstein, M, O Ben-Aziz, and Y Gazit Pheromone Biosynthesis Activating Neuropeptide (PBAN) and Colour Polymorphism an Immunochemical Study in Spodoptera littorals J Insect Physiol 40, 303 (1994)
7 arima, R, K Takahara, T Kadoshima, F Numazaki, T ando, M Uchiyama, H Nagasawa, A Kitamura, and A Suzuki Hormonal Regulation of Pheromone Biosynthesis in the Silkworm Moth, Bombyx morl Appl Ent Zool 26, 137 (1991)
8 Audsley, N, G M Coast, and D A Schooley The Effects of Manduca sexta Diuretic Hormone on Fluid Transport by the Malpighian Tubules and Cryptonephric Complex of Manduca sexta J Exp Biol 178, 231 (1993)
9 Audsley, N, I Kay, T K Hayes, and G M Coast Cross Reactivity Studies of CRF-Related Peptides on Insect Malpıghian Tubules Comp Biochem Physiol 110A, 87 (1995)
10 Audsley, N, C McIntosh, and J E Phillips Isolation of a Neuropeptide from Locust Corpus Cardacum which Influences Ileal Transport J Exp Biol 173, 261 (1992)

11 Audsley, N, C McIntosh, J E Phillips, D A Schooley, and G M Coast Neuropeptide Regulation of Ion and Fluid Reabsorption in the Insect Excretory System In Perspectives in Comparative Endocrinology (K G Davey, R E Peter, and S S Tobe, eds), pp 74-80 Ottawa Natıonal Research Councll of Canada 1994
12 Bahr, U, M Karas, and F Hillenkamp Analysis of Biopolymers by Metrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry In Microcharacterization of Proteins (R Kellner, F Lottspeich, and H E Meyer, eds), pp 149-166 Weinhem VCH Verlagsgesellschaft 1994
13 Baumann, E, G Gade, and H Penzlin Structure-Function Studies on Neurohormone D Activity of Naturally-Occurring Hormone Analogues J Comp Physiol 160B, 423 (1990)
14 Baumann, E, and H Penzlin Sequence Analysis of Neurohormone D, a Neuropeptıde of an Insect, Periplaneta americana Biomed Bıochım Acta 43, K13 (1984)
15 Beenakkers, A M T The Influence of Corpus Allatum and Corpus Cardiacum on Lipid Metabolism in Locusta migratoria Gen Comp Endocrinol 13, 492 abstr 12 (1969)

16 Bell, G I, W F Swain, R Pictet, B Cordell, H M Goodman, and W J Rutter Nucleotide Sequence of a cDNA Clone Encoding Human Prepronsulin Nature 282, 525 (1979)
17 Belles, X, J-L Maestro, M -D Piulachs, A H Johnsen, H Duve, and A Thorpe Allatostatic Neuropeptides from the Cockroach Blattella germanica (L) (Dictyoptera, Blattellidae) Identification, Immunolocalization and Activity Regul Pept 53, 237 (1994)

18 Beyenbach, K W Mechanısm and Regulation of Electrolyte Transport in Malpıghian Tubules J Insect Physiol 41, 197 (1995)
19 Blackburn, M B , T G Kingan, W Bodnar, J Shabanowitz, D F Hunt, T Kempe, R M Wagner, A K Raina, M E Schnee, and M C Ma Isolation and Identification of a new Diuretic Peptide from the Tobacco Hornworm, Manduca sexta Biochem Biophys Res Comm 181, 927 (1991)
20 Blackburn, M B and MC Ma Diuretic Activity of Mas-DP II, an Identıfied Neuropeptide from Manduca sexta an in vivo and in vitro Examınation in the Adult Moth Archs Insect Biochem Physiol 27, 3 (1994)
21 Blackburn, M B, R M Wagner, J P Kochansky, D J Harrison, P ThomasLaemont, and A K Raina The Identification of two Myoınhibitory Peptıdes, with Sequence Simılarities to the Galanıns, Isolated from the Ventral Nerve Cord of Manduca sexta Regul Pept 57, 213 (1995)
22 Blackburn, M B , R M Wagner, J Shabanowitz, J P Kochansky, D F Hunt, and A K Raina The Isolation and Identification of Three Diuretic Kınıns from the Abdomınal Ventral Nerve Cord of Adult Helıcoverpa zea J Insect Physiol 41, 723 (1995)

23 Bogerd, J, F P Kooiman, M A P Pijnenburg, L H P Hekking, R C H M Oudejans, and D J Van der Horst Molecular Clonıng of Three Distınct cDNAs, Each Encodıng a Dıfferent Adıpokınetıc Hormone Precursor, of the Mıgratory Locust, Locusta migratoria Differential Expression of the Distınct Adipokınetic Hormone Precursor Genes Durıng Flight Actıvity J Biol Chem 29, 23038 (1995)
24 Bollenbacher, W E, E J Katahira, and M A O'Brien Insect Prothoracicotropic Hormone Evidence of Two Molecular Forms Science 224, 1243 (1984)
25 Borovsky, D Isolation and Characterization of Hıghly Purified Mosquito Oostatıc Hormone Arch Insect Biochem Physiol 2, 333 (1985)
26 Borovsky, D Oostatic Hormone Inhıbits Biosynthesis of Midgut Proteolytic Enzymes and Egg Development in Mosquitoes Arch Insect Biochem Physiol 7, 187 (1988)
27 Borovsky, D, and D A Carlson The Role of Mosquito Oostatic Hormone in the Regulation of Midgut Serıne Proteases In Insect Neurochemıstry and Neurophysiology 1989 (A B Borkovec and E P Masler, eds) pp 251254 Clifton, N J The Humana Press Inc 1990
28 Borovsky, D, D A Carlson, P R Griffin, J Shabanowitz, and D F Hunt Mosquito Oostatıc Factor a Novel Decapeptıde Modulatıng Trypsın-lıke Enzyme Biosynthesis in the Midgut The FASEB Journal 4, 3015 (1990)
29 Borovsky, D, D A Carlson, P R Griffin, J Shabanowitz, and D F Hunt Mass Spectrometry and Characterization of Aedes aegyptı Trypsın Modulatıng Oostatic Factor (TMOF) and its Analogs Insect Biochem Molec Biol 23, 703 (1993)
30 Borovsky, D, D A Carlson and DF Hunt Mosquito Oostatic Hormone A Trypsin-modulatıng Oostatic Factor In Insect Neuropeptıdes Chemıstry, Biology, and Actıon ACS Symposium Serıes No 453 (J J Menn, T J Kelly, and E P Masler, (eds), pp 133-142 Washington, D C American Chemical Society Books 1991
31 Borovsky, D, C A Powel, and D A Carlson Development of Specific RIA and ELISA to Study Trypsin Modulating Oostatic Factor in Mosquitoes Arch Insect Biochem Physiol 21, 13 (1992)
32 Bradfield, J Y, and LL Keeley Adıpokınetıc Hormone Gene Sequence from Manduca sexta J Biol Chem 264, 12791 (1989)
33 Breidbach, O, and H Dircksen Crustacean Cardioactıve Peptıde-ımmunoreactıve Neurons in the Ventral Nerve Cord and the Brain of the Meal Beetle Tenebrio molitor Durıng Postembryonıc Development Cell Tissue Res 265, 129 (1991)

34 Brown, B E, and A N Starratt Isolation of Proctolın, a Myotropic Peptıde, from Perıplaneta amerıcana J Insect Physiol 23, 1879 (1975)
35 Brown, M R , M J Klowden, J W Crim, L Young, L A Shrouder, and A O Lea Endogenous Regulation of Mosquito Host-seeking Behavior by a Neuropeptıde J Insect Physiol 40, 399 (1994)
36 Butenandt, A, R Beckmann, D Stamm, and E Hecker Uber den Sexuallockstoff des Seıdenspınners Bombyx morl Reindarstellung und Konstıtution Z Naturforsch 14b, 283 (1959)
37 Bylemans, D, D Borovsky, D F Hunt, J Shabanowitz, L Grauwels, and A De Loof Sequencing and Characterization of Trypsin Modulating Oostatic Factor (TMOF) from the Ovaries of the Grey Fleshfly, Neobellieria (Sarcophaga) bullata Regul Pept 50, 61 (1994)
38 Bylemans, D, P Proost, B Samyn, D Borovsky, L Grauwels, R Huybrechts, J van Damme, J van Beeumen, and A De Loof Neb-colloostatin, a second Folliculostatin of the Grey Fleshfly Neobelleria bullata Eur J Biochem 228, 45 (1995)

39 Cantera, R, B S Hansson, E Hallberg, and D R Nassel Postembryonıc Development of Leucokının I Immunoreactıve Neurons Innervatıng a Neurohemal Organ in the Turnıp Moth Agrotis segetum Cell Tissue Res 269, 65 (1992)
40 Cantera, R, and D R Nassel Segmental Peptidergic Innervation of Abdominal Targets in Larval and Adult Dipteran Insects Revealed with an Antiserum Against Leucokinın I Cell Tissue Res 269, 459 (1992)
41 Cantera, R, JA Veenstra, and DR Nassel Postembryonic Development of Corazonın-contannng Neurons and Neurosecretory Cells in the Blowfly, Phormia terraenovae J Comp Neurol 350, 559 (1994)
42 Carlisle, J, and B G Loughton The Inhibition of Protein Synthesis in Locusta mıgratoria by Adıpokınetıc Hormone J Insect Physıol 32, 573 (1986)
43 Champagne, D E, and J M C Ribeiro Sıalokının I and II Vasodılatory Tachykınıns from the Yellow Fever Mosquito Aedes aegyptı Proc Natl Acad Sci USA 91, 138 (1994)

44 Chen, R, K A Lewis, M H Perrin, and W W Vale Expression Cloning of a Human Cortıcotropın-releasıng-factor Receptor Proc Natl Acad Scı USA 90, 8967 (1993)

45 Cheung, C C, P K Loi, A W Sylwester, T D Lee, and N J Tublitz Prımary Structure of a Cardıactıve Neuropeptıde from the Tobacco Hawkmoth, Manduca sexta FEBS Lett 313, 165 (1992)
46 Chin, A C, E R Reynolds, and R H Scheller Organization and Expression of the Drosophila FMRFamıde-related Prohormone Gene DNA Cell Bıol 9, 263 (1990)
47 Chung, J S, G J Goldsworthy, and G M Coast Haemolymph and Tissue Titres of Achetakinıns in the House Cricket Acheta domesticus Effect of Starvation and Dehydration J exp Biol 193, 307 (1994)
48 Chung, J S , C H Wheeler, G J Goldsworthy, and G M Coast Properties of Achetakının Bindıngs Sites on Malpıghıan Tubule Membranes from the House Crıcket, Acheta domestıcus Peptides 16, 375 (1995)
49 Clottens, F, G Gade, R Huybrechts, and A De loof Immunohistochemical Localisation of the Hypertrehalosaemic Hormone II (Cam-HrTH-II) and Related Peptides in the Nervous System of Carausius morosus and Sarcophaga bullata Cell Tissue Res 258, 631 (1989)
50 Clottens, F L, G M Holman, G M Coast, N F Totty, T K Hayes, I Kay, A I Mallet, MS Wright J-S Chung, O Truong, and D L Bull Isolation and

Characterization of a Diuretic Peptide Common to the House Fly and Stable Fly Peptides 15, 971 (1994)
51 Clottens, F L, S M Meola, G M Coast, T K Hayes, M S Wright, R J nachman, and G M Holman Characterization of an Antiserum against an Achetakının-I analog and its use for the Localization of Culekının Depolarizing Peptide-II in the Mosquito, Culex salnurius Regul Pept 49, 145 (1993)
52 Coast, G M, J-S Chung, G J Goldsworthy, M Patel, TK Hayes, and I Kay Corticotropin Releasing Factor Related Diuretic Peptides in Insects In Perspectives in Comparative Endocrinology (K G Davey, RE Peter, and SS Tobe, eds), pp 67-73 Ottawa National Research Councll of Canada 1994
53 Coast, G M, TK Hayes, I Kay, and J-S Chung Effect of Manduca sexta Diuretic Hormone and Related Peptides on Isolated Malpighian Tubules of the House Cricket Acheta domesticus (L) J Exp Biol 162, 331 (1992)
54 Coast, G M , G M Holman, and R J Nachman The Diuretic Activity of a Series of Cephalomyotropic Neuropeptides, the Achetakınıns, on Isolated Malpıghian Tubules of the House Cricket, Acheta domesticus J Insect Physiol 36, 481 (1990)
55 Coast, G M, I Kay, and C H Wheeler Diuretic Peptides in the House Cricket, Acheta domesticus (L) a Possible Dual Control of Malpıghian Tubules In Molecular Comparative Physiology (K W Beyenbach, ed), Vol 12, pp 38-66 Basel Karger 1993
56 Coast, G M, R C Rayne, T K Hayes, A I Mallet, K S J Thompson, and J P Bacon A Comparison of the Effects of two Putative Diuretic Hormones from Locusta migratoria on Isolated Locust Malpıghian Tubules J Exp Biol 175, 1 (1993)
57 Cook, BJ, GM Holman, R M Wagner, and RJ Nachman Pharmacological Actions of a New Class of Neuropeptides, the Leucokınıns I-IV, on the Visceral Muscles of Leucophaea maderae Comp Bıochem Physıl 93C, 257 (1989)
58 Cook B J, G M Holman, R M Wagner, and R J Nachman Comparative Pharmacological Actions of Leucokinins V-VIII on the Visceral Muscles of Leucophaea maderae Comp Bıochem Physiol 95C, 19 (1990)
59 Couillaud, F, A Girardie, and J Girardie Identfication of Gonadotropic and Antigonadotropic Factors from the Nervous Part of the Corpora Cardaca in the African Locust Invert Reprod Develop 16, 17 (1989)
60 Curto, E V, M A Jarpe, J E Blalock, D Borovsky, and NR Krishna Solution Structure of Trypsin Modulatıng Oostatic Factor is a Left-handed Helix Bıochem Bıophys Res Comm 193, 688 (1993)
61 Cusinato, O, C H Wheeler, and G J Goldsworthy The Identity and Physiological Actıons of an Adıpokınetic Hormone in Acheta domesticus J Insect Physıol 37, 461 (1991)

62 Cusson, M, GD Prestwich, B Stay, and S S Tobe Photoaffinity Labeling of Allatostatin Receptor Proteins in the Corpora Allata of the Cockroach, Diploptera punctata Biochem Biophys Res Comm 181, 736 (1991)
63 Davey, K G The Mode of Action of the Corpus Cardiacum on the Hindgut in Perıplaneta americana J Exp Biol 39, 319 (1962)
64 Davis, M-T B, V N Vakharia, J Henry, TG Kempe, and A K Raina Molecular Cloning of the Pheromone Biosynthesis-activating Neuropeptide in Helicoverpa zea Proc Natl Acad Scı U S A 89, 142 (1992)
65 Davis, NT, SG Velleman, TG Kingan, and H Keshishian Identification and Distribution of a Proctolin-like Neuropeptide in the Nervous System of the Gypsy Moth, Lymantria dispar, and in Other Lepidoptera J Comp Neurol 283, 71 (1989)

66 Delbecque, J -P , K Weidner, and K H Hoffmann Alternatıve Sites for Ecdysteroid Production in Insects Inv Reprod Dev 18, 29 (1990)
67 Denlinger, D L Hormonal Control of Diapause In Comprehensive Insect Physiology, Biochemistry and Pharmacology (G A Kerkut and LI Gilbert, eds), Vol 8, pp 353-412 Pergamon Press, Oxford 1985
68 Diederen, J H B , H A Maas, H J Pel, H Schooneveld, W F Jansen, and H G B Vullings Co-localization of the Adıpokınetic Hormones I and II in the Same Glandular Cells and in the Same Secretory Granules of Corpus Cardiacum of Locusta mıgratoria and Schistocerca gregarıa Cell Tissue Res 249, 379 (1987)
69 Digan, M E, D N Roberts, F E Enderlin, A R Woodworth, and S J Kramer Characterization of the Precursor for Manduca sexta Diuretıc Hormone Mas-DH Proc Natl Acad Sc1 U S A 89, 11074 (1992)
70 Dircksen, H, A Muller, and R Keller Crustacean Cardioactive Peptıde in the Nervous System of the Locust Locusta migratorla an Immunocytochemical Study of the Ventral Nerve Cord and Perıpheral Innervation Cell Tissue Res 263, 439 (1991)
71 Donly, B C, Q Ding, S S Tobe, and W G Bendena Molecular Cloning of the Gene for the Allatostatın Famıly of Neuropeptıdes from the Cockroach Diploptera punctata Proc Natl Acad Scı U S A 90, 8807 (1993)
72 Dow, J A T Countercurrent Flows, Water Movements and Nutrient Absorption in the Locust Midgut J Insect Physiol 27, 579 (1981)
73 Duve, H, A J Elia, I Orchard, A Johnsen, and A Thorpe The Effects of CallıFMRFamıdes and Other FMRFamıde-related Neuropeptıdes on the Activity of the Heart of the Blowfly Calliphora vomitoria J Insect Physiol 39, 31 (1993)
74 Duve, H, A H Johnsen, P East, and A Thorpe Comparatıve Aspects of the FMRFamıdes of Blowflies Isolation of the Peptides, Genes, and Functions In Perspectives in Comparatıve Endocrınology (K G Davey, R E Peter, and S S Tobe, eds), pp 91-96 Ottawa Natıonal Research Councıl of Canada 1994
75 Duve, H, A H Johnsen, A G Scott, P East, and A Thorpe [Hyp^{3}] MetCallatostatin Identıfication and Biological Propertıes of a Novel Neuropeptıde from the Blowfly Calliphora vomitoria J Biol Chem 269, 21059 (1994)
76 Duve, H, A H Johnsen, A G Scott, and A Thorpe Isolation, Identification and Functional Signıficance of $\left[\mathrm{Hyp}^{2}\right]$ Met-Callatostatin and Des Gly-Pro MetCallatostatın, two Further Post-translational Modificatıons of the Blowfly Neuropeptide Met-Callatostatın Regul Pept 57, 237 (1995)
77 Duve, H, A H Johnsen, A G Scott, C G Yu, K J Yagi, S S Tobe, and A Thorpe Callatostatıns Neuropeptides from the Blowfly Callıphora vomitoria with Sequence Homology to Cockroach Allatostatıns Proc Natl Acad Scı USA 90, 2456 (1993)

78 Duve, H, A H Johnsen, J C Sewell, A G Scott, I Orchard, J F Rehfeld, and A Thorpe Isolation, Structure, and Activity of-Phe-Met-Arg-Phe-NH ${ }_{2}$ Neuropeptides (Designated calliFMRFamıdes) from the Blowfly Calliphora vomitoria Proc Natl Acad Scı USA 89, 2326 (1992)
79 Duve, H, J C Sewell, A G Scott, and A Thorpe Chromatographic Characterısatıon and Bıologıcal Actıvıty of Neuropeptıdes Immunoreactıve to Antısera Agaınst Met ${ }^{5}$-Enkephalın-Arg ${ }^{6}$-Phe ${ }^{7}$ (YGGFMRF) Extracted from the Blowfly Calliphora vomitoria (Diptera) Regul Pept 35, 145 (1991)
80 Duve, H, and A Thorpe Mapping of Enkephalın-Related Peptıdes in the Nervous System of the Blowfly Calliphora vomitoria and their Colocalization with Cholecystokının (CCK) and Pancreatıc Polypeptıde (PP)-lıke Peptıdes Cell Tıssue Res 251, 399 (1988)

81 Duve, H, and A Thorpe Distribution and Functional Significance of Met-Enkephalın-Arg ${ }^{6}-\mathrm{Phe}^{7}$ - and Met-Enkephalın-Arg ${ }^{6}-\mathrm{Gly}^{7}-\mathrm{Leu}^{8}$-lıke Peptıdes in the Blowfly Calliphora vomitoria II Immunocytochemical Mapping of Neuronal Pathways in the Retrocerebral Complex and Thoracic Ganglion Cell Tissue Res 259, 147 (1990)

82 Duve, H , and A Thorpe Distribution and Functional Significance of LeuCallatostatıns in the Blowfly Calliphora vomitoria Cell Tissue Res 276, 367 (1994)
83 Duve, H, A Thorpe, A G Scott, A H Johnson, J F Rehfeld, E Hines, and P D East The Sulfakınıns of the Blowfly Calliphora vomitoria Peptide Isolation, Gene Cloning and Expression Studies Eur J Biochem 232, 633 (1995)
84 Eckert, M, J Gabriel, H Birkenbell, G Greiner, J Rapus, and G Gade A Comparatıve Immunocytochemıcal Study Using an Antıserum Against a Synthetic Analogue of the Corpora Cardiaca Peptıde Pea-CAH-I (MI, Neurohormone D) of Periplaneta americana Cell Tissue Res 284, 401 (1996)
85 Eckert, M, R Predel, J Rapus, D Linde, and H Penzlin Immunocytochemical Localızation of Perıvıscerokının, a New Myotropıc Neuropeptıde from the Perısympathetıc Organs of the Amerıcan Cockroach In Learnıng and Memory (N ElSNER and R Menzel, eds), $23^{\text {rd }}$ Neurobiol Conf Goettıngen, p 668 Stuttgart, New York Thieme Verlag 1995
86 Eldridge, R, F M Horodyski, D B Morton, D R O'Reilly, J W Truman, L M Riddiford, and L K Miller Expression of an Eclosion Hormone in Insect Cells Using Baculovirus Vectors Insect Biochem 21, 341 (1991)
87 Engelmann, F The Physiology of Insect Reproduction Oxford Pergamon 1970
88 Engelmann, F Vitellogenesis Controlled by Juvenıle Hormone In Endocrinology of Insects (R G H Downer and H LaUfer, eds), pp 259-270 New York A Liss Inc 1983
89 Engelmann, F Hormonal Control of Arthropod Reproduction In Progress in Comparative Endocrınology (A Epple, C G Scanes, and M H Stetson, eds), pp 357-364 New York Wiley-Liss 1990
90 Esch, F S, N C Ling, and P Bohlen Microisolation of Neuropeptides Methods Enzymol 103, 72 (1983)
91 Fernlund, P Structure of a Lıght-Adaptıng Hormone from the Shrımp, Pandalus borealis Bıochem Biophys Acta 439, 17 (1976)
92 Fernlund, P, and L Josefsson Crustacean Color-change Hormone Amıno Acid Sequence and Chemical Synthesis Science 177, 173 (1972)
93 Feyereisen, R Regulation of Juvenıle Hormone Titre Synthesis In Comprehensive Insect Physiology, Biochemistry and Pharmacology (G A Kerkut and L I Gilbert, eds), Vol 7, pp 391-429 Oxford Pergamon Press 1985
94 Feyereisen, R, and S S Tobe A rapid Partition Assay for Routıne Analysis of Juvenıle Hormone Release by Insect Corpora Allata Anal Biochem 111, 372 (1981)
95 Fonagy, A,S Matsumoto, L Schoofs, A De Loof, and T Mitsui In vivo and in vitro Pheromonotropıc Actıvity of Two Locustatachykının Peptıdes in Bombyx morı Bıscı Biotechnol Biochem 56, 1692 (1992)
96 Fonagy A, L Schoofs, S Matsumoto, A de Loof and T Mitsui Functional Cross-Reactivities of Some Locustamyotropins and Bombyx Pheromone Biosynthesis Actıvatıng Neuropeptıde J Insect Physiol 38, 651 (1992)
97 Fonagy, A, L Schoofs, P Proost, J Van Damme, H Bueds, and A De Loof Isolation, Prımary Structure and Synthesis of Neomyosuppressin, a Myoınhibitıng Neuropeptıde from the Grey Fleshfly, Neobellieria bullata Comp Biochem Physiol 102C, 239 (1992)

98 Fonagy, A, L Schoofs, P Proost, J Van Damme, and A De loof Isolation and Prımary Structure of Two Sulfakının-Like Peptıdes from the Fleshfly, Neobellieria bullata Comp Bochem Physiol 103C, 135 (1992)
99 Ford, M M, T K Hayes, and L L Keeley Structure-activity Relationships for Insect Hypertrehalosaemic Hormone The Importance of Side Chains and Terminı In Peptides, Chemıstry and Biology (G R Marshall, ed), pp 653-655 Leiden Escom Press 1988
100 Fournier, B, and J Girardie A New Function for the Locust Neuroparsins Stımulation of Water Reabsorption J Insect Physiol 34, 309 (1988)
101 Fox, A M, and S E Reynolds The Pharmacology of the Lipid-Mobilizing Response to Adıpokınetic Hormone Famıly Peptides in the Moth, Manduca sexta J Insect Physiol 37, 373 (1991)
102 Furuya, K, S liao, S E Reynolds, R B Ota, M Hackett, and D A Schooley Isolation and Identification of a Cardioactive Peptide from Tenebrio moltor and Spodoptera eridania Biol Chem Hoppe-Seyler 374, 1065 (1993)
103 Furuya, K, R B Ota, S E Reynolds, D A Schooley, R Troetschler, and S J Kramer Development of an Enzyme-Linked Immunosorbent Assay for a Diuretic Hormone of Manduca sexta Proc 2nd Int Symp Mol Insect Scı, Flagstaff, p 65 (1993)

104 Gade, G Relative Hypertrehalosaemic Activities of Naturally Occurrıng Neuropeptides from the AKH/RPCH Famıly Z Naturforsch 41c, 315 (1986)
105 Gade, G Isolation, Physiological Characterization, Release and Sequence Elucidation of a Hypertrehalosaemic Neuropeptide from the Corpus Cardacum of the Stick Insect, Sipyloidea sıpylus Physıol Entomol 14, 405 (1989)
106 Gade, G The Adıpokınetic Hormone/Red Pigment-Concentrating Hormone Peptide Famıly Structures, Interrelationships and Functions J Insect Physiol 36, 1 (1990)
107 Gade, G Extraction, Purification and Sequencıng of Adıpokınetic/Red PigmentConcentratıng Hormone-Family Peptides In Chromatography and Isolation of Insect Hormones and Pheromones (A R McCaffery and ID Wilson, eds), pp 165-182 New York Plenum Press, 1990
108 Gade, G The Putatıve Ancestral Peptide of the Adıpokinetic/Red-PigmentConcentrating Hormone Famıly Isolated and Sequenced from a Dragonfly Biol Chem Hoppe-Seyler 371, 475 (1990)
109 Gade, G Structure-Function Studies on Hypertrehalosaemic and Adipokinetic Hormones Activity of Naturally Occurring Analogues and Some N- and C-Terminally Modified Analogues Physiol Entomol 15, 299 (1990)
110 Gade, G The Adipokinetic Neuropeptide of Mantodea Sequence Elucidation and Evolutionary Relatıonshıps Biol Chem Hoppe-Seyler 372, 193 (1991)
111 Gade, G A Unıque Charged Tyrosıne-Containıng Member of the Adıpokınetic Hormone/Red-Pıgment-Concentratıng Hormone Peptıde Famıly Isolated and Sequenced from Two Beetle Species Bıochem J 275, 671 (1991)
112 Gade, G The Hormonal Integration of Insect Flight Metabolism Zool Jb Physiol 96, 211 (1992)
113 Gade, G Isolation and Structure Elucidation of Neuropeptides of the AKH/RPCH famıly in Long-Horned Grasshoppers (Ensifera) Biol Chem Hoppe-Seyler 373, 1169 (1992)

114 Gade, G Structure-Activity Relationships for the Carbohydrate-Mobilizing Action of Further Bioanalogues of the Adipokinetic Hormone/Red Pigment-Concentratıng Hormone Famıly of Peptides J Insect Physiol 38, 259 (1992)
115 Gade, G Structure-Activity Relationships for the Lipid-Mobilizing Action of Further

Bıoanalogues of the Adıpokınetıc Hormone/Red Pıgment-Concentratıng Hormone Famıly of Peptides J Insect Physiol 39, 375 (1993)
116 Gade, G Isolation and Structure Elucidation of a Neuropeptide from Three Species of Namıb Desert Tenebrionid Beetles S Afr J Zool 29, 11 (1994)
117 Gade, G Functional and Evolutionary Aspects of Peptides of the AKH/RPCH Famıly the Odonata and Dictyoptera Story In Insects Chemical, Physiological and Environmental Aspects (D Konopinska, ed), pp 28-34 Wroclaw Wroclaw Unıversity Press 1995
118 Gade, G Isolation and Identification of AKH/RPCH Famıly Peptıdes in Blister Beetles (Meloıdae) Physiol Entomol 20, 45 (1995)
119 Gade, G, G J Goldsworthy, G Kegel, and R Keller Single Step Purification of Locust Adıpokınetıc Hormones I and II by Reversed-Phase Hıgh-Performance Lıquid Chromatography and the Amıno-Acid Composition of the Hormone II HoppeSeyler's Z Physiol Chem 365, 393 (1984)
120 Gade, G, G J Goldsworthy, M H Schaffer, J C Cook and K L Rinehart, Jr Sequence Analyses of Adıpokınetıc Hormones II from Corpora Cardiaca of Schistocerca nitans, Schistocerca gregaria, and Locusta mıgratoria by Fast Atom Bombardment Mass Spectrometry Bıochem Biophys Res Comm 134, 723 (1986)
121 Gade, G , and T K Hayes Structure-activity Relatıonships for Perıplaneta amerıcana Hypertrehalosaemıc Hormone I the Importance of Sıde Chaıns and Termını Peptıdes 16, 1173 (1995)
122 Gade, G, C Hilbich, K Beyreuther and K L Rinehart Sequence Analyses of Two Neuropeptides of the AKP/RPCH-Famıly from the Lubber Grasshopper, Romalea microptera Peptıdes 9, 681 (1988)
123 Gade, G , and M P -E Janssens Cicadas Contain Novel Members of the AKH/RPCH Famıly Peptıdes with Hypertrehalosaemic Actıvity Bıol Chem Hoppe-Seyler 375, 803 (1994)

124 Gade, G, M P-E Janssens and R Kellner A Novel Peptıde in the AKH/RPCH Famıly Isolated from the Corpora Cardiaca of the Emperor Dragonfly, Anax imperator Peptıdes 15, 1 (1994)
125 Gade, G, and R Kellner The Metabolic Neuropeptıdes of the Corpus Cardiacum from the Potato Beetle and the American Cockroach are Identical Peptides 10, 1287 (1989)

126 Gade, G, and R Kellner Prımary Structures of the Hypertrehalosemic Peptıdes from Corpora Cardıaca of the Prımıtıve Cockroach Polyphaga aegyptıaca Gen Comp Endocrın 86, 119 (1992)
127 Gade, G, and R Kellner Isolation and Prımary Structure of a Novel Adıpokınetıc Peptıde from the Pyrgomorphıd grasshopper, Phymateus leprosus Regul Pept 57, 247 (1995)

128 Gade, G, R Kellner, K L Rinehart, and M L Proefke A Tryptophan-substituted Member of the AKH/RPCH Famıly Isolated from a Stıck Insect Corpus Cardıacum Biochem Biophys Res Comm 189, 1303 (1992)
129 Gade, G, A Lopata, R Kellner, and KL Rinehart Prımary Structures of Neuropeptıdes Isolated from the Corpora Cardiaca of Varıous Cetonid Beetle Species Determıned by Pulsed-lıquid Phase Sequencing and Tandem Fast Atom Bombardment Mass Spectrometry Biol Chem Hoppe-Seyler 373, 133 (1992)
130 Gade, G, S E Reynolds, and J R Beeching Molecular Evolution of Peptıdes of the AKH/RPCH famıly In Perspectıves in Comparatıve Endocrınology (K G Daver, R E Peter, and S S Tobe, eds), pp 119-128 Ottawa National Research Council of Canada 1994

131 Gade, G, and K L Rinehart, Jr Amıno Acid Sequence of a Hypertrehalosaemic Neuropeptide from the Corpus Cardıacum of the Cockroach, Nauphoeta cinerea Biochem Biophys Res Comm 141, 774 (1986)
132 Gade, G, and K L Rinehart Prımary Sequence Analysis by Fast Atom Bombardment Mass Spectrometry of a Peptide with Adipokinetic Activity from the Corpora Cardiaca of the Cricket Gryllus bimaculatus Biochem Biophys Res Comm 149, 908 (1987)

133 Gade, G, and K L Rinehart, Jr Primary Structure of the Hypertrehalosaemic Factor II from the Corpus Cardiacum of the Indian Stick Insect, Carausius morosus, Determined by Fast Atom Bombardment Mass Spectrometry Biol Chem HoppeSeyler 368, 67 (1987)
134 Gade, G, and K L Rinehart Prımary Structures of Hypertrehalosaemic Neuropeptides Isolated from the Corpora Cardiaca of the Cockroaches Leucophaea maderae, Gromphadorhina portentosa, Blattella germanica and Blatta orıentalis and of the Stıck Insect Extatosoma taaratum Assigned by Tandem Fast Atom Bombardment Mass Spectrometry Biol Chem Hoppe-Seyler 371, 345 (1990)
135 Gade, G, and G Rosinski The Primary Structure of the Hypertrehalosaemic Neuropeptide from Tenebrionid Beetles a Novel Member of the AKH/RPCH-Famıly Peptides 11, 455 (1990)
136 Gade, G, H Wilps, and R Kellner Isolation and Structure of a Novel Charged Member of the Red-Pıgment-Concentratıng Hormone-Adipokınetıc Hormone Famıly of Peptides Isolated from the Corpora Cardiaca of the Blowfly Phormia terraenovae (Diptera) Bıchem J 269, 309 (1990)
137 Gaus, G, L H Kleinholz, G Kegel, and R Keller Isolation and Characterization of Red Pigment-Concentrating Hormone (RPCH) from Six Crustacean Species J Comp Physiol 160B, 373 (1990)
138 Gazit, Y, E Dunkelblum, O Ben-Aziz, and M Altstein Immunochemıcal and Biological Analysis of Pheromone Biosynthesis Activating Neuropeptide in Heliothis pelttgera Arch Insect Biochem Physiol 19, 247 (1992)
139 Gilbert, LI , and T A Miller (eds) Immunological Techniques in Insect Biology New York Springer 1988
140 Girardie, J Molecular Approaches to Study Invertebrate Hormones, with Particular Reference to Insects Netherlands J Zool 45, 10 (1995)
141 Girardie, J, D Bourême, F Coulllard, M Tamarelle, and A Girardie AntiJuvenile Effect of Neuroparsin-A, a Neuroproten Isolated from Locust corpora cardiaca Insect Biochem 17, 977 (1987)
142 Girardie, J, A Girardie, J -C Huet, and J -C Pernollet Amıno Acid Sequence of Locust Neuroparsins FEBS Letters 245, 4 (1989)
143 Girardie, J, J-C Huet, and J-C Pernollet The Locust Neuroparsin A Sequence and Similarities with Vertebrate and Insect Polypeptide Hormones Insect Biochem 20, 659 (1990)
144 Girardie, J, O Richard, J -C Huet, C Nespoulous, A van Dorsselaer, and J -C Pernollet Physical Characterization and Sequence Identification of the Ovary Maturating Parsin A New Neurohormone Purfied from the Nervous Corpora Cardiaca of the African Locust (Locusta migratoria migratorioldes) Eur J Bıochem 202, 1121 (1991)
145 Gokuldas, M, P A Hunt, and D J Candy The Inhibition of Lipid Synthesis in vitro in the Locust Schistocerca gregaria by Factors from the Corpora Cardiaca Physiol Entomol 13, 43 (1988)
146 Goldsworthy, G J The Endocrine Control of Flight Metabolism in Locusts

In Advances in Insect Physiology (M J Berridge, J E Treherne, and V B Wigglesworth, eds), pp 149-204 New York Academic Press 1983
147 Goldsworthy, G J Hormonal Control of Flight Metabolism in Locusts In Biology of Grasshoppers (R F Chapman and A Joern, eds), pp 205-225 New York John Wiley \& Sons, Inc 1990
148 Goldsworthy, G J Adıpokınetıc Hormones of Insects are they the Insect Glucagons? In Perspectives in Comparatıve Endocrınology (K G Davey, R E Peter, and S S Tobe, eds), pp 486-492 Ottawa National Research Councıl of Canada 1994
149 Goldsworthy, G J, G M Coast, C H Wheeler, O Cusinato, I Kay, and B Khambay The Structure and Functional Activity of Neuropeptides In Proceedings of Royal Entomological Society Symposium on Insect Molecular Science (J M Crampton and P Eggleston, eds), pp 205-225 London and San Diego Academic Press 1992
150 Goldsworthy, G J , K Mallison, and C H Wheeler The Relative Potencies of Two Known Locust Adıpokınetıc Hormones J Insect Physıol 32, 95 (1986)
151 Goldsworthy, GJ, K Mallison, CH Wheeler, and G Gade Relatıve Adıpokinetıc Activities of Members of the Adıpokinetic Hormone/Red Pıgment Concentratıng Hormone Famıly J Insect Physiol 32, 433 (1986)
152 Gooding, R H Physiological Aspects of Digestion of the Blood Meal by Aedes aegyptı (L) and Culex fatıgans Wiedemann J Med Entomol 3, 53 (1966)

153 Gray, R S , D P Muehleisen, E J Katahira, and W E Bollenbacher The Prothoracicotropic Hormone (PTTH) of the Commercial Sılkmoth, Bombyx mort, in the CNS of the Tobacco Hornworm, Manduca sexta Peptıdes 15, 777 (1994)
154 Gray, A S , R H Osborne, and P J Jewess Pharmacology of Proctolin Receptors in the Isolated Foregut of the Locust Schistocerca gregarla-Identification of [α-Methyl-L-Tyrosıne ${ }^{2}$]-Proctolın as a Potent Receptor Antagonıst J Insect Physiol 40, 595 (1994)

155 Hanstrom, B Hormones in Invertebrates Oxford Oxford University Press 1939
156 Hayashi, H, M Nakano, Y Shibanaka, and N Fuita Expression of a Silkworm Eclosion Hormone Gene in Yeast Biochem Biophys Res Comm 173, 1065 (1990)

157 Hayes, T K, X-C Guan, V Johnson, A Strey, and S S Tobe Structure-Activity Studies of Allatostatin 4 on the Inhibition of Juvenıle Hormone Biosynthesis by Corpora Allata the Importance of Individual Side Chains and Stereochemistry Peptides 15, 1165 (1994)
158 Hayes, T K, G M Holman, T L Pannabecker, M S Wright, A A Strey, R J Nachman, D F Hoel, J K Olson, and K W Beyenbach Culekının Depolarızıng Peptıde a Mosquito Leucokının-Like Peptıde that Influences Insect Malpıghıan Tubule Ion Transport Regul Pept 52, 235 (1994)
159 Hayes, T K, and L L Keeley Structure-Actıvity Relatıonshıps on Hyperglycemıa by Representatıves of the Adıpokınetıc/Hyperglycemıc Hormone Famıly in Blaberus discoldalıs Cockroaches J Comp Physiol 160B, 187 (1990)
160 Hayes, T K, L L Keeley, and D W Knight Insect Hypertrehalosemic Hormone Isolation and Prımary Structure from Blaberus discoldalis Cockroaches Biochem Biophys Res Comm 140, 674 (1986)
161 Hayes, T K , T L Pannabecker, D J Hinckley, G M Holman, R J Nachman, D H Petzel, and K W Beyenbach Leucokınıns, a New Famıly of Ion Transport Stımulators and Inhıbıtors in Insect Malpıghıan Tubules Life Scı 44, 1259 (1989)
162 Hekimi, S, and M O'Shea Antısera Against AKHs and AKH Precursors for Experımental Studies of an Insect Neurosecretory System Insect Bıochem 19, 79 (1989)

163 Hermodson, MA A Short History of Protein Sequence Analysis In Laboratory Methodology in Biochemıstry Amıno Acid Analysis and Protein Sequencing (C Fini, A Floridi, V N Finelli, and B Wittman-Liebold, eds), pp 1-8 Boca Raton, Florida, U S A CRC Press Inc 1990
164 Hershey, A D, L Polenzani, R M Woodward, R Milledi, and J E Krause Molecular and Genetıc Characterızatıon, Functional Expression, and mRNA Express10n Patterns of a Rat Substance P Receptor Ann NY Acad Scı 632, 63 (1991)
165 Hetru, C, K W Li, P Bulet, M Lagueux, and J A Hoffmann Isolation and Structural Characterization of an Insulin-Related Molecule, a Predominant Neuropeptide from Locusta mıgratoria Eur J Biochem 201, 495 (1991)
166 Hietter, H, A van Dorsselaer, B Green, L Denoroy, J Hoffman, and B Luu Isolation and Structure Elucidation of a Novel 5-kDa Peptide from Neurohaemal Lobes of the corpora cardıaca of Locusta mıgratorıa (Insecta, Orthoptera) Eur J Biochem 187, 241 (1990)
167 Hietter, H, A van Dorsselaer, and B Luu Characterization of three Structurally Related 8-9 kDa Monomeric Peptıdes Present in the corpora cardiaca of Locusta a Revised Structure for the Neuroparsins Insect Biochem 21, 259 (1991)
168 Hofsteenge, J, D R Muller, T de Beer, A Loffler, W J Richter, and J F G Vliegenthart New Type of Linkage between a Carbohydrate and a Protein CGlycosylation of a Specific Tryptophan Residue in Human RNase U_{s} Biochemıstry 33, 13524 (1994)
169 Holman, G M , and B J Cook Pharmacological Properties of Excitatory Neuromuscular Transmission in the Hindgut of the Cockroach, Leucophaea maderae J Insect Physiol 16, 1891 (1970)
170 Holman, G M, B J Coor, and R J Nachman Isolation, Prımary Structure and Synthesis of Two Neuropeptıdes from Leucophaea maderae Members of a New Famıly of Cephalomyotropıns Comp Biochem Physiol 84C, 205 (1986)
171 Holman, G M, B J Cook, and R J Nachman Isolation, Prımary Structure and Synthesis of Two Additional Neuropeptıdes from Leucophaea maderae Members of a New Famıly of Cephalomyotropins Comp Bıochem Physiol 84C, 271 (1986)
172 Holman, G M, B J Cook, and R J Nachman Isolation, Primary Structure and Synthesis of a Blocked Myotropic Neuropeptide Isolated from the Cockroach, Leucophaea maderae Comp Biochem Physiol 85C, 219 (1986)
173 Holman, G M, B J Cook, and R J Nachman Isolation, Prımary Structure and Synthesis of Leucomyosuppressin, an Insect Neuropeptıde which Inhibits Spontaneous Contractions of the Cockroach Hindgut Comp Biochem Physiol 85C, 329 (1986)

174 Holman, G M, B J Cook, and R J Nachman Isolation, Prımary Structure and Synthesıs of Leucokınıns V and VI Myotropıc Peptıdes of Leucophaea maderae Comp Biochem Physiol 88C, 27 (1987)
175 Holman, G M, B J Cook, and R J Nachman Isolation, Prımary Structure and Synthesis of Leucokinıns of VII and VIII the Final Members of this New Famıly of Cephalomyotropic Peptıdes Isolated from Head Extracts of Leucophaea maderae Comp Biochem Physiol 88C, 31 (1987)
176 Holman, G M, R J Nachman, L Schoofs, T K Hayes, M S Wright, and A de Loof The Leucophaea maderae Hındgut Preparation a Rapıd and Sensitive Bioassay Tool for the Isolation of Insect Myotropins of Other Insect Species Insect Biochem 21, 107 (1991)
177 Holman, G M, R J Nachman, and M S Wright A Strategy for the Isolation and Structural Characterization of Certain Insect Myotropic Peptıdes that Modify the

Spontaneous Contractions of the Isolated Cockroach Hindgut In Chromatography and Isolation of Insect Hormones and Pheromones (A R McCaffery and ID Wilson, eds), pp 195-204 New York Plenum Press 1990
178 Holman, G M, R J Nachman, M S Wright, L Schoofs, T K Hayes, and A de Loof Insect Myotropic Peptides Isolation, Structural Characterization, and Biological Activities In Insect Neuropeptıdes Chemıstry, Biology, and Action ACS Symposlum Series No 453 (J J Menn, T J Kelly, and E P Masler, eds), pp 40-50 Washington, D C American Chemıcal Society Books 1991
179 Holwerda, D A, J van Doorn, and A M Th Beenakkers Characterization of the Adıpokınetıc and Hyperglycemıc Substances from the Locust Corpus Cardiacum Insect Biochem 7, 151 (1977)
180 Homberg, U, N T Davis, and J G Hildebrand Peptide Immunocytochemistry of Neurosecretory Cells in the Brain and Retrocerebral Complex of the Sphinx Moth Manduca sexta J Comp Neurol 303, 35 (1991)
181 Homberg, U, S Wurden, H Dircksen and K R Rao Comparative Anatomy of Pigment-Dispersing Hormone-Immunoreactive Neurons in the Brain of Orthopteroid Insects Cell Tissue Res 266, 343 (1991)
182 Horne, T J, D G Doak, R C Rayne, G Balacco, M O'Shea, and I D Campbell A Model for the Structure of a Homodımerıc Prohormone the Precursor to the Locust Neuropeptıde AKH I Proteıns Structure, Function and Genetıcs 20, 356 (1994)
183 Horodyski, F M , L M Riddiford, and J W Truman Isolation and Expression of the Eclosion Hormone Gene from the Tobacco Hornworm, Manduca sexta Proc Natl Acad Sci U S A 86, 8123 (1989)
184 Huesmann, G R , C C Cheung, P K Loi, T D Lee, K M Swiderek, and N J Tublitz Amino Acld Sequence of $\mathrm{CAP}_{2 \mathrm{~b}}$, an Insect Cardioacceleratory Peptıde from the Tobacco Hawkmoth Manduca sexta FEBS Lett 371, 311 (1995)
185 Imai, K, T Konno, Y Nakazawa, T Komiya, M Isobe, K Koga, T Goto, T Yaginuma, K Sakakibara, K Hasegawa, and O Yamashita Isolation and Structure of Diapause Hormone of the Silkworm, Bombyx morı, Proc Japan Acad 67B, 98 (1991)

186 IsaAc, R E Proctolin Degradation by Membrane Peptidases from Nervous Tissues of the Desert Locust (Schistocerca gregaria) Bıochem J 245, 365 (1987)
187 ISAAC, R E Neuropeptıde-Degrading Endopeptıdase Actıvity of Locust (Schistocerca gregarıa) Synaptıc Membranes Bıochem J 255, 843 (1988)
188 Ishibashi, J, H Kataoka, H NagaSawa, A Isogai, and A Suzuki Isolation and Identıfication of Adıpokınetic Hormone of the Silkworm, Bombyx morı Bioscı Biotech Biochem 56, 66 (1992)
189 Ishizaki, H, A Mizoguchi, M Fujishita, A Suzuki, I Moriya, H O’oka, H Kataoka, A Isogai, H Nagasawa, S Tamura, and A Suzuki Species Specificity of the Insect Prothoracicotropıc Hormone (PTTH) the Presence of Bombyx- and SamıaSpecific PTTHs in the Brain of Bombyx morl Dev Growth Diff 25,593 (1983)
190 Ishizaki, H, and A Suzuki Brain Secretory Peptıdes of the Silkmoth Bombyx morl Prothoracicotropic Hormone and Bombyxin In Progress in Brain Research(J Joosse, R M Buiss, and F J H Tilders, eds) Vol 92, pp 1-14 Amsterdam Elsevier Science Publishers B V 1992
191 Ishizaki, H, A Suzuki, I Moriya, A Mizoguchi, M Fujishita, H O’oka, H Kataoka, A Isogai, H Nagasawa, and A Suzuki Prothoracicotropic Hormone Bioassay Pupal-Adult Bombyx assay Dev Growth Diff 25, 585 (1983)
192 Isobe, M, and T Gото Diapause hormone In Neurohormonal Techniques in Insects (T A Mıller, ed), pp 216-243 Berlın Sprınger 1980

193 Isobe, M, K Hasegawa, and T Goto Isolation of the Diapause Hormone from the Silkworm, Bombyx mori J Insect Physiol 19, 1221 (1973)
194 Isobe, M, K Hasegawa, and T Goto Further Characterization of the Silkworm Diapause Hormone A J Insect Physiol 21, 1917 (1975)
195 Iverson, L L What next? Trends Neurosci 6, 293 (1983)
196 Iwami, M, T Adachi, H Kondo, A Kawakami, Y Suzuki, H Nagasawa, A Suzuki, and H Ishizaki A Novel Famıly C of the Genes that Encode Bombyxın, an Insulin-Related Brain Secretory Peptide of the Silkmoth, Bombyx morl Isolation and Characterizatıon of Gene C-1 Insect Biochem 20, 295 (1990)
197 Iwami, M, A Kawakami, H Ishizaki, S Y Takahashi, T Adachi, Y Suzuki, H Nagasawa, and A Suzuki Clonıng of a Gene Encodıng Bombyxın, an Insulın-Like Brain Secretory Peptıde of the Silkmoth Bombyx morl with Prothoracicotropic Actıv1ty Dev Growth Diff 31, 31 (1989)
198 Jaffe, H, A K Raina, C T Riley, B A Fraser, T G Bird, C -M Tseng, Y -S Zhang, and D K Hayes Isolation and Prımary Structure of a Neuropeptıde Hormone from Helıothis zea with Hypertrehalosemic and Adıpokınetıc Actıvitıes Biochem Bıophys Res Comm 155, 344 (1988)
$199 \mathrm{~J}_{\mathrm{affe}}, \mathrm{H}, \mathrm{A} \mathrm{K}$ Raina, C T Riley, B A Fraser, G M Holman, R M Wagner, R L Ridgway, and D K Hayes Isolation and Prımary Structure of a Peptide from the Corpora Cardıaca of Helıothis zea with Adıpokınetıc Actıvity Bıochem Biophys Res Comm 135, 622 (1986)
200 Jaffe, H, A K Raina, C T Riley, B A Fraser, R J Nachman, V W Vogel, Y -S Zhang, and D K Hayes Prımary Structure of Two Neuropeptıde Hormones with Adıpokınetıc and Hypotrehalosemıc Actıvity Isolated from the Corpora Cardiaca of Horse Flies (Dıptera) Proc Natl Acad Scı USA 86, 8161 (1989)
201 Jaffe, H, AK Raina, R M Wagner, H M Fales, T G Kempe, P Keim, R W Blacker, and CT Riley Pheromone Bıosynthesis-Actıvatıng Neuropeptide Hormone of Helıothis zea Isolation and Characterization In Insect Neuropeptides Chemıstry, Biology, and Actıon ACS Symposium Series No 453 (J J Menn, T J Kelly, and E P Masler, eds), pp 215-225 Washington, D C American Chemical Society Books 1991
202 Janssens, M P-E, R Kellner, and G Gade A Novel Adıpokınetıc Octapeptıde Found in the Damselflies Pseudagrion inconspicuum and Ischnura senegalensis Biochem J 302, 539 (1994)
203 Jaros, P P , and G Gade Evidence for a Crustacean Hyperglycemic Hormone-Like Molecule in the Nervous System of the Stick Insect, Carausius morosus Cell Tissue Res 227, 555 (1982)
204 Jhoti, H, A N Mcleod, T L Blundell, H Ishizaki, H Nagasawa, and A Suzuki Prothoracicotropıc Hormone has an Insulın-Like Tertıary Structure FEBS Lett 219, 419 (1987)
205 Jurenka, R A, E Jacquin, and W L Roelofs Control of the Pheromone Biosynthetic Pathway in Helıcoverpa zea by the Pheromone Biosynthesıs Actıvatıng Neuropeptıde Arch Insect Bıochem Physiol 17, 81 (1991)
206 Kadono-Okuda, K, M Yamamoto, Y Higashino, K Taniai, Y Kato, S Chowdhury, J Xu, S K Choi, M Sugiyama, K Nakashima, S Maeda, and M Yamakawa Baculovirus-Mediated Production of the Human Growth Hormone in Larvae of the Sılkworm, Bombyx morl Biochem Biophys Res Comm 213, 389 (1995)
207 Kamito, T, H Tanaka, B Sato, H Nagasawa, and A Suzuki Nucleotıde Sequence of cDNA for the Eclosion Hormone of the Silkworm, Bombyx morl, and the Expression in a Brain Biochem Biophys Res Comm 182, 514 (1992)

208 Karlson, P, and M Luscher Pheromones a New Term for a Class of Biologically Active Substances Nature 183, 55 (1959)
209 Kataoka, H, J P Li, ASt Lui, S J Kramer, and DA Schooley Complete Structure of Eclosion Hormone of Manduca sexta Assignment of Disulfide Bond Location Int J Peptide Protein Res 39, 29 (1992)
210 Kataoka, H, H Nagasawa, A Isogai, H Ishizaki, and A Suzuki Prothoracicotropic Hormone of the Silkworm, Bombyx morl Amıno Acid Sequence and Dimeric Structure Agric Biol Chem 55, 73 (1991)
211 Kataoka, H, H Nagasawa, A Isogai, S Tamura, A Mizoguchi, Y Fuifara, C Suzuki, H Ishizaki, and A Suzuki Isolation and Partial Characterization of a Prothoracicotropic Hormone of the Silkworm, Bombyx morl Agric Biol Chem 51, 1067 (1987)
212 Kataoka, H, A Toschi, J P Li, R L Carney, D A Schooley, and S J Kramer Identification of an Allatotropin from Adult Manduca sexta Science 243, 1481 (1989)
213 Kataoka, H, R G Troetschler, S J Kramer, B J Cesarin, and D A Schooley Isolation and Prımary Structure of the Eclosion Hormone of the Tobacco Hornworm, Manduca sexta Bochem Biophys Res Comm 146, 746 (1987)
214 Kataoka, H, R G, Troetschler, J P Li, S J Kramer, B J Cesarin, and D A Schooley Isolation and Identification of a Diuretic Hormone from the Tobacco Hornworm moth, Manduca sexta Proc Natl Acad Scı U S A 86, 2976 (1989)
215 Kawakami, A, M Iwami, H Nagasawa, A Suzuki, and H Ishizaki Structure and Organization of Four Clustered Genes that Encode Bombyxin, an Insulnn-Related Brain Secretory Peptide of the Sılkmoth Bombyx morı Proc Natl Acad Scı U S A 86, 6843 (1989)
216 Kawakami, A, H Kataoka, T Oka, A Mizoguchi, M Kimura-Kawakami, T Adachi, M Iwami, H Nagasawa, A Suzuki, and H Ishizaki Molecular Cloning of the Bombyx mori Prothoracicotropic Hormone Science 247, 1333 (1990)
217 Kawano, T, H Kataoka, H Nagasawa, A Isogai, and A Suzuki cDNA Cloning and Sequence Determination of the Pheromone Biosynthesis Activatıng Neuropeptide of the Slkworm, Bombyx morl Biochem Biophys Res Comm 189221 (1992)
218 Kay, I, G M Coast, O Cusinato, CH Wheeler, N F Totty, and GJ Goldsworthy Isolation and Characterization of a Diuretic Peptide from Acheta domesticus Evidence for a Family of Insect Diuretic Peptides Biol Chem HoppeSeyler 372, 505 (1991)
219 Kay, I, M Patel, G M Coast, N F Totty, A I Mallet, and G J Goldsworthy Isolation, Characterization and Biological Activity of a CRF-Related Diuretic Peptide from Periplaneta americana L Regul Pept 42, 111 (1992)
220 Kay, I, C H Wheeler, G M Coast, N F Totty, O Cusinato, M Patel, and G J Goldsworthy Characterısation of a Diuretic Peptıde from Locusta mıgratoria Biol Chem Hoppe-Seyler 372, 929 (1991)
221 Keeley, L L, J Y Bradfield, S M Sowa, Y -H Lee, and K-H Lu Physiological Actions of Hypertrehalosemic Hormones in Cockroaches In Perspectives in Comparatıve Endocrınology (K G Davey, R E Peter, and S S Tobe, eds), pp 475-485 Ottawa National Research Councll of Canada 1994
222 Keeley, L L, and T K Hayes Speculations on Biotechnology Applications for Insect Neuroendocrıne Research Insect Biochem 17, 639 (1987)
223 Keeley, LL, SM Sowa, TK Hayes, and J Y Bradfield Neuroendocrine and Juvenıle Hormone Effects on Fat Body Proten Synthesis Durıng the Reproductive Cycle in Female Blaberus discoidalis Cockroaches Gen Comp Endocrınol 72, 364 (1988)

224 Kegel, G, B Reichwein, C P Tenson, and R Keller Amino Acid Sequence of Crustacean Hyperglycaemic Hormone (CHH) from the Crayfish Orconectes limosus Emergence of a Novel Neuropeptide Famıly Neuropeptides 12, 909 (1991)
225 Kegel, G, B Reichwein, S Weese, G Gaus, J Peter-Katalinic, and R Keller Amıno acid Sequence of the Crustacean Hyperglycaemic Hormone (CHH) from the Shore crab, Carcinus maenas FEBS Lett 255, 10 (1989)
226 Kellner, R Chemical and Enzymatic Fragmentation of Proteins In Microcharacterization of Proteins (R Kellner, F Lottspeich, and H E Meyer, eds), pp 11-27 Weinherm VCH Verlagsgesellschaft 1994
227 Kingan, T G, M B Blackburn, and A K Raina The Distribution of Pheromone-Biosynthesıs-Actıvatıng Neuropeptıde (PBAN) Immunoreactıvity in the Central Nervous System of the Corn Earworm Moth, Helicoverpa zea Cell Tissue Res 270, 229 (1992)

228 Kingan, T G, D B Teplow, J M Phillips, J P Riehm, K R Rao, J G Hildebrand, U Homberg, A E Kammer, I Jardine, P R Griffin, and D F Hunt A New Peptide in the FMRFamide Famıly Isolated from the CNS of the Hawkmoth, Manduca sexta Peptıdes 11, 849 (1990)
229 Kitamura, A, H Nagasawa, H Kataoka, T Ando, and A Suzuki Amino Acid Sequence of Pheromone Bıosynthesıs Actıvatıng Neuropeptıde-II (PBAN-II) of the Silkmoth, Bombyx morl Agric Biol Chem 54, 2495 (1990)
230 Kitamura, A, H Nagasawa, H Kataoka, T Inoue, T Ando, and A Suzuki Amino Acid Sequence of Pheromone-Biosynthesis-Actıvating Neuropeptide (PBAN) of the Silkmoth, Bombyx morl Bıochem Biophys Res Comm 163, 520 (1989)
231 Klein, J M, C J Mohrherr, F Sleutels, N Jaenecke, J P Riehm, and K R Rao A Hıghly Conserved Red Pigment-Concentrating Hormone Precursor in the Blue Crab Callinectes sapıdus Bıochem Biophys Res Comm 212, 151 (1995)
232 Kodrik, D, and G J Goldsworthy Inhibition of RNA Synthesis by Adipokinetic Hormones and Brain Factor(s) in Adult Fat Body of Locusta migratoria J Insect Physiol 41, 127 (1995)
233 Konings, P N M, H G B Vullings, R Siebinga, J H B Diederen, and W F Jansen Serotonın-Immunoreactıve Neurones in the Brain of Locusta mıgratorla Innervating the Corpus Cardiacum Cell Tissue Res 254, 147 (1988)
234 Kono, T, A Mizoguchi, H Nagasawa, H Ishizaki, H Fugo, and A Suzuki A Monoclonal Antıbody Against a Synthetic Carboxyl-Terminal Fragment of the Eclosion Hormone of the Silkworm, Bombyx morl Characterization and Application to Immunohistochemıstry and Affinity Chromatography Zool Sci 7, 47 (1990)

235 Kono, t, H Nagasawa, A Isogai, H Fugo, and A Suzuki Amino Acid Sequence of Eclosion Hormone of the Sılkworm, Bombyx mort Agric Biol Chem 51, 2307 (1987)

236 Kono, T, H Nagasawa, A Isogai, H Fugo, and A Suzuki Isolation and Complete Amıno Acıd Sequences of Eclosion Hormones of the Silkworm, Bombyx morı Insect Biochem 21, 185 (1991)
237 Kono, T, H Nagasawa, H Kataoka, A Isogai, H Fugo, and A Suzuki Eclosion Hormone of the Silkworm Bombyx morl Expression in Escherichia coll and Location of Disulfide Bonds FEBS Lett 263, 358 (1990)
238 Konopinska, D, G Rosinski, and W Sobotka Insect Peptide Hormones, an Overview of the Present Literature Int J Peptide Protein Res 39, 1 (1992)
239 Kopeč, S Studies on the Necessity of the Brain for the Inception of Insect Metamorphosis Biol Bull 42, 323 (1922)

240 Kramer, S J, A Toschi, C A Miller, H Kataoka, G B Quistad, J P Li, R L Carney, and DA Schooley Identification of an Allatostatın from the Tobacco hornworm Manduca sexta Proc Natl Acad Scı U S A 88, 9458 (1991)
241 Kromer, E, and M Lagueux Studies on Locusta Insulin Related Peptide In Perspectives in Comparatıve Endocrınology (K G Davey, R E Peter, and S S Tobe, eds), pp 220-225 Ottawa National Research Councll of Canada 1994
242 Kromer-Metzger, E, and M Lagueux Expression of the Gene Encoding an Insulin-Related Peptide in Locusta (Insecta, Orthoptera) Evidence for Alternative Promoter Usage Eur J Biochem 221, 427 (1994)
243 Kuniyoshi, H, H Nagasawa, T Ando, and A Suzuki N-terminal Modified Analogs of C-terminal Fragments of PBAN with Pheromonotropic Activity Insect Biochem Molec Biol 22, 399 (1992)
244 Kuniyoshi, H, H Nagasawa, T Ando, A Suzuki, R J Nachman, and G M Holman Cross-activity between Pheromone Biosynthesis Activating Neuropeptide (PBAN) and Myotropic Pyrokının Insect Peptıdes Bıoscı Bıotechnol Biochem 56, 167 (1992)
245 Lagueux, M, E Kromer, and J Girardie Cloning of a Locusta cDNA Encoding Neuroparsin A Insect Biochem Molec Biol 22, 511 (1992)
246 Lagueux, M, L Lwoff, M Meister, F Goltzene, and J A Hoffmann cDnAs from Neurosecretory Cells of Braıns of Locusta mugratoria (Insecta, Orthoptera) Encoding a Novel Member of the Superfamily of Insulins Eur J Biochem 187, 249 (1990)

247 Lange, A B , I Orchard, and B G Loughton Spontaneous and Neurally Evoked Contractions of Visceral Muscles in the Oviduct of Locusta mıgratoria Arch Insect Biochem Physiol 1, 179 (1984)
248 Lange, A B, N M Peeff, and I Orchard Isolation, Sequence, and Bioactivity of FMRFamide-related Peptides from the Locust Ventral Nerve Cord Peptides 15, 1089 (1994)

249 Lea, A O The Medial Neurosecretory Cells and Egg Maturation in Mosquitoes J Insect Physiol 13, 419 (1967)
250 Lea, A O Regulation of Egg Maturation in the Mosquito by the Neurosecretory System the Role of the Corpus Cardacum Gen Comp Endocrinol (suppl) 3, 602 (1972)

251 Lederis, K, A Letter, D McMaster, G Moore, and D Schlesinger Complete Amıno Acid Sequence of Urotensin I, a Hypotensive and Corticotropin-Releasing Neuropeptide from Catostomus Science 218, 162 (1982)
252 Lederis, K P, Y Okawara, D Richter, and S D Morley Evolutionary Aspects of Corticotropın Releasıng Hormones In Progress in Comparatıve Endocrınology (A Epple, CG Scanes, and M H Stetson, eds) pp 467-472 New York Wiley-Liss 1990
253 Lee, M J , and G J Goldsworthy Acetate Uptake Test, the Basis of a Rapid Method for Determining Potencies of Adipokinetic Peptides for Structure-Activity Studies J Insect Physiol 41, 163 (1995)
254 Lee, M J , and G J Goldsworthy The Preparation and Use of Dispersed Cells from Fat Body of Locusta mıgratoria in a Filtration Plate Assay for Adıpokinetic Peptides Anal Bochem 228, 155 (1995)
255 Lehman, H K, CM Margiuc, TA Miller, TD Lee, and JG Hildebrand Crustacean Cardoactıve Peptide in the Sphinx Moth, Manduca sexta Peptides 14, 735 (1993)

256 Lehmberg, E, R B Ota, K Furuya, D S King, S W Applebaum, H-J Ferenz, and

D A Schooley Identıfication of a Diuretic Hormone of Locusta mıgratoria Biochem Biophys Res Comm 179, 1036 (1991)
257 Liebrich, W, R Kellner, and G Gade Isolation and Prımary Structures of Neuropeptıdes of the AKH/RPCH Famıly from Varıous Termite Species Peptıdes 16, 559 (1995)

258 Linck, B, J M Klein, S Mangerich, R Keller, and W M Weidemann Molecular Clonıng of Crustacean Red Pıgment Concentratıng Hormone Precursor Biochem Biophys Res Comm 195, 807 (1993)
259 Liu, T P , and K G Davey Partıal Characterization of a Proposed Antıgonadotropın from the Ovaries of the Insect, Rhodnius prolixus, Stal Gen Comp Endocrinol 24, 405 (1974)

260 Lorenz, M W, R Kellner, and K H Hoffmann A Famıly of Neuropeptıdes that Inhıbit Juvenıle Hormone Bıosynthesis in the Cricket, Gryllus bımaculatus J Biol Chem 270, 21103 (1995)
261 Lorenz, M W , R Kellner, and K H Hoffmann Identification of Two Allatostatins from the Crıcket, Gryllus bimaculatus de Geer (Ensifera, Gryllidae) Additional Members of a Famıly of Neuropeptıdes Inhıbitıng Juvenıle Hormone Bısynthesis Regul Pept 57, 117 (1995)
262 Lottspeich, F, T Houthaeve, and R Kellner The Edman Degradation In Microcharacterization of Proteins (R Kellner, F Lottspeich, and H E Meyer, eds), pp 117-130 Weınheım VCH Verlagsgesellschaft 1994
263 Lundquist, C T , F L Clottens, G M Holman, R Nichols, R J Nachman, and D R Nassel Callitachykının I and II, Two Novel Myotropıc Peptıdes Isolated from the Blowfly, Callıphora vomitoria, that Have Resemblances to Tachykınıns Peptıdes 15, 761 (1994)
264 LundQUist, T, and D R Nassel Substance P, FMRFamide and Gastrın/ Cholecystokinın-Like Neurons in the Thoracico-Abdominal Ganglia of the Flies Drosophila and Calliphora J comp Neurol 294, 161 (1990)
265 Ma, M, K -P Sieber, J Ballarino, and S -J Wu ELISA and Monoclonal Antibodies In Immunological Technıques in Insect Biology (L I Gilbert and T A Miller, eds), Chapter 2, pp 43-73 New York Sprınger 1988
266 Maddrell, S H P Characteristics of Epithelial Transport in Insect Malpıghian Tubules In Current Topics in Membranes and Ion Transport (F Bronner and A Kleinzeller, eds), Vol 14, pp 427-463 New York Academic Press 1980
267 Maeda, S Increased Insecticidal Effect by a Recombinant Baculovirus Carrying a Synthetıc Diuretıc Hormone Gene Bıochem Biophys Res Comm 165, 1177 (1989)
268 Marti, T, K Takio, K A Walsh, G Terzi, and J W Truman Microanalysis of the Amıno Acid Sequence of the Eclosion Hormone from the Tobacco Hornworm Manduca sexta FEBS Lett 219, 415 (1987)
269 Maruyama, K, H Hietter, H Nagasawa, A Isogai, S Tamura, A Suzuki, and H Ishizaki Isolation and Prımary Structure of Bombyxın-IV, a Novel Molecular Species of Bombyxın from the Sılkworm, Bombyx morl Agric Bıol Chem 52, 3035 (1988)

270 Maruyama K, H Nagasawa, A Isogai, S Tamura, H Ishizaki, and A Suzuki Synthesis of Bombyxın-IV, an Insulın-Lıke Heterodımerıc Peptıde from the Silkworm, Bombyx morl Peptıdes 11, 169 (1990)
271 Maruyama K, K Nagata, M Tanaka, H Nagasawa, A Isogai, H Ishizaki, and A Suzuki Synthesıs of Bombyxın-IV, an Insulın Superfamıly Peptıde from the Sılkworm, Bombyxin morı, by Stepwise and Selective Formation of Three Disulfide Bridges J Protein Chem 11, 1 (1992)

272 Masler, E P, AK Raina, R M Wagner, and JP Kochansky Isolation and Identification of a Pheromonotropic Neuropeptide from the Brain-Suboesophageal Ganghon Complex of Lymantria dispar a New Member of the PBAN Family Insect Biochem Molec Biol 24, 829 (1994)
273 Matsumoto, S, M R Brown, J W Crim, S R Vigna, and A O Lea Isolation and Primary Structure of Neuropeptides from the Mosquito, Aedes aegyptt, Immunoreactive to FMRFamide Antiserum Insect Biochem 19, 277 (1989)
274 Matsumoto, S, M R Brown, A Suzuki, and A O Lea Isolation and Characterization of Ovarian Ecdysteroidogenic Hormones from the Mosquito, Aedes aegyptl Insect Biochem 19, 651 (1989)
275 Matsumoto,S, A Fonagy, M Kurihara, K Uchiumi, T Nagamine, M Chimatsu, and T Mitsui Isolation and Prımary Structure of a Novel Pheromonotropic Neuropeptide Structurally Related to Leucopyrokinn from the Armyworm Larvae, Pseudaletia separata Bochem Biophys Res Comm 182, 534 (1992)
276 Matsumoto, S, A Fonagy, L Schoofs, A de Loof, M Kurihara, T Nagamine, and T Mirsui Induction of Cuticular Melanization in the Army Worm Larvae, Pseudaletia separata by Insect Myotropin Neuropeptides, Possessing FXPRLamide at the CTerminus J Pestic Scı 18, 127 (1993)
277 Matsumoto, S, A Kitamura, H Nagasawa, H Kataoka, C Orikasa, T Mitsui, and A Suzuki Functional Diversity of a Neurohormone Produced by the Suboesophageal Ganglion Molecular Identity of Melanization and Reddish Colouration Hormone and Pheromone Biosynthesis Activating Neuropeptide J Insect Physiol 36, 427 (1990)
278 Matsumoto, S, O Yamashita, A Fonagy, M Kurihara, K Uchiumi, T Nagamine, and T Mitsui Functional Diversity of a Pheromonotropic Neuropeptide Induction of Cuticular Melanization and Embryonic Diapause in Lepidopteran Insects by Pseudaletia pheromonotropin J Insect Physiol 38, 847 (1992)
279 Mayer, R J , and D J Candy Control of Haemolymph Lipid Concentration During Locust Flight an Adipokinetic Hormone from the Corpora Cardiaca J Insect Physiol 15, 611 (1969)
280 Metzger, J W, and C Eckerskorn Electrospray Mass Spectrometry In MicroCharacterization of Proteins (R Kellner, F Lottspeich, and HE Meyer, eds), pp 167-188 Weinheım VCH Verlagsgesellschaft 1994
281 Meyer, H E Analyzıng Post-Translational Proteın Modifications In Microcharacterization of Proteins (R Kellner, F Lottspeich, and H E Meyer, eds), pp 131-146 Weinherm VCH Verlagsgesellschaft 1994
282 Milde, J J , R Ziegler, and M Wallstein Adıpokınetic Hormone Stımulates Neurones in the Insect Central Nervous System J exp Biol 198, 1307 (1995)
283 Mizoguchi, A Distribution and Function of Bombyxin In Perspectives in Comparative Endocrınology (K G Davey, R E Peter, and SS Tobe, eds), pp 215-219 Ottawa National Research Councll of Canada 1994
284 mizoguchi, A, H ishizaki, h Nagasawa, h Kataoka, A isogai, S Tamura, A Suzuki, M Fujino, and C Kitada A Monoclonal Antıbody Aganst a Synthetic Fragment of Bombyxın (4K-Prothoracicotropic Hormone) from the Silkmoth Bombyx morl Characterization and Immunohistochemıstry Mol Cell Endocrinol 51, 227 (1987)

285 Mizoguchi, A, T Оka, H Kataoka, H Nagasawa, A Suzuki, and H Ishizaki Immunohistochemical Localization of Prothoracicotropic Hormone-producing Neurosecretory Cells in the Bran of Bombyx morl Dev Growth Diff 32, 591 (1990)
286 Mohrherr, CJ, K Maruska, M Rabbe, JP Riehm, and KR Rao Primary

Structure of a Pigment-Dispersing Factor from the Stick Insect, Carausius morosus Soc Neuroscı Abstr 20, 914 (1994)
287 Mohrherr, C J , K R Rao and J P Riehm Characterization of a Pıgment-Dispersing Factor from the American Cockroach Soc Neuroscı Abstr 17, 276 (1991)
288 Montecucchi, P C, and A Henschen Amıno Acıd Composition and Sequence Analysis of Sauvagıne, a New Actıve Peptıde from the Skin of Phyllomedusa sauvageı Int J Pept Proteın Res 18, 113 (1981)
289 Moreau, R, L Gourdoux, and J Girardie Neuroparsin A New Energetic Neurohormone in the African Locust Arch Insect Biochem Physiol 8, 135 (1988)
290 Moshitzky, P, D F Yamashiro, L Stuve, J Ramachandran, and S W Applebaum Determination of Locust AKH I by Radioımmunoassay and the Identification of an AKH I-Like Factor in the Locust Brain Insect Biochem 17, 765 (1987)
291 Muehleisen, D P, RS Gray, E J Katahira, MK Thomas, and WE Bollenbacher Immunoaffinity Purification of the Neuropeptıde Prothoracicotropic Hormone from Manduca sexta Peptıdes 14, 531 (1993)
292 Muren, J E, C T Lundquist, and D R Nassel Quantitative Determination of Myotropic Neuropeptide in the Nervous System of the Cockroach Leucophaea maderae Distrıbutıon and Release of Leucokınıns J exp Bıol 179, 289 (1993)
293 Nachman, R J , G M Holman, and B J Cook Actıve Fragments and Analogs of the Insect Neuropeptıde Leucopyrokinın Structure-Function Studies Biochem Biophys Res Comm 137, 936 (1986)
294 Nachman, R J, and G M Holman Myotropic Insect Neuropeptide Famılies from the Cockroach Leucophaea maderae Structure-Actıvity Relatıonshıps In Insect Neuropeptıdes Chemıstry, Biology, and Actıon ACS Symposium Serıes No 453 (J J Menn, T J Kelly, and E P Masler, eds), pp 194-214 Washıngton, D C American Chemical Society Books 1991
295 Nachman, R J, G M Holman, B J Cook, W F Haddon, and N Ling Leucosul-fakının-II, a Blocked Sulfated Insect Neuropeptıde with Homology to Gastrın and Cholecystokının Bıochem Bıophys Res Comm 140, 357 (1986)
296 Nachman, R J, G M Holman, and W F Haddon Structural Aspects of Gas-trın/CCK-Lıke Insect Leucosulfakınıns and FMRF-Amıde Peptıdes 9, 137 (1988)
297 Nachman, R J, G M Holman, W F Haddon, and T K Hayes Structure Activity Relatıonshıps for Myotropıc Actıvity of the Gastrın/CCK-lıke Insect Sulfakınıns Peptıde Res 2, 171 (1989)
298 Nachman, R J, G M Holman, W F Haddon, and N Ling Leucosulfakının, a Sulfated Insect Neuropeptıde with Homology to Gastrın and Cholecystokinın Science 234, 71 (1986)
299 Nachman, R J, G M Holman, W F Haddon, and W H Vensel An Active Pseudopeptıde Analog of the Leucokının Insect Neuropeptıde Famıly Int J Peptıde Proteın Res 37, 220 (1991)
300 Nachman, R J, G M Holman, L Schoofs, and O Yamashita Silkworm Diapause Induction Actıvity of Myotropic Pyrokının (FXPRLamıde) Insect Neuropeptıdes Peptides 14, 1043 (1993)
301 Nachman, R J, V A Roberts, H J Dyson, G M Holman, and J A Tainer Active Conformation of an Insect Neuropeptıde Famıly Proc Natl Acad Scı U S A 88, 4518 (1991)

302 Nachman, R J, V A Roberts, G M Holman, and R C Beier Pseudodipeptide Analogs of the Pyrokının/PBAN (FXPRLa) Insect Neuropeptıde Famıly Contaınıng Carbocyclic Pro-Mımetıc Conformation Components Regul Pept 57, 359 (1995)
303 NasSel, D R Insect Myotropic Peptıdes Differential Distribution of Lo-
custatachykının- and Leucokının-lıke Immunoreactıve Neurons in the Locust Brain Cell Tissue Res 274, 27 (1993)
304 Nassel, D R Neuropeptides in the Insect Brain a Review Cell Tissue Res 273, 1 (1993)
305 Nassel, D R Neuropeptides, Multifunctional Messengers in the Nervous System of Insects Verh Dtsch Zool Ges 87, 59 (1994)
306 Nassel, D R, E Bayraktaroglu, and H Dircksen Neuropeptides in Neurosecretory and Efferent Neural Systems of Insect Thoracic and Abdomınal Ganglia Zool Sc1 11, 15 (1994)
307 Nassel, D R, R Cantera, and A Karlsson Neurons in the Cockroach Nervous System Reactıng with Antısera to the Neuropeptide Leucokının I J Comp Neurol 322, 45 (1992)
308 Nassel, D R , and M O'Shea Proctolin-Like Immunoreactive Neurons in the Blowfly Control Nervous System J Comp Neurol 265, 437 (1987)
309 Nassel, D R, P C C M Passier, K Elekes, H Dircksen, H G B Vullings, and R Cantera Evidence that Locustatachykının I is Involved in Release of Adıpokınetic Hormone from Locust Corpora Cardiaca Regul Pept 57, 297 (1995)
310 Nassel, D R, S Shiga, C J Mohrherr, and K R Rao Pigment Dispersing Hor-mone-Like Peptide in the Nervous System of the Flies Phormia and Drosophila Immunocytochemıstry and Partıal Characterizatıon J Comp Neurol 331, 183 (1993)
311 Nagasawa, H Neuropeptides of the Silkworm, Bombyx morı Experientia 48, 425 (1992)

312 Nagasawa, H, T Kamito, S Takahashi, A Isogai, H Fugo, and A Suzuki Eclosion Hormone of the Silkworm, Bombyx morl Purification and Determination of the N-Terminal Amıno Acıd Sequence Insect Bıochem 15, 573 (1985)
313 Nagasawa, H, H Kataoka, Y Hori, A Isogai, S Tamura, A Suzuki, F Guo, X Zhong, A Mizoguchi, M Fujishita, S Y Takahashi, E Ohnishi, and H Ishizaki Isolation and Some Characterization of the Prothoracicotropic Hormone from Bombyx morl Gen Comp Endocrınol 53, 143 (1984)
314 Nagasawa, H, H Kataoka, A Isogai, S Tamura, A Suzuki, H Ishizaki, A Mizoguchi, Y Fujiwara, and A Suzuki Amıno-Termınal Amıno Acıd Sequence of the Silkworm Prothoracicotropic Hormone Homology with Insulin Science 226, 1344 (1984)

315 Nagasawa, H, H Kataoka, A Isogai, S Tamura, A Suzuki, A Mizoguchi, Y Fujiwara, A Suzuki, S Y Takahashi, and H Ishizaki Amıno Acid Sequence of a Prothoracicotropic Hormone of the Silkworm Bombyx morı Proc Natl Acad Scı U S A 83, 5840 (1986)
316 Nagasawa, H, A Kitamura, T Inoue, H Kataoka, S Matsumoto, R Arima, T Ando, M Uchiyama, and A Suzuki Isolation of Pheromone Biosynthesis Activating Neuropeptide of the Silkworm, Bombyx morl Agric Bıol Chem 52, 2985 (1988)
317 Nagasawa, H, H Kuniyoshi, R Arima, T Kawano, T Ando, and A Suzuki Structure and Activity of Bombyx PBAN Arch Insect Bıochem Physiol 25, 261 (1994)
318 Nagasawa, H, K Maruyama, B Sato, H Hietter, H Kataoka, A Isogai, S Tamura, H Ishizaki, T Semba, and A Suzuki Structure and Synthesis of Bombyxin from the Silkworm, Bombyx morl In Peptıde Chemıstry (T Shiba and S Sakakibara, eds), pp 123-126 Osaka Proteın Research Foundatıon 1988
319 Nagasawa, H, T Mikogami, Y Kono, H Fugo, and A Suzuki Molecular Heterogenerty of Eclosion Hormone in Adult Heads of the Silkworm, Bombyx morl Agric Biol Chem 51, 1741 (1987)
320 Nambu, J R , C Murphy-Erdosh, P C Andrews, G J Feistner, and R H Scheller

Isolation and Characterization of a Drosophila Neuropeptide Gene Neuron 1, 55 (1988)

321 Nichols, R, Isolation of a Vertebrate Peptıde Homologue Present in Drosophila melanogaster In Molecular Neurobıology of Drosophila (B Ganetsky and J Hall, eds), p 25 Cold Sprıng Harbour, New York Cold Spring Harbour Laboratory Press, 1987
322 Nichols, R Isolation and Expression of the Drosophila Drosulfakının Neural Peptıde Gene Product, DSK-1 Mol Cell Neurosci 3, 342 (1992)
323 Nichols, R Isolation and Structural Characterization of Drosophila TDVDHVFLRFamıde and FMRFamıde-Contaınıng Neural Peptıdes J Molec Neurosci 3, 213 (1992)
324 Nichols, R, S A Schneuwly, and J E Dixon Identification and Characterization of a Drosophıla homologue to the Vertebrate Neuropeptıde Cholecystokının J Bıol Chem 263, 12167 (1988)
325 Nicolson, S W Diuresis or Clearance is there a Physiological Role for the "Diuretic Hormone" of the Desert Beetle Onymacris? J Insect Physiol 37, 447 (1991)
326 Nicolson, S W The Ionic Basis of Fluid Secretion in Insect Malpıghian Tubules Advances in the Last Ten Years J Insect Physiol 39, 451 (1993)
327 Nijhout, H F Insect Hormones Prınceton Prınceton Unıversity Press 1994
328 Noyes, B E, F N Katz, and M H Schaffer Identification and Expression of the Drosophila Adıpokınetıc Hormone Gene Mol Cell Endocrın 109, 133 (1995)
329 Noyes, BE, and MH Schaffer The Structurally Simılar Neuropeptides Adıpokınetıc Hormone I and II are Derıved from Sımılar, Very Small mRNAs J Bıol Chem 265, 483 (1990)
330 O’Brien, M A, E J Katahira, T R Flanagan, L W Arnold, G Haughton, and W E Bollenbacher A Monoclonal Antıbody to the Insect Prothoracicotropic Hormone J Neurosci 8, 3247 (1988)
331 Orchard, I Neurosecretion Morphology and Physiology In Endocrinology of Insects (R G H Downer and H LaUfer, eds), pp 13-38 New York A Liss Inc 1983
332 Orchard, I Adıpokınetıc Hormones-an Update J Insect Physiol 33, 451 (1987)
333 Orchard, I, J H Belanger, and A B Lange Proctolin a Review with Emphasis on Insects J Neurobiol 20, 470 (1989)
334 O'Shea, M, and M A Adams Proctolin from "Gut Factor" to Model Neuropeptide In Advances in Insect Physiology Vol 19 (P D Evans and V B Wigglesworth, eds), pp 1-28 London Academıc Press 1986
335 O’Shea, M, and R C Rayne Adıpokınetic Hormones Cell and Molecular Bıology Experientia 48, 430 (1992)
336 O'Shea, M, J Witten, and M Schaffer Isolation and Characterization of two Myoactıve Neuropeptıdes Further Evidence for an Invertebrate Peptıde Famıly J Neuroscı 4, 521 (1984)
337 Otsuka, M, and K Yoshioka Neurotransmitter Functions of Mammalian Tachykınıns Physıol Rev 73, 229 (1993)
338 Oudejans, R C H M, R M Dijkhuizen, F P Kooiman, and A M T Beenakkers Dose-Response Relatıonshıps of Adıpokınetic Hormones (Lom-AKH-I, II and III) from the Migratory Locust, Locusta migratoria Proc Exper Appl Entomol 3, 165 (1992)

339 Oudejans, R C H M , F P Kooiman, W Heerma, C Versluis, A J Slotboom, and A M T Beenakkers Isolation and Structure Elucidation of a Novel Adipokınetıc Hormone (Lom-AKH-III) from the Glandular Lobes of the Corpus Cardiacum of the Mıgratory locust, Locusta mıgratoria Eur J Biochem 195, 351 (1991)

340 Paemen, L, L Schoofs, and A de Loof Localization of Lom-AG-Myotropin-I-Like Substances in the Male Reproductive and Nervous Tissue of the Locust, Locusta mıgratoria Cell Tissue Res 268, 91 (1992)
341 Paemen, L, L Schoofs, P Proost, B Decock, and A de Loof Isolation, Identification and Synthesis of Lom-AG-Myotropin II, a Novel Peptide in the Male Accessory Glands of Locusta mıgratorıa Insect Bıochem 21, 243 (1991)
342 Paemen, L, A Tips, L Schoofs, P Proost, J van Damme, and A de Loof Lom-AG-Myotropın, a Novel Myotropıc Peptıde from the Male Accessory Glands of Locusta mıgratorıa Peptıdes 12, 7 (1991)
343 Pannabecker, T, and I Orchard Octopamıne and Cyclıc AMP Mediate release of Adıpokınetıc Hormone I and II from Isolated Neuroendocrıne Tissue Mol Cell Endocrın 48, 153 (1986)
344 Passier, P C C M, H G B Vullings, J H B Diederen, and D J Van der Horst Modulatory Effects of Bıogenıc Amınes on Adıpokınetıc Hormone Secretıon from Locust Corpora Cardıaca in vitro Gen Comp Endocrın 97, 231 (1995)
345 Peeff, N M, I Orchard, and A B Lange Isolation, Sequence, and Bioactivity of PDVDHVFLRFamıde and ADVGHVFLRFamıde Peptides from the Locust Central Nervous System Peptıdes 15, 387 (1994)
346 Phillips, J E Comparatıve Physiology of Insect Renal Function Am J Physiol 241, R241 (1981)
347 Phillips, J E Endocrıne Control of Salt and Water Balance Excretion In Endocrınology of Insects (R G H Downer and H LaUfer, eds), pp 411-425 New York A Liss Inc 1983
348 Phillips, J E, J Hanrahan, M Chamberlin, and B Thomson Mechanısms and Control of Reabsorption in Insect Hındgut Adv Insect Physiol 19, 329 (1986)
349 Phillips, J E, B Thomson, J L Peach, A P Stagg, and N Audsley Mechanısms of Acid-Base Transport and Control in Locust Excretory System Physiol Zool 67, 95 (1993)

350 Pope, M M, L K Gaston, and T C Baker Composition, Quantification and Perıodicity of Sex Pheromone Volatıles from Individual Helothis zea Females J Insect Physiol 12, 943 (1984)
351 Pratt, GE, DE Farnsworth, and R Feyereisen Changes in the Sensitivity of Adult Cockroach Corpora Allata to the Braın Allatostatın Mol Cell Endocrın 70, 185 (1990)
352 Pratt, GE, DE Farnsworth, K F Fok, N R Siegel, A L McCormack, J Shabanowitz, D F Hunt, and R Feyereisen Identity of a Second Type of Allatostatın From Cockroach Brains An Octadecapeptide Amıde with a Tyrosıne-Rich Address Sequence Proc Natl Acad Scı U S A 88, 2412 (1991)
353 Pratt, G E, D E Farnsworth, N R Siegel, K F Fok, and R Feyereisen Identificatıon of an Allatostatın from Adult Diploptera punctata Bıochem Bıophys Res Comm 163, 1243 (1989)
354 Pratt, Ge, DE Farnsworth, N R Siegel, K F Fok, and R Feyereisen Two Types of Allatostatic Peptıdes from Braıns of the Cockroach Diploptera punctata In Insect Neuropeptıdes Chemıstry, Bıology, and Actıon ACS Symposium Serıes 453 (J J Menn, T J Kelly, and E P Masler, eds), pp 177-192 Washıngton D C American Chemical Society Books 1991
355 Predel, R, H Agricola, D Linde, L Wollweber, J A Veenstra, and H Penzlin The Insect Neuropeptıde Corazonın Physıological and Immunocytochemıcal Studies in Blattarıae Zoology 98, 35 (1994)
356 Predel, R, D Linde, J Rapus, S Vettermann, and H Penzlin Perıviscerokının
(Pea-PVK) A Novel Myotropıc Neuropeptıde from the Perısympathetıc Organs of the American Cockroach Peptides 16, 61 (1995)
357 Proux, J P, and J-R Herault Cychc AMP a Second Messenger of the Newly Characterized AVP-Like Insect Diuretic Hormone, the Migratory Locust Diuretic Hormone Neuropeptıdes 12, 7 (1988)
358 Proux, J P , C A Miller, J P Li, R L Carney, A Girardie, M Delaage, and D A Schooley Identification of an Argınıne Vasopressin-Like Diuretıc Hormone from Locusta mıgratoria Biochem Biophys Res Comm 149, 180 (1987)
359 Proux, J, and G Rougon Rapuzzi Evidence for Vasopressin-like Molecule in Migratory Locust Radioımmunological Measurements in Different Tissues Correlation with Various States of Hydration Gen Comp Endocrın 42, 378 (1980)
360 Puiroux, J, and B G Loughton Degradation of the Neuropeptıde Proctolin by Membrane Bound Proteases of the Hındgut and Ovary of Locusta mıgratoria and the Effects of Different Inhibitors Arch Insect Biochem Physiol 19, 193 (1992)
361 Puiroux, J, A Pedelaborde, and B G Loughton Characterization of Proctolin Binding Sites on Locust Hındgut Membranes Insect Biochem Molec Biol 22, 547 (1992)

362 Puiroux, J, A Pedelaborde, and B G Loughton Characterization of Proctolin Binding Sites on Locust Oviduct Membranes Insect Biochem Molec Biol 22, 859 (1992)

363 Puiroux, J, A Pedelaborde, and B G Loughton The Effect of Proctolin Analogues and Other Peptides on Locust Oviduct Muscle Contractions Peptides 14, 1103 (1993)

364 Quistad, G B , M E Adams, R M Scarborough, R L Carney, and D A Schooley Metabolism of Proctolin, a Pentapeptıde Neurotransmitter in Insects Life Scı 34, 569 (1984)

365 Raabe, M Etudes des Phenomenes de Neurosecretion au Niveau de la Chaine Nerveuse Ventrale des Phasmides Bull Soc Zool 90, 631 (1965)
366 Raabe, M Insect Neurohormones New York Plenum Press 1982
367 Rafaeli, A, J Hirsch, V Soroker, B Kamensky, and A K Raina Spatial and Temporal Distrıbution of Pheromone Biosynthesis-Activatıng Neuropeptıde in Hellcoverpa (Helıothis) armigera Using RIA and invitro Bioassay Arch Insect Biochem Physiol 18, 119 (1991)
368 Raina, A K , and G Gade Insect Peptide Nomenclature Insect Biochem 18, 785 (1988)
369 Raina, A K, H Jaffe, T G Kempe, P Kiem, R W Blacher, H M Fales, C T Riley, JA Klun, R L Ridgway, and D K Hayes Identification of a Neuropeptide Hormone that Regulates Sex Pheromone Production in Female Moths Science 244, 796 (1989)

370 Raina, A K, H Jaffe, J A Klun, R L Ridgway, and D K Hayes Characteristics of a Neurohormone that Controls Sex Pheromone Production in Helothis zea J Insect Physiol 33, 809 (1987)
371 Raina, A K, and T G Kempe A Pentapeptide of the C-Termınal Sequence of PBAN with Pheromonotropic Activity Insect Biochem 20, 849 (1990)
372 Raina, A K, and T G Kempe Structure Activity Studies of PBAN of Helicoverpa zea (Lepidoptera Noctuidae) Insect Bıochem Molec Bıol 22, 221 (1992)
373 Raina, A K, and J A Klun Brain Factor Control of Sex Pheromone Production in the Female Corn Earworm Moth Science 225, 531 (1984)
374 Raina, A K, J A Klun, and E A Stadelbacher Diel Periodicity and Effect of Age and Mating on Female Sex Pheromone Titer in Heliothis zea (Lepidoptera Noctuidae) Ann Entomol Soc Am 79, 128 (1986)

375 Raina, A K, and J J Menn Pheromone Bıosynthesıs Actıvatıng Neuropeptıde from Discovery to Current Status Arch Insect Biochem Physiol 22, 141 (1993)
376 Raina, A, L Pannell, J Kochansky, and H Jaffe Prımary Structure of a Novel Neuropeptide Isolated from the Corpora Cardiaca of Periodical Cicadas having Adıpokınetıc and Hypertrehalosaemıc Actıvities Insect Biochem Molec Biol 25, 929 (1995)

377 Rao, K R, C J Mohrherr, S L Bonomelli, J P Riehm and TG Kingan Insect Neuropeptides Influence on Color Change in Insects and Chromatophoral Pigment Movements in Crustaceans In Insect Neuropeptides Chemıstry, Biology, and Action ACS Symposium Series No 453 (J J Menn, T J Kelly, and E P Masler, eds), pp 110-122 Washington D C American Chemical Society 1991
378 Rao, K R, C J Mohrherr, J P Riehm, C A Zahnow, S Norton, L Johnson, GE Tarr Prımary Structure of an Analog of Crustacean Pıgment-Dispersing Hormone from the Lubber Grasshopper Romalea microptera J Bıol Chem 262, 2672 (1987)
379 Rao, K R , and J P Riehm Pigment-Dispersing Hormones In The Melanotropic Peptıdes Ann N Y Acad Scı, Vol 680, pp 78-88 1993
380 Rao, K R, J P Riehm, C A Zahnow, L H Kleinholz, GE Tarr, L Johnson, S Norton, M Landau, O J Semmes, R M Sattelberg, W H Jorenby, and M F Hintz Characterization of a Pigment-Dispersing Hormone in Eyestalks of the Fiddler Crab Uca pugilator Proc Natl Acad Scı U S A 82, 5319 (1985)
381 Rayne, R C, and M O'Shea Inactıvation of Neuropeptıde Hormones (AKH I and AKH II) Studied in vivo and in vitro Insect Biochem Molec Biol 22, 25 (1992)
382 Rayne, R C, and M O’Shea Structural Requirements for Processing of ProAdıpokınetıc Hormone I Eur J Bıochem 217, 905 (1993)
383 Rayne, R C, and M O'Shea Reconstıtution of Adıpokınetıc Hormone Bıosynthesis in vitro Indicates Steps in Prohormone Processing Eur J Biochem 219, 781 (1994)
384 Reagan, J D Expression Clonıng of an Insect Diuretıc Hormone Receptor J Biol Chem 269, 9 (1994)
385 Remy, C, and J Girardie Anatomical Organızation of two Vasopressin-NeurophysınLike Neurosecretory Cells Throughout the Central Nervous System of the Migratory Locust Gen Comp Endocrin 40, 27 (1980)
386 Reynolds, SE, and J W Truman Eclosion Hormone In Endocrınology of Insects (R G H Downer and H Laufer, eds), pp 217-233 New York A Liss Inc 1983
387 Rinehart, K L, T G Holt, N L Fregeau, A L Staley, A G Thompson, K -I Harada, J M Curtis, L-S Rong, F Sun, LS Shield, G Gade, CJP Grimmelikhuijzen, C C Doughty and C E Grimshaw Applications of Hıgh-Resolution Tandem FAB Mass Spectrometry In Bıological Mass Sectrometry (A L Burlıngame and J A McCloskey, eds), pp 233-257 Amsterdam Elsevier Science Publishers B V 1990
388 Rivier, J, J Spiess, and W Vale Characterization of Rat Hypothalamic Cortıcotropın-Releasıng Factor Proc Natl Acad Scı U S A 80, 4851 (1983)
389 Robb, S, L C Packman, and P D Evans Isolatıon, Prımary Structure and Bioactıvity of SchistoFLRF-amıde, a FMRF-amıde-like Neuropeptıde from the Locust, Schistocerca gregarla Bıochem Biophys Res Comm 160, 850 (1989)
390 Saegusa, H, A Mizoguchi, H Kitahora, H Nagasawa, A Suzuki, and H Ishizaki Change in the Titer of Bombyxin-Immunoreactive Material in Hemolymph during the Postembryonic Development of the Silkmoth Bombyx mori Dev Growth Differ 34, 595 (1992)
391 Sato, Y, M Ikeda, and O Yamashita Neurosecretory Cells Expressing the Gene for

Common Precursor for Diapause Hormone and Pheromone Biosynthesis-Actıvatıng Neuropeptide in the Suboesophageal Ganglion of the Sllkworm, Bombyx mort Gen Comp Endocrın 96, 27 (1994)
392 Sato, Y, Y Nakazawa, N Menjo, K Imai, T Komiya, H Saito, M Shin, M Ikeda, K Sakakibara, M Isobe, and O Yamashita A New Diapause Hormone Molecule of the Sılkworm, Bombyx morl Proc Japan Acad 68B, 75 (1992)
393 Sato, Y, M Oguchi, N Menjo, K Imai, H Saito, M Ikeda, M Isobe, and O Yamashita Precursor Polyprotein for Multıple Neuropeptides Secreted from the Suboesophageal Ganglion of the Silkworm Bombyx morl Characterization of the cDNA Encoding the Diapause Hormone Precursor and Identification of Additional Peptıdes Proc Natl Acad Scı U S A 90, 3251 (1993)
394 Scarborough, R M, G C Jamieson, F Kalish, S J Kramer, G A McEnroe, C A Miller, and D A Schooley Isolation and Prımary Structure of Two Peptides with Cardıoacceleratory and Hyperglycemıc Actıvity from the Corpora Cardiaca of Perlptlaneta americana Proc Natl Acad Scı USA 81, 5575 (1984)
395 SCHAFFER, M H Isolation and Characterization of Neuropeptides In Neurochemical Technıques in Insect Research (H Breer and T A Miller, eds), pp 47-78 Berlın Sprınger 1985
396 Schaffer, M H, and BE Noyes Adıpokınetıc Hormone Neuropeptıde Famıly Applyıng Recombınant DNA Technıques In Insect Neuropeptıdes Chemıstry, Bıology, and Action ACS Symposium Series No 453 (J J Menn, T J Kelly, and E P MaSLER, eds), Chapter 20, pp 226-233 Washıngton, D C Amerıcan Chemıcal Society Books 1991
397 Schaffer, M H, B E Noyes, C A Slaughter, G C Thorne, and S J Gaskell The Fruitfly Drosophila melanogaster Contans a Novel Charged Adıpokınetıc-HormoneFamıly Peptıde Biochem J 269, 315 (1990)
398 Scharrer, B Uber sekretorisch tatige Nervenzellen bei wirbellosen Tieren Naturwissenschaften 9, 131 (1937)
399 Scharrer, B Neurosecretion II Neurosecretory Cells in the Central Nervous System of Cockroaches J Comp Neurol 74, 93 (1941)
400 Scharrer, B, and E Scharrer Neurosecretion VI A Comparison Between the Intercerebralıs-Cardıacum-Allatum System of the Insects and the HypothalamoHypophyseal System of Vertebrates Biol Bull 87, 243 (1944)
401 Scharrer, E Die Lichtempfindlichkeit blinder Elritzen I Untersuchungen uber das Zwischenhirn der Fische Z Vergl Physiol 7, 1 (1928)
402 Schneider, L E, and P H Taghert Isolation and Characterization of a Drosophila Gene that Encodes Multıple Neuropeptıdes Related to Phe-Met-Arg-Phe-NH2 (FMRFamıde) Proc Natl Acad Scı U S A 85, 1993 (1988)
403 Schoofs, L, G M Holman, T K Hayes, J P Kochansky, R J Nachman, and A de Loof Locustatachykinın III and IV Two Additıonal Insect Neuropeptides with Homology to Peptıdes of the Vertebrate Tachykının Famıly Regul Pept 31, 199 (1990)

404 Schoofs, L, G M Holman, TK Hayes, R J Nachman, and A De Loof Locustatachykının I and II, Two Novel Insect Neuropeptıdes with Homology to Peptides of the Vertebrate Tachykının Famıly FEBS Lett 261, 397 (1990)
405 Schoofs, L, G M Holman, T K Hayes, R J Nachman, and A De loof Isolation and Identıfication of a Sulfakının-lıke Peptıde with Sequence Homology to Vertebrate Gastrın and Cholecystokının from the Brain of Locusta mıgratoria In Chromatography and Isolation of Insect Hormones and Pheromones (A R McCaffery, and I D Wilson, eds), pp 231-241 New York Plenum Press 1990

406 Schoofs, L, G M Holman, T K Hayes, R J Nachman, and A De Loof Isolation, Identification and Synthesis of Locustamyotropın II, an Additional Neuropeptide of Locusta migratoria Member of the Cephalomyotropic Peptide Family Insect Biochem 20, 479 (1990)
407 Schoofs, L, G M Holman, T K Hayes, R J Nachman, and A De loof Isolation, Primary Structure, and Synthesis of Locustapyrokinin a Myotropic Peptide of Locusta migratoria Gen Comp Endocrın 81, 97 (1991)
408 Schoofs, L, G M Holman, T K Hayes, R J Nachman, and A De Loof Isolation, Identification and Synthesis of Locustamyounhibiting Peptide (Lom-MIP), a Novel Bologically Active Neuropeptide from Locusta migratoria Regul Pept 36, 111 (1991)
409 Schoofs, L, G M Holman, T K Hayes, R J Nachman, J P Kochansky, and A De Loof Isolation, Identification and Synthesis of Locustamyotropin III and IV, Two Additional Neuropeptides of Locusta migratoria Members of the Locustamyotropin Peptide Family Insect Bıochem Molec Biol 22, 447 (1992)
410 Schoofs, L, G M Holman, T K Hayes, a Tips, R J nachman, F Vandesande, and A De Loof Isolation, Identification and Synthesis of Locustamyotropin (Lom-MT), a Novel Biologically Actıve Insect Peptide Peptides 11, 427 (1990)
411 Schoofs, L, G M Holman, R Nachman, P Proost, J Van Damme, and A De loof Isolation, Identification and Synthesis of Locustapyrokinın II from Locusta mıgratoria, Another Member of the FXPRL-amide Peptide Family Comp Bıochem Physiol 106C, 103 (1993)
412 Schoofs, L, G M Holman, L Paemen, D Veelaert, M Amelinckx, and A De Loof Isolation, Identification and Synthesis of PDVDHVFLRFamide(SchistoFLRFamide) in Locusta migratoria and its Association with the Male Accessory Glands, the Salivary Glands, the Head and the Oviduct Peptides 14, 409 (1993)
413 Schoofs, L, G M Holman, P Proost, J Van Damme, T K Hayes, and A De loof Locustakının, a Novel Myotropic Peptıde from Locusta migratoria, Isolation, Prımary Structure and Synthesis Regul Pept 37, 49 (1992)
414 Schoofs, L, A Tips, G M Holman, R J Nachman, and A De Loof Distribution of Locustamyotropin-like Immunoreactivity in the Nervous System of Locusta migratoria Regul Pept 37, 237 (1992)
415 Schoofs, L, J van den Broeck, and A de Loof The Myotropic Peptides of Locusta migratoria Structures, Distribution, Functions and Receptors Insect Biochem Molec Biol 23, 859 (1993)
416 Schoofs, L, D Veelaert, G M Holman, T K Hayes, and A De Loof Partal Identification, Synthesis and Immunolocalization of Locustamyoinhibin, the Third Myoinhibiting Neuropeptide Isolated from Locusta migratoria Regul Pept 52, 139 (1994)

417 Schooley, D A , and F C Baker Juvenile Hormone Biosynthesis In Comprehensive Insect Physiology, Biochemıstry and Pharmacology (G A Kerkut and LI Gilbert, eds) Vol 7, pp 363-389 Oxford Pergamon Press 1985
418 Schooley, D A, H Kataoka, S J Kramer, and A Toschi Isolation Technıques for Insect Neuropeptides In Insect Neurochemistry and Neurophysiology 1989 (A B Borkovec and E P Masler, eds), pp 39-62 Clifton, N J The Humana Press Inc 1990
419 Schooley, D A, C A Miller, and JP Proux Isolation of Two Arginıne Vaso-pressin-like Factors from Gangla of Locusta migratoria Arch Insect Biochem Physiol 5, 157 (1987)
420 Schooneveld, H, H M Romberg-Privee, and JA Veenstra Adıpokınetic Hormone-ımmunoreactive Peptide in the Endocrine and Central Nervous System of

Several Insect Species a Comparatıve Immunocytochemıcal Approach Gen Comp Endocrın 57, 184 (1985)
421 Schooneveld, H, H M Romberg-Privee, and J A Veenstra Immunocytochemical Differentiation between Adipokınetıc Hormone (AKH)-like Peptıdes in Neurons and Glandular Cells in the Corpus Cardiacum of Locusta migratoria and Perıplaneta americana with C-terminal and N-terminal Specific Antisera to AKH Cell Tissue Res 243, 9 (1986)
422 Schooneveld, H, G I Tesser, J A Veenstra, and H M Romberg-Privee Adıpokınetıc Hormone and AKH-lıke Peptıde Demonstrated in Corpora Cardiaca and Nervous System of Locusta migratoria by Immunocytochemıstry Cell Tissue Res 230, 67 (1983)
423 Schooneveld, H, and J A Veenstra Immunocytochemistry In Immunological Technıques in Insect Biology (LI Gilbert and T A Miller, eds), Chapter 4, pp 93-133 New York Sprınger 1988
424 Schulz-Aellen, M F , E Roulet, J Fisher-Lougheed, and M O'Shea Synthesis of a Homodımerıc Neurohormone Precursor of Locust Adıpokınetıc Hormone Studied by in vitro Translation and cDNA Cloning Neuron 2, 1369 (1989)
425 Schwartz, L M, and J W Truman Peptıde and Sterord Regulation of Muscle Degeneration in an Insect Science 215, 1420 (1982)
426 Schwarz, T L, C M H Lee, K K Siwicki, D G Standaert, and E A Kravitz Proctolin in the Lobster the Distribution, Release, and Chemical Characterization of a Likely Neurohormone J Neurosci 4, 1300 (1984)
427 Serwe, M, and H E Meyer Microseparation Technıques I High Performance Lıquid Chromatography In Mıcrocharacterızation of Proteins (R Kellner, F Lottspeich, and HE Meyer, eds), pp 2945 Weınheım VCH Verlagsgesellschaft 1994
428 Shimonishi, Y, and T Takao Methods for Determination of Protein Sequences by Fast Atom Bombardment Mass Spectrometry In Laboratory Methodology in Biochemistry Amıno Acid Analysis and Protein Sequencing (C Fini, A Floridi, V N Finelli, and B Wittman-Liebold, eds), pp 239-256 Boca Raton, Florida, U S A CRC Press Inc 1990
429 Siegert, K , P Morgan, and W Mordue Prımary Structures of Locust Adıpokınetıc Hormones II Biol Chem Hoppe-Seyler 366, 723 (1985)
430 Siegert, K J, and W Mordue Elucidation of the Prımary Structures of the Cockroach Hyperglycaemıc Hormones I and II Usıng Enzymatic Technıques and Gasphase Sequencing Physiol Entomol 11, 205 (1986)
431 Siegert, K J, and W Mordue Breakdown of Locust Adıpokınetıc Hormone I by Malpıghıan Tubules of Schistocerca gregaria Insect Bıchem 17, 705 (1987)
432 Siegert, K J, and W Mordue Prelımınary Characterization of Enzyme Actıvities in Malpıghıan Tubules Involved in the Breakdown of Adıpokınetic Hormones Arch Insect Bıochem Physıol 19, 147 (1992)
433 Snyder, S H Brain Peptıdes as Neurotransmitters Science, 209, 976 (1980)
434 Spittaels, K, L Schoofs, L Grauwels, H Smet, J van Damme, P Proost, and A De Loof Isolation, Identification and Synthesis of Novel Oviductal Motılity Stımulatıng Head Peptıde in the Colorado Potato Beetle, Leptınotarsa decemlineata Peptıdes 12, 31 (1991)
435 Spring, J H Endocrine Regulation of Diuresis in Insects J Insect Physiol 36, 13 (1990)

436 Spring, J H , and I Kim Differential Effects of Neuropeptıdes on the Distal and MidTubules of the House Cricket Arch Insect Biochem Physiol 29, 11 (1995)
437 Stangier, J, C Hilbich, K Beyreuther, and R Keller Unusual Cardioactive

Peptide (CCAP) from Perıcardıal Organs of the Shore Crab Carcınus maenas Proc Natl Acad Scı U S A 84, 575 (1987)
438 Stangier, J, C Hilbich, and R Keller Occurrence of Crustacean Cardioactive Peptide (CCAP) in the Nervous System of an Insect, Locusta mıgratoria J Comp Physiol 159B, 5 (1989)
439 Starratt, A N , and B E Brown Structure of the Pentapeptide Proctolin, a Proposed Neurotransmitter in Insects Life Sci 17, 1253 (1975)
440 Starratt, A N , and B E Brown Analogs of the Insect Myotropic Peptıde Proctolin Synthesis and Structure-actıvity Studies Biochem Bıophys Res Comm 90, 1125 (1979)
441 Starratt, A N, and R W Steele Invivo Inactivation of the Insect Neuropeptide Proctolin in Perıplaneta americana Insect Biochem 14, 97 (1984)
442 Starratt, A N, and R W Steele Invitro Inactivation of the Insect Neuropeptıde Proctolın in Haemolymph from Perıplaneta amerıcana Insect Biochem 15,511 (1985)

443 Stay, B, S S Tobe, and W G Bendena Allatostatıns Identification, Prımary Structures, Functions and Distributions Adv Insect Physiol 25, 267 (1994)
444 Stay, B, A P Woodhead, S Joshi, and S S Tobe Allatostatıns Neuropeptıde Inhibitors of Juvenıle Hormone Synthesis in Brain and Corpora Allata of the Cockroach Diploptera punctata In Insect Neuropeptides Chemıstry, Biology, and Action ACS Symposium Series No 453 (J J Menn, T J Kelly, and E P Masler, eds), pp 164-176 Washıngton D C American Chemical Society Books 1991
445 Steel, CGH, and K G Davey Integration in the Insect Endocrine System In Comprehensive Insect Physiology, Biochemıstry and Pharmacology (G A Kerkut and LI Gilbert, eds), Vol 8, pp 1-35 Oxford Pergamon Press 1985
446 Steele, J E Occurrence of a Hyperglycaemic Factor in the Corpus Cardiacum of an Insect Nature 192, 680 (1961)
447 Steele, J E Hormonal Modulation of Carbohydrate and Lipid Metabolism in Fat Body In Insect Biology in the Future (M Locke and D S Smith, eds), pp 253271 New York Academic Press 1980
448 Stone, K L , M B Lopresti, and K R Williams Enzymatic Digestion of Proteins and HPLC Peptide Isolation in the Subnanomole Range In Laboratory Methodology in Biochemistry Amıno Acid Analysis and Protein Sequencing (C Fini, A Floridi, V N Finelli, and B Wittman-Liebold, eds), pp 181-205 Boca Raton, Florida, U S A CRC Press Inc 1990
449 Stone, J V , and W Mordue Adıpokınetıc Hormone In Neurohormonal Technıques in Insects (T A Miller, ed), pp 31-80 New York Sprınger Verlag 1980
450 Stone, J V, W Mordue, K E Batley, and H R Morris Structure of Locust Adipokınetıc Hormone, a Neurohormone that Regulates Lipıd Utılisation Durıng Flight Nature 263, 207 (1976)
451 Stone, J V, W Mordue, C E Broomfield, and P M Hardy Structure-Activity Relationshıps for the Lipıd-Mobılising Action of Locust Adıpokınetic Hormone Synthesis and Actıvity of a Serıes of Hormone Analogues Eur J Biochem 89, 195 (1978)

452 Sullivan, R E, and R W Newcomb Structure-Function Analysis of an Arthropod Peptide Hormone Proctolin and Synthetic Analogues Compared on the Cockroach Hındgut Receptor Peptıdes 3, 337 (1982)
453 Suzuki, A , H Nagasawa, T Kono, B Sato, T Kamito, H Tanaka, Y Sakagami, A Mizoguchi, H Ishizaki, and H Fugo Bombyx Eclosion Hormone In Insect Neurochemistry and Neurophysiology 1989 (A B Borkovec and E P Masler, eds), pp 211-214 Clifton, N J The Humana Press Inc 1990

454 Taghert, P H, and LE Schneider Interspecific Comparison of a Drosophila Gene Encoding FMRFamide-Related Neuropeptides J Neurosci 10, 1929 (1990)
455 Thorpe, A, and H Duve Insect Neuropeptides In Current Topics in Neuroendocrınology, Vol 9, pp 185-230 Berln Sprınger 1988
456 Tips, A, L Schoofs, L Paemen, M Ma, M Blackburn, A Raina, and A De Loof Co-localization of Locustamyotropin- and Pheromone Biosynthesis Activating Neur-opeptide-like Immunoreactivity in the Central Nervous System of Five Insect Species Comp Bıochem Physiol 106A, 195 (1993)
457 Tobe, S S, and N Clarke The effect of L-methonıne Concentration on Juvenile Hormone Biosynthesis by Corpora Allata of the Cockroach Diploptera punctata Insect Biochem 15, 175 (1985)
458 Troetschler, R G, and S J Kramer Mode of Action Studies on a Manduca sexta Diuretic Hormone Archs Insect Biochem Physiol 20, 35 (1992)
459 Truman, J W Hormonal Control of Ecdysis In Comprehensive Insect Physiology, Biochemistry and Pharmacology (GA Kerkut and Li Gilbert, eds), Vol 8, pp 413-440 Oxford Pergamon Press 1985
460 Truman, J W, P H Taghert, P F Copenhaver, N J Tublitz and L M Schwartz Eclosion Hormone May Control All Ecdyses in Insects Nature 291, 70 (1981)
461 Tublitz, NJ, DL Brink, K S Broadie, P K Loi, and A W Sylwester From Behavior to Molecules an Integrated Approach to the Study of Neuropeptides Trends Neuroscl 14, 254 (1991)
462 Unger, H Untersuchungen zur Neurohormonalen Steuerung der Herztatıgkett beı Schaben Biol Zbl 76, 204 (1957)
463 Vakharia, V N, A K Raina, T G Kingan, and T G Kempe Synthetic Pheromone Bıosynthesis Actıvatıng Neuropeptıde Gene Expressed in a Baculovirus Expression System Insect Biochem Molec Biol 25, 583 (1995)
464 Veenstra, J A Isolation and Structure of Corazonin, a Cardıactive Peptide from the American Cockroach FEBS Lett 250, 231 (1989)
465 Veenstra, J A Isolation and Structure of Two Gastrın/CCK-like Neuropeptides from the American Cockroach Homologous to the Leucosulfakınıns Neuropeptides 14, 145 (1989)
466 Veenstra, J A Presence of Corazonin in Three Insect Specles, and Isolation and Identification of $\left[\mathrm{His}^{7}\right]$ Corazonin from Schistocerca americana Peptides 12, 1285 (1991)

467 Veenstra, J A Isolation and Identification of Three Leucokınıns from the Mosquito Aedes aegyptı Biochem Biophys Res Comm 202, 715 (1994)
468 Veenstra, J A , and F Camps Structure of the Hypertrehalosemic Neuropeptide of the German Cockroach, Blattella germanica Neuropeptides 15, 107 (1990)
469 Veenstra, J A, and N T Davis Localization of Corazonin in the Nervous System of the Cockroach Perıplaneta americana Cell Tissue Res 274, 57 (1993)
470 Veenstra, J A , and H H Hagedorn Identification of Neuroendocrıne Cells Producing a Diuretic Hormone in the Tobacco Hornworm Moth, Manduca sexta Cell Tissue Res 266, 359 (1991)
471 Veenstra, J A and H H Hagedorn Isolation of Two AKH-Related Peptides from Cicadas Arch Insect Bıochem Physiol 29, 391 (1995)
472 Veenstra, J A, H M Romberg-Privee, and H Schooneveld A Proctoln-like Peptide and its Immunocytochemical Localization in the Colorado Potato Beetle, Leptinotarsa decemlineata Cell Tissue Res 240, 535 (1985)
473 Wagner, R M, C W Woods, J A Hayes, J P Kochansky, JC Hill, and B A Fraser Isolation and Identification of a Novel Peptide from the Accessory Sex Gland
of the Female House Fly, Musca domestıca Biochem Biophys Res Comm 194, 1336 (1993)

474 Weaver, R J, Z A Freeman, M G Pickering, and J P Edwards Identification of two Allatostatıns from the CNS of the Cockroach Perıplaneta americana Novel Members of a Famıly of Neuropeptide Inhibitors of Insect Juvenıle Hormone Biosynthesis Comp Biochem Physiol 107C, 119 (1994)
475 Weigt, C, H E Meyer, and R Kellner Sequence Analysis of Proteins and Peptides by Mass Spectrometry In Microcharacterization of Proteins (R Kellner, F Lottspeich, and H E Meyer, eds), pp 189-205 Weinheim VCH Verlagsgesellschaft 1994
476 Wheeler, C H , and G M Coast Assay and Characterısation of Diuretic Factors in Insects J Insect Physiol 36, 23 (1990)
477 Wheeler, C H, A F Drake, C M Wilmot, J M Thornton, G Gade, and G J Goldsworthy Structures in the AKH famıly of Neuropeptıdes In Insect Neurochemıstry and Neurophysiology 1989 (A B Borkovec and E P Masler, eds), pp 235-238 Clifton, N J The Humana Press Inc 1990
478 Witten, JL, M H Schaffer, M O’Shea, J C Cook, M E Hemling, and K L Rinehart, Jr Structures of Two Cockroach Neuropeptıdes Assigned by Fast Atom Bombardment Mass Spectrometry Biochem Biophys Res Comm 124, 350 (1984)

479 Woodhead, A P, M A Khan, B Stay, and S S Tobe Two New Allatostatins from the Braıns of Diploptera punctata Insect Bıochem Molec Biol 24, 257 (1994)
480 Woodhead, A P, B Stay, S L Seidel, M A Khan, and S S Tobe Prımary Structure of Four Allatostatıns Neuropeptide Inhıbitors of Juvenıle Hormone Synthesis Proc Natl Acad Scı U S A 86, 5997 (1989)
481 Woodring, J P, S Das, R Kellner, and G Gade The Sequence of Acheta Adıpokınetıc Hormone and the Varıatıon in Corpus Cardiacum Content and Hyperlipaemic Response with Age Z Naturforsch 45c, 1176 (1990)
482 Xu, W -H, Y Sato, M Ikeda, and O Yamashita Molecular Characterization of the Gene Encoding the Precursor Protein of Diapause Hormone and Pheromone Biosynthesis Actıvatıng Neuropeptıde (DH-PBAN) of the Sılkworm, Bombyx morı and its Distribution in Some Insects Biochım Biophys Acta 1261, 83 (1995)
483 Xu, W -H, Y Sato, M Ikeda, and O Yamashita Stage-Dependent and TemperatureControlled Expression of the Gene Encoding the Precursor Proteın of Diapause Hormone and Pheromone Biosynthesis Activating Neuropeptide in the Silkworm, Bombyx mori J Biol Chem 270, 3804 (1995)
484 Yamashita, O Egg Diapause In Endocrinology of Insects (R G H Downer and H Laufer, eds), pp 337-342 New York A Liss Inc 1983
485 Yamashita, O, and K Suzuki Role of Morphogenetic Hormones in Embryonic Diapause In Morphogenetıc Hormones in Arthropods (A P Gupta, ed) Vol 3, pp 81-128 New Brunswick Rutger Unıversity Press 1991
486 Yi, S Detection, Purification and Identification of Myoactive Peptide in Larval Tissues of Manduca sexta (L) (Lepidoptera Sphingıdae) Ph D Thesis State Unıversity of Gent, Belgium 1993
487 Yi, S -X, L Tirry, C Bai, B Devreese, J Van Beeumen, and D Degheele Isolation, Identification, and Synthesis of Mas-MG-MT-I, a Novel Peptıde from the Larval Midgut of Manduca sexta (Lepıdoptera Sphingidae) Arch Insect Biochem Physiol 28, 159 (1995)
488 Yu, C G, T K Hayes, A Strey, W G Bendena, and S S Tobe Identification and Partial Characterızation of Receptors for Allatostatıns in Brain and Corpora Allata of
the Cockroach Diploptera punctata Using a Binding Assay and Photoaffinity Labeling Regul Pept 57, 347 (1995)
489 Ziegler, R, K Eckart, R D Jasensky, and J H Law Structure-activity Studies on Adıpokınetıc Hormones in Manduca sexta Arch Insect Bıochem Physiol 18, 229 (1991)

490 Ziegler, R, K Eckart, and JH Law Adıpokınetıc Hormone Controls Lipıd Metabolism in Adults and Carbohydrate Metabolism in Larvae of Manduca sexta Peptides 11, 1037 (1990)
491 Ziegler, R, K Eckart, H Schwarz, and R Keller Amıno Acid Sequence of Manduca sexta Adıpokınetıc Hormone Elucıdated by Combıned Fast Atom Bombardment (FAB)/Tandem Mass Spectrometry Biochem Biophys Res Comm 133, 337 (1985)

492 Ziegler, R, R D Jasensky, and H Morimoto Characterization of the Adipokinetic Hormone Receptor from the Fat Body of Manduca sexta Regul Pept 57, 329 (1995)
493 Zollner, N, and K Kirsch Über die quantitatıve Bestımmung von Lipoiden (Mıkromethode) mittels der vielen naturlichen Lipoiden (allen bekannten Plasmalıpoıden) gemeınsamen Sulfophosphovanıllın Reaktıon Z Ges Exp Med 135, 545 (1962)

494 Zubrzycki, I Z, and G Gade Conformational Study on an Insect Neuropeptide of the AKH/RPCH Famıly by Combined ${ }^{1} \mathrm{H}$ NMR Spectroscopy and Molecular Mechanıcs Bıochem Bıophys Res Comm 198, 228 (1994)
(Recelved Aprıl 1, 1996)

Sesquiterpenoids from Thapsia Species and Medicinal Chemistry of the Thapsigargins

S B Christensen, A Andersen, and U W Smitt
Department of Medıcınal Chemıstry, Royal Danısh School of Pharmacy, DK-2100 Copenhagen, Denmark

Contents

1 Introduction 130
2 Taxonomy of Thapsia 133
21 Thapsia garganica and Thapsia transtagana 133
22 Thapsia maxıma 133
23 Thapsia villosa 133
24 Thapsia gymnesica 145
3 Elucidation of the Structure of Thapsigargın 145
4 Proazulenic Slovanolides 146
5 Non-lactonic Sesquiterpenoids from Thapsia 148
6 Pharmacological Actıvity of the Thapsigargins 148
7 Molecular Pharmacology 149
8 Chemıstry of Thapsıgargın 151
81 Changes at $\mathrm{C}(8)$ 151
82 Changes at $\mathrm{C}(3)$ 153
83 Changes of the Vicinal Diol 155
84 Changes of the Lactone Carbonyl Group 155
85 Changes at $\mathrm{O}(10)$ 157
9 Structure Actıvity Relationships 159
10 Metabolıc Catabolısm of Thapsıgargın 162
References 163

1. Introduction

For centuries preparations containing resin from the root of Thapsia garganica L. (Fig. 1) have been used in Arabian and European medicine for treatment of pulmonary diseases, catarrh and as counterirritants for relief of rheumatic pains (1). The properties of the resin were described already by Theophrastos (372-287 B.C.), Dioscorides (approximately A.D. 50), and Plinius (A.D. 24-79) (2). Radix Thapsiae and Resina Thapsiae have been included in several pharmacopoeias, the latest in the French pharmacopoeia from 1937. The two major active principles were about

Fig. 1. Thapsia garganica

Thapsigargin (1), $\mathrm{R}^{1}=\mathrm{Oct}, \mathrm{R}^{2}=$ But
Thapsigargicin (2), R1 $=$ Hex, $\mathrm{R}^{2}=$ But
Thapsitranstagin (3), $\mathrm{R}^{1}=\mathrm{iVal}, \mathrm{R}^{2}=2-\mathrm{MeBut}$
Thapsivillosin $A(4), R^{1}=$ Ang, $R^{2}=$ Sen
Thapsivillosin $B(5), R^{1}=$ Ang, $R^{2}=2-\mathrm{MeBut}$
Thapsivillosin $\mathrm{C}(6), \mathrm{R}^{1}=\mathrm{Oct}, \mathrm{R}^{2}=2-\mathrm{MeBut}$
Thapsivillosin $D(7), R^{1}=6-\mathrm{MeOct}, \mathrm{R}^{2}=$ Sen
Thapsivillosin $\mathrm{E}(8), \mathrm{R}^{1}=6-\mathrm{MeOct}, \mathrm{R}^{2}=2-\mathrm{MeBut}$
Thapsivillosin $\mathrm{G}(9), \mathrm{R}^{1}=6-\mathrm{MeHep}, \mathrm{R}^{2}=2-\mathrm{MeBut}$
Thapsivillosin $H(\mathbf{1 0}), R^{1}$ or $R^{2}=$ Ang or Sen
Thapsivillosin I (11), R1= Ang, R ${ }^{2}=$ But
Thapsivillosin $\mathrm{J}\left(\mathbf{1 2)}, \mathrm{R} 1=\mathrm{iVal}, \mathrm{R}^{2}=\right.$ But
Thapsivillosin K (13), $\mathrm{R}^{1}=\operatorname{Sen}, \mathrm{R}^{2}=2-\mathrm{MeBut}$

Chart 1. Hexaoxygenated thapsigargins found in Thapsia
two decades ago found to be the sesquiterpene lactones thapsigargin (1) and thapsigargicin (2) (3).

If applied on the skin these compounds induce within $4-5$ hours erythema, small vesiculae and intense itching which remains for several days. The present interest in the genus Thapsia arose when thapsigargin and thapsigargicin were recognized as highly potent histamine liberators (3), general stimulants of the immune system (4-7), non-TPA tumour promoters $(8,9)$ and selective inhibitors of the microsomal Ca^{2+}-ATPases (SERCA-ATPases) $(6,10,11)$. Besides thapsigargin and thapsigargicin a number of related hexaoxygenated guaianolides (3-13) only differing in the structure of the acyl groups attached to $\mathrm{O}(2)$ and $\mathrm{O}(8)(12-14)$, and

Trilobolide (14), $\mathrm{R}=(S)-2-\mathrm{MeBut}$
Nortrilobolide (15), R = But
Thapsivillosin F (16), $R=$ Sen
Chart 2. Pentaoxygenated thapsigargins found in Thapsia and Laser trilobum
three pentaoxygenated guaianolides $(\mathbf{1 4 - 1 6})(14-16)$ have been isolated. Only one of these, trilobolide (14) has been isolated from a species not belonging to Thapsia, i.e. from Laser trilobum, Apiaceae (17). Without definition the collective term thapsigargins is generally used for the guaianolides (1-16), which are characterized as $1 \beta H, 6 \alpha H, 3 \alpha, 7 \beta, 8 \alpha, 10 \beta$, 11α-pentaoxygenated-6,12-guaianolides. The $1 \beta \mathrm{H}$ stereochemistry is often found in guaianolides isolated from Apiaceae (18). Hydroxylation of $\mathrm{C}(7)$ is only cxceptionally found in guaianolides [e.g. 7α-hydroxy-3deoxyzalazanin $\mathrm{C}(17)$, isolated from Podachaenium eminens, Asteraceae (19)], but the 7β-hydroxy group is unique for the thapsigargins. A likely explanation for the unique 7β-hydroxy group is that a precursor possessing a $\mathrm{C}(7)-\mathrm{C}(11)$ double bond during the biosynthesis is converted into an epoxide, which subsequently is opened into a trans-glycol (18).

(17)

Chart 3. 7 α-Hydroxy-3-deoxyzaluzanin C

2. Taxonomy of Thapsia

The genus Thapsia belongs to the family Apiaceae, tribe Laserpitiae. In Flora Europaea (20) the genus is divided into three species: T. garganica L., T. maxima Miller and T. villosa L. distributed in the Mediterranean area and on the Iberian peninsula. However, recent chemotaxonomic studies based on morphological and anatomical characters, chromosome numbers and secondary metabolites have indicated a need for taxonomic revision of the genus $(14,21,22)$.

2.1. Thapsia garganica and Thapsia transtagana

T. garganica L. and T. transtagana Brot. are classified as synonymous in Flora Europaea. The anatomy of the fruits as well as the profile of the secondary metabolites of the two species, however, are different. Thus, in spite of the same chromosome number $2 \mathrm{n}=22(=2 \mathrm{x})$ and the presence of thapsigargins (Table 1) in both there are good reasons for considering T. garganica and T. transtagana as two different species. Closer studies of T. garganica have revealed the presence of at least two chemotypes (14).

2.2. Thapsia maxima

T. maxima has been shown to include two phytochemically identical phenotypes I and II, having the same chromosome numbers $2 \mathrm{n}=22(=2 \mathrm{x})$ (21). Neither of the two contains thapsigargins. Based on this finding it is concluded that a specimen previously regarded as T. maxima (23) should be designated T. villosa type 4 [chromosome number $2 n=44(=4 x)$].

2.3. Thapsia villosa

T. villosa, the most heterogeneous species, has been divided into two distinctly different groups, 1 and 2 (22). Group 1, which does not contain thapsigargins, is further divided into three types $1-3$. Types 1 and 2, both have the chromosome number $2 \mathrm{n}=22(=2 \mathrm{x})$ and the names T. minor Hoffgg. et Link and T. laciniata Rouy, respectively, have been proposed. Type 3 has the chromosome number $2 n=44(=4 x)$. Group 2 includes two types, 4 and 5, both of which contain thapsigargins, with the chromosome numbers $2 \mathrm{n}=44(=4 x)$ and $2 n=66(=6 x)$, respectively.

Table 1 Gualanolıdes from Thapsia

Structure Number	Name of Compound	Formula	Plant Source	Plant Organ	Reference(s)
(1)	Thapsıgargın	$\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{12}$	Thapsia garganica	Root, fruit	14,34,37
			T gymnesica	Root, fruit	14
(2)	Thapsıgargıcın	$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{12}$	T garganica	Root, fruit	14,34
			T gymnesica	Root, fruit	14
(3)	Thapsitranstagın	$\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{12}$	T transtagana	Root, fruit	12,14,23
			T villosa, type 5	Root	13
(4)	Thapsivıllosin A	$\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{12}$	T villosa, type 4	Root	12,23
			T villosa, type 5	Root	12,23
(5)	Thapsıvıllosin B	$\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{12}$	T villosa, type 4	Root	12,23
			T villosa, type 5	Root	12,23
			T transtagana	Root, fruit	14
(6)	Thapsıvıllosin C	$\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{12}$	T villosa, type 4	Root	12
			T villosa, type 5	Root	12,13
(7)	Thapsıvıllosin D	$\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{12}$	T villosa, type 4	Root	12
			T villosa, type 5	Root	12
(8)	Thapsıvıllosin E	$\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{O}_{12}$	T villosa, type 4	Root	12
			T villosa, type 5	Root	12
(9)	Thapsıvillosin G	$\mathrm{C}_{35} \mathrm{H}_{52} \mathrm{O}_{12}$	T villosa, type 4	Root	12
			T villosa, type 5	Root	12
(10)	Thapsıvıllosin H	$\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{12}$	T villosa, type 4	Root	12
			T villosa, type 5	Root	12
(11)	Thapsıvıllosın I	$\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{12}$	T garganica	Root, fruit	12,14
(12)	Thapsıvillosin J	$\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{12}$	T garganica	Root, fruit	1214
(13)	Thapsivillosin K	$\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{12}$	T transtagana	Root, fruit	14
			T villosa, type 5	Root	13
(14)	Trılobolide	$\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{10}$	T transtagana	Root, fruit	14
			T villosa, type 5	Root	23
			T garganica*	Root, fruit	14
(15)	Nortrılobolıde	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{10}$	T garganica	Root, fruit	14,16
			T gymnesıca	Root, fruit	14
(16)	Thapsıvıllosin F	$\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{O}_{10}$	T villosa, type 4	Root	15,23
(18)		$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{9}$	T garganica	Fruit	40,41
(19)		$\mathrm{C}_{28}^{28} \mathrm{H}_{42} \mathrm{O}_{9}$	T transtagana	Root, fruit	41
(20)		$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{10}$	T villosa, type 5	Root	42
(21)		$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{10}$	T villosa, type 5	Root	42
(22)		$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{O}_{9}$	T villosa, type 5	Root	42
(23)		$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{9}$	T villosa, type 5	Root	42
(24)		$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$	T maxima	Root	79
(25)		$\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{5}$	T maxima	Root	79

[^5]Table 2. Thapsane Derivatives from Thapsia

Structure Number	Name of Compound	Formula	Plant Source	Plant Organ	Reference(s)
(26)	15-O-Acetylthapsane-14-al	$\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3}$	Thapsia villosa var. minor*	Root	80
(27)	6,14-Thapsene-15-ol	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}^{3}$	T. villosa, type 2 (T. laciniata)	Root	81
(28)	15-O-Feruloyl-6, 14-thapsene	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{4}$	T. villosa, type 2 (T. laciniata)	Root	81
(29)	(1S)-1-O-Senecioyl-6, 14-thapsene-15-ol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$	T. villosa var. minor	Root	81
(30)	(1S, 6R)-1-O-Senecioyl-6, 14-epoxythapsane-15-ol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T. villosa var. minor	Root	80
(31)	($1 S, 6 R$)-15- O-Acetyl-1- O-Senecioyl-6, 14-epoxythapsane	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{5}$	T. villosa var. minor	Root	80
(32)	14,15-Epoxythapsane-14-ol	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{2}$	T. villosa, type 2 (T. laciniata)	Root	81
(33)	($8 R, 14 S$)-8-O-Angeloyl-14,15-epoxythapsane-14-ol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T. villosa, type 2 (T. laciniata)	Root	82
(34)	($8 R, 14 S$)-8-O-Senecioyl-14, 15-epoxythapsane-14-ol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T. villosa var. minor	Root	24
(35)	8-O-Coumaroyl-14, 15-epoxythapsane-14-ol	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$	T. villosa var. minor	Root	26
(36)	8-O-Feruloyl-14, 15-epoxythapsane-14-ol	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6}$	T. villosa var. minor	Root	26
(37)	1-O-Senecioyl-14, 15-epoxythapsane-14-ol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T. villosa var. minor	Root	26
(38)	1-O-Angeloyl-14, 15-epoxythapsane-14-ol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T. villosa type 3	Root	83
(39)	1-O-Tigloyl-14, 15-epoxythapsane-14-ol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T. villosa type 3	Root	83
(40)	3-O-Angeloyl-14,15-epoxythapsane-14-ol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T. villosa var. minor	Root	26
(41)		$\mathrm{C}_{40} \mathrm{H}_{62} \mathrm{O}_{7}$	T. villosa var. minor	Root	26

[^6]Table 3 Guaiol and Guaiane Esters from Thapsia

Structure Number	Name of Compound	Formula	Plant Source	Plant Organ	Reference(s)
(42)	Guaiol	$\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}$	Thapsia villosa, type 2 (T laciniata)	Root	82
(43)	(4S, 5S, $7 S, 8 S$)-8-Senecioyloxy-1(10)-guaren-11-ol	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{3}$	T villosa, type 2 (T lacinata)	Root	84
(44)	(4S, 5S, 7S, $8 S$)-8-p-Coumaroyloxy-1(10)-guaien-11-ol	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}$	T villosa, type 2 (T laciniata)	Root	84
(45)	(4S, 5S, 7S, 8 S)-8-Feruloyloxy-1(10)-guaren-11-ol	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5}$	T villosa, type 2 (T laciniata)	Root	84

Table 4 Germacrane Esters from Thapsia

Structure Number	Name of Compound	Formula	Plant Source	Plant Organ	Reference(s)
(46)	8-O-Angeloyltovarol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$	Thapsia villosa var minor*	Root	28
			T villosa var villosa**	Root	28
(47)	8 -O-Senecioyltovarol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{3}$	T villosa var minor	Root	28
(48)	8-O-Coumaroyltovarol	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{4}$	T villosa var minor	Root	28
(49)	8-O-Feruloyltovarol	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5}$	T villosa var minor	Root	28
(50)	12-Hydroxy-8-O-angeloyltovarol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T villosa var minor	Root	27
(51)	12-O-Angeloyl-8-O-angeloyltovarol	$\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{5}$	T villosa var minor	Root	27
(52)	8-O-Angeloylshiromodiol	$\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4}$	T villosa var minor	Root	28
			T villosa var villosa	Root	28
(53)	6-O-Acetyl-8-O-angeloylshıromodiol	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{5}$	T villosa var minor	Root	28
			T villosa var villosa	Root	28
(54)	12-O-Angeloyl-8-O-angeloylshıromodiol 6-O-Acetyl-8-O-Angeloyl-1(10),4(5)diepoxygermacrane	$\begin{aligned} & \mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{8} \\ & \mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{6} \end{aligned}$	T villosa var minor	Umbellas	27
(55)			T villosa var minor	Root	28
			T villosa var villosa	Root	28

Table 5. Other Sesquiterpenoids from Thapsia

Structure Number	Name of Compound	Formula	Plant Source	Plant Organ	References
$\mathbf{(5 6)}$	δ-Cadinene	$\mathrm{C}_{15} \mathrm{H}_{24}$	Thapsia villosa var. minor	Umbellas	27
$\mathbf{(5 7)}$	γ-Cadinene	$\mathrm{C}_{15} \mathrm{H}_{24}$	Thapsia villosa var. minor	Umbellas	27
$\mathbf{(5 8)}$	γ-Muurolene	$\mathrm{C}_{15} \mathrm{H}_{24}$	Thapsia villos var. minor	Umbellas	27
$\mathbf{(5 9)}$	β-Caryophyllene	$\mathrm{C}_{15} \mathrm{H}_{24}$	Thapsia villos a var. minor	Umbellas	27
$\mathbf{(6 0)}$	β-Caryophyllene	$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}$	Thapsia villos var. minor	Umbellas 27	
	oxide				

(18), $\mathrm{R}^{1}=2-\mathrm{MeBut}, \mathrm{R}^{2}=$ But, $\mathrm{R}^{3}=\mathrm{H}$
(19), $\mathrm{R}^{1}=\mathrm{iVal}, \mathrm{R}^{2}=2-\mathrm{MeBut}, \mathrm{R}^{3}=\mathrm{H}$
(20), $\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=2-\mathrm{MeBut}, \mathrm{R}^{3}=\mathrm{Ac}$
(21), $\mathrm{R}^{1}=\mathrm{Ac}, \mathrm{R}^{2}=\operatorname{Sen}, \mathrm{R}^{3}=\mathrm{Ac}$
(22), $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=2-\mathrm{MeBut}, \mathrm{R}^{3}=\mathrm{Ac}$
(23), $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=$ Sen, $\mathrm{R}^{3}=\mathrm{Ac}$

Chart 4. Slovanolides found in Thapsia

The heterogeneity of T. villosa has caused some confusion in the naming of investigated plant specimens. The name T. villosa var. minor was used by a Spanish group for plant material, from which they isolated a number of secondary metabolites (24-28). The structures of the isolated secondary metabolites make it most likely, that their collection should be designated T. villosa type I. Likewise T. villosa var. villosa (28) is assumed to belong to type 5 .

Common for all the three types within group 1 is the presence of derivatives of thapsane, tovarol and shiromodiol (Tables 2 and 4) in the

$$
\begin{aligned}
& \text { (24) } \mathrm{R}=\text { Ang } \\
& \text { (25) } \mathrm{R}=\text { Tig }
\end{aligned}
$$

Chart 5. 10(14)Unsaturated guaianolides found in Thapsia

(29), $\mathrm{R}=\mathrm{H}$

(30), $\mathrm{R}=\mathrm{H}$
(31), $\mathrm{R}=\mathrm{Ac}$

Chart 6. Thapsanes found in Thapsia

(32)

(33), R = Ang
(34), $R=\operatorname{Sen}$
(35), $\mathrm{R}=p$-Coum
(36), $\mathrm{R}=\mathrm{Fer}$

(37), $\mathrm{R}=\mathrm{Sen}$
(38), R = Ang
(39), $\mathrm{R}=\mathrm{Tig}$

(40)

Chart 7. Epoxythapsanes found in Thapsia

Chart 8. Dimeric epoxythapsanes found in Thapsia

Guaiol (42)

(43), R = Sen
(44), $\mathrm{R}=p$-Coum
(45), $\mathrm{R}=\mathrm{Fer}$

Chart 9. Guaianes found in Thapsia
roots, whereas only type 2 contains guaiol and guaiane esters (Table 3). The major constituent of the essential oil, accounting for 79-89\%, from the fruits of all three types is geranyl acetate (29).

In contrast, the characteristic constituents of the roots of the two types 4 and 5, within group 2, are thapsigargins and slovanolides (Table 1), phenylpropanoids (13) and 6 -methoxy-7-geranyloxycoumarin (23). Only a few tovarol derivatives $(\mathbf{4 6}, 52,53$ and $\mathbf{5 5}$) have been detected in plants from both groups 1 and 2 (28). The essential oils from types 4 and 5 are

(50) $\mathrm{R}=\mathrm{H}$
(51) R = Ang

(52) $\mathrm{R}=\mathrm{H}$
(53) $R=A c$

(54)

(55)

Chart 10. Germacranes found in Thapsia

δ-Cadinene (56)

γ-Cadinene (57)

γ-Muurolene (58)

β-Caryophyllene (59)

Chart 11. Sesquiterpenes found in Thapsia
similar to the essential oil from T. maxima in having limonene and methyl eugenol as the two major components which together constitute $80-90 \%$ of the oil $(21,30,31)$.

Chart 12. β-Caryophyllene oxide (60)

Sen $=$

$\mathrm{Tig}=$

iVal =

Chart 13. Structure and abbreviations for acyl residues found in Thapsia

2.4. Thapsia gymnesica

Thapsia gymnesica Rosselló \& Pujadas, found only on Mallorca and Minorca, has been described as a new species in 1991 (32). Like T. garganica the chromosome number is $2 \mathrm{n}=22(=2 \mathrm{x})$ and it contains thapsigargin (1), thapsigargicin (2) and nortrilobolide (15), which previously have been found only in T. garganica. The characteristic difference between T. garganica and T. gymnesica is the much smaller fruits of T. gymnesica, which are of the same size as the fruits of T. maxima and T. villosa.

3. Elucidation of the Structure of Thapsigargin

Comparison of the spectra of thapsigargin (1) and thapsigargicin (2) (Fig. 2) with those of trilobolide (14) (17) showed that 1 and 2 were hexaoxygenated guaianolides (33). The non-crystalline state of thapsigargin prevented determination of the relative and absolute configuration by an X-ray crystallographic analysis. However, after treatment of thapsigargin with thionyl chloride a crystalline derivative was obtained, the structure of which was determined by X-ray analysis. This analysis established the location of the four acyl groups and the relative configuration, except at $C(7)$ and $C(11)(34)$. The X-ray analysis also showed that in analogy with trilobolide (17) treatment of the thapsigargin with thionyl chloride converts the vicinal 7,11-diol into the epoxide (78) (Scheme 7, p. 156). Although it is easily rationalized thionyl chloride promoted conversion of 1,2 -diols into epoxides apparently only occurs if the geometry of the molecule favours intramolecular dehydration (see e.g. 35). The few known analogous reactions did not allow conclusions concerning the stereochemistry of the starting 7, 11-diol.

The unresolved stereochemical questions were elucidated, when the X-ray structure of trilobolide was published (36). 8-O-Deacylthapsigargin (63) formed an 1,3-dioxane (82) upon reaction with acetone (Scheme 7) as did 8-O-deacyltrilobolide (37). This common reaction path indicated that the 7 -hydroxy group had to be trans to the 8-and 11-hydroxy groups. In addition the absolute configurations of $\mathrm{C}(3)$ in thapsigargin (1) and trilobolide (14) were established by taking advantage of the exciton coupling in the allylic ester of the α, β-unsaturated ester residue $(38,39)$. The found absolute configuration of trilobolide (14) was confirmed by determination of the absolute configuration of the 2-methylbutyric acid residue (38) and taking advantage of the relative stereochemistry as determined by X-ray crystallography (36).

Fig. 2. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ and ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ Data for Nuclei of the Skeleton of Thapsigargin $(12,34)$

The acyl groups in the thapsigargins (2-13) were located by interpretation of the fragmentation pattern of the mass spectra (12). This method, however, did not permit locating the isomeric acyl groups in thapsivillosin H (10).

4. Proazulenic Slovanolides

In addition to the thapsigargins some $7 \alpha \mathrm{H}-6,12$-guaianolides (18-23) have been isolated from species belonging to the genus Thapsia (40-42). These guaianolides were originally isolated in order to find the precursor for the azulenes found in the essential oils of the fruits of T. garganica (43). All of the guaianolides ($\mathbf{1 8}-\mathbf{2 3}$), which possess the stereochemistry characteristic of the slovanolides (44), are easily converted into azulenes by heating. The mechanism for the degradation of the 11-hydroxy lactones (18) and (19) to give 1,4-dimethylazulene (61) could be a retrograde Prins-like reaction (45) and some cis-eliminations of carboxylic acids (Scheme 1). This reaction explains the presence of 1,4-dimethylazulene (61) in the essential oil of fruits from T. garganica and T. transtagana.

Scheme 1. Possible mechanism for the formation of 1,4-dimethylzulene

Scheme 2. Possible mechanism for the formation of 1,4-dimethyl-7-acetylazulene

The proton of the 11-hydroxy group is essential for formation of 1,4dimethylazulene as depicted. Accordingly only trace amounts of 1,4-dimethylazulene can be found after heating a methanolic solution of the 11α-acetoxyslovanolides ($\mathbf{2 0}-\mathbf{2 3}$) whereas the main product is $1,4-$ dimethyl-7-acetylazulene (62). The mechanism for this conversion is obscure, but the decarbonylation of α-oxygenated acids and esters described in the literature (46) suggests that the azulene is formed through the reaction path depicted in Scheme 2.

5. Non-lactonic Sesquiterpenoids from Thapsia

A number of non-lactonic sesquiterpenoids have been isolated from specimens belonging to T. villosa (Tables 2-5). Most interesting from a phytochemical point of view are the $2,3,3 \mathrm{a}, 4,4,7 \mathrm{a}$-hexamethylindan (thapsane) derivatives (26-41), since natural products possessing this skeleton only have been isolated from plants belonging to Thapsia. The unique structure including three contiguous quaternary carbons and five to six chiral centres has made the compounds attractive synthetic targets $(47,48)$.

6. Pharmacological Activity of the Thapsigargins

The mechanism behind the skin irritating effect of the thapsigargins might be related to their ability to release mediators from cells belonging to the immune system. Indeed thapsigargin was demonstrated to activate a broad number of cells including mast cells $(3,49)$, neutrophil and basophil leucocytes, lymphocytes, macrophages and platelets (4-7). Later studies have verified that thapsigargin activates virtually all kind of cells (50,51), with erythrocytes as exceptions (4). Besides causing release of mediators or contraction of muscle cells thapsigargin was shown to be a tumour promoter on mouse skin (8). Careful study of the numbers of induced tumours reveals an unusual decrease after 22 weeks. The recently described thapsigargin induced programmed cell death (apoptosis) (52) might explain this finding and might indicate a future for thapsigargin in the treatment of cancer.

The broad spectrum of activity indicates that thapsigargin interferes with an ubiquitous target. A clue for the identification of this target was the finding that all effects of thapsigargin were preceded by a dramatic increase in the cytosolic Ca^{2+} concentration $(4,53)$. This effect was rationalized by the observation that thapsigargin was a selective inhibitor

Cyclopiazonic acid

2,5-Di-tert-butylhydroquinone

Chart 14. Structure of cyclopiazonic acid and 2,5-di-tert-butylhydroquinone
of Ca^{2+} pumps in the sarco- or endoplasmic reticulum (the SERCA family) without affecting either the pumps in the plasma membrane or those in the mitocondrial membrane $(6,10,11)$. In the resting state of the cells the cytosolic Ca^{2+} - concentration is maintained at a very low level by active transport of Ca^{2+} either into the endo- or sarcoplasmic reticulum or to the extracellular medium. Inhibition of the SERCA pumps is accompanied by a leak in the membranes surrounding the microsomal Ca^{2+}-pools causing an increased cytosolic Ca^{2+} concentration and eventually an opening of Ca^{2+}-channels in the plasma membrane, followed by an influx of extracellular Ca^{2+}. Since Ca^{2+} signal transduction regulates such diverse cellular processes as fertilization, cell growth, muscle contraction, neuronal signal transduction and mediator release, any compound selectively affecting a step in the Ca^{2+} homeostasis is a potential tool for investigating the physiology of the cells.

In addition to the thapsigargins two other compounds, 2,5-di-tertbutylhydroquinone and cyclopiazonic acid, have been shown to mobilize Ca^{2+} from the same intracellular pools (54-57). However, as it is four order of magnitudes more potent than the latter two compounds, thapsigargin is the preferred tool for investigation of the Ca^{2+} homeostasis $(56,57)$. A still debated question concerning the mobilization of Ca^{2+} during cell activation is whether the depletion of the microsomal Ca^{2+} pools and the opening of the plasma membrane Ca^{2+}-channels is coupled through an unknown soluble messenger (58). Thapsigargin has played a key role in the attempts to elucidate this problem.

7. Molecular Pharmacology

The Ca^{2+}-ATPases belong to the P-type ion pumps. These enzymes are characterised by a transport mechanism which involves occlusion of

Fig. 3. A model of the transport cycle for SERCA pumps illustrating the dead end complex formed with thapsigargin [modified after $(60,61)$]
the cations to be translocated followed by a transfer of the terminal phosphate group of ATP to a β-aspartyl carboxyl. This phosphorylation induces a change of conformation from the E_{1} to the E_{2} conformation. This conformational change transports the cations through the membrane against the concentration gradient and releases them to the intracellular pool or to the extracellular medium. After release of the cations the pump is dephosphorylated and returns to the E_{1} conformation (59). Thapsigargin inhibits the SERCA pumps by locking the enzyme into a conformation, which have only a poor if any affinity for Ca^{2+}, ATP and phosphate (60,61).

In Fig. 3 the complexation between thapsigargin and the ATPase has been drawn as if the reaction were irreversible. In principle, this reaction must be reversible; however, the extremely small dissociation constant [$K_{d} 2.2 \mathrm{pM}$ or less (62)] makes this reaction irreversible in practice. Since complexation with thapsigargin locks the enzyme into a dead end complex this binding must inactivate the enzyme by decreasing the flexibility. An improved knowledge of the binding site, thus might contribute to an understanding of the conformation changes involved in the translocation of Ca^{2+}.

At the present the most detailed model for the structure, topology and helix packing of P-type ion pumps has been obtained by electron microscopy (63). According to this model the enzyme contains ten transmembrane helices and an ATP binding site and a phosphorylation site on the cytosolic loop combining the fourth and fifth transmembrane segment. The Ca^{2+} binding site is constituted from residues on the fourth, fifth, sixth and eighth transmembrane section (64). Studies on chimeric proteins consisting of defined parts of Ca^{2+}-ATPase and $\mathrm{Na}^{+}, \mathrm{K}^{+}$-ATPase have revealed that the third transmembrane segment is important for the
binding of thapsigargin (65-67). Studies on the complex between a fluorescent thapsigargin derivative and the pump have revealed that thapsigargin is situated less than $19 \AA$ from tryptophan residue-272(68). An indirect way of characterising the topography of the binding site is to correlate changes of the structure of the molecule with the inhibitory potency of the analogue. This, however, depends on development of methods for selective transformations of thapsigargin.

8. Chemistry of Thapsigargin

Selective modification of the structure of thapsigargin is complicated by the few different functional groups present, although the guaianolide skeleton is heavily substituted.

8.1. Changes at $C(8)$

Anchimeric assistance by the 11-hydroxy group in the solvolysis of the ester group at $\mathrm{C}(8)$ results in selective hydrolysis of the butyrate group to give (63) by merely allowing a methanolic solution to stand for some days at room temperature (Schem 3). The reaction is catalysed by addition of a few percent of triethylamine (69). In contrast to sodium carbonate catalysed cleavage of the butanoate group (70), triethylamine in methanol does not open the lactone ring, a side reaction which after acidification has been shown to afford a mixture of (63) and the isomeric 8,12-guaianolide (64). Addition of acid to a methanolic solution of thapsigargin decreases the rate of the solvolysis.

An isomer of 8-O-debutanoylthapsigargin has been claimed to be present in a methanolic extract of the roots of T. garganica (71). The published spectrum of this compound, however, is similar to the spectrum of (63) and the time consuming extraction with methanol (7 days) makes it likely, that the compound is (63) formed by methanolysis of thapsigargin.

Compound (63) has been used as starting material for preparation of radio and fluorescence labelled analogues $\left[e . g .\left({ }^{3} \mathrm{H}-1\right)\right.$ and $\left.(66)\right](69,70)$. In spite of the loss in the affinity for the Ca^{2+}-ATPases by insertion of a large fluorescent group, the derivatives have found use as tools for investigation of the Ca^{2+} homeostasis and the topography of the binding site.

Esterification of the 8-hydroxy group in (63) with vinylacetic acid yields (65), which by selective reduction of the terminal double bond by hydridocarbonyltris(triphenylphosphine)-rhodium(I) catalysed hydrogenation using deuterium or tritium gas, gave access to deutero- or tritium

(1)

(64)

1) Mild base
2) Acid

(63)
$(\mathrm{RCO})_{2} \mathrm{O}$
DMAP

(65)

$\left({ }^{3} \mathrm{H}-1\right)$

(66)

Scheme 3. Replacement of the 8-O-acyl group of thapsigargin
labelled thapsigargin $\left({ }^{3} \mathrm{H}-1\right)(70)$. Although thapsigargin labelled in the 8 -O-acyl group is useful for binding studies (72), the derivative is unfit for metabolic studies because of the possible loss of the reporter group. In order to overcome this problem 8-O-debutanoylthapsigargin (63) was used for radiolabelling in the guaianolide skeleton. 8-O-Debutanoylthapsigargin (63) was oxidized to the ketone (67) which by stereoselective reduction with sodium borohydride afforded the starting material (Scheme 4). The use of sodium borotritide permitted tritiation at $C(8)$ in the guaianolide skeleton (69). In contrast to the mode of reduction with sodium borohydride, reduction of the 8 -ketone with sodium triacetoxyborohydride selectively afforded the 8-hydroxy derivative inverted at $C(8)(68)(73)$. This might be explained by assuming that the 11-hydroxy group defines the stereochemistry of the product.

8.2. Changes at $\mathbf{C}(3)$

Selective cleavage of the angelate ester at $\mathrm{O}(3)$ to give (71) was accomplished by permanganate oxidation of the double bond under phase

Scheme 4. Inversion of $\mathrm{C}(8)$ in thapsigargin
transfer conditions to give the pyruvate (70) followed by methanolysis (Scheme 5). Thapsigargin analogues with inverted configuration at $\mathrm{C}(3)$ were obtained either by oxidation to the ketone (72) followed by

(1)

$\xrightarrow{\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CO}\right)_{2} \mathrm{O}}$

(75)

(76)

Scheme 5. Inversion of $\mathrm{C}(3)$ in thapsigargin
borohydride reduction to give a mixture of (74) and (75), or by treatment of (71) with trifluoromethanesulfonic anhydride to give the same mixture of the two monooctanoates (74) and (75). The two monooctanoates were found to be easily interconvertible, but treatment of the mixture with octanoic anhydride afforded the stable dioctanoate (76) (73) (Scheme 6).
(71)

(77)

Scheme 6. Replacement of the 3-O-acyl group in thapsigargin

Access to (71) has made a number of thapsigargin analogues available, in which the angeloyl group has been replaced with other acyl residues e.g. (77)(73) (Scheme 6). These latter analogues have given important information about the binding site for thapsigargin.

8.3. Changes of the Vicinal Diol

Treatment of thapsigargin with thionyl chloride converts the diol into the β-epoxide (78) (34) (Scheme 7). Esterification of the two tertiary alcohols affording the diacetate (81) only succeeds if 4-dimethylaminopyridine is added as a catalyst. The 11-O-monoacetate ($\mathbf{8 0}$) is formed as the major side product (73). Selective esterification of the 7-hydroxy group to give (79) is accomplished via the isopropylidene derivative (82) (73).

8.4. Changes of the Lactone Carbonyl Group

Reduction of thapsigargicin (2) with sodium borohydride or preferentially sodium bis(2-methoxyethoxy)ethoxy-aluminium hydride (74) affords a mixture of the α-and β-lactol (83) and (84), which has been used as

(82)

Scheme 7. Derivatives of the glycol residue of thapsigargin
starting material for several analogues of thapsigargicin (2) (Scheme 8). Attempts to separate the two epimeric lactols failed, probably because of a phenomenon analogous to mutarotation in carbohydrate chemistry.

Treatment of the lactols (83) and (84) with trimethyl orthoformate in ethanol affords a mixture of the β-ethyl acetal (85) and the two possible ortho formates (86) and (87) (74). In contrast reaction with triethyl

(83) $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$
(84) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$

(88)

(85)
$\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}\right)_{3} \mathrm{CH}$ H^{+}

(86) $\mathrm{R}^{1}=\mathrm{OC}_{2} \mathrm{H}_{5}, \mathrm{R}^{2}=\mathrm{H}$
(87) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OC}_{2} \mathrm{H}_{5}$

Scheme 8. Derivatives of thapsigargicin lactol
orthoacetate only yields the α-acetate (91) (Scheme 9). Reaction between the lactols and 2,2-dimethoxypropane affords the tetracyclic derivative $\mathbf{(8 8)}(71)$. Treatment of the lactols (83) and (84) with N, N-dimethylformamide dimethyl acetal affords the epoxide (90).

The α-ethylthioacetal (94) obtained by reacting the lactols (92) and (93) with ethanethiol in the presence of hydrogen chloride was reduced to give the 12-deoxoanalogue of thapsigargin (95) (75) (Scheme 10), in which the heterocyclic ring cannot be opened under physiological conditions as is the case for thapsigargin (1) as well as for the lactols (92) and (93), (83) and (84). The reduction, which is catalysed by triphenyltin hydride and α, α^{\prime}-azoisobutyronitrile follows a radical mechanism and the radicals formed during the reduction also converts the thermodynamically less stable angeloyl residue into a tigloyl residue.

8.5. Changes at $\mathrm{O}(10)$

Selective hydrolysis of the acetate ester can be accomplished indirectly by hydrolysis under more vigorous reaction conditions to give the $2,8,10$ -

(91)

Scheme 9. Derivatives of thapsigargicin lactol

(92) $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{OH}$
(93) $\mathrm{R}^{1}=\mathrm{OH}, \mathrm{R}^{2}=\mathrm{H}$

(95)

Scheme 10. Synthesis of 12-deoxythapsigargin

(96)

$\left(\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CO}\right)_{2} \mathrm{O}$
DMAP

(99)

Scheme 11. Selective hydrolysis of the 10-O-acyl group in thapsigargin

O-trideacylderivative (96) which by reaction with an excess of octanoic anhydride is converted to the 2,8-dioctanoate (97). Selective hydrolysis of the 8 -octanoate group to give (98) followed by reesterification with butyric anhydride yields 10-O-deacetylthapsigargin (99) (73) (Scheme 11).

9. Structure Activity Relationships

The very small value of the dissociation constant indicates that thapsigargin (1) is very intimately bound to the binding site. This statement is confirmed by the dramatic change in affinity cause by small changes in

Table 6 Relative potencies of Thapsigargin-Derived Microsomal $\mathrm{Ca}^{2+}-$ ATPase Inhibitors*

Compound	Relative Activity (R)
$\mathbf{(1)}$	1
$\mathbf{(2)}$	10
$\mathbf{(9 5)}$	11
$\mathbf{(8 5)}$	12
$\mathbf{(9 2}+\mathbf{9 3})$	16
$\mathbf{(9 1)}$	19
$\mathbf{(8 6)}$	25
$\mathbf{(8 0)}$	25
$\mathbf{(7 9)}$	28
$\mathbf{(7 7)}$	11
$\mathbf{(8 1)}$	15
$\mathbf{(8 8)}$	16
$\mathbf{(8 6)}$	40
$\mathbf{(9 9)}$	42
$\mathbf{(7 2)}$	66
$\mathbf{(7 6)}$	44×10
$\mathbf{(6 9)}$	31×10^{2}

* The R value designates the number obtained by dividing the IC_{50} value of the analogue with the IC_{50} value of thapsigargin (1) $\left[\mathrm{IC}_{50}\right.$ (analogue)/IC $\mathrm{In}^{\text {(thapsigargin) }}$] The analogues are arranged according to decreasing potencies The numbers are obtained from the IC_{50} values reported in Refs (72-74) Notice that the inhibition of the ATPase has been measured in two different ways in the references and that different enzyme preparations have been used
structure (Table 6). Thus, epimerization of $\mathrm{C}(8)$ causes the IC_{50} value to increase more than 3000 times [compare (1) with (69)]. Similar epimerization at $C(3)$ induces a fortyfold decrease in affinity [compare (77) with (76)]. The carboxylic acid residue at $\mathrm{O}(3)$ also has some importance for the affinity, since replacement of angelic acid (1) with the larger octanoic acid (77) causes an elevenfold decrease in inhibitory activity. The acyl residue at $\mathrm{O}(10)$, however, appears to be of major importance for activity since hydrolysis of this ester causes a fortyfold decrease in activity [compare (1) with (99)]. In contrast, the hydroxyl groups at $C(7)$ and $C(11)$ appear to be of lesser importance since monoacetylation (79) and (80) only yields a two to threefold decrease in activity. Acetylation of both of these hydroxy groups (81), however, produces a somewhat weaker analogue, which might be explained by the bulkiness of the two acetyl groups. Similarly, the lactone carbonyl is not essential for activity, since reduction of this

$\left({ }^{3} \mathrm{H}-96\right)$

Scheme 12. Metabolic catabolism of thapsigargin
group to a methylene group (95) has only a marginal effect. This is confirmed by reduction of the lactone to a mixture of the two lactols (92) and (93), which has a somewhat smaller activity than thapsigargin. It is tempting to speculate that this remaining activity mainly originates in the β-form, since the β-ethyl acetal (85) is only marginally less potent than $\mathbf{1}$, whereas the α-acetate (91) is only half as potent. Replacement of the butanoic acid residue with larger acid functions causes a decrease in activity, thus limiting the possibilities for introduction of fluorescent groups which in general contain a large aromatic system.

Replacement of the octanoic acid residue at $\mathrm{O}(2)$ with hexanoic acid only has a marginal effect on the activity [compare (1) with (2)]. Unfortunately no chemical method has been developed for selectively replacing this acid. However, Nature produces trilobolide (14), which appears to be four times less potent than thapsigargin indicating that the nature of the ester group has some bearing on the activity. It is important to point out that the potencies observed in studying enzyme preparations do not in a simple way correspond to functional assays performed on e.g. whole cells. Thus both of the acetates $\mathbf{(7 9)}$ and (80) have a considerable effect on the isolated enzyme, but they are thirty times less potent as histamine secretagogues (77).

The above structure activity relationships are based on measurements performed on purified enzyme preparations.

10. Metabolic Catabolism of Thapsigargin

No in vivo study has been performed on the metabolism of thapsigargin. Incubation of hepatocytes with thapsigargin tritiated at $\mathrm{C}(8)$ reveals a quick catabolism of the compound which affords first 2-O-deoctanoylthapsigargin $\left({ }^{3} \mathrm{H}-100\right)$ and thereafter the trideacylated derivative $\left({ }^{3} \mathrm{H}-96\right)$ (78) (Scheme 12). Further degradation products could not be detected because of loss of the reporter tritium, probably occurring by an oxidation of the secondary alcohol at $\mathrm{C}(8)$. Addition of diethyl p-nitrophenyl phosphate strongly protected thapsigargin from metabolic degradation indicating that carboxylesterases catalyze the transformation.

Acknowledgment

[^7]
References

1 Perrot, R Matıeres Premıeres Usuelle du Regne Vegetal, p 1630 Parıs Mason 1943-44
2 Tschirch, A, and E Stock Die Harze, Vol 2, 2nd half, 2nd part, p 1540 Berlın Verlag von Gebruder Borntraeger 1936
3 Rasmussen, U,S B Christensen, and F Sandberg Thapsigargin and Thapsigargicın, two new Histamıne Liberators from Thapsia garganica L Acta Pharm Suee 15, 133 (1978)

4 Ali, H,S B Christensen, J C Foreman, F L Pearce, W Piotrowski, and O Thastrup The Abılıty of Thapsıgargın and Thapsıgargicın to Actıvate Cells Involved in the Inflammatory Response Br J Pharmacol 85, 705 (1985)
5 Scharff, O, B Foder, O Thastrup, B Hofman, J Møller, L P Ryder, K D Jacobsen, E Langhoff, E Dickmeiss, S B Christensen, P SkinhøJ, and A Svejgaird Effect of Thapsigargin on Cytoplasmic Ca ${ }^{2+}$ and Proliferation of Human Lymphocytes in Relation to AIDS Biochım Bıophys Acta 972, 257 (1988)
6 Thastrup, O, A P Dawson, O Scharff, B Foder, P J Bjerrum, S B Christensen, and M R Hanley Thapsigargin, a Novel Molecular Probe for Studying Intracellular Calcium Release and Storage Agents Actions 27, 17 (1989)
7 Ohuchi, K , T Sugawara, M Watanabe, N Hirasawa, S Tsurufuji, H Fujiki, S B Christensen, and T Sugimura Analyses of the Stımulatıve Effect of Thapsigargın, a non-TPA-Type Tumour Promoter, on Arachidonic acid metabolism in Rat Peritoneal macrophages Br J Pharmacol 94, 917 (1988)
8 Hakii, H, H Fujiki, M Suganuma M Nakayasu, T Tahira, T Sugimura, P J Scheuer, and S B Christensen Thapsigargin, a Histamine Secretagogue, is a non-12-O-Tetradecanoylphorbol-13-acetate (TPA) Type Tumour Promoter in Two Stage Mouse Skın Carcınogenesıs J Cancer Res Clın Oncol 111, 177 (1986)
9 Thastrup, O Role of Ca^{2+}-ATPases in Regulation of Cellular Ca^{2+} Signalling, as Studied with the Selective Microsomal Ca^{2+}-ATPase Inhıbitor, Thapsigargin Agents Actions 29, 8 (1990)
10 Thastrup, O, P J Cullen, B K Drøbak, M R Hanley, and A P Dawson Thapsigargin, a Tumor Promoter, Discharges Intracellular Ca^{2+} stores by Specific Inhibition of the endoplasmic retıculum Ca^{2+}-ATPase Proc Acad Scı (USA) 87, 2466 (1990)
11 Lytton, J, M Westlin, and M Hanley Thapsıgargin Inhıbits the Sarcoplasmic or Endoplasmıc Retıculum Ca-ATPase Famıly of Calcıum Pumps J Biol Chem 266, 17067 (1991)
12 Christensen, S B, E Norup, U Rasmussen, and J ØGaard Madsen Structure of Hıstamıne Releasıng Guaıanolides from Thapsia garganica Phytochemıstry 23, 1659 (1984)

13 De Pascual, Teresa, J, J R Moran, J M Hernandez, and M Grande Phenylpropanoids and other Derıvatıves from Thapsıa villosa Phytochemıstry 24, 2071 (1985)
14 Smitt, U W, A K Jager, A Andersen, and L Gudiksen Comparative Studies in Phytochemistry and Fruit Anatomy of Thapsia garganica and T transtagana, Apıaceae (Umbelliferae) Bot J Lin Soc 117, 281 (1995)
15 Norup, E, U W Smitt, and S B Christensen The Potencies of Thapsigargin and Analogues as Actıvators of Rat Peritoneal Mast Cells Planta Med 251 (1986)
16 Norup, E, U W Smitt, and S B Christensen Nortrılobolide, a New Potent Guaianol1de Secretagogue from Thapsia garganica Planta Med 57, 196 (1991)
17 Holub, M, Z Samek, R Degroote, V Herout, and F Sorm The Structure of the

Sesquiterpenic Triester Lactone Trilobolide Collect Czech Chem Comm 38, 1551 (1973)

18 Holub, M, and M Budesinsky Sesquiterpene Lactones of the Umbelliferae Phytochemistry 25, 2015 (1986)
19 Fronczek, F K, D Vargas, N H Fischer, and K Hostettmann The Molecular Structure of 7α-Hydroxy-3-desoxy-zaluzanın C, a Molluscicidal Sesquiterpene Lactone J Nat Prod 47, 1036 (1984)
20 Tutin, T G Thapsia L In Tutin, T G, V H Heywood, N A Burges, D M Moore, D H Valentine, S M Walthers, and D A Webb, eds Flora Europaea, Vol 2, p 370 Cambrıdge Cambrıdge Unıversity Press 1968
21 Avato, P, N Jacobsen, and U W Smitt Chemotaxonomy of Thapsia maxima Miller Constituents of the Essential Oll of the Fruits J Ess Oıl Res 4, 467 (1992)
22 Smitt, U W A Chemotaxonomic Investigation of Thapsia villosa L Apiaceae (Umbelliferae) Bot J Lin Soc 118, 367 (1995)
23 Rasmussen, U, S B Christensen, and F Sandberg Phytochemistry of the Genus Thapsia Planta Med 43, 336 (1981)
24 De Pascual, M, J Teresa, J R Moran, and M Grande ($8 R$, 14S)-8-Senecioyloxy-14, 15-epoxythapsan-14-ol, a New Sesquiterpenoid from Thapsia villosa var minor A 2D NMR Study Chem Letters 865 (1985)
25 De Pascual, M, J Teresa, M De pascual, A Arias, J M Hernandez, J R Moran, and M Grande Helmanticin, a Phenylpropanoid from T villosa Phytochemistry 24, 1773 (1985)
26 De Pascual, M, J Teresa, J R Moran, A Fernandez, and M Grande Hemiacetalic Thapsane Derıvatives from Thapsia villosa var minor Phytochemıstry 25, 703 (1986)
27 De Pascual, M, J Teresa, J R Moran J M Hernandez, and M Grande 12Hydroxytovarol and other Derıvatıves from Thapsia villosa var minor Phytochemistry 25, 1165 (1986)
28 De Pascual, M, J Teresa, J R Moran, J M Hernandez, and M Grande Tovarol and Other Germacrance Derıvatıves from Thapsia villosa Phytochemıstry 24, 1779(1985)
29 Avato, P, G Trabace, and U W Smitt Composition of the Essential Oils from Three Types of Thapsla villosa L, Apıaceae (Umbelliferae) Phytochemıstry 43, 609 (1996)
30 Avato, P, G Trabace, and U W Smitt Composition of the Essential Oils from Fruits from Polyploıde Types of Thapsia villosa L J Ess Oil Res 8, 123 (1996)
31 Velasco-Neguerucla, A, and M J Perez-Alonso The volatıle Oıl of Thapsia villosa L A Medicinal Plant of the Mediterranean Basın Phytochem (Life Scı Adv) 11, 125 (1992)

32 Pujadas, A, J A Rossello, and P Barcelo De Flora balearica Adnotationes (10) Thapsla gymnesica Spec Nov Candollea 46, 65 (1991)
33 Christensen, S B, U Rasmussen, and C Christophersen Thapsigargin, Constitution of a Sesquiterpene Lactone Histamıne Liberator from Thapsia garganica Tetrahedron Letters 21, 3829 (1980)
34 Christensen, S B , I Kıøller Larsen, U Rasmussen, and C Christophersen Thapsıgargın and Thapsigargıcın, two Hıstamınc Liberatıng Sesquiterpene Lactones from Thapsia garganıca X-ray Analysis of the 7,11-Epoxıde of Thapsıgargin J Organ Chem 47, 649 (1982)
35 Coxon, I M, M P Hartshorn, and D N Kirk Acid-Catalysed Reactions of 13, 17a-Eopxy- and 17a,18-Epoxy-C-nor-D-homo-spırostans Tetrahedron 21, 2489 (1965)

36 Kutshabsky I, G Reck, D Pfeiffer, and H Ripperger Die Struktur des Sesquiterpens Silerın Z Chem 24, 24 (1984)

37 Christensen, S B Intepretation of the NMR and Circular Dichroic Data of the Sesquiterpene Lactone Thapsigargin Acta Chem Scand Ser B 42, 623 (1988)
38 Christensen, S B , and E Norup Absolute Configuration of the Histamine Liberating Sesquiterpene Lactones Thapsigargin and Trılobolide Tetrahedron Letters 26, 107 (1985)

39 Lauridsen, A, C Cornett, and S B Christensen Exciton Coupling in Circular Dichroic Spectroscopy as a Tool for Establishing the Absolute Configuration of α, β-Unsaturated Esters of Allylic Alcohols Acta Chem Scand 45, 56 (1991)
40 Smitt, U W , P Moldt, and S B Christensen Structure of a pro 1,4-Dimethylazulene Guaianolide from Thapsia garganica L Acta Chem Scand Ser B 40, 711 (1986)
41 Avato, P , A Andersen, U W Smitt, and S B Christensen Localızation of the Acyl Groups in Proazulene Guaianolides from Thapsia transtagana Brot J Nat Prod 56, 411 (1993)
42 Smitt, U W, C Cornett, A Andersen, S B Christensen, and P Avato New Proazulene Guaranloides from Thapsia villosa L J Nat Prod 53, 1479 (1990)
43 Avato, P Essential Oıl of Thapsia garganica Planta Med 57, 585 (1991)
44 Smitalova, Z, M Budesinsky, D Saman, S Vasickova, and M Holub Components of the Extract from the Underground Parts of Laserpitium siler L of Slovenian origin Collect Czech Chem Com 49, 852 (1984)
45 March, J Advanced Organic Chemıstry, 3rd edn, p 856 New York John Wiley and Sons 1985
46 March, J Advanced Organıc Chemıstry, 3rd edn, p 341 New York John Wiley and Sons 1985
47 Srikrishna, A, and K Krishnan Sterospecific Synthesis of Thaps-7(15)-ene and Thaps-6-ene, Probable Biogenetıc Precursors of Thapsanes Tetrahedron Letters 30, 6577 (1989)
48 Srikrishna, A, and K Krishnan Stereospecific Construction of Multıple Contıguous Quaternary Carbons Total Synthesis of (\pm)-cls,antl,cls-1,8,12,12-Tetramethyl-4-oxatrıcyclo[64000$]$ dodecan-3-ol, a Thapsane Isolated from Thapsia villosa var minor J Organ Chem 58, 7751 (1993)
49 Patkar, S A , U Rasmussen, and B Diamant On the Mechanısm of Histamine Release Induced by Thapsıgargin from Thapsia garganıca L Agents Actıons 9, 53 (1979)
50 Mikkelsen, E O, O Thastrup, and S B Christensen Effects of Thapsigargin in Isolated Rat Thoracic Aorta Pharmacol Toxicol, 62, 7 (1988)
51 Christensen, S B, A Andersen, A Lauridsen, P Moldt, U W Smitt, and O Thastrup Thapsigargin, a Lead to Desıgn of Drugs with the Calcıum Pump as Target In New Leads and Targets in Drug Research (Krogsgando-Larsen, P, S B Christensen, and H Kofod, eds), p 243 Copenhagen Munksgaard 1992
52 Furuya, Y, P Lundmo, A D Short, D G Gill, and JT Isaacs Endoplasmic Retıculum Calcıum-ATPase as a Therapeutıc Target for Actıvatıng Programmed Death of Nonproliferatıng Androgen-Independent Prostatıc Cancer Cells Cancer Res 54, 6167 (1994)
53 Jackson, T R, S I Patterson, O Thastrup, and M R Hanley A Novel Tumour Promoter, Thapsigargin, Transiently Increases Cytoplasmic Free Ca^{2+} Without Generation of Inositol Phosphates in NG115-401L Neuronal Cells Biochem J 253, 81 (1988)

54 Kass, GEN, S K Duddy, G A Moore, and S Orrenius 2,5-D1(tert-butyl)-1,4benzohydroquinone Rapıdly Elevates Cytosolıc Ca^{2+} Concentratıon by mobılızıng the inositol 1,4,5-trısphosphate-sensitıve Ca^{2+} Pool Bıochem J 264, 15192 (1989)
55 Demaurex, N, D P Lew, and K Krause Cyclopiazonic Acid Depletes Intracellular
Ca^{2+} Stores and Activates and Influx Pathway for Divalent Cations in HL-60 Cells. J. Biol. Chem. 267, 2318 (1992).
56. Inesi, G., and Y. SAGARA: Specific Inhibitors of Intracellular Ca^{2+} Transport ATPases J. Membrane Biol. 141, 1 (1994).
57. Foskett, J.K., and A.D. Wong: Calcium Oscillations in Parotid Acinar Cells Induced by Microsomal Ca ${ }^{2+}$-ATPase Inhibition. Am. J. Physiol. 262, C656 (1992).
58. Putney, J.W., and G.S. Bird: The Signal for Capacative Calcium Entry. Cell 75, 199 (1993).
59. Glynn, I.M., and S.J.D. Karlish: Occluded Cations in Active Transport. Ann. Rev. Biochem. 59, 171 (1990).
60. Sagara, Y., J.B. Wades, and G. Inesi: A Conformational Mechanism for Formation of a Dead-End Complex by the Sarcoplasmic Reticulum ATPase with Thapsigargin. J. Biol. Chem. 267, 1286 (1992).
61. Sagara, Y., F. Fernandez-Belda, L. de Meis, and G. Inesi: Characterization of the Inhibition of Intracellular Ca^{2+} Transport ATPases by Thapsigargin. J. Biol. Chem. 267, 12606 (1992).
62. Davidson, G.A., and R.J. Varhol: Kinetics of Thapsigargin- Ca^{2+}-ATPase (Sarcoplasmic Reticulum) Interaction Reveals a Two Step Binding Mechanism and Picomolar Inhibition. J. Biol. Chem, 270, 11731 (1995).
63. Stokes, D.L., W.R. Taylor, and N.M. Green: Structure, Transmembrane Topology and Helix Packing of P-Type Ion Pumps. FEBS Letters 346, 32 (1994).
64. MacLennan, D.H., D.M. Clarke, T.W. Loo, and I.S. Skerjanc: Sitedirected Mutagenesis of the Ca^{2+} ATPase of Sarcoplasmic Reticulum. Acta Physiol. Scand. 146, 141 (1992).
65. NørregÅrd, A., B. Vilsen, and J.P. Andersen: Transmembrane Segment M3 is Essential to Thapsigargin Sensitivity of the Sarcoplasmic Reticulum Ca^{2+}-ATPase. J. Biol. Chem. 269, 26598 (1994).
66. NørregÅrd, A., B. Vilsen, and J.P. Andersen: Chimeric Ca^{2+} ATPase/ Na^{+},ATPase Molecules. FEBS Letters 336, 248 (1993).
67. Andersen, J.P., and B. Vilsen: Structure-Function Relationships of Cation Translocation by Ca^{2+}-and $\mathrm{Na}^{+}, \mathrm{K}^{+}$-ATPases Studied by Site Directed Mutagenesis. FEBS Letters 359, 101 (1995).
68. Hua, S., H. Malak, J.R. Lakowicz, and G. Inesi: Synthesis and Interaction of Fluorescent Thapsigargin Derivatives with the Sarcoplasmic Reticulum ATPase Mem-brane-Bound Region. Biochemistry 34, 5137 (1995).
69. Andersen, A., A. Lauridsen, and S.B. Christensen: Radio- and Fluorscence Labelling of Thapsigargin, a Selective Inhibitor of Microsomal Calcium-ATPase. J. Label. Comp. Radiopharm. 31199 (1992).
70. Christensen, S.B.: Radiolabelling of the Histamine Liberating Sesquiterpene Lactone, Thapsigargin. J. Label. Comp. Radiopharm. 22, 71 (1985).
71. Falsone, G., H. Haddad, and D. Wendisch: Sesquiterpenlactontriester ungewöhnlicher Struktur aus Thapsia garganica L. Arch. Pharmaz. (Weinheim) 319, 372 (1986).
72. Christensen, S.B., M. Hergebnhahn, H. Roeser, and E. Hecker: Toxicodynamies of Tumour Promoters of Mouse Skin III. Specific Binding of the Tumour Promoter Thapsigargin as Measured by the "Cold Acetone-Filter Assay". J. Cancer Res. Clin. Oncol. 118, 344 (1992).
73. Andersen, A., C. Cornett, A. Lauridsen, C.E. Olsen, and S.B. Christensen: Selective Transformations of the Ca^{2+} Pump Inhibitor Thapsigargin. Acta Chem. Scand. 48, 340 (1994).
74. Nielsen, S.F., O. Thastrup, R. Pedersen, C.E. Olsen, and S.B. Christensen: Structure

Activity Relationships of Analogues of Thapsigargın Modffied at $\mathrm{O}-11$ and $\mathrm{O}-12 \mathrm{~J}$ Med Chem 38, 272 (1995)
75 Andersen, A , M Treiman, J J Poulsen, C Cornett, P Moldt, C E Olsen, and S B Christensen Ca^{2+}-ATPase Inhibitory Activity of a Locked Analogue of Thapsigargın Bioorg Med Chem Letters 4, 657 (1994)
76 Christensen, S B , A Andersen, J J Poulsen, and M Treiman Derivatives of Thapsıgargin as Probes of its Binding Site on Endoplasmatic reticulum Ca^{2+} ATPase Steroselectivity and Important Functional Groups FEBS Letters 335, 345 (1993)
77 Andersen, A Thapsigargın-Analoger, Semısyntese og Struktur-Aktıvitets Studier PhD Thessis Royal Danısh School of Pharmacy 1994
78 Nielsen, M S, C E Olsen, J Dich, S B Christensen, and N Grunnet Metabolism of Thapsigargin in Rat Hepatocytes Drug Metabolism Disposition 22, 433 (1994)
79 Smitt, U, and S B Christensen Personal Communication
80 De Pascual, M, J Teresa, J R Moran, A Fernandez, and M grande Non Acetalic Thapsane Sesquiterpenoids from Thapsia villosa var minor Phytochemistry 25, 1171 (1986)

81 Smitt, U W, C Cornett, E Norup, and S B Christensen Novel Hydroindene Sesquiterpenes from Thapsia villosa Phytochemistry 29, 873 (1990)
82 Lemmich, E, B Jensen, and U W Rasmussen ($8 R, 14 S$)-8-Angeloylthapsan-14-ol, Sesquiterpene with a Novel Carbon Skeleton, from Thapsia villosa Phytochemistry 23, 809 (1984)

83 Smitt, U W, P Avato, and S B Christensen Personal Communication
84 Lemmich, E, U W Smitt, J S Jensen, and S B Christensen Gualane Esters from Thapsia villosa Phytochemıstry 30, 2987 (1991)

Pregnane Glycosides

D. Deepak, S. Srivastav, and A. Khare*, Department of Chemistry, Lucknow University, Lucknow 226007, India

Contents

1. Introduction 170
2. Isolation and Identification 170
2.1. Thin Layer and Column Chromatography 170
2.2. Sephadex LH-20 Chromatography 171
2.3. Flash Chromatography 171
2.4. Low Pressure Liquid Chromatography (LPLC) 171
2.5. High Performance Liquid Chromatography (HPLC) 172
3. Structure Elucidation 172
3.1. One-Dimensional NMR Spectroscopy 173
3.2. Two-Dimensional NMR Spectroscopy 177
3.3. Mass Spectrometry 181
3.4. I.R. Spectroscopy 183
3.5. U.V. Spectroscopy 183
3.6. Optical Rotatory Dispersion 183
3.7. Hydrolysis of Pregnane Glycosides 183
4. Pregnane Aglycons 185
5. Sugars of Pregnane Glycosides 185
5.1. General and Monosaccharides 185
5.2. Disaccharides from Pregnane Glycosides 185
5.3. Trisaccharides from Pregnane Glycosides 197
6. Biosynthesis of Pregnane Glycosides 197
7. Biological Activity 198
Acknowledgement 309
References 309
[^8]
1. Introduction

Pregnanes $(1,2)$ are C_{21} steroidal compounds found in nature either in the free state or as glycosides. In pregnane glycosides the sugar moiety is linked to an alcoholic hydroxyl group of the pregnane aglycon, most frequently at C-3 (3), C-20 (4) or both (bisdesmosidic glycosides) (5), through an acetal linkage. However, in some cases, the sugar moiety is linked to hydroxyl functions at C-2 (6), C-4 (7) or C-21 (8). Pregnane glycosides containing one (9) to six (10) sugar units have been isolated from the extracts of different plant parts, i.e. roots, stems, seeds etc.

The last comprehensive review of pregnane glycosides by Reichstein (1) covered the literature up to 1967. Although four review articles dealing with certain aspects of pregnanes and their glycosides (11-14) have since been published, no comprehensive review has appeared since then. A review article by Deepak and co-workers (2) dealt in depth with the structural features of plant pregnanes; the present review article is thus a continuation of this earlier review. Besides the structures of isolated pregnanes and their glycosides, new techniques of isolation, recent physicochemical methods of structure elucidation and the biological significance of glycosides reported during the period 1968-1995 have been incorporated.

2. Isolation and Identification

The advent of new chromatographic techniques has made it possible to isolate these compounds in high purity which was not possible earlier. Examples of the use of classical and more recent techniques for isolation of pregnane glycosides are given below.

2.1. Thin Layer and Column Chromatography

Use of thin layer chromatography (15) still prevails for preliminary identification and for comparison with authentic samples. The use of reversed phase TLC (RP-8-R $\mathrm{R}_{254} \mathrm{~S}$ and $\mathrm{RP}-188_{254}$) for the study of pregnane glycosides has been reported by Jin et al. (16) and Yuan et al. (17). Use of high performance TLC (Si 50, 000 F-254S) (6) and high performance reversed phase TLC (Merck HPTLC RP-18) (18) has also been reported.

The most common and successfully employed method for preparative isolation of pregnane glycosides is column chromatography. Normal and
reverse phase silica gel columns (Li chromprep RP-8) are being used for such isolations $(17,19)$. With reverse-phase packing material, there is increased back pressure which requires a shortening of the column in order to maintain adequate flow rates (20). AgNO_{3} impregnated silica gel has been used for separation of Δ^{5} - and $5 \alpha-H$ types of pregnane derivatives (19). Several bisdesmosidic pregnane glycosides have been isolated by Abe et al. (21) who used a combination of polystyrene (MCI gel), reverse-phase octadecyl silica (ODS) and silica gel columns.

2.2. Sephadex LH-20 Chromatography

Sephadex LH-20 has been used successfully for the separation of pregnane glycosides. A typical isolation procedure involving silica gel column chromatography and Sephadex LH-20 for the separation of cynanformoside A (81) and B(82) from Cynanchum formosanum has been described by CHEN et al. (22). Sephadex LH-20 chromatography has been combined with silica gel and ODS chromatography by IDAKA et al. (23) for the isolation of causiaroside II (237).

2.3. Flash Chromatography

Preparative air-pressure (compressed air or nitrogen) driven liquid chromatography (flash chromatography) (24) is relatively fast, thus reducing the risk of decomposition and sample loss. Thus, dry column flash chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ and hexane- $\mathrm{Me}_{2} \mathrm{CO}$ has been used by Cabrera et al. (25) for preliminary separation of the crude glycoside mixture obtained from Mandevilla pentlandiana.

2.4. Low Pressure Liquid Chromatography (LPLC)

LPLC (26) is a very versatile and simple means of isolating substances on a milligram to gram scale, generally in combination with a prepurification step. In order to increase the effective column length and thus augment loading capacity and separating power, several Lobar columns are connected in series (20). The technique makes use of columns containing packing with a particle size of ca $40-60 \mu \mathrm{~m}$. Thus, Yuan et al. (17) have isolated marsdekoiside A (183), a pregnane triglycoside from Marsdenia koi, using Lobar chromatography on a LPLC system with a RP-8 column in combination with Si gel chromatography.

2.5. High Performance Liquid Chromatography (HPLC)

HPLC (27-29) is a very efficient technique used for the detection and isolation of pregnane glycosides and is commonly applied as a last step in the purification process. Abe et al. $(21,30)$ have purified the bisdesmosidic pregnane glycoside constituents of Apocynum venetum and Trachelospermum asiaticum using $\mathrm{CH}_{3} \mathrm{CN}$ and water as eluent. HPLC using reverse phase packing material is also being successfully employed for isolation purposes. Thus, Itokawa et al. (31) effected the separation of pregnane glycoside constituents of Periploca sepium by HPLC on RP-18 column using methanol-water as eluant while toosendanoside (235) was isolated from Melia toosendan by NaKanishi et al. (6) by HPLC on a reverse phase Kusano ODS column ($\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$; flow rate $3 \mathrm{ml} / \mathrm{min}$) and Kusano $\mathrm{Si}-10$ silica column $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$; flow rate $\left.3 \mathrm{ml} / \mathrm{min}\right)$. Preparative HPLC was used for the isolation of four pregnane glycosides from Boucerosia aucheriana by Hayashi et al. (18), while Ahmad et al. (32) used preparative HPLC on a reverse phase column for separation of two pregnane glycosides from Caralluma tuberculata. Chiral HPLC columns are being used for confirming the absolute stereochemistry of the sugar moieties obtained by acidic hydrolysis of pregnane glycosides (19).

The detection of pregnane glycosides is usually difficult as no diagnostic test or specific reaction for their identity is so far known. Colours observed with non-specific reagents such as chloroformic $\mathrm{SbCl}_{3}(33,34)$ and $50 \% \mathrm{H}_{2} \mathrm{SO}_{4}(35,36)$, although widely used for their detection, are never reliable and conclusive. Still, there are some diagnostic reagents and reactions which are used for characterization, such as the LiebermannBurchardt (37) and Carr-Price tests (34) for steroids. The presence of sugar(s) in these glycosides is established by the Molisch test $(38,39)$. 2-Deoxy-and 2,6-dideoxyhexoses are characterized using the xanthydrol test $(3,40)$, Webb's test (41), vanillin-perchloric acid reagent $(42,43)$ and Keller-Kiliani test $(3,44)$ while the presence of normal (2-hydroxy) sugars is detected by Partridge (45) and Feigl tests $(9,46)$.

3. Structure Elucidation

The conventional method for structure elucidation of pregnane glycosides involved acid hydrolysis followed by identification of the aglycon and sugar residues separately (47), whereas the site of glycosidation was usually determined by comparing the UV absorption of the glycosides with that of the aglycon in the presence or absence of various shift reagents $(48,49)$. In recent years, in addition to mass spectroscopy (EI, CI, FD and

FAB), other physico-chemical techniques of a non-destructive nature such as NMR (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and 2D) etc. are increasingly being used for structure elucidation of pregnane glycosides.

3.1. One-Dimensional NMR Spectroscopy

${ }^{1} H$ NMR Spectroscopy

The high frequency $(400-500 \mathrm{MHz}){ }^{1} \mathrm{H}$ NMR spectra of pregnane glycosides are well resolved; thus the information from the range which contains the signals of anomeric protons is considerable. The anomeric protons of the monosaccharides present in pregnane glycosides appear between $4.3-5.5 \mathrm{ppm}(50,51)$. The anomeric protons of α-glycosides usually resonate $0.3-0.5 \mathrm{ppm}$ downfield from those of the corresponding β-glycosides (52). In the case of normal (2-hydroxy) sugars, the anomeric proton usually appears as a doublet (16) in the region $\delta 4.4-5.4(16,52)$, the magnitude of the splitting depending on the stereochemistry of $\mathrm{H}-1^{\prime}$ as well as that of $\mathrm{H}-2^{\prime}$. For example, if the $\mathrm{H}-2^{\prime}$ is axial (as in the case of gluco and galacto stereochemistry), $J_{1^{\prime}, 2^{\prime}}$ is relatively small ($2-4 \mathrm{~Hz}$) for an α glycosidic linkage, whose $\mathrm{H}-1^{\prime}$ is equatorial (53). In β-anomers of sugars with gluco and galacto configuration $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-2^{\prime}$ are trans-diaxial which results in a larger $(8-10 \mathrm{~Hz})$ coupling constant (50). In sugars having the manno-configuration, such as rhamnose, where $\mathrm{H}-2^{\prime}$ is equatorial the small dihedral angle gives rise to small values of $J_{1^{\prime}, 2^{\prime}}$ for both α - and β-anomers (52). In the case of 2-deoxy sugars, the signals of the anomeric proton appears as a $d d$ in the region $\delta 4.2-5.3(51,54)$ and sometimes as a triplet (55) if $J_{1^{\prime}, 2^{\prime} \mathrm{a}}=J_{1^{\prime}, 2^{\prime} \mathrm{b}}$ depending on the nature of the glycosidic linkage. Coupling constants of $7-10$ and $1-2 \mathrm{~Hz}$ are indicative of a β glycosidic linkage (3) with the sugars in the ${ }^{4} \mathrm{C}_{1}$ conformation (56) and $\mathrm{H}-1^{\prime}$ axial, whereas smaller coupling constants of $3-4$ and 1 Hz (57) indicate a α-glycoside with the sugar in the ${ }^{1} \mathrm{C}_{4}$ conformation (56) and $\mathrm{H}-1^{\prime}$ is equatorial. In the higher field region, the signals of the equatorial and axial H-2' protons of 2-deoxy hexoses appear as two sets of multiplets in the region $\delta 2.0-2.5$ and $1.5-2.0(53)$, respectively, while the characteristic signals of the secondary methyl groups $\left(6^{\prime}-\mathrm{CH}_{3}\right)$ of 6 -deoxy sugars appear as doublets ($\mathrm{J}=6 \mathrm{~Hz}$) between $\delta 1.0-1.5(3)$.

The ${ }^{1} \mathrm{H}$ NMR spectra of pregnane glycosides also provide important information about the aglycon. Thus, $-\mathrm{CHOHCH}_{3}$ or $-\mathrm{COCH}_{3}$ side chains at $\mathrm{C}-17$ can be recognized (15) by the presence of a three proton doublet in the region $\delta 1.0-1.5$ or a three proton singlet at $\delta 2.1$, respectively. Two three proton singlets appear in the region $\delta 0.7-1.2(15,53)$ due to the angular methyl groups at $\mathrm{C}-10$ and $\mathrm{C}-13$; however, in 18-nor pregnane
glycosides the signal of the $\mathrm{C}-13$ angular methyl group is absent (58). Signals of the methylene and methine protons occur in the region $81.5-2.5$ (59) and $\delta 3-4$ (2), respectively. The C-11 methine proton under a hydroxyl appears in the region $\delta 3.2-4.6(15,60)$ as a triplet (15) or double doublet if a hydroxyl is present at C-12 (61) while the C-12 and C-20 methine protons generally are doublets (62) and quartets (63), respectively, in the same region depending on whether substituents are present on neighbouring carbons. Esterification of the hydroxy functions shifts the signal of corresponding methine proton downfield by $0.6-1 \mathrm{ppm}$ (2) compared with its precursor. Most commonly, pregnanes are found as esters of benzoic (19), cinnamic (10), isovaleric (64), tiglic (65), nicotinic (66), 2 -methylbutanoic (65), β, β-dimethyl acrylic (ikemic) $(10,67)$ or acetic acids (65).

The number of primary and secondary hydroxyl groups present can be established by counting the acetate peaks at $\delta 2.1-2.3$ of acetylated pregnane glycosides (53) while the number of tertiary hydroxyl groups can be deduced by $\mathrm{D}_{2} \mathrm{O}$ exchange (16) and the trichloroacetyl isocyanate reagent (68). Decoupling experiments $(7,52,58)$ which are very helpful in confirming the assignments of the anomeric protons and other functional groups are now routine. These experiments can be used for confirming the assignments of the signals due to $\mathrm{H}-1^{\prime}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-5^{\prime}$ of the 2,6-dideoxy sugars besides the $\mathrm{C}-20$ methine and secondary methyl protons present in the side chain of the pregnane aglycon (63). Proton spin decoupling and correlated spin-spin coupling experiments (69) have been used for establishing the structures of constituent hexoses of pregnane glycosides.

Nuclear Overhauser Effect (NOE) measurements can also be used to prove the point of attachment of the sugar moiety to the aglycon. Irradiation of $\mathrm{H}-3 \alpha$ of the aglycon (when the sugar is linked to $3-\mathrm{OH}$) results in an NOE at the anomeric proton of the sugar $\left(\mathrm{S}_{1}\right)$ directly attached to the glycon (5). Similarly, irradiation of the anomeric proton of the second $\operatorname{sugar}\left(\mathrm{S}_{2}\right)$ causes enhancement of $\mathrm{H}-4$ proton (in case of a $1 \rightarrow 4$ linkage) of the first sugar $\left(\mathrm{S}_{1}\right)$ and vice versa (70), thus providing information regarding the sugar sequence and site of glycosidation in pregnane oligoglycosides. The technique is also helpful in determining the structure of the constituent sugars $(7,32)$ and the stereochemistry at $\mathrm{C}-17$ and $\mathrm{C}-20$ of the pregnane aglycon (19).

The point of attachment of the sugar moiety to the pregnane genin can also be ascertained by comparison with the O -acetyl derivative of the pregnane glycoside (53). A downfield shift of $0.5-1.0 \mathrm{ppm}$ is observed in the signal of the acetylated methine proton as compared with the parent precursor while the chemical shift of the methine signal involved in the glycosidic linkage remains unaffected.

${ }^{13}$ C NMR Spectroscopy

In recent years ${ }^{13} \mathrm{C}$ NMR spectroscopy which is complementary to ${ }^{1} \mathrm{H}$ NMR spectroscopy has become much more useful due to the greater chemical shift dispersion and the lack of complexities arising from spinspin coupling and overlap of resonances. It is instrumental in assigning the number, sequence and linkage of sugars (52) within the molecule. In the case of oligoglycosides (52,71-75), the identity of the sugar(s) may be established $(18,19)$ on the basis of the chemical shift of the anomeric carbon(s). Moreover, it supplements ${ }^{1} \mathrm{H}$ NMR spectrometry in helping to establish the point of attachment of ester functions present (52).

In the ${ }^{13} \mathrm{C}$ NMR spectra of pregnane glycosides the resonances of the anomeric carbons are found in a well-separated chemical shift range of $\delta 96-112(52,76)$ and not only greatly aid in determining the number of monosaccharide units but also provide information on the nature of the glycosidic linkages. The signals due to β-linkages usually appear 2-6 ppm downfield from their α-counterparts (52). The other resonances due to the carbohydrate part of the glycoside appear in the region $\delta 16-19(31,77)$; $\delta 55-62(19,76)$; $\delta 60-63.5(23,53)$ and $\delta 65-85(76)$ for the secondary methyl of 6-deoxy sugars, methoxy functions, $\mathrm{CH}_{2} \mathrm{OH}$ of normal hexoses and the ring carbons, respectively.

As for the pregnane part of the glycosides the signals of the $\mathrm{C}-18$ angular methyl group appears in the region $\delta 7-15.8(22,51)$ while the position of the angular methyl at C-10 varies between $\delta 12-24.5(18,78)$. Any variation in the structure of the aglycon, affects (78) the chemical shifts of these two angular methyls. If $\mathrm{H}-5$ is α or if a 5,6 -double bond is present the signal of $\mathrm{C}-19$ angular methyl group appears between $\delta 10.8-$ $17.0(54,64)$ and $\delta 15.5-20.0(23,53)$ respectively, while if the double bond is between C 6 and C 7 it is found between $\delta 14.4-14.7(30,55)$. C-21 appears in the region $\delta 15.0-24$ unless next to a carboxyl $(6,22)$. Methylene and methine carbons to which no oxygen function is attached absorb between $\delta 35-54(79,80)$ while carbons carrying an -OH group have signals in the region $860-90(53,77)$.

Esterification of a hydroxyl deshields the corresponding carbon by $0.6-3.5 \mathrm{ppm}(52,81)$ compared with unacylated precursor. These acylation shifts are important in deducing the position of esterification as the downfield shift of the esterified carbon is accompanied by an upfield shift of the adjacent carbon resonances (the β-carbons) by $1.2-4.0 \mathrm{ppm}(82,83)$. The carbonyl carbon of the ester appears in the region $\delta 165-171(51,65)$ depending on the presence or absence of unsaturation in the esters while the other carbons of acid part exhibit their customary shifts (viz. $\delta 20-22$ for CH_{3} of acetate $(19,22), \delta 128-135$ for the aromatic carbons of benzoyl
and cinnamoyl residues (51,65), $\delta 117-145$ for vinylic carbons of tigloyl and cinnamoyl $(65,84)$ and $\delta 160-164$ for the sp^{2} hybridized carbon carrying the methyl group of ikemoyl (10). The vinylic C-5 and C-6 carbons of the aglycon appear between $8140-144$ and $8117-123(84,85)$. $\mathrm{A} \mathrm{CH}_{3} \mathrm{C}=\mathrm{O}$ side chain attached to $\mathrm{C}-17$ can easily be identified as the carbonyl C-20 resonates between 208-217 $(65,86)$.

The glycosidation shifts are analogous to the acetylation shifts and are instrumental in determining the point of attachment of the sugar chain to the aglycon. The carbon involved in glycosidation shifts to lower field by 3-6 ppm (87) while the upfield shift of the adjacent carbons ranges between $0.5-4 \mathrm{ppm}$ as compared with the native genin (87). These glycosidation shifts (88-94) are being used to ascertain the glycosidation site in the pregnane glycosides $(18,69)$ and in all the reported cases, where sugar is glycosidically linked to $\mathrm{C}-3$ of the genin, the shielding experienced by $\mathrm{C}-4$ is about twice that suffered by $\mathrm{C}-2(19,58)$.

The sugar sequence in the glycoside can be ascertained $(25,95-98)$ by spin lattice relaxation time (T_{1}) measurements, as the average NT_{1} values for the sugar carbons in each unit increase with increasing distance from the aglycon moiety (99). This is due to segmental motion in the oligosaccharide chain with the aglycon part exhibiting an anchoring effect (99). Differences in the peak intensities of the inner and terminal sugar observed in partially relaxed Fourier transform (PRFT) measurements (100-103) in the ${ }^{13} \mathrm{C}$ NMR spectrum also provide information for identification of the terminal sugar and the sugar sequence in pregnane glycosides $(19,70)$. In diglycosides, the anomeric carbon of the terminal sugar resonates $2-4 \mathrm{ppm}$ downfield from that of the inner sugar (104).

Long-range selective proton decoupling (LSPD) (105-108) has also been used to establish the location of ester functions within the aglycon of pregnane glycosides. This technique has made it possible to correlate protons under ester groups with the corresponding carbonyl carbons, particularly in cases when esters are attached to $\mathrm{C}-11$ and $\mathrm{C}-12$ of a pregnane genin $(19,107)$. This technique also served to identify the chemical shifts of the angular methyl carbons at C-10 and C-13 and the site of the glycosidic linkage. Thus irradiation of the signals due to $\mathrm{H}-9$ and $\mathrm{H}-12$ results in an increase in the intensity of the $\mathrm{C}-19$ and $\mathrm{C}-18$ signals (107), respectively, while irradiation of an anomeric proton changes the splitting of that carbon to which it is glycosidically linked, hence permitting identification of the site of glycosidation (109).

Primary, secondary and tertiary carbons can be identified by single frequency off resonance decoupling (SFORD) $(87,110)$ which reduces CH couplings to such an extent that only the largest coupling constants $[J(\mathrm{CH})]$ give rise to residual splittings, thus allowing determination of the
number of attached hydrogens (22). Thus a quarternary carbon gives rise to a singlet, a methine carbon to a doublet, a methylene to a triplet and a methyl group to a quartet. Information regarding the multiplicity of carbons can also be obtained by newer techniques such as the attached proton test (APT) (62,111-113), distortionless enhancement by polarization transfer (DEPT) (22, 32,114-116) and insensitive nuclei enhanced by polarization transfer (INEPT) (117-120). Selective INEPT $(120,121)$ has been used to establish connectivity (122-124) between the anomeric proton and carbon atom of the aglycon. Irradiation of the anomeric proton selectively enhances the carbon signal of the aglycon to which it is linked; similarly, irradiation of the aglycon proton leads to the appearance of the anomeric carbon of the glycon residue (52).

Berger et al. have used the technique of selective protondecoupling in gated decoupled ${ }^{13} \mathrm{C}$ NMR for the structure revision (54) of condurangogenins $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E and their glycosides. The results indicated that the acetoxy group was attached to $\mathrm{C}-11$ at $11 \alpha-\mathrm{OH}$ and the cinnamate to $\mathrm{C}-12$ which was the reverse of the originally proposed structures (125-130).

3.2. Two-Dimensional NMR Spectroscopy

Although one-dimensional NMR methods $\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ provide useful information for determining the basic structure of pregnane glycosides, the severe problems encountered due to substantial overlap of multiplets does not generally allow unambiguous assignments of all signals leading to a complete structure of the molecule. These difficulties may be overcome by the use of various two-dimensional techniques developed in recent years (52,131-133). The application of such techniques to solve problems in the field of pregnane glycosides will be discussed briefly.

$2 D^{1} H^{-1} H \operatorname{COS} Y$ (Homocorrelated Spectroscopy)

This is also referred to as homonuclear shift correlation through J-coupling (134-136). The information obtained from the spectrum is the scalar coupling connectivity network of the molecule concerned using cross peaks. Assignment of signals requires an initial point for identification of the individual spin systems - in pregnane glycosides, the anomeric proton which is connected to a carbon bearing two oxygen atoms appears downfield and is conveniently taken as a starting point for assignments. Within a typical aldohexopyranosyl ring, the coupling network is unidirectional i.e., $\mathrm{H}-1$ couples to $\mathrm{H}-2, \mathrm{H}-2$ couples to $\mathrm{H}-1$ and $\mathrm{H}-3$ and so on
(52). In the aglycon portion, the scalar (J) coupling pathways leading from $\mathrm{H}-3 \alpha$ to $\mathrm{H}-4 \alpha, \mathrm{H}-4 \beta$ and to $\mathrm{H}-2 \alpha, \mathrm{H}-2 \beta$ and finally to $\mathrm{H}-1 \alpha, \mathrm{H}-1 \beta$ can be elucidated from a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY experiment (113). The method has also been used to assign the position of an ester function within the aglycon or sugar portion $(17,55)$. One fundamental limitation of COSY, however, is that couplings must be at least partially resolved before they can give rise to a cross-peak.

COSY 45

COSY-45 (133) has two advantages over basic COSY:
(a) By reducing the intensity of transfer between parallel transitions as a result of reducing cross peaks within multiplets and by thus simplifying the appearance of the spectrum around the diagonal in a complex spectrum the technique makes it possible to identify correlations that would otherwise be hidden in the cluster of peaks close to the diagonal.
b) By restricting multiplet transfers largely due to directly connected transitions the method allows determination of the relative sign of coupling constant in a system with three or more spins. Ahmad et al. (32) have made use of the spin couplings in the COSY-45 (32) experiment to identify the sugar of caratuberside A (58) from Caralluma tuberculata. Sequence information on the sugars of the glycoside could also be deduced from the long-range (${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$) COSY-45 experiment (137).

Double-Quantum Filtered $\operatorname{COSY}(D Q F-C O S Y)$

Multiple quantum filters (138) for elucidating NMR coupling networks have been described; the most widely used filtration method is through double quantum coherence (139-141). The great advantage (86) of double quantum filtration is that it suppresses the strong signals emanating from singlets, i.e. from tertiary methyls and solvents, and that therefore hidden multiplets which are isochronous to tertiary methyls can be assigned unambiguously from the spectrum. It not only provides characteristic multiplicity within the cross-peak, enabling identification of particular sugar units, but also provides semiquantitative information on the coupling constants of protons involved in cross peaks. In the aglycon part of the pregnane glycosides all $\mathrm{H}-\mathrm{H}$ connectivities except for those next to the angular methyl groups ($\mathrm{Me}-18,-19$) can thus be determined by DQF COSY (7).

Relayed Coherence Transfer $\operatorname{COSY}($ RCT2D $)$

In an AMX system where J_{AM} and J_{MX} represent vicinal couplings and $J_{\mathrm{A}, \mathrm{X}}$ equals zero (for a saturated compound), the corresponding COSY
spectrum would show cross peaks between A and M and M and X, but not between A and X. A technique for establishing connectivity between A and X , i.e. between two remote nuclei within a given spin system, is known as relayed Coherence Transfer (RCT). RCT COSY (142-144) propagates the magnetization transfer from A to M on through further couplings experienced by M. Recently, Hughes has used RCT 2D NMR spectroscopy for determining proton chemical shifts in steroids (145). As the heteronuclear RCT 2D spectrum contains both the direct ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ responses and relayed responses which arise from ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ vicinal couplings (146), it allows the proton-proton and carbon-carbon connectivity network to be deduced irrespective of congestion in the proton spectrum if the carbon spectrum can be resolved. On the basis of RCT2D spectrum, the connectivities in the aglycon portion ($\mathrm{C}-2$ to $\mathrm{C}-4$, the five proton bearing carbon segment from C-6 to C-11, C-14 to C-17 and C-20 to C-21) have been established (113).

Nuclear Overhauser Effect Spectroscopy (NOESY)

This experiment offers a means of determining spatial relationships, thus providing the information about the spatial structure of the molecule. Cross peaks are observed in 2D NOESY (147-148) spectra between proton pairs that are close in space (i.e. typically less than $5 \mathrm{~A}^{\circ}$). In general, 1,3-diaxial and equatorial-axial proton pairs in pyranosyl rings produce intra NOESY cross peaks, i.e. for the β-glucopyranosyl residue crosspeaks are observed between $\mathrm{H}-1$ and $\mathrm{H}-3$ (and $\mathrm{H}-5$) whereas a strong cross peak is observed between $\mathrm{H}-1$ and $\mathrm{H}-2$ in the α-glucopyranosyl configuration (52). It is also used for sugar sequencing and for determining the sites of glycosidic linkages. In a glycoside ($\mathrm{G}-\mathrm{O}-\mathrm{S}_{1}-\mathrm{O}-\mathrm{S}_{2}$), where the proton on $\mathrm{C}-1$ of S_{2} is close enough to the proton on $\mathrm{C}-4$ of S_{1} (in case of a $1 \rightarrow 4$ linkage), a cross peak between $\mathrm{H}-1$ of S_{2} and $\mathrm{H}-4$ of S_{1} would be observed. Thus, it is possible to demonstrate a linkage between the two sugars from a NOESY experiment $(31,32)$. The experiment is also used for deciding the stereochemistry of substituents (e.g. that of the C-17 side chain) in a pregnane aglycon (39).

Homonuclear Hartmann-Hahn Spectroscopy (HOHAHA)

The most useful method of relay in coherence along the chain of spins is the isotropic mixing experiment in which the net magnetization is transferred under spin-locking. From a HOHAHA (149-152) spectrum, a so-called ' J-network' can be determined (39) where a J-network is defined as a group of protons that are serially linked via ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} J$ (scalar)
couplings. For example, all protons of a single saccharide unit belong to the same J-network. A complete spin system can thus be identified (86) if there is at least one resonance in the spin system, such as the anomeric proton, which is well isolated and has a resonably large coupling to its neighbouring spin. Therefore, a slice through a HOHAHA spectrum (39) at each anomeric proton along the diagonal yields a ${ }^{1} \mathrm{H}$ subspectrum containing all scalar-coupled protons within that sugar residue. However, the distribution of magnetization around the spin system can be impeded by small couplings (e.g. H-4 and H-5 in the galactosyl residue) which lead to cross peaks up to $\mathrm{H}-4$ but no further (52).

Homonuclear J-resolved Two-dimensional Spectroscopy (HOMO 2DJ)

J-resolved spectroscopy (153) is used to resolve overlapping multiplets by producing spectra which have chemical shifts on one axis and scalar coupling on the other. It can provide unprecedented dispersion of the ${ }^{1} \mathrm{H}$ NMR spectra (154-155) but leaves unsolved assignment of individual resonances when strongly coupled nuclei are involved and/or multiplets originating from different spin system overlap (156). The usefulness of the method declines with increasing number of sugar residues and becomes of limited value in studies of oligoglycoside structure due to overlapping of mutually coupled signals which causes distortions in the multiplet pattern and prevents the use of cross sections for observing individual multiplets and for extraction of the desired ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ couplings $(31,32)$.

Heteronuclear 2D-NMR Spectroscopy

In heterocosy (157-161), heteronuclei such as ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ are correlated in 2D experiments. This, one of the most powerful of 2D experiments, combines the excellent resolving power of decoupled ${ }^{13} \mathrm{C}$ NMR with the ease of interpretation of proton chemical shifts and allows the resolution of single sites in all but the most intractable spin systems. Thus, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlation spectroscopy is useful for identification of protons bonded to individual carbons in pregnane glycosides $(113,124,162)$.

${ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ Long Range COSY

Two-dimensional heteronuclear correlation (163-165) via long-range coupling has been found to be useful in determining the connectivity of sugar to aglycon and the sequence of the sugars. The technique (39) has been employed by ItокаWa et al. (162) for determining the sequence of six sugars in the glycosidic chain of periplocoside A (217).

Heteronuclear Multiple-Quantum Coherence (HMQC)

Heteronuclear Multiple-Quantum Coherence (HMQC) (166-168) is a powerful method for the unambiguous assignment of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (86) spectra of pregnane glycosides and the C-H correlation assignment. Kashman et al. (7) have used HMQC for geminal C-H correlations in deducing the structure of verrucoside (238).

3.3. Mass Spectrometry

Mass spectrometry (MS) is obviously of prime importance in structure determination of pregnane glycosides $(2,169-170)$ which are frequently obtained from natural sources only in very small quantities, particularly when it is used in conjunction (53) with information obtained from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data. In recent years, better inlet techniques (171) have overcome the problem of low volatility.

In electron impact mass spectrometry (EIMS), $(79,172)$ fragments of lower mass value are more evident which often provides valuable structural information (57). Sometimes, fragments corresponding to the aglycon and the sugar are obtained (173). In addition to producing fragments arising from the common loss of the elements of water, methanol and $\mathrm{CH}_{3} \mathrm{CHO}$ in different sequences (174), the oligosaccharides of pregnane glycosides also decompose by retro-Diels-Alder fragmentation (170) initiated by a double bond created between C 2 and C 3 by the loss of water or methanol (175). Another important mode of fragmentation of oligosaccharides involves the radical ion cleavage of the C 1 and C 2 bond of the terminal sugar followed by the migration of the methoxyl (or hydroxyl) (176) group from C3 to C1 of the same sugar, a process which results in cleavage of the terminal sugar $(50,53,170,175,177-178)$. Further fragmentation of the residual oligosaccharide or glycosides takes place by the characteristic fragmentation patterns reported by Brown et al. (172). The presence of a methoxy function at $\mathrm{C}-3$ of a normal sugar can be ascertained by the loss of mass fragment $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$ from the sugar fragment. Similarly, loss of mass fragment $\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2}$ from a 2-deoxy sugar, present at the reducing end, shows the presence of a methoxy function at C-3 (170).

EIMS is also very useful in assigning the substituent groups within the aglycon part of polyhydroxy pregnane glycosides (2). Studies of the MS of polyhydroxy-pregnanes enabled FUKUOKA et al. (179) and BUDZIKIEWICZ et al. (180) to deduce correlations between structures and fragmentation patterns which have been summarised by Deepak and co-workers (2). Mass spectra have been of great utility in establishing the
presence of C-8 or/and C-14 hydroxy functions (181-183) which being tertiary in nature are not acetylated (181) and consequently cannot be easily detected by NMR methods. Mass spectra are also useful in assigning the position of hydroxy functions at $\mathrm{C}-11, \mathrm{C}-12, \mathrm{C}-15$ and $\mathrm{C}-16$ ($6,181-182,184-185$). The loss of ions of $\mathrm{m} / \mathrm{z} 45$ or 43 shows the presence of a $-\mathrm{CHOHCH}_{3}$ or COCH_{3} side chain at $\mathrm{C}-17(3,61)$ and can be used to establish the point of attachment of the sugar chain to either the $\mathrm{C}-3$ or the C-20 hydroxy function of aglycon (53). The stereochemistry (α or β orientation) of the $\mathrm{C}-17$ side chain can also be determined by MS (183).

Field desorption mass spectra (FDMS) (186) of pregnane oligoglycosides $(17,173)$ often contain only the molecular ion $\left[\mathrm{M}^{+}\right]$, the protonated molecular ion $[\mathrm{M}+\mathrm{H}]^{+}$or the $[\mathrm{M}+\text { cation }]^{+}$ion if NH_{3} or a metal salt is added and is a reliable method for confirming the molecular formula of pregnane glycosides (18-19).

In fast atom bombardment (FAB) (171) and secondary ion (SI) MS $(31,187)$ an abundant molecular ion, usually a protonated species $[\mathrm{M}+\mathrm{H}]^{+}$or a cationic species [$\mathrm{M}+$ cation $]^{+}$, is observed. The MS also contains mass fragments of intermediate and lower mass value which thus provides comprehensive information $(5,16,39)$ about the oligoglycoside. As evident from FABMS of pregnane glycosides, the individual monosaccharide units become detached from the molecular ion at the glycosidic linkage along with displacement of the hydroxyl group to which it was linked. Starting from the terminal end, the stepwise elimination of monosaccharide units leads to the formation of a fragment corresponding to the genin (53). Often, fragments corresponding to [$\mathrm{M}^{+}-$genin $]$and $\left[\mathrm{M}^{+}\right.$ sugar], i.e. the oligosaccharide and genin, (61) are obtained; these fragment further by repeated H -transfers accompanied by elimination of the terminal sugar less water, thus giving rise to an ion of the same mass as the molecular ion of the corresponding oligosaccharide with one less monosaccharide residue and so on until only the monosaccharide remains. The sequence of sugars and aglycon can be determined from the mass difference of major fragments (53). Thus the differences in mass between G-S $\mathrm{S}_{1}-\mathrm{S}_{2}-\mathrm{S}_{3}, \mathrm{G}-\mathrm{S}_{1}-\mathrm{S}_{2}$ and G-S ${ }_{1}$ in the FAB MS provide information on the sequence of sugars in the glycoside and also indicate which sugar is directly linked to the aglycon $(16,30)$. At what point the sugar residue is attached to the aglycon can also be established $(53,61)$.

While up to a certain point assignment of stereochemistry can also be achieved by mass spectrometry (183) a severe limitation of the mass spectrometry approach is the inaccessibility of finer stereochemical details such as the configuration of glycosidic linkage.

3.4. I.R. Spectroscopy

The role of IR spectroscopy in structure elucidation of pregnane glycosides cannot be ignored $(54,80)$, although it has been largely superseded by the techniques discussed earlier. IR spectrometry establishes the presence of carbonyl functions ($\left.\simeq 1740-1715 \mathrm{~cm}^{-1}\right)(32,124)$ thus differentiating between hydroxyethyl or acetyl side chains on C-17, and also shows the probable presence of ester functions (124). IR spectrometry also establishes the presence of associated and free hydroxyl groups $\left(\simeq 3400 \mathrm{~cm}^{-1}\right)(18,187)$ and unsaturation in pregnane glycosides.

3.5. U.V. Spectroscopy

The absence of a conjugated system in pregnanes has limited the use of U.V. spectroscopy. However, the technique may be useful when pregnane esters containing α, β-unsaturated and/or aromatic acids are encountered (18-19,54,124).

3.6. Optical Rotatory Dispersion

The C-20 stereochemistry of pregnanes with a $\mathrm{CHOH}-\mathrm{CH}_{3}$ can be established by o.r.d. as was shown by NAGAI (188) who reported that the C-20 o-nitrobenzoates of pregnane derivatives exhibited a Cotton effect at ca 330 nm due to the $\mathrm{n} \rightarrow \pi^{*}$ transition of the aromatic nitro group whose sign depends on the configuration. Thus 20-R-o-nitrobenzoates exhibited a negative Cotton effect while $20-S$-o-nitrobenzoates exhibit a positive Cotton effect. It has been reported that polar functional groups present near the nitrobenzoate, such as a $17-\mathrm{OH}$, strongly influence the Cotton effect. Hayashi et al. (189) have used this property to assign absolute configurations to the C-20 carbinol group of sarcostin, utendin and tomentogenin.

The 17 -acetyl function of pregnanes may be α - or β-oriented. When no other substituent is present on $\mathrm{C}-17$, compounds with a $17-\beta$-acetyl side chain show a positive Cotton effect whereas those with an α-oriented side chain exhibit a Cotton effect of opposite sign (190).

3.7. Hydrolysis of Pregnane Glycosides

Although modern physicochemical techniques link NMR and mass spectrometry play a very important role in structure elucidation of pregnane glycosides, classical degradative methods have not lost their
significance. In particular, methods for cleaving sugars from the parent compounds form a vital part of structure determination, especially since they provide confirmation of structural features arrived at by spectrometry. Different conditions of acid hydrolysis, i.e. from strong to very mild depending on the nature of the sugar present in the glycoside, are used for identification of sugar and aglycon. Generally, mild acid hydrolysis ($0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4} /$ Dioxan; Rangaswami and Reichstein) (191-192) is used for glycosides containing 2-deoxy sugars. Mild acid conditions are required to prevent the destruction of acid sensitive 2-deoxysugars and acid labile tertiary hydroxyl groups in the genin (193). Sometimes, hydrolysis is carried out in the presence of methanol $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ or HCl in $\mathrm{MeOH})(17,31,39,70)$ or ethanol ($\mathrm{AcOH}, \mathrm{H}_{2} \mathrm{SO}_{4}$ or HCl in EtOH) ($34,55,124$). In the case of normal sugar glycosides, strong acidic conditions such as the Kiliani method are required for hydrolysis (194). Hydrolysis affords genin and oligosaccharide or monosaccharides. The oligosaccharides are identified either by direct comparison with authentic samples ($[\alpha]_{\mathrm{D}}$, TLC and PC) or by chemical degradation $(23,195)$. The comparison may involve physical properties (such as PC, $[\alpha]_{\mathrm{D}}$) as well as conversion to lactones, acid phenylhydrazides (196-197) and other derivatives such as alditol acetates (25), tetramethylsilyl ethers $(16,113)$, partially methylated alditol acetates (198) etc., which may be identified by GLC or GC with authentic samples. The absolute configuration of the isolated sugars can be determined by analysing their 3,5-dinitrocarbamate methyl glycoside derivatives on a chiral HPLC column $(18,199)$.

To sequence the sugars in oligoglycosides containing 2-deoxyhexoses controlled partial hydrolysis (195) under very mild acid conditions ($0.01 \mathrm{NH}_{2} \mathrm{SO}_{4}$ in dioxane) is used. During hydrolysis, aliquots are taken at different time intervals to obtain intermediate products until only the aglycon is left (60). MANNICH and Siewert hydrolysis (conc. $\mathrm{HCl} /$ acetone) (200) is employed for determination of the sugar sequence if the oligoglycoside contains both normal and 2-deoxy sugars $(53,80)$. The sequence can also be deduced by permethylation studies (23) using Haкомоri's method (201) followed by acidic hydrolysis.

Enzymatic hydrolysis (21) of pregnane oligoglycosides is effective only in eliminating the terminal glucose units (16). β-Glucosidase enzyme preparations obtained from snails are used for cleaving terminal β-glucose $(70,202)$. Molsin (protease type XIII from Aspergillus saitoi) $(6,203)$ and sulfatase (having β-glucuronidase activity from Helix pomatia) (198) are also used to cleave terminal β-glucose; the latter effected the cleavage of glycosidic linkages resistant to β-glucosidases (198). Specific enzymes cleave specific glycosidic linkages thus providing information on the nature of glycosidic bonds.

4. Pregnane Aglycons

More than eleven dozen pregnane aglycons have been so far isolated $(1,2)$ from natural sources. Basic skeletons are listed in Chart 1. The structural features of plant pregnanes have been discussed in detail in a review article by Deepak and co-workers (2). The pregnane aglycons isolated since then are listed in Chart 2. Modifications of the pregnane skeleton are also known, for example cyclic ethers closed to C-20 (1, 204206). Some 8, 14-seco-(137), 14, 15 -seco-(58) and 13,$14 ; 14,15$ disecopregnanes $(79,207-212)$ have also been isolated.

5. Sugars of Pregnane Glycosides

5.1. General and Monosaccharides

Most of the sugars obtained from the acid hydrolysate of pregnane glycosides are 6-deoxy- and 2,6-dideoxyhexoses or their oligosaccharides (1). Such deoxy sugars have seldom been found in higher plants although they have been reported to occur in microorganisms (213-214). The oligoglycosides of pregnane glycosides generally contain a linear (215) rather than branched sugar chain although two exceptions have so far been found $(23,216)$. A detailed study of the sugar linkages in the glycosides revealed that in the β-D-type, the hexopyranose ring is present in the ${ }^{4} \mathrm{C}_{1}$ conformation with the aglycon equatorial (62) whereas in the α-L-type, the hexopyranose exists in the ${ }^{1} \mathrm{C}_{4}$ conformation with the aglycon preferentially axial (217). The chemistry of naturally occurring deoxysugars has been reviewed by Reichstein (1).

New monosaccharides reported as constituents of pregnane glycoside since the last review are L-sarmentose (55), 3-O-methyl-D-galactose (53), 4-O-acetyl-L-sarmentose (55), 2 deoxy L-fucose (59) and D-holosamine (4-desoxy, 4-amino-D-cymarose) (218).

5.2. Disaccharides from Pregnane Glycosides

The preparative isolation of sugars by hydrolysis of pregnane glycosides has afforded in addition to monosaccharides some novel reducing disaccharides containing 2,6-dideoxyhexose at the reducing end with a normal sugar at the non-reducing end. This was possible because of the very slow rate of hydrolysis of the normal sugar glycosidic linkage compared with 2-deoxysugar glycosidic linkages which being weaker

VI
(arrows indicate the reported positions of oxygen functions in pregnane genins)

(

Chart 2

Chart 2 (continued)

Chart 2 (continued)

(ع8z) I-NINヨDO^ヨצG

(I6z) NINADODZyG

CYNANCHOGENIN (299)

Chart 2 (continued)

DREVOGENIN-B (220)

DREVOGENIN Q (306)
$165-169^{\circ}\left[+56^{\circ}, \mathrm{CHCl}_{3}\right]$

5 α-H, $3 \beta, 14 \beta, 20-$ TRI-
HYDROXY-11 α-O-CINNAMOYL-
12β-O-ACETYL (18, 20)-
EPOXYPREGNANE (130)

(

ATRATOGENIN-A (58 290)
$69-73^{\circ}\left[-882^{\circ} \mathrm{MeOH}\right]$

CONDURANGOGENIN C (128)

Asclepobiose

Pachybiose

Lilacinabiose

Glaucobiose

Methyl-4-O-(2-O-acetyl-
β-D-Digitalopyranosyl)-
β-D-Cymaropyranoside

Gentiobiose

Cynanchotriose

Leptatriose

Neocondurangotriose

Chart 3
hydrolyse faster. Disaccharides from pregnane glycosides are listed in Chart 3.

The disaccharides pachybiose $(56,195,219-221)$ and asclepobiose (19, $56,222-223$) are most frequently encountered in pregnane glycosides. Lilacinabiose $(62,224)$ is 3-O-methyl-6-deoxy- β-D-glucopyranosyl$(1 \rightarrow 4)$-D-cymaropyranose. Glaucobiose $(70,225)$ and strophanthobiose $(58,76,225)$ differ from each other in that in the former the β-Dglucopyranosyl moiety is linked to L-cymarose by a $(1 \rightarrow 4)$ linkage whereas in the latter β-D-glucopyranosyl half is linked to D -cymarose by a $(1 \rightarrow 4)$ linkage. Two disaccharides, methyl β-D-digitalopyranosyl$(1 \rightarrow 4) \beta$-D-cymaropyranoside (31) and methyl-4-O-(2-O-acetyl- β-D-digitalopyranosyl)- β-D-cymaropyranoside $(162,226)$, have been obtained from the methanolic $\mathrm{H}_{2} \mathrm{SO}_{4}$ hydrolysate of pregnane glycosides of Periploca sepium. The disaccharides gentiobiose $(8,34)$ and cellobiose $(50,53)$ have also been found present in pregnane glycosides.

5.3. Trisaccharides from Pregnane Glycosides

Hydrolysates of pregnane glycosides have yielded four trisaccharides which are also listed in Chart 3. These contain a 2-deoxysugar at the reducing end which is linearly linked to two normal hexoses. Leptatriose obtained from Leptadenia reticulata by Srivastav et al. $(50,53)$ has a cellobiose moiety linked to D-cymarose by a $1 \rightarrow 4 \beta$-glycosidic linkage whereas in cynanchotriose $(76,227)$ from Cynanchum wallichi the cellobiose moiety is linked to D -oleandrose by a $1 \rightarrow 4-\beta$-glycosidic linkage. In dregeatriose $(76,215)$ the terminal D -glucose is linked to 3-O-methyl-6-deoxy-D-allose which is in turn linked to D-cymarose. In the case of neocondurangotriose $(76,129-130,215)$ the reducing end is made up of D-oleandrose while 3-O-methyl-6-deoxy-D-allose and D-glucose form the intermediate and terminal end respectively. In both these trisaccharides, the two normal hexoses are linked by $(1 \rightarrow 4) \beta$-glycosidic linkages.

Interestingly, in pregnane glycosides 211 and 213 isolated from Periploca sepium (228) the sugar component contains an ortho-ester function which is rather uncommon in natural products. In glycosides 217-221 and 224-226 from the same source, the glycosidic linkage between O-4 of the first sugar, 2,6-dideoxyarabinohexopyranose and C-1 of the second Ocymarosyl is peroxide.

6. Biosynthesis of Pregnane Glycosides

Biosynthesis of pregnanes and their glycosides has been covered in depth by Reichstein (1). In this context, it is of interest that a pregnane
glycoside isolated from Mandevilla pentlandiana (25) has a 21-O-methoxy20 -one $\mathrm{C}-17$ side chain and is biogenetically related to $3 \beta, 14 \beta, 21$-trihyd-roxy- 5β-pregnane- 20 -one, a precursor of a cardenolide (25). The isolation of this glycoside suggests a pregnane route for the biosynthesis of cardenolides (229-230). The 21-O-methylated compound possibly is a storage form of a 21-hydroxy-20-keto pregnane derivative (25). Another pregnane, i.e. pregnenolone (Δ^{5}-pregnen- 3β-ol-20-one), which is a known biosynthetic precursor of cardenolides has also been isolated as a constituent of the glucosides (34) from the root and trunk bark of Nerium odorum.

7. Biological Activity

Pregnane ester glycosides* closely resemble cardiac glycosides (193) which are important in medicinal chemistry due to their digitalis-like effect on cardiac muscles and their application in the therapy of auricular fibrillation and in many types of congestive heart failure (229-230). Biogenetic studies have revealed that pregnane derivatives are biological precursors of cardiac glycosides $(1,25)$ and therefore these substances can be isolated from plants only in very small quantities. Using modern pharmacological methods some of these compounds have shown specific biological activity.

The crude drug condurango cortex, the bark of Marsdenia condurango, has been used as an avomatic bitter stomachic in popular medicine and also against cancer or syphilis in folk remedies (129). In anti-tumor screening by CCNSC the extract of this plant was not effective against sarcoma-180, adenocarcinoma 755, human sarcoma HS-1 and KB system (231). However, condurango glycosides $(\mathrm{CG}) \mathrm{A}_{\mathrm{o}}(164), \mathrm{CGB}_{\mathrm{O}}(\mathbf{1 6 6})$, CGC $_{o}$ (165), $\mathrm{CGD}_{\mathrm{o}}$ (167), 20-O-methyl $\mathrm{CGD}_{\mathrm{o}}$ (168) and 20-iso-O-methyl$\mathrm{CGD}_{\mathrm{O}}$ (169) from Marsdenia condurango were found active against Ehrlich ascites carcinoma (129-130). Two other pregnane glycosides, viz. condurangoglycoside $\mathrm{E}_{\mathrm{O} 1}(170)$ and $\mathrm{E}_{\mathrm{O} 2}(171)$ obtained from Marsdenia condurango, have also shown anticarcinogenic activity (232). AhSAN reported that the polyoxypregnane glycoside amplexoside A (36) from Asclepias amplexicaulis showed cancer inhibitory activity in the KB assay (233). Generally members of Asclepiadaceae produce an abundance of esterified polyoxypregnane glycosides $(1,2)$ and can therefore, be a promising source of antitumor agents. Thirteen pregnane glycosides (215, 234235) were isolated from Dregea volubilis; among them, dregeosides $\mathrm{A}_{\mathrm{P} 1}$ (131) and $\mathrm{A}_{\mathrm{O} 1}$ (132) showed antitumor activity against Ehrlich carcinoma (solid type), with dregeoside A_{o1} also being active against melanoma B -16

[^9]Table 1. Pregnane Glycosides and their Sources

Plant	Glycoside (Glycoside no.) Molecular Formula $\mathrm{mp}^{\circ} \mathrm{C}$ $[\alpha]_{\mathrm{D}}$	Genin	Sugar	References
Family Apocynaceae				
Apocynum venetum var. basikurumon	$\begin{aligned} & \text { Basikoside A (1) } \\ & \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{7} \\ & 260-265^{\circ} \mathrm{C} \\ & -101.8^{\circ} \end{aligned}$	Teikagenin	-3-O- β-D-Fucp.	(30)
	$\begin{aligned} & \text { Basikoside B(2) } \\ & \mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{8} \\ & 240-246^{\circ} \mathrm{C} \\ & -47.7^{\circ} \end{aligned}$	Teikagenin	-3-O-3Ac- β-D-Fucp.	
"	$\begin{aligned} & \text { Basikoside C(3) } \\ & \mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{10} \\ & 215-220^{\circ} \mathrm{C} \\ & -92.2^{\circ} \end{aligned}$	Teikagenin	-3-O- β-D-Fucp-20-O- β-D-Canp.	
"	$\begin{aligned} & \text { Basikoside D (4) } \\ & \mathrm{C}_{40} \mathrm{H}_{66} \mathrm{O}_{13} \\ & - \\ & -97.0^{\circ} \end{aligned}$	Teikagenin	-3-O- β-D-Fucp-20-O- β-D-Digp-($1 \rightarrow 3$)- β-D-Canp.	
Holarrhena antidysenterica	Holantosine A (5) $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{6} \mathrm{~N}$ - -	Holantogenin	3-O- β-D-Holp.	(218)
"	Holantosine B(6) $\mathrm{C}_{28} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{~N}$	14,20 Anhydro holantogenin	-3-O- β-D-Holp.	

Table 1 (continued)

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Holarrhena curtissi	N -Demethyl holacurtin (7) $\mathrm{C}_{28} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{~N}$	5α-Pregnan- $3 \beta, 14 \beta$ -diol-20-one	-3-O- β-D-Holp.	(241)
Korolkowia sewertzovii	$\begin{aligned} & \text { Sevkorine (8) } \\ & \mathrm{C}_{34} \mathrm{H}_{57} \mathrm{O}_{7} \mathrm{~N} \\ & 236-238^{\circ} \mathrm{C} \\ & -41.1^{\circ} \end{aligned}$	Sevkoridinine	-3-O- β-D-Glup.	(242)
Malouetia glandulifera	Conopharyngine (9) $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{O}_{6} \mathrm{~N}$	Pregn-5-ene-20-amino3β-ol	-3-O- β-D-Glup.	(243)
Mandevilla pentlandiana	$\begin{aligned} & -(\mathbf{1 0)} \\ & \mathrm{C}_{43} \mathrm{H}_{72} \mathrm{O}_{13} \\ & \text { Amorph. } \\ & 17.1^{\circ} \end{aligned}$	$3 \beta, 14 \beta$-Dihydroxy-21-methoxy- 5β-pregnan 20-one	-3-O- β-D-Digp-($1 \rightarrow 4$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	(25)
Nerium odorum	$\begin{aligned} & \text { Pregnenolone } \\ & \text { glucoside } \mathrm{I}(\mathbf{1 1}) \\ & \mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O} \\ & 231-235^{\circ} \mathrm{C} \\ & -20.5^{\circ} \end{aligned}$	Δ^{5}-Pregnen- 3β-ol-20-one	-bis-3-O- β-D-Glup-($1 \rightarrow 2 ; 1 \rightarrow 6)$ - β-D-Glup.	(34)

Δ^{5}-Pregnen- 3β-ol- 20 -one	-3-O- β-D-Glup- $(1 \rightarrow 6)-\beta$-D-Glup.
Δ^{5}-Pregnen-3 β-ol-	
20 -one	

Pregnenolone
glucoside II (12)
$\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{12}$
$255-259^{\circ} \mathrm{C}$
-11.9°
Pregnenolone
glucoside III (13)
$\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{12}$
$252-256^{\circ} \mathrm{C}$
-7.2°
Pregnenoloneglucoside
IV (14)
$\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{7}$
$269-271^{\circ} \mathrm{C}$
-
$-(15)$
$\mathrm{C}_{33} \mathrm{H}_{54} \mathrm{O}_{13}$
Amorphous
-15.8°
$-(16)$
$\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{9}$
Amorphous
$+22.6^{\circ}$
Teikaside $\mathrm{A}(\mathbf{1 7})$
$\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{O}_{18}$
-
-
Teikaside A -Ia (18)
$\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{10}$
$205-213^{\circ} \mathrm{C}$
-122.3°
Nerium indicum
Trachelospermum
asiaticum
Table 1 (continued)

Plant	Glycoside (Glycoside no.) Molecular Formula $\mathrm{mp}^{\circ} \mathrm{C}$ $[\alpha]_{\mathrm{D}}$	Genin	Sugar	References
Trachelospermum asiaticum	$\begin{aligned} & \text { Teikaside A-Ib (19) } \\ & \mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{10} \\ & 207-211^{\circ} \mathrm{C} \\ & -117.2^{\circ} \end{aligned}$	Teikagenin	-3-O- 3 -D-Dgtp-20-O- β-D-Olep.	
"	$\begin{aligned} & \text { Teikaside A-IIa (20) } \\ & \mathrm{C}_{41} \mathrm{H}_{68} \mathrm{O}_{15} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 265-280^{\circ} \mathrm{C} \\ & -113.1^{\circ} \end{aligned}$	Teikagenin	-3-O- β-D-Dgtp-20-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Digp.	
"	$\begin{aligned} & \text { Teikaside A-IIb (21) } \\ & \mathrm{C}_{41} \mathrm{H}_{68} \mathrm{O}_{15} \cdot 4.5 \mathrm{H}_{2} \mathrm{O} \\ & 250-260^{\circ} \mathrm{C} \\ & -44.8^{\circ} \end{aligned}$	Teikagenin	-3-O- β-D-Dgtp-20-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Olep.	
"	$\begin{aligned} & \text { Teikaside A-IIc (22) } \\ & \mathrm{C}_{40} \mathrm{H}_{66} \mathrm{O}_{15} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\ & 285-295^{\circ} \mathrm{C} \\ & -95.9^{\circ} \end{aligned}$	Teikagenin	-3-O- β-D-Dgtp-20-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Canp.	
"	$\begin{aligned} & \text { Teikaside A-IIIb (23) } \\ & \mathrm{C}_{48} \mathrm{H}_{80} \mathrm{O}_{18} \\ & - \\ & -35^{\circ} \end{aligned}$	Teikagenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Dgtp-20-O- } \beta \text {-D-Glup- }(1 \rightarrow 4) \text { - } \beta \text {-D-Olep- } \\ & (1 \rightarrow 4) \text { - } \beta \text {-D-Sarp. } \end{aligned}$	
"	$\begin{aligned} & \text { Teikaside A-IIIc (24) } \\ & \mathrm{C}_{48} \mathrm{H}_{80} \mathrm{O}_{18} \\ & - \\ & -64.2^{\circ} \end{aligned}$	Teikagenin	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Dgtp-20-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep- } \\ & (1 \rightarrow 4) \text { - } \beta \text {-D-Olep. } \end{aligned}$	

Table 1 (continued)

Plant	Glycoside (Glycoside no.) Molecular Formula $\mathrm{mp}^{\circ} \mathrm{C}$ $[\alpha]_{\mathrm{D}}$	Genin	Sugar	References
Trachelospermum liukiuense	$\begin{aligned} & \text { Teikaside AL-Ic (33) } \\ & \mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{11} \\ & - \\ & -86.5^{\circ} \end{aligned}$	Teikagenin	$-3,20 \text {-bis-O- } \beta \text {-D-Dgtp. }$	(5)
	Teikaside AL-IId (34) $\mathrm{C}_{41} \mathrm{H}_{68} \mathrm{O}_{16}$ -74.1° Teikaside BL-Ic (35) $\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{15}$ -79.1°	Teikagenin Teikagenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Dgtp-20-O- } \beta \text {-D-Glup- }(1 \rightarrow 4)-\beta \text {-D-Dgtp. } \\ & \text {-3-O- } \beta \text {-D-Dgtp- }(1 \rightarrow 4)-\beta \text {-D-Dgtp-20-O- } \beta \text {-D-Dgtp. } \end{aligned}$	
Family Asclepiadaceae				
Asclepias amplexicaulis	$\begin{aligned} & \text { Amplexoside A(36) } \\ & \mathrm{C}_{52} \mathrm{H}_{76} \mathrm{O}_{18} \\ & 258-260^{\circ} \mathrm{C} \\ & 183^{\circ} \end{aligned}$	20-O-Acetyl-12 β-Ocinnamoyl 5α-dihydro sarcostin	-3-O- α / β-[Dgxp and $3 \mathrm{Me}-6 \mathrm{~d}-\beta$-D-Allop($1 \rightarrow 4$)-D-Cymp].	(233)
Asclepias fruticosa	$\begin{aligned} & -(\mathbf{2 4 2}) \\ & \mathrm{C}_{46} \mathrm{H}_{74} \mathrm{O}_{17} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O} \\ & \text { Amorphous } \\ & +13.4^{\circ} \end{aligned}$	Lineolon	$\begin{aligned} & -3-O-\beta-D-C y m p-(1 \rightarrow 4)-\beta-D-D g x p-(1 \rightarrow 4)-\beta-D- \\ & \text { Olip-(1 } \rightarrow 4)-\beta-D-D g x p . \end{aligned}$	(245)

-(243)	Lineolon	$\text { -3-O- } \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Dgxp- }(1 \rightarrow 4)-\beta \text {-D- }$
$\mathrm{C}_{47} \mathrm{H}_{76} \mathrm{O}_{17} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ Olep-($1 \rightarrow 4$)- β-D-Dgxp.		
$+8.9^{\circ}$		
-(244)	Lineolon	-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-
$\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O}$		Olep-($1 \rightarrow 4$)- β-D-Dgxp.
Amorphous		
-(245)	Lineolon	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-
$\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O} \quad$ Olep-($1 \rightarrow 4$)- β-D-Dgxp.		
Amorphous		
-(246)	Lineolon	-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)- β-D-
$\mathrm{C}_{48} \mathrm{H}_{78} \mathrm{O}_{17} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O} \quad$ Olep-($1 \rightarrow 4$)- β-D-Dgxp.		
Amorphous		
0°		
-(247)	Lineolon	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-D-
$\mathrm{C}_{46} \mathrm{H}_{74} \mathrm{O}_{17} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O}$Amorphous		
$-8.8{ }^{\circ}$		
-(248)	Lineolon	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-D-
$\mathrm{C}_{46} \mathrm{H}_{76} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O} \quad$ Olep-($1 \rightarrow 4$)- β-D-Dgxp.		
Amorphous		
-(249)	Isolineolon	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-D-
$\mathrm{C}_{46} \mathrm{H}_{76} \mathrm{O}_{17}$		Olep-($1 \rightarrow 4$)- β-D-Dgxp.
Amorphous		
$+29.3{ }^{\circ}$		

Table 1 (continued)

Plant	$\begin{aligned} & \text { Glycoside (Glycoside no.) } \\ & \text { Molecular Formula } \\ & \mathrm{mp}^{\circ} \mathrm{C} \\ & {[\alpha]_{\mathrm{D}}} \end{aligned}$	Genin	Sugar	References
Asclepias fruticosa	$\begin{aligned} & -(\mathbf{2 5 0}) \\ & \mathrm{C}_{47} \mathrm{H}_{78} \mathrm{O}_{17} \\ & \text { Amorphous } \\ & +36.8^{\circ} \end{aligned}$	Isolineolon	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D- } \\ & \text { Olep- }(1 \rightarrow 4)-\beta \text {-D-Dgxp. } \end{aligned}$	
"	$\begin{aligned} & -(\mathbf{2 5 1}) \\ & \mathrm{C}_{62} \mathrm{H}_{92} \mathrm{O}_{23} \\ & - \\ & +16.1^{\circ} \end{aligned}$	Ikemagenin	$\begin{aligned} & -3-O-\beta \text {-D-Glup- }(1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D- } \\ & \text { Dgxp- }(1 \rightarrow 4)-\beta \text {-D-Olep- }(1 \rightarrow 4)-\beta-D-D g x p . \end{aligned}$	(247)
"	$\begin{aligned} & -(\mathbf{2 5 2}) \\ & \mathrm{C}_{62} \mathrm{H}_{92} \mathrm{O}_{23} \\ & - \\ & +9.6^{\circ} \end{aligned}$	Ikemagenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D- } \\ & \text { Dgxp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Dgxp. } \end{aligned}$	
"	$\begin{aligned} & -(\mathbf{2 5 3}) \\ & \mathrm{C}_{63} \mathrm{H}_{94} \mathrm{O}_{23} \\ & - \\ & +20.8^{\circ} \end{aligned}$	Ikemagenin	$\begin{aligned} & -3-O-\beta \text {-D-Glup- }(1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D- } \\ & \text { Cymp- }(1 \rightarrow 4)-\beta \text {-D-Olep- }(1 \rightarrow 4)-\beta-\text {-Dgxp. } \end{aligned}$	
"	$\begin{aligned} & -(\mathbf{2 5 4}) \\ & \mathrm{C}_{63} \mathrm{H}_{94} \mathrm{O}_{23} \\ & - \\ & +24.08^{\circ} \end{aligned}$	Ikemagenin	$\begin{aligned} & -3-O-\beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D- } \\ & \text { Dgxp- }(1 \rightarrow 4)-\beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	
"	$\begin{aligned} & -(255) \\ & \mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{23} \\ & - \\ & +20.0^{\circ} \end{aligned}$	Ikemagenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D- } \\ & \text { Olep- }(1 \rightarrow 4) \text { - } \beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	

-3-O- β-D-Glup- $(1 \rightarrow 4)$ - β-D-Olep- $(1 \rightarrow 4)-\beta$-D-
Olep- $(1 \rightarrow 4)$ - β-D-Olep- $(1 \rightarrow 4)$ - β-D-Cymp.
-3-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-
Dgxp-($1 \rightarrow 4$)- β-D-Olep- $(1 \rightarrow 4)-\beta-D-D g x p$.
-3-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Cymp- $(1 \rightarrow 4)-\beta$-D-Cymp-($1 \rightarrow 4$)- β-D-Olep- $(1 \rightarrow 4)-\beta$-D-Dgxp.
-3-O- β-D-Glup- $(1 \rightarrow 4)-\beta$-D-Cymp- $(1 \rightarrow 4)$ - β-D-Dgxp-($1 \rightarrow 4$)- β-D-Olep- $(1 \rightarrow 4)$ - β-D-Cymp.
 -3-O- β-D-Glup- $(1 \rightarrow 4)-\beta$-D-Olep- $(1 \rightarrow 4)-\beta$-D-
Olep- $(1 \rightarrow 4)-\beta$-D-Olep-($(1 \rightarrow 4)$ - β-D-Cymp. -3-O- β-D-Glup- $(1 \rightarrow 4)$ - β-D-Cymp- $(1 \rightarrow 4)$ - β-D-
Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.

Ikemagenin
Kidjolanin
Kidjolanin
Kidjolanin
Kidjolanin
Kidjolanin
Kidjolanin
$-(\mathbf{2 5 6})$
$\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{23}$
-
$+9.0^{\circ}$
$-(\mathbf{2 5 7})$
$\mathrm{C}_{62} \mathrm{H}_{92} \mathrm{O}_{24}$
-
$+24.3^{\circ}$
$-(\mathbf{2 5 8})$
$\mathrm{C}_{63} \mathrm{H}_{94} \mathrm{O}_{24}$
-
$+26.0^{\circ}$
$-(\mathbf{2 5 9})$
$\mathrm{C}_{63} \mathrm{H}_{94} \mathrm{O}_{24}$
-
$+33.5^{\circ}$
$-(\mathbf{2 6 0)}$
$\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{24}$
-
$+25.2^{\circ}$
$-(\mathbf{2 6 1})$
$\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{24}$
-
$+12.7^{\circ}$
$-(\mathbf{2 6 2})$
$\mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{24}$
-
$+32.0^{\circ}$
Table 1 (continued)

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Boucerosia aucheriana	$\begin{aligned} & \text { Bouceroside } \mathrm{AI}(37) \\ & \mathrm{C}_{62} \mathrm{H}_{88} \mathrm{O}_{21} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\ & 152-157.5^{\circ} \mathrm{C} \\ & +9^{\circ} \end{aligned}$	Boucerogenin I	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup- }(1 \rightarrow 4) \text {-3Me-6d- } \beta \text {-D-Allop- } \\ & (1 \rightarrow 4) \text { - } \beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	(18)
"	Bouceroside AII (38) $\begin{aligned} & \mathrm{C}_{62} \mathrm{H}_{90} \mathrm{O}_{21} \cdot \mathrm{H}_{2} \mathrm{O} \\ & 153-158.5^{\circ} \mathrm{C} \\ & +8.6^{\circ} \end{aligned}$	Boucerogenin II	-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Allop$(1 \rightarrow 4)-\beta$-D-Olep- $(1 \rightarrow 4)-\beta$-D-Cymp.	
"	Bouceroside BI (39) $\begin{aligned} & \mathrm{C}_{62} \mathrm{H}_{88} \mathrm{O}_{21} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\ & 161.5-168^{\circ} \mathrm{C} \\ & +22.4^{\circ} \end{aligned}$	Boucerogenin I	-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Allop$(1 \rightarrow 4)-\beta$-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
"	$\begin{aligned} & \text { Bouceroside BII (40) } \\ & \mathrm{C}_{62} \mathrm{H}_{90} \mathrm{O}_{21} \cdot 9 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 157.5-165^{\circ} \mathrm{C} \\ & +21^{\circ} \end{aligned}$	Boucerogenin II	-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Allop$(1 \rightarrow 4)-\beta$-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
"	Bouceroside ANC (41) $\begin{aligned} & \mathrm{C}_{49} \mathrm{H}_{76} \mathrm{O}_{15} \\ & 138.5-142.5^{\circ} \mathrm{C} \\ & -3.2^{\circ} \end{aligned}$	12-O-Benzoyldihydroboucerin	$\begin{aligned} & \text {-3-O-3Me-6d- } \beta \text {-D-Allop- } \\ & (1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	(19)
"	Bouceroside ADC (42) $\begin{aligned} & \mathrm{C}_{49} \mathrm{H}_{74} \mathrm{O}_{15} \\ & 132-135.5^{\circ} \mathrm{C} \\ & -12.5^{\circ} \end{aligned}$	12-O-Benzoylboucerin	$\begin{aligned} & \text {-3-O-3Me-6d- } \beta \text {-D-Allop- } \\ & (1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	

Bouceroside ANO (43)	12-O-Benzoyldihydro-	-3-O-3Me-6d- β-D-Allop-
$\begin{aligned} & \mathrm{C}_{49} \mathrm{H}_{76} \mathrm{O}_{15} \\ & 113.5-116^{\circ} \mathrm{C} \end{aligned}$	boucerin	($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.
$-12.4{ }^{\circ}$		
Bouceroside ADO (44)	12-O-Benzoylboucerin	-3-O-3Me-6d- β-D-Allop-
$\mathrm{C}_{49} \mathrm{H}_{74} \mathrm{O}_{15}$		$(1 \rightarrow 4)-\beta$-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.
$\begin{aligned} & 107.5-111^{\circ} \mathrm{C} \\ & -11.8^{\circ} \end{aligned}$		
Bouceroside BNO (45)	12-O-Benzoyl-20-O-	-3-O-3Me-6d- β-D-Allop-
$\begin{aligned} & \mathrm{C}_{51} \mathrm{H}_{78} \mathrm{O}_{16} \\ & 133.5-137^{\circ} \mathrm{C} \end{aligned}$	acetyldihydroboucerin	$(1 \rightarrow 4)-\beta$-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.
$+2.4{ }^{\circ}$		
Bouceroside BDO (46)	12-O-Benzoyl-20-O-	-3-O-3Me-6d- β-D-Allop-
$\mathrm{C}_{51} \mathrm{H}_{76} \mathrm{O}_{16}$	acetylboucerin	$(1 \rightarrow 4)-\beta$-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.
$135.5-139^{\circ} \mathrm{C}$		
-21.0 ${ }^{\circ}$		
Bouceroside BNC (47)	12-O-Benzoyl-20-O-	-3-O-3Me-6d- β-D-Allop-
$\begin{aligned} & \mathrm{C}_{51} \mathrm{H}_{78} \mathrm{O}_{16} \\ & 138.5-141^{\circ} \mathrm{C} \end{aligned}$	acetyldihydroboucerin	$(1 \rightarrow 4)$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
+18.5 ${ }^{\circ}$		
Bouceroside BDC (48)	12-O-Benzoyl-20-O-	-3-O-3Me-6d- β-D-Allop-
$\mathrm{C}_{51} \mathrm{H}_{76} \mathrm{O}_{16}$	acetylboucerin	$(1 \rightarrow 4)$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
$103.5-106^{\circ} \mathrm{C}$		
$+2.1^{\circ}$		
Bouceroside CNO (49)	Boucerogenin II	-3-O-3Me-6d- β-D-Allop-
$\mathrm{C}_{56} \mathrm{H}_{80} \mathrm{O}_{16}$		$(1 \rightarrow 4)$ - β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.
$143.5-147^{\circ} \mathrm{C}$		
-7.5°		
Bouceroside CNC (50)	Boucerogenin II	-3-O-3Me-6d- β-D-Allop-
$\mathrm{C}_{56} \mathrm{H}_{80} \mathrm{O}_{16}$		$(1 \rightarrow 4)$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
$114-117.5^{\circ} \mathrm{C}$		
$+8^{\circ}$		

Table 1 (continued)

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Calotropis gigantea	Calotroposide A (51) $\mathrm{C}_{63} \mathrm{H}_{96} \mathrm{O}_{21}$ Amorphous $+2.3^{\circ}$	12 β-O-Benzoyllineolon	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Cymp-(}(\rightarrow 4) \text {) } \beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \beta \text {-D-Olep- } \\ & (1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	(77)
"	Calotroposide $\mathrm{B}(52)$ $\mathrm{C}_{63} \mathrm{H}_{96} \mathrm{O}_{22}$ Amorphous $+12.2^{\circ}$	$12 \beta-\mathrm{O}$-Benzoyldeacetyl metaplexigenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D-Olep- }(1 \rightarrow 4)- \\ & \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D-Cymp. } \end{aligned}$	
"	Calotroposide C (53) $\mathrm{C}_{63} \mathrm{H}_{96} \mathrm{O}_{22}$ Amorphous -1.9°	12 β-O-Benzoyldeacetyl metaplexigenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \\ & \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	(51)
"	Calotroposide D (54) $\mathrm{C}_{63} \mathrm{H}_{96} \mathrm{O}_{21}$ Amorphous -17.6°	12 β-O-Benzoyllineolon	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \\ & \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	
"	Calotroposide E (55) $\mathrm{C}_{56} \mathrm{H}_{84} \mathrm{O}_{19}$ Amorphous -1.6°	12 β-O-Benzoyldeacetyl metaplexigenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	
"	Calotroposide F (56) $\mathrm{C}_{56} \mathrm{H}_{84} \mathrm{O}_{18}$ Amorphous -15.6°	12 β-O-Benzoyllineolon	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp. } \end{aligned}$	

-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Galp.
$\stackrel{8}{\infty}$
(248)
$\stackrel{8}{8}$
-3-O- - -D-Olep-(1-4)- β-D-Cymp (1-4)- β - - - - .
-3-O- β-D-Glup-($1 \rightarrow 6$)- β-D-Glup
-3-O- β-D-Glup-($1 \rightarrow 4$)- α-L-Cymp- $(1 \rightarrow 4)-\beta$-D-
Cymp-($1 \rightarrow 4$)- β-D-Cymp.
-3-O- β-D-Glup-($1 \rightarrow 4$)- α-L-Cymp- $(1 \rightarrow 4)-\beta$-D-
Cymp-(1 $\rightarrow 4$)- β-D-Dgxp.
-3-O- β-D-Glup-($1 \rightarrow 4$)- α-L-Cymp- $(1 \rightarrow 4)-\beta$-D-
Olep-($1 \rightarrow 4$)- β-D-Dgxp-($(1 \rightarrow 4)$ - β-D-Cymp.
12 β-O-Benzoyllineolon
$3 \beta, 14 \beta$-Dihydroxy-
pregnan-20-one
$3 \beta, 14 \beta, 20$-Trihydroxy-
pregnane
$3 \beta, 14 \beta$-Dihydroxy-pregn-5-en-20-one
$3 \beta, 14 \beta$-Dihydroxy-
pregn-5-en-20-one
Cynafogenin
Cynafogenin
Cynafogenin
Calotroposide $\mathrm{G}(57)$
$\mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{15}$
Amorphous
-17.4°
Caratuberside $\mathrm{A}(\mathbf{5 8})$
$\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{12}$
$170-171^{\circ} \mathrm{C}$
$+60^{\circ}$
Caratuberside B(59)
$\mathrm{C}_{34} \mathrm{H}_{58} \mathrm{O}_{12}$
$182-185^{\circ} \mathrm{C}$
Carumbelloside I (60)
$\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{13}$
Carumbelloside II (61) $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{8}$ $274-276^{\circ} \mathrm{C}$
Cynafoside A (62)
$\mathrm{C}_{57} \mathrm{H}_{86} \mathrm{O}_{21} \cdot 4 / 3 \mathrm{H}_{2} \mathrm{O}$
$142-144^{\circ} \mathrm{C}$
+14.8 - (63)
Cynafoside $\mathrm{B}(63)$
$\mathrm{C}_{56} \mathrm{H}_{84} \mathrm{O}_{21} \cdot \mathrm{H}_{2} \mathrm{O}$
+8.8 (64)
$\mathrm{C}_{63} \mathrm{H}_{96} \mathrm{O}_{24} \cdot \mathrm{H}_{2} \mathrm{O}$
$88-90^{\circ} \mathrm{C}$
$+7.6$
Caralluma

Caralluma

Cynanchum
africanum
Table 1 (continued)

Plant	Glycoside (Glycoside no.) Molecular Formula $m p^{\circ} \mathrm{C}$	Genin	Sugar	References
	$[\alpha]_{\mathrm{D}}$			

"	$\begin{aligned} & \text { Cynatratoside } \mathrm{F}(71) \\ & \mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{15} \\ & 131-135^{\circ} \mathrm{C} \\ & -15.3^{\circ} \end{aligned}$	2α-Hydroxy glaucogenin-C	-3-O- β-D-Cymp-($1 \rightarrow 4$)- α-L-Digp-($1 \rightarrow 4$)- β-D-Cymp.	(208)
"	$\begin{aligned} & \text { Atratoside } \mathrm{A}(72) \\ & \mathrm{C}_{42} \mathrm{H}_{66} \mathrm{O}_{13} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 105-110^{\circ} \mathrm{C} \\ & -65.9^{\circ} \end{aligned}$	Atratogenin A	-3-O- β-D-Cymp-($1 \rightarrow 4$)- α-L-Digp-($1 \rightarrow 4$)- β-D-Cymp.	(58)
"	$\begin{aligned} & \text { Atratoside } \mathrm{B}(73) \\ & \mathrm{C}_{48} \mathrm{H}_{74} \mathrm{O}_{18} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 153-158^{\circ} \mathrm{C} \\ & -48.3^{\circ} \end{aligned}$	Atratogenin A	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \alpha \text {-L-Digp- } \\ & (1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	
"	$\begin{aligned} & \text { Atratoside C (74) } \\ & \mathrm{C}_{48} \mathrm{H}_{72} \mathrm{O}_{18} \cdot 3 \mathrm{H}_{2} \mathrm{O} \\ & 148-153^{\circ} \mathrm{C} \\ & -58.8^{\circ} \end{aligned}$	Atratogenin B	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \alpha \text {-L-Digp- } \\ & (1 \rightarrow 4)-\beta \text {-D-Cymp. } \end{aligned}$	
$"$	$\begin{aligned} & \text { Atratoside } \mathrm{D}(75) \\ & \mathrm{C}_{40} \mathrm{H}_{60} \mathrm{O}_{13} \cdot \mathrm{H}_{2} \mathrm{O} \\ & 92-94^{\circ} \mathrm{C} \\ & -52.3^{\circ} \end{aligned}$	Cynajapogenin A	-3-O- -D-Olep-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-D-Cymp.	
Cynanchum auriculatum	$\begin{aligned} & \text { Cynauricuoside } \mathrm{A}(76) \\ & \mathrm{C}_{64} \mathrm{H}_{96} \mathrm{O}_{24} \\ & 167-173^{\circ} \mathrm{C} \\ & -28.6^{\circ} \end{aligned}$	Kidjoranin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup- }(1 \rightarrow 4)-\alpha \text {-L-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp- } \\ & (1 \rightarrow 4)-\alpha \text {-L-Digp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp. } \end{aligned}$	(10)
"	$\begin{aligned} & \text { Cynauricuoside } \mathrm{B}(77) \\ & \mathrm{C}_{52} \mathrm{H}_{82} \mathrm{O}_{19} \\ & 137-142^{\circ} \mathrm{C} \\ & -64.96^{\circ} \end{aligned}$	Metaplexigenin	$\begin{aligned} & -3-\mathrm{O}-\alpha \text {-L-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \alpha \text {-L-Digp- } \\ & (1 \rightarrow 4)-\beta \text {-D-Cymp. } \end{aligned}$	
"	$\begin{aligned} & \text { Cynauricuoside C (78) } \\ & \mathrm{C}_{68} \mathrm{H}_{110} \mathrm{O}_{29} \\ & 174-181^{\circ} \mathrm{C} \\ & -25.15^{\circ} \\ & \hline \end{aligned}$	Caudatin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \alpha \text {-L-Cymp- } \\ & (1 \rightarrow 4) \text { - } \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \alpha \text {-L-Digp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp. } \end{aligned}$	

Table 1 (continued)

Plant	Glycoside (Glycoside no.) Molecular Formula	Genin	Sugar	References
	$\mathrm{mp}^{\circ} \mathrm{C}$			
	$[\alpha]_{\mathrm{D}}$			

-(267)	Sarcostin	$\text { -3-O- } \alpha \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D- }$
$\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{15}$		Cymp.
Amorphous		
+ $4.5{ }^{\circ}$		
-(268)	Sarcostin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)- β-D-
$\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{15}$		Cymp.
Amorphous		
$+32.0^{\circ}$		
-(269)	Sarcostin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-
$\mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{15} \cdot 2 \mathrm{H}_{2} \mathrm{O}$		Cymp.
Amorphous $+518^{\circ}$		
-(270)	Sarcostin	-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
$\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}$		
Amorphous		
$+40.5^{\circ}$		
-(271)	Sarcostin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.
$\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{12} \cdot 2 \mathrm{H}_{2} \mathrm{O}$		
Amorphous		
-(272)	Deacylmetaplexigenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)- β-D-Cym
$\mathrm{C}_{49} \mathrm{H}_{80} \mathrm{O}_{18} \cdot 2 \mathrm{H}_{2} \mathrm{O}$		($1 \rightarrow 4$)- β-D-Cymp.
Amorphous		
$+8.2^{\circ}$		
-(273)	Caudatin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cy
$\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{16} \cdot \mathrm{H}_{2} \mathrm{O}$		
Amorphous		
$+5.1^{\circ}$		
-(274)	Ikemagenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$ - β-D-Cy
$\mathrm{C}_{51} \mathrm{H}_{74} \mathrm{O}_{15} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O}$		
Amorphous		
$+9.3{ }^{\circ}$		

Table 1 (continued)

Plant	$\begin{aligned} & \text { Glycoside (Glycoside no.) } \\ & \text { Molecular Formula } \\ & \mathrm{mp}^{\circ} \mathrm{C} \\ & {[\alpha]_{\mathrm{D}}} \end{aligned}$	Genin	Sugar	References
Cynanchum caudatum	$\begin{aligned} & -(\mathbf{2 7 5}) \\ & \mathrm{C}_{51} \mathrm{H}_{76} \mathrm{O}_{16} \cdot 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ Amorphous $+27.9^{\circ}$	Penupogenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
"	$\begin{aligned} & -(\mathbf{2 7 6}) \\ & \mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{16} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ Amorphous $+0^{\circ}$	12-O-Benzoyldeacylmetaplexigenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
"	$\begin{aligned} & -(277) \\ & \mathrm{C}_{49} \mathrm{H}_{74} \mathrm{O}_{16} \cdot 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ Amorphous $+16.9^{\circ}$	12-O-Benzoylsarcostin	-3-O- β-D-Olep-($1 \rightarrow 4$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
$"$	$\begin{aligned} & -(\mathbf{2 7 8}) \\ & \mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{15} \cdot 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ Amorphous -29.1°	Cynanchogenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.	
"	$\begin{aligned} & -(279) \\ & \mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{16} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O} \end{aligned}$ Amorphous -8.9°	Caudatin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.	
"	$\begin{aligned} & -(\mathbf{2 8 0}) \\ & \mathrm{C}_{56} \mathrm{H}_{99} \mathrm{O}_{18} \cdot 3 / 2 \mathrm{H}_{2} \mathrm{O} \\ & \text { Amorphous } \\ & -13.1^{\circ} \end{aligned}$	Cynanchogenin	$\begin{aligned} & -3-O-\beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp- } \\ & (1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	

$(1 \rightarrow 4)$ - β-D-Cymp.
-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-
$(1 \rightarrow 4$-Cymp.
-3-O- β-D-Olep- $(1 \rightarrow 4)$ - β-D-Olep-($1 \rightarrow 4$)- β-D-Olep-
($1 \rightarrow 4$)- β-D-Cymp.
-3-O- β-D-Olep- $(1 \rightarrow 4)$ - β-D-Olep- $(1 \rightarrow 4)-\beta$-D-Olep-
($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
-3-O- β-D-Olep- $(1 \rightarrow 4)$ - β-D-Olep-($1 \rightarrow 4$)- β-D-Olep-
$(1 \rightarrow 4)-\beta$-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)- β-D-Olep-
$(1 \rightarrow 4)-\beta$-D-Cymp- $(1 \rightarrow 4)-\beta$-D-Cymp.
-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep- $(1 \rightarrow 4)$ - β-D-Olep-
$(1 \rightarrow 4)-\beta$-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
Caudatin
Cynanchogenin
Caudatin
Cynanchogenin
Caudatin
Cynanchogenin
Caudatin

Table 1 (continued)

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Cynanchum caudatum	$\begin{aligned} & -(\mathbf{2 8 8}) \\ & \mathrm{C}_{63} \mathrm{H}_{102} \mathrm{O}_{21} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O} \\ & \text { Amorphous } \\ & -8.1^{\circ} \end{aligned}$	Cynanchogenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep$(1 \rightarrow 4)$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
$"$	$\begin{aligned} & -(289) \\ & \mathrm{C}_{63} \mathrm{H}_{102} \mathrm{O}_{22} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ & \text { Amorphous } \\ & +5.9^{\circ} \end{aligned}$	Caudatin	-3-O- β-D-Olep- $(1 \rightarrow 4)$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep$(1 \rightarrow 4)$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
Cynanchum formosanum	$\begin{aligned} & \text { Cynanformoside } \mathrm{A}(\mathbf{8 1}) \\ & \mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{8} \\ & 183^{\circ} \mathrm{C} \\ & -15.5^{\circ} \end{aligned}$	Utendin	-3-O- β-D-Olep.	(22)
"	$\begin{aligned} & \text { Cynanformoside B(82) } \\ & \mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{9} \\ & 212-214^{\circ} \mathrm{C} \\ & -17.5^{\circ} \end{aligned}$	20-O-Acetylutendin	-3-O- β-D-Olep.	
Cynanchum forrestii	$\begin{aligned} & \text { Cynaforroside A (83) } \\ & \mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{14} \\ & 122-126^{\circ} \mathrm{C} \\ & -25.83^{\circ} \end{aligned}$	Glaucogenin C	-3-O- α-L-Cymp-($1 \rightarrow 4$)- β-L-Cymp-($1 \rightarrow 4$)- β-D-Olep.	(84)
Cynanchum glaucescens	$\begin{aligned} & \text { Glaucoside A (84) } \\ & \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{9} \\ & 112-117^{\circ} \mathrm{C} \\ & +7.17^{\circ} \end{aligned}$	Glaucogenin A	-3-O- β-D-Olep.	(209)

References pp. 309-325

"	$\begin{aligned} & \text { Glaucoside B(85) } \\ & \mathrm{C}_{42} \mathrm{H}_{66} \mathrm{O}_{15} \\ & 115-120^{\circ} \mathrm{C} \\ & -1.83^{\circ} \end{aligned}$	Glaucogenin A	-3-O- α-L-Cymp-(1 $\rightarrow 4$)- β-L-Cymp-($1 \rightarrow 4$)- β-L-Cymp.	
"	$\begin{aligned} & \text { Glaucoside } \mathrm{C}(86) \\ & \mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{15} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 127-133^{\circ} \mathrm{C} \\ & -14.6^{\circ} \end{aligned}$	Glaucogenin A	-3-O- α-L-Cymp-(1 $\rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-L-Cymp.	
"	$\begin{aligned} & \text { Glaucoside D (87) } \\ & \mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{15} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 118-124^{\circ} \mathrm{C} \\ & -28.3^{\circ} \end{aligned}$	Glaucogenin A	-3-O- α-L-Cymp-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-D-Olep.	
"	$\begin{aligned} & \text { Glaucoside E(88) } \\ & \mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{15} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 100-106^{\circ} \mathrm{C} \\ & -21.4^{\circ} \end{aligned}$	Glaucogenin C	-3-O- α-L-Cymp-($1 \rightarrow 4$)- β-L-Cymp-($1 \rightarrow 4$)- β-D-Thevp.	
"	$\begin{aligned} & \text { Glaucoside } \mathrm{F}(89) \\ & \mathrm{C}_{42} \mathrm{H}_{64} \mathrm{O}_{15} \cdot \mathrm{H}_{2} \mathrm{O} \\ & 110-113^{\circ} \mathrm{C} \\ & -17.4^{\circ} \end{aligned}$	Glaucogenin A	-3-O- α-L-Cymp-($1 \rightarrow 4$)- β-L-Cymp-($1 \rightarrow 4$)- β-D-Olep.	(210)
"	$\begin{aligned} & \text { Glaucoside } \mathrm{G}(90) \\ & \mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{15} \\ & 117-123^{\circ} \mathrm{C} \\ & -29.6^{\circ} \end{aligned}$	Glaucogenin C	-3-O- α-L-Cymp-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-D-Thevp.	
"	$\begin{aligned} & \text { Glaucoside } \mathrm{H}(91) \\ & \mathrm{C}_{47} \mathrm{H}_{72} \mathrm{O}_{20} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ & 156-159^{\circ} \mathrm{C} \\ & -26.8^{\circ} \end{aligned}$	Glaucogenin A	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Glup- }(1 \rightarrow 4)-\alpha \text {-L-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Dgxp- } \\ & (1 \rightarrow 4)-\beta \text {-L-Cymp. } \end{aligned}$	(211)
"	$\begin{aligned} & \text { Glaucoside I }(\mathbf{9 2}) \\ & \mathrm{C}_{48} \mathrm{H}_{74} \mathrm{O}_{20} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ & 150-152^{\circ} \mathrm{C} \\ & -19.6^{\circ} \\ & \hline \end{aligned}$	Glaucogenin A	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Glup- }(1 \rightarrow 4)-\alpha \text {-L-Cymp- }(1 \rightarrow 4) \text { - } \beta \text {-L-Cymp- } \\ & (1 \rightarrow 4)-\beta \text {-L-Cymp. } \end{aligned}$	

D. Deepak, S. Srivastav, and A. Khare

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Cynanchum glaucescens	$\begin{aligned} & \text { Glaucoside J (93) } \\ & \mathrm{C}_{44} \mathrm{H}_{72} \mathrm{O}_{12} \cdot \mathrm{H}_{2} \mathrm{O} \\ & 134-139^{\circ} \mathrm{C} \\ & -25.3^{\circ} \end{aligned}$	Glaucogenin B	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)- } \alpha \text {-L-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Dgxp- } \\ & (1 \rightarrow 4)-\beta \text {-D-Olep. } \end{aligned}$	
"	Glaucogenin C mono- D-thevetoside (94) $\begin{aligned} & \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{9} \\ & 187-190.5^{\circ} \mathrm{C} \\ & +27.4^{\circ} \end{aligned}$	Glaucogenin C	-3-O-3-D-Thevp.	$(212,253)$
Cynanchum hancockianum	$\begin{aligned} & \text { Hancoside (95) } \\ & \mathrm{C}_{44} \mathrm{H}_{66} \mathrm{O}_{8} \\ & 185-187^{\circ} \mathrm{C} \\ & -12.31^{\circ} \end{aligned}$	$3 \beta, 14 \beta, 15 \beta$-Trihydroxy-pregn-5-en-20-one	-3-O-6Sin- β-D-Glup-(1 $\rightarrow 2$ - β-D-Glup.	(39)
Cynanchum otophyllum	Otophylloside A (96) $\mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{17}$	12 β-O-p-Hydroxyben-zoyldeacetylmetaplexigenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	(238)
"	Otophylloside B(97) $\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{16}$	12 β-O-Ikemoyldeacetylmetaplexigenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-(1 $\rightarrow 4$)- β-D-Cymp.	
Cynanchum paniculatum	$\begin{aligned} & \text { Cynapanoside } \mathrm{A}(98) \\ & \mathrm{C}_{28} \mathrm{H}_{40} \mathrm{O}_{9} \\ & 114-117^{\circ} \mathrm{C} \\ & +21.3^{\circ} \end{aligned}$	Glaucogenin D	-3-O- β-D-Olep.	(79)

References pp. 309-325

Cynapanoside B (99)	Glaucogenin D	-3-O- α-L-Cymp-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-D-Olep
$\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{15}$		
$\begin{aligned} & 125-1265^{\circ} \mathrm{C} \\ & +394^{\circ} \end{aligned}$		
Cynapanoside C (100)	Glaucogenın D	-3-O- α-D-Olep-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 4$)- β-D-Olep
$\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{15}$		
$\begin{aligned} & 136-138^{\circ} \mathrm{C} \\ & -112^{\circ} \end{aligned}$		
Sibiricoside D (101)	Sibirigenın/Cynancho-	-3-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp-
$\mathrm{C}_{62} \mathrm{H}_{100} \mathrm{O}_{23}$	genın	$(1 \rightarrow 4)-\beta$-D-Cymp-($1 \rightarrow 4$)- β-D-Olep
-		
-266°		
Sibiricoside E (102)	Sibirigenın/Cynancho-	-3-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Glup-($1 \rightarrow 4$)- β-D-Cymp-
$\mathrm{C}_{68} \mathrm{H}_{110} \mathrm{O}_{28}$	genın	$(1 \rightarrow 4)-\beta$-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep
-		
- 185°		
Wilfoside C1N (103)	Caudatın	-3-O- α-L-Cymp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$) α-L-Dıgp-
$\mathrm{C}_{56} \mathrm{H}_{90} \mathrm{O}_{19} 2 / 3 \mathrm{H}_{2} \mathrm{O}$		($1 \rightarrow 4$)- β-D-Cymp
140-142 $5^{\circ} \mathrm{C}$		
-44 7°		
Wilfoside C2N (104)	Caudatın	-3-O- α-L-Cymp-(1 $\rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- α-L-Digp-
$\mathrm{C}_{55} \mathrm{H}_{88} \mathrm{O}_{19} 3 / 2 \mathrm{H}_{2} \mathrm{O}$		$(1 \rightarrow 4)-\beta-\mathrm{D}-\mathrm{Dgxp}$
$142-143^{\circ} \mathrm{C}$		
-50 ${ }^{\circ}$		
Wilfoside C3N (105)	Caudatın	-3-O- β-D-Cymp-($1 \rightarrow 4$) α-L-Digp-($1 \rightarrow 4$)- β-D-Cymp
$\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{16}$		
$124-1265^{\circ} \mathrm{C}$		
$+148^{\circ}$		
Wilfoside C1G (106)	Caudatın	-3-O- β-D-Glup-($1 \rightarrow 4$)- α-L-Cymp-($1 \rightarrow 4$)- β-D-Cymp-
$\mathrm{C}_{62} \mathrm{H}_{100} \mathrm{O}_{24}$		$(1 \rightarrow 4)-\alpha$-L-Digp-($1 \rightarrow 4$)- β-D-Cymp
${ }^{143-147}{ }^{\circ} \mathrm{C}$		
-318°		

Table 1 (continued)

Plant	Glycoside (Glycoside no.) Molecular Formula	Genin	Sugar	References
	$\mathrm{mp}^{\circ} \mathrm{C}$			
	$[\alpha]_{\mathrm{D}}$			

Cynanchum
wallichii
Dregea
abyssinica

	Wilfoside M1N (113)
	$\mathrm{C}_{49} \mathrm{H}_{80} \mathrm{O}_{18}$
	$141-143{ }^{\circ} \mathrm{C}$
	-40.3°
	Wilfoside W1N (114)
	$\mathrm{C}_{63} \mathrm{H}_{94} \mathrm{O}_{20} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$
	$143.5-146{ }^{\circ} \mathrm{C}$
	$+33^{\circ}$
	Wilfoside W3N (115)
	$\mathrm{C}_{56} \mathrm{H}_{82} \mathrm{O}_{17}$
	$120-123^{\circ} \mathrm{C}$
	-43.3 ${ }^{\circ}$
	Wallicoside (116)
	$\mathrm{C}_{61} \mathrm{H}_{98} \mathrm{O}_{26}$
	$194-196{ }^{\circ} \mathrm{C}$
	$+22^{\circ}$
	Drebyssoside 1 (117)
	$\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{17}$
	$141-143^{\circ} \mathrm{C}$
	+ $24.9{ }^{\circ}$
	Drebyssoside 2 (118)
	$\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{17}$
	Amorphous
	$+38.0^{\circ}$
	Drebyssoside 3 (119)
	$\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{18}$
	$176-178^{\circ} \mathrm{C}$
	$+42.3^{\circ}$

Table 1 (continued)

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Dregea lanceolata	$\begin{aligned} & \text { Drelin (120) } \\ & \mathrm{C}_{43} \mathrm{H}_{68} \mathrm{O}_{16} \\ & 151^{\circ} \mathrm{C} \\ & +16.27^{\circ} \end{aligned}$	11 α-O-Acetylmarsdenin	-3-O- β-D-Bovp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	(195)
"	$\begin{aligned} & \text { Ceolin (121) } \\ & \mathrm{C}_{44} \mathrm{H}_{77} \mathrm{O}_{16} \\ & 146-148^{\circ} \mathrm{C} \\ & +4.38^{\circ} \end{aligned}$	11 α-O-Acetylmarsdenin	-3-O- β-D-Cymp- $(1 \rightarrow 4)$-3Me- $6 d-\beta$-D-Allop- $(1 \rightarrow 4)$ - β-D-Olep.	
"	$\begin{aligned} & \text { Lanceolin (122) } \\ & \mathrm{C}_{51} \mathrm{H}_{84} \mathrm{O}_{19} \\ & 108-110^{\circ} \mathrm{C} \\ & +24^{\circ} \end{aligned}$	11 α-O-Acetylmarsectohexol	$\begin{aligned} & \text {-3-O- } \alpha \text {-L-Digp- }(1 \rightarrow 4) \text { - } \alpha \text {-L-Digp- }(1 \rightarrow 4)-\beta \text {-D-Cymp- } \\ & (1 \rightarrow 4)-\beta \text {-D-Olep. } \end{aligned}$	(15)
"	$\begin{aligned} & \text { Lancin (123) } \\ & \mathrm{C}_{35} \mathrm{H}_{58} \mathrm{O}_{12} \\ & 118-120^{\circ} \mathrm{C} \\ & -12.3^{\circ} \end{aligned}$	Marsectohexol	-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
"	$\begin{aligned} & \text { Lancinin (124) } \\ & \mathrm{C}_{35} \mathrm{H}_{56} \mathrm{O}_{12} \\ & 95-97^{\circ} \mathrm{C} \\ & +16.04^{\circ} \end{aligned}$	Marsdenin	-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep.	
"	$\begin{aligned} & \text { Dregealin (125) } \\ & \mathrm{C}_{51} \mathrm{H}_{82} \mathrm{O}_{19} \\ & 115^{\circ} \mathrm{C} \\ & +28.57^{\circ} \end{aligned}$	11 α-O-Acetylmarsdenin	$\begin{aligned} & \text {-3-O- } \alpha \text {-L-Digp- }(1 \rightarrow 4) \text { - } \alpha \text {-L-Digp- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp- } \\ & (1 \rightarrow 4) \text { - } \beta \text {-D-Olep. } \end{aligned}$	(43)

Dregea sinensis var. corrugata	Dregeoside (126) $\begin{aligned} & \mathrm{C}_{49} \mathrm{H}_{76} \mathrm{O}_{16} \\ & 125-128^{\circ} \mathrm{C} \\ & +43.2^{\circ} \end{aligned}$	12ß-O-Benzoyldrevogenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4)-\beta$-D-Cymp.	(80)
"	Dregeoside A (127) $\begin{aligned} & \mathrm{C}_{56} \mathrm{H}_{94} \mathrm{O}_{21} \\ & 145-148^{\circ} \mathrm{C} \\ & +28.5^{\circ} \end{aligned}$	Drevogenin A	-3-O-3Me-6d- β-D-Allop-($1 \rightarrow 4$)- β-D-Olep($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	(64)
"	Dregeoside B(128) $\begin{aligned} & \mathrm{C}_{53} \mathrm{H}_{90} \mathrm{O}_{22} \\ & 135-138^{\circ} \mathrm{C} \\ & +12.5^{\circ} \end{aligned}$	$12 \beta-\mathrm{O}$-Isovaleryldihydrosarcostin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup- }(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp. } \end{aligned}$	(16)
$"$	Dregeoside C (129) $\begin{aligned} & \mathrm{C}_{51} \mathrm{H}_{78} \mathrm{O}_{16} \\ & 143-146^{\circ} \mathrm{C} \\ & +37.5^{\circ} \end{aligned}$	$\text { 12 } \beta \text {-O-Acetyl-20-O- }$ benzoyltomentogenin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
Dregea volubilis	Dregoside A(130) $\begin{aligned} & \mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{10} \\ & 149-151.5^{\circ} \mathrm{C} \\ & +43.9^{\circ} \end{aligned}$	Drevogenin A	-3-O- $/ \beta$ - D-Cymp.	(234)
"	$\begin{aligned} & \text { Dregeoside } \mathrm{A}_{\mathrm{pl}}(131) \\ & \mathrm{C}_{56} \mathrm{H}_{90} \mathrm{O}_{22} \cdot \mathrm{H}_{2} \mathrm{O} \\ & 118-120^{\circ} \mathrm{C} \\ & +25.3^{\circ} \end{aligned}$	Drevogenin A	$\text { -3-O-3Me-6d- } \beta \text {-D-Allop- }(1 \rightarrow 4)-\beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D- }$ Cymp-($1 \rightarrow 4$)- β-D-Cymp.	(215)
"	$\begin{aligned} & \text { Dregeoside } \mathrm{A}_{\mathrm{ol}}(132) \\ & \mathrm{C}_{62} \mathrm{H}_{100} \mathrm{O}_{20} \cdot 5 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 149-151.5^{\circ} \mathrm{C} \\ & +24.8^{\circ} \end{aligned}$	Drevogenin A	-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Allop-($1 \rightarrow 4$)-β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	

Table 1 (continued)

Plant	Glycoside (Glycoside no.) Molecular Formula	Genin	Sugar	References
	$\mathrm{mp}^{\circ} \mathrm{C}$			
	$[\alpha]_{\mathrm{D}}$			

"	$\begin{aligned} & \text { Dregeoside } \mathrm{D}_{\mathrm{al}}(139) \\ & \mathrm{C}_{42} \mathrm{H}_{70} \mathrm{O}_{15} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O} \\ & 139.5-143^{\circ} \mathrm{C} \\ & +2.13^{\circ} \end{aligned}$	Drevogenin D	$\begin{aligned} & \text {-3-O-3Me-6d- } \beta \text {-D-Allop-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \\ & \beta \text {-D-Cymp. } \end{aligned}$	
"	$\begin{aligned} & \text { Dregeoside } \mathrm{G}_{\mathrm{pl}}(140) \\ & \mathrm{C}_{56} \mathrm{H}_{92} \mathrm{O}_{20} \cdot \mathrm{H}_{2} \mathrm{O} \\ & 105-108^{\circ} \mathrm{C} \\ & +23.3^{\circ} \end{aligned}$	Drebyssogenin G	$\begin{aligned} & -3-\mathrm{O}-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)-\beta \text {-D-Olep- }(1 \rightarrow 4)- \\ & \beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp. } \end{aligned}$	
"	$\begin{aligned} & \text { Dregeoside } \mathrm{G}_{\mathrm{al}}(\mathbf{1 4 1)} \\ & \mathrm{C}_{49} \mathrm{H}_{80} \mathrm{O}_{17} \cdot 5 / 4 \mathrm{H}_{2} \mathrm{O} \\ & 126.5-129^{\circ} \mathrm{C} \\ & +25.3^{\circ} \end{aligned}$	Drebyssogenin G	$\begin{aligned} & \text {-3-O-3Me-6d- } \beta \text {-D-Allop-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Cymp. } \end{aligned}$	
"	$\begin{aligned} & \text { Dregeoside } \mathrm{H}(142) \\ & \mathrm{C}_{41} \mathrm{H}_{68} \mathrm{O}_{16} \cdot 1 / 4 \mathrm{H}_{2} \mathrm{O} \\ & 147-150^{\circ} \mathrm{C} \\ & +34.2^{\circ} \end{aligned}$	Marsectohexol	$\begin{aligned} & \text {-3-O-3Me-6d- } \beta \text {-D-Allop-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Dgxp. } \end{aligned}$	
Folotsia sarcostemmoides	Folotsoside A (143) $\begin{aligned} & \mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{16} \\ & 209^{\circ} \mathrm{C} \\ & +19.0^{\circ} \end{aligned}$	12-O-Benzoyllineolon	$\begin{aligned} & \text {-3-O-3Me-6d- } \beta \text {-D-Allop- }(1 \rightarrow 4) \text { - } \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \\ & \beta \text {-D-Cymp. } \end{aligned}$	(124)
Gymnema yunnanense	Gymnemaroside A (144) $\mathrm{C}_{57} \mathrm{H}_{86} \mathrm{O}_{22}$	Penupogenin	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Glup- }(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & \beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D-Cymp. } \end{aligned}$	(257)
"	Gymnemaroside B (145)	Gymnemarogenin	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)-3Me-6d- } \beta \text {-D-Allop- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp. } \end{aligned}$	

Table 1 (continued)

Plant	$\begin{aligned} & \text { Glycoside (Glycoside no.) } \\ & \text { Molecular Formula } \\ & \mathrm{mp}^{\circ} \mathrm{C} \\ & {[\alpha]_{\mathrm{D}}} \end{aligned}$	Genin	Sugar	References
Hemidesmus indicus	$\begin{aligned} & \text { Desinine (146) } \\ & \mathrm{C}_{37} \mathrm{H}_{58} \mathrm{O}_{12} \\ & 115-118^{\circ} \mathrm{C} \\ & 0^{\circ} \end{aligned}$	Drevogenin B	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Olep.	(174)
"	$\begin{aligned} & \text { Indicine (147) } \\ & \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{6} \\ & 230-233^{\circ} \mathrm{C} \\ & -37^{\circ} \end{aligned}$	Calogenin	-3-O- $\beta-\mathrm{D}-\mathrm{Dgxp}$.	(63)
"	$\begin{aligned} & \text { Hemidine (148) } \\ & \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{6} \\ & 134-140^{\circ} \mathrm{C} \\ & -24^{\circ} \end{aligned}$	Calogenin	-3-O- β-D-Bovp.	
"	Indicusin (149) $\begin{aligned} & \mathrm{C}_{46} \mathrm{H}_{72} \mathrm{O}_{18} \\ & 127-130^{\circ} \mathrm{C} \\ & -10.67^{\circ} \end{aligned}$	$11 \alpha, 12 \beta \text {-Di-O-acetyl- }$ orgogenin	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4) \\ & \beta \text {-D-Cymp. } \end{aligned}$	(61)
"	$\begin{aligned} & \text { Hemidescine (150) } \\ & \mathrm{C}_{36} \mathrm{H}_{58} \mathrm{O}_{10} \\ & 158^{\circ} \mathrm{C} \\ & +13.33^{\circ} \end{aligned}$	20-O-Acetylcalogenin	-3-O- β-D-Dgxp-(1 $\rightarrow 4$ - β-D-Olep.	(3)
"	$\begin{aligned} & \text { Emidine (151) } \\ & \mathrm{C}_{39} \mathrm{H}_{64} \mathrm{O}_{12} \\ & 192-196^{\circ} \mathrm{C} \\ & +10.3^{\circ} \end{aligned}$	Calogenin	-3-O- β-D-Dgxp-($1 \rightarrow 4$)- $\beta-\mathrm{D}-\mathrm{Dgxp}-(1 \rightarrow 4)-\beta-\mathrm{D}-\mathrm{Dgxp}$.	

Medidesmine (152)
$\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{O}_{17}$
$116-118^{\circ} \mathrm{C}$
-27.6°
Hemisine (153)
$\mathrm{C}_{48} \mathrm{H}_{80} \mathrm{O}_{19}$
$128-130^{\circ} \mathrm{C}$
-52.5°
Desmisine (154) $^{\mathrm{C}_{43} \mathrm{H}_{70} \mathrm{O}_{17}}$
$98-100^{\circ} \mathrm{C}$
$+205.3^{\circ}$
$\mathrm{Kalanoside}^{\circ} \mathrm{H}(\mathbf{1 5 5})$
$\mathrm{C}_{43} \mathrm{H}_{68} \mathrm{O}_{15}$
Amorphous
$+1.4^{\circ}$
$\mathrm{Kalanoside} \mathrm{K}(\mathbf{1 5 6})$
$\mathrm{C}_{42} \mathrm{H}_{66} \mathrm{O}_{15}$
$165-169^{\circ} \mathrm{C}$
-1.9°
$-(290)$
$\mathrm{C}_{44} \mathrm{H}_{56} \mathrm{O}_{11}$
-
$+73^{\circ}$
$-(\mathbf{2 9 1})$
$\mathrm{C}_{44} \mathrm{H}_{64} \mathrm{O}_{13}$
-
$+80^{\circ}$ Sarcostin
-3-O- α-D-Glup- $(1 \rightarrow 4)-\beta$-D-Dgxp- $(1 \rightarrow 4)-\beta$-D-Olep.
-3-O- β-D-Cymp- $(1 \rightarrow 4)$-3Me- β-D-Glup- $(1 \rightarrow 4)-\beta$-D-
Glup-($1 \rightarrow 4$)- β-D-Cymp.
$-3-O-\beta-D-X y l p-(1 \rightarrow 4)-\beta-D-D g x p-(1 \rightarrow 4)-\beta-D-$
Xylp-($1 \rightarrow 4)-\beta-D-D g x p$.
ล
(114)
(258)
-(1-4)- - -
Sarcostin
Calogenin
Calogenin
12-O-Acetyl-17-
isolineolon
12-O-Acetyl-17-
isolineolon
12-O-Benzoyl-20-O-
cinnamoylsarcostin
Penupogenin

[^10]Penupogenin

Table 1 (continued)

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Leptadenia hastata	$\begin{aligned} & -(292) \\ & \mathrm{C}_{51} \mathrm{H}_{68} \mathrm{O}_{14} \\ & - \\ & +88^{\circ} \end{aligned}$	12-O-Benzoyl-20-Ocinnamoylsarcostin	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.	
Leptadenia reticulata	$\begin{aligned} & \text { Reticulin (157) } \\ & \mathrm{C}_{48} \mathrm{H}_{80} \mathrm{O}_{17} \\ & 119-122^{\circ} \mathrm{C} \\ & -7.1^{\circ} \end{aligned}$	Calogenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Cymp- }(1 \rightarrow 4)-3 \mathrm{Me}-\alpha \text {-D-Galp- }(1 \rightarrow 4)- \\ & \beta \text {-D-Dgxp- }(1 \rightarrow 4)-\beta-\text {-Dymp. } \end{aligned}$	(53)
,	$\begin{aligned} & \text { Deniculatin (158) } \\ & \mathrm{C}_{34} \mathrm{H}_{56} \mathrm{O}_{11} \\ & 124-127^{\circ} \mathrm{C} \\ & -19.4^{\circ} \end{aligned}$	Calogenin	-3-O-3Me- α-D-Galp-(1 $\rightarrow 4)-\beta-\mathrm{D}-$ Dgxp.	
	$\begin{aligned} & \text { Leptaculatin (159) } \\ & \mathrm{C}_{40} \mathrm{H}_{66} \mathrm{O}_{16} \\ & 107-110^{\circ} \mathrm{C} \\ & -5.8^{\circ} \end{aligned}$	Calogenin	-3-O- β-D-Glup-(1 $\rightarrow 4$ - β-D-Glup-($1 \rightarrow 4$)- β-D-Cymp.	
Marsdenia condurango	Condurangoglycoside A (160) $\mathrm{C}_{53} \mathrm{H}_{78} \mathrm{O}_{17}$ $+39.4^{\circ}$	Condurangogenin A	$\begin{aligned} & -3-\mathrm{O}-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep- }(1 \rightarrow 4)- \\ & \beta \text {-D-Cymp. } \end{aligned}$	$(54,128)$

Condurangoglycoside C(161)	Condurangogenin C	```-3-O-3Me-6d- }-\mathrm{ -D-Allop-(1 }->4)-\beta-D-Olep-(1->4) \beta-D-Cymp.```
$\mathrm{C}_{53} \mathrm{H}_{80} \mathrm{O}_{17}$		
$+12^{\circ}$		
Condurangoglycoside $\mathrm{A}_{1}(\mathbf{1 6 2})$	Condurangogenin A	-3-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Glup-($1 \rightarrow 2 / 4$)-3Me6 d- β-D-Allop- $(1 \rightarrow 4)-\alpha / \beta$-D-Olep-($1 \rightarrow 4$)- β-D-Cymp
$\mathrm{C}_{65} \mathrm{H}_{98} \mathrm{O}_{27}$		
- $38{ }^{\circ}$		
Condurangoglykoside C_{1} (163)	Condurangogenin C	-3-O- β-D-Glup-($1 \rightarrow 4$)- β-D-Glup-($1 \rightarrow 2 / 4$)-3Me$6 \mathrm{~d}-\beta$-D-Allop-($1 \rightarrow 4$)- α / β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp
$\mathrm{C}_{65} \mathrm{H}_{100} \mathrm{O}_{27}$		
-		
$+23^{\circ}$		
Condurangoglycoside A (164)	Condurangogenin A	-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Allop-($1 \rightarrow 4$)-β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.
$\mathrm{C}_{59} \mathrm{H}_{88} \mathrm{O}_{22}$		
$170-174^{\circ} \mathrm{C}$		
$+43.9{ }^{\circ}$		
Condurangoglycoside	Condurangogenin C	-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Allop-($1 \rightarrow 4$)-
$\mathrm{C}_{0}(\mathbf{1 6 5})$		β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.
$\mathrm{C}_{59} \mathrm{H}_{90} \mathrm{O}_{22}$		
$160-170^{\circ} \mathrm{C}$		
$+25.9{ }^{\circ}$		
Condurangoglycoside	Condurangogenin B	-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Allop-($1 \rightarrow 4$)-
$\mathrm{B}_{0}(166)$		β-D-Olep-($1 \rightarrow 4$) β-D-Cymp.
$\mathrm{C}_{59} \mathrm{H}_{86} \mathrm{O}_{22} \cdot 2 \mathrm{H}_{2} \mathrm{O}$		
$170-180^{\circ} \mathrm{C}$		
$+11.5^{\circ}$		

Table 1 (continued)

Plant	```Glycoside (Glycoside no) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genın	Sugar	References
Marsdenia condurango	Condurangoglycoside $\begin{aligned} & \mathrm{D}_{\mathrm{o}}(167) \\ & \mathrm{C}_{59} \mathrm{H}_{88} \mathrm{O}_{23} 4 \mathrm{H}_{2} \mathrm{O} \\ & 183-188^{\circ} \mathrm{C} \\ & +135^{\circ} \end{aligned}$	$14 \beta, 20$-Dihydroxycondurangogenın B hemıketal	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)-3Me- } 6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp } \end{aligned}$	
"	20-O-Methyl-condurangoglycoside D_{o} (168) $\mathrm{C}_{60} \mathrm{H}_{90} \mathrm{O}_{23} 4 \mathrm{H}_{2} \mathrm{O}$ $180-190^{\circ} \mathrm{C}$ -876°	14β Hydroxy-20-Omethylcondurangogenın hemıketal	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup- }(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & 3 \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp } \end{aligned}$	
"	20-Iso-O-methylcondurangoglycoside D_{o} (169) $\mathrm{C}_{60} \mathrm{H}_{90} \mathrm{O}_{23} 4 \mathrm{H}_{2} \mathrm{O}$ $168-173^{\circ} \mathrm{C}$ -19°	14β Hydroxy-20-1so-O-methylcondurangogenın B hemıketal	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Glup- }(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & \beta \text {-D-Olep-(} 1 \rightarrow 4)-\beta \text {-D-Cymp } \end{aligned}$	
$"$	Condurangoglycoside $\begin{aligned} & \mathrm{E}_{01}(\mathbf{1 7 0)} \\ & \mathrm{C}_{66} \mathrm{H}_{98} \mathrm{O}_{26} \end{aligned}$	11 α-O-Cinnamoyl-12 β -O-acetyl-3 $\beta, 8 \beta$, 14β-trihydroxypregn5 -ene-20-one	$\begin{aligned} & -3 \text {-O- } \beta \text {-D-Glup- }(1 \rightarrow 4) \text {-3Me- } 6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp- }(1 \rightarrow 4)-\beta \text {-D-Cymp } \end{aligned}$	$(54,232)$
$"$	Condurangoglycoside $\begin{aligned} & \mathrm{E}_{02}(\mathbf{1 7 1)} \\ & \mathrm{C}_{59} \mathrm{H}_{86} \mathrm{O}_{23} \end{aligned}$	11 α-O-Cinnamoyl-12 β - O-acetyl-3 $\beta, 8 \beta$, 14β-trihydroxypregn- 5 -ene-20-one	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup- }(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp } \end{aligned}$	

(54)

3-O-3Me-6d- β-D-Allop-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)-
β-D-Cymp.

-3-O-3Me-6d- β-D-Allop-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)-
β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.
-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me- 6 d- β-D-Allop- $(1 \rightarrow 4)$ -
β-D-Olep-($(1 \rightarrow 4)-\beta$-D-Cymp- $(1 \rightarrow 4)$ - β-D-Cymp.
$-3-\mathrm{O}-3 \mathrm{Me}-6 \mathrm{~d}-\beta$-D-Allop-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)-
β-D-Cymp.
$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)-3Me-6d- } \beta \text {-D-Allop- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp. } \\ & \text {-3-O-3Me-6d- } \beta \text {-D-Allop- }(1 \rightarrow 4) \text { - } \beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Cymp. }\end{aligned}$.
(240) β-D-Cymp.

Condurangogenin E
Gagaimogenin A
Gagaimogenin A
Gagaimogenin B
$+68^{\circ}$
 $\mathrm{C}_{46} \mathrm{H}_{74} \mathrm{O}_{17} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ Amorphous
24.5°
Condurangoside A_{o} (294)
Condurangoside A_{o} (294)
$\mathrm{C}_{52} \mathrm{H}_{84} \mathrm{O}_{22} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ Amorphous
11.4°
Condurangoside $\mathrm{B}(295)$
Condurangoside $B(295)$
$\mathrm{C}_{51} \mathrm{H}_{76} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O}$ $\mathrm{C}_{51} \mathrm{H}_{76} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O}$
Amorphous

Amorphous
44.8°

Condurangoglycoside E(172)	Condurangogenin E
$\mathrm{C}_{53} \mathrm{H}_{76} \mathrm{O}_{18}$	
$129-133^{\circ} \mathrm{C}$	
$+68.5^{\circ}$	
Condurangoglycoside	Condurangogenin E
$\mathrm{E}_{0}(173)$	
$\mathrm{C}_{59} \mathrm{H}_{86} \mathrm{O}_{23}$	
$165-169^{\circ} \mathrm{C}$	
$+69^{\circ}$	
Condurangoglycoside	Condurangogenin E
$\mathrm{E}_{2}(174)$	
$\mathrm{C}_{60} \mathrm{H}_{88} \mathrm{O}_{21}$	
$139-142^{\circ} \mathrm{C}$	
+ 81.5°	
Condurangoglycoside	Condurangogenin E
$\mathrm{E}_{3}(175)$	
$\mathrm{C}_{66} \mathrm{H}_{98} \mathrm{O}_{26}$	
$168-172^{\circ} \mathrm{C}$	
$+68^{\circ}$	
Condurangoside A (293)	Gagaimogenin A
$\mathrm{C}_{46} \mathrm{H}_{74} \mathrm{O}_{17} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	
Amorphous	
$24.5{ }^{\circ}$	
Condurangoside A_{0} (294)	Gagaimogenin A
$\mathrm{C}_{52} \mathrm{H}_{84} \mathrm{O}_{22} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	
Amorphous	
$11.4{ }^{\circ}$	
Condurangoside B (295)	Gagaimogenin B
$\mathrm{C}_{51} \mathrm{H}_{76} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O}$	
Amorphous	
$44.8{ }^{\circ}$	

Table 1 (continued)

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Marsdenia condurango	Condurangoside C (296) $\mathrm{C}_{51} \mathrm{H}_{78} \mathrm{O}_{17} \cdot \mathrm{H}_{2} \mathrm{O}$ Amorphous 32.0°	Gagaimogenin C	$\begin{aligned} & \text {-3-O-3Me-6d- } \beta \text {-D-Allop-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Cymp. } \end{aligned}$	
"	Condurangoside B_{0} (297) $\mathrm{C}_{57} \mathrm{H}_{86} \mathrm{O}_{22} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ Amorphous	Gagaimogenin B	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup- }(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp. } \end{aligned}$	
$"$	Condurangoside C_{0} (298) $\mathrm{C}_{57} \mathrm{H}_{88} \mathrm{O}_{22} \cdot 9 / 2 \mathrm{H}_{2} \mathrm{O}$ Amorphous	Gagaimogenin C	$\begin{aligned} & -3 \text {-O- } \beta \text {-D-Glup- }(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & \beta \text {-D-Olep- }(1 \rightarrow 4)-\beta \text {-D-Cymp. } \end{aligned}$	
"	Condurangoside D_{ol} (299) $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{O}_{24} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ Amorphous	Marsdenin	-3-O- β-D-Glup- $(1 \rightarrow 4)$-3Me-6d- β-D-Allop- $(1 \rightarrow 4)$ -β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	
Marsdenia formosana	$\begin{aligned} & \text { MF-A (176) } \\ & \mathrm{C}_{35} \mathrm{H}_{54} \mathrm{O}_{10} \\ & 196-198^{\circ} \mathrm{C} \\ & +43.5^{\circ} \end{aligned}$	Dehydrotomentosin	-3-O- β-D-Cymp.	(260)
"	$\begin{aligned} & \text { MF-C }(177) \\ & \mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}_{8} \\ & 245-248^{\circ} \mathrm{C} \end{aligned}$	Pergularin	-3-O- β-D-Cymp.	

-3-O- β-D-Cymp.
-3-O- β-D-Cymp.
-3-O- β-D-Cymp.
-3-O- β-D-Cymp.
(261)
(262)
$(17,239)$
$\underset{\sim}{\underset{\sim}{*}}$
-3-O-3Me-6d- β-D-Glup-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)-
-3-O-3Me-6d- β-D-Allop-($1 \rightarrow 4$)- β-D-Olep-($1 \rightarrow 4$)-β-D-Cymp.
-3-O-3Me-6d- β-D-Allop-($1 \rightarrow 4$)- β-D-Olep- $(1 \rightarrow 4)$ -
-3-O- β-D-Quip-($1 \rightarrow 4$)- β-D-Cymp.
-3-O- β-D-Quip-($1 \rightarrow 4$)- β-D-Cymp.
in

$$
\beta \text {-D-Cymp. }
$$

Utendin
Marsformosadin
12 β-O-Tigloyl-20-O-acetylpregn- 5 -ene- 3β, 14ß,17-triol
12 β-O-Tigloyl-pregn 5 -ene-3ß, 14ß, 17, 20tetrol
$3 \beta, 5 \beta, 14 \beta, 17 \beta, 20-$ Pentahydroxypregn- 7β-al
12 β-O-Cinnamoyldihydrosarcostin
$12 \beta-$ O-Benzoyldihydrosarcostin

MF-D (178)
$\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{8}$
$249-252^{\circ} \mathrm{C}$
-
Marsformosadin-3-O-
β-D-cymaropyrano-
side (179)
$\mathrm{C}_{39} \mathrm{H}_{48} \mathrm{O}_{10}$
-
-
$\mathrm{Marrformoside} \mathrm{(180)}^{\mathrm{C}_{41} \mathrm{H}_{64} \mathrm{O}_{14}}$
-
-
Deacetyl marsfor-
moside $(\mathbf{1 8 1})$
$\mathrm{C}_{39} \mathrm{H}_{62} \mathrm{O}_{13}$
-
-

Marsdenia
incisa

Marsdenia
koi
"

Plant	```Glycoside (Glycoside no.) Molecular Formula \(\mathrm{mp}^{\circ} \mathrm{C}\) \([\alpha]_{\mathrm{D}}\)```	Genin	Sugar	References
Marsdenia koi	Marsdekoiside $\mathrm{D}(\mathbf{1 8 5)}$ $\mathrm{C}_{42} \mathrm{H}_{72} \mathrm{O}_{16}$	Dihydrosarcostin	$\begin{aligned} & -3-\mathrm{O}-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)-\beta \text {-D-Olep- }(1 \rightarrow 4)- \\ & \beta \text {-D-Cymp. } \end{aligned}$	(263)
"	Marsdekoiside E(186) $\mathrm{C}_{51} \mathrm{H}_{78} \mathrm{O}_{16}$	20-O-Cinnamoyldihydrosarcostin	$\begin{aligned} & -3-\mathrm{O}-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Olep- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Cymp. } \end{aligned}$	(264)
Marsdenia oreophila	Marsdeoreophiside A (187) $\mathrm{C}_{48} \mathrm{H}_{82} \mathrm{O}_{21}$	Dihydrosarcostin	-3-O- β-D-Glup- $(1 \rightarrow 4)$-3Me-6d- β-D-Allop-($1 \rightarrow 4$)-β-D-Olep-($1 \rightarrow 4$)- β-D-Cymp.	(265)
Marsdenia tenacissima	$\begin{aligned} & \text { Tenacissoside A (188) } \\ & \mathrm{C}_{48} \mathrm{H}_{74} \mathrm{O}_{19} \\ & 139.5-140.5^{\circ} \mathrm{C} \\ & -16.3^{\circ} \end{aligned}$	Tenacigenin B-I	```-3-O-\beta-D-Glup-(1->4)-3Me-6d- }\beta\mathrm{ -D-Allop-(1 }->4)\mathrm{ - \beta-D-Olep.```	(266)
"	$\begin{aligned} & \text { Tenacissoside B (189) } \\ & \mathrm{C}_{51} \mathrm{H}_{78} \mathrm{O}_{19} \\ & 132.58 .134 .5^{\circ} \mathrm{C} \\ & +11^{\circ} \end{aligned}$	Tenacigenin B-II	-3-O- β-D-Glup-($1 \rightarrow 4$)-3Me-6d- β-D-Allop-($1 \rightarrow 4$)-β-D-Olep.	
"	$\begin{aligned} & \text { Tenacissoside } \mathrm{C}(\mathbf{1 9 0}) \\ & \mathrm{C}_{53} \mathrm{H}_{76} \mathrm{O}_{19} \\ & 128-132.5^{\circ} \mathrm{C} \\ & +16.3^{\circ} \\ & \hline \end{aligned}$	Tenacigenin B-III	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup- }(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4) \text { - } \\ & \beta \text {-D-Olep. } \end{aligned}$	

References pp. 309-325
Hemoside (193)

$$
\begin{aligned}
& +262^{\circ} \\
& \text { Hemoside (193) }
\end{aligned}
$$

$$
\mathrm{C}_{35} \mathrm{H}_{42} \mathrm{O}_{10}
$$

Orthenne (194)

$$
\bar{O}^{-}
$$

$$
\begin{aligned}
& \mathrm{C}_{58} \mathrm{H}_{88} \mathrm{O}_{19} \\
& 120-124^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\begin{aligned}
& +115^{\circ} \\
& \text { Orine (195) }
\end{aligned}
$$

$$
\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{O}_{11}
$$

$$
58-62^{\circ} \mathrm{C}
$$

$$
\begin{aligned}
& +8514^{\circ} \\
& \text { Ornıne (196) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Ornıne (196) } \\
& \mathrm{C}_{53} \mathrm{H}_{70} \mathrm{O}_{14}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{53} \mathrm{H}_{70} \\
& 124^{\circ} \mathrm{C}
\end{aligned}
$$

Oxystine (197)

$$
\begin{aligned}
& +1413^{\circ} \\
& \text { Oxystne (197) }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{57} \mathrm{H}_{84} \mathrm{O}_{20} \\
& 145-15^{\circ}
\end{aligned}
$$

Tenacıgenın B-IV	$\begin{aligned} & -3-\mathrm{O}-\beta-\mathrm{D}-\mathrm{Glup}-(1 \rightarrow 4)-3 \mathrm{Me}-6 \mathrm{~d}-\beta \text {-D-Allop- }(1 \rightarrow 4)- \\ & \beta \text {-D-Olep } \end{aligned}$
Tenacıgenın B-V	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Glup-(} 1 \rightarrow 4 \text {)-3Me-6d- } \beta \text {-D-Allop-(} 1 \rightarrow 4 \text {)- } \\ & \beta \text {-D-Olep } \end{aligned}$
12β-O-Benzoyldeacetylmetaplexıgenin	-3-O- β-D-Cymp
12 β-O-Cinnamoylsarcostın	$\begin{aligned} & -3 \text {-O- } \alpha \text {-L-Olep- }(1 \rightarrow 4)-\alpha \text {-L-Olep-(} 1 \rightarrow 4 \text {)- } \alpha \text {-L-Olep- } \\ & (1 \rightarrow 4)-\beta \text {-D-Cymp } \end{aligned}$
12,20-Dı-O-cinnamoylsarcostın	-3-O- β-D-Cymp
12,20-Dı-O-cinnamoylsarcostın	-3-O- α-L-Olep-(1 $\rightarrow 4$)- β-D-Cymp
12 β-O-Cinnamoyldeacylmetaplexıgenın	$\begin{aligned} & -3-\mathrm{O}-\beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Thevp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D- } \\ & \text { Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Dgxp } \end{aligned}$

deacylmetaplexıgenin

(267)

(217)
(268)
(196)
(269) -3-O- β-D-Cymp-($1-44$)- - -D-Thevp-($1 \rightarrow 4$)- β-D-
Cymp-($1 \rightarrow 4$)- - D-Dgxp
Table 1 (continued)

Plant	$\begin{aligned} & \text { Glycoside (Glycoside no.) } \\ & \text { Molecular Formula } \\ & \mathrm{mp}^{\circ} \mathrm{C} \\ & {[\alpha]_{\mathrm{D}}} \end{aligned}$	Genin	Sugar	References
Oxystelma esculentum	$\begin{aligned} & \text { Oxysine (198) } \\ & \mathrm{C}_{48} \mathrm{H}_{80} \mathrm{O}_{16} \\ & 120-122^{\circ} \mathrm{C} \\ & -17.5^{\circ} \end{aligned}$	Calogenin	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Olep-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Thevp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D- } \\ & \text { Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Dgxp. } \end{aligned}$	(60)
	$\begin{aligned} & \text { Esculentin (199) } \\ & \mathrm{C}_{42} \mathrm{H}_{68} \mathrm{O}_{17} \\ & 118-120^{\circ} \mathrm{C} \\ & +5^{\circ} \end{aligned}$	Sarcogenin	-3-O- β-D-Thevp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep.	(62)
Pergularia pallida	$\begin{aligned} & \text { Pallidine (200) } \\ & \mathrm{C}_{42} \mathrm{H}_{54} \mathrm{O}_{11} \\ & 102-112^{\circ} \mathrm{C} \\ & +20^{\circ} \end{aligned}$	12,20-Di-O-benzoylsarcostin	-3-O- β-D-Olep.	(270)
	$\begin{aligned} & \text { Pallidinine (201) } \\ & \mathrm{C}_{49} \mathrm{H}_{66} \mathrm{O}_{14} \\ & 118-122^{\circ} \mathrm{C} \\ & +88^{\circ} \end{aligned}$	12,20-Di-O-benzoylsarcostin	-3-O- β-D-Cymp-($1 \rightarrow 4$)- β-D-Olep.	
Periploca calophylla	$\begin{aligned} & \text { Calocin (202) } \\ & \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{6} \\ & 243-247^{\circ} \mathrm{C} \\ & -60.7^{\circ} \end{aligned}$	Δ^{5}-Pregnene-3 $3,14 \beta$, 20-triol	-3/20- β-D-Canp.	(271)
	$\begin{aligned} & \text { Plocin (203) } \\ & \mathrm{C}_{49} \mathrm{H}_{66} \mathrm{O}_{13} \\ & 148-150^{\circ} \mathrm{C} \\ & +40^{\circ} \end{aligned}$	12,20-Di-O-benzoyldrevogenin D	-3-O- β-D-Olep-($1 \rightarrow 4$)- β-D-Olep.	(272)

Plocinine (204)
sarcostin
Boucerin
-3-O- β-D-Dgxp.
क्ర
(273,274)
정
(276)
(277)
-20-O- β-D-Glup-($1 \rightarrow 6$)- - -D-Glup-($1 \rightarrow 2$)- β-D-Dgtp.
-3 -O-2Ac- - -D-Dgtp- $(1 \rightarrow 4)-\beta$-D-Cymp-20-O-
β-D-Glup-($1 \rightarrow 6$)- - -D-Glup- $(1 \rightarrow 2)-\beta$-D-Dgtp.

$-3-\mathrm{O}-\alpha-\mathrm{L}$-Olep-(1 $\rightarrow 4$) $-\alpha$-L-Olep.
-3-O-2d- β-L-Fucp.
-20-O- β-D-Canp.
(2)
12,20-Di-O-cinnamoyl-
Calogenin
Δ^{5}-Pregnene- $3 \beta, 20 \alpha-$
diol
Δ^{5}-Pregnene-3 $3,20 \alpha-$
diol
Δ^{5}-Pregnene- $3 \beta, 17 \alpha$,
20α-triol
Δ^{5}-Pregnene- 3β, 16α,
20 -triol
Plocinine (204)
$\mathrm{C}_{53} \mathrm{H}_{70} \mathrm{O}_{14}$
$144-148^{\circ} \mathrm{C}$
$+37^{\circ}$
$+\operatorname{cin}$ (205)
$\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{7}$
O.SII-0I
$+20^{\circ}$
Calocinin (206) $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{6}$
$250-255^{\circ} \mathrm{C}$
$+16^{\circ}$
$\mathrm{C}_{40} \mathrm{H}_{66} \mathrm{O}_{24}$
$85^{\circ} \mathrm{LZ}$ -
Glycoside $\mathrm{H}_{1}(208)$
$\mathrm{C}_{56} \mathrm{H}_{92} \mathrm{O}_{24}$
$182{ }^{\circ}$
$-22.83^{\circ}{ }^{\circ}$ Glycoside $\mathrm{E}_{1}(209)$
$\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{6}$
$\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{6}$
$239-240^{\circ} \mathrm{C}$
-69.9°
Glycoside H_{2} (210)
$\mathrm{C}_{56} \mathrm{H}_{92} \mathrm{O}_{25}$
$191-192$
-25.9°

Periploca
를
Table 1 (continued)

Plant	Glycoside (Glycoside no.) Molecular Formula $\mathrm{mp}^{\circ} \mathrm{C}$ $[\alpha]_{D}$	Genin	Sugar	References
Periploca sepium	$\begin{aligned} & \text { Periploside } \mathrm{A}(\mathbf{2 1 1}) \\ & \mathrm{C}_{65} \mathrm{H}_{106} \mathrm{O}_{24} \\ & 225-226^{\circ} \mathrm{C} \\ & +15.7^{\circ} \end{aligned}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene- } 3 \beta, 17 \alpha, \\ & 20 \alpha \text {-triol } \end{aligned}$	-20-O-2Ac- β-D-Dgtp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)-β-D-Cymp- $(1 \rightarrow 4)$ - β-D-Cymp-($1 \rightarrow 4$)-D-Olep$\left\{(1 \rightarrow 3)\left(-\mathrm{CH}_{2} \mathrm{O}-\right)\right\}(1 \rightarrow 4)-\beta$-D-Canp.	(228)
"	$\begin{aligned} & \text { Periploside B(212) } \\ & \mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{9} \\ & 146-147^{\circ} \mathrm{C} \\ & -71.6^{\circ} \end{aligned}$	$\Delta^{5} \text {-Pregnene- } 3 \beta, 17 \alpha,$ $20 \alpha \text {-triol }$	-3-O-4', 6^{\prime}-did-3'Me- ${ }^{3}{ }^{3}$ - D- 2^{\prime} Hex-20-O- β-D-Canp.	
"	$\begin{aligned} & \text { Periploside } \mathrm{C}(\mathbf{2 1 3}) \\ & \mathrm{C}_{72} \mathrm{H}_{114} \mathrm{O}_{27} \\ & 194-195^{\circ} \mathrm{C} \\ & +1.3^{\circ} \end{aligned}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene- } 3 \beta, 17 \alpha, \\ & 20 \alpha \text {-triol } \end{aligned}$	$\begin{aligned} & \text {-3-O-4', } 6^{\prime} \text {-did- } 3^{\prime} \mathrm{Me}-\mathrm{D}^{3} \text {-D- } 2^{\prime} \mathrm{Hex}-20-\mathrm{O}-2 \mathrm{Ac}-\beta \text {-D- } \\ & \text { Dgtp- }(1 \rightarrow 4)-\mathrm{B}-\mathrm{D}-\mathrm{Cymp}-(1 \rightarrow 4)-\beta-\mathrm{D}-\mathrm{Cymp}-(1 \rightarrow 4)- \\ & \beta \text {-D-Cymp- }(1 \rightarrow 4) \text {-D-Olep- }\left\{(1 \rightarrow 3)\left(-\mathrm{CH}_{2} \mathrm{O}-\right)\right\}(1 \rightarrow 4)- \\ & \beta \text {-D-Canp. } \end{aligned}$	
"	$\begin{aligned} & \mathrm{S}-4 \mathrm{a}(214) \\ & \mathrm{C}_{56} \mathrm{H}_{92} \mathrm{O}_{25} \\ & 182-184^{\circ} \mathrm{C} \\ & -16.24^{\circ} \end{aligned}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene- } 3 \beta, 16 \beta, \\ & 20(\mathrm{R}) \text {-triol } \end{aligned}$	$\begin{aligned} & \text {-3-O-2Ac- } \beta \text {-D-Dgtp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp-20-O- } \\ & \beta \text {-D-Glup-(} 1 \rightarrow 6 \text {)- } \beta \text {-D-Glup- }(1 \rightarrow 2)-\beta \text {-D-Dgtp. } \end{aligned}$	(187)
"	$\begin{aligned} & \mathrm{S}-5(\mathbf{2 1 5}) \\ & \mathrm{C}_{54} \mathrm{H}_{90} \mathrm{O}_{27} \\ & 175-177^{\circ} \mathrm{C} \\ & -25.22^{\circ} \end{aligned}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene-3 } 3 \text {, } \\ & 20(\mathrm{~S}) \text {-diol } \end{aligned}$	$\begin{aligned} & \text {-3-O- } \beta \text {-D-Dgtp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp-20-O- } \\ & \beta \text {-D-Glup-(} 1 \rightarrow 6 \text {)- } \beta \text {-D-Glup-(} 1 \rightarrow 2 \text {)- } \beta \text {-D-Dgtp. } \end{aligned}$	
"	$\begin{aligned} & \mathrm{S}-10(\mathbf{2 1 6}) \\ & \mathrm{C}_{40} \mathrm{H}_{66} \mathrm{O}_{17} \\ & 167-169^{\circ} \mathrm{C} \\ & -2.6^{\circ} \end{aligned}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene- } 3 \beta, 16 \beta, \\ & 20(\mathrm{R}) \text {-triol } \end{aligned}$	-20-O- β-D-Glup-($1 \rightarrow 6$)- β-D-Glup-($1 \rightarrow 2$)- β-D-Dgtp.	
"	Periplocoside A (217) $\mathrm{C}_{72} \mathrm{H}_{114} \mathrm{O}_{27} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene- } 3 \beta, 17 \alpha, \\ & 20(\mathrm{~S}) \text {-triol } \end{aligned}$	-3-O-4', 6^{\prime}-did- $3^{\prime} \mathrm{Me}-\Delta^{3}$ - - -2^{\prime} Hex-20-O-2Ac- β-D-Dgtp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp-($(\rightarrow 4)$ -	(162)

$\begin{aligned} & 174-176^{\circ} \mathrm{C} \\ & -1.2^{\circ} \end{aligned}$		β-D-Cymp-($1 \rightarrow 5$)-3, 7-did-4Me- α-D-gluco-2-Hepp($2 \rightarrow 4$)-dioxy-($1 \rightarrow 3$)- β-D-Canp.
Periplocoside B (218)	Δ^{5}-Pregnene-3 β, 17 α,	-3-O-4', 6^{\prime}-did-3'Me- ${ }^{3}$ - ${ }^{\text {d }} \mathbf{2}^{\prime}$ Hex-20-O- β-D-Cymp-
$\begin{aligned} & \mathrm{C}_{56} \mathrm{H}_{88} \mathrm{O}_{19} \\ & 136-138^{\circ} \mathrm{C} \end{aligned}$	20(S)-triol	($1 \rightarrow 4$)- β-D-Cymp- $(1 \rightarrow 5$)-3, 7-did-4Me- α-D-gluco-2-Hepp($2 \rightarrow 4$)-dioxy-($1 \rightarrow 3$)- β-D-Canp.
$+1.9^{\circ}$		
Periplocoside C (219)	Δ^{5}-Pregnene-3 β, 17 α,	-3-O-4', 6^{\prime}-did-3' $\mathrm{Me}-\Delta^{3}$ - D- 2^{\prime} Hex-20-O- β-D-Cymp-
$\mathrm{C}_{49} \mathrm{H}_{78} \mathrm{O}_{16}$	20(S)-triol	($1 \rightarrow 5$)-3,7-did-4Me- α-D-gluco-2-Hepp-
$180-182^{\circ} \mathrm{C}$		($2 \rightarrow 4$)-dioxy-($1 \rightarrow 3$)- β-D-Canp.
$-8.4{ }^{\circ}$		
Periplocoside D (220)	Δ^{5}-Pregnene-3 $3,17 \alpha$,	-3-O-4', 6^{\prime}-did-3'Me- ${ }^{3}{ }^{\prime}$-D-2' ${ }^{\prime}$ Hex-20-O-3-D- (69)
$\mathrm{C}_{70} \mathrm{H}_{112} \mathrm{O}_{26}$	20(S)-triol	Dgtp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)-
$191-193{ }^{\circ} \mathrm{C}$		β-D-Cymp-($1 \rightarrow 5$-3,7-did-4Me- α-D-gluco-2-Hepp-
-3.08°		($2 \rightarrow 4$)-dioxy-($1 \rightarrow 3$)- β-D-Canp.
Periplocoside E (221)	Δ^{5}-Pregnene-3 β, 17 α,	-20-O-2Ac- β-D-Dgtp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β -
$\mathrm{C}_{65} \mathrm{H}_{106} \mathrm{O}_{24}$	20(S)-triol	D-Cymp-($1 \rightarrow 4$) $-\beta$-D-Cymp-($1 \rightarrow 5$)-3, 7-did-4Me- α-D-
${ }^{183-185}{ }^{\circ} \mathrm{C}$		gluco-2-Hepp-($2 \rightarrow 4$)-dioxy-($1 \rightarrow 3$)- β-D-Canp.
-7.5 ${ }^{\circ}$		
Periplocoside L (222)	Δ^{5}-Pregnene-3 β, 17 α,	-3-O- β-D-Dgtp.
$\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{O}_{7}$.	20(S)-triol	
$238-240^{\circ} \mathrm{C}$		
-53.3 ${ }^{\circ}$		
Periplocoside M (223)	Δ^{5}-Pregnene-3 β, 17 α,	-3-O-4', 6^{\prime}-did-3'Me- $\Delta^{3}{ }^{\prime}$-D-2 ${ }^{\prime}$ Hex-20-O- β-D-Canp.
$\mathrm{C}_{34} \mathrm{H}_{52} \mathrm{O}_{9}$.	20(S)-triol	
$195-197^{\circ} \mathrm{C}$		
-89.91 ${ }^{\circ}$		
Periplocoside J (224)	Δ^{5}-Pregnene-3 β, 17 α,	-20-O- β-D-Dgtp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$) β -
$\mathrm{C}_{61} \mathrm{H}_{100} \mathrm{O}_{23}$	20(S)-triol	D-Canp-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 5$)-3, 7-did-4Me- α-D-
$178-181{ }^{\circ} \mathrm{C}$		gluco-2-Hepp-($2 \rightarrow 4$)-dioxy-($1 \rightarrow 3$)- β-D-Canp.
$+24.13^{\circ}$		

Table 1 (continued)

Plant	```Glycoside (Glycoside no.) Molecular Formula mp }\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Periploca sepium	$\begin{aligned} & \text { Periplocoside } \mathrm{K}(\mathbf{2 2 5}) \\ & \mathrm{C}_{68} \mathrm{H}_{108} \mathrm{O}_{26} \\ & 208-212^{\circ} \mathrm{C} \\ & -4.76^{\circ} \end{aligned}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene- } 3 \beta, 17 \alpha, \\ & 20(S) \text {-triol } \end{aligned}$	-3-O-4', 6^{\prime}-did-3'Me- Δ^{3}-D-2' Hex-20-O- β-D- Dgtp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Canp-($1 \rightarrow 4$)- β-D-Dgxp-($1 \rightarrow 5$)-3,7-did-4Me- α-D-gluco-2-Hepp($2 \rightarrow 4$)-dioxy-($1 \rightarrow 3$)- β-D-Canp.	
$"$	$\begin{aligned} & \text { Periplocoside } \mathrm{F} \text { (226) } \\ & \mathrm{C}_{63} \mathrm{H}_{104} \mathrm{O}_{23} \\ & 195-198^{\circ} \mathrm{C} \\ & +8.1^{\circ} \end{aligned}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene- } 3 \beta, 17 \alpha, \\ & 20(S) \text {-triol } \end{aligned}$	$\begin{aligned} & -20-\mathrm{O}-\beta \text {-D-Dgtp- }(1 \rightarrow 4)-\beta \text {-D-Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D- } \\ & \text { Cymp-(} 1 \rightarrow 4 \text {)- } \beta \text {-D-Cymp-(} 1 \rightarrow 5 \text {)-3, } 7 \text {-did-4Me- } \alpha \text {-D-gluco-2- } \\ & \text { Hepp-(} 2 \rightarrow 4 \text {)-dioxy-(}(1 \rightarrow 3) \text { - } \beta \text {-D-Canp. } \end{aligned}$	
$"$	$\begin{aligned} & \text { Periplocoside } \mathrm{O}(227) \\ & \mathrm{C}_{36} \mathrm{H}_{56} \mathrm{O}_{10} \\ & 103-106^{\circ} \mathrm{C} \\ & +84.0^{\circ} \end{aligned}$	$\begin{aligned} & \Delta^{5} \text {-Pregnene-3 } \beta, 17 \alpha, \\ & 20(S) \text {-triol } \end{aligned}$	$\begin{aligned} & \text {-3-O-4', } 6^{\prime} \text {-did- } 3^{\prime} \mathrm{Me}-\Delta^{3} \text {-D-2' Hex-20-O-3MeMe- } \\ & \beta \text {-D-Canp. } \end{aligned}$	
Sarcostemma brevistigma	$\begin{aligned} & \text { Brevinine (228) } \\ & \mathrm{C}_{42} \mathrm{H}_{60} \mathrm{O}_{14} \\ & 260-262^{\circ} \mathrm{C} \\ & +27^{\circ} \end{aligned}$	11-O-Benzoylsarcogenin	-3-O- α-L-Digp-(1 $\rightarrow 4$)- α-L-Digp.	(278)
$"$	$\begin{aligned} & \text { Brevine (229) } \\ & \mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{17} \\ & 100-105^{\circ} \mathrm{C} \\ & +21.2^{\circ} \end{aligned}$	11-O-Benzoylsarcogenin	-3-O- α-L-Digp-($1 \rightarrow 4$ - α-L-Digp-($1 \rightarrow 4$)- α-L-Digp.	(173)
Sarcostemma viminale	$\begin{aligned} & \text { Sarcovimiside } \mathrm{A}(\mathbf{2 3 0}) \\ & \mathrm{C}_{49} \mathrm{H}_{72} \mathrm{O}_{16} \cdot 2.5 \mathrm{H}_{2} \mathrm{O} \\ & 137-140^{\circ} \mathrm{C} \end{aligned}$	Cynanforidine	-3-O- α-L-Cymp-($1 \rightarrow 4$ - β-D-Cymp-($1 \rightarrow 4$)- β-D-Cymp.	(137)

-3-O- α-L-Cymp-($1 \rightarrow 4$)- β-D-Cymp-($1 \rightarrow 4$)- β-D-Dgtp.
-3-O- β-D-Glup-($1 \rightarrow 4$)- α-L-Cymp- $(1 \rightarrow 4)$ - β-D-Cymp-
$(1 \rightarrow 4)-\beta$-D-Dgtp.
$(1 \rightarrow 4)-\beta$-D-Dgtp.
(20S)-12 β, 20-Dibenz-oyloxy- $3 \beta, 5,17$ -
trihydroxy-8, 14 -seco-
$5 \beta, 17 \alpha$-pregn- 6 -ene- 8 ,
14-dione
(20S)-12 $\beta, 20$-Dibenz-
oyloxy-3 $\beta, 5,17$ -
trihydroxy-8,14-seco-
$5 \beta, 17 \alpha$-pregn- 6 -ene- 8,
$5 \beta, 17 \alpha$-pregn- 6 -ene- 8 ,
14-dione

	Family Compositae			
Carthamus	$-(\mathbf{2 3 3})$	$15 \alpha, 20-$ Dihydroxy- $\Delta^{4}-$ pregnen-3-one	$-20-\mathrm{O}-\beta$-D-Glup-(1 $\rightarrow 4)-\beta$-D-Glup.	(4)
tinctorius	$\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{O}_{13}$			
	-			
	-			

Family Liliaceae				
Paris polyphylla	$\begin{aligned} & -(234) \\ & \mathrm{C}_{39} \mathrm{H}_{60} \mathrm{O}_{15} \mathrm{~s} \\ & 260-262^{\circ} \mathrm{C} \\ & -72.2^{\circ} \mathrm{C} \end{aligned}$	Pregn-5,16-diene3β-hydroxy-20-one	-3-O- α-L-Rhap-($1 \rightarrow 2$)-[α-L-Rhap-($1 \rightarrow 4$)- β-D-Glup].	(216)
Family Meliaceae				
Melia toosendan	$\begin{aligned} & \text { Toosendanoside (235) } \\ & \mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}_{9} \\ & 265.5-268.5^{\circ} \mathrm{C} \\ & -8.1^{\circ} \end{aligned}$	5α-Pregnane- $2 \alpha, 3 \alpha$, $16 \beta, 20(\mathrm{R})$-tetrol	-2-O- β-D-Glup	(6)

Table 1 (continued)

Plant	```Glycoside (Glycoside No.) Molecular Formula mp}\mp@subsup{}{}{\circ}\textrm{C [\alpha]```	Genin	Sugar	References
Family Moraceae				
Streblus asper	Sioraside (236) $\begin{aligned} & \mathrm{C}_{28} \mathrm{H}_{46} \mathrm{O}_{8} \\ & 214-217^{\circ} \mathrm{C} \\ & -1.3^{\circ} \end{aligned}$	$3 \beta, 14 \beta$-Dihydroxypregn-20-one	$\text { -3-O-3Me- } \beta \text {-D-Glup. }$	(9)
Family Palmae				
Sabal causiarum	$\begin{aligned} & \text { Causiaroside II (237) } \\ & \mathrm{C}_{57} \mathrm{H}_{92} \mathrm{O}_{28} \\ & 172-175^{\circ} \mathrm{C} \\ & -47.2^{\circ} \end{aligned}$	3β, 16 β-Dihydroxypregn5 -en-20-one	-3-O-[α-L-Rhap-($1 \rightarrow 4$)- β-D-($1 \rightarrow 4$)] [α-L-Rhap$(1 \rightarrow 2)]-\beta$-D-Glup-16-O-[δ-(β-D-Glup-oxy)- γ-Me] valerate.	(23)
Animal Sources				
Eunicella verrucosa	$\begin{aligned} & \text { Verrucoside (238) } \\ & \mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{7} \\ & - \\ & -30^{\circ} \end{aligned}$	$\begin{aligned} & 5 \beta \text {-H-Pregn-20- } \\ & \text { ene- } 3 \beta, 4 \beta \text {-diol } \end{aligned}$	$-4-\mathrm{O}-2 \mathrm{Ac}-\alpha-\mathrm{L}-\mathrm{Dgtp} .$	(7)
Menduca sexta	$\begin{aligned} & -(239) \\ & \mathrm{C}_{39} \mathrm{H}_{64} \mathrm{O}_{17} \\ & \left(205-209^{\circ} \mathrm{C}\right) \\ & 265-279^{\circ} \mathrm{C} \end{aligned}$	3 3 , 20(R)-Dihydroxy-pregn-5-ene	-3-O- β-D-Glup-($1 \rightarrow 2$ - β-D-Glup-20-O- β-D-Glup.	(198)

-3-O- β-D-Glup-20-O- β-D-Glup.
-3-O- β-D-Galp.
$\beta, 20(\mathrm{R})$-Dihydroxy,
pregn-5-ene
(113) Allo = Allose; Bov = Boivinose; Can = Canarose; Cym = Cymarose; Dgt = Digitalose; Dgx = Digitoxose; Dig = Diginose; Fuc = Fucose; Gal = Galactose; Glu = Glucose; Hepp = Heptulose; Hex = Hexosulose; Hol = Holosamine; Ole = Oleandrose; Oli = Olivose; Qui = Quinovose; Rha $=$ Rhamnose; Sar $=$ Sarmentose; Thev $=$ Thevetose; $2 \mathrm{~d}=2$ deoxy; $6 \mathrm{~d}=6 \mathrm{deoxy} ;$ did $=$ dideoxy; $2 \mathrm{Ac}=2-\mathrm{O}-\mathrm{Acetyl} ; 4 \mathrm{Ac}=4-\mathrm{O}-\mathrm{Acetyl} ; 3 \mathrm{Me}=3-\mathrm{O}-$ vetose; $2 \mathrm{~d}=2$ deoxy; $6 \mathrm{~d}=6$ deoxy; did $=$ dideoxy; $2 \mathrm{Ac}=2-\mathrm{O}$-Acetyl; $4 \mathrm{Ac}=4-\mathrm{O}$-Acetyl; $3 \mathrm{Me}=3$-O-
Methyl; $4 \mathrm{Me}=4-\mathrm{O}-\mathrm{Methyl} ; 6 \mathrm{Sin}=6-\mathrm{O}$-Sinapoyl
${ }^{-(240)}{ }_{33} \mathrm{H}_{54} \mathrm{O}_{12}$
-
$\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{6}$
$268-270^{\circ} \mathrm{C}$
${ }^{268-210}$
Pseudoplexa-
Pseudoplexa
ura

Table 2. Structures of Pregnane Glycosides

(1)

(2)

(3)

(4)

(7)
(8)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

(27)

(28)

(29)

Table 2 (continued)

(30)

(31)

(32)

Table 2 (continued)

Table 2 (continued)

(39)

(40)

(41)

Table 2 (continued)

(45)

Table 2 (continued)

(48)

Table 2 (continued)

(53)

Table 2 (continued)

(55)

(57)

Table 2 (continued)

(59)

(61)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

(79)

(80)

(82)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

(96)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

(116)

(117)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

(133)

Table 2 (continued)

Table 2 (continued)

Table 2 (continued)

(149)

Table 2 (continued)

(160)

Table 2 (continued)

Table 2 (continued)

(169)

Table 2 (continued)

Table 2 (continued)

(182)

Table 2 (continued)

Table 2 (continued)

(190)

(191)

Table 2 (continued)

(216)

(217)

(218)

Table 2 (continued)

(221)

Table 2 (continued)

(224)

(225)

Table 2 (continued)

Table 2 (continued)

(233)

Table 2 (continued)

Table 2 (continued)

(245)

Table 2 (continued)

Table 2 (continued)

(251)

(252)

(253)

(254)

Table 2 (continued)

(255)

(256)

(257)

Table 2 (continued)

(262)

Table 2 (continued)

Table 2 (continued)

(271)

Table 2 (continued)

(273)

(276)

Table 2 (continued)

Table 2 (continued)

(281)

(282)

(283)

Table 2 (continued)

(289)

Table 2 (continued)

Table 2 (continued)

(299)
(215). A number of pregnane glycosides have been isolated from antitumor active fractions of Periploca sepium (31,69,162,187). Among these periplocoside A (217) showed significant antitumor activity against Sarcoma 180 ascites in mice (162). Another pregnane glycoside, periploside A (211) from the same source, showed significant anticomplementary activity at a concentration of $1.0 \mathrm{mg} / \mathrm{ml}(228)$. Recently, pregnane derivatives isolated from Stizophyllum riparium (236), Gelsemium sempervirens (237) and Marsdenia tenacissima (65) showed cytotoxic activity while two pregnane glycosides isolated from Cynanchum otophyllum showed antiepilepsy activity (238). Marsdekoiside A (183) from Marsdenia koi has shown good antifertility activity $(17,239)$. Verrucoside (238), a pregnane glycoside from the gorgonian Eunicella verrucosa, possesses cytotoxic activity (7) against human lung carcinoma ($\mathrm{P}-388$) and human colon carcinoma (HT-29). Six pregnane glycosides-condurangoglycoside $\mathrm{A}(\mathbf{1 6 0})$, condurangoglycoside C (161), condurangoglycoside E_{2} (174), condurangoside $A(293)$, condurangoside $B(295)$ and condurangoside $C(296)$ obtained from the methanol extract of Condurango cortex (bark of Marsdenia condurango), possess differentiation-inducing activity towards mouse myeloid leukemia (M1) cell line (240). M1 cells were differentiated into phagocytic cells by these glycosides which were found to be more effective than their aglycons. Kondurangoglycosides $\mathrm{A}(\mathbf{1 6 0})$ and $\mathrm{C}(\mathbf{1 6 1})$ having a cinnamoyl group in their aglycons, were the most potent differentiation inducers and M1 cells became phagocytic cells after 24 hours treatment with these glycosides (240).

Acknowledgement

The authors thank Dr. P. K. Agrawal, Central Institute of Medicinal and Aromatic Plants, Lucknow, for helpful discussions and DST and CSIR, New Delhi, for financial assistance.

References

1. Reichstein, T.: Cardenolid- und Pregnanglykoside. Naturwissenschaften 54, 53 (1967).
2. Deepak, D., A. Khare, and M.P. Khare:Plant Pregnanes. Phytochemistry 28, 3255 (1989).
3. Chandra, R., D. Deepak, and A. Khare: Pregnane Glycosides from Hemidesmus indicus. Phytochemistry 35, 1545 (1994).
4. Palter, R., W.F. Haddon, and R.E. Lundin: Structure of a Safflower Steroid Cellobioside. Phytochemistry 11, 2327 (1972).
5. Abe, F., and T. Yamauchi: Pregnane and Pregnane Glycosides from Trachelospermum liukiuense. Chem. Pharm. Bull. 37, 33 (1989).
6. Nakanishi, T., M. Kobayashi, H. Murata, and A. Inada: Phytochemical Studies on Meliaceous Plants. IV. Structure of a New Pregnane Glycoside, Toosendanoside, from Leaves of Melia toosendan Sieb. et. Zucc. Chem. Pharm. Bull. 36, 4148 (1988).
7. Kashman, Y., D. Green, C. Garcia, and D.G. Arevalos: Verrucoside, a New Cytotoxic Pregnane Glycoside from a Gorgonian Eunicella verrucosa. J. Nat. Prod. 54, 1651 (1991).
8. Abe, F., and T. Yamauchi: Two Pregnanes from Oleander Leaves. Phytochemistry 31, 2819 (1992).
9. Prakash, K., D. Deepak, A. Khare, and M.P. Khare:A Pregnane Glycoside from Streblus asper. Phytochemistry 31, 1056 (1992).
10. Jijun, C., Z. Zhuangxin, and Z. Jun: Cynauricuosides A, B and C, Steroid Glycosides from the Root of Cynanchum auriculatum. Acta Bot. Yunn. 12, 197 (1990) [Chem. Abstr. 114, 98149 (1991)].
11. Wettstein, P.A.: Biosynthése des hormones stéroides. Experientia 17, 329 (1961).
12. Heftmann, E.: Recent Progress in the Biochemistry of Plant Steroids other than Sterols (Saponins, Glycoalkaloids, Pregnane Derivatives, Cardiac Glycosides, and Sex Hormones). Lipids 9, 626 (1975) [Chem. Abstr. 82, 40660 (1975)].
13. Yamauchi, T.: Cardenolides, Pregnanes, and Iridoids, Characteristic of Apocynaceae Plants. Yakugaku Zasshi 105, 695 (1985) [Chem. Abstr. 103, 175350 (1985)].
14. Mitsuhashi, H.: Chemistry and Biological Activity of Polyhydroxypregnane Glucosides. Yaxoue Tangbao 20, 645 (1985) [Chem. Abstr. 104, 174414 (1986)].
15. Krishna, G., A. Khare, and M.P. Khare: Three Pregnane Glycosides from Dregea lanceolata. Indian J. Chem. 30B, 265 (1991).
16. Jin, Q.D., Q.L. Zhou, and Q.Z. Mu: Two New Pregnane Oligoglycosides from Dregea sinensis var. corrugata. J. Nat. Prod. 52, 1214 (1989).
17. Yuan, J.-L., Z.-Z. Lu, G.-X. Chen, W.-P. Ding, B.-N. Zhou, C.A.J. Erdelmeier, M.O. Hamburger, H.H.S. Fong, and G.A. Cordell:The Pregnane Glycoside Marsdekoiside A from Marsdenia koi. Phytochemistry 31, 1058 (1992).
18. Hayashi, K., I. Iida, Y. NaKao, Y. NaKao, and Y. Kaneko: Four Pregnane Glycosides, Boucerosides AI, AII, BI and BII from Boucerosia aucheriana. Phytochemistry 27, 3919 (1988).
19. Tanaka, T., S. Tsukamoto, and K. Hayashi: Pregnane Glycosides from Boucerosia aucheriana. Phytochemistry 29, 229 (1990).
20. Marston, A., and K. Hostettmann: Modern Separation Methods. Nat. Prod. Rep. 8, 391 (1991).
21. Abe, F., and T. Yamauchi: Pregnane Glycosides from Trachelospermum asiaticum. Chem. Pharm. Bull. 36, 621 (1988).
22. Chen, Z.-S., J.-S. Lai, and Y.-H. Kuo: Cynanformosides A and B, Two New Pregnane Glycosides, from the Aerial Part of Cynanchum formosanum. Chem. Pharm. Bull. 39, 3034 (1991).
23. Idaka, K., Y. Hirai, and J. Shoji: Studies on the Constituents of Palmae Plants, IV: The Constituents of the Leaves of Sabal causiarum BECC. Chem. Pharm. Bull. 36, 1783 (1988).
24. Still, W.C., M. Kahn, and A. Mitra: Rapid Chromatographic Technique for Preparative Separations with Moderate Resolution. J. Org. Chem. 43, 2923 (1978).
25. Cabrera, G., A.M. Seldes, and E.G. Gros: A Pregnane Glycoside from the Roots of Mandevilla pentlandiana. Phytochemistry 32, 171 (1993).
26. Eisenbeiss, F., and H. Henke: Preparative High Performance Liquid Chromatography
with Reversed-Phase Packed Glass Columns J Hıgh Res Chromatogr Chrom Commun 2, 733 (1979)
27 Simpson, CF Practical Hıgh Performance Liquid Chromatography London Heyden 1978
28 Verzele, M Preparatıve Liquid Chromatography Anal Chem 62, 265A (1990)
29 Verzele, M, and C Dewaele Preparatıve High Performance Liquid Chromatogra-phy-A Practical Guidelıne Belgıum RSL Europe, Eke 1986
30 Abe, F, T Nagao, Y Mori, T Yamauchi, and Y Saiki Pregnanes and Pregnane Glycosides from the Roots of Apocynum venetum var basikurumon (Apocynum I) Chem Pharm Bull 35, 4087 (1987)
31 Itokawa, H, J Xu, and K Takeya Studies on Chemical Constituents of Antitumor Fractıon from Perıploca sepıum, V Structures of New Pregnane Glycosıdes, Perıplocosides J, K, F and O Chem Pharm Bull 36, 4441 (1988)
32 Ahmad, V U, K Usmanghani, and G H Rizwani New Pregnane Glycosides from Caralluma tuberculata J Nat Prod 51, 1092 (1988)
33 Neher, R, and A Wettstein Uber Steroide 107 Mitteilung Farbreaktionen mit Steroıden, insbesondere Corticosteroıden, im Papierchromatogramm Helv Chim Acta 34, 2278 (1951)
34 Yamauchi, T, M Hara, and K Mihashi Pregnenolone Glucosides of Nerium odorum Phytochemıstry 11, 3345 (1972)
35 Voneuw, J V, and T Reichstein Die Glykoside der Samen von Strophanthus nıcholsonı Holm Glykosıde und Aglykone Helv Chım Acta 31, 883 (1948)
36 Heftmann, E, S T Ko, and R D Benett Response of Steroids to Sulfuric Acid in Thin-Layer Chromatography J Chromatogr 21, 490 (1966)
37 Abisch, E, and T Reichstein Orientierende Chemısche Untersuchung einıger Apocynaceen Helv Chım Acta 43, 1844 (1960)
38 Mann, F G, and B C Saunders Practical Organic Chemıstry 4th edn, p 367 New Delhı Orient Longmann 1990
39 Konda, Y, Y Toda, Y Harigaya, H Lou, X Li, and M Onda Two New Glycosides, Hancoside and Neohancoside A, from Cynanchum hancockıanum J Nat Prod 55, 1447 (1992)
40 Tschesche, R, G Grimmer, and F Seehofer Uber pflanzliche Herzgifte, XXIV Mitteılung Die quantitative Trennung und Identifizierung von Herzgiftglykosiden aus Digitalıs purpurea und lanata durch echte Verteılungschromatographie an Papier Ber d Deutsch Chem Ges 86, 1235 (1953)
41 Webb, JM, and HB Levy A Sensitive Method for the Determination of Deoxyribonucleic Acid in Tissues and Microorganisms J Biol Chem 213, 107 (1955)

42 Maclenan, A P , H M Randall, and D W Smith Detection and Identification of Deoxysugars on Paper Chromatograms Anal Chem 31, 2020 (1959)
43 Krishna, G, G V Shinde, M S Shingare, A Khare, and M P Khare A Pregnane Ester Tetraglycoside from Dregea lanceolata Phytochemıstry 29, 2961 (1990)
44 Nagata, W, C Tamm, and T Reichstein Die Glykoside von Erysimum crepidifolium H G L Reıchenbach Glykosıde und Aglykone, 169 Mitteılung Helv Chım Acta 40, 41 (1957)
45 Partridge, S M Anılıne Hydrogen Phthalate as a Sprayıng Reagent for Chromatography of Sugars Nature 164, 443 (1949)
46 Feigl, F Spot Tests in Organıc Analysis, 7th edn, p 337 Amsterdam Elsevier Publications 1975
47 Jaeggi, K A , E Weiss, W Wehrli, and T Reichstein Die Glykoside der Wurzeln von

Gongronema taylorı (Schltr and Rendle) Bullock) Glykoside und Aglykone, 292 Mitterlung Helv Chım Acta 50, 1201 (1967)
48 Markham, K R Technıques of Flavonoıd Identification London Academıc Press 1982
49 Mabry, T J, K R Markham, and M B Thomas The Systematic Identification of Flavonoids New York Sprınger 1970
50 Srivastav, S, D Deepak, and A Khare Structural Studies of Trisaccharide of Leptaculatın J Carbohydr Chem 13, 75 (1994)
51 Shibuya, H, R Zhang, J D Park, N I Baek, Y Takeda, M Yoshikawa, and I Kitagawa Indonesian Medicinal Plants, V Chemical Structures of Calotroposides C, D, E, F and G, Five Additional New Oxypregnane Oligoglycosides from the Root of Calotropıs gigantea (Asclepiadaceae) Chem Pharm Bull 40, 2647 (1992)
52 Agrawal, P K NMR Spectroscopy in the Structural Elucidation of Oligosacchar1des and Glycosides Phytochemıstry, 31, 3307 (1992)
53 Srivastav, S, D Deepak, and A Khare Three Novel Pregnane Glycosides from Leptadenia retıculata Wight and Arn Tetrahedron 50, 789 (1994)
54 Berger, S, P Junior, and L Kopanski Structural Revision of Pregnane Ester Glycosides from Condurango Cortex and New Compounds Phytochemıstry 27, 1451 (1988)

55 Abe, F, and T Yamauchi Pregnane Glycosides of Terkasides B and C Series, from Trachelospermum asiatıcum Chem Pharm Bull 36, 4330 (1988)
56 Allgeier, H Struktur der Pachybiose und Asclepobiose Desoxyzucker, 44 Mitteilung Helv Chım Acta 51, 311 (1968)
57 Deepak, D, M P Khare, and A Khare A Pregnane Ester Diglycoside from Perıploca calophylla Phytochemıstry 24, 3015 (1985)
58 Zhang, Z-X, J Zhou, K Hayashi, and K Kaneko Atratosides A, B, C and D, Steroid Glycosides from the Root of Cynanchum atratum Phytochemıstry 27, 2935 (1988)
59 Sethi, A, D Deepak, M P Khare, and A Khare A Novel Pregnane Glycoside from Periploca calophylla J Nat Prod 51, 787 (1988)
60 Trivedi, R, A Khare, and M P Khare A Pregnane Ester Oligoglycoside from Oxystelma esculentum Phytochemıstry 28, 1211 (1989)
61 Deepak, D, S Srivastav, and A Khare Indicusin-A Pregnane Diester Triglycoside from Hemidesmus indicus R Br Nat Prod Letts 6, 81 (1995)
62 Trivedi, R, A Khare, and M P Khare A Pregnane Triglycoside from Oxystelma esculentum Phytochemistry 29, 3967 (1990)
63 Prakash, K, A Sethi, D Deepak, A Khare, and M P Khare Two Pregnane Glycosides from Hemıdesmus indıcus Phytochemıstry 30, 297 (1991)
64 Qiduan, J, Z Qianlan, and M Quanzhang Structure of Dregeoside A from Dregea sinensis var corrugata Acta Bot Yunn 10, 466 (1988) [Chem Abstr 111, 54152 (1989)]

65 Luo, S -Q, L-Z Lin, G A Cordell, L Xue, and M E Johnson Polyoxypregnanes from Marsdenia tenacissima Phytochemıstry 34, 1615 (1993)
66 Summons, R E, J Ellis, and E Gellert Steroidal Alkaloids of Marsdenia rostrata Phytochemıstry 11, 3335 (1972)
67 Singhal, S, M P Khare, and A Khare Tenasogenin, A Pregnane Ester from Marsdenia tenacıssima Phytochemıstry 19, 2431 (1990)
68 Bose, A K, and P R Srinivasan Trichloroacetylisocyanate as an in situ Derıvatizing Reagent for ${ }^{13} \mathrm{C}$ NMR Spectroscopy of Alcohols, Phenols and Amines Tetrahedron 31, 3025 (1975)
69 Itokawa, H, J Xu, and K Takeya Studies on Chemical Constituents of Antitumor

Fraction from Periploca seplum, IV Structures of New Pregnane Glycosides Perıplocosides D, E, L, and M Chem Pharm Bull 36, 2084 (1988)
70 Tsukamoto, S, K Hayashi, and K Kaneko Studies on the Constituents of Asclepiadaceae Plants, Part 67 Further Studies on Glycosides with a Novel Sugar Chain Contaınıng a Paır of Optıcally Isomerıc Sugars, D-and L-Cymarose, from Cynanchum africanum J Chem Soc, Perkın Trans I, 2625 (1988)
71 Bock, K, C Pedersen, and H Pedersen Carbon-13 Nuclear Magnetic Resonance Data for Olıgosaccharıdes Adv Carbohydr Chem Biochem 42, 193 (1984)
72 Bradbury, J H , and G A Jenkins Determınation of the Structures of Trisaccharides by Carbon-13 NMR Spectroscopy Carbohydr Res 126, 125 (1984)
73 Agrawal, P K , D C Jain, R K Gupta, and R S Thakur Carbon-13 NMR Spectroscopy of Steroıdal Sapogenıns and Steroıdal Saponıns Phytochemıstry 24, 2479 (1985)

74 Agrawal, P K, and R P Rastogi ${ }^{13} \mathrm{C}$ NMR Spectroscopy of Flavonoids Heterocycles 16, 2181 (1981)
75 Perlin, A S, and B Casu In The Polysaccharides (G O Aspinall, ed), Vol I, p 133 New York Academıc Press 1982
76 Mitsuhashi, H, and K Hayashi Chemıstry and Biological Actıvity of Polyoxypregnane Glycosıdes Shoyakugaku Zasshı 39, 1 (1985) [Chem Abstr 103, 109804 (1985)]
77 Kitagawa, I, R Zhang, J D Park, N I Baek, Y Takeda, M Yoshikawa, and H Shibuya Indonesian Medicinal Plants, I Chemical Structures of Calotroposides A and B, Two New Oxypregnane-Oligoglycosides from the Root of Calotropis gigantea (Asclepiadaceae) Chem Pharm Bull 40, 2007 (1992)
78 Zurcher, R F Protonenresonanzspektroskopie und Steroid Struktur II Die Lage der C-18-und C-19-Methylsignale in Abhangıgkeit von den Substituenten am Sterordgerust Helv Chım Acta 46, 2054 (1963)
79 Sugama, K, K Hayashi, H Mitsuhashi, and K Kaneko Studies on the Constituents of Asclepiadaceae Plants, LXVI The Structures of Three New Glycosides, Cynapanosides A, B, and C, from the Chınese Drug "Xu-Change Qıng", Cynanchum panıculatum Kitagawa Chem Pharm Bull 34, 4500 (1986)
80 Qiduan, J, Z Qianlan, and M Quanzhang A Pregnane Triglycoside Ester from Dregea sinensis var corrugata Phytochemistry 28, 1273 (1989)
81 Terui, Y, K Tori, and N Tsuil Esterification Shifts in Carbon-13 NMR Spectra of Alcohols Tetrahedron Letters, 621 (1976)
82 Dorman, D E, D Bauer, and J D Roberts Nuclear Magnetıc Resonance Spectroscopy Carbon-13 Chemical and Carbon-13 Proton Couplings in Some Esters and Ethers J Org Chem 40, 3729 (1975)
83 Agrawal, P K , H -J Schneider, M S Malik, and S N Rastogi Stereochemical and Carbon-13 NMR Investıgations, 32 Carbon- 13 NMR Shifts and Conformations of Substituted Indans Org Magn Reson 21, 146 (1983)
84 Jijun, C, Z Zhuangxin, and Z Jun The Chemical Constituents of Cynanchum forrestı Acta Bot Yunn 11, 471 (1989) [Chem Abstr 113, 94734 (1990)]
85 Tsukamoto, S, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, LX Further Studies on Glycosides with a Novel Sugar Chain Contaınıng a Paır of Optically Isomerıc Sugars, D-and L-Cymarose, from Cynanchum wilfordı Chem Pharm Bull 33, 2294 (1985)
86 Lin, L-J,L -Z Lin, R R Gil, G A Cordell, M Ramesh, B Srilatha, B Reddy, and A V N P Rao Pregnane Glycosides from Caralluma umbellata Phytochemıstry 35, 1549 (1994)
87 Agrawal, P K, and M C Bansal Studies in Organic Chemıstry-Carbon-13 NMR of

Flavonoids (P K Agrawal, ed), Vol 39, p 42 Amsterdam Elsevier Publications 1989
88 Baumann, H, B Erbing, P E Jansson, and L Kenne NMR and Conformational Studies of some 3-O-, 4-O-, and 3, 4-Dı-O-glycopyranosyl-substituted Methyl- α -D-galactopyranosides J Chem Soc, Perkın Trans I, 2153 (1989)
89 Baumann, H, B Erbing, P E Jansson, and L Kenne Synthesis, NMR and Conformational Studies of some 3, 4-Di-O-glycopyranosyl-substituted Methyl- α-Dgalactopyranosides J Chem Soc, Perkın Trans I, 2011 (1989)
90 Jansson, P E, L Kenne, and H Ottosson Synthesis of and Nuclear Magnetic Resonance and Conformational Studies on some 1, 2-Linked Disacchande Methyl Glycosides Contaınıng D-Mannose and L-Rhamnose J Chem Soc, Perkın Trans I, 2011 (1990)
91 Baumann, H, P E Jansson, and L Kenne Synthesis and Nuclear Magnetıc Resonance Studies of Some L- Fucosyl-containing Disaccharides J Chem Soc, Perkin Trans I, 2229 (1991)
92 Kochetkov, N K, O S Chizhov, and A S Shashkov Dependence of Carbon-13 Chemical Shifts on the Spatial Interaction of Protons, and its Application in Structural and Conformational Studies of Oligo- and Polysaccharıdes Carbohydr Res 133, 173 (1984)

93 Bock, K, A Bringnole, and B W Siguskjold Conformational Dependence of ${ }^{13} \mathrm{C}$ Nuclear Magnetic Resonance Chemıcal Shifts in Oligosaccharıdes J Chem Soc, Perkın Trans II, 1711 (1986)
94 Shashkov, A S, G M Lipkind, Y A Knirel, and N K Kochetkov Stereochemical Factors Determining the Effects of Glycosylation on the ${ }^{13} \mathrm{C}$ Chemical Shifts in Carbohydrates Magn Reson Chem 26, 735 (1988)
95 Rowen, D D, and R H Newman Noroleanane Saponins from Celmisıa petriel Phytochemıstry 23, 639 (1984)
96 Guinaudeau, H, O Seligmann, H Wagner, and A Neszmelyi Faralatroside and Faratroside, Two Flavonol Triglycosides from Colubrina faralaotra Phytochemıstry 20, 1113 (1981)
97 Okada, Y, S Shibata, T Ikekawa, M J Javellana, and O Kamo Entada SaponınIII, A Saponin isolated from the Bark of Entada phaseoloıdes Phytochemıstry 26, 2789 (1987)

98 Miyamoto, T, K Togawa, R Higuchi, T Komori, and T Sasaki Six Newly Identıfied Bıologically Actıve Triterpenoid Glycoside Sulfates from the Sea Cucumber Cucumarla echinata Liebıgs Ann Chem 453 (1990)
99 Bock, K, and C Pedersen A Study of ${ }^{13} \mathrm{CH}$ Coupling Constants in Hexopyranoses J Chem Soc, Perkın Trans II, 293(1974)
100 Vold, R L, JS Waugh, M P Klein, and DE Phelps Measurements of Spin Relaxation in Complex Systems J Chem Phys 48, 3831 (1968)
101 Allerhand, A, D Doddrell, V Glushko, D W Cochran, E Wenkert, P J Lawson, and F R N Gurd Conformation and Segmental Motion of Native and Denatured Ribonuclease A in Solution Application of Natural Abundance Carbon-13 Partıally Relaxed Fourier Transform Nuclear Magnetıc Resonance J Am Chem Soc 93, 544 (1971)
102 Doddrell, D, and A Allerhand Segmental Motion in Liquid 1-Decanol Application of Natural Abundance Carbon-13 Partially Relaxed Fourier Transform Nuclear Magnetic Resonance J Am Chem Soc 93, 1558 (1971)
103 Allerhand, A, and D Doddrell Strategies in the Application of Partially Relaxed Founer Transform Nuclear Magnetıc Resonance Spectroscopy in Assıgnments of Carbon13 Resonances of Complex Molecules Stachyose J Am Chem Soc 93, 2777 (1971)

104 Agrawal, P K, and MC Bansal Studies in Organic Chemistry-Carbon 13 NMR of Flavonoids (P K Agrawal, ed), Vol 39, p 290 Amsterdam Elsevier Publications 1989
105 Uzawa, J, and S Takeuchi Application of Selective Carbon-13-Proton Nuclear Overhauser Effects with Low-Power-Proton Irradiation in Carbon-13 NMR Spectroscopy Org Magn Reson 11, 502 (1978)
106 Uzawa, J, and M Uramoto Assignment of Indirect Carbon-13-Proton Couplings in the Carbon-13 NMR Spectra of Some Purıne and Pyrımıdine Nucleosides and their Analogs by Long-range Selective Proton Decoupling Org Magn Reson 12, 612 (1979)

107 Tsukamoto, S, K Hayashi, K Kaneko, H Mitsuhashi, F O Snyckers, and T G Fourie Studies on the Constituents of Asclepiadaceae Plants, LXIV The Structure Elucidation of Cynafogenın Chem Pharm Bull 34, 1337 (1986)
108 Komura, H, K Mizukawa, and H Minakata Ceroalbolınic Acid, a Common Body Pigment of Three Ceroplastes Scale Insects in Japan Confirmation of Structure Bull Chem Soc Jpn 55, 3053 (1982) [Chem Abstr 97, 213037 (1982)]
109 Онмото, T, K Yamaguchi, and K Ikeda Constituents of Hibiscus moscheutos L I Chem Pharm Bull 36, 578 (1988)
110 Stothers, J B Carbon-13 NMR Spectroscopy, p 38 New York Academic Press 1972
111 Rabenstein, D L, and T T Nakashima Spin-Echo Fourıer-Transform Nuclear Magnetic Resonance Spectroscopy Analyt Chem 51, 1465a (1979)
112 Patt, S L, and J N Shoolery Attached Proton Test for Carbon-13 NMR J Magn Reson 46, 535 (1982)
113 Wasylyk, J M, G E Martin, A J Weinheimer, and M Alam Isolation and Identification of a New Pregnane Glycoside from the Gorgonian Pseudoplexaura wagenaarı J Nat Prod 52, 391 (1989)
114 Aquino, R, C Pizza, N De Tommasi, and F De Simone New Polyoxypregnane Ester Derıvatıves from Leptadenıa hastata J Nat Prod 58, 672 (1995)
115 Doddrell, D M, W Brooks, J Field, and R M Lyndenbell Generation of Heteronuclear Carbon-13/Proton Chemical Shift Correlations Using Soft Pulses J Magn Reson 59, 384 (1984)
116 Doddrell, D M , D T Pegg, and M R Bendall Distortionless Enhancement of NMR Signals By Polarızatıon Transfer J Magn Reson 48, 323 (1982)
117 Burum, D P, and R R Ernst Net Polarization Transfer via a J-Ordered State for Signal Enhancement of Low-Sensitivity Nuclei J Magn Reson 39, 163 (1980)
118 Doddrell, D M, and D T Pegg Assignment of Proton-Decoupled Carbon-13 Spectra of Complex Molecules by Using Polarizatıon Transfer Spectroscopy A Superior Method to Off-Resonance Decoupling J Am Chem Soc 102, 6388 (1980)
119 Morris, G A , and R Freeman Enhancement of Nuclear Magnetıc Resonance Signals by Polarization Transfer J Am Chem Soc 101, 760 (1979)
120 Bax, A Structure Determınation and Spectral Assignment by Pulsed Polarization Transfer via Long-range Proton-Carbon-13 Couplings J Magn Reson 57, 314 (1984)
121 Cordell, G A , and A D Kinghorn One-Dimensional Proton-Carbon Correlations for the Structure Determınation of Natural Products Tetrahedron 47, 3521 (1991)
122 Bax, A, W Egan and P Kovac New NMR Technıques for Structure Determınation and Resonance Assıgnments of Complex Carbohydrates J Carbohydr Chem 3, 593 (1984)

123 Capek, P, D Uhrin, J Rasik, A Kardosova, R Toman, and V Mihalov Polysaccharides from the Roots of the Marsh mallow (Althaea officinalis var rhobusta) Dianhydrıdes of Oligosaccharıdes of the Aldose type Carbohydr Res 182, 160 (1988)
124. Rasoanaivo, P., N. Kaneda, A.D. Kinghorn, and N.R. Farnsworth: Folotsoside A, a New Pregnane Glycoside from Folotsia sarcostemmoides. J. Nat. Prod. 54, 1672 (1991).
125. Tschesche, R., P. Welzel, and G. Snatzke: Digitanolglykoside, XII: Die Konstitution von Kondurangogenin A, dem Aglykon eines Esterglykosides der Kondurangorinde. Tetrahedron 21, 1777 (1965).
126. Tschesche, R., P. Welzel, and H.W. Fehlhaber: Digitanolglykoside, XIII: Massenspektrometrische Untersuchungen am Kondurangogenin A. Tetrahedron 21, 1797 (1965).
127. Tschesche, R., H. Kohl, and P. Welzel: Digitanolglykoside, XVI: Die Struktur der Kondurangogenine A und C. Tetrahedron 23, 1461 (1967).
128. Tschesche, R., and H. Kohl: Digitanolglykoside, XIX: Die Struktur der Kondurangoglykoside A, A_{1} und C, C_{1}. Tetrahedron 24, 4359 (1968).
129. Hayashi, K., K. Wada, H. Mitsuhashi, H. Bando, M. Takase, S. Terada, Y. Koide, T. Aiba, T. Narita, and D. Mizuno: Antitumor Active Glycosides from Condurango Cortex. Chem. Pharm. Bull. 28, 1954 (1980).
130. Hayashi, K., K. Wada, H. Mitsuhashi, H. Bando, M. Takase, S. Terada, Y. Koide, T. Aiba, T. Narita, and D. Mizuno: Further Investigation of Antitumor Condurangoglycosides with C-18 Oxygenated Aglycone. Chem. Pharm. Bull. 29, 2725 (1981).
131. Jeener, J.: Ampere International Summer School. Basko Polje, Yugoslavia. 1971.
132. Aue, W.P., E. Bartholdi, and R.R. Ernst: Two-Dimensional Spectroscopy. Application to Nuclear Magnetic Resonance. J. Chem. Phys. 64, 2229 (1976).
133. Morris, G.A.: Modern NMR Techniques for Structure Elucidation. Magn. Reson. Chem. 24, 371 (1986).
134. Kessler, H., M. Gehrke, and C. Griesinger: Two-Dimensional NMR Spectroscopy: Background and Overview of the Experiments. Angew. Chem. Int. Ed. 27, 490 (1988).
135. Ernst, R.R., G. Bodenhausen, and A. Wokaun: Principle of Nuclear Magnetic Resonance in One and Two Dimensions. London:Oxford University Press (Clarendon). 1987.
136. Bax, A., and D.G. Davies: Advanced Magnetic Resonance Techniques in Systems of High Molecular Complexity (N. Nicolai, and G. Valensin, eds.), p. 21. Stuttgart: Birkhäuser. 1986.
137. Vleggaar, R., F.R. Vanheerden, L.A.P. Anderson, and G.L. Erasmus: Toxic Constituents of the Asclepiadaceae. Structure Elucidation of Sarcovimiside A-C, Pregnane Glycosides of Sarcostemma viminale. J. Chem. Soc., Perkin Trans I, 483 (1993).
138. Piantini, U., O.W. Sorensen, and R.R. Ernst: Multiple Quantum Filters for Elucidating NMR Coupling Networks. J. Am. Chem. Soc. 104, 6800 (1982).
139. Rance, M., O.W. Sorensen, G. Bodenhausen, G. Wagner, R.R. Ernst, and K. WUTHRICH: Improved Spectral Resolution in COSY ${ }^{1}$ H NMR Spectra of Proteins via Double Quantum Filtering. Biochem. Biophys. Res. Commun. 117, 479 (1983).
140. MÜLLER, N., R.R. Ernst, and K. Wuthrich: Multiple Quantum-Filtered Two-Dimensional Correlated NMR Spectroscopy of Proteins. J. Am. Chem. Soc. 108, 6482 (1986).
141. Edwards, M.W., and A. Bax: Complete Proton and Carbon-13 NMR Assignments of the Alkaloid Gephyrotoxin through the Use of Homonuclear Hartmann-Hahn and Two-Dimensional NMR Spectroscopy. J. Am. Chem. Soc. 108, 918 (1986).
142. Shaka, A.J., and R. Freeman: Simplification of NMR Spectra by Filtration Through Multiple-Quantum Coherence. J. Magn. Reson. 51, 169 (1983).
143. Eich, G., G. Bodenhausen, and R.R. Ernst: Exploring Nuclear Spin Systems by Relayed Magnetization Transfer. J. Am. Chem. Soc. 104, 3731 (1982).

144 Bax, A, and G Drobny Optımızation of Two-Dimensional Homonuclear Relayed Coherence Transfer NMR Spectroscopy J Magn Reson 61, 306 (1985)
145 Hughes, D W Application of Relayed Coherence Transfer Two-Dımensional Nuclear Magnetic Resonance Spectroscopy to the Assignment of ${ }^{1} \mathrm{H}$ Chemıcal Shifts in Steroids Magn Reson Chem 26, 214 (1988)
146 Bolton, P H Assignments and Structural Information via Relayed Coherence Transfer Spectroscopy J Magn Reson 48, 336 (1982)
147 Macura, S, and R R Ernst Elucidation of Cross Relaxation in Liquids by Twodımensional NMR Spectroscopy Mol Phys 41, 95 (1980)
148 Kumar, A, R R Ernst, and K Wuthrich A Two Dimensional Nuclear Overhauser Enhancement (2D NOE) Experıment for the Elucidation of Complete Proton-Proton Cross Relaxation Networks in Biological Macromolecules Bıochem Biophys Res Commun 95, 1 (1980)
149 Davis, D, and A Bax Assignment of Complex ${ }^{1} \mathrm{H}$ NMR Spectra via TwoDımensional Homonuclear Hartmann-Hahn Spectroscopy J Am Chem Soc 107, 2820 (1985)
150 Braunschweiler, L, and R R Ernst Coherence Transfer by Isotropic Mixing Application to Proton Correlation Spectroscopy J Magn Reson 53, 521 (1983)
151 Bax, A, and D G Davis MLEV-17-based Two-Dimensional Homonuclear Magnetization Transfer Spectroscopy J Magn Reson 65, 355 (1985)
152 Inagaki, F, I Shimada, D Kohada, A Suzuki, and A Bax Relayed HOHAHA, a Useful Method for Extracting Subspectra of Individual Components of Sugar Chains J Magn Reson 81, 186 (1989)
153 Aue, W P , J Karhan, and R R Ernst Homonuclear Broad Band Decoupling and Two Dımensional J-Resolved NMR Spectroscopy J Chem Phys 65, 4226 (1976)
154 Hall, L D, S Sukumar, and G R Sullivan Two-Dimensional J-Spectroscopy Proton NMR Spectra of Mono- and Disacchandes J Chem Soc, Chem Comm, 292 (1979)
155 Bernstein, M A, and L D Hall De Novo Sequencing of Oligosaccharides by Proton NMR Spectroscopy J Am Chem Soc 104, 5553 (1982)
156 Dabrowski, J Methods in Stereochemical Analysis Two-Dımensional NMR Spectroscopy for Chemists and Biochemists (R M Carlson, and W R Caroasmum, eds) Florida Verlag Chemie (Deerfield Beach) 1987
157 Bax, A, and G A Morris An Improved Method for Heteronuclear Chemical Shift Correlation by Two-Dimensional NMR J Magn Reson 42, 501 (1981)
158 Hall, LD, G A Morris, and S Sukumar Resolution and Assignment of the $270-\mathrm{MHz}$ Proton Spectrum of Cellobiose by Homo- and Heteronuclear TwoDimensional NMR J Am Chem Soc 102, 1745 (1980)
159 Kessler, H, W Bermel, C Griesinger, and C Kolar The Elucidation of the Constitution of Glycopeptıdes by the NMR Spectroscopic COLOC Technıque Angew Chem Int Ed 25, 342 (1986)
160 Morris, G A , and L D Hall Experımental Chemical Shift Correlation Maps from Heteronuclear Two-Dimensional NMR Spectroscopy, 1 Carbon-13 and Proton Chemical Shifts of Raffinose and Its Subunits J Am Chem Soc 103, 4703 (1981)
161 Patt, S L 2-Dimensional NMR in Carbohydrate Structural Analysis J Carbohydr Chem 3, 493 (1984)
162 Itokawa, H, J Xu, K Takeya, K Watanabe, and J Shoji Studies on Chemical Constituents of Antitumor Fractions from Periploca sepıum, II Structures of New Pregnane Glycosides, Perıplocosides A, B and C Chem Pharm Bull 36, 982 (1988)
163 Martin, GE, and AS Zektzer Long-Range Two-Dimensional Heteronuclear Chemical Shift Correlation Magn Reson Chem 26, 631 (1988)

164 Kessler, H, C Griesinger, J Zarbock, and H R Loosti Assignment of Carbonyl Carbons and Sequence Analysis in Peptıdes by Heteronuclear Shift Correlation via Small Coupling Constants with Broad-band Decoupling in t_{1} (COLOC) J Magn Reson 57, 331 (1984)
165 Bax, A , and R Freeman Investigation of Complex Networks of Spin-Spin Coupling by Two-Dimensional NMR J Magn Reson 44, 542 (1981)
166 Summers, M F, L G Marzilli, and A Bax Complete ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ Assignments of Coenzyme B_{12} through the use of New Two-Dimensional NMR Experıments J Am Chem Soc 108, 4285 (1986)
167 Griesinger, C, and R R Ernst Frequency Offset Effects and theır Elimination in NMR Rotating -Frame Cross Relaxation Spectroscopy J Magn Reson 75, 261 (1987)
168 Bax, A, A Aszalos, Z Dinya, and K Sudo Structure Elucidation of the Antibiotic Desertomycin through the Use of New Two-Dimensional NMR Technıques J Am Chem Soc 108, 8056 (1986)
169 Deepak, D, S Srivastav, A Sethi, and A Khare Mass Spectral Studies of Pregnane Glycosides Phytochemical Analysis (Communicated)
170 Khare, M P , and A Khare Mass Spectrometry in the Structure Studies of Oligosaccharides J Carbohydr Chem 6, 523 (1987)
171 Howe, I, and M Jarmann New Techniques for the Mass Spectrometry of Natural Products Prog Chem Org Nat Prod 47, 107 (1985)
172 Brown, P, F Bruschweiler, G R Pettit, and T Reichstein Field Ionization Mass Spectrometry-III Cardenolides Org Mass Spectrom 5, 573 (1971)
173 Oberai, K, M P Khare, and A Khare A Pregnane Ester Triglycoside from Sarcostemma brevistıgma Phytochemıstry 24, 3011 (1985)
174 Oberai, K , M P Khare, and A Khare A Pregnane Ester Diglycoside from Hemidesmus indicus Phytochemistry 24, 2395 (1985)
175 Tiwari, K N, A Khare, and M P Khare Structure of Orthenthose Carbohydr Res 123, 231 (1983)
176 Bosso, C, F Taravel, J Ulrich, and M Vignon Utilisation du ${ }^{13}$ C en Spectrometrie de Masse Etude de la Fragmentation de Disaccharıdes Org Mass Spectrom 13, 477 (1978)

177 Tiwari, K N, NK Khare, A Khare, and M P Khare Structure of Digoxose Carbohydr Res 129, 179 (1984)
178 Khare, D P, S S Tiwari, A Khare, and M P Khare Structure of Brevobiose Carbohydr Res 79, 279 (1980)
179 Fukuoka, M, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepıadaceae Plants, XXIX Mass Spectra of C/D cıs Pregnane Derıvatıves Chem Pharm Bull 19, 1469 (1971)
180 Budzikiewicz, H, C Djerassi, and H Williams Structure Elucidation of Natural Products by Mass Spectrometry, Vol II Steroids, Terpenoids, Sugars, and Miscellaneous Classes London Holden-Day, Inc 1964
181 Khare, N K, R Kumar, M P Khare, and A Khare Sarcogenın, A Pregnane Derıvatıve from Pergularia pallida and Sarcostemma brevistıgma Phytochemıstry 25, 491 (1986)
182 Khare, N K , R Kumar, M P Khare, and A Khare A Novel Pregnane Derıvatıve from Sarcostemma brevistigma J Nat Prod 50, 600 (1987)
183 Mu, Q, and Q Zhou Studies on Constituents of Cynanchum otophyllum Schneid Roots Acta Bot Yunn 5, 99 (1983) [Chem Abstr 99, 10735 (1983)]
184 Kaur, K J , M P Khare, and A Khare A Novel Polyhydroxy Pregnane Ester from Orthenthera viminea Phytochemıstry 27, 1809 (1988)

185 Tiwari, K N, A Khare, and M P Khare Orgogenın, a Pregnane Derıvatıve from Orthenthera viminea Phytochemıstry 24, 2391 (1985)
186 Wood, G W Some Recent Applications of Field Ionization/Field Desorption Mass Spectrometry to Organic Chemistry Tetrahedron 38, 1125 (1982)
187 Itokawa, H, J Xu, and K Takeya Pregnane Glycosides from an Antitumor Fraction of Perıploca sepium Phytochemıstry 27, 1173 (1988)
188 Nagat, U, and H Iga Optical Rotatory Dispersion of Nitrobenzene Derivatives-I o-Nitrobenzoates of Secondary Alcohols Tetrahedron 26, 725 (1970)
189 Hayashi, K, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants XXXIV Chemıstry of Sarcostın Chem Pharm Bull 23, 1845 (1975)
190 Mitsuhashi, H, T Nomura, and M Fukuoka Studies on the Constituents of Asclepiadaceae Plants, XIII Epımerızation at C-17 and Optical Rotatory Dispersion Study of C/D cis Pregnane 20-One Derıvatıves Steroids 4, 483 (1964)
191 Rangaswami, S, and T Reichstein Konstitution von Odorosid A und Odorosid B Die Glykoside von Nerium odorum Sol, 2 Mittellung Glykoside und Aglykone, 45 Mittelung Helv Chım Acta 32, 939 (1949)
192 Deepak, D, M P Khare, and A Khare A New Pregnane Glycoside from Periploca calophylla Indian J Chem 25B, 44 (1986)
193 Srivastava, S, M P Khare, and A Khare Cardenolide Diglycosides from Oxystelma esculentum Phytochemistry 32, 1019 (1993)
194 Kiliani, H Uber Digitalınum Verum Ber Deutsch Chem Ges 63, 2866 (1930)
195 Krishna, G, G V Shinde, M S Shingare, A Khare, and M P Khare Two Pregnane Ester Triglycosides from Dregea lanceolata J Nat Prod 53, 1399 (1990)
196 Kaur, K J, M P Khare, and A Khare A Pregnane Ester and its Glycoside from Orthenthera viminea Phytochemıstry 24, 3007 (1985)
197 Trivedi, R, A Khare, and M P Khare A Pregnane Ester Tetraglycoside from Oxystelma esculentum Phytochemistry 27, 2297 (1988)
198 Oliver, JE, W R Lusby, R M Waters, and M J Thompson Structures of the Pregnenediol Tri- and Di-Glucosides from Eggs of the Tobacco Hornworm, Manduca sexta J Nat Prod 51, 103 (1988)
199 Tsukamoto, S, K Hayashi, K Kaneko, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, LXV The Optical Resolution of D- and L-Cymaroses Chem Pharm Bull 34, 3130 (1986)
200 Mannich, C, and G Siewert Uberg-Strophanthin (Ouabain) und g-Strophanthidın Ber Deutsch Chem Ges 75, 737 (1942)
201 НАкомоri, S A Rapid Permethylation of Glycolipid and Polysaccharide Catalysed by Methyl Sulfinyl Carbanion in Dımethyl Sulfoxıde J Biochem 55, 205 (1964)
202 Tursunova, R N, V A Maslennikova, and N K Abubakirov Pregnane Glycosides of Cynanchum sibirıcum, III Structure of Sıbricosides D and E Khım Prırod Soedın 11, 171 (1975) [Chem Abstr 83, 114803 (1975)]
203 Fujimoto, H, K Suzuki, H Hagiwara, and M Yamazaki New Toxic Metabolites from a Mushroom, Hebeloma vinosophyllum, I Structures of Hebevinosides I, II, III, IV and V Chem Pharm Bull 34, 88 (1986)
204 Kennard, O, S K Fawcett, D G Watson, K A Kerr, K Stockel, W Stocklin, and T Reichstein Hırundıgenın and Anhydrohırundıgenın, Two Natural 15-Oxasteroıds of Plant Origın Chemical and X-Ray Investigation Tetrahedron Letters, 3799 (1968)

205 Eppenberger, U, H Kaufmann, W Stocklin, and T Reichstein Die Glykoside der Samen von Stapelia gıgantea N E Br Glykoside und Aglykone, 275 Mittellung Helv Chım Acta 49, 1492 (1966)

206 Eppenberger, U, W Vetter, and T Reichstein Stapelogenın, Vermutliche Struktur Glykoside und Aglykone, 276 Mitteılung Helv Chım Acta 49, 1505 (1966)
207 Zhang, Z-X, J Zhou, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepıadaceae Plants, LVIII The Structures of Five Glycosides, Cynatratoside-A, $-\mathrm{B},-\mathrm{C},-\mathrm{D}$, and -E, from the Chinese Drug "Pa1-Weı", Cynanchum atratum Bunge Chem Pharm Bull 33, 1507 (1985)
208 Zhang, Z-H , J Zhou, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, LXI The Structure of Cynatratoside-F from the Chinese Drug "Pa1-Wer", Dried Root of Cynanchum atratum Bunge Chem Pharm Bull 33, 4188 (1985)
209 Nakagawa, T, K Hayashi, K Wada, and H Mitsuhashi Studies on the Constıtuents of Asclepiadaceae Plants, LII The Structures of Five Glycosides, Glaucoside-A, $-\mathrm{B},-\mathrm{C},-\mathrm{D}$, and -E , from the Chinese Drug "Pa1-Ch' 1en" Cynanchum glaucescens Hand-Mazz Tetrahedron 39, 607 (1983)
210 Nakagawa, T, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, LIV The Structures of Glaucosides-F and-G from the Chinese Drug "Paı-Ch' ıen", Cynanchum glaucescens Hand-Mazz Chem Pharm Bull 31, 879 (1983)

211 Nakagawa, T, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepıadaceae Plants, LV The Structures of Three New Glycosides, Glaucoside-H, -I, and -J from the Chinese Drug "Pa1-Ch' ien", Cynanchum glaucescens Hand-Mazz Chem Pharm Bull 31, 2244 (1983)
212 Nakagawa, T, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepıadaceae Plants, LIII The Structures of Glaucogenın-A, -B, and -C Mono-Dthevetoside from the Chınese Drug "Pa1-Ch' ien", Cynanchum glaucescens HandMazz Chem Pharm Bull 31, 870 (1983)
213 Lee, M D, T S Dunne, M M Siegel, C C Chang, G O Morton, and D B Borders Calıchemicins, a Novel Family of Antitumor Antıbıotics, 1 Chemıstry and Partial Structure of Calıchemıcın J Am Chem Soc 109, 3464 (1987)
214 Bundle, D R Topics in Current Chemistry, Vol 154 p 1 Berlin Springer-Verlag 1990
215 Yoshimura, S-I, H Narita, K Hayashi, and H Mitsuhashi Studies on the Constıtuents of Asclepıadaceae Plants, LVI Isolation of New Antıtumor Actıve Glycosides from Dregea volubilis (L) Benth Chem Pharm Bull 31, 3971 (1983)

216 Nohara, T, H Yabuta, M Suenobu, R Hida, K Miyahara, and T Kawasaki Steroid Glycosides in Paris polyphylla Sm Chem Pharm Bull 21, 1240 (1973)
217 Kaur, K J , M P Khare, and A Khare A Novel Pregnane Ester Tetraglycoside from Orthenthera vimineae J Nat Prod 48, 928 (1985)
218 Janot, M M, Q Khuong-Huu, C Monneret, I Kabore, J Hildesheim, S D Gero, and R Goutarel Alcaloides Steroıdıques-C ${ }^{1}$ Les Holantosınes A et B, Nouveaux Amıno-Glycosterordes isoles des Feuilles de L'Holarrhena antıdysenterica (Roxb) Wall (Apocynacees) Tetrahedron 26, 1695 (1969)
219 Sauer, H H, E Weiss, and T Reichstein Die Struktur der Drevogenine, 2 Mitteılung Struktur von Drevogenın P Glykosıde und Aglykone, 279 Mitteılung Helv Chim Acta 49, 1632 (1966)
220 Sauer, H H, E Weiss, and T Reichstein Die Struktur der Drevogenıne, 3 Mitteılung Struktur von Drevogenın A, B und D Glykosıde und Aglykone, 279 Mitteılung Helv Chım Acta 49, 1655 (1966)
221 Abisch, E, C Tamm, and T Reichstein Die Glykoside der Wurzeln von Pachycarpus
lineolatus (Decne) Bullock (oder P Schweinfurthı (N E Br) Bullock Glykoside und Aglykone, 201 Mittellung Helv Chım Acta 42, 1014 (1959)
222 Sawlewicz, L, E Weiss, and T Reichstein Die Cardenohde und Pregnan-Glykoside der Wurzeln von Asclepias llacina Weımarck, I Isoherungen Glykoside und Aglykone, 290 Mitteılung Helv Chım Acta 50, 504 (1967)
223 Sawlewicz, L, E Weiss, and T Reichstein Die Pregnanderivative der Wurzeln von Asclepıas lllacına Weımarck, II Strukturbestımmungen Glykosıde und Aglykone, 291 Mitteılung Helv Chım Acta 50, 530 (1967)
224 Allgeier, H Struktur der Drebyssobiose, Lilacinobiose und Viminose Desoxyzucker, 45 Mitteılung Helv Chım Acta 51, 668 (1968)
225 Nakagawa, T, K Hayashi, K Wada, and H Mitsuhashi A New Disaccharide, Glaucobıose from Chınese Drug "Paı-Ch' ien" A Comparison of ${ }^{13} \mathrm{C}$ NMR with its Diastereomeric Isomer, Strophanthobıose Tetrahedron Letters 23, 5431 (1982)
226 Kawanishi, S, S Sakuma, H Okino, and J Shoji Constıtuents of Chınese Crude Drug "Wujıapı", IV On the Structure of a New Acetylbiose from Sterordal Glycosides of "Beı-Wuırapı" Chem Pharm Bull 20, 93 (1972)
227 Zhang, Z, and J Zhou Structure of Wallıcoside Acta Chım Snica 41, 1058 (1983) [Chem Abstr 100, 99896 (1984)]
228 Oshima, Y, T Hirota, and H Hikino Perıplosides A, B and C, Steroıdal Glycosides of Perıploca sepıum Root-Barks Heterocycles 26, 2093 (1987)
229 Singh, B , and R P Rastogi Cardenolides-Glycosides and Genıns Phytochemıstry 9, 315 (1970)
230 Deepak, D, S Srivastava, N K Khare, and A Khare Cardiac Glycosides Prog Chem Org Nat Prod
231 Abbott, B J , J Leiter, J L Hartwell, M E Caldwell, and S A Schepartz Cancer Chemotherapy Screenıng Data, XIV Screenıng Data from the Cancer Chemotherapy National Service Center Screenıng Laboratories XXXIII Plant Extracts Cancer Research 26, 587 (1966)
232 Mitsuhashi, H, D Mizuno, K Hayashi, S Abe, M Takase, and T Narita Condurangoglycosides, their Use as Antıtumor Agents and Composition Containıng them Chem Abstr 98, 149582 (1983), Condurangoglycoside E_{01} Chem Abstr 98, 132306 (1983)
233 Ahsan, A M, D M Piatak, and P D Sorensen Isolation and Structure of Amplexoside A A New Glycoside from Asclepias amplexicaulis Experientia 29, 788 (1973)

234 Hayashi, K, A Nakao, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, XXVI Isolation of a New Glycoside from Dregea volubilis (L) Benth Chem Pharm Bull 17, 2629 (1969)
235 Yoshimura, S-I, H Narita, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, LIX The Structures of Five New Glycosides from Dregea volubilis (L) Benth Chem Pharm Bull 33, 2287 (1985)
236 Duh, C Y, J M Pezzuto, A D Kinghorn, S L Leung, and N R Farnsworth Plant Antıcancer Agents, XLIV Cytotoxıc Constıtuents from Stizophyllum riparıum J Nat Prod 50, 63 (1987)
237 Schun, Y, and G A Cordell Cytotoxic Steroıds of Gelsemıum sempervirens J Nat Prod 50, 195 (1987)
238 Mu, Q, J Lu, and Q Zhou Two New Antiepılepsy Compounds-Otophyllosides A and B Scı Sin Ser B 29, 295 (1986) [Chem Abstr 106, 81545 (1987)]
239 Yuan, J-L, W -P Ding, J-P Shi, Z-Z Lu, B-N Zhou, C A J Erdelmeier, G A Cordell, H H S Fong, and N R Farnsworth Studies on the Antifertılity Compo-
nents from Marsdenia kol J Tong-Jı Med Unıv 11, 165 (1991) [Chem Abstr 117, 83593 (1992)]
240 Umehara, K, M Endoh, T Miyase, M Kuroyanagi, and A Ueno Studies on Differentiation Inducers, IV Pregnane Derivatives from Condurango Cortex Chem Pharm Bull 42, 611 (1994)
241 Cannon, J R, E L Ghisalberti, and V Lojanapiwatna The Alkaloids of Holarrhena curtısıl Kıng and Gamble J Scı Soc Tharland 6, 81 (1980) [Chem Abstr 93, 217922 (1980)]
242 Samikov, K, R Shakirov, D U Abdullaeva, and S Y Yunusov Alkaloids of Korolkowia sewertzovil Structure of Sevkorıne Khım Prırod Soedın 269 (1976) [Chem Abstr 85, 108928 (1976)]
243 Medina, J D, and R Bracho Constituents of the Bark of Malouetia glandulifera Planta Med 29, 367 (1976)
244 Abe, F, and T Yamauchi Teikaside A, a Pregnane Glycoside of Trachelospermum aslaticum Chem Pharm Bull 29, 416 (1981)
245 Warashina, T, and T Noro Steroidal Glycosides from Asclepias fruticosa L Chem Pharm Bull 42, 322 (1994)
246 Warashina, T, and T Noro Steroıdal Glycosides and Cardenolide Glycosides from Ascleplas fruticosa Phytochemıstry 37, 217 (1994)
247 Abe, F, Y Mori, H Okabe, and T Yamauchi Steroidal Constituents from the Roots and Stems of Ascleplas fruticosa Chem Pharm Bull 42, 1777 (1994)
248 Tsukamoto, S, K Hayashi, H Mitsuhashi, F O Snyckers, and T G Fourie Studies on the Constituents of Asclepiadaceae Plants, LXII The Structures of Two Glycosides, Cynafoside-A and B, with a Novel Sugar Chain Containing a Pair of Optically Isomeric Sugars, D- and L-Cymaroses, from Cynanchum africanum R Br Chem Pharm Bull 33, 4807 (1985)
249 Wada, K, K Hayashi, H Mitsuhashi, and H Bando Studies on the Constituents of Asclepradaceae Plants, L Two New Oligoglycosides, Cynanchoside C_{2} and Cynanchoside C 1 , from Cynanchum caudatum Max Chem Pharm Bull 30, 3500 (1982)
250 Wada, K, K Hayashi, H Mitsuhashi, and H Bando Cynanchoside C C_{2}, a New Steroıdal Oligoglycoside from Cynanchum caudatum Max Application of ${ }^{13} \mathrm{C}$-NMR Spectroscopy to the Structural Elucidation of Plant Glycosides Chem Pharm Bull 27, 2252 (1979)
251 Warashina, T, and T Noro Steroidal Glycosides from Cynanchum caudatum Phytochemistry, 39, 199 (1995)
252 Warashina, T, and T Noro Steroidal Glycosides from the Root of Cynanchum caudatum M Chem Pharm Bull 43, 977 (1995)
253 Nakagawa, T, K Hayashi, and H Mitsuhashi The Structures of Glaucogenın-A, Glaucogenın-B, and Glaucogenın-C Mono D- Thevetoside from Chınese Drug "Pa1Ch' 1en" Cynanchum glaucescens Hand-Mazz Tetrahedron Letters 23, 757 (1982)
254 Tursunova, R N, V A Maslennikova, and N K Abubakirov Pregnane Glycosides of Cynanchum maxımoviczıl Khım Prırod Soedın 11, 522 (1975) [Chem Abstr 83, 203757 (1975)]
255 Tsukamoto, S, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plant, LVII The Structures of Six Glycosides, Wilfoside C1N, C2N, C3N, C1G, C2G, and C3G, with Novel Sugar Chain Contaıning a Paır of Optically Isomenc Sugars Tetrahedron 41, 927 (1985)
256 Bhatnagar, A S , W Stocklin, and T Reichstein Die Pregnanderivate der Samen von Dregea abyssinica (Hochst) K Schum (Asclepiadaceae), II Strukturbestımmungen Helv Chım Acta 51, 133 (1968)

257 Zhang, Z, J Chen, and J Zhou Gymnemaroside A and B from Gymnema yunnanense Acta Bot Yunn 13, 75 (1991) [Chem Abstr 115, 68474 (1991)]
258 Deepak, D, S Srivastava, and A Khare Three Novel Pregnane Glycosides from Hemıdesmus indicus R Br Phytochemistry (in Press)
259 Kapur, B M, H Allgeier, and T Reichstein Die Glykoside der Wurzeln von Kanalıa lantfora (Forssk) R Br, 2 Mitteılung Struktur von Kalanosid-H und Kalanosid-K Helv Chim Acta 50, 2171 (1967)
260 Ito, K, J Lai, and K Usuda Studies on the Constituents of Marsdenia formosana Musamune, III Isolation and Structural Elucidation of Some New Sterordal Glycosides Chem Pharm Bull 26, 3189 (1978)
261 Lai, J Studies on the Components of Steroidal Glycoside of Marsdenia formosana Musamune Proc Natl Scı Counc Repub Chına Part B 6, 51 (1981) [Chem Abstr 96, 139660 (1982)]
262 Chen, J, Z Zhang, J Zhou, D Wang, L Zhou, and G Tao A Novel C ${ }_{21}$ Sterordal Glycoside from Marsdenia incısa Acta Bot Yunn 13, 231 (1991) [Chem Abstr 115, 275751 (1991)]
263 Ruan, J, X -Q Xu, G Chen, W-P Ding, and B-N Zhou Chemical Constituents of Kocondorvine (Marsdenia kot) Zhougcaoyao 23,6(1992) [Chem Abstr 117, 147165(1992)]
264 Ruan, J, J Wang, and W -P Ding Structure Determination of Marsdekoiside E Zhongguo Yaoxue Zazhi 28, 213 (1993) [Chem Abstr 119, 91260 (1993)]
265 Zhang, Y, J Yuan, and W -P Ding Structural Elucidation of Marsdeoreophiside A Zhongcaoyao 24, 171 (1993) [Chem Abstr 119, 199529 (1993)]
266 Miyakawa, S, K Yamaura, K Hayashi, K Kaneko, and H Mitsuhashi Five Glycosides from the Chinese Drug "Tong-Guang-San" The Stems of Marsdenia tenacissima Phytochemistry 25, 2861 (1986)
267 Shen, Y, Q Zhou, Q Mu, Y Hu, and X Shen Chemical Constituents of Hemsley metaplexis (Metaplexis hemsleyana) I Zhongcaoyao 23, 622 (1992) [Chem Abstr 118, 260783 (1993)]
268 Kaur, K J, M P Khare, and A Khare A Pregnane Ester Glycoside from Orthenthera viminea Indian J Chem 24B, 1053 (1985)
269 Trivedi, R, A Khare, and M P Khare A Pregnane Ester Tetraglycoside from Oxystelma esculentum Phytochemistry 27, 2297 (1988)
270 Khare, N K, M P Khare, and A Khare Two Pregnane Ester Glycosides from Pergularia pallıda Phytochemıstry 23, 2931 (1984)
271 Srivastava, O P , A Khare, and M P Khare Structure of Calocin J Nat Prod 45, 211 (1982)
272 Deepak, D, M P Khare, and A Khare A Pregnane Ester Glycoside from Periploca calophylla Phytochemıstry 24, 1037 (1985)
273 Sakuma, S, H Ishizone, R Kasai, S Kawanishi, and J Shoji On the Structure of Glycosıde G and K of Beı-Wuııapı Chem Pharm Bull 17, 2183 (1969)
274 Sakuma, S, H Ishizone, R Kasai, S Kawanishi, and J Shoji Constituents of Chinese Crude Drug "Wujıapı", III On the Structure of Glycoside G and K of Beı-Wuııapı Chem Pharm Bull 19, 52 (1971)
275 Kawanishi, S, S Sakuma, and J Shoji Constituents of Chinese Crude Drug "Wuııapı", V On the Structure of Glycosıde H_{1} of Beı-Wujıapı Chem Pharm Bull 20, 469 (1972)
276 Ishizone, H, S Sakuma, S Kawanishi, and J Shoji Constituents of Chinese Crude Drug "Wuılapı", VII On the Structure of Glycoside E of Beı-Wuııapı Chem Pharm Bull 20, 2402 (1972)
277 Sakuma, S, S Kawanishi, and J Shoji Constituents of the Chinese Crude Drug
"Wuılapı", IX Structure of Glycoside H_{2}, a Potentiator of NGF-mediated Nerve Fibre Outgrowth Chem Pharm Bull 28, 163 (1980)
278 Oberai, K, M P Khare, and A Khare A Pregnane Ester Diglycoside from Sarcostemma brevistıgma Phytochemistry 24, 1341 (1985)
279 Inada, A , K Mari, and T Nakanishi Phytochemical Studies on Meliaceous Plants, III Structures of Two New Pregnane Steroids, Toosendansterols A and B, from Leaves of Melia toosendan Sieb et Zucc Chem Pharm Bull 36, 609 (1988)
280 Adam, G, H T Huong, and N H Khoi Isolation of 3β-Hydroxy-5-pregnane-16-one from Solanum hainanense Phytochemıstry 17, 1802 (1978)
281 Chiplunkar, Y G, B A Nagasampagi, S S Tavale, and V G Puranik Villosterol, $3 \beta, 5 \beta$-Dihydro-20-Pregnane-6-one, Steroid from Turraea villosa Phytochemıstry 33, 901 (1993)
282 Xu, J, K Takeya, and H Itokawa Pregnanes and Cardenolides from Periploca sepıum Phytochemistry 29, 344 (1990)
283 Jin, Q D, and Q Z Mu C ${ }_{21}$ Steroids from Dregea sinensts var corrugata Yaoxue Xuebao 24, 587 (1989) [Chem Abstr 112, 115727 (1990)]
284 Seto, H, K Hayashi, and H Mitsuhashi Constituents of Asclepiadaceae Plants, XXXV Component of Marsdenia tomentosa Decne Structure of Tomentin and Dehydrotomentin Chem Pharm Bull 23, 2397 (1975)
285 Seto, H, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, XLIII Component of Marsdenia tomentosa Decne Structure of Tomentomın Chem Pharm Bull 25, 876 (1977)
286 Seto, H, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, XXXVI Component of Marsdenia tomentosa Decne Structure of Tomentomin, Tomentodin and Dehydrotomentosin and Difference in the Reactivity between Utendın and Tomentogenın Diesters on Mıld Alkalıne Hydrolysis Chem Pharm Bull 24, 443 (1976)
287 Seto, H, K Hayashi, and H Mitsuhashi Constıtuents of Asclepiadaceae Plants, XXXIII Component of Marsdenia tomentosa Decne Structure of Tomentosin Chem Pharm Bull 23, 1552 (1975)
288 Seto, H, K Hayashi, and H Mitsuhashi Studies on the Constituents of Asclepıadaceae Plants, XLII Component of Marsdenıa tomentosa Decne Structure of 12β-O-Acetyltomentogenın and Hypothetıcal Bıogenetıc Pathway of Polyoxypregnanes in M tomentosa Chem Pharm Bull 25, 611 (1977)
289 Schaub, F, H Kaufmann, W Stocklin, and T Reichstein Die Pregnanglykoside der oberırdıschen Teıle von Sarcostemma viminale (L) R Br Helv Chım Acta 51, 738 (1968)
290 Hayashi, K, K Sugama, Z Zhang, S Tsukamoto, H Nakaya, K Sasaki, T Nakagawa, and H Mitsuhashi On the Pregnane Glycosides from the Plants belongıng to the Genus Cynanchum (Asclepıadaceae) Tennen Yukı Kogobutsu Toronka1 Koen Yoshıshu 28, 216 (1986) [Chem Abstr 106, 135258 (1987)]
291 Jin, Q D, and Q Mu The Constituent of C_{21} Steroids from Dregea sinensis var corrugata Acta Bot Yunn 9, 227 (1987) [Chem Abstr 111, 171179 (1989)]
292 Jin, Q D, and Q Mu Structure of Dresgenın from Dregea sinensıs var corrugata Zhiwu Xuebao 31, 874 (1989) [Chem Abstr 113, 94756 (1990)]
293 Chen, J, S Qin, Z Zhang, and J Zhou The Chemical Constituents of Gymnema yunnanense Acta Bot Yunn 11, 203 (1989) [Chem Abstr 112, 52246 (1990)]
294 Yamagishi, T, K Hayashi, and H Mitsuhashi The Structure and Internal Acyl Migration of Gagamının Chem Pharm Bull 20, 2289 (1972)
295 Sasaki, T, K Hayashi, and H Mitsuhashi On the Structure of Kıdjolanin and the Positıon of the Ester lınkage of Penupogenın Chem Pharm Bull 20, 628 (1972)

296 Mitsuhashi, H, and Y Shimizu The Isolation and Structure of Penupogenın Chem Pharm Bull 8, 565 (1960)
297 Seto, H, T Sasaki, K Hayashi, and H Mitsuhashi Studies on the Constıtuents of Asclepıadaceae Plants, XXXIX Component of Marsdenia tomentosa Decne Structure of Deacetyldehydrotomentodın, 20-O-Acetylpenupogenın, Deacetylkıdjoladının and Kıdjoladının Chem Pharm Bull 24, 2185 (1976)
298 Shimizu, Y, Y Sato, and H Mitsuhashi Isolation and Structures of New Pregnane Derıvatıves from Adonis amurensis et Radd Chem Pharm Bull 17, 2391 (1969)
299 Mitsuhashi, H, and Y Shimizu Structure of Cynanchogenın and Sarcostın Steroids 2, 373 (1963)
300 Hayashi, K, and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants, XXXII Aglycones from Cynanchum wilford l Hemsley Chem Pharm Bull 23, 139 (1975)
301 Maslennikova, V A, R N Tursunova, and N K Abubakirov Structure of Sibirıgenın Khım Prırod Soedın 6, 322 (1970) [Chem Abstr 73, 77477 (1970)]
302 Yamagishi, T, and H Mitsuhashi Structure of Ikemagenın and Isorkemagenin Chem Pharm Bull 20, 2070 (1972)
303 Bando, H , and H Mitsuhashi Studies on the Constituents of Asclepiadaceae Plants XLIV Components of Cynanchum caudatum Max Structure of 20-O-Cinnamoylsarcostın, 12-O-Cinnamoylıkemagenol and 20-O-Cinnamoylıkemagenol Chem Pharm Bull 26, 2128 (1978)
304 Yamagishi, T, and H Mitsuhashi The Structure of Caudatın Chem Pharm Bull 20, 625 (1972)
305 Bando, H, T Amiya, E Sato, and H Mitsuhashi Studies on the Constituents of Asclepıadaceae Plants XLVIII 5 $\alpha, 6 \alpha$-Epoxycaudatın, a New Polyoxypregnane Derivatıve from Cynanchum caudatum Max Chem Pharm Bull 28, 2258 (1980)
306 Singhal, S, G Mittal, M P Khare, and A Khare Constituents of Marsdenia tenacissima Structure of a New Genın Drevogenın Q Indıan J Chem Sect B 19B, 178 (1980)

307 Yamagishi, T, K Hayashi, H Mitsuhashi, M Imanari, and K Matsushita Carbon-13 Nuclear Magnetıc Resonance Spectroscopy of C/D cls-Polyoxypregnanes, III Structure of 12 β-O-Cinnamoyl-20-O-Acetylsarcostin Tetrahedron Letters, 4735 (1973)

308 Steyn, P S, F R Vanheerden, R Vleggaar, G L Erasmus, and L A P Anderson Toxic Constituents of the Asclepiadaceae Structure Elucidation of the Cynafosides, Toxıc Pregnane Glycosides of Cynanchum africanum R Br S Afr J Chem 42, 29 (1989) [Chem Abstr 111, 130746 (1989)]
309 Yang, R, T Yang, and J Zhou Structures of Tenacıgenın A, B and C Memory of Professor Tsai Xitau Yun Nan Zhi Wu Yan Jiu 3, 271 (1981) [Chem Abstr 96, 65666 (1982)]

310 Singhal, S, M P Khare, and A Khare Cissogenın, a Pregnane Genın from Marsdenıa tenaclssima Phytochemıstry 19, 2427 (1980)
311 Luo, S-Q,L-Z Lin, G A Cordell, L Xue, and M E Johnson Assignment of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of the C_{21} Steroids $12-\beta-\mathrm{O}$-Acetyltenacigenın A and Tenacıgenın A by Two-Dımensıonal NMR Technıques and Computer Modelıng Magn Reson Chem 31, 215 (1993)

Author Index

Page numbers printed in italics refer to References

Abbott, B J 321
Abdullaeva, D U 322
Abe, F 171, 172, 310-312, 322
Abe, S 321
Abernathy, R L 97
Abisch, E 311, 320
Abubakırov, N K 319, 322, 325
Adachi, T 98,110,111
Adachi-Yamada, T 98
Adam, G 324
Adams, M A 118
Adams, M E 120
Adsersen, A 163
Agrawal, P K 312, 313, 315
Agricola, H 119
Agui, N 98
Ahmad, V U 172, 178, 311
Ahsan, A M 198, 321
Aıba, T 316
Alam, M 315
Alı, H 163
Allerhand, A 314
Allgerer, $\mathrm{H} \quad 312,321,323$
Altstein, M 98, 106
Amelinckx, M 123
Amıya, T 325
Andersen, A 165-167
Andersen, J P 166
Anderson, L A P 316, 325
Ando, T 98, 112, 113, 117
Andrews, P C 117
Applebaum, S W 113, 116
Aquino, R 315
Arevalos, D G 310
Arıas, A 164
Arıma, R 98, 117

Arnold, L W 118
Aszalos, A 318
Audsley, N 98, 119
Aue, W P 316, 317
Avato, P 164, 165, 167

Bacon, J P 101
Baek, N I 312, 313
Bahr, U 98
Ba1, C 127
Baker, F C 123
Baker, T C 119
Balacco, G 109
Ballarıno, J 114
Bando, H 316, 322, 325
Bansal, M C 313, 315
Barcelo, P 164
Bartholdi, E 316
Batley, K E 125
Bauer, D 313
Baumann, E 98
Baumann, H 314
Bax, A 315-318
Bayraktaroglu, E 117
Beckmann, R 100
Beeching, J R 105
Beenakkers, A M T 98, 109, 118
Beier, R C 116
Belanger, JH 118
Bell, G I 98
Belles, X 98
Ben-Azız, O 98, 106
Bendall, M R 315
Bendena, W G 46, 47, 102, 125, 127
Benett, R D 311
Berger, S 177, 312

Bermel, W. 317
Bernstein, M.A. 317
Beyenbach, K.W. 99, 107
Beyreuther, K. 105, 124
Bhatnagar, A.S. 322
Bird, G.S. 166
Bird, T.G. 110
Birkenbell, H. 103
Bjerrum, P.J. 163
Blacher, R.W. 120
Blackburn, M.B. 99, 112, 126
Blacker, R.W. 110
Blalock, J.E. 101
Blundell, T.L. 110
Bock, K. 313, 314
Bodenhausen, G. 316
Bodnar, W. 99
Bogerd, J. 99
Böhlen, P. 103
Bollenbacher, W.E. 98, 99, 107, 116, 118
Bolton, P.H. 317
Bonomelli, S.L. 121
Borders, D.B. 320
Borovsky, D. 99-101
Bose, A.K. 312
Bosso, C. 318
Bourême, D. 106
Bracho, R. 322
Bradbury, J.H. 313
Bradfield, J.Y. 99, 111
Braunschweiler, L. 317
Breidbach, O. 99
Bringnole, A. 314
Brink, D.L. 126
Broadie, K.S. 126
Brooks, W. 315
Broomfield, C.E. 125
Brown, B.E. 100, 125
Brown, M.R. 100,115
Brown, P. 181, 318
Bruschweiler, F. 318
Budesinsky, M. 164, 165
Budzikiewicz, H. 181, 318
Bueds, H. 103
Bulet, P. 108
Bull, D.L. 100
Bundle, D.R. 320
Burum, D.P. 315
Butenandt, A. 100
Bylemans, D. 100

Cabrera, G. 171, 310
Caldwell, M.E. 321
Campbell, I.D. 109
Camps, F. 126
Candy, D.J. 106, 115
Cannon, J.R. 322
Cantera, R. 100, 117
Capek, P. 315
Carlisle, J. 100
Carlson, D.A. 99
Carney, R.L. 111, 113, 120
Casu, B. 313
Cesarin, B.J. 111
Chamberlin, M. 119
Champagne, D.E. 100
Chandra, R. 309
Chang, C.C. 320
Chen, G. 323
Chen, G.-X. 310
Chen, J. 323, 324
Chen, R. 100
Chen, Z.-S. 171, 310
Cheung, C.C. 100, 109
Chijimatsu, M. 115
Chin, A.C. 100
Chiplunkar, Y.G. 324
Chizhov, O.S. 314
Choi, S.K. 110
Chowdhury, S. 110
Christensen, S.B. 163-167
Christophersen, C. 164
Chung, J.-S. 100, 101
Clarke, D.M. 166
Clarke, N. 126
Clottens, F.L. $100,101,114$
Coast, G.M. 98, 100, 101, 107, 111, 127
Cochran, D.W. 314
Cook, B.J. 101, 108, 116
Cook, J.C. 105, 127
Copenhaver, P.F. 126
Cordell, B. 98
Cordell, G.A. $310,312,313,315,321,325$
Cornett, C. 165-167
Couillaud, F. 101, 106
Coxon, I.M. 164
Crim, J.W. 100, 115
Cullen, P.J. 163
Curtis, J.M. 121
Curto, E.V. 101
Cusinato, O. 25, 101, 107, 111

Cusson, M 101

Dabrowskı, J 317
Das, S 127
Davey, K G 8, 101, 114, 125
Davidson, G A 166
Davis, D G 316, 317
Davis, M -T B 101
Davis, N T 101, 109, 126
Dawson, A P 163
De Beer, T 108
Decock, B 119
Deepak, D 170, 181, 185, 309, 310, 312, 318, 319, 321, 323
Degheele, D 127
Degroote, R 163
Delaage, M 120
Delbecque, J -P 102
De Loof, A $100,103,104,108,109,115$, 119, 122-124, 126
Demaurex, N 165
De Meis, L 166
Denlinger, D L 102
Denoroy, L 108
De Pascual, M 164
De Pascual, T J 163, 164, 167
De Simone, F 315
De Tomması, N 315
Devreese, B 127
Dewaele, C 311
Diamant, B 165
Dich, J 167
Dickmeiss, E 163
Diederen, J H B 102, 112, 119
Digan, M E 102
Dijkhuizen, R M 118
Ding, Q 46, 47, 102
Ding, W -P 310, 321, 323
Dinya, Z 318
Dioscorides 130
Dircksen, H 99, 102, 109, 117
Dixon, J E 118
Djerassı, C 318
Doak, D G 109
Doddrell, D 314,315
Donly, B C 46, 47, 102
Dorman, D E 313
Doughty, C C 121
Dow, J A T 102
Drake, A F 25,127

Drøbak, B K 163
Drobny, G 317
Duddy, S K 165
Duh, C Y 321
Dunkelblum, E 106
Dunne, T S 320
Duve, H 79,98, 102, 103, 126
Dyson, H J 116

East, P 102, 103
Eckart, K 128
Eckerskorn, C 115
Eckert, M 103
Edwards, J P 127
Edwards, M W 316
Egan W 315
Eich, G 316
Eisenberss, F 310
Eldridge, R 103
Elekes, K 117
Elia, A J 102
Elhs, J 312
Enderlin, F E 102
Endoh, M 322
Engelmann, F 103
Eppenberger, U 319, 320
Erasmus, G L 316, 325
Erbing, B 314
Erdelmeier, C A J 310, 321
Ernst, R R 315-318
Esch, F S 103
Evans, P D 121
Fales, H M 110,120
Falsone, G 166
Farnsworth, D E 119
Farnsworth, N R 316, 321
Fawcett, S K 319
Fehlhaber, H W 316
Feigl, F 172, 311
Feistner, G J 117
Ferenz, H-J 113
Fernandez, A 164, 167
Fernandez-Belda, F 166
Fernlund, P 103
Feyereisen, R 103, 119
Field, J 315
Fischer, N H 164
Fisher-Lougheed, J 124
Flanagan, T R 118

Foder, B 163
Fok, K F 119
Fonagy, A 103, 104, 115
Fong, H H S 310, 321
Ford, M M 104
Foreman, J C 163
Foskett, J K 166
Fourne, T G 315, 322
Fournier, B 104
Fox, A M 104
Fraser, B A 110,126
Freeman, R $315,316,318$
Freeman, Z A 127
Fregeau, N L 121
Fronczek, F K 164
Fugo, H 112,117,125, 165
Fujlk, H 163
Fujımoto, H 319
Fujino, M 115
Fuıishita, M 109, 117
Fuıita, N 107
Fuılwara, Y 111,117
Fukuoka, M 181, 318, 319
Furuya, K 104, 113
Furuya, Y 165

Gabriel, J 103
Gade, G 17, 19, 20, 25, 98, 100, 103-107, $110,114,121,127,128$
Garcia, C 310
Gaskell, S J 122
Gaston, L K 119
Gaus, G 106, 112
Gazit, Y 98, 106
Gehrke, M 316
Gellert, E 312
Gero, S D 320
Ghisalberti, E L 322
Gll, R R 313
Gllbert, L I 15, 98, 106
Gill, D G 165
Girardie, A $\quad 101,106,120$
Girardie, J $16,68,101,104,106,113$, 116,121
Glushko, V 314
Glynn, I M 166
Gokuldas, M 106
Goldsworthy, G J 25, 100, 101, 105-107, 111-113, 127
Goltzene, F 113

Gooding, R H 107
Goodman, H M 98
Goto, T 109, 110
Gourdoux, L 116
Goutarel, R 320
Grande, M 163,164, 167
Granger, N A 98
Grauwels, L 100, 124
Gray, A S 107
Gray, R S 107, 116
Green, B 108
Green, D 310
Green, N M 166
Greıner, G 103
Griesinger, C 316-318
Griffin, P R 99, 112
Grımmelıkhuızzen, C J P 121
Grımmer, G 311
Grımshaw, C E 121
Gros, E G 310
Grunnet, N 167
Guan, X -C 107
Gudıksen, L 163
Guinaudeau, H 314
Guo, F 117
Gupta, R K 313
Gurd, F R N 314

Hackett, M 104
Haddad, H 166
Haddon, W F 116, 309
Hagedorn, H H 126
Hagiwara, H 319
Hakı1, H 163
Hakomorı, S 184, 319
Hall, L D 317
Hallberg, E 100
Hamburger, M O 310
Hanley, M R 163, 165
Hanrahan, J 119
Hansson, B S 100
Hanstrom, B 107
Hara, M 311
Harada, K -I 121
Hardy, P M 125
Harıgaya, Y 311
Harrison, D J 99
Hartshorn, M P 164
Hartwell, J L 321
Hasegawa, K 109, 110

Haughton, G 118
Hayashı, H 107
Hayashı, K 172, 183, 310, 312, 313, 315, 316, 318-325
Hayes, D K 110,120
Hayes, J A 126
Hayes, T K 97, 98, 100, 101, 104, 105, 107-109, 111, 116, 122, 123, 127
Hecker, E 100, 166
Heerma, W 118
Heftmann, E 310, 311
Hekımı, S 107
Hekkıng, L H P 99
Hemling, M E 127
Henke, H 310
Henry, J 101
Henschen, A 116
Herault, J -R 120
Hergebnhahn, M 166
Hermodson, M A 108
Hernandez, J M 163, 164
Herout, V 163
Hershey, A D 108
Hetru, C 108
Hida, R 320
Hietter, H 68, 108, 114, 117
Hıgashino, Y 110
Hıguchi, R 314
Hıkıno, H 321
Hilbich, C 105, 124, 125
Hıldebrand, J G 109, 112, 113
Hildesheım, J 320
Hill, J C 126
Hıllenkamp, F 98
Hinckley, D J 107
Hines, E 103
Hintz, M F 121
Hıral, Y 310
Hırasawa, N 163
Hırota, T 321
Hirsch, J 120
Hoel, D F 107
Hoffman, J 108
Hoffmann, J A 108, 113
Hoffmann, K H 102, 114
Hofman, B 163
Hofsteenge, J 108
Holman, G M 100, 101, 107-110, 113, $114,116,122,123$
Holt, T G 121

Holub, M 163-165
Holwerda, D A 109
Homberg, U 109,112
Hon, Y 117
Horne, T J 109
Horodyskı, F M 103, 109
Hostettmann, K 164, 310
Houthaeve, T 114
Howe, I 318
Hu, Y 323
Hua, S 166
Huesmann, G R 109
Huet, J -C 106
Hughes, D W 179, 317
Hunt, D F 99, 100, 112, 119
Hunt, P A 106
Huong, H T 324
Huybrechts, R 100

Idaka, K 171, 310
Iga, H 319
İda, I 310
Ikeda, K 315
Ikeda, M 121,122, 127
Ikekawa, T 314
Ima1, K 109, 122
Imanarı, M 325
Inada, A 310, 324
Inagaki, F 317
Inesi, G 166
Inoue, $T \quad 112,117$
Isaac, R E 109
Isaacs, J T 165
Ishıbashı, J 109
Ishızakı, H 98, 109-112, 114, 115, 117, 121, 125
Ishizone, H 323
Isobe, M 109, 110, 122
Isogai, A 109,111,112,114,115, 117
Ito, K 323
Itokawa, H 172, 180, 311, 312, 317, 319, 324
Iverson, L L 110
Iwamı, M 98, 110,111

Jackson, T R 165
Jacobsen, K D 163
Jacobsen, N 164
Jacquin, E 110
Jaeggı, K A 311

Jaenecke, N. 112
Jaffe, H. 110, 120, 121
Jäger, A.K. 163
Jain, D.C. 313
Jamieson, G.C. 122
Janot, M.M. 320
Jansen, W.F. 102, 112
Janssens, M.P.-E. 20, 105, 110
Jansson, P.E. 314
Jardine, I. 112
Jarmann, M. 318
Jaros, P.P. 110
Jarpe, M.A. 101
Jasensky, R.D. 128
Javellana, M.J. 314
Jeener, J. 316
Jenkins, G.A. 313
Jensen, B. 167
Jensen, J.S. 167
Jewess, P.J. 107
Jhoti, H. 110
Jijun, C. 310, 313
Jin, Q.D. 170, 310, 324
Johnsen, A.H. 98, 102, 103
Johnson, L. 121
Johnson, M.E. 312, 325
Johnson, V. 107
Jorenby, W.H. 121
Josefsson, L. 103
Joshi, S. 125
Jun, Z. 310, 313
Junior, P. 312
Jurenka, R.A. 110
Kabore, I. 320
Kadono-Okuda, K. 110
Kadoshima, T. 98
Kahn, M. 310
Kalish, F. 122
Kamensky, B. 120
Kamito, T. 110, 117, 125
Kammer, A.E. 112
Kamo, O. 314
Kaneda, N. 316
Kaneko, K. 312, 313, 315, 319, 323
Kaneko, Y. 310
Kapur, B.M. 323
Karas, M. 98
Kardosova, A. 315
Karhan, J. 317

Karlish, S.J.D. 166
Karlson, P. 111
Karlsson, A. 117
Kasai, R. 323
Kashman, Y. 181, 310
Kass, G.E.N. 165
Katahira, E.J. 99, 107, 116, 118
Kataoka, H. 98, 109, 111-113, 115, 117, 123
Kato, Y. 110
Katz, F.N. 118
Kaufmann, H. 319, 324
Kaur, K.J. 318-320, 323
Kawakami, A. 98, 110, 111
Kawanishi, S. 321, 323
Kawano, T. 111,117
Kawasaki, T. 320
Kay, I. 34, 98, 100, 101, 107, 111
Keeley, L.L. 97, 99, 104, 107, 111
Kegel, G. 105, 106, 112
Keim, P. 110
Keller, R. 102, 105, 112, 114, 124, 125
Kellner, R. 12, 19, 20, 105, 106, 110, 112, 114,127
Kempe, T.G. 99, 101, 110, 120, 126
Kennard, O. 319
Kenne, L. 314
Kerr, K.A. 319
Keshishian, H. 101
Kessler, H. 316-318
Khambay, B. 107
Khan, M.A. 127
Khare, A. 309-312, 318-321, 323-325
Khare, D.P. 318
Khare, M.P. 309, 310-312, 318-320, 323-325
Khare, N.K. 318, 321, 323
Khoi, N.H. 324
Khuong-Huu, Q. 320
Kiem, P. 120
Kiliani, H. 184, 319
Kim, I. 124
Kimura-Kawakami, M. 111
King, D.S. 113
Kingan, T.G. 99, 101, 112, 121, 126
Kinghorn, A.D. $315,316,321$
Kirk, D.N. 164
Kirsch, K. 128
Kitada, C. 115
Kitagawa, I. 312, 313

Kitahora, H 121
Kitamura, A 98, 112, 115, 117
Kıøller Larsen, I 164
Klein, J M 112, 114
Kleın, M P 314
Kleınholz, L H 106, 121
Klowden, M J 100
Klun, J A 120
Knıght, D W 107
Knırel, Y A 314
Ko, ST 311
Kobayashı, M 310
Kochansky, J P 99, 115, 121-123, 126
Kochetkov, N K 314
Kodrık, D 112
Koga, K 109
Kohada, D 317
Kohl, H 316
Koide, Y 316
Kolar, C 317
Komiya, T 109, 122
Komorı, T 314
Komura, H 315
Konda, Y 311
Kondo, H 110
Konings, P N M 112
Konno, T 109
Kono, T 112, 125
Kono, Y 117
Konopinska, D 112
Koorman, F P 99, 118
Kopanskı, L 312
Kopeč, S 3,53,112
Kovac, P 315
Kramer, S J 34, 102, 104, 111, 113, 122, 123, 126
Krause, J E 108
Krause, K 165
Kravitz, E A 124
Krıshna, G 310, 311, 319
Krıshna, N R 101
Krishnan, K 165
Kromer, E 113
Kromer-Metzger, E 113
Kumar, A 317
Kumar, R 318
Kunıyoshı, H 113,117
Kuo, Y-H 310
Kurıhara, M 115

Kuroyanagı, M 322
Kutshabsky, I 164
Lagueux, M 108, 113
La1, J 323
La1, J -S 310
Lakowicz, J R 166
Landau, M 121
Lange, A B 113,118, 119
Langhoff, E 163
Lauridsen, A 165, 166
Law, J H 128
Lawson, P J 314
Lea, A O 100, 113, 115
Lederıs, K P 113
Lee, C M H 124
Lee, M D 320
Lee, M J 113
Lee, T D 100, 109, 113
Lee, Y -H 111
Lehman, H K 113
Lehmberg, E 113
Leiter, J 321
Lemmich, E 167
Letter, A 113
Leung, S L 321
Levy, H B 311
Lew, D P 165
Lewis, K A 100
L1, J P 111, 113, 120
Lı, K W 108
Li, X 311
Liao, S 104
Liebrich, W 114
Lin, L-J 313
Lin, L-Z 312, 313, 325
Linck, B 114
Linde, D 103, 119
Ling, N 116
Ling, N C 103
Lipkind, G M 314
Liu, T P 114
Loffler, A 108
Lo1, P K 100, 109, 126
Lojanapiwatna, V 322
Loo, T W 166
Loostı, H R 318
Lopata, A 105
Lopresti, M B 125
Lorenz, M W 114

Lottsperch, F 114
Lou, H 311
Loughton, B G $100,113,120$
Lu, J 321
Lu, K-H 111
Lu, Z-Z 310, 321
Luı, A S T 111
Lundin, R E 309
Lundmo, P 165
Lundquist, C T 114, 116
Luo, S-Q 312, 325
Lusby, W R 319
Luscher, M 111
Luu, B 108
Lwoff, L 113
Lyndenbell, R M 315
Lytton, J 163

Ma, M 99, 114, 126
Maas, H A 102
Mabry, T J 312
Maclenan, A P 311
MacLennan, D H 166
Macura, S 317
Maddrell, S H P 114
Maeda, S 17,110,114
Maestro, J -L 98
Malak, H 166
Malık, M S 313
Mallet, A I $100,101,111$
Mallison, K 107
Mangerıch, S 114
Mann, F G 311
Mannich, C 184, 319
March, J 165
Margiuc, C M 113
Marı, K 324
Markham, K R 312
Marston, A 310
Martı, T 63, 114
Martın, G E 315, 317
Maruska, K 115
Maruyama, K 114, 117
Marzıllı, L G 318
Maslennıkova, V A 319, 322, 325
Masler, E P 115
Matsumoto, S 103,115,117
Matsushita, K 325
Mayer, R J 115
McCormack, A L 119

McEnroe, G A 122
McIntosh, C 98
McLeod, A N 110
McMaster, D 113
Medina, J D 322
Meister, M 113
Menjo, N 122
Menn, J J 121
Meola, S M 101
Metzger, J W 115
Meyer, HE $115,124,127$
Mihalov, V 315
Mıhashı, K 311
Mikkelsen, E O 165
Mikogamı, T 117
Milde, J J 115
Milledi, R 108
Miller, C A $113,120,122,123$
Miller, L K 103
Miller, T A 15, 106, 113
Minakata, H 315
Mitra, A 310
Mitsuhashı, H 310,313,315, 316,318-325
Mitsui, T 103,115
Mittal, G 325
Miyahara, K 320
Mıyakawa, S 323
Miyamoto, T 314
Miyase, T 322
Mizoguchı, A 109, 111,112 115117121 125
Mizukawa, K 315
Mizuno, D 316, 321
Mohrherr, C J 112, 115-117 121
Moldt, P 165, 167
Møller, J 163
Monneret, C 320
Montecucchı, P C 116
Moore, G 113
Moore, G A 165
Moran, J R 163, 164, 167
Mordue, W 124,125
Moreau, R 116
Morgan, P 124
Mor1, Y 311, 322
Morımoto, H 128
Moriya, I 109
Morley, S D 113
Morris, G A 315-317
Morris, H R 125

Morton, D B 103
Morton, G O 320
Moshitzky, P 15,116
Mu, Q 318, 321, 323
Mu, Q Z 310, 324
Muehlessen, D P 107, 116
Muller, A 102
Muller, D R 108
Muller, N 316
Murata, H 310
Muren, J E 116
Murphy-Erdosh, C 117
Nachman, R J $\quad 97,101,107-110113,114$, 116, 122, 123
Naga1, U 183, 319
Nagamine, T 115
Nagao, T 311
Nagasampagı, B A 324
Nagasawa, H 98, 109-115, 117, 121, 125
Nagata, K 114
Nagata, W 311
Nakagawa, T 320-322, 324
Nakanıshı, T 172, 310, 324
Nakano, M 107
Nakao, A 321
Nakao, Y 310
Nakashıma, K 110
Nakashıma, T T 315
Nakaya, H 324
Nakayasu, M 163
Nakazawa, Y 109, 122
Nambu, J R 117
Narita, H 320,321
Narita, T 316, 321
Nassel, D R $100,114,116,117$
Neher, R 311
Nespoulous, C 106
Neszmelyı, A 314
Newcomb, R W 125
Newman, R H 314
Nichols, R 114, 118
Nicolson, S W 30, 118
Nielsen, M S 167
Nielsen, S F 166
Nijhout, H F 118
Nohara, T 320
Nomura, T 319
Noro, T 322

Nørregård, A 166
Norton, S 121
Norup, E 163, 165, 167
Noyes, B E 118, 122
Numazakı, F 98
Oberaı, K 318, 324
O'Brien, M A 99, 118
фgaard Madsen, J 163
Oguchi, M 122
Ohmoto, T 315
Ohnıshı, E 117
Ohuchi, K 163
Oka, T 111,115
Okabe, H 322
Okada, Y 314
Okawara, Y 113
Okıno, H 321
Oliver, J E 319
Olsen, C E 166, 167
Olson, J K 107
Onda, M 311
O'oka, H 109
Orchard, I 102, 113, 118, 119
O'Reılly, D R 103
Orıkasa, C 115
Orrenius, S 165
Osborne, R H 107
O'Shea, M 28,107,109,117,118,121,124, 127
Oshima, Y 321
Ota, R B 104, 113
Otsuka, M 118
Ottosson, H 314
Oudejans, R C H M 99, 118
Packman, L C 121
Paemen, L 119, 123, 126
Palter, R 309
Pannabecker, T L 107, 119
Pannell, L 121
Park, J D 312, 313
Partridge, S M 172,311
Passier, P C C M 117, 119
Patel, M 101,111
Patkar, S A 165
Patt, SL 315, 317
Patterson, S I 165
Peach, J L 119
Pearce, F L 163

Pedelaborde, A 120
Pedersen, C 313, 314
Pedersen, H 313
Pedersen, R 166
Peeff, N M 113, 119
Pegg, D T 315
Pel, H J 102
Penzlin, H 98, 103, 119
Perez-Alonso, M J 164
Perlin, A S 313
Pernollet, J -C 106
Perrin, M H 100
Perrot, R 163
Peter-Katalınıc, J 112
Pettit, G R 318
Petzel, D H 107
Pezzuto, J M 321
Pfeiffer, D 164
Phelps, D E 314
Phıllıps, J E 98, 119
Phıllıps, J M 112
Piantını, U 316
Pratak, D M 321
Pıckerıng, M G 127
Pictet, R 98
Pınnenburg, M A P 99
Piotrowskı, W 163
Piulachs, M -D 98
Pızza, C 315
Plinius 130
Polenzanı, L 108
Pope, M M 119
Poulsen, J J 167
Powel, C A 99
Prakash, K 310,312
Pratt, GE 49,119
Predel, R 103, 119
Prestwich, G D 101
Proefke, M L 105
Proost, P 100, 103, 104, 119, 123, 124
Proux, J P 120, 123
Puiroux, J 120
Pujadas, A 164
Puranık, V G 324
Putney, J W 166

Qianlan, Z 312,313
Qiduan, J 312, 313
Qin, S 324
Quanzhang, M 312,313

Quistad, G B 113,120

Raabe, M 115, 120
Rabensteın, D L 315
Rafaelı, A 120
Raina, A K $17,99,101,110,112,115,120$, 121, 126
Ramachandran, J 116
Ramesh, M 313
Rance, M 316
Randall, H M 311
Rangaswamı, S 184, 319
Rao, A V N P 313
Rao, K R 109, 112, 115-117, 121
Rapus, J 103, 119
Rasık, J 315
Rasmussen, U 163-165, 167
Rasoanavo, P 316
Rastogı, R P 313321
Rastogi, S N 313
Rayne, R C $\quad 28,101,109,118,121$
Reagan, J D 35, 121
Reck, G 164
Reddy, B 313
Rehfeld, J F 102, 103
Reıchsteın, T 170, 184, 185, 197, 309, 311, 318-324
Reichwein, B 112
Remy, C 121
Reynolds, E R 100
Reynolds, S E 21, 104, 105, 121
Ribeıro, J M C 100
Richard, O 106
Richter, D 113
Richter, W J 108
Riddiford, L M 103, 109
Ridgway, R L $\quad 110,120$
Riehm, J P 112, 115, 116, 121
Riley, C T 110, 120
Rinehart, K L $19,105,106,121$
Rinehart Jr, K L 105, 106, 127
Ripperger, H 164
Rivier, J 121
Rızwanı, G H 311
Robb, S 121
Roberts, D N 102
Roberts, J D 313
Roberts, V A 116
Roelofs, W L 110
Roeser, H 166

Romberg-Privee, H M 123, 124, 126
Rong, L-S 121
Rosinski, G 106, 112
Rossello, J A 164
Rougon-Rapuzzı, G 120
Roulet, E 124
Rowen, D D 314
Ruan, J 323
Rutter, W J 98
Ryder, L P 163
Saegusa, H 121
Sagara, Y 166
Saıkı, Y 311
Saito, H 122
Sakagamı, Y 125
Sakakıbara, K 109,122
Sakuma, S 321, 323
Saman, D 165
Samek, Z 163
Samıkov, K 322
Samyn, B 100
Sandberg, F 163, 164
Sasakı, K 324
Sasakı, T 314, 324, 325
Sato, B 110,117, 125
Sato, E 325
Sato, Y 121, 122, 127, 325
Sattelberg, R M 121
Sauer, H H 320
Saunders, B C 311
Sawlewicz, L 321
Scarborough, R M 120, 122
Schaffer, M H 105, 118, 122, 127
Scharff, O 163
Scharrer, B 3,122
Scharrer, E 3,122
Schaub, F 324
Scheller, R H 100, 117
Schepartz, S A 321
Scheuer, P J 163
Schlesinger, D 113
Schnee, M E 99
Schnerder, H-J 313
Schneider, LE 122, 126
Schneuwly, S A 118
Schoofs, L 103, 104, 108, 109, 115, 116, 119, 122-124, 126
Schooley, D A 10,21, 63, 98, 104, 111, 113, $114,120,122,123$

Schooneveld, H $\quad 15,102,123,124,126$
Schulz-Aellen, M F 124
Schun, Y 321
Schwartz, L M 124, 126
Schwarz, H 128
Schwarz, T L 124
Scott, A G 102, 103
Seehofer, F 311
Serdel, S L 127
Seldes, A M 310
Selıgmann, O 314
Semba, T 117
Semmes, O J 121
Serwe, M 124
Seth1, A 312, 318
Seto, H 324, 325
Sewell, J C 102
Shabanowitz, J 99, 100, 119
Shaka, A J 316
Shakırov, R 322
Shashkov, A S 314
Shen, X 323
Shen, Y 323
Shi, J -P 321
Shibanaka, Y 107
Shibata, S 314
Shibuya, H 312,113
Shield, L S 121
Shiga, S 117
Shımada, I 317
Shimızu, Y 325
Shımonıshı, Y 124
Shin, M 122
Shinde, G V 311, 319
Shingare, M S 311, 319
Shoj1, J 310, 317, 321, 323
Shoolery, J N 315
Short, A D 165
Shrouder, L A 100
Sieber, K -P 114
Siebinga, R 112
Siegel, M M 320
Siegel, N R 119
Siegert, K J 124
Siewert, G 184, 319
Siguskjold, B W 314
Simpson, C F 311
Singh, B 321
Singhal, S 312, 325
Siwickı, K K 124

Skerjanc, I.S. 166
Skinhøj, P. 163
Slaughter, C.A. 122
Sleutels, F. 112
Slotboom, A.J. 118
Smet, H. 124
Smitalova, Z. 165
Smith, D.W. 311
Smitt, U.W. 163-165, 167
Snatzke, G. 316
Snyckers, F.O. 315, 322
Snyder, S.H. 124
Sobótka, W. 112
Sorensen, O.W. 316
Sorensen, P.D. 321
Sorm, F. 163
Soroker, V. 120
Sowa, S.M. 111
Spiess, J. 121
Spittaels, K. 124
Spring, J.H. 31, 124
Srikrishna, A. 165
Srilatha, B. 313
Srinivasan, P.R. 312
Srivastav, S. 197, 312, 318
Srivastava, O.P. 323
Srivastava, S. 319, 321, 323
Stadelbacher, E.A. 120
Stagg, A.P. 119
Staley, A.L. 121
Stamm, D. 100
Standaert, D.G. 124
Stangier, J. 124, 125
Starratt, A.N. 100, 125
Stay, B. 101, 125, 127
Steel, C.G.H. 125
Steele, J.E. 18, 125
Steele, R.W. 125
Steyn, P.S. 325
Still, W.C. 310
Stock, E. 163
Stöckel, K. 319
Stöcklin, W. 319, 322, 324
Stokes, D.L. 166
Stone, J.V. 125
Stone, K.L. 125
Stothers, J.B. 315
Strey, A.A. 107, 127
Stuve, L. 116
Sudo, K. 318

Suenobu, M. 320
Sugama, K. 313, 324
Suganuma, M. 163
Sugawara, T. 163
Sugimura, T. 163
Sugiyama, M. 110
Sukumar, S. 317
Sullivan, G.R. 317
Sullivan, R.E. 125
Summers, M.F. 318
Summons, R.E. 312
Sun, F. 121
Suzuki, A. $98,109-115,117,121,125,317$
Suzuki, C. 111
Suzuki, K. 127, 319
Suzuki, Y. 98, 110
Svejgaard, A. 163
Swain, W.F. 98
Swiderek, K.M. 109
Sylwester, A.W. 100, 126

Taghert, P.H. 122, 126
Tahira, T. 163
Tainer, J.A. 116
Takahara, K. 98
Takahashi, S.Y. 98, 110, 117
Takao, T. 124
Takase, M. 316, 321
Takeda, Y. 312, 313
Takeuchi, S. 315
Takeya, K. 311, 312, 317, 319, 324
Takio, K. 114
Takiya, S. 98
Tamarelle, M. 106
Tamm, Ch. 311, 320
Tamura, S. 109, 111, 114, 115, 117
Tanaka, H. 110, 125
Tanaka, M. 114
Tanaka, T. 310
Taniai, K. 110
Tao, G. 323
Taravel, F. 318
Tarr, G.E. 121
Tavale, S.S. 324
Taylor, W.R. 166
Teal, P.E.A. 97
Tenson, C.P. 112
Teplow, D.B. 112
Terada, S. 316
Terui, Y. 313

Terzi, G. 114
Tesser, G.I. 124
Thakur, R.S. 313
Thastrup, O. 163, 165, 166
Theophrastos 130
Thomas, M.B. 312
Thomas, M.K. 116
Thomas-Laemont, P. 99
Thompson, A.G. 121
Thompson, K.S.J. 101
Thompson, M.J. 319
Thomson, B. 119
Thorne, G.C. 122
Thornton, J.M. 127
Thorpe, A. 98, 102, 103, 126
Tips, A. $119,123,126$
Tirry, L. 127
Tiwari, K.N. 318, 319
Tiwari, S.S. 318
Tobe, S.S. $46,47,101-103,107,125-127$
Toda, Y. 311
Togawa, K. 314
Toman, R. 315
Tori, K. 313
Toschi, A. 111, 113, 123
Totty, N.F. 100, 111
Trabace, G. 164
Treiman, M. 167
Trivedi, R. 312, 319, 323
Troetschler, R.G. $34,104,111,126$
Truman, J.W. 63, 103, 109, 114, 121, 124, 126
Truong, O. 100
Tschesche, R. 311, 316
Tschirch, A. 163
Tseng, C.-M. 110
Tsuji, N. 313
Tsukamoto, S. 310, 313, 315, 319, 322, 324
Tsurufuji, S. 163
Tublitz, N.J. 100, 109, 126
Tumlison, J.H. 97
Tursunova, R.N. 319, 322, 325
Tutin, T.G. 164

Uchiumi, K. 115
Uchiyama, M. 98, 117
Ueno, A. 322
Uhrin, D. 315
Ulrich, J. 318
Umehara, K. 322

Unger, H. 126
Uramoto, M. 315
Usmanghani, K. 311
Usuda, K. 323
Uzawa, J. 315

Vakharia, V.N. 101, 126
Vale, W. 100, 121
Van Beeumen, J. 100, 127
Van Damme, J. 100, 103, 104, 119, 123, 124, 127
Van den Broeck, J. 123
Van der Horst, D.J. 99, 119
Vandesande, F. 123
Van Doorn, J. 109
Van Dorsselaer, A. 106, 108
Vanheerden, F.R. 316, 325
Vargas, D. 164
Varhol, R.J. 166
Vasickova, S. 165
Veelaert, D. 123
Veenstra, J.A. $15,100,119,123,124$, 126
Velasco-Neguerucla, A. 164
Velleman, S.G. 101
Vensel, W.H. 116
Versluis, C. 118
Verzele, M. 311
Vetter, W. 320
Vettermann, S. 119
Vigna, S.R. 115
Vignon, M. 318
Vilsen, B. 166
Vleggaar, R. 316, 325
Vliegenthart, LF.G. 108
Vogel, V.W. 110
Vold, R.L. 314
Voneuw, J.V. 311
Vullings, H.G.B. $102,112,117,119$
Wada, K. 316, 320-322
Wades, J.B. 166
Wagner, G. 316
Wagner, H. 314
Wagner, R.M. 99, 101, 110, 115, 126
Wallstein, M. 115
Walsh, K.A. 114
Wang, D. 323
Wang, J. 323
Warashina, T. 322

Wasylyk, J.M. 315
Watanabe, K. 317
Watanabe, M. 163
Waters, R.M. 319
Watson, D.G. 319
Waugh, J.S. 314
Weaver, R.J. 127
Webb, J.M. 172, 311
Weese, S. 112
Wehrli, W. 311
Weidemann, W.M. 114
Weidner, K. 102
Weigt, C. 127
Weinheimer, A.J. 315
Weiss, E. 311, 320, 321
Welzel, P. 316
Wendisch, D. 166
Wenkert, E. 314
Westlin, M. 163
Wettstein, A. 311
Wettstein, P.A. 310
Wheeler, C.H. 100, 101, 107, 111, 127
Williams, H. 318
Williams, K.R. 125
Wilmot, C.M. 127
Wilps, H. 106
Witten, J.L. 118, 127
Wokaun, A. 316
Wollweber, L. 119
Wong, A.D. 166
Wood, G.W. 319
Woodhead, A.P. 125, 127
Woodring, J.P. 127
Woods, C.W. 126
Woodward, R.M. 108
Woodworth, A.R. 102
Wright, M.S. 100, 101, 107-109
Wu, S.-J. 114
Wurden, S. 109
Wuthrich, K. 316, 317
Xu, J. 110, 311, 312, 317, 319, 324
Xu, W.-H. 127
Xu, X.-Q. 323
Xue, L. 312, 325

Yabuta, H. 320
Yagi, K.J. 102
Yaginuma, T. 109
Yamagishi, T. 324, 325
Yamaguchi, K. 315
Yamakawa, M. 110
Yamamoto, M. 110
Yamashiro, D.F. 116
Yamashita, O. 97, 109, 115, 116, 121, 122,127
Yamauchi, T. 310-312, 322
Yamaura, K. 323
Yamazaki, M. 319
Yang, R. 325
Yang, T. 325
Yi, S. 127
Yi, S.-X. 127
Yoshikawa, M. 312,313
Yoshimura, S.-I. 320, 321
Yoshioka, K. 118
Young, L. 100
Yu, C.G. 102, 127
Yuan, J. 323
Yuan, J.-L. 170, 171, 310, 321
Yunusov, S.Y. 322

Zahnow, C.A. 121
Zarbock, J. 318
Zektzer, A.S. 317
Zhang, R. 312, 313
Zhang, Y. 323
Zhang, Y.-S. 110
Zhang, Z. 321, 323, 324
Zhang, Z.-H. 320
Zhang, Z.-X. 312, 320
Zhong, X. 117
Zhou, B.-N. 310, 321, 323
Zhou, J. 312, 320, 321, 323-325
Zhou, L. 323
Zhou, Q. 318, 321, 323
Zhou, Q.L. 310
Zhuangxin, Z. 310, 313
Ziegler, R. 115,128
Zöllner, N. 128
Zubrzycki, I.Z. 128
Zürcher, R.F. 313

Subject Index

Abelson murine leukemia viruses 70	Achetakinin II 74
Acanthoproctus cervinus 21	Achetakinin III 74
Accessory glands and midgut myotropins	Achetakinin IV 74
77	Achetakinin V 74
Acd-DP 32, 35	Achetakinins 36, 74, 84
Acd-K-I 74	Acheta-PDF 95
Acd-K-II 74	Acid hydrolysis 184
Acd-K-III 74	Acid phenylhydrazides 184
Acd-K-IV 74	Adipokinetic bioassay 8
Acd-K-V 74	Adipokinetic hormones 13, 16, 24, 25,
Acd-PDF 95	27, 89
[$1-{ }^{14} \mathrm{C}$]-Acetate 24	Adipokinetic peptides 9,10
Acetic acid 10, 34, 61, 82, 174	Aea-HP-I 77, 93, 94
Acetone 10, 34, 145, 148	Aea-HP-II 77, 93
Acetonitrile 10, 11, 13, 31, 33, 34, 37,	Aea-K-I 75
39, 61, 81	Aea-K-II 75
6-O-Acetyl-8-O-angeloyl-1(10),	Aea-K-III 75
4(5)-diepoxygermacrane 137	Aea-TMOF 69,70
6-O-Acetyl-8-O-angeloylshiromodiol 137	Aedes aegypti $30,36,69,75,77,83,84$, 89, 93
12β-O-Acetyl-20-O-benzoyltomentogenin	Aedes head peptide I 77
225	Aedes head peptide II 77
20-O-Acetylcalogenin 188, 228	Aedeskinins 75
20-O-Acetyl-12 β-O-cinnamoyl-	Aedes leukokinin 175
5α-dihydrosarcostin 204	Aedes leukokinin 275
12-O-Acetyl-17-isolineolon 229	Aedes leukokinin 375
11α-O-Acetylmarsdenin 224	Aeshna subpupillata 20
11 α-O-Acetylmarsectohexol 224	Aglycone-D 191
4-O-Acetyl-L-sarmentose 185	Aglycone-E 191
(1S,6R)-15-O-Acetyl-1-O-senecioyl-6,14-	Agrotis segetum 84
epoxythapsane 135	Albumin 14
15-O-Acetylthapsane-14-al 135	Alditol acetates 184
12β-O-Acetyltomentogenin 189	Allatostatic activity 48
20-O-Acetylutendin 189, 218	Allatostatin I 46, 48-51
11α-Acetoxyslovanolides 148	Allatostatin II 46, 48, 50
Acheta domesticus 9, 20, 22, 32, 33, 34,	Allatostatin III 46,48,50
36, 74, 83, 95, 96	Allatostatin IV 46, 48-50
Achetakinin I 74	Allatostatin V 46, 48, 49

Allatostatin VI 46, 48
Allatostatin VII 46, 48, 49
Allatostatins 7, 16, 45-52
Allatotropins 7, 10, 45-47
Amaranth excretion 31
Aminopeptidase activity 28,81
Ammonium acetate 10
Amplexoside A 198, 204, 252
Anabrus simplex 21
Anax imperator 20
Angelic acid 160
12-O-Angeloyl-8-O-angeloylshiromodiol 137
12-O-Angeloyl-8-O-angeloyltovarol 137
1-O-Angeloyl-14,15-epoxythapsane-14-ol 135
3-O-Angeloyl-14,15-epoxythapsane-14-ol 135
($8 R, 14 S$)-8-O-Angeloyl-14,15-
epoxythapsane-14-ol 135
8-O-Angeloylshiromodiol 137
8-O-Angeloyltovarol 137
Anhydroholantogenin 187
14,20-Anhydroholantogenin 199
Ani-AKH 20
Anotogaster sieboldii 20
Antibody affinity chromatography 82
Anticarcinogenic activity 198
Anticomplementary activity 309
Antiepilepsy activity 309
Antifertility activity 309
Antigonadotropins 69
Antitumor activity 198, 309
Apiaceae 132, 133
Apocynaceae 199
Apocynum venetum 172
Apocynum venetum var. basikurumon 199
Apoptosis 148
Apterygota 4
Arginine vasopressin 31, 32
Arginine vasopressin-like insect diuretic hormone 33
Arginine vasotocin 31, 32
Armadillidium vulgare 95
Arv-PDH 95
Asclepiadaceae 198, 204
Asclepias amplexicaulis 198, 204
Asclepias fruticosa 204-207
Asclepobiose 196, 197

Asparagine N-glycosylation 54
Aspergillus saitoi 184
Asteraceae 132
Ca^{2+}-ATPases 149,151
Atratogenin-A 194, 213
Atratogenin-B 194, 213
Atratoside A 213, 260
Atratoside B 213, 261
Atratoside C 213, 261
Atratoside D 213, 261
Attached proton test 177
Auricular fibrillation 198
α, α^{\prime}-Azoisobutyronitrile 157

Baculoviruses 17
Basikoside A 199, 246
Basikoside B 199, 246
Basikoside C 199, 246
Basikoside D 199, 246
Benzoic acid 174
12-O-Benzoyl-20-O-acetylboucerin 209
12-O-Benzoyl-20-O-acetyldihydroboucerin 209
11α-O-Benzoyl-12 β-O-acetyltenacigenin B 193
12-O-Benzoylboucerin 208, 209
12-O-Benzoyl-20-O-cinnamoylsarcostin 229, 230
12β-O-Benzoyldeacetylmetaplexigenin 189, 210, 237
12-O-Benzoyldeacylmetaplexigenin 216
12-O-Benzoyldihydroboucerin 208, 209
12β-O-Benzoyldihydrosarcostin 235
12β-O-Benzoyldrevogenin 225
12-O-Benzoyllineolon 227
12β-O-Benzoyllineolon $190,210,211$
11-O-Benzoylsarcogenin 242
12-O-Benzoylsarcostin 216
Biological activity $14,15,17,31,35,40$, $42,45,48,54,58,65,70,72,85-87,89$, 96, 97, 198, 309
Bisdesmosidic glycosides 170
Blaberus craniifer 82
Blaberus discoidalis 19, 22, 24, 25
Blabtica dubia 82
BLAST-1 46
BLAST-2 46
BLAST-3 47
BLAST-4 47
Blatta orientalis 20,21, 82

Blattaria 4
Blattella germanica 19, 46, 47, 51, 82
Bld-HrTH 19, 22, 24
Blg-AST-3 47
Blg-AST-4 47
${ }^{125}$ I-Bolton-Hunter reagent 83
Bombykol 39, 44
Bombyxin 16, 53, 57, 60, 61
Bombyxin-I 58, 60
Bombyxin-II 58-60
Bombyxin-III 58
Bombyxin-IV 58, 59
Bombyxin-V 58
Bombyxins 58, 60
Bombyx mori 17, 19, 39-41, 43, 44, 53-65, 71-73, 76, 86-89, 94, 97
Bom-DH 41, 43, 72
Bom-DH-I 72, 88
Bom-EH-I 63-65
Bom-EH-II 63-65
Bom-EH-III 63-65
Bom-EH-IV 63-65
Bom-MRCH 40, 94
Bom-MT-I 76
Bom-MT-II 76
Bom-MT-III 76
Bommyotropin I 76
Bommyotropin II 76
Bom-PBAN 44, 94
Bom-PBAN-I 40-44, 88
Bom-PBAN-II 40-43
Bom-PTTH 55, 56
Bom- α-SGNP 76
Bom- β-SGNP 76
Boucerin 239
Boucerogenin I 208
Boucerogenin II 208, 209
Boucerosia aucheriana 172, 208, 209
Bouceroside AI 208, 252
Bouceroside AII 208, 253
Bouceroside ADC 208, 254
Bouceroside ADO 209, 254
Bouceroside ANC 208, 253
Bouceroside ANO 209, 254
Bouceroside BI 208, 253
Bouceroside BII 208, 253
Bouceroside BDC 209, 255
Bouceroside BDO 209, 255
Bouceroside BNC 209, 255
Bouceroside BNO 209, 254

Bouceroside CNC 209, 256
Bouceroside CNO 209, 255
Bregenin 189
Brevine 242, 293
Brevinine 242, 293
Butanoic acid 162
Butyric anhydride 159
Cacama valavata 19
δ-Cadinene 138, 143
γ-Cadinene 138, 143
Caelifera 4
CalliFMRFamide-I 77
CalliFMRFamide-II 78
CalliFMRFamide-III 78
CalliFMRFamide-IIIa 78
CalliFMRFamide-IV 78
CalliFMRFamide-IVa 78
CalliFMRFamide-V 78
CalliFMRFamide-Va 78
CalliFMRFamide-VI 78
CalliFMRFamide-VIa 78
CalliFMRFamide-VII 78
CalliFMRFamide-VIIa 78
CalliFMRFamide-VIII 78
CalliFMRFamide-VIIIa 78
CalliFMRFamide-IX 78
CalliFMRFamide-X 78
CalliFMRFamide-XI 78
CalliFMRFamide-XIa 78
CalliFMRFamide-XII 78
CalliFMRFamide-XIIa 78
CalliFMRFamide-XIII 78
CalliFMRFamide-XIIIa 78
CalliFMRFamide-XIV 78
CalliFMRFamide-XV 78
CalliFMRFamide-XVI 79
CalliFMRFamide-XVIa 79
CalliFMRFamides 77, 92, 93
Callinectes sapidus 27, 95
Calliphora vomitoria 47, 51, 75-79, 85, 89, 92, 93
Callisulfakinin I 75
Callisulfakinin II 75
Callitachykinin I 76
Callitachykinin II 76
Calocin 238, 286
Calocinin 239, 287
Calogenin 228-230, 238, 239
Calotropis gigantea 210, 211

Calotroposide A 210, 256
Calotroposide B 210, 256
Calotroposide C 210, 256
Calotroposide D 210, 257
Calotroposide E 210, 257
Calotroposide F 210, 257
Calotroposide G 211, 257
Cam-HrTH-I 19
Cam-HrTH-II 19
Cam-PDF 95
Cama-CCAP 74, 82, 83
Cama-CHH 38
Cancer inhibitory activity 198
Cancer magister 21, 95
$\mathrm{CAP}_{2 \mathrm{a}} 83$
$\mathrm{CAP}_{2 \mathrm{~b}} 83$
Caralluma tuberculata 172, 178, 211
Caralluma umbellata 211
Caratuberside A 178, 211, 258
Caratuberside B 211, 258
Carausius morosus 19, 22, 37, 38, 82, 95
Carausius-PDF 95
Carbodiimide 14
Carboxylic acid 160
S-Carboxymethyl cysteine 12
Carboxypeptidase A 12
Carboxypeptidase B 12
Carboxypeptidase P 12
Carboxypeptidase Y 12
Carboxypeptidase activity 81
Carcinus maenas 21, 27, 37, 38, 82
Cardenolides 198
Cardiac glycosides 198
Cardioacceleratory activity 81
Cardioacceleratory peptides 82
Carr-Price test 172
Carthamus tinctorius 243
Carumbelloside I 211, 258
Carumbelloside II 211, 258
β-Caryophyllene 138, 143
β-Caryophyllene oxide 138,144
Catarrh 130
Caudatin 191, 213, 215-218, 221-223
Causiaroside II 171, 244, 295
Cav-AST-1 47
Cav-AST-2 47
Cav-AST- 347
Cav-AST-4 47
Cav-AST-5 47
Cav-AST-6 47

Cav-AST-7 47
Cav-AST-8 47
Cav-FMRF-NH2-I 77
Cav-FMRF-NH H_{2}-II 78
Cav-FMRF-NH ${ }_{2}$-III 78
Cav-FMRF-NH2-IIIa 78
Cav-FMRF- NH_{2}-IV 78
Cav-FMRF-NH2-IVa 78
Cav-FMRF-NH $\mathbf{2}_{2}$-V 78
Cav-FMRF- $\mathrm{NH}_{2}-\mathrm{Va} 78$
Cav-FMRF-NH2-VI 78
Cav-FMRF-NH2-VIa 78
Cav-FMRF-NH2-VII 78
Cav-FMRF-NH2-VIIa 78
Cav-FMRF-NH ${ }_{2}$-VIII 78
Cav-FMRF-NH2-VIIIa 78
Cav-FMRF-NH ${ }_{2}$-IX 78
Cav-FMRF-NH \mathbf{H}_{2} - 78
Cav-FMRF-NH2-XI 78
Cav-FMRF-NH2-XIa 78
Cav-FMRF-NH2-XII 78
Cav-FMRF-NH2-XIIa 78
Cav-FMRF-NH H_{2}-XIII 78
Cav-FMRF-NH $\mathbf{2}_{2}$-XIIIa 78
Cav-FMRF-NH2-XIV 78
Cav-FMRF-NH2-XV 78
Cav-FMRF-NH2-XVI 79
Cav-FMRF-NH2-XVIa 79
Cav-SK-I 75
Cav-SK-II 75
Cav-TK-I 76, 89
Cav-TK-II 76, 89
Cellobiose 196, 197
Ceolin 224, 270
Ceratogomphus pictus 20
${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ long range COSY 180
Cholecystokinin 85, 86, 92
Chymotrypsin 29
Cinnamic acid 174
12β-O-Cinnamoyl-20-O-acetylglycosarcostin 192
11α-O-Cinnamoyl-12 β-O-acetyl-3 β, $8 \beta, 14 \beta$-trihydroxypregn-5-ene-20-one 232
12β-O-Cinnamoyldeacylmetaplexigenin 237
20-O-Cinnamoyldihydrosarcostin 236
12β-O-Cinnamoyldihydrosarcostin 189, 235
20-O-Cinnamoylikemagenol 191
12β-O-Cinnamoylikemagenol 191
12β-O-Cinnamoylsarcostin 237
Circular dichroism spectroscopy 25
Cissogenin 194
${ }^{13}$ C-NMR spectroscopy 175
Coleoptera 4
Collembola 4
Column chromatography 170, 171
Compositae 243
Condurangogenin A 177, 194, 230, 231
Condurangogenin B 177, 194, 231
Condurangogenin C 177, 194, 231
Condurangogenin D 177
Condurangogenin E 177, 194, 233
Condurangoglycoside A 230, 278, 309
Condurangoglycoside A_{0} 198, 231, 279
Condurangoglycoside A_{1} 231, 279
Condurangoglycoside B_{0} 198, 231, 280
Condurangoglycoside C 231, 279, 309
Condurangoglycoside C_{0} 198, 231, 280
Condurangoglycoside $\mathrm{C}_{1} \quad$ 231, 279
Condurangoglycoside D_{0} 198, 232, 280
Condurangoglycoside E 233, 281
Condurangoglycoside $\mathrm{E}_{0} \quad 233,281$
Condurangoglycoside $\mathrm{E}_{01} \quad 198,232,281$
Condurangoglycoside E_{02} 198, 232, 281
Condurangoglycoside $\mathrm{E}_{2} \quad 233,281,309$
Condurangoglycoside $\mathrm{E}_{3} \quad 233,282$
Condurangoside A 233, 307, 309
Condurangoside A_{0} 233, 307
Condurangoside B 233, 308, 309
Condurangoside $B_{0} \quad 234,308$
Condurangoside C 234, 308, 309
Condurangoside $\mathrm{C}_{0} \quad 234,308$
Condurangoside D_{01} 234, 308
Congestive heart failure 198
Conopharyngine 200, 247
Contractile activity $8,9,73,86$
Corazonin 74, 81
[His^{7}]-Corazonin 74, 81
Corticotropin releasing factor $32,33,36$, 37
COSY-45 178
Cotton effect 183
8-O-Coumaroyl-14,15-epoxythapsane-14-ol 135
($4 S, 5 S, 7 S, 8 S$)-8-p-Coumaroyloxy-1(10)-guaien-11-ol 136
8-O-Coumaroyltovarol 137

CRF-related insect diuretic peptides 33, 34
Crustacean cardioactive peptide 74,82
Culekinin I 75
Culekinin II 75
Culekinin III 75
Culekinin depolarizing peptides 36
Culekinins 75
Culetachykinin I 76
Culetachykinin II 76
Culex salinarius $36,75,76,83,84$
Cus-CDP-I 75
Cus-CDP-II 75
Cus-CDP-III 75
Cus-TK-I 76
Cus-TK-II 76
Cuticular melanization 42
Cyanogen bromide 12
Cyclopiazonic acid 149
D-Cymarose 197
L-Cymarose 197
Cynafogenin 192, 211, 212
Cynaforroside A 218, 263
Cynafoside A 211, 258
Cynafoside B 211, 259
Cynafoside C 211, 259
Cynafoside D 212, 259
Cynajapogenin 194
Cynajapogenin A 213
Cynanchogenin 191, 214, 216-218, 221
Cynanchoside $C_{1} \quad 214,262$
Cynanchoside C_{2} 214, 262
Cynanchotriose 196, 197
Cynanchum africanum 211, 212
Cynanchum atratum 212, 213
Cynanchum auriculatum 213
Cynanchum caudatum 214, 216-218
Cynanchum formosanum 171, 218
Cynanchum forrestii 218
Cynanchum glaucescens 218-220
Cynanchum hancockianum 220
Cynanchum maximoviczii 221
Cynanchum otophyllum 220, 309
Cynanchum paniculatum 220, 221
Cynanchum sibiricum 221
Cynanchum wallichii 197, 223
Cynanchum wilfordi 221-223
Cynanforidine 222, 242
Cynanforine 222
Cynanformoside A 171, 218, 262

Cynanformoside B 171, 218, 262
Cynapanoside A 220, 265
Cynapanoside B 221, 265
Cynapanoside C 221, 265
Cynatratoside A 212, 259
Cynatratoside B 212, 259
Cynatratoside C 212, 260
Cynatratoside D 212, 260
Cynatratoside E 212, 260
Cynatratoside F 213, 260
Cynauricuoside A 213, 261
Cynauricuoside B 213, 261
Cynauricuoside C 213, 262
Cytotoxic activity 309

Deacetylkidjoladinin 191
Deacetylmarsformoside 235, 282
10-O-Deacetylthapsigargin 159
Deacylmetaplexigenin 215, 223
8-O-Deacylthapsigargin 145
8-O-Deacyltrilobolide 145
8-O-Debutanoylthapsigargin 151, 153
Decapotoma lunata 19
Dehydrotomentin 188
Dehydrotomentosin 189, 234
Del-CC 19
N-Demethyl holacurtin 200, 246
Deniculatin 230, 278
2-O-Deoctanoylthapsigargin 162
2-Deoxy-L-fucose 185
2-Deoxyhexose 172, 184, 185
6-Deoxyhexose 185
Deoxysugars 185
12-Deoxythapsigargin 158
Desinine 228, 276
Desmisine 229, 277
$11 \alpha, 12 \beta$-Di-O-acetylorgogenin 193,228
Diacylglycerols 8
Diapause 71
Diapause hormones 7, 40, 71-73, 96, 97
Diapause-inducing activity 88
12,20-Di-O-benzoyldrevogenin D 192, 238
(20S)-12 β-20-Dibenzoyloxy- $3 \beta, 5 \beta, 17$ -trihydroxy-8,14-secopregn-6-ene-8, 14-dione 195
(20S)-12 $\beta, 20$-Dibenzoyloxy- $3 \beta, 5$, 17-trihydroxy-8,14-seco- 5β, 17α-pregn-6-ene-8,14-dione 243
12,20-Di-O-benzoylsarcostin 238

Diceroprocta semicincta 19
Dichloromethane 71
12,20-Di-O-cinnamoylsarcostin 237, 239
2,6-Dideoxyarabinohexopyranose 197
2,6-Dideoxyhexose 172, 185
Diethyl p-nitrophenyl phosphate 162
Differentiation-inducing activity 309
Diglycosides 176
Dihydrosarcostin 236
5α-H, $3 \beta, 14 \beta$-Dihydroxy- 11α-O-cinna-moyl-12 β-O-acetyl-(18,20)-epoxy-20-O-methylpregnane 194
5α-H, $3 \beta, 14 \beta$-Dihydroxy- 11α-O-cinna-moyl-12 β-O-acetyl-(18,20)-epoxy-20-
ISO-O-methylpregnane 194
$14 \beta, 20$-Dihydroxycondurangogenin B hemiketal 232
$3 \beta, 14 \beta$-Dihydroxy-21-O-methoxy5β-pregnan-20-one 189,200
$3 \beta, 14 \beta$-Dihydroxypregnan-20-one 211 , 244
$3 \beta, 14 \beta$-Dihydroxy-5 α-pregnan-20-one 189
$3 \beta, 20(R)$-Dihydroxypregn-5-ene 244 , 245
14 $\beta, 21$-Dihydroxypregn-4-ene-3,20-dione 189
$3 \beta, 14 \beta$-Dihydroxypregn-5-en-20-one 211
$3 \beta, 16 \beta$-Dihydroxypregn-5-en-20-one 187, 244
$3 \beta, 5 \beta$-Dihydroxy-20-pregnen-6-one 188
$15 \alpha, 20 \beta$-Dihydroxy- Δ^{4}-pregnen-3-one 187, 243
2,2-Dimethoxypropane 157
1,4-Dimethyl-7-acetylazulene 147, 148
β, β-Dimethyl acrylic acid 174
4-Dimethylaminopyridine 155
1,4-Dimethylazulene 146-148
N, N-Dimethylformamide dimethyl acetal 157
Dimethylsulfoxide 25
3,5-Dinitrocarbamate methyl glycoside derivatives 184
Dioxane 184
Dip-AST-1 46
Dip-AST-2 46, 48, 49
Dip-AST-3 46
Dip-AST-4 46, 48, 49

Dip-AST-5 46, 48-50
Dip-AST-6 46
Dip-AST-7 46, 48-51
Dip-AST-8 46, 48, 50
Dip-AST-9 46, 48, 50
Dip-AST-10 46, 52
Dip-AST-11 46, 48, 52
Dip-AST-12 46, 52
Dip-AST-13 46, 52
Diploptera punctata $16,46,48,51-53$
Dipstatin-1 46
Dipstatin-2 46
Dipstatin-3 46
Dipstatin-4 46
Dipstatin-5 46
Dipstatin-6 46
Dipstatin-7 46
Dipstatin-8 46
Dipstatin-9 46
Dipstatin-10 46
Dipstatin-11 46
Dipstatin-12 46
Dipstatin-13 46
Diptera 4, 93
Dipteran sulfakinins 75
Disaccharides 185, 197
Distortionless enhancement by
polarization transfer 177
$11 \alpha, 12 \beta$-O-Ditigloyl-17 β-tenacigenin B 193
2,5-Di-tert-butylhydroquinone 149
Diuresis 8
Diuretic activity 34, 36
Diuretic hormones 10, 33
Diuretic peptides 30, 31
Double-quantum filtered COSY 178
Drebyssogenin F 192, 223
Drebyssogenin G 192, 227
Drebyssogenin J 192
Drebyssogenin $K_{2} \quad 192,226$
Drebyssoside 1 223, 269
Drebyssoside 2 223, 270
Drebyssoside 3 223, 270
Dregea abyssinica 223
Dregea lanceolata 224
Dregea sinensis var. corrugata 225
Dregea volubilis 198, 225-227
Dregealin 224, 271
Dregeatriose 196, 197
Dregenin 193

Dregeoside 225, 271
Dregeoside A 225, 271
Dregeoside A_{11} 226, 273
Dregeoside $\mathrm{A}_{\mathrm{a} 1} \quad 226,273$
Dregeoside $\mathrm{A}_{\mathrm{o} 1}$ 198, 225, 273
Dregeoside $\mathrm{A}_{\mathrm{p} 1}$ 198, 225, 272
Dregeoside B 225, 272
Dregeoside C 225, 272
Dregeoside C_{11} 226, 273
Dregeoside $\mathrm{D}_{\mathrm{a} 1}$ 227, 274
Dregeoside $\mathrm{D}_{\mathrm{p} 1}$ 226, 274
Dregeoside $\mathrm{G}_{\mathrm{a} 1}$ 227, 275
Dregeoside $\mathrm{G}_{\mathrm{p} 1}$ 227, 275
Dregeoside H 227, 275
Dregeoside $\mathrm{K}_{\mathrm{a} 1}$ 226, 274
Dregeoside $\mathrm{K}_{\mathrm{p} 1} \quad 226,274$
Dregogenin 190
Dregoside A 225, 272
Drelin 224, 270
Dresgenin 190
Drevogenin A 192, 223, 225, 226
Drevogenin B 192, 228
Drevogenin C 226
Drevogenin D 226, 227
Drevogenin Q 192
Drevogenin-I 190
Drevogenin-II 188
Drm-FMRFNH2-I 79
Drm-FMRFNH 2 -Ia 79
Drm-FMRFNH 2 -II 79
Drm-FMRFNH 2 -III 79
Drm-FMRFNH $_{2}$-IV 79
Drm-FMRFNH ${ }_{2}$-V 79
Drm-FMRFNH2-VI 79
Drm-FMRFNH2-VIa 79
Drm-FMRFNH2-VII 79
Drm-FMRFNH ${ }_{2}$-VIIa 79
Drm-FMRFNH ${ }_{2}$-VIII 79
Drm-FMRFNH 2 -IX 79
Drm-FMRFNH 2_{2}-X 79
Drm-FMRFNH ${ }_{2}$-XI 79
Drm-SK-I 75
Drm-SK-II 76
DroFMRFamide-I 79
DroFMRFamide-Ia 79
DroFMRFamide-II 79
DroFMRFamide-III 79
DroFMRFamide-IV 79
DroFMRFamide-V 79
DroFMRFamide-VI 79

DroFMRFamide-VIa 79
DroFMRFamide-VII 79
DroFMRFamide-VIIa 79
DroFMRFamide-VIII 79
DroFMRFamide-IX 79
DroFMRFamide-X 79
DroFMRFamide-XI 79
DroFMRFamides 79
Drosophila melanogaster 16, 21, 27, 75-79, 85, 89, 91-93
Drosophila sp. 71
Drosophila virilis 78, 79, 92, 93
Drosulfakinin I 75, 92
Drosulfakinin II 76, 92

Ecdysis 4, 7
Ecdysone 6, 53, 57, 62, 69
20-OH-Ecdysone 6
Ecdysone biosynthesis 7
Ecdysteroids 6, 7, 60, 65, 66
Eclosion 4
Eclosion hormones 7, 8, 10, 16, 17, 33, 62-65

Edman degradation $11,12,16,18,21$, $35,40,48,61,63,66,68,89,90,96$
Edman sequencing 35, 82
Egg development neurosecretory hormone 69
Ehrlich ascites carcinoma 198
Electron impact mass spectrometry 181
Electrospray mass spectrometry 13,35
Embryonic diapause 42
Emidine 228, 277
Emp-AKH 20, 25
Empusa pennata 20
Endocrine system 5
Endopeptidase activity 81
Endopeptidases 12
Endoproteinases 12
Endoproteolytic activity 26
Endopterygota 4
Energy mobilization 8
Enkephalin 92
Enzymatic hydrolysis 184
Epithelial hormones 65
14,15-Epoxythapsane-14-ol 135
$5 \alpha, 6 \alpha$-Epoxycaudatin 192
Epoxythapsanes 140, 141
Epstein Barr virus 70
Escherichia coli 54, 65

Esculentin 238, 286
Ethanethiol 157
Ethanol 61, 71, 156, 184
Ethyl acetate 10
Eunicella verrucosa 244, 309
Excretory system 30
Exopeptidases 12, 28, 29
Exopterygota 4
Extatosoma tiaratum 19

Farnesol 49
Farnesyl pyrophosphate 49
Fast atom bombardment 12, 18, 35, 182
Fatty acid 22, 25
Female accessory glands myotropin 77
8-O-Feruloyl-14,15-epoxythapsane-14-ol 135
(4S,5S,7S,8S)-8-Feruloyloxy-1(10)-guaien-11-ol 136
15-O-Feruloyl-6,14-thapsene 135
8-O-Feruloyltovarol 137
Field desorption mass spectrometry 182
Flash chromatography 171
FMRFamide related peptides 77, 86, 91
FMRFamides 91, 92
Folotsia sarcostemmoides 227
Folotsoside A 227, 275
Fourier transform mass spectrometry 35, 69
Fukujusone 191
Gagaimogenin A 233
Gagaimogenin B 233, 234
Gagaimogenin C 234
Gagaminin 190, 222
Gas chromatography 40
Gastrin 92
Gastrin II 85, 86
Gelsemium sempervirens 309
Gentiobiose 196, 197
Geotrupes stercorosus 21
Geranyl acetate 141
Germacrane esters 137
Germacranes 142
Glaucobiose 196, 197
Glaucogenin A 195, 218, 219
Glaucogenin B 195, 220
Glaucogenin C 195, 212, 218-220
Glaucogenin C mono-D-thevetoside 220, 264

Glaucogenin D 195, 220, 221
Glaucoside A 218, 263
Glaucoside B 219, 263
Glaucoside C 219, 263
Glaucoside D 219, 263
Glaucoside E 219, 263
Glaucoside F 219, 263
Glaucoside G 219, 264
Glaucoside H 219, 264
Glaucoside I 219, 264
Glaucoside J 220, 264
Glossina morsitans 30
Glucagon 18
Glucose 61
D-Glucose 197
β-Glucose 184
β-Glucosidase 184
β-Glucuronidase activity 184
Glutaraldehyde 14
Glycoside $\mathrm{E}_{1} \quad 239,288$
Glycoside $\mathrm{H}_{1} \quad 239,287$
Glycoside $\mathrm{H}_{2} \quad 239,288$
Glycoside K 239, 287
α-Glycosides 173
β-Glycosides 173
Grb-AKH 20
Grb-AST-A1 47
Grb-AST-A2 47
Grb-AST-B1 47
Grb-AST-B2 47
Grb-AST-B3 47
Grb-AST-B4 47
Gromphadorhina portentosa 19,82
Gryllodes sigillatus 20
Gryllus bimaculatus 20, 47, 51
Guaiane esters 136, 141
Guaianes 141
8,12-Guaianolide 151
Guaianolides $131,132,134,139,145$
$7 \alpha \mathrm{H}-6,12$-Guaianolides 146
Guaiol 136, 141
Guanidine hydrochloride 11
Gymnemarogenin 227
Gymnemaroside A 227, 276
Gymnemaroside B 227, 276
Gymnemarsgenin 190
Gymnema yunnanense 227
Haemocyanin 14
Haemolymph sugar trehalose 18

Hakomori's method 184
Hancoside 220, 264
Helicokinin I 75
Helicokinin II 75
Helicokinin III 75
Helicokinins 75, 84
Helicomyotropin I 76
Helicomyotropin II 76
Helicoverpa armigera 45
Helicoverpa zea 39, 73, 83, 84, 86
Heliothis armigera 45
Heliothis peltigera 44
Heliothis virescens 48, 52, 63
Heliothis zea 19, 37, 39-44, 75, 76, 87
Helix pomatia 184
Hemidescine 228, 277
Hemidesmus indicus 228, 229
Hemidine 228, 276
Hemiptera 4
Hemisine 229, 277
Hemoside 237, 285
Heptafluorobutyric acid 9,11, 33, 81
Herpes simplex virus 70
Heterodes namaqua 21
Heteronuclear 2D-NMR spectroscopy 180
Heteronuclear multiple-quantum coherence 181
(10E, 12Z)-Hexadecadien-1-ol 39
11Z-Hexadecenal 39, 44
2,3,3a,4,4,7a-Hexamethylindan derivatives 148
Hexanoic acid 162
Hez-HrTH 19
Hez-K-I 75
Hez-K-II 75
Hez-K-III 75
Hez-MT-I 76
Hez-MT-II 76
Hez-PBAN 40-44, 88
[${ }^{3} \mathrm{H}$]-Hez-PBAN 45
High performance liquid chromatography $9,18,21,90,92,172$
High performance size-exclusion chromatography 39
High pressure liquid chromatography 69
Histamine secretagogues 162
HIV-2 virus 70
${ }^{1} \mathrm{H}$-NMR spectroscopy 173
Holantogenin 187, 199

Holantosine A 199, 246
Holantosine B 199, 246
Holarrhena antidysenterica 199
Holarrhena curtissi 200
D-Holosamine 185
Homocorrelated spectroscopy 177
Homonuclear Hartmann-Hahn spectroscopy 179
Homonuclear j-resolved two-dimensional spectroscopy 180
Homonuclear shift correlation 177
Homoserine 12
Human colon carcinoma (HT-29) 309
Human lung carcinoma (P-388) 309
Hydridocarbonyltris(triphenylphosphine)rhodium(I) 151
Hydrogen chloride 157
Hydrolysis 183, 184
12-Hydroxy-8-O-angeloyltovarol 137
12β-O- p-Hydroxybenzoyldeacetylmetaplexigenin 220
7α-Hydroxy-3-deoxyzaluzanin C 132
20-Hydroxyecdysone 5
2α-Hydroxyglaucogenin-C 213
14β-Hydroxy-20-iso-O-methylcondurangogenin B hemiketal 232
14β-Hydroxy-20-O-methylcondurangogenin B hemiketal 232
4-Hydroxyphenylpropionyl-[Glu ${ }^{1}$]-Lom-AKH-I 15
3β-Hydroxypregna-5,20-diene 245
3β-Hydroxy- 5α-pregnan-16-one 187
Hymenoptera 4
Hyperglycaemic hormones 37, 38
Hypertrehalosaemic activity 81
Hypertrehalosaemic effect 18
Hypertrehalosaemic peptide I 74
Hypertrehalosaemic peptide II 74
Hypertrehalosaemic peptides 9,10
Ikemagenin 191, 206, 207, 215
12β-O-Ikemoyldeacetylmetaplexigenin 220
Immunoaffinity chromatography 57
Indicine 228, 276
Indicusin 228, 276
Inhibitory activity 160
Insensitive nuclei enhanced by polarization transfer 177

Insulin 18, 58-62
Iodoacetic acid 12
2-Iodobenzoic acid 66
IR spectroscopy 183
Ischnura senegalensis 20
Isoikemagenin 191
Isolineolon 205, 206
20-Iso-O-methylcondurangoglycoside
D_{0} 198, 232, 280
Isovaleric acid 174
12β-O-Isovaleryldihydrosarcostin 225
Juvenile hormone JH 0 4, 6
Juvenile hormone JH I 4, 6
Juvenile hormone JH II 4, 6
Juvenile hormone JH III 4, 6, 49
Juvenile hormone JH B 3 4, 6
Juvenile hormones $7,22,45,65,66,68$

Kalanoside H 229, 277
Kalanoside K 229, 278
Kanalia laniflora 229
Kassinin 89
Keller-Kiliani test 172
Kidjoladinin 190
Kidjolanin 190, 207
Kidjoranin 213, 222
Kiliani method 184
Korolkowia sewertzovii 200

Lanceogenin 192
Lanceolin 224, 270
Lancin 224, 271
Lancinin 224, 271
Laser desorption 35
Laserpitiae 133
Laser trilobum 132
Led-OVM 77, 90
Lem-M-I 74
Lem-M-II 74
Lem-M-III 74
Lem-M-IV 74
Lem-M-V 74
Lem-M-VI 74
Lem-M-VII 74
Lem-M-VIII 74, 85
Lem-MS 77
Lem-PK 41, 76, 86-88
Lem-SK-I 75
Lem-SK-II 75

Lepidoptera 4, 39
Leptaculatin 230, 278
Leptadenia hastata 229, 230
Leptadenia reticulata 197, 230
Leptatriose 196, 197
Leptinotarsa decemlineata 20, 21, 77,90
Leu-callatostatin 147
Leu-callatostatin 247
Leu-callatostatin 347
Leu-callatostatin 447
Leucokinin I 74, 83, 84
Leucokinin II 74
Leucokinin III 74
Leucokinin IV 74
Leucokinin V 74
Leucokinin VI 74
Leucokinin VII 74
Leucokinin VIII 74
Leucokinins 74, 83-85
Leucomyosuppressin 77
Leucophaea maderae 3, 8-10, 19, 36, 40, 41, 74-77, 81-86, 88, 89, 91, 98
Leucopyrokinin 73, 76, 87
Leucosulfakinins 75
Lia-AKH 20
Libanasidus vittatus 21
Libellula auripennis 20
Liebermann-Burchardt test 172
Lilacinabiose 196, 197
Liliaceae 243
Limonene 143
Lineolon 204, 205
Lipase 24
Lipoprotein lipase 24
Lipoproteins 24
Liquid secondary-ion mass spectrometry 61
Lobar chromatography 171
Locin 239, 287
Locustadipokinetic hormone I 94
LocustaFaRPs 77
Locustakinin 75, 84
Locusta migratoria $9,18,19,21,22$, 24-27, 31-35, 40, 41, 59, 61, 62, 66-68, 74-77, 82, 83, 85, 86, 88-91
Locustamyoinhibin 77, 91
Locustamyoinhibitory peptide 77, 91
Locustamyosuppressin 77
Locustamyotropin I 76
Locustamyotropin II 76

Locustamyotropin III 76
Locustamyotropin IV 76
Locustamyotropins 73, 87, 88
Locustapyrokinin I 76
Locustapyrokinin II 76
Locustapyrokinins 73
Locustasulfakinin 75
Locustatachykinin I 28, 76
Locustatachykinin II 76
Locustatachykinin III 76
Locustatachykinin IV 76
Locustatachykinin V 76
Locusts 8, 24, 28
Lom-AG-MT-I 77, 90
Lom-AG-MT-II 77, 90
Lom-AKH-I 18, 19, 24-29, 89, 94
Lom-AKH-II 21, 24, 26-28, 91
Lom-AKH-III 21, 24-27
Lom-AVP-like DP 32
Lom-DP 32, 35
Lom-FaRP-I 77, 91
Lom-FaRP-II 77, 91
Lom-FaRP-III 77, 91
Lom-IRP 59, 61, 62
Lom-K 75
Lom-MIH 77, 91
Lom-MIP 77, 91
Lom-MS 77
Lom-MT-I 76, 86, 88
Lom-MT-II 76, 86-88
Lom-MT-III 76, 86
Lom-MT-IV 76, 86
Lom-neuroparsin 67, 68
Lom-OMP 66-68
Lom-PK 41
Lom-PK-I 76, 86, 88
Lom-PK-II 76, 86, 88
Lom-SK 75
Lom-TK-I 28, 76, 89
Lom-TK-II 76
Lom-TK-III 76
Lom-TK-IV 76
Lom-TK-V 76
Lom-TK-VI 76
Long-range selective proton decoupling 176
Low pressure liquid chromatography 171
Lucilia cuprina 75, 77-79, 85, 92, 93
Lucisulfakinin I 75

Lucisulfakinin II 75
Luc-SK-I 75
Luc-SK-II 75
Lyd-PBAN 40, 41
Lymantria dispar 3,40, 41, 53, 87

Magicicada sp. 19
Male accessory glands myotropin I 77
Male accessory glands myotropin II 77
Malouetia glandulifera 200
Malpighian tubules 29-31, 33-37, 84
Mandevilla pentlandiana 171, 198, 200
Manduca cardioacceleratory peptide 74
ManducaFLRFamide 77
Manducamyoinhibitory peptide I 77
Manducamyoinhibitory peptide II 77
Manduca sexta $10,16,19,24,27,28$, $32-35,37,45,46,48,51,52,56,57$, $62-65,74,77,81-83,90,91$
Marsdekoiside A 171, 235, 283, 309
Marsdekoiside B 235, 283
Marsdekoiside D 236, 283
Marsdekoiside E 236, 283
Marsdenia condurango 198, 230-234, 309
Marsdenia formosana 234, 235
Marsdenia incisa 235
Marsdenia koi 171, 235, 236, 309
Marsdenia oreophila 236
Marsdenia tenacissima 236, 237, 309
Marsdenin 224, 234
Marsdeoreophiside A 236, 283
Marsectohexol 224, 227
Marsformosadin 235
Marsformosadin-3-O- β-D-cymaropyranoside 235,282
Marsformoside 235, 282
Mas-AKH 15, 19, 24, 27, 28
Mas-AST 46
Mas-AT 46, 90
Mas-CAP 74
Mas-DP-I 32-36
Mas-DP-II 32, 35, 36
Mas-EH 64, 65
Mas-FLRFamide 77, 91
Mas-MG-MT-I 77, 90
Mas-MG-MT-II 77, 90
Mas-MIP-I 77, 91

Mas-MIP-II 77, 91
Mass spectrometry $12,18,48,181$
Mass spectroscopy 172
Mastotermes darwiniensis 20
Matrix-assisted laser desorption/ionization 13
Medidesmine 229, 277
Melanoplus sanguinipes 52
Meliaceae 243
Melia toosendan 172, 243
Melolontha melolontha 21
Mem-CC 21
Menduca sexta 244, 245
Metamorphosis 4
Metaplexigenin 189, 213
Metaplexis hemsleyana 237
des-G-P-Met-callatostatin 47
[Hyp] ${ }^{2}$-Met-callatostatin 47
[Hyp$]^{3}$-Met-callatostatin 47
Met-callatostatin 547
Methanol 9, 10, 13, 34, 66, 71, 151, 172, 181, 184
Methionine 12
6-Methoxy-7-geranyloxycoumarin 141
16α-Methoxy- $2 \alpha, 3 \beta, 12 \beta$-trihydroxy-pregna-4,7-dien-20-one 187
Methyl-4-O-(2-O-acetyl- β-D-digitalopyranosyl)- β-Dcymaropyranoside 196, 197
2-Methylbutanoic acid 174
2-Methylbutyric acid 145
11α-O-2-Methylbutyryl-12 β-Oacetyltenacigenin B 193
11α-O-2-Methylbutyryl-12 β-O-benzoyltenacigenin B 193
11α-O-2-Methylbutyryl-12 β-O-tigloyltenacigenin B 193
20-O-Methylcondurangoglycoside D_{0} 198, 232, 280
3-O-Methyl-6-deoxy-D-allose 197
3-O-Methyl-6-deoxy- β-D-glucopyranosyl($1 \rightarrow 4$)-D-cymaropyranose 197
Methyl- β-D-digitalopyranosyl-($1 \rightarrow 4$)-β-D-cymaropyranoside 196, 197
Methyl eugenol 143
3-O-Methyl-D-galactose 185
L-[Methyl ${ }^{14}$ C]-methionine 45
MF-A 234, 282
MF-C 234, 282
MF-D 235, 282

Microhodotermes viator 21
Midgut myotropin I 77
Midgut myotropin II 77
Midgut trehalase 61
Miv-CC 21
Molisch test 172
Molsin 184
Monosaccharides 184, 185
Moraceae 244
Motor activity 28
Mud-AG-MT 77, 90
Mud-DP 32, 36
Munza trimeni 19
Musca domestica 32, 35, 36, 77, 90
γ-Muurolene 138, 143
Myeloid leukemia (M1) 309
Myoinhibitory peptides 77
Myokinins 36, 37, 74, 83, 84
Myosuppressins 77, 91
Myotropic activity 43, 83, 86, 87
Myotropic bioassay 8
Myotropic neuropeptides 10
Myotropic peptides 9, 40, 43, 74, 83, 96
Myotropins 7, 76, 86
Nauphoeta cinerea 19, 81, 82
Neb-colloostatin 69, 71
Neb-MS 77, 79
Neb-SK-I 75
Neb-SK-II 75
Neb-TMOF 69-71
Neobellieria bullata 69-71, 75, 77, 85, 91
Neocondurangotriose 196, 197
Neomarinogenin 235, 282
Neomyosuppressin 77, 79
Neosulfakinin I 75
Neosulfakinin II 75
Nerium indicum 201
Nerium odorum 198, 200, 201
Neurohaemal organs 7
Neurohormones 61
Neuroparsin A 67, 68
Neuroparsin B 67, 68
Neuroparsins 16, 37
Neuropeptides 7-9, 11, 15-17, 30, 36, 37, 40, 43, 96
Neurosecretory cells 4
Nicotinic acid 174
20-R-O-Nitrobenzoates 183

20-S-o-Nitrobenzoates 183
Non-lactonic sesquiterpenoids 148
Nortrilobolide 132, 134, 145
Nuclear Overhauser effect 174
Nuclear Overhauser effect spectroscopy 179

Octadecyl 9
Octadecyl silica 171
Octanoic acid 160, 162
Octanoic anhydride 155,159
Octopamine 28
Odonata 4
D-Oleandrose 197
Oligoglycosides $175,184,185$
Oligosaccharides 181, 184
Onymacris plana 20
Onymacris rugatipennis 20
Oogenesis 66, 94
Oostatic activity 71
Oostatic hormones 7, 69
Optical rotatory dispersion 183
Orconectes immunis 95
Orconectes limosus 21, 38
Orgogenin 193
Orine 237, 285
Orl-CHH 38
Ornine 237, 285
Ornogenin 191
Orthenine 237, 285
Orthenthera viminea 237
Otophylloside A 220, 265
Otophylloside B 220, 265
Ovarian ecdysteroidogenic hormone 69
Oviductal motility stimulating head peptide 77
Oxysine 238, 286
Oxystelma esculentum 237, 238
Oxystine 237, 285
Pab-PDH 95
Pab-RPCH 18, 21, 22, 27
Pachnoda marginata 21
Pachnoda sinuata 21
Pachybiose 196, 197
Pacifastacus leniusculus 95
Paj-PDH 95
Paj-PDH-I 95
Pallidine 238, 286
Pallidinine 238, 286

Palmae 244
Palmitic acid 44
Pandalus borealis 18, 21, 95, 96
Pandalus jordani 95
Pantala flavescens 20
Paris polyphylla 243
Partially relaxed Fourier transform measurements 176
PBANs 96, 97
α-PDH 95, 96
β-PDH 95, 96
Pea-AST-1 46
Pea-AST-2 46
Pea-AST-3 46
Pea-AST-4 46
Pea-AST-5 46
Pea-AST-6 46
Pea-AST-7 47
Pea-AST-8 47
Pea-AST-9 47
Pea-AST-10 47
Pea-AST-11 47
Pea-AST-12 47
Pea-AST-13 47
Pea-AST-I 47
Pea-AST-II 47
Pea-CAH-I 20, 22, 24, 25, 74, 81
Pea-CAH-II 21, 22, 24, 74, 81
Pea-corazonin 74, 81, 82
Pea-DP 32, 35
Pea-PDF 95
Pea-proctolin 74
Pea-PVK 77, 89, 90
Pea-SK 75
Peaz-PDH 95
Penaeus aztecus 95
$3 \beta, 5 \beta, 14 \beta, 17 \beta, 20-$ Pentahydroxypregn7β-al 235
Penupogenin 190, 216, 227, 229
Peptide hormones 66
Peptides 7, 9, 32
Peptidomimetics 97
Perchloric acid 172
Pergularia pallida 238
Pergularin 234
Periplaneta americana $8,20-22,24,25$, $32,34,46-48,51-53,73-75,77,80-82$, 85, 89, 95, 96
Periplaneta-PDF 95
Periplanetin CC-1 74

Periplanetin CC-2 74
Periploca calophylla 238, 239
Periploca sepium 172, 197, 239-242, 309
Periplocoside A 180, 240, 290, 309
Periplocoside B 241, 290
Periplocoside C 241, 291
Periplocoside D 241, 291
Periplocoside E 241, 291
Periplocoside F 242, 293
Periplocoside J 241, 292
Periplocoside K 242, 292
Periplocoside L 241, 292
Periplocoside M 241, 292
Periplocoside O 242, 293
Periploside A 240, 288, 309
Periploside B 240, 288
Periploside C 240, 289
Perisulfakinin 75
Periviscerokinin 77, 89, 90
Pharmacological activity 148
Phenylpropanoids 141
Pheromones 39, 44
Pheromonotropic activity $39,40,43,44$, 87, 89
Phl-CC 19
Phm-AKH 19
Phormia terraenovae 21, 27, 82
Phosphorylase 24
Phoxinus laevis 3
Pht-HrTH 21, 27
Phymateus leprosus 18, 19
Phymateus morbillosus 19
Physadesmia globosa 20
Pieris rapae 33
Pillbug-PDH 95
Plant pregnanes 170, 185
Plasma-desorption mass spectrometry 40, 61
Platypleura capensis 19
Plc-HrTH-I 19
Plc-HrTH-II 19
Plocin 238, 286
Plocinine 239, 287
Poa-HrTH 21
Podachaenium eminens 132
Polyphaga aegyptiaca 20, 21
Polystyrene 171
Porcine insulin 58
Post-eclosion diuresis 33

Potassium chloride 30
Prc-PDH 95
Pregna-5,16-dien-3 β-ol-20-one 187
5α-Pregnan- $3 \beta, 14 \beta$-diol-20-one 200
Pregnane aglycons 185
Pregnane derivatives 171, 198, 309
Pregnane ester glycosides 198
Pregnane genins 186
Pregnane glycosides $170-178,180-183$, 185, 197-309
Pregnane oligoglycosides $174,182,184$
Pregnanes 170
(20R)-5 α-Pregnane- $2 \alpha, 3 \alpha, 16 \beta, 20$-tetrol 187
5α-Pregnane- $2 \alpha, 3 \alpha, 16 \beta, 20(\mathrm{R})$-tetrol 243
Pregn-5,16-diene-3 β-hydroxy-20-one 243
21-OMe-Pregn-5,14-diene-3 $\beta, 17 \beta, 20$ triol 188
Δ^{4}-Pregn-14 $\beta, 21$-dihydroxy-3,20-dione 201
Δ^{5}-Pregnen- $3 \beta, 14 \beta$-dihydroxy-20-one 201
Pregn-5-ene-20-amino-3 β-ol 200
5β-Pregn-20-ene-3 $\beta, 4 \beta$-diol 188
5β-H-Pregn-20-ene-3 $\beta, 4 \beta$-diol 244
Δ^{5}-Pregnene-3 $\beta, 20 \alpha$-diol 239
Δ^{5}-Pregnene-3 $\beta, 20$ (S)-diol 240
21 -OMe-Pregn-5-ene- $3 \beta, 14 \beta, 17 \beta, 20-$ tetrol 189
Pregn-6-ene-3 $\beta, 17 \alpha, 20 \alpha$-triol 201
Δ^{5}-Pregnene-3 $\beta, 14 \beta, 20$-triol 238
Δ^{5}-Pregnene- $3 \beta, 16 \alpha, 20 \alpha$-triol 239
Δ^{5}-Pregnene-3 $\beta, 16 \beta, 20(\mathrm{R})$-triol 240
Δ^{5}-Pregnene-3 $\beta, 17 \alpha, 20 \alpha$-triol 239, 240
Δ^{5}-Pregnene- $3 \beta, 17 \alpha, 20(\mathrm{~S})$-triol 240-242
Pregnenolone 198
Δ^{5}-Pregnen- 3β-ol-20-one $198,200,201$
Pregnenolone glucoside I 200, 247
Pregnenolone glucoside II 201, 247
Pregnenolone glucoside III 201, 247
Pregnenolone glucoside IV 201, 247
Preprobombyxin 58
Preproinsulin 58
Procambarus clarkii 95
Proctolin 73, 74, 80, 81
[${ }^{3} \mathrm{H}$]-Proctolin 81
[Ala ${ }^{4}$]-Proline 80

1-Propanol 33
2-Propanol 71, 72
Proteins 9
Prothoracicotropic hormone 3, 7, 53-57
Pseudagrion inconspicuum 20
Pseudaletia separata 40-42, 44, 87, 88
Pseudoplexaura wagenaari 245
Psi-AKH 20
Pss-PT 40-42
Pulmonary diseases 130
Putative bommyotropin III 76
Pycnoscelus surinamensis 82
Pyroglutamate aminopeptidase $11,12,81$
Pyrokinins 76, 86, 96, 97
Qingyangshengenin 190
Radix Thapsiae 130
Relayed coherence transfer COSY 178
Resina Thapsiae 130
Reticulin 230, 278
Retro-Diels-Alder fragmentation 181
Rhamnose 173
Rheumatic pains 130
Rhodnius prolixus 30,66,69
Romalea microptera 19, 20, 95, 96
Romalea-PDF 95
Rom-CC 19
Rom-PDF 95
Rostratamine 190
S-4a 240, 289
S-5 240, 289
S-10 240, 290
Sabal causiarum 244
Samia cynthia 53,57
Samia cynthia ricini 53
Sarcogenin 193, 238
Sarcoma 180309
Sarcophaga bullata 70
Sarcostemma brevistigma 242
Sarcostemma viminale 242, 243
Sarcostin 183, 214, 215, 229
Sarcovimiside A 242, 294
Sarcovimiside B 243, 294
Sarcovimiside C 243, 294
L-Sarmentose 185
Sauvagine 32, 36
Scg-AKH-II 21, 26, 28, 29
Scg-corazonin 74

Scg-FLRFamide 77, 91
Scg-ITP 37, 38
Schistocerca americana 81
Schistocerca gregaria $18,19,21,22,25$, $26,28,29,37,38,74,77,91$
Schistocerca nitans 21, 26, 48
SchistoFLRFamide 77
Secondary ion mass spectrometry 182
Secretory activity 3
1-O-Senecioyl-14,15-epoxythapsane-14-ol 135
($8 R, 14 S$)-8-O-Senecioyl-14,15-epoxythapsane-14-ol 135
(1S,6R)-1-O-Senecioyl-6,14-epoxythapsane-15-ol 135
(4S,5S,7S,8S)-8-Senecioyloxy-1(10)-guaien-11-ol 136
(1S)-1-O-Senecioyl-6,14-thapsene-15-ol 135
8-O-Senecioyltovarol 137
Sephadex C-25 10
Sephadex LH-20 171
Sephadex LH-20 chromatography 171
SP-Sephadex 33
Sesquiterpenes 143
Sesquiterpenoids 138
Sevkoridinine 188, 200
Sevkorine 200, 246
Sex pheromones 39
Shiromodiol 138
Sialokinin I 89
Sialokinin II 89
Sibiricoside D 221, 265
Sibiricoside E 221, 266
Sibirigenin 191, 221
Silica 9
Silica gel 18, 171
Sinapinic acid 13
Single frequency off resonance decoupling 176
Sioraside 244, 295
Sipyloidea sipylus 19
Size exclusion chromatography 18
Slovanolides 138, 141, 146
Sodium bis(2-methoxyethoxy)ethoxyaluminium hydride 155
Sodium borohydride 153, 155
Sodium borotritide 153
Sodium carbonate 151
Sodium chloride 11, 30

Sodium phosphate 11
Sodium triacetoxyborohydride 153
Sphodromantis sp. 20
Spodoptera eridania 74, 83
Spodoptera littoralis 42
Spodoptera litura 88
Spodoptera separata 94
Stizophyllum riparium 309
Stomoxys calcitrans 32, 35, 36
Streblus asper 244
Strophanthobiose 196, 197
α-Suboesophageal neuropeptide 76
β-Suboesophageal neuropeptide 76
γ-Suboesophageal neuropeptide 76
Sulfakinins 75, 85, 86, 91
Sulfatase 184
Sulpho-phosphovanillin method 8

Taa-AKH 21
Таа-НоТН 19
Tabanus atratus 19, 21
Tachykinins 76, 88, 89
Tandem mass spectrometry 13
Teikagenin 187, 199, 201-204
Teikaside A 201, 248
Teikaside A-Ia 201, 248
Teikaside A-Ib 202, 248
Teikaside A-IIa 202, 248
Teikaside A-IIb 202, 248
Teikaside A-IIc 202, 249
Teikaside A-IIIb 202, 249
Teikaside A-IIIc 202, 249
Teikaside A-IIId 203, 249
Teikaside AL-Ic 204, 252
Teikaside AL-IId 204, 252
Teikaside B-IVa 203, 251
Teikaside BL-Ic 204, 252
Teikaside C-IIa 203, 250
Teikaside C-IIb 203, 250
Teikaside C-IIc 203, 250
Teikaside C-IIIa 203, 251
Teikaside C-IVa 203, 251
Teikaside C-O 203, 250
Tem-HrTH 20
Tenacigenin-A 195
Tenacigenin-B 193
Tenacigenin B-I 236
Tenacigenin B-II 236
Tenacigenin B-III 193, 236

Tenacigenin B-IV 237
Tenacigenin B-V 237
Tenacissoside A 236, 284
Tenacissoside B 236, 284
Tenacissoside C 236, 284
Tenacissoside D 237, 284
Tenacissoside E 237, 285
Tenasogenin 194
Tenebrio molitor 20, 48, 52, 74, 80, 83
Tetramethylsilyl ethers 184
Thapsane 138
Thapsane derivatives 135, 148
Thapsanes 139
6,14-Thapsene-15-ol 135
Thapsia garganica 130, 133, 134, 145, 146, 151
Thapsia gymnesica 134, 145
Thapsia laciniata 133, 135, 136
Thapsia maxima 133, 134, 143, 145
Thapsia minor 133
Thapsia sp. 131-144, 148
Thapsia transtagana 133, 134, 146
Thapsia villosa 133-138, 145, 148
Thapsia villosa var minor 135, 137, 138
Thapsia villosa var villosa 137, 138
Thapsigargicin 131, 134, 145, 155, 156
Thapsigargicin lactol 157, 158
Thapsigargin 131, 134, 145, 146, 148-157, 159-162
Thapsigargins 131-133, 141, 146, 148, 149
Thapsitranstagin 131, 134
Thapsivillosin A 131, 134
Thapsivillosin B 131, 134
Thapsivillosin C 131, 134
Thapsivillosin D 131, 134
Thapsivillosin E 131, 134
Thapsivillosin F 132, 134
Thapsivillosin G 131, 134
Thapsivillosin H 131, 134, 146
Thapsivillosin I 131, 134
Thapsivillosin J 131, 134
Thapsivillosin K 131, 134
Therogenin 190
Thin layer chromatography 18,170
Thionyl chloride 145,155
Thyroglobulin 14, 15
Tiglic acid 174
12β-O-Tigloyl-20-O-acetylpregn-5-ene$3 \beta, 14 \beta, 17$-triol 235
11α-O-Tigloyl-12 β-O-acetyltenacigenin B 193
1-O-Tigloyl-14,15-epoxythapsane-14-ol 135
12β-O-Tigloylpregn-5-ene-3 $\beta, 14 \beta, 17$, 20-tetrol 235
Tomentin 188
Tomentodin 188
Tomentogenin 183
Tomentomin 188
Tomentonin 188
Tomentosin 188
Toosendanoside 172, 243, 295
Toosendansterol A 187
Toosendansterol B 187
Tovarol 138
Tovarol derivatives 141
Trachelospermum asiaticum 172, 201-203
Trachelospermum liukiuense 204
Trehalose 61
Trichloroacetyl isocyanate 174
Triethylamine 151
Triethylammoniumphosphate 39
Triethyl orthoacetate 156, 157
Trifluoroacetic acid $9-11,31,33,34,37$, 39, 61, 72, 81
Trifluoromethanesulfonic anhydride 155
5α-H, $3 \beta, 14 \beta, 20$-Trihydroxy- 11α-O-cinnamoyl-12 β-O-acetyl-(18,20)epoxypregnane 194
$3 \beta, 14 \beta, 20$-Trihydroxypregnane 211
$3 \beta, 14 \beta, 21$-Trihydroxy-5 β-pregnane-20-one 198
$2 \alpha, 3 \beta, 12 \beta$-Trihydroxypregna-4,7, 16-triene-20-one 187
$3 \beta, 14 \beta, 15 \beta$-Trihydroxypregn-5-en20 -one 189, 220
Trilobolide 132, 134, 145, 162
Trimethyl orthoformate 156
Trinervitermes trinervoides 20
Triphenyltin hydride 157
Trisaccharides 197
Trypsin 12, 61, 70, 71
Trypsin modulatory oostatic factor 70
U.V. spectroscopy 183

Uca pugilator 94-96
Ucp-PDH 95

Urotensin-I 32, 36
Utendin 183, 218, 235

Vanillin 172
Verrucoside 181, 244, 295, 309
Vinylacetic acid 151
Vitellogenesis 66
Vitellogenin 66, 68-70
Vydac C-4 10
Vydac C-18 11
Wallicoside 223, 269
Wilforidine 223
Wilfoside C1G 221, 267
Wilfoside C2G 222, 267
Wilfoside C3G 222, 267
Wilfoside C1N 221, 266

Wilfoside C2N 221, 266
Wilfoside C3N 221, 266
Wilfoside D1N 222, 267
Wilfoside F1N 222, 268
Wilfoside G1G 222, 268
Wilfoside K1N 222, 268
Wilfoside M1N 223, 268
Wilfoside W1N 223, 269
Wilfoside W3N 223, 269

Xanthydrol test 172

Yolk protein 66

Zophobas rugipes 20
Zygentoma 4

SpringerChemistry

Fortschritte der Chemie organischer Naturstoffe

Progress in the Chemistry
 of Organic Natural Products

Founded by L. Zechmeister
Edited by W. Herz, G. W. Kirby, R.E. Moore, W. Steglich, and Ch. Tamm

Volume 70

1997. 86 partly coloured figures. VII, 307 pages.

Cloth DM 290,-, öS 2030,-
Subscription price:
Cloth DM 261,-, óS 1827,-
ISBN 3-211-82825-7

Contents:

G.R. Pettit: The Dolastatins.
A. Cavé, B. Figadère, A. Laurens, and D. Cortes:

Acetogenins from Annonaceae.

Volume 69
1996. 17 figures. IX, 268 pages.

Cloth DM 250,-, öS 1750,-
Subscription price:
Cloth DM 225,-, öS 1575,-
ISBN 3-211-82824-9

Contents:
J.F. Grove: Non-Macrocyclic Trichothecenes, Part 2.
D. Deepak, S. Srivastava, N.K. Khare, A. Khare:

Cardiac Glycosides.
E. Haslam: Aspects of the Enzymology
of the Shikimate Pathway.

SpringerWienNewYork

SpringerChemistry

Fortschritte der Chemie organischer Naturstoffe

Progress in the Chemistry
of Organic Natural Products

Founded by L. Zechmeister Edited by W. Herz, G. W. Kirby, R.E. Moore, W. Steglich, and Ch. Tamm

Volume 68
1996. VIII, 498 pages.

Cloth DM 330,-, öS 2310,-
Subscription price:
Cloth DM 297,-, öS 2079,ISBN 3-211-82702-1

Contents:
G.W. Gribble: Naturally Occurring Organohalogen Compounds - A Comprehensive Survey.

Volume 67
1996. 28 figures and 1 coloured plate. VII, 176 pages.

Cloth DM 220,-, öS 1540,-
Subscription price:
Cloth DM 198,-, öS 1386,-
ISBN 3-211-82695-5
Contents:
A. A. Leslie Gunatilaka: Triterpenoid Quinonemethides and Related Compounds (Celastroloids).
P. Walser-Volken and Ch. Tamm: The Spirostaphylotrichins and Related Microbial Metabolites.

SpringerChemistry

tmino Acids
Editors-m-Chief:
G. Lubec, Wien
G. C. Barrett, Oxford
R. M. Willams, Fort Collins, CO
and an International Edıtorial Board

Abstract

Aim and Scope: Amino Acids publishes contributions from all fields of amino acid research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Application in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some topics to be listed. We also encourage the submission of papers of interdisciplinary borderlines.

Subscription information.
1997. Volumes 12-13 (4 issues each):

DM 876,-, oS 6132,-, plus carrage charges
US $\$ 658.00$ including carnage charges
Subscription price for members of the International Society for Amıno Acıds Research. US $\$ 16000$ includıng carriage charges
(Orders have to be sent directly to Springer-Verlag)
ISSN 0939-4451, Title No. 726

Springer-Verlag and the Environment

We at Springer-Verlag firmly believe that an international science publisher has a special obligation to the environment, and our corporate policies consistently reflect this conviction.

WE ALSO EXPECT OUR BUSINESS PARTNERS - PRINTERS, paper mills, packaging manufacturers, etc. - to commit themselves to using environmentally friendly materials and production processes.

THE PAPER IN THIS BOOK IS MADE FROM NO-CHLORINE pulp and is acid free, in conformance with international standards for paper permanency.

[^0]: Andersen, A Department of Medicinal Chemıstry, Royal Danısh School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen \emptyset, Denmark

 Christensen, Assoc Prof S B , Department of Medicinal Chemıstry, Royal Danısh School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen \emptyset, Denmark

 Deepak, Prof D, Department of Chemıstry, Unıversity of Lucknow, Lucknow 226007, India

 Gade, Prof G , Zoology Department, University of Cape Town, Rondebosch 7701, Republic of South Africa

 Khare, Prof A , Department of Chemıstry, University of Lucknow, Lucknow 226007, India
 Smitt, Assoc Prof U W, Department of Medicinal Chemıstry, Royal Danısh School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen \varnothing, Denmark

 Srivastav, Dr S, Department of Chemistry, University of Lucknow, Lucknow 226007, Inda

[^1]: ${ }^{* *}$ In all species of cicadas two peptides are isolated by HPLC, Edman degradation sequencing yielded the same sequence, at the moment the modification on peptide I is not known

[^2]: * A four letter code is used for this crustacean peptide to distınguish between Cam = Carausius morosus (a stıck insect) and Cama = Carcinus maenas (a crab)

[^3]: ${ }^{1} \mathrm{~A}$ four letter code is used for this crustacean peptide to distinguish between $\mathrm{Cam}=$ Carausius morosus (a stick insect) and Cama = Carcinus maenas $(\mathrm{a}$ crab). See also Table 4.

[^4]: 1. Abernathy, R.L, R J. Nachman, P E A Teal, O Yamashita, and J H Tumlison Pheromonotropic Activity of Naturally Occurrıng Pyrokının Insect Neuropeptides (FXPRLamıde) in Helicoverpa zea. Peptides 16, 215 (1995)
[^5]: * Only present in some specimens

[^6]: * T. villosa var. minor corresponds phytochemically to T. villosa, type 1

[^7]: This work was supported by the Danish Technical Research Council, the Alfred Benzon Foundation and the Carlsberg Foundation.

[^8]: * In memory of Prof. M. P. Khare.

[^9]: * Table 1 which follows lists pregnane glycosides isolated since 1967 and their sources, arranged by plant family. Structures are listed in Table 2.

[^10]: -3-O- β-D-Olep- $(1 \rightarrow 4)-\beta-$ - - Cymp.

