J. Lima-de-Faria

Structural Mineralogy

An Introduction

SOLID EARTH SCIENCES LIBRARY

Springer - Science+Business Media, B.V.

Structural Mineralogy An Introduction

Solid Earth Sciences Library

Volume 7

Structural Mineralogy An Introduction

by

J. LIMA-DE-FARIA Centro de Cristalografia e Mineralogia, Instituto de Investigação Científica Tropical, Lisbon, Portugal

Springer-Science+Business Media, B.V.

Library of Congress Cataloging-in-Publication Data

```
Lima-de-Faria, J. (José), 1925-
Structural mineralogy : an introduction / by J. Lima-de-Faria.
p. cm. -- (Solid earth sciences library ; v. 7)
Includes bibliographical references and indexes.
1. Minerals--Classification. 2. Crystal structure. I. Title.
II. Series: Solid earth sciences library ; SESL 7.
QE388.L56 1994
549'.12--dc20 94-10374
```

ISBN 978-90-481-4396-2 ISBN 978-94-015-8392-3 (eBook) DOI 10.1007/978-94-015-8392-3

Printed on acid-free paper

Cover illustration: Olivine crystal structure, $(Mg, Fe)^o \operatorname{Si}^{l}[O_{4}]^{h}$, (condensed model representation).

All Rights Reserved © Springer Science+Business Media Dordrecht 1994 Originally published by Kluwer Academic Publishers in 1994. Softcover reprint of the hardcover 1st edition 1994 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

To Natacha and Arnaldo Silvério

In spite of the variety of the mineral crystalline world, the whole 'mineralogical game' just reduces to various modes of filling gaps in uniform close packing with various corresponding patterns.

N.V. Belov^a

The greatest pleasure in the study of science is understanding.

Leopold Infeld^b

^a From 'Structure of Ionic Crystals and Metallic Phases' (1947). Izd. Akad. Nauk SSSR. Moscow.

^b From 'Albert Einstein. His work and its influences on our world' (1950). Scribner Publishers, New York.

Contents

Pr	reword face knowledgements	ix xi xiii
1.	The structural classification of minerals	1
	1.1. A very brief history of mineralogical classifications	1
	1.2. The structural classification of	2
	inorganic structures 1.3. The structural classification of	3
	minerals	6
	1.3.1. General considerations	6
	1.3.2. Implications of the structural	0
	classification of minerals in	
	the classification of silicates	8
	the classification of sineates	0
2	The anatomy of crystal structures	9
2.	2.1. What is a crystal structure?	9
	2.2. The constitution of atoms	9
	2.3. The bonds between atoms	11
	2.4. The size of atoms	14
	2.5. The coordination of atoms	17
3.	The architecture of crystal structures 3.1. The structural units and their	21
	'polymerization' process	21
	3.2. The packing of structural units 3.2.1. Kinds of close packing of	21
	individual atoms	22
	3.2.2. The packing of groups, chains	
	and sheets	31
	3.2.3. The connectivity in	
	frameworks	31
4.	The stability of crystal structures	33
	4.1. The general conditions of stability	33
	4.2. The extension of Laves principles	
	to minerals	33
	4.3. Stability rules	34

			rning the polyhedral n of inorganic crystal	
			Pauling rules)	34
		4.3.2. The bond-v		2.
		(Brown rul		35
		4.3.3. Rules gove		
			n of inorganic	
		crystal stru		36
5.	Stru	cture and propertie	rs	38
		Physical propertie		
		structure	-	38
	5.2.	The importance o	f crystal structure	
		in phase transform	nations	40
		5.2.1. Topotaxy		40
		5.2.2. Transforma	ation twins: packing	
		and intersti	tial twinning	43
		5.2.3. The measure	re of symmetry in	
		crystal stru	ctures and its	
		application	to phase	
		transforma	tions	44
6.	Rep	resentation of cryst	al structures	52
		Kinds of represen		52
			and the condensed	
		models of crystal	structures	53
	6.3.	Computing progr		
		description		59
	6.4.	Representation of	f real structures	
		by ideal structure	s: packing and	
		symmetrical analo	ogues of crystal	
		structures		59
7.	Non	nenclature of crysta	ıl structures	63
			rity among mineral	
		structures. Conce		
		type	L	63
	7.2	Structural formul	as	65
		7.2.1. General co		65

viii

7.2.2. Notation for the coordination					
of atoms	66				
7.2.3. Notation for the structural					
units and their packing	68				
7.2.4. General scheme for the					
structural formulas	70				
7.2.5. The importance of structural					
formulas for the relationship					
of crystal structures	72				
7.3. Structure type symbolism	73				
8. Systematics of minerals on structural					
grounds					
8.1. Choice and presentation of data	76				
8.2. Ordering of the main categories					
of mineral structure types	77				

8.3. Final remarks	78
8.4. Descriptive charts of mineral structur	re
types	81
8.4.1. Close-packed structures	81
8.4.2. Group structures	167
8.4.3. Chain structures	199
8.4.4. Sheet structures	221
8.4.5. Framework structures	251
8.4.6. Structures not classified	301
References	327
Mineral index	335
Subject index	341
Author index	344

Foreword

Recently, many fine textbooks in mineralogy have appeared. The great tradition of mineral science continued for over 100 years in Dana's systems, textbooks, and manuals, replete with discussion on crystallographic characters, and short statements on the mineral species as then known. The more recent superb Ramdohr/Strunz Klockmann's Lehrbuch der Mineralogie is a mine of rich crystalchemical information, perhaps the finest contemporary pedagogic book of its kind. Within the past three years, a new and ambitious project – the Handbook of Mineralogy by several keen mineralogists - receives much assistance from up-to-date computer technology and promises to be a very fine series. The little Mineral Reference Manual by Nickel and Nichols is a handy means of quick access to the original literature on species and reference to crystal structure determination. Do we really need another book? For the Structural Mineralogy of José Lima-de-Faria, I say indeed we do!

Mineralogy is one of the natural sciences, and about the oldest one at that. It antedated inorganic chemistry, crystallography, and so much geology. Mineralogy is at the scientific root of mining, prospecting, mineral dressing, and a host of other utilities stimulated by our science. Minerals were practically the first crystalline materials to be investigated after the demonstration by von Laue and the Braggs of X-ray diffraction by crystals in 1912. The phenomenal growth of crystallography as a workhorse for structure and crystal analysis, from Patterson's Faltung to Hauptmann and Karle's direct methods through probabilities of structure semi-variants are in many respects the crowning tiara of 20th century science. After all, without Watson and Crick's unveiling of elusive DNA, where would molecular biology and biochemistry stand today? Dr. Linus Pauling, arguably the greatest thinker in chemistry of the century, made his most

notable early achievements in unravelling the crystal structures of minerals. I would include Zachariasen and Belov as well, two other giants in crystal structure analysis. How many contributed in their own way to our science? Ten? Fifty? One hundred? It depends on how you weight the count, but I suspect it is closest to the biggest number just mentioned.

The explosive growth in information (Ger.: Fach) on crystal structures began about 1950, when the big computers and automated diffractometers were just emerging. It contributes mightily to our science (Ger.: Naturwissenschaft). Unfortunately, technological knowledge seems to come easily now, and Fach appears to be outstripping Naturwissenschaft, a sorry state of affairs. Most practicing mineralogists today are Fachidioten and are hardly Naturwissenschafters. The science has become tedious; it no longer dances with nimble feet as Nietzsche instructed us. Mineralogists don't know their minerals. Mineralogists don't go into the field anymore. Crystal structures, the products of blood, sweat, and tears at the diffractometers, computers, and pocket calculators are slipping into a grey gloom, abandoned orphans of science. What do we do with all this information? Is structural knowledge hortative, beyond mere confirmation or determination of a correct formula, or a challenge to an old one?

It seems to me that mineralogy today is far from a dead science, although most mineralogists may fall into that category. These are really exciting times! With so much gruelling and repetetitive data already accumulated, and much structure solving and information collating out of the way, it seems that mineralogy is about to blossom again. This is in the greatest and most ambitious intellectual exercise of them all: the link between crystal structure and mineral paragenesis. Certain more serious thinkers in mineralogy have felt, especially since WW II, that structure types just don't pop up out of nowhere like mushrooms, but that structure type is a kind of Rosetta Stone to a mineral's genesis. The famous kyanite-andalusite-sillimanite trimorphs serve this point well, but isn't it a rather sparse example of such a structure-paragenesis link?! After all, we have about 2000 structure types to explain and understand more fully.

One of the big hindrances in understanding structure is found in structure representation. Most structure representations in the literature resist the reader's perception. Several projections should really be shown as structures, like plumbing assemblies, have joints which relate to other structures in different directions. Of course, closestpacking with at least one h (= ABA) in the stacking sequence has just one principal direction. In such a structure, once t^* (the vector normal to the c.-p. layers) is defined, layer-by-layer sequences within the asymmetric unit of translation can be shown. Some of these may be building blocks for other structures. Often, each layer tells a little story by itself, and it may reveal a 'secret' to the reader. If t^* falls along general [*hkl*], then it is the task of the investigator to transform the cell into a new more reducible representation, but one that opens up the window of closest-packing. Fractional coordinates are transformed according to the transpose of the inverse of the adjoint of the transformation matrix, that is $\mathbf{A}' = {}^{\mathrm{T}}(\mathrm{Adj} \mathbf{A})$, where \mathbf{A} is the transformation matrix from the old cell to the new (pseudo)-orthogonal cell with one axis parallel to t^* . To make it easy, transform the inversion centers according to the same matrix. Projection along t^* layer-by-layer through the asymmetric unit then finishes the job. Surprisingly, this approach has had very few practitioners in the past, thus most structures which are in fact based on principles of

that fundamental law of nature, closest-packing, are misrepresented!

José Lima-de-Faria prefers to cast the closestpacked representation as a sphere packing model. I find that rather hard to perceive, as I happen to be a polyhedrist by inclination. Because the closestpacked representation is the real goal of the study, I would even submit a table listing the transformation matrices, the old and new cell, the old and new transformed coordinates, the mean layer separation h, and difference, ΔA , or the coordinate differences (expressed as 'interatomic' distance) between real and ideal (calculable) perfect closestpacked representation. Such a table is akin to the table of structure factors so familiar to all crystallographers, a certificate of sorts to see whether or not one is cheating or just misinterpreting the information at hand. Such a transformed cell also makes listing of shared polyhedral edges much easier to find, visualize, and enumerate.

Be that as it may, José's book covers the problem of structure description, utility, classification, and representation quite well, and it tries to place some guidelines toward more uniformity in structure descriptions, most of which in the literature are really quite shoddy.

Structural Mineralogy is really not an end in itself. Rather, it is a rallying call to urge further clarification, representation, and systematization of already known structures. Committees cannot delegate such notions as ephemeral and individual as structure description. Much more airing, many more new ways at looking at old crystal structures are required. But José's book we can admire in common, criticize in common, comprehend in common.

Chicago 5 February, 1994 Paul B. Moore

Preface

The classification of animals and plants has not changed much since Linnaeus' proposal (1735), because, at the time, its detailed study was already possible, particularly with the help of the microscope, and consequently a natural classification based on their internal structures could be established. On the contrary, the criterion for the classification of minerals has changed (from practical purposes, to physical properties and to chemical composition) following the development of the mineralogical science. These changes were always a step further in the direction of the internal structure of mi*nerals*. Only after the first determination of a crystal structure was carried out (Bragg, 1913) was it possible to reach the internal structure of minerals. Since then most of the mineral structures have been studied, and time is now ripe to develop a natural classification by replacing the classical chemical classification by a structural classification of minerals.

Today it appears obvious that the mineral classification had to pass through several stages until it reached the internal structure of minerals. However, what appears obvious but is against the mental habits of scientists takes normally a long time to become well understood and widely accepted. New ideas always develop strong reactions against them, and the history of science is full of such examples. It seems that many scientists do not learn much from the history of science - that there exists a kind of cleavage between the latter and their scientific activity - and that they do not use history to enlighten or guide their scientific research. Their negative reactions appear as intrinsic to the process of scientific development; before adopting a new approach, they try to preserve what has shown to be fruitful for so many years.

The author (1965a) proposed the elaboration of a general table ordering the inorganic structures

and, with the collaboration of Figueiredo, presented a general table and a structural classification of inorganic structure types (Lima-de-Faria & Figueiredo, 1976). Minerals are an important part of the inorganic domain, and it would seem evident that this classification could be applied to the mineral kingdom. However, it took several years for the author to realize that the general classification of inorganic structures would have important implications on the classification of minerals. It was through the preparation of the 'Historical Atlas of Crystallography' (Lima-de-Faria, Buerger, Glusker, Megaw, Moore, Senechal & Wooster, 1990) that an intimate contact with the history of mineralogy - the mother of crystallography - has clearly shown the changing aspect of the mineral classifications, and the difficulties in replacing them by more appropriate ones. The big fight against the chemical classification of minerals first proposed by Cronstedt in 1758 lasted for more than one hundred years and very much impressed the author. One of the arguments against the chemical approach was the fact that only a few chemical compositions of minerals were known at Cronstedt time, and therefore the chemical criterion could not be applied generally; on the contrary, the physical properties could be determined for all minerals. Only when chemistry reached certain maturity, that is, when chemical formulas were known for most of the minerals, could the chemical approach be applied with success, and it was only with Dana (1850, 1854) and Groth (1874), that the chemical classification gradually became accepted.

The same would have happened with a structural approach to the classification of minerals, had it been proposed at the beginning of crystal structure determination. The strong argument against it would be its lack of generality, the structural criterion being only applicable to a small number of minerals. But now, that so many mineral structures are known, this negative argument does not stand any more. A clear parallelism exists between the replacement of the physical by the chemical classification and the proposed replacement of the chemical by the structural classification. Dana said in his 'System of Mineralogy', third edition (1850),

[...] chemistry has opened to us a better knowledge of the nature and relation of compounds; and philosophy has thrown new light on the principles of classification. To change is always seeming fickleness. But not to change with the advance of science is worse; it is persistence in error [...]

A similar statement could now be applied to the

structural classification. However, with the present knowledge of the structural characteristics of minerals and the development of the history of mineralogy, it may well be that the acceptance of the structural classification of minerals, instead of taking one hundred will take only a few years. Let us hope for the best.

This book is mainly concerned with the understanding of the mineral structures and the structural classification of minerals, and will not treat in detail the other several items of its contents. It is really an introduction to the subject.

Lisbon February 1994 José Lima-de-Faria

Acknowledgements

I want to express my profound gratitude to the colleagues who encouraged the elaboration of this book, in particular to A. Preisinger, S. Hafner, P.B. Moore, S. Menchetti, S. Ghose and S. Merlino.

I am much indebted to my family for moral and material support. My children, Manuel and Margarida, contributed to the offer of a personal computer, which skillfully used by my wife, Natacha, provided the complete typing of the text. This was really a fundamental help, which enabled me to improve the work step by step.

My friend Arnaldo Silvério made himself available to peruse the manuscript. He checked the English and contributed comments that improved the text intelligibility. I thank him most heartily.

Paul Moore besides having accepted to write the forward has kindly corrected the whole manuscript, which was really a very hard job requiring much attention and patience. I am most indebted to him for such an act of generous friendship.

Many thanks are due to my colleague Maria Ondina Figueiredo who put at my disposal some condensed models, in particular those of the sheet silicates, and who was very closely associated with the early stages of my research work, namely the theory of condensed models and the structural classification of inorganic crystal structures.

The administrative officer Francisco Raposo gave an important contribution to the typing of the systematic part, with patience and great sense of correctness, and the technician Germano Bernardino helped in the elaboration of many condensed models. My friend Rui Paula assisted in the design of the book cover. To all of them my sincere thanks.

Grateful acknowledgement is made of the support and facilities afforded by the *Instituto de Investigação Científica Tropical*, in particular by its President, Professor Joaquim Cruz e Silva, and of the financial support and encouragement provided by the Gulbenkian Foundation during so many years.

I had to ask permission to several authors and publishers for the reproduction of many figures. Among these authors I am particularly grateful to T. Zoltai who kindly put at my disposal his notes on close-packed structures, and to F. Liebau, I. Kostov, H. Strunz, and F.D. Bloss for the kind permission to use some figures of their books. I gratefully acknowledge the following publishers: Plenum Press, Macmillan Publishing Company, John Wiley & Sons, Oliver and Boyd Copyright Protection Agency, Ferdinand Enke Verlag, Springer-Verlag, Academic Press, Gordon and Breach, Oldbourne Press, Keter Publishing House Ltd, McGraw-Hill Publishing Company, International Union of Crystallography, Zeitschrift für Kristallographie, Oosthoek Scheltema & Holkema Publishing Co., Mineralogical Society of America, American Mineralogist, Harper Collins Publishers, Longman Group UK, Mineralogical Association of Canada, Oxford University Press, K. Sutter Parthé, Akademische Verlagsgesellschaft G. & P.K.G., Mineralogical Society (London), Pergamon Press, Cambridge University Press, Saunders College Publishing (Rinehart and Winston), University Chicago Press, Cornell University Press, American Institute of Physics, Consultants Bureau, Société Française de Mineralogie at Cristallographie, The American Society for Metals, Reinhold Publishing Corporation, Chapman & Hall, Nature, University of California Press, Kluwer Academic Publishers, Tschermaks Miner. Petr. Mitteilungen, and United States Atomic Energy Commission.

Finally, thanks are due to the Acquisition Editor of the Kluwer Academic Publishers, Mrs Petra van Steenbergen, for her immediate interest in publishing this book, and her kind and effective support during all the printing process.

José Lima-de-Faria

CHAPTER 1

The structural classification of minerals

1.1. A very brief history of mineralogical classifications

The classification of minerals has changed throughout the ages, the criterion of classification following the development of the mineralogical science. In ancient times, the classification of minerals was mainly based on their practical purposes. According to Theophrastus (372–287 B.C.), and Plinius (77 A.D.), minerals were classified as gemstones, ores, pigments, etc. In the Middle Ages, Geber (Jabir Ibn Hayyân, 721-c.803), proposed a classification based on the external characteristics and some physical properties of minerals such as hardness, fusibility, malleability and fracture; this physical classification was developed later by Avicenna (Ibn Siná, 980-1037), and Agricola (1546). With Werner (1774) the physical classification attained its maturity and was generally adopted at the end of the XVIII century.

Cronstedt (1758) seems to be the first to have outlined a classification whereby the chemical properties were taken first, followed by the physical properties. This chemical classification was referred to the chemical elements and their compounds. Berzelius (1819) improved the chemical classification of minerals by considering chemical radicals as the main factor, instead of the elements. He ordered minerals as chlorides, sulphates, silicates, etc., and not as minerals of zinc, of copper, etc., as had been done before. The main criticism to the chemical classification, at that time, was that it could not be applied to all minerals, because the chemical composition of many of them was not known. For this reason, the chemical classification was strongly opposed during approximately one century, and only with the advance of chemistry could it be adopted. Even Werner (1817), who strongly defended the physical classification, modified the physical classification at the end of his career, and elaborated a physicalplus-chemical classification. The chemical classification was only widely accepted at the middle of the XIX century, due primarily to the effort of James Dwight Dana (1850, 1854) and of Groth (1874). (More details in the history of mineralogical classification may be gained from Povarennykh (1972), pp. 3–26.)

After 1913, when the first structures of minerals were determined, a structural criterion for classification started to be considered. Fedorov (1913) wrote:

Only very recently has the principle of crystallochemical analysis become capable of leading to a classification in which every mineral has a strictly defined place. Such a classification cannot be called artificial, since its basis is the crystal structure of the mineral, i.e., that which essentially characterizes the nature of each.

Already in 1837, Whewell insisted on the structural aspect:

We cannot get rid of the fundamental conviction that the elementary composition of bodies, since it fixes their essence, must determine their properties [...] We may begin with the outside, but it is only in order to reach the internal structure.

The structural criterion of classification was first applied to a restricted domain of minerals, viz., the silicates, with great success (Machatschki, 1928; Bragg, 1930; Náray-Szabó, 1930). The structural classification of silicates was a much better systematics than the old chemical subdivision, and was soon widely adopted. This chemical-plusstructural classification has been applied to many of other domains mineralogy, such as fluoaluminates (Pabst, 1950), aluminates (Liebau, 1956; Zoltai, 1960), and phosphates (Liebau, 1966; Corbridge, 1971). More recently, Povarennykh

Table 1. Sketch of the evolution of the basic criteria of mineralogical classification (after Lima-de-Faria, 1983)

```
\sim 340 B.C. Practical uses - THEOPHRASTOS
  77 A.D: Practical uses - PLINIUS
   \sim 760' Physical properties - GEBER (Jabir Ibn Hayyân)
  \sim 1020; Physical properties - AVICENNA (Ibn Siná)
     1546: Physical properties - AGRICOLA (Georg Bauer)
     1750-
          Chemical + physical properties - CRONSTEDT
     1758
           Physical properties - WERNER
     1774
     1784 Chemical + physical properties - BERGMAN
     1800-
     1801 Chemical + crystallographic properties - HAÜY
           Physical + chemical properties - WERNER
     1817
           Chemical properties - BERZELIUS
     1819
           Chemical properties - SOKOLOV
     1832
     1850 -
     1854
           Chemical properties - DANA
     1884 Paragenetic properties - LAPPARENT
     1900-
           Class. silicates based on structural prop. - MACHATSCHKI
     1928
           Develop. class.silicates b. on st. prop.- BRAGG; NÁRAY-SZABÓ
     1930
           Geochemical properties - UKLONSKII
     1940
     1950-
           Crystallochemical properties - MACHATSCHKI
     1953
          Paragenetic + chemical properties - KOSTOV
     1954
           Chemical + structural properties - POVARENNYKH
     1966
```

---- Well established criterion of classification ---- Intermediate criterion of classification

(1972), in a systematic way, applied this chemicalplus-structural classification to the whole domain of minerals.

A sketch of the evolution of the basic criteria of the mineralogical classification has been already presented (Lima-de-Faria, 1983) (Table 1). It is apparent from this sketch that the classification of minerals has passed through different stages, from practical to physical, to physical-plus-chemical, to chemical and to chemical-plus-structural, *each*

stage being a step further in the direction of the internal structure. Although the chemical classification of minerals seemed to be well established, some dissatisfaction emerged during the last decades, and other criteria have been proposed for the classification of minerals, some related to particular domains of application, such as geological (Lapparent, 1884) or geochemical (Uklonskii, 1940; Kostov, 1954); others more theoretical, as the one proposed by Machatschki (1953) which was based on crystal-chemical grounds and the hierarchy of formula complexity.

On the other hand, many structures of minerals have been determined in the last 80 years, and the data thus accumulated call for an appropriate systematization, in order to enable that a better use be made of them. The potentiality of this structural information is certainly enormous.

Moreover, we have now reached the internal structure of minerals and this is what leads to a natural and much better scientific approach to the classification of minerals. It is time to invert the classification criterion and replace the chemicalplus-structural by a structural-plus-chemical classification. This new classification will possibly show many unexpected and interesting relations among mineral structures.

1.2. The structural classification of inorganic structures

When thinking on a structural classification of minerals one should have in mind that it must be based on structural factors, and that these should pertain not only to mineral structures but to inorganic structures in general, because the former are a part of the latter. On the other hand, the structural principles which have been considered on the structural classification of silicates, and which have proved so fruitful, should be preserved in any classification extension to the whole mineral kingdom. Consequently, the structural classification of minerals must fit in a more general classification of inorganic structures, and also, not to contradict the widely accepted structural classification of silicates.

One of the first important approaches to a general structural classification of inorganic crystal structures was proposed by Goldschmidt (1929), whose classification was based on the hierarchy of the chemical formula and on the number and arrangement of neighbours around any single atom in the crystal lattice, that is, the coordination of the atoms.

The structural classification of silicates was based on the bond strength distribution. In silicates the Si-O bonds are usually stronger than the bonds between the other chemical elements and oxygen, and therefore, there is a tendency to form complexes of SiO₄ tetrahedra more tightly linked than other parts of the structure, and which correspond to a kind of 'skeleton' of the crystal structure. These complexes of linked SiO₄ tetrahedra may form finite groups, infinite chains, infinite sheets or infinite three-dimensional frameworks. An extension of this bond strength distribution theory, made by Laves in 1930, leads to the general concept of structural units which correspond to the assemblages of atoms more tightly linked together in the crystal structure.

Niggli (1945), Garrido and Orlando (1946), Bokii (1954), De Jong (1959) and Wells (1962) also presented general classifications on the same basis, but none of these authors has systematically applied them; theirs were only general proposals.

A provisional classification of crystal structures on the basis of their interatomic bonds was made by Evans (1939); however, he abandoned it (Evans, 1964) due to the difficulties in ascribing, with certainty, the kind of bonds in crystal structures, and to the fact that they are normally not of one kind only, but intermixed.

Bokii (1954) was possibly the first to note a difference between structures such as halite and quartz, calling halite a 'coordination' structure and quartz a framework structure. Although this distinction was a bit ambiguous, it was later clarified by Lima-de-Faria & Figueiredo (1976) in their general classification of inorganic structures.

The bond strength distribution in a crystal structure may be relatively homogeneous, as in many oxides, halogenides, alloys and intermetallic compounds, where the bonds are predominantly nondirectional, and such structures are formed by the close packing of the larger atoms with the smaller atoms occupying the interstices within the packing. What forms the 'skeleton' of this kind of structure, that is, the structural units, are individual atoms, the packing atoms, normally the anions, while cations act as interstitial atoms. For instance in halite, NaCl, the larger atoms, the Cl ions, are the structural units. Speaking of the halite structure in terms of 'coordination' is rather inappropriate because in all structures the atoms are coordinated. What distinguishes halite from the quartz structure is the fact that the former is based on the close packing of its larger atoms, while quartz corresponds to a three dimensional linkage, a framework, with large holes in it.

However, in structures where the directional forces are dominant, the bond strength distribution is normally heterogeneous; the structural units may form finite groups, infinite chains, infinite sheets or infinite frameworks.

According to this classification (Lima-de-Faria & Figueiredo, 1976), there are *five main categories* of structural units: individual atoms, finite groups, infinite chains, infinite sheets and infinite frameworks; the corresponding main categories of structures are called close-packed, (at an early stage also called atomic by the author) group, chain, sheet and framework structures, respectively.

In the case of homogeneous bond strength distribution, two limiting situations may occur: either the structure is based on a simple packing of individual atoms, with no-directional bonds (examples are helium, copper and sodium chloride), or it is based on a three-dimensional framework, with directional bonds (examples are diamond and cristobalite).

The bond strength distribution must be combined with the directional character of the bonds in order to avoid certain ambiguities. For instance, the melonite structure, NiTe₂, which corresponds to the hexagonal closest packing of Te with Ni atoms filling octahedral voids in alternate layers, could be confused with a sheet structure of NiTe₂ layers of octahedra. This ambiguity can be solved if we give to the directional character of the bonds an important role. In fact, in melonite, both the Ni-Te bonds (ionic) and the Te-Te bonds (van der Walls) are non- directional bonds, which explains the formation of the hexagonal closest packing of Te atoms. Therefore, NiTe₂ is a close-packed structure. The distribution of Ni in alternate layers, occupying octahedral voids, is just a possible stable distribution of the interstitial atoms.

The structural classification of inorganic crystal structures of Lima-de-Faria & Figueiredo (1976)

Table 2. Partial representation of the general table of inorganic structure types (after Lima-de-Faria & Figueiredo, 1976) Colours have been added to distinguish the main kinds of inorganic structures, although a certain ambiguity may arise from the fact that certain structure types may represent more than one of these main kinds. [See fold-out in this chapter]

was systematically applied to 782 structure types, which correspond to approximately five thousand structures, and was presented on a general table (Table 2). These authors have also produced (1978) a chart containing the 270 structural units which form the structure types in this general table (Chart 1). That chart is divided into five columns corresponding to the five categories of structural units. On the first column, concerning the individual atoms, the different atomic layers corresponding to the various close packings are presented; on the second, third and fourth columns, the structural units, corresponding to groups, infinite chains and infinite sheets, respectively, are represented. On the fifth column, because it would be difficult to represent complete frameworks, only parts are shown - the so-called 'connected units' - which, by 'connection', lead to the whole frameworks.

Other general structural classifications of inorganic structures have been proposed recently by Hawthorne and by Hellner.

Hawthorne (1983) has suggested a general structural classification of inorganic structures based on the polymerization of coordination polyhedra (not necessarily of the same type) with higher bond valences, as a consequence of the application of bond-valence theory to inorganic structures. The structures are organized by families based on different arrangements of fundamental building blocks or modules. The possible modules are tightly bounded units within the structure, and correspond to clusters of polyhedra that are the most strongly bonded. Although starting from different roots and with some significant differences, the structural classification of Hawthorne is quite similar to the one developed by Lima-de-Faria & Figueiredo (1976).

A general geometrical-plus-structural classification of inorganic structures was proposed by Hellner (1984, 1986), based on the concept of 'Bauverband' (connection) introduced by Laves (1930) and using a symbolism based on the concept of lattice complex introduced by Niggli (1919), and further developed by Hermann (1935, 1960) and

	A _p B _q			A,B		
	A,B, R, Z,	X,Y,Z,	A,X,Y,	A,B,C, A,B,X,	A,RX,	X_Y,
Minerals	Cu, 54 Sa[S.] * Cu, 54 Jo. (1.] * Cu, 54 Ma(S.) * Cu, 54 Ma(S.) * S* 12, 184 10.] *	[Cu2 Au Pd]*	N° [Fe.Ni] " Ir"[Ca.Oa] " N°b [O Ci.a] " Pt° [K.a Ci.a] " F°a [K.a Ci.a] "	Ci Iñ [0,] " Ci Iñ [0,] " Ci Nî [0,] " Li, Ai [N,]" Aig, Hig [1,] " Li, Min [N,] "		
Ĺ	Δ1 M2 B ¹ (D ₁) B ¹ (D ₂) B ¹ (D ₂) C ¹ ₂ , M ¹ (D ₁) C ¹ ₂ , M ¹ (D 1) C ¹ ₂ , M ¹ (D 1) <td></td> <td>Fê [A 5]" C" [A 1 Cr3]" N"⁰[C 5 C13]" Pt⁰[K 3 F3]" T1⁹2[C 3 3 C14]"</td> <td>Li Ai[0,]" F\$ 17]0,]" F\$,Cu[5]" N\$,F\$[0,]" N\$,F\$[0,]" N\$,M\$,[0,]"</td> <td></td> <td>$\begin{array}{c} w_{1} \left[w_{1} & w_{2} & w_{3} \right] = w_{1} \left[w_{1} & w_{1} \right] = w_{2} \left[w_{1} & w_{3} \right] = w_{3} \left[w_{1}$</td>		Fê [A 5]" C" [A 1 Cr3]" N" ⁰ [C 5 C13]" Pt ⁰ [K 3 F3]" T1 ⁹ 2[C 3 3 C14]"	Li Ai[0,]" F\$ 17]0,]" F\$,Cu[5]" N\$,F\$[0,]" N\$,F\$[0,]" N\$,M\$,[0,]"		$ \begin{array}{c} w_{1} \left[w_{1} & w_{2} & w_{3} \right] = w_{1} \left[w_{1} & w_{1} \right] = w_{2} \left[w_{1} & w_{3} \right] = w_{3} \left[w_{1}$
Me	ได้ไก้ 2 (ร.) 20 <u> (รี่ 1 (Ars</u>) 20 <u> รี่ 5 8 . [No 0.]</u> <u> 5 </u>		1.1 C.5 C.6 C.6 <thc.6< th=""> <thc.6< th=""> <thc.6< th=""></thc.6<></thc.6<></thc.6<>	66 51/12.007 5.5 51/00 10 10 10 10 10 10 10 10 10 10 10 10 1	<u>N''N'' Bes</u> tern <u>In In(Ses</u>) <u>N' N''(Ins)</u> <u>N' N''(Ses</u>) <u>T'IST'(Ses</u>)	
Metals and alloys			Mā[Q(QH)] ¹ [1 <u></u>	12, F6[0,]16		[Nb1 Au3]
d alloy			נוסאס;]" ג'יי וווןאַק.פּגן" נרנהן"	8°53 [2r]		
õ	င ^{္ င} င္ိုပြ _{Mo ရ} င်းမာ B္ခ်ိန္မီ "Bင္စိုMo ရွ ^{န္အလိုန} ္ B္ခ်ိန္မီ "Bင္စို(M ₃) ^{ရင်း} ရ		M ⁴ 2000ម្ប ^ង ដែលមក្ខរ៉ុ ^ង ដែលមក្ខរ៉ុ ^ង ដែលអនុក្ស វត្រមាសក្លា ⁴ ស្រីសេទីក្នុងភ្នំ វត្តសត្វា ⁴ ទី <u>សែកេត្</u> ន ¹		<u>SiSi[[a]</u>] ²⁸⁴⁶ <u>Ng, Ng[Ss]</u>] ²⁸⁴⁶ <u>A'g Cf[Ses]</u> ³⁶⁴⁶ C ^o C ^o [Mog] ²⁶¹⁶ C ^o C ^o [Mog] ²⁶¹⁶	
		[ALMnCu2]	Hga[S,CI]	Mgu°[0 ₄]* z'n,S';[0 ₄]*		[Bi F ₃] ^b [V ₄ Zn ₅] ^b [Sb ₂ II ₇] ^b
Other	(2014) (2	[lecSb2S	الله المحمد الله الله الله الله الله الله الله الل	Na ⁵ 2 U ^{ch} [F ₆] ⁰	លីល្លូវ សុំសូរ សុំសូរ	[Ing Tec] ^Q
syntheti		[lecSb2Sn] ^{Qe} [CuMgAs] ^{SQN}	[12] [0F] ^Q 8 ² [H ₂ A] ⁴ (d) [2] [0F] ^Q 8 ² [F ₂ A] ⁴ (d) F ⁴ (A) 8 ² [F ₂ A] ⁴ (d) F ⁴ (A) 8 ² [F ₂ (A) ⁴ (d) F ⁴ (A) 8 ² [F ₂ (A) ⁴ (d) F ⁴ (A) (A) (A) ⁴ (d) F ⁴ (A) (A) (A) ⁴ (d) F ⁴ (A)		دریا 6*55 (۲۸) الم 10 10 10 10 10 10 10 10 10 10 10 10 10	0. [As Mn ₃](4)
Other synthetic compounds	9941 8 8, 07 1.4 Mo, 47 RG [- 20%	4016 Số[TL F6] ^{N29} 4016 4016 4016		เป็น (12) (24) (24) (24) (24) (24) (24) (24) (2	20 April 19 Stranger 21
ounds		[MnCoGe] ^R [SbyCuHtz] ^R	Net F2 (DIOH) R 22 LEFTOCODOLIE B2 (W,C 0) R 22 F2 ((H,0),C 1,) R 22 F2 ((H,0),C 1,) R 23 F2 ((H,0),C 1,)		47 47 17, c2 (0,) ⁴⁵ 47 17, c2 (0,) ⁴⁵ 47 17, c2 (0,) ⁴⁵ 45 45 47 17, c2 (0,) ¹⁵⁸ 45 45 45 45 45 45 45 45 45 45	C2 [Mns] R52 [U Al c] R53 [Ga [1:5] R57
	Total State	[Cu Mg Sn []"	$\begin{array}{c} & f_{1}^{2}\left[\left(0(D+H)\right]^{\frac{N}{2}}, & N^{+}\left(B_{1}, 0, \Box\right)^{n} \\ & f_{1}^{2}\left[B_{2}, 0, \Box\right]^{\frac{N}{2}}, & f_{2}^{2}\left[B_{1}, 0, \Box\right]^{n} \\ & g_{1}^{2}\left[M_{1}, C_{1}\right]^{\frac{N}{2}}, & S^{\frac{N}{2}}\left[F_{1}, K_{1}, \Box\right]^{\frac{N}{2}} \\ & f_{1}^{2}\left[H_{1}, 0, C_{1}\right]^{\frac{N}{2}}, & S^{\frac{N}{2}}\left[C_{1}, NH_{1}, \Sigma\right]^{\frac{N}{2}} \\ & F_{1}^{2}\left[H_{1}, 0, C_{1}\right]^{\frac{N}{2}}, & N^{\frac{N}{2}}\left[O_{2}, 0, D_{1}, D_{1}\right]^{\frac{N}{2}} \end{array}$	۸۵٫۵۵ (۵٫۵۵) ۸٫۵٫۸۵٫(۹٫۵۵) ۸٫۵٫۸۵٫(۵٫۵۵) ۸٫۵٫۷۶ (۶٫۵٫) ۸٫۰٫۷۶ (۶٫۵٫۹۵)		
			7		Zincon	
Table			{[[[]]]	[[[] 4][[Mg]] [TK);cm [[] 4][[Mg]] [TK);cm [[] 4][[Mg]] [TK); [[] 4][[T]] [TK] [[] 4][[T]] [TK] [[] 4][[T]] [TK] [[] 4][[T]] [TK] [[] 4][[] 4][[TK]] [TK] [] 4][[] 4][[TK]] [TK] [] 4][[] 4][[] 4][[TK]] [TK] [] 4][[] 4][[] 4][[] 4][[] 4][[] 4][[] 4][] 4	$ \begin{aligned} & F_{2}^{2}[0][c_{1}]^{U_{1}}, \\ & P_{5}^{L}[F_{1}][c_{1}]^{U_{1}}, \\ & C_{5}^{L}[[c_{1}]_{1}]^{U_{1}}, \\ & C_{5}^{L}[[c_{1}]_{2}]^{U_{1}}, \\ & S_{1}^{L}[[c_{1}]_{2}]^{U_{1}}, \\ & S_{1}^{L}[[c_{1}]_{1}]^{U_{1}}]^{U_{1}} \\ & S_{1}^{L}[[c_{1}]_{1}]^{U_{1}}] \\ & S_{1}^{L}[[c_{1}]_{1}]^{U_{1}} \\ & S_{1}^{L}[[c_{1}]_{2}]^{U_{1}}, \\ & S_{1}^{L}[[c_{1}]_{2}]^{U_{1}}]^{U_{1}} \\ & S_{1}^{L}[[c_{1}]_{2}]^{U_{1}} \\ \\ & S_{1}^{L}[[c_{1}]_{$	[Nim][h]](TK)n
e 2	KYKB[CS,N]	K; Pf[C;S,N]_	K ¹⁰ [C ² SN] ¹¹ C ² M ² ₂ [C ¹ ₂ O ₁] ¹² <u>DOLOWITE</u> C ² M ² ₂ [C ¹ ₂ O ₁] ¹² C ³ M ² ₂ [C ¹ ₂ O ₁] ¹²	Cd [C ₂ N ₃] ¹ / ₂ [P ⁺ Cl ₂ NH ₃) ₂ ¹ / ₂ N ² / ₃ [C ² ON] ¹¹ / ₂		N ² [H ² F ₂] ^{III} N ² [H ² F ₂] ^{III} N ² [C ¹⁰ 0 ₂] [∞] C ⁴ [C ¹⁰ 0 ₂] [∞] C ⁴ [C ¹⁰ 0 ₂] [∞]
	1 (15,00,0,1) 1 (15,00,1) 1 (14,0), N3, N3, N3, N3, N3, N3, N3, N3, N3, N3	K [*] ₂ P ² ₇ [C ² ₂ S ₄ N ₄] ¹¹ / ₂ K [*] ₂ [Al ¹ ₂ O(OH) ₆] ¹¹ / ₂	Knig[C,20] (H*0) C\$[2] 0"] Knig[C,20] (H*0) C\$[2] 0"] Knig[C,20] (H*0) V			(NH ₄) ⁴ [P ¹ O ₃] ^W 6d ₂ [S ¹ yO ₃] ^U K ¹ ₂ [S ¹ yO ₃] ^U K ¹ ₂ [S ¹ yO ₃] ^U K ¹ ₂ [S ¹ yO ₃] ^U
				ر شراده دم ۲۰	[5", N, F,] ^{IV} [H [°] CL(NH)]] ^T	
	(NHU), CT(15°0, J), J], J], (10, 14, 14, 14, 16, 16, 16, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14	K ^a ₂ [5 ² 5 ⁰ 0 ₃ ₂] ² ₂ [8 ² ₂ 0 ₄] ¹ ₂ [2 ⁿ (H ₂ 0) ₄ K ^a ₂ [5 ² 5 ⁰ 0 ₃ ₂] ² ₂	N3,N3[12 ³ ,F ₂] ³ N3 ³ N3[53,F ₂] ³ [C ³ 10 ³ H ₂],F ₂] ³ [C ³ 10 ³ H ₂],F ₂] ³ [C ³ 10 ³ H ₂],F ₂] ³ [C ³ 20,H ₂ 0] ³ [C ³ 20,H ₂ 0] ³ [C ³ 20,H ₂ 0] ³		['IC'PF31] ^{V3} [W'ICO4]) ^{V3} [F ⁴ 21CO14] ^{N3}	C ⁴ 3[[S [*] 0]13]m ¹
	(۱۹۳۵, ۲۵, ۲۵, ۲۵, ۲۵, ۲۵, ۲۵, ۲۵, ۲۵, ۲۵, ۲	(Br, 0,), (Zn(H, 0),	{[N'H_],, [H² F,], [L] (H,0)*{[P?(NH,),],], [K*{[[C1,]][M\$[H,0],], {[5*0,],, [N](H,0],]	[[8 Ci ₂ N Ci ₃] ¹⁰² { { [(1, ¹ 0, 3] ¹⁰ , [N, ¹ 0, 3] ¹⁰		[[63][(13]] [[63][(13]] [[63][(13]] [[63][(13]] [[63][(13]] [[63]] [[63][(13]] [[63]] [

				<			Но	HOMOGE	NEO	ATOMIC HOMOGENEOUS		MIC	MIC	MIC	MIC Non-lowed	MIC	MIC	MIC HOMOGE	MIC RETEROCENEOUS HOMOGE	MIC Non-layered Logered Sin
			٦ **		**		N.10	#	ء ##	+ ++		XX Z		¥.						
			X	XXXXX	ĸ		N	#	ŧ	#	KI K	A				*				
		Cubic close packing	Hexagonal close packing	1.	C.p hex. p.	imple P.	Cu 80	Body-cent. cubic p.	Simple cubic p		t	**	A	A	A					
		c	r	c/h b	b v d		c/h/b/v/d/s	σ	d s	t/b/d/s	N	;	:	:	:	R ²¹				
×		[Cu]*	[Ma],	[La]en [F	[Pa] Ia	[1 <u>nSn</u>]]		[W]*	[Po] ^[] a	[6a] (2Qa)+			[1;] ⁸ 87	488 [11]	448 [1]					
	AX	Zh [S] [*] Fe [S] [*] Shrulerite Ni [Te] [*] Na[Ci] [*]	Zh [S] [^] <u>Ni [As]</u> [^]	<u>C'[Si]</u> ^{eh} <u>T'i[As]</u> ^{eh} <u>C°[Ma]</u> ^{een}		C°[W] ¹ N°[Mo] ¹ N°[Mo] ¹ N ^o	N [W] N [W]	A.P.	p+q[N5]Qa p±q[S]Qa A=[N5]Qa p±q[S]Qa	11,5 [1] (200); B = [Ni] (200); B = [Wa]	Pas	P# [S] #	N°[[a] ^R ³⁹		,[0 ⁻⁰] ⁵ 8N	N°[[a] ^R ³⁹			<u>المجمع المحمد المحم </u>	
	YX	[Au Cu]" [Pb U]" [Cu Pt]" [Cd Ti]"	[Au Cd]" [Li Rh]" [[Ia Rh] sen [[[Nb Rh] sen	[Cu Ii] ^{Ib}			[li Hg]°	[K F]0.				[[o[e] ^R by			[Au Sn D] ⁸⁵⁷		[Au Sn D] ⁸⁵⁷	[Au Sn D] ⁸⁵⁷	[Au Sn D] ⁸⁵⁷
	ΔX	Li2[0]*			R	Al ^p ₂ [Th] ^{Ts}		Siz	Si ² ₁ [Th] ⁸							{[C ₁₂][Mg]} t#xiic {[Z _{2n}][Mg]} t#xiic				
_		0'[["]" Hg [1]]	Z'n[C12]" Ca[C12]" 1		I'p[0 ²]p	N.	W](2[2])	H ^o [Ia ₂] ^b	(1°[F2])	+ Pag[[1]] bgd .	E9	Cu [Ala] Nr	[A12] ^{N7} C ⁰ [(0H)2] ^{R³¹}		Cu (toH) المعالي المحالي	C" [(0H)] ^R	Cu (toH) المعالي المحالي	C" [(0H)] ^R	C" [(0H)] ^R	C" [(0H)] ^R
	AX ₂	1° [0,] ° Câ [Ci,]	21 [0 ₂] Ca[C ₁], Ma[O ₂], N [Fr], 13 [5 ²],	12 [S2]"		Mo	M0[5] (214)e		Fe st [Siz] ⁰											
A_B	_	[MePt2]" [Si2 Zr]"	[Ta Pt2]"	- 1	[Mo Siz] To	_	<u>[</u> []	[Cr2 AI]	_	[As Fe2] (301).	-			[In Niz] ^{Roy} [Mgz Sn □] ^b		[Mg ₂ Sn □] ^b				
	X٧	[ZrGa ₂]" [Cd Ti ₂]" [HtGa ₂]"			[[r Si ₂] ^{1*} [[i Si ₂] ¹⁴		_			[Bi Tiz] (348)*								[cf r,], [5t o,], [v	[cf r,], [5t o,], [v	[cf r,], [5t o,], [v
		Ma Ca		C ₂ [Mo ₃] *** Bi ₂ [Te ₃] ***	6.	62, [Yb,] ^I A(Al ((OH),) (SAA H)	H ¹ ₂ [U] ^b	U ^{ca} [0 ₃] ^Q .	8°°[8e,](11) 8°°[8e,]	3. 2.	[Sn] [N]	Ja Im [(I,]R" C ^o [Fe]R ³	¹ ^b 1 ^m [C ₁] ^R ³ ^m , <u>R</u> ² [0,0] ^C C ^p [F ₄] ^R ³ , <u>M</u> ⁵ ₂ [0,0] ^C	¹ ^b I ^m [C ₁] ^k ^k ^k , <u>R^k</u> [0, □] ⁰ , <u>R^k</u> [0,] ^o	$\frac{1}{2} \frac{1}{2} \frac{1}$	¹ ^b I ^m [C ₁] ^k ^k ^k , <u>R^k</u> [0, □] ⁰ , <u>R^k</u> [0,] ^o	² ¹ [^π ₁ C ₁] ⁸ ² , ² ² ² ² ² ² ³	¹ ³ ¹ ¹ ⁴ ¹	² ¹ [^π ₁ C ₁] ⁸ ² , ² ² ² ² ² ² ³
_	AX	Zn-1		Fe ₁ [S ₄] ^{eem}		₩≥		Th' [Ci.]"	Pt*[Hg4]		N.	Ited W	8° [Re] (2 RP)	8° [Re] (2 RP)	8° [Re ₃] (28 ³ / ₂ ³ / ₂ A ₃₂ [0 ₃ D] ⁴	8° [Re ₃] (28 ³ / ₂ ³ / ₂ A ₃₂ [0 ₃ D] ⁴	8° [Re ₃] (28 ³ / ₂ ³ / ₂ A ₃₂ [0 ₃ D] ⁴	$\frac{B^{P}[R_{e_{1}}](*R^{2}w)}{ C_{e_{1}} ^{2}} = \frac{A^{2}_{2}[0_{3}D]^{W}}{ C_{e_{1}} ^{2}} = \frac{\{[C_{e_{1}}][0_{3}]^{R_{e_{1}}} + (W)]}{ C_{e_{1}} ^{2}}$	$\frac{B^{P}[R_{e_{1}}](*R^{2}w)}{ C_{e_{1}} ^{2}} = \frac{A^{2}_{2}[0_{3}D]^{W}}{ C_{e_{1}} ^{2}} = \frac{\{[C_{e_{1}}][0_{3}]^{R_{e_{1}}} + (W)]}{ C_{e_{1}} ^{2}}$	
	\$	S ² ₂ [5 ₁] ^e S ¹ ₂ [1 ₄] ^e Al ₃ [0 ₄] ^e N ^o [F ₂ ,] ^e S ¹ ₂ [F, [†]] V ² (0 ₄) ^e	(² ₁ [5 ₁] [*]	C ₃ [V ₄].		N N N	N ² ₂ [W ₂] ^{1,200,0} N ⁴	[Fea]®	Pt3[0,]		5. 2	PT [Sn.] 147	12 [Se,] Rain	12 [Se,] Rain	17 [Se,] "", 'S 316 [Me _] 27 [Se,] "", 'S 316 [Me _]	15 [Se3] ^{8,20} 1, 18, 18, 19, 10, 10] 27 [Se3] ^{8,20} 1, 18, 18, 10, 10] [[[[10]]] ^{8,20} 1, 18, 10, 10] [[[10]]] ^{8,20} 1, 18, 10, 10] [[10]] ^{8,20} 1, 18, 10] [[10]] ^{8,20} 1,	15 (Sea) 8 27 13 No. (0.70) (1.10) (15 [Se3] ^{8,20} 1, 18, 18, 19, 10, 10] 27 [Se3] ^{8,20} 1, 18, 18, 10, 10] [[[[10]]] ^{8,20} 1, 18, 10, 10] [[[10]]] ^{8,20} 1, 18, 10, 10] [[10]] ^{8,20} 1, 18, 10] [[10]] ^{8,20} 1,	تر [24]] من	27 [3-3] من التركيمي التركيمي التركيمي التركيمي الت
-		U°[F_1]* Ii "[0_1]*	Non[Cia]"	U°[F6] ch									C2 [Mn5] R32	C [*] ₂ [Mn ₅] ^{R³²²} V [*] ₆ [0,10	C [*] ₂ [Mn ₅] ^{R²²²} V [*] ₆ [0 ₁₃ □ ₂] [*]	C [*] ₂ [Mn ₂] ^{R²₂} V [*] ₂ [0 ₁ , 0 ₂] [*] {[N ₁ ,][In ₂]} ^(TK)	C [*] ₂ [Mn ₂] ^{R²} ₂ V [*] ₂ [0 ₁₂ O ₂] ^c {[N ₁₂][1h ₂] ¹ ¹ ¹ N ¹ N [*] ₂ [H ² F ₂] ¹¹ ₂	C ² ₂ [Mn ₂] ^{R²/2} V ² ₂ [0 ₁ , 0 ₂ , 0 ₃] ^c {[Mn ₂][In ₂]] ^{11Kh} N ² ₂ [H ² F ₂] ¹¹ /2 PEROPORENTIE	C ² ₂ [Mn ₂] ^{R²/2} V ² ₂ [0 ₁ , 0 ₂ , 0 ₃] ^c {[Mn ₂][In ₂]] ^{11Kh} N ² ₂ [H ² F ₂] ¹¹ /2 PEROPORENTIE	C_[Mn_1] ⁸²³ V_0[0_1, 0_1] ¹ {[Nin][[h_1]] ¹ N ¹ N ² ₄ [H ² F ₂] ^{III} HICOMALASTANIC 1 ⁵ ₂ [C ⁰ (H, 0] ¹ ₆] K ⁵ ₂ [[S ⁰ (H, 0] ¹ ₆] K ⁵ ₂] K ⁵ ₂ [[S ⁰ (H, 0] ¹ ₆] K ⁵ ₂] K ⁵ ₂ [[S ⁰ (H, 0] ¹ ₆] K ⁵ ₂] K ⁵ ₂ [[S ⁰ (H, 0] ¹ ₆] K ⁵ ₂] K ⁵ ₂ [[S ⁰ (H, 0] ¹ ₆] K ⁵ ₂] K ⁵ ₂] K ⁵ ₂ K ⁵ K ⁵ ₂ K ⁵ K ⁵ ₂
				- Ich r.	1.16		10.0	- 18	1 10	10. 1. 1401).	-			icat intia		120				

		[CINAL 0 [A155' 012] VIE				1		KILLALION KASLO JAIP				HORNBLENDE	SID, FIL
Ba Na 1, B, Sig 0, 1 00	1 90	(H20)[21,520,10H]]		n][m]	[[1, Bi, 0,]+]m[Bi, 0,]]m		CALK F (H,O) SI 0 00 002	K Mg (0H) [AS 0] 02 1	PROBERTITE	1		North (Intelligence and	
		CHABAZITE		[realfo	[[1, Bi 10, 0, 0, 10, [Bi 10, 0]]		CANA (Be Siz Q, F)	Ca Mg, (04), [A1, S1, 04] (21, 10), SEY BEATITE		÷ -		MI MICHEIS 0 210	[C_8 N_6] ^[1]
BATISITE		Na CI (AL SI 0 A) 00 J	Nac Na2 (Bes Sig On) 112 CHRALOVITE	o'lim)	[N6, B, 0,]2, [B, 0,] [B, 0,]		MA CI (OH) [Si 0]	K"AI2 (0H)2 [A151 0 0] 02			ECFIDITE	CL2 Ng (OHF) S 02 001	erene to to
BAOTITE BAOTITE		Al2 [843 Si 018] 201	K" Nas[Al, St. 0.]05	8	Ca [B" B, 0, (0H)]		3.	Mg_1(0H), [St 0m](2][101)e		γ.	N. N. 27(H,0) [St. 0.].	Ca Sn (H,Q) [S, Q,]	2Å(H_0),]_}
100 [140] 14] 18 68		Ba (H, 0), [AI 2 5 4 0,] 00 57	N'H, o[1 8t []	8	K"[B" Be; 0, F;]		Y, Fe (Be, Si, 0,) W	AI 2 (0H) [Si 0 0] 21 1 1 1	C3 (H,0)[8" 8, 0, (0H)]			AI [Be Si Q. (0H)]	((H ₂ 0),],],
Car Ca [8, 8, 0, 1/2/00)		0'Zn [B' 0,2] VIE		1 8	Baz [Siz Ti 0a] 002				Ca2 [Ma P2 08(H20)2]			Mg Mg [312 Ug] COT	(H20),]»}"
Na, [I SI, 0n dos		Balt, O. [AL, S., O.] W.		10.		K. K. [N. 0.]X.			Lag (MA Asgug Ingurg)		245		NH3)[][][][]
K [8, 8 0,]		Na B' Si' OL ZIVAN		3 ~ 3	-	Na Na (A3E) E200	Ca3(H20)2[St 0m]		[F. S'0, (0H)(H,0),]	เหม่งหมู่เรา เว้	MA MA [SI 01] WIT		[د0"N] مالية [د0"N]
Cd [B, B, 0,]		$C_{4}^{7} \begin{bmatrix} B_{e_{2}}^{i} P_{1}^{i} 0_{1} \end{bmatrix}_{\infty}^{W_{a}}$	Li [Ai Si 0,]			K 1 [A,0,][] 20	K 27 [Si 0m] 002		K ² ₂ [M ⁵ M ₆ 0,] ¹⁰ / ₂₀		Na Caa (Sia 0,(0H))	AL AL DI LINANITE	
C+[B, 8, 0,]	Li Nér[Nég0, 000] Cs[8, 8'0,]	11.2	K [Ai Si Qi]	1 Deal		Internation with the			{[נימן ~ (ניווי]]]]		Ph Ph, [Si, 0,]	Ba [Al, 0, (0H),]	
(B'Be20,(0H)) 00,	K'''K" [W,0,]	Ca [AI' Si' 0a] (a IVII)		2 d	[[6:0]][]?[[8:10]][]]	Na [Nb 0,F]]			C42 [8"8'04]	K, [V0, F]		Pà Bi [cu Sa]	
				\vdash									
						[U*0,(0H)]]							
				_		[U"0, F,] 101		[Si,0,(0H),]""",		[Cu Br;(NH)]].112			
	Mow: 0. 100		[8' P' 0,]										
	Na ₂ [1 ₆ (l ₁) ₀₀₃					K [Mo, 0,]		I Chille I a Fail an		K2[U F4]88		K2 [Cu Cl3] 201	1
	chr.o. shift	SANIDINE				N2 [112 U5] 002		B12 [A1. 5. 1.] 2		N2 [LT F6] 001		ico (to an) rg	[F] }12010
	Ba [Ti, 0,]W,"		C5 [B+, F,] 1.		- N	1 [2 2 4 J III		11 Be, F, 18.		1 [3 th] []	Na2 [P; 0, (0H)]		
	toofs, tu fthu	to fan tin Tul in	con [this un] to	-		AS IN'N ITT		Bi Si, 0, 1002		T. A E Lin		"cn["u, AJ, A	200

			CHAIN	N				SHEET			_	-п	RAMEWORK	ORK	
BENEOUS			HOMOGENEOUS		HETERODE-	s H	I	HOMOGENEOUS		HETEROGE-	-30E-		HOMOGENEOUS		HE TERO-
osite			Simple		Composite Simple and composite	• A	S	Simple	-	Composite Simple and	end .		Simple	Comp	Composite Simple and
▲ >						Щ. На					₩¥ 1103.H		A A		
<u>·</u> ▲ >							XX						XX		
	[s#][%,								[A]85		(S') ^H				-
Na]										[61 St] [200					
	[H ₂ s] ¹ 2,					[8"N"]#52					(B'N') (B'N') 87 87	8.8			
[4] [4]										{[8 ₂] ^H / ₂ [A ₁] {[8 ₂] ^H / ₈₂ [R _t]			(0'H ₂)		
				[<mark>5; 0,]</mark> ,					[1: 0,] ¹⁰			(51,02)]][20) 5-CRISTOBALTE [51,02]][25) [51,02]][25) 5-TRIOTHITE 5-QUARTZ	(Si 0, MAR (Si 0, Minor		
				ſ											
		[c'r 0,] []]	T.	$\frac{\begin{bmatrix}0^{\circ} \mathcal{L}_{s_{2}}\end{bmatrix}^{\Pi_{s_{2}}^{W_{s}}}}{\begin{bmatrix}5b_{2}^{*}, S_{3}\end{bmatrix}^{W_{s}^{W_{s}}}}$ $\begin{bmatrix}P_{2}^{*} \mathcal{L}_{s_{1}}\end{bmatrix}^{\Pi_{s_{2}}^{W_{s}}}$		U ² [C ⁴ ₄] ⁴⁴ / ₆₀ K ² [C ⁴ ₄] ⁴⁶ / ₆₀ U ² [C ⁴ ₄] ⁴⁶ / ₆₀	[r] (µ]		[А ³ ₂ S ₃] ^{[]200} олрімент [V ³ О ₃] ^{[]111} [V ³ О ₃] ^{[]202}						
	L ¹ [8 [°] 0 ₃] ^{III}	K* [Ft S1]	Ca [Si Da]	Cf [Bi S]			Sr [2h 0z] (22			[L', IOH]]	+	K ¹² [A(0 ₂]] ¹¹²⁰⁰	$\begin{bmatrix} J_{a_2} \\ B_{e_2} \\ 0_{a_3} \end{bmatrix} \begin{bmatrix} W_{a_3} \\ W_{a_3} \\ W_{a_3} \end{bmatrix}$	K [S ⁶ 0 ₃] ^{II+}	
	៨ត្រុំល្	$\frac{k^{2} \left[P^{2} O_{3} \right]_{\infty}^{1}}{R^{2} \left[r^{1} O_{3} \right]_{\infty}^{1}}$	$\frac{P_0^{T}[P_2^{t} \mathbb{O}_{\mathfrak{g}}]_{\infty}^{W_1^{W_1}}}{N_{\mathfrak{a}_2}^{s}[P_2^{t} \mathbb{O}_{\mathfrak{g}}(OH)]_{\infty}^{W_1^{t}}}$	Na2 [Cu E] [20] Ti2 [Ai E3] [20] u2 [22] E.] II]			R6 [B6; F5]		K*[[1]N6 0s]][[[1]] Ash [V2 0s]][[[1]]] x*[1;2 n]][[1]]			Br [N'H ₅₂]		$\frac{R_{\frac{1}{2}, j}^{12} \left[W_{3}^{\circ} Q_{3}\right]_{\infty}^{111}}{B_{3}^{16} \left[T_{4}^{\circ}, Q_{3}\right]_{\infty}^{111}}$	

		SIMPLE Pölynedral		COMPOSITE	
	LINEAR Sad Polygonal	797 8488884L	677ER5		••∞ •••
		₩¥ ₩			Other symbols eres eres
ORKS					normana v
FRAMEWORKS					ß
		XII # 1 2.2. 1 2.2.			000 000 8888
	1		н	*: **: 222	Herena projections of but
					ই † ০০ Φ 4 ৭ ব ৰ ৰ ৰ
				·	
SHEETS				0000 ()	(C)
				**************************************	(8) ••••••••••••••••••••••••••••••••••••
		AND A CONSTRUCT A CONSTRUCT	ணண்ட அதித் உ 'ததுத்து - காணை		⊕ - o -
CHAINS	****** *^	MAN MANY XXXX	ФФФФФ - фФФФФ - ФФФФФФ - ФФФФФФ -	565 66 F	8.00
CH	žuve L		ANALASSE ' KONSTRUE '	1 AAA 10000	⊠ ≎ ⁸
	5~~~4	X= 4= 4= 18 2		A= X = X = ¥ = = = = = = = = = = = = = =	sectorization (S)
ROUPS		X × X × Y × Y ×	<\$1 8 - \$3 -	∑: 牛: 発: ∦:	S Introductor
GRO		<- 3 : 4 : int		ξ= ζ= X = ₹= \$= Φ= Φ= ₹=	▲ + transformert
OMS	· .				G UNITS
ISOLATED ATOMS					BULLDING UNITS △ I ***********************************
ISOLAT		i			

GENERAL CHART OF INORGANIC STRUCTURAL UNITS AND BUILDING UNITS

STRUCTURAL UNITS

Chart. 1. General chart of inorganic structural units and building units (after Lima-de-Faria & Figueiredo, 1978). Reproduced in a very reduced size just to give an idea of its organization and appearence.

5

Hellner (1965). The 'Bauverband' may be defined as a three-dimensional periodic arrangement of points in a structure occupied by atoms or polyhedra of atoms, with definite geometric properties; it represents a typical connectivity pattern for a given structure type and, in certain cases, approximates a sphere packing with typical selfcoordination and several types of voids for interstitial atoms. The 'Bauverband' describes the essential part or 'skeleton' of the structure types. The symbolism based on the lattice complexes is intended to enable the reconstruction of the structure, and also to show the relationship between different structure types. The lattice complex is the infinite array of points derived by applying all the symmetry operations of the space group to a particular point. The lattice complex corresponds, in space groups, to the concept of form in point groups, bearing in mind that a form is generated by the application of the symmetry operations of the point group to a particular face.

Under Hellner's system, the structures are grouped into families, main classes and subclasses. This classification is particularly useful when relating structures with high symmetry, such as cubic and tetragonal, where the symbolism is relatively simple. However, for less symmetrical structures, the symbolism becomes very complex and very difficult to deal with.

1.3. The structural classification of minerals

1.3.1. General considerations

As it has been said before, the structural classification of minerals must fit in a more general structural classification of inorganic structures, and also to conform with the widely accepted structural classification of silicates. The general structural classification of inorganic structures proposed by Lima-de-Faria & Figueiredo (1976), which is a kind of extension of the structural classification of silicates, may be applied to the mineral kingdom, because it will fulfil the two requirements mentioned above.

However the adaptation of the general structural classification of inorganic structures to the mineral kingdom has to take in consideration certain peculiarities of the mineral structures. The general structural classification of inorganic structures was strongly influenced by the work on the systematic derivation of inorganic structures Lima-de-Faria (Lima-de-Faria, 1965a; & Figueiredo, 1969), where structures were derived from the simplest to more complex crystalchemical formulas. This way of description was good enough for the systematic derivation. However, when elaborating a classification of minerals, one has to group together the closely related mineral structures, that is, those which have a similar arrangement though differing by slight distortions, or by substitution of their atoms. This means that we need to group the mineral structures belonging to the same structure type together with their distortion and substitution derivatives, regardless of the complexity of their crystalchemical formulas. One also has to add to these their defect and insertion (or stuffed) derivatives. Taking these differences into consideration. mineral structures may then be classified according to five main categories: close-packed, group, chain, sheet and framework, corresponding to the structural units: individual atoms, finite groups, infinite chains, infinite sheets, and frameworks (Figure 1). Within these categories they are ordered from the structurally simple to the more complex.

An outline of this structural classification of minerals has been presented (Lima-de-Faria, 1983) and a small section will be shown here (Table 3). Among the mineral structures belonging to the same structure type the simplest and best known, the aristotypes in the designation of Megaw (1973), were chosen to represent the structure type. Within each structure type, the other mineral structures, called its population, are ordered by the chemical sequence generally adopted in the classical chemical classification of minerals. The other related structures, distortion, substitutional and insertion (or stuffed) derivatives, follow later in sequence.

This outline of structural classification (Table 3) has been elaborated mainly on the basis of the data contained in the general table of inorganic structure types (Lima-de-Faria & Figueiredo, 1976) and on the work of Povarennykh (1972).

Another structural classification of minerals has been proposed by Hawthorne (1984, 1985), also as a result of the application of his general classification of inorganic structures to the mineral

A T O M I C	Ti ^o [0 ₂] ^c <u>Anatase</u> I4 ₁ /and
Homogeneous	(Fe,Sn) ^o Ta ^o [o _a] ^h <u>Ixiolite</u> Pbcn
Layered	
Closest-packed	$Pe^{O_WO}[O_4]^h$ Wolframite $P2/c$
Non-interstitial	$2n^{\circ}W^{\circ}[0_{4}]^{h}$ Sammartinite
[Cu] ^c Copper Faja	Bo2Fe ^o [0 ₆] ^h Columbite Pbcn
[Pt] ^C Platinum [Ag] ^C Silver	Ta2Pe° [06] h Tantalite Nb2Mg° [06] h Magnocolumbite
[Pd] ^C Falladium [Au] ^C Gold	Ti [°] [0 ₂] ^{ch} Brookite Pbca
[Ir] ^C Iridium [(Ag,Au)] ^C Electrum	
[Ni] ^C Nickel [(Ag,Hg)] ^C Kongebergite [Pb] ^C Lead	Ca ^o [Cl ₂] ^h <u>Hydrophilite</u> Pnnm
	Fe ^o [AsS] ^h Arsenopyrite F2 ₁ /c
[Hg] ^c Mercury R3m	Mn°[0,]h Ramsdellite Pbnm
[In] ^c Indium I4/mmm	Mn ^o [0 ₂] ^h <u>Ransdellite</u> Pbnm V ^o [0 ₂] ^h Paramontroseite
[AuCu] ^C Cuproaurite P4/mmm	Al ^o [(OH) ₃] ^h <u>Bayerite</u> P2 ₁ /a
[FePt] ^C Ferroplatinum [PdHg] ^C Potarite	Al ^o ₂ [0 ₃] ^h <u>Corundum</u> R ₃ ^z c
[AuCu ₃] ^C Tricuproaurite PE3E	$Pe_2^O[0_3]^h \text{ Hematite} \qquad V_2^O[0_3]^h \text{ Karelianite}$
[FbPd ₃] ^c Zvyagintsevite	Gr2 ^{[0} 3 []] ^h Eskolaite
[(0s,Ir)] ^h <u>Iridosmine</u> P6 ₃ /mmc	Fe ^o Ti ^o [O ₃] ^h Ilmenite R3
	$\underline{Mn^{\circ}Ti^{\circ}}_{3}^{\circ} \begin{bmatrix} 0_{3} \end{bmatrix}^{\mathrm{h}} \text{ Pyrophenite } \underline{Mn^{\circ}}_{3}^{\circ} \begin{bmatrix} 0_{3} \end{bmatrix}^{\mathrm{h}} \underline{Melanos-tible}_{\mathrm{tibite}}$
[Zn ¹²] ^h Zinc P63/mmc	
Interstitial	Bi2 ^O [Te3] ^{Chh} <u>Tellurobismuthite</u> B3m
Octahedral	Bi ^o 2 ^{[Te} 2 ^{S]^{chh} Tetradymite R5m}
Na ^o [C1] ^C <u>Halite</u> Fm3m	Bi2 Te2Se chh Kawazulite
$Na^{\circ}[\mathbb{P}]^{\circ}$ Villiaumite $Ca^{\circ}[0]^{\circ}$ Lime	
K ^o [c1] ^c Sylvine Cd ^o [o] ^c Monteponite Ag ^o [(Br,C1)] ^c Cerargyrite Ca ^o [S] ^c Oldhamite	Ti^{O} [CaO ₃] ^C <u>Perovskite</u> Pm3m (ideal)
Ag ² [(Br,Cl)] ² Cerargyrite Ca ² [S] ² Oldnamite Lg ⁰ [O] ^C Periclase Ln ⁰ [S] ^C Alabandite	Ti ^o [(Na,Ce)O ₃] ^c Loparite Nb ^o [NaO ₃] ^c Igdloite
Ni°[0] ^C Bunsenite Fb°[S] ^C Galena	(Ti,Nb) [°] [(Na,Ca)0 ₃] [°] Latrappite Pcmn
Fe [°] [0] ^C Wüstite Pb [°] [Te] ^C Altaite	$Nb^{o}[NaO_{3}]^{c}$ Lueshite $P222_{1}$
$\operatorname{Un}^{\circ}[0]^{\circ}$ Manganosite $\operatorname{Ti}^{\circ}[\mathbb{N}]^{\circ}$ Osbornite	-
Fe ⁷ [Si] ^c Persilicite F2 ₁ 3	Ti ⁰ [PbO ₃] ^C Mekedonite F4/mm
Ni ^o [As] ^h <u>Niccolite</u> P6 ₃ /mmc	Na ^o Al ^o [K ₂ F ₆] ^c Elpasolite Paj
$Co^{O}[As]^{h}$ Langisite $Fe^{O}[Se]^{h}$ Achavalite Ni ^O [Sb]^{h} Breithauptite $Co^{O}[Se]^{h}$ Freboldite	Fe ₃ ^O [S ₄] ^{cchh} Smythite R3m
ENO[Sh] ^h Palatihita (Ni ^{II} Ni ^{III}) ^O [Sa] ^h Sadar-	Tetrahedral
Ito [°] [Sb] ^h Flatstibite holmite Fe [°] [S] ^h Troilite Ni [°] [Te] ^h Imgreite	Zn ^t [S] ^c Sphalerite P43m
re [5] Trollite Ni [Te] Ingreite (PeI,Fe ^{II} ,Fe ^{III}) ^O [5] ^h Pyrrhotine Pd ^O [Te] ^h Kotulskite	$\begin{array}{llllllllllllllllllllllllllllllllllll$
Co ^o [S] ^h Jaipurite Pt ^o [Sn] ^h Niggliite	Cu ^t [I] ^c Marshite Zn ^t [Se] ^c Stilleite
Co ^o [As] ^h Modderite Ponm	Ag ^t [I] ^C Miersite Hg ^t [Te] ^C Coloradoite Cd ^t [S] ^C Hawleyite
Mg ^o [Cl ₂] ^c Chloromagnesite R3m	$\operatorname{Cu}^{t}\operatorname{Fe}^{t}\left[\operatorname{S}_{2}\right]^{c}$ Chalcopyrite I42d
Mn ^o [Cl ₂] ^c Scacchite Fe ^o [Cl ₂] ^c Lawrencite	Cu ^t Ga ^t [8 ₂] ^c Gallite $Tl^{t}Pe^{t}[8_{2}]^{c}$ Reguinite
	Cu ^t In ^t [S ₂] ^c Roguesite
$Ni^{\circ} [T_{e_2}]^{h}$ <u>Melonite</u> $P\overline{3}ml$	$Cu_3^{t}Sb^{t}[S_4]^{c}$ Famatinite I42m
$Sn^{O}[S_{2}]^{h}$ Berndtite $Pt^{O}[Te_{2}]^{h}$ Moncheite $Nt^{O}[Se_{2}]^{h}$ Nidiselite $Pd^{O}[Te_{2}]^{h}$ Merenskyite	Cu ₂ Fe ^t Sn ^t [S ₄] ^c Stannite I42m
Ni ^v [Se ₂] ⁿ Nidiselite Fd [°] [Te ₂] ⁿ Merenskyite Ni [°] [SeTe] ^h Kitkaite	$\begin{array}{l} \operatorname{Cu}_{2}^{t}(\operatorname{Fe},\operatorname{Zn})^{\overset{1}{\operatorname{UGe}}t}\left[\operatorname{S_{4}}\right]^{\overset{1}{\operatorname{C}}}\operatorname{Bri-}_{\operatorname{artite}} \operatorname{Cu}_{2}^{t}\operatorname{Zn}^{t}\operatorname{Sn}^{t}\left[\operatorname{S_{4}}\right]^{\overset{1}{\operatorname{C}}} \operatorname{Kösterite}\\ \operatorname{Cu}_{2}^{t}\operatorname{Zn}^{t}\operatorname{In}^{t}\left[\operatorname{S_{4}}\right]^{\overset{1}{\operatorname{C}}} \operatorname{Sakuraiite} \operatorname{Ag}_{2}^{\overset{1}{\operatorname{Fe}}} \operatorname{Sn}^{t}\left[\operatorname{S_{4}}\right]^{\overset{1}{\operatorname{C}}} \operatorname{Hocartite} \end{array}$
ut [bele] VICKUICE	Cu ^t ₂ Zn ^t In ^t [S ₄] ^C Sakuraiite Ag ^t ₂ Fe ^t Sn ^t [S ₄] ^C Hocartite

Table 3. First part of the outline of a structural classification of minerals (after Lima-de-Faria, 1983). Notice the designation of 'atomic' which has now been replaced by 'close-packed'

Fig. 1. Very schematic representation of the five main categories of mineral structures according to the bond strength distribution of their structures and to the character of the bonds (directional or non-directional). The corresponding structural units are written in brackets (after Lima-de-Faria, 1986).

kingdom. The Hawthorne classification leads also to five main categories of mineral structures, namely, unconnected polyhedra, finite clusters, infinite chains, infinite sheets and infinite frameworks. The main difference from Lima-de-Faria's classification (1983) hinges on the fact that, for Hawthorne, the structural 'modules', corresponding to the structural units, are only polyhedra, and never individual atoms, as admitted by Limade-Faria.

When a new classification replaces another, the former often continues to be valid and useful. The physical classification is still convenient for identification purposes, and the chemical classification for tackling certain paragenetic problems. In order to preserve the advantages of both chemical and structural classifications, a computer data base system with two main entries, the chemical and the structural, has been suggested by Figueiredo (1985).

1.3.2. Implications of the structural classification of minerals in the classification of silicates

When applying the general structural classification of minerals (Lima-de-Faria, 1983) to silicates a few adjustments have to be introduced. A new category of structures is considered, namely, the closepacked structures that correspond to isolated SiO_4 tetrahedra: the island and ring silicates have to be placed together under the designation of group silicates, because both their structural units correspond to finite groups. This way of classifying the silicates is also in agreement with the one proposed by Bragg in 1930: orthosilicates, self-contained groups, silicon-oxygen chains, silicon-oxygen sheets, and three-dimensional silicon-oxygen networks. In Bragg's classification, the orthosilicates (isolated tetrahedra) correspond to silicates based on close packings.

Some silicates may in fact be described in terms of the close packing of oxygen atoms, with silicon and other cations in the interstices. An example is olivine, Mg₂SiO₄, which belongs to the same structure type as Al₂BeO₄ and Mg₂SnO₄. These last two structures are clearly not group structures, but close-packed structures. Megaw (1973) discusses the necessity to distinguish between 'packing structures' and 'linkage structures', placing the olivine in the first category. She describes olivine as based on a hexagonal closest packing of oxygen atoms with certain tetrahedral interstices occupied by silicon, and octahedral sites by magnesium, exactly in the same way as Bragg did in 1929. A similar situation applies to the high pressure form of olivine, Mg₂SiO₄, which corresponds to the spinel structure type Al_2MgO_4 ; obviously, spinel is not a group structure.

CHAPTER 2

The anatomy of crystal structures

2.1. What is a crystal structure?

A crystal structure is a definite arrangement and linkage of atoms in a periodic orderly array, where the periodicity results from infinite translations in three-dimensions. Other categories of orderly arrays correspond to the so-called quasicrystals, obeying certain non-periodic matching rules. Each individual structure can be described by its symmetry (space group), unit cell parameters, chemical composition, unit cell content, the positions of the atoms within the unit cell, their coordination, and the kind and strength of the bonds between them.

Consequently, a crystal structure is not merely a geometric arrangement of atoms, since the particular characteristics of the chemical elements involved, their linkage and the way interatomic bonds are distributed also play an important role. Unfortunately, we do not yet possess exact information on the characteristics and quantitative data on the strength of the bonds. Only qualitative and semi-quantitative results are available.

2.2. The constitution of atoms

To gain an understanding of the anatomy of crystal structure, it suffices that atoms be regarded as miniature planetary systems of which the central sun is represented by the atomic nucleus, while the role of planets is played by the atomic electrons. Admittedly, this is quite an elementary approach; however, it is well suited to the discussion of a large number of problems in physics. In order that electric neutrality be achieved, the negatively charged electrons have to be balanced by a positively charged nucleus; the latter is assumed to consist of neutrons with no electric charge, as well as of protons, positively charged and in such numbers that they will match all the planetary electrons. The number of either the electrons or protons in the atom of a chemical element is called the atomic number of the element.

The electrons are located around the nucleus in several levels of energy, forming successive shells which are called K,L,M,...,Q, from the inner part to the outside. These electron shells may also be referred to shell quantum numbers 1,2,3,..., respectively. Consequently, to say shell L or shell 2 has the same meaning. The further away an electron shell is from the nucleus the more electrons it may contain. The maximum number of electrons in each shell is $2n^2$, where n is the shell quantum number.

Each shell is divided into sub-shells called orbitals, which are designated by s, p, d and f, beginning with the closest to the nucleus. The orbital belonging to a certain shell is described by the corresponding letter, preceded by the quantum number of the shell. As an example we may consider the 's' orbital of the shell 2 (or L), which is designated by 2s. The orbitals define the probability of finding an electron in a certain region of the atom, along different directions and distances from the nucleus. These probabilities are called 'angular' and 'radial' probabilities, respectively.

In a single shell there can only be one 's' orbital, three 'p' orbitals along three directions x, y and z (Figure 2), five 'd' orbitals, and seven 'f' orbitals. Moreover, an orbital can contain, at most, two electrons, which spin in opposite directions, as required by the Pauli exclusion principle. Consequently, in a K shell (quantum number 1), only a single orbital s and $2 \times 1^2 = 2$ electrons can exist. The L shell (quantum number 2) may have 2×2^2 = 8 electrons, two in s and $2 \times 3 = 6$ in p orbitals. The M shell may contain the maximum of $2 \times 3^2 =$ 18 electrons: 2 in s, 6 in p, and 10 in d. The N

Fig. 2. Angular probability functions for p_x , p_y and p_z electrons (after Spice, 1964)

shell has a maximum capacity of 32 electrons. On Table 4, where superscripts indicate the number of electrons per orbital, the electronic configurations of the first ten chemical elements are presented.

The periodic table of the chemical elements (Table 5) is organized so that those elements in one of the vertical columns headed I, II, III,...,VIII have atoms whose outer shells contain electrons equal in number to the Roman numeral designating the group. The chemical elements of group I with atomic numbers 1,3,11,19,..., have just one electron in their outermost shell, which occupies an s orbital. Similarly, the elements of group II have two s orbital electrons in their outer shell.

The chemical properties of an atom depend on the ability of its outermost or valence shell to lose, gain or share electrons (called valence electrons).

The atoms with orbitals s and p of their outer

shell completely filled, that is $s^2 + p^6$, are the most stable because they have no tendency to lose or gain electrons. This is the reason for the existence of inert rare gases, which, with 8 electrons in the outer shell, have the most stable configuration of electrons. The elements of groups V, VI and VII, have a tendency to gain electrons in order to complete their outer shells, thus forming anions. The elements of groups I, II and III tend to lose electrons, and form cations. The chemical elements of group IV, instead of gaining or losing electrons, tend to share electrons with other atoms, in order to achieve the configuration of an inert gas.

Between group II and group III are located the so-called *transition elements* because they may have the same filled orbitals in the outer shell while differing by the number of electrons in the inner shells. For instance, the elements 21 to 30 possess the same

		V	L	
Element	Z	K 15	$2s 2p_x 2p_y 2p_z$	
Н	I	1		1 <i>5</i> ¹
He	2	Ť↓		1 S ²
Li	3	Ť↓	↑	15 ² , 25 ¹
Be	4	Ť↓	∱↓	15 ² , 25 ²
В	5	Ť↓	∱↓ ↑	1s ² , 2s ² 2p ¹
С	õ	Ť↓	∱↓ ∱ ↑	$1s^2, 2s^22p^2$
N	7	Ϋ́	$\dot{\uparrow}\dot{\downarrow}$ $\dot{\uparrow}$ $\dot{\uparrow}$ $\dot{\uparrow}$	1s ² , 2s ² 2p ⁸
0	8	Ϋ́	∱↓ ∱↓ ∱ ∱	$1s^2$, $2s^2 2p^4$
F	9	ήÌ	∱↓ ∱↓ ∱↓ ∱	$1s^2$, $2s^2 2p^5$
Ne	10	Ϋ́	∱↓ ∱↓ ∱↓ ∱↓	$1s^2, 2s^22p^6$

Table 4. The electronic configurations of the first ten elements. A single arrow represents a single electron; a pair of arrows, two electrons of opposite spin occupying a single orbital (after Evans, 1964)

Table 5. The periodic table of chemical elements (after Bloss, 1971)

electron configuration of the outer shell, $4s^2$, but they exceed calcium by a certain occupancy of the 3d orbitals of the more interior M shell. Only after this more interior shell is filled to its capacity of ten, as in zinc, is there a resumption of filling of the outer shell p-orbitals (elements 31 to 36).

Cations are smaller than electrically neutral atoms, not only because electrons have been lost, but also because the attractive action of the nucleus becomes more important with respect to the remaining electrons.

The tendency to gain electrons is called 'electronegativity', and it will be larger the nearer its configuration will be to the configuration of the nearest inert gas. The minimum value of the electronegativity is 0.7 for the element francium and the maximum value is 4.0 for fluorine.

According to their electronegativities the elements are divided into 'metals', if their electronegativities are smaller than 1.9, and they tend to lose electrons and form cations; 'non-metals', if their electronegativities are higher than 2.1 and they tend to gain electrons and originate anions; and 'metaloids', if their electronegativities are in the intermediate range between 1.9 and 2.1, and they show properties intermediate between those of metals and of the non-metals.

2.3. The bonds between atoms

The forces of attraction between atoms are known as chemical bonds, of which important types are: 'ionic', 'covalent', 'metallic' and 'van der Waals' bonds. In inorganic compounds, in particular in minerals, the ionic bonds are predominant. In minerals, the metallic bonds appear only in the elements (gold, silver, etc.), but they are very important in the alloys. The van der Waals bonds appear mostly in organic molecular compounds, but also between certain anions in some inorganic compounds.

If the difference of electronegativity between two atoms exceeds 2.0, the one with higher electronegativity will attract and capture electrons from the other atom to its outer shell. As a conse-

Fig. 3. Exchange of electrons between Cl and Na atoms to form Cl^- and Na^+ ions.

quence, one atom becomes an anion and the other a cation, and the attraction between the two oppositely charged ions forms an ionic bond. Like the gravitational attraction which acts in all directions, this electric force of attraction is non-directional (Figure 3).

Two atoms with relatively high but similar electronegativities may not be able to engage in electron capture between their outer shells, but they may both attain a configuration similar to that of the inert gases if they share electrons between them. Such a situation is called 'covalent bond'. This kind of linkage can correspond to single, double or triple bonds. A double bond occurs if two orbitals from one atom overlap two from the other, so that two pairs of electrons are shared between them. The covalent bond acts in a definite direction and therefore is a directional bond (Figure 4).

In minerals, certain more complex covalent bonds occur quite often, involving different levels of energy, which are better suited to the sharing of electrons. As an example, the diamond structure will be considered. The carbon atom in the neutral state has an electronic configuration $1\frac{1}{5} | 2\frac{1}{5} | 2p2p2p2$, where the arrows represent electrons with opposite spin. When one carbon atom is linked to another carbon to form the diamond structure, each of these four outside electrons forms a new hybrid orbital of equal energy level, one s and three p orbitals designated by 2(sp³), the properties of which are a mixture of the properties of the original s and p orbitals. The electronic configuration of carbon becomes

$$\stackrel{\downarrow}{s}$$
 $\left| \frac{\uparrow}{2(sp^3)} \frac{\uparrow}{2(sp^3)} \frac{\uparrow}{2(sp^3)} \frac{\uparrow}{2(sp^3)} \frac{\uparrow}{2(sp^3)} \right|$. These

'hybrid' orbitals are distributed along four lobes at $109^{\circ} 28$ ' to each other, the axes of these lobes extending towards the corners of a tetrahedron centred in the carbon atom (Figure 5). These lobes represent the regions where it is more probable to encounter the electrons of the hybrid orbitals 2(sp³),

Fig. 5. Schematic illustration of the tetrahedral configuration of the hybrid sp^3 orbitals (after Bloss, 1971).

Fig. 4. Very schematic representation of the molecules of chlorine Cl_2 and sulphur S_8 , and of a chain of selenium atoms (after Bokii, 1954).

the maximum probability lying along the lobe axes. The linkage between the carbon atoms is such that their orbitals overlap. The tetrahedral coordination of the carbon atoms in the diamond structure is, therefore, related to the distribution of these hybrid orbitals. According to quantum mechanics, the greater the overlap between the orbitals, the stronger the resulting covalent bond. This explains the hardness of diamond.

There are other kinds of hybrid covalent bonds (Table 6). For instance, the hybrid bonds dsp^2 , which are distributed along the diagonals of a square, thus representing the square coordination of copper in CuO, and of platinum in PtS.

In a closest packing of atoms of a metallic chemical element the atoms have coordination

twelve. Each metallic atom shares its valence electrons with each of its 12 neighbours, and this is the reason why the 'metallic bond' is weaker than the normal covalent bond or the ionic bond. In the metallic packing, the energy levels of the s and p outer orbitals become so even that the electrons easily transfer from an orbital s to a p orbital, and the packing looks like an assemblage of positive charges in an electron ocean (Figure 6).

The metallic bond takes place, typically, between chemical elements of similar low electronegativity. Like the ionic bond, the metallic bond is also non-directional.

The weakest of chemical bonds is the van der Waals bond, which corresponds to small concentrations of positive and negative charges at op-

Fig. 6. Very schematic representation of the four main types of bonding forces in crystal structures: (a) ionic, (b) covalent, (c) metallic and (d) van der Waals.

posite poles in covalent bonds of atoms. In molecules where atoms are strongly linked together by covalent bonds, dipoles are generated which bond them together by van der Waals forces.

Some of the chemical bonds between atoms are intermediate among the four basic types of bonds. Of these 'intermediate bonds', the most important one is the so-called 'hydrogen bond', which is intermediate between an ionic and a van der Waals bond. When hydrogen is linked to a strong electronegative atom (fluorine or oxygen) by a covalent bond, its unique electron is located near the region of superposition of the orbitals. Consequently, the part of the hydrogen atom farthest from the overlap consists of an exposed proton, because no inner electron shells exist to shield its exposed nucleus. As a result, the proton attracts negative ions, and this attraction is known as the 'hydrogen bond'.

2.4. The size of atoms

From the determination of a crystal structure the positions of the atoms and the distances between

them are obtained. But one does not get information about the size, or zone of influence, of the atoms. To derive the size of the atoms one needs to determine, using other physico-chemical methods, the size of an atom frequently found in crystal structures, then to work out the size of the other atoms from known interatomic distances.

Landé (1920) admitted that the shape of the atoms should be spherical, and that, in most cases, the anions, with added electrons to their shells, should be bigger than the cations, which come about from a loss of electrons. He also assumed that in the LiI structure, which is of the NaCl type, the iodine anions would be nearly in contact, because iodine ions are among the largest anions and litium ions are among the smallest cations (Figure 7). On the basis of these hypotheses, he calculated the size of the iodine anion, namely rI = 2.12 Å, – a figure that yielded both the minimum distance between them and their own diameter. It was then easy to determine the radii of Li+, Na+, K+ and Rb⁺, and consequently also of Fl⁻, Cl⁻ and Br⁻ from data on the structures of the corresponding halogenides.

A more direct way to tackle this problem,

Fig. 7. The arrangement of ions on the cubic face of some alkali halogenide crystals with the sodium chloride structure (after Pauling, 1960).

Table 6. Ionic radii of several chemical elements (after Pauling, 1960)

was followed by Wasastjerna (1923) who used molar refraction, which depends on the ionic volume. The measurements and calculations of Wasastjerna gave the value 1.32 Å for the oxygen anion and 1.33 Å for the fluorine anion. The radius of the fuorine ion calculated by Landé was very similar.

The first general table of ionic radii was produced by Goldschmidt (1926), using values for O^{2-} and F⁻ determined by Wasastjerna and many interatomic distances of well-known structures, together with data gathered for that purpose in his laboratory.

Pauling (1927) and Ahrens (1952) have also dealt with this problem and improved the data on radius size (Table 6).

Admitting sphericity and additivity in the study of ionic radii, we are assuming that the distances between ions are independent of the other forces that act upon them from other parts of the crystal structure. This corresponds to a quite restrictive view of the situation. No doubt more flexibility should be attributed to the ions. An important contribution to this problem has been that of Shannon & Prewitt (1969), who have considered several possible situations, especially the coordination of both cations and anions, and have based their work on approximately one thousand experimental determinations of interatomic distances, considered to be the most precise ones. They have called their figures 'effective' ionic radii.

The other categories of radii (covalent, metallic and van der Waals) have been calculated by several authors, using similar methodologies (Tables 7 and 8). No table of van der Waals radii is presented because it would be of little use in mineralogy.

The knowledge of ionic radii is of great importance in structure determination, particularly in the establishment of the so-called 'trial structure' and, also, in crystal chemistry, to understand the replacement of one ion by another in the same kind of structure (diadochy).

The spherical shape of atoms has been called into question, particularly in alloys and intermetallic compounds. However, instead of the spherical shape, we can always think in terms of a zone (or sphere) of influence (or interaction), related to a certain atom, and which, obviously, oc-

Table 7. Covalent radii of the chemical elements, except for Fr, Ra, Ac and lanthanons and actinons (after Sanderson, 1960)

Table 8. Metallic radii of the chemical elements, except for Fr, Ra, Ac and lanthanons and actinons (after Sanderson, 1960)

16

cupies a certain space in the structure.

From Tables 6 to 8 one can realize how great the change in radius is of a chemical element according to its state of chemical bond.

2.5. The coordination of atoms

In a crystal structure the ions tend to surround other ions of opposite electric charge. In general, any atom in a structure is surrounded by or coordinated to other atoms, and the coordination number of an atom, [N], is given by the number of its 'coordinating atoms'. The definition of coordination is not simple and depends on the bonding model, the nature of the problem, and the methods of calculation.

The coordination polyhedron of an atom is the polyhedron that has its vertices coincident with the centres of the coordinating atoms. In structures which contain lone electron pairs and in which volumes ascribable to these lone electron pairs are comparable with the volume of individual atoms, the coordination polyhedra can also be considered to include lone electron pairs. Several methods have been proposed to define coordination numbers in complex structures. Most provide a 'weighted' coordination number, resulting from an expression for weighting the coordinating atoms, according to their distances from the central atom, e.g., by means of Voronoi polyhedra (the same as Wirkungsbereiche or Dirichlet domains), with or without consideration of atomic radii.

The most common coordination polyhedra occurring in inorganic structures are represented on Figure 8.

For a certain cation-anion relation, it is possible to predict the corresponding coordination from the radius ratio, on the basis of a principle proposed by Goldschmidt (1926), namely: the number of anions surrounding a cation tends to be as big as possible, limited only by the condition that all the anions touch the cation. This means that the structural architecture is fundamentally determined by the interactions cation-anion and not cation-cation or anion-anion.

The minimum values for the most common coordination can be easily calculated and are presented on Figure 9.

Fig. 9. Some groupings of anions around a cation. The minimum radius ratio (cation/anion), that is, for touching anions, is indicated in each case. The dashed circles mean that they are below the full circles.

Fig. 8. More commonly occurring coordination polyhedra in inorganic structures (after Parthé, 1990).

Radius Ratio	<u>Coordination</u> <u>Number</u>	Configuration
0.15-0.22	3	Triangular
0.22-0.41	4	Tetrahedral
0.41-0.57	6	Octahedral
0.57-0.73	6	Trigonal prismatic
0.73-1	8	Cubic
1	12	Cuboctahedral

Table 9. Limiting radii for the various coordinated configurations.

A certain coordination is stable if the radius ratio between atoms A and B is such that its value is between the tangential limit of the anions and the upper limiting situation, which corresponds to the next higher coordination (Table 9 and Figure 10). For instance, in the case of octahedral coordination, these values are 0.414 for the tangential limit and 0.527 for the next higher limit, the trigonal prism. However these values are often not rigorously held by mineral structures due to several other factors.

The coordination of a certain atom is also in-

timately related to the electron configuration of the atom, e.g., to its orbitals. There are hybrid orbitals with a tetrahedral configuration, as is the case of carbon in the diamond structure, others with octahedral, trigonal, bipyramidal configuration, etc. (Table 10). In minerals many chemical elements which form cations have octahedral or tetrahedral orbital distributions, which explains the formation of so many close-packed mineral structures where the principal interstices are tetrahedrally and octahedrally coordinated.

Number of bonds	Distribution of bonds	Ref.*	Examples
2	Linear	(a)	Cu ^I , Ag ^I , Au ^I
3	Planar to corners of equilateral triangle	(b)	_
4	Planar to corners of square	(c)	Cu ^{II} , Ag ^{II} , Au ^{III} ; Ni ^{II} , Pd ^{II} , Pt ^{II}
4	To corners of regular tetrahedron	(<i>d</i>)	Cu ^I , Ag ^I
6	To corners of regular octahedron	(e)	Fe ¹¹ , Fe ^{1v} , Co ¹¹ , Co ¹¹¹ , Ni ¹¹ , Ni ¹¹¹ , Pd ^{1v} , Pt ^{1v}
6	To corners of regular octahedron	(e)	Ti ^{IV} , Zr ^{IV}
6	To corners of trigonal prism	(f)	Mo ^{IV}
	of bonds 2 3 4 4 6 6	of bondsDistribution of bonds2Linear3Planar to corners of equilateral triangle4Planar to corners of square4To corners of regular tetrahedron6To corners of regular octahedron6To corners of regular octahedron	of bondsDistribution of bondsRef.*2Linear(a)3Planar to corners of equilateral triangle(b)4Planar to corners of square(c)4To corners of regular tetrahedron(d)6To corners of regular octahedron(e)6To corners of regular

Table 10. Some common hybrid orbitals and their geometrical configurations (after Evans, 1964)

Fig. 10. Scheme illustrating the degree of stability of a coordination polyhedron. (a) Stable: each ion touches only ions of the opposite sign; (b) less stable: anions touch each other; (c), (d), (e) unstable: free movement of cations leads to a reduction in the coordination number (after Bokii, 1954).

CHAPTER 3

The architecture of crystal structures

3.1. The structural units and their 'polymerization' process

The structural units are normally formed by smaller subunits, called building units, which can be dimers (the linear linkage of two atoms), polygons, or polyhedra of atoms. In minerals, structural units may be found to vary a great deal but, fortunately, they are not so different. One may imagine a kind of 'polymerization' (or condensation) process which enables the derivation of complex structural units from simpler ones. The silicate structures offer a good example. Several silicate sheets are related to certain silicate chains, from which they can be derived by a polymerization process. (Liebau, 1956; Belov, 1956) (Figure 11).

This polymerization process was later generalized by Lima-de-Faria & Figueiredo (1976),

expressing the polymerization of atoms into groups, of groups into chains, of chains into sheets, and of sheets into frameworks (Figure 12).

The polymerization process of structural units based on linked octahedra, particularly among phosphate structures, has been developed by Moore (1973). He established their hierarchy on this basis and also related the polymerization process of the phosphate structural units with their paragenesis.

3.2. The packing of structural units

The structural units tend to pack as closely as possible and their packing is a kind of 'skeleton' of the mineral structure. The other atoms are called interstitial and occupy the holes in the packing.

Fig. 11. Examples of silicate structural units related by the 'polymerization' process. (a) a pyroxene chain, giving rise to an amphibole chain, then to a mica sheet; (b) a wollastonite chain, giving rise to a pektolite chain and this to an idealized apophyllite sheet (after Liebau, 1956).

Fig. 12. Generalized polymerization process. An example of the different stages is: Si or O atom \rightarrow [Si₂O₇]group \rightarrow [Si₂O₆] pyroxene chain \rightarrow [Si₂O₃(OH)₂]sheet \rightarrow [Li₂SO₄]framework. In the case of the framework only the connected unit is depicted; the way the tetrahedra are drawn indicates that they are linked by their top vertices (after Lima-de-Faria, 1986).

When one considers the packing of structural units, it is clear that their shapes and sizes are important characteristics. The packing efficiency of the structural units will be limited by the configuration of the structural units or, in the case of individual atoms, by their electronic configuration which may impose a particular coordination.

3.2.1. Kinds of close packing of individual atoms

In homogeneous close packings the layers are all alike and the way of stacking is the same for all of them.

The well-known cubic closest packing, (Kepler, 1611) the hexagonal closest packing and, the simple cubic packing, the simple hexagonal packing, and the body-centred cubic packing, were all been recognized by Barlow (1883). There are other more open arrangements, not so well-known but important, which exist in many inorganic crystal structures.

If one considers a closest-packed layer of atoms (designated by T, from triangular net), represented by spheres (in projection, by circles of radius R) (Figure 13), with their centres in positions 'A', another closest-packed layer may be stacked over its voids in two possible positions, either 'B' or 'C' (Figure 13). If the second layer is stacked with the centres of its atoms in positions B, see Figure 13, the projections of the voids of this second layer will coincide with positions A and C, defined before. One can then realize that whatever the sequence of the stacking layers, all their relative positions will be projected on positions A, B and C. Therefore, any sequence of layers may be designated by the combination of the letters A,B,C (Pauling, 1928). The hexagonal closest packing is defined by the sequence ABAB...(example: Mg structure), the cubic closest packing by ABCABC...(example: Cu), the double hexagonal closest packing by ABC-BABCB...(example: La), the sequence for the Sm structure by ABABCBCACABABC...,etc. (Figure 13).

This way of expressing the various sequences of closest packing may be simplified by using the notation proposed by Ewald & Hermman (1931) for the two possible kinds of layers, 'p' and 'a', which form these sequences. In fact, there are only two kinds of layers in relation to the two adjacent layers: either a symmetry plane exists and they are designated by p, or it does not exist, and they are designated by a. The letters p and a have been replaced by 'h' and 'c' by Belov (1939) and these are presently most used. In the hexagonal closest packing, all the layers are of the kind h, and in the cubic closest packing they are all of the kind c. This was the reason to choose these two letters h and c to designate the two different kinds of layer pure sequences. Considering the examples given above, one can write Th for Mg, Tc for Cu, Tch for La and

Fig. 13. The closest stacking of two closest-packed layers A and B. Some simple cases of stacking sequences of closest-packed layers, c/h, and the corresponding ball packing drawings.

Tchh for Sm or, in abbreviated form, h, c, ch, and chh, respectively (Figure 13).

The interstices generated in these closest packings are mainly the tetrahedral and octahedral voids. If we consider two layers stacked one over the other, we may notice that all the octahedral voids (r = 0.414R) are at the same level, while the tetrahedral voids (r = 0.225R) are located in two different levels, namely, low and high. A low level tetrahedral void lies in between three spheres with one on the top; a high level tetrahedral void lies on the top of a sphere with three spheres over it (Figure 14). One can also imagine triangular voids corresponding to the position between three atoms and at the level of the centre of these packing atoms, forming a triangle, as the polygon of coordination. However, these voids can only be occupied by atoms which are very small (r = 0.155R) in relation to the packing atoms of radius R; for this reason they are very rarely occupied in mineral structures, and are not indicated on Figure 14.

In closest packings there are as many octahedral voids as packing atoms, and twice as many tetrahedral voids (Figure 14).

Fig. 14. (a) Generation of octahedral and of tetrahedral (low and high) voids by the closest stacking of two closest-packed layers; (b) cross section along a vertical plane through three layers of a hexagonal closest packing; and (c) representation of the voids (dotted circles) in a closest-packed layer generated by a closest stacking.

The simple hexagonal packing is generated by the stacking of closest-packed layers, not over the holes, but over the atoms themselves (superimposition), each packing atom touching only one packing atom of the layer below. This kind of stacking has, obviously, no alternatives, that is, only one kind of this packing exists, and it generates two categories of interstices: trigonal prismatic (p) (r = 0.527R), and square (s) (r = 0.414R). The structure of AlB₂ is based on a simple hexagonal packing of aluminium atoms, with boron atoms in trigonal prismatic voids (Figure 15).

One may now consider still other ways of stacking the closest-packed layers T, for instance, 'over valleys', that is, in such a way that in each layer the packing atoms touch only two packing atoms of the layer below. On the stacking over valleys, the projections of the centres of the atoms of the second layer may occupy positions α , β or γ (Figure 16). The simple sequences are $b = A\alpha A\alpha..., v = A\alpha\beta A\alpha\beta...$ and $d = A\alpha\beta\gamma A\alpha\beta\gamma...$ (Lima-de-Faria & Figueiredo, 1976). This kind of stacking over valleys generates three types of voids: distorted trigonal anti-prismatic (ap) (r = 0.225R) and two categories of distorted tetrahedral voids (r₁ = 0.291R and r₂ = 0.323R).

An example of a structure with such kind of packing is β -beryllia, one synthetic polymorph of BeO, where the oxygen atoms form a packing designated by Tb and beryllium atoms are located in distorted tetrahedral voids. This packing is also designated by 'tetragonal packing' because of its tetragonal symmetry (Matkovich, Giese & Economy, 1965).

If other kinds of layers are now considered besides the closest layers (T), other close packings may be generated and, some of them, are of great interest. Let us start from the square (or

Fig. 15. (a) Closest layers stacked over 'valleys' (lose packings); (b) simple hexagonal packing (s.h.p.); (c) AlB_2 structure; the aluminium atoms form a simple hexagonal packing and the boron atoms occupy all the triangular prismatic voids with a honeycomb pattern (adapted from Laves, 1956).

quadrangular) layers (Q). The stacking of these layers over the holes (position B) with a sequence ABAB... (Figure 16) gives rise to the cubic closest packing, already described (Figure 17). In fact, instead of stacking the closest-packed layers, which are perpendicular to the triad axes, we may obtain the same cubic closest packing by stacking square layers Q, which are parallel to the cubic faces, in a sequence f = ABAB... (Figs. 16 and 17). The cubic closest packing can then be expressed either by T_c or Q_f .

It is handy to realize that the cubic closest pack-

ing can be generated in this way, because many cubic or tetragonal structures have unit-cell directions which can be easily marked on the Q layers, but only with difficulty on T layers.

The stacking of Q layers not over holes but over 'valleys', so that each packing atom touches only two atoms of the layer below, generates two main kinds of close packings, one with a sequence $A\alpha A\alpha...$ designated by Qb, and another with a sequence $A\alpha B\beta A\alpha B\beta...$ called Qd. This kind of stacking generates trigonal prismatic and square interstices (Figure 18). The Qb packing is equal to

Fig. 16. The main stacking sequences generated by the packing of triangular layers (T), of rhombic layers (B) (which form the bodycentred cubic packing), and of square layers (Q) (adapted from Lima-de-Faria & Figueiredo, 1976).

Fig. 17. Cubic closest packing of spheres showing the two kinds of packing layers T and Q, which can generate it (adapted from Zemann, 1969).

the simple hexagonal packing Ts, but Qd is a new close packing. Examples of structures based on a

Qd close packing are PNb, where the Nb atoms form the packing and the P atoms occupy square voids, and Si_2Th , where the Th atoms form a Qd packing and the Si atoms occupy triangular prismatic voids.

The stacking of Q layers, where there are superimposition of the atoms, sequence s = AA..., is called simple cubic packing and gives rise to cubic voids and square voids. Examples of structures based on simple cubic packings (Qs), are: fluorite, CaF₂, where F forms the simple cubic packing and Ca occupies cubic voids (see Figure 53 of Chapter 7), and cooperite, PtS, with S forming the simple cubic packing with Pt in square voids. The different voids generated by the various stackings of layers T or Q are represented on Figure 18.

The body-centred cubic packing is another category of close packing and it can be described by the stacking over 'valleys' of rhombic layers designated B layers (Figure 19). These packing layers are parallel to (110) planes of the body-centred cubic packing and are intermediate between the T and Q packing layers. They may be imagined as distor-

Fig. 18. Representation of the main interstices (dashed circles) generated by the three types of packing layers T and Q, corresponding to the various ways of stacking sequences: over holes, c/h, f; over 'valleys', b, v, d; and by superimposition s (adapted from Lima-de-Faria, 1965b; and Figueiredo & Lima-de-Faria, 1978).

tions of either the triangular layers T ($60^\circ \rightarrow 70^\circ$ 32'), or the square layers Q ($90^\circ \rightarrow 70^\circ$ 32') (Figure 16). This kind of packing generates two main categories of voids: distorted octahedral (r =

0.155R) and distorted tetrahedral (r = 0.291R) (Figure 19). Since the voids of both categories are very small, few examples of such packings are found in mineral structures.

Fig. 19. Packing drawing of the body-centred cubic packing showing two layers: one parallel to the (110) plane (the rhombic layer B), and another parallel to the (100) plane (the open square layer «Q») (adapted from Figueiredo & Lima-de-Faria, 1978).

This same body-centred cubic packing, like the cubic closest packing, can be represented by the stacking of other kind of layers, the square *open* layers, «Q» where the spheres are not tangent to each other. Double angular brackets are used to distinguish it from the normal Q layer of the cubic closest packing (Figure 18). Its sequence is also f = ABAB... (Figure 19). The double angular brackets are also used to indicate any derivation from an imaginary packing, that is, only geometrically valid. An example is tellurium, ϕ [Te^{«C»}], where the tellurium atoms form infinite chains but are distributed geometrically in an approximate cubic closest packing.

The less dense close packings which are obtained by stacking closest packed layers over 'valleys' have been called 'loose packings' by Kripyakevich (1973). Similar modes of stacking have been found in structures based on square layers (Q). Therefore, these close packings are included under the same designation of *loose packings*.

The closest-layers T are formed exclusively by triangles of spheres, and the square layers Q by squares of spheres. Continuing this generalization of packings, consideration may now be given to other kind of layers formed by triangles and spheres (Figure 20). Some of these layers are called R^{mn} because they are formed by m rows of

Fig. 20. (a) \mathbb{R}^{21} layers with voids (dashed circles) generated by a stacking 'f' (after Figueiredo, 1976) and (b) \mathbb{N}^{21} layer with voids generated also by a stacking 'f' (after Figueiredo & Lima-de-Faria, 1977).

triangles and n rows of squares. Lepidocrocite, γ -FeOOH, is a structure where the oxygen ions and the hydroxyls form R³¹ layers, that is, with three rows of triangles followed by one row of squares.

Another kind of layer which also occurs in certain inorganic structures is the one designated by N^{21} , which is formed by interconnected triangles and squares, in the proportion of two triangles for one square (Figure 20). Examples are: CuAl₂, where Al atoms form N^{21} layers, with Cu occupying anticubic voids; and NbTe₄, with N^{21} layers of Te atoms and Nb occupying anticubic voids.

All the close packings that have been mentioned can be described in terms of the stacking of layers of atoms. However, there are structures with a high value of packing efficiency but that cannot be decomposed into layers. The packing has a three directional character, as in garnet, $Ca_3^{do}Al_2^{o}Si_3^{t}[O_{12}]^*$. This kind of homogeneous close packing is indicated by an asterisk.

So far, discussion has been restricted to packings where the layers are all alike and the kind of stacking is the same. However, continuing this generalization, one may also consider heterogeneous packings formed by different ways of stackings or by different layers of atoms. There are packings formed by the same kind of layers but stacked in different ways. An example is molybdenite, MoS_2 , which is formed by slabs of two T layers stacked in 's' (simple hexagonal), these slabs being stacked together in the closest way, with a *h* sequence. On the whole, the complete stacking is (2Ts)h of the S atoms, with Mo atoms in trigonal prismatic voids (Figure 21).

Matlockite, PbFCl, is built of two kinds of square packing layers but differing by the relative size of their atoms. The square layers formed by the larger packing atoms, designated by Q^1 , correspond to Cl atoms and the layers formed by the smaller packing atoms, Q^2 , correspond to fluorine. The packing Q^2Q^1 is built of alternate Q^2 and Q^1 layers, stacked together as close as possible, designated by *f*, with Pb atoms in the voids with coordination nine (Figure 22).

There are other kinds of heterogeneous packings which correspond to interpenetrated slabs of homogeneous closest packings (c/h) or of other close packings (e.g., simple hexagonal and closest packings, Ts/h). They pertain to the so-called recombination structures. Examples are: galeno-bismutite, $Pb^{[7]}Bi_2^{[6/7]}[S_4]^{c/h}$, and apatite, $Ca_5^p P_3^t[O_{12}(OH, F)]^{Ts/h}$.

Fig. 21. Representation of the molybdenite structure, MoS_2 , with a heterogeneous close packing (2Ts)h of sulphur atoms with Mo in trigonal prismatic voids: (a) close-packed description, and (b) polyhedral drawing (after Wyckoff, 1963, and adapted from Kostov, 1968, respectively).

Fig. 22. (a) Packing drawing of the matlockite structure, PbFCl, projected along one of the *a* axis (adapted from Wells, 1962), (b) The corresponding Q^2 and Q^1 packing layers with the voids (dashed circles) generated by the 'f' stacking (adapted from Figueiredo & Lima-de-Faria, 1991b).

Fig. 23. (a) Representation of the S_8 molecules of the α -form of sulphur (after Kostov, 1968). (b) Packing drawing showing how the S_8 molecules are packed together (after Bunn, 1964).

For a more detailed description of the various close packings, their corresponding layers and voids, see Lima-de-Faria & Figueiredo (1990a and b) and Figueiredo & Lima-de-Faria (1991a and b).

3.2.2. The packing of groups, chains and sheets

The other kinds of structural units also tend to pack together as closely as possible. When the structural units are groups, they tend to behave as organic molecules. The molecules tend to stack in such a way that the bumps in one are inserted in the hollows of another molecule. A very complete study of the packing of molecules in organic structures has been made by Kitaigorodskii (1955, 1961), based either on finite molecules, infinite molecular chains, or infinite molecular sheets. This study may be applied to the corresponding categories of inorganic structural units.

Let us consider the packing of groups. An example is the α -form of sulphur, which is built of S₈ groups (Figure 23).

As an example of infinite chains, we chose the pyroxenes, which pack in a close way (Figure 24). The infinite chains do not pack side by side (Figure 24b), but alternately up and down, giving rise to a better fit (Figure 24c).

For sheet structures many examples could be given, such as muscovite, kaolinite and talc, the 'skeletons' of which are based on silicate sheets, $[Si_2'O_5]$, packed together in a dense way.

3.2.3. The connectivity in frameworks

In framework structures, the structural unit is the whole framework. However, the framework may be imagined subdivided in parts, the so-called 'connected units' (Lima-de-Faria & Figueiredo, 1976), so as to facilitate its description and representation. In this way a framework may be decomposed into sheets, or chains, or even groups, which by connection give rise to the whole framework. Whenever possible, the framework is decomposed into layers, because this is the best way which leads to a simpler representation. Examples of frameworks built of connected sheets are: cristobalite and tridymite, which may be considered formed by silicate puckered sheets connected in 'c' or 'h' close packing, respectively. The connected units also tend to link together in a close way, as if they were structural units.

Fig. 24. (a) Two schematic representations of the silicate SiO₃ pyroxene chain and its cross section (after Kostov, 1968). (b) Imagined packing of the pyroxene chains in a non-close way: chains just packed side by side. (c) Representation of the real structure of diopside, CaMgSi₂O₆, showing the way these chains pack together in the closest way (after Lima-de-Faria & Figuiredo, 1990b).

The stability of crystal structures

4.1. The general conditions of stability

Mineral structures are possibly the most stable among inorganic crystal structures. Bragg (1964) said:

A mineral must be very stable in order that it may exist for so long, and so must have a structure of minimum energy.

In fact, the general condition of stability for a physical system corresponds to a minimum free energy G (of Gibbs),

$$G = U + pV - TS$$

where U is the internal energy of the system, p and V the pressure and volume, and T and S the temperature and entropy, respectively. When this principle is applied to crystal structures, it is concluded that, for stability at a given pressure and temperature, the internal energy of a structure should be a minimum, and its entropy, a maximum. A minimum internal energy corresponds to a minimum volume; this means that the atoms in a crystal structure will tend to be as close as possible. The maximum disorder, but as a maximum homogeneity of the atomic distribution. A periodic orderly distribution may possibly be the most favourable situation. According to Buerger (1971)

a random assemblage is one of greater potential energy than an ordered one.

The measure of the internal energy, U, of a crystal structure has been the object of several studies. The theoretical studies of Madelung (1918) and of Born & Landé (1918) were made on alkali halides, and afterwards developed by Born (1919), Haber (1919), Kapustinskii (1933) and Fersman (1935). This enabled theoretical values to be established for simple ionic structures, which are very nearly the experimental values. However, satisfactory results have only been obtained for relatively simple ionic structures.

4.2. The extension of Laves principles to minerals

According to Laves (1956, 1963), what governs the stability of the alloy structures are three main principles: the 'space filling principle' (tendency of the atoms to optimize space filling), the 'high symmetry principle' (tendency to form arrangements of high symmetry), and the 'connection principle' (tendency of the atoms to form connections of high dimension). However, he admitted that other physico-chemical factors, such as the bond factor and the temperature factor, may also be important.

The space filling principle is in complete agreement with the minimum free energy condition, which implies a minimum volume of the atomic distribution. The high symmetry principle possibly expresses the equilibrium of forces reaching each atom; thus, for atoms of the same kind, it would also mean equal interatomic distances.

Certain structures, like pyroxenes, amphiboles, and micas, may be considered intermediate cases between their symmetrical and their packing analogues (Lima-de-Faria, 1988a). Belov (1951) was the first to consider these two extreme ideal cases in micas (Figure 25a). For micas with Si_2O_5 layers, the possible SiO_4 tetrahedral distribution in a closest-packed layer can only have triangular shaped rings (Figure 25b), and the layer with hexagonal rings corresponds to the symmetrical analogue and does not fit in any closest-packed layer (Figure 25c). Moreover, Kitaigorodskii (1955) has also emphasized the importance of these two tendencies for layer stacking in molecular structures:

The nature of the layer stacking, like the

(a)

Fig. 25. (a) Extreme ideal models of mica (after Belov, 1951); (b), (c) Tetrahedral sheets based on triangular shape rings, and on hexagonal shape rings, to which correspond the plane groups p_{31m} and p_{6mm} , respectively (after Lima-de-Faria, 1988a).

molecular packing in a layer, is determined by the closest packing requirements and by the tendency for the symmetry of the molecular arrangement to be as high as possible.

Consequently, the Laves principles of stability can possibly be extended to mineral structures by considering that *there is a tendency for the formation of highly symmetrical structural units, and also a tendency for the close packing of such structural units.* These two tendencies may conflict with each other, and give rise to intermediate situations between the two extreme ideal analogues (Lima-de-Faria, 1988a).

4.3. Stability rules

4.3.1. Rules governing the polyhedral constitution of inorganic crystal structures (Pauling rules)

One of the ways to look at structures is to consider the coordination polyhedra formed by the anions around the cations, and how they are linked to each other. Pauling (1929) has proposed five rules for ionic structures, which govern the linkage of these polyhedra (whether linked by corners, edges or faces), in order to determine the possible stable structures.

First rule:

A coordination polyhedra of anions is formed about each cation, the cation-anion distance equalling the sum of their characteristic packing radii and their radius ratio determining both the nature of the coordination polyhedron and, therefore, the coordination number of the cation.

In other words, the maximum number of large ions X that can be simultaneously tangent to a smaller ion A is geometrically dependent on the value of R_A/R_x , their radius ratio.

Second rule:

The strength of an electrostatic bond may be defined as a cation's valence charge divided by its coordination number. Pauling's second rule states that

an ionic structure will be stable to the extent that the sum of the strengths of the electrostatic bonds that reach an anion (from adjacent cations) equals the charge of that anion but with opposite sign.

In NaCl, for example, each Cl^- anion is surrounded by 6 Na⁺ neighbours, each of which directs a bond of strength +1/6 towards it. Consequently, the negative unit of charge of a Cl^- anion is completely neutralized by the six +1/6 bonds from the adjacent Na⁺ ions; no portion of the positive charge from more distant cations is required to neutralize the Cl^- anion charge. Pauling's second rule calls for the neutralization of charge around an anion in an ionic structure to be sharply localized, that is, at short range distance. Hence, the rule is often known as the electrostatic valence principle.

Third rule:

The sharing of edges and particularly of faces, by two anion polyhedra, decreases the stability of an ionic crystal structure.

This is particularly true if the cation within each anion polyhedron is highly charged, has a small coordination number, and has a radius ratio in respect to the anions that is near the lowest limit tolerated by the anion polyhedron. This third rule might be acceptably restated as: highly charged cations prefer to maintain as large a separation as possible within a structure and to have anions intervening between them so as to screen one from the other. Either feature decreases the potential energy of a crystal by minimizing the repulsive forces existing between neighbour cations.

To illustrate Pauling's third rule we may consider the tetrahedron that four O^{2-} ions typically form around a Si⁴⁺ ion in silicate crystals. In such crystal structures, these tetrahedra often share corners, but not edges or faces. Two reasons dictate this, namely, (i) the cation-to-cation distance is the greatest for corner sharing and the least for face sharing, and (ii) the O^{2-} ions positioned between one cation from the adjacent ones screen most effectively for corner sharing and least effectively for face sharing.

Fourth rule:

In a crystal structure containing different cations, those of high valency and small coordination number tend not to share polyhedron elements with each other.

This 'fourth rule' is merely an extension of the third one and the considerations that justified the former also justify the latter.

Fifth rule:

The number of essentially different kinds of constituents in a crystal tends to be small.

If the simplifying assumption is adopted that most crystal structures consist of a closest packing of the large ions, or a variation thereof, with the smaller ions in the interstices, then the fifth rule may be restated as: the number of types of interstitial sites present within a periodically regular packing of anions tends to be small. This is also called the rule of parsimony.

4.3.2. The bond-valence rules (Brown rules)

To predict the structure and properties of complex structures the bond-valence method can be of considerable help. Basic to the method is the prediction of both atomic valences and bond lengths, as achieved by solving a model that is based on a network of chemical bonds.

The fundamental concept of bond-valence stems from the assumption that the valence of an atom is distributed among the bonds that such an atom forms. Because bond-valences are found to correlate well with a number of parameters, namely with bond lengths, experimental values of the latter can be used to estimate values of the former. These may then be of assistance in the evaluation of crystal structures.

In ionic networks, every bond has a Lewis acid (cation) at one end and a Lewis base (anion) at the other end. Brown (1981) established two empirical rules for compounds with acid-base networks: *Stoichiometric rule:*

The total valence of the Lewis acids is equal to

the total valence of the Lewis bases.

Valence rule:

The sum of bond valences at each atom is equal to the atomic valence.

This rule is closely related to Pauling's electrostatic valence rule.

When identification is needed of elements that cannot be easily distinguished by X-ray diffraction, resorting to experimental values of atomic valences may prove quite useful. Si and Al are two such elements, because they frequently occur in a similar environment in a given crystal and they have nearly the same X-ray scattering factors. However, an atom can be readily identified as Si if its atomic valence is found to be 4.0 and as Al if its atomic valence is found to be 3.0. Should the atomic valence be found to be 3.60, the conclusion would be drawn, to a first approximation, that the site is occupied 60% by Si and 40% by Al.

4.3.3. Rules governing the layer organization of inorganic crystal structures

The distribution in space of the structural units, which plays a fundamental role in the constitution of crystals, is a three dimensional problem (3D), though in most cases it can be formally decomposed into a two-plus-one dimensional problem (2D + 1D), that is, into the organization of the structural units in layers, and the way the layers stack together (Lima-de-Faria & Figueiredo, 1976). The systematic derivation of simple inorganic close-packed structures based on the stacking of equal or alternate layers (Lima-de-Faria, 1965b; Lima-de-Faria & Figueiredo, 1969) and the use of condensed models have shown that the constitution and the stacking of the layers obey certain rules (Lima-de-Faria, 1978).

In the representation of layered structures by condensed models (Lima-de-Faria, 1965a) the structures are sliced into atomic layers formed by the packing atoms and the interstitial atoms which are immediately above them, so that the interstitial atoms which are below it will pertain to the layer located underneath. The slice formed by the packing layer and the corresponding interstitial atoms, as defined, is called 'constructive layer', to distinguish it from the packing layer alone, which involves just the packed atoms (Lima-de-Faria, 1978). The stacking of the constructive layers generates, completely, the crystal structure.

Many inorganic structures are built of the stacking not only of equal packing layers but also of equal constructive layers; this means that the distribution pattern of the interstitial atoms (Lima-de-Faria, 1965a) is also the same in the constructive layers. This fact should be a very difficult guess with the sole help of the usual drawings and models of crystal structures; it only became apparent through the systematic use of condensed models.

The concept of constructive layers does not apply exclusively to the close packing of atoms, that is, to close-packed structures, but may be extended to structures based on the packing of other structural units such as groups, chains or sheets, and even to framework structures. The problem is to find the proper plane direction in the structure which leads to a simple description, and that in general coincides with the plane direction of the highest density of atoms. Most of the inorganic structures admit such a description by layers (Lima-de-Faria & Figueiredo, 1976).

The rules which apply to constructive layers (in what follows called simply 'layers') of inorganic crystal structures (Lima-de-Faria, 1978) are:

1. Inorganic structures are in general built up of equal layers, in certain cases of two alternate layers, and in a very few cases of more than two different layers.

This rule expresses the simplicity of the architecture of crystal structures. It is related to the relatively small values of the lattice parameters and to the symmetry within the unit cell (Figure 58).

2. The way the layers stack together is, in general, the same for all the layers.

This expresses a short-range interaction in the structure, which seems to be related to local electrical neutrality.

3. In each layer the atoms of the same kind tend to be crystallographically equivalent, that is, to oc-

cupy a minimum number of sets of equivalent positions.

This rule expresses the fact that equal atoms tend to have the same environment, and corresponds to Pauling's fifth rule.

4. The distribution pattern of the atoms of the same kind (either interstitial or packed) tends to be as symmetrical and homogeneous as possible.

This rule expresses electrical equilibrium and is related to the symmetry principle (Laves, 1956) and the vector equilibrium principle (Loeb, 1970). Only in rare cases (certain particular proportions of interstitial atoms) is this rule not completely satisfied (Figueiredo, 1973).

5. The distribution pattern of the atoms of the same kind (either interstitial or packed) tends to be as distant as possible from the corresponding distribution pattern of the adjacent layers.

This rule expresses a minimum of electrostatic energy and corrresponds to the 'distant distribution rule' (Lima-de-Faria, 1965b). Related statements were presented by Iida (1957) for magnetic oxides, which he called 'assumption II', and by Radoslovich (1963) for certain silicate structures relative to the interstitial atoms and under the designation of 'cation-avoidance rule'. Pauling's third rule is again another form of expressing this statement, but in terms of the sharing of corners, edges and faces of coordination polyhedra.

These rules are especially useful in the domain of close-packed structures. It should also be noted that the rules presented here express tendencies, and do not take into account certain competing factors, such as the bond factor, which may lead to other equilibrium compromises.

Structure and properties

5.1. Physical properties and crystal structure

There is an intimate relation between the internal structure of minerals and their properties. Povarennykh (1972) said:

Polymorphic species (diamond and graphite, calcite and aragonite, kyanite and sillimanite) provide the best evidence that the structure type and bond distribution are the decisive factors as regards properties[...]; only a consideration of structural features (bond distribution and strength) can give a full conception of all the major properties.

Certain physical properties are more sensitive to the geometrical arrangement of the atoms in space, that is, to symmetry; for example, elasticity, thermoconductivity, electroconductivity and thermoexpansion (Figure 26). Others, such as cleavage, habit, hardness and twinning, are more related to the kind of structural units and their packing.

Fig. 26. Schematic representation of the anisotropic thermoexpansion of a crystal of low symmetry: (a) Cut sphere of the crystal; (b) The sphere takes the shape of an ellipsoid by the action of heat (after Chaskolskaia, 1959).

Hardness is related to the surface resistance of the sample to abrasion. The facility in breaking the bonds depends on the behaviour of the bonds under the effect of an external perturbation, and it is related to the symmetrical character of the electronic orbitals involved in the bonds. For instance, in diamond the crystal is built up of atoms linked by strong covalent bonds (sp³ orbitals) which have a strong directional character. The displacement of an atom, or its removal, therefore requires the breaking of strong bonds, and this is why diamond is very hard.

The arrangement of the atoms in a crystal stucture is normally different in different directions and, as a consequence, the hardness may also depend on the particular face and direction under consideration. These differences are often rather small; however in the case of kyanite, Al_2SiO_5 , the hardness may vary between 4 and 7 for the (100) face, depending on the direction.

The density of crystals depends on the atomic weight of the chemical elements and also on the degree of close packing of their atoms; normally, it will decrease from close-packed to framework structures.

The shape of crystals, their habit, depends on the relative rates of growth in the different directions. There is consequently a definite relation between structure and habit, though there are often obscure additional factors, such as the conditions of formation, which may play an important role. The kind of structural units seems to be the main factor. In sheet structures the habit is normally platy or leafy, in chain structures it is prismatic or acicular, and in close-packed, group and framework structures it is generally isometric, that is, the crystal develops more or less equally in all directions. However, in group structures, groups of certain particular shapes, like long sticks or flat disks, may give rise to platelike or needlelike crystals, respectively. In fact needleshaped molecules pack parallel like a bundle of sticks, and additional ones are added to their sides quite quickly, generating

Fig. 27. (a) Needleshaped molecules, packed parallel, give platelike crystals, while (b) flat molecules, packed parallel, give needlelike crystals (after Bunn, 1964).

platelike crystals. Small flat groups tend to pack together more quickly in a direction perpendicular to the plane of the groups, forming needlelike crystals (Figure 27).

It is clear that crystals will break more easily along the plane surfaces containing weak bonds, and therefore the bond strength distribution will define the cleavage directions. Cleavage will easily reveal chain or sheet structures because it will be parallel to one or to two directions, respectively. Structures belonging to close-packed, group or framework structures will normally show cleavage along three directions.

Structures having a common geometric arrangement may however show different directions of cleavage due to different bonds between the atoms. Examples are diamond and sphalerite, ZnS. In diamond the cleavage is along the (111) plane, involving the smallest number of bonds per unit area, but in sphalerite it is along the (110) plane because the fragments formed have to be electrically neutral (Figure 28).

Optical properties are essentially symmetry dependent. The optical indicatrix is related to the symmetry, and the behaviour of crystals under polarized light is easily predictable on this basis. Optical properties are also greatly influenced by chemical composition. But the refractive index, birefringence and optical sign depend greatly on the structural character. The refractive index depends on the packing density and is normally low for framework structures. Birefringence and optical sign reveal minerals with chain or sheet structures if high or very high, respectively.

Twinning is related to interfaces of common atomic arrangement. The twinning of aragonite (Figure 29) is explained by its structure. The section of the crystal between the broken lines, the socalled twinning plane (Figure 29), may be regarded as belonging either to the original crystal on the left, or to the twin crystal on the right, since it conforms to both.

Every property may reflect, to a certain extent, the constitution of a structure, but it is by considering all the properties of a structure that its character may be revealed.

Epitaxy is an oriented overgrowth of two different crystalline substances, and is very dependent

Fig. 28. (a) Structure of diamond showing cleavage plane (111), and (b) structure of sphalerite showing cleavage plane (110) (after Zemann, 1969).

Fig. 29. The twinning of aragonite. The structure between the broken lines is consistent with the symmetry scheme in either individual (after Bragg & Claringbull, 1965).

on the crystal structures involved. Although the crystals related by epitaxy have different structures, there will be structural planes where there may exist a good fit between the two individuals. As an example we may mention the epitaxial growth of albite over microcline (Figure 30).

Epitaxy is of great importance in thin-film technology, and in particular in the manufacture of semiconductors.

Fig. 30. Example of parallel growth in epitaxy: albite over microcline (after Kern & Gindt, 1958).

5.2. The importance of crystal structure in phase transformations

5.2.1. Topotaxy

The study of phase transformations of minerals, that is, of their behaviour under heat, pressure and certain atmospheric conditions, may reveal important characteristics of their structures. When we break a mineral the cleavage reveals certain directions of weak bonds and, in a similar way, when a crystal is heated the first parts to collapse and transform are also regions of weak bonds.

The transformations of mineral structures by heat may give rise to new phases with random orientation in relation to the original mineral, to a certain preferred orientation, or to a well-oriented phase. In this last case the transformation is called 'topotatic' and the oriented phenomenon 'topotaxy'.

When the transformation of a mineral by heat is topotatic and irreversible, instead of using a temperature and a time which completely transform the mineral, one should use successive heat treatments at a relatively moderate temperature in order to obtain a kind of 'movie' of the transformation. This technique may reveal intermediate stages of the transformation which will help in interpreting its mechanism. Also, instead of powder X-ray photographs to follow the transformation, which do not give information on the relative orientation of the original and transformed structures, it is better to use single-crystal X-ray photographs.

As an example of a topotatic transformation, the goethite \rightarrow hematite dehydration may be described. The orientation relationship of the original goethite to the formed hematite is [001] of hematite // [100] goethite , and [110] hematite // [010] of goethite (Francombe & Rooksby, 1959). The crystal-chemical equation for this irreversible transformation is

where 'h' means hexagonal closest packing, and 'o' octahedral coordination.

A convenient temperature for studying this dehydration is 350 °C because successive and relatively short heat treatments at this temperature

Fig. 31. Sketches of X-ray oscillation photographs of a sample of original goethite, unheated, then heated at 350 $^{\circ}$ C for several periods of time (oscillation about the 'a' axis) (after Lima-de-Faria, 1963).

may produce a good 'movie' of the transformation. After each treatment, a single-crystal X-ray photograph may be taken to indicate the stage of the transformation (Figure 31).

On the second sketch one can notice, together with the spots of the original goethite, already those of hematite with satellites; on the third sketch, the goethite spots have disappeared; on the fourth, the satellites transform to diffuse regions; only on the last sketch is goethite completely transformed to hematite.

The satellites (Figure 32) observed in the goethite-hematite dehydration correspond to intermediate stages of the transformation, and were very important for the interpretation of its mechanism (Lima-de-Faria, 1963).

The structure of goethite is based on a hex-

agonal closest packing of O and OH ions, with Fe ions in octahedral voids. Hematite is also based on a hexagonal closest packing of oxygen ions with iron ions in octahedral voids. Due to the similarity of the packing in both goethite and hematite, this hexagonal closest packing tends to be preserved during the transformation, and the iron ions change their positions from a row pattern to a honeycomb distribution within the close packing. The mechanism is inhomogeneous (Brindley, 1961, Ball & Taylor, 1961), that is, certain regions of the crystal are preserved while others, where the water splits off, are completely destroyed, giving rise to micro cracks in the crystal. The preservation of certain parts of the close packing, where the hematite structure is developed, explains the topotatic character of this transformation (Lima-de-Faria, 1963).

Fig. 32. X-ray rotation photograph of transformed goethite corresponding to a treatment of 300 °C for 19 hours, showing sattelites (FeK radiation, rotation along the 'a' axis of goethite) (after Lima-de-Faria, 1963).

Topotaxy involving structures based on closest packing can be studied in a more general way (Lima-de-Faria, 1967). The possible transformations of structures based on the two fundamental closest-packed arrangements, viz. cubic closest packing (c.c.p.) and hexagonal closest packing (h.c.p.) are: (a) h.c.p. \rightarrow h.c.p., (b) c.c.p. \rightarrow c.c.p., (c) h.c.p. \rightarrow c.c.p. and (d) c.c.p. \rightarrow h.c.p. A tendency for the preservation of the type of packing has been pointed out by several authors (e.g., Ervin, 1952; Dent Glasser, Glasser & Taylor, 1962; Brindley, 1963). If the original structure and the transformed structure have the same type of packing, this is preserved throughout the transformation, the small ions only moving inside the packing. Moreover, when there is a change in the type of packing, the tendency for the preservation of the closest-packed layers determines the possible orientations.

The simplest way of preserving the closestpacked layers is for the transformation to proceed by slipping of the layers over one another. Because there are only two possible ways of placing one layer over another, the movement of a layer is restricted to the second possible position. This movement can consist of a single slip along one out of three different directions (spheres will move along valleys, that is, from one hole to the nearest hole) all giving rise to the same final state, and therefore being equivalent. To describe the movements of layers in these transformations, it is convenient to consider the (110) section of the c.c.p. structure and the section of the h.c.p. structure parallel to $(2\overline{1}\overline{1}0)$ (Christian, 1951) (Figure 33). The advantage of these sections is that the spheres corresponding to the sequences ABAB... and ABCABC... all lie on the plane of the figure. With the help of packing models of plastic balls it can easily be seen that to

Fig. 33. Mechanism of h.c.p. \rightarrow c.c.p. transformation and *vice versa.* The top part of the figure shows schematically the sections of close packing models of plastic balls, appropriate for the description of the mechanism of these transformations: (110) section of c.c.p. and (2110) section of h.c.p. Two different movements are represented, corresponding one to the left-hand arrows and the other to the right-hand arrows, leading respectively to structures (a) and (b). The layers slip by pairs, as locked together (after Lima-de Faria, 1967, and adapted from Christian, 1951).

Fig. 34. Normal orientations derived in transformations involving c.c.p. and h.c.p. (after Lima-de-Faria, 1967).

change from h.c.p. to c.c.p. the layers have to slip by pairs, as if locked together, in the [0110] direction, and that all the pairs slip in the same direction (Christian, 1951) (Figure 33, middle section). The necessity for the layers to move in pairs is the consequence of the single new position that can be obtained by slipping, as pointed out above. For instance, if the third layer slips relative to the layer below, which has already slipped, the resulting position of this third layer will be the same as initially, the sequence ABA being maintained. Two possible c.c.p. orientations can be derived from h.c.p. as movements of pairs AB or BA take place (Figure 33), thus twinning is obtained in this transformation. Since a unique set of closest-packed planes exists in the h.c.p. structure, only two possible c.c.p. orientations are obtained in the transformation h.c.p. \rightarrow c.c.p.

To transform the c.c.p. into h.c.p. the layers have again to be moved by pairs, slipping in the $[11\overline{2}]$ direction and the two possible orientations derived for h.c.p. are parallel, not giving rise to

twinning (Figure 33, lower part). However, because there are four equivalent sets of close-packed planes in the c.c.p. structure, four different orientations are obtained in the transformation (Lima-de-Faria, 1967). These results are summarized in Figure 34.

In Figure 34, lower section, the various packing orientations developed in transformations involving change from h.c.p. into c.c.p., and *vice versa*, are shown with their packing axial relationships. From the figure many particular transformations can be predicted if the packing characteristics of both the original and transformed structures are known.

5.2.2. Transformation twins: Packing and interstitial twinning

Apart from the twinning that comes from closest packing, twinning can also arise from different possible distributions of the interstitial ions within the closest packing. This is the case of the hematite

Fig. 35. The two possible different orientations of nucleation of the honeycomb iron pattern inside the hexagonal closest packing.

derived from heated goethite. In fact the X-ray oscillation photographs show a plane of symmetry which does not exist in single crystals of hematite with this same orientation (Figure 35). The reason is that two differently oriented hematites develop during the transformation, because the honeycomb pattern of the iron ions in hematite may develop in two possible positions inside the hexagonal closest packed layers.

Equal amounts of hematite crystallites are formed with the two orientations because these are equally probable, which is confirmed by the equal intensities of the spots (Lima-de-Faria, 1963).

Consequently, when considering *transformation twins*, one should distinguish between *packing twinning*, which derives from displacements of packing layers, and *interstitial or internal twinning*, derived from more than one possible distributions of the interstitial atoms inside the packing.

Another kind of twinning also arising from phase transformations was described by Lonsdale (1966).

5.2.3. The measure of symmetry in crystal structures and its application to phase transformations

When dealing with phase transformations, it is often needed to compare the symmetries ot two structures, that is, to judge which has higher symmetry. In fact, according to Megaw (1973),

pseudo-symmetric structures are always likely to undergo transition to high-symmetry form and

a high-symmetry structure tends to have higher entropy (and therefore lower free energy), and again

the higher-temperature phase is not necessarily characterized by the higher symmetry.

The measure of symmetry is a problem that has been ignored or disguised until now, and many crystallographers may have different opinions about it or even not to know how to tackle it. To a certain extent, it has been treated under the heading of group-subgroup relations, though in an implicit manner (see, for instance, Vol. A of the International Tables of Crystallography, 1983, 1987); however, it would certainly be useful if this problem were dealt with explicitly.

Admittedly, this is not a simple problem, and a recent proposal for measuring the symmetry of a crystal structure, as put forward by the author (1988b, 1991), may involve aspects hitherto not considered. However, should such a proposal provoke a wide discussion of this problem, it would certainly prove very useful.

What is crystallographic symmetry? Symmetry is essentially repetition. When a motif is repeated several times within a pattern, we say that a certain kind

Fig. 36. Asymmetrical (a) and symmetrical (b) figures (after Shubnikov & Koptsik, 1972)

of symmetry exists. However, symmetry is not only repetition; it has to be produced in a regular way.

In fact, according to Shubnikov & Koptsik (1972), a symmetrical figure must have, in addition to geometric equality of its parts (a), identical arrangement of the parts (b)

(Figure 36).

According to Helen Megaw (1973),

An object possesses certain symmetry if after the application of a particular operation it looks exactly as it did before and continues to do so however often the operation is repeated. For instance, a hexagonal prism looks exactly the same after rotation through 60° .

Therefore, as Fedorov (1901) said,

symmetry is the property of geometrical figures to repeat their parts, or more precisely, it is the property of figures in different positions to bring them in coincidence with the figures in the initial positions.

Although symmetry is essentially repetition in a certain regular way, repetition by itself cannot be a measure of symmetry. In fact, if we compare a cube and an hexaoctahedron, the number of repeated faces in the cube is 6, and that in the hexaoctahedron is 48, but we cannot say that the hexaoctahedron has higher symmetry than the cube, because they have exactly the same symmetry.

What defines the crystallographic symmetry of these two forms is the group of elements of symmetry which is the same for both, and what should measure the symmetry is not the actual repetition of the faces but the maximum number of repetitions these elements of symmetry may generate. This number measures the 'power of repetition' or 'symmetry capacity' of these elements of symmetry, and corresponds to the multiplicity of the general form (Lima-de-Faria, 1988b). The maximum number of repetitions can obviously occur when the face is in a general position, giving rise to the general form (in this case the hexaoctahedron).

We can then propose that the crystallographic symmetry of a pattern should be measured by the capacity of symmetry, or power of repetition of its elements of symmetry.

A pattern may be finite (a figure or a form), or infinite (in two or three dimensions). In the case of a figure or a form (e.g., a crystal in the morphological sense), the symmetry capacity of its elements of symmetry corresponds to the multiplicity of the general form, or the 'order' of the point group (Shubnikov & Koptsik, 1974; Vol. A of Int. Tables, 1983). If we consider the 10 twodimensional crystallographic point groups and the three-dimensional crystallographic 32 point groups, and arrange them according to their 'order', we obtain the results presented in Tables 11 and 12, respectively. These tables correspond to the group-subgroup relations shown on Figure 10.3.1. and Figure 10.3.2, of Vol. A of Int. Tables, 1983 edition, (pages 774 and 775, respectively).

For the two- and three-dimensional infinite patterns we have to order them by the multiplicity of the general position of the corresponding crystallographic space groups (Lima-de-Faria, 1988b, 1991). We obtain Table 13 for the 17 crystallographic plane groups and Table 14 for the 230 crystallographic space groups. The latter table enables the ordering of crystal structures with respect to symmetry. Although there are several tables in Vol. A of Int. Tables involving the multiplicity of the space groups, no table could be found there to correspond to either Table 13 or Table 14.

Applying our definition to the comparison of two infinite patterns corresponding to the plane groups pm and cm (plane groups chosen for reasons of simplification), it is found that the multiplicity of pm is 2 and that of cm is 4. Therefore the symmetry of cm is higher than that of pm (Figure 37). Moreover, not only the multiplicity is higher in cm but more elements of symmetry are present, namely the glide planes.

Group-subgroup relations when applied to these examples may give contradictory results, depending on the sense and mechanism of the transformation (Lima-de-Faria, 1991).

Figure 38 represents the original plane group pm

Fig. 37. Comparison of the symmetries pm and cm (after Lima-de-Faria, 1991).

and the composed plane group cm. By considering that, in certain positions, the motif has slightly changed (full triangles), the composed plane group will show repeated distances twice the original ones. According to group-subgroup relations the formed plane group cm has lost the infinitely repeated translations a_1 and b_1 , and has only translations at $2a_1$ and $2b_1$. On the other hand, certain mirror planes have been converted into glide planes. Consequently, pm has higher symmetry than cm.

However, one can imagine a transition which should lead precisely to the opposite conclusion. If one starts with the space group cm (Figure 39), one can transform it by a similar process into space group pm, as indicated in Figure 39. The infinitely repeated translations are maintained but the glide planes are lost. Consequently pm is a subgroup of cm, and cm has higher symmetry than pm. The fact that this result is in complete contradiction with the one presented in Figure 38 clearly expresses the ambiguity of the measure of symmetry based on group-subgroup relations.

Such contradiction might possibly be resolved if in Figure 38 one would compare the actual unit cells (double lined) of the original and the composed structures. Then it should be obvious that there is an increase of symmetry (the gain of the glide planes), rather than a loss, which leads to the conclusion that *cm* has higher symmetry than *pm*. What seems important is to consider the plane groups independently of their unit-cell size, that is, of their density of symmetry. Should this be admitted, the answer would be the same in both cases,

Order	Oblique	Redtangular	Square	Hexagonal		
1	1	· · · · · · · · · · · · · · · · · · ·				
2	2	m				
3					3	
4		2 mm	4			
6				6	3 m	
8			4 mm			
12				61	mm	

Table 11. Hierarchy of the 10 two-dimensional point-groups (after Lima-de-Faria, 1991)

Order	Triclinic	Mone	clinic	Orthor	hombio	Trigonal		Tetragonal		Hexagonal		Cubia	
1	1												
2	ī	2	m										
3							3						
4		2/	'n	mm2	222			4	4				
6						3	m 32			6	6		
8				mn	nm			4/m 42m	4mm 422				
12						3	m			6/m	6mm	2	3
										6 /2m	622		
16								4/m	mm				
24										6/m	mm	п	13
												4 3m	432
48					-							m	Īm

Table 12. Hierarchy of the 32 three-dimensional point-groups (after Lima-de-Faria, 1991)

Table 13. Hierarchy of the 17 plane groups (after Lima-de-Faria, 1991)

Multiplicity (*)	Oblique	Redia	ngular	Squ	lare	Hexagonal			
1	 p1								
2	p2	pm	Pg						
3					p3				
4		cm p2mg	p2mm p2gg	p	4				
6						p3m1 p31m p6			
8		c21	mm	p4mm	p4gm				
12						р6mm			

Fig. 38. The transformation of a pattern with pm symmetry into a pattern with symmetry cm (after Lima-de-Faria, 1991).

namely cm > pm (with respect to symmetry), and the ambiguity would vanish.

According to these ideas, *density of symmetry* of a crystal structure should be defined as the number of general equivalent positions per unit volume, that is, the ratio of the multiplicity of the general position of a space group to the volume of its unitcell. The density of symmetry may also be important in phase transitions, but should be considered separately from the symmetry itself.

It is interesting to notice that certain crystal structures with orthorhombic symmetry may have higher symmetry than others with tetragonal, trigonal or even hexagonal symmetry. An example is Cmmm (multiplicity 16) with higher symmetry than P6mm and $P\bar{3}ml$ (both with multiplicity 12)

and P4m2 (multiplicity 8).

It may now be realized that in the goethitehematite transformation there is an increase of symmetry from Pbnm of goethite (multiplicity 8) to $R\bar{3}c$ of hematite (multiplicity 18).

The proposed measure of symmetry is independent of the size of the unit cell, therefore also of the density of symmetry. It is clear that an amplified pattern has the same symmetry as the original one (Figure 40).

On the contrary, the measure of symmetry based on group-subgroup relations intermixes symmetry with density of symmetry, which possibly gives rise to the mentioned ambiguity in group-subgroup relations. Some crystallographers would admit solving this ambiguity by using the concept of index of

Fig. 39. The transformation of a pattern with cm symmetry into another pattern with symmetry pm (after Lima-de-Faria, 1991).

Multi- plicity [*]	Triclinic	Monoc	linic	Orthor	hombic	Trig	onal	Tetra	gonal	Hexagonal		Cubic	
1	P1												
2	ΡĪ	P2	P21										
	P1	Pm	Pc										
3						P 3	P 31						
		C2	Cm	P222	P2221	P32		P4	P41				
		Cc	P2/m	P21 21 2	P21 21 21			P42	P43				
		P21 /m		Pmm2	Pmc21			P4	. 43				
4		P21/c		Pcc2	Pma2								
•				Pca21	Pnc2								
				Pmn2,	Pba2								
				Pna21	Pnn2								
						P3	P312			P6	P61		
						P321	P3, 12			P62	P63		
						P3, 21				P64	P6s		
6						P3,21				Рõ			
						P31m	P3c1						
						P31c							
		C2/m	C2/c		C222			14	14,				
				1222	12, 2, 2,			14	P4/m	4			
				Cmm2	Cmc2,			P42/m	P4/n	-			
			p.	Ccc2	Amm2			$P4_2/n$	P422	4			
				Abm2	Ama2			P42,2 P4, 2, 2	P41 22	4			
				Aba2	Imm2								
				Iba2	Ima2			P42212	P4322 P4mm				
8				Pmmm	Pnnn Pban			P43 2, 2 P4bm	P4 ₂ cm				
				Pccm	Poan			P42 nm	P4cc				
				Pmma Pmna	Pcca			P4nc	P4, mc				
				Phan	Pccn			P42 bc	P42m				
				Pbcm	Pnnm			P42c	P42, m				
				Pmmn	Pbcn			P421 c	P4m2				
				Pbca	Pnma			P4c2	P4b2				
								P4n2					
9						R	.3						
						PJlm	P3lc			P6/m	P63/m	P23	P21 3
						PJml	P3cl			P622	P61 22		
										P6222	P6322		
12										P6, 22	P65 22		
										Pómm	P6cc		
										P63 cm P6m2	Pójmc Póc2		
										POm2 P62m	P62c		

Table 14. Hierarchy of the 230 space groups (after Lima-de-Faria, 1991)

Table 14.	Continued
-----------	-----------

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Γ	r	· · · · · ·	T		t	· · · · · · · · · · · · · · · · · · ·	1 /				·	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					F222	Fmm2	ł		I4/m	I41/a				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1				ł							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							4							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							1			and the second se				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							1							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $]				Ibam	Ibca	J		I42m	I42d				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16				Imma	,			P4/mmm	P4/mcc				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									P4/nbm	P4/nnc				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									P4/nmm	P4/ncc				ł
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									P42/mmc	P4 ₂ /mcm				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									P4 ₂ /nmc	P42/ncm				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							к 3	R32						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18							R3c]					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							RĴc							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											P6/mmm	P6/mcc	123	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											P63/mcm	P6 ₃ /mmc		
Image: space	24													
Image: space of the system														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $														P43m
32 Image: state of the stat													P43n	
36 R3m F23 Im3 48 F23 Im3 I432 96 F3m F63 F432 96 F432 F4,32 96 F432 F4,32 96 F73m F73c 96 F73m F73c	32				Fmmm	Fddd								
48 F23 Im3 48 Ia3 I432 14,32 I43m 143d Pm3m Pn3n Pm3n Pn3m Fd3 Fd3 Fd3 F432 F4,32 F432 F4,32 F432 F4,32 F432 F4,32 F430 Im3m Fa3m F43c Im3m Ia3d Fm3m Fm3c									I4,/amd	I4,/acd				
48 Ia3 I432 48 I4,32 I4,32 14,32 I4,32 I4,32 96 Fm3 Fm3 96 Fm3 Fd3 96 F4,32 F4,32 96 F432 F4,32 96 F432 F4,32 96 F432 F4,32 96 Fa3 F43c Im3 Ia3d Fm3 Fm3 Fm3 Fm3	36						RĴ	m						
48 48 96 96 96 96 96 96 96 96 96 96														
48 I 43 d Pm3m 96 Fm3 Fd3 96 F432 F4,32 96 F432 F4,32 96 F430 F430 97 F73m F430 96 F73m F730 97 F73m F730 98 F73m F730 99 F73m F730 90 F73m F730 90 F73m F730														
96 96 96 96 96	48													
96 96 96 96 96 96 96 96 96 97 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97														
96 96 96 96 96 96 96 96 96 96 96 96 96 9														Pm3n
96 96 96 96 96 96 96 96 96 96 96 96 96 9														
96 F43m F43c Im3m Ia3d Fm3m Fm3c														
Im3m Ia3d Fm3m Fm3c														
Fm3m Fm3c	90													
192 FdJm FdJc													Fm3m	Fm3c
	192												Fd3m	Fd3c

* of the general position.

Fig. 40. (a) An example of a pattern with p2mm plane symmetry; (b) amplification of (a). Both have obviously the same symmetry.

the space group, but this also involves the size of the unit-cell and therefore the density of symmetry.

Another sensitive point seems to be the relations between centred and primitive cells (Koptsik & Belov, 1977). For certain mathematical crystallographers, centred and primitive cells may have different crystallographic multiplicities, but the same multiplicity from a mathematical point of view.

Anyhow, with regard to point groups, there is complete agreement between the group-subgroup theory and the present proposal. The only concern is in space groups divergence. This proposal corresponds to the natural extension of the definition of the measure of symmetry from point groups to space groups. In fact, to the multiplicity of the general form, or order of the point groups, corresponds the multiplicity of the general position in space groups.

As another application of these concepts, one may now return to the ideal models of mica (Chapter 4). The symmetrical model with plane symmetry p6mm has higher symmetry (multiplicity 12) than the packing model with plane symmetry p31m (multiplicity 6).

CHAPTER 6

Representation of crystal structures

6.1. Kinds of representation

There are several ways of representing crystal structures. The most common representations can be exemplified for the structure of olivine. In Figure 41 four main different ways of representing this structure are shown: (a) the projection of the atoms on one side of the unit cell, (b) the distribution of the atoms in perspective within the unit cell as a kind of ball and spoke model, (c) the coordination polyhedra description, and (d) the atomic packing.

The representation (a) indicates the exact pos-

ition of the atoms in the structure, though it gives no global visual idea of their distribution in space; (b) shows the coordination of the atoms, in terms of lines of valence, according to the chemical approach; (c) depicts the coordination po'yhedra and the way they are linked together; and (d) shows the relative size of the atoms and their packing.

The crystal structure models that we see in many mineralogical museums are still of the (b) type (ball and spoke), because they correspond more directly to the chemical classification of minerals. However, nowadays, there is a tendency in literature to

Fig. 41. Four different ways of representing the structure of olivine: (a) the projection of the atoms on one side of the unit cell (after Bragg & Claringbull, 1965); (b) the distribution of the atoms in perspective within the unit-cell (after Povarennykh, 1972); (c) the coordination polyhedra description (after Zoltai, 1975) and (d) the atomic packing description (after Wyckoff, 1965).

Fig. 42. A condensed model with its supporting rack placed on a viewing screen. Also shown is a small index box containing condensed model sheets corresponding to several inorganic structure types (after Lima-de-Faria, 1986).

use the (c) representation, with coordination polyhedra, possibly because it gives a better idea of the whole structure and also because it enables to think in terms of the Pauling rules of stability.

To these kinds of representation another one should be added which is based on the layer description of crystal structures, the so-called 'condensed models' (Lima-de-Faria, 1965a). This will be treated in detail in the next section.

There are no representations of crystal structures which may be considered useless. Instead of being opposed they are complementary. Each has advantages and disadvantages.

6.2. Layer description and the condensed models of crystal structures

The layer description stems from slicing the crystal structure into atomic layers, and many authors have considered this kind of description of crystal structures (e.g., Smirnova, 1956; Iida, 1957; Frank & Kasper, 1958; Kripyakevich, 1963).

In the condensed model technique (Lima-de-Faria, 1965a) the atomic layers are formed by the packing atoms and the interstitial atoms which are immediately above them; they are represented by transparent plastic sheets (cellulose acetates), placed in an appropriate supporting rack (Figure 42). A viewing screen may be used underneath to improve the visibility of the model. The condensed model gives an idea of how a structure is built by layers of atoms, and shows how these layers stack together in order to produce the structure.

Although the condensed models were invented to study the mechanism of phase transformations, namely the dehydration of goethite into hematite (Lima-de-Faria, 1963), it was soon realized that they were a suitable tool for the description and relationship of inorganic structures, and for the study of crystal chemistry in general.

Coming back to the crystal structure of olivine (forsterite), Mg_2SiO_4 , it might be noted that the oxygen ions form a hexagonal closest packing while magnesium ions occupy octahedral voids and silicon ions tetrahedral voids. To build its con-

Fig. 43. (a) Standard sheet for building condensed models of structures based on closest packing, with all the octahedral and tetrahedral voids marked (small dotted circles); (b) first sheet of the condensed model of olivine (forsterite); the large open circles represent the oxygen ions while Mg occupying octahedral voids and Si tetrahedral voids correspond to the full circles.

densed model one should start with a hexagonal closest-packed sheet, where the oxygen atoms are represented by large open circles, and all the octahedral and tetrahedral voids generated by the layer to be placed above are indicated by small dotted circles (Figure 43a). Once the octahedral and tetrahedral voids that are occupied are painted black, the first sheet of the condensed model of olivine is obtained (Figure 43b).

Mg ions (the larger full circles) and Si ions (the smaller full circles) occupy 1/2 of the octahedral voids and 1/8 of the tetrahedral voids, respectively, within the closest-packed layer. In the olivine condensed model the sheets are all alike, only displaced in relation to one another. The condensed model of a crystal structure is formed by the minimum number of sheets necessary to get a repetition of the first sheet, and should also contain the unit-cell. The condensed model of olivine is formed by just three sheets (Figure 44). Because the sheets normally contain the projections of more than one unit cell, these models show certain atomic patterns that the other techniques do not. In the case of olivine, the zig-zag patterns of Mg ions and of Si ions may be noticed. The zig-zag of Mg ions is located over and midway between the two zig-zags of Mg ions pertaining to the layer below, that is, the cations in one

layer are as distant as possible from the cations on the adjacent layers, as stability demands. The same applies to the zig-zag pattern of Si ions.

The transparent sheets can be kept in an envelope and a large collection of models may be organized and kept in a small index box (Figure 42). This is the reason why these models have been called 'condensed models'. Another advantage of this kind of model is the possibility of visualizing and easily marking the elements of symmetry of the space group (Lima-de-Faria, 1966). In the case of olivine, one can notice the mirror planes, the glide planes, the screw axes, and the centres of symmetry acting on all the O, Mg and Si atoms (Figure 43b).

The problem of slicing a structure into layers is not so easy as may be imagined and, whenever more than one simple layer description can be envisaged, the most appropriate one has to be found. As already seen, the structure of halite, NaCl, can be represented in two different ways, namely, by densest layers T parallel to the (111) planes (Figure 18), or by less dense layers, Q, parallel to the cubic faces (Figure 45). Of these two possible descriptions, the one parallel to the cubic faces is the more appropriate because one can mark on the sheets, quite easily, the elements of symmetry of the cubic space group of halite (Figure 45).

Fig. 44. Condensed model of olivine (forsterite), $Mg_2^{\circ}Si^{t}[O_4]^{h}$, formed by three transparent plastic sheets. The oxygen ions are represented by the large circles and form a hexagonal closest

Many other examples could be mentioned like AuCu (Figure 46).

An important characteristic of condensed models is their idealized geometry. The fact was borne in mind that there are hundreds of crystal structures based on slightly distorted closest packings, either cubic or hexagonal, of the larger atoms (normally the anions), with small cations in the octahedral and tetrahedral voids. Thus, instead of producing a specific and exact layer to each of the structures, the decision was made to standardize the problem by drawing idealized 'standard sheets'. These could adequately reproduce any closest packing: cubic (c), hexagonal (h), or mixed sequences (c/h), with all the octahedral and tetrahedral voids marked on them (Lima-de-Faria, 1965a).

The shape of the standard sheet for condensed models was chosen rectangular because this was considered the most suitable (Lima-de-Faria, 1965a; Figueiredo & Lima-de-Faria, 1977). The radius of the circles representing the packing atoms was chosen as 1 cm, and the spacing between the perspex plates in the supporting rack was taken as 1.63 cm, corresponding to the ideal distance between the layers of closest packing for T layers. Accordingly, additional minor distortions will accompany other packings, with different layers or different ways of stacking.

The second aspect to be considered for the appropriate standardization was the minimum number of standard sheets necessary to figure out the different packings (Lima-de-Faria, 1965a; Figueiredo & Lima-de-Faria, 1978).

Because the plastic sheets are transparent and both faces are indistinguishable, one may take advantage of sheet rotations in order to produce, with the same sheet, several different stacking positions. To take the maximum advantage of the two diad axes of the rectangular sheet, the layer pattern has to be located asymmetrically with respect to the centre of the sheet, and all the possible layer stacking positions have to be taken into consideration. The maximum number of standard sheets necess-

packing (h). The magnesium atoms are placed in octahedral voids (o) and form a zig-zag pattern, the silicon atoms being placed in tetrahedral voids (t) (smaller full circles). The three sheets display the same pattern, and are only alternately shifted in relation to one another.

Fig. 45. The structure of halite, NaCl: (a) packing drawing (adapted from Barlow, 1883); (b) and (c) the two alternative layers for condensed model representation. The unit cell marked on (b) refers to the T layer and not to NaCl.

Fig. 46. The structure of AuCu: (a) packing model, showing various possible descriptions; (b) layers parallel to the cubic face (001) which are perpendicular to the vertical tetrad axis, and which corresponds to alternate layers of Au atoms (open circles) and of Cu atoms (hatched circles); (c) parallel to (100), and (d) parallel to (111).

ary to represent the closest, the loose, and the simple packings can then be easily derived.

For instance, in the case of square layers (Q), if the centre of the sheet is located over the middle of the small square formed by positions A, α , B, β , only one sheet is needed to generate by rotation all possible positions A, B, α , and β (Figure 47).

If one starts with the packed spheres in position

A, position α is generated by rotating the standard sheet about axis I, and position β is obtained by rotating it about axis II; position B is produced by the combination of both rotations, or by rotation of the standard sheet about an axis perpendicular to its plane and passing through the same centre.

Letters are inscribed on each corner of the sheets (Figure 47) to report the above listed stacking pos-

Fig. 47. Positions of square (Q) and triangular (T) layers with the projections of all possible stacking positions of regular stacking modes: over holes, over valleys and over atoms. The location of the sheet centre in relation to the layer pattern for position A is defined by the intersection of the two coplanar rotation axes I and II of the rectangular sheet. The sheets necessary to generate all possible stacking positions are also schematically represented. Some of the letters are printed upside down or reversed in order to achieve their normal reading when placed, by rotation, at the left hand corner of the sheet (adapted from Figueiredo & Lima-de-Faria, 1978).

itions. A letter identifies a stacking position only when placed at the upper left-hand corner, which is chosen as a reference. To bring a letter to the reference position, a suitable rotation should be imposed on the sheet. This is the reason why, in condensed model sheets, some of the letters are printed upside down or reversed, in order to achieve their normal reading positions when placed, by rotation, at the left hand corner of the sheet. A standard sheet placed in a given position can then be specified by the letters labelling the four corners taken in a clockwise sequence, starting with that placed at the reference corner, and enclosed within square brackets. For instance, the first sheet schematically represented in Figure 47 corresponds to position A, and is specified by $[A\alpha B\beta]$.

If the pattern of all the interstices defined by the stacking of the layer placed above is added to the pattern of the packing atoms, then instead of one sheet, four standard sheets differing only by the marked interstices, and corresponding to the possible ways of stacking will be generated (Figure 48).

To simplify the building of a condensed model,

the letters indicating the stacking positions are supplemented by smaller letters, as subindices, indicating the position of the layer to be placed immediately above. Again, each letter pair is printed in such a way as to appear properly written after the rotation of the standard sheet that brings it to the upper left-hand corner (Figure 48).

To represent cubic closest packing by Q layers (Qf, see Chapter 17, namely Figure 16 and Figure 18) only one sheet is needed, $[A_B\alpha_\beta B_A\beta_\alpha]$. Simple cubic packing also calls for one sheet only, $[A_A\alpha_\alpha B_B\beta_\beta]$. However, for the representation of loose packing sequences, corresponding to the stacking over 'valleys', two sheets are necessary, namely $[A_\alpha\alpha_A B_\beta\beta_B]$ and $[A_\beta\alpha_B B_\alpha\beta_A]$. These last two sheets differ in the relative orientation of the rows of voids, which may be parallel either to the shorter or to the longer side of the rectangular sheet.

To derive the complete standard sheets with letter pairs at their corners, it is important to notice that when complementing the pattern of the packed atoms with interstices, satisfying a given stacking situation for the reference position (letter at the up-

Fig. 48. Schematic representation of the minimum set of complete standard sheets of Q and T layers, which enables the construction of all possible sequences of regular stacking modes. The sheets necessary to produce only pure stacking sequences are enclosed by dotted lines for close stacking, by dashed lines for simple stacking, and by dotted and dashed lines for loose stacking. Unlike real model sheets, and just for the readers' convenience, the schematic sheets in this figure show, at their four corners, letters that are in their normal reading positions (after Figueiredo & Lima-de-Faria, 1978).

per left-hand corner), a similar stacking situation is attained by the remaining positions (letters at the other corners). Consequently, in a complete standard sheet, the letters grouped in pairs at each corner are related by the same kind of stacking. It is therefore easy to derive schematically the complete standard sheets because one only needs to imagine the superimposition of the incomplete sheets according to each situation, and combine the letters of the superimposed corners by pairs.

Figure 48 represents a full scheme of the standard sheets required to build any close packing based on square layers and involving one of the three modes of stacking mentioned above. It can be seen that all the sheet corners are different, and that they cover all the possible stacking situations. A similar process of derivation applies to the packings based on the stacking of T layers (Figure 48) (Figueiredo & Lima-de-Faria, 1978).

For reasons of simplicity, in all the layers and stackings considered up to now, the standard dimension R = 1 cm has been kept for the circles representing the packing atoms and the same supporting rack has been used, in spite of the minor distortions already mentioned, arising from small differences in the interlayer distances. However, as such difference is rather big for the (100) layers, «Q», of the body-centred cubic packing, the radius of the circles representing the packing atoms on these layers was increased (R = 1.41 cm) to avoid great distortions.

The condensed model technique may also be applied to structures based on more complex close packings such as the packings of R^{21} or N^{21} layers,

Fig. 49. Two alternate layers of the structure of spinel, $Al_2^{\circ}Mg^t[O_4]^c$, drawn by the computing plotter. The small dotted circles represent Mg atoms in tetrahedral voids, and the larger hatched circles correspond to Al atoms in octahedral voids (after Langlet, 1975, 1976).

and Q^2Q^1 packings, or even other structures which are not based on close packings but that can be sliced in layers. Examples are pyroxenes and amphiboles (Figueiredo & Lima-de-Faria, 1983), micas (Figueiredo, 1979a, 1986) and feldspars (Figueiredo, 1981).

6.3. Computing programs for layer description

The problem of cutting a certain structure into layers, and then searching for the densest layers, which normally yield the simplest description in equal layers, can be very much simplified by the use of computers. Computing programs for slicing a structure along any (hkl) direction and for the determination of the densest atomic layers have already been worked out by Langlet (1975) as the PRSH and PRCM programs, respectively (Figure 49).

In the cases of closest packings and of simple loose packings it is relatively easy to calculate the radii of the spheres which will fit into the interstices between two adjacent layers, stacked according to a certain stacking mode; however, in more complex cases this calculation becomes very difficult. Another computing program (void program) for the calculation of the sizes of such voids has also been worked out (Langlet, Figueiredo & Lima-de-Faria, 1977). Figure 50a represents a standard sheet of the condensed model of a N^{21} layer, that is, a layer built of circles forming triangles and squares in a 2 to 1 proportion, corresponding to the stacking which displaces the unit-cell of the layer pattern from the origin to its middle point, the socalled 'f' stacking. The large open circles represent the packing atoms, and the dotted circles, the various voids. In Figure 50b the same kind of layer is shown, but drawn by a computing plotter, as a result of the application of the void program. The great similarity between Figs. 50a and 50b clearly shows the large potentialities of computing methods to solve such kind of problems and to help drawing condensed model sheets.

6.4. Representation of real structures by ideal structures: Packing and symmetrical analogues of crystal structures

Since Kepler (1611) several authors have understood the great importance of the tendency for close packing in the mineral structures. In this respect, Belov declared in 1947:

In spite of the variety of the mineral crystalline world, the whole 'mineralogical game' just reduces to various modes of filling gaps in uniform close packing with various corresponding patterns.

Robert Hooke (1665) also said:

[...] had I time and opportunity, I could make

Fig. 50. (a) Condensed model standard sheet of N^{21} layers with stacking 'f' (after Figueiredo & Lima-de-Faria, 1977); (b) same layer N^{21} , with same stacking 'f', drawn by computing plotter as a result of the application of the void program (after Langlet, Figueiredo & Lima-de-Faria, 1977).

probable, that all these regular Figures that are so conspicuously various and curious, and do so adorn and beautifie such multitudes of bodies, as I have above hinted, arise only from three or four several positions or postures of Globular particles,[...] (quoted by Burke, 1966) (Figure 51). More recently Moore (1992) wrote:

I believe the principles of close packing are among the most fundamental and useful of chemical crystallographic concepts;

Fig. 51. Hooke's drawing emphasizing the packing of spherical particles to account for the natural shape observed in crystals (after Hooke, 1665, quoted by Burke, 1966).

Crystallography is an intensely hierarchial science. One could offer in fact infinitely many representations of crystal structures. However highest in the hierarchy for mineral structures is representation of a structure based on principles of close- packing.

When we represent a structure based on the close packing of the larger atoms, with smaller atoms in the interstices, in the majority of cases we are adopting an ideal representation. The model of the structure based on an exact close packing is an *ideal model* of the real structure, which normally corresponds to a slightly distorted ideal packing. The condensed models are appropriate for such representation because they are ideal models.

When the structural units are not individual atoms, but groups, chains, sheets or frameworks, the structures can also be directly related to ideal models. The stability conditions reveal two tendencies, namely: (i) for highly symmetrical structural units, and (ii) for close packing of the structural units. Consequently, the *real structures are normally intermediate between two different types of ideal models* (Lima-de-Faria, 1988a). Well-known examples are the pyroxenes, amphiboles and micas (see Figure 25).

The ideal symmetrical structure, which is based on structural units of higher symmetry, may have lower symmetry, due to the distribution pattern of the interstitial atoms. But to layers formed by the structural units alone, that is, without considering the interstitial atoms, correspond a certain symmetry called the 'intrinsic symmetry' of the structure (Figueiredo, 1979a). For reasons of simplicity, the symmetry of the layers containing the structural units, or of the atomic layers forming the structures, is here evaluated by the plane of symmetry of the corresponding model sheets. For instance, the intrinsic symmetry of ideal structures based on sheets of hexagonal rings of tetrahedra is higher than the intrinsic symmetry of the ideal structures based on sheets of triangular rings which correspond to the closest packing (see Figure 25). In fact, the plane group symmetry of the ideal symmetrical sheets is p6m, and that of the packing layers is p31m (Figueiredo, 1979a), the multiplicity of p6m being twelve and that of p31m, six (see Chapter 5). To emphasize the two stability tendencies, for high symmetry and for close packing, these ideal models are called *symmetrical analogues* and *packing analogues*, respectively. Other names have been proposed by other authors to express the second ideal category, the packing analogues, such as ideal close-packed or symmetrical packed model (Zoltai, 1975; Zoltai & Stout, 1984), and close-packed or atomic analogue (Figueiredo, 1977, 1979a).

The structure of a pyroxene such as diopside, CaMgSiO₆, can be regarded as intermediate between a structure built of ideal symmetrical tetrahedral chains, with a straight spine (Figure 52a,b), and the corresponding closest-packed structure of tetrahedral silicate chains with a zigzag shaped spine, based on the cubic closest packing of the oxygen atoms (Thompson, 1970; Papike, Prewitt, Sueno & Cameron, 1973) (Figure 52c,d). It is interesting to notice that the packing analogue of diopside is not a mere speculation, but it corresponds to a real structure type, namely, cobalt germanate, CoGeO₃ (Papike, Prewitt, Sueno & Cameron, 1973).

Although the symmetrical analogue and the packing analogue have the same overall symmetry (C2/c), they have different intrinsic plane symmetries with respect to the sheets formed by their tetrahedral silicate chains, that of the symmetrical analogue being higher than that of the packing analogue. In fact, the plane symmetry of the sheets formed by the tetrahedral chains of the symmetrical analogue is p2mg (multiplicity 4) and that of the packing analogue is pg (multiplicity 2) (Figure 52).

Many mineral structures possibly have their corresponding symmetrical analogues and packing analogues, and the search for them will certainly contribute to a better understanding of the stability of mineral structures. It is the kind of representation which is chosen that in many cases makes difficult the search for the ideal analogues of a certain mineral structure. A great part of the diversity and complexity of mineral structures is, possibly, only apparent.

```
DIOPSIDE
```


Fig. 52. Alternate sheets of the condensed models of diopside: (a) and (b) of the symmetrical analogue, (c) and (d) of the packing analogue (identical to the cobalt germanate structure). Small full circles represent Si atoms, large full and hatched circles represent Mg and Ca, respectively. The dotted circles, small and large, correspond to non-occupied tetrahedral and octahedral voids, respectively. The superscript on the top right-hand side of the square brackets in the structural formulas characterizes the kind of structural unit and its packing (after Lima-de-Faria, 1988a).

CHAPTER 7

Nomenclature of crystal structures

Structural nomenclature is an important and very useful scientific tool if established appropriately. It will enable the structural characteristics of crystal structures to be seen at a glance and it will also facilitate the establishment of a number of relationships, in particular between structures with similar atomic arrangements.

7.1. Degrees of similarity among mineral structures. Concept of structure type

There are several ways to establish relationships among crystal structures to which different degrees of similarity correspond. Two crystal structures are similar when a correspondence exists between the structural arrangements of their atoms. For example, thorianite, ThO₂, has a structure similar to that of fluorite, CaF₂, these two structures having the same symmetry (space group), and the corresponding atoms occupying the same equivalent positions; they differ only by the parameters of their unit cells. In such cases, the compounds are called isotypic, that means, they belong to the same structure type. In this example the equivalent positions are invariant, and the atomic arrangement is exactly the same.

Even if equivalent positions are invariant, a change in radius ratio of the corresponding atoms may bring about a very different atomic arrangement, at least in what concerns anion and cation coordination. This is the case with CaF_2 and Li_2O structures (Lima-de-Faria & Figueiredo, 1969). In the Li_2O structure, the lithium ions are quite small (radius 0.60Å) as compared to the oxygen ions (radius 1.40Å), therefore this structure can be considered a cubic closest packing of oxygens with lithium ions occupying all the tetrahedral voids (Figure 53). On the other hand, the fluorine ions

(radius 1.36Å) are much larger than the calcium ions (radius 0.99Å), consequently the fluorite structure should be regarded not as a cubic closest packing of calcium ions with fluorine ions in tetrahedral voids, but rather as a simple cubic packing of fluorine ions with calcium ions in cubic voids. No doubt these two structures correspond to different structure types. Some investigators, noting only that cations are merely switched, call them 'antistructures'.

When the equivalent positions are not invariant and the radius ratio between corresponding atoms also changes, the problem may become more complicated. Variation in the atomic parameters may give rise to quite different coordinations of the corresponding atoms, and the atomic arrangements are no longer similar. Examples of this situation were given by Wells (1962), for the relationship among LiNiO₂, NaHF₂ and CsICl₂, and in a more general way by Figueiredo (1976a) for AB compounds having the same symmetry, P4/nmn, and the same occupied equivalent positions, for instance, with A atoms in (2a) and B atoms in (2c). Several values of these equivalent positions and different radius ratios between atoms A and B may give rise to at least five different kinds of atomic arrangements (Figure 54).

These and other crystal-chemical considerations, such as bond strength distribution, bond character, electronegativities assigned to the atoms, and electronic states, may still complicate the definition of isotypy. A few attempts to clarify this problem have been presented (Kripyakevich, 1963; Buerger, 1967; Lima-de-Faria & Figueiredo, 1976); more recently in a report of a Subcommittee of the Crystallographic Commission on Crystallographic Nomenclature of the International Union of Crystallography (Lima-de-Faria, Hellner, Liebau, Makovicky & Parthé, 1990). In

Fig. 53. Packing drawings of the Li_2O and CaF_2 structures, with the packing atoms quite apart, in order to better see the distribution of the smaller interstitial atoms (adapted from Bloss, 1971).

Fig. 54. Five different structural arrangements for an AB compound corresponding to the symmetry P4/nmm, and atoms A and B in the same equivalent positions, namely, A in (2a) and B in (2c) but different values of z, different values of radius ratio rA/rB and different c/a ratio. X represents atoms B larger than A, and similar in size to Y (adapted from Figueiredo, 1976a).

that report, three main degrees of similarity between crystal structures have been defined:

- (1) Two structures are *isopointal* if they have the same space group, or belong to a pair of enantiomorphous space groups, and the corresponding atoms occupy the same equivalent positions, either fully or partially at random (Ex.: FeS₂ and CO₂, and the examples considered in Figure 54).
- (2) Two structures are *isoconfigurational* if they are isopointal, and their geometrical properties, such as axial ratios and interaxial angles, are similar (Ex.: CaF₂ and Li₂O, in the strict geometrical sense).
- (3) Two structures are *crystal-chemical isotypic*, or belong to the same structure type if they are isoconfigurational and the corresponding atoms have similar physical/chemical characteristics (Ex.: CaF₂ and ThO₂; NaCl and MgO; Mg₂SiO₄, olivine, and Al₂BeO₄, chrysoberyl). The word 'similar' arises from the inherent difficulty in defining a priori limits for similarity of geometrical configuration or physical/ chemical characteristics.

Consequently, crystal chemical isotypism may be defined in different ways according to the physical/chemical characteristics considered, as further discussed in the report referred to above. However, in this work the following definition will be adopted: *two structures are isotypic if they are isoconfigurational and have the same structural units packed in the same way*.

Other close relations between structures may be considered, which are called homeotypic. Two structures are *homeotypic* if one or more of the conditions required for isotypism are relaxed, such as identity of the space groups, similarity of axial ratios and interaxial angles, values of the adjustable positional parameters, coordinations of atoms, same site occupancy allowing given sites to be occupied by different atomic species.

Some of the important homeotypic structures are the so-called *distortion* and *substitution derivatives* (Buerger, 1947). In the case of distortion derivatives, the atomic arrangement suffers a slight distortion. Examples are NaCl, halite, space group Fd3m, and FeSi, fersilicite, space group P2₁3; and TiCaO₃, ideal perovskite, space group Fd3m, and CuKF₃, with subgroup symmetry. The other cases are the substitution derivatives where a certain atom in the basic structure is replaced by two or more atoms, but always in the same equivalent positions. Examples are $Cu^tSb^t[S_4]^c$, famatinite, and $Cu^t{}_2Fe^tSn^t[S_4]^c$, stannite, both substitution derivatives of $Zn^t[S]^c$, sphalerite, where Zn is replaced by Cu and Sb, and by Cu, Fe and Sn, respectively.

One can also imagine the so-called 'coalescent derivatives' which are derived from close-packed structures by an imaginary 'coalescence process' of some of their packing or interstitial atoms, e.g., calcite, where three oxygen and one carbon atoms form a CO₃ group within a hexagonal closest packing of oxygens, and O_2Rb_2 , with dumbbells of Rb₂ derived by the coalescence of two Rb atoms in prismatic voids of a simple hexagonal packing of oxygen atoms (Figure 55). (Lima-de-Faria, 1978b).

Apart from the homeotypic structures, many other interesting closely related structures may be considered such as: polytypic structures ($C^t[Si]^{c/h}$ polytypes), 'interstitial' (or 'stuffed') derivatives ($Ti^o[CaO_3]^c$ of the basic structure [AuCu_3]^c), and 'recombination' structures (cannizzarite; olivinenorbergite homologous series). More information on such structures may also be found in the mentioned report (Lima-de-Faria, Hellner, Liebau, Makovicky & Parthé, 1990).

7.2. Structural formulas

7.2.1. General considerations

An appropriate scientific notation for a structure should obey certain fundamental characteristics: it should be as simple and self-explanatory as possible, and it should be kept as close as possible to the way chemists write their formulas in order to facilitate the transfer from chemical to crystalchemical nomenclature. On the other hand, so as to obtain appropriate structural formulas, not overloaded but containing sufficient information, one must select the most relevant structural characteristics, as inferred from the definition of structure type and from the structural classification used.

Although symmetry may account for some physical properties, it is not necessarily an expression of the kind of arrangement of atoms, since slight changes in the positions of the atoms may give rise to quite different symmetries. Conversely, the same symmetry and equivalent positions may

Fig. 55. Top sheet of the condensed model of rubidium peroxide. The small dotted circles represent prismatic and square voids of the simple hexagonal packing formed by the rubidium atoms, and where some of the prismatic voids are occupied by oxygen atoms, coalesced in pairs (after Lima-de-Faria, 1978b).

comply with quite different arrangements of atoms, as was seen before. Therefore, if one wants to express mainly the kind of arrangement of the atoms in the structure, an indication of symmetry can be omitted in structural formulas. However, chemical composition, the coordination of atoms, the category and constitution of the structural units and the way they pack together all are important structural features which should figure in structural formulas.

Several notations have been proposed for structural formulas, and among them the pioneer works of Niggli (1945) and of Machatschki (1947) may be distinguished.

7.2.2. Notation for the coordination of atoms

The definition of coordination and the most commonly observed types of coordination polyhedra in mineral structures have already been discussed (Chapter 2).

As an improvement on earlier notations (Machatschki, 1947; Donnay, Hellner & Niggli, 1964; Lima-de-Faria & Figueiredo, 1976), a specific set of symbols for coordination polyhedra has been proposed by Lima-de-Faria, Hellner, Liebau, Makovicky & Parthé (1990). Such coordination symbols are added as trailing superscripts to the symbols used for the chemical elements in Table 15. Symbols for common coordination polyhedra (adapted from Lima-de-Faria, Hellner, Liebau, Makovicky & Parthé, 1990). The symbol 'tr' is suggested as an alternative for [31], and 'sq' for square coordination in order to avoid confusion with symbol 's' which means stacking by superposition

	Complete			
Coordination polyhedron around atom A	symbol	Sim	plified syml	bols
Single neighbour	[1 <i>l</i>]		[1]	
Two atoms collinear with atom A	[2/]		} [2]	
Two atoms non-collinear with atom A	[2 <i>n</i>]		<u>ر</u> دار	
Triangle coplanar with atom A	[31]		}[3]	tr
Triangle non-coplanar with atom A	[3 <i>n</i>]		J [3]	
Triangular pyramid with atom A in the centre of the base	[4y])	
Tetrahedron	[4 <i>t</i>]	[1]	[4]	t
Square coplanar with atom A	[41]*	[s]		S **
Square non-coplanar with atom A	[4 <i>n</i>]		J	
Pentagon coplanar with atom A	[5/]			
Tetragonal pyramid with atom A in the centre of the base	[5y]		[5]	
Trigonal bipyramid	[5by]		Į	
Octahedron	[60]	[0]		о
Trigonal prism	[6 <i>p</i>]	[<i>p</i>]	[6]	р
Trigonal antiprism	[6 <i>ap</i>]	[<i>ap</i>]	J	ар
Pentagonal bipyramid	[7 <i>by</i>]		} [7]	
Monocapped trigonal prism	[6p1c]		Jui	
Bicapped trigonal prism	[6p2c])	
Tetragonal prism	[8 <i>p</i>]			
Tetragonal antiprism	[8 <i>ap</i>]			
Cube	[8 <i>cb</i>]	[<i>cb</i>]	} [8]	cb
Anticube	[8 <i>acb</i>]	[acb]		acb
Dodecahedron with triangular faces	[8 <i>do</i>]	[do]		do
Hexagonal bipyramid	[8 <i>by</i>]		J	
Tricapped trigonal prism	[6p3c]		[9]	
Cuboctahedron	[12 <i>co</i>]	[<i>co</i>])	со
Anticuboctahedron (twinned cuboctahedron)	[12 <i>aco</i>]	[aco]		aco
Icosahedron	[12 <i>i</i>]	[i]) [12]	i
Truncated tetrahedron	[12 <i>tt</i>]			
Hexagonal prism	[12 <i>p</i>]		J	
Frank-Kasper polyhedra with:				
14 vertices	[14 <i>FK</i>]		[14]	
15 vertices	[15 <i>FK</i>]		[15]	
16 vertices	[16 <i>FK</i>]		[16]	

crystal-chemical formulas and, preferably, they are placed between square brackets.

Two levels of symbols are proposed, namely, complete and simplified:

 Each complete symbol gives the total number of atoms coordinated to a central atom A, and the type of coordination polyhedron, indicated by lower-case letters. The symbols for the most common coordination polyhedra are listed in Table 15; for example, for fluorite, CaF₂, one has: Ca^[8cb]F₂^[4t].

Some of the notations adopted when creating coordination symbols and which can

* Also [4s]. ** or sq

be used in further developments are as follows:

- [NI] denotes a N-sided coplanar (collinear for N<3) coordination polygon around atom A;
- [Nn] denotes a N-sided non-coplanar coordination polygon around A;
- [Np] denotes a N/2-sided coordination prism around A;
- [Ny] denotes a (N-1)-sided coordination pyramid around A;
- [Nby] denotes a (N-2)-sided coordination bipyramid around A;
- (2) The simplified symbol requires only the coor-

dination number [N], without specifying the polyhedron type. On the other hand, for most common coordination polyhedra, a simplified letter notation can be used as a trailing superscript with or without square brackets ('t' for tetrahedron, 'o' for octahedron, 'cb' for cube, etc., as in Table 15); for example,

 $Ca^{[8]}F_{2}^{[4]}$ or $Ca^{[cb]}F_{2}^{[t]}$ or $Ca^{cb}F_{2}^{t}$

The notation must be able to describe coordination by different sets of atoms, or coordination at different distances, or selfcoordination and coordination polyhedra composed of several distinct atomic species, in addition to giving the shape of coordination polyhedra and/or the number of coordinating atoms. The notation should also be flexible and able to express either the complete coordination or only the limited amount of information desired.

For normal oxycompounds, a simple coordination notation such as that for perovskite, CaTiO₃:

 $Ca^{[12co]}Ti^{[6o]}O_3$, $Ca^{[12]}Ti^{[6]}O_3$, $Ca^{[co]}Ti^{[o]}O_3$ or $Ca^{co}Ti^{o}O_3$

will always be interpreted as coordination of Ca and Ti by oxygen.

However, in the general case such simplification results in ambiguity of interpretation. The coordination of atom A in the compound $A_a B_b C_c$ for such a case is written:

 $A^{[m,n;p]}$

where 'm' and 'n' denote the numbers of atoms B and of atoms C (always in the sequence they are presented in the formula), respectively, which are coordinated to atom A. These coordination numbers are separated by commas; the selfcoordination number 'p', of A by atoms A, follows a semicolon. The coordination of atom B is written

B^[m',n';p']

where m', n' and p' denote the numbers of atoms A, C and B around atom B, respectively. Likewise for atom C.

For example, a more complete information on perovskite reads:

Ca^[8cb,12co;60] Ti^[8cb,60;] O₃^[41,21;8p]

The crystal-chemical formula can be simplified as follows:

Ca^[8,12;6] Ti^[8,6] O₃^[4,2;8]

and, if only information on coordination by oxygen atoms is required, it can be further simplified to

 $Ca^{[,12]} Ti^{[,6]} O_3^{[;8]}$ or $Ca^{[12]} Ti^{[6]} O_3^{[;8]}$ or still $Ca^{co}Ti^oO_3$, as above.

7.2.3. Notation for the structural units and their packing

The constitution of a structural unit expresses its extensional and geometrical 'structure', i.e., the way the structural unit is built from its subunits, which may be dimers, polygons, polyhedra or any other clusters. Some of the constitutional aspects are concerned only with the structural unit as a whole, whereas other aspects are concerned only with the way each subunit is linked to other subunits. The former include dimensionality, multiplicity, branchedness and periodicity, and the latter linkedness and connectedness.

The *dimensionality* is the number of dimensions in which a structural unit has infinite extension. It is zero for individual atoms and finite groups, and one, two or three for infinite chains, sheets and frameworks, respectively. The corresponding symbols to be used in a crystal-chemical formula are $\frac{0}{2}$, $\frac{1}{2}$, $\frac{2}{2}$, and $\frac{3}{2}$, the well-known Machatschki symbols.

The following specific symbols may be used for 0-dimensional structural units:

individual:			
group: {g}	{ring:	{r} or	0
	chain fragment:	{f} or	∧
	cage:	{k} or	Ø

Examples are: $Cs_{2\Lambda}[S_6]$, $Na_{4\Theta}[Si_4]$, $Cu_6\{r\}[Si_6O_{18}] \bullet 6H_2O$.

For details of this notation see Parthé (1980).

If dimensionality is the only information expressed, the $\overset{\mathbb{R}}{\Longrightarrow}$ and the pictorial symbols may be used without curly brackets. Otherwise, curly brackets are compulsory in order to avoid ambiguity.

Due to the fact that many mineral structures are based on close packings of individual atoms, the symbol {a} may be omitted for reasons of simplicity; only for the other categories of structural units the dimensionality symbol is compulsory. If the packing is mixed, that is built of atoms of different kinds but similar in size, one may include the various packing atoms, together with their proportion, inside square brackets. For instance, in perovskite, one may write $Ti^{o}[CaO_{3}]^{c}$. Moreover, if the packing is heterogeneous, that is based on atoms with different sizes, then each kind of atom should be written within square brackets. For MgCu₂ (Friauf-Laves phase), one should write

[[Mg][Cu₂]]

In the case of group structures, e.g., ring, chain fragments and cage structures, the number of atoms of each chemical element within square brackets must be equal to the number of atoms of each chemical element in the finite group. For instance, calcite, $Ca\{g\}[CO_3]$.

The *multiplicity* of a structural unit is the number of single subunits, e.g., polyhedra, single rings, single chains or single layers, which are linked to form a complex structural unit of the same dimensionality.

With regard to *branchedness*, finite structural units and single chains are called unbranched if they do not contain any subunits that are linked to more than two other subunits. They are called branched if they do.

The *periodicity* of a structural unit of infinite extension is the number of subunits, excluding branches, within one repeat unit of the infinite chain from which the strucutral unit can be generated by successive linking.

The main constitutional aspects concerned only with the way each subunit is linked to the other subunits are linkedness and connectedness.

The *linkedness* is the number L of peripheral atoms shared by two subunits.

The *connectedness* of a subunit is the total number 's' of adjacent subunits with which it shares atoms, irrespective of its linkedness with a particular adjacent subunit.

The specific values L_1 , L_2 , etc., of linkedness L and/or connectedness 's' of a subunit are written within 'Japanese brackets' \Box as trailing superscripts to its central atom, by analogy with the coordination symbols. The first entries in the Japanese brackets are the different values of L_n , separated from the value of s by a semicolon. The general formula for a structural unit with only one kind of subunit then reads

$$[\mathbf{A}_{\mathbf{m}}^{\lceil \mathbf{L}_{1}, \mathbf{L}_{2} \dots ; \mathbf{s}}] \mathbf{B}_{\mathbf{n}}]$$

For example, SiO_2 exists in a number of polymorphs having different values of linkedness and connectedness of the SiO_4 tetrahedra. In fibrous silica the SiO_4 tetrahedra form infinite chains with tetrahedra linked by their edges; the corresponding formula is

$$\stackrel{1}{\infty}$$
 [Si^[4t] $[2;2 \downarrow O_2]$]

For details of these concepts, see Liebau (1982, 1985).

A notation has also been proposed to emphasize the 'polymerization' (or 'condensation') process of the structural units (Lima-de-Faria & Figueiredo, 1976), in which the number of silica tetrahedra in a group silicate is designated by a Roman numeral, with a superscript to differenciate it from other groups with the same number of silica tetrahedra (Figure 56).

The symbol of a chain derived from a certain group by polymerization is formed by the symbol of the group plus another superscript, to distinguish different chains derived from the same group. In this way the symbol of the structural unit indicates immediately what is the structural subunit from which it derives (Figure 56).

A framework is in itself an infinite structural unit, but it can be imagined subdivided in parts which can be infinite sheets, infinite chains, or finite groups. These subunits are called 'connected units', and the framework may be considered a condensation of such 'connected units'.

The packing of the structural units shall now be considered. Normally, the packing of structural units (either individual atoms or more complex units) is indicated by layer description, that is, by stating the type of layer formed by the structural units, and the way the layers stack together.

However, as a matter of convenience, a few simplifications are adopted in the notation. Because cubic and hexagonal close packings are so common in close-packed and group structures, use is made of symbols c and h instead of Tc and Th, respectively. Also, for the body-centred cubic packing, b is substituted for Bb, while the other pack-

Fig. 56. Nomenclature of structural units expressing the 'polymerization' process. The number of subunits of a group is expressed by a Roman numeral (adapted from Lima-de-Faria, 1986).

ings with b stacking, like Tb and Qb, are written in their complete form.

When no other packing information is provided but the close packing (closest, loose and simple packings), symbols for the latter may be given as trailing superscripts to the square brackets which contain the structural unit. In this case, angle brackets are not compulsory, for instance, [ABC]^c. Any other packing information, particulary the packing (or stacking) symbolism used by individual authors should be given in angle brackets on the line, e.g., [ABC] < >. If packing information is to be given for a set of atoms which does not constitute a structural unit, the symbol should be placed within vertical bars followed by the packing information:

$|ABC|^{c}$ or |ABC| <>

The symbolism for the packing in close-packed structures calls for a few definitions and the use of a small set of numbers and letters. When dealing with complex layers of the kind found in the packing of group, chain and sheet structures, rather than introducing new symbols, one may extend previous ones while generalizing their meaning. Complex layers which normally correspond to plane directions of higher density of atoms are symbolized, their unit cells are marked, and their ways of stacking indicated by stacking vectors (Figure 57).

To describe the packing in *group structures*, the layer with highest density of groups is selected, the geometrical centres of the groups are considered as if they were individual atoms, and the symbolism for atomic packings is applied. However, for groups whose shape is far from spherical, an uncertainty remains regarding orientation relative to the plane of the layers, and the same packing description may correspond to various assemblages of the groups.

In *chain structures*, it is also necessary to choose the plane direction along which the chains are packed with highest density and mark on them their unit cell.

In *framework structures*, where the structural units extend in three dimensions, the concept of packing has no meaning. The packing of structural units is replaced by the connectivity of connected units, but the symbolism is the same as is used for the other categories of structures, accounting for the possibility to consider a framework derived from the connectivity of infinite sheets, infinite chains or finite groups.

7.2.4. General scheme for the structural formulas

To build the structural formula of a mineral structure one has to know first its chemical composition. The atoms belonging to the structural unit should be written within square brackets [], information on the packing should follow between angle brackets < >, then information on the constitution of the structural unit as a whole should be added within curly brackets < > or else be expressed by

Fig. 57. Generalized stacking symbols. R and O mean rectangular and oblique unit cell, respectively (adapted from Lima-de-Faria & Figueiredo, 1976).

trailing superscripts to the chemical elements or subunits inside the structural unit. Ex.: cristobalite, SiO_2 ,

$$\stackrel{3}{\infty}$$
 [Si^[4t] $[1;4] O_2$]

Information concerning interstitial atoms and/or interstitial groups of atoms is placed before

the structural unit. Coordination is expressed, in general, within small square brackets as trailing superscripts to the chemical symbols, the written sequence being preferably from high to low coordination.

The structural formula for a compound A_aB_b - $C_cD_dE_eF_fG_g$ should thus read:

$$\begin{array}{c|c} A_a{}^{[\alpha]} & B_b{}^{[\beta]} C_c{}^{[\gamma]} & D_d{}^{[\delta]} & \{ & \} & [E_e{}^{[\epsilon]} & F_f{}^{[t]} & G_g{}^{[\eta]}] < > \\ & \text{interstitial} & \text{structural} \\ & \text{atoms} & \text{unit} \\ & \text{constitution} & \text{packing of} \\ & \text{of structural} & \text{structural unit} \\ & \text{unit} \end{array}$$

71

Table 16. Examples of different ways and criteria of writing the crystal-chemical formulas of some mineral and other inorganic
structures (adapted from Lima-de-Faria, Hellner, Liebau, Makovicky & Parthé, 1990)

Cu	⁰[Cu] <c></c>	[Cu] ^c	⁰ _∞ [Cu ^[12∞]]
NaCi	Na ^{[6]0} .[Cl ^[6]]	Naº[CI]°	3[Na ^[60] Cl ^[60]]
SiO ₂	³ ≝[Si ^[4t] O ₂]	³ [Si ^{[4t][1;4]} O ₂]	3_[Si ^t O₂]
(cristobalite) FeS ₂ (pyrito)	Fe ^[60] { ⁰ }[S ₂ ^{[3;(1+2)}]	Fe ^[60] ^[S ₂ ^[(3;1)t]]	Feº{g}[S ₂]°
(pyrite) (Mg,Fe) ₂ SiO ₄ (olivino)	(Mg,Fe) ₂ ^[60] {∞}[Si ^[4t] O	(Mg,Fe) ₂ ^[60] { ⁰ ₂ }[Si ^[4t] O ₄]	
(olivine) MgAl ₂ O ₄ (apinol)	³ [Mg ^[4t] Al ₂ ^[60] O ₄ ^{[1,3;12∞)}]		Al ₂ °Mg ^t [O] ₄ °
(spinel) KAI ₃ Si ₃ O ₁₀ (OH) ₂ (muscovito)	K ^[6+6] { ² / ₂ }[Al ₂ ^[60] { ² / ₂ }[(Al _{0.5} Si _{1.5}) ^{[4t][1;3]} O ₅] ₂ (OH) ₂]		
(muscovite)		K ^[6] Al₂ ^o 2ֲ[AltSi₃ ^t O ₁₀](OH) ₂
LaP ₂ (HT form)	$La_{4}^{0}[P_{2}^{[;1]}P^{[;2]}]^{0}_{\infty}[P_{2}^{[;1]}P_{3}^{[;2]}]$		La ₄ ^[P ₃]^[P ₅]
Ca ₃ Si ₂ O ₇ (rankinite)	Ca ₃ { ⁰ }[Si ₂ ^{[4t][1;1]} O ₇]		

If several distinct structural units are present, each should be considered separately with its information in curly brackets followed by that in square brackets. Ex.:

 $A_{a}^{[\alpha]} B_{b}^{[\beta]} C_{c}^{[\gamma]} [\{ \ \} [D_{d}^{[\delta]} E_{e}^{[\epsilon]}] \{ \ \} [F_{f}^{[\beta]} G_{g}^{[\eta]}]] < >$

The packing information within angle brackets describes the way the two different structural units pack together.

In accordance with IUPAC (1990) rules, the valency state of each atom is expressed immediately after its chemical symbol by a Roman numeral in parentheses (e.g., $Fe^{(III)}$), a superscripted Roman numeral (e.g., Fe^{III}), or by a superscripted Arabic numeral followed by the + or - sign (e.g., Fe^{3+}).

The hierarchy of bonds leads to a hierarchy of structural units when several degrees of bond strength may be discerned in a structure. This often translates into weaker bond-strength units incorporating previous more strongly bonded units, and can be expressed by multiple brackets, with the central brackets referring to the structural unit having the strongest bonds. Ex.:

$$A_{a}^{[\alpha]} B_{b}^{[\beta]} C_{c}^{[\gamma]} [D_{d}^{[\delta]} \{ \} [E_{e}^{[\epsilon]} F_{f}^{[\varsigma]} G_{g}^{[\eta]}] < >] < >$$

The same structural formula may correspond to

more than one polymorph of a certain compound, e.g., α and β quartz. This may happen only when the symmetry and/or the distribution pattern of the interstitial atoms vary in the structures. In such cases, the designation of the particular form has to be included in the structural formula in order to avoid ambiguity.

The structural formula can be used with any amount and any selection of structural information depending on the purpose of the study. Examples are given in Table 16.

7.2.5. The importance of structural formulas for the relationship of crystal structures

The widely adopted use of the chemical formula alone to ascribe the crystal structures makes their relationship very difficult. The use of superscripts and other symbols added to the chemical formula, expressing their structural characteristics, makes this relationship much easier. From table 17, where the structures of some binary compounds are indicated by their chemical formula alone, and by the corresponding structural formula, one can recognise the importance of the structural nomenclature.

Authors would certainly gain by writing the

A	AB	AB2	AB3	•	AB	AB2	AB3
Cu	UPb	MoPt ₂	CuPt ₃	[cu] ^c	[UPb] C	[MoPt ₂] ^C	[CuPt 3] C
Mg	PtCu	CdTi ₂	AuCu ₃	[Mg] ^h	[PtCu] ^C	[CdTi ₂] ^C	[AuCu ₃] ^C
Pa	AuCu	ZrGa ₂	TiAl ₃	[Pa] ^{Tb}	[AuCu] ^c	[ZrGa2] C	
Pu	AuCd	HfGa ₂	ZrAl ₃	[Pu] ^{Td}	[AuCd] c	[HfGa2] c	[ZrA13] °
w	LiRh	ZrSi ₂	SbAg ₃	[w] ^{≪Q≫f}	[LiRh] ^h	[ZrSi ₂] ^c	[SbAg ₃] ^h
Po	NaCl	TaPt ₂	SnNi ₃	[Po] ^{Qs}	Na [°] [C1] [°]	[TaPt2] C	[SnNi ₃] ^h
	NiAs	TiO ₂	TiCu ₃		Ni ^o [As] ^h	Ti [°] [0 ₂] [°]	[TiCu ₃] ^h
	ZnS (c)	CTi ₂	AIC13		zn ^t [s] ^c	с°[ті ₂] ^с	۸۱ [°] [с1 ₃] [°]
	ZnS (h)	CdCl ₂	^{MoO} 3		zn ^t [s] ^h	ca°[c12]°	^{Mo°} [0 ₃] ^C
	FeS	РЪ0 ₂	PdF ₃		Fe ^t [S] ^c	Рb [°] [0 ₂] ^h	Pd°[F ₃] ^h
	CuTi	CaCl ₂	NNi ₃		[CuTi] ^{Tb}	Ca [°] [C1 ₂] ^h	N°[Ni ₃] ^h
	CW	CdI ₂	TiCl ₃		c ^p [w] ^{Ts}	Cd°[I2] ^h	Ti [°] [C1 ₃] ^h
	PV	NFe ₂	Bil ₃		$P^{P}[V]^{Ts}$	N°[Fe ₂] ^h	Bi [°] [I ₃] ^h
	NW	Li20	OTi ₃		N ^P [W] ^{Ts}	Li ^t ₂ [0] ^c	0°[Ti ₃] ^h

Table 17. Chemical formulas and corresponding structural formulas of some binary compounds

structural formulas of mineral structures, because it would impel them to summarize their structural results in an explicit way (structural category, coordination of the atoms, etc.).

Structural formulas are also important to express the relationship among parental structures. On Table 18 various structures closely related to the ideal perovskite structure are represented.

7.3. Structure type symbolism

There is a difference between the structural formula and the symbol of a mineral structure type. The structural formula of a mineral structure is the chemical formula of the compound with the addition of superscripts, parentheses, etc., expressing its various structural characteristics. The symbol of a structure type represents a certain kind of structural arrangement and may be based on various notations such as letters and numbers, chemical formulas, lattice complexes, or structural formulas (Table 19).

A general notation for structure types was first proposed by Ewald and Hermann in 1931. 'A' for the chemical elements, 'B' for simple binary compounds AB, 'C' for AB₂, and so on. Within each category they were distinguished by an ordering number. Ex.: copper symbol A1; diamond A4; NaCl, halite, B1; PtS, cooperite, B17; MoS₂, molybdenite, C7. This notation has not been very widespread, possibly because of its lack of structural information. Consequently, structure types are frequently referred to by the best known substance or earliest analysed compound having that structure type. Hence about two hundred compounds having the NaCl arrangement are regarded as pertaining to the NaCl structure type. The American Society for Testing and Materials (1957) proposed a nomenclature for ordering alloy phases, which expressed the chemical formula of a representative substance followed by the number of atoms per unit cell, then the Bravais lattice type codified in a literal symbol. Improvements on this nomenclature were proposed by Schubert (1964) for elements and binary compounds, and by PearTable 18. An example of the efficiency of the structural nomenclature. The perovskite family, showing the corresponding basic and derivative structures: by distortion (dist.), substitution (subs.), insertion (inser.), subtraction (subtr.) and displacement of packing layers (disp.)

son (1967) for metals and alloys. However, such a nomenclature is ambiguous because the same Pearson symbol may pertain to several structure types. Ex.: oP8 (orthorhombic primitive, eight atoms per unit cell) corresponds to SiTi, BFe, CuS and MnP, which are different structure types. Although this symbolism is simple and useful, especially for ordering structure types in a list for structure determination purposes, it is of no use when expressing the relationship between crystal structures.

A more structurally oriented nomenclature has been attempted by Hellner (1965) and by Donnay, Hellner & Niggli (1966), who proposed descriptive symbols based on lattice complexes. For instance, to the copper structure corresponds the F lattice complex and to ZnS, sphalerite, the symbol F + F''. However, this symbolism becomes very complicated for less symmetrical structures and it seems of little practical use.

Offering still more importance to atomic arrangement than to symmetry characteristics, Limade-Faria (1965b) proposed a symbolism for closepacked structure types based on general structural formulas. For instance, the NaCl structure type, symbol B1 in the Ewald-Hermann notation, was represented by the symbol A^oX^c, where X^c meant a large packing atom X in cubic close packing(c), and A° meant an interstitial atom A in an octahedral void (o). However, this notation called for the addition of superscripts to distinguish among structure types with the same general structural formula but with different distribution patterns of interstitial atoms. For instance, TiO₂, rutile, and α -PbO₂ would be represented by the same symbol A^oX^h, while corresponding to different structural arrangements, namely, one with rows of Ti atoms and the other with Pb forming a zig-zag pattern.

To solve this ambiguity it was proposed that the structural formula of a certain substance be used instead of the general structural formula. Such symbolism, in addition to its own descriptive value, would also have the advantage of being in agree-

	Ewald and Hermann SB(1931)	Hellner (1965)	Lima-de-Faria (1965)	Lima-de-Faria and Figueiredo (1976)
Cu	A1	F or (c) H	xc	[Cu] ^c
Мg	A 3	E or (h) H	h X	[Mg] ^h
Na Cl	B1	F + F'	A ^o X ^c	$Na^{o}[C1]^{c}$
ZnS (sphalerite)	В3	F + F"	A ^t X ^c	zn ^t [s] ^c
Al ₂ Mg0 ₄ (spinel)	н11	F ^{'''} ₂₂₂ + D, T'	$A_2^{o} B^{t} X_4^{c}$	Al ^o ₂ Mg ^t [0 ₄] ^c
Mg ₂ Si0 ₄ (olivine)	H12	(h)nC ₂₂ +001/2I2 _{xy} , A ₂₁₁ 1/41/4F	$ A_2^{o} B^{t} X_4^{h} $	$Mg_2^{o}Si^{t}[0_4]^{h}$

Table 19. Various symbolisms proposed for the structure types

ment with the custom of making use of wellknown compounds when representing structure types. Thus, the structural formula of the most representative substance, or Megaw's aristotype (Megaw, 1973) has been proposed (Lima-de-Faria & Figueiredo, 1976) for the corresponding structure type. The B1 structure type would then be represented by the symbol Na°[Cl]^c. On Table 19 are presented the various symbolisms that have been proposed for the structure types.

Systematics of minerals on structural grounds

8.1. Choice and presentation of data

Approximately three thousand and five hundred mineral species are known and the structures of many of them have been determined. In a first approach to a structural classification of minerals, it would be impracticable to appropriately treat all of them; consequently, the necessity was felt to reduce their number and to define a convenient domain of mineral species to be considered in this book. We chose the most common minerals, and a few others were added which fulfilled some links in the structural classification, or had a certain particular structural interest.

For the choice of the most common minerals the list was adopted that is given in Kostov's 'Mineralogy' and which includes approximately 300 mineral species. Because emphasis on the various kinds of structural arrangements is important, mineral species have been grouped according to mineral structure types. In this way, the 300 minerals are reduced to approximately 190 mineral structure types. With the addition of 40 mineral structure types, a total of 230 different structure types are described.

The mineral chosen to define the mineral structure type was the most representative mineral species, the so-called aristotype in the sense of Megaw (1973). There are certain mineral species to which several names correspond, but the name given in Hey's 'Chemical Index of Minerals' has been adopted (Ex.: sphene, rather than titanite). There are also some mineral species which pertain to an homologous series, and then the extreme cases are mentioned just below the series name (Ex.: the olivine series: forsterite-fayalite).

The structural data presented include the structural formula, the space group, the cell parameters, the number of structural formulas per unit cell (Z), and the atomic positions of the corresponding chemical elements.

The rules proposed by the Nomenclature Subcommittee Report (Lima-de-Faria, Hellner, Liebau, Makovicky & Parthé, 1990) for the structural formulas were adopted, with a few alterations. Main differences are the location of the structural units at the end, and of all the interstitial atoms in the beginning.

The space group and the atomic positions were taken from Wyckoff's 'Crystal Structures' unless a more recent structure determination was known to give substantially different or unambiguous results. The symbolism presented for the space group in some cases is not the standard but that used by the authors, in order not to change the description of the atomic positions. The experimental errors in the atomic positions are omitted for reasons of simplicity.

The population corresponding to the same mineral structure type, that is, the mineral species having the same structure (isotypic), are indicated by their names and corresponding structural formulas. Underlined mineral names correspond to the most common minerals of Kostov list. Due to the lack in many books of a clear definition of isotypy, many minerals that were designated isotypic have not been included in the population. The conviction is felt that in the future many other mineral species will be added, substantially increasing their population. The population is followed, when it is the case, by the distortion and/or substitution derivatives. Only when a derivative is sufficiently important is it described on a separate page.

Several complementary representations of the same mineral structure type are given, in order to enable a better view and understanding of the structure. These representations may include: packing drawing and corresponding projection of the unit cell content, polyhedral representation, ball and spoke description, layer dercription (condensed model) or any other suitable structural pictorial information, like special coordination polyhedra of some of the chemical elements. Among the various kinds of representations particular attention is given to the close-packing description, based on condensed models, because the general tendency in mineral structures is toward the densest packing.

The original figures are, in many cases, modified, adapted or completed for continuity and to avoid certain misunderstandings. They are often completed with the chemical symbols of atoms, when these are not explicit in the original, and the axes of the unit cell may have been changed in order to produce a uniform description of the structures, and facilitate the comparison among the various representations.

The figures are referred to their original authors, whenever possible. If a figure is taken from a textbook where the original is not mentioned in full, then it is also indicated that it is quoted by the author of the book.

The properties of the mineral representing the structure type had to be selected due to shortage of space and lack of uniform information. The main properties chosen are: habit, cleavage (cleav.), fracture (fract.), twinning (twin.), hardness (hard.), density (dens.), colour, transparence (transp.), refractive index/reflectance (refr./reflect.), birefringence (birefr.), lustre, streak, melting point (melt. p.), and the packing efficiency under the designation of 'close packing index' (CPI).

The packing efficiency of a structure deserves special treatment. It refers to the density of packing in the structure, and is determined by the ratio of the volume occupied by the packing atoms within the unit cell and the volume of the unit cell. It is called here 'close packing index' (CPI). The maximum packing efficiency would be 1 if parallelepipedic shaped atoms could be imagined to occupy the whole space of the unit cell, and 0.74 if spherical atoms were considered corresponding to the closest packing. Normally, the packing atoms are anions, but in some cases they may also be cations, e.g. in perovskite, Ti^o[CaO₃]^c, where Ca⁺⁺ and O⁼ are the packing ions. It was realized that several authors give different definitions of the packing efficiency, some considering only the anions and others the anions and the influence of the expansion effect of cations located in tetrahedral or octahedral voids. This situation and the use of different values of atomic radii have given rise to different values of the packing efficiency for the same mineral structure. Exs.: Rutile Ti^o [O₂]^h: 72 for Zoltai & Stout (1984), 0.74 for Giacovazzo, Monaco, Viterbo, Scordari, Gilli, Zanotti & Catti (1992). and 6.6 for Berry & Mason (1959); perovskite Ti^o [CaO₃]^c: 68 for Zoltai & Stout (1984), and 0.62 for Giacovazzo et al. (1992). Though we think that this is a very important subject, we decided to use in the present approach the values of the 'Symmetrical Packing Index' (SPI) established by Zoltai & Stout, and leave the clarification of this problem for a future opportunity.

The properties refer to the mineral that represents the structure type, and in the case of homologous series, the values of the extreme members of the series are indicated whenever possible. The sources of all this information are indicated in the references in a simplified manner, the complete references being given in the bibliography at the end of the book.

The description of the structure type is often brief in order to enable all the structural data to be included in one page. In a very few cases two pages have been used to describe the same mineral structure type.

8.2. Ordering of the main categories of mineral structure types

The mineral structure types are ordered according to the five main categories of crystal structures, namely: close-packed, group, chain, sheet and framework structures. Within each main structural category the mineral structure types are organized from the simplest to the most complex, with respect to the structural formula or structural arrangement. In certain cases, the insertion (or stuffed) derivatives are placed near the corresponding basic structure type. Although this contradicts the principle of hierarchy of formula simplicity, it facilitates the relationship among closely related mineral structure types.

The close-packed structures are divided in two main subcategories: homogeneous and heterogeneous, and these may or may not admit a layer description. The various subdivisions are distinguished by their packing characteristics.

A) Layered homogeneous close-packed structures, based on the packing of equal layers stacked in the same way; they correspond to structures based on the various well-known packings: closest packings, cubic body-centred packing, simple cubic packing, etc.

A.1. Closest packings

A.1.1. Without occupied interstitial atoms:

Ex.: copper [Cu]^c

A.1.2. With occupied octahedral voids:

Ex.: halite Naº[Cl]º

A.1.3. With occupied tetrahedral voids:

Ex.: wurtzite Zn^t[S]^h

A.1.4. With occupied octahedral and tetrahedral voids:

Ex.: olivine Mg^o₂Si^t[O₄]^h

A.2. Cubic body-centred packings:

Ex.: iron [Fe]^{Bb}

A.3. Simple cubic and simple hexagonal packings

Ex.: fluorite Ca^{cb}[F₂]^{Qs}

A.4. Packings based on R-layers with a pattern formed by rows of triangles and rows of squares, or based on N-layers formed by other patterns of interconnected triangles and squares.

> Exs.: and a lusite $Al^{\circ}Al^{[5]}Si^{\iota}[O_5]^{R}b_{y}^{21}$ by vysotskite $Pd^{sq}[S]^{N_8^{21}}$

B) Non-layered homogeneous close-packed structures, based on a three-dimensional network (*) of atoms packed in a close way.

Ex.: garnet $Ca^{do}Al_2^oSi_3^t[O_{12}]^*$

- C) Layered heterogeneous close-packed structures, based on different layers and/or different kinds of stacking.
 - C.1. Packings based on equal layers but with different kinds of stacking

Ex.: molybdenite Mo^p[S₂]^{(2Ts)h}

C.2. Packings based on different layers

Ex.: matlockite $Pb^{[9]}[[F][C1]]^{(Q^2,2Q^1f)f}$

D) Non-layered heterogeneous close-packed structures, based on interpenetrated parts (blocks, rods or slabs) of homogeneous close packings

> Exs.: galenobismutite $Pb^{[7]}Bi_2^{[6/7]}[S_4]^{c/h}$ apatite $Ca_5^p P_3^t[O_{12}(OH,F)]^{Ts/h}$

The group, chain, and sheet structures may also be divided in homogeneous and heterogeneous, as regards their formation by one only or several kinds of structural units. The homogeneous structures can be considered simple or composite as their structural units consist of one only or a number of building units (dimers, polygons or polyhedra). The structures may still be subdivided, according to the shape of their building units into linear, polygonal and polyhedral.

When a structure is built up of several structural units of different dimensionalities it is classified according to the structural unit of highest dimensionality.

The classification of the mineral structures considered in this work, and according to the principles referred to above, is summarized on Table 20.

A number (24) of mineral structures pertaining to the most common (Kostov's list) could not be clearly classified; for a few of them, a guess of their probable structural category is indicated. The most numerous structures in this unclassified category are sulphates, such as thenardite $Na_2^{\circ}S'O_4$, and kieserite $Mg^{\circ}(H_2O)S'O_4$. With more structural information and the help of computer programs they will come to be appropriately classified.

8.3. Final remarks

The 230 mineral structure types that have been described are distributed among the following structural categories:

- 84 Close-packed structure types including 255 mineral structures
- 29 Group structure types with 73 mineral structures
- 21 Chain structure types with 30 mineral structures
- 26 Sheet structure types with 38 mineral structures

- 46 Framework structure types with 65 mineral structures
- 24 Non-classified structures with 41 mineral structures

This summary clearly shows the predominance of close-packed structures, and confirms the stability principle that expresses the tendency for the densest packing.

Another fact that strikes one's attention is the great number of close-packed structures which admit a simple layer description, that is, which are based on equal layers or on two different alternate layers. This may be related to the small values of the unit-cell parameters, (less than 15Å, for most mineral structures) with the consequence that any plane direction of high density of atoms repeats at very short distances (Figure 58).

It is also important to notice the simple and symmetrical character of the atomic layers (condensed model sheets) in which most of the close-packed structures can be decomposed. Such layers normally correspond to the most symmetrical distribution of the interstitial atoms within the packing layers. This fact shows that the stability of atomic layers is also an important factor in crystal structures. Stability in two dimensions is possibly related to the process of crystal growth by addition of atomic layers over one another.

One of the goals of crystal chemistry is the systematic derivation of crystal structures. The results mentioned above point to a systematic derivation based on the determination of the most symmetrical distributions of the interstitial atoms within the packing layers, carried out by application of adequate stacking rules (Lima-de-Faria, 1965b; Lima-de-Faria & Figueiredo, 1969).

This is a first attempt to present a detailed systematics of minerals based on structural features, and much work will be needed in order to reveal all its potentialities. The author is aware of severe difficulties that still exist in the application of the structural classification, though they are but a natural characteristic of any new development in science. Spronsen (1969) said:

Fig. 58. The densest atomic plane direction is marked (d.p.) on a plane unit cell with parameters 'a' and 'b'. If 'a' and 'b' are small, the distance D between two densest planes is also small, and will only accommodate a few atoms in between. Normally, there will be space for no more than one or two atomic layers.

There are three distinguishable main stages in the history of the periodic system, namely that of initiation, that of phenomenological development and that of theoretical development.

Such stages seem not to be confined to the periodic system of chemical elements; most likely they are

main stages in every historic development in scientific work. In what regards the structural classification of minerals, and of inorganic structures in general, no doubt we are at the beginning, that is, just at their initiatial stage.

8.4. Descriptive charts of mineral structure types

8.4.1. Close-packed structures

MANGANITE MI	ⁿ ° [0 (ОН)] ^h	a = 8.88 \Re b = 5.25 \Re c = 5.71 \Re β = 90°	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
В	2 ₁ d	Z = 8	
Fig. 1	Fig. 2		
			>XoXoXoXoXoXoXoXoXoX
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Properties win. Hardn. Dens. D11) 4 4.33 . Luster Streak subme- redish tallic brown	Colour dark blackTransp.opaque steel- -grey Melt.p.Opaque Opaque (SPI)(SPI) 59	
n y = 2.53			TEVETEVETEVETEVET
Figures Fig. 1. Schematic representa- tion of two hexagonal closest packing layers of the manga- nite structure (after Bragg+ Clarinbull, 1979). Fig. 2. Polyhedral representa- tion of the manganite struc- ture (adapted from R. Burns + V. Burns, 1979). Fig. 3. Condensed model of the manganite structure. The large open circles represent OH and O atoms, and the small black circles Mn atoms in oc- tahedral voids. Notice the row pattern of the Mn atoms.	Descrip Manganite is a di packing substitution rutile. It is also v arsenopyrite (a gro Manganite is the γ - Mn 0 (OH), the α - for tite, with a structu diaspore.	storted and derivative of ery related to up structure). form of rm beeing grou-	
References Kostov (1968) 232,233. Dachs (1963) 303-326. Bragg + Claringbull (1965) 124. Palache et al. (1944) Vol. 1, 646-648. R. Burns + V. Burns (1979) 13. Zoltai + Stout (1984) 421. Strunz (1982) 217.			Fig. 3

<u>COLUMBITE</u> Nb ⁰ ₂ Fe ⁰ Pbcn	$\begin{bmatrix} 0_{6} \end{bmatrix}^{h} = 14.238 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} \left[\begin{array}{c} \left[\begin{array}{c} \left[$
Fig. 1		>x >1 >x >1 >x >1 1 x >x >x 1 1 x >x >x 1 1 x 1 x 1 1 x 1 x 1 1 1 x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Habit Cleav. Fract. Tw	Properties <u>in.</u> <u>Hardn.</u> <u>Dens.</u> <u>Colour</u> <u>Transp.</u> 12) 6-6.5 5.20- iron-black translu- -7.95 brownish- cent to -black opaque <u>Luster</u> <u>Streak</u> <u>Melt.p.</u> <u>CPI</u> <u>subme-</u> brown (SPI) tallic 68	
Population Tantalite Ta ^o ₂ Fe ^o $\begin{bmatrix} 0_6 \end{bmatrix}^h$ Magnocolumbite Nb ^o ₂ Mg ^o $\begin{bmatrix} 0_6 \end{bmatrix}^h$	Description The oxygens form a hexagonal closest packing, and the iron and niobium atoms are located in half of the octahedral	
Fig. 1. Polyhedral representa- tion of the columbite struc- ture in a setting analogous to that of brookite (after	voids, forming a zig-zag pattern, like in anatase and brookite. The layers containing the iron atoms alternate with pairs of layers containing the niobium atoms. It is a substitution derivative of wolframite, or still of $\alpha - Pb^{O} \begin{bmatrix} 0_2 \end{bmatrix}^{h}$.	
Povarennykh, 1972). Fig. 2. Condensed model of the columbite structure. Small black circles represent iron atoms in octahedral voids, and the dashed small	References	
circles represent niobium atoms.	Kostov (1968) 247. Wyckoff (1965) Vol. 3, 362,363 Povarennykh (1972) 303. Palache et al. (1944) Vol. 1, 780-782. Zoltai+Stout (1984) 409, 412.	
	$\begin{array}{c} x = 0.410 & x = 0.750 \\ 0_{II} & (8d) & y = 0.100 & 0_{III} & (8d) & y = 0.083 \\ z = 0.083 & z = 0.070 \end{array}$	Fig. 2

References Kostov (1968) 245. Povarennykh (1972) 135. Wyckoff (1963) Vol. 1, 254-256. Zoltai+Stout (1984) 408. Palache et al. (1944) Vol. 1, 588-590.			Fig. 2
the zig-zag pattern of the titanium atoms, like in anatase.			
Figures Fig. 1. Polyhedral representa- tion of the brookite struc- ture (after Povarennykh,1972 Fig. 2. Condensed model of the brookite structure. Notice	Description The oxygens form a close with a <u>ch</u> sequence, where t are located in one half of dral voids. On the closest layers, which are parallel t Ti atoms form a zig-zag pat	he Ti atoms the octahe- packed o (100), the	
	yellowish brown	n, transparent in small fragments	
Fig. 1	Properties		
Pbca	c = 5.145 Å z = 8	-	x = 0.0101 y = 0.1486 z = 0.1824 x = 0.2304 y = 0.1130 z =-0.4629
BROOKITE Ti° [02	ch $a = 9.184$ Å b = 5.447 Å	Ti (8c)	$ \begin{array}{l} x &= 0.1290 \\ y &= 0.0972 \\ z &= -0.1371 \end{array} $

DIASPORE A1° [O (OH) P b n m	c = 2.844 H (4c) $ c = 4$	$u = -0.0451 \qquad 0_{II}(4c) u = -0.1970 v = 0.1446 v = -0.0532 u = -0.0876 u = 0.2880 v = -0.1989$
Fig. 1	operties	DISEPORE al [®] [DION] ⁰ FRIME
HabitCleav.Fract.Twin.platy,perfectconchoi-acicular,(010)dalmassiveRefr.index/Reflect. $R = 1.68-1.71$ (+)		
$n_{\beta} = 1.71-1.72$ $n_{\gamma} = 1.73-1.75$ $2V = 85^{\circ}$ Population	pearly, yellow 57 vitreous Description	7 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0
	It is formed by the hexagonal closest packing of oxygens and hydroxyls, with aluminium atoms occupying one half of the octahedral holes, in a double row pattern. It can be considered as a subs titution derivative of ramsdellite. Mo- re detailled structural work has enable the location of the hydrogen atoms, and it was found out that they are in two coordination (linking two oxygens). This hydrogen distribution in the dias-	
Figures	pore structure is responsable for its stability. On the contrary the non	
Fig. 1. Polyhedral representa- tion of the diaspore structure. The double lines indicate O-H-O bonds (after Ewing, 1935, quoted by Wells, 1962). Fig. 2. Condensed model of the diaspore structure. The small	existence of such positive charges in between the double rows on ramsdellite explains its metastable equilibrium.	
black circles represent alu- minium atoms in octahedral	References	;&\$&\$&\$\$\$\$\$\$\$\$\$\$\$\$\$
voids, and the black points hydrogen atoms.	Kostov (1968) 219. Wyckoff (1963) Vol. 1, 291. Wells (1962) facing page 556. Palache et al. (1944) Vol. 1, 675-677. Zoltai+Stout (1984) 422.	
	Povarennykh (1972) 317. Ewing (1935) 203.	Fig. 2

	$ \begin{array}{ccc} & & a_{\rm R} = 6.22 \ \mbox{${\rm k}$} & (\mbox{hex. descrip.}) \\ & & \alpha = 33^{\circ} \ \mbox{$36'$} & \\ & & Z_{\rm R} = 1 \\ \hline & & a_{\rm H} = 3.596 \ \mbox{${\rm k}$} & \mbox{$C1$} & (\mbox{$6c$}) \ \mbox{$$u$} \simeq 0.25 \\ \hline & & 3 \ \mbox{$$m$} & \\ & & Z_{\rm H} = 3 \end{array} $	
C1 -Mg	f	
Fig. 1 Fig. 2		
	Properties	Ŷ ċŶċŶċŶċŶċŶċŶċŶċ Ŷċ
<u>Habit Cleav. Fract. Tw</u> hexagonal perfect plates (0001)	rin. Hardn. Dens. Colour Transp. 1 - 1.5 2.325 colourless, white	
Refr. index/Reflect. Birefr.	Luster Streak Melt.p. CPI	
$n_{\omega} = 1.675$ (-) $n_{\varepsilon} = 1.59$		
Population	Figures	
Scacchite $Mn^{o} [C1_{2}]^{c}$ Lawrencite $Fe^{o} [C1_{2}]^{c}$	Fig. 1. Ball and spoke representation of the chloromagnesite structure (after Bokii, 1954).	
Description	Fig. 2. Polyhedral representation of the chloromagnesite structure (adapted	YOYOTOYOYOYOYYYY CYYYYYYYYYYY
It is based on the closest packing of Cl ⁻ ions, with Mg ²⁺ in octahedral voids. Two different closest packed lay- ers alternate, one with all	 from Povarennykh, 1972). Fig. 3. Condensed model of the chloro- magnesite structure. Packing layers parallel to (0001) planes. Large open circles represent Cl⁻, and the small black circles Mg²⁺, in octahedral voids. 	
the octahedral voids occupied, and another completely empty. It is isotypic with $Cd^{O}[C1_{2}]^{C}$.	The structure is formed by alternate completely filled and empty layers in relation to the octahedral magnesium ions.	<pre>c Y = Y = Y = Y = Y = Y = Y = Y = Y = Y</pre>
		E CISLOROMACIETS 1 TE
References Kostov (1968) 195,		7 ⁶ Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y 0 Y
Wyckoff (1963) Vol. 1, 270-272. Povarennykh (1972) 56, 644.) Y O Y O Y O Y O Y O Y O Y O Y O Y O Y
Bokii (1954) 130. Palache et al. (1951) Vol. 2, 41.		
Roberts et al. (1974) 127.		Fig. 3

$\frac{\text{CORUNDUM}}{\text{R} \overline{3} \text{ c}}$	$\begin{array}{c} a_{\rm R} = 5.128 \ \mbox{$\%$} \\ \alpha = 55^{\circ} 20^{\circ} & ({\rm hex. \ description}) \\ Z_{\rm R} = 2 & {\rm A1} \ (12c) \ \mbox{u} = 0.3520 \\ a_{\rm H} = 4.76280 \ \mbox{$\%$} \\ c = 13.00320 \ \mbox{$\%$} \\ Z_{\rm H} = 6 \end{array}$	$\begin{array}{c} (\operatorname{curves} & u_1^* [\circ_1]^4 & \qquad \\ (\overleftarrow{0}, \overleftarrow{0}, \overleftarrow$
Fig. 1	Fig. 2 Fig. 3	
	Properties	
Habit Cleav. Fract. steep-pyra- midal uneven uneven botryoidal conchoid conchoid foliated Refr. index/Reflect. Bin	Twin.Hardn.Dens.ColourTransp.(1011)94.0-4.1blue,transparent, variable, translucent colourless1	
$n_{\omega} = 1.768$ (- $n_{\epsilon} = 1.760$ 2V = 58	vitreous 70	(2010) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
Population	Description	
Hematite $Fe_2^o \begin{bmatrix} 0_3 \end{bmatrix}^h$ Eskolaite $Cr_2^o \begin{bmatrix} 0_3 \end{bmatrix}^h$ Karelianite $V_2^o \begin{bmatrix} 0_3 \end{bmatrix}^h$	The oxygens form an hexagonal closest packing with aluminium atoms occupying 2/3 of the octahedral voids, with a honeycomb pattern, which is the most symmetrical distribution for the pro-	
<u>Ruby</u> and <u>sapphire</u> are red a blue varieties of corundum,	portion $2/3$.	
respectively.		
Figures	Kostov (1968) 216,217, 249. Wyckoff (1964) Vol. 2, 6,7.	2 (0815308 270707070707070703
Fig. 1. Polyhedral represention of the corundum structure (after Povarennykh, 1972) Fig. 2. Layer of Al O_6 octaparallel to the closest players, with a honeycomb tern (after Bokii, 1954).	cture Parache et al. (1944) vol. 1, 521. Zoltai + Stout (1984) 407. edra Ingerson (1955) 351. acked bokii (1954) 143.	
 Fig. 3. Elevation of the condum structure (after Kost 1968). Fig. 4. Condensed model of corundum structure. The lopen circles represent on gens, and the small black cles the aluminium atoms, form a honeycomb pattern. 	ov, che cir-	
		Fig. 4

<u>ILMENITE</u> Fe ^o Ti ^o R 3	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} a_{R} = 5.538 \ \ R & (hex. \ description) \\ \alpha = 54^{\circ} \ \ 41' & Fe(6c) \ u = 0.358 \\ Z_{R} = 2 & Ti(6c) \ u = 0.142 \\ a_{H} = 5.082 \ \ R & z = 0.305 \\ c = 14.026 \ \ R & 0(18f) \ \ y = 0.015 \\ Z_{H} = 6 & z = 0.250 \end{array} $	$\begin{array}{c} 1.44.1112 \\ (5) &$
-Fe -Ti		
Fig. 1 F	ig. 2 Fig. 3	(5YOYOYOYOYOYOYOY
Pi	roperties	
HabitCleav.Fract.Twinthicknoneconchoidal, (000prismatic,subcon-(10)tabular,subcon-(10)rhombohedralchoidalRefr. index/Reflect.Birefr. $n \omega \ge 2.7$ 18%(-)	 <u>Hardn.</u> <u>Dens.</u> <u>Colour</u> <u>Transp.</u> 5 - 6 4.72 iron- opaque -black <u>Luster</u> <u>Streak</u> <u>Melt.p.</u> <u>CPI</u> metallic, black, 	
$n_{\epsilon} \geq 2.7$	submetallic brownish	
Population	Description	
Pyrophanite $Mn^{\circ} Ti^{\circ} \begin{bmatrix} 0 \\ 3 \end{bmatrix}^{h}$ Melanostibite $Mn^{\circ} (Fe, Sb)^{\circ} \begin{bmatrix} 0 \\ 3 \end{bmatrix}^{h}$ FiguresFig. 1. Polyhedral representation of the ilmenite structure (Finger + Hazen, 1991).Fig. 2. Layers of Fe 0_{6} and Ti 0_{6} octahedra parallel to the	It is an interstitial substitution derivative of corundum. The oxygen atoms form an hexagonal closest pack- ing and Fe and Ti occupy 2/3 of the octahedral voids, with a honeycomb pattern, in alternate layers. References Kostov (1968) 249.	
<pre>closest packed layers, with a honeycomb pattern (after Bokii, 1954). Fig. 3. Elevation of the ilme- nite structure. Fig. 4. Condensed model of the ilmenite structure. The large open circles represent the oxygen atoms, the small black circles correspond to iron atoms, and the small dashed circles to titanium atoms.</pre>	Wyckoff (1964) Vol. 2, 420,421. Finger+Hazen (1991) facing p. 566. Palache et al. (1944) Vol. 1, 535,536. Zoltai + Stout (1984) 407. Povarennykh (1972) 279. Bokii (1954) 143.	Image: 1

$\frac{\text{TETRADYMITE}}{\text{R} \overline{3}\text{m}}$	$\begin{bmatrix} a \\ c \\$	4.316 Å 30.01 Å S (3a)	
Habit Cleav. Fract. acutely perfect perfect	$\frac{1}{1000}$		
foliated, (0001) massive <u>Refr. index/Reflect</u> . <u>Bire</u> 48% <u>Colour</u> <u>Transp.</u> pale steel- ^{Opa} que -grey	fr. Luster Streak metallic, pale splendent steel- -grey Melt.p. CPI 600°C		
Population Kawazulite Bi ⁰ ₂ [Te ₂ Se] ^{chh} Figures Fig. 1. Packing model of the tetradymite structure.	atoms correspond to the S atoms, sandwiched between the Bi atoms (small black circles). Description The structure is a pac-		
 Fig. 2. Ball and spoke representation of the tetradymite structure (adapted from Povarennykh, 1972). Fig. 3. Polyhedral representation of the tetradymite structure (adapted from Kostov, 1968). 	king substitution deriva- tive of tellurbismuth. It is based on a chh clo- sest packing of Te and S atoms, with Bi atoms in octahedral voids.		
Fig. 4. Condensed model of the tetradymite structure. Notice that the only dif- ference between this model and that of tellurbismu- th is the packing layers where the hatched packing	References Kostov (1968) 163. Wyckoff (1964) Vol. 2, 29- -31. Palache et al. (1944) Vol. 1, 161-164. Povarennykh (1972) 214,215.	Fig. 4	

<u>CRYOLITE</u> Na ^O Al ^O [Na P 2 ₁ /n	$\begin{bmatrix} a_{2} & F_{6} \end{bmatrix}^{C} \\ \begin{bmatrix} a = 5.46 & A & A1 & (2a) \\ b = 5.61 & A & Aa_{I}(2b) \\ c = 7.80 & A & Aa_{I}(2b) \\ \beta = 90^{\circ} & 11^{\circ} & Aa_{II}(4c) \\ Z = 2 & & Aa_{II}(4c) \end{bmatrix}$	$ \begin{array}{c} x = 0.065 \\ F_{I} (4c) y = 0.06 \\ z = 0.22 \\ x = -0.29 \\ F_{II} (4c) y = 0.16 \\ z = 0.03 \\ y = -0.055 \\ z = 0.24 \\ F_{III} (4c) y = 0.15 \\ z = -0.06 \end{array} $
Fig. 1		
	Hardn. Dens. Colour Transp. 2.5 2.96 colourless, variable transparent to translucent Luster Streak Melt.p. CPI vitreous white 1020°C (SPI) 60 60	interior int
Figures Fig. 1. Drawing of the cryolite structure (after Povarennykh, 1972). Fig. 2. Condensed model of the cryo- lite structure. Large open circles represent fluorine atoms, and lar- ge lined circles certain sodium atoms (those within the square brackets). Small black circles correspond to aluminium atoms, and the small lined circles to	Description The fluorine and certain sodium atoms form a cubic closest packing and the other sodium atom and alu- minium atoms occupy 1/4 of the octahedral voids. It may be considered as a subs- titution + distortion derivative of perovskite, or as a distortion derivative of elpasolite.	a comment
and the small lined circles to the other sodium atoms.	References	
	Kostov (1968) 192,193. Wyckoff (1965) Vol. 3, 382,383. Povarennykh (1972) 666,667. Palache et al (1951) Vol. 2, 110- -112. Zoltai + Stout (1984) 403.	Fig. 2

HOLLANDITE Mn_8° Ba_2 0_{16} cha_{16} $m (8h)$ $u = 0.348$ $r = 0.105$ $0_1 (8h)$ $u = 0.348$ $r = 0.105$ $r = 0.106$ IdealIdealIdeal $r = 0.167$ $r = 0.167$ IdealIdeal $r = 0.167$ $r = 0.167$ $r = 0.167$ IdealIdeal $r = 0.167$ $r = 0.167$ $r = 0.167$ IdealIdealIdealIdeal $r = 0.167$ IdealIdea			
Image: Strate S		$Z = 1 v = 0.180$ $B_{2} (2h) 0_{TT}(8h) u = 0.542$	
Habit Habit Habit Hardt Prisentic massive Refr. index/Reflect. Birefr. 22.5%Hardn. hardt 6Dens. Colour Transp. distinct grey, metalic black grey, metalic black shiningHardn. bens. Colour grey, metalic black grey, metalic black shiningHardn. bens. Colour grey, metalic black black grey, metalic black shiningHardn. bens. Colour grey, metalic black black black black shiningIster streak Molt.p. CPT metalic black black black black that shiningHardn. bens. grey, corr corr tuster streak black black that shiningHardn. bens. CPT corr tuster Streak Molt.p. CPT metalic black type choid oxygen and barium atoms, with manganese atoms occupying 4/9 of the octahedral interstices. The closest packed layers are parallel to (110). The structure is related to ransdellite and hydrophilite.Image black transfer corr transfer to closest packed layers are parallel to (110). The structure is related to ransdellite and hydrophilite.Image black transfer to closest packed layers are parallel to (110). The structure is related to ransdellite and hydrophilite.Image black transfer the structure is related to ransfer the structure is related to ransfer the structure. The s			
short distinct 6 4.95 silvery opaque prissatic, prissatic, prissatic, grey, black Refr. index/Reflect. Birefr. Luster Streak Melt.p. CPT 22.5% metallic black shining Population Description Is based on a closest packing of trype chi of oxygen and barium atoms, with manganese atoms occupying 4/9 of the octahedral interstices. The closest packed layers are parallel to (110). The structure is related to ransdellite and hydrophilite. Frig. 1. Polyedral description of the hollandite structure along the closest packed layers are parallel to dister tructure along the closest packed layers are parallel to for ansis (after Kostov, 1968). References Fig. 3. Condensed model of the hollandite structure. The larg ge open circles represent oxy gen atoms, and the large li- ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relation Kestor (1963) 237. Povarennykh (1972) 141, 305, 306. Nyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743. Fig. 3	Proj	perties	
22.5% metallic black Population Description Cryptomelane Mn% [K2 016] Is based on a closest packing of type chh of oxygen and barium atoms, with manganese atoms occupying 4/9 of the octahedral interstices. The closest packel layers are parallel to (110). The structure is related to (110). The structure is related to ramsdellite and hydrophilite. Figures Figures Fig. 1. Polyhedral description of the holland dite structure along the casis (after Kostov, 1968). References Fig. 3. Condensed model of the holland dite structure. The larg ge open circles represent oxy gen atoms, and the large lined circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relation References Kostov (1968) 237. Povarennykh (1972) 141, 305,306. Wycoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Pache et al. (1944) Vol. 1, 743. Fig. 3	short distinct prismatic, prismatic	6 4.95 silvery opaque grey, black	
shiningPopulationDescriptionCryptomelane Mng [k_2 016]Tis based on a closest packing of type cho for oxygen and barim atoms, with manganese atoms occupying 4/9 of the octahedral interstices. The closest packel layers are parallel to (110). The structure is related to ramsdellite and hydrophilite.FriguresFiguresFig. 1. Polyhedral description of the holland diet structure. Information of the holland id estructure along the c 	Refr. index/Reflect. Birefr.	Luster Streak Melt.p. CPI	
Cryptomelane Mn $_8^0$ [k_2 0 16] chh Coronadite Mn $_8^0$ [k_2 0 16] chh Substitution derivative Priderite Fe $_2^8$ Ti $_6^8$ [k_2 0 16] chh Figures Fig. 1. Polyhedral description of the holland ide structure along the c axis (after Kostov, 1968). Fig. 3. Condensed model of the hollandite structure. The lar ge open circles represent oxy gen atoms, and the large lined circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relation References Kostov (1968) 237. Povarennykh (1972) 141, 305, 306. Wyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.	22.5%		
Coronadite $Mn_8^{o} [Pb_2 0_{16}]^{o}$ with manganese atoms occupying $4/9$ of the octahedral interstices. The closest packed layers are parallel to (110). The structure is related to ramsdellite and hydrophilite.Priderite $Fe_2^{a} Ti_{6}^{b} [k_2 0_{16}]^{o}$ interstices. The closest packed layers are parallel to (110). The structure is related to ramsdellite and hydrophilite.FiguresFiguresFig. 1. Polyhedral description of the hollandite structure along the c axis (after Kostov, 1968).cFig. 2. Projection of the hollan dite structure along the c axis (after Kostov, 1968).ReferencesFig. 3. Condensed model of the hollandite structure. The lar ge open circles represent oxy gen atoms, and the large li- ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relationReferencesKostov (1968) 237. Povarennykh (1972) 141, 305, 306. Wyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.Fig. 3	Population	Description	TOTOTOTOTOTOTOTO
Substitution derivativeransdellite and hydrophilite.ransdellite and hydrophilite.Priderite $Fe_2^8 Ti_6^8 [k_2 0_{16}]^{chh}$ FiguresFig. 1. Polyhedral description of the hollandite structure (adapted from R. Burns + V. Burns, 1979).Fig. 2. Projection of the hollan dite structure along the c axis (after Kostov, 1968).Fig. 3. Condensed model of the hollandite structure. The lar ge open circles represent oxy gen atoms, and the large li- ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relationReferencesKostov (1968) 237. Povarennykh (1972) 141, 305, 306. Wyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.Fig. 3	Cryptomelane $Mn_8^{\circ} \left[K_2 \ 0_{16} \right]^{chh}$ Coronadite $Mn_8^{\circ} \left[Pb_2 \ 0_{16} \right]^{chh}$	type \underline{chh} of oxygen and barium atoms, with manganese atoms occupying $4/9$ of the octahedral interstices. The	
Priderite $Fe_2^8 Ti \frac{8}{6} \begin{bmatrix} 2 & 0_{16} \end{bmatrix}^{chh}$ FiguresFig. 1. Polyhedral description of the hollandite structure (adapted from R. Burns + V. Burns, 1979).Fig. 2. Projection of the hollan dite structure along the c axis (after Kostov, 1968).Fig. 3. Condensed model of the hollandite structure. The lar ge open circles represent oxy gen atoms, and the large li- ned circles barium atoms. The 	Substitution derivative		
Fig. 1. Polyhedral description of the hollandite structure (adapted from R. Burns + V. Burns, 1979).Fig. 2. Projection of the hollan dite structure along the c axis (after Kostov, 1968).Fig. 3. Condensed model of the hollandite structure. The lar ge open circles represent oxy gen atoms, and the large li- ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relationReferencesKostov (1968) 237. Povarennykh (1972) 141, 305, 306. Wyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.Image: Constant of the formation of the fo	······································	ramsdellite and hydrophilite.	
of the hollandite structure (adapted from R. Burns + V. Burns, 1979).Fig. 2. Projection of the holland dite structure along the c axis (after Kostov, 1968).Fig. 3. Condensed model of the hollandite structure. The lar ge open circles represent oxy gen atoms, and the large li- ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relationReferencesKostov (1968) 237. Povarennykh (1972) 141, 305, 306. Wyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.Image: Constant of the formation of t	Figures		MULANDITE
hollandite structure. The lar ge open circles represent oxy gen atoms, and the large li- ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relationKostov (1968) 237. Povarennykh (1972) 141, 305, 306. Wyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.Fig. 3	of the hollandite structure (adapted from R. Burns + V. Burns, 1979). Fig. 2. Projection of the hollan dite structure along the <u>c</u>		
hollandite structure. The lar ge open circles represent oxy gen atoms, and the large li- ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relationKostov (1968) 237. Povarennykh (1972) 141, 305, 306. Wyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.Fig. 3	Fig. 3. Condensed model of the	References	TOTOTOTOTOTO
gen atoms, and the large li- ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relation Povarennykh (1972) 141, 305, 306. Wyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.	hollandite structure. The lar		
ned circles barium atoms. The small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relationWyckoff (1965) Vol. 3, 494-496. R. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.Fig. 3			
small black circles correspond to manganese atoms located in octahedral voids. The unit cell is inclined in relationR. Burns + V. Burns (1979) 16. Palache et al. (1944) Vol. 1, 743.Fig. 3	-		(~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
to manganese atoms located in octahedral voids. The unit cell is inclined in relation Fig. 3			
- ig , 3	to manganese atoms located in octahedral voids. The unit		
to the packing layers.			Fig. 3
	to the packing layers.		

DIGENITE

57 Å Cu(8c) S (4a)

Fm3m

Fig. 1

Properties							
Habit	Cleav.	Fract.	<u>Twin.</u>	Hardn.	Dens.	Colour	Transp.
octahedral, massive	(111)	conchoi- dal		2.5-3	5.546	blue to black	opaque
Refr. ind	ex/Refle	ct. Bire	efr.	Luster	Streak	Melt.p.	CPI
	18%						

Figures	Description) (top sheet)
 Fig. 1. Drawing of the unit cell content of the antifluo- rite structure, which is practically equal to that of digenite (after Bloss, 1971). Fig. 2. Condensed model of the antifluorite structure, which is practically equal to that of digenite. There are only some defects of occupation of the tetrahedral voids. The large open circles represent S atoms, and the small black circles correspond to Cu 	Digenite is a defect antifluo- rite structure. The sulfur atoms form a cubic closest packing, whe- re practically all the tetrahedral voids are occupied by copper atoms. According to Strunz (1982) the chemical formula is $Cu_9^t [S_5]^c$. <u>Bornite</u> , $Cu_5^t Fe^t [S_4]^c$ is based on a a defect digenite structure. It is te- tragonal, $P\bar{4}2_1c$, with a = 10.94 Å, c = 21.88 Å and Z = 16 (Strunz, 1982).	DIGRITI DIGRITI
atoms in tetrahedral voids.	References	AA
	Kostov (1968) 150. Palache et al. (1944) Vol.1, 180,181. Pearson (1967) 65. Bloss (1971) 251. Strunz (1982) 109.	
		Fig. 2

<u>CHALCOPYRITE</u> Cu ^t F I 4 2d	$e^{t} \begin{bmatrix} S_{2} \end{bmatrix}^{c}$ a = 5.24 $x = 10.30$ $Fe(4b)z = 4$ $S(8d) = 1/4$	
		1 Hoge adies 1 is
Fig. 1 Fig.	ÖS	
	-	
Р	roperties	THATAT
Habit <u>Cleav.</u> Fract. <u>Twi</u> tetrahe- poor uneven (112 dral bis- churcidel (011)		CARARA
phenoidal (017) <u>Refr. index/Reflect.</u> <u>Birefr.</u> 40,5%	Luster Streak Melt.p. CPI metallic greenish black	
Population	Description	CHHHHHH
$\begin{array}{llllllllllllllllllllllllllllllllllll$	In the chalcopyrite structure the S atoms form a cubic closest packing, and iron and copper occupy	20000000
	one half of the tetrahedral voids.	CHALCOPYN I TL
Figures Fig. 1. Polyhedral description of the chalcopyrite structure (after Kostov, 1968). Fig. 2. Ball and spoke model of the chalcopyrite structure (after Parthé, 1964). Fig. 3. Condensed model of the chalcopyrite structure. Large open circles represent S atoms,	It is an interstitial substitution derivative of sphalerite.	
the small black circles Fe atoms, and the crossed small circles Cu atoms in tetrahedral voids.	References	SALEBYINE
	Kostov (1968) 148.	ACACACACACACACACACACACACACACACACACACAC
	Kostov (1908) 148. Wyckoff (1964) Vol. 2, 336-339. Parthé (1964) 37. Palache et al. (1944) Vol. 1, 219,220. Zoltai+Stout (1984) 382. Strunz (1982) 115.	
		Fig. 3

Fig. 4

112

half of the tetrahedral voids.

$\frac{\text{STANNITE}}{\text{I}\overline{4}2\text{m}}$	$\begin{bmatrix} S_{4} \end{bmatrix}^{C} & Cu(4d) \\ a = 5.46 & Fe(2a) \\ c = 10.78 & Sn(2b) \\ Z = 2 & S(8i) & u = 0.245 \\ v = 0.132 \end{bmatrix}$	
	c=20 ₂₀ 0 Fe	
$\begin{array}{c} & & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & &$	Fig. 2 Fig. 3	
	_	AAAAAA
Prop	erties	have a start of the start
HabitCleav.Fract.Twin.pseudo-indistinctuneven(102)	Hardn. Dens. Colour Transp. 4 4.3-4.5 steel- opaque -gray,	0000000
tetra- hedral (110) (112) <u>Refr. index/Reflect.</u> <u>Birefr.</u> 21%	iron- -black Luster Streak Melt.p. CPI metallic blackish	
Population		
Kësterite $Cu_2^t Zn^t Sn^t [S_4]^c$ Hocartite $Ag_2^t Fe^t Sn^t [S_4]^c$	packing. The small black circles correspond to Cu atoms, the crossed small circles to Fe atoms, and the small thick circles to Sn atoms,	Å.
Briartite $Cu_2^t (Fe, 2n)^t Ge^t \left[S_4\right]^c$	which are all in tetrahedral voids.	888888
Figures	Description	(I H H H H H
Fig. 1. (a) Packing drawing of the stannite structure, and (b) unit cell content projected on (010) (after Wyckoff, 1965, Vol. 3).	The stannite structure is formed by the cubic closest packing of S atoms, with Fe, Cu and Sn in tetra- hedral voids. It is a interstitial	
Notice the inversion of the re- lative size of the atoms compa- red with the Fig. 1 of sphale- rite.	substitution derivative of sphale- rite.	
Fig. 2. Polyhedral representation	References	ato to to to to to
of the stannite structure (adap- ted from Kostov, 1968). Fig. 3. Ball and spoke model of the stannite structure (after Parthé, 1964). Fig. 4. Condensed model of the	Kostov (1968) 146-148. Wyckoff (1965) Vol. 3, 159,160. Povarennykh (1972) 228. Parthé (1964) 44. Palache et al. (1944) Vol. 1, 224, 225.	
stannite structure. The large open circles represent S atoms forming the cubic closest		Fig. 4

$\frac{\text{ENARGITE}}{\text{Cu}_3^{t}} \qquad \text{Cu}_3^{t} \text{As}^{t}$	$ S_4 = 6.46 \text{m} $	Cu _t (2a) y=0	.165 500 S _I (2a)	x=0.830 y=0 z=0.360
	c = 6.18 Å	$Cu_{TT}(4b) y=0$.333 .245 S _{II} (2a) .990	x=0.140 y=0 z=0.875
P n m 2 ₁	Z = 2	x=0 As (2a) y=0 z=0	S _{TTT} (4b)	x=0.330 y=0.255 z=0.367
	$A cus_4$ $A ass_4$ $Fig. 2$			
Fig. 1	_			h
Prope <u>Habit Cleav. Fract. Twin.</u> tabular, perfect uneven (320) prismatic, (110) massive good (100) <u>Refr. index/Reflect. Birefr.</u> 21.5%	Hardn. Dens. Colour T	ransp. opaque CPI		
Figures	Description		ALOLOLOL A NUMBER	rorord
 Fig. 1. Ball and spoke model of the enargite structure (after Wuensch, 1974). Fig. 2. Polyhedral description of the enargite structure (after Zoltai, 1974). Fig. 3. Condensed model of the enargite structure. The large circles represent the S atoms, the small black circles the Cu atoms, and the doted small 	The enargite structure i on an hexagonal closest pac the S atoms, with Cu and As pying one half of the tetra voids. It is an interstitital s tution derivative of wurtzi	king of a occu- hedral ubsti-		
circles the As atoms.	References			
	Kostov (1969) 181. Povarennykh (1972) 229. Wyckoff (1965) Vol. 3, 157, Zoltai (1974) 28. Wuensch (1974) W-29. Palache et al. (1944) Vol. Roberts et al. (1974) 190.		Fig. 3	040404(104040)

LITHARGE O ^t [Pb] ^c P 4/nmm	a = 3.975 0 (2a) $c = 5.023 Pb(2c) u=0.238$ $Z = 2$	5
(a) Fig. 1	Fig. 2	Fig. 3
Prope	erties	ETTHARGE OF [FB] FE/ H ==
HabitCleav.Fract.Twin.tabular,(110)crustsRefr. index/Reflect.Birefr. n_{ω} = 2.665(-) n_{ϵ} = 2.535	Hardn. Dens. Colour Transp. 2 9.14 red transparent Luster Streak Melt.p. CPI greasy to dull Colour Colour Colour	
Population	in the direction of the arrow, and	AAAAA
Mackinawite Fe ^t [S] ^c	to relate with Fig. 2 look in the direction of the double arrow.	1 (Sab russ)
Distortion derivative	Description	a the the the the the
Massicot 0 ^t [Pb] ^c Pcma Figures Fig. 1. (a) Packing representation of the litharge structure, and (b) unit cell projection on (100) (after Wyckoff (1963) Vol. 1).	The litharge structure may be imagined formed by a cubic clo- sest packing of Pb atoms with oxygen atoms occupying 1/2 of the tetrahedral voids. This interpre- tation is quite acceptable if we compare the c/a (real) = 1.26 with c/a (ideal) = 1.414	
 Fig. 2. Ball and spoke model of the litharge structure (adapted from Povarennykh, 1972). Fig. 3. Polyhedral description of the litharge structure (after 	(c = 2x1.414R, a = 2R).	
Povarennykh, 1972). Fig. 4. Condensed model of the li-	References	(HUHUHUHUH
the small black circles oxygen atoms occupying tetrahedral voids. Notice that the structure is built of alternate layers, parallel to (001), one comple- tely filled and the other comple-	Kostov (1968) 259. Povarennykh (1972) 310. Wyckoff (1963) Vol. 1, 134-136. Palache et al. (1944) Vol. 1, 514.	
tely empty in respect to the tetrahedral voids. To relate the unit cell marked on the condensed model with Fig. 1 and Fig. 3 look		Fig. 4

$ \underline{\operatorname{BERTRANDITE}} \operatorname{Be}_{4}^{t} \operatorname{Si}_{2}^{t} \left[\operatorname{Cmc2}_{1} \right] $	$\begin{bmatrix} 0 & (0H) & 2 \end{bmatrix}^{h}$ $\begin{bmatrix} a = 8.733 \\ b = 15.31 \\ c = 4.56 \\ z = 4 \end{bmatrix}$	A Be _{II} (8b)	$\begin{array}{c} x=0.171 \\ y=0.053 \\ z=0.129 \end{array} \begin{array}{c} x=0.288 \\ y=0.125 \\ z=0.000 \end{array} \\ x=0.329 \\ x=0.221 \\ z=0.133 \end{array} \begin{array}{c} x=0.211 \\ y=0.241 \\ z=0.507 \\ x=0.325 \\ y=0.144 \\ y=0.144 \\ y=0.292 \\ y=0.144 \\ z=0.658 \\ \dots \end{array} \\ x=0.292 \\ y=0.469 \end{array}$
Fig. 1	erties	[$B(n) = B(n) = D(n^2 - n) \frac{1}{2} \left[D_{n}(n) + 1 \right]^{\frac{1}{2}} = 0 = 0 = 2^{\frac{1}{2}}$
HabitCleav.Fract.Twin.tabular,perfect(101)prismatic(001)Refr.index/Reflect.Birefr. $n_{\alpha} = 1.591$ (-) $n_{\beta} = 1.605$ (-) $n_{y} = 1.614$	Hardn. Dens. Colour 6-7 2.60 colourles to pale yellow Luster Streak Melt.p vitreous		
Figures	Description		A CLOSED OLOGICAL
 Fig. 1. Polyhedral representation of the bertrandite structure (after Soloveva + Belov, 1964, quoted by Kostov, 1968). Fig. 2. Condensed model of the bertrandite structure. The large open circles represent oxygen atoms and the lined large cir- cles (OH). The small black cir- cles represent the Si atoms and the doted small circles the Be exome all in tetrabedral 	The bertrandite struct sed on an hexagonal closs of oxygen and hydroxyls, Si atoms occupying 2/3 of trahedral voids, forming an honeycomb pattern. The re can also be imagined infinite distorted amphi- chains (see Fig. 2), lin forming a three dimensi- However it should not be	est packing with Be and f the te- together is structu- formed by bole type uked together onal network.	
atoms, all in tetrahedral voids.	as a framework due to i packing characteristics References		
Crystallographic data (continued) x=0 $0_{1V}(4a) y=-0.416$ z=0.597 x=0	Kostov (1968) 275,276. Povarennykh (1972) 401. Wyckoff (1968) Vol. 4, Roberts et al. (1974) 6		
$ \begin{array}{c} $	Soloveva + Belov (1964)		Fig. 2

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	ба 07ь =11.65 %	$\begin{array}{cccccc} x=0.175 & x=0.142 \\ a) y=0.001 & Ba & (4a) & y=0.75 \\ z=0.15 & z=0.25 & x=0.073 \\ a) y=0.005 & v_{I} & (4a) & y=0.897 \\ z=0.25 & z=0.72 & \end{array}$
Pn2 ₁ a	x=-0.096 Si _I (4a) y=0.88 Si _{II} (4 z=0.75	$\begin{array}{c} x=0.10 \\ x=0.125 \\ z=0.25 \end{array} \begin{array}{c} x=-0.087 \\ 0_{II}(4a) \\ z=0.130 \end{array}$
Fig. 1		
Prop	erties	$\mu_{AAY_{B}}(T) = \frac{n_{B}L}{n_{A}} \ln \frac{L}{2} \left[p_{B} \sigma_{g}^{-} \right]^{2}$
HabitCleav.Fract.Twin.tabular,perfectprismatic(001)(100)Refr. index/Reflect.Birefr. $n_{\alpha} = 1.69$ (-) $n_{\beta} = 1.70$ 2V = 40°27' $n_{\gamma} = 1.70$ 2V = 40°27'	Hardn. Dens. Colour Transp. 7 4.046 colourless, transparent white, bluish Luster Streak Melt.p. CPI vitreous	
Figures	Description	The speet
 Fig. 1. Polyhedral description of the barylite structure (after Povarennykh, 1972). Fig. 2. Condensed model of the barylite structure. The large open circles represent the oxygen atoms, and the lined large circles the Ba atoms. The Si and Be atoms are repre- sented by black and doted small circles, respectively, which are 	The barylite structure is based on an hexagonal closest packing of oxygens, with Be and Si atoms in tetrahedral voids. This structure can also be imagined formed by $\begin{bmatrix} \text{Si}_2 \ 0_7 \end{bmatrix}$ groups and $\begin{bmatrix} \text{Be} \ 0_3 \end{bmatrix}$ infinite chains linked together in a three dimensional network. However it should not be considered as a fra- mework due to its closest packing characteristics.	
both in tetrahedral voids.		
References	Crystallographic data (continued)	Contraction of the stands
Kostov (1968) 281. Povarennykh (1972) 359. Wyckoff (1968) Vol. 4, 222,223. Roberts et al. (1974) 52.	$\begin{array}{c} x = 0.181 & x = -0.185 \\ 0_{III}(4a) & y = 0.03 \\ z = 0.452 & 0_{VI} & (4a) & y = -0.025 \\ x = -0.13 & z = 0.595 \\ x = -0.13 & x = 0.09 \\ 0_{IV} & (4a) & y = 0.75 & 0_{VII}(4a) & y = 0.115 \\ z = 0.690 & z = 0.874 \\ x = -0.07 \\ 0_{V} & (4a) & y = 0.110 \\ z = 0.210 \end{array}$	Fig. 2

OLIVINE Forsterite (Mg) - fay.	$(for forsterite)(M_{t})$	•	$ \begin{array}{c} x = 0.092 \\ 0 \\ 1 \\ (4c) \\ y = 1/4 \\ z = 0.767 \end{array} $
	c=4.77 Å	x=0.2775 g,Fe) _{II} (4c) y=1/4 z=-0.010 x=0.0945	0_{II} (4c) $y=1/4$ z=0.219
$(Mg,Fe)_2^{o}$ Si ^t $\begin{bmatrix} 0_4 \end{bmatrix}^{h}$		$(4c) y = 1/4 \\ z = 0.426$	$\begin{array}{c} x=0.163\\ 0_{III}(8d) \ y=0.0365\\ z=0.277\end{array}$
(Mg, Fe) = (A) =	b a b g g g g g g g g g g g g g g g g g		
Fig. 1	Fig. 2	Fig. 3	Fig. 4
Prop	erties	rii. (3,3,5) (34g.5)	erta sat and anes
HabitCleav.Fract.Twin.tabulargoodconchoi-(001)prismatic(100)dal(110)Refr.index/Reflect.Birefr. n_{α} = 1.635(+) n_{β} = 1.651 γ = 1.670 $2V$ = 85° - 90°	Hardn. Dens. Colour Trans 6.5 3.2 colourless, transpagreen to tran Luster Streak Melt.p. CPI vitreous white 1890°C (SPI) (forsterite) 1205°C 65 1205°C (fayalite) 1205°C	Inent	
Population	Figures	rik ● I ⊂ A ● a 2 May alway	b -
Knebelite $(Mn, Fe)_{2}^{o} \operatorname{Sit} \left[\begin{smallmatrix} 0 \\ 4 \end{smallmatrix} \right]^{h}$ <u>Chrysoberyl</u> $Al_{2}^{o} Be^{t} \left[\begin{smallmatrix} 0 \\ 4 \end{smallmatrix} \right]^{h}$ Sinhalite $Al_{2}^{o} Mg^{o} B^{t} \left[\begin{smallmatrix} 0 \\ 4 \end{smallmatrix} \right]^{h}$	Fig. 1. Packing drawing of the ol vine structure (a) and correspo ding unit-cell projection on (OlO) plane (b) (after Wyckoff, 1965, Vol. 3).		
Description The olivine structure is based on a nearly perfect hexagonal closest packing of oxygen atoms with Mg and Fe atoms occupying 1/2 of octahedral voids forming a zig-zag pattern,	Fig. 2. Polyhedral representation of the olivine structure (adapt from Zoltai, 1977). Fig. 3. Ball and spoke model of t olivine structure (adapted from Povarennykh, 1972).	the	
and Si atoms occupying 1/8 of the tetrahedral voids forming also a zig-zag pattern.	Fig. 4. Mixed octahedral-tetrahed layer in the (010) plane of oliv (adapted from Zoltai, 1975). Fig. 5. Condensed model of the ol	vine	
References	vine structure. The large open		(XXXX)
Kostov (1968) 291-294. Povarennykh (1972) 283, 384,385, 465. Wyckoff (1965) Vol. 3, 91-93. Wyckoff (1968) Vol. 4, 159-161. Zoltai + Stout (1984) 359. Ingerson (1955) 351. Zoltai (1975) II-3. Zoltai (1977) 6-40.	circles represent oxygen atoms. The small black circles (Mg, Fe atoms in octahedral voids, and the smaller black circles Si atoms in tetrahedral voids. Not ce the zig-zag pattern of both occupied octahedral and tetrahe dral voids.	e)	

<u>CHONDRODITE</u> Mg_5^o Si ^t ₂ $[0_8]$	(OH,F) ₂] ^h	a=10.29Å b=4.742Å c=7.87Å		x = 0.17 (4c) $y = 0$ z = 0.30 x = 0	$ \begin{array}{c} x = 0.15 \\ y = 0.10 \\ z = -0.30 \\ x = 0.03 \end{array} $
		$\beta = 109^{\circ}2'$	Mg _{II}	(2d) $y=1/2$ z=1/2	0_{I} (4e) y=0.75 z=0.30
P 2 ₁ /a		Z = 2	Mg _{II}	$ \begin{array}{c} x = -0.10 \\ y = 0.50 \\ z = 0.10 \end{array} $	$\begin{array}{c} x=0.23\\ 0_{11}(4e) \ y=0.75\\ \dots \ z=0.10 \end{array}$
аль 1027 / 0 0 0 0 0 1/1425 5/0,1 1/1425 5/0,1 1/1455					
Fig. 1	Fig.				
Prope	rties			CHONBURNINI NES	sty [a, ion i] " r T 1/s
HabitCleav.Fract.Twin.equantpoorsubcon-(001)(010)choidalRefr. index/Reflect.Birefr. $n_{\alpha} = 1.60$ (+) $n_{\beta} = 1.62$	Hardn. Dens. 6.5 3.16- -3.26 -3.26 Luster Streak vitreous white		ransp. anslucent CPI (SPI)		
$n_{\gamma} = 1.62$ $n_{\gamma} = 1.63$ $2V = 60^{\circ} - 90^{\circ}$			62	ox over	X VOYOXAT C
Population	Des	cription		MoloXoX	XHX X X X D
Alleghanyite $Mn_5^oSi_2^t \left[0_8(OH)_2 \right]^h$ Figures Fig. 1. Projection of the chondro- dite structure along the <u>b</u> axis emphasizing its relation with olivine and brucite (after Povarennykh, 1972). Fig. 2. Mixed octahedral-tetrahe- dral layer in the (O10) plane of chondrodite (after Zoltai, 1975). Fig. 3. Condensed model of the	based on an he packing of 0, atoms in octah a zig-zag patt trahedral void dered derived structure by a cite, Mg(OH,F) 2 olivine plus 2Mg ₂ Si0 ₄ + Mg(O	OH and F, wit edral voids f ern, and Si i s. It can be from the oliv dding strips 2, in a propo l brucite,	st h Mg orming n te- consi- ine of bru-		
chondrodite structure. The large open circles represent oxygen atoms, and large lined circles OH or F atoms. The black circles correspond to Mg atoms in octa- hedral voids, and the smaller black circles to Si atoms in tetrahedral voids.	Kostov (1968) Povarennykh (1 Wyckoff (1968) Zoltai + Stout Zoltai (1975) Crystallograp O _{III} (4e) y=0 z=0 x=0	972) 391,392 Vol. 4, 178 (1984) 361. 1-I5. hic data (con 17 25 50 13	-180.		
	O _{IV} (4e)y=0 z=0 (0H,F)(4e)y=0 z=0.	30 07 25		Fig. 3	

HUMITE Pbnm	x = 20,00 $x = 0,00$	$\begin{array}{ccccc} x=0.00 & x=0.75 \\ g_{d}) & y=0.37 & 0_{I} & (8d) & y=0.21 \\ z=0.18 & z=0.18 \\ x=0.10 & x=0.25 \end{array}$
	$Mg_{II} (8d) y=0.09 \\ z=0.11 \\ x= 0.50 $	$\begin{array}{c} \text{tc} & y_{z} = 0.02 \\ z = 1/4 \\ \text{s} = 0.60 \\ \text{s} = 0.27 \\ \text{s} = 0.27 \\ \text{s} = 0.21 \\ \text{s}$
	z= 0.04	z=0.11 $z=0.04$
Fig. 1	Fig. 2	
]
Prope	rties	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Hardn. Dens. Colour Transp. 6 3.20-3.32 white, yellowish transparent to trans- lucent Luster Streak Melt.p. CPI	
Population	Description	TOTOTOTOTOTOTOTOTO
Manganhumite Mn ^O ₇ Si ^t ₃ $\begin{bmatrix} 0_{12}(\text{OH})_2 \end{bmatrix}^h$ Figures Fig. 1. Mixed octahedral-tetrahe- dral layer in the (100) plane of humite (after Zoltai, 1975). Fig. 2. Structural scheme of humite emphasizing its relation with olivine and brucite (after Kostov, 1968). Fig. 3. Condensed model of the hu-	The humite structure is based on an hexagonal closest packing of 0, (OH) and F, with Mg atoms in octahedral voids forming a zig-zag pattern, and Si atoms in tetrahe- dral voids. It can be considered derived from olivine and brucite. $3 \text{ Mg}_2\text{SiO}_4$ (olivine) + Mg (OH,F) ₂ (brucite like structure). References	
mite structure. Large open cir- cles represent oxygen atoms, and large lined circles OH or F atoms. The black circles corres- pond to Mg atoms in octahedral voids, and the smaller black circles to Si atoms in tetradral voids.	Kostov (1968) 292-294. Povarennykh (1972) 391,392. Wyckoff (1968) Vol. 4, 175-178. Zoltai (1975) I-14. Roberts et al. (1974) 284. Crystallographic data (continued) $v_{IV}(8d) = \frac{x=0.25}{y=0.29} v_{VII}(8d) = \frac{x=0.75}{y=0.04}$ z=0.11 = x=0.25 $v_{V}(4c) = \frac{x=0.25}{y=0.29} (OH,F)(8d) = 0.04$ z=0.04 z=0.04 z=0.04 z=1/4	Fig. 3

$\frac{\text{CLINOHUMITE}}{\text{Mg}_{9}^{\circ} \text{Si}_{4}^{t} \left[0_{16} (\text{OH}, \text{F})_{2}\right]^{h}}$	/ a a=10.29 % Mg _I (4e) x=0.14 y=0.00 z=0.17 k=-0.056 β=100°50' z=0.28 Mg _{II} (4e) y=0.50 z=0.28 Mg _{III} (4e) x=-0.11 Mg _{III} (4e) x=-0.11 y=0.50 z=0.056 x=-0.11 Mg _{III} (4e) x=-0.056 x=-0.11 y=0.50 z=0.056 K=-0.056 x=-0.11 y=0.50 z=0.056 K=-0.056 x=-0.11 y=0.50 z=0.056 K=-0.05	$\begin{array}{ccccccc} Mg_{IV}(2d) & x=0 & x=0 & x=0.07 \\ Mg_{IV}(2d) & y=1/2 & Si_{II}(4e) & y=0.10 \\ z=1/2 & & z=0.39 \end{array}$ $\begin{array}{cccccccc} Mg_{V} & (4e) & y=0.50 & & & & & & & & & & & & & & & & & & &$
Fig. 1 Fi	g. 2	
Prope	rties	estimates in Cast is use 16 as and
		CY BY BY BY BY BY BY BY
Habit Cleav. Fract. Twin. equant poor subcon- (001) (010) choidal Refr. index/Reflect. Birefr.	Hardn. Dens. Colour Transp. 6 3.21-3.35 white, translucent yellow Luster Streak Melt.p.	
$n_{\alpha} = 1.63 \qquad (+)$		CYOYOYOXOYOXOYAXC
$n_{\beta} = 1.64$	vitreous white (SPI)	Lovox - vovoyo)
$n_{\gamma} = 1.59$ $2V = 73^{\circ} - 76^{\circ}$	64	A A A Y A Y A Y A
Population	Description	* a Lo X4X o Xo Xo Xo Xo Xo
Sonolite $\operatorname{Mn}_{9}^{\circ}\operatorname{Si}_{4}^{t}\left[\operatorname{O}_{16}(\operatorname{OH})_{2}\right]^{h}$	The clinohumite structure is based on an hexagonal closest pac- king of 0, (OH) and F, with Mg	
Figures	atoms in octahedral voids forming a	CALLO XAAOYO LOYO LO
 Fig. 1. Mixed octahedral-tetrahe- dral layer in the (010) plane of clinohumite (after Zoltai, 1975). Fig. 2. Schematic representation of the octahedral zig-zag pat- tern of the structures of oli- vine, norbergite, chondrodite, humite and clinohumite (after 	zig-zag pattern, and Si atoms in tetrahedral voids. It can be imagi- ned derived from olivine and brucite $4 \text{ Mg}_2 \text{ Si 0}_4$ (olivine) + Mg (OH,F) ₂ (brucite like structure). References	
Ribbe et al., 1968).	Kostov (1968) 294. Wyckoff (1968) Vol. 4, 178-181.	
Fig. 3. Condensed model of the clinohumite structure. Large open circles represent oxygen atoms, and large lined circles OH and F atoms. The black cir-	Zoltai + Stout (1984) 361. Zoltai (1975) I-13. Ribbe et al. (1968) 970.	
cles correspond to Mg atoms in octahedral voids, and the	Crystallographic data (continued)	YOLOWAOX XOX XO
smaller black circles to Si atoms in tetrahedral voids.	$\begin{array}{c cccccc} & x=0.11 & & x=0.39 \\ 0_{III}(4e) & y=0.25 & & 0_{VI} & (4e) & y=0.25 \\ z=0.28 & & z=0.39 \\ x=0.28 & & x=0.056 \\ 0_{IV} & (4e) & y=0.75 & & 0_{VII} & (4e) & y=0.75 \\ z=0.28 & & z=0.39 \end{array}$	
	$\begin{array}{ccccccc} x=0.33 & x=0.17 \\ 0_V & (4e) & y=0.25 \\ z=0.17 & z=0.50 \end{array}$	Fig. 3
	x=0.056 (OH,F)(4e) y=0.25 z=0.056	

$ \frac{\text{KYANITE}}{(\text{Cyanite})} \text{Al}_{2}^{\text{O}} \text{Si}^{\text{t}} \begin{bmatrix} 0 \\ 0 \end{bmatrix} $ (Disthene) Pl	$5 \int C = \frac{a}{5} + \frac{7.1192}{2} + \frac{A}{1} + \frac{21}{2} +$	0.04243 0.20222 -0.19893 -0.45032 0.39951
Fig. 1	10, 10, 10, 10, 10, 10, 10, 10,	Control Al ⁽² 5) ¹ [5 ₂] ⁴ *1
$\begin{array}{c c} & Prope \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ habit \\ blady, \\ \hline \\ perfect \\ (100) \\ uneven \\ (100) \\ uneven \\ (100) \\ tabular \\ good \\ (010) \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \\ \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	Hardn. Dens. Colour Transp. 5 - 7 3.60 blue, transparent white cent cent Luster Streak Melt.p. CPI vitreous, white (SPI) pearly 68	Sing and it
Figures	Description	XAXAA
 Fig. 1. Polyhedral description of the kyanite structure (after Zoltai + Stout, 1984). Fig. 2. Projection of the kyanite structure on the (001) plane (after Povarennykh, 1972). Fig. 3. Condensed model of kyanite. Large open circles represent 0 atoms, and the small black cir- cles Al in octahedral voids. The still smaller black circles 	The kyanite structure is based on a cubic closest packing of the O atoms, with Al in octahedral voids, and Si occupying tetrahedral voids.	
correspond to Si atoms in tetra- hedral voids (after Figueiredo,	Crystallographic data (continued)	0000000
1976).	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	XOOOOOX
References	x=0.20327 $x=0.20915SiTT(2i) y=0.43503 0_{VTT} (2i) y=-0.43554$	000000
Kostov (1968) 283, 287. Wyckoff (1968) Vol. 4, 180-183. Povarennykh (1972) 386. Zoltai + Stout (1984) 363,364. Figueiredo (1976).	$\begin{array}{cccccccc} & \mathbf{x}=-0.20644 & \mathbf{z}=-0.43343 \\ \mathbf{x}=-0.00220 & \mathbf{x}=0.22172 \\ 0_{I} & (2i) & \mathbf{y}=0.22859 & 0_{VIII} (2i) & \mathbf{y}=0.05444 \\ \mathbf{z}=-0.25456 & \mathbf{z}=0.07146 \\ 0_{II} & (2i) & \mathbf{y}=0.22481 & 0_{IX} & (2i) & \mathbf{y}=-0.13082 \\ \mathbf{z}=0.25581 & \mathbf{z}=-0.14053 \\ 0_{III} & (2i) & \mathbf{y}=-0.21569 & \mathbf{z}=0.37830 \\ 0_{III} & (2i) & \mathbf{y}=-0.44677 & 0_{X} & (2i) & \mathbf{y}=-0.18550 \\ \mathbf{z}=0.03635 & \mathbf{z}=0.31866 \\ \end{array}$	
	x= 0.22259 0 _{IV} (2i) y= 0.04515 z=-0.45589	Fig. 3

TOPAZ Pbnm	a=4.0499 A	$\begin{array}{cccc} x=0.90354 & & x=0.45691 \\ y=0.13102 & 0_{11} & (4c) & y=0.75625 \\ z=0.08236 & & z=1/4 \end{array}$
	b=8.7968 Å ch c=8.3909 Å	$ \begin{array}{c} x = 0.39784 \\ y = 0.94049 \\ z = 1/4 \end{array} \begin{array}{c} x = 0.78931 \\ y = 0.01058 \\ z = 0.90788 \end{array} $
$Al_2^o Si^t \left[O_4 (OH,F)_2 \right]^c$	$Z=4$ $O_{I}(4c)$	$\begin{array}{c} x=0.79608 \\ y=0.53208 \\ z=1/4 \end{array} \begin{array}{c} x=0.90176 \\ y=0.75258 \\ z=0.05720 \end{array}$
C B c h b c c h b c c h b c c h b c c h c		
Prot	erties	-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X
HabitCleav.Fract.Twin.prismaticperfectsubcon- (001)choidalRefr. index/Reflect.Birefr. $n_{\alpha} = 1.61$ (+) $n_{\beta} = 1.61$ (+) $n_{\gamma} = 1.62$ 2V = 48-65°	Hardn. Dens. Colour Transp. 8 3.5-3.6 colourless, transpare variable to translucent Luster Streak Melt.p. CPI vitreous white (SPI) 66	
$\frac{1102}{100} = 1.02$ Figures	Description	TRUTTS - SUTTRIAL - SUTTRIAL -
Fig. 1. Polyhedral representation of the topaz structure normal to the closest packed layers (after Zoltai + Stout, 1984). Fig. 2. Mixed octahedral-tetrahe-	The topaz structure is based on a <u>ch</u> closest packing of OH and the oxygen atoms. The Al atoms occupy octahedral voids, and Si atoms	
 dral distribution of the topaz structure parallel to the (010) plane (after Zoltai, 1975). Fig. 3. Condensed model of the to- paz structure. Large open cir- cles represent oxygen atoms, and large lined circles OH or F atoms. Small black circles cor- respond to Al atoms in octahe- dral voids, and smaller black circles to Si atoms intetrahe- 	tetrahedral voids.	
dral voids.		
	References Kostov (1968) 288. Wyckoff (1968) Vol. 4, 174,175. Zoltai + Stout (1984) 368,369. Zoltai (1975) I-13.	
		Fig. 3

$\underline{\text{ANTLERITE}} \text{Cu}_3^{\text{O}} \text{ s}^{\text{t}} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	4 (OH) $4 \begin{bmatrix} C & a = 8.226 \ R & Cu_{I} \end{bmatrix}$ $\begin{pmatrix} a = 8.226 \ R & Cu_{I} \end{bmatrix}$ $\begin{pmatrix} b = 6.046 \ R & c = 11.978 \ R & Cu_{II} \end{bmatrix}$	
Pnma		$\begin{array}{c} x=0.1304 & x=0.033 \\ y=1/4 & 0_{III}(8d) & y=0.047 \\ z=0.3641 & z=0.348 \end{array}$
(a) Fig. 1 (b)		ATLAND
HabitCleav.Fract.Twin.prismatic,perfectuneventabular(001)Refr. index/Reflect.Birefr. $n_{\alpha} = 1.726$ (+) $n_{\beta} = 1.738$	Hardn. Dens. Colour Transp. 3.5-4 3.9 white transparent grey to transp Luster Streak Melt.p. CPI vitreous green (SPI) grey 54	
$n_{\gamma} = 1.789$ $2V = 53^{\circ}$	Description	
Figures Fig. 1. (a) Packing drawing of the antlerite structure, and (b) unit cell content projected along the <u>b</u> axis (after Wyckoff, 1965, Vol. 3).	The antlerite structure is ba- sed on a cubic closest packing of OH and O atoms. The Cu atoms occu- py 3/8 of the octahedral voids, and the S atoms 1/16 of the te- trahedral voids.	
Fig. 2. Condensed model of the an- tlerite structure. The large open circles represent oxygen atoms and the large lined circles correspond to OH. The small black circles represent Cu atoms in oc- tahedral voids forming a row pattern, and the smaller black circles correspond to S atoms in tetrahedral voids(after Figueiredo, 1976).	References Kostov (1968) 512-513. Wyckoff (1965) Vol. 3, 205,206. Zoltai + Stout (1984) 441. Figueiredo (1976). Crystallographic data (continued) x=0.285 (OH) I (4c) y=1/4	
	$(0h)_{I}$ (40) $y=1/4$ z=0.026 x=0.701 $(0h)_{II}$ (4c) $y=1/4$ z=0.779 x=0.046 $(0h)_{III}$ (8d) $y=0.503$ z=0.102	Fig. 2

GERSTMANNITE	Bbcm	a=8.185 X b=18.65 X	(Mn,Mg)(8f)	x=0.00721 y=0.39594 z=1/2	Si(8f) y= z=	0
o o t t [٦٢	c=6.256 Å Z=8	Mg (8c)	x=1/4 y=1/2 z=1/4	$0_{1}(8f) = z =$	
(Mn,Mg) ^o Mg ^o Zn ^t Si ^t	² 4 ^(OH) 2]	Z=0	Zn (8e)	x=0.40033 y=1/4 z=1/4	0 _{II} (8f) ^{x=} z=	0.2775 0.2793 0
Fig. 1	Fig.					
Pro	perties]	CONTENED	WY WO	17/10
HabitCleav.Fract.Twin.prismaticgood(010)Refr.index/Reflect.Birefr. $n_{\alpha} = 1.665$ (-) $-\beta = 1.675$ $2V \simeq 50^{\circ} - 60^{\circ}$	4.5 3.68 Luster Strea vitreous white	white pale- tr pink to k Melt.p.	Transp. vanslucent o opaque CPI			
ny = 1.678 Figures	De	scription		200	The second	THE
 Fig. 1. Idealized octahedral sheet of the gerstmannite structure down [010] (after Moore + Araki, 1977). Fig. 2. Idealized polyhedral and spoke diagram of the gerstmannite structure down [001] (after Moore + Araki, 	The gerstma based on a cul of OH and O au	annite structu bic closest pa toms. Mn and M ids, and Zn an	cking g occupy			
1977). Fig. 3. Condensed model of the gerstmannite structure. Lar- ge open circles represent 0 atoms, and large lined cir- cles OH. The medium black circles correspond to cer- tain Mg atoms which are in octahedral voids. The medium lined circles represent Mn and the other Mg atoms, also in octahedral voids. The smaller black circles corres				BORDEN.		
pond to Si atoms and the smaller crossed circles to Zn, all in tetrahedral voids.				and transit		
References				1	CAS	35
Moore + Araki (1977) 51-59.	x=0 0 111(16g) y=0 z=0 (0H) (8d) y=1 z=0 (0H) z=(8f) y=0 (0H) z=(8f) y=0	.3373 .2112 /2 .2822 .2501				
	(OH) _{II} (8f) y=0 z=1	/2		Fig. 3		

<u>SWEDENBORGITE</u> Sb ^O Be	$\begin{bmatrix} A & 0 \\ 7 \end{bmatrix} = \begin{bmatrix} a = 5.43 \\ c = 8.82 \\ R \end{bmatrix}$	$\begin{array}{cccccc} x=1/3 & x=0 \\ (2b) & y=2/3 & 0_{I} & (2a) & y=0 \\ z=0.12 & z=0.00 \\ x=0 & x=0.50 \\ (2a) & y=0 & 0_{II} & (6c) & y=0.50 \\ \end{array}$
Рб ₃ m	c x=1/3	$\begin{array}{c} x=0.19 \\ x=0.17 \\ y=0.17 \\ z=0.44 \end{array} \begin{array}{c} x=0.17 \\ y=0.17 \\ z=0.25 \end{array}$
A $B = h$ $A = c$ $C = h$ $A = c$ $B = h$ $A = c$ C Fig. 1	Fig. 2	
HabitCleav.Fract.Twin.shortdistinctsubcon-prismatic(0001)choidalRefr.index/Reflect.Birefr. $n_{\omega} = 1.7724$ (-) $n_{\epsilon} = 1.7700$	erties <u>Hardn. Dens. Colour Transp.</u> ~8 4.285 colourless transparent to wine- -yellow <u>Luster Streak Melt.p. CPI</u> vitreous	
Figures Fig. 1. Polyhedral description of the swedenborgite structure (after Povarennykh, 1972) Fig. 2. Another polyhedral drawing of the swedenborgite structure (quoted in Strukturbericht, 1937, Vol. 3). Fig. 3. Condensed model of the swedenborgite structure. The large open circles represent oxygen atoms, and the large lined circles Na atoms. The small black circles correspond to Sb atoms in octahedral voids, for- ming a triangular pattern, and	Description The swedenborgite structure is based on a <u>ch</u> closest packing of oxygens and Na atoms. The Sb atoms occupy 1/8 of the octahedral voids, and the Be atoms 1/4 of the tetra- hedral voids. The structure is built by two alternate kind of layers.	
the smaller black circles re- present Be atoms in tetrahedral voids with two kinds of alternate layers, one with a triangular pattern and another with a Kagomé pattern.	References Kostov (1968) 213. Povarennykh (1972) 279. Wyckoff (1968) Vol. 4, 72,73. Strukturbericht (1937) Vol. 3, 69-71. Palache et al. (1951) Vol. 2, 1027,1028. Roberts et al. (1974) 594.	Fig. 3

P		
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(a) Fig. 1		TOYOYOYOYOYOYOY
Habit Cleav. Fract. Twin pyramidal, perfect prismatic, (100) Refr. index/Reflect. Birefr. $n_{g} = 1.720$ (-)	<u>Hardn. Dens. Colour Transp.</u> 4.5-5 3.91- bright transparent pink, to translu- brown cent Luster Streak Melt.p. CPI vitreous	
$n_{\beta} = 1.741$ $2V = 52^{\circ}$	VICLEOUS	210102000010101010101
$n\gamma = 1.746$		
Figures	Descripțion	
Fig. 1. (a) Packing drawing of the hodgkinsonite structure, and (b) projection along the <u>b</u> axis (after Wyckoff, 1968, Vol. 4). The close packing direction is marked c.p.d.	The hodgkinsonite structure is ba- sed on a hexagonal closest packing of OH and O atoms. The Mn atoms occupy octahedral voids, and Si and Zn te- trahedral voids.	
Fig. 2. Condensed model of the	References	
hodgkinsonite structure. Large open circles represent oxygen atoms, and large lined circles correspond to OH. The medium	Kostov (1968) 324. Wyckoff (1968) Vol. 4, 204-206. Roberts et al. (1974) 276.	
black circles represent Mn	Figueiredo (1976 b).	PERSONAL AND A DESCRIPTION OF A DESCRIPO
atoms, in octahedral voids; the smaller black circles re-	Crystallographic data (continued)	
present Si atoms in tetrahe- dral voids. The smaller dot- ted circles correspond to Zn atoms also in tetrahedral	$\begin{array}{ccccccc} x = 0.0673 & x = 0.4902 \\ \text{Si} & (4e) & y = 0.0666 & 0_V & (4e) & y = 0.0892 \\ z = 0.8292 & z = 0.3836 \\ x = 0.1067 & x = 0.8491 \\ 0_T & (4e) & y = 0.0810 & 0_{VT} & (4e) & y = 0.0882 \end{array}$	
voids. The unit cell is incli-	0 I (4e) y = 0.0810 0 VI (4e) y = 0.0882 z = 0.1911 z = 0.5560	
ned in relation to the closest packed layers (after Figueiredo, 1976 b).	$\begin{array}{c} x = 0.1657 & x = 0.466 \\ 0_{II}(4e) & y = 0.0405 & H_{I} & (4e) & y = 0.260 \\ z = 0.7151 & z = 0.333 \\ x = 0.8193 & x = 0.842 \\ 0_{III}(4e) & y = 0.0702 & H_{II}(4e) & y = -0.83 \\ z = 0.0660 & z = 0.600 \end{array}$	
	$ \begin{array}{c} x = 0.5384 \\ 0_{IV} (4e) \ y = 0.1441 \\ z = 0.8621 \end{array} $	Fig. 2

$\frac{1RON}{2} \begin{bmatrix} Fe \end{bmatrix}^{Bb} \begin{bmatrix} a=2\\ z=2 \end{bmatrix}$	87 X Fe(2a)	
I m 3 m		
(a) (b) Fig. 1	Fig. 2	Fig. 3 Fig. 4
Prope	rties	rkov [re] ^{Bb} r=j=
HabitCleav.Fract.Twin.irregularperfecthackly(111)grains(100)Refr.index/Reflect.Birefr.n = 2.3656%	Hardn. Dens. Colour Transp. 4.5 7.3-7.8 steel- opaque -grey Luster Streak Melt.p. CPI metallic 1535°C (SPI) 68	
Figures Fig. 1. (a) Packing drawing of the iron structure and (b) projection on a cubic face. Fig. 2. Condensed model sheet for the representation of body cente- red cubic packing, where the cen- tres of the large circles, repre- senting the packing atoms, form a tesselation of lozenges with 70°32' as smallest angle. This kind of packing layer is called	Fig. 5. Condensed model of the iron structure. The large open circles correspond to Fe atoms. The layers are of ≪Q≫ type and their stacking is f. The packing ≪Q≫ f is equal to the packing Bb. Description	1 Itap skeet]
 B, and is an intermediate between the T (closest) and the Q layers. It should be stacked over other sheets on the sequence <u>b</u>, over valleys. Fig. 3. Ball and spoke model of the iron structure. Fig. 4. Cubic coordination of the packing atoms in the body centered cubic packing. 	The iron structure is formed by the body-centered cubic packing of the iron atoms.	Fig. 5

·····		
$\frac{\text{FLUORITE}}{\text{Fm}\overline{3}\text{m}}$	$2S$ a = 5.46295 $2(at 28^{\circ}C)$ Ca(42 Z = 4 F (80	
(a) (b) Fig. 1	Fig. 2	المحقق المحقق Fig. 3
] []
Prope <u>Habit Cleav. Fract. Twin.</u> cubic, perfect conchoidal, (111) octahe- (111) splintery dral <u>Refr. index/Reflect. Birefr.</u> n = 1.434	Hardn. Dens. Colour Transp. 4 3.18 colourless, transparent variable Luster Streak Melt.p. CPI vitreous white 1378°C (SPI) 60	
Population	Description	1 (Sag algent)
Thorianite $Th^{cb} \begin{bmatrix} 0_2 \end{bmatrix}^{QS}$ Cerianite $Ce^{cb} \begin{bmatrix} 0_2 \end{bmatrix}^{QS}$ <u>Uraninite</u> $U^{cb} \begin{bmatrix} 0_2 \end{bmatrix}^{QS}$ <u>Figures</u> Fig. 1. (a) Packing drawing of the fluorite structure, and (b) unit cell content projected on a cube face (after Wyckoff, 1963, Vol. 1). Fig. 2. Two ball and spoke models of the fluorite structure corres- ponding to different choices for the origin of the unit cell, in order to emphasize the simple	The fluorite structure is based on a simple cubic packing of the F atoms, with Ca occupying 1/2 of the cubic voids forming a square pat- tern. Another interpretation of this structure is that Ca form a cubic closest packing with F in tetrahedral voids. This is a wrong interpretation because the F atoms are larger than the Ca atoms, and consequently Ca atoms can not form a close packing in the fluorite structure.	FLOATT
cubic packing of the F ions	References	XXXXXXXXX
 (after Bloss, 1971). Fig. 3. Polyhedral representation of the fluorite structure (after Kostov, 1969) showing the occupied cubic voids by Ca atoms. Fig. 4. Condensed model of the 	Kostov (1968) 190-192 Povarennykh (1972) 269, 273,274, 661. Wyckoff (1963) Vol. 1, 239-244. Zoltai + Stout (1984) 403.	
Fig. 4. Condensed model of the fluorite structure. The large open circles represent F atoms. The smaller black circles correspond to Ca atoms in cubic (cb) voids.	Bloss (1971) 248. Ingerson (1955) 351.	Fig. 4

$\frac{\text{PYROCHLORE}}{(\text{Ca, Na})_2^{\text{cb}} \text{ Nb}_2^6} \left[0_6 \right] $	Fd3m DH)□] ^{Qs}	a = 10.397 Å Z = 8	(Ca, Na) (16c) Nb (16d) (O, OH) _I (8b) (O,OH) _{II} (48f) u≈0.19
Fig. 1 Fig. 1 Prop Habit Cleav. Fract. Twin. octahedral, distinct subcon- rare in grains (111) choidal (111) <u>Refr. index/Reflect. Birefr.</u> n = 1.96-2.01	5-5.5 4.2 br	olour Transp. own, translucent Lack, to opaque addiah elt.p CPI_	<pre>Processing for ext (* ext</pre>
$\begin{array}{c} \begin{array}{c} & \text{Population} \\ \hline \\ \text{Microlite } (Ca,Na)_{2}^{cb} Ta_{2}^{6} \begin{bmatrix} 0_{6}(0H,F) \Box \end{bmatrix}^{Qs} \\ \text{Betafite } (Ca,U)_{2}^{cb} (Nb,Ti)_{2}^{6} \begin{bmatrix} 0_{6}(0H,F) \Box \end{bmatrix}^{Qs} \\ \text{Pandaite } Ba_{2-x}^{cb} Ta_{2}^{6} \begin{bmatrix} 0_{7-x}(H_{2}0)_{x} \Box \end{bmatrix}^{Qs} \\ \text{Rijkeboe-} Ba_{2-x}^{cb} Ta_{2}^{6} \begin{bmatrix} 0_{7-x}(H_{2}0)_{x} \Box \end{bmatrix}^{Qs} \\ \text{rite} \\ \text{Sukulaite } Sn_{2}^{cb} Ta_{2}^{6} \begin{bmatrix} 0_{7} \Box \end{bmatrix}^{Qs} \\ \text{Romeite } Ca_{2}^{cb} Sb_{2}^{6} \begin{bmatrix} 0_{7} \Box \end{bmatrix}^{Qs} \\ \text{Bindhei-} Pb_{2}^{cb} Sb_{2}^{6} \begin{bmatrix} 0_{7} \Box \end{bmatrix}^{Qs} \\ \text{Partzite } Cu_{2}^{cb} Sb_{2}^{6} \begin{bmatrix} 0_{6}(H_{2}0) \Box \end{bmatrix}^{Qs} \\ \text{Stetefeld-} Ag_{2}^{cb} Sb_{2}^{6} \begin{bmatrix} 0_{6}(H_{2}0) \Box \end{bmatrix}^{Qs} \end{array}$	Figur Fig. 1. Polyhedral pyrochlore struct Belov, quoted by Fig. 2. Condensed of rochlore structur circles represent The black circles	drawing of the ture (after Kostov, 1968). model of the py- re. Large open t OH and O atoms. s correspond to ith cubic coordi- crossed lined th coordination represent va-	
References Kostov (1968) 253. Wyckoff (1965) Vol. 3, 439,440. Povarennykh (1972) 276,277. Palache et al. (1944) Vol. 1, 748,749. Roberts et al. (1974) 499.	Descri The pyrochlore sed on a defect si king of the OH and Na, Ca and Nb occu cubic voids. The 1 and Ca have cubic and Nb atoms 6 coc to the vacancies (row pattern.	structure is ba- mple cubic pac- d 0 atoms, with apying 1/2 of the large cations Na coordination, ordination, due	Fig. 2

<u>COOPERITE</u> Pt ^{sq} [S]	c = 0.10 A S (2e) Z = 2	
P42/mm	c	
(a) (b) Fig. 1	Fig. 2	Fig. 3
Prop <u>Habit Cleav. Fract. Twin.</u> irregular (011) conchoi- grains dal <u>Refr. index/Reflect. Birefr.</u>	Mardn. <u>Dens. Colour Transp.</u> 4-5 9.5 steel- opaque -grey Luster Streak Melt.p. <u>CPI</u> metallic	
Figures Fig. 1. (a) Packing drawing of the cooperite structure, and (b) unit cell content projec- ted on (010) plane (after Wyckoff, 1963, Vol. 1).	and consider the unit cell marked with dashed lines to understand Fig. 2.	
Fig. 2. Ball and spoke model of the cooperite structure (after Povarennykh, 1972). Fig. 3. More complete ball and spoke model of the cooperite structure in order to mark	Description The cooperite structure is based on a simple cubic packing of S atoms with Pt atoms occupying 1/2 of the square voids, forming a square pattern.	
the unit cell (dashed line) used by Wyckoff, Fig. 1 (adap- ted from Povarennykh, 1972). Look at the direction of the arrow in order to relate it to Fig. 1. Gig. 4. Condensed model of the cooperite structure. Large open circles represent S atoms, which form a simple cubic pac- king, with Pt atoms in square	References Kostov (1968) 115. Povarennykh (1972) 221,222. Wyckoff (1963) Vol. 1, 139,140. Palache et al. (1944) Vol. I, 258.	
voids, forming a square pattern. When using the condensed model look in the direction of the arrow to compare with Fig. 1,		Fig. 4

	x = -	0.1292 x = 0.4240
ANDALUSITE Pnn	- /,030j X 2-0	
A1° A1 ^[5] Si ^t $\begin{bmatrix} 0_5 \Box \end{bmatrix}^{R_t^2}$	c = 5.559	z = 0
	$ \begin{array}{c} x = 0 \\ z = 0.2422 \\ z = 0 \end{array} \begin{array}{c} x = 0 \\ 0_{I} \\ z = 0 \\ z = 0 \end{array} $	$\begin{array}{ccc} 0.0768 & x = 0.2303 \\ 0.1373 & 0 \\ 1 \\ y & 1 \\ z = 0.2390 \end{array}$
(a) (b) Fig. 1	Fig. 2	
Prop	erties	ARDALUBITE
HabitCleav.Fract.Twin.prismatic,goodsubcon-raremassive(110)choidal(011)Refr.index/Reflect.Birefr.	Hardn.Dens.ColourTransp.7.53.18brown, transparent redto translu- centLusterStreakMelt.p.CPI	
$n_{\alpha} = 1.632$ (-) $n_{\beta} = 1.640$	vitreous white (SPI)	
$n\gamma = 1.442$ $2V = 75-85^{\circ}$	58	
Population Olivenite Cu ^o Cu ^[5] As ^t $\begin{bmatrix} 0_4(OH) \end{bmatrix}^{R_{by}^{21}}$ Adamite Zn ^o Zn ^[5] As ^t $\begin{bmatrix} 0_4(OH) \end{bmatrix}^{R_{by}^{21}}$ Eveite Mn ^o Mn ^[5] As ^t $\begin{bmatrix} 0_4(OH) \end{bmatrix}^{R_{by}^{21}}$	black circles to Si atoms in tetra- hedral voids, and the small double circles to other Al atoms with coordination [5] (after Figueiredo, 1976).	
	Description	
Libethenite Cu ^Q Cu ^[5] P ^t [0 ₄ (OH)] ^{R²¹by} Figures	The andalusite structure is based on defect R^{21} packing layers of oxy-	51 ⁶ A1 ⁵
Fig. 1. (a) Packing drawing of the andalusite structure, and (b) unit cell content projected along the <u>c</u> axis (after Wyckoff, 1968, Vol. 4). Fig. 2. Polyhedral representation	gen atoms, with certain Al atoms in octahedral voids, other Al atoms with coordination [5], and Si atoms in tetrahedral voids. The R ²¹ pack- ing layers are formed by two rows forming a closest packing (two trian gular rows) and one row with squares.	
of the andalusite structure (after Zoltai + Stout, 1984).	References	3-83-88-88
Fig. 3. Condensed model of the an- dalusite structure. The large open circles represent oxygen atoms forming R^{21} layers. The packing vacancies are marked with a cross. The medium black circles	Kostov (1968) 282-285. Povarennykh (1972) 386,387, 510, 540. Wyckoff (1968) Vol. 4, 188,189. Zoltai + Stout (1984) 362,363.	
correspond to certain Al atoms in octahedral voids, the smaller	Figueiredo (1976).	Fig. 3

$\frac{\text{PHENAKITE}}{\text{t}} = R\overline{3}$	$a_{R} = 7.70 \qquad Be_{I} (18f) y = \alpha = 108^{\circ}1' \qquad z = z_{R} = 6 \qquad (200)$	x = -0.32
$\operatorname{Be}_{4}^{t}\operatorname{Si}_{2}^{t}\left[\begin{smallmatrix}0\\8&\Box\end{smallmatrix}\right]^{\left(3\operatorname{R}_{0}^{21}\right)}$	c = 8.24 A $x=z = 18$ Si (18f) y=	-0.211 x=-0.205 -0.011 0 _{III} (18f) y=-0.074 -0.250 z=0.083
Fig. 1	Fig. 2	(a) Fig. 3 (b)
	rties]
HabitCleav.Fract.Twin.rhombo-distinctconchoi- $(10\overline{1}0)$ hedral $(11\overline{2}0)$ dalprismaticRefr.index /Reflect.Birefr. $n_{\omega} = 1.654$ (+) $n_{\epsilon} = 1.670$	Hardn. Dens. Colour Transp.	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONTRAC
Population	Description	1 X X TX X
Willemite $Zn_4^t Si_2^t [0_8 \square]^{(3R_0^{21})by}$	The structure of phenakite is ba- sed on a defect packing of R ²¹ la- yers, with Be and Si atoms occupying	Fig. 4
Figures	tetrahedral voids.	
Fig. 1. Packing drawing of the phe- nakite structure projected along the <u>c</u> axis (after Wyckoff, 1968, Vol. 4).		
Fig. 2. Structure of phenakite viewed along the <u>c</u> axis (after Kostov, 1968).	Crystallographic data (continued)	
Fig. 3. Polyhedral representation of the phenakite structure (a) left and right triple strips of	x=-0.205 0 _{IV} (18f) y=-0.074 z=0.417	
BeO_4 and SiO_4 tetrahedra, and	References	4
(b) general view in projection on the basal plane (after Pova- rennykh, 1972).	Kostov (1968) 276, 324. Povarennykh (1972) 383,384. Wyckoff (1968) Vol. 4, 283.	
Fig. 4. Phenakite structure (after Strukturbericht, 1931, Vol. 1).	Roberts et al. (1974) 475. Strukturbericht (1931) Vol. 1, 356.	

LEPIDOCROCITE Fe ^o [O Bbmn	(он)] ^{R³¹_{my}}	a=12.4 Å b=3.87 Å c=3.06 Å Z=4	0(4c)	u=-0.178 u=0.21 u=0.425
Fig. 1				
Des				
HabitCleav. perfectFract. Twin.bladed, (100)(100)tabulargood (001)Refr. index/Reflect.Birefr. Birefr. $n_{\alpha} = 2.20$ $n_{\beta} = 1.94$ $n_{\gamma} = 2.51$ $2V = 83^{\circ}$ PopulationFiguresFig. 1. Polyhedral representation of the lepidocrocite structure (adapted from Povarennykh, 1972).	erties <u>Hardn.</u> <u>Dens</u> 5 4.0 <u>Luster Stre</u> s subme- orang tallic	red brown ak Melt.p.	Transp. trans- lucent <u>CPI</u> (SPI) 52	
	De	scription		
		rocite struc packing laye the Fe atoms wedral voids,	rs of OH are lo-	
	Kostov (1968) Povarennykh (1 Wyckoff (1963) Zoltai + Stout	.972) 146, 32 Vol. 1, 293		

<u>VYSOTSKITE</u> Pd ^{Sq} [S P4 ₂ /m	11) $x = 0.19$ S(8k) y = 0.32 z = 0.23) $u = 0.48$ v = 0.25
$ \begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & $		7
Prope <u>Habit Cleav. Fract. Twin.</u> irregular masses <u>Refr. index /Reflect. Birefr.</u>	Hardn. Dens. Colour Transp. 5 6.69 silvery opaque Luster Streak Melt.p. CPI metallic	
Figures Fig. 1. Projection of the vysotskite structure along the <u>c</u> axis (after Schubert, 1964). Fig. 2. Condensed model of the stru <u>c</u> ture of vysotskite. The large open circles represented S atoms and the black circles correspond to Pd atoms in square voids.	Description The vysotskite structure is ba- sed on the Ns ²¹ packing of S atoms, where N ²¹ means a layer formed by triangles and squares in a propor- tion of 2 to 1 with a tetagonal symmetry, superimposed over one another (s). The Pd atoms occupy square voids in the Ns ² packing.	3 Lop sheet)
	References Kostov (1968) 115 Wyckoff (1963) Vol. 1, 142,143. Schubert (1964) 195. Roberts et al. (1974) 658 Povarennykh (1972) 221.	Fig. 2

1	50	
н	יצר	

$\frac{\text{HETEROGENITE}}{\text{R}\ \overline{3}\ \text{m}}$	OH)] (2Ts)c $A_{R} = 4.676 $ $\alpha = 35^{\circ} 28^{\circ}$ $Z_{R} = 1$ $a_{H} = 2.894 $ c = 13.130 $Z_{H} = 3$	(rhombohedral description)
	perties	
HabitCleav.Fract.Twin.needleperfectconchoi-like,(001)dalmassiveRefr.index/Reflect.Birefr.Birefr.	Hardn. Dens. Colour Transp 4.5 4.13-4.47 black, opaque steel Luster Streak Melt.p. CPI metallic, black, dull dark brown	
Figures Fig. 1. Polyhedral drawing of NaHF ₂ which is isotypic with heterogenite (after Povarennykh, 1972). Fig. 2. Condensed model of the heterogenite structure. Large open circles represent oxygen, and OH. The small black circles represent Co atoms in octahedral voids.	Description The heterogenite structure is bas on a heterogeneous packing (2Ts)c of OH and O atoms. Two layers 0 + OH are superimposed in a simple hexa- gonal packing (Ts) and these double layers are stacked in a closest packing way with a cubic sequence (c), giving rise to empty trigonal prismatic voids. The Co atoms fill up completely the octahedral voids of the double layers O(OH) stacked is closest way.	
	References Kostov (1968) 228. Kondrasev + Fedorova (1954) 229-23 Structure Reports (1961) Vol. 18, 515,516. Wyckoff (1964) Vol. 2, 294. Povarennykh (1972) 144,145, 322. Roberts et al. (1974) 271.	

$\frac{\text{LITHIOPHORITE}}{(Al, Li)^{\circ} \text{Mn}^{\circ}} \left[0_{2} \right] (0)$	$\begin{array}{c} a = 5.06 \ \mbox{\widehat{R}} \\ b = 2.91 \ \mbox{\widehat{R}} \\ c = 9.55 \ \mbox{\widehat{R}} \\ \beta = 100^{\circ} \ \mbox{$\widehat{3}$} \\ z = 2 \end{array}$	Mn (2a) 0 (4i) $x = 0.696$ z = 0.103
	Сосо Сосо Сосо Сосо Сосо Сосо Сосо Сосо	
Prop <u>Habit</u> <u>Cleav.</u> <u>Fract.</u> <u>Twin.</u> massive, perfect compact, (001) botryoidal <u>Refr. index /Reflect.</u> <u>Birefr.</u>	Hardn. Dens. Colour Transp. 3 3.14 - 3.4 bluish opaque black Luster Streak Melt.p. CPI dull, blackish metallic grey	
Figures Fig. 1. Polyhedral drawing of the lithiophorite structure (adapted from Povarennykh, 1972). Fig. 2. Layers of the lithiopho- rite structure projected on the	Description The lithiophorite structure is ba- sed on a heterogeneous packing (2Ts)c, of OH and O atoms. Two layers of OH alternate with two layers of O atoms. These double packing layers superimpose on each other giving	
 b axis. The unit cell is shown by broken lines (after Wadsley, 1952, quoted in Structure Re- ports, 1959, Vol. 16). Fig. 3. Condensed model of the lithiophorite structure. The large open circles represent oxygens atoms, and the large lined circles OH. The small 	rise to a simple hexagonal packing (Ts) in between them, with empty trigonal prismatic voids. The double layers are stacked in a closest packing way with cubic sequence (c). The Mn atoms and the Al and Li atoms fill completely, and alterna- tely the octahedral voids within the double layers.	
black circles correspond to Mn atoms in octahedral voids and the small crossed circles to Al and Li atoms, also in octahedral voids.	Lithiophorite is an interstitial substitution and distortion deriva- tive of heterogenite. References Kostov (1968) 236. Wadsley (1952) 676-688.	
	Structure Reports (1959) Vol. 16, 266-268. Povarennykh (1972) 144,145, 328,329. Roberts et al. (1974) 361.	Fig. 3

metallic

	/
$n_{\omega} = 4.336$	31,5%
$n_{\epsilon} = 2.035$	

1	
Description	
The molybdenite structure is based on a heterogeneous packing. Double	
simple hexagonal layers are stac- ked in a hexagonal closest way with	
an hexagonal sequence (h). The Mo atoms occupy 1/2 of the trigonal prismatic voids, and the octahedral voids within the closest packing layers ara all empty.	
References	6.6.6.6.6.6
Kostov (1968) 137-139. Wyckoff (1963) Vol. 1, 280-282. Povarennykh (1972) 259,260. Palache et al. (1944) Vol. 1, 328,329. Roberts et al. (1974) 412.	Fig. 4
	The molybdenite structure is based on a heterogeneous packing. Double simple hexagonal layers are stac- ked in a hexagonal closest way with an hexagonal sequence (h). The Mo atoms occupy 1/2 of the trigonal prismatic voids, and the octahedral voids within the closest packing layers ara all empty. <u>References</u> Kostov (1968) 137-139. Wyckoff (1963) Vol. 1, 280-282. Povarennykh (1972) 259,260. Palache et al. (1944) Vol. 1, 328,329.

$\frac{\text{GIBBSITE}}{(\text{Hydrargillite})} \text{Al}^{\circ} \left[(\text{OH})_{3} \right]$ $P 2_{1} / n$	$\begin{bmatrix} (2Ts)h & a = 8.6236 \ & A1_{I} & (4e) \ & y = 0.52 \\ b = 5.0602 \ & z = 0.00 \\ c = 9.699 \ & A1_{II} & (4e) \ & y = 0.52 \\ \beta = 85^{\circ} 26^{\circ} & A1_{II} & (4e) \ & y = 0.02 \\ \beta = 85^{\circ} 26^{\circ} & A1_{II} & z = 0.00 \\ Z = 8 & 0_{I} & (4e) \ & y = 0.20 \\ c = 0.11 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fig. 1 Fig.	$ \begin{array}{c} B \\ A \\ B \\ B \\ A \end{array} $ $ \begin{array}{c} $	
HabitCleav.Fract.Twin.tabular, perfectuneven(310)foliated(001)(001)Refr. index/Reflect.Birefr. $n_{\alpha} = 1.57$ (+) $n_{\beta} = 1.57$ 0.0	Hardn. Dens. Colour Transp. 2.5-3.5 2.40 white, transparent grey to trans- lucent Luster Streak Melt.p. pearly, white (SPI) vitreous 39	
Distortion derivative Bayerite $A1^{\circ} [(0H)_{3}]^{(2Ts)h}$ $P2_{1}/a$ Figures	Description The gibbsite structure is based on a heterogeneous packing, with alternate layers of simple hexagonal and clo- sest packed layers. The Al atoms occupy 2/3 of the voids within the closest packed layers, forming a	
 Fig. 1. Ball and spoke model of the gibbsite structure (after Povarennykh, 1972). Fig. 2. Polyhedral description of the gibbsite structure (after Povarennykh, 1972). Fig. 3. Structure of gibbsite: (a) projected on (100), (b) seen along the pseudohexagonal sig (after Katow, 1968). 	honeycomb pattern. The double simple hexagonal layers have all the pris- matic voids empty.	
 axis (after Kostov, 1968). Fig. 4. Condensed model of the gibbsite structure. The large open circles represent 0H, and the small black circles A1 atoms in 2/3 of the octahedral voids, forming a honeycomb pattern. 	References	
	Kostov (1968) 219-221. Povarennykh (1972) 323,324. Wyckoff (1964) Vol. 2, 78-80. Zoltai + Stout (1984) 420,421.	Fig. 4

	P 4 m m	a = 5:870 Å	
DIABOLEITE	1 4 11 11	c = 5.494 Å	Pb(2c)u = 0.00
-	\neg (2 , 1)		Cu (1a) $u = 0.278$
$\mathbb{R}^{[8]} \subseteq \mathbb{S}^{[6]} \subseteq \mathbb{S}^{[6]}$	$1 \left(\left(\begin{array}{c} \left(\right) \right) \right) \right) \right) \\ 1 \end{array} \right) \right) \right)$	Z = 1	$Cl_{I}(la) u = -0.222$
$Pb_{2}^{[8]} Cu^{sq} \left[\left[(OH) \right]_{4} \left[CL \right]_{4} \right] $	2	(OH) (4d) u = 0.25 v = 0.27	$Cl_{11}(1b) u = -0.125$
L		v = 0.27	8
OH Cu Pb Fig. 1	Fig. 2	Por a	
Pro]	
	perties		manoerre $p_{0_{\frac{1}{2}}}^{2} \in u^{n_{1}} \left\{ \begin{bmatrix} (m_{1}) \\ k \end{bmatrix}_{k} \begin{bmatrix} c_{1} \end{bmatrix}_{2} \end{bmatrix} \begin{pmatrix} (u^{1}g^{1}) f \\ p_{1} = n \end{pmatrix} \right\}$
Habit Cleav. Fract. Twin.	Hardn. Dens. (Colour Transp.	000000
tabular, perfect conchoi-	2.5 5.42	deep transparent	
plates (001) dal		blue	AAAAAA
Refr. index /Reflect. Birefr.	Luster Streak	Melt.p. CPI	0000000
$n_{\omega} = 1.98$ (-)	vitreous pale		I I I I I I I I I I I I I I I I I I I
$n_{\epsilon} = 1.85$	blue		
Figures	Descri	ption	
	The diaboleite	structure is ba-	[
Fig. 1. Packing drawing of the diaboleite structure (adapted	sed on an heterogen		DIABOLDITE
from Wells, 1962).	$Cl, (Q^1), and of OH$		HHHHHH
	re packing layers o		HONOHONOHO
Fig. 2. Packing drawing in a three dimentional perspective	alternate and stack		HAAAA
of the diaboleite structure	way; the stacking kind of sequences		HARA HARA
(after Povarennykh, 1972).	Cu atoms occupy 1/		1 M M M M M
Fig. 3. Condensed model of the	voids of the Q^2 lag		INDIAN
diaboleite structure. Large	the Pb atoms all	1	
open circles represent Cl	voids of the Q^1 la		a ar as it as it as
atoms, and smaller open circles			
correspond to OH. On the Cl			TIAUOL TITI
square layer the crossed cir-			0000000
cles represent Pb atoms with coordination [8] . On the			I I I A I A I A I A I A I A I A I A I A
layers formed by OH the small			00000C
black circles correspond to Cu	Refere		h h h h h h h
atoms in square voids.		51003	A A A A A A
	Kostov (1968) 203.		000000
	Povarennykh (1972)	656,657.	IIIIII
	Wyckoff (1968) Vol		
	Wells (1962), 674.		L
		51) Vol. 2, 82,83.	
	Roberts et al. (19	/4/ 1/1.	Fig. 3

Fig. 1

Fig. 2

	Properties						
Habit	Cleav.	Fract.	Twin.	Hardn.	Dens.	Colour	Transp.
tabular	distinct (001)			3	8.16	sulphur yellow	
<u>Refr. in</u>	dex /Refle	ct. Bir	efr.	Luster	Streak	Melt.p.	CPI_
n = 2 - 2	.4	(-)	adaman-			
				tine			

Figures	Description	
 Fig. 1. Packing drawing projected along the direction of the arrow Fig. 3 (adapted from Wells, 1962). Fig. 2. Ball and spoke representation of the perite structure (adapted from Povarennykh, 1972). Fig. 3. Condensed model of the perite structure. Large open circles represent Cl atoms, and smaller open circles 0 atoms. The small black circles correspond to Pb atoms with coordination [8], and the crossed circles to Bi atoms. 	The perite structure is based on an heterogeneous packing of Cl, Q^2 , and of 0 atoms, Q^1 . The square pac- king layers of Cl and of 0 atoms alternate and stack in the closest way; the stacking symbol for such kind of sequence is $(Q^2 Q^1)f$. The Pb and Bi atoms occupy 1/2 of the [8] coordinated voids of this pac- king.	
	References	
	Kostov (1968) 204. Povarennykh (1972) 655,656. Wyckoff (1968) Vol. 4, 96,97. Wells (1962) 674. Roberts et al. (1974) 472.	F

Fig. 3

$ \begin{bmatrix} BOURNONITE & Pn2_1 \\ Pb Cu Sb S_3 C' C' $	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ $ {} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ {} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ {} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ {} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ \end{array}{} \\ {} \\ \end{array}{} \\ {} \\ \end{array}{} \\
(a) Fig. 1	Fig. 2
Prop	erties
HabitCleav.Fract.Twin.prismatic,imperfectsubcon-(110)tabular,(010)choidal	Hardn. Dens. Colour Transp. 2.5-3 5.83 steel- opaque -grey
Refr. index/Reflect. Birefr.	Luster Streak Melt.p. CPI
30 %	metallic steel- -grey
Population	Description
Seligmannite [Pb Cu As S ₃] ^{c,'h}	Bournonite is a recombination structure based on a heterogeneous close packing formed by interpene-
Figures	trated slabs of closest packings $(c_i'h)$ of deformed galena-type
Fig. 1. (a) Packing drawing of the bournonite structure, and (b) corresponding unit cell content projected along the <u>b</u> axis (after Wyckoff, 1964, Vol. 2).	structure.
Fig. 2. Ball and spoke description of the bournonite structure (after Hellner + Leineweber, 1956, quoted in Structure Re- ports, 1963, Vol. 20).	
References	
Kostov (1968) 172. Povarennykh (1972) 237. Wyckoff (1964) Vol. 2, 508,509	
Structure Reports (1963) Vol. 20,	Crystallographic data (continued)
30-32. Hellner + Leineweber (1956) 150- -154. Palache et al. (1944) Vol. 1, 407.	$ \begin{array}{cccc} x = -0.225 & x = 0.564 \\ S_{II}(2a)y = 0.810 & S_{IV}(4b)y = 0.425 \\ z = 0 & z = 0.267 \\ \end{array} $
	$S_{III}(4b)y = 0.706$ z = 0.248

		(4c) = 0.0	018 (Pb,Bi)(4c) $u = -0.035$ v = -0.433
	= 23.913			
	. = 8	(4c) = 0.0 v = 0.0		4c) $u = -0.091$ v = -0.011
	(Pb,E	(4c) u = 0.2 v = 0.0	040 (Pb,Bi) _{VI} (4c) $u = -0.186$ v = -0.171
Fig. 1	Fig. 2			
Prope	rties		Fig.	3
HabitCleav.Fract.Twin.prismatic,perfectunevenacicular,prismaticmassive(001)Refr. index/Reflect.Birefr.	Hardn. Dens. Color 2.5 - 3 6.76 lead-grey _grey steel _grey Melt metallic black	opaque		
Figures	Descripti	on	KACK -	AN B
 Fig. 1. Projection of the cosalite structure along the <u>c</u> axis (after Wyckoff, 1965, Vol. 3). Fig. 2. Structure of cosalite projec- ted along the <u>c</u> axis, showing the different kinds of slabs of defor- med galena-type structure (after 	-type structure (77% Hellner, 1958) some p	e based on a g formed by s of closest formed galena-), (after parallel to	Fig. 4	
Hellner, 1958).	(110) and others to	(111).	Crystallographic	data (continued)
Fig. 3. The structure of cosalite. Sulphur atoms are denoted by large			(Pb,Bi) _{VII} (40	u = 0.383 v = 0.206
circles, metal atoms (Pb, Bi) by small circles. Atoms at Z = 0 and 1/2 are indicated by empty and fil-			(Pb,Bi) _{VIII} (40	$\begin{array}{l} u = 0.293 \\ v = 0.374 \end{array}$
<pre>1/2 are indicated by empty and fil- led circles respectively. The zig- -zag octahedral layers are hatched;</pre>			s _I (40	u = -0.476 v = -0.138
interlayer spaces with complicated Pb-S bond geometry are left blank.			S_{II} (4c) u =-0.029 v =-0.230	S_{VII} (4c) $u = 0.131$ v = 0.088
Aproximate H: T subcell matches are indicated (after Makovicky, 1985).	Kererene	es	$S_{III}(4c) = 0.413$ v =-0.002	$S_{VIII}^{(4c)} = -0.306$ v = -0.125
Fig. 4. Structure of cosalite pro- jected along the <u>c</u> axis (after	Kostov (1968) 181. Povarennykh (1972) 2 Wyckoff (1965) Vol.		S_{IV} (4c) $u = -0.152$ v = -0.361	S_{IX} (4c) $u = -0.360$ v = -0.296
Sriksishnan + Nowacki, 1974).	Srikrishnan + Nowacki Hellner (1958) 503-5	(1974) 134.	S_{V} (4c) $u = -0.285$ v = -0.465	$S_{X} = (4c) u = 0.434$ v = 0.418
	Makovicky (1985) 15. Palache et al. (1944		$S_{VI} (4c) = 0.228$ v = 0.235	

$ \frac{\text{GALENOBISMUTITE}}{\text{Pb}^7 \left[\text{Bi}_2^{6/7} \text{ s}_4\right]^{c/h}} $	a = 11.79 b = 4.10 c = 14.59 Z = 4	Pb $(4c)$ $u =$ v = Bi_{I} $(4c)$ $u =$ bi_{I} $(4c)$ $u =$ v = bi_{II} $(4c)$ $u =$	0.0675 S 0.3901	$\begin{array}{c} u = 0.3307 \\ v = 0.0141 \\ u = 0.2609 \\ v = 0.2997 \\ u = 0.0550 \\ u = 0.0927 \\ \vdots \\ \vdots \\ v = 0.0927 \\ \vdots \end{array}$
Fig. 1				
Prope	rties	······	0.00	1000
Habit Cleav. Fract. Twin. lathlike, good needles, (101) Refr. index/Reflect. Birefr.	Hardn. Dens. Colour 2.5 - 3.5 7.04 light grey, grey, tin-whi Luster Streak Melt.p metallic black	opaque		Fig. 2
Figures	Description		1	
 Fig. 1. Projection of the galenobismutite structure along the <u>b</u> axis showing the different slabs from which can be derived. It contains 82% of the distorted galena-type arrangement (after Hellner, 1958). Fig. 2. Projection of the structure of galenobismutite along the <u>b</u> axis (after Iitaka + Nowacki, 1962). 	The galenobismutite bination structure base terogeneous packing for terpenetrated slabs of packings (c,'h) of defo -type structure (82%), rallel to (110) and oth	d on a he- med by in- closest rmed galena- some pa-		
	Crystallographic data	(continued)	_	
	S_{IV} (4c) u = 0.0181 v = 0.7120			
	References		4	
	Kostov (1968) 181. Povarennykh (1972) 25 Wyckoff (1965) Vol. 3 Hellner (1958) 504, 5 Iitaka + Nowacki (1962 Palache et al. (1944) 471,472.	, 134-136. 14, 517.) 696.		

BOULANGERITE Pb	nm $a = 21.14$ Å b = 23.46 Å	Pb _I (4c) y z	= 1/4	(Pb,Sb) ₁ (4	x = 0.45 c) y = 0.43 z = $3/4$
Pb ₅ [Sb ₄ S ₁₁] c/h	$c = 4.035 \text{\AA}$ Z = 4	Pb _{II} (4c) y z	= 1/4 = 0.206	(Pb,Sb) _{II} (4 (Pb,Sb) _{III} (4	z = 3/4 x = 0.48
Fig. 1 Fig. 1 Prope Habit Cleav. Fract. Twin. prismatic, acicular, fibrous (100) masses index (Dafilent Binofn	Hardn. Dens. Colour 2.5-3 6.23 bluish lead- grey	Transp. opaque CPI		Fig. 3	z = 3/4
<u>Refr. index/Reflect.</u> 34,5% Figures	Luster <u>Streak Melt.p.</u> metallic brownish grey Description				
Fig. 1. Structure of boulangerite for the sub-cell, projected on (001); the hatched parts indicate the chains in the <u>c</u> -direction (after Born + Hellner, 1960). Fig. 2. Projection of the galena	Boulangerite is a recom structure based on a heter packing formed by interper slabs of closest packings of deformed galena-type st most of them parallel to (rogeneous netrated (c;'h) cructure, (110).	`rvstallo	graphic data	Continue
type on (110), but half of the z parameters of the sulphur and metal atoms are interchanged in such a way that the 3 - dimensio-	Also described as $P2_1/a$ a = 21.56, b = 23.51, c = 8 β = 100° 48', Z = 8 (quoted 1982).	.09,	0 ₁ (4c)	x = 0.287 y = 0.462 S _{IV} z = 3/4	x = 0 (4c) $y = 0$ z = 1
nal network of the galena type changes into 2 - dimensional infi- nite nets (after Born + Hellner, 1960).			2 Sb _T (4c)		
Fig. 3. Boulangerite structure pro- jected on (001) (after Petrova et al., 1978, and quoted by Makovicky 1983).	References			x = 0.372 y = 0.307 S _{VII} z = 3/4	x = 0 (4c) $y = 0$ z = 3
	Kostov (1968) 179. Born + Hellner (1960) 1266-1271.				z = 3 x = 0
	•Makovicky (1983). Strunz (1982) 149.			z = 1/4 x = 0.156 y = 0.175 S _X z = 1/4	z = 3 (4c) $y = 0$ z = 3
				s _{xi}	$ \begin{array}{rcl} \mathbf{x} &= & 0 \\ \mathbf{(4c)} & \mathbf{y} &= & 0 \\ \mathbf{z} &= & 3 \end{array} $

$\frac{\text{APATITE}}{\text{P6}_{3}/\text{m}} \text{Ca}_{5}^{\text{P}} P_{3}^{\text{t}} \left[O_{12} \left(\frac{1}{2} \right) \right]$	Z = 2	
(a) Fig. 1	(b) Fig. 2	Fig. 3
	perties	
HabitCleav.Fract.Twin.prismatic,goodconchoi-tabular,(0001)dalfibrousRefr.index /Reflect. $n_{\omega} = 1.633$ (-) $n_{\varepsilon} = 1.630$	Hardn.Dens.ColourTransp.53.2green, transparent yellow, to trans- variable centLusterStreakMelt.p.CPIsubre-white1270° C(SPI)sinous50	
Population	Fig. 4. Condensed model of the apati-	
PyromorphitePbb Pt $3 [0_{12}c1]^{Ts/h}$ <u>Vanadinite</u> Pbb Vt $3 [0_{12}c1]^{Ts/h}$ <u>Mimetite</u> Pbb At $3 [0_{12}c1]^{Ts/h}$ Figures	te structure. The large open cir- cles represent 0 atoms, and the large lined circles OH or F atoms. The black circles and the crossed circles correspond to Ca atoms in trigonal prismatic voids; the smaller black circles represent the P atoms with tetrahedral coordina- tion. Description	
Fig. 1. (a) Packing drawing of the apatite structure, and (b) unit cell content projected along the <u>c</u> axis (after Wyckoff, 1965, Vol. 3).	The apatite structure is based on a puckered simple hexagonal packing (~Ts), or on the interpenetration of slabs of simple hexagonal and closest packings (Ts/h). If we imagine the structure built of simple hexagonal packing sheets (Fig. 4, and heavily outlined the packing	
 Fig. 2. Polyhedral description of the apatite structure. The prisms correspond to the trian- gular prismatic coordination of calcium, and the tetrahedra to PO₄ (after Povarennykh, 1972). Fig. 3. Projection on (0001) of the polyhedral representation 	atoms that are displaced 1/2 in re- lation to the other packing atoms, we obtain the analogue of the apatite structure. Ca atoms occupy the tri- gonal prismatic voids and the P atoms, which have tetrahedral coor- dination, are located on the fron- teirs of these displaced parts of simple hexagonal packing, where the contact packing is closest.	
of apatite of Fig.l (after	References	Y
Povarennykh, 1972). This aspect	Kostov (1968) 458-460, 468.	en and and any and any strength and another and and
may be obtained with the supe-	Povarennykh (1972) 494, 512, 541,542.	
rimposition of the first two	Wyckoff (1965) Vol. 3, 228-234.	Fig. 4
sheets of the condensed model (Fig. 4).	Zoltai + Stout (1984) 449. Ingerson (1955) 351.	
\·*6· */'		

8.4.2. Group structures

$\frac{\text{ARSENOPYRITE}}{\text{Fe}^{O}} \left\{ g \right\} \left[As \right]^{\circ}$	$b = 5.05A \qquad x = 0.147 c = 6.42A \qquad Ac(8c) = 0.128$	
Fig. 1 Fig. 2	Fig. 3 Fig. 4	
columnar.	n. Hardn. Dens. Colour Transp.),(001) 5.5-6 6.07 silver- opaque -white, steel-grey Luster Streak Melt.p. CPI metallic greyish black Figures	
Gudmundite Fe ^o [g] SbS ^(h) Description The arsenopyrite structure is a packing substitution deri- vative of the marcasite structu- re. It is formed by the packing of AsS groups, with Fe atoms in voids with octahedral coordina- tion.	 Fig. 1. The AsS group of the arsenopyrite structure. Fig. 2. Packing drawing of the arsenopyrite structure viewed along the baxis (after Wyckoff, 1963, Vol. 1). Fig. 3. Representation of the arsenopyrite structure (after Wuensch, 1974). Fig. 4. Polyhedral description of the packing analogue of the arsenopyrite structure (adapted from R. Burns + V. Burns, 1979). 	
References kostov (1968) 132,133. Povarennykh (1972) 245. Wyckoff (1963) Vol. 1, 356-358. Wuénsch (1974) 25. R. Burns + V. Burns (1979) 13. Palache et al. (1944) Vol. 1, 317.	Fig. 5. Condensed model of the packing analogue of the arsenopyrite structu- re. The large open circles represent oxygen atoms which with the lined large circles, corresponding to ar- senium atoms, form an hexagonal clo- sest packing. The small black circles represent iron atoms in octahedral voids.	Fig. 5

	······	
$\frac{\text{PYRITE}}{\text{Pa3}} \text{Fe}^{\circ} \left\{ g \right\} \left[S_{2} \right]$	$\begin{bmatrix} c \\ a = 5.40667 & Fe(4a) \\ Z = 4 & S(8c) & u = 0 \end{bmatrix}$. 386
Habit Cleav. Fract. Tw	2 2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Fig. 5
cubic, indistinct conchoi- ((pyrito- (001) dal, hedral uneven <u>Refr. index/Reflect. Birefr.</u> 53,5 %	(11) 6-6.5 5.018 pale opaque brass- yellow <u>Luster</u> Streak Melt.p. CPI metallic, greenish 642°C splendent black	Fe
Population	Figures	Fig. 6
VaesiteNi° $\left[g\right] \begin{bmatrix} S_2 \end{bmatrix}^c$ CattieriteCo° $\left[g\right] \begin{bmatrix} S_2 \end{bmatrix}^c$ LauriteRu° $\left[g\right] \begin{bmatrix} S_2 \end{bmatrix}^c$ HaueriteMn° $\left[g\right] \begin{bmatrix} S_2 \end{bmatrix}^c$ Villamani- nite(Ni,Cu)° $\left[g\right] \begin{bmatrix} S_2 \end{bmatrix}^c$ FukuchiliteCu° Fe° $\left[g\right] \begin{bmatrix} S_2 \end{bmatrix}^c$ PenroseiteNi° $\left[g\right] \begin{bmatrix} Se_2 \end{bmatrix}^c$ TrogtaliteCo° $\left[g\right] \begin{bmatrix} Se_2 \end{bmatrix}^c$ CobaltiteCo° $\left[g\right] \begin{bmatrix} Se_2 \end{bmatrix}^c$ PlatarssulitePt° $\left[g\right] \begin{bmatrix} As S \end{bmatrix}^c$ Hollingwor- thiteRh° $\left[g\right] \begin{bmatrix} As S \end{bmatrix}^c$ IrarsiteIr° $\left[g\right] \begin{bmatrix} As S \end{bmatrix}^c$ GeversitePt° $\left[g\right] \begin{bmatrix} Sb_2 \end{bmatrix}^c$ MicheneritePd° $\left[g\right] \begin{bmatrix} Bi 2 \\ Carrow \end{bmatrix}^c$	Fig. 1. The S ₂ group of the pyrite structure. Fig. 2. Packing representation of the pyrite structure showing the packing of the S ₂ groups (after Machatschki, 1953). Fig. 3. Another packing drawing of the pyrite structure. The Fe ions are very largely re- represented (after Wyckoff, 1963, Vol. 1). Fig. 4. Projection on a cubic face of the unit cell of pyrite (after Wyckoff, 1963, Vol. 1). Fig. 5. Polyhedral description of the pyrite structure (after Zoltai, 1974). Fig. 6. Unit cell atomic content of the pyrite structure emphasizing the formation of S ₂ groups (after Machatschki, 1953). Fig. 7. Two aspects of the marcasite structure showing the distortion process which could convert marcasite into pyrite with change of the angle $\alpha = 63^{\circ}$ to 90° a) packing drawing parallel to the (010) plane, b) polyhedral representation showing the (010) plane. Description The pyrite structure is based on an approxi- mately cubic (c) close packing of S ₂ groups, with Fe atoms with octahedral coordination. It can be imagined derived by a strong distortion of the marcasite structure. The distortion mechanism would involve the changing of the angle $\alpha = 63^{\circ}$ to 90° in the (010) plane (Fig. 7).	(a) (b) Fig. 7
	'erences	
Povarennykh (1972) 206, 243,24 Palache et al. (1944) Vol. 1, 24	4. Zoltai (1974) 52.	
	32-284. ' Machatschki (1953) 229.	L

CALCITE

(continued)

Po	pulat	ion		
Magnesite <u>Siderite</u> <u>Rhodochro-</u> <u>site</u>	ap Mg Fe Mn ^{ap}	$ \begin{cases} \mathbf{g} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathrm{tr}} & 0_{3} \end{bmatrix}^{\mathrm{c}} \\ \begin{bmatrix} \mathbf{g} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathrm{tr}} & 0_{3}^{\mathrm{ch}} \end{bmatrix}^{\mathrm{c}} \\ \begin{bmatrix} \mathbf{g} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathrm{tr}} & 0_{3}^{\mathrm{ch}} \end{bmatrix}^{\mathrm{c}} \\ \begin{bmatrix} \mathbf{g} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathrm{tr}} & 0_{3}^{\mathrm{ch}} \end{bmatrix}^{\mathrm{c}} $		
Gaspeite Smithso- nite Otavite	Zn ^{ap} Cd	$ \begin{cases} \mathbf{g} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathrm{tr}} & 0_{3}^{\mathrm{chost}} \mathbf{c}^{\mathrm{chost}} \\ \mathbf{g} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathrm{tr}} & 0_{3}^{\mathrm{chost}} \mathbf{c}^{\mathrm{chost}} \\ \mathbf{g} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathrm{tr}} & 0_{3}^{\mathrm{chost}} \mathbf{c}^{\mathrm{chost}} \\ \mathbf{c} \end{bmatrix} \begin{bmatrix} \mathbf{c}^{\mathrm{tr}} & 0_{3}^{\mathrm{chost}} \mathbf{c}^{\mathrm{chost}} \end{bmatrix} \mathbf{c}^{\mathrm{chost}} $:	
Nitrona- trite	Na	$\left\{ g \right\} \begin{bmatrix} v & v \\ N & 0 \end{bmatrix} $	_	
De	Description			

The calcite structure is based on the packing of CO3 groups, having Ca atoms in the voids of this packing with antiprismatic coordination (ap). The CO $_3$ groups form planar layers, and the structure can be imagined derived from a distorted hexagonal closest packing (h) of the oxygen atoms with carbon atoms occupying triangular voids, and the calcium atoms with octahedral coordination. The packing of the oxygens would be ideal if on Fig. 3a the atoms in positions zero superimposed the atoms with positions one third.

$\frac{\text{SULPHUR}}{(\alpha - \text{form})}$	$\left\{ g \right\} \left[S_8 \right]$ Fddd	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$S_{III}(32h) y = 0.9795 z = 0.0040$
Fig. 1)))) Fig	
	Pı	operties
Habit Cleav. pyramidal, poor tabular (001)	<u>Fract.</u> <u>Twi</u> conchoi- dal	. Hardn. Dens. Colour Transp. 1.5-2.5 2.07 sulphur- transparent, -yellow translucent Fig. 3
(110) Refr. index/Reflect		Luster Streak Melt.p. CPI
$n_{\alpha} = 1.958$	(+)	resinous, white 112.8°C (SPI)
$n\beta = 2.038$	$2V = 68^{\circ} 58'$	greasy 67
$n_{\gamma} = 2.245$		Description
Figures	5	Description
 Fig. 1. The struct the sulphur stru Sg group, in two ves (after Kostor Fig. 2. Represental packing of the S (after Bunn, 196 Fig. 3. Represental sulphur structure Povarennykh, 1972 	cture, the perspecti- v, 1968). tion of the g molecules 4). tion of the e (after	The structure of the α -form of sulphur is based on the packing of S ₈ ring molecules. The bonds between the sulphur atoms within the molecules are covalent bonds (S-S = 2.14 Å), and between sulphur atoms of distinct molecules are residual (S - S = 3.3 Å). The β -form (stable above 95.6°C) of sulphur is probably based on the same S ₈ molecules but with a different packing.
Reference	es	
Kostov (1968) 99,1 Povarennykh (1972) Wyckoff (1963) Vol Zoltai + Stout (19 Bunn (1964) 58. Palache et al. (19 140-142.	195,196. . 1, 33-36. 984) 377.	

$\begin{array}{ c c c c c c c c } \hline REALGAR & P & 2 \\ \hline REALGAR & P & 2 \\ \hline & b & = & 13 \\ \hline & c & = & 6 \\ \hline & c & = & 6 \\ \hline & f & g \\ \hline & f & f \\ \hline & f & g \\ \hline & f & f \\ \hline & f & g \\ \hline & f & f \\ \hline $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{ccc} x = & 0.318 \\ As_{III}(4e) & y = -0.127 \\ z = & 0.181 \end{array} $	
or Fig. 1	-As $ \begin{array}{c} $	
Proper	ties	
prismatic, (010) dal granular <u>Refr. index/Reflect.</u> <u>Birefr.</u> $n_{\alpha} = 2.538$ (-) $n_{\alpha} = 2.864$	Hardn. Dens. Colour Transp. 1.5 - 2 3.56 red, transparent orange to opaque Luster Streak Melt.p. CPI resinous, orange 307-314°C greasy red Ted	
Figures	Description]
 Fig. 1. Configuration of the As₄S₄ molecules and the link between S and As in the realgar structure (after Povarennykh, 1972). Fig. 2. (a) Packing drawing of the realgar structure, and (b) unit cell content projected along <u>b</u> axis (after Wyckoff, 1963, Vol.1). 	The realgar structure is based on the packing of As_4S_4 groups.	
	References	-
	Kostov (1968) 167. Povarennykh (1972) 242. Wyckoff (1963) Vol. 1, 174–177. Palache et al. (1944) Vol. 1, 256,257.	

| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$

 | WARWICKITE Pna | m $a = 9.20\% (Mg,Ti)_{I} (4c)$
b = 9.45%
$c = 3.01\% (Mg,Ti)_{II} (4c)$
$c = 3.01\% (Mg,Ti)_{II} (4c)$ | $\begin{array}{c} \begin{array}{c} u = 0.370 \\ v = 0.201 \end{array} \begin{array}{c} 0_{I} (4c) u = 0.000 \\ v = 0.125 \end{array}$ $\begin{array}{c} u = 0.390 \\ v = 0.556 \end{array} \begin{array}{c} 0_{II} (4c) u = 0.250 \\ v = 0.000 \end{array}$ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

--
---	--	--	---	---	---------------	-----------------------	----------	---	------	---------	--	--	---------------------------	-----------------------------	--	--	--	--	--	--	-----------------	------------	--	---	------------------------------	---------------------------	--	--	--	--------------	---	--	--	--	--
--	---	--	--	--	-----------------------------------	--	--	---	--	--	--	---	----------------------------	--	----------	---	--	---	-----------------	--	----	--	--	--	--	--	--	---	---	--	--	---	--	---------------------------------------	----
---------------------------------------	--------------------------	--	----------------------------	--	-----------																														
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																																			

 | $\operatorname{Mg}_{3}\operatorname{Ti}\left[\left[0\right]_{2}\left\{g\right\}\left[B\right]_{3}$ | B(4c) | $\prec \begin{array}{c} u = 0.340 \\ v = 0.875 \end{array} \begin{array}{c} 0_{III}(4c) & u = 0.264 \\ v = 0.750 \\ \cdots \end{array}$ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Fig. 1(a)Fig. 2Fig. 3Fig. 4Fig. 1Fig. 3Fig. 3Fig. 1HabitClower Transp.
all smallall for the service the packing the service th

 |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Fig. 1Fig. 2Fig. 3Fig. 4PropertiesHabitClearFig. 3Fig. 4HabitClearFig. 3Fig. 4HabitClearFig. 4MabitClearalerd in triangealerd in triangealerd in triangeFig. 1Fig. 2Fig. 2Fig. 1Ref. 1Clearalerd in triangeFig. 1ClearClearFig. 1ClearLusterStreakClearClearAlerd in triangeFig. 1ClearLusterStreakClear <tr <<="" td=""><td></td><td></td><td></td></tr> <tr><td>Habit
slenderCleav.
perfect
uneven
prismatic
(100)Hardn.
No.Dens.
Colour
Transp.
dark transparent
brown, in very
smil
model, in very
smil
h vertice
smil
h vertice
the packing atoms are at two different
levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.
The grant and ti atoms are distribute
at random (\sim) in the corresponding
equivalent positions.Image and the packing atoms are at two
distinguished by the heavy and light
lines on the corresponding circles.
The Mg and Ti atoms are distribute
at candom (\sim) in the corresponding
equivalent positions.Fig. 2. (a) Packing draw rescription
ding projection along the casis
(after Nostor, 1965).Hardn.
bescriptionDescription
The warwickite structure is based
on a complex packing of B0. groups
with hozygen atoms, with Mg and Ti
atoms in citahedral voids. The packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts filing together in a closest
packing analogue of the warvic.
Kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
corgen atoms which form the packing
circles correspont to Ng and Ti
atoms in citahedral voids.
The boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theHardn.
DescriptionDescriptionThe Mg atoms in citahedral voids.
The backing draws, with Mg atoms
the packing draws, with Mg atoms
the packing tows are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts filing together in a closest
packing way, giv</br></br></td><td>Fig. 1 (a) Fi</td><td>(b) b
ig. 2 Fig. 3</td><td>3 Fig. 4</td></tr> <tr><td>slenderperfectunevenprismatic$3.5-4$$3.35$darktransparent
brow, in very
dull smill<math>Refr. index/Reflect.Birefr.Birefr.$n_{\alpha} = 1.806$(+)dull, bluish$n_{\beta} = 1.809$pearly, black$n_{\gamma} = 1.830$subvitreousFiguresFiguresFiguresFig. 1. The structural units of
the warwickite structure: BO_3
groups and oxygen atoms.Fig. 2 (a) Packing drawing of the
warwickite structure showing the
way the BO_3 groups pack with the
oxygen atoms and (b) correspond
ing projection along the gaxis
(after Myckoff, 1964, Vol. 2).Fig. 4. Structure of warwickite
(after Portentykh, 1972).The warwickite structure is based
on a complex packing of BO_3 groups
where the packing atoms are at two
different levels (0 and 1/2) thick and
thin circles) the lower and higher
parts filting together in a closest
packing way, giving rise to the octa-
horal voids.Fig. 4. Structure of warwic-
kits estructure based on puckered
simple hexagonal packing layers.
The large open circles represent-
tor large open circles represent-
tors in octahedral voids.Fig. 10 the seriptionReferencesReferencesKostov (1968) 430, 431.
Povarenykh (1922) 467, 468.
Wyckoff (1964) Vol. 2, 518-521.</br></math></td><td>Proj</td><td>perties</td><td></td></tr> <tr><td>prismatic(100)Brown, in very of dillRefr. index/Reflect.Birefr.$n_{\alpha} = 1.806$(*)$n_{\beta} = 1.809$perly, black$n_{\gamma} = 1.806$(*)$n_{\gamma} = 1.809$perly, black$n_{\gamma} = 1.830$subvitrousCed by a curved line). In each layerthe packing the warkickite structure: B0groups and oxygen atoms.ced by a curved line). In each layerFig. 1. The structural units ofthe warwickite structure: B0groups and oxygen atoms.ced by a curved line). In each layerthe warwickite structure: B0colspan="2">the Mg and Ti atoms are distributeatoms in ictahedral representationof the warwickite structureof the warwickite structurefor a complex packing of B0(after Nostor, 1968).Fig. 3. Polyhedral representationof the warwickite structurefor a complex packing of B0(after Kostov, 1968).Fig. 5Fig. 4. Structure of warwickitefing he hexagonal layers, the large open circles represent(after Kostov, 1968).circles correspond packing layers.The large open circles representcode way, giving rise to the octa-oxygen atoms which form the packkeferencesThe large open circles representcode way, giving rise to the octa-oxygen atoms which Korm the packkeferencesThe large open circles representcode way, giving rise to the octa-oxygen atoms which Korm the packkeferencesThe large open circles representcode way, giving rise to the octa-<t< td=""><td>Habit Cleav. Fract. Twin.</td><td>Hardn. Dens. Colour Transp.</td><td></td></t<></td></tr> <tr><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>prismatic (100)</td><td>dull small</td><td></td></tr> <tr><td>$n \beta = 1.809$
$n y = 1.830$pearly, black
subvitrecussFiguresced by a curved line). In each layer
the packing atoms are at two diffe-
the packing atoms are at two diffe-
rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.Image and the corresponding circles.Fig. 2 (a) Packing drawing of the
warvickite structure showing the
way the B0 groups pack with the
oxygen atoms and (b) correspon-
ding projection along the g axis
(after Povarennykh, 1972).The Mag and Ti atoms are distribute
at complex packing of B0 groups
with oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The packing analogue of the warwick
kite structure of samela on puckered
simple hexagonal packing layers.
The large open circles represent
to argen atoms which form the pack-
ing layers, and the medium black
circles orrespont to Mg and Ti
atoms in cotahedral voids.The samela complex packing atoms are at two
different levels (0 and 1/2, thick and
the circles) the lower and higher
parts fitting together in a closest
packing way, giving rise to the octahedral voids.Fig. 5Kostov (1968) 430, 431.
Povarennykh (1972) 467, 468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5Crystallographic data (continued)</td><td>Refr. index/Reflect. Birefr.</td><td>Luster Streak Melt.p. CPI</td><td></td></tr> <tr><td>$n_y = 1.830$subvitreousFiguresced by a curved line). In each layer
the backing atoms are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two different process
the warwickite structure showing the
wary the B0_g groups pack with the
corgen atoms and (b) correspon-
ding projection along the g axis
(after Povarennykh, 1972).The warwickite structure of warwickite
(after Rostov, 1668).The warwickite structure is based
on a complex packing of B0_g groups
with oxygen atoms, with Mg and Ti
atoms in citchedral voids. The
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hocids.The serve close and
higher
parts fiting together in a closest
packing way, giving rise to the octa-
hocids.Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) vol. 2, 518-521.Crystallographic data (continued)</td><td></td><td>dull, bluish</td><td>warwedsing ====================================</td></tr> <tr><td>Figuresceed by a curved line). In each layer
the packing atoms are at two diffe-
rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.Fig. 2 (a) Packing drawing of the
warwickite structure showing the
way the BO_3 groups pack with the
oxygen atoms and (b) corresponding
equivalent positions.Image: Content of the corresponding
equivalent positions.Fig. 3. Polyhedral representation
of the warwickite structure of the warwickite structure
(after Povarennykh, 1972).Image: Content of the
rent levels (0 and 1/2, thick and
this circles) the lower and higher
parts fiting together in a closest
packing and packing layers.Image: Content of the
warwickite structure is the medium black
circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of the
the segonal packing layers.Fig. 5. Condensed model of the
packing analogue of the warwich
fing layers, and the medium black
circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of the
the cortes ponding
the cortes ponding
the segonal packing layers.Mathematic circles is correspond
ting layers, and the medium black
circles orrespond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in
octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms</td><td></td><td></td><td></td></tr> <tr><td> Fig. 1. The structural units of the warwickite structure: B03 groups and oxygen atoms. Fig. 2 (a) Packing drawing of the warwickite structure showing the way the B03 groups pack with the oxygen atoms and (b) corresponding equivalent positions. Fig. 3. Polyhedral representation of the warwickite structure (after Fovarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on a complex packing of B03 groups with oxygen atoms, with Mg and Ti atoms in ictahedral voids. The packing analogue of the warwickite structure based on puckered simple hexagonal packing way, giving rise to the octahedral voids. Fig. 1. The structure based on puckered simple hexagonal packing way, giving rise to the octahedral voids. The packing way, giving rise to the octahedral voids. References Kostov (1968) 430, 431. Povarennykh (1972) 467, 468. Wyckoff (1964) Vol. 2, 518-521. </td><td>$n_{p} = 1.830$</td><td>subvitreous</td><td></td></tr> <tr><td>Fig. 1. The structural units of
the warwickite structure: BO_3
groups and oxygen atoms.rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.
The Mg and Ti atoms are distribute
at random (\sim) in the corresponding
equivalent positions.Image: Corresponding
equivalent positions.Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).The warwickite structure is based
on a complex packing of BO_3 groups
with oxygen atoms, with Mg and Ti
atoms in citahedral voids. The packing analogue of the
warding layers, and the medium black
circles orrespont to Mg and Ti
atoms in octahedral voids. The
packing analogue of the warwick-
ing layers, and the medium black
circles or persont to Mg and Ti
atoms in octahedral voids. The
powarennykh (1972) 467,468.
Wycoff (1964) Vol. 2, 518-521.Fig. 5Fig. 5Cortespond
thin circles) the lower and higher
parts fitting together in a closest
packing analogue of the warwick-
king can be inagined formed by pucker
original packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theReferencesKostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wycoff (1964) Vol. 2, 518-521.Crystallographic data (continued)</td><td>Figures</td><td></td><td></td></tr> <tr><td>the warwickite structure: BO_3
groups and oxygen atoms.
Fig. 2 (a) Packing drawing of the
warwickite structure showing the
way the BO_3 groups pack with the
oxygen atoms and (b) correspon-
ding projection along the <u>c</u> axis
(after Wyckoff, 1964, Vol. 2).
Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).
Fig. 4. Structure of warwickite
(after Kostov, 1968).
Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and linked to the</td><td></td><td></td><td></td></tr> <tr><td>groups and oxygen atoms.
Fig. 2 (a) Packing drawing of the warwickite structure showing the way the BO₃ groups pack with the draw atoms atoms at (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2).
Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972).
Fig. 4. Structure of warwickite (after Kostov, 1968).
Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers.
The large open circles represent to Mg and Ti atoms in octahedral voids. The bars in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the</td><td></td><td></td><td>OCEDICADICAEDICA</td></tr> <tr><td> Fig. 2 (a) Packing drawing of the warwickite structure showing the way the BO₃ groups pack with the oxygen atoms and (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2). Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing alors in octahedral voids. The packing way, giving rise to the octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the Kostov (1968) 430,431. Povarennykh (1972) 467,468. Wyckoff (1964) Vol. 2, 518-521. </td><td>3</td><td></td><td>JACHDERAD</td></tr> <tr><td> way the B0₃ groups pack with the oxygen atoms and (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2). Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the </td><td></td><td></td><td></td></tr> <tr><td>$\begin{array}{c} \mbox{circles} \mbox{ard} (b) \mbox{corresponding projection along the c axis (after Wyckoff, 1964, Vol. 2). \\ Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). \\ Fig. 4. Structure of warwickite (after Kostov, 1968). \\ Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the the pack of (1964) Vol. 2, 518-521. \\ \hline \mbox{curcles} curcl$</td><td></td><td></td><td></td></tr> <tr><td>Descriptionding projection along the <u>c</u> axis
(after Wyckoff, 1964, Vol. 2).Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).Fig. 4. Structure of warwickite
(after Kostov, 1968).Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theding projectionding projectionding projectionding projectionfing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theding rojectionding projectionding projectiondin</td><td></td><td>equivalent positions.</td><td>i (top sheet) b+</td></tr> <tr><td>(after Wyckoff, 1964, Vol. 2).The warwickite structure is basedon a complex packing of BO3 groupswith oxygen atoms, with Mg and Tiatoms in ictahedral voids. The(after Povarennykh, 1972).Fig. 4. Structure of warwickite(after Kostov, 1968).Fig. 5. Condensed model of thepacking analogue of the warwicc-kite structure based on puckeredsimple hexagonal packing layers.The large open circles representoxygen atoms which form the pack-ing layers, and the medium blackcircles correspont to Mg and Tiatoms in octahedral voids. Theboron atoms (very small blackcircles) are placed in trian-gular voids and linked to the</td><td></td><td>Description</td><td>#4 Mini C d II Q</td></tr> <tr><td> Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwic-kite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen
atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in ictahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms are at two different levels (0 and 1/2, th</td><td>-</td><td></td><td></td></tr> <tr><td>of the warwickite structure
(after Povarennykh, 1972).With oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The pac-
king can be imagined formed by puckered
red simple hexagonal layers (v Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing vay, giving rise to the octa-
hedral voids.Image: State of the service
red simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theWith oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The
packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Fig. 5Fig. 5</td><td>Fig. 3. Polyhedral representation</td><td></td><td></td></tr> <tr><td>King can be imagined formed by pucke
red simple hexagonal layers (ν Ts)
where the packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles orrespont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theking can be imagined formed by pucke
red simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Fig. 5Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5</td><td></td><td></td><td></td></tr> <tr><td>Fig. 4. Structure of warwickite
(after Kostov, 1968).red simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.red simple hexagonal layers (ν Ts)The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to thered simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5</td><td>(after Povarennykh, 1972).</td><td></td><td>00000000</td></tr> <tr><td>(after Kostov, 1968).Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to thewhere the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Kostov (1968) 430,431.
Povarennykh (1972) 467,468.Fig. 5Crystallographic data (continued)</td><td></td><td>-</td><td>OCORDONOLONDION</td></tr> <tr><td>packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the</td><td>,,</td><td></td><td></td></tr> <tr><td>simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms (very small black
circles) are placed in trian-
gular voids and linked to the
simple hexagonal packing layers.
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.
References
Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521.</td><td></td><td></td><td></td></tr> <tr><td>The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the packing way, giving rise to the octahedral voids. Barbon Structure packing way, giving rise to the octahedral voids. Fig. 5 Structure Structure Fig. 5 Structure Structure Structure Structure Str</td><td>-</td><td></td><td></td></tr> <tr><td>oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the hedral voids. Fig. 5 Kostov (1968) 430,431. Fovarennykh (1972) 467,468. Crystallographic data (continued)</td><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td>b+</td></tr> <tr><td>ing layers, and the medium black Fig. 5 circles correspont to Mg and Ti References atoms in octahedral voids. The Kostov (1968) 430,431. boron atoms (very small black Povarennykh (1972) 467,468. circles) are placed in trian- Wyckoff (1964) Vol. 2, 518-521.</td><td></td><td></td><td></td></tr> <tr><td>circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521.</td><td></td><td></td><td>Fig. 5</td></tr> <tr><td>boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theKostov (1968) 430,431.
Povarennykh (1972) 467,468.Crystallographic data (continued)Wyckoff (1964) Vol. 2, 518-521.</td><td></td><td></td><td>4</td></tr> <tr><td>circles) are placed in trian-
gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521. Crystallographic data (continued)</td><td></td><td>Kostov (1968) 430,431.</td><td></td></tr> <tr><td>gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521.</td><td></td><td></td><td>Crystallographic data (continued)</td></tr> <tr><td>three neighbouring oxygen atoms,-
forming BO_3 groups (embra-</td><td>gular voids and linked to the</td><td></td><td></td></tr> <tr><td>torming BO_3 groups (embra-</td><td></td><td>Palache et al (1951) Vol. 2, 326,327.</td><td>$0_{IV}(4c)^{u} = 0.484$</td></tr> <tr><td></td><td>iorming pug groups (embra-</td><td></td><td>v = 0.875</td></tr> | | | | Habit
slenderCleav.
perfect
uneven
prismatic
(100)Hardn.
No.Dens.
 | Fig. 1 (a) Fi | (b) b
ig. 2 Fig. 3 | 3 Fig. 4 | slenderperfectunevenprismatic $3.5-4$ 3.35 darktransparent
brow, in very
dull smill $Refr. index/Reflect.Birefr.Birefr.n_{\alpha} = 1.806(+)dull, bluishn_{\beta} = 1.809pearly, blackn_{\gamma} = 1.830subvitreousFiguresFiguresFiguresFig. 1. The structural units ofthe warwickite structure: BO_3groups and oxygen atoms.Fig. 2 (a) Packing drawing of thewarwickite structure showing theway the BO_3 groups pack with theoxygen atoms and (b) corresponding projection along the gaxis(after Myckoff, 1964, Vol. 2).Fig. 4. Structure of warwickite(after Portentykh, 1972).The warwickite structure is basedon a complex packing of BO_3 groupswhere the packing atoms are at twodifferent levels (0 and 1/2) thick andthin circles) the lower and higherparts filting together in a
closestpacking way, giving rise to the octa-horal voids.Fig. 4. Structure of warwic-kits estructure based on puckeredsimple hexagonal packing layers.The large open circles represent-tor large open circles represent-tors in octahedral voids.Fig. 10 the seriptionReferencesReferencesKostov (1968) 430, 431.Povarenykh (1922) 467, 468.Wyckoff (1964) Vol. 2, 518-521.$ | Proj | perties | | prismatic(100)Brown, in very of dillRefr. index/Reflect.Birefr. $n_{\alpha} = 1.806$ (*) $n_{\beta} = 1.809$ perly, black $n_{\gamma} = 1.806$ (*) $n_{\gamma} = 1.809$ perly, black $n_{\gamma} = 1.830$ subvitrousCed by a curved line). In each layerthe packing the warkickite structure: B0groups and oxygen atoms.ced by a curved line). In each layerFig. 1. The structural units ofthe warwickite structure: B0groups and oxygen atoms.ced by a curved line). In each layerthe warwickite structure: B0colspan="2">the Mg and Ti atoms are distributeatoms in ictahedral representationof the warwickite structureof the warwickite structurefor a complex packing of B0(after Nostor, 1968).Fig. 3. Polyhedral representationof the warwickite structurefor a complex packing of B0(after Kostov, 1968).Fig. 5Fig. 4. Structure of warwickitefing he hexagonal layers, the large open circles represent(after Kostov, 1968).circles correspond packing layers.The large open circles representcode way, giving rise to the octa-oxygen atoms which form the packkeferencesThe large open circles representcode way, giving rise to the octa-oxygen atoms which Korm the packkeferencesThe large open circles representcode way, giving rise to the octa-oxygen atoms which Korm the packkeferencesThe large open circles representcode way, giving rise to the octa- <t< td=""><td>Habit Cleav. Fract. Twin.</td><td>Hardn. Dens. Colour Transp.</td><td></td></t<> | Habit Cleav. Fract. Twin. | Hardn. Dens. Colour Transp. | | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | prismatic (100) | dull small | | $n \beta = 1.809$
$n y = 1.830$ pearly, black
subvitrecussFiguresced by a curved line). In each layer
the packing atoms are at two diffe-
the packing atoms are at two diffe-
rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.Image and the corresponding circles.Fig. 2 (a) Packing drawing of the
warvickite structure showing the
way the B0 groups pack with the
oxygen atoms and (b) correspon-
ding projection along the g axis
(after Povarennykh, 1972).The Mag and Ti atoms are distribute
at complex packing of B0 groups
with oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The packing analogue of the warwick
kite structure of samela on puckered
simple hexagonal packing layers.
The large open circles represent
to argen atoms which form the pack-
ing layers, and the medium black
circles orrespont to Mg and Ti
atoms in cotahedral voids.The samela complex packing atoms are at two
different levels (0 and 1/2, thick and
the circles) the lower and higher
parts fitting together in a closest
packing way, giving rise to the octahedral voids.Fig. 5Kostov (1968) 430, 431.
Povarennykh (1972) 467, 468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5Crystallographic data (continued) | Refr. index/Reflect. Birefr. | Luster Streak Melt.p. CPI | | $n_y = 1.830$ subvitreousFiguresced by a curved line). In each layer
the backing atoms are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two different process
the warwickite structure showing the
wary the B0_g groups pack with the
corgen atoms and (b) correspon-
ding projection along the g axis
(after Povarennykh, 1972).The warwickite structure of warwickite
(after Rostov, 1668).The warwickite structure is based
on a complex packing of B0_g groups
with oxygen atoms, with Mg and Ti
atoms in citchedral voids. The
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hocids.The serve close and
higher
parts fiting together in a closest
packing way, giving rise to the octa-
hocids.Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) vol. 2, 518-521.Crystallographic data (continued) | | dull, bluish | warwedsing ==================================== | Figuresceed by a curved line). In each layer
the packing atoms are at two diffe-
rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.Fig. 2 (a) Packing drawing of the
warwickite structure showing the
way the BO_3 groups pack with the
oxygen atoms and (b) corresponding
equivalent positions.Image: Content of the corresponding
equivalent positions.Fig. 3. Polyhedral representation
of the warwickite structure of the warwickite structure
(after Povarennykh, 1972).Image: Content of the
rent levels (0 and 1/2, thick and
this circles) the lower and higher
parts fiting together in a closest
packing and packing layers.Image: Content of the
warwickite structure is the medium black
circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of the
the segonal packing layers.Fig. 5. Condensed model of the
packing analogue of the warwich
fing layers, and the medium black
circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of the
the cortes ponding
the cortes ponding
the segonal packing layers.Mathematic circles is correspond
ting layers, and the medium black
circles orrespond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms | | | | Fig. 1. The structural units of the warwickite structure: B03 groups and oxygen atoms. Fig. 2 (a) Packing drawing of the warwickite structure showing the way the B03 groups pack with the oxygen atoms and (b) corresponding equivalent positions. Fig. 3. Polyhedral representation of the warwickite structure (after Fovarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on a complex packing of B03 groups with oxygen atoms, with Mg and Ti atoms in ictahedral voids. The packing analogue of the warwickite structure based on puckered simple hexagonal packing way, giving rise to the octahedral voids. Fig. 1. The structure based on puckered simple hexagonal packing way, giving rise to the octahedral voids. The packing way, giving rise to the octahedral voids. References Kostov (1968) 430, 431. Povarennykh (1972) 467, 468. Wyckoff (1964) Vol. 2, 518-521. | $n_{p} = 1.830$ | subvitreous | | Fig. 1. The structural units of
the warwickite structure: BO_3
groups and oxygen atoms.rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.
The Mg and Ti atoms are distribute
at random (\sim) in the corresponding
equivalent positions.Image: Corresponding
equivalent positions.Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).The warwickite structure is based
on a complex packing of BO_3 groups
with oxygen atoms, with Mg and Ti
atoms in citahedral voids. The packing analogue of the
warding layers, and the medium black
circles orrespont to Mg and Ti
atoms in octahedral voids. The
packing analogue of the warwick-
ing layers, and the medium black
circles or persont to Mg and Ti
atoms in octahedral voids. The
powarennykh (1972) 467,468.
Wycoff (1964) Vol. 2, 518-521.Fig. 5Fig. 5Cortespond
thin circles) the lower and higher
parts fitting together in a closest
packing analogue of the warwick-
king can be inagined formed by pucker
original packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theReferencesKostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wycoff (1964) Vol. 2, 518-521.Crystallographic data (continued) | Figures | | | the warwickite structure: BO_3
groups and oxygen atoms.
Fig. 2 (a) Packing drawing of the
warwickite structure showing the
way the BO_3 groups pack with the
oxygen atoms and (b) correspon-
ding projection along the <u>c</u> axis
(after Wyckoff, 1964, Vol. 2).
Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).
Fig. 4. Structure of warwickite
(after Kostov, 1968).
Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and
linked to the | | | | groups and oxygen atoms.
Fig. 2 (a) Packing drawing of the warwickite structure showing the way the BO ₃ groups pack with the draw atoms atoms at (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2).
Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972).
Fig. 4. Structure of warwickite (after Kostov, 1968).
Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers.
The large open circles represent to Mg and Ti atoms in octahedral voids. The bars in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the | | | OCEDICADICAEDICA | Fig. 2 (a) Packing drawing of the warwickite structure showing the way the BO₃ groups pack with the oxygen atoms and (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2). Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing alors in octahedral voids. The packing way, giving rise to the octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the Kostov (1968) 430,431. Povarennykh (1972) 467,468. Wyckoff (1964) Vol. 2, 518-521. | 3 | | JACHDERAD | way the B0₃ groups pack with the oxygen atoms and (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2). Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the | | | | $\begin{array}{c} \mbox{circles} \mbox{ard} (b) \mbox{corresponding projection along the c axis (after Wyckoff, 1964, Vol. 2). \\ Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). \\ Fig. 4. Structure of warwickite (after Kostov, 1968). \\ Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the the pack of (1964) Vol. 2, 518-521. \\ \hline \mbox{curcles} curcl$ | | | | Descriptionding projection along the <u>c</u> axis
(after Wyckoff, 1964, Vol. 2).Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).Fig. 4. Structure of warwickite
(after Kostov, 1968).Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theding projectionding projectionding projectionding projectionfing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theding rojectionding projectionding projectiondin | | equivalent positions. | i (top sheet) b+ | (after Wyckoff, 1964, Vol. 2).The warwickite structure is basedon a complex packing of BO3 groupswith oxygen atoms, with Mg and Tiatoms in ictahedral voids. The(after Povarennykh, 1972).Fig. 4. Structure of warwickite(after Kostov, 1968).Fig. 5. Condensed model of thepacking analogue of the warwicc-kite structure based on puckeredsimple hexagonal packing layers.The large open circles representoxygen atoms which form the pack-ing layers, and the medium blackcircles correspont to Mg and Tiatoms in octahedral voids. Theboron atoms (very small blackcircles) are placed in trian-gular voids and linked to the | | Description | #4 Mini C d II Q | Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwic-kite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in ictahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms are at two different levels (0 and 1/2, th | - | | | of the warwickite structure
(after Povarennykh, 1972).With oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The pac-
king can be imagined formed by puckered
red simple hexagonal layers (v Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing vay, giving rise to the octa-
hedral voids.Image: State of the service
red simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theWith oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The
packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Fig. 5Fig. 5 | Fig. 3. Polyhedral representation | | | King can be imagined formed by pucke
red simple hexagonal layers (ν Ts)
where the packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles orrespont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theking can be imagined formed by pucke
red simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Fig. 5Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5 | | | | Fig. 4. Structure of warwickite
(after Kostov, 1968).red simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.red simple hexagonal layers (ν Ts)The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to thered simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5 | (after Povarennykh, 1972). | | 00000000 | (after Kostov, 1968).Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms
(very small black
circles) are placed in trian-
gular voids and linked to thewhere the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Kostov (1968) 430,431.
Povarennykh (1972) 467,468.Fig. 5Crystallographic data (continued) | | - | OCORDONOLONDION | packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the | ,, | | | simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms (very small black
circles) are placed in trian-
gular voids and linked to the
simple hexagonal packing layers.
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.
References
Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521. | | | | The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the packing way, giving rise to the octahedral voids. Barbon Structure packing way, giving rise to the octahedral voids. Fig. 5 Structure Structure Fig. 5 Structure Structure Structure Structure Str | - | | | oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the hedral voids. Fig. 5 Kostov (1968) 430,431. Fovarennykh (1972) 467,468. Crystallographic data (continued) | | · · · · · · · · · · · · · · · · · · · | b+ | ing layers, and the medium black Fig. 5 circles correspont to Mg and Ti References atoms in octahedral voids. The Kostov (1968) 430,431. boron atoms (very small black Povarennykh (1972) 467,468. circles) are placed in trian- Wyckoff (1964) Vol. 2, 518-521. | | | | circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521. | | | Fig. 5 | boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theKostov (1968) 430,431.
Povarennykh (1972) 467,468.Crystallographic data (continued)Wyckoff (1964) Vol. 2, 518-521. | | | 4 | circles) are placed in trian-
gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521. Crystallographic data (continued) | | Kostov (1968) 430,431. | | gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521. | | | Crystallographic data (continued) | three neighbouring oxygen atoms,-
forming BO_3 groups (embra- | gular voids and linked to the | | | torming BO_3 groups (embra- | | Palache et al (1951) Vol. 2, 326,327. | $0_{IV}(4c)^{u} = 0.484$ | | iorming pug groups (embra- | | v = 0.875 |
|

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Habit
slenderCleav.
perfect
uneven
prismatic
(100)Hardn.
No.Dens.

 | Fig. 1 (a) Fi | (b) b
ig. 2 Fig. 3 | 3 Fig. 4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| slenderperfectunevenprismatic $3.5-4$ 3.35 darktransparent
brow, in very
dull smill $Refr. index/Reflect.Birefr.Birefr.n_{\alpha} = 1.806(+)dull, bluishn_{\beta} = 1.809pearly, blackn_{\gamma} = 1.830subvitreousFiguresFiguresFiguresFig. 1. The structural units ofthe warwickite structure: BO_3groups and oxygen atoms.Fig. 2 (a) Packing drawing of thewarwickite structure showing theway the BO_3 groups pack with theoxygen atoms and (b) corresponding projection along the gaxis(after Myckoff, 1964, Vol. 2).Fig. 4. Structure of warwickite(after Portentykh, 1972).The warwickite structure is basedon a complex packing of BO_3 groupswhere the packing atoms are at twodifferent levels (0 and 1/2) thick andthin circles) the lower and higherparts filting together in a closestpacking way, giving rise to the octa-horal voids.Fig. 4. Structure of warwic-kits estructure based on puckeredsimple hexagonal packing layers.The large open circles represent-tor large open circles represent-tors in octahedral voids.Fig. 10 the seriptionReferencesReferencesKostov (1968) 430, 431.Povarenykh (1922) 467, 468.Wyckoff (1964) Vol. 2, 518-521.$

 | Proj | perties | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| prismatic(100)Brown, in very of dillRefr. index/Reflect.Birefr. $n_{\alpha} = 1.806$ (*) $n_{\beta} = 1.809$ perly, black $n_{\gamma} = 1.806$ (*) $n_{\gamma} = 1.809$ perly, black $n_{\gamma} = 1.830$ subvitrousCed by a curved line). In each layerthe packing the warkickite structure: B0groups and oxygen atoms.ced by a curved line). In each layerFig. 1. The structural units ofthe warwickite structure: B0groups and oxygen atoms.ced by a curved line). In each layerthe warwickite structure: B0colspan="2">the Mg and Ti atoms are distributeatoms in ictahedral representationof the warwickite structureof the warwickite structurefor a complex packing of B0(after Nostor, 1968).Fig. 3. Polyhedral representationof the warwickite structurefor a complex packing of B0(after Kostov, 1968).Fig. 5Fig. 4. Structure of warwickitefing he hexagonal layers, the large open circles represent(after Kostov, 1968).circles correspond packing layers.The large open circles representcode way, giving rise to the octa-oxygen atoms which form the packkeferencesThe large open circles representcode way, giving rise to the octa-oxygen atoms which Korm the packkeferencesThe large open circles representcode way, giving rise to the octa-oxygen atoms which Korm the packkeferencesThe large open circles representcode way, giving rise to the octa- <t< td=""><td>Habit Cleav. Fract. Twin.</td><td>Hardn. Dens. Colour Transp.</td><td></td></t<>

 | Habit Cleav. Fract. Twin. | Hardn. Dens. Colour Transp. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$

 | prismatic (100) | dull small | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| $n \beta = 1.809$
$n y = 1.830$ pearly, black
subvitrecussFiguresced by a curved line). In each layer
the packing atoms are at two diffe-
the packing atoms are at two diffe-
rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.Image and the corresponding circles.Fig. 2 (a) Packing drawing of the
warvickite structure showing the
way the B0 groups pack with the
oxygen atoms and (b) correspon-
ding projection along the g axis
(after Povarennykh, 1972).The Mag and Ti atoms are distribute
at complex packing of B0 groups
with oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The packing analogue of the warwick
kite structure of samela on puckered
simple hexagonal packing layers.
The large open circles represent
to argen atoms which form the pack-
ing layers, and the medium black
circles orrespont to Mg and Ti
atoms in cotahedral voids.The samela complex packing atoms are at two
different levels (0 and 1/2, thick and
the circles) the lower and higher
parts fitting together in a closest
packing way, giving rise to the octahedral voids.Fig. 5Kostov (1968) 430, 431.
Povarennykh (1972) 467, 468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5Crystallographic data (continued)

 | Refr. index/Reflect. Birefr. | Luster Streak Melt.p. CPI | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| $n_y = 1.830$ subvitreousFiguresced by a curved line). In each layer
the backing atoms are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two diffe-
rent levels (0 and 1/2) which are at two different process
the warwickite structure showing the
wary the B0_g groups pack with the
corgen atoms and (b) correspon-
ding projection along the g axis
(after Povarennykh, 1972).The warwickite structure of warwickite
(after Rostov, 1668).The warwickite structure is based
on a complex packing of B0_g groups
with oxygen atoms, with Mg and Ti
atoms in citchedral voids. The
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hocids.The serve close and
higher
parts fiting together in a closest
packing way, giving rise to the octa-
hocids.Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) vol. 2, 518-521.Crystallographic data (continued)

 | | dull, bluish | warwedsing ==================================== | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Figuresceed by a curved line). In each layer
the packing atoms are at two diffe-
rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.Fig. 2 (a) Packing drawing of the
warwickite structure showing the
way the BO_3 groups pack with the
oxygen atoms and (b) corresponding
equivalent positions.Image: Content of the corresponding
equivalent positions.Fig. 3. Polyhedral representation
of the warwickite structure of the warwickite structure
(after Povarennykh, 1972).Image: Content of the
rent levels (0 and 1/2, thick and
this circles) the lower and higher
parts fiting together in a closest
packing and packing layers.Image: Content of the
warwickite structure is the medium black
circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of the
the segonal packing layers.Fig. 5. Condensed model of the
packing analogue of the warwich
fing layers, and the medium black
circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of the
the cortes ponding
the cortes ponding
the segonal packing layers.Mathematic circles is correspond
ting layers, and the medium black
circles orrespond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms in octahedral voids.Image: Content of MgMathematic circles correspond to Mg and Ti
atoms

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Fig. 1. The structural units of the warwickite structure: B03 groups and oxygen atoms. Fig. 2 (a) Packing drawing of the warwickite structure showing the way the B03 groups pack with the oxygen atoms and (b) corresponding equivalent positions. Fig. 3. Polyhedral representation of the warwickite structure (after Fovarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on a complex packing of B03 groups with oxygen atoms, with Mg and Ti atoms in ictahedral voids. The packing analogue of the warwickite structure based on puckered simple hexagonal packing way, giving rise to the octahedral voids. Fig. 1. The structure based on puckered simple hexagonal packing way, giving rise to the octahedral voids. The packing way, giving rise to the octahedral voids. References Kostov (1968) 430, 431. Povarennykh (1972) 467, 468. Wyckoff (1964) Vol. 2, 518-521.

 | $n_{p} = 1.830$ | subvitreous | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Fig. 1. The structural units of
the warwickite structure: BO_3
groups and oxygen atoms.rent levels (0 and 1/2) which are
distinguished by the heavy and light
lines on the corresponding circles.
The Mg and Ti atoms are distribute
at random (\sim) in the corresponding
equivalent positions.Image: Corresponding
equivalent positions.Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).The warwickite structure is based
on a complex packing of BO_3 groups
with oxygen atoms, with Mg and Ti
atoms in citahedral voids. The packing analogue of the
warding layers, and the medium black
circles orrespont to Mg and Ti
atoms in octahedral voids. The
packing analogue of the warwick-
ing layers, and the medium black
circles or persont to Mg and Ti
atoms in octahedral voids. The
powarennykh (1972) 467,468.
Wycoff (1964) Vol. 2, 518-521.Fig. 5Fig. 5Cortespond
thin circles) the lower and higher
parts fitting together in a closest
packing analogue of the warwick-
king can be inagined formed by pucker
original packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theReferencesKostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wycoff (1964) Vol. 2, 518-521.Crystallographic data (continued)

 | Figures | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| the warwickite structure: BO_3
groups and oxygen atoms.
Fig. 2 (a) Packing drawing of the
warwickite structure showing the
way the BO_3 groups pack with the
oxygen atoms and (b) correspon-
ding projection along the <u>c</u> axis
(after Wyckoff, 1964, Vol. 2).
Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).
Fig. 4. Structure of warwickite
(after Kostov, 1968).
Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and linked to the

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| groups and oxygen atoms.
Fig. 2 (a) Packing drawing of the warwickite structure showing the way the BO ₃ groups pack with the draw atoms atoms at (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2).
Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972).
Fig. 4. Structure of warwickite (after Kostov, 1968).
Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers.
The large open circles represent to Mg and Ti atoms in octahedral voids. The bars in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the

 | | | OCEDICADICAEDICA | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Fig. 2 (a) Packing drawing of the warwickite structure showing the way the BO₃ groups pack with the oxygen atoms and (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2). Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing alors in octahedral voids. The packing way, giving rise to the octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the Kostov (1968) 430,431. Povarennykh (1972) 467,468. Wyckoff (1964) Vol. 2, 518-521.

 | 3 | | JACHDERAD | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| way the B0₃ groups pack with the oxygen atoms and (b) corresponding projection along the <u>c</u> axis (after Wyckoff, 1964, Vol. 2). Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| $\begin{array}{c} \mbox{circles} \mbox{ard} (b) \mbox{corresponding projection along the c axis (after Wyckoff, 1964, Vol. 2). \\ Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). \\ Fig. 4. Structure of warwickite (after Kostov, 1968). \\ Fig. 5. Condensed model of the packing analogue of the warwickite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the the pack of (1964) Vol. 2, 518-521. \\ \hline \mbox{curcles} curcl$

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Descriptionding projection along the <u>c</u> axis
(after Wyckoff, 1964, Vol. 2).Fig. 3. Polyhedral representation
of the warwickite structure
(after Povarennykh, 1972).Fig. 4. Structure of warwickite
(after Kostov, 1968).Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theding projectionding projectionding projectionding projectionfing layers, and the medium black
circles) are placed in trian-
gular voids and linked to theding rojectionding projectionding projectiondin

 | | equivalent positions. | i (top sheet) b+ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| (after Wyckoff, 1964, Vol. 2).The warwickite structure is basedon a complex packing of BO3 groupswith oxygen atoms, with Mg and Tiatoms in ictahedral voids. The(after Povarennykh, 1972).Fig. 4. Structure of warwickite(after Kostov, 1968).Fig. 5. Condensed model of thepacking analogue of the warwicc-kite structure based on puckeredsimple hexagonal packing layers.The large open circles representoxygen atoms which form the pack-ing layers, and the medium blackcircles correspont to Mg and Tiatoms in octahedral voids. Theboron atoms (very small blackcircles) are placed in trian-gular voids and linked to the

 | | Description | #4 Mini C d II Q | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Fig. 3. Polyhedral representation of the warwickite structure (after Povarennykh, 1972). Fig. 4. Structure of warwickite (after Kostov, 1968). Fig. 5. Condensed model of the packing analogue of the warwic-kite structure based on puckered simple hexagonal packing layers. The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in ictahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms, with Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the on a complex packing of B0₃ groups with oxygen atoms are at two different levels (0 and 1/2, th

 | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| of the warwickite structure
(after Povarennykh, 1972).With oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The pac-
king can be imagined formed by puckered
red simple hexagonal layers (v Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing vay, giving rise to the octa-
hedral voids.Image: State of the service
red simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theWith oxygen atoms, with Mg and Ti
atoms in ictahedral voids. The
packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Fig. 5Fig. 5

 | Fig. 3. Polyhedral representation | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| King can be imagined formed by pucke
red simple hexagonal layers (ν Ts)
where the packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles orrespont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theking can be imagined formed by pucke
red simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Fig. 5Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Fig. 4. Structure of warwickite
(after Kostov, 1968).red simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.red simple hexagonal layers (ν Ts)The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to thered simple hexagonal layers (ν Ts)
where the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Fig. 5Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521.Fig. 5

 | (after Povarennykh, 1972). | | 00000000 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| (after Kostov, 1968).Fig. 5. Condensed model of the
packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to thewhere the packing atoms are at two
different levels (0 and 1/2, thick and
thin circles) the lower and higher
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.Kostov (1968) 430,431.
Povarennykh (1972) 467,468.Fig. 5Crystallographic data (continued)

 | | - | OCORDONOLONDION | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| packing analogue of the warwic-
kite structure based on puckered
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the

 | ,, | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the
simple hexagonal packing layers.
The large open circles represent
oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms (very small black
circles) are placed in trian-
gular voids and linked to the
simple hexagonal packing layers.
parts fiting together in a closest
packing way, giving rise to the octa-
hedral voids.
References
Kostov (1968) 430,431.
Povarennykh (1972) 467,468.
Wyckoff (1964) Vol. 2, 518-521.

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| The large open circles represent oxygen atoms which form the packing layers, and the medium black circles correspont to Mg and Ti atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the packing way, giving rise to the octahedral voids. Barbon Structure packing way, giving rise to the octahedral voids. Fig. 5 Structure Structure Fig. 5 Structure Structure Structure Structure Str

 | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| oxygen atoms which form the pack-
ing layers, and the medium black
circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the hedral voids. Fig. 5 Kostov (1968) 430,431. Fovarennykh (1972) 467,468. Crystallographic data (continued)

 | | · · · · · · · · · · · · · · · · · · · | b+ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| ing layers, and the medium black Fig. 5 circles correspont to Mg and Ti References atoms in octahedral voids. The Kostov (1968) 430,431. boron atoms (very small black Povarennykh (1972) 467,468. circles) are placed in trian- Wyckoff (1964) Vol. 2, 518-521.

 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| circles correspont to Mg and Ti
atoms in octahedral voids. The
boron atoms (very small black
circles) are placed in trian-
gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521.

 | | | Fig. 5 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| boron atoms (very small black
circles) are placed in trian-
gular voids and linked to theKostov (1968) 430,431.
Povarennykh (1972) 467,468.Crystallographic data (continued)Wyckoff (1964) Vol. 2, 518-521.

 | | | 4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| circles) are placed in trian-
gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521. Crystallographic data (continued)

 | | Kostov (1968) 430,431. | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| gular voids and linked to the Wyckoff (1964) Vol. 2, 518-521.

 | | | Crystallographic data (continued) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| three neighbouring oxygen atoms,-
forming BO_3 groups (embra-

 | gular voids and linked to the | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| torming BO_3 groups (embra-

 | | Palache et al (1951) Vol. 2, 326,327. | $0_{IV}(4c)^{u} = 0.484$ | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|

 | iorming pug groups (embra- | | v = 0.875 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
 | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

	$P2/m$ = 5.36% Mg_{I} (2a b = 5.98%	z = 0 $z = 0$
$ \begin{bmatrix} M_{g_{2}}^{\circ} & M_{n}^{\circ} & M_{n_{2}}^{\circ} \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}_{4} \begin{bmatrix} g \end{bmatrix} \begin{bmatrix} t \\ B \end{bmatrix} \begin{bmatrix}$	$\begin{bmatrix} \alpha & \beta \\ \beta & \beta \\ \gamma & \beta \\ \gamma & \gamma \\ \gamma \\$	$ \begin{array}{rcl} \textbf{b} & \textbf{y} &= 1/4 & \textbf{Mn}_{II} & (2d) & \textbf{y} &= 0 \\ \textbf{z} &= 0.197 & \textbf{z} &= 1/2 \\ \textbf{x} &= 0 & 2+ & \textbf{x} &= 0.053 \end{array} $
<u> </u>	SI 2 Mg _{III} (2e	
Fig. 1	Fig. 2 (5) Fig. 3	Fig. 4
Р	roperties	manders Hay Ho Hay [0] ([[0 " 0]]] = 170 10 12/10
Habit Cleav. Fract. Twi	n. Hardn. Dens. Colour Transp.	
thin good (011) 6 3.88 black opaque	www.
tablets (010)	Luster Streak Melt.p. CPI	
$\frac{\text{Refr. index}/\text{Reflect.}}{n_{\alpha} = 1.908}$		60000000
$n_{\alpha} = 1.908$ (-) $n_{\beta} = 2.05$ $2V = 32^{\circ}$	metallic brownish grey	
$n_{\gamma} = 2.065$	B. 0)	00000000
Figures	Description	· · · · · · · · · · · · · · · · · · ·
 Fig. 1. The structural units of the pinakiolite structure: B0 groups and 0 atoms. Fig. 2. (a) Packing drawing of the pinakiolite structure, showing the way the B0 groups pack with the oxygen atoms, and (b) unit cell content projected along the <u>b</u> axis (after Wyckoff, 1964, Vol. 2). Fig. 3. Polyhedral representation of the pinakiolite structure (after Povarennykh, 1972). Fig. 4. Structure of pinakiolite (after Kostov, 1968). Fig. 5. Condensed model of the 	The pinakiolite structure is based on the complex packing of BO ₃ groups and O atoms. This packing is formed by two dif- ferent parts of simple hexagonal packing, at four levels (0, 1/4, 1/2 and 3/4) which fit in the closest way, giving rise to octahedral voids. These octahedral voids are occupied by Mg and Mn atoms. The packing of the oxygens may also be imagined as forming a puckered simple hexagonal packing (\sim Ts), or an interpe- netration of simple hexagonal with clo- sest hexagonal packing (Ts'h). Crystallographic data (continued) x = 0.500 x = 0.638 B (4f) y = 0.000 0 _{IV} (4f) y = 0 z = 0.250 z = 0.366	
packing analogue of the pina- kiolite structure based on a puckered simple hexagonal pac- king. The large open circles represent oxygen atoms which form the packing layers, and the medium black and dashed circles correspond atoms in octahedral voids. The boron atoms (very small black cir- cles) are placed in triangular voids and linked to the three neighbouring oxygen atoms for- ming B0 ₃ groups (embraced by a curved 3 line). In each layer the packing atoms are at two different levels (0 and 1/2) which are distinguished by the heavy and light lines of the corresponding circles.	$\begin{array}{rcrcrc} x &= 0.239 & x &= 0.643 \\ 0_{I} & (2e) & y &= 1/4 & 0_{V} & (4f) & y &= 0 \\ z &= -0.011 & z &= 0.180 \\ & x &= -0.239 & x &= 0.202 \\ 0_{II} & (2e) & y &= 1/4 & 0_{VI} & (2e) & y &= 1/4 \\ z &= 0.011 & z &= 0.396 \\ & x &= 0.175 & x &= -0.202 \\ 0_{III} & (4f) & y &= 0 & 0_{VII} & z &= 0.202 \\ \hline & & & & & & & & & & \\ 0_{III} & & & & & & & & & \\ 0_{III} & & & & & & & & & & & \\ \hline & & & & & & &$	Fig. 5

MALACHITE P21/a	$a = 9.48\%$ Cu_{I} (4e);	z = 0.89 $z = 0.86$
$\left \begin{array}{c} \operatorname{Cu}_{2}^{o} \left[\left[\left(\operatorname{OH} \right) \right]_{2} & \left\{ g \right\} \left[\operatorname{C}^{\texttt{tr}} & \operatorname{O}_{3} \right] \right]^{\ll} \end{array} \right $	$Ts'_{h} \gg \begin{array}{c} c = 3.21\% \\ \beta = 98^{\circ} \end{array} Cu_{II} (4e)$	z = 0.30 $z = 0.47$
	Z = 4 (OH) ₁ (4e)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 0 0		
Fig. 1 (a)	Fig. 2 (b)	Fig. 3
Prope	rties	
HabitCleav.Fract.Twin.prismatic, massive, fibrousperfectsubcon-(100)fibrous(201)choidalRefr.index/Reflect.Birefr.	Hardn. Dens. Colour Transp. 3.5-4 4.05 grass translucent green Luster Streak Melt.p. CPI	
$n_{\alpha} = 1.655$ (-)	adamantine pale (SPI)	Assumptions $\operatorname{Com}_{2}^{\mathrm{m}}\left[[\operatorname{Com}_{2}\right]_{2}^{\mathrm{m}}\left[s\right]\left[e^{kx}\cdot v_{2}\right]^{\mathrm{m}_{2}/\mathrm{M}_{2}} \xrightarrow{\mathcal{H}_{2}/\mathrm{m}_{2}}$
$n_{\beta} = 1.875$ $2V = 4.3^{\circ}$ $n_{\gamma} = 1.909$	green 48	000000000
Figures	each layer the packing atoms are	TOCOCOCOCO
	at two different levels (0 and $1/2$)	00000000
Fig. 1. Structural units of the ma- lachite structure: CO ₂ groups	which are distinguished by the heavy and light lines of the cor-	000000000
and OH ions.	responding circles.	100000000
Fig. 2. (a) Packing drawing of the	Description	
malachite structure showing the	The malachite structure is ba-	relian averal
way the CO ₃ groups pack together with OH groups, and (b) corres-	sed on a complex packing of CO ₂	
ponding projection along the \underline{c}	and OH ions, with copper atoms in	HUNDER .
axis (after Wyckoff, 1964. Vol. 2)	octahedral voids. The packing can be imagined formed by strong distor-	
Fig. 3. Malachite structure (after	tion of puckered simple hexagonal	
Kostov, 1968).	layers (∞ Ts) where the packing	
Fig. 4. Condensed model of the pac-	atoms are at two different levels	
king analogue of the malachite structure based on puckered simple	(0 and $1/2$, thick and thin circles)	
hexagonal packing layers. The lar-	the lower and the higher parts fit-	

hexagonal packing layers. The large open circles represent oxygen atoms, and the large lined circles hydroxyls which form the packing layers; the medium black circles correspond to atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the three neighbouring oxygen atoms forming BO_3 groups (embraced by a curved line). In

ting together in a closest way, giving rise to the octahedral voids.

References

Kostov (1968) 544. Crystallographic data (continued) Povarennykh (1972) 614,615. $\begin{array}{c} x = 0.34 \\ 0_{II} (4e) y = 0.24 \\ z = 0.50 \\ x = 0.33 \\ 0_{III} (4e) y = 0.05 \\ z = 0.63 \end{array}$ Wyckoff (1964) Vol. 2, 476,477. Zoltai + Stout (1984) 431. Palache et al. (1951) Vol. 2, 253.

Fig. 4

<u>AZURITE</u> P2 ₁ /c		a = 5.00Å b = 5.85Å	$\begin{array}{c} \mathbf{x} = 0 \\ \mathbf{CU}_{\mathbf{I}} (\mathbf{2a}) \mathbf{y} = 0 \\ \mathbf{z} = 0 \end{array}$	$\begin{array}{rcl} x &= & 0.329 \\ C & (4e) & y &= & 0.298 \\ z &= & 0.319 \end{array}$
$\begin{bmatrix} sq [5y] \\ CuCu_{2} \end{bmatrix} \left[(OH) \right]_{2} \left\{ g \right\} \begin{bmatrix} C^{tr} & O \\ C^{tr} & O \end{bmatrix}$		c = 10.35% $\beta = 92^{\circ} 20'$ Z = 2	x = 0. $Cu_{II}(4e) y = 0.$ z = 0.	$\begin{array}{c} 495 \\ 085 \end{array} \begin{array}{c} 0_{1} \\ z = 0.338 \end{array}$
	3_2	<i>L</i> = <i>L</i>	x = 0. (OH)(4e) $y = 0.$ z = 0.	812 $0_{TT}(4e) y = 0.224$
О ОН				
Fig. 1	" o o ,,			
	Fig. 2			
	Handn Dong	Colour Tr		
HabitCleav.Fract.Twin.tabular,perfectconchoi-lenticular,(01)dalmassive(100)lenter. $\alpha_{\alpha} = 1.730$ (+) $n_{\beta} = 1.754$ 2V = 67° $n_{\gamma} = 1.836$ lenter		azure- tran -blue, to t variable cent Melt.p.	ansp. Isparent granslu- CPI (SPI) 46	
Figures	Desc	ription		
 Fig. 1. The structural units of the azurite structure are CO₃ and (OH) ions. Fig. 2. Structure of the azurite structure, showing the orienta- tion of the CO₃ groups (after Povarennykh, 1972). 	The azurite s on the packing o with two types o voids of this pa nearly square co and another Cu w ramidal coordina	f CO ₃ and OH f Cu atoms in cking: one wi ordination (2 fith tetragona	ions in the ith 20+20H) al py-	
Crystallographic data (continued)	Kostov (1968) 54 Povarennykh (197 Wyckoff (1964) V	72) 615. 701. 2, 478,42	79.	
$ \begin{array}{c} x = 0.431 \\ 0_{III}(4e) \ y = 0.303 \\ z = 0.212 \end{array} $	Zoltai + Stout Palache et al. 265-267.		,	
	I			

	$\begin{array}{ccccc} c & = & 8.3788 & \mbox{Mg}_{II} & (4e) & y & = & 0.34474 \\ \beta & = & 114.44^{\circ} & z & = & 0.49177 \\ Z & = & 2 & \mbox{Mg}_{III}(2a) & y & = & 0 \\ & & & \ddots & z & = & 0 \end{array}$
Fig. 3	
erties	7
Hardn.Dens.ColourTransp.3.752.236colourless transparent to white	-
Luster Streak Melt.p. CPI vitreous	
Description	Crystallographic data (continued)
The hydromagnesite is based on the packing of CO ₃ , H ₂ O and OH ions. Magnesium atoms occupy voids in this packing with oc- tahedral coordination.	$ \begin{array}{rcl} x &= 0.22455\\ 0(H) & (4e) & y &= 0.97967\\ z &= 0.11721\\ & x &= 0.24791\\ 0(W1) & (4e) & y &= 0.61189\\ z &= 0.30117\\ & x &= 0.23813\\ 0(W11)(4e) & y &= 0.92381\\ z &= 0.45921 \end{array} $
	x = 0.00878 $0(1) (4e) y = 0.17176$ $z = 0.16220$ $x = 0.01677$ $0(11)(4e) y = 0.37440$ $z = 0.30587$ $x = 0.22288$ $0(2) (4e) y = 0.25692$ $z = 0.35464$
	z = 0.21587 $z = 0.116x = 0.49221$ $x = 0.163$
	0(4) (4e) $y = 0.40165 H(2)(4e) y = 0.633$ z = 0.37848 z = 0.278 x = 0.49778 x = 0.289 0(44)(4e) $y = 0.39688 H(3)(4e) y = 0.684$ z = 0.11400 z = 0.356 x = 0.08223 x = 0.145 C ₁ (4e) $y = 0.26599 H(4)(4e) y = 0.915$ x = 0.47277 x = 0.243 C ₁₁ (4e) $y = 0.33128 H(5)(4e) y = 0.915$
	Bardn. Dens. Colour Transp. 3.75 2.236 colourless transparent to white Luster Streak Melt.p. CPI vitreous Description The hydromagnesite is based on the packing of C0 ₃ , H ₂ 0 and 0H ions. Magnesium atoms occupy voids in this packing with oc-

<u>NATRON</u> Cc	(synthetic material) _{Na_I a = 12.83Å}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\left[\left\{ g \right\} \left[Na_{2}^{o}(H_{2}O)_{10} \right] \left\{ g \right\} \left[c \right]^{tr}$	$\begin{bmatrix} \mathbf{c} & \mathbf{b} = 9.03\% \\ \mathbf{c} = 13.44\% \\ \beta = 1230^{\circ} \end{bmatrix}$ Na ₁₁	$ \begin{array}{ccccccc} x &= 0.252 & x &= 0.093 \\ x &= 0.252 & 0_{III}(4a) & y &= 0.312 \\ z &= -0.128 & z &= 0.175 \\ x &= 0.125 & x &= 0.374 \\ (4a) & y &= -0.012 & 0_{IV} & (4a) & y &= 0.121 \\ z &= 0.091 & z &= 0.322 \end{array} $
H ₂ O on		$x = 0.139$ $O_V (4a) y = 0.374$ $z = -0.058$ $x = 0.355$ $O_{VI} (4a) y = 0.125$ $z = 0.047$ $x = 0.128$ $O_{VII} (4a) y = 0.049$ $z = -0.215$ $x = 0.372$
Fig. 1	6 6 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	$0_{VIII}(4a)$ y = 0.502 z =-0.080
Prope		$ \begin{array}{c} x = 0.120 \\ 0_{IX} (4a) y = 0.376 \\ z = -0.332 \end{array} $
HabitCleav.Fract.Twin.tabular,distinctconchoi-(001)granular(001)dal	Hardn. Dens. Colour Transp. 1-1.5 1.478 colourless to white, grey, yellow colourless	$ \begin{array}{rcl} x &= 0.399 \\ 0_{\chi} & (4a) & y &= 0.187 \\ z &= -0.186 \end{array} $
$\frac{\text{Refr. index}/\text{Reflect.}}{n_{\alpha} = 1.405}$ (-)	Luster Streak Melt.p. CPI vitreous 34.5° C	$ \begin{array}{cccc} x &= 0.250 \\ C & (4a) & y &= 0.754 \\ z &= 0 \end{array} $
$n_{\beta} = 1.425$ $n_{\gamma} = 1.440$		$\begin{array}{c} x = 0.344 \\ 0(12^{1})(4a) y = 0.793 \\ z = -0.003 \end{array}$
Figures	Description	
Fig. 1. The structural units of the natron structure: CO_3 and $Na_2(H_2O)_{10}$ groups (after Taga, 1969).	The structure of natron may be imagined as a distorted $Na^{O}[C1]^{C}$ type structure, composed of $[Na_{2}(H_{2}O)_{10}]^{2+}$ and $C0_{2}^{2-}$ groups	$\begin{array}{c} x = 0.253 \\ 0(11")(4a) y = 0.834 \\ z = -0.073 \\ x = 0.366 \\ 0(13")(4a) y = 0.809 \\ z = 0.093 \end{array}$
Fig. 2. Projection of the natron structure along the <u>b</u> axis (after Taga, 1969).	The $\left[Na_2(H_2^{0})_{10} \right]^{2+}$ consist of two sodium-water octahedra which share an edge (Fig. 1). These pairs of	$ \begin{array}{l} x = 0.266 \\ 0(11')(4a) y = 0.718 \\ z = 0.097 \end{array} $
	octahedra are linked by hydrogen bonds to form a three-dimensional	$\begin{array}{c} x = 0.139 \\ 0(13')(4a) y = 0.794 \\ z = -0.096 \end{array}$
	framework in the crystal structu- re (Fig. 2).	$\begin{array}{rrrr} x &= & 0.151\\ 0(12")(4a) & y &= & 0.675\\ z &= -0.001 \end{array}$
References		
Kostov (1968) 529. Povarennykh (1972) 618. Taga (1969) 2656-2658. Palache et al (1951) Vol. 2, 230,231.		

MELILITE P42m	a = 7.74X c = 5.02X Z = 2 (A1,Mg)(2a)	
$C_{a Na}^{[8]}(Al,Mg)^{\circ}\left\{g\right\}\left[(Si,Al)\right]$	^t 0 ₇] (Si,A1)(4e'	$ \begin{array}{c} z = 0 \\ x = 0.1396 \\ y = 0.3604 \\ z = 0.9412 \end{array} \begin{array}{c} z = 0.2583 \\ x = 0.0820 \\ 0_{III}(8f) \\ y = 0.1820 \\ z = 0.7909 \end{array} $
or Fig. 1 Fig. 2	Pig. 3	
Prope	rties	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Hardn. Dens. Colour Transp. 5-6 2.95-3.05 honey- -yellow, brown Luster Streak Melt.p. CPI vitreous, resinous	
Population	Description	
$ \begin{array}{c} \underline{\text{Gehlenite}}_{1} & \text{Ca}_{2}^{\left[8\right]} \text{ and } \left[g\right] \begin{bmatrix} \text{s}_{1}^{t} \text{ t}^{t} \\ \text{s}_{1}^{t} \text{ and } \text{s}_{2}^{t} \text{ and } \\ \text{s}_{2}^{t} \text{ and } \left[g\right] \begin{bmatrix} \text{s}_{1}^{t} \text{ and } \text{s}_{7} \end{bmatrix} \\ \hline \\$	Melilite is a group structure formed by the packing of $(Si,Al)_2^{t}O_7$ groups, with Ca and Na in eightfold coordination, and Al and Mg in oc- tahedral voids.	
group Fig. 2. Polyhedral representation of the melilite structure (after Povarennykh, 1972). Fig. 3 Melilite structure projec- ted along the <u>c</u> axis (after Kos- tov, 1968).		
	References	
	Korefences Kostov (1968) 309. Povarennykh (1972) 440. Wyckoff (1968) Vol. 4, 225-227. Deer et al. (1962) Vol. 1, 236. Ford (1932) 606,607.	

<u>EPIDOTE</u> ca ^[j] ca(ca,ce) Al ^o Fe ^o si ^t [[0] ₅ [он]	^{P2} 1 ^{/m} b	= 5.03A =10.30X Ca _{II} =115°24'	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Habit Cleav. Fract. Twin. prismatic perfect (001) uneven (100) poor (100) (100) (100) (100)	Fig. 2 Fig. 2 rties <u>Hardn.</u> <u>Dens.</u> <u>Color</u> 6.5 3.4-3.5 yellow green	transparent to translu- cent	
$\begin{array}{c c} \hline Refr. index /Reflect. & Birefr. \\ \hline n_{\alpha} = 1.71 - 1.75 & (-) \\ n_{\beta} = 1.72 - 1.78 & 2V = 90^{\circ} - 115^{\circ} \\ n_{\gamma} = 1.73 - 1.80 \end{array}$	Luster Streak Melt. vitreous white	<u>.p. CPI</u> (SPI) 56	
Population	Descripti	.on	
$\frac{\text{Allanite}}{[5/10]} \\ (Ca,Ce)_2(A1,Fe)_3^{OSi} \begin{bmatrix} [O]_5[OH] \\ [Si_2O_7] \end{bmatrix} \\ \underline{Orthite} = \text{variety of allanite} $	The epidote struc on the packing of S OH and O atoms. The tial atoms are Ca, A	i ₂ 0 ₇ groups, intersti- l, Fe and Si.	
Figures	Ca has two kinds of [10] and [9], Al and Fe h		Crystallographic data (continued)
 Fig. 1. Structural units of the epi- dote structure: Si₂0₇ groups, 0H and 0 atoms. Fig. 2. Polyhedral representation of the epidote structure (after Dollase, 1971). 	coordination, and Si draly coordinated.		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	Defense		$- \begin{bmatrix} z = 0.053 \\ z = 0.142 \end{bmatrix} = \begin{bmatrix} z = 0.142 \\ z = 0.142 \end{bmatrix}$
	Referenc Kostov (1968) 310, 3 Povarennykh (1972) 4 Wyckoff (1968) Vol. Zoltai + Stout (1984 Dollase (1971) 458.	12. 05. 4, 249-251.	$ \begin{array}{c} x = 0.300 \\ 0_{II} (4f) y = 0.987 \\ z = 0.333 \\ 0_{II} (4f) y = 0.987 \\ 0_{VI} (2e) y = 3/4 \\ z = 0.413 \\ x = 0.798 \\ 0_{III} (4f) y = 0.008 \\ z = 0.338 \\ x = 0.047 \\ x = 0.183 \\ x = 0.047 \\ x = 0.530 \\ 0_{IV} (2e) y = 1/4 \\ z = 0.142 \\ y = 1/4 \\ z = 0.315 \\ \end{array} $

ZOISITE Pnma		u = 10.23A	$ \begin{array}{rcl} x &= & 0.372 \\ x &= & 1/4 \\ z &= & 0.436 \end{array} $	$Al_{II}(4c) y = 1/4 z = -0.300$
$Ca_{2}^{[7]}Al_{3}^{o}Si^{t}\left[0]_{5}\left[OH\right]\left[g\right]\left[Si\right]$		Z = 4	$ \begin{array}{rcl} x &= 0.45a \\ a_{II}(4c) &y &= 1/4 \\ z &= 0.112 \\ x &= 0.256 \\ a_{II}(8d) &y &= 0 \\ z &= 0.196 \end{array} $	$Si_{I} (4c) y = 1/4 z = 0.102 x =-0.412 Si_{II} (4c) y = 1/4 z = 0.412 Si_{II} (4c) y = 1/4 z = 0.412 Si_{II} (4c) y = 1/4 z = 0.102 z = 0.102 z = 0.102 z = 0.412 $
Средника соверения и просединие и проседин				
prismatic, perfect uneven, massive (100) subcon- choidal	6-7 3.15- -3.365	grey, transpar green- to trans -brown lucent felt.p. CPI	s-	
Figures	Descr	iption	Crystallog	raphic data (continued)
 Fig. 1. Structural units of the zoi- site structure: Si207 groups, OH and 0 atoms. Fig. 2. Polyhedral representation of the zoisite structure (after Dolla- se, 1968). 	which pack toget atoms. The inters atoms have octahe dination respecti atoms are also in ving tetrahedral	stitial Al and edral and 7 coc ively. Some Si iterstitial, ha coordination.	d 0 0 1 1 Ca 0 1 0r- 0 1 1 0 11 0 11 0 11 0 11	$ \begin{array}{r} x = 0.162 \\ y = 1/4 \\ z = 0.435 \\ x = 0.118 \\ (8d) y = 0.000 \\ z = 0.150 \\ x = 0.101 \\ (8d) y = 0.000 \\ z = 0.431 \\ x = 0.375 \\ y = 0.000 \\ z = 0.245 \\ x = 0.233 \\ (4c) y = 1/4 \\ z = -0.304 \\ x = -0.223 \\ (4c) y = 1/4 \\ z = -0.304 \\ x = -0.2685 \\ (4c) y = 1/4 \\ z = -0.057 \end{array} $
	Refer	ences		x = 0.997 (4c) $y = 1/4$
	Kostov (1968) 3 Wyckoff (1968)			$\begin{array}{cccc} & y = 1/4 \\ z = 0.163 \\ x = -0.997 \end{array}$
	Dollase (1968)	1889.		x = -0.997 (4c) $y = 1/4$ z = -0.296
	Roberts et al.	(1974) 691.	012	$\begin{array}{c} x = -0.435 \\ (4c) y = 1/4 \\ z = -0.438 \end{array}$
			(OF	x = 0.2685 y = 1/4 z = 0.075

$\frac{\text{ILVAITE}}{Ca^{[7]}Fe_{2}^{m}(Fe,Mn)^{\circ}\left[\left[0\right]\left[OH\right]\left\{a\right\}\right]}$	bnm a = 8.80% $b = 13.07%$ $c = 5.86%$ $Z = 4$ $z = 4$	$\begin{array}{r} x = -0.370\\ Ca & (4c) y = -0.185\\ z = 1/4\\ Fe^{2+}(8d) y = 0.110\\ z = 0.010\\ Fe^{3+}(4c) y = 0.058\\ z = 1/4 \end{array}$	$\begin{array}{c} x = 0.366\\ \text{Si}_{I} (4c) y = 0.038\\ z = 1/4\\ x = 0.227\\ \text{Si}_{II}(4c) y = 0.319\\ z = 1/4\\ x = -0.033\\ 0_{I} (4c) y = 0.000\\ \dots z = 1/4 \end{array}$
он о он Fig. 1	Fig. 2		
Prope	rties		
HabitCleav.Fract.Twin.prismatic,distinctunevencolumnar,(010)unevenmassive(001) $\frac{\text{Refr. index}}{n_{\alpha} = 1.727}$ $(-)$ $n_{\beta} = 1.870$ $2V=20^{2}30^{\circ}$ $n_{\gamma} = 1.883$	Hardn. Dens. Colour Tran. 5.5-6 3.8-4.1 black, greyish- -black opaqu -black Luster Streak Melt.p. CP subme- black tallic	10	
Figures	Description		
 Fig. 1. Structural units of the ilvaite structure: Si207 group, OH and 0 atoms. Fig. 2. Polyhedral representation of the ilvaite structure (after Kostov, 1968). 	Ilvaite is a group structure formed by the packing of Si_2O , groups, OH and O atoms, with Ca Fe and Si in the interstices. has octahedral coordination, and Ca is [7] coordinated. Bival iron forms columns of octahedre parallel to the <u>c</u> axis.	, , Fe ent	
	Crystallographic data (contin	ued)	
	$ \begin{array}{c} x = 0.273 \\ 0_{II} (8d) y = 0.055 \\ z = 0.020 \\ x = 0.104 \\ 0_{III}(4c) y = 0.220 \\ z = 1/4 \\ x = 0.335 \end{array} $		
References	0_{IV} (8d) y = 0.336 z = 0.020		
Kostov (1968) 314. Wyckoff (1968) Vol. 4, 235. Roberts et al. (1974) 299.	$ \begin{array}{c} x = 0.087 \\ 0_{V} (4c) y = 0.410 \\ z = 1/4 \\ x = -0.026 \\ 0_{VI} (4c) y = -0.391 \\ z = 1/4 \\ x = -0.120 \\ 0_{VII} (4c) y = -0.213 \end{array} $		

	· · · · · · · · · · · · · · · · · · ·	
$ \frac{\text{IDOCRASE}}{(\text{Vesuvianite})} \\ \overset{[6/8]}{\text{Ca}_{10}} \overset{\text{o o t}}{(\text{Mg,Fe})_2^{\text{Al}_4^{\text{Si}_5}}} \begin{bmatrix} 0 \end{bmatrix} $	P4/nnc $\left _{20}\left[\text{ OH } \right]_{4} \left\{ g \right\} \left[\operatorname{Si}_{2}^{t} \operatorname{O}_{7} \right]_{2} \right]$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
 ○ ОН ○ ОН ○ О Fig. 1 	Fig. 2	z = 0.11
HabitCleav.Fract.Twinprismaticpoorsubcon- (100)choidalRefr.index/Reflect.Birefr. $n_{\omega} = 1.706$ (-) $n_{\epsilon} = 1.701$		E
Figures Fig. 1. Structural units of the idocrase structure: Si ^t ₂ O ₇ grou OH and 0 atoms. Fig. 2. Polyhedral representation of the idocrase structure (after Zoltai + Stout, 1984).	groups, OH and oxygen atoms, with Ca, Mg, Al and Si atoms in its in- terstices. 3/4 of the Ca atoms have 8 coordination while the rest of	Crystallographic data (continued)
	the Ca, and the Mg and Al atoms have 6 coordination.	$\begin{array}{c} x = 0.42 & x = 1/2 \\ Ca_{IV}(16k) y = 0.034 & Si_{I} & (4d) y = 0 \\ z = 0.13 & z = 1/4 \\ Mg & (8f) y = 1/4 & Si_{II}(16k) y = 0.44 \\ z = 1/4 & z = 0.125 \\ x = 0.36 & x = 0.16 \\ Al & (16k) y = 0.14 & Si_{III}(16k) y = 0.08 \\ z = 0.125 & z = 0.125 \end{array}$
	References Kostov (1968) 318. Wyckoff (1968) Vol. 4, 256-258. Zoltai+Stout (1984) 370,371.	$\begin{array}{c} x = 0.08 & x = 0.03 \\ 0_{I} & (16k) & y = 0.47 \\ z = 0.33 & V_{I} & (16k) & y = 0.12 \\ 0_{II} & (16k) & y = 0.41 \\ 0_{III} & (16k) & y = 0.41 \\ 0_{III} & z = 0.33 & V_{II} & (16k) & y = 0.07 \\ z = 0.03 & V_{II} & (16k) & y = 0.07 \\ z = 0.43 & v_{VII} & (16k) & y = 0.43 \\ x = 0.47 & x = 0.47 & x = 0.17 \\ 0_{III} & z = 0.18 & x = 0.18 \\ x = 0.18 & x = 0.18 \\ 0_{IV} & (16k) & y = 0.38 & 0_{IX} & (8h) & y = 0.09 \\ 0_{IV} & (16k) & y = 0.22 & 0_{IX} & (8h) & y = 0.09 \end{array}$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$ \frac{\text{HEMIMORPHITE}}{(\text{Calamine})} I \\ \text{Zn}_{4}^{t} \left[\left[H_{2}^{0} \right] \left[OH \right]_{2} \left\{ g \right\} \left[\text{Si}_{2}^{t} \right] \right] $	$\begin{bmatrix} mm2 & a = 8.37 & Zn \\ b = 10.719 & C \\ c = 5.120 & (H_20) \\ Z = 2 & (OH) \end{bmatrix}$	$\begin{array}{c} x = 0.204 \\ (8e) \ y = 0.160 \\ z = 0.000 \end{array} Si \ (4d) \ u = 0.148 \\ v = 0.558 \\ (4c) \ u = 0.558 \\ v = 0.952 \end{array} \begin{array}{c} 0_{II} \ (4d) \ u = 0.155 \\ v = 0.190 \\ (4c) \ u = 0.308 \\ v = 0.952 \end{array} \begin{array}{c} x = 0.160 \\ y = 0.205 \\ \dots \end{array} z = 0.637 \end{array}$
 № 0н № н₂0 Fig. 1 	H ₂ O H ₂ O T T T T T T T T T T T T T	
HabitCleav.Fract.Twin.tabular,perfectuneven,(001)striated,(110)subcon-massive(110)choidalRefr.index /Reflect.Birefr. $n_{\alpha} = 1.614$ (+) $n_{\beta} = 1.617$ 2V = 46° $n_{\gamma} = 1.636$	rties <u>Hardn. Dens. Colour Transp.</u> 4.5-5.0 3.4-3.5 white, colourless, <u>Luster Streak Melt.p. CPI</u> vitreous, unco- dull loured	Fig. 3
Figures Fig. 1. Structural units of the hemimorphite structure: Si ₂ O ₇ groups, H ₂ O and OH. Fig. 2. Hemimorphite structure (after Kostov, 1968). Fig. 3. Polyhedral description of the hemimorphite structure projec-	Description Hemimorphite is a group struc- ture formed by the packing of Si_20_7 groups, H_20 and 0H, with Zn atoms in tetrahedral voids. It has also been considered as a framework (McDonald + Cruischank, 1967) and a close-packed structure (Moore, 1993).	Fig. 4
<pre>ted along the <u>c</u> axis (after McDo- nald + Cruischank, 1967). Fig. 4. Polyhedral representation of the unit cell content of the hemimorphite structure (after Hermann et al., 1936, Vol. 2).</pre>	References Kostov (1968) 324, 325. Povarennykh (1972) 403, 659.	
	Wyckoff (1968) Vol. 4, 215-217. Hermann et al. (1937) 126. McDonald + Cruischank (1967) 180-191. Moore (1993) Roberts et al. (1974) 267, 268. Crystallographic data (continued)	

part		
TOURMALINE	$\alpha = 113^{\circ}56^{\circ}$	$\begin{array}{ccccc} x &= 0 & x &= 0.2206\\ \text{Na} & (3a) & y &= 0 & \text{B} & (9b) & y &= 0.1103\\ z &= 0.8576 & z &= 0.6362\\ x &= 0.0635 & x &= 0.1898\\ \text{Mg} & (9b) & y &= 0 & 1270 & \text{Si} (18c) & y &= 0 & 1027\\ \end{array}$
$\begin{bmatrix} [6+3] & \circ \\ Na & Mg_3 & Al_6 & (OH)_4 \end{bmatrix} \begin{bmatrix} g \end{bmatrix} \begin{bmatrix} tr \\ B & 0 \\ 3 \end{bmatrix}$	$ \begin{cases} g \\ 3 \end{cases} \begin{bmatrix} si_6 & 0 \\ 0 & 18 \end{bmatrix} = \begin{bmatrix} a_H & = & 15.951 \\ c & = & 7.24 \\ z_H & = & 3 \end{bmatrix} $	$ \begin{array}{ccccccc} x &= & 0.0635 & & x &= & 0.1898 \\ \text{Mg} & (9b) & y &= & 0.1270 & \text{Si}(18c) & y &= & 0.1922 \\ z &= & 0.4618 & & z &= & 0.0900 \\ x &= & 0.2615 & & x &= & 0 \\ \text{Al(18c)} & y &= & 0.2976 & 0_{\text{I}} & (3a) & y &= & 0 \\ z &= & 0.4762 & \dots & z &= & 0.3117 \\ \end{array} $
real ideal Fig. 1	Fig. 2	Fig. 3
Prope	rties	TO DEFINE THE OF $\tilde{\mathbf{A}}_{1}^{T}, \tilde{\mathbf{A}}_{2}^{T}, \cdots, \left\{ \mathbf{c}_{1}^{T} \tilde{\mathbf{b}}_{1}^{T}, \tilde{\mathbf{b}}_{2}^{T} = \left\{ \tilde{\mathbf{b}}_{1}^{T}, T$
(101) choidal <u>Refr. index/Reflect.</u> Birefr.	Hardn. Dens. Colour Transp 7-7.5 3.02 brown, transl yellow cent Luster Streak Melt.p. CPI resinous white (SPI) 56	0 4 8 0 0 4
Figures	Description	TOURNALLER
Fig. 1. Structural units of the tourmaline structure: Si_{6018}^{to} and $\mathrm{B}^{tr}\mathrm{O}_3$ groups (adapted from Kostov, 1968). Fig. 2. Electron density map of the tourmaline structure projected on (0001) (after Buerger et al., 1962).	The tourmaline structure is group structure formed by the p king of $Si_6^t O_{18}$ and $B^{tr}O_3$ groups with Mg,Al and Na atoms and OH the interstices.	ac-
 Fig. 3. Two aspects of the tourma- line structure (after Randohr+ +Strunz, 1980). Fig. 4. Condensed model of the sym- metrical analogue of the tourma- line structure. The large open circles represent oxygen atoms, the dashed large circles OH, the 	References Kostov (1968) 319-322. Povarennykh (1972) 377. Wyckoff (1968) Vol. 4, 281-283 Donnay et al. (1963) 645. Randohr + Strunz (1980) 709. Zoltai + Stout (1984) 354. Buerger et al. (1962) 587.	
medium circles represent Al (black) and Mg (dashed), the smaller circles correspond to Si (black) and the still smaller to B atoms (black).	Crystallographic data (continued) x = 0.1218 x =0.16 0 _{II} (9b) y = 0.0609 0 _{VI} (18c) y =0.11 z = 0.6113 z =0.31 x = 0.1340 x =0.22 0 _{III} (9b) y = 0.2680 0 _{VIII} (18c) y =0.22 z = 0.5755 z =0.00 x = 0.1870 x =0.22 z = 0.0176 z =0.64 0 _V (9b) y = 0.1812	366 0

$\begin{array}{c} \underline{\text{AXINITE}} & \underline{\text{pi}} & \underline{\text{ca}}_{1} (2i) \mathbf{y} = 0.3856 & \underline{\text{AI}}_{1} (2i) \mathbf{y} = 0.3856 \\ \mathbf{ca}_{2} (2i) \mathbf{y} = 0.3856 & \underline{\text{AI}}_{1} (2i) \mathbf{y} = 0.3856 \\ \mathbf{ca}_{3} (2i) \mathbf{y} = 0.3831 \\ \mathbf{ca}_{3} = 0.0337 & \underline{\text{AI}}_{1} (2i) \mathbf{y} = 0.0337 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.0337 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3876 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.0337 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3876 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.0337 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3876 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.0337 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3876 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.0337 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.3906 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.3906 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{ca}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.3976 & \underline{\text{Ca}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.3976 & \underline{\text{Ca}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.3976 & \underline{\text{Ca}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.1120 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.1120 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.1120 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.1120 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.1120 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 \\ \mathbf{z} = 0.3966 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} \\ \mathbf{z} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} \\ \mathbf{z} = 0.3976 & \underline{\text{AI}}_{11} (2i) \mathbf{y} \\ $	
$\begin{bmatrix} C_{a}^{a} P (Fe, Mn) \\ 2 \\ A \\ A \\ C \\ A \\ A \\ C \\ A \\ A \\ C \\ A \\ A$	= 0.2543 = 0.3520
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= 0.4212 = 0.0023
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A A
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Fig. 1. Structural unit of the axi- nite structure: $B_2^t S_1^t S_0^{0} g$ group (after Takeuchi et al., 1974).The axinite structure is a group structure formed by the packing of $B_2^t S_1^t S_0^{0} g$ groups, with Al, Fe and Ca in the interstices. The Ca atoms have trigonal anti-prismatic 	
rig. 1. Schutchial units of the axial matrix of the axial structure $B_2^{L} Si_8^{L} 0_{30}$ group (after Takeuchi et al., 1974). Fig. 2. Projection of the axial structure of axial (after Takeuchi et al., 1974). Fig. 3. Crystal structure of axial (after Takeuchi et al., 1974). Fig. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 6. 4. Polyhedra (around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 7. Polyhedra (around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 7. Polyhedra (around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 7. Polyhedra (around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 7. Polyhedra (around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 7. Polyhedra (around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 7. Polyhedra (around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 7. Polyhedra (around Al, Fe and Ca in the axial structure (after Takeuchi et al., 1974). Fig. 7. Polyhedra (around Al, Fe and	ntinued)
$0_{II} (2i) y = 0.3386 0_{XII} (2i) y$ z = 0.0982 $XII z$ x = 0.4202 x	$\begin{array}{rcrr} z &= 0.4956\\ x &= 0.5371\\ y &= 0.3433\\ z &= 0.8753\\ x &= 0.8753\\ x &= 0.8753\\ x &= 0.7693\\ x &= 0.7693\\ x &= 0.7693\\ x &= 0.1345\\ z &= 0.0365\\ z &= 0.1345\\ z &= 0.0863\\ x &= 0.4355\\ y &= 0.9817\\ z &= 0.2444\\ x &= 0.7204\\ \end{array}$
References 0 UIII (21) y = 0.4864 0 UIII (21) y = 0.4864 0 UIII (21) y = 0.3135 z = 0.3135 <td>z = 0.0998 z = 0.3842</td>	z = 0.0998 z = 0.3842
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	z = 0.1783 x = 0.3256 y = 0.7464 z = 0.3545 x = 0.0968

8.4.3. Chain structures

		······
$\frac{\text{TELLURIUM}}{\infty} P3_{2}21$	a = 4.44693X c = 5.91492X Z = 3	
Fig. 1	(b) Fig. 2	Fig. 3
Proper <u>Habit</u> <u>Cleav.</u> <u>Fract.</u> <u>Twin.</u> prismatic, perfect acicular, (10I0) <u>Refr. index/Reflect.</u> <u>Birefr.</u> 63%	Hardn. Dens. Colour Transp. 2-2.25 6.1- tin- opaque -6.3 -white Luster Streak Melt.p. CPI metallic grey 450°C	
Figures Fig. 1. Representation of the chain	Description The tellurium structure is for-	
of the selenium structure, which is isotypic with tellurium struc- ture, and corresponding covalent bonding scheme (adapted from Grigo- riev, 1964).	med by spiral chains of tellurium atoms.	
Fig. 2. (a) Packing drawing of the tellurium structure, and (b) basal projection of the unit cell con- tent (after Wyckoff, 1963, Vol. 1).		
Fig. 3. Tellurium structure (after Povarennykh, 1972).		
	Paforessa	
	References Kostov (1968) 98. Povarennykh (1972) 196. Wyckoff (1963) Vol. 1, 36-38. Palache et al. (1944) Vol. 1, 138. Ingerson (1955) 350.	

$\frac{\text{CINNABAR}}{\infty} \qquad \begin{array}{c} P_{3} \\ P_{3} \\ 1 \\ m \end{array} \\ \begin{bmatrix} Hg^{\circ} \\ S \end{bmatrix}^{I_{by}^{13}} \end{array}$	c = 9.495 Å	a = 0.720 a = 0.485
rhombo- perfect subcon- (0001) 2 hedral, (1010) choidal, tabular uneven	(b) Hardn. Dens. Colour Transp. 2-2.5 8.090 cochineal- transparent -red, to opaque brownish Luster Streak Melt.p. CPI	ClerABAS
	adaman- scarlet 580°C tine (sublimes) 	
 Fig. 1. Spiral chain of the cinnabar structure. Fig. 2. (a) Packing drawing of the cinnabar structure (the indicated positions are along the <u>c</u> axis) and (b) unit cell content projected along the <u>c</u> axis (adapted from Wyckoff, 1963, Vol. 1). Fig. 3. Cinnabar structure showing the S-Hg-S-Hg- chains (after Povarennykh, 1972). Fig. 4. Condensed model of the packing analogue of the cinnabar structure, which is based on a Tv packing of S (large open circles) with Hg (small black circles) in distorted octahedral voids. Compare with Fig. 2 (b). 	The cinnabar structure is build of Hg S chains, which can be de- rived from a Tv packing of S with Hg in octahedral voids.	Fig. 4

$\frac{\text{CALOMEL}}{\infty} \qquad \begin{array}{c} \text{I4/mm.} \\ \text{I4/mm.} \\ \text{I6} \\ \text{Hg} \\ \text{C1} \end{array}$	c =10.91 Å	Hg(4e) u = 0.116 Cl(4e) u = 0.347	
	(b)	Fig. 3	
	g. 2	· -g. J	}₀∲₀∲₀∲∘∳∘∳∘∳∘∳∘∳∘∳ ∘∳
Pr <u>Habit Cleav. Fract. Twin.</u> tabular, good conchoi- (112) prismatic,	operties <u>Hardn.</u> Dens. 1.57.15	<u>Colour</u> <u>Transp.</u> colourless, white, transparent	
pyramidal (110) dal <u>Refr. index/Reflect.</u> <u>Birefr.</u> $n_{\omega} = 1.973$ (+) $n_{\epsilon} = 2.656$	Luster Streak adaman- yellowish tine	yellowish grey <u>Melt.p.</u> <u>CPI</u> 302 ⁰ C (SPI) 62	
Figures	Descr	iption	
Fig. 1. Structural unit of the calomel structure: the -C1-Hg-Hg-C1- chain.			
Fig. 2. (a) Packing drawing of the calomel structure, and (b) unit cell content projected along the <u>a</u> axis (adapted from Wyckoff, 1963, Vol. 1).	atoms in 5th coord	lination voids.	
Fig. 3. Representation of the calomel structure showing the HgCl chains (after Povarennykh, 1972).			
Fig. 4. Condensed model of the packing analogue of the calo- mel structure. The packing is (2Qs)f, with Hg in square voids, but fifth coordination.			
volug, sub riton coordination,	Refere	ences	<u>૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ</u>
	Kostov (1968) 204 Povarennykh (1972) Wyckoff (1963) Vol Palache et al. (19 Zoltai + Stout (19	. 1, 151,152. 51) Vol. 2, 25-27.	
			Fig. 4

$ \underline{\begin{array}{c} \underline{\text{ENSTATITE}} \\ Mg & Mg \\ \end{array}} \begin{array}{c} 1 \\ Mg & \infty \\ \end{array} \begin{bmatrix} \text{Si}_{2}^{t} & 0_{6} \end{bmatrix} $	$ \int_{a}^{a = 18.3} \int_{b = 8.9}^{a = 18.3} \int_{c = 5.2}^{b = 8.9} \int_{z = 8}^{c = 5.2} \int_{z = 8}^{c = 5.2} \int_{z = 8}^{z = 8} \int_{z = 8}^{z = $	27% x = 0.12155 x = 0.0167	$ \begin{array}{cccc} x &= 0.22879 \\ si_{II}(8c) & y &= -0.1593 \\ z &= 0.0512 \\ & x &= 0.06210 \\ 0_{I} & (8c) & y &= 0.1643 \\ z &= 0.2069 \\ & x &= 0.06555 \\ 0_{II} & (8c) & y &= 0.5163 \\ & \dots & z &= 0.2034 \end{array} $
symmetrical analogue Fig. 1	Fig. 2 Properties	olour Transp.	ESSTATITE 9 (top sheet) ESSTATITE 9 (top sheet) ESSTATITE 9 (top sheet) ESSTATITE 9 (top sheet) ESSTATITE 1 (top sheet) 1 (
		olour <u>Transp.</u> grey, translucent green ielt.p. <u>CPI</u> (SPI) 66	
Fig. 1. Polyhedral represen- tation of the symmetrical analogue of the $\operatorname{Si}^{t}O_{3}$ pyro- xene infinite chain. Fig. 2. Polyhedral descrip- tion of the enstatite structure (after Zoltai + Stout, 1984). Fig. 3. Condensed model of the symmetrical analogue of the enstatite structure. The large open circles re- present oxygen atoms, the small black circles Si atoms in tetrahedral voids and the medium cir- cles Mg atoms, Mg ^o (black) and Mg ^[6] (grey).	Enstatite is a chain structure, a pyroxene, based on the packing of Si ^t O ₃ infinite chains, with interstitial Mg atoms in [6] and octahedral coordination. The layers of chains are of the same type as diopside, but are packed in a different way: chx. Protoenstatite is an artificial mate- rial, which corresponds to a polytype of ensta- tite, with formula Mg $[8]$ Mg o1 $[Si_2^{v0}6]$ ^{I1}hx . Crystallogr. data (continued)	SASTATITE SASTATITE	7
References Kostov (1968) 331, 332. Povarennykh (1972) 408. Wyckoff (1968) Vol. 4. 301-303. Zoltai + Stout (1984) 335, 336.	x = 0.05347 $y = -0.2023$ $z = 0.0928$ $x = 0.18402$ $y = 0.3375$ $z = 0.0444$ $x = 0.18948$ $y = 0.0009$ $z = 0.0524$ $x = 0.19764$ $y = 0.3376$ $y = 0.0324$	Fig. 3	ASTATIC ASTATI

L				· · · · · · · · · · · · · · · · · · ·
TREMOLITE	2/m	a = 9.80% b = 17.74\%	z = 1/2	$ \begin{array}{c} x = 0 \\ y = 0.28 \\ z = 1/2 \end{array} $
$Ca_2^{[8]}Mg_5^o$ (OH,F) 2^∞ Si ^t ₈	$\begin{bmatrix} 11\\ 0_{22} \end{bmatrix}^{2-11cx}$	$\beta = 106^{\circ} 2'$	z = 0 $x = 0$	
		N	$g_{II}^{(2a)} y = 0.00$ $S_{II}^{(2a)} z = 0$	$\begin{array}{r} (8j) \ y = 0.18 \\ z = 0.51 \end{array}$
symmetrical 2-II ¹¹ close-packet analogue Fig. 1			Fig. 2	
	antico			,
HabitCleav.Fract.Twin.prismatic,perfectuneven(100),fibrous(110)(001)Refr. index/Reflect.Birefr. $n_{\alpha} = 1.608$ (-) $n_{\beta} = 1.618$ (-) $n_{\gamma} = 1.630$ 2V = 85°	5-6 3.0-3.3	Colour Trans white, transp green to tran lucent Melt.p. CPI (SPI 64	arent 18- 	4
Population	Descri	ption		
$ \begin{array}{c} \text{Actinolite} & \stackrel{11}{\underset{(\text{Ca,Mg})_{2}^{\text{B}}}{\overset{[0]}{2}} (\text{Mg,Fe})_{5}^{\text{o}} (\text{OH})_{2}^{1} \infty \begin{bmatrix} \text{sit}_{8}^{\text{t}} \text{O}_{22} \end{bmatrix}^{2-116\overline{x}} \\ \text{Tschermakite} & \stackrel{11}{\underset{(\text{Ca}_{2}^{\text{B}})(\text{Mg,Fe})_{3}^{\text{o}}(\text{Al},\text{Fe})_{2}^{\text{o}}(\text{OH})_{2}} \frac{1}{\infty} \begin{bmatrix} \text{sit}_{6}^{\text{t}} \text{Al}_{2}^{\text{t}} \text{O}_{22} \end{bmatrix}^{2-116\overline{x}} \\ \text{Glaucophane} & \stackrel{11}{\underset{(\text{Mg}_{2}^{\text{B}})(\text{Mg,Fe})_{3}^{\text{o}}(\text{Al},\text{Fe})_{2}^{\text{o}}(\text{OH})_{2}} \frac{1}{\infty} \begin{bmatrix} \text{sit}_{8}^{\text{t}} \text{O}_{22} \end{bmatrix}^{2-116\overline{x}} \\ \frac{11}{3} \end{bmatrix} $	Tremolite is a amphibole, based o $\operatorname{Si}_{4}^{t}\operatorname{O}_{11}$ infinite ch titial Ca and Mg a tahedral coordinat The amphibole chai which are packed w	n the packing o ains, with inte toms in [8] and o ion respectivel; ns form layers	f rs- 7.	
Na2(mg, re)3(A1, re)2(01)2 @ [318022]	Refer	ences		
Figures Fig. 1. Representations of the $\operatorname{Si}_{4}^{t}\operatorname{O}_{11}$ amphibole chain: two dra- wings of the symmetrical analo- gue and one corresponding to the close-packed analogue (after Kostov, 1968). The real chain is intermediate between these two	Kostov (1968) 330, Povarennykh (1972) Wyckoff (1968) Vol Zoltai + Stout (19 Ernst (1968) 5.	415, 416, 425. • 4, 304-306.		
extreme cases. Fig. 2. Representation of the pac- king of the Si ^t O ₁₁ infinite chains: (a) parallel to the		(0H)(4i) y = (z = (
chains: (a) parallel to the chains, and (b) in cross section.	x = 0.36 0 _V (8j) $y = 0.11$	$x = 0$ $0_{I} (8j) y = 0$.08	
Fig. 3. Packing drawing of the tremo- lite structure (after Ernst, 1968). Fig. 4. Structural interpretation of the cleavage of tremolite.	z = 0.25 x = 0.36 $v_{I}(8j) y = 0.00$ z = -0.10	z = 0 x = 0 0_{II} (8j) $y = 0$ z = 0 x = 0	.10 .14 .18 .60 .36	
		$0_{III}(8j) y = 0$ $z = 0$.25	

		$\mathbf{x} = 0 \qquad \mathbf{x} = 0$
HORNBLENDE	C2/m $a = 9b = 18$	a.9
$Na^{[10]}ca^{[8]}_{a} Mg^{\circ}(OH,F) \infty$	$\begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 0 \\ 2 & 2 \end{bmatrix} = \begin{bmatrix} 2 - 1 & 1 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 0 \end{bmatrix} \begin{bmatrix} 2 - 1 & 1 & 0 \\ 2 & 2 & 0 \\ 2 & 2 & 0 \end{bmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$Mg_{I}(4h) y = 0.090 (0H,F)(4i) y = 0$ z = 1/2 z = 0.60
Symmetrical analogue	Al)O ₆ C)O ₆ or O ₈ • (OH)	
Fig. 1	Fig. 2	NORMELENDE ▶)() → →)(•)(•)(•)(→
Pro	perties	
HabitCleav.Fract.Twin.prismaticperfectuneven(100)(110)	Hardn.Dens.ColourTransp.5-63.0-3.5green,translucentblack	
Refr. index /Reflect. Birefr.	Luster Streak Melt.p. CPI	
$n_{\alpha} = 1.65$ (-) $n_{\beta} = 1.66$ $n_{\gamma} = 1.67$ $2V = 50^{\circ}80^{\circ}$	vitreous white (SPI) 65	
Population	large hatched circles OH, the small	
$\frac{\operatorname{Arfvedsonite}}{\operatorname{Na}^{[1]}_{a}\operatorname{Ra}^{2}_{2}\operatorname{re}^{5}_{5}(\operatorname{OH})_{2} \overset{1}{\infty} \left[\operatorname{Si}^{t}_{8}\operatorname{O}_{22}\right]^{2-\operatorname{II}}_{CX}^{11}$	black circles Si atoms in tetrahe- dral voids, the medium circles Ca (grey) and Mg (black) atoms in [8] and	
Kaersutite Na ^[10] $c_{a_2}^{[3]}(Mg,Fe)_4^{\circ}$ Ti [°] (OH) ₂ $\overset{1}{\infty} \left[si_8^t o_{22} \right]^{2-11} \overset{11}{cx}$	[6] coordination respectively. The Na atoms (line crossed) have [10] coordination	
Eckermannite	Description	- 3000880
$Na_{2}^{[1]}Na_{2}^{[8]}Na_{2}^{\circ}Ma_{2}^{\circ}A1^{\circ}Fe^{\circ}(OH)_{2} \overset{1}{\infty} \left[\operatorname{Si}_{8}^{t}O_{22}\right]^{2-\mathrm{II}} \overset{11}{\mathrm{cx}}$	Hornblende is an amphibole, which	3000880
Pargasite Na ^[1] C_{d_2} (Mg,Fe) ^O ₅ (OH) ¹ ₂ $\infty \left[si_7^{tAl} c_{22} \right]^{2-II} c_{xx}^{11}$	is a chain structure based on the packing of $\operatorname{Si}_{4}^{0}_{11}$ infinite chains. Hornblende can be considered as a	
$\begin{array}{c} \text{K\"ozulite} \\ \text{N}_{a}^{10} \text{N}_{a}^{10} \text{m}_{4}^{0} \text{(Al,Fe)}^{0} \text{(OH)}_{2} \overset{1}{\infty} \left[\text{Si}_{8}^{10} \text{G}_{22} \right]^{2 - \text{II}_{CX}^{11}} \end{array}$	interstitial derivative of tremolite, with Na occupying voids of [10] coor-	
Figures	dination.	30002560
Fig. 1. Polyhedral drawing of the	Crystallographic data (continued)	
Si ^t 0 ₁₁ amphibole chain (symme- trical analogue).	$\begin{array}{c} x = 0.279 \\ Si_{I} (8j) y = 0.087 \\ z = 0.06 \\ \end{array} \begin{array}{c} x = 0.279 \\ OIII (8j) y = 0.251 \\ z = 0.43 \end{array}$	
Fig. 2. Polyhedral representation of the hornblende structure	$\begin{array}{c} \text{Si}_{I} \ (0j) \ y = 0.06 \\ z = 0.06 \\ \text{Si}_{II} \ (0j) \ y = 0.172 \ \text{Si}_{II} \ ($	·
(after Zoltai + Stout, 1984). Fig. 3. Condensed model of the	z = 0.30 z = 0.77	Fig. 3 References
symmetrical analogue of horn-	$\begin{array}{ccccc} \mathbf{x} = 0.098 & \mathbf{x} = 0.337 \\ 0_{\mathbf{I}} & (8\mathbf{j}) & \mathbf{y} = 0.093 & 0_{\mathbf{V}} & (8\mathbf{j}) & \mathbf{y} = 0.115 \\ \mathbf{z} = 0.11 & \mathbf{z} = 0.31 \end{array}$	Kostov (1968) 345,346.
blende. The large open circles represent oxygen atoms, the	$\begin{array}{c} x = 0.115 & x = 0.338 \\ 0_{II} & (8j) & y = 0.177 & 0_{VI} & (4i) & y = 0 \\ z = 0.60 & z = 0.00 \end{array}$	Povarennykh (1972) 416, 425, 426. Wyckoff (1968) Vol. 4, 306-310. Zoltai + Stout (1984) 343, 345.
	L	

		0.12	
ANTHOPHYLLITE	Pnma a = 18.568		$Mg_{III}^{o}(4c) y = 1/4 z = -0.13$
-	$\frac{11}{c} = \frac{5.288}{c}$		$ \begin{array}{c} x = 0.06 \\ (0H)_{1}(4c) \ y = 1/4 \\ z = 0.20 \end{array} $
$\operatorname{Mg}_{2}^{[8]}\operatorname{Mg}_{5}^{o}$ (OH,F) $\frac{1}{2}\infty$ Since Sin_{2}	$\begin{bmatrix} t \\ 8 \end{bmatrix}^{2-11 \text{ cm} x} = 4$	$Mg_{II}^{O} (8d) \begin{array}{c} x = 0.13 \\ y = -0.02 \\ z = 0.37 \end{array}$	$ \begin{array}{c} x = 0.19 \\ (0H)_{11}(4c) \ y = 1/4 \\ \dots \ z = -0.45 \end{array} $
symmetrical analogue	SiO ₁ (Mg,Fe)O ₄ (Mg,Fe)O ₄ (Mg,Fe)O ₄ (OH)		
Fig. 1	Fig. 2 Properties		**************************************
HabitCleav.Fract.Twin.prismatic,perfectunevenfibrous(210)Refr.index/Reflect.Birefr. $n_{\alpha} = 1.60$ (-) $n_{\beta} = 1.62$ $n_{\gamma} = 1.63$ $n_{\gamma} = 1.63$ $2V = 65^{0}-90^{0}$	Hardn. Dens. Colour Transp. 5.5-6 2.9-3.2 grey, transparent brown to trans- lucent lucent Lucent vitreous white (SPI) 60 60		
	P		
Figures	Description		
Fig. 1. Polyhedral drawing of the $\operatorname{Si}_{4}^{t}O_{11}$ amphibole chain (symmetrical analogue).	Anthophyllite is an amphi- bole which is a chain structu- re based on the packing of $\operatorname{Si}_{4}^{t_0}$ infinite chains. Mg		
Fig. 2. Polyhedral representa- tion of the anthophyllite structure (after Zoltai + Stout, 1984). Fig. 3. Condensed model of the symmetrical analogue of an-	atoms occupy the interstices, with $[8]$ and octahedral coordi- nation. The amphibole chains form layers which are packed in a \overline{chx} sequence.		
thophyllite. The large open	(Crystallographic data (continued)	3 (•))~(•))~(•))~(•))~;	
circles represent oxygen atoms, the large hatched circles OH, the small black circles Si atoms in tetrahe-	$\begin{array}{c} x = 0.03 \\ \text{Si}_{I} (8d) & y = -0.18 \\ z = 0.29 \\ x = 0.03 \\ \text{O}_{V} (8d) & y = -0.13 \\ z = 0.05 \\ \text{Si}_{V} = -0.13 \\ \text{Si}_{V} = -0.13 \end{array}$		
dral voids, and the medium circles Mg atoms with $\begin{bmatrix} 8 \end{bmatrix}$ (grey)	$\begin{array}{c} \text{Si}_{II}(8d) \ y = -0.08 \\ z = -0.21 \\ x = 0.22 \\ z = 0.19 \\ \end{array} \begin{array}{c} \text{vi}_{z} = -0.46 \\ \text{vi}_{z} = 0.19 \\ \text{vi}_{z} = 0.19 \\ \end{array}$		
and octahedral (black) coordina- tions.	$\begin{array}{c} \text{Si}_{111} & (8d) \ y = -0.08 \\ \text{III} & z = 0.04 \\ \end{array} \begin{array}{c} \text{VII} \ (5d) \ y = 0.18 \\ z = 0.05 \\ \text{X} = 0.19 \\ \end{array}$	XR Rath	
	Si _{IV} (8d) $y = -0.18$ VIII (6d) $y = 0.03$ z = -0.46 $z = -0.44$	where the second	
References	$\begin{array}{c} 0 \\ I \\ z = 0.20 \end{array} \begin{array}{c} 0 \\ 0 \\ I \\ z = 0.20 \end{array} \begin{array}{c} 0 \\ 0 \\ I \\ z = 0.05 \end{array} \begin{array}{c} 0 \\ 0 \\ I \\ z = 0.05 \end{array}$	3000880	
Kostov (1968) 340-342, 330.	$\begin{array}{c} x = 0.06 & x = -0.19 \\ 0_{II} & (8d) & y = 0.18 & 0_{X} & (4c) & y = 1/4 \\ z = -0.30 & z = -0.45 \end{array}$	3000880	
Povarennykh (1972) 414. Wyckoff (1968) Vol. 4, 310-	$\begin{array}{c} x = -0.06 & x = 0.20 \\ 0_{III}(4c) y = 1/4 & 0_{XI} (8d) y = -0.13 \\ z = -0.20 & z = 0.30 \end{array}$	KOMORRO	
-312. Zoltai + Stout (1984) 341, 342.	$\begin{array}{c} x = 0.60 & x = 0.20 \\ 0_{\rm IV} & (8d) & y = 0.00 \\ z = -0.30 & 0_{\rm XII} & (8d) & y = -0.13 \\ z = -0.20 \end{array}$	Fig. 3	

LASTONITE	ЪĴ

$\frac{\text{PECTOLITE}}{\text{Na}^{[8]}\text{Ca}_2^{\circ}} \sum_{\infty}^{1} \left[\text{Si}_3^{\circ}\right]_{3}^{\circ}$	РІ (ОН)] ^{III61} by	b = 7.04X c = 7.02X	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c} \gamma = 102^{\circ} 28 \\ Z = 2 \end{array} \begin{array}{c} Ca_{II} \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
symmetrical analogue Fig. 1	Fig. 2		
	Properties		A A
perfect	vin. Hardn. Dens. .00) 4.5-5 2.9 Luster Streak	Colour Transp. white translucen Melt.p. CPI	
$n_{\alpha} = 1.59 \qquad (+)$			1 29 0a 1 0
$n_{\beta} = 1.61$	silky white	(SPI) 63	and and o the
$n_{\gamma} = 1.63$ $2V = 35^{2}63^{\circ}$		- 👻	- all
Figures	Descr	iption	
 Fig. 1. Polyhedral drawings of the Si^{t0}₃ pyroxenoide infi- nite chain: symmetrical ana- logue and real chain. Fig. 2. Projection of a por- tion of an octahedral layer of pectolite structure onto (101). The circles represent Na ions and the octahedra contain Ca (after Prewitt, 1967). Fig. 3. Projections along the 	Pectolite is a py infinite chains Si ^t O chemical composition chains but different pectolite structure formed by the packin tetrahedral chains a and Ca with coordina respectively.	3 with a similar of the pyroxene geometry. In the the interstices g of the infinite re occupied by Na	Fig. 3
y axis of the structures of			
pectolite (a), and of wol-	Crystallographi	c data (continued)	
lastonite (b) (after Pre- witt + Buerger, 1963).	$ \begin{array}{c} x = 0.652 \\ 0_{I} (2i) y = 0.788 \\ z = 0.125 \end{array} $	0_{VI} (2i) y = 0.8 z = 0.1	96
	$ \begin{array}{rcl} x &= 0.322\\ 0 \\ 1 \\ 1 \\ z &= -0.057\\ \end{array} $	$0_{\rm WTT}$ (2i) y = 0.5	33
	x =0.185 0 _{III} (2i) y = 0.496 z = 0.538	z = 0.2	06 Wyckoff (1968) Vol. 4, 316,317.
	0_{IV} (2i) $\begin{array}{c} x = 0.171\\ y = 0.839\\ z = 0.541 \end{array}$	z = 0.3	60 82 Prewitt (1967) 307. 81 Prewitt + Buerger (1963) 293-
	$\begin{array}{c} x = 0.070\\ 0_{V} (2i) \ y = 0.393\\ z = 0.171 \end{array}$		-302.

$\frac{\text{XONOTLITE}}{\text{Ca}_{4}^{\text{p}} \text{Ca}_{2}^{\text{o}} (\text{OH})_{2} \overset{1}{\infty} \left[\text{Si}_{6}^{\text{t}} \text{Ca}_{6}^{\text{t}}\right]$	$\begin{array}{c} 61 \\ 2-IIIs \\ 2 - IIIs \\ 2 - 7.048 \end{array} \qquad Ca_{II}^{0}(2e)$	$ \begin{array}{c} x = 0.069 \\ u = 0.375 \\ u = 0.875 \\ x = 0.069 \\ y = 0.125 \\ z = 0.160 \\ y = 0.125 \\ z = 0.160 \\ y = 0.125 \\ z = 0.223 \\ y = 0.170 \\ y = 0.170 \\ y = 0.271 \\ x = 0.271 \\ \end{array} $
Symmetrical analogue Habit Cleav. Fract. Twin. acicular, good	$\frac{a}{b}$ Fig. 2 Fig. 2 $\frac{\text{Hardn.}}{6}$ Dens. Colour Transp. white, transparent colourless	
massive <u>Refr. index/Reflect.</u> <u>Birefr.</u> $n_{\alpha} = 1.583$ (+) $n_{\beta} = 1.583$ $n_{\gamma} = 1.593$	colouriess Luster Streak Melt.p. CPI greasy, pearly	
Figures Fig. 1. Polyhedral drawing of the Si ^t ₆ 0 ₁₇ xonotlite infinite chain: symmetrical analogue and real chain (after Kostov, 1968, and Eitel, 1964). Fig. 2. Two projections of the structure of xonotlite (after Belov + Mamedov, quoted by Kostov, 1968).	Description The xonotlite structure is based on the packing of $Si_{6}^{t}O_{17}$ double infinite chains, which can be ima- gined derived from the condensation of two wollastonite chains. Ca atoms are located in the intersti- ces, some with octahedral and others with trigonal prismatic coordination. Crystallographic data (continued) x = 0.392 Si_{II} (4g) y = 0.580 z = 0.271 x = 0.158 Si_{III} (4g) y = 0.875 z = 0.443 O_T (2f) u = 0.875	
References Kostov (1968) 330, 349. Povarennykh (1972) 417. Wyckoff (1968) Vol. 4, 337-339. Eitel (1964) 97.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

[x = 0.8819
RHODONITE	ΡĪ	a = 7.68168 b =11.81808 c = 6.70738	$(Mn,Ca)_{I}^{\circ}$ (2i) y = 0.8517 z = 0.9697
$(Mn,Ca)^{[7]}(Mn,Ca)^{\circ}_{4} \overset{1}{\infty} $ [Si	$\begin{bmatrix} t & & \\ 5 & 0 \\ & 5 \end{bmatrix} \begin{bmatrix} 11 \\ V & my \end{bmatrix}$	$\alpha = 92.355^{\circ}$ $\beta = 93.948^{\circ}$ $\gamma = 105.665^{\circ}$ Z = 2	$ \begin{pmatrix} Mn, Ca \end{pmatrix}_{II}^{O} & x = 0.6827 \\ y = 0.5548 \\ z = 0.8748 \\ x = 0.4916 \\ (Mn, Ca)_{III}^{O} & y = 0.2700 \\ z = 0.8109 \\ \end{pmatrix} $
symmetrical real Fig. 1			
Prope	rties		
Habit Cleav. Fract. Twin.	Hardn. Dens.	Colour Transp.	
tabular, perfect conchoi- rare massive (110) dal (010)	5.5-6 3.5-3.7	pink, transparent red to translu-	Crystallographic data (continued) x = 0.3018
$\frac{\text{Refr. index}/\text{Reflect.}}{n_{\alpha} = 1.717} \qquad (+)$	Luster Streak	Melt.p. CPI	$(M_n,Ca)^{O}_{IV}$ (2i) $y = 0.9767$ z = 0.7967
$n_{\beta} = 1.720$ $n_{\gamma} = 1.730$ $2V = 63^{\circ}76^{\circ}$	vitreous white	2197 ⁰ C (SPI) 63	(Mn,Ca) $\begin{bmatrix} 7 \\ (2i) \\ z \\ z \\ = 0.6389 \end{bmatrix}$ $\begin{bmatrix} x & = 0.0457 \\ y & = 0.6938 \\ z & = 0.6389 \end{bmatrix}$
Figures	Desc	cription	$ \begin{array}{c} x = 0.2191 & x = 0.1970 \\ Si_{I} (2i) y = 0.1246 & 0_{VI} (2i) y = 0.1318 \\ \end{array} $
 Fig. 1. Polyhedral representation of the Si^tO₃ rhodonite infinite chain: symmetrical analogue and real chain (after Kostov, 1968, and Povarennykh, 1972). Fig. 2. Rhodonite chain adjustment to the calcium octahedra (after Belov, 1963). 	packing of Si ^t O Some of the Ca	e is based on the 3 infinite chains. atoms have seven nd others octahedral	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Ref	erences	z = 0.5074 $z = 0.7006x = 0.5485$ $x = 0.8607$
	Kostov (1968)3 Povarennykh (1 Wyckoff (1968) Zoltai + Stout Ingerson (1955 Belov (1963)1	972) 152. Vol. 4, 319, 320. (1984) 348.) 352.	0_V (2i) y = 0.0975 0_{XV} (2i) y = 0.2221 z = 0.8053 XV z = 0.7024

SILLIMANITE P b	nm	a=7.4856 Å	_	(4a)		0 ₁ (40	$\begin{array}{c} x = -0.3599 \\ y = -0.4078 \\ z = 1/4 \end{array}$
$\left Al^{\circ} \overset{1}{\infty} \left[Si^{\dagger} Al^{\dagger} 0_{5} \right]^{2} \right ^{2}$	¹¹ by	b=7.6738 X c=5.7698 X Z=4	$A1_{II}^{t}$ si		x=0.1419y=0.3447z=1/4x=-0.1535y=-0.3404		$ \begin{array}{c} x=0.3576 \\ y=0.4352 \\ z=1/4 \\ x=-0.4753 \\ y=0.0008 \end{array} $
					z=1/4		z=1/4
$\begin{bmatrix} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	b ← c ▲ 504 AIO4 AIO4	Fig. 3		>			
Prop	erties					Fig. 4	
HabitCleav.Fract.Twin.prismaticperfectuneven (010)Refr.index /Reflect.Birefr. $n_{\alpha} = 1.658$ (+) $n_{\beta} = 1.662$	Hardn. Dens. 6-7 3.23 Luster Stread vitreous white	white, to brown cer K Melt.p.	ansparer translu tr CPI (SPI) 63		a 🗘	a a	
$n_{\gamma} = 1.680$ $2V = 20^{\circ} - 30^{\circ}$					—— b		b
Disordered derivative <u>Mullite</u> $Al^{0} \propto \left[St_{2-x}^{t} A_{x}^{t} 0_{5.5-05x} \right]^{2-I_{by}^{t}}$ P b a m Figures	manite (a),	ural schemes of andalusite (b) (after Kostov,	and	-	La sin/8 Du	\Leftrightarrow	b
Fig. 1. The silicate chain of the	De	scription					
 sillimanite structure. Fig. 2. Polyhedral representation of the sillimanite structure (after Zoltai + Stout, 1984). Fig. 3. Sillimanite structure pro- jected along the <u>c</u> axis (after Papike, 1987, quoted by Kerrick, 1990). 	med by the pac hedral chains, nite chains of rallel to them	white structure king of SiAlO which generate AlO ₆ octahedr Sillimanite s ite, mullite an	5 ^{tetra} e infi a pa- is rela	a- -	\checkmark	C Fig. 5	ŝ
Fig. 4. Projection of the silli-		ohic data (cont	inued)				
manite structure down the <u>c</u> axis showing the possible shifts of Al, and Si atoms in the trans-	$0_{IV}(8d) = 0.12_{y=0.2}$						
formation of sillimanite to an-	R	eferences					
dalusite (denoted <u>x</u> and <u>y</u>) and to kyanite (denoted ky) (after Winter + Ghose, 1979).		972) 423, 424. Vol. 4, 186-18 (1984) 363, 36 (1979) 582.					
	Kerrick (1990)	27.					

COLEMANITE	P2 ₁ /a	a = 8.743Å b =11.264Å	Ca (4c)		$\begin{array}{r} x = 0.040 \\ B (4e) y = 0.174 \\ z = 0.160 \end{array}$
$Ca^{[7]}(H_20) \overset{1}{\infty} \begin{bmatrix} B^{tr} & B_2^t \end{bmatrix}$	γ^{31}	p = 110 /	(H ₂ 0)(4e)	x = 0.616 y = 0.018 z = 0.900	$\begin{array}{rrrr} x &= & 0.219 \\ B & (4e) & y &= & 0.052 \\ z &= & 0.493 \end{array}$
$\mathbb{C}^{\mathbf{a}^{\mathbf{b}^{\mathbf{c}}}(\mathbf{H}_{2}^{\mathbf{c}})} \propto \mathbb{L}^{\mathbf{B}} \mathbb{B}_{2}$	4 ^(0H) 3	Z = 4 I	3 (4e)		$ \begin{array}{c} x = -0.018 \\ 0_{1}(4e) y = 0.247 \\ \dots z = 0.314 \end{array} $
VI VI	ag. 2				
	Properties				
Habit Cleav. Fract. Tw	in. Hardn. Dens.	Colour Transp.			
short perfect subcon-		colourless, transparen	nt		
prismatic (010) choidal		white to trans- lucent Melt.p. CPI			
$\frac{\text{Refr. index}/\text{Reflect.}}{n_{\alpha} = 1.586}$ (+)					
$n_{\beta} = 1.592$	vitreous white	(SPI) 41			
$n_{\gamma} = 1.614$ $2V = 56^{\circ}$		7-			
Figures	Descrip	tion			
 Fig. 1. Polyhedral drawing of the B^{tr}B^t₂0₄(0H)₃ infinite chain of the colemanite structure (after Povarennykh, 1972). Fig. 2. Partial representation of the colemanite structure projected along the <u>c</u> axis showing the way the chains pack together (adapted from Povarennykh, 1972). 	Colemanite is a cl of $B^{tr}B^{t}_{20}_4(OH)_3$ infin the packing of these H_2O molecules and Ca nation 7 . The chai <u>a</u> axis, what explains vage.	chains are located atoms with coordi- ins run along the			
Peference	Crystallographic	data (continued)			
References		x =-0.0	80		
Kostov (1968) 434,435. Povarennykh (1972) 159, 482.	z = 0.139	(4e) y = 0.1 z = -0.0	64 71		
Wyckoff (1965) Vol. 3, 583-585. Zoltai + Stout (1984) 437.	$ \begin{array}{c} x = 0.344 \\ 0_{III}(4e) \ y = 0.149 \\ z = 0.510 \end{array} $	$\begin{array}{c} x = 0.2 \\ \text{OH} \\ \text{II} \\ z = 0.5 \end{array}$	66 06		
Christ et al. (1958) 761-770.	$\begin{array}{c} x = 0.088\\ 0_{IV} (4e) y = 0.055\\ z = 0.270 \end{array}$	$ \begin{array}{r} x = 0.1 \\ 0H)_{III}(4e) y = 0.0 \\ z = 0.6 \end{array} $	78		

KERNITE P21/	c a = 7.0172 Å Na(1)(4e b = 9.1582 Å	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$1 \int \frac{1}{2} \int $		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\operatorname{Na}_{2}^{[5]}(H_{2}O)_{3} \overset{1}{\propto} \begin{bmatrix} B_{2}^{t} & B_{2}^{tr} & O \end{bmatrix}$	$6 \begin{bmatrix} (OH) \\ 2 \end{bmatrix} = 2 = 4 \qquad 0 (1)(4e)$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fig. 1		
Prop	erties]
HabitCleav.Fract.Twin.coarseperfectunevenagregates,(001),	Hardn. Dens. Colour Transp. 3 1.90 colourless, transparent	
massive (100) Refr. index/Reflect. Birefr.	white Luster Streak Melt.p. CPI	
$n_{\alpha} = 1.454$ (-)	vitreous, white (SPI)	
$ \begin{array}{c} n_{\beta} = 1.472 \\ n_{\gamma} = 1.488 \end{array} $ 2V = 80°	pearly 36	
Figures	Description	4
Fig. 1. Projection of the kernite structure on the <u>ac</u> plane showing the hydrogen bonding and sodium	The kernite structure consists of infinite chains $B_2^{t}B_2^{tr}O_6(OH)_2$, which run parallel to the b axis,	
coordination (after Cooper et al. 1973).	linked to Na and H O	Crystallogr. data (continued) $\begin{array}{c} x = 0.79170 \\ y = 0.44864 \\ z = 0.21540 \\ z = 0.21540 \\ z = 0.21540 \\ z = 0.21540 \\ z = 0.24180 \\ z = 0.24180 \\ z = 0.24052 \\ z = 0.24052 \\ z = 0.24052 \\ z = 0.24052 \\ z = 0.209347 \\ H(1)(4e) y = 0.29347 \\ H(2)(4e) y = 0.29347 \\ x = 0.75580 \\ x = 0.75580 \\ x = 0.75580 \\ x = 0.55568 \\ x = 0.75580 \\ x = 0.56568 \\ x = 0.3818 \\ x = 0.56568 \\ x = 0.3818 \\ x = 0.56568 \\ x = 0.3818 \\ x = 0.56568 \\ x = 0.36829 \\ x = 0.36829 \\ x = 0.36309 \\ x = 0.36829 \\ x = 0.36309 \\ x = 0.36829 \\ x = 0.36309 \\ x = 0.36215 \\ H(4)(4e) y = 0.3580 \\ x = 0.3818 \\ x = 0.36215 \\ H(5)(4e) y = 0.27262 \\ x = 0.16711 \\ x = 0.7212 \\ O(11)(4e) y = 0.11744 \\ H(6)(4e) y = 0.3512 \\ x = 0.55139 \\ W(2)(4e) x = 0.2239 \\ w = 0.2249 \\ x = 0.2249 \\ x = 0.2498 \\ x = $
	linked to Na and H ₂ O. Kernite has two perfect cleava- ges (001) and (100), and both in- volve breaking of hydrogen bonds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1973).	linked to Na and H ₂ O. Kernite has two perfect cleava- ges (001) and (100), and both in- volve breaking of hydrogen bonds	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

BORAX	C2/c a =11.8588 4 11 b =10.6748	$\begin{array}{ccccccc} x &= 0.085 & x = 0.154 \\ B & (8f) & y = 0.345 & 0_{II} & (8f) & y = 0.419 \\ z &= 0.217 & z = 0.314 \\ x &= 0.095 & x = 0.018 \\ B & (8f) & y &= 0.454 & 0_{TTT}(8f) & y = 0.435 \end{array}$
$\left[\left[g \right] \left[B_{2}^{\texttt{tr}} B_{2}^{\texttt{t}} O_{5} \left(OH \right)_{4} \right]^{T} \right]$	$ \sum_{n=1}^{1} \left[Na_{2}^{\circ} (H_{2}^{\circ})_{8} \right]^{\text{III}} \left[\sum_{k=1}^{1} c^{\frac{1}{2} - 12.1978} \frac{1}{2} $	z = 0.390 III $z = 0.123$
H ₂ Na Fig. 1	Fig. 2	
Pr	roperties	
HabitCleav.Fract.Twiprismaticperfectconchoi-(100)dalRefr. index /Reflect.Birefr. $n_{\alpha} = 1.447$ (-) $n_{\beta} = 1.469$ $n_{\gamma} = 1.472$ $2V = 40^{\circ}$	n. Hardn. Dens. Colour Transp. 2-2.5 1.7-1.9 white, translucent grey grey Melt.p. CPI vitreous, white (SPI) resinous 24	
Figures	Description	
Fig. 1. Representation of the $Na_2^{0}(H_2O)_8$ infinite chain and the $B_2^{tr}B_2^{t}O_5(OH)_4$ group of the borax structure (after Povarrennykh, 1972). Fig. 2. Structure of borax in	The borax structure is based on the packing of $Na_2^{O}(H_2O)_8$ infinite chains and $B_2^{tr}B_2^{to}S_2(OH)_4$ groups. The orientation of the infinite chains parallel to the <u>c</u> axis explains the perfect cleavage parallel to (100).	
two projections with the \underline{c} axis vertical: (a) along the	References	
<u>b</u> axis, and (b) along the <u>a</u> axis (after Povarennykh,1972).	Kostov (1968) 437,438. Povarennykh (1972) 158, 478. Wyckoff (1965) Vol. 3, 864- -867. Zoltai + Stout (1984) 436.	
	Crystallographic data (continued)	
	$\begin{array}{c} x = 0.163 & x = 0.125 \\ (0H)_{II}(8f) y = 0.511 & (H_2^{0})_{II}(8f) y = 0.002 \\ z = 0.491 & z = 0.196 \end{array}$	
	Na _I (4a) $(H_2^{0})_{III}^{K=0.119}_{III} = 0.165$ z = 0.459	
	$\begin{array}{c} x = 0.116 \\ Na_{II} (4e) \ u = 0.845 (H_2^{0})_{IV}(8f) \ y = 0.707 \\ z = 0.171 \end{array}$	
	$ \begin{array}{c} x = 0.123 \\ (H_2 0)_{I} (\$f) y = 0.846 \\ z = 0.450 \end{array} $	

8.4.4. Sheet structures

$ \frac{ARSENIC}{2} R \frac{2}{\left[As \right]} \widetilde{Hc} $	$\overline{3} \text{ m} \qquad \begin{array}{c} a_{R} = 4 \downarrow 31 \ \text{\rassigma} \\ \alpha = 54^{\circ} 10^{\circ} \qquad (\text{Hexagonal description}) \\ Z_{R} = 2 \\ a_{H} = 3.760 \ \text{\rassigma} \\ c = 10.548 \ \text{\rassigma} \\ Z_{H} = 6 \end{array}$
Γ ¹⁰² . μ̃ Fig. 1	Fig. 2
Habit Cleav. Fract. Twin rhombo- perfect uneven acicular (0001) Refr. index /Reflect. Birefr. 62%	
Population	Description
$\begin{array}{c} \begin{array}{c} 2\\ \text{Bismuth} & \begin{array}{c} 2\\ \infty\\ \end{array} \begin{bmatrix} \left[3^n \right] \\ \text{Bi} \\ \end{array} \end{bmatrix} \overset{\text{Hc}}{\overset{\text{Antimony}}{\overset{\text{C}}{\underset{\text{Sb}}}} \\ \begin{array}{c} \left[3^n \right] \\ \text{Allemontite} \\ \end{array} \overset{\text{C}}{\underset{\text{Sb}}{\overset{\text{C}}{\underset{\text{Sb}}}} \\ \end{array} \overset{\text{Sh}}{\overset{\text{Sh}}{\underset{\text{Sb}}} \\ \end{array} \overset{\text{Hc}}{\overset{\text{Allemontite}}{\overset{\text{C}}{\underset{\text{Figures}}}} \end{array}$	The arsenic structure is based on corrugated honeycomb hexagonal sheets packed in a <u>c</u> sequence. The arsenium atoms have trigonal pyramidal coordi- nation $[3n]$ within the sheets. \tilde{H} means a corrugated layer with a honeycomb pattern.
 Fig. 1. Schematic representation of the corrugated layers H of the arsenic structure. Fig. 2. Expanded view of the As structure, showing the corrugated layers parallel to (0001) (after Bokii, 1954) 	
	References
	Kostov (1968) 98. Povarennykh (1972) 198. Wyckoff (1963) Vol. 1, 32, 33. Zoltai + Stout (1984) 376. Roberts et al. (1974) 35. Bokii (1954) 248.

$ \underline{PYROPHYLLITE}_{A1_{2}^{O}(OH)_{2}} (2M) \left[Si_{4}^{t} 0_{10} \right] $	C_2/C a = 5.16 X b = 8.90 X	$ \begin{array}{c} x = 0.000 \\ 8f) y = 0.333 \\ z = 0.000 \\ z = 0.000 \\ 8f) y = 0.239 \\ 8f) y = 0.239 \\ 8f) y = 0.000 \\ z = 0.143 \\ x = 0.239 \\ 8f) y = 0.000 \\ 0_{II} (8f) y = 0.167 \\ z = 0.167 \\ x = 0.251 \\ x = 0.205 \\ x = 0.205 \\ x = 0.205 \\ x = 0.167 \\ y = 0.167 \\ y = 0.167 \\ y = 0.167 \\ y = 0.176 \\ \end{array} $
(a) symmetrical analogue (b) real	(a)	(b) Dioctahedral
Fig. 1		1
HabitCleav.Fract.Twintabular,perfectflexiblefoliated(001)Refr.index /Reflect.Birefr. n_{α} = 1.553-1.556(-) n_{β} = 1.586-1.5892V = 52°-62° n_{γ} = 1.596-1.601FiguresFig. 1. Polyhedral representa-tions of part of the struc-tural unit of pyrophyllite,the Si $_{2}^{0}0_{5}$ infinite sheet: a)	1.5 2.65- white, -2.90 transparent greyish white to trans- lucent Luster Streak Melt.p. CPI pearly, white (SPI) dull 51 Description Pyrophyllite is a sheet structure based on the packing of Si ^t ₂ 0 ₅ infinite sheets. Pyrophyllite is a 2M layer si- licate, where M means monoclinic and	- σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ σ
symmetrical analogue, b) real sheet (Liebau, 1985) and c) close-packed analogue (adapted from Belov, 1951), d) cross section of the sheet symmetri- cal analogue (adapted from	<u>2</u> the number of structural modules per unit cell.	References
Liebau, 1985). Fig. 2. Polyhedral description of (a) the way the $Si_{2}^{0}0_{5}$ infi- nite sheets pack together (after Liebau, 1985), and (b) the dioctahedral layer lo- cated in between the $Si_{2}^{0}0_{5}$ sheets. These two silicate		Kostov (1968) 352-356. Povarennykh (1972) 432. Wyckoff (1968) Vol. 4, 365,366. Zoltai + Stout (1984) 321. Zoltai (1975) IV-8. Liebau (1985) 116,215, 218. Belov (1951) 19.
sheets and the dioctahedral		Crystallographic data (continued)
layer in between form a struc- tural module.		$\begin{array}{r} x = -0.475\\ 0_{IV}(8f) \ y = 0.084\\ z = 0.176 \end{array}$
Fig. 3. Ball and spoke represen- tation of the pyrophyllite structure (after Kostov, 1968).		$ \begin{array}{c} x = 0.275 \\ 0_V (8f) y = 0.333 \\ z = 0.176 \\ x = 0.203 \end{array} $
		$\begin{array}{c} x = 0.203 \\ (OH)(8f) y = -0.167 \\ z = 0.058 \end{array}$

$\underline{\text{TALC}}$ (2M) C2/c		a = 5.28 Å b = 9.15 Å	Mg _I (8f)	x = 0.000 y = 0.333 z = 0.000	$ \begin{array}{c} x = 0.261 \\ \text{Si}_{II}(8f) \ y = 0.167 \\ z = 0.143 \end{array} $
$Mg_{3}^{o}(0H)_{2} \propto \left[Si_{4}^{t}0_{10}\right]^{2}$	2II_{h}^{101}	c = 18.92 Å β = $100^{\circ} 15^{\circ}$ Z = 4	Mg _{II} (4a) Si _I (8f)	x = -0.239 y = 0.000	$ x = 0.203 0_{I} (8f) y = 0.500 z = 0.058 x = 0.203 $
				z = 0.143	0_{II} (8f) y = 0.167 z = 0.058
		3			$0_{\text{III}}(8f) \begin{array}{l} x = 0.025 \\ y = 0.084 \\ z = 0.176 \end{array}$
					$ \begin{array}{c} x = -0.475 \\ 0_{IV} (8f) y = 0.084 \\ z = 0.176 \end{array} $
					$ \begin{array}{rcl} x &= & 0.275\\ 0_{V} & (8f) & y &= & 0.333\\ z &= & 0.176\end{array} $
(a)	(b) Trioctahedra	1			$\begin{array}{rrrr} x &= 0.203 \\ (OH) & (8f) & y &= -0.167 \\ z &= 0.058 \end{array}$
Fig. 1 Fig. 2					2 = 0.030
Prope	erties	·····			
Habit Cleav. Fract. Twin.	Hardn. Dens.	Colour Tra	nsp.		
platy, perfect flexible massive (001)	1 2.8	white, trans grey	lucent		
Refr. index/Reflect. Birefr.	Luster Streak	Melt.p. C	PI		
$n_{\alpha} = 1.54 \qquad (-)$	resinous, white	(51	PI)		
$n_{\beta} = 1.58$	silky	5	5		
$n\gamma = 1.58 \qquad 2V = 6^{\circ} - 30^{\circ}$ Population	Dag	cription			
Willemseite Ni ^o ₃ (OH) ₂ $\approx \left[\text{Si}_{4}^{t} \text{ O}_{10} \right]^{(2II_{h}^{10l})} c$	Talc is a sh on the packing sheets. The 2M		nite		
Figures	noclinic (M), a ral modules per		uctu-		
Fig. 1. Polyhedral representation of the structural unit of talc (symmetrical analogue) and its cross section (adapted from Liebau, 1985). Fig. 2. Polyhedral description					
of:(a) the way the $Si_2^{0}0_5$ infinite sheets pack together					
(after Liebau, 1985) and (b)					
the trioctahedral layer to- cated in between the Si_2O_5					
sheets.	Rei	erences			
Fig. 3. Condensed model of the symmetrical analogue of the					
talc structure. Large open	Kostov (1968) Povarennykh (1				
circles represent oxygen and large hatched circles hydroxyls.	Wyckoff (1968)				
Black medium circles correspond	365, 366.				
to Mg atoms, and very small black circles to Si atoms(after	Zoltai + Stout 322.	(1984)			
Figueiredo, 1979).	Figueiredo (19	79ь).			
Fig. 4. Polyhedral representation	Zoltai (1975)	IV-9.			
of the talc structure (after Zoltai, 1975).	Liebau (1985)	116, 218.			

Kostov (1968) 371. Povarennykh (1972) 445. Wyckoff (1968) Vol. 4, 372,373. Liebau (1985) 116, 218. Roberts et al. (1974) 417.

232

sheets.

VERMICULITE	b	$ \begin{array}{c} x = 0 \\ y = 0,1638 \\ z = 1/4 \\ y = 0.255 \\ z = 1/4 \\ x = 0 \\ z = 1/4 \\ x = 0 \\ y = 0.4997 \\ z = 1/4 \\ z = 1/$
$(H_2O)_4 Mg_3^O(OH)_2 \propto \begin{bmatrix} si_3^t \end{bmatrix}$	$\begin{bmatrix} A1^{t} & 0\\ 10 \end{bmatrix} \qquad z$	$ \begin{array}{c} x = 0 \\ Mg_{III}(4e) \ y = 0.8332 \\ \cdots \\ z = 1/4 \end{array} $
Fig. 1 (a		
Propé	erties	
HabitCleav.Fract.Twin.massiveperfect(001)Refr. index/Reflect.Birefr. $n_{\alpha} = 1.525 - 1.564$ (-) $n_{\beta} = 1.545 - 1.583$ $2V = 0^{\circ} - 8^{\circ}$	Hardn. Dens. Colour Transp. ≃1.5 ≃2.3 colourless, yellow, green Luster Streak Melt.p. CPI	
$n_{\beta} = 1.545 - 1.583$ $2V = 0^{\circ} - 8^{\circ}$ $n_{\gamma} = 1.545 - 1583$		Crystallographic data (continued)
Population	Description	x = 0.1042
$\frac{\text{Saponite}}{(\text{H}_2\text{O})_4 \text{ Mg}_3^{\text{O}}(\text{OH})_2 \overset{2}{\infty} \left[\text{sit}_4^{\text{t}} \text{O}_{10}\right]^{(2\text{II}_5^{\text{IO}})_{\text{c}}}$	Vermiculite is a sheet structure based on the packing of $\operatorname{Si}_2^{t0}_5$ infi- nite sheets, with water molecules in between the structural modules.	1
Figures Fig. 1. Polyhedral representation	-	$ \begin{array}{ccc} 0_{I} & (8f) & y = 0.0039 \\ z = 0.2132 \\ x = 0.1410 \end{array} $
of the structural unit of vermicu- lite (symmetrical analogue) and		0_{II} (8f) $y = 0.6683$ z = 0.2113
corresponding cross section (adapted from Liebau, 1985).		$\begin{array}{c} x = 0.3579 \\ 0_{III}(8f) & y = 0.0697 \\ z = 0.1338 \end{array}$
Fig. 2. Polyhedral description of:		$\begin{array}{c} x = 0.3529 \\ 0_{IV} (8f) & y = 0.5964 \\ z = 0.1346 \end{array}$
(a) the way the $Si_2^{t0}0_5$ infinite sheets pack together (adapted from		O_V (8f) $\begin{array}{c} x = 0.5593\\ y = 0.3316\\ z = 0.1339 \end{array}$
Liebau, 1985), and (b) triocta- hedral layer located between the		$\begin{array}{c} x = 0.1420 \\ (0H) (8f) y = 0.3380 \\ z = 0.2129 \end{array}$
silicate sheets.	References	$\begin{array}{c} & x = 0.3363 \\ H_2^{0}I & (8f) y = -0.0264 \\ z = 0.0397 \end{array}$
Kostov (1968) 371. Povarennykh (1972) 446. Wyckoff (1968) Vol. 4, 359.		$\begin{array}{rcl} x &= 0.3515\\ H_2 O_{II} & (8f) & y &= 0.3274\\ z &= 0.0412\\ \end{array}$
	Deer et al. (1962) Vol. 3, 246.	$\begin{array}{c} x = 0.3832 \\ H_2^{0}_{III} (8f) y = 0.6520 \\ z = 0.0414 \\ (for H_2^{0} only 0.62 are filled) \end{array}$

KAOLINITE (1Tc)	CL b = 8			x = 0.800 Si _{II} (2a) $y = 0.000$ z = 0.385
2	$\neg II^{101}$ $\alpha = 2$	7.37 Å 91° 48' Al _{II} (x = 0.002 2a) y = 0.330 z = 0.002	$ x = 0.754 0_1 (2a) y = 0.315 z = 0.155 $
$\begin{bmatrix} 2\\ \infty \end{bmatrix} \left[\text{Al}_2^{\text{O}} \text{ (OH)}_4 \right] \approx \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\frac{2 \\ \infty \end{bmatrix} \left[\text{Si}_2^{\text{t}} \text{ OH} \right]_4 = \begin{bmatrix} 2 \\ \infty \end{bmatrix} \left[\frac{2 \\ \infty \end{bmatrix} \left[2 \\ \infty$	$\begin{bmatrix} \mathbf{C} \\ \mathbf{J} \\ \mathbf{C} \\ \mathbf{J} $	00 ⁰ 0' Sia (x = 0.800 2a) $y = 0.322$	$ \begin{array}{rcl} x &= 0.690 \\ 0_{11} & (2a) & y &= 0.004 \\ \dots & z &= 0.157 \end{array} $
			z = 0.382	2 = 0.137
		(-)	D10	octahedral
Fig. 1	I	(a)	Fig. 2	(b)
Prop	erties		-	
HabitCleav.Fract.Twin.platy,perfectflexiblemassive(001)	Hardn. Dens. Cold 2-2.5 2.6 whit			
Refr. index/Reflect. Birefr.	Luster Streak Mel	t.p. CPI		
$n_{\alpha} = 1.556$ (-)	dull white	(SPI)		
$n \beta = 1.563 \qquad 2V = 40^{\circ}$		45		
nγ = 1.565 Distortion derivative			_	
$ \begin{array}{c c} \underline{\text{Dickite}} & C_{\text{C}} \\ \hline \\ \frac{2}{\infty} \left[\lambda 1_2^{\circ} \left(0H \right)_4 \overset{2}{\infty} \left[\text{Si}_2^{\text{t}} 0_5 \right]^{\text{II}^{101}}_{\text{C}} \right] \\ \hline \\ \\ \hline \\ \hline \\ \\ \\ \hline \\ \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \hline \\ \hline \\ \hline \hline$	Fig. 4. Condensed mode trical analogue of t structure. The large represent oxygen ato hatched circles hidr black medium circles Al atoms, and the sm cles to Si atoms. Th indicate the positio gen ions (after Figu	he kaolinite open circles ms, and the oxyls. The correspond to all black cir- e black points n of the hydro-		
nite sheet and corresponding			Crystallogra	aphic data (continued)
cross section, and Al(OH) ₂ dioctahedral sheet. Both sheets				x = 0.791 (2a) $y = 0.165$
form the structural unit (Liebau, 1985).	Descripti			z = 0.482 x = 0.612 (2a) $y = -0.120$
Fig. 2. Polyhedral description of: (a) the way the kaolinite struc-	Kaolinite is a clay r is a sheet structure bas packing of infinite sili	sed on the icate sheets,	o _v	z = 0.455 x = 0.108 (2a) $y = -0.058$
tural units pack together (adap-	Si_2^{t0} , and $Al_2(OH)_3$ shee	ts. Both		z = 0.455
ted from Liebau, 1985), and (b) the dioctahedral layer linked to the silicate sheets.	sheets form the kaolinite structural unit. 1Tc means triclinic (Tc) with one module per unit cell.		(он) _І	$ \begin{array}{l} x = 0.778 \\ (2a) \ y = 0.180 \\ z = -0.140 \end{array} $
	Referenc		(OH) _{TT}	x = 0.278 (2a) $y = 0.320$
Fig. 3. Polyhedral description of the kaolinite structure (after		ltai + Stout (1984) 321-326.	-	z = -0.138 x = 0.316 y = -0.008
Zoltai, 1975).	431.	ebau (1985) 214 216, 220.	2	z = -0.136 x = 0.248
	Wyckoff (1968) Vol. 4, 371-373. Zol	gueiredo (1979b) tai (1975) IV-8	(U ,	(2a) $y = 0.184$ z = 0.155

HALLOYSITE Cm	a = 5.20 Å b = 8.92 Å	$ \begin{array}{c} x = 0.250 \\ \text{Al} (4b) y = 0.167 \\ z = 0 \end{array} $	$(OH)_{II}$ (2a) y = 0 z = 0.118
2 2 5 4	0	$\begin{array}{rl} x = 0.0083\\ \text{Si} & (4b) \ y = 0.167\\ z = -0.445 \end{array}$	$(0H)_{III}(4b) \begin{array}{l} x = -0.046 \\ y = 0.333 \\ z = 0.394 \end{array}$
$(H_2O)_2 \overset{2}{\infty} \left[Al_2^{\circ} (OH)_4 \overset{2}{\infty} \left[Si_2^{t} \right] \right]$	$ \begin{array}{c} 0 \\ 5 \end{array} \right] \begin{array}{c} c \\ z \\ z \end{array} = 2 $	$(0H)_{1}(4b) = -0.167$ z = 0.118	$\begin{array}{c} x = -0.046 \\ (0H)_{IV} (4b) y = -0.167 \\ \dots z = -0.118 \end{array}$
Fig. 1	Fig. 2		
Prope			
Habit Cleav. Fract. Twin.	Hardn. Dens. Colour Transp.		
microscopic tubular,	2-2.5 2.0-2.2 colourless, transpare white, to trans-	ent	
mealy masses Refr. index/Reflect. Birefr.	yellowish lucent Luster Streak Melt.p		
	pearly,		
	dull		
	Description		
Fig. 1. The structural unit of halloysite (adapted from Liebau, 1985).	Halloysite is a sheet structur based on the packing of kaolinite structural modules, with water mo lecules occupying voids in betwee	-	
Fig. 2. Schematic representation of the way the structural modules pack together, and their consti- tution (adapted from Liebau, 1985).	them.		
addin (adapted from brobad, 1705).			
Crystallographic data (continued)	References		
x =-0.046	Kostov (1968) 379		
$(OH)_{V}(2a) y = 0$ z = -0.118	Strukturbericht (1937) Vol. 3, 54 545.	4,	
$ \begin{array}{c} x = 0.248 \\ 0_{1} (2a) y = 0 \\ z = -0.375 \end{array} $	Roberts et al. (1974) 256.		
$ \begin{array}{c} z = -0.375 \\ x = 0.033 \\ 0_{II} (4b) \ y = 0.250 \\ z = -0.375 \end{array} $	Liebau (1985) 116, 214, 218.		
L	L		

		x = 0.270 $x = 0.025$
ANTIGORITE	$\mathbf{m} \qquad \mathbf{a} = 5.32 \text{ M}_{\mathbf{g}_{\mathbf{I}}} (2\mathbf{a})$	
	b = 9.50 Å	x = -0.475 $x = 0.008$
$Mg_6^o(OH)_8 \propto \left[Si_4^t 0_{10}\right]$	c = 14.90 Å Mg _{II} (2a) $\beta = 101^{\circ} 54'$	$\begin{array}{ccc} y = 0 & \text{Si}_{1} & (4b) & y = 0.333 \\ z = 0.661 & z = 0.364 \end{array}$
$\operatorname{Mg}_{6}(\operatorname{OH})_{8} \simeq [\operatorname{SI}_{4}]_{10}$		$ \begin{array}{c} x = -0.230 \\ y = 0.167 \\ \end{array} \begin{array}{c} x = 0.008 \\ \text{Si}_{II}(4b) \\ y = 0.333 \\ \end{array} $
		z = 0.161 $z = 0.864$
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
XXXXXXX	TY AAAAAAA TYYYYY AA	
TARABARA TYTYTYTA		
Fig. 1	Fig. 2	
		г
	operties	4
Habit Cleav. Fract. Twin. platy, perfect flexible	Hardn. Dens. Colour Transp. 3-4 2.6 green translucent	
massive (001)	3-4 2.0 green translucent yellow	
Refr. index/Reflect. Birefr.	Luster Streak Melt.p. CPI	
$n_{\alpha} = 1.56$ (-)	resinous, white (SPI)	
$n_{\beta} = 1.57$ $2V = 20^{\circ}60^{\circ}$	silky 48	
ny = 1.57 Figures	Description	Crystallographic data (continued)
Fig. 1. Structural unit of anti- gorite: the $Si_2^{t_0}$ infinite puc-	Palygorskite is a sheet structure formed by the packing of puckered	z = 0.262 x = -0.046
kered silicate sheet and its	infinite silicate sheets of composi-	$(OH)_{II}$ (2a) y = 0 z = 0.762
cross-section (after Liebau, 1985).	tion $\operatorname{Si}_{25}^{L}$, with brucite type layers located in between the silicate	x = 0.046
Fig. 2. Schematic drawing of the	sheets. It could also be considered	$(0H)_{III}(4b) \ y = 0.167 \ z = 0.100$
way the silicate sheets pack	as a complex framework of structural	
together (adapted from Liebau,	formula:	z = 0.600 x = -0.455
1985),	$\begin{bmatrix} 3 \\ \infty \end{bmatrix} \begin{bmatrix} 0 \\ Mg_{6}^{\circ}(OH)_{8} \end{bmatrix} \begin{bmatrix} 2 \\ \infty \end{bmatrix} \begin{bmatrix} si_{4}^{t} \\ 0 \\ 10 \end{bmatrix}$	$(OH)_{V}$ (2a) y = 0 z = 0.100
		x = 0.250
		$(OH)_{VI}$ (2a) y = 0 z = 0.600
		$\begin{array}{c} x = -0.046 \\ 0 \\ 1 \end{array} (4b) y = 0.333 \\ z = 0.252 \end{array}$
		z = 0.252 x = -0.046
		$0_{II} \qquad (4b) \ y = 0.333 \\ z = 0.752$
	References	x = 0.533
	Kostov (1968) 374,375.	$\begin{array}{c} 0 \\ 111 \\ z = 0.405 \end{array}$
	Povarennykh (1972) 431.	$ \begin{array}{c} x = 0.533 \\ 0_{IV} \\ z = 0 \\ z = 0.005 \end{array} $
	Liebau (1985) 220-224.	2 = 0:905
	Zoltai + Stout (1984) 322. Structure Reports (1954), 13, 380.	$ x = 0.283 0_V (4b) y = 0.250 z = 0.405 $
	· · · · · · · · · · · · · · · · · · ·	z = 0.405 x = 0.283
		0_{VI} (4b) y = 0.250 z = 0.905

$ \begin{array}{c} \underline{APOPHYLLITE} \\ Ca_{4}^{[7]} \kappa_{4}^{[8]} F(H_{2}^{0})_{8} & \infty \\ \end{array} $	$\begin{bmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} V & 601 \\ S \end{bmatrix} \begin{bmatrix} 2 & -15 & 8 \\ z & z \end{bmatrix} K (2)$	$ \begin{array}{c} x = 0.120 \\ h) \ y = 0.243 \\ z = 0 \\ k = 0 \\ y = 0 \\ z = 1/2 \\ z = 0 \\ z = 1/2 \\ z = 0 \\ z = 1/2 \\ z = 0 \\ z =$
(a) Fig. 1	(b) Fig. 2	Fig. 3
PropHabitCleav.Fract.Twin.shortperfectunevenprismatic,(001)tabularRefr.index/Reflect. $n_{\omega} = 1.535$ (+) $n_{\varepsilon} = 1.537$	Hardn. Dens. Colour Transp. 4.5-5 2.3 white, grey transparent to transparent lucent Luster Streak Melt.p. CPI pearly white (SPI) 31	
Figures Fig. 1. Structural unit of apophyl- lite: the Si ^t ₂ 0 ₅ infinite puckered silicate sheet and its cross- -section: (a) polyhedral drawing (adapted from Liebau, 1985), and (b) ball and spoke description (Ramdhor + Strunz, 1980). Fig. 2. Schematic representation of the way the silicate sheets pack together (adapted from Liebau, 1985). Fig. 3. Structure of apophyllite projected on (110) (after Pova- rennykh, 1972).	Description Apophyllite is a sheet structure formed by the packing of puckered infinite silicate sheets of compo- sition $\operatorname{Si}_{2}^{t}O_{5}$, with Ca, K, and water molecules located in the in- terstices. It could also be conside- red as a complex framework of struc- tural formula:	
	References Kostov (1968) 382. Povarennykh (1972) 433. Wyckoff (1968) Vol. 4, 393,394. Zoltai + Stout (1984) 325 Liebau (1985) 221. Ramdhor + Strunz (1980) 739.	Crystallographic data (continued) x = 0.287 0 _{III} (16i) y = 0.117 z = 0.094 x = 0.237 Si(16i) y = 0.091 z = 0.188

8.4.5. Framework structures

P		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} c c & a = 18.524 \text{$\%$} \text$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
L		$\begin{array}{c} 111 \\ z = 0.6225 \\ \cdots \\ z = 0.9213 \end{array}$
ri ²⁰¹ Fig. 1 F	ig. 2	Fig. 3
Prope	rties	Crystallographic data (continued)
HabitCleav.Fract.Twin.wedgeconchoi-(110)	Hardn. Dens. Colour Transp. 6 - 7 2.28 colourless transparent to translu-	$ \begin{array}{c} x = 0.5751 & x = 0.9160 \\ \text{Si}_{\text{IV}} & (4a) \ y = 0.043 & 0_{\text{VIII}} & (4a) \ y = 0.668 \\ z = 0.7955 & z = 0.9361 \\ \end{array} $
shaped dal <u>Refr. index /Reflect.</u> <u>Birefr.</u>	Luster Streak Melt.p. CPI	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{vmatrix} n_{\alpha} = 1.478 & (+) \\ n_{\beta} = 1.479 & 2V = 70^{\circ} \end{vmatrix}$	vitreous white (SPI) 42	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$n \gamma = 1.481$		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Figures	Description The alpha-tridymite structure is	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Fig. 1. Schematic drawing of the ideal corrugated tetrahedral sili- cate connected unit.	a distortion derivative of beta- -tridymite crystal structure. It	$ \begin{array}{c} x = 0.8531 & x = 0.4966 \\ \text{Si}_{\text{IX}} & (4a) \ y = 0.463 & \text{O}_{\text{XIII}} & (4a) \ y = 0.511 \\ z = 0.9016 & \text{XIII} & z = 0.6062 \end{array} $
Fig. 2. Polyhedral description of the alfa-tridymite structure	is based on corrugated tetrahedral silicate layers linked in a \underline{h} sequence.	$ \begin{array}{c} x = 0.9493 & x = 0.3533 \\ \text{Si}_{X} & (4a) \ y = 0.966 & 0_{XIV} & (4a) \ y = 0.489 \\ z = 0.9358 & z = 0.5665 \end{array} $
(after Liebau, 1985).	quence.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Fig. 3. Projection onto (101) of a slab of the silicate layer of mo- noclinic alfa-tridymite, showing		$ \begin{array}{c} x = 0.5697 & x = 0.6524 \\ \text{Si}_{\text{XII}} & (4a) & y = 0.549 & 0_{\text{XVI}} & (4a) & y = 0.996 \\ & z = 0.8702 & z = 0.7805 \end{array} $
two types of six-member ring con- figurations - ditrigonal and oval		$ \begin{bmatrix} x = 0.5749 & x = 0.8636 \\ 0_{I} & (4a) & y = 0.351 \\ z = 0.8182 & z = 0.7328 \end{bmatrix} $
(Dollase + Baur, 1976).		$ \begin{array}{c} x = 0.5707 & x = 0.8361 \\ 0_{II} & (4a) \ y = 0.840 & 0_{XVIII}(4a) \ y = 0.503 \\ z = 0.8476 & z = 0.8333 \end{array} $
		$ \begin{vmatrix} x = 0.7315 & x = 0.5052 \\ 0_{III} & (4a) & y = 0.138 & 0_{XIX} & (4a) & y = 0.993 \\ z = 0.4851 & z = 0.7398 \end{vmatrix} $
	References	$ \begin{array}{c} x = 0.7509 & x = 0.6369 \\ 0_{IV} & (4a) \ y = 0.644 & 0_{XX} & (4a) \ y = 0.511 \\ z = 0.5152 & z = 0.9268 \end{array} $
	Kostov (1968) 389. Zoltai + Stout (1984) 297. Dollase (1967) 617-623.	$\begin{array}{c} & & \\ & & \\ 0_{XXI} & (4a) \ y = 0.9927 & 0_{XXIII} & (4a) \ y = 0.991 \\ & & z = 0.8868 & z = 0.5898 \end{array}$
	Dollase (1997) 917-923. Dollase + Baur (1976) 971-978. Liebau (1985) 127.	$\begin{array}{cccc} x = 0.5^{\%} & x = 0.7744 \\ 0_{XXII} & (4a) & y = 0.468 \\ z = 0.5^{\%} & 0_{XXIV} & (4a) & y = 0.521 \\ z = 0.9155 \end{array}$
	• · · · · · · · · · · · · · · · · · · ·	

		·····		
$\frac{\text{NEPHELINE}}{\kappa^{[9]} \operatorname{Na}_{3}^{[8]} \infty} \left[\operatorname{Si}_{4}^{t} \operatorname{Al}_{4}^{t^{\ll^{h}} \left[2 \right]} \right]$	II ²⁰¹ h	a = 10.05	<pre>x = 0.000 Na (6c) y = 0.444 z = 0.989 x = 1/3 Al₁ (2b) y = 2/3 z = 0.188 x = 0.090 Al₁₁₁(6c) y = 0.328 z = 0.686</pre>	$ \begin{array}{c} x = 1/3 \\ y = 2/3 \\ z = 0.812 \\ x = 0.090 \\ \text{Si}_{II}(\text{6c}) y = 0.328 \\ z = 0.313 \\ x = 0.290 \\ 1/3 0_{I}(\text{6c}) y = 0.589 \\ z = 0.990 \end{array} $
	(Si, AlyO, O K • Na 2	Nepherine (1 Layer)	Fig. 3	
Propert	ies			
prismatic perfect subcon- (100) (100) choidal (112) (001) choidal (335) Refr. index /Reflect. Birefr. L	<u>ardn.</u> <u>Dens.</u> 5.5-6 2.60 u <u>ster Streak</u> reous white	<u>Colour</u> <u>Transp</u> colourless, transpar turbid <u>Melt.p.</u> <u>CPI</u> (SPI) 43	rent	
Figures	D	escription		
 Fig. 1. Schematical drawing of the ideal corrugated tetrahedral sili- cate layer which constitutes the connected unit of the nepheline structure. Fig. 2. Polyhedral representation of the nepheline structure (after Zoltai + Stout, 1984). Fig. 3. Comparison between the ideal tridymite and the nepheline tetra- hedral layers (after Steele + Pluth, 1990). 	stuffed deriv	re of nepheline i vative of the trid . It is also disto the ideal tridy	ymi- rted	
References	Crystallogra	phic data (continu	ed)	
Kostov (1968) 401. Povarennykh (1972) 345, 346. Wyckoff (1968) Vol. 4, 453, 454. Zoltai + Stout (1984) 310, 311. Steele + Pluth (1990) 1189.	$ \begin{array}{c} x = 0. \\ 0_{II}(6c) & y = 0. \\ z = 0. \\ 0_{III}(6c) & y = 0. \\ 0_{III}(6c) & y = 0. \\ z = 0. \\ 0_{IV} & (6c) & y = 0. \\ z = 0. \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	264 314 215 264	

$ \underbrace{\begin{array}{c} \text{ICE} & \text{P6}_{3}/\text{ICE} \\ (\underline{\text{ordinary}}) \\ 3 \\ \infty \begin{bmatrix} \text{(ech)}[2] \\ 0^{t} H_{2} \end{bmatrix} \end{bmatrix}}_{\infty} \sum_{\substack{\text{(ordinary)} \\ \text{(b)} \\ \text{(conducted})}} \sum_{\substack{\text{(conducted}) \\ \text{(conducted})}} \sum_{\substack{(conducted})} \sum_{\substack{\text{(conducted}) \\ \text{(conducted})}} \sum_{($	nmc $a = 4.5227 $	2 0 ⁰ C) 0(4f) u =1/16
Fig. 1 Fig.	2 Fig. 3	
Proper	rties	
HabitCleav.Fract.Twin.flatenednoneconchoi-(0001)stellatedal(0001)formsdal(0001)Refr.index /Reflect.Birefr. $n_{\omega} = 1.30907$ (+) $n_{\varepsilon} = 1.31052$	Hardn. Dens. Colour Transp. 1.5 0.9167 colourless, transparent pale blue Luster Streak Melt.p. CPI vitreous colourless 0° C C	
Figures	Description	-
 Fig. 1. Schematic drawing of the ideal corrugated layers of 0^tH₄ tetrahedra, which constitutes the connected unit of the ordinary ice structure. Fig. 2. Polyhedral description of the structure of ordinary ice (after Zoltai, 1977). The tetrahedral layers follow a AB (or h) sequence, 	The structure of ordinary ice is similar to the structure of tridymite but the relative size of the atoms forming the tetrahedra is inverted, that is, instead of $\operatorname{Si}^{t}O_4$ it is based on $\operatorname{O}^{t}H_4$ tetrahe- dra. The sequence of the corruga- ted tetrahedral layers is also AB (or <u>h</u>).	
Fig. 3. Ball and spoke representa- tion of the structure of ordinary ice (adapted from Povarennykh, 1972),		
	References	-
	Kostov (1968) 210. Povarennykh (1972) 294. Wyckoff (1963) Vol. 1, 322-324. Zoltai (1977) 6-45.	

$\frac{\beta - QUARTZ}{(\text{high-temperature form})}$	$\begin{array}{c} P_{0}^{2} 2 \\ \text{a} = 5.01 \\ \text{c} = 5.47 \\ \text{c} = 3 \end{array}$	(ca.600 ⁰ C) Si(3c) O (6j) u = 0.197
r ¹⁶¹ Fig. 1 Fig. 2		
bipyra- good conchoi- (1011) midal (1011) dal (1122) Refr. index/Reflect. Birefr.	ties <u>Hardn.</u> <u>Dens.</u> <u>Colour</u> <u>Transp.</u> 7 2.53 colourless, transparent white, to opaque <u>grey</u> to opaque <u>Luster</u> <u>Streak</u> <u>Melt.p.</u> <u>CPI</u> itreous white (SPI) 47	
Figures Fig. 1. Schematic drawing of the ideal corrugated tetrahedral sili- cate layer which constitutes the connected unit of the beta-quartz structure.	Description Beta-quartz is a framework of Si ^{t0} 4 tetrahedra, and it can be considered as a defect Tv packing of oxygen atoms with silicon atoms in distorted tetrahedral voids.	
 Fig. 2. Polyhedral drawing of the beta-quartz structure projected along the <u>c</u> axis (after Povarennykh, 1972). Fig. 3. Condensed model of the defect packing analogue of the beta-quartz structure. The large open circles represent oxygen atoms, and the small black circles 		
acoms, and the small stake crosses correspond to silicon atoms in distorted tetrahedral voids. The crosses indicate the vacancies of the packing atoms. The analo- gue is based on a Tv defect pack- ing to which corresponds the struc- tural formula Si ^t $\begin{bmatrix} 0 \\ 2 \end{bmatrix} \end{bmatrix}^{Tv}$ (after Figueiredo, 1977).	References Kostov (1968) 386. Povarennykh (1972) 291. Wyckoff (1963), Vol. 1, 312-314. Zoltai + Stout (1984) 298. Figueiredo (1977) 28.	
		Fig. 4

		······
$\frac{\alpha - \text{QUARTZ}}{(\text{low-temperature form,}} \\ \frac{\text{ordinary}}{\infty} \\ 3 \\ \infty \\ \text{Si}$	$ \begin{array}{c} P_{3_{1}2} & a = 4.91304 \\ c = 5.40463 \\ z = 3 \\ 0 \\ 2 \end{array} \right] I_{by}^{161} & z = 3 \end{array} $	
Fig. 1 Fig.	kiph Ouartz (β-form)	Fig. 3
$\label{eq:conchoise} \begin{array}{c} \mbox{hexagonal,} & \mbox{conchoi-} & \mbox{Dauphiné} \\ \mbox{prismatic,} & \mbox{dal} & [001] \\ \mbox{massive} & \\ \mbox{Refr.index} / \mbox{Reflect.} & \mbox{Birefr.} \\ \mbox{n}_{\omega} = 1.544 & (+) & \mbox{v} \end{array}$	Hardn. Dens. Colour Transp. 7 2.65 colourless, transparent white, to transluto to translete to translete to translate to translate to transluto to tran	
Figures	Description	
 Fig. 1. Schematic drawing of the ideal corrugated tetrahedral sili- cate layer which constitutes the connected unit of the alfa-quartz structure. It is similar to that of beta-quartz. Fig. 2. Polyhedral drawing of the alfa-quartz structure projected along the <u>c</u> axis (after Povaren- nykh, 1972). Fig. 3. Ball and spoke representa- tion of the beta and alfa-quartz structures in order to visualize their relationship (adapted from Povarennykh, 1972). 	Alfa-quartz (low-temperature form) is the ordinary quartz. It is a framework of Si ^{t0} 4 tetra- hedra, and is a distorted deriva- tive of beta-quartz.	
	References	4
	Kostov (1968) 386. Povarennykh (1972) 291. Wyckoff (1963) Vol. 1, 312-314. Zoltai + Stout (1984) 298.	

$ \frac{\text{KEATITE}}{3} \qquad \begin{array}{c} P \ 4_{1}^{2}_{1} \\ \hline 3 \\ \infty \\ \end{array} \begin{bmatrix} \text{Si}^{t} & 0_{2} \end{bmatrix}^{\text{III}_{Qd}^{1}} $	a = 7.450 A c = 8.604 A $Z = 12 \qquad \text{Si}_{II}(4a)$	$ \begin{array}{c} x = 0.326 \\ y = 0.120 \\ z = 0.248 \end{array} \\ \begin{array}{c} x = 0.410 \\ y = 0.410 \\ z = 0 \end{array} \\ \begin{array}{c} x = 0.445 \\ y = 0.132 \\ z = 0.445 \end{array} \\ \begin{array}{c} x = 0.326 \\ y = 0.297 \\ z = 0.143 \end{array} \\ \begin{array}{c} x = 0.344 \\ y = 0.297 \\ z = 0.143 \end{array} \\ \begin{array}{c} x = 0.344 \\ z = 0.143 \end{array} \\ \begin{array}{c} x = 0.143 \\ z = 0.445 \end{array} \\ \begin{array}{c} x = 0.445 \\ z = 0.400 \end{array} $
Fig. 1 Fig. 2	Fig. 3	
Prope	rties	1
Habit Cleav. Fract. Twin.	Hardn. Dens. Colour Transp. 2.50	
$\frac{\text{Refr. index}/\text{Reflect.}}{n_{\omega} = 1.522} \qquad (-)$ $n_{\ell} = 1.513$	Luster Streak Melt.pCPI	
Figures	Description	
 Fig. 1. Group of three silicon te- trahedra which constitutes the connected unit of the keatite structure. Fig. 2. Polyhedral description of the keatite structure (after Lie- bau, 1985). Fig. 3. Polyhedral drawing of the heatite structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is to be a structure in terms of the structure is the structure in terms of the structure in terms of the structure is the structure in terms of terms	The keatite structure is similar to that of quartz but instead of threefold spirals, it has four-fold spirals of silicon tetrahedra along the tetragonal axis. Morphological data is lacking because it is only known as microcrystalline synthetic product.	
keatite structure projected along the <u>c</u> axis (after Kostov, 1968).		
	References	4
	Kostov (1968) 390, 391. Wyckoff (1963) Vol. 1, 321-324. Liebau (1985) 127. Frondel (1982) 307.	

[
$\frac{\text{MILLERITE}}{\infty} \text{R3m}$	$a_{\rm R} = 5.655 \text{\AA}$ $\alpha = 116^{\circ} 36^{\circ}$ $Z_{\rm R} = 3$ $a_{\rm H} = 9.612 \text{\AA}$ $c = 3.259 \text{\AA}$ $Z_{\rm H} = 9$	For hex. cell: Ni(9b) u = -0.088 v = 0.088 S (9b) u = 0.114 v = 0.596
Fig. 1	Fig. 2	
Habit Cleav. Fract. Twin fibrous perfect uneven (1011) (0112) Refr. index /Reflect. Birefr. 54%	operties <u>Hardn. Dens. Colour Transp.</u> 3-3.5 5.41 brass yellow <u>Luster Streak Melt.p. CPI</u> metallic greenish 990°C black	
Figures	Description	
 Fig. 1. Ball and spoke representation of the millerite structure (after Strukturbericht, 1931, Vol. 1). Fig. 2. Polyhedral representation of the millerite structure (after Kostov, 1968), 	The millerite structure is a frame- work of interlinked NiS ₅ tetragonal pyramides.	
References		
Kostov (1968) 121-123. Wyckoff (1963) Vol. 1, 122. Zoltai + Stout (1984) 390. Roberts et al. (1974) 406. Strukturbericht (1931) Vol. 1, 739.		
Ingerson (1955) 350.		

$\frac{\text{KIESERITE}}{\infty} \begin{array}{c} \text{C2/c} \\ \text{Mg}^{\circ} & (\text{H}_{2}^{\circ}) \text{ s}^{\text{t}} \end{array} $	c = 7.630 Å	$\begin{array}{c} x = 0.113 \\ y = 0.158 \\ y = 0.640 \\ y = 0.640 \end{array} \begin{array}{c} x = 0.167 \\ y = 0.640 \\ z = 0.167 \\ y = 0.043 \\ z = 0.413 \end{array}$
Fig. 1	rties	
HabitCleav.Fract.Twin.massive,perfectgranular(101)(111)(111)Refr.index /Reflect.Birefr. $n_{\alpha} = 1.520$ (+) $n_{\beta} = 1.533$ $2V = 55^{\circ}$ $n_{\gamma} = 1.584$	Hardn. Dens. Colour Transp. 3.5 2.571 colourless, transparent to trans- greyish, lucent Juster Streak Melt.p. CPI vitreous	
Figures	Description	
Fig. 1. Tetrahedral-octahedral net- work of the kieserite structure (after Groat et al., 1990).	The kieserite structure consists of individual SO ₄ tetrahedra linked by Mg atoms in octahedra coordina- tion.	
References Kostov (1968) 494. Povarennykh (1972) 590. Wyckoff (1965) Vol. 3, 554.		
Groat et al. (1990) 1000. Structure Reports (1964) Vol. 21, 361, 362. Roberts et al. (1974) 324.		

AMBLYGONITE PI	a = 5.184 Å Li b = 7.155 Å		$\begin{array}{r} x = 0.959 \\ (F,0H)(2i) \ y = 0.225 \\ z = 0.360 \end{array}$
3 F 6 0,t		$ \begin{aligned} x &= 0 \\ (1a) y &= 0 \\ z &= 0 \end{aligned} $	$\begin{array}{rl} \mathbf{x} = 0.358\\ \mathbf{P} & (2i) \ \mathbf{y} = 0.267\\ \mathbf{z} = 0.941 \end{array}$
$\begin{bmatrix} 3\\ \infty \end{bmatrix} \begin{bmatrix} 16\\ \text{Li} \text{Al}^{\circ}(\text{F,OH}) \end{bmatrix} \overset{\text{t}}{\text{P}} \overset{\text{t}}{\text{O}}$	$\begin{array}{c} \beta = 97^{\circ} \ 48^{\circ} \\ p = 67^{\circ} \ 53^{\circ} \\ z = 2 \end{array} \qquad \qquad$	x = 0 x = 1/2 z = 1/2	$\begin{array}{c} x = 0.236\\ 0_{I} \qquad (2i) \ y = 0.425\\ \dots \qquad z = 0.784 \end{array}$
	(a)	(b)	(c)
(a) Fig. l	(b)	Fig. 2	++
	perties		
Habit Cleav. Fract. Twin		 >.	
equant perfect subcon- (111)	6 3.0 white, transpar	ent	
(100) choidal	green to trans lucent		
$\frac{\text{Refr. index}/\text{Reflect.}}{n_{\alpha} = 1.59} \qquad (-)$	Luster Streak Melt.p. CPI	-	
$n\beta = 1.60$	vitreous white (SPI)		
$n_{\gamma} = 1.62$ $2V = 52^{\circ}90^{\circ}$	greasy 52		
Figures	Description		
 Fig. 1. Polyhedral partial representation of the amblygonite structure: (a) projected on the <u>c</u> axis, and (b) projected on the <u>b</u> axis (after Povarennykh, 1972). Fig. 2. Polyhedral partial representation of: (a) amblygonite, (b) titanite, and (c) kieserite structures, in order to realise their relationship (after Groat et al., 1990). 	The structure of amblygonite is framework. It consists of infinite chains of $A1^{0}0_{6}$ octahedra linked by their corners by $P0_{4}$ tetrahedra. T chains are parallel to the <u>a</u> axis. atoms are located in large voids ar have 5 coordination.	y The Li	
References	Crystallographic data (continued))	
Kostov (1968) 450. Povarennykh (1972) 530, 531. Wyckoff (1965) Vol. 3, 192, 193.			
Zoltai + Stout (1984) 450. Groat et al. (1990) 1000.	$\begin{array}{rcl} z &= 0.842 \\ x &= 0.670 \\ 0_{IV} & (2i) & y &= 0.160 \\ z &= 0.856 \end{array}$		

$\frac{\text{LEUCITE}}{\kappa^{[6+6]}} \text{I4}_{1}/a$ $\kappa^{[6+6]} \propto \left[\text{Si}_{2}^{t}\text{Al}^{t}\text{O}_{6}\right]$	a = 13.09 Å c = 13.75 Å Z = 16	K (16f (Si,Al) _I (16f (Si,Al) _{II} (16f	z = 0.1060 x = 0.1676 F) y = 0.6115 z = 0.1283 0 ₁₁₁ (16f) y z 0 ₁₁₁ (16f) y	-	z = 0.0860 x = 0.1318 y = 0.3131 z = 0.1100 x = 0.0921 y = 0.5107 z = 0.1303 x = 0.2900 y = 0.5772 z = 0.1205 x = 0.4826
HabitCleav.Fract.Twin.trapezo-poorconchoi-(100)hedral(100)dal(112)Refr.index/Reflect.Birefr. n_{oi} = 1.508(+) n_{e} = 1.509	Hardn. <u>Dens.</u> <u>Colour</u> 5.5-6 2.48 white, grey <u>Luster Streak Melt.p.</u> vitreous white 1686 ⁰ C	Transp. transparent to translu- cent <u>CPI</u> (SPI) 39			
Figures	Description				
Fig. l. Structure of tetragonal(full lines) and cubic (dashed lines) forms of leucite (after Structure Reports, 1978, Vol. 42A).	The leucite structure mework of (Si,Al)O ₄ tetr with potassium atoms loc within the voids.	ahedra,			
	References Kostov (1968) 403. Wyckoff (1968) Vol. 4, 4 Zoltai + Stout (1984) 31 Klein + Hurlbut (1985) 4 Mazzi et al. (1976) 108- Papike + Cameron (1976) Ingerson (1958) 352.	LO. 456. -115.			
	Structure Reports (1978)	<u>42A</u> , 408.			

$ \underline{BORACITE} Pc2a $ $ Mg_{3}^{[6]} c1 \propto \begin{bmatrix} t & tr \\ B_{3}B_{4}^{tr} & 0_{13} \end{bmatrix} $	$Mg_{I} (4a) y = 0$ $a = 8.54 \ R$ $b = 8.54 \ R$ $c = 12.07 \ R$ $Z = 4$ $Mg_{II} (4a) y = 0$ $z = 0.250$ $Z = 0.250$ $Z = 0.250$ $X = 0.231$ $Mg_{II} (4a) y = 0.269$ $z = 0.250$	$x = 0.250$ $B_{I} (4a) y =-0.250$ $z = 0$ $B_{II} (4a) y = 0$ $z = 0.250$ $x = -0.250$ $B_{III} (4a) y = 0.250$ $z = 0$	$\begin{array}{c} x = 0.500 \\ B_{IV}(4a) y = 0.330 \\ z = 0.415 \\ x = 0.500 \\ B_V(4a) y = -0.330 \\ z = 0.415 \\ x = 0.170 \\ B_{VI}(4a) y = 0 \\ \dots z = 0.085 \end{array}$
Fig. 1 Fig.	2 Fig. 3		
Proper	ties		
HabitCleav.Fract.Twin.pseudo-poorconchoi-cubic(111)dalRefr.index/Reflect.Birefr.	Hardn. Dens. Colour Transp. 7 2.95 white, transparent yellow to translucent cent CPI		
$\frac{1.662}{n_{\beta} = 1.667} \frac{(+)}{2V} = 82^{\circ}$ $n_{\gamma} = 1.673$	vitreous white (SPI)		
Figures	Description		
 Fig. 1. Polyhedral partial description of the boracite structure (after Povarennykh, 1972). Fig. 2. Polyhedral description of the high temperature form of boracite which is cubic, F43c, a = 12.1 (after Kostov, 1968). 	The boracite structure is a framework consisting of regular $B^{t}O_4$ tetrahedra and $B^{tr}O_3$ triangles, with large square holes where are located Mg and Cl atoms forming infinite octahedral chains.		
Fig. 3. Polyhedral representation of the Mg octahedron position in a square section of the framework and chain of distorted Mg octa- hedra (after Povarennykh, 1972).	References Kostov (1968) 432, 433. Povarennykh (1972) 462, 463. Wyckoff (1968) Vol. 4, 60-64. Zoltai + Stout (1984) 435.		
Crystallographic	data (continued)		
$\begin{array}{c cccccc} x = 0.170 & x = 0.077 \\ B_{VII}(4a) y = 0 & 0_{IV} & (4a) y = -0.119 \\ z = -0.415 & 0_{IV} & z = 0.320 \\ x = 0 & x = 0.418 \end{array}$	$\begin{array}{c} \mathbf{x} = 0.119 & \mathbf{x} = 0.299 \\ 0_{\text{VIII}}(4a)\mathbf{y} = 0.076 & 0_{\text{XII}}(4a)\mathbf{y} = 0.341 \\ \mathbf{z} = 0.180 & \mathbf{z} = 0.098 \\ \mathbf{x} = 0.201 & \mathbf{x} = 0.278 \end{array}$		
0_{I} (4a) y = 0 z = 0 $2 = 0.479$ $z = 0.479$	0_{IX} (4a) y =-0.159 $2 = 0.098$ 0_{XIII} (4a) y = 0.082 $z = 0.021$		
$\begin{array}{c ccccc} x = 0.082 & x = 0.341 \\ 0_{II} (4a) y = -0.278 & 0_{VI} (4a) y = -0.299 \\ z = 0.479 & z = 0.423 \\ x = 0.159 & x = 0.423 \end{array}$	$\begin{array}{cccc} x = 0.222 & x = 0.524 \\ 0_{X} & (4a) & y = -0.418 & \text{Cl} & (4a) & y = 0 \\ z = 0.021 & z = 0.262 \\ \end{array}$		
$\begin{array}{cccc} x = 0.159 & x = 0.423 \\ 0_{III}(4a)y = 0.201 & 0_{VII}(4a)y = 0.381 \\ z = 0.402 & z = 0.320 \end{array}$	$ \begin{array}{c} x = 0.381 \\ 0_{x1} (4a) \ y = -0.423 \\ z = 0.180 \end{array} $		

	ΡĪ	a = 7.424 Å b = 7.629 Å	Cu (la)		
		c = 9.910 Å		$\mathbf{z} = 0$	z = 0.2430
$\begin{bmatrix} C_{u}^{[6]}(H_{2}^{0})_{4} \propto \\ \infty \end{bmatrix} \begin{bmatrix} A_{1}^{\circ}(OH)_{8} \end{bmatrix}$	(\mathbf{P}^{t})	$\alpha = 68^{\circ}61'$ $\beta = 69^{\circ}71'$	Al _I (2i)	x = 0.2843 y = 0.1766 z = 0.7521	$P_{I} \qquad \begin{array}{c} x = 0.3504 \\ y = 0.3867 \\ z = 0.9429 \end{array}$
		$\gamma = 65^{\circ}08'$ $Z = 1$	Al _{II} (2i)		$\begin{array}{c} x = 0.8423 \\ P_{II} (2i) y = 0.3866 \\ \dots z = 0.4570 \end{array}$
PO 1 Cu AID					
Fig. 1	Fig.	2			
Prope	rties				
Habit Cleav. Fract. Twin.	Hardn. Dens.	Colour Tr	ransp.		
reniform perfect subcon- (001) choidal, britle	6 2.7	blue trans green	lucent		
Refr. index /Reflect. Birefr.	Luster Stread		CPI_		
$n_{\alpha} = 1.61$ (+) $n_{\beta} = 1.62$ $2V = 40^{\circ}$	resinous, white, waxy green		(SPI) 35		
$n_{\gamma} = 1.65$	Haxy groon		55		
Figures	Des	cription			
projected along the <u>b</u> axis $(after Povarennykh, 1972).$	The turquoise mework of $P^{t}O_{4}$ (types of Al octa and $AlO_{4}(OH)_{2}$, water molecules large holes.	nhedra, AlO ₂ (OH with Cu atoms a	two 1) ₃ (H ₂ 0) and		
	$ \begin{array}{c} x = 0.067 \\ 0_{I} (2i) y = 0.363 \\ z = 0.384 \end{array} $	33 ⁰ VIII ^{(2i) y} 11 z :	= 0.9049		
	$ \begin{array}{c} x = 0.80; \\ 0 \\ 11 \\ z = 0.626 \end{array} $	35 0 _{IX} (2i) y =	- 0.04/1		
	$\begin{array}{c} x = 0.27 \\ 0 \\ 111 \\ z = 0.11 \\ \end{array}$	54 ⁰ (2i) y = 29 z =	= 0.6855		
References	$ \begin{array}{c} x = 0.060 \\ 0_{IV} (2i) y = 0.060 \\ z = 0.192 \end{array} $	39 0 _{XI} (2i) y :	= 0.7866 = 0.4067 = 0.1319		
Kostov (1968) 473. Povarennykh (1972) 534, 535.	$ \begin{array}{rcl} x &= 0.23 \\ 0 \\ V & (2i) & y &= 0.07 \\ z &= 0.62 \end{array} $	39 0 _{XII} (2i) y : 37 z :	= 0.32//		
7-14-5 (1084) (50	x = 0.733 0 _{VI} (2i) $y = 0.08$	$\begin{array}{ccc} 34 & \mathbf{x} \\ 57 & 0_{\text{XIII}}(2i) \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{y} \\ \mathbf{x} \\ \mathbf{x}$	= 0.7864 = 0.2281		
Zoltai + Stout (1984) 452. Cid-Dresdner(1965) 87-113.	z = 0.124 x = 0.292	13 Z :	= 0.4323 = 0.5779		

VARISCITE	P cab	a = 9.822 b = 8.561 c = 9.630	AI(8c)		$ \begin{array}{rcl} x &= & 0.04030\\ 0_{II} & (8c) & y &= & 0.58186\\ & z &= & 0.29453\\ & & z &= & 0.29453 \end{array} $
$(H_20)_2 \propto (A1,Fe)^{\circ}$	t PO,]	Z = 8	P (8c)	y = 0.46844 z = 0.35284 x = 0.11180	$ \begin{array}{rcl} x &= & 0.28545\\ 0_{III}(8c) & y &= & 0.51245\\ z &= & 0.29006\\ x &= & 0.14997 \end{array} $
	4_]		0 ₁ (8c)	y = 0.29870 z = 0.31525	0_{IV} (8c) y = 0.47916 z = 0.51224
Fig. 1 F	ig. 2			-	
]	Properties			_	
prismatic good subcon- (001) choidal, splintery <u>Refr. index/Reflect. Birefr.</u>	in. Hardn. Dens 4 2.5 Luster Stre	green, yellow	Transp. transparent to translu- cent 		
$ \begin{array}{c} n_{\alpha} = 1.55 - 1.56 & (-) \\ n_{\beta} = 1.57 - 1.58 & 2V = 48^{\circ} - 54 \end{array} $	o resinous white	e	(SPI)		
$n_{\gamma} = 1.58 - 1.59$			39		
Population	Desc	cription		4	
$\frac{\text{Scorodite}}{(H_2 0)_2 \overset{3}{\approx} \left[\text{Fe}^{\circ} \text{As}^{\dagger} 0_4 \right]}$	The variscite consisting of int octahedra and P ^t (riscite is the mo	terlinked Al 4 tetrahedr	⁰ 0 ₄ (H ₂ 0) ₂ a. Metava-		
Figures	of variscite.				
Fig. 1. Polyhedral represen- tation of the structure of variscite (after Kniep et al., 1977).					
Fig. 2. Polyhedral representa-	Crystallograph	ic data (con	tinued)		
tion of the structure of me- tavariscite, which is a mo- noclinic modification of	$ \begin{array}{c} x = 0.060 \\ 0_V (8c) \ y = 0.325 \\ z = 0.054 \end{array} $	64 H _{II} (8c	x = -0.012		
variscite (after Kniep + Mootz, 1973).	$\begin{array}{c} x = 0.307\\ 0_{VI}(8c) \ y = 0.235\\ z = 0.114 \end{array}$	97 H _{TTT} (8c	x = 0.362 y = 0.201 z = 0.168		
	$H_{I} (8c) = 0.063$ $H_{I} (8c) = 0.310$ $z = -0.028$) ^H IV (8c	x = 0.314 y = 0.334 z = 0.085		
	Re	ferences			
	Kostov (1968) 44 Povarennykh (197 Zoltai + Stout (Kniep et al. (19	72) 531. (1984) 452.			
	Kniep + Mootz (1				

MARIALITE I 4/r	$a = 12.060 \ \text{\AA}$ $c = 7.572 \ \text{\AA}$	Cl (2a)		$\begin{array}{rcl} & x &= 0.4587\\ 0_{I} & (8h) & y &= 0.3483\\ & z &= 0 \end{array}$
(Scapolite)	Z = 2	Si (8h)	x = 0.3388 y = 0.4104	x = 0.3066 0 ₁₁ (8h) $y = 0.1206$
$\begin{bmatrix} Na_4^{[9]} Cl \frac{3}{\infty} \end{bmatrix} \begin{bmatrix} Si_3^t Al^t O_8 \end{bmatrix}$	$ \begin{vmatrix} x &= 0.1340 \\ Na(8h) & y &= 0.2113 \\ z &= 0 \end{vmatrix} $	(Si,A1)(16i)	z = 0 x = 0.3374 y = 0.0851 z = 0.2060	z = 0 x = 0.0517 $0_{TTT}(16i) y = 0.3500$
Habit Cleav. Fract. Twin. prismatic good conchoi- (100) dal Refr. index/Reflect. Birefr.	variable Luster Streak Melt.p.	Transp. transparent to trans- lucent <u>CPI</u> (CPI)		z = 0.2148
$n_{\omega} = 1.540$ (-) $n_{\epsilon} = 1.536$	vitreous white	(SPI) 45		
Figures	Description			
Fig. 1. Polyhedral representation of the marialite structure: (a) viewed along the <u>c</u> axis, and (b) viewed along an <u>a</u> axis (after Povarennykh, 1972).	Its structure consists of work of Si ^{t0} 4 and (Si,A1) ^t hedra, with sodium and chl in the holes.	⁰ 4 tetra-		
	Crystallographic data (c	ontinued)		
	$ x = 0.2293 0_{IV}(16i) y = 0.1289 z = 0.3281 $			
	References			
	Kostov (1968) 404, 405. Povarennykh (1972) 348. Wyckoff (1968) Vol. 4, 43 Zoltai + Stout (1984) 313	1		

$\begin{array}{c} \underline{\text{CHABAZITE}} & \text{R} \overline{3} \\ \hline \\ Ca_2 & \Box_{10} (H_2 0)_{13} & \overset{3}{\infty} \\ \end{array} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix}$	$\begin{bmatrix} t \\ 8 \\ 4 \end{bmatrix} \begin{bmatrix} t \\ 0 \\ 24 \end{bmatrix}$	$ \begin{array}{c} R = 9.42 \ \mbox{\widehat{A}} & a_{\rm H} = 13.78 \ \mbox{\widehat{A}} \\ r = 94^{\circ} 28^{\circ} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$(H_{2}^{0})_{I}$ (6h) $u = 0.244$ v = 0.573 $(H_{2}^{0})_{II}$ (3e) $(H_{2}^{0})_{III}$ (2c) $u = 0.194$ $(H_{2}^{0})_{IV}$ (2c) $u = 0.416$
Fig. 1 Fig		. 3	
Proper		Tranco	
	4-5 2.1 colourless, t	Transp. ransparent to rans- ucent <u>CPI</u> (SPI) 30	
n _e = 1.401			
Figures Fig 1. Silicon-oxygen framework in the chabazite structure. Combina- tion of two-level hexagonal rings with octagonal ones (after Belov, 1963). Fig. 2. Structural scheme of chabazi- te (after Kostov, 1968). Fig. 3. Polyhedral representation of the chabazite structure projected along the <u>c</u> axis (after Povarennykh 1972).	Description Chabazite is a zeolite min structure consists of a fr of (Si,Al)04 tetrahedra w cium atoms and water molec cated in large holes.	amework ith cal-	
	Crystallographic data (co	ontinued)	
References	$\begin{array}{c} x = 0.1044 \\ (Si,A1)(12i) \ y = 0.3330 \\ z = 0.8756 \end{array}$		
Kostov (1968) 414, 417. Povarennykh (1972) 351-352. Wyckoff (1968) Vol. 4, 408-411. Zoltai + Stout (1984) 316. Strunz (1982) 492.	O_{I} (6f) u = 0.264 O_{II} (6g) u = 0.153 O_{III} (6h) u = 0.253 v = 0.896 v = 0.026		
Roberts et al. (1974) 117. Belov (1963) 29.	$0_{IV}(6h)$ u = 0.026 v = 0.324		

[0.001
LEVYNE R 3 m	$a_{R} = 10.87 \frac{\text{A}}{\text{C}}$ (Si,Al) $\alpha = 75^{\circ}42$	
(Ca,Na) $(H_2^0)_6 \propto \begin{bmatrix} 3\\ \infty \end{bmatrix}$	$ \begin{array}{c} Al_{2}^{t} O_{12} \\ Al_{2}^{t} O_{12} \end{array} \right] \begin{array}{c} z_{R} = 3 \\ a_{H} = 13.338\% \\ c = 23.014\% \\ z_{H} = 9 \end{array} $	$\begin{array}{c} x = 0.2396 \\ y = 0 \\ 11^{(18g)} y = 0 \\ z = 1/2 \\ y = 0.0339 \\ y = 0.3495 \\ z = 0.1079 \\ z = 0 \\ x = 0 \\ y = 0.3495 \\ z = 0 \\ y = 0.3495 \\ y = 0 \\ z = 0 = $
Habit Cleav. Fract. Twin. t.abular uneven (0001) Refr. index /Reflect. Birefr.	Hardn. Dens. Colour Transp. 4-4.5 2.09- colourless, white, -2.16 greyish Luster Streak Melt.p. CPI	
$n_{\omega} = 1.496 - 1.505$ (-)	vitreous	Fig. 2
$n_{\epsilon} = 1.491 - 1.500$		
Figures	Description	Crystallographic data (continued)
Fig. 1. Structural scheme of the silica-oxygen framework of the levyne structure (after Barrer + Kerr, 1959, quoted by Bragg + Claringbull, 1965).	Levyne is a zeolite mineral. Its structure consists in a frame- work of layers of single and dou- ble x-membered rings of (Si,Al)0 ₄ tetrahedra. The cations are distri- buted over five sites on the three-	x = 0.2219 $O_{V} (18h) y = -0.2219$ z = 0.1793 x = 0 $Ca_{I}(6c) y = 0$ z = 0.1389
Fig. 2. Coordination of the ca- tions (Ca,Na), The vertical line	fold axis. One site is fully occu- pied by Ca, with the other four	$ \begin{array}{rcl} & x &= & 0 \\ 0.28(C_a,N_a)_{II}(& 6 c) & y &= & 0 \\ & & z &= & 0.2782 \end{array} $
is the ternary axis (after Mer- lino et al., 1975).	sites partially occupied. Three of the four water sites are also only	$ \begin{array}{r} x = 0 \\ 0.27(Ca,Na)_{III}(6c) \ y = 0 \\ z = 0.4095 \end{array} $
	partially occupied.	$ \begin{array}{l} x = 0 \\ 0.15(Ca,Na)_{IV} & (6c) \\ z = 0.4498 \end{array} $
		$ x = 0 0.25(Ca,Na)_V (3b) y = 0 z = 1/2 $
References		
Kostov (1968) 414. Bragg + Claringbull (1965) 351. Merlino et al. (1975) 117-129.		$z = -0.1241$ $x = 0.1222$ $0.73 (H_2^{0})_{II}^{(18h)} y = -0.1222$ $z = 0.2852$
		$ \begin{array}{c} x = 0.2547 \\ 0.54(H_20)_{III}(18h) \ y = -0.2547 \\ z = 0.0187 \end{array} $
		$ \begin{array}{r} x = 0.5429 \\ 0.27 (H_2^{0})_{IV} (18h) \ y = -0.5429 \\ z = -0.0445 \end{array} $

MESOLITE Fdd2	a = 18.4049 Å Na b = 56,655 Å	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$\operatorname{Na}_{2}^{[6]}\operatorname{Ca}_{2}^{[7]}(\operatorname{H}_{2}^{0})_{8} \overset{3}{\infty} \operatorname{Si}_{3}^{t}$	(Q	$ \begin{array}{rrrrr} x = 0.22807 & x = 0.90188 \\ (16b) & y = 0.82737 & \text{Si}_{111}(16b) & y = 0.81979 \\ & z = 0.88068 & z = 0.65040 \end{array} $
2 2 2 0 3		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Fig. 1	Fig. 2	
Prop	erties]
Habit acicular, perfectCleav. perfectFract. (010)tufts of prismatic needles(110) (110)Refr. $n_{\alpha} = 1.505$ $n_{\beta} = 1.506$ $n_{\gamma} = 1.507$ Birefr. (+) (+)	Hardn. Dens. Colour Transp. 5 2.257 colourless, transparent white Luster Streak Melt.p. CPI vitreous, silky	$\begin{array}{c} Crystallographic data (continued) \\ \hline x = 0.00435 & x = 0.95568 \\ Si_V (16b) y = 0.83180 & 0_X (16b) y = 0.80062 \\ z = 0.27740 & z = 0.75319 \\ x = 0.78689 & x = 0.20947 \\ Al_I (16b) y = 0.78025 & 0_{XI} (16b) y = 0.78632 \\ z = 0.61310 & z = 0.95950 \end{array}$
Figures	Description	
 Fig. 1. The structure of mesolite projected along the <u>c</u> axis, sym- metry Fdd2, with tripled <u>b</u> (after Gottardi + Galli, 1985). Fig. 2. Mesolite structure projec- ted down the <u>c</u> axis (after Ar- tioli et al., 1986). 	The mesolite is a zeolite of the natrolite group. It has the same framework topology, and complete Si/Al order. The Na atoms coordinate four oxygen atoms and two water mole- cules in a distorted trigonal prism, and the Ca atoms coordinate four framework oxygen atoms and three water oxygen atoms in a distorted pentagonal bipyramid.	$ \begin{array}{c} {\rm Al}_{\rm II} \ (16b) \ y = 0.80211 \\ {\rm x} = 0.8287 \\ {\rm x} = 0.9287 \\ {\rm x} = 0.9294 \\ {\rm x} = 0.8294 \\ {\rm x} = 0.18220 \\ {\rm x} = 0.18220 \\ {\rm x} = 0.18220 \\ {\rm x} = 0.12288 \\ {\rm x} = 0.02298 \\ {\rm x} = 0.02298 \\ {\rm x} = 0.015228 \\ {\rm x} = 0.98498 \\ {\rm x} = 0.12289 \\ {\rm x} = 0.12289 \\ {\rm x} = 0.12289 \\ {\rm x} = 0.32365 \\ {\rm x} = 0.7262 \\ {\rm x} = 0.37385 \\ {\rm x} = 0.7262 \\ {\rm x} = 0.84325 \\ {\rm x} = 0.16644 \\ {\rm x} = 0.84325 \\ {\rm x} = 0.16644 \\ {\rm x} = 0.85935 \\ {\rm x} = 0.63935 \\ {\rm x} = 0.63935 \\ {\rm x} = 0.37366 \\ {\rm x} = 0.35567 \\ {\rm x} = 0.37366 \\ {\rm x} = 0.37566 \\ {\rm x} = 0.3756 \\ {\rm x} = 0.0781 \\ {\rm x} = 0.0781 \\ {\rm x} = 0.372 \\ {\rm x} = 0.0081 \\ {\rm x} =$
References		$\begin{array}{c} v_{\text{VIII}}(16b) = 0.25339 \\ v_{\text{VIII}}(16b) = 0.25339 \\ z = 0.79447 \\ x = 0.420 \\ x = 0$
Kostov (1968) 418. Artioli et al. (1986) 937-942. Gottardi + Galli (1985) 35, 39.		$\begin{array}{c} 0_{IX} & (10b) \ y = 0.53435 \\ x = 0.8018 \\ H_{IV} & (16b) \ y = 0.8232 \\ H_{IV} & (16b) \ y = 0.8232 \\ z = 0.004 \\ z = 0.004 \\ z = 0.367 \end{array}$
Roberts et al. (1974) 394.		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$ \begin{array}{c} x = 0.1685 \\ H_{VI} (16b) y = 0.8438 \\ z = 0.260 \end{array} $

THOMSONITE Pbmr	ì	a = 13.07 % b = 13.09 % c = 13.25 %	x = 0.069 (Ca,Na)(4h) $y = 0$ z = 0.25	$(H_2O)_{III}(4h) = 0$ z = 0.75
Na Ca ₂ (H ₂ 0) ₆ $\stackrel{3}{\infty}$ sit	A1 ^t ₅ 0 ₂₀	Z = 2	$(H_20)_1$ (4e) $y = 0.139$ z = 0	x = 1/4 (Si,Al) ₁ (4g) $y = 1/4$ z = 0.875
	<u> </u>	x = 1/2 Ca(2c) $y = 0$ z = 1/2	$ \begin{array}{c} x = 0.403 \\ (\hat{H}_2 0)_{11}(4h) \ y = 0 \\ z = 0.75 \end{array} $	$ \begin{array}{c} x = 0.125 \\ (\text{Si,Al})_{11} (8i)y = 0.194 \\ \dots z = 0.500 \end{array} $
H ₂ 0 000Ca			a,13.1	
(a) Fig. 1	(ь)	Fig. 2		
Prop	erties			
Habit Cleav. Fract. Twin.	Hardn. Dens.	Colour Trans	_	
prismatic, perfect uneven, (110) acicular, (010) subcon-	5-5.5 2.25- -2.40	colourless, transpa white, to tran		
compact choidal Refr. index/Reflect. Birefr.	Luster Streak	yellowish lucent Melt.p. CPI	_	
$n_{\alpha} = 1.497 - 1.530$ (+)	vitreous, unco-		_	
$n_{\beta} = 1.513 - 1.533$ $2V = 42^{\circ} - 75^{\circ}$ $n_{\gamma} = 1.518 - 1.544$	pearly loured			
Figures	Desc	ription		
Fig. 1. Polyhedral representation of the thomsonite structure (a)		s a zeolite of th . Its framework :		
viewed along the <u>c</u> axis, and	similar to that			
(b) two thomsonite chains at the				
same height with their (Si,Al) order. Striped tetrahedra are				
occupied by Al, white tetrahedra				
by Si (after Gottardi + Galli, 1985).				
Fig. 2. Structural scheme of the thomsonite structure. Squares				
represent (Si,Al) ^t 0 ₄ tetrahe-				
dral chains viewed along their elongation (after Kostov, 1968).	Crystallograph	ic data (continue		
References	x = 0 (Si,Al) _{III} (8i)y = 0 z = 0	$125 0_{\text{IV}} (8i) y = 0$.250 $z = 0$	0.119 0.375	
Kostov (1968) 418, 419. Povarennykh (1972) 355.	$ \begin{array}{ccc} x &= 1 \\ 0 \\ $	$.361 0_V (8i) y = 0$	0.139	
Wyckoff (1968) Vol. 4, 414-415. Gottardi + Galli (1985) 58, 59.	$0_{II}(4h) \qquad \begin{array}{l} x = 0 \\ y = 0 \\ z = 0 \end{array}$	0_{VI} (8i) y = (0.194	
	$0_{III}(8i) \qquad \begin{array}{l} \mathbf{x} = 0\\ \mathbf{y} = 0\\ \mathbf{z} = 0 \end{array}$.194		
		ermination based th c' = 6.61Å, Z =		

$\begin{array}{c} \underline{\text{LAUMONTITE}} \\ Ca(H_2^0)_4 & \infty \\ \end{array} \begin{bmatrix} \text{Si}_4^t & \text{A} \\ \end{bmatrix}$	C 2 a = 14.90 b = 13.17 c = 7.55 $\beta = 111^{\circ} 30$ z = 4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
(a)	Fig. 1 (b)	
	-6	
Pr	operties	Doct port
HabitCleav.Fract.Twinprismaticperfectuneven(100)(010)(110)Refr.index / Reflect.Birefr. $n_{\alpha} = 1.51$ (-)(-) $n_{\beta} = 1.52$ 2V = 25°45°	3-4 2.3 white tran	Transp. psparent cranslu- Fig. 2 CPI (SPI) 33
$n_{\gamma} = 1.52$		
Figures	Description	
Fig. 1. Structure of laumon- tite: (a) projected along the <u>b</u> axis, and (b) projec- tion along the <u>c</u> axis (after Povarennykh, 1972).	Laumontite is a zeolite min having a framework of (Si,Al) hedra with four -, six - and - sided rings.	04 tetra-
Fig. 2. Structure of laumon-	Crystallographic data (conti	nued)
tite projected along the <u>c</u> axis (after Yakubovich + Simonov, 1985).	$ \begin{array}{c} x = 0.122 \\ \text{Al}_{II}(4c) \ y = 0.455 \\ z = 0.226 \end{array} \begin{array}{c} 0_{VIII} \\ \textbf{(4c)} \ y \end{array} $	x = 0.161 y = 0.108 z = 0.741
	0_{T} (4c) y = 0.270 0_{TX} (4c) y	c = 0.142 y = 0.426 z = 0.689
	0_{TT} (4c) y = 0.153 0_{Y} (4c) y	x = 0.051 y = 0.267 z = 0.760
	$0_{TTT}(4c) y = 0.387 0_{TT}$ (4c) y	x = 0.008 y = 0.460 z = 0.218
References	0_{TV} (4c) y = 0.141 0_{YTT} (4c) y	x = 0.010 y = 0.085 z = 0.210
Kostov (1968) 422.	0_v (4c) y = 0.388 (H ₂ 0) _T (4c) y	x = 0.383 y = 0.137 z = 0.254
Povarennykh (1972) 357. Zoltai + Stout (1984) 316. Yakubovich + Simonov (1985) 624-626.	$\begin{array}{c} x = 0.344 \\ 0_{VI} (4c) y = 0.079 \\ z = 0.779 \end{array} (H_2 0)_{II} (4c) y \\ \end{array}$	c = 0.377
Amirov et al. (1967) 121-124. Structure Reports (1975) Vol. 32A, 482,483.	$ \begin{array}{c} x = 0.330 \\ 0_{VII}(4c) y = 0.450 \\ z = 0.761 \end{array} $	

GISMONDINE P 2	$1^{/C}$ a = 10.02 Å Ca (4e) b = 10.62 Å	$ \begin{array}{l} x = 0.720 \\ y = 0.077 \\ z = 0.354 \end{array} \begin{array}{c} x = 0.911 \\ (H_2 0)_{III} (4e) \\ z = 0.501 \end{array} $
(Gismondite)	$c = 9.84$ Å $(H_2O)_T$ (4e)	
$Ca (H_2^{0})_4 \propto \left[Si_2^{t} Al_2^{t}\right]$	$\begin{bmatrix} 0_8 \end{bmatrix} \begin{array}{c} \beta = 92^\circ 25^\circ \\ z = 4 \\ (H_2 0)_{II}(4e) \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
H +R BHA DAR OLA Fig. 1		
Prope	rties	
Habit Cleav. Fract. Twin. bipyra- distinct (110) midal (101) (001) Refr. index/Reflect. Birefr. $n_{\alpha} = 1.520$ -1.521 (-) $n_{\gamma} = 1.522$ -1.525 $2V \approx 86^{\circ}$	Hardn.Dens.ColourTransp.4.52.27colourless, transparent whiteto trans- lucentLusterStreakMelt.p.CPIvitreous	
Figures	Description	
Fig. 1. Polyhedral representation of the gismondine structure pro- jected along the <u>c</u> axis and sho- wing the coordination of calcium. Only the lower half of the cell is represented (after Bragg + Cla- ringbull, 1965).	The structure of gismondine, which is a zeolite, consists of a framework of SiO_4 and AlO_4 tetra- hedra, which form three types of four-membered rings. Eight-membered rings define aperture channels pa- rallel to $[100]$ and $[001]$, within which Ca and water molecules are located.	
	Crystallographic data (continued)	
	$\begin{array}{cccc} x = 0.415 & x = 0.097 \\ \text{Si}_{1} (4e) \ y = 0.113 & \text{Al}_{1} (4e) \ y = 0.113 \\ z = 0.182 & z = 0.170 \end{array}$	
	$\begin{array}{cccc} x = 0.908 & x = 0.590 \\ \text{Si}_{II}(4e) \ y = 0.870 & \text{Al}_{II}(4e) \ y = 0.867 \\ z = 0.160 & z = 0.149 \end{array}$	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
References Kostov (1968) 408.		
Wyckoff (1968) Vol. 4, 427, 428.		
Bragg + Claringbull (1965) 367. Roberts et al. (1974) 237.		
	$\begin{array}{c} 0_{IV} (4e) \ y = 0.407 \\ z = 0.303 \end{array} \begin{array}{c} 0_{VIII}(4e) \ y = -0.005 \\ z = 0.226 \end{array}$	

<u>HEULANDITE</u> C Ca $(H_2^0)_6 \propto \left[Si_7^t Al\right]$	2/m t 0 ₁₈]	b = 17.95 Å			1,Al _{7.9} ,Si _{28.5} ,O ₇₂ · 24.5 H ₂ ional parameters;	
Fig. 1	(a)	Fig.	(b) (b)			
Prope	rties					
Habit platyCleav. perfectFract. subcon- (010)Twin.Refr. index/Reflect.Birefr. $n_{\alpha} = 1.49$ (+) $n_{\beta} = 1.50$ $2V = 35^{\circ}$ $n_{\gamma} = 1.50$ $2V = 35^{\circ}$	Hardn. Dens. 3.5-4 2.15 Luster Streak vitreous white	Colour white,Transp. transparent to trans- lucentMelt.p.CPI (SPI) 32				
Figures	Descr	iption	-	LUO	g. 3	
 Fig. 1. Schematic view of part of the framework of the heulandite structure (after Merkle + Slaugh- ter, 1968). Fig. 2. Structure of heulandite: (a) hydrated where the channels are blown up, and (b) dehydrated 	Its structure commework of (Si,Al)0 ₄ tetrahedra, ns and water mole-	Crysta Si(1) Si(2) Si(3)		data (continued) x = 0.078 0.6 0(12) y = 0 x = 0.0890 x = 0.042 z = 0.095 0.4 0(12') y = 0 z = 0.095 0.4 0(12') y = 0 z = 0.809	86 01 99 25 27 55
where the channels are flattened (after Gottardi + Galli, 1985). quoted by Gottardi + Galli, 1985,	Crystallographic x = 0.1154 0(10) y = 0.3734	: data (continued) x = 0.0096 0.3 H(7) y = 0.0921	Si(4)		$\begin{array}{c} z = 0.809 \\ x = 0.034 \\ 0.4 \ H(2') \ y = 0 \\ z = 0.818 \\ x = 0.123 \\ 0.4 \ H(2'') \ y = 0 \end{array}$	41 80
271). Fig. 3. The structure of natural heulandite viewed along the \underline{c}	z = 0.4000 x = 0.2214 0(11) y = 1/2 z =-0.0174 x = 0.2312	z = 0.6250 $x = 0.0984$ $y = 0$ $z = 0.2798$ $x = 0.0991$	0(1)	$ \begin{aligned} z &= 0 \\ x &= 0.1968 \\ y &= 1/2 \\ z &= 0.4551 \\ x &= 0.2315 \\ y &= 0.1202 \end{aligned} $	z = 0.816 x = 0.075 0.9 0(13) y = 0.417 z = 0.967 x = 0.082	58 79 78 26
axis (after Hambley + Taylor,	H(1) $y = 0.4627$ z = -0.0925		0(2)	y = 0.1202 z = 0.6126 x = 0.1828	$\begin{array}{rll} 0.4 & H(3) & y &= 0.385 \\ z &= 0.980 \\ x &= 0.086 \end{array}$	08
1984).	$\begin{array}{rcl} x &= & 0.1567\\ 0.6 & CS(1) & y &= & 0\\ & z &= & 0.6701 \end{array}$	z = 0.3766	0(3)	y = 0.1544 z = 0.8835 x = 0.2382	0.4 H(4) $y = 0.398$ z = 0.094 x = 0.064	85 49
	$\begin{array}{rcl} x &= 0.0418\\ 0.52 \ \text{CS}(2) & y &= 1/2\\ z &= 0.2069 \end{array}$	$\begin{array}{rcl} & \mathbf{x} &= & 0.0297 \\ 0.28 & \mathrm{H}(8^{\prime}) & \mathbf{y} &= & 0 \\ & & \mathbf{z} &= & 0.2939 \end{array}$	0(4)	y = 0.1067 z = 0.2539 x = 0	$\begin{array}{rcl} 0.5 & H(3') & y = 0.361 \\ z = 0.932 \\ x = 0.130 \end{array}$	12 29
	Refe	rences	0(5)	y = 0.3254 z = 1/2	0.5 H(4') = 0.442 z = 0.970	21
	Kostov (1968) 41	4.	0(6)	x = 0.0821 y = 0.1591 z = 0.0615	$ \begin{array}{rcl} x &= 0 \\ 0(14) & y &= 1/2 \\ z &= 1/2 \end{array} $	
	Zoltai + Stout (1984) 317.	0(7)	x = 0.1282 y = 0.2347 z = 0.5506	$ \begin{array}{r} x = 0 \\ H(5) \\ z = 1/2 \\ \end{array} $	48
	Gottardi + Galli Hambley + Taylor		0(8)	x = 0.0098 y = 0.2669	x = 0.028 0;3 0(15) $y = 0.095$	51
	Merkle + Slaught	er (1968) 1131.	0(9)	z = 0.1858 x = 0.2102 y = 0.2542 z = 0.1761	z = 0.497 x = 0.034 0.3 H(6) y = 0.136 z = 0.500	44 69

Party and a summary of the second state of the		
$\frac{\text{STILBITE}}{(\text{Desmine})} \begin{array}{c} \text{C } 2/\text{m} \\ \text{C } 2/\text{m} $	$b = 18.24 \times c = 11.27 \times \beta = 128^{\circ}.0 \text{Si}$ $A1 \begin{bmatrix} t \\ 0 \\ 0 \\ 0 \end{bmatrix} = 128^{\circ}.0 \text{Si}$	$ \begin{array}{c} (\text{for } Ca_{4.18}^{\text{N}a}A_{4.18}^{\text{M}g}, 18 34.07 \text{ H}_2\text{O} \\ & & \text{Si}_{25.71}^{\text{A1}}10.30^{\text{O}}72 \\ & & \text{x} = 0.4830 \\ & \text{x} = 0.3042 \text{Si}_{1\text{II}}(8j) \text{ y} = 0.0893 \\ & & \text{z} = 0.2420 \\ & \text{i}_{1\text{I}}(8j) \\ & \text{y} = 0.3097 \text{Si}_{1\text{V}}(8j) \text{ y} = 0.3166 \\ & & \text{z} = 0.2619 \cdots \text{z} = 0.5013 \end{array} $
Fig. 1	(a) Fi	g. 2 (b)
		4
HabitCleav.Fract.Twin.prismatic,perfectsubcon-striated(010)choidalRefr.index /Reflect.Birefr. $n_{\alpha} = 1.49$ (-) $n_{\beta} = 1.50$ $2V = 30^{\circ}-50^{\circ}$ $n_{\gamma} = 1.50$ $2V = 30^{\circ}-50^{\circ}$	Hardn. Dens. Colour Transp. 3.5-4 2.15 grey transparent to trans- Luster Streak Melt.p. Lucent pearly grey (SPI) 31	
Figures	Description	
 Fig. 1. Polyhedral representation, in perspective, of the stilbite structure (after Zoltai + Stout, 1984). Fig. 2. Representations of the stilbite framework: (a) viewed along the <u>a</u> axis, and (b) along the [102] axis (after Galli, 1971). 	Stilbite is a zeolite mineral. Its structure consists of a frame- work of (Si,Al)0 ₄ tetrahedra, with Ca and Na atoms and water molecu- les located in relatively open channels.	$ \begin{array}{c} \mbox{Crystallographic data (continued)} \\ \hline \\ \mbox{Si}_V (4g) & x = 0 & x = 0 \\ \mbox{Si}_V (4g) & y = 0.2610 & 0_X (4g) & y = 0.3509 \\ \mbox{z} = 0 & x = 0 \\ \mbox{x} = 0.4645 & x = 0.2805 \\ \mbox{0}_I & (8j) & y = 0.2911 & Ca (4i) & y = 0 \\ \mbox{x} = 0.0842 & z = 0.0949 \\ \mbox{x} = 0.0842 & z = 0.0949 \\ \mbox{x} = 0.0164 & x = 0.5055 \\ \mbox{0}_{II} & (8j) & y = 0.3162 & 0.22Na(8j) & y = 0.0559 \\ \mbox{0}_{II} & (8j) & y = 0.3162 & 0.22Na(8j) & y = 0.0392 \\ \mbox{x} = 0.0512 & x = 0.0392 \\ \mbox{x} = 0.0512 & x = 0.1347 \\ \mbox{0}_{III} & (8j) & y = 0.1326 & 0.91H_2O_I(8j) & y = 0.3266 \\ \mbox{0}_{IV} & (8j) & y = 0.1390 & 0.91H_2O_I(8j) & y = 0.3269 \\ \mbox{0}_{V} & (8j) & y = 0.2305 & 0.85H_2O_III & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3796 & H_2O_IV(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & 2^{-}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(4i) & y = 0 \\ \mbox{0}_{V} & (8j) & y = 0.3714 & p_{0}D_{V}V(5i) & y = 0.2416 \\ \mbox{0}_{V} & (8j) &$
	References	$\begin{array}{cccc} x = 0.3406 & x = 0.4028 \\ 0_{1077} & (8j) & y = 0.3162 & H & 0 & (4) & y = 0.5000 \end{array}$
	Kostov (1968) 412. Zoltai + Stout (1984) 317, 319. Galli (1971) 833-841.	$\begin{array}{c} \text{VII} & z = 0.1914 & \text{II}_2^{2V} (4^{\circ}) y = 0.5003 \\ & x = 0.3157 \\ \text{O}_{\text{VIII}} (8j) y = 0.1119 & x = 0.1712 \\ z = 0.5024 & \text{II}_2^{O_6} (4) y = 0.5000 \\ & x = 0.1863 & z = 0.1040 \\ \text{O}_{\text{IX}} (4i) y = 0 \\ z = 0.4876 \end{array}$

8.4.6. Structures not classified

$\frac{\text{HESSITE}}{\text{P 2}_{1}/c}$		b = 4.48 Å	Ag _I (4e) Ag _{II} (4e) Te(4e)	x=0.332
(a) Fig. 1	40 00 00 40 00 00 40 00 00 40 00 00 50 00 5000 50 00 50 00	Fig. 2	Ag Te	
pseudo- cubic, massive, (100) compact Refr. index /Reflect. Birefr. I	2.3 8.24- 10 -8.45 st uster Streak Me	blour <u>Transp.</u> aad opaque teel rey, opaque teel slt.p. <u>CPI</u> S ⁰ -959 [°] C		
Figures	Descr	iption		
 Fig. 1. (a) Perspective view of the hessite structure, and (b) projection on (010) (after Frueh, 1959). Fig. 2. Perspective projection along the <u>b</u> axis of the structure of hessite (after Lee + + Boer, 1993). 	Ag atoms are app trahedrally coor Te atoms. Hessit as a strongly di			
	Kostov (1968) 15 Povarennykh (197 Wyckoff (1963) V Frueh, Jr. (1959 Lee+Boer (1993)	72) 211. 701. 1, 340. 9) 44-52. 1444-1446. 1944) Vol. 1, 18.	4.	

<u>CHALCOCITE</u> P2		$\begin{array}{cccccc} x &= 0.9575 & x = 0.7917 \\ S_{I} & (4e) & y = 0.0829 & S_{IV}(4e) & y = 0.0817 \\ z &= c.8422 & z = 0.0060 \end{array}$
(Chalcosine)	$\begin{array}{c} c = 13.494 \ 8\\ \beta = 116^{\circ}35'\\ Z = 48 \end{array}$	$ \begin{array}{c} x = 0.9413 \\ S_{II} \ (4e) \ y = 0.0768 \\ z = 0.3462 \end{array} \begin{array}{c} x = 0.4491 \\ S_{V} \ (4e) \ y = 0.0883 \\ z = 0.6133 \end{array} $
Cu ^[2] Cu	S S	$\begin{array}{cccccc} x &= 0.7940 & x = 0.4444 \\ S_{III}(4e) & y = 0.0824 & S_{VI}(4e) & y = 0.0726 \\ z &= 0.5068 & \dots & z = 0.0957 \end{array}$
Fig. 1	Fig. 2	Fig. 3
Prope	rties	Crystallographic data (continued)
<u>Habit Cleav. Fract. Twin.</u> short conchoi- prismatic,	Hardn. Dens. Colour Transp. 2.5 5.5- blackish opaque	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
hick dal tabular <u>Refr. index/Reflect.</u> <u>Birefr.</u>	-5.8 grey, black Luster Streak Melt.p. CPI	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	metallic blackish 1130 ⁰ C	$ \begin{array}{c ccccc} x=0.6960 & x=0.2578 \\ s_{IX} & (4e)y=0.2481 & Cu_{XII} & (4e)y=0.2357 \\ z=0.7220 & z=0.8507 \end{array} $
Figures	Description	$\begin{bmatrix} x=0.5479 & x=0.8209 \\ (4e)y=0.2237 & Cu_{XIII} & (4e)y=0.0358 \\ z=0.4167 & z=0.6830 \end{bmatrix}$
Fig. 1. Two different slabs, A and B, of the chalcocite structure	The structure of chalcocite is possibly based on a hexagonal clo-	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(low form) viewed along the <u>c</u> axis CuS_3 are shown as shaded triangles	sest packing of sulphur atoms, with copper atoms occupying mainly trian-	$ \begin{vmatrix} x = 0.0483 & x = 0.0261. \\ S_{XII} & (4e)y = 0.2324 & Cu_{XV} & (4e)y = 0.2045 \\ z = 0.1332 & z = 0.7722 \end{vmatrix} $
and distorted CuS ₄ as line-hatched tetrahedra (after Evans Jr., 1979).	gular interstices, and some te- trahedral voids. It is monoclinic	$ \begin{bmatrix} x=0.8645 & x=0.5026 \\ Cu_{I} & (4e)y=0.2496 & Cu_{XVI} & (4e)y=0.0795 \\ z=0.2927 & z=0.2834 \end{bmatrix} $
Fig. 2. The partial structure of high chalcocite (> $103^{\circ}C$) showing	but a pseudo-orthorhombic cell has been described Abm2 a = 11.92 Å,	$ \begin{vmatrix} x=0.6171 & x=0.3022 \\ Cu_{II} & (4e)y=0.0740 \\ z=0.6767 & Cu_{XVII} & (4e)y=0.0434 \\ z=0.6230 \end{vmatrix} $
the characteristic CuS laylers. Dashed lines indicates ortho-hexa- gonal unit cell (after Evans Jr.,	b = 27.84 Å, c = 13.44 Å and Z = 96 (according to Strunz, 1982,108). The high temperature form (>103°C) of	$\begin{array}{c} \begin{array}{c} x=0.6102 & x=0.3050 \\ Cu_{III} & (4e)y=0.0916 & Cu_{XVIII}(4e)y=0.0431 \\ z=0.1677 & z=0.1339 \end{array}$
1979). Fig. 3. Structure of the high-tempe-	chalcocite is hexagonal P6 ₃ /mmc, a = 3.96 Å, c = 6.72 Å, Z = 2,	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
rature form of chalcocite, P6 ₃ /mmc (after Povarennykh, 1972, 262),	which corresponds to an hexagonal closest packing of sulphur atoms	$ \left \begin{array}{c} x=0.1276 & x=0.9992 \\ Cu_V & (4e)y=0.0849 & Cu_{\chi\chi} & (4e)y=0.0856 \\ z=0.9451 & z=0.2166 \end{array} \right $
Pafaranas	with copper in triangular in- terstices, but with an entirely	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
References Kostov, 1968, 151 Povarennykh, 1972, 241-242, 262	different arrangement (Evans Jr., SR, 45-A, 64)	$\begin{bmatrix} x=0.9345 & x=0.7037\\ Cu_{VII} & (4e)y=0.1233 & Cu_{XXII} & (4e)y=0.1944\\ z=0.9923 & z=0.5659 \end{bmatrix}$
Wyckoff, Vol. 1, 1963, 332-333 Ramdohr + Strunz, 1980, 417		x=0.9414 x=0.2028 Cu _{VIII} (4e)y=0.1412 Cu _{XXIII} (4e)y=0.2069 z=0.5099 z=0.1398
Palache et al., Vol. 1, 1955, 187-188		$\begin{bmatrix} x=0.7615 & x=0.1308\\ Cu_{IX} & (4e)y=0.2504 & Cu_{XXIV} & (4e)y=0.0966\\ z=0.4109 & z=0.6791 \end{bmatrix}$
Ingerson, 1955, table II Evans Jr., 1979, Zeit. Krist., <u>150</u> , 299-320		2=0.0/91

	Mrt	(22)
BISCHOFITE C 2/	, a = 9.90 A -	(2a)
	$m \qquad b = 7.15 \ \ x \\ c = 6.10 \ \ x \\ d = 6.10 \ \ x \ $	(4i) $\begin{array}{l} x = 0.318 \\ z = 0.615 \end{array}$
	$\beta = 93^{\circ} 20' (H_2^{\circ})_{I}$	(4i) x = 0.20
$Mg^{O}Cl_{2}(H_{2}O)_{6}$	p = 93 200 + 271	z = 0.11 x = 0.96
		$ \begin{array}{l} x = 0.90 \\ (8g) y = 0.20 \\ z = 0.225 \end{array} $
	2 11	z = 0.225
mark on a	- P	
	(201)	
(010)	and the second sec	
	Si i	
	(ŽOI) Č	
Siger -		
(a) (Fig. 1	b)	
Prop	erties	
Habit Cleav. Fract. Twin.	Hardn. Dens. Colour Transp.	
prismatic, none conchoi-	1-2 1.56 colourless, transpa-	
granular, dal to	white rent to	
fibrous uneven Refr. index/Reflect. Birefr.	translucent Luster Streak Melt.p. CPI	
n 1 405	vitreous,	
$n_{\alpha} = 1.495$ (+) $n_{\beta} = 1.507$ $2V = 79^{\circ}24'$	dull	
$n_{\gamma} = 1.528$		
Figures	Description	
Fig. 1. Structure of bischofite in	The structure of bischofite has	
projection:(a) on (201), and (b)	distinct $Mg(H_20)_6Cl_2$ groups formed	
on a plane perpendicular to the	by $Mg(H_2O)_6$ octahedra, with Cl lo- cated at the octahedron faces above	
previous one (after Povarennykh,	and below. Six Cl atoms not in this	
1972).	group form a ring in a plane perpen	
	dicular to the axis of the molecule.	
	This structure is possibly based	
	on a defect close packing of Cl and	
	water molecules.	
	References	
	Kostov (1068) 105	
	Kostov (1968) 195.	
	Povarennykh (1972) 639. Andress + Gundermann (1934) 345-369.	
	Roberts et al. (1974) 72.	
	Strukturbericht (1937) Vol. 3, 124,	
	125, 489-491.	

VIVIANITE C 2/m	a = 10.08 Å b = 13.43 Å		$ \begin{array}{c} x = 0.155 \\ 0_{I} (4i) y = 0 \\ z = 0.350 \end{array} $
$Fe_3^{O}P_2^{t} O_8(H_2O)_8$	c = 4.70 $\beta = 104^{\circ} 30^{\circ}$		$ \begin{array}{c} x = 0.400\\ 0_{\text{II}} (4i) y = 0\\ z = 0.750 \end{array} $
$Fe_{3}^{\circ}P_{2}^{\circ}O_{8}^{\circ}(H_{2}^{\circ}O)_{8}$	Z = 2	x = 0.315 P (4i) y = 0 z = 0.410	$ \begin{array}{c} x = 0.365 \\ 0_{III}(8j) y = 0.100 \\ \vdots z = 0.245 \end{array} $

Fig. 2

Prope	erties	-
HabitCleav.Fract.Twin.reniform, perfectsectilefibrous(010)Refr.index/Reflect.Birefr. $n_{\alpha} = 1.579$ (+) $n_{\beta} = 1.603$ $2V = 83^{\circ}$ $n_{\gamma} = 1.633$ PopulationErythriteCo ₃ ^o As ₂ ^t 0 ₈ (H ₂ 0) ₈ Köttigite $Zn_3^{\circ} As_2^{t} 0_8 (H_20)_8$ Parasym- plesiteFe ³ As ₂ 0 ₈ (H ₂ 0) ₈ HoernesiteMg ^o ₃ As ₂ 0 ₈ (H ₂ 0) ₈ Fig. 1. Structure of vivianite, showing the Fe0 ₂ (0H) ₄ octahedra and the P0 ₄ tetrahedra forming layers parallel to (010) (after Povarennykh, 1972).	Hardn. Dens. Colour Transp. 2 2.58 colourless, transparent to trans- lucent Luster Streak Melt.p. CPI pearly, white (SPI) vitreous 38 Description The vivianite structure is proba- bly based on a distorted closest packing of oxygen and water molecu- les, with iron atoms in octahedral voids, and phosphorus atoms in te- trahedral voids.	Fig.
 Fig. 2. Layer of the clino-symplesite structure (after Mori + Ito, 1950, quoted in Structure Reports, 1954, <u>13</u>). Fig. 3. Polyhedral representation of the vivianite structure, in a section parallel to (001) (after Fedji et al., 1980, quoted in Structure Reports, 1982, <u>46</u>A). 	Crystallographic data (continued) (OH) _I (8j) y = 0.100 (OH) _{II} (8j) y = 0.220 z = 0.820 z = 0.750 References Kostov (1968) 453. Povarennykh (1972) 523, 558. Wyckoff (1965) Vol. 3, 852-854. Zoltai + Stout (1984) 451. Structure Reports (1954) vol. 13, 308. Structure Reports (1982) Vol. 46A, 327.	

CARNALLITE P K [°] Mg [°] Cl ₃ (H ₂ C	nna $a = 16.119 \ \text{R}$ K_{I} (4c) y $b = 22.472 \ \text{R}$ z $c = 9.551 \ \text{R}$ K_{TT} (8e) y	$\begin{array}{c} = & 0.08860 \\ = & 0.15668 \\ = & 0.74995 \end{array} \begin{array}{c} x = & 0.23939 \\ C1_{I} (4d) y = & 1/4 \\ z = & 3/4 \\ = & 0.25657 \end{array}$
Fig. 1	Fig. 2	
	Properties	Fig. 3
Habit pyramidal,Cleav. Fract.pyramidal, tabular,none conchoi- massive, granularRefr. index /Reflect.Biref $n_{\alpha} = 1.4665$ $n_{\beta} = 1.4753$ $\gamma = 1.4937$ (+) $V =$ FiguresFig. 1. Polyhedral drawing of the carnallite structure formed by KCl ₆ oc-	Twin. Hardn. Dens. Colour Transp. 2.5 1.602 colourless, transparent white, to transpreddish lucent Tr. Luster Streak Melt.p. CPI shining, 70° 3' greasy Description The structure of carnallite consists of a network of face-sharing KCl ₆ octahedra linked to Mg(H ₂ 0) ₆ octahedra.	
<pre>tahedra and Mg(H₂O)₆ oc- tahedra (hydrogen not shown) (after Schlemper et al., 1985). Fig. 2. Unit cell content of the brom-carnallite</pre>	Crystallographic data (continued)	
structure projected along the an <u>a</u> axis (old and incorrect structure deter- mination by Andress +	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Saffe, 1939, quoted in	$ \begin{array}{c} \text{C1}_{\text{IV}} & (8e) \ y = 0.08176 \ 0_{\text{V}} \\ z = 0.25235 \end{array} \begin{array}{c} (8e) \ y = 0.01041 \\ z = 0.6500 \end{array} $	References
<pre>Strukturbericht, 1943, <u>7</u>). Fig. 3. Unit cell content of the brom-carnallite struc- ture projected along the <u>c</u> axis (old and incorrect structure determination, by Andress + Saffe, 1939,</pre>	$ \begin{array}{c} x = 0.01987 \\ Cl_V & (8e) \begin{array}{c} y = 0.24957 \\ z = 0.97686 \end{array} \end{array} \\ \begin{array}{c} v \\ 0_I \end{array} \\ \begin{array}{c} x = 0.1308 \\ z = 1/4 \end{array} \\ \begin{array}{c} v \\ z = 0.3834 \\ y \\ z = 1/4 \end{array} \\ \begin{array}{c} v \\ 0_{II} \end{array} \\ \begin{array}{c} x = 0.3834 \\ y \\ z = 1/4 \end{array} \\ \begin{array}{c} v \\ z \\ 0_{II} \end{array} \\ \begin{array}{c} x = 0.3834 \\ y \\ z = 1/4 \end{array} \\ \begin{array}{c} v \\ z \\ 0_{IX} \end{array} \\ \begin{array}{c} x = 0.5448 \\ y \\ z \\ z \\ 0_{IX} \end{array} \\ \begin{array}{c} x = 0.5448 \\ y \\ z \\ z \\ 0_{IX} \end{array} \\ \begin{array}{c} x = 0.5448 \\ y \\ z \\ z \\ 0_{IX} \end{array} \\ \begin{array}{c} x = 0.5448 \\ z \\ z \\ 0_{IX} \end{array} \\ \begin{array}{c} x \\ z \\ z \\ z \\ z \\ z \\ z \\ 0_{IX} \end{array} \\ \begin{array}{c} x \\ z \\ z \\ z \\ z \\ z \\ 0_{IX} \end{array} \\ \begin{array}{c} x \\ z \\ z \\ z \\ z \\ z \\ z \\ 0_{IX} \end{array} \\ \begin{array}{c} x \\ z \\$	Kostov (1968) 200. Schlemper et al. (1985) 1309- -1313. Strukturbericht (1943) Vol. 7, 19-21. Roberts et al. (1974) 108.
quoted in Strukturbericht, 1943, Vol. 7).	$\begin{array}{c} x = 0.2554 & x = 0.4179 \\ y = 0.20704 & z = 0.4179 \\ z = 0.4384 & x = 0.4179 \\ z = 0.4384 & z = 0.13155 \\ z = 0.5580 \\ \end{array}$ $\begin{array}{c} x = 0.3956 \\ y = 0.16912 \\ z = 0.8444 \end{array}$ + 18 hydrogen positions, each in (8e)	

$ \begin{array}{c} \underline{ALUNITE} & R 3 m \\ Al_{3}^{o} S_{2}^{t} K O_{8} (OH)_{6} \end{array} $	$a_{R} = 7.05 X$ K (3a) $\alpha = 59^{\circ}2^{\circ}$ $Z_{R} = 1$ A1 (9b) $a_{H} = 6.96 X$	$z = 0 \qquad x = -0.305$ $x = 0.167 \qquad x = 0$ $y = -0.167 \qquad 0_1 (3a) \ y = 0$ $z = 0.167 \qquad z = 0.39$ $x = 0 \qquad x = 0$
Fig. 1		So a Contraction of the contract
Prop Habit Cleav. Fract. Twin.	Hardn. Dens. Colour Transp.	62
rhombo- hedral, good conchoi- fibrous (0001) dal	3.5-4 2.6- white, transparent	+ a,730 -
Refr. index/Reflect. Birefr.	-2.9 grey to trais- lucent Luster Streak Melt.p. CPI	Fig. 2
$n_{\omega} = 1.572 \qquad (+)$ $n_{\epsilon} = 1.592$	vitreous (SPI) 71	
Population	Description	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	The structure of alunite is pro- bably based on a distorted closest packing of 0, 0H and K, with Al atoms in octahedral voids and S atoms in tetrahedral interstices.	
Figures		
Fig. 1. Polyhedral representation	Crystallographic data (continued) x =-0.215 x =-0.150	
of the alunite structure projec- ted along the <u>c</u> axis (after Wang et al., 1965). Fig. 2. Structure of jarosite,	$\begin{array}{ccccc} x = -0.215 & x = -0.150 \\ 0_{III}(9b) & y = 0.215 & (0H)_{I} & (9b) & y = 0.150 \\ z = 0.058 & z = 0.126 \\ x = 0.215 & x = 0.126 \\ 0_{IV} & (9b) & y = -0.215 & (0H)_{II}(9b) & y = -0.150 \\ z = 0.058 & z = -0.126 \end{array}$	
which is isotypic with alunite	References	
(after Kostov, 1968).	Kostov (1968) 493, 501. Wyckoff (1965) Vol. 3, 210-213. Zoltai + Stout (1984) 441. Wang et al. (1965) 251.	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		· · · · · · · · · · · · · · · · · · ·	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$a = 11.868 \ X \qquad Mg(4a) \ y$ $b = 11.996 \ X \qquad z$ $c = 6.857 \ X \qquad S \ (4a) \ y$ $Z = 4 \qquad z$ $o_{T}(4a) \ y$	$ \begin{array}{cccc} & = 0.1063 \\ = 0.0340 \\ & = 0.7266 \\ = 0.1839 \\ = 0.4821 \\ & = 0.6853 \\ = 0.6853 \\ & = 0.6808 \\ & = 0.6808 \\ & = 0.6808 \\ & = 0.6750 \\ & = 0.6808 \\ & = 0.750 \\ & = 0.6808 \\ & = 0.2716 \end{array} $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Fig. 1	Z	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Properties	
FiguresCrystallographic data (continued)Fig. 1. Representation of the epsomite structure (a) projected along 110 (after Calleri et al., 1984). $x = 0.2655$ $x = 0.0038$ $x = 0.419$ $y = 0.1246$ $x = 0.664$ $x = 0.664$ $x = 0.6621$ $y = 0.1288$ $z = 0.0773$ $z = 0.7756$ Fig. 2. Schematic represent tation of the epsomite structure projected along the <u>c</u> axis, showing the hydrogen bonding system which are indicated by dashed lines (after Baur, 1964). $x = 0.428$ $y = 0.2828$ $x = 0.632$ $y = 0.7862$ $y = 0.9862$ $M_{\rm VII}$ (4a) $y = 0.0342$ $z = 0.0773$ $x = 0.632$ $y = 0.9662$ $z = 0.0322$ $x = 0.602$ $y = 0.9662$ $z = 0.0322$ $M_{\rm VII}$ (4a) $y = 0.0342$ $z = 0.0773$ $x = 0.428$ $y = 0.9620$ $z = 0.8889$ $x = 0.428$ $y = 0.96620$ $z = 0.3204$ $M_{\rm VII}$ (4a) $y = 0.0342$ $z = 0.2934$ $x = 0.428$ $z = 0.2934$ $x = 0.428$ $z = 0.3204$ $M_{\rm II}$ (4a) $y = 0.224$ $z = 0.2934$ $x = 0.428$ $z = 0.4310$ $z = 0.4310$ $M_{\rm III}$ (4a) $y = 0.2206$ $z = 0.888$ $M_{\rm III}$ (4a) $y = 0.365$ $z = 0.445$ $z = 0.445$ $z = 0.330$ $M_{\rm III}$ (4a) $y = 0.2206$ $z = 0.888$ $M_{\rm III}$ (4a) $y = 0.320$ $M_{\rm III}$ (4a) $y = 0.2206$ $z = 0.3304$ $M_{\rm III}$ (4a) $y = 0.431$ $y = 0.2304$ $M_{\rm III}$ (4a) $y = 0.2206$ $z = 0.330$ $M_{\rm III}$ (4a) $y = 0.432$ $z = 0.445$ $z = 0.445$ $z = 0.445$ $z = 0.445$ $z = 0.330$ $M_{\rm III}$ (4a) $y = 0.2304$ $z = 0.330$ $M_{\rm III}$ (4a) $y = 0.365$ $z = 0.445$ $M_{\rm III}$ (4a) $y = 0.2306$ $z = 0.330$ $M_{\rm III}$ (4a)	HabitCleav.Fract.Twshortperfectconchoi-prismatic,(010)dalfibrousRefr.index /Reflect.Birefr. $n_{\alpha} = 1.433$ (-) $n_{\beta} = 1.455$ $2V = 52^{\circ}$	in. Hardn. Dens. Colour Transp. 2-2.5 1.677 colourless, transparent to trans- white lucent Luster Streak Melt.p. CPI vitreous, white (SPI)	
Fig. 1. Representation of the epsomite structure (a) projected along 110 (after Calleri et al., 1984).x = 0.2655 x = 0.0038x = 0.419 x = 0.644 x = 0.642 x = 0.664 x = 0.641 w = 0.416 x = 0.642 y = 0.1288 z = 0.0038Fig. 2. Schematic representation of the epsomite structure projected along the c axis, showing the 		(rystallognaphic data (continued)	_
$\frac{z = 0.934}{z = 0.934} = \frac{z = 0.320}{z = 0.320}$ $\frac{z = 0.320}{References}$ $\frac{x = 0.244}{H_{II}} = \frac{x = 0.244}{(4a) y = 0.229} + \frac{x = 0.385}{Z = 0.414}$ $\frac{x = 0.234}{H_{II}} = \frac{x = 0.234}{z = 0.414} + \frac{x = 0.431}{Z = 0.414}$ $\frac{x = 0.234}{Z = 0.888} + \frac{x = 0.431}{Z = 0.414}$ $\frac{x = 0.234}{Z = 0.888} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{y = 0.206} + \frac{x = 0.431}{Z = 0.975}$ $\frac{x = 0.435}{Z = 0.414} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z = 0.975} + \frac{x = 0.431}{Z = 0.975} + \frac{y = 0.414}{Z =$	 Fig. 1. Representation of the epsomite structure (a) projected along 1I0 (after Calleri et al., 1984). Fig. 2. Schematic representation of the epsomite structure projected along the <u>c</u> axis, showing the hydrogen bonding system which are indicated by dashed lines (after Baur, 	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c} x = 0.234 \\ H_{II} (4a) \ y = 0.206 \\ z = 0.888 \end{array} \begin{array}{c} x = 0.431 \\ H_{XIII}(4a) \ y = 0.492 \\ z = 0.975 \end{array} \begin{array}{c} x = 0.431 \\ y = 0.492 \\ z = 0.975 \end{array} \begin{array}{c} y = 0 x + 2 x \\ y = 0.435 \\ y = 0.435 \\ z = 0.975 \end{array} \begin{array}{c} y = 0 x + 2 x \\ y = 0.435 \\ y = 0.435 \\ z = 0.330 \end{array} \begin{array}{c} x = 0.431 \\ H_{XIII}(4a) \ y = 0.492 \\ z = 0.975 \end{array} \begin{array}{c} y = 0 x + 2 x \\ y = 0.455 \\ y = 0.435 \\ y = 0.435 \\ z = 0.330 \end{array} \begin{array}{c} y = 0.431 \\ y = 0.435 \\ y = 0.435 \\ z = 0.975 \end{array} \begin{array}{c} y = 0 x + 2 x \\ y = 0.435 \\ z = 0.975 \end{array} \begin{array}{c} y = 0 x + 2 x \\ y = 0.435 \\ y = 0.4$		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Deconiction	$\begin{array}{cccc} x = 0.234 & x = 0.431 \\ H_{TT} & (4a) \ y = 0.206 & H_{YTTT}(4a) \ y = 0.492 \end{array}$	Povarennykh (1972) 592.
isolated SO ₄ tetrahedra H_{IV} (4a) $y = 0.246$ Roberts et al. (1974) 194.	The structure of epsomi-	$\begin{array}{c} H_{III} \ (4a) \ y = 0.270 \\ z = 0.330 \end{array} \begin{array}{c} H_{XIV} \ (4a) \ y = 0.370 \\ z = 0.008 \end{array}$	Baur (1964) 1361-1369.
		H_{TV} (4a) y = 0.246	

	$e^{\circ} (H_2^{0})_7 s^{t_0}_4$ $2_1/c$	a = 14.07 $\%$ b = 6.51 $\%$ c = 11.04 $\%$ β = 105°36' Z = 4	$Fe_{I}(2a) \begin{array}{c} x = 0 \\ y = 0 \\ z = 0 \end{array}$ $Fe_{II}(2d) \begin{array}{c} y = 1/2 \\ y = 1/2 \\ z = 0 \end{array}$ $S (4e) \begin{array}{c} x = 0.227 \\ y = 0.471 \\ z = 0.177 \end{array}$	$\begin{array}{c} x = 0.205\\ 0_{I} (4e) \ y = 0.472\\ z = 0.038\\ x = 0.139\\ 0_{II} (4e) \ y = 0.533\\ z = 0.215\\ x = 0.307\\ 0_{III} (4e) \ y = 0.618\\ \cdots \qquad z = 0.225\end{array}$
Fig. 1				
	Properties	1		
$n_{\alpha} = 1.4913$ (-	Twin. Hardn. Dens. - 2 1.90 refr. Luster Stread +) vitreous, colour 85 ⁰ 27' silky	green, translı greenish blue ak Melt.p. CP	ucent	
Figures	Descrip	otion		
Fig. 1. Schematic represen tation of the melante- rite structure projected parallel to 010 show- ing the hydrogen bonding system, which are indi- vated by dashed lines (after Baur, 1964).	The structure of me $Fe(H_2^0)_6$ octahedra, S0 seventh water molecule nated to Fe. They are bonds.	4 tetrahedra, and which is not coor	a rdi-	
	Crystallographic d	ata (continued)		
References Kostov (1968) 498. Wyckoff (1965) Vol. 3, 839-841. Baur (1964) 1167-1174. Roberts et al. (1974) 390.	$\begin{array}{c} z = 0.227 \\ x = 0.115 \\ (H_2 0)_I (4e) \ y = 0.384 \\ z = 0.433 \\ (H_2 0)_{II} (4e) \ y = 0.957 \\ z = 0.182 \\ x = 0.030 \end{array}$	$ \begin{array}{c} x = 0.47 \\ (H_2 0)_{II} & (4e) & y = 0.48 \\ z = 0.18 \\ (H_2 0)_V & (4e) & y = 0.28 \\ z = 0.44 \\ (H_2 0)_V & (4e) & y = 0.26 \\ z = 0.44 \\ (H_2 0)_{VI} & (4e) & y = 0.36 \\ z = 0.44 \\ (H_2 0)_{VII} & (4e) & y = 0.36 \\ z = 0.44 \\ (H_2 0)_{VII} & (4e) & y = 0.00 \\ z = 0.11 \\ \end{array} $	56 51 29 55 54 50 50 50 53 54 54 53 54 54 55 54 55 55 56 56 56 56 56 56 56 56	

$\underline{\text{GLAUBERITE}} \text{Na}_2^7 \text{ Ca}^8$	$s_2^t o_8$	a = 10.129 Å b = 8.306 Å	x = 1/2 Ca(4e) y = 0.4356 z = 1/4 x = 0.1371	$ \begin{array}{rcl} x &= 0.1252 \\ 0_{1} & (8f) & y &= 0.0894 \\ z &= 0.0583 \\ x &= 0.1616 \end{array} $
		c = 8.533 Å	Na(8f) y = 0.4445 z = 0.4394	$0_{II} (8f) y = 0.1633 z = 0.3399$
C 2/c		$\beta = 112.19^{\circ}$ $Z = 4$	x = 0.1856 S (8f) y = 0.2143 z = 0.1888	$\begin{array}{c} x = 0.3399 \\ x = 0.3400 \\ 0_{III}(8f) \ y = 0.2294 \\ \dots \ z = 0.2303 \end{array}$
rig. 1		ig. 2		
Pro	perties			
Habit tabular, prismatic, perfectCleav. Fract. conchoi- dipyramidalTwin. Twin. dipyramidalRefr. index $\alpha = 1.515$ $n \beta = 1.535$ $n \gamma = 1.536$ Generalized (-) γ^{o} $\gamma = 1.536$ Here the second secon	2.5-3 2.60 f	Colour Transpa colourless, transpar grey, to trans rellowish lucent Melt.p. CPI	rent	
Figures	Desci	ription		
 Fig. 1. Polyhedral description of the glauberite structure (after Araki + Zoltai, 1967). Fig. 2. Ball and spoke represen- tation of the glauberite struc- ture projected along the <u>b</u> axis (after Cocco et al., 1965). 	of regular SO ₄ to coordinated Ca a of an irregular a	oxygens forming	ers	
	Crystallograph	ic data (continue	ed)	
	x = 0.1 0 _{IV} (8f) y = 0.3 z = 0.1	697		
	Ref	erences		
	Cocco et al. (1	(1967) 1272-1277.		
L				

$\frac{\text{LINARITE}}{\text{Pb}^3 \text{Cu}^6 \text{(OH)}_2 \text{S}^{\text{t}}}$	$a = 9.81 \ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$\begin{array}{ccccccc} 0.015 & (01)^{I} & (22)^{I} & z & = 0.253 \\ 0 & & & x & = 0.094 \\ 0 & & & (0H)^{I} & (2e)^{I} & y & = 1/4 \\ 0 & & & z & = 0.822 \\ 0.6666 & & & x & = 0.522 \end{array}$
Fig. 1	^β ^β ^β ^β ^β ^β ^β ^β ^β ^β	
Prop	erties	
HabitCleav.Fract.Twin.tabular,perfectconchoi-(100)prismatic,(100)dalaggregates(100)dalRefr.index/Reflect.Birefr. $n_{\alpha} = 1.809$ (-) $n_{\beta} = 1.838$ 2V = 80° $n_{\gamma} = 1.859$	Hardn. Dens. Colour Transp. 2.5 5.30 dark transparent azure Luster Streak Melt.p. CPI vitreous, pale subada- blue	
Figures	Description	
 Fig 1. Ball and spoke representa- tion of the linarite structure projected along the <u>b</u> axis (after Povarennykh, 1972). Fig. 2. Partial representation of the linarite structure (after Kostov, 1968). 	The structure of linarite con- sists of Cu(OH) ₂ infinite chains of Cu(OH) ₄ squares sharing edges, SO ₄ isolated tetrahedra linked together by PbO ₃ pyramids.	
	(nyctallographic data (continued)	
	Crystallographic data (continued) x = 0.658 $x = 0.2520II (2e) y = 1/4 0III(4f) y = 0.540z = 0.235$ $z = 0.305$	
	References	
	Kostov (1968) 515. Povarennykh (1972) 587. Wyckoff (1965) Vol. 3, 196-199. Structure Reports (1969) Vol. 26, 452. Bachmann + Zemann (1961) 747-753. Roberts et al. (1974) 358.	

CHALCANTHITE Cu ^O (H ₂ 0) ₅ st 0 ₄	a = 6.14 b = 10.73 c = 5.98	6 ^{Cu} I 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		$\alpha = 82^{\circ}16$ $\beta = 107^{\circ}2$	' ^{Cu} II 6'	$ \begin{array}{c} \text{(1e)} \ y = 1/2 & 0 \\ z = 0 & \text{II} & (2i) & y = 0.318 \\ z = 0 & z = 0.797 \end{array} $
ΡĪ		$ \begin{array}{rcl} \gamma &=& 102^{\circ}4\\ Z &=& 2\end{array} $	0' S	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
a b		c A		
The A	A A	X	A A	51
		× AN		- AA
ATA	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	A		3
(a)	(b)	-	1 A	
0	Fig. 1 roperties	8	8	
		Colour	Thansp	
Habit Cleav. Fract. Twi short imperfect conchoi-	<u>n. Hardn. Dens.</u> 2.5 2.286	<u>Colour</u> pale blue,	Transp. transparent	
tabular, (110) dal		greenish	to trans-	
massive Refr. index/Reflect. Birefr.	Luster Streak	Melt.p.	lucent CPI	
$n_{\alpha} = 1.516$ (-)	vitreous, colourle	ss	(SPI)	
$n_{\beta} = 1.539$ $2V = 56^{\circ}$ $n_{\gamma} = 1.546$	resinous		35	
· · · · · · · · · · · · · · · · · · ·				
Population				
Pentahydrite $Mg^{0}(H_{2}^{0})_{5}S^{t}0_{4}$				
Siderotil $Fe^{0}(H_{2}0)_{5}S^{t}0_{4}$				
Figures				
Fig. 1. Structure of chalcan- thite(a) projected on the				
(001) plane, and (b) projec-	Crystallographic	data (cont	inued)	
ted on the (100) plane (after Iskhakova et al.,	$ \begin{array}{rcl} x &= & 0.045\\ 0_{IV} & (2i) & y &= & 0.300\\ z &= & 0.384 \end{array} $	H (2i)		
1983). Description	$ \begin{array}{c} x = 0.817 \\ 0_V (2i) y = 0.074 \\ z = 0.154 \end{array} $	H _{TV} (2i)		
The structure of chalcan-	$ \begin{array}{rcl} x &= & 0.290\\ 0_{VI} & (2i) & y &= & 0.118\\ z &= & 0.149 \end{array} $	Н _V (2і)	x = 0.320 y = 0.378 z = 0.342	P. C.
thite consists of isolated SO ₄ tetrahedra linked to $Cu(H_2O)_6$	x = 0.465 0 _{VII} (2i) $y = 0.406$ z = 0.299	Н _{VI} (2і)	x = 0.603 y = 0.394 z = 0.425	References Kostov (1968) 512.
octahedra forming zig-zag infi- nite chains with composition	x = 0.756		x = 0.805	Povarennykh (1972) 591.
$Cu(H_2^0)_4 SO_4$.	$0_{\text{VIII}}(2i) \ y = 0.416$ z = 0.019	H _{VII} (2i)	y = 0.400 z = 0.888	Zoltai + Stout (1984) 442.
The structure determination	$ \begin{array}{c} x = 0.434 \\ 0_{IX} (2i) y = 0.125 \\ z = 0.630 \end{array} $	H _{VTTT} (2i)	x = 0.853 y = 0.384 z = 0.150	Bacon + Curry (1962) 95-108. Structure Reports (1971) Vol. 27, 614-616.
of Iskhakova et al., 1983, gi- ves very similar results to	z = 0.830 x = 0.897		z = 0.159 x = 0.601	Iskhakova et al. (1983) 385, 386.
those of Bacon + Curry, 1962 .	H_{I} (2i) y = 0.141 z = 0.250	H _{IX} (2i)	y = 0.132 z = 0.670	Roberts et al. (1974) 489.
	$H_{II} (2i) y = 0.011 z = 0.229$	Η _χ (2i)	x = 0.410 y = 0.196 z = 0.697	

$\frac{\text{MIRABILITE}}{\text{P 2}_{1}/c}$	10^{-10} $4^{-10.35}$ $8^{-10.35}$	$\begin{array}{c} x = 0.249 & x = 0.130 \\ Na_{I} (4e) y = 0.613 & 0_{I} (4e) y = 0.464 \\ z = 0.250 & z = 0.115 \\ Na_{II}(4e) y = 0.755 & 0_{II} (4e) y = 0.613 \\ z = 0.492 & 0_{II} (4e) y = 0.613 \\ z = 0.130 \\ S (4e) y = 0.139 & 0_{III}(4e) y = 0.780 \\ \end{array}$
rig. 1	Fig. 2	z = 0.260 z = 0.133
HabitCleav. perfectFract. conchoi- acicular, (001)fibrous(100)fibrous(100)dalRefr.index /Reflect. $n_{\alpha} = 1.396$ (-) $n_{\beta} = 1.4103$ $2V = 75^{\circ}56^{\circ}$ $n_{\gamma} = 1.419$	Hardn. Dens. Colour Transp. 1.5-2 1.464 colourless, transparent white to opaque Luster Streak Melt.p. CPI vitreous	
Figures	Description	
Fig. 1 Crystal structure of $Na_2SO_4(H_2O)_{10}$ (after Ruben et al., 1961, quoted in Structure Reports, 1969, Vol. 26). Fig. 2 Section in the structure of mirabilite centred on $x = 1/4$ The other half of the structure is generated by the screw axes which are at $x = 0$ and $x = 1/2$ (after Cocco, 1962, quoted in	The mirabilite structure consists of isolated SO_4 tetrahedra and infi- nite chains of $Na(H_2O)_6$ octahedra which share their edges. Two of the water molecules, in formula unit, are interstitial.	
Structure Reports, 1971, Vol.27).	(nystallognaphic data (continued)	_
Fig. 3. Representation of the structure of $Na_2SO_4(H_2O)_{10}$ (half of a cell) (after Meulen-	Crystallographic data (continued) x = 0.367 $x = 0.1440_{IV} (4e) y = 0.466 0_X (4e) y = 0.186z = 0.400 z z = 0.192$	References
dijk, 1956, quoted in Structure Reports, 1963, Vol. 20).	x = 0.111 $x = 0.2400_V (4e) y = 0.618 0_{YT} (4e) y = 0.000$	Kostov (1968) 503.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cocco (1962) 690-698. Ruben et al. (1961) 820-824. Meulendijk (1956) 493-495.
	$\begin{array}{c} z = 0.307 \\ x = 0.120 \\ v_{\text{VII}} (4e) \ y = 0.932 \\ \end{array} \begin{array}{c} z = 0.341 \\ 0_{\text{XIII}} (4e) \ y = 0.342 \\ \end{array}$	Structure Reports (1971) Vol. 27, 620, 621.
	$z = 0.438 \qquad z = 0.058$ x = 0.367 x = 0.105 0 _{VIII} (4e) y = 0.558 0 _{XIV} (4e) y = 0.364	Structure Reports (1969) Vol. 26, 433, 434. Structure Reports (1963) Vol. 20, 245 246
	$z = 0.583$ $z = 0.442$ $x = 0.355$ 0_{IX} (4e) $y = 0.186$ $z = 0.209$	345, 346.

KAINITE C 2/m	$ \begin{array}{c} a = 19.72 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
$K M^{\circ}(U \circ) = cl s^{\dagger} \circ$	$c = 9.53 \stackrel{\text{(A)}}{=} x = 0.19318 \qquad x = 0.09805$ $\beta = 94^{\circ}55' \qquad K_{\text{II}} (4i) \ y = 0 \qquad S_{\text{II}} (3j) \ y = 0.1672$ $z = 0.9398 \qquad z = 0.0136$ $Z = 16 \qquad x = 0.10487 \qquad x = 0.0126$
к мg ^o (H ₂ O) ₃ сl s ^t о ₄	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Fig. 1	
Prope	rties
Habit Cleav. Fract. Twin.	Hardn. Dens. Colour Transp.
tabular, perfect smooth equant, (001) to splintery	2.5-3 2.15 colourless, transparent grey, to trans-
Refr. index/Reflect. Birefr.	blue lucent Luster Streak Melt.p. CPI
	vitreous
$n_{\alpha} = 1.494$ (-) $n_{\beta} = 1.505$ $2V \approx 90^{\circ}$	Vitreous
$n\gamma = 1.516$	
Figures	Crystallographic data (continued)
	x = 0 $x = 0.0760$
Fig. 1. Polyhedral representation	Mg_{TT} (2a) y = 0 O_{VI} (8j) y = 0.1844
of the kainite structure (K and Cl atoms omitted) (after Robinson	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
et al., 1972).	$Mg_{III}(4f) \begin{array}{c} y = 1/4 \\ z = 1/2 \end{array} O_{VII} \begin{array}{c} (8j) \\ z = 0.5261 \end{array}$
	x = 0.00026 $x = 0.1722$
	$Mg_{IV} (8j) y = 0.2484 0_{VIII} (8j) y = 0.1668 \\ z = 0.2481 \qquad z = 0.0183$
Description	x = 0.21470 $x = 0.0399$
The kainite structure consists	$\begin{array}{cccc} Cl_{I} & (4i) & y = 0 & OW_{I} & (4i) & y = 0 \\ & z = 0.2730 & z = 0.2197 \end{array}$
of polyhedral layers of corner-	x = 0.13985 $x = 0.0193$
-sharing Mg-octahedra and S-tetra-	$\begin{array}{c} \text{Cl}_{\text{II}} (4i) \ y = 0 \\ z = 0.6231 \end{array} \xrightarrow{\text{OW}_{\text{II}}} \begin{array}{c} (4i) \ y = 1/2 \\ z = 0.7192 \end{array}$
hedra, with K, Cl atoms and wa- ter molecules between the layers.	x = 0.17890 $x = 0.2133$
The geometry of the Mg octahedra	$\begin{array}{c} \text{Cl}_{III}(8j) \ y = 0.3892 \text{OW}_{III}(8j) \ y = 0.1727 \\ z = 0.1357 z = 0.6510 \end{array}$
and S tetrahedra is close to ideal.	$\begin{array}{ccccccc} x &= & 0.0710 & x &= & 0.0259 \\ 0_{I} & & (8j) & y &= & 0.2317 & 0W_{IV} & (8j) & y &= & 0.3588 \\ z &= & 0.9152 & z &= & 0.1468 \end{array}$
	$ \begin{array}{c} x = 0.0707 & x = 0.0200 \\ 0_{TT} & (8j) \ y = 0.2694 & \text{OW}_{V} & (8j) \ y = 0.1354 \end{array} $
References	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Kostov (1968) 496.	$\begin{array}{c} x = 0.0749 \\ 0_{\text{III}} (8j) y = 0.3107 \\ z = 0.6569 \\ \end{array} \begin{array}{c} x = 0.1849 \\ z = 0.3438 \end{array}$
Robinson et al. (1972) 1325-1332. Roberts et al. (1974) 315, 316.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \begin{array}{c} x = 0.0715 \\ 0_V & (8j) \ y = 0.0859 \\ z = 0.9646 \end{array} $

POLYHALITE	р <u>ī</u>	a = 11.69 Å $b = 16.33 $ Å	v ⁺	x = 0.13189 (8i) y = 0.28615	$\mathbf{x} = 0.10304$
		c = 7.60 A $\alpha = 91^{\circ}6'$		z = 0.63004	$\begin{array}{c} 0 \\ \mathbf{III} \\ \mathbf{z} = 0.78843 \\ \mathbf{x} = 0.14787 \end{array}$
$K_2^{[11]} Ca_2^{[8]} Mg^{O}$ (H ₂ O	$()_{2} s_{4}^{t} o_{16}$	$\beta = 90^{\circ}0'$	Ca ²⁺	(8i) $y = 0.37120$ z = 0.12619	O_{IV} (8i) y = 0.1101 z = 0.48555
		$\begin{array}{r} \mathcal{V} = 91^{\circ}9'\\ \mathbf{Z} = 4 \end{array}$	Mg ²⁺		
			SiI		$\begin{array}{c} x = 0.09617\\ 0_{VI} (8i) y = 0.23414\\ z = 0.96862 \end{array}$
			SiII	x = 0.12061 (8i) y = 0.17896 z = 0.11415	$ \begin{array}{c} x = 0.02245 \\ 0_{VII} & (8i) \\ z = 0.13130 \end{array} $
			0I		$ \begin{array}{c} x = 0.22550 \\ 0_{VIII}(8i) \ y = 0.13457 \\ z = 0.08081 \end{array} $
0 0 08 0 0 08 0 0			011	x = 0.22760 (8i) y = 0.12428 z = 0.66306	$\begin{array}{rrrr} \mathbf{x} &= & 0.13515\\ \mathbf{H}_2 0 & (8\mathbf{i}) & \mathbf{y} &= & 0.45748\\ & & \mathbf{z} &= & 0.63492 \end{array}$
Fig. l.	perties				
Habit Cleav. Fract. Twin.		. Colour Tr	ansp.		
fibrous, foliated,	3.5 2.78	colourless, tr	ansparent		
tabular Refr. index /Reflect. Birefr.	Luster Strea	grey lu	cent CPI		
$n_{\alpha} = 1.547$ (-)	vitreous				
$n_{\beta} = 1.560$ $2V = 62^{\circ}$	to resinous				
$n_{\gamma} = 1.567$					
Figures	Des	scription			
Fig. 1. Projection of the structu- re of polyhalite parallel to (001) (after Schlatti et al., 1970).	of isolated SO Mg atoms octahe Ca atoms (8 coc (ll-coordinated	ite structure co tetrahedra lir drally coordina ordinated) and K l). Each water m by one Mg and c	nked by ated, atoms nolecule		
	Re	eferences			
		50.4			
	Kostov (1968) Schlatti et al Roberts et al	L. (1970) 75-86.			
L				L	

<u>MONAZITE</u> P (Ce, La, Y, Th) ^[9]	2 ₁ /n P ^t 0 ₄	a = 6.76 b = 7.00 c = 6.44 $\beta = 103^{\circ} 38^{\circ}$ Z = 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c} x = 0.375 \\ 0_{II} (4e) y = 0.342 \\ z = 0.500 \\ x = 0.500 \\ 0_{III} (4e) y = 0.133 \\ z = 0.806 \\ x = 0.128 \\ 0_{IV} (4e) y = 0.200 \\ z = 0.681 \end{array} $
Fig. 1 Habit Cleav. Fract. Twin tabular, distinct conchoi- equant, (100) dal to prismatic uneven Refr. index/Reflect. Birefr.		reddish transp brown, to sul brown lucen	nsp. parent strans-	
$n_{\alpha} = 1.785 \qquad (+)$ $n_{\beta} = 1.787 \qquad 2V = 12^{0}$ $n_{\gamma} = 1.840$ Population	resinous, white, waxy, slight vitreous colour	ly ed 5	PI) 3	
Huttonite Th ^{Sit} 0 ₄ <u>Crocoite</u> Pb ^D Cr ^t 0 ₄ <u>Figures</u> Fig. 1. Ball and spoke representation of the monazite structure projected along the <u>b</u> axis (aft Povarennykh, 1972).	The monazi of isolated P by Ce atoms, tion nine (th Another struc been worked o which gives v	scription te structure con: 04 tetrahedra lin which have coord ey link 6 tetrahe ture determination at by Ghouse, 190 ery similar resu:	nked ina- edra). on has 58,	
	Kostov (1968) Povarennykh (Wyckoff (1965 Zoltai + Stou	1972) 536.) Vol. 3, 33-35. t (1984) 448. . (1974) 413, 41		

.2						
LAZULITE	Mg ^O	Al ^o 2	(OH) ₂	P_2^t	0 ₈	a = 7.16 Å b = 7.26 Å c = 7.24 Å β = 120° 40
	P 2 ₁	/c				Z = 2
	ST		B		: :: :	

LAZULITE Mg ^o Al ^o (OH)	$_2 P_2^t O_8$	a = 7.16 Å b = 7.26 Å c = 7.24 Å		$\begin{array}{c} x = 0.754 \\ (0H)(4e) \ y = 0.135 \\ z = 0.749 \\ x = 0.222 \\ 0_{T} \ (4e) \ y = 0.000 \end{array}$
P $2_1/c$		$\beta = 120^{\circ} 40'$ $Z = 2$	z = 0.004 x = 0.250 P (4e) y = 0.113 z = 0.749	z = 0.901 x = 0.286 0 ₁₁ (4e) y = 0.000 z = 0.589
en la construction de la constru				
Fig. 1	Fi,	g. 2		
Prope	erties			
HabitCleav.Fract.Twin.pyramidal,uneven,tabular,splinterymassivesplinteryRefr. index/Reflect.Birefr. $n_{\alpha} = 1.604 - 1.635$ (-) $n_{\beta} = 1.633 - 1.663$ $2V = 68.9^{\circ}$ $n_{\gamma} = 1.642 - 1.673$	Hardn. Dens. 5.5-6 3.08 Luster Streak vitreous, dull	azure blue, trans light to op blue	ansp. slucent paque 2PI	
Population	Des	cription		
Scorzalite $\operatorname{Fe}^{\circ}\operatorname{Al}_{2}^{\circ}(\operatorname{OH})_{2}(\overset{t}{\operatorname{P}}_{0_{4}})_{2}$ Barbosalite $\operatorname{Fe}^{\circ}\operatorname{Fe}_{2}^{\circ}(\operatorname{OH})_{2}(\overset{t}{\operatorname{P}}_{0_{4}})_{2}$	The structur of the packing dra and PO ₄ tet chains of AlO ₆ hedra, along th	corner-sharing	ctahe- ntains octa-	
Figures	face-sharing (M	0		
Fig. 1. Polyhedral representation of the lazulite structure projec- ted along the <u>a</u> axis (after Giuseppetti + Tadini, 1983, quoted in Structure Reports (1988) Vol. 504)	The resulting 1 PO ₄ tetrahedra.			
(1988) Vol. 50A).	crystallograp	hic data (conti	nued)	

 $\begin{array}{ccccccc} x &= & 0.048 & x &= & 0.443 \\ 0_{\text{III}}(4e) & y &= & 0.253 & 0_{\text{IV}} & (4e) & y &= & 0.244 \\ z &= & 0.130 & z &= & 0.377 \end{array}$

References

Wyckoff (1965) Vol. 3, 197-199. Lindberg + Christ (1959) 695-697. Giuseppetti + Tadini (1983) 410-416. Structure Reports (1965) Vol. 23.

Structure Reports (1988) Vol. 50A, 264.

Kostov (1968) 45.

434, 435.

Fig. 2. Polyhedral representation of the lazulite structure viewed along the \underline{b} axis (after Lindberg + Christ, 1959, quoted in Structure Reports, 1965, Vol. 23).

- Fig. 1. Polyhe of the lazul ted along th Giuseppetti quoted in St
- (1988) Vol.

322

WAVELLITE P	c m n	b = 17.363 Å	$ \begin{array}{c} x = 0.22384 \\ x = 0.22384 \\ y = 1/4 \\ z = 0.12326 \\ x = 0.75605 \\ x = 0.75605 \\ x = 0.01638 \\ x = 0.01638 \\ \end{array} $	
A1 ^o (H ₂ O) ₅ (OH)	3 ^{P^t₂0₈}	Z = 4	$ \begin{array}{rcl} z &= 0.14186 \\ x &= 0.06061 \\ p & (8d) \ y &= 0.09221 \\ z &= 0.10399 \end{array} $	$ \begin{array}{c} \text{II} & z = 0.15555 \\ x = 0.10095 \\ \text{O}_{III}(8d) & y = 0.04183 \\ x = 0.27355 \\ \end{array} $
Fig. 1	101			
	Properties			
HabitCleav.Fract.Tprismatic,perfectsubconactoractcular(110)choidalaggregates(110)unevenRefr.index/Reflect.Birefr $n_{\alpha} = 1.520 - 1.535$ (+) $n_{\beta} = 1.526 - 1.543$ $2V \approx 71^{\circ}$ $n_{\gamma} = 1.545 - 1.561$ FiguresFig. 1. The structure of wavellite projected alongthe <u>c</u> axis (after Araki+ Zoltai, 1968).	win. Hardn. Dens. 3.25 2.36 <u>Luster</u> Streak vitreous, white pearly, resinous Descrip The wavellite str two kinds of Al0 ₆ oc <u>c</u> axis, linked toget hedra. This linkage layer of octahedra a plane (010), which a by alternating Al0 ₄ molecules. Possibly a framew dral chains linked b	(SPI 35 ption cucture is formed tahedra along th her by PO ₄ tetra creates a dense and tetrahedra in ure in turn conno octahedra and wa	arent ans- <u>JI</u> I) d by he a- n the ected ater ahe-	
References	Crystallographic x = 0.36037 0 _{IV} (8d) y = 0.07246	x = 0. H ₂ O _{TT} (8d) y = 0.	.64979 .11144	
	z = 0.42258	z = 0. x = 0.	.19/40	
Kostov (1968) 445. Povarennykh (1972) 549. Zoltai + Stout (1984) 451. Structure Reports (1975) Vol. 33A, 404, 405. Araki + Zoltai (1968) 21-33. Roberts et al. (1974) 663.	z = 0.30925 x = 0.82173	$5H_20_{III}(4c) = 0.5H_20_{III}(4c) = 0.5H_20_{IV} = 0.5H_200_{IV} = 0.5H_200_{IV} = 0.5H_200_{IV} = 0.5H_200_{IV} = 0.5H_20$	/4 .23453 .78308 /4	

<u>DUMORTIERITE</u> (Al,Fe) ^o ₇ (Si ^t 0 ₄)	b = 20.209 Å c = 4.701 Å Z = 4	$ \begin{array}{c} x = 1/4 \\ \text{Al}_{I} (4c) y = 0.249 \\ z = 0.392 \\ \text{Al}_{IV}(8d) y = 0.211 \\ z = 0.057 \\ \text{Al}_{II}(8d) y = 0.028 \\ z = 0.560 \\ \text{Al}_{II}(8d) y = 0.069 \\ \text{Al}_{II} (8d) y = 0.069 \\ \text{Al}_{III} (8d) y = 0.057 \\ \text{Al}_{II} (8d) y = 0.057 \\ \text{Al}_{III} (8d) y = 0.057 \\ \text$
(a)	Fig. 1 (b) Properties	
HabitCleav.Fract.Tprismatic,goodmassive,(100)fibrous(100)Refr.index/Reflect.Birefr $n_{\alpha} = 1.6860$ (-) $n_{\beta} = 1.722$ $2V = 13^{\circ}$ $n_{\gamma} = 1.7229$ $2V = 13^{\circ}$	rin. Hardn. Dens. Colour T 8.5 3.41 blue, tra violet, to	ransp. nsparent trans- ectp1_
Figures	Description	
Fig. 1. Polyhedral represen- tation of the dumortierite structure: (a) projected along the <u>c</u> axis, showing different types of columns of AlO_6 octahedra, as well as disposition of SiO_4 te- trahedra and BO_3 triangles (double hatching), and (b) projected along the <u>a</u> axis, showing the columns of	The structure of dumortierite three types of chains parallel to axis; partly disordered Alo_3 face chains, and two types of Al_4O_{12} c one of which forms Al_4O_{11} sheets. Two recent structure determina have confirmed the presented stru Moore + Araki, 1978, and Alexande 1986.	the <u>c</u> -sharing hains, tions cture:
showing the columns of AlO ₆ octahedra along the	Crystallographic data (contin	nued)
<u>c</u> axis (after Povarennykh, 1972).	x = 1/4 $x =B (4c) y = -0.085 0_{VT} (4c) y =$	1/4
	0_{T} (4c) y = 0.173 0_{VII} (8d) y =	0.544 0.150 0.875
	8 - 01111	1/4
	$z = 0.650 \qquad z = x = 0.361 \qquad x = 0(8d) \ y = 0.075 \qquad 0_{TY} (4c) \ (4c) \$	1/4 Kostov (1968) 282.
	$ \begin{array}{c} x = 0.449 \\ 0_{IV} (8d) \ y = 0.106 \\ z = 0.390 \end{array} \begin{array}{c} x = \\ 0_{\chi} (8d) \ y = \\ z = \\ z = 0.390 \end{array} $	0.650 215. 0.052 Moore + Araki (1978) 231-241. 0.255 Alexander et al. (1986) 786-
	O_{y} (8d) y = 0.216 O_{yT} (8d) y =	0.537 -794. 0.013 -748 Roberts et al. (1974) 181.

DESCLOIZITE Pmcn [8ap] [6by] Pb (Zn,Cu) (OH) V ^t	a = 6.074 X $b = 9.446 R (z_n, C_u)($ c = 7.607 R	$\begin{array}{c} x = 1/4 & x = 0 \\ y = 0.663 & (0H)(4a) & y = 0 \\ z = 0.118 & z = 0 \\ x = 1/4 & x = 1/4 \\ c) & y = 0.0000 & 0_{I} & (4c) & y = 0.125 \\ z = 0.125 & z = 0.375 \\ x = 1/4 & x = 1/4 \\ 4c) & y = 0.250 & 0_{II}(4c) & y = 0.375 \\ z = 0.250 & \dots & z = 0.375 \\ \end{array}$
Prope	rties]
HabitCleav.Fract.Twin.pyramidal,noneuneven,prismatic,conchoi-tabulardalRefr.index/Reflect.Birefr. $n_{\alpha} = 2.185$ (-) $n_{\beta} = 2.265$ $2V \approx 90^{\circ}$ $n_{\gamma} = 2.35$ (-)	Hardn. Dens. Colour Transp. 3-3.5 6.24- orange red, -6.26 transparent red, brown to opaque brown Luster Streak Melt.p. CPI vitreous, greasy CPI CPI	
Figures	Description	
Fig. 1. Approximate structure of descloizite deduced from Patter- son maps (after Structure Reports, 1963, Vol. 17).	Descloizite is built of VO ₄ tetrahedra, ZnO ₄ (OH) ₂ tetragonal bipyramids, and square PbO ₇ (OH) antiprisms.	
	Crystallographic data (continued)]
	References	4
	Kostov (1968) 471. Wyckoff (1965) Vol. 3, 183, 184. Roberts et al. (1974) 169. Structure Reports (1963) Vol.17, 502.	

<u>CHLORITOID</u> o (Fe,Mg)(A1,Fe) ₂ (C2/c H ₂ 0) Si ^t 0 ₆	a = 9.52 Å b = 5.47 Å c = 18.19 Å β = 101° 39° Z = 8	$ \begin{array}{c} x = 0.086 \\ (Fe,Mg) & (8f) \ y = 0.750 \\ z = 0.001 \\ (A1,Fe)_{II} & (4c) \\ (A1,Fe)_{II} & (4e) \ u = 0.4036 \\ x = 0.250 \\ (A1,Fe)_{III} & (8f) \ y = 0.342 \\ \dots & z = -0.250 \end{array} $
Fig. 1	Fig. 2 Function of the second secon		
	Properties		
HabitCleav.Fract.platy,goodunevenfoliated(001)	(001) 6.5 3.50	olour <u>Transp.</u> dark transparent green	
$n_{\alpha} = 1.715$ (- $n_{\beta} = 1.720$ 2V =		CPI (SPI) 62	
ny= 1.725 Figures	Description		
Fig. 1. The octahedral and tetrahedral sheet of the chloritoid structure (after Kostov, 1968). Fig. 2. Chloritoid struc- ture projected along the <u>b</u> axis (after Povaren- nykh, 1972).	The chloritoid structure close-packed structure, and structure. This structure i nating octahedral layers on type and another of the cor parallel to (001), and link trahedra.	not a sheet s formed by alter- e of the brucite undum type, both	
Président	Crystallographic data	(continued)	
References Kostov (1968) 365. Povarennykh (1972) 428, 429. Wyckoff (1968) Vol. 4, 363,364.	z = -0.186 x = 0.105	$ \begin{array}{r} x = -0.143 \\ (8f) y = 0.598 \\ z = -0.197 \\ x = -0.105 \\ H)_{I} (8f) y = 0.585 \\ z = -0.050 \\ x = 0.233 \\ H)_{II} (8f) y = 0.585 \\ \end{array} $	
Zoltai + Stout (1984) 366.	$\begin{array}{c} \text{III} & \text{F} & $	$ \begin{array}{c} x_{11}(81) \ y = 0.585 \\ z = -0.052 \\ x = 0.034 \\ (8f) \ y = 0.090 \\ z = -0.156 \end{array} $	

References

- Adams, F.S. (1954) The birth and development of the geological sciences, Dover Publications, New York.
- Agricola, G. (Georg Bauer) (1546) De natura fossilium. Froben, Basel.
- Ahrens, L. H. (1952) "The use of ionization potentials". Geochim. Cosmochim. Acta, 2, 155–169.
- Akao, M. & Iawai, S. (1977) "The hydrogen bonding of hydromagnesite". Acta Cryst., B33, 1273–1275.
- Akao, M., Marumo, F. & Iawai, S. (1974) "The crystal structure of hydromagnesite". Acta Cryst., B30, 2670-2672.
- Alexander, V. D., Griffen, D. T. & Martin, T. J. (1986) "Crystal chemistry of some Fe- and Ti- poor dumortierites". Amer. Miner., 71, 786-794.
- American Society for Testing and Materials (1957) "What can be done to improve alloy phase nomenclature?" A report of Nomenclature Subcommittee E-4 on Metallography. ASTM Bulletin, 226, 23-30.
- Amirov, S. T., Iljukhin, V. V. & Belov, N. V. (1967) "The crystal structure of leonhardite (laumontite) CaAl₂Si₄O₁₂ • nH₂O (2 < n <4)". Dokl. Akad. Nauk SSSR, 174, 667–670. English translation Dokl. Acad. Sci. URSS, Earth Sci. Section, 174, 121–124.
- Andersson, S. & O'Keeffe, M. (1977) "Body-centred cylinder packing and garnet structure". *Nature*, 267, 605-606.
- Andress, K. R. & Gundermann, K. R. (1934) "Kristallhydrate. I. Die Struktur von Magnesiumchlorid- und Magnesiumbromidhexahydrat". Zeit. Krist., (A), 87, 345-369.
- Andress, K. R. & Saffe, O. (1939) "Rontgenographische Untersuchung der Mischkristallreihe Karnallit-Bromkarnallit". Zeit. Krist., (A), 101, 451-469.
- Appleman, D. E. & Evans, H. T. Jr. (1965) "The crystal structure of synthetic anhydrous carnotite, K₂(UO₂)₂V₂O₈ and its cesium analogue, Cs₂(UO₂)₂V₂O₈". *Amer. Miner.*, 50, 825-842.
- Araki, T. & Zoltai, T. (1967) "Refinement of the crystal structure of a glauberite". *Amer. Miner.*, 52, 1272–1277.
- Araki, T. & Zoltai, T. (1968) "The crystal structure of wavellite". Zeit. Krist., 127, 21-38.
- Armbruster, T. (1986) "Role of Na in the structure of lowcordierite. A single-crystal X-ray study". Amer. Miner., 71, 746-757.
- Artioli, G., Smith, J. V. & Pluth, J. J. (1986) "X-ray structure refinement of mesolite". Acta Cryst., C42, 937-942.
- Avicenna (Ibn Siná) (980-1037) Quoted by A. S. Povarennykh (1972), pp. 4 and 12.
- Bachmann, H. G. & Zemann, J. (1961) "Die Kristallstruktur von Linarit, PbCuSO₄(OH)₂". Acta Cryst., 14, 747-753.

- Bacon, G. E. & Curry, N. A. (1956) "A neutron diffraction study of sodium sesquicarbonate". Acta Cryst., 9, 82–85.
- Bacon, G. E. & Curry, N. A. (1962) "The water molecules in CuSO₄.5H₂O". *Proc. Royal Soc. Lond.*, A 266, 95–108.
- Ball, M. C. & Taylor, H. F. W. (1961) "The dehydration of brucite". *Miner. Mag.*, 32, 754–766.
- Barlow, W. (1883) "Probable nature of the internal symmetry of crystals". *Nature* (London) 29, 186–188, 205–207.
- Barrer, R. M. & Kerr, I. S. (1959) Trans. Faraday Soc., 55, 1915. Quoted by W. L. Bragg & G. F. Claringbull (1965), p. 351.
- Baur, W. H. (1964a) "On the crystal chemistry of salt hydrates.
 III. The determination of the crystal structure of FeSO₄ 7H₂O (melanterite)". Acta Cryst., 17, 1167–1174.
- Baur, W. H. (1964b) "On the crystal chemistry of salt hydrates. IV. The refinement of the crystal structure of MgSO₄ • 7H₂O (epsomite)". *Acta Cryst.*, 17, 1361–1369.
- Belov, N. V. (1939) "Classification of closest and close packings". Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, Vol. XXIII, Nº 2, 170-174.
- Belov, N. V. (1947) Structure of ionic crystals and metallic phases (in Russian), Izd. Akad. Nauk SSSR, Moscow. Quoted by I. Kostov (1981), p. 707.
- Belov, N. V. (1951) "Studies in structural mineralogy. II" (in Russian). Mineralogitscheski Sbornik Lvovskoho Geologitscheskoho Obschestva, N° 5, 13-36.
- Belov, N. V. (1956) "Essays of structural mineralogy" (in Russian) Mineral. Sb. (Lvov), (10), 10-32.
- Belov, N. V. (1963) Crystal chemistry of large-cation silicates. Consultants Bureau, New York. English translation of the Russian original (1961). Akademy of Sciences Press, Moscow.
- Berry, L. G. & Mason, B. (1959) Mineralogy. Concepts, descriptions, determinations. W. H. Freeman and Company, San Francisco.
- Berzelius, J. J. (1819) Nouveau système de Mineralogie. Méquignon-Marvis, Paris.
- Bloss, F. D. (1971) Crystallography and chemistry. An introduction. Holt, Rinehart and Wilson, New York.
- Bokii, G. B. (1954/1960) Introduction to crystal chemistry. United States Joint Publ. Research Service, New York (1960). English translation of the Russian original (1954). Izdatel'stvo Moskovskogo Universiteta.
- Born, L. & Hellner, E. (1960) "A structural proposal for boulangerite". Amer. Miner., 45, 1266-1271.
- Born, M. (1919) "A thermo-chemical application of the lattice theory". Verh. Dtsch. Phys. Ges., 21, 13-24.
- Born, M. & Landé, A. (1918) "The calculation of the com-

pressibility of cubic crystals from the space lattice theory". Verh. Dtsch. Phys. Ges., 20, 210-216.

- Bragg, W. L. (1913) "The structure of some crystals as indicated by their diffraction of X-rays." Proc. R. Soc. London Ser. A, 89, 248–277.
- Bragg, W. L. (1929) "Atomic arrangement in the silicates". In Crystal structure and chemical constitution. A general Faraday discussion held by the Faraday Society (pp. 291–314).
- Bragg, W. L. (1930) "The structure of the silicates". Zeit. Krist., 74, 237-305.
- Bragg, W. L. (1964) "Minerals". Proceedings of the Royal Institution of Great Britain, 40, Part I, N° 182, 64–81.
- Bragg, W. L. & Claringbull, G. F. (1965) Crystal structures of minerals. G. Bell and Sons, London.
- Brindley, G. W. (1961) "Crystal structure and thermal behaviour of some ceramic materials" (in Japanese). J. Jap. Ass., 69, C 189-194. Quoted by G. W. Brindley (1963), p. 8.
- Brindley, G. W. (1963) "Crystallographic aspects of some decomposition and recrystallization reactions". In *Progress* in ceramic science, Vol. 3 edited by J.E. Burke. Pergamon Press, Oxford (pp. 1-55).
- Brown, C. J., Peiser, H. S. & Turner-Jones, A. (1949) "The crystal structure of sodium sesquicarbonate", Acta Cryst., 2, 167. Quoted in Structure Reports (1952), 12, 238–240.
- Brown, I. D. (1981) "The bond-valence method: an empirical approach to chemical structure and bonding". In *Structure* and bonding in crystals II, edited by M. O'Keeffe and A. Navrotsky. Academic Press, New York (pp. 1-30).
- Buerger, M. J. (1947) "Derivative crystal structures". J. Chem. Physics, 15, 1–16.
- Buerger, M. J. (1967) (Private communication).
- Buerger, M. J. (1971) Introduction to crystal geometry. McGraw-Hill, New York, p.5.
- Buerger, M. J., Burnham, C. W. & Peacor, D. R. (1962) "Assessment of the several structures proposed for tourmaline". *Acta Cryst.*, 15, 583-590.
- Bunn, C. (1964) Crystals. Their role in nature and in science. Academic Press, New York.
- Burke, J. H. (1966) Origins of the science of crystals. University of California Press, Berkeley.
- Burns, R. G. & Burns, V. M. (1979) "Manganese oxides". In Marine minerals. Reviews in Mineralogy, Vol. 6, Mineralogical Society of America (pp. 1-46).
- Bystrom, A. & Mason, B. (1943) "The crystal structure of braunite 3Mn₂O₃ • MnSiO₃". Ark. Kemi, Min. Geol., 16, N° 15, 1-8.
- Caillère, S. & Hénin, S. (1961) "Palygorskite". In The X-ray identification and crystal structures of clay minerals, edited by G. Brown. Mineralogical Society, London (pp. 343-353).
- Calleri, M., Gavetti, A., Ivaldi, G. & Rubbo, M. (1984) "Synthetic epsomite, MgSO₄ 7H₂O: Absolute configuration and surface features of the complementary {111} forms". Acta Cryst., B40, 218-222.
- Chaskolskaia, M. (1959) Crystals. Editions en Langues Etrangères, Moscow.
- Christ, C. L., Clark, J. R. & Evans, H. T. Jr. (1958) "Borate minerals (III). The crystal structure of colemanite, CaB₃O₄(OH)₃ • H₂O". Acta Cryst., 11, 761-770.
- Christian, J. W. (1951) "A theory of the transformation in pure cobalt". Proc. Roy. Soc. A, 206, 51-64.

- Cid-Dresdner, H. (1965) "Determination and refinement of the crystal structure of turquoise, CuAl₆(PO₄)₄(OH)₈ 4H₂O". Zeit. Krist., 121, 87-113.
- Cocco, G. (1962) "La struttura della mirabilite". Rend. Accad. Naz. dei Lincei Ser. 8, 32, 690-698.
- Cocco, G., Corazza, E. & Sabelli, C. (1965) "The crystal structure of glaubite, CaNa₂(SO₄)₂". Zeit. Krist., 122, 175-184.
- Cooper, W. F., Larsen, F. K. & Coppens, P. (1973) "Electron population analysis of accurate diffraction data. V. Structure and one-center charge refinement of light-atom mineral kernite Na₂B₄O₆(OH)₂ • 3H₂O". Amer. Miner., 58, 21–31.
- Corbridge, D. E. C. (1971) "The structural chemistry of phosphates". Bull. Soc. Miner. Cristallographie, 94, 271-299.
- Cronstedt, F. (1758) An essay towards a system of mineralogy (in Swedish), Stockholm.
- Dachs, H. von (1963) "Neutronen- und Röntgenuntersuchungen an Manganit, MnOOH". Zeit. Krist., 118, 303-326.
- Dana, J. D. (1850) *The system of mineralogy*. Third edition John Wiley, New York.
- Dana, J. D. (1854) *The system of mineralogy*. Fourth edition John Wiley, New York.
- Deer, W. A., Howie, R. A. & Zussman, J. (1962) Rock-forming minerals, Vol. 1. Ortho and ring silicates. Longmans, London.
- Deer, W. A., Howie, R. A. & Zussman, J. (1962) Rock-forming minerals, Vol. 3. Sheet silicates. Longmans, London.
- Deer, W. A., Howie, R. A. & Zussman, J. (1962) Rock-forming minerals, Vol. 5. Non-silicates. Longmans, London.
- De Jong, W. F. (1959) General Crystallography. A brief compendium. Freeman, San Francisco.
- Dent Glasser, L. S., Glasser, F. P. & Taylor, H. F. (1962) "Topotatic reactions in inorganic oxy-compounds". *Quarterly Reviews. Chem. Soc. London*, 16, 343-360.
- Dollase, W. A. (1967) "The crystal structure at 220 °C of orthorhombic high tridymite from the Steinbach meteorite". *Acta Cryst.*, 23, 617-623.
- Dollase, W. A. (1968) "Refinement and comparison of the structures of zoisite and clinozoisite". Amer. Miner., 53, 1882-1898.
- Dollase, W. A. (1971) "Refinement of the crystal structure of epidote, allanite and hancockite". Amer. Min., 56, 447-464.
- Dollase, W. A. & Baur, W. H. (1976) "The superstructure of meteoritic low tridymite solved by computer simulation". *Amer. Miner.*, 61, 971-978.
- Donnay, J. D. H., Donnay, G., Cox, E. G., Kennard, O. & King, M. V. (1963) "Crystal data. Determinative tables". Second edition. American Crystallographic Association.
- Donnay, J. D. H., Hellner, E. & Niggli, A. (1964) "Coordination polyhedra". Zeit. Krist., 120, 364–374.
- Donnay, J. D. H., Hellner, E. & Niggli, A. (1966) "Symbolism for lattice complexes, revised by a Kiel Symposium". Zeit. Krist., 123, 255-262.
- Eitel, W. (1964) Silicate science, Vol. 1. Silicate structures. Academic Press, New York.
- Ernst, W. G. (1968) Amphiboles. Springer-Verlag, Berlin.
- Ervin, G. (1952) "Structural interpretation of diasporecorundum and boehmite-γ-Al₂O₃ transitions". Acta Cryst., 5, 103-108.
- Evans, H. T. Jr. (1979) "The crystal structures of low chalcocite and djurleite". Zeit. Krist., 150, 299–320.

- Evans, H. T. Jr. & Konnert, J. A. (1976) "A crystal structure refinement of covellite". Amer. Miner., 61, 996-1000.
- Evans, R. C. (1939) An introduction to crystal chemistry. First edition. Cambridge University Press, Cambridge.
- Evans, R. C. (1964) An introduction to crystal chemistry. Second edition. Cambridge University Press, Cambridge.
- Ewald, P. & Hermman, C., Editors (1931) Strukturbericht, Vol. 1 (for 1913-1928). Akademische Verlagsgesellschaft MBH, Leipzig.
- Ewing, F. J. (1935) *J. Chem. Phys.*, *3*, 203. Quoted by A. F. Wells (1962), p. 556.
- Fedorov, E. S. (1901) A course of crystallography (in Russian). Rikker, St. Petersburgh. Quoted by B.K. Vainshtein. (1981) p. 28.
- Fedorov, E. S. (1913) "Mineralogy". *Encyclopedia Assoc. Granat.*, 28, 681. Quoted by Povarennyk (1972), p. 15.
- Fejdi, P., Poullen, J. F. & Gasperin, M. (1980) Bull. Miner., 103, 135-138. Quoted in Structure Reports (1982), 46A, 327.
- Fersman, A. E. (1935) "The geochemistry of alkaline magmas" (in Russian). Bull. Acad. Sci. URSS, 1419-1424.
- Figueiredo, M. O. (1973) "Tesselations and plane symmetry groups as applied to the derivation of close-packed binary layers". Acta Cryst., A29, 234–243.
- Figueiredo, M. O. (1976a) "Discriminatory characters for structure-type identification isopoint crystal structures". *III European Crystallographic Meeting*, Zurich (Abstract I-54-M).
- Figueiredo, M. O. (1976b) (Private communication on condensed models).
- Figueiredo, M. O. (1977) "Estabilidade e estrutura cristalina: o caso tipo das fases da sílica". Comunicação dos Serviços Geológicos de Portugal, Tomo LXII, 19-34.
- Figueiredo, M. O. (1979a) Características de empilhamento e modelos condensados das micas e filossilicatos afins. Junta de Inv. Cient. do Ultramar. Estudos, Ensaios e Documentos, Nº 131, Lisboa.
- Figueiredo, M. O. (1979b) (Private communication on condensed models).
- Figueiredo, M. O. (1981) "A structural model for feldspars and related compounds" (in Portuguese). Presented at the VII Congresso Iberoamericano de Cristalografia, Coimbra (Abstract).
- Figueiredo, M. O. (1985) "An interplay of chemical and structural data in the classification of minerals". Presented at the *IX European Crystallographic Meeting*, Torino (Abstract).
- Figueiredo, M. O. (1986) "A unified geometrical scheme for polytypism in phylosilicates". Bull. Minéralogique, 109, 31-44.
- Figueiredo, M. O. & Lima-de-Faria, J. (1977) "Theoretical approach to the derivation of condensed models of crystal structures based on square-type layers". Acta Cryst., A33, 395–398.
- Figueiredo, M. O. & Lima-de-Faria, J. (1978) "Condensed models of structures based on loose packings". Zeit. Krist., 148, 7-19.
- Figueiredo, M. O. & Lima-de-Faria, J. (1983) "Condensed models of pyroxenes and amphiboles". Garcia de Orta, Sér. Geologia, 6, 101-108.
- Figueiredo, M. O. & Lima-de-Faria, J. (1991a) "Standard sheets for condensed models of crystal structures. III – CuAl₂-like intermetallic phases and affine structures". *Garcia de Orta*,

Sér. Geologia, 14, 29-35.

- Figueiredo, M. O. & Lima-de-Faria, J. (1991b) "Standard sheets for condensed models of crystal structures. IV – Sillén phases and related structures". *Garcia de Orta, Sér. Geologia*, 14, 37–43.
- Finger, L. W. & Hazen, R. M. (1991) "Crystal chemistry of sixcoordinated silicon: a key to understanding the earth's deep interior". Acta Cryst., B47, 561–580.
- Ford, W. E. (1932) Dana's textbook of mineralogy. Fourth edition. John Wiley & Sons, London.
- Francombe, M. H. & Rooksby, H. P. (1959) "Structure transformations effected by the dehydration of diaspore, goethite and delta ferric oxide". *Clay Miner. Bull.*, 4, 1–14.
- Frank, F. C. & Kasper, J. S. (1958) "Complex alloy structures regarded as sphere packings. I. Definitions and basic principles". Acta Cryst., 11, 184–190.
- Frondel, C. (1982) The system of mineralogy, Vol III. Silica minerals. John Wiley, New York.
- Frondel, C. (1983) "An overview of crystallography in North America". In Crystallography in North America, edited by Dan McLachlan Jr. and Jenny P. Glusker. Amer. Cryst. Association, New York (pp. 1–24).
- Frueh, A. J. Jr. (1959) "The structure of hessite, Ag₂Te". Zeit. Krist., 112, 44-52.
- Galli, E. (1971) "Refinement of the crystal structure of stilbite". *Acta Cryst.*, *B27*, 833–841.
- Garrido, J. & Orlando, J. (1946) Los rayos-X y la estructura fina de los cristales. Dossat, Madrid.
- Geber (Jabir Ibn Hayan) (721-c.803) Quoted by J. W. Spronsen (1969), p. 25.
- Ghose, S. (1964) "The crystal structure of hydrozincite, Zn₅(OH)₆(CO₃)₂". *Acta Cryst.*, 17, 1051-1057.
- Ghouse, K. M. (1968) "Refinement of the crystal structure of heat-treated monazite crystal". *Indian J. Pure and Applied Physics*, 6, 265–268.
- Giacovazzo, C., Monaco, H. L., Viterbo, D., Scordari, F., Gilli, G., Zanotti, G. & Catti, M. (1992) Fundamentals of crystallography. Published by Oxford University Press for the International Union of Crystallography.
- Giuseppetti, G. & Tadini, C. (1983). Neues Jb. Miner., Mh., 410-416. Quoted in Structure Reports, 50A, p. 264.
- Goble, R. J. (1985) "The relationship between crystal structure, bonding and cell dimensions in the copper sulfides". *Canad. Miner.*, 23, 61–76.
- Goldschmidt, V. M. (1926) "Geochemische Verteilungsgesetze der Elemente". Skryfter det Norske Videnskaps Akad. Oslo. I. Mat. Natur, Kl.
- Goldschmidt, V. M. (1929) "Crystal structure and chemical constitution". In Crystal structure and chemical constitution. A general Faraday discussion held by the Faraday Society (pp. 253-283).
- Gottardi, G. & Galli, E. (1985) Natural zeolites. Springer-Verlag, Berlin.
- Gottardi, G. & Meier, W.M. (1963) "The cyrstal structure of dachiardite". Zeit. Krist., 119, 53-64.
- Grigoriev, D.P. (1964) Fundamentals of the constitution of minerals. Israel Program for Scientific Translations, Jerusalem.
- Groat, L. A., Randseff, M., Hawthorne, F. C., Ercitt, T. S., Sherriff, B. L. & Hartman, S. T. (1990) "The ambligonite-

montebrasite series: Characterization by single-crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy", *Amer. Miner.*, 75, 992–1008.

- Groth, P. H. R. von (1874) Tabellarische Ubersicht der Mineralien nach ihren Kristallographysch-chemischen Beziehungen. Braunschweig.
- Haber, F. (1919) "Betrachtungen zur Theórie der Wärmetönung". Verh. Dtsch. Phys. Ges., 21, 750-768.
- Hambley, T. W. & Taylor, J. C. (1984) "Neutron diffraction studies on natural heulandite and partially dehydrated heulandite". J. Solid State Chem., 54, 1-9.
- Haüy, R.J. (1801), Traité de Mineralogie. 5 vols. Delance, Paris.
- Hawthorne, F. C. (1983) "Graphical enumeration of polyhedral clusters". Acta Cryst., A39, 724–736.
- Hawthorne, F. C. (1984) "Towards a structural classification of minerals". Presented at the XIII International Congress of Crystallography, Hamburg (Abstract).
- Hawthorne, F. C. (1985) "Towards a structural classification of minerals: The ^{VI}M^{IV}T₂|_n minerals". *Amer. Miner.*, 70, 455-473.
- Hellner, E. (1958) "The structural scheme for sulfide minerals". The Journal of Geology, 66, 503-525.
- Hellner, E. (1965) "Descriptive symbols for crystal-structure types and homeotypes based on lattice complexes". Acta Cryst., 19, 703-712.
- Hellner, E. (1984) "Frameworks and a classification scheme for inorganic and intermetallic structure types". Presented at the XIII International Congress of Crystallography, Hamburg. Acta Crystal. (Abstract).
- Hellner, E. (1986) "Einfürung in eine anorganische Strukturchemie". Zeit. Krist., 175, 227-248.
- Hellner, E. & Leineweber, G. (1956) "Uber complex zusammengesetz sulfidische Erze. I. Sruktur des Bourmonits CuPbSbS₃ and Seligmannits, CuPbAsS₃". Zeit. Krist., 107, 150-154.
- Hermann, C., Editor (1935) Internationale Tabellen zur Bestimmung von Kristallstrukturen. Gebrüder Bornträger, Berlin.
- Hermann, C. (1960) "Zur Nomenklatur der Gitterkomplexe". Zeit. Krist., 113, 142–154.
- Hermann, C., et al. (1937) See Strukturbericht (1937), Vol. II, p. 126.
- Hey, M. H. (1955) An index of mineral species and varieties arranged chemically. British Museum, London.
- Hooke, R. (1665) *Micrographia*. Jo. Martin and Js. Allestry for the Royal Society, London. Quoted by J. H. Burke, (1966), p. 38.
- Iida, S. (1957) "Layer structures of magnetic oxides". Journ. Physic, Soc. Japan. 12, 222-233.
- Iitaka, Y. & Nowacki, W. (1962) "A redetermination of the crystal structure of galenobismutite, PbBi₂S₄". Acta Cryst., 5, 691-698.
- Infeld, L. (1950) Albert Einstein. His work and its influence on our world. Scribner Publishers, New York.
- Ingerson, E. (1955) "Methods and problems of geologic thermometry". *Economic Geology*, Fiftieth Anniversary Volume, Part I (1905-1955) pp. 341-410.
- International Tables of Crystallography, Vol. A, Space-group symmetry, edited by T. Hahn. Published for the IUCr by Reidel Publishing Co., Dordrecht, Holland, 1983, and 1987 (Second edition).

- Iskhakova, L. D., Trunov, V. K., Schegoleva, T. M., Ilyukhin,
 V. & Vedernikov, A. A. (1983) "Crystal structure of chalcantite CuSO₄ 5H₂O grown under microgravity" (in Russian). Kristallografiya, 28, 651-657. English translation Soviet Physics-Crystallography (1983), 28, 383-386.
- Ito, T. (1950) "The crystal structure of antigorite". In X-ray studies on polymorphism. Maruzen, Tokyo (pp. 160-167).
- IUPAC (1990) Nomenclature of inorganic chemistry. Blackwell, Oxford.
- Jarchow, O. (1965) "Atomanordnung und Strukturverfeinerung von Cancrinite". Zeit. Krist., 122, 407-422.
- Johnson, N. E., Craig, J. R. & Rimstidt, J. D. (1988) "Crystal chemistry of tetrahedrite". Amer. Miner., 73, 389-397.
- Jones, J. B. & Taylor, W. H. (1961) "The structure of orthoclase". Acta Cryst., 14, 443-456.
- Joswig, W., Bartl, H. & Fuess, H. (1984) "Structure refinement of scolecite by neutron diffraction". Zeit. Krist., 166, 219-223.
- Kapustinskii, A. F. (1933) "General formula for the lattice of crystals of arbitrary structure". Z. Phys. Chem. Abt., 22, 257-260.
- Kepler, J. (1611) Strena Seu de Nive Sexangula. Gottfried Tampach, Frankfurt.
- Kern, R. & Gindt, R. (1958) "Contribution à l'étude des accolements réguliers des feldspaths potassiques et des plagioclases". Bull. Soc. Franc. Min. Crist., 81, 263-266.
- Kerrick, D. M. (1990) The Al₂SiO₅ polymorphs. Reviews in Mineralogy, Vol. 22. Miner. Soc. America.
- Kitaigorodskii, A. I. (1955) Organic chemical crystallography (in Russian). Press of the Academy of Sciences of the URSS, Moscow. English translation and revision (1961), Consultants Bureau Enterprises, New York.
- Klein, C. & Hurlbut, C. S. Jr. (1985) Manual of Mineralogy. John Wiley, New York.
- Kniep, R. & Mootz, D. (1973) "Metavariscite. A redetermination of its crystal structure". Acta Cryst., B29, 2292-2294.
- Kniep, R., Mootz, D. & Vegas, A. (1977) "Variscite". Acta Cryst., B33, 263-265.
- Kondrasev, J. M. D. & Fedorova, N. N. (1954) "The crystal structure of CoHO₂" (in Russian). *Dokl. Akad. Nauk.*, 94, 2, 229–231. Quoted in *Structure Reports* (1961), 18, 515–516.
- Koptsik, V. A. & Belov, N. V. (1977) "Towards a theory of translationally centered Fedorov groups" (in Russian). *Kristallografiya*, 22, 1140–1146. English translation Soviet Physics-crystallography, (1977), 22, 650–653.
- Kostov, I. (1954) "A note on a more rational classification of minerals" (in Russian). Zap. Vses. Min. obshch. Part 83, N° 4, 328-347.
- Kostov, I. (1968) Mineralogy. Oliver and Boyd, Edinburgh.
- Kostov, I. (1981) "Structural patterns and structural genetic trends in minerals". *Kristallografiya*, 26, 1244–1247. English translation Soviet Phys. Crystallogr., (1981), 26, 707–708.
- Krebs, H. (1968) Fundamentals of inorganic chemistry. English translation, McGraw Hill, London.
- Kripyakevich, P. I. (1963) "A systematic classification of types of intermetallic structures" (In Russian). *Zhurnal Strukturnoi Khimii*, 4, N° 1, p. 117 and N° 2 p. 282. English translation, Consultants Bureau Enterprises, New York (1964).
- Kripyakevich, P. I. (1973) "Loose packings of dense layers". Kristallografiya, 18, 730-736. English translation Sov. Phys.

Crystallography, (1974), 18, 460-463.

- Landé, A. (1920) "Bemerkungen über die Grosse der Atome". Z. Physik 1, 87-89.
- Langlet, G. A. (1975) "Extension of the FIGATOM program to the automatic plotting of layers in close-packed structures". J. Appl. Cryst., 8, 515-519.
- Langlet, G. A. (1976) "Extension of the FIGATOM program to the automatic plotting of layers in close-packed structures: erratum". J. Appl. Cryst., 9, 320.
- Langlet, G. A., Figueiredo, M. O. & Lima-de-Faria, J. (1977) "Determination of spherical voids in layered structures (Void program)". J. Applied Crystallography, 10, 21-23.
- Lapparent, A. (1884) Mineralogie, Paris.
- Laves, F. (1930) "XVI. Die Bau-Zusammenhänge innerhalb der Kristallstrukturen. I. Teil". Zeit. Krist., 73, 202-265.
- Laves, F. (1956) "Crystal structure and atomic size". In *Theory of alloy phases*, edited by the American Society for Metals. Cleveland, Ohio (pp. 124–198).
- Laves, F. (1963) "Factors governing the structure of intermetallic phases". In Advances in X-ray analysis, Vol. 6, edited by W. M. Mueller and M. Fay. Plenum Press, New York (pp. 43-61).
- Lee, A. van der & Boer, J. L. de (1993) "Redetermination of the structure of hessite, Ag₂Te". III. Acta Cryst., C49, 1444–1446.
- Liebau, F. (1956) "Bemerkungen zur Systematik der Kristallstrukturen von Silikaten mit hochkondensierten Anionen". Physik. Chem., 206, 73-92.
- Liebau, F. (1966) "Die Kristallchemie der Phosphate". Fortschr. Miner., 42, 266-302.
- Liebau, F. (1982) "Classification of silicates". Rev. Mineral., 5, 1-24.
- Liebau, F. (1985) Structural chemistry of silicates. Structure bonding, and classification. Springer-Verlag, Berlin.
- Lima-de-Faria, J. (1963) "Dehydration of goethite and diaspore". Zeit. Krist., 119, 176-203.
- Lima-de-Faria, J. (1965a) "A condensed way of representing inorganic close-packed structures". Zeit. Krist., 122, 346-358.
- Lima-de-Faria, J. (1965b) "Systematic derivation of inorganic close-packed structures: AX and AX₂ compounds, sequence of equal layers". Zeit. Krist., 122, 359–374.
- Lima-de-Faria, J. (1966) "Space group representation in condensed models of inorganic close-packed structures". Nature, 211, 281.
- Lima-de-Faria, J. (1967) "Anomalous orientations of cubic close packing in the dehydration of goethite in an inert atmosphere". Acta Cryst., 23, 733-736.
- Lima-de-Faria, J. (1978a) "Rules governing the layer organization of inorganic crystal structures". Zeit. Krist., 148, 1-5.
- Lima-de-Faria, J. (1978b) "Improved notation for inorganic group structures derived from atomic structures by coalescence of atoms". R. Iberoam. Crist. Miner. Metalogen., 1, 47-52.
- Lima-de-Faria, J. (1983) "A proposal for a structural classification of minerals". Garcia de Orta, Sér. Geologia, 6, 1-14.
- Lima-de-Faria, J. (1986) "The need of a structural classification of minerals". *Rendiconti Soc. Ital. Miner. Petrolog.*, 41, 157-179.
- Lima-de-Faria, J. (1988a) "The two kinds of ideal analogues of mineral structures and the Laves principles of stability". Gar-

cia de Orta, Sér. Geologia, 11, 33-42.

- Lima-de-Faria, J. (1988b) "The hierarchy of symmetry". Presented at the XI European Crystallographic Meeting (Vienna) (Abstract). Published in Zeit. Krist. (1988), 185, 286.
- Lima-de-Faria, J. (1990) "The packing analogues of some carbonates and borates". Acta Cryst., A46. C267 Supplement (Abstract).
- Lima-de-Faria, J. (1991) "On the problem of the measure of the symmetry of crystal structures". *Garcia de Orta, Sér. Geologia*, 14, 45-50.
- Lima-de-Faria, J., Buerger, M. J., Glusker, J. P., Megaw, H. D., Moore, P. B., Senechal, M. & Wooster, W. A. (1990) *Historical Atlas of Crystallography*, edited by J. Lima-de-Faria. Published by Kluwer Academic Publishers, Dordrecht. Holland, for the International Union of Crystallography.
- Lima-de-Faria, J. & Figueiredo, M. O. (1969) "Systematic derivation of inorganic basic structure types: $X_m Y_n$ and $A_m X_n$ compounds, X and Y in cubic or hexagonal close packing, A in octahedral voids". *Zeit. Krist.*, 130, 54-67.
- Lima-de-Faria, J. & Figueiredo, M. O. (1976) "Classification, notation, and ordering on a table of inorganic structure types". J. Solid State Chem., 16, 7-20.
- Lima-de-Faria, J. & Figueiredo, M. O. (1978) "General chart of inorganic structural units and building units". Garcia de Orta. Sér. Geologia, 2, 69-76.
- Lima-de-Faria, J. & Figueiredo, M. O. (1990 a) "Standard sheets for condensed models of crystal structures. I. Structures based on close packings". *Garcia de Orta, Sér. Geologia*, 13, 43-58.
- Lima-de-Faria, J. & Figueiredo, M. O. (1990 b) "Standard sheets for condensed models of crystal structures. II. Pyroxenes and amphiboles". *Garcia de Orta, Sér. Geologia*, 13, 59-72.
- Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. & Parthé, E. (1990) "Nomenclature of inorganic structure types". Report of the International Union of Crystallography Comission on Crystallographic Nomenclature Sub-Committee on the Nomenclature of inorganic structure types. Acta Cryst., A46, 1-11.
- Lindberg, M. L. & Christ, C. L. (1959) "Crystal structures of the isostructural minerals lazulite, scorzalite and barbosalite". *Acta Cryst.*, 12, 695-697.
- Linnaeus, C. von (1735) Systema naturae, sive regna tria naturae systematice proposita per classes, ordinis, genera et species. Theodorum Haak, Leiden.
- Loeb, A. L. (1970) "A systematic survey of cubic crystal structures". J. Solid State Chem., 1, 237-267.
- Lonsdale, K. (1966) "A new kind of twinning". Acta Cryst., 21, 5-7.
- Machatschki, F. (1928) "Zur Frage der Struktur und Konstitution der Feldspate". Cbl. Min. Geol. Paläont., Abteilung A. Miner. Petr., 97-104.
- Machatschki, F. (1947) "Konstitutionsformeln für den festen Zustand". Monatsch. Chem., 77, 333-342.
- Machatschki, F. (1953) Spezielle Mineralogie auf geochemischer Grundlage mit einem Anhang ein kristallchemisches Mineralsystem. Springer-Verlag, Wien.
- Madelung, E. (1918) "Das elektrische Feld in Systemen von

regelmässig angeordeneten Punktladungen". Phys. Z., 19, 524-533.

- Makovicky, E. (1983) "Archetypes structure building principles and homologous series for sulphosalts of As, Sb and Bi". *VIII European Crystallography Congress*, Liege (Abstract).
- Makovicky, E. (1985) "Cyclically twinned sulphosalt structures and their approximate analogues". Zeit. Krist., 173, 1-23.
- Matkovich, V. I., Giese, R. F. Jr. & Economy, J. (1965) "Packing of B₁₂ groups in boron and boride structures". Zeit. Kris., 122, 116-130.
- Mazzi, F., Galli, E. & Gottardi, G. (1976) "The crystal structure of tetragonal leucite". Amer. Miner., 61, 108-115.
- McDonald, W. S. & Cruischank, D. W. J. (1967) "Refinement of the structure of hemimorphite". Zeit. Krist., 124, 180-191.
- Megaw, H. D. (1973) *Crystal structures. A working approach.* W. B. Saunders Company, Philadelphia.
- Meier, W. M. & Olson, D. H. (1978) "Atlas of zeolite structure types". Structure Commission of the International Zeolite Association. Quoted by J. V. Smith (1982), 165–169.
- Merkle, A. B. & Slaughter, M. (1968) "Determination and refinement of the structure of heulandite". Amer. Miner., 53, 1120-1138.
- Merlino, S., Galli, E. & Alberti, A. (1975) "The crystal structure of levyne". *Tschermaks Min. Petrogr. Mitt.*, 22, 117-129.
- Meulendijk, P. N. (1956) "An X-ray study of glaubersalt". Proc. K. Ned. Akad. Wet., B59, 493-495. Quoted in Structure Reports (1963), 20, 345-346.
- Moore, P. B. (1973) "Pegmatite phosphates. Descriptive mineralogy and crystal chemistry". *Mineral. Rec.*, 4, 103-130.
- Moore, P. B. (1992) "Betapakdalite unmasked, and a comment on bond valences". Aust. J. Chem., 45, 1335-1354.
- Moore, P. B. (1993) (Private communication).
- Moore, P. B. & Araki, T. (1972) "Atomic arrangement of merwinite, Ca₃Mg[SiO₄]₂, an unusual dense-packed structure of geophysical interest". Amer. Miner., 57, 1355-1374.
- Moore, P. B. & Araki, T. (1976) "Braunite: its structure and relationship to bixbyite, and some insights on the geneology of fluorite derivative structures". *Amer. Miner.*, 61, 1226–1240.
- Moore, P. B. & Araki, T. (1977) "Gerstmannite, a new zinc silicate mineral and a novel cubic close-packed oxide structure". Amer. Miner., 62, 51-59.
- Moore, P. B. & Araki, T. (1978) Neus Jb. Min. Ab., 132, 231-241.
- Mori, H. & Ito, T. (1950) "The structure of vivianite and symplesite". Acta Cryst., 3, 1-6.
- Mumpton, F. A. (1981) "Natural zeolites". In *Mineralogy and Geology of natural zeolites*. Reviews in Mineralogy, Vol. 4. Amer. Soc. America (pp. 1–17).
- Náray-Szabó, St. v. (1930) "Ein auf der Kristallstruktur basierendes Sylicatsystem". Zeit. Phys., Abteilung B, 2, 356-377.
- Náray-Szabó, St. v. (1943) "Der Strukturtyp des Perovskits (CaTiO₃)". *Naturwiss.*, 31, 202.
- Nickel, E. H. & Nichols M. C. (1991) *Mineral reference manual*. Van Nostrand Reinhold, New York.
- Niggli, P. (1919) Geometrische Kristallographie des Diskontinuums. Gebr. Bornträger, Leipzig.
- Niggli, P. (1945) Grundlagen der Stereochemie. Verlag Birkhäuser, Basel. French translation "Les bases de la Stéréochimie". Dunod, Paris (1952).

- Nithollon, P. (1955) Structure cristalline de la cancrinite. Publications Scientifiques et Techniques du Ministère de l'Air, France, N. T. 53.
- Nord, A. G. (1973). Acta Chem. Scand., 27, 814–822. Quoted in Structure Reports (1975), 39A, 306.
- Okada, K. & Ossaka, J. (1980) "Structures of potassium sodium sulphate and tripotassium disulphate". Acta Cryst., B36, 919-921.
- Pabst, A. (1950) "A structural classification of fluoaluminates". Amer. Miner., 35, 149-165.
- Palache, C., Berman, H. & Frondel, C. (1944) The system of mineralogy of James Dawght Dana and Edward Salisbury Dana. Vol. 1. Elements, sulfides, sulfosalts, oxides. Seventh edition. John Wiley, London.
- Palache, C., Berman, H. & Frondel, C. (1951) The system of mineralogy of James Dawght Dana and Edward Salisbury Dana. Vol. 2. Halides, nitrates, borates, carbonates, sulfates, phosphates, arsenates, tungstates, molybdates, etc. Seventh edition. John Wiley, London.
- Papike, J. J. & Cameron, M. (1976) Review of Geophysics and Space Physics, 14, 74. Quoted by C. Klein & C. S. Hurlbut Jr. (1985), 456.
- Papike, J. J., Prewitt, C. T., Sueno, S. & Cameron, M. (1973) "Pyroxenes: comparisons of real and ideal structural topologies". Zeit. Krist., 138, 254-273.
- Papike, P. P. (1987) "Chemistry of the rock-forming silicates: ortho, ring and single-chain structures". *Review of Geology*, 25, 1483-1526.
- Papike, P. P. & Zoltai, T. (1967) "Ordering of tetrahedral aluminium in phrenite Ca₂(Al,Fe⁺³)Si₃AlO₁₀(OH₂)". Amer. Miner., 52, 974–984.
- Parthé, E. (1964) Crystal chemistry of tetrahedral structures. Gordon and Breach, New York.
- Parthé, E. (1980) "Crystal-chemical formulae for simple inorganic crystal structures". Acta Cryst., B36, 1-7.
- Parthé, E. (1990) Elements of inorganic structural chemistry. A course on selected topics. K. Sutter Parthé, Petit-Lanay, Switzerland.
- Pauling, L. (1927) "The sizes of ions and the structure of ionic crystals". J. Amer. Chem. Soc., 49, 765-790.
- Pauling, L. (1928) Proc. Nat. Acad. Sci., USA, 14, 603-606. Quoted in N. V. Belov (1936) "Classification of closest and close packings". Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, XXIII, No. 2, 170-174.
- Pauling, L. (1929) "The principles determining the structure of complex ionic crystals". J. Amer. Chem. Soc., 51, 1010–1026.
- Pauling, L. (1960) The nature of the chemical bond. Cornell University Press, London.
- Pearson, W. B. (1967) Handbook of lattice spacings and structures of metals and alloys, Vol. 2. Pergamon Press, Oxford.
- Pearson, W. B. (1972) The crystal chemistry and physics of metals and alloys. Wiley-Interscience, New York.
- Petrova, I. V., Kaplunnik, L. N., Bortnikov, N. S., Pobedimskaya, E. A. & Belov, N. V. (1978) "The crystal structure of synthetic robinsonite" (in Russian). Dokl. Acad. Nauk SSSR, 241, 88-90.
- Plinius (the older) Gajus Secundus (77 A. D.) *Natural history* (in Latin). Quoted by Povarennykh (1972), p. 12.
- Povarennykh, A. S. (1972) Crystal chemical classification of minerals. English translation by Plenum Press, New York

(2 Vols.) of the Russian edition (1966), Naukova Dunka, Kiev.

- Putnis, A. & Angel, R. J. (1985) "Al, Si ordering in cordierite using «magic angle spinning» NMR. II. Models of Al, Si order from NMR data". *Phys. Chem. Minerals*, 12, 217-222.
- Prewitt, C. T. (1967) "Refinement of the structure of pectolite". Zeit. Krist., 125, 298-316.
- Prewitt, C. T. & Buerger, M. J. (1963) "Comparison of the crystal structure of wollastonite and pectolite". *Miner. Soc. Amer. Sp. Paper 1*, 293-302.
- Radoslovich, E. W. (1963) "The cell dimensions and symmetry of layer-lattice silicates. IV Interatomic forces". *Amer. Miner.*, 48, 76–99.
- Ramdohr, P. & Strunz, H. (1978/1980) Klockmanns Lehrbuch der Mineralogie. Sixteenth edition. Ferdinand Enke Verlag, Stuttgart.
- Ribbe, P. H. (1979) "The structure of a strained intermediate microcline in cryptoperthitic association with twinned plagioclase". Amer. Miner., 64, 402-408.
- Ribbe, P. H., Gibbs, G. V. & Norris, W. J. (1968) "Cation and anion substitutions in the humite minerals". *Miner. Mag.*, 36, 966–975.
- Rinaldi, R., Pluth, J. J. & Smith, J. V. (1974) "Zeolites of the phillipsite family. Refinement of the crystal structures of phillipsite and harmotome". Acta Cryst., B30, 2426-2433.
- Roberts, W. L., Rapp, G. R. Jr. & Weber, J. (1974) *Encyclopedia* of minerals. Van Nostrand Reinhold & Company, New York.
- Robinson, P. D., Fang, J. H. & Ohya, Y. (1972) "The crystal structure of kainite". Amer. Miner., 57, 1325-1332.
- Ruben, H. W., Templeton, D. H., Rosenstein, R. D. & Olovsson, I. (1961) "Crystal structure and entropy of sodium sulphate decahydrate". *Amer. Chem. Soc.*, 83, 820-824.
- Sanderson, R. T. (1960) Chemical periodicity. Reinhold Publishing Corporation, New York.
- Schlatti, M., Sahl, K., Zemann, A. & Zemann, J. (1970) "Die Kristallstruktur des Polyhalits, K₂Ca₂Mg[SO₄]₂ • 2H₂O". *Tschermaks Min. u. Petrogr. Mitt.*, 14, 75-86.
- Schlemper, E. O., Gupta, P. K. S. & Zoltai, T. (1985) "Refinement of the structure of carnallite, Mg(H₂O)₆KCl₃". Amer. Miner., 70, 1309–1313.
- Schubert, K. (1964) Kristallstrukturen zweikomponentiger Phasen. Springer-Verlag, Berlin.
- Shannon, R. D. & Prewitt, C. T. (1969) "Effective ionic radii in oxides and fluorides". Acta Cryst., B25, 925-946.
- Shubnikov, A. V. & Koptsik, V. A. (1972) Symmetry in science and art (in Russian). Naüka Press, Moscow. English translation Plenum Press, New York (1974).
- Smirnova, N. L. (1956) "Structure types with atomic close packings. Possible structure types for the composition AB₃" (in Russian). Kristallographiya, Acad. Sc. URSS. 1, 165-170. English translation Soviet Phys.-Crystallography, (1956), 1, 128-131.
- Smith, D. K., Gruner, J. W. & Lipscomb, W. N. (1957) "The crystal structure of uranophane [Ca(H₃O)₂](UO₂)₂(SiO₄)₃ • 3H₂O". Amer. Miner., 42, 594–618.
- Smith, J. V. (1982) Geometrical and structural crystallography. John Wiley, New York.
- Sololeva, L. P. & Belov, N. V. (1964) "Precise determination of the crystal structure of bertrandite Be₄[SiO₇](OH)₂" (in Rus-

sian). Kristallogr., 9, 551-553. English translation Soviet Phys., Crystallography (1965), 9, 458-460.

- Spice, J. E. (1964) Chemical binding and structure. Pergamon Press, Oxford.
- Spronsen, J. W. van (1969) The periodic system of the chemical elements. An history of the first hundred years. Elsevier, New York (p. 1).
- Srikrishnan, T. & Novacki, W. (1974) "A redetermination of the crystal structure of cosalite, Pb₂Bi₂S₅". Zeit. Krist., 140, 114–136.
- Steele, I. M. & Pluth, J. J. (1990) "Crystal structure of synthetic joshiokaite, a stuffed derivative of the tridymite structure". *Amer. Miner.*, 75, 1186-1191.
- Steinfink, H. (1962) "The crystal structure of the zeolite phillipsite". Acta Crystal., 15, 644–651.
- Structure Reports (1951) Vol. 11, (1952) Vol. 12, (1954) Vol. 13, (1955) Vol. 9, (1959) Vol. 16, (1961) Vol. 18, (1963) Vol. 17, Vol. 20, (1964) Vol. 21, (1965) Vol. 23, (1969) Vol. 26, (1971) Vol. 27, (1975) Vol. 32A, (1975) Vol. 33A, (1975) Vol. 39A, (1978) Vol. 42A, (1982) Vol. 46A, (1988) Vol. 50A, (1989) Vol. 49A. International Union of Crystallography, Utrecht-Dordrecht.
- Strukturbericht (1931) Vol. 1, (1937) Vol. 2, (1937) Vol. 3, (1943) Vol. 7. Akademische Verlagsgesellschaft, Leipzig.
- Strunz, H. (1982) Mineralogische Tabellen. Eighth edition. Akademische Verlagsgesellschaft, Leipzig.
- Taga, T. (1969) "Crystal structure of Na₂CO₃ 10H₂O". Acta Cryst., B25, 2656–2658.
- Takéuchi, Y., Ozawa, T., Ito, T., Araki, T., Zoltai, T. & Finney, J. J. (1974) "The $B_2Si_8O_{30}$ groups of tetrahedra in axinite and comments on the deformation of Si tetrahedra in silicates". *Zeit. Krist.*, 140, 289–312.
- Tendeloo, G., van Wenk, H. R. & Gronsky, R. (1985) "Modulated structures in calcium dolomite. A study by electron microscopy". *Phys. Chem. Miner.*, 12, 333–341.
- Theophrastus (372–287 B.C.) Quoted by A. S. Povarennykh (1972), pp. 4 and 12.
- Thompson, J. B. Jr. (1970) "Geometrical possibilities for amphiboles structures: model biopyriboles". Amer. Miner., 55, 292-293.
- Uklonskii, A. S. (1940) *Mineralogy* (in Russian). Gostoptekhizdat, Moscow.
- Vainshtein, (1981) Modern Crystallography. I. Symmetry of crystals. Methods of structural crystallography. Springer-Verlag, Berlin.
- Wadsley, A. D. (1952) "The structure of lithiophorite". Acta Cryst., 5, 676-680.
- Wang, R., Bradley, W. F. & Steinfink, H. (1965) "The crystal structure of alunite". Acta Cryst., 18, 249–252.
- Wasastjerna, J. A. (1923) Soc. Sci. Ferm. Comm. Phys. Math., 38, 1 Quoted by L. Pauling (1960) p. 517.
- Wells, A. F. (1962) Structural inorganic chemistry. Third edition. Clarendon Press, Oxford.
- Werner, A. G. (1774) Von den ausserlichen Kennzeichen der Fossilien. Siegfried Lebrecht Crusius, Leipzig.
- Werner, A. G. (1817) Abraham Gottlob Werner's letztes mineral System, Freiberg, Quoted by A. D. Adams (1954) p. 204.
- Whewell, W. (1837) History of the inductive sciences. First edition. London, 3, 227. Quoted by C. Frondel, (1983), p. 12.
- Whittaker, E. J. W. (1956) "The structure of chrysotile. II.

Clino-chrysotile ". Acta Cryst., 9, 855-862.

- Winter, J. K. & Ghose, S. (1979) "Thermal expansion and hightemperature crystal chemistry of the Al₂SiO₅ polymorphs". *Amer. Miner.*, 64, 573-586.
- Winter, J. K., Ghose, S. & Okamura, F. P. (1977) "A hightemperature study of the thermal expansion and the anisotropy of the sodium atom in low albite". *Amer. Miner.*, 62, 921-931.
- Wuensch, B. J. (1974) "Sulfide crystal chemistry". In Sulfide mineralogy, short course notes. Vol. 1 Edited by P. H. Ribbe. Miner. Soc. America, W-21-W-44.
- Wyckoff, R. W. G. (1963) Crystal structures, Vol. 1. Second edition. John Wiley Interscience Publishers, New York.
- Wyckoff, R. W. G. (1964) Crystal structures, Vol. 2. Inorganic compounds RX_n, R_nMX₂, R_nMX₃. Second edition. John Wiley Interscience Publishers, New York.
- Wyckoff, R. W. G. (1965) Crystal structures, Vol. 3. Inorganic compounds $R_x(MX_4)_y$, $R_x(M_nX_p)_y$, hydrates and ammoniates. Second edition. John Wiley Interscience Publishers, New York.
- Wyckoff, R. W. G. (1968) Crystal structures, Vol. 4. Miscellaneous inorganic compounds, silicates, and basic structural information. Second edition. John Wiley Interscience Publishers, New York.

- Yakubovich, O. V. & Simonov, M. A. (1985) "Refined crystal structure of zeolite laumontite Ca(H₂O)₂ ₈[Al₂Si₄O₁₂]O 5H₂O" (in Russian). Kristallografiya, 30, 1072-1076. English translation Soviet Physics, Crystallography (1985), 30, 624-626.
- Yamaguchi, G. & Suzuki, K. (1967) "Structural analyses of merwinite". J. Ceram. Assoc. Japan, 75, 220-229. Quoted in Structure Reports (1975), 32A, 431-433.
- Zemann, J. (1969) "Part I. Crystallography". In Introduction to mineralogy, crystallography and petrology, edited by C. W. Correns. Springer-Verlag, Berlin (pp.3-178).
- Zoltai, T. (1960) "Classification of silicates and other minerals with tetrahedral structures". *Amer. Miner.*, 45, 960–973.
- Zoltai, T. (1974) Systematics of simple sulfide structures. University of Minnesota, Minneapolis (Private communication).
- Zoltai, T. (1975) Notes on the systematics of close-packed silicate structures. University of Minnesota, Minneapolis (Private communication).
- Zoltai, T. (1977) Crystal structures. University of Minnesota, Minneapolis (Private communication).
- Zoltai, T. & Stout, J. H. (1984) Mineralogy. Concepts and principles. Burgess Publishing Company, Minneapolis, U.S.A.

Mineral index

 $(= means isotypic, \cong distortion derivative)$

Achavalite = Niccolite Actinolite = Tremolite Adamite = AndalusiteAlabandite = Halite Albite 40, 269 Allanite = Epidote Alleghanyite = Chondrodite Allemontite = Arsenic Allophane = SiO_2 colloidal Almandine = Garnet Altaite = Halite Alunite 311 Amblygonite 278 Analcime 293 Anatase 90 Andalusite 78, 144 Andesine = Albite Andradite = Garnet Anglesite = Baryte Anhydrite 151 Ankerite = Dolomite Anorthite 270 Anthophyllite 211 Antigorite 240 Antimonite-syn. Stibnite 160 Antimony = ArsenicAntlerite 129 Apatite 29, 78, 165 Apophyllite 242 Aragonite 38, 40, 175 Arfvedsonite = Hornblende Argentite = Cuprite Argentopyrite = Cubanite Arsenic 224 Arsenopyrite 170 Aurostibite = Pyrite Autunite 245 Avicennite = Bixbyite Axinite 197 Azurite 185 Barbosalite = Lazulite

Barylite 119

Baryte 312 Bayerite = GibbsiteBehierite = ZirconBerndtite = Melonite Bertrandite 118 Beryl 274 Betafite = Pyrochlore Bindheimite = Pyrochlore Biotite = Phlogopite Bischofite 306 Bismoclite = Matlockite Bismuth = Arsenic Bixbyite 139 Blende 110 Boehmite = Lepidocrocite Boracite 280 Borax 219 Bornhardtite = Spinel Bornite-defect Digenite 109 Boulangerite 164 Bournonite 161 Bracewellite = Diaspore Braunite 141 Breithauptite = Niccolite Briartite = Stannite Bromellite = Wurtzite Brookite 95 Brucite = Melonite Bunsenite = HaliteByströmite = Tapiolite Bytownite = Albite

Cadmoselite = Wurtzite Calamine-syn. Hemimorphite 194 Calcite 38, 172-173 Calderite = Garnet Calomel 203 Cancrinite 300 Carnallite 309 Carnotite 247 Carobbite 137 Carrolite = Spinel Cassiterite = Rutile

Cattierite = Pyrite Celestite = Barvte Cerargyrite = Halite Cerianite = Fluorite Cerussite = Aragonite Chabazite 287 Chalcanthite 317 Chalcocite 304 Chalcopyrite 111 Chalcosine-syn. Chalcocite 304 Chernovite = Zircon Chloanthite = Skutterudite Chlorite 234-235 Chloritoid 326 Chloromagnesite 97 Chondrodite 124 Chromatite = Zircon Chromite = Spinel Chrysoberyl = Olivine 65 Chrysotile 238 Churchite = Gypsum Cinnabar 202 Clausthalite = Halite Clinochlore = Chlorite Clinoenstatite = Diopside Clinohumite 126 Cobaltite = Pyrite Coesite 265 Coffinite = Zircon Colemanite 217 Coloradoite = Blende Columbite 93 Cooperite 13, 73, 142 Copper 18, 83 Cordierite 275 Coronadite = Hollandite Corundum 99 Cosalite 162 Coulsonite = Spinel Covelline 156 Covellite-syn. Covelline 156 Crandalite = Alunite α -Cristobalite 71, 72, 256 β-Cristobalite 255 Crocoite = Monazite Cryolite 105 Cryptomelane = Hollandite Cubanite 115 Cuprite 272 Cyanite-syn. Kyanite 127 Danalite = Sodalite

Danante = Sodante Descloizite 325 Desmine-syn. Stilbite 299 Diaboleite 158

Diamond 12, 13, 38, 39, 253 Diaspore 96 Dickite = Kaolinite Digenite 109 Diopside 36, 62, 205-206 Dioptase 196 Disthene-syn.Kyanite 127 Dolomite 174 Dumortierite 324 Durangite = Sphene Eckermannite = Hornblende Electrum = Copper Elpasolite 104 Enargite 116 Enstatite 207 Epidote 190 Epsomite 313 Erythrite = Vivianite Eskolaite = Corundum Eveite = AndalusiteFamatinite 65, 112 Fayalite-var. Olivine 76, 122 Ferberite-var. Wolframite 92 Ferroselite = Marcasite Fluoborite 182 Fluorite 63, 64, 78, 138 Forsterite-var. Olivine 53, 54, 55, 76, 122 Franklinite = Spinel Freboldite = Niccolite Frohbergite = Marcasite Fukuchilite = Pyrite Gahnite = Spinel Galaxite = Spinel Galena = HaliteGalenobismutite 29, 78, 163 Gallite = Chalcopyrite Garnet 29, 78, 148 Gaspeite = Calcite Gehlenite = Melilite Genthelvite = Sodalite Gerstmannite 132 Geversite = Pyrite Gibbsite 155 Gismondine 295 Gismondite-syn. Gismondine 295 Glaserite 305 Glauberite 315 Glauconite = Muscovite Glaucophane = Tremolite **Gmelinite 286** Goethite = Diaspore 40, 41, 44 Gold = Copper

Goldmanite = Garnet Graphite 38, 223 Greenockite = Wurtzite Grossular-syn. (or var.) Garnet, 148 Groutite = Diaspore Gudmuntite = Arsenopyrite Gypsum 248 Halite 56, 65, 73, 78, 85 Halloysite 239 Hamlinite = Alunite Hardystonite = Melilite Harmotome = Phillipsite Hastite = Marcasite Hauerite = Pyrite Hausmannite ≅ Spinel 121 Hawleyite = Blende Helvine = Sodalite Helvite-syn.Helvine Hematite = Corundum 40, 41, 43, 44 Hemimorphite 194 Hercynite = Spinel Hessite 303 Heterogenite 152 Heulandite 298 Hidalgoite = Alunite Hieratite 106 Hocartite = Stannite Hodgkinsonite 134 Hoernesite = Vivianite Hollandite 107 Hollingworthite = Pyrite Hornblende 210 Hübnerite-var. Wolframite 92 Humite 125 Huttonite = Monazite Hyalophane = Orthoclase Hydrargillite-syn. Gibbsite 155 Hydromagnesite 187 Hydrophilite 87 Hydrozincite 186 ICE (antartic) 257 ICE (ordinary) 262 Idocrase 193 Igdloite = Perovskite Ilmenite 100 Ilvaite 192 Imgreite = Niccolite Indite = Spinel Indium \cong Copper Iodargyrite = Wurtzite Irarsite = Pyrite Iridium = Copper Iridosmine 84

Iron 78, 135 Ixiolite - basic structure of Wolframite Jacobsite = Spinel Jaipurite = Niccolite Jarosite = AluniteKaersutite = Hornblende Kainite 319 Kalsilite 260 Kaolinite 31, 236-237 Karelianite = Corundum Kawazulite = TetradymiteKeatite 271 Kernite 218 Kieserite 277 Kimzeyite = Garnet Kitkaite = Melonite Knebelite = Olivine Kongsbergite = Copper Kösterite = Stannite Köttigite = Vivianite Kotulskite = Niccolite Közulite = Hornblende Kullerudite = Marcasite Kutnahorite = Dolomite Kyanite 38, 127 Labradorite = Albite Langisite = Niccolite Latrappite = Perovskite Laumontite 294 Laurite = Pyrite Lawrencite = Chloromagnesite Lazulite 322 Lead = CopperLepidocrocite 29, 146 Lepidolite = Phlogopite Leucite 279 Levyne 288 Libethenite = Andalusite Lime = Halite Linarite 316 Linnaeite = Spinel Litharge 117 Lithionite-syn. Lepidolite Lithiophorite 153 Löllingite = Marcasite Lonsdaleite - polype of Diamond Loparite = Perovskite Ludwigite 183 Luzonite = Famatinite

Mackinawite = Littarge Magnesiobiotite-syn.Phlogopite 231

Magnesioferrite = Spinel Magnesite = Calcite Magnetite = Spinel Magnocolumbite = Columbite Malachite 184 Manganite 89 Manganohumite = Humite Manganosite = Halite Marcasite 169 Marialite 284 Marshite = BlendeMassicot \cong Litharge Matlockite 29, 30, 78, 157 Melanostibite = Ilmenite Melanterite 314 Melilite 189 Melnikovite = Spinel Melonite 98 Mercury \cong Copper Merenskyite = Melonite Merwinite 308 Mesolite 290 Meta-autunite 246 Metacinnabarite = Blende Metavariscite - related to Variscite Michenerite = Pyrite Microcline 40, 268 Microlite = Pyrochlore Miersite = BlendeMillerite 273 Mimetite = ApatiteMinium 204 Mirabilite 318 Modderite \cong Niccolite Moissanite = Wurtzite Molybdenite 29, 30, 73, 78, 154 Monazite 321 Moncheite = Melonite Monteponite = Halite Montmorillonite 232 Montroseite = Diaspore Mordenite 297 Mossite = Tapiolite Mullite \cong Sillimanite Muscovite 31, 72, 229-230 Nantokite = Blende Natrolite 289 Natron 188

Nantokite = Blende Natrolite 289 Natron 188 Naumannite = Cuprite Nepheline 261 Niccolite 86 Nickel = Copper Niggliite = Niccolite Nisbite = Marcasite

Nitre = Aragonite Nitronatrite = Calcite Nontronite = Montmorillonite Norbergite 65, 123 Nordenskiöldine = Dolomite Octahedrite-syn. Anatase 90 Oldhamite = Halite Oligoclase = AlbiteOlivenite = Andalusite Olivine 8, 52, 53, 54, 65, 72, 76, 78, 122 Ordoñezite = Tapiolite Orpiment 225 Orthite-var. Allanite Orthoclase 267 Osbornite = HaliteOtavite = CalcitePalladium = Copper Palygorskite 241 Pandaite = Pyrochlore Paragonite = Muscovite Paramontroseite = Ramsdellite Parasymplesite = Vivianite Pargasite = Hornblende Partzite = Pyrochlore Pectolite 213 Penroseite = Pyrite Pentahydrite = Chalcanthite Pentlandite 131 Periclase = Halite Perite 159 Perovskite 65, 74, 77, 103 Phenakite 145 Phillipsite 296 Phlogopite 231 Pigeonite = Diopside Pinakiolite 181 Platarssulite = Pyrite Platinum = Copper Plattnerite = Rutile Plumbojarosite = Alunite Polydymite = Spinel Polyhalite 320 Portlandite = Melonite Powellite = Scheelite Prehnite 243 Priderite - substitution derivative of Hollandite Protoenstatite- (artificial) related to Enstatite Proustite 178 Psilomelane 108 Pyrargyrite = Proustite Pyrite 72, 171 Pyrochlore 140 Pyrochroite = Melonite

Pyrolusite = Rutile Pyromorphite = Apatite Pyrope = Garnet Pyrophanite = Ilmenite Pyrophyllite 226 Pyrrhotine = Niccolite

α-Quartz 72, 264 β -Quartz 263

Rammelsbergite = Marcasite Ramsdellite 94 Realgar 179 Rhodochrosite = Calcite Rhodonite 215 Rijkeboerite = Pyrochlore Romeite = Pyrochlore Roquesite = Chalcopyrite Ruby-var. Corundum Rutile 74, 77, 88

Safflorite \cong Marcasite Sanmartinite = Wolframite Sanidine 266 Saponite = Vermiculite Sapphire-var. Corundum Scacchite = Chloromagnesite Scapolite-syn. Marialite 284 Schafarzikite = Minium Scheelite 150 Scolecite 291 Scorodite = Variscite Scorzalite = Lazulite Sederholmite = Niccolite Seligmannite = Burnonite Sellaite = Rutile Siderite = Calcite Siderotil = Chalcanthite Sillimanite 38, 216 Silver = CopperSinhalite = Olivine Skutterudite 176 Smaltite = Skutterudite Smithsonite = Calcite Sodalite 285 Sonolite = Clinohumite Sperrylite = Pyrite Spessartine = Garnet Sphalerite-syn. Blende 39, 65, 74, 110 Sphene 76, 276 Spinel 8, 59, 72, 120 Stannite 65, 113 Staurolite 130 Stetefeldite = Pyrochlore Stibnite 160

Stilbite 299 Stilleite = Blende Stishovite = Rutile Stolzite = Scheelite Strontianite = Aragonite Sukulaite = Pyrochlore Sulphur 31, 177 Swedenborgite 133 Sylvine = Halite

Talc 31, 227-228 Tantalite = Columbite Tapiolite 91 Tellurbismuth 101 Tellurium 28, 201 Tellurobismuthite-syn. Tellurbismuth 101 Tennantite = Tetrahedrite Tenorite 143 Tetradymite 102 Tetrahedrite 283 Thenardite 310 Thomsonite 292 Thorianite = Fluorite 63Thorite = Zircon Tiemannite = BlendeTilasite = SpheneTin 254 Titanite-syn. Sphene 76, 276 Topaz 128 Torbernite = Autunite Tourmaline 195 Tremolite 208-209 Trevorite = Spinel α-Tridymite 259 β -Tridymite 258 Trippkeite = Minium Tripuhyite = Tapiolite Trogtalite = Pyrite Trona 249 Trüstedtite = Spinel Tschermakite = tremolite Tungstenite = Molybdenite Turquoise 281 Tyrrellite = Spinel

Ulvöspinel = Spinel Uraninite = Fluorite Uranophane 244 Uvarovite = Garnet

Vaesite = Pyrite Vanadinite = Apatite Variscite 282 Vermiculite 233 Vesuvianite-syn. Idocrase 193 Villamaninite = Pyrite Villiaumite = Halite Violarite = Spinel Vivianite 307 Vysotskite 78, 147

Wakefieldite = Zircon Wairauite 136 Warwickite 180 Wavellite 323 Willemite = Phenakite Willemseite = Talc Witherite = Aragonite Wolframite 92 Wollastonite 212 Wulfenite = Scheelite Wurtzite 78, 114 Wüstite = Halite

Xenotime = Zircon Xonotlite 214

Zavaritskite = Matlockite Zinc ≅ Iridosmine Zincite = Wurtzite Zircon 149 Zoisite 191

Subject index

Atoms 9-20 constitution 9 electronegativity 11 electronic configurations 10, 12 hvbrid orbitals 12 orbitals 9-12 size 14-17 Bauverband 4, 6 Bonds 11-14 covalent 13 directional character 12 hydrogen 14 intermediate 14 ionic 12 metallic 13 strength distribution 3 van der Waals 13 Categories of inorganic (and mineral) structures 4 chain 4 close-packed (or atomic) 4 coordination 3 framework 4 group 4 linkage 8 packing 8 recombination 29 sheet 4 Chemical elements 10, 11 metaloides 11 metals 11 non-metals 11 transition 10 Classification of inorganic structures 1-6 aluminates 1 based on bond strength 3 based on coordination 3 based on interatomic bonds 3 fluoaluminates 1 phosphates 1 silicates 1 Classification of minerals 1-8, 76-80 chemical 1 chemical + structural 2

physical 1 physical + chemical 1 practical 1 structural 1, 76 structural + chemical 3, 76 Close packing efficiency 77 CPI (close packing index) 77 SPI (symmetrical packing index) 77 Computing programs 59 layer description (condensed models) 59 PRCM 59 PRSH 59 VOID program 59, 60 Connectivity in frameworks 31 connected units 31 Coordination of atoms 17-20 coordination number 17 more common 18 stability 19, 20 Crystal structure definition 9 Degree of similarity among crystal structures 63 aristotype 6, 75 crystal-chemically isotypic 65 homeotypic 65 isoconfigurational 65 isopointal 65 structure type definition 65 structure type symbolism 73-75 Derivative structures 65 coalescent 65, 66 distortion 65 interstitial (or stuffed) 65 substitution 65 Diadochy 15 Dirichlet domain 17 Epitaxy 39, 40 Evolution of basic criteria of classification of minerals 1 - 3Ewald-Hermann notation for structure types 73, 75 Friauf-Laves phases 69 General chart of structural units and building units 5 General table of inorganic structure types 4 Ideal crystal structures 59-61

342

packing analogues 59-61 symmetrical analogues 59-61 IUPAC nomenclature of chemical compounds 72 Japanese brackets 69 Lattice-complexes 6 Lewis acid and Lewis base 36 Machatschki symbols 68 Nomenclature for closest packing 22 Packing 21-32 cubic-body-centred 26, 28 cubic closest 22, 23, 26 double hexagonal 22 heterogeneous 29 hexagonal closest 22, 23 homogeneous 29 interpenetrated 29 lavered 29 loose 28 non-layered 29 over atoms (superposition) 24 over holes 22, 25 over 'valleys' 24, 25 O^2/O^1 29 simple cubic 26 simple hexagonal 24 tetragonal 24 three-dimensional network 29, 78 Packing layers 22-31 B (cubic bondy centred) 28 constructive layers 36 N^{mn} 28, 29 Q (quadrangular) 25 «Q» (opened Q layers) (cubic bondy centred) 28 Qⁿ 29 R^{mn} 28 T (triangular) 22 Packing of structural units 31 chains 31 groups 31 molecules 31 sheets 31 Physical properties and crystal structure 38-51 cleavage 39 density 38 elasticity 38 electrocondutivity 38 habit 38 hardness 38 optical 39 thermoconductivity 38 thermo expansion 38 twinning 39 **Ouasicrystals 9** Radius of atoms 14-17 covalent 16 ionic 15

metallic 16 van der Waals 15 Representation of crystal structures 52-61 ball and spoke models 52 condensed models 53-59 coordination polyhedra 52 2D + 1D description (layer description) 36, 53 packing 52 projection of atoms 52 standard sheets for condensed models 55 Stability of crystal structures 33-37 connection principle 33 general condition 33 Gibbs free energy 33 Laves principles 33 space filling principle 33 symmetry principle 33 vector equilibrium principle 37 Stability rules 34-37 Brown rules 35 cation avoidance rule 37 distant distribution rule 37 layered rules 36 Pauling rules 34 Stacking symbols 26, 58 Structural 'modules' 4, 8 Structural nomenclature 63-75 characteristics 65 coordination 66 structural formulas 70 Structural units 3, 4, 5, 21, 68 branchdness 69 building units 5, 21 connectedness 69 constitution 68 dimensionality 68 linkdness 69 multiplicity 69 notation 68 packing information 69, 70 periodicity 69 polymerization' (or condensation) 21, 70 subunits 21, 68 Symmetry 44 capacity 45 crystallographic 44 definition 45 density 46, 48 measure 44-50 Transformations inhomogeneous mechanism 41 preservation of packing 41 topotatic 40 Twinning 39, 40, 43, 44 interstitial 43, 44

packing 43, 44 transformation 43, 44 Voronoi polyhedra 17 Wirkungsbereich 17

Author index

Agricola, G. (Georg Bauer) 1 Ahrens, L. M. 15 Akao, M. 187 Alexander, V. D. 324 Amer. Soc. for Test. and Materials 73 Amirov, S. T. 294 Andersson, S. 148 Andress, K. R. 306 Angel, R. J. 275 Appleman, D. E. 247 Araki, T. 132, 141, 308, 315, 323, 324 Armbruster, T. 275 Artioli, G. 290 Avicenna (Ibn Siná) 1 Bachmann, H. G. 316 Bacon, G. E. 249, 317 Ball, M. C. 41 Barlow, W. 22, 56 Baur, W. H. 259, 313, 314 Belov, N. V. 21, 22, 33, 34, 51, 59, 118, 215, 226, 287 Berry, L. G. 77 Berzelius, J. J. 1 Bloss, F. D. 11, 12, 64, 109, 138 Boer, J. L. De 303 Bokii, G. B. 3, 12, 20, 86, 97-100, 224, 257 Born, L. 164 Born, M. 33 Bragg, W. L. xi, 1, 8, 33, 40, 52, 89, 148, 149, 196, 212, 286, 288, 289, 295 Brindley, G. W. 41 Brown, C. J. 249 Brown, I. D. 35, 36 Buerger, M. J. xi, 33, 63, 195, 213 Bunn, C. 31, 39, 177 Burke, J. H. 60 Burns, R. G. 87, 88, 89, 91, 94, 107, 108, 169, 170 Burns, V. M. 87, 88, 89, 91, 94, 107, 108, 169, 170 Caillère, S. 241 Calleri, M. 313 Cameron, M. 61, 279 Chaskolskaia, M. 38

Christ, C. L. 217, 322 Christian, J. W. 42, 43 Cid-Dresdner, H. 281 Claringbull, G. F. 40, 52, 89, 149, 196, 212, 286, 288, 289, 295 Cocco, G. 315, 318 Cooper, W. F. 218 Corbridge, D.E.C. 1 Cronstedt, F. xi, 1 Cruischank, D. W. J. 194 Curry, N. A. 249, 317 Dachs, H. Von 89 Dana, J. D. xi, xii, 1 Deer, W. A. 103, 148, 189, 197, 233, 238 De Jong, W. F. 3 Dent Glasser, L. S. 42 Dollase, W. A. 190, 191, 259 Donnay, J. D. H. 66, 74, 195, 196 Economy, J. 24 Eitel, W. 214 Ernst, W. G. 208 Ervin, G. 42 Evans, H. T. Jr. 156, 247, 304 Evans, R. C. 3, 10, 19 Ewald, P. P. 22, 73, 74, 75 Ewing, F. J. 96 Fedorov, E. S. 1, 45 Fedorova, N. N. 152 Fersman, A. E. 33 Figueiredo, M. O. xi, 3, 4, 5, 6, 8, 21, 24, 26, 27, 28, 29, 30, 31, 32, 36, 37, 55, 57, 58, 59, 60, 61, 63, 64, 66, 67, 71, 75, 79, 127, 129, 134, 137, 144, 227-231, 234, 236, 263 Finger, L. W. 100 Ford, W. E. 189, 269 Francombe, M. H. 40 Frank, F. C. 53 Friauf, J.B. 69 Frondel, C. 271 Frueh, A. J. Jr. 303

Galli, E. 290-292, 298, 299 Garrido, J. 3 Geber (Jabir Ibn Hayyan) 1 Ghose, S. 186, 216 Ghouse, K. M. 321 Giacovazzo, C. 77 Giese, R. F. Jr. 24 Gilli, G. 77 Gindt, R. 40 Giuseppetti, G. 322 Glasser, F. P. 42 Glusker, J. P. xi Goble, R. J. 156 Goldschmidt, V. M. 3, 15, 17 Gottardi, G. 290-292, 298 Groat, L. A. 276-8 Groth, P. H. R. Von xi, 1 Gundermann, J. 306 Haber, F. 33 Hambley, T. W. 298 Hawthorne, F. C. 4, 6, 8 Hazen, R. M. 100 Hellner, E. 4, 6, 63, 65, 66, 67, 72, 74, 75, 76, 160, 161, 162, 163, 164 Hénin, S. 241 Hermann, C. 4, 22, 73, 74, 75, 194 Hooke, R. 59, 60 Howie, R. A. 103 Hurlbut, C.S. Jr. 279 Iwai, S. 187 Iida, S. 37, 53 Iitaka, Y. 163 Ingerson, E. 85-88, 99, 103, 120, 122, 135, 138, 149, 151, 160, 165, 172, 201, 202, 205, 215, 225, 254, 256, 267, 269-270, 272-275, 279, 300, 304, 310, 312 Intern. Tables of Crystal. 44, 45 Iskhakova, L. D. 317 **IUPAC 72** Jarchow, O. 300 Johnson, N. E. 283 Jones, J. B. 267 Joswig, W. 291 Kapustinskii, A. F. 33 Kasper, J. S. 53 Kepler, J. 22, 59 Kern, R. 40 Kerrick, D. M. 216 Kitaigorodskii, A. I. 31, 33 Klein, C. 279 Kniep, R. 282 Kondrasev, J. M. D. 152

Konnert, J. A. 156 Koptsik, V. A. 45, 51 Kostov, I. 3, 30, 76, 78, 83-86, 88-131, 133-165, 169-197, 201-219, 223-249, 253-300, 303-326 Krebs. H. 137, 253 Kripyakevich, P.I. 28, 53, 63 Landé, A. 14, 15, 33 Langlet, G. A. 59, 60 Lapparent, A. 3 Laves, F. 3, 4, 25, 33, 34, 37, 69 Lee, A. Van der 303 Leineweber, G. 161 Liebau, F. 1, 21, 63, 65, 66, 67, 69, 72, 76, 226-232, 234-243, 259, 271, 285, 286, 293, 297, 300 Lima-de-Faria, J. xi, 2, 3, 4, 5, 6, 7, 8, 21, 22, 24, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 41, 42, 43, 44, 45, 46, 47, 48, 49, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 69, 70, 71, 72, 74, 76, 79, 94, 137, 172, 196 Lindberg, M. L. 322 Linnaeus, C. Von xi Loeb, A. L. 37 Lonsdale, K. 44 Machatschki, F. 1, 3, 66, 68, 171 Madelung, E. 33 Makovicky, E. 63, 65, 66, 67, 72, 76, 162, 164, 182 Mason, B. 77 Matkovich, V. I. 24 Mazzi, F. 279 McDonald, W. S. 194 Megaw, H. D. xi, 6, 8, 44, 45, 75, 76 Merkle, A. B. 298 Merlino, S. 288 Meulendijk, P. N. 318 Monaco, H. L. 77 Moore, P. B. xi, 21, 60, 132, 141, 194, 308, 324 Mootz, D. 282 Mumpton, F. A. 258 Náray-Szabó, St. v. 1, 103 Niggli, A. 66, 74 Niggli, P. 3, 4, 66 Nowacki, W. 162, 163 Okada, K. 305 O'Keeffe, M. 148 Orlando, J. 3 Ossaka, J. 305 Pabst, A. 1 Palache, C. 83-93, 95-113, 116, 117, 120, 121, 131, 133, 139, 140, 142, 143, 154, 157, 158, 160-163, 169-188, 201, 202-204, 303-304 Papike, J. J. 61, 279

346

Papike, P. P. 216, 243 Parthé, E. 18, 63, 65, 66, 67, 68, 72, 76, 111-113 Pauling, L. 14, 15, 22, 34, 35, 36, 53 Pearson, W. B. 73, 109, 110, 114 Plinius (the older) Gajus Secundus 1 Pluth, J. J. 260, 261 Povarennykh, A. S. 1, 6, 38, 52, 83-88, 90-108, 110, 112-125, 127, 131, 133, 136, 138-163, 165, 169-190, 194, 195, 201-211, 214-219, 224-236, 240-249, 253-255, 257, 260-266, 268-270, 272, 274-278, 280-287, 289, 292-294, 300, 303-304, 306, 307, 310, 312, 313, 316, 317, 321, 323, 324, 326 Prewitt, C. T. 15, 61, 213 Putnis, A. 275 Radoslovich, E. W. 37 Ramdohr, P. 98, 172, 195, 242, 245, 246, 274, 283, 304, 312 Ribbe, P. H. 126, 268 Rinaldi, R. 296 Roberts, W. L. 84, 87, 94, 97, 98, 114, 116, 118, 119, 125, 133, 134, 136, 137, 140, 145, 147, 152-154, 157, 158, 160, 191, 192, 194, 197, 223-225, 232, 238, 239, 244, 246, 249, 254, 258, 260, 273, 277, 283, 286, 287, 290, 291, 295-296, 300, 303, 305-306, 308-310, 312-317, 319-321, 323-325 Robinson, P. D. 319 Rooksby, H. P. 40 Ruben, H. W. 318 Sanderson, R. T. 16 Schlatti, M. 320 Schlemper, E. O. 309 Schubert, K. 73, 147 Scordari, F. 77 Senechal, M. xi Shannon, R. D. 15 Shubnikov, A. V. 45, Simonov, M. A. 294 Slaughter, M. 298 Smirnova, N. L. 53 Smith, D. K. 244 Smith, J. V. 149 Soloveva, L. P. 118 Spice, J. E. 10 Spronsen, J. W. Van 79 Srikrishnan, T. 162 Steele, I. M. 260, 261 Steinfink, H. 296 Stout, J. H. 61, 77, 83-86, 88-90, 92, 93, 95, 96, 99, 100, 103, 105, 108, 110, 111, 120-124, 126, 127, 129-131, 135, 138, 144, 146, 148-151, 155, 156, 165, 172-175, 177, 184, 185, 190, 193, 195, 202, 203, 205-213,

215-219, 223, 224, 226-231, 234, 236, 240, 242, 243,

246-248, 253, 256, 260, 261, 263-270, 272-276, 278-285, 287, 289, 293-294, 298, 299, 307, 311-313, 317, 321, 323, 326 Strunz, H. 84, 85, 89, 98, 108, 109, 111, 164, 169, 172, 195, 196, 223, 242, 245, 246, 258, 274, 283, 287, 304, 312 Sueno, S. 61 Suzuki, K. 308 Tadini, C. 322 Taga, T. 188 Takéuchi, Y. 197 Taylor, H. F. W. 41, 42 Taylor, J. C. 298 Taylor, W. H. 267 Tendeloo, G. Van 172, 174 Theophrastus 1 Thompson, J. B. Jr. 61 Uklonskii, A. S. 3 Viterbo, D. 77 Wadsley, A. D. 153 Wang, R. 311 Wasastjerna, J. A. 15 Wells, A. F. 3, 30, 87, 88, 94, 96, 104, 106, 130, 157-159, 255 Werner, A. G. 1 Whewell, W. 1 Whittaker, E. J. W. 238 Winter, J. K. 216, 269 Wooster, W. A. xi Wuensch, B. J. 114, 116, 169, 170 Wyckoff, R. W. G. 30, 52, 76, 83-108, 110-131, 133-152, 154, 155, 157-163, 165, 169-185, 189-196, 201-219, 223-236, 242, 244-246, 248, 253-258, 260-268, 270-280, 283-285, 287, 289, 292, 293, 295-297, 300, 303-304, 307, 310-314, 316, 321, 322, 324-326 Yakubovich, O. V. 294 Yamaguchi, G. 308 Zanotti, G. 77 Zemann, J. 26, 39, 110, 253, 316 Zoltai, T. 52, 61, 77, 83-86, 88-90, 92, 93, 95, 96, 98, 99, 100, 103, 105, 108, 110-111, 114-116, 120-131, 135, 138, 144, 146, 148-151, 155, 156, 165, 169, 171-177, 184, 185, 190, 193, 195, 202, 203, 205-213, 215-219, 223, 224, 226-231, 234, 236, 240, 242, 243, 245, 247-248, 253, 256, 258-270, 272-276, 278-285, 287, 289, 293-294, 298, 299, 305, 307, 308, 311-313, 315, 317, 321, 323, 326 Zussman, J. 103