J. Lima-de-Faria

# Structural Mineralogy 

## An Introduction



## Structural Mineralogy

An Introduction

Solid Earth Sciences Library
Volume 7

# Structural Mineralogy An Introduction 

by

J. LIMA-DE-FARIA<br>Centro de Cristalografia e Mineralogia,<br>Instituto de Investigação Cientifica Tropical, Lisbon, Portugal

## Library of Congress Cataloging-in-Publication Data

```
Lima-de-Faria, J. (José), 1925-
    Structural mineralogy : an introduction / by J. Lima-de-Faria.
        p. cm. -- (Solid earth sciences library ; v. 7)
    Includes bibliographical references and indexes.
    1. Minerals--Classification. 2. Crystal structure. I. Title.
II. Series: Solid earth sciences library ; SESL }7
QE388.L56 1994
549'.12--dc20 94-10374
```

ISBN 978-90-481-4396-2 ISBN 978-94-015-8392-3 (eBook)
DOI 10.1007/978-94-015-8392-3

## Printed on acid-free paper

Cover illustration: Olivine crystal structure, ( $\mathrm{Mg}, \mathrm{Fe})^{o} \mathrm{Si}^{\mathrm{t}}\left[\mathrm{O}_{4}\right]^{\mathrm{h}}$, (condensed model representation).

## All Rights Reserved

© Springer Science+Business Media Dordrecht 1994
Originally published by Kluwer Academic Publishers in 1994.
Softcover reprint of the hardcover 1st edition 1994
No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner.

In spite of the variety of the mineral crystalline world, the whole 'mineralogical game' just reduces to various modes of filling gaps in uniform close packing with various corresponding patterns.

N.V. Belov ${ }^{\text {a }}$

The greatest pleasure in the study of science is understanding.

$$
\text { Leopold Infeld }{ }^{\mathrm{b}}
$$

[^0]
## Contents

Foreword ..... ix
Prefacexi
Acknowledgements ..... xiii

1. The structural classification of minerals ..... 1
1.1. A very brief history of mineralogical classifications ..... 1
1.2. The structural classification of inorganic structures ..... 3
1.3. The structural classification of minerals ..... 6
1.3.1. General considerations ..... 6
1.3.2. Implications of the structural classification of minerals in the classification of silicates ..... 8
2. The anatomy of crystal structures ..... 9
2.1. What is a crystal structure? ..... 9
2.2. The constitution of atoms ..... 9
2.3. The bonds between atoms ..... 11
2.4. The size of atoms ..... 14
2.5. The coordination of atoms ..... 17
3. The architecture of crystal structures ..... 21
3.1. The structural units and their 'polymerization' process ..... 21
3.2. The packing of structural units ..... 21
3.2.1. Kinds of close packing of individual atoms ..... 22
3.2.2. The packing of groups, chains and sheets ..... 31
3.2.3. The connectivity in frameworks ..... 31
4. The stability of crystal structures ..... 33
4.1. The general conditions of stability ..... 33
4.2. The extension of Laves principles to minerals ..... 33
4.3. Stability rules ..... 34
4.3.1. Rules governing the polyhedral constitution of inorganic crystal structures (Pauling rules) ..... 34
4.3.2. The bond-valence rules (Brown rules) ..... 35
4.3.3. Rules governing the layer organization of inorganic crystal structures ..... 36
5. Structure and properties ..... 38
5.1. Physical properties and crystal structure ..... 38
5.2. The importance of crystal structure in phase transformations ..... 40
5.2.1. Topotaxy ..... 40
5.2.2. Transformation twins: packing and interstitial twinning ..... 43
5.2.3. The measure of symmetry in crystal structures and its application to phase transformations ..... 44
6. Representation of crystal structures ..... 52
6.1. Kinds of representation ..... 52
6.2. Layer description and the condensed models of crystal structures ..... 53
6.3. Computing programs for layer description ..... 59
6.4. Representation of real structures by ideal structures: packing and symmetrical analogues of crystal structures ..... 59
7. Nomenclature of crystal structures ..... 63
7.1. Degrees of similarity among mineral structures. Concept of structure type ..... 63
7.2. Structural formulas ..... 65
7.2.1. General considerations ..... 65
7.2.2. Notation for the coordination of atoms ..... 66
7.2.3. Notation for the structural units and their packing ..... 68
7.2.4. General scheme for the structural formulas ..... 70
7.2.5. The importance of structuralformulas for the relationshipof crystal structures72
7.3. Structure type symbolism ..... 73
8. Systematics of minerals on structural grounds ..... 76
8.1. Choice and presentation of data ..... 76
8.2. Ordering of the main categories of mineral structure types ..... 77
8.3. Final remarks ..... 78
8.4. Descriptive charts of mineral structure types ..... 81
8.4.1. Close-packed structures ..... 81
8.4.2. Group structures ..... 167
8.4.3. Chain structures ..... 199
8.4.4. Sheet structures ..... 221
8.4.5. Framework structures ..... 251
8.4.6. Structures not classified ..... 301
References ..... 327
Mineral index ..... 335
Subject index ..... 341
Author index ..... 344

## Foreword

Recently, many fine textbooks in mineralogy have appeared. The great tradition of mineral science continued for over 100 years in Dana's systems, textbooks, and manuals, replete with discussion on crystallographic characters, and short statements on the mineral species as then known. The more recent superb Ramdohr/Strunz Klockmann's Lehrbuch der Mineralogie is a mine of rich crystalchemical information, perhaps the finest contemporary pedagogic book of its kind. Within the past three years, a new and ambitious project - the Handbook of Mineralogy by several keen mineralogists - receives much assistance from up-to-date computer technology and promises to be a very fine series. The little Mineral Reference Manual by Nickel and Nichols is a handy means of quick access to the original literature on species and reference to crystal structure determination. Do we really need another book? For the Structural Mineralogy of José Lima-de-Faria, I say indeed we do!

Mineralogy is one of the natural sciences, and about the oldest one at that. It antedated inorganic chemistry, crystallography, and so much geology. Mineralogy is at the scientific root of mining, prospecting, mineral dressing, and a host of other utilities stimulated by our science. Minerals were practically the first crystalline materials to be investigated after the demonstration by von Laue and the Braggs of X-ray diffraction by crystals in 1912. The phenomenal growth of crystallography as a workhorse for structure and crystal analysis, from Patterson's Faltung to Hauptmann and Karle's direct methods through probabilities of structure semi-variants are in many respects the crowning tiara of 20th century science. After all, without Watson and Crick's unveiling of elusive DNA, where would molecular biology and biochemistry stand today? Dr. Linus Pauling, arguably the greatest thinker in chemistry of the century, made his most
notable early achievements in unravelling the crystal structures of minerals. I would include Zachariasen and Belov as well, two other giants in crystal structure analysis. How many contributed in their own way to our science? Ten? Fifty? One hundred? It depends on how you weight the count, but I suspect it is closest to the biggest number just mentioned.

The explosive growth in information (Ger.: Fach) on crystal structures began about 1950, when the big computers and automated diffractometers were just emerging. It contributes mightily to our science (Ger.: Naturwissenschaft). Unfortunately, technological knowledge seems to come easily now, and Fach appears to be outstripping Naturwissenschaft, a sorry state of affairs. Most practicing mineralogists today are Fachidioten and are hardly Naturwissenschafters. The science has become tedious; it no longer dances with nimble feet as Nietzsche instructed us. Mineralogists don't know their minerals. Mineralogists don't go into the field anymore. Crystal structures, the products of blood, sweat, and tears at the diffractometers, computers, and pocket calculators are slipping into a grey gloom, abandoned orphans of science. What do we do with all this information? Is structural knowledge hortative, beyond mere confirmation or determination of a correct formula, or a challenge to an old one?

It seems to me that mineralogy today is far from a dead science, although most mineralogists may fall into that category. These are really exciting times! With so much gruelling and repetetitive data already accumulated, and much structure solving and information collating out of the way, it seems that mineralogy is about to blossom again. This is in the greatest and most ambitious intellectual exercise of them all: the link between crystal structure and mineral paragenesis. Certain more serious
thinkers in mineralogy have felt, especially since WW II, that structure types just don't pop up out of nowhere like mushrooms, but that structure type is a kind of Rosetta Stone to a mineral's genesis. The famous kyanite-andalusite-sillimanite trimorphs serve this point well, but isn't it a rather sparse example of such a structure-paragenesis link?! After all, we have about 2000 structure types to explain and understand more fully.

One of the big hindrances in understanding structure is found in structure representation. Most structure representations in the literature resist the reader's perception. Several projections should really be shown as structures, like plumbing assemblies, have joints which relate to other structures in different directions. Of course, closestpacking with at least one $h(=\mathrm{ABA})$ in the stacking sequence has just one principal direction. In such a structure, once $t^{*}$ (the vector normal to the c.-p. layers) is defined, layer-by-layer sequences within the asymmetric unit of translation can be shown. Some of these may be building blocks for other structures. Often, each layer tells a little story by itself, and it may reveal a 'secret' to the reader. If $t^{*}$ falls along general $[h k l]$, then it is the task of the investigator to transform the cell into a new more reducible representation, but one that opens up the window of closest-packing. Fractional coordinates are transformed according to the transpose of the inverse of the adjoint of the transformation matrix, that is $\mathbf{A}^{\prime}={ }^{T}(\operatorname{Adj} \mathbf{A})$, where $\mathbf{A}$ is the transformation matrix from the old cell to the new (pseudo)-orthogonal cell with one axis parallel to $t^{*}$. To make it easy, transform the inversion centers according to the same matrix. Projection along $t^{*}$ layer-by-layer through the asymmetric unit then finishes the job. Surprisingly, this approach has had very few practitioners in the past, thus most structures which are in fact based on principles of
that fundamental law of nature, closest-packing, are misrepresented!

José Lima-de-Faria prefers to cast the closestpacked representation as a sphere packing model. I find that rather hard to perceive, as I happen to be a polyhedrist by inclination. Because the closestpacked representation is the real goal of the study, I would even submit a table listing the transformation matrices, the old and new cell, the old and new transformed coordinates, the mean layer separation $h$, and difference, $\Delta A$, or the coordinate differences (expressed as 'interatomic' distance) between real and ideal (calculable) perfect closestpacked representation. Such a table is akin to the table of structure factors so familiar to all crystallographers, a certificate of sorts to see whether or not one is cheating or just misinterpreting the information at hand. Such a transformed cell also makes listing of shared polyhedral edges much easier to find, visualize, and enumerate.

Be that as it may, Jose's book covers the problem of structure description, utility, classification, and representation quite well, and it tries to place some guidelines toward more uniformity in structure descriptions, most of which in the literature are really quite shoddy.

Structural Mineralogy is really not an end in itself. Rather, it is a rallying call to urge further clarification, representation, and systematization of already known structures. Committees cannot delegate such notions as ephemeral and individual as structure description. Much more airing, many more new ways at looking at old crystal structures are required. But José's book we can admire in common, criticize in common, comprehend in common.

## Chicago

Paul B. Moore
5 February, 1994

## Preface

The classification of animals and plants has not changed much since Linnaeus' proposal (1735), because, at the time, its detailed study was already possible, particularly with the help of the microscope, and consequently a natural classification based on their internal structures could be established. On the contrary, the criterion for the classification of minerals has changed (from practical purposes, to physical properties and to chemical composition) following the development of the mineralogical science. These changes were always a step further in the direction of the internal structure of minerals. Only after the first determination of a crystal structure was carried out (Bragg, 1913) was it possible to reach the internal structure of minerals. Since then most of the mineral structures have been studied, and time is now ripe to develop a natural classification by replacing the classical chemical classification by a structural classification of minerals.

Today it appears obvious that the mineral classification had to pass through several stages until it reached the internal structure of minerals. However, what appears obvious but is against the mental habits of scientists takes normally a long time to become well understood and widely accepted. New ideas always develop strong reactions against them, and the history of science is full of such examples. It seems that many scientists do not learn much from the history of science - that there exists a kind of cleavage between the latter and their scientific activity - and that they do not use history to enlighten or guide their scientific research. Their negative reactions appear as intrinsic to the process of scientific development; before adopting a new approach, they try to preserve what has shown to be fruitful for so many years.

The author (1965a) proposed the elaboration of a general table ordering the inorganic structures
and, with the collaboration of Figueiredo, presented a general table and a structural classification of inorganic structure types (Lima-de-Faria \& Figueiredo, 1976). Minerals are an important part of the inorganic domain, and it would seem evident that this classification could be applied to the mineral kingdom. However, it took several years for the author to realize that the general classification of inorganic structures would have important implications on the classification of minerals. It was through the preparation of the 'Historical Atlas of Crystallography' (Lima-de-Faria, Buerger, Glusker, Megaw, Moore, Senechal \& Wooster, 1990) that an intimate contact with the history of mineralogy - the mother of crystallography - has clearly shown the changing aspect of the mineral classifications, and the difficulties in replacing them by more appropriate ones. The big fight against the chemical classification of minerals first proposed by Cronstedt in 1758 lasted for more than one hundred years and very much impressed the author. One of the arguments against the chemical approach was the fact that only a few chemical compositions of minerals were known at Cronstedt time, and therefore the chemical criterion could not be applied generally; on the contrary, the physical properties could be determined for all minerals. Only when chemistry reached certain maturity, that is, when chemical formulas were known for most of the minerals, could the chemical approach be applied with success, and it was only with Dana ( 1850,1854 ) and Groth (1874), that the chemical classification gradually became accepted.

The same would have happened with a structural approach to the classification of minerals, had it been proposed at the beginning of crystal structure determination. The strong argument against it would be its lack of generality, the structural criterion being only applicable to a small number of mi-
nerals. But now, that so many mineral structures are known, this negative argument does not stand any more. A clear parallelism exists between the replacement of the physical by the chemical classification and the proposed replacement of the chemical by the structural classification. Dana said in his 'System of Mineralogy', third edition (1850),
[...] chemistry has opened to us a better knowledge of the nature and relation of compounds; and philosophy has thrown new light on the principles of classification. To change is always seeming fickleness. But not to change with the advance of science is worse; it is persistence in error [...]
A similar statement could now be applied to the
structural classification. However, with the present knowledge of the structural characteristics of minerals and the development of the history of mineralogy, it may well be that the acceptance of the structural classification of minerals, instead of taking one hundred will take only a few years. Let us hope for the best.

This book is mainly concerned with the understanding of the mineral structures and the structural classification of minerals, and will not treat in detail the other several items of its contents. It is really an introduction to the subject.

Lisbon
José Lima-de-Faria
February 1994

## Acknowledgements

I want to express my profound gratitude to the colleagues who encouraged the elaboration of this book, in particular to A. Preisinger, S. Hafner, P.B. Moore, S. Menchetti, S. Ghose and S. Merlino.

I am much indebted to my family for moral and material support. My children, Manuel and Margarida, contributed to the offer of a personal computer, which skillfully used by my wife, Natacha, provided the complete typing of the text. This was really a fundamental help, which enabled me to improve the work step by step.

My friend Arnaldo Silvério made himself available to peruse the manuscript. He checked the English and contributed comments that improved the text intelligibility. I thank him most heartily.

Paul Moore besides having accepted to write the forward has kindly corrected the whole manuscript, which was really a very hard job requiring much attention and patience. I am most indebted to him for such an act of generous friendship.

Many thanks are due to my colleague Maria Ondina Figueiredo who put at my disposal some condensed models, in particular those of the sheet silicates, and who was very closely associated with the early stages of my research work, namely the theory of condensed models and the structural classification of inorganic crystal structures.

The administrative officer Francisco Raposo gave an important contribution to the typing of the systematic part, with patience and great sense of correctness, and the technician Germano Bernardino helped in the elaboration of many condensed models. My friend Rui Paula assisted in the design of the book cover. To all of them my sincere thanks.

Grateful acknowledgement is made of the support and facilities afforded by the Instituto de Investigação Científica Tropical, in particular by its President, Professor Joaquim Cruz e Silva, and of the financial support and encouragement provided by the Gulbenkian Foundation during so many years.

I had to ask permission to several authors and publishers for the reproduction of many figures. Among these authors I am particularly grateful to T. Zoltai who kindly put at my disposal his notes on close-packed structures, and to F. Liebau, I. Kostov, H. Strunz, and F.D. Bloss for the kind permission to use some figures of their books. I gratefully acknowledge the following publishers: Plenum Press, Macmillan Publishing Company, John Wiley \& Sons, Oliver and Boyd Copyright Protection Agency, Ferdinand Enke Verlag, Springer-Verlag, Academic Press, Gordon and Breach, Oldbourne Press, Keter Publishing House Ltd, McGraw-Hill Publishing Company, International Union of Crystallography, Zeitschrift für Kristallographie, Oosthoek Scheltema \& Holkema Publishing Co., Mineralogical Society of America, American Mineralogist, Harper Collins Publishers, Longman Group UK, Mineralogical Association of Canada, Oxford University Press, K. Sutter Parthé, Akademische Verlagsgesellschaft G. \& P.K.G., Mineralogical Society (London), Pergamon Press, Cambridge University Press, Saunders College Publishing (Rinehart and Winston), University Chicago Press, Cornell University Press, American Institute of Physics, Consultants Bureau, Société Française de Mineralogie at Cristallographie, The American Society for Metals, Reinhold Publishing Corporation, Chapman \& Hall, Nature, University of California Press, Kluwer Academic Publishers, Tschermaks Miner. Petr. Mitteilungen, and United States Atomic Energy Commission.

Finally, thanks are due to the Acquisition Editor of the Kluwer Academic Publishers, Mrs Petra van Steenbergen, for her immediate interest in publishing this book, and her kind and effective support during all the printing process.

José Lima-de-Faria

## CHAPTER 1

## The structural classification of minerals

### 1.1. A very brief history of mineralogical classifications

The classification of minerals has changed throughout the ages, the criterion of classification following the development of the mineralogical science. In ancient times, the classification of minerals was mainly based on their practical purposes. According to Theophrastus (372-287 B.C.), and Plinius ( 77 A.D.), minerals were classified as gemstones, ores, pigments, etc. In the Middle Ages, Geber (Jabir Ibn Hayyân, 721-c.803), proposed a classification based on the external characteristics and some physical properties of minerals such as hardness, fusibility, malleability and fracture; this physical classification was developed later by Avicenna (Ibn Siná, 980-1037), and Agricola (1546). With Werner (1774) the physical classification attained its maturity and was generally adopted at the end of the XVIII century.

Cronstedt (1758) seems to be the first to have outlined a classification whereby the chemical properties were taken first, followed by the physical properties. This chemical classification was referred to the chemical elements and their compounds. Berzelius (1819) improved the chemical classification of minerals by considering chemical radicals as the main factor, instead of the elements. He ordered minerals as chlorides, sulphates, silicates, etc., and not as minerals of zinc, of copper, etc., as had been done before. The main criticism to the chemical classification, at that time, was that it could not be applied to all minerals, because the chemical composition of many of them was not known. For this reason, the chemical classification was strongly opposed during approximately one century, and only with the advance of chemistry could it be adopted. Even Werner (1817), who strongly defended the physical
classification, modified the physical classification at the end of his career, and elaborated a physical-plus-chemical classification. The chemical classification was only widely accepted at the middle of the XIX century, due primarily to the effort of James Dwight Dana $(1850,1854)$ and of Groth (1874). (More details in the history of mineralogical classification may be gained from Povarennykh (1972), pp. 3-26.)

After 1913, when the first structures of minerals were determined, a structural criterion for classification started to be considered. Fedorov (1913) wrote:

Only very recently has the principle of crystallochemical analysis become capable of leading to a classification in which every mineral has a strictly defined place. Such a classification cannot be called artificial, since its basis is the crystal structure of the mineral, i.e., that which essentially characterizes the nature of each.
Already in 1837, Whewell insisted on the structural aspect:

We cannot get rid of the fundamental conviction that the elementary composition of bodies, since it fixes their essence, must determine their properties [...] We may begin with the outside, but it is only in order to reach the internal structure.
The structural criterion of classification was first applied to a restricted domain of minerals, viz., the silicates, with great success (Machatschki, 1928; Bragg, 1930; Náray-Szabó, 1930). The structural classification of silicates was a much better systematics than the old chemical subdivision, and was soon widely adopted. This chemical-plusstructural classification has been applied to many other domains of mineralogy, such as fluoaluminates (Pabst, 1950), aluminates (Liebau, 1956; Zoltai, 1960), and phosphates (Liebau, 1966; Corbridge, 1971). More recently, Povarennykh

Table 1. Sketch of the evolution of the basic criteria of mineralogical classification (after Lima-de-Faria, 1983)

```
~340 B.C: Practical uses - THEOPHRASTOS
    77 A.D: Practical uses - PLINIUS
    ~ 760: Physical properties - GEBER (Jabir Ibn Hayyân)
    ~1020.. Physical properties - AVICENNA (Ibn Siná)
    1546: Physical properties - AGRICOLA (Georg Bauer)
    1750-
    1758 Chemical + physical properties - CRONSTEDT
    1774 Physical properties - WERNER
    1784 Chemical + physical properties - BERGMAN
    1800-
    1801 Chemical + crystallographic properties - HAÜY
    1817 Physical + chemical properties - WERNER
    1819 C̄nemical properties - BERZELIUS
    1832 Chemical properties - SOKOLOV
    1850-
    1854 Chemical properties - DANA
    1884 Paragenetic properties - LAPPARENT
    1900-
    1928 Class. silicates based on structural prop. - MACHATSCHKI
    1930 Develop. class.silicates b. on st. prop.- BRAGG; NÁRAY-SZABÓ
    1940 Geochemical properties - UKLONSKII
1950-
1953 Crystallochemical properties - MACHATSCHKI
1954 Paragenetic + chemical properties - KOSTOV
1966 Chemical_\pm_structural_properties - POVARENNYKH
    _ Well established criterion of classification
    ---- Intermediate criterion of classification
```

(1972), in a systematic way, applied this chemical-plus-structural classification to the whole domain of minerals.

A sketch of the evolution of the basic criteria of the mineralogical classification has been already
presented (Lima-de-Faria, 1983) (Table 1). It is apparent from this sketch that the classification of minerals has passed through different stages, from practical to physical,to physical-plus-chemical, to chemical and to chemical-plus-structural, each
stage being a step further in the direction of the internal structure. Although the chemical classification of minerals seemed to be well established, some dissatisfaction emerged during the last decades, and other criteria have been proposed for the classification of minerals, some related to particular domains of application, such as geological (Lapparent, 1884) or geochemical (Uklonskii, 1940; Kostov, 1954); others more theoretical, as the one proposed by Machatschki (1953) which was based on crystal-chemical grounds and the hierarchy of formula complexity.

On the other hand, many structures of minerals have been determined in the last 80 years, and the data thus accumulated call for an appropriate systematization, in order to enable that a better use be made of them. The potentiality of this structural information is certainly enormous.

Moreover, we have now reached the internal structure of minerals and this is what leads to a natural and much better scientific approach to the classification of minerals. It is time to invert the classification criterion and replace the chemical-plus-structural by a structural-plus-chemical classification. This new classification will possibly show many unexpected and interesting relations among mineral structures.

### 1.2. The structural classification of inorganic structures

When thinking on a structural classification of minerals one should have in mind that it must be based on structural factors, and that these should pertain not only to mineral structures but to inorganic structures in general, because the former are a part of the latter. On the other hand, the structural principles which have been considered on the structural classification of silicates, and which have proved so fruitful, should be preserved in any classification extension to the whole mineral kingdom. Consequently, the structural classification of minerals must fit in a more general classification of inorganic structures, and also, not to contradict the widely accepted structural classification of silicates.

One of the first important approaches to a general structural classification of inorganic crystal structures was proposed by Goldschmidt (1929),
whose classification was based on the hierarchy of the chemical formula and on the number and arrangement of neighbours around any single atom in the crystal lattice, that is, the coordination of the atoms.

The structural classification of silicates was based on the bond strength distribution. In silicates the $\mathrm{Si}-\mathrm{O}$ bonds are usually stronger than the bonds between the other chemical elements and oxygen, and therefore, there is a tendency to form complexes of $\mathrm{SiO}_{4}$ tetrahedra more tightly linked than other parts of the structure, and which correspond to a kind of 'skeleton' of the crystal structure. These complexes of linked $\mathrm{SiO}_{4}$ tetrahedra may form finite groups, infinite chains, infinite sheets or infinite three-dimensional frameworks. An extension of this bond strength distribution theory, made by Laves in 1930, leads to the general concept of structural units which correspond to the assemblages of atoms more tightly linked together in the crystal structure.

Niggli (1945), Garrido and Orlando (1946), Bokii (1954), De Jong (1959) and Wells (1962) also presented general classifications on the same basis, but none of these authors has systematically applied them; theirs were only general proposals.

A provisional classification of crystal structures on the basis of their interatomic bonds was made by Evans (1939); however, he abandoned it (Evans, 1964) due to the difficulties in ascribing, with certainty, the kind of bonds in crystal structures, and to the fact that they are normally not of one kind only, but intermixed.

Bokii (1954) was possibly the first to note a difference between structures such as halite and quartz, calling halite a 'coordination' structure and quartz a framework structure. Although this distinction was a bit ambiguous, it was later clarified by Lima-de-Faria \& Figueiredo (1976) in their general classification of inorganic structures.

The bond strength distribution in a crystal structure may be relatively homogeneous, as in many oxides, halogenides, alloys and intermetallic compounds, where the bonds are predominantly nondirectional, and such structures are formed by the close packing of the larger atoms with the smaller atoms occupying the interstices within the packing. What forms the 'skeleton' of this kind of structure, that is, the structural units, are individual atoms, the packing atoms, normally the anions, while ca-
tions act as interstitial atoms. For instance in halite, NaCl , the larger atoms, the Cl ions, are the structural units. Speaking of the halite structure in terms of 'coordination' is rather inappropriate because in all structures the atoms are coordinated. What distinguishes halite from the quartz structure is the fact that the former is based on the close packing of its larger atoms, while quartz corresponds to a three dimensional linkage, a framework, with large holes in it.

However, in structures where the directional forces are dominant, the bond strength distribution is normally heterogeneous; the structural units may form finite groups, infinite chains, infinite sheets or infinite frameworks.

According to this classification (Lima-de-Faria \& Figueiredo, 1976), there are five main categories of structural units: individual atoms, finite groups, infinite chains, infinite sheets and infinite frameworks; the corresponding main categories of structures are called close-packed, (at an early stage also called atomic by the author) group, chain, sheet and framework structures, respectively.

In the case of homogeneous bond strength distribution, two limiting situations may occur: either the structure is based on a simple packing of individual atoms, with no-directional bonds (examples are helium, copper and sodium chloride), or it is based on a three-dimensional framework, with directional bonds (examples are diamond and cristobalite).

The bond strength distribution must be combined with the directional character of the bonds in order to avoid certain ambiguities. For instance, the melonite structure, $\mathrm{NiTe}_{2}$, which corresponds to the hexagonal closest packing of Te with Ni atoms filling octahedral voids in alternate layers, could be confused with a sheet structure of $\mathrm{NiTe}_{2}$ layers of octahedra. This ambiguity can be solved if we give to the directional character of the bonds an important role. In fact, in melonite, both the $\mathrm{Ni}-$ Te bonds (ionic) and the $\mathrm{Te}-\mathrm{Te}$ bonds (van der Walls) are non- directional bonds, which explains the formation of the hexagonal closest packing of Te atoms. Therefore, $\mathrm{NiTe}_{2}$ is a close-packed structure. The distribution of Ni in alternate layers, occupying octahedral voids, is just a possible stable distribution of the interstitial atoms.

The structural classification of inorganic crystal structures of Lima-de-Faria \& Figueiredo (1976)

Table 2. Partial representation of the general table of inorganic structure types (after Lima-de-Faria \& Figueiredo, 1976) Colours have been added to distinguish the main kinds of inorganic structures, although a certain ambiguity may arise from the fact that certain structure types may represent more than one of these main kinds. [See fold-out in this chapter]
was systematically applied to 782 structure types, which correspond to approximately five thousand structures, and was presented on a general table (Table 2). These authors have also produced (1978) a chart containing the 270 structural units which form the structure types in this general table (Chart 1). That chart is divided into five columns corresponding to the five categories of structural units. On the first column, concerning the individual atoms, the different atomic layers corresponding to the various close packings are presented; on the second, third and fourth columns, the structural units, corresponding to groups, infinite chains and infinite sheets, respectively, are represented. On the fifth column, because it would be difficult to represent complete frameworks, only parts are shown - the so-called 'connected units' - which, by 'connection', lead to the whole frameworks.

Other general structural classifications of inorganic structures have been proposed recently by Hawthorne and by Hellner.

Hawthorne (1983) has suggested a general structural classification of inorganic structures based on the polymerization of coordination polyhedra (not necessarily of the same type) with higher bond valences, as a consequence of the application of bond-valence theory to inorganic structures. The structures are organized by families based on different arrangements of fundamental building blocks or modules. The possible modules are tightly bounded units within the structure, and correspond to clusters of polyhedra that are the most strongly bonded. Although starting from different roots and with some significant differences, the structural classification of Hawthorne is quite similar to the one developed by Lima-de-Faria \& Figueiredo (1976).

A general geometrical-plus-structural classification of inorganic structures was proposed by Hellner (1984, 1986), based on the concept of 'Bauverband' (connection) introduced by Laves (1930) and using a symbolism based on the concept of lattice complex introduced by Niggli (1919), and further developed by Hermann $(1935,1960)$ and




general chart of inorganic structural units and building units


[^1]Hellner (1965). The 'Bauverband' may be defined as a three-dimensional periodic arrangement of points in a structure occupied by atoms or polyhedra of atoms, with definite geometric properties; it represents a typical connectivity pattern for a given structure type and, in certain cases, approximates a sphere packing with typical selfcoordination and several types of voids for interstitial atoms. The 'Bauverband' describes the essential part or 'skeleton' of the structure types. The symbolism based on the lattice complexes is intended to enable the reconstruction of the structure, and also to show the relationship between different structure types. The lattice complex is the infinite array of points derived by applying all the symmetry operations of the space group to a particular point. The lattice complex corresponds, in space groups, to the concept of form in point groups, bearing in mind that a form is generated by the application of the symmetry operations of the point group to a particular face.

Under Hellner's system, the structures are grouped into families, main classes and subclasses. This classification is particularly useful when relating structures with high symmetry, such as cubic and tetragonal, where the symbolism is relatively simple. However, for less symmetrical structures, the symbolism becomes very complex and very difficult to deal with.

### 1.3. The structural classification of minerals

### 1.3.1. General considerations

As it has been said before, the structural classification of minerals must fit in a more general structural classification of inorganic structures, and also to conform with the widely accepted structural classification of silicates. The general structural classification of inorganic structures proposed by Lima-de-Faria \& Figueiredo (1976), which is a kind of extension of the structural classification of silicates, may be applied to the mineral kingdom, because it will fulfil the two requirements mentioned above.

However the adaptation of the general structural classification of inorganic structures to the mineral kingdom has to take in consideration certain peculiarities of the mineral structures. The gen-
eral structural classification of inorganic structures was strongly influenced by the work on the systematic derivation of inorganic structures (Lima-de-Faria, 1965a; Lima-de-Faria \& Figueiredo, 1969), where structures were derived from the simplest to more complex crystalchemical formulas. This way of description was good enough for the systematic derivation. However, when elaborating a classification of minerals, one has to group together the closely related mineral structures, that is, those which have a similar arrangement though differing by slight distortions, or by substitution of their atoms. This means that we need to group the mineral structures belonging to the same structure type together with their distortion and substitution derivatives, regardless of the complexity of their crystalchemical formulas. One also has to add to these their defect and insertion (or stuffed) derivatives. Taking these differences into consideration, mineral structures may then be classified according to five main categories: close-packed, group, chain, sheet and framework, corresponding to the structural units: individual atoms, finite groups, infinite chains, infinite sheets, and frameworks (Figure 1). Within these categories they are ordered from the structurally simple to the more complex.

An outline of this structural classification of minerals has been presented (Lima-de-Faria, 1983) and a small section will be shown here (Table 3). Among the mineral structures belonging to the same structure type the simplest and best known, the aristotypes in the designation of Megaw (1973), were chosen to represent the structure type. Within each structure type, the other mineral structures, called its population, are ordered by the chemical sequence generally adopted in the classical chemical classification of minerals. The other related structures, distortion, substitutional and insertion (or stuffed) derivatives, follow later in sequence.

This outline of structural classification (Table 3) has been elaborated mainly on the basis of the data contained in the general table of inorganic structure types (Lima-de-Faria \& Figueiredo, 1976) and on the work of Povarennykh (1972).

Another structural classification of minerals has been proposed by Hawthorne (1984, 1985), also as a result of the application of his general classification of inorganic structures to the mineral

Table 3. First part of the outline of a structural classification of minerals (after Lima-de-Faria, 1983). Notice the designation of 'atomic' which has now been replaced by 'close-packed'

| 1 TOM |  |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| $2 \mathrm{ac} \mathrm{Pr}_{3}$ |  |
|  |  |
| Octah |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
| $\mathrm{Ni}^{\mathrm{o}}\left[\mathrm{Te}_{2}\right]^{\mathrm{h}}$ Molonite $\mathrm{P} \overline{3}_{\mathrm{ml}}$ <br> $\mathrm{Sn}^{\circ}\left[\mathrm{S}_{2}{ }^{\mathrm{h}}\right.$ Berndite $\quad \mathrm{Pt}^{\mathrm{o}}\left[\mathrm{Te}_{2}\right]_{\mathrm{h}}^{\mathrm{h}}$ Moncheite <br> $\mathrm{Nj}{ }^{\mathrm{C}}\left[\mathrm{Se}_{2}\right]^{\mathrm{h}}$ Nidiselite $\quad \mathrm{Fd}^{\mathrm{o}}\left[\mathrm{Te}_{2}\right]^{\mathrm{h}}$ Herenskyite <br> $\mathrm{Ni}{ }^{\circ}\left[\mathrm{SeTe}^{\mathrm{C}}\right]^{\mathrm{h}}$ Kitkaite |  |



Fig. 1. Very schematic representation of the five main categories of mineral structures according to the bond strength distribution of their structures and to the character of the bonds (directional or non-directional). The corresponding structural units are written in brackets (after Lima-de-Faria, 1986).
kingdom. The Hawthorne classification leads also to five main categories of mineral structures, namely, unconnected polyhedra, finite clusters, infinite chains, infinite sheets and infinite frameworks. The main difference from Lima-de-Faria's classification (1983) hinges on the fact that, for Hawthorne, the structural 'modules', corresponding to the structural units, are only polyhedra, and never individual atoms, as admitted by Lima-de-Faria.

When a new classification replaces another, the former often continues to be valid and useful. The physical classification is still convenient for identification purposes, and the chemical classification for tackling certain paragenetic problems. In order to preserve the advantages of both chemical and structural classifications, a computer data base system with two main entries, the chemical and the structural, has been suggested by Figueiredo (1985).

### 1.3.2. Implications of the structural classification of minerals in the classification of silicates

When applying the general structural classification of minerals (Lima-de-Faria, 1983) to silicates a few adjustments have to be introduced. A new category of structures is considered, namely, the closepacked structures that correspond to isolated $\mathrm{SiO}_{4}$
tetrahedra: the island and ring silicates have to be placed together under the designation of group silicates, because both their structural units correspond to finite groups. This way of classifying the silicates is also in agreement with the one proposed by Bragg in 1930: orthosilicates, self-contained groups, silicon-oxygen chains, silicon-oxygen sheets, and three-dimensional silicon-oxygen networks. In Bragg's classification, the orthosilicates (isolated tetrahedra) correspond to silicates based on close packings.

Some silicates may in fact be described in terms of the close packing of oxygen atoms, with silicon and other cations in the interstices. An example is olivine, $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$, which belongs to the same structure type as $\mathrm{Al}_{2} \mathrm{BeO}_{4}$ and $\mathrm{Mg}_{2} \mathrm{SnO}_{4}$. These last two structures are clearly not group structures, but close-packed structures. Megaw (1973) discusses the necessity to distinguish between 'packing structures' and 'linkage structures', placing the olivine in the first category. She describes olivine as based on a hexagonal closest packing of oxygen atoms with certain tetrahedral interstices occupied by silicon, and octahedral sites by magnesium, exactly in the same way as Bragg did in 1929. A similar situation applies to the high pressure form of olivine, $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$, which corresponds to the spinel structure type $\mathrm{Al}_{2} \mathrm{MgO}_{4}$; obviously, spinel is not a group structure.

## CHAPTER 2

## The anatomy of crystal structures

### 2.1. What is a crystal structure?

A crystal structure is a definite arrangement and linkage of atoms in a periodic orderly array, where the periodicity results from infinite translations in three-dimensions. Other categories of orderly arrays correspond to the so-called quasicrystals, obeying certain non-periodic matching rules. Each individual structure can be described by its symmetry (space group), unit cell parameters, chemical composition, unit cell content, the positions of the atoms within the unit cell, their coordination, and the kind and strength of the bonds between them.

Consequently, a crystal structure is not merely a geometric arrangement of atoms, since the particular characteristics of the chemical elements involved, their linkage and the way interatomic bonds are distributed also play an important role. Unfortunately, we do not yet possess exact information on the characteristics and quantitative data on the strength of the bonds. Only qualitative and semi-quantitative results are available.

### 2.2. The constitution of atoms

To gain an understanding of the anatomy of crystal structure, it suffices that atoms be regarded as miniature planetary systems of which the central sun is represented by the atomic nucleus, while the role of planets is played by the atomic electrons. Admittedly, this is quite an elementary approach; however, it is well suited to the discussion of a large number of problems in physics. In order that electric neutrality be achieved, the negatively charged electrons have to be balanced by a positively charged nucleus; the latter is assumed to consist of neutrons with no electric charge, as well as of pro-
tons, positively charged and in such numbers that they will match all the planetary electrons. The number of either the electrons or protons in the atom of a chemical element is called the atomic number of the element.

The electrons are located around the nucleus in several levels of energy, forming successive shells which are called $\mathrm{K}, \mathrm{L}, \mathrm{M}, \ldots, \mathrm{Q}$, from the inner part to the outside. These electron shells may also be referred to shell quantum numbers $1,2,3, \ldots$, respectively. Consequently, to say shell L or shell 2 has the same meaning. The further away an electron shell is from the nucleus the more electrons it may contain. The maximum number of electrons in each sheli is $2 \mathrm{n}^{2}$, where n is the shell quantum number.

Each shell is divided into sub-shells called orbitals, which are designated by $s, p, d$ and $f$, beginning with the closest to the nucleus. The orbital belonging to a certain shell is described by the corresponding letter, preceded by the quantum number of the shell. As an example we may consider the ' $s$ ' orbital of the shell 2 (or L ), which is designated by 2 s . The orbitals define the probability of finding an electron in a certain region of the atom, along different directions and distances from the nucleus. These probabilities are called 'angular' and 'radial' probabilities, respectively.

In a single shell there can only be one ' $s$ ' orbital, three ' p ' orbitals along three directions $\mathrm{x}, \mathrm{y}$ and z (Figure 2), five ' $d$ ' orbitals, and seven ' $f$ ' orbitals. Moreover, an orbital can contain, at most, two electrons, which spin in opposite directions, as required by the Pauli exclusion principle. Consequently, in a K shell (quantum number 1), only a single orbital s and $2 \times 1^{2}=2$ electrons can exist. The $L$ shell (quantum number 2) may have $2 \times 2^{2}$ $=8$ electrons, two in s and $2 \times 3=6$ in p orbitals. The M shell may contain the maximum of $2 \times 3^{2}=$ 18 electrons: 2 in $\mathrm{s}, 6$ in p , and 10 in d . The N


Fig. 2. Angular probability functions for $p_{x}, p_{y}$ and $p_{z}$ electrons (after Spice, 1964)
shell has a maximum capacity of 32 electrons. On Table 4, where superscripts indicate the number of electrons per orbital, the electronic configurations of the first ten chemical elements are presented.

The periodic table of the chemical elements (Table 5) is organized so that those elements in one of the vertical columns headed I, II, III,...,VIII have atoms whose outer shells contain electrons equal in number to the Roman numeral designating the group. The chemical elements of group I with atomic numbers $1,3,11,19, \ldots$, have just one electron in their outermost shell, which occupies an s orbital. Similarly, the elements of group II have two $s$ orbital electrons in their outer shell.

The chemical properties of an atom depend on the ability of its outermost or valence shell to lose, gain or share electrons (called valence electrons).

The atoms with orbitals $s$ and $p$ of their outer
shell completely filled, that is $s^{2}+p^{6}$, 2.e the most stable because they have no tendency to lose or gain electrons. This is the reason for the existence of inert rare gases, which, with 8 electrons in the outer shell, have the most stable configuration of electrons. The elements of groups V, VI and VII, have a tendency to gain electrons in order to complete their outer shells, thus forming anions. The elements of groups I, II and III tend to lose electrons, and form cations. The chemical elements of group IV, instead of gaining or losing electrons, tend to share electrons with other atoms, in order to achieve the configuration of an inert gas.

Between group II and group III are located the so-called transition elements because they may have the same filled orbitals in the outer shell while differing by the number of electrons in the inner shells. For instance, the elements 21 to 30 possess the same

Table 4. The electronic configurations of the first ten elements. A single arrow represents a single electron; a pair of arrows, two electrons of opposite spin occupying a single orbital (after Evans, 1964)

| Element | $Z$ | $\underset{\text { is }}{K}$ | $L$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 25 | $2 p_{x} 2 p_{v}$ | $2 p_{z}$ |  |
| H | 1 | $\uparrow$ |  |  |  | Is ${ }^{1}$ |
| He | 2 | $\uparrow \downarrow$ |  |  |  | $1 s^{2}$ |
| Li | 3 | $\uparrow \downarrow$ | $\uparrow$ |  |  | 1s ${ }^{2}, 2 s^{1}$ |
| Be | 4 | $\uparrow \downarrow$ | $\uparrow \downarrow$ |  |  | $1 s^{2}, 2 s^{2}$ |
| B | 5 | $\uparrow \downarrow$ | $\uparrow \downarrow$ | $\uparrow$ |  | $1 s^{2}, 2 s^{2} 2 p^{1}$ |
| C | 6 | $\uparrow \downarrow$ | $\uparrow \downarrow$ | $\uparrow \uparrow$ |  | $1 s^{2}, 2 s^{2} 2 p^{2}$ |
| N | 7 | $\uparrow \downarrow$ | $\uparrow \downarrow$ | $\uparrow \uparrow$ | $\uparrow$ | $1 s^{2}, 2 s^{2} 2 p^{3}$ |
| O | 8 | $\uparrow \downarrow$ | $\uparrow \downarrow$ | $\uparrow \downarrow \uparrow$ | $\uparrow$ | $1 s^{2}, 2 s^{2} 2 p^{4}$ |
| F | 9 | $\uparrow \downarrow$ | $\uparrow \downarrow$ |  |  | $1 s^{2}, 2 s^{2} 2 p^{5}$ |
| Ne | 10 | $\uparrow \downarrow$ | $\uparrow \downarrow$ | $\uparrow \downarrow$ ¢ $\downarrow$ | $\uparrow \downarrow$ | $1 s^{2}, 2 s^{2} 2 p^{6}$ |

Table 5. The periodic table of chemical elements (after Bloss, 1971)

electron configuration of the outer shell, $4 \mathrm{~s}^{2}$, but they exceed calcium by a certain occupancy of the 3d orbitals of the more interior $\mathbf{M}$ shell. Only after this more interior shell is filled to its capacity of ten, as in zinc, is there a resumption of filling of the outer shell p-orbitals (elements 31 to 36 ).

Cations are smaller than electrically neutral atoms, not only because electrons have been lost, but also because the attractive action of the nucleus becomes more important with respect to the remaining electrons.

The tendency to gain electrons is called 'electronegativity', and it will be larger the nearer its configuration will be to the configuration of the nearest inert gas. The minimum value of the electronegativity is 0.7 for the element francium and the maximum value is 4.0 for fluorine.

According to their electronegativities the elements are divided into 'metals', if their electronegativities are smaller than 1.9 , and they tend to lose electrons and form cations; 'non-metals', if their electronegativities are higher than 2.1 and they tend to gain electrons and originate anions;
and 'metaloids', if their electronegativities are in the intermediate range between 1.9 and 2.1 , and they show properties intermediate between those of metals and of the non-metals.

### 2.3. The bonds between atoms

The forces of attraction between atoms are known as chemical bonds, of which important types are: 'ionic', 'covalent', 'metallic' and 'van der Waals' bonds. In inorganic compounds, in particular in minerals, the ionic bonds are predominant. In minerals, the metallic bonds appear only in the elements (gold, silver, etc.), but they are very important in the alloys. The van der Waals bonds appear mostly in organic molecular compounds, but also between certain anions in some inorganic compounds.

If the difference of electronegativity between two atoms exceeds 2.0 , the one with higher electronegativity will attract and capture electrons from the other atom to its outer shell. As a conse-


Fig. 3. Exchange of electrons between Cl and Na atoms to form $\mathrm{Cl}^{-}$and $\mathrm{Na}^{+}$ions.
quence, one atom becomes an anion and the other a cation, and the attraction between the two oppositely charged ions forms an ionic bond. Like the gravitational attraction which acts in all directions, this electric force of attraction is non-directional (Figure 3).

Two atoms with relatively high but similar electronegativities may not be able to engage in electron capture between their outer shells, but they may both attain a configuration similar to that of the inert gases if they share electrons between them. Such a situation is called 'covalent bond'. This kind of linkage can correspond to single, double or triple bonds. A double bond occurs if two orbitals from one atom overlap two from the other, so that two pairs of electrons are shared between them. The covalent bond acts in a definite direction and therefore is a directional bond (Figure 4).

In minerals, certain more complex covalent bonds occur quite often, involving different levels of energy, which are better suited to the sharing of electrons. As an example, the diamond structure will be considered. The carbon atom in the neutral state has an electronic configuration
 trons with opposite spin. When one carbon atom is
linked to another carbon to form the diamond structure, each of these four outside electrons forms a new hybrid orbital of equal energy level, one $s$ and three $p$ orbitals designated by $2\left(\mathrm{sp}^{3}\right)$, the properties of which are a mixture of the properties of the original $s$ and $p$ orbitals. The electronic configuration of carbon becomes
is $_{\downarrow}^{\downarrow} \left\lvert\, \frac{\uparrow}{2\left(\mathrm{sp}^{3}\right)} \frac{\uparrow}{2\left(\mathrm{sp}^{3}\right)} \frac{\uparrow}{2\left(\mathrm{sp}^{3}\right)} \frac{\uparrow}{2\left(\mathrm{sp}^{3}\right)} . \quad\right.$ These 'hybrid' orbitals are distributed along four lobes at $109^{\circ} 28^{\prime}$ to each other, the axes of these lobes extending towards the corners of a tetrahedron centred in the carbon atom (Figure 5). These lobes represent the regions where it is more probable to encounter the electrons of the hybrid orbitals $2\left(\mathrm{sp}^{3}\right)$,


Fig. 5. Schematic illustration of the tetrahedral configuration of the hybrid $\mathrm{sp}^{3}$ orbitals (after Bloss, 1971).




Fig. 4. Very schematic representation of the molecules of chlorine $\mathrm{Cl}_{2}$ and sulphur $\mathrm{S}_{8}$, and of a chain of selenium atoms (after Bokii, 1954).
the maximum probability lying along the lobe axes. The linkage between the carbon atoms is such that their orbitals overlap. The tetrahedral coordination of the carbon atoms in the diamond structure is, therefore, related to the distribution of these hybrid orbitals. According to quantum mechanics, the greater the overlap between the orbitals, the stronger the resulting covalent bond. This explains the hardness of diamond.

There are other kinds of hybrid covalent bonds (Table 6). For instance, the hybrid bonds $\mathrm{dsp}^{2}$, which are distributed along the diagonals of a square, thus representing the square coordination of copper in CuO , and of platinum in PtS .

In a closest packing of atoms of a metallic chemical element the atoms have coordination
twelve. Each metallic atom shares its valence electrons with each of its 12 neighbours, and this is the reason why the 'metallic bond' is weaker than the normal covalent bond or the ionic bond. In the metallic packing, the energy levels of the $s$ and $p$ outer orbitals become so even that the electrons easily transfer from an orbital s to a p orbital, and the packing looks like an assemblage of positive charges in an electron ocean (Figure 6).

The metallic bond takes place, typically, between chemical elements of similar low electronegativity. Like the ionic bond, the metallic bond is also non-directional.

The weakest of chemical bonds is the van der Waals bond, which corresponds to small concentrations of positive and negative charges at op-

(a)

(c)

(b)

(d)

Fig. 6. Very schematic representation of the four main types of bonding forces in crystal structures: (a) ionic, (b) covalent, (c) metallic and (d) van der Waals.
posite poles in covalent bonds of atoms. In molecules where atoms are strongly linked together by covalent bonds, dipoles are generated which bond them together by van der Waals forces.

Some of the chemical bonds between atoms are intermediate among the four basic types of bonds. Of these 'intermediate bonds', the most important one is the so-called 'hydrogen bond', which is intermediate between an ionic and a van der Waals bond. When hydrogen is linked to a strong electronegative atom (fluorine or oxygen) by a covalent bond, its unique electron is located near the region of superposition of the orbitals. Consequently, the part of the hydrogen atom farthest from the overlap consists of an exposed proton, because no inner electron shells exist to shield its exposed nucleus. As a result, the proton attracts negative ions, and this attraction is known as the 'hydrogen bond'.

### 2.4. The size of atoms

From the determination of a crystal structure the positions of the atoms and the distances between
them are obtained. But one does not get information about the size, or zone of influence, of the atoms. To derive the size of the atoms one needs to determine, using other physico-chemical methods, the size of an atom frequently found in crystal structures, then to work out the size of the other atoms from known interatomic distances.

Lande (1920) admitted that the shape of the atoms should be spherical, and that, in most cases, the anions, with added electrons to their shells, should be bigger than the cations, which come about from a loss of electrons. He also assumed that in the LiI structure, which is of the NaCl type, the iodine anions would be nearly in contact, because iodine ions are among the largest anions and litium ions are among the smallest cations (Figure 7). On the basis of these hypotheses, he calculated the size of the iodine anion, namely $\mathrm{rI}=2.12 \AA$, a figure that yielded both the minimum distance between them and their own diameter. It was then easy to determine the radii of $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}$and $\mathrm{Rb}^{+}$, and consequently also of $\mathrm{Fl}^{-}, \mathrm{Cl}^{-}$and $\mathrm{Br}^{-}$ from data on the structures of the corresponding halogenides.

A more direct way to tackle this problem,
$4{ }^{\circ}$
































Fig. 7. The arrangement of ions on the cubic face of some alkali halogenide crystals with the sodium chloride structure (after Pauling, 1960).

Table 6. Ionic radii of several chemical elements (after Pauling, 1960)

was followed by Wasastjerna (1923) who used molar refraction, which depends on the ionic volume. The measurements and calculations of Wasastjerna gave the value $1.32 \AA$ for the oxygen anion and $1.33 \AA$ for the fluorine anion. The radius of the fuorine ion calculated by Landé was very similar.

The first general table of ionic radii was produced by Goldschmidt (1926), using values for $\mathrm{O}^{2-}$ and $\mathrm{F}^{-}$determined by Wasastjerna and many interatomic distances of well-known structures, together with data gathered for that purpose in his laboratory.

Pauling (1927) and Ahrens (1952) have also dealt with this problem and improved the data on radius size (Table 6).

Admitting sphericity and additivity in the study of ionic radii, we are assuming that the distances between ions are independent of the other forces that act upon them from other parts of the crystal structure. This corresponds to a quite restrictive view of the situation. No doubt more flexibility should be attributed to the ions. An important contribution to this problem has been that of Shannon
\& Prewitt (1969), who have considered several possible situations, especially the coordination of both cations and anions, and have based their work on approximately one thousand experimental determinations of interatomic distances, considered to be the most precise ones. They have called their figures 'effective' ionic radii.

The other categories of radii (covalent, metallic and van der Waals) have been calculated by several authors, using similar methodologies (Tables 7 and 8). No table of van der Waals radii is presented because it would be of little use in mineralogy.

The knowledge of ionic radii is of great importance in structure determination, particularly in the establishment of the so-called 'trial structure' and, also, in crystal chemistry, to understand the replacement of one ion by another in the same kind of structure (diadochy).

The spherical shape of atoms has been called into question, particularly in alloys and intermetallic compounds. However, instead of the spherical shape, we can always think in terms of a zone (or sphere) of influence (or interaction), related to a certain atom, and which, obviously, oc-

Table 7. Covalent radii of the chemical elements, except for Fr, Ra, Ac and lanthanons and actinons (after Sanderson, 1960)


Table 8. Metallic radii of the chemical elements, except for $\mathrm{Fr}, \mathrm{Ra}, \mathrm{Ac}$ and lanthanons and actinons (after Sanderson, 1960)

cupies a certain space in the structure.
From Tables 6 to 8 one can realize how great the change in radius is of a chemical element according to its state of chemical bond.

### 2.5. The coordination of atoms

In a crystal structure the ions tend to surround other ions of opposite electric charge. In general, any atom in a structure is surrounded by or coordinated to other atoms, and the coordination number of an atom, $[\mathrm{N}]$, is given by the number of its 'coordinating atoms'. The definition of coordination is not simple and depends on the bonding model, the nature of the problem, and the methods of calculation.

The coordination polyhedron of an atom is the polyhedron that has its vertices coincident with the centres of the coordinating atoms. In structures which contain lone electron pairs and in which volumes ascribable to these lone electron pairs are comparable with the volume of individual atoms, the coordination polyhedra can also be considered to include lone electron pairs.

Several methods have been proposed to define coordination numbers in complex structures. Most provide a 'weighted' coordination number, resulting from an expression for weighting the coordinating atoms, according to their distances from the central atom, e.g., by means of Voronoi polyhedra (the same as Wirkungsbereiche or Dirichlet domains), with or without consideration of atomic radii.

The most common coordination polyhedra occurring in inorganic structures are represented on Figure 8.

For a certain cation-anion relation, it is possible to predict the corresponding coordination from the radius ratio, on the basis of a principle proposed by Goldschmidt (1926), namely: the number of anions surrounding a cation tends to be as big as possible, limited only by the condition that all the anions touch the cation. This means that the structural architecture is fundamentally determined by the interactions cation-anion and not cation-cation or anion-anion.

The minimum values for the most common coordination can be easily calculated and are presented on Figure 9.


Fig. 9. Some groupings of anions around a cation. The minimum radius ratio (cation/anion), that is, for touching anions, is indicated in each case. The dashed circles mean that they are below the full circles.


Fig. 8. More commonly occurring coordination polyhedra in inorganic structures (after Parthé, 1990).

Table 9. Limiting radii for the various coordinated configurations.

| Radius Ratio | $\frac{\text { Coordination }}{\text { Number }}$ | Configuration |
| :---: | :---: | :--- |
| $0.15-0.22$ | 3 | Triangular |
| $0.22-0.41$ | 4 | Tetrahedral |
| $0.41-0.57$ | 6 | Octahedral |
| $0.57-0.73$ | 6 | Trigonal prismatic |
| $0.73-1$ | 8 | Cubic |
| 1 | 12 | Cuboctahedral |

A certain coordination is stable if the radius ratio between atoms A and B is such that its value is between the tangentiallimit of the anions and the upper limiting situation, which corresponds to the next higher coordination (Table 9 and Figure 10). For instance, in the case of octahedral coordination, these values are 0.414 for the tangential limit and 0.527 for the next higher limit, the trigonal prism. However these values are often not rigorously held by mineral structures due to several other factors.

The coordination of a certain atom is also in-
timately related to the electron configuration of the atom, e.g., to its orbitals. There are hybrid orbitals with a tetrahedral configuration, as is the case of carbon in the diamond structure, others with octahedral, trigonal, bipyramidal configuration, etc. (Table 10). In minerals many chemical elements which form cations have octahedral or tetrahedral orbital distributions, which explains the formation of so many close-packed mineral structures where the principal interstices are tetrahedrally and octahedrally coordinated.

Table 10. Some common hybrid orbitals and their geometrical configurations (after Evans, 1964)

| Hybrid | Number of bonds | Distribution of bonds | Ref.* | Examples |
| :---: | :---: | :---: | :---: | :---: |
| $s p$ | 2 | Linear | (a) | $\mathrm{Cu}^{\mathbf{I}}, \mathrm{Ag}^{\mathbf{I}}, \mathrm{Au}^{\mathbf{I}}$ |
| $s p^{2}$ | 3 | Planar to corners of equilateral triangle | (b) | - |
| $d s p^{2}$ | 4 | Planar to corners of square | (c) | $\begin{aligned} & \mathrm{CuII}, \mathrm{Ag}^{\mathrm{II}}, \mathrm{Au}^{\mathrm{III}} ; \mathrm{Ni}^{\mathrm{II}}, \\ & \mathrm{Pd}^{\mathrm{II}}, \mathrm{Pt}^{\mathrm{II}} \end{aligned}$ |
| $s p^{8}$ | 4 | To corners of regular tetrahedron | (d) | $\mathbf{C u}{ }^{\mathbf{I}} \mathbf{A g}^{\mathbf{I}}$ |
| $d^{2} s p^{3}$ | 6 | To corners of regular octahedron | (e) | $\mathrm{Fe}^{\mathrm{II}}, \mathrm{Fe}^{\text {IV }}, \mathrm{Co}^{\text {II }}, \mathrm{Co}^{\mathrm{III}}$, $\mathrm{Ni}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{III}}, \mathrm{Pd}^{\mathrm{Iv}}, \mathrm{Pt}^{\mathrm{IV}}$ |
| $s p^{3} d^{2}$ | 6 | To corners of regular octahedron | (e) | Tiv, $\mathbf{Z r}^{\text {rV }}$ |
| $d^{4} s p$ | 6 | To corners of trigonal prism | $(f)$ | Mosv |


a)

b)

c)

d)

e)

Fig. 10. Scheme illustrating the degree of stability of a coordination polyhedron. (a)Stable: each ion touches only ions of the opposite sign; (b) less stable: anions touch each other; (c), (d), (e) unstable: free movement of cations leads to a reduction in the coordination number (after Bokii, 1954).

## CHAPTER 3

## The architecture of crystal structures

### 3.1. The structural units and their 'polymerization' process

The structural units are normally formed by smaller subunits, called building units, which can be dimers (the linear linkage of two atoms), polygons, or polyhedra of atoms. In minerals, structural units may be found to vary a great deal but, fortunately, they are not so different. One may imagine a kind of 'polymerization' (or condensation) process which enables the derivation of complex structural units from simpler ones. The silicate structures offer a good example. Several silicate sheets are related to certain silicate chains, from which they can be derived by a polymerization process. (Liebau, 1956; Belov, 1956) (Figure 11).

This polymerization process was later generalized by Lima-de-Faria \& Figueiredo (1976),
expressing the polymerization of atoms into groups, of groups into chains, of chains into sheets, and of sheets into frameworks (Figure 12).

The polymerization process of structural units based on linked octahedra, particularly among phosphate structures, has been developed by Moore (1973). He established their hierarchy on this basis and also related the polymerization process of the phosphate structural units with their paragenesis.

### 3.2. The packing of structural units

The structural units tend to pack as closely as possible and their packing is a kind of 'skeleton' of the mineral structure. The other atoms are called interstitial and occupy the holes in the packing.


Fig. 11. Examples of silicate structural units related by the 'polymerization' process. (a) a pyroxene chain, giving rise to an amphibole chain, then to a mica sheet; (b) a wollastonite chain, giving rise to a pektolite chain and this to an idealized apophyllite sheet (after Liebau, 1956).


Fig. 12. Generalized polymerization process. An example of the different stages is: Si or O atom $\rightarrow\left[\mathrm{Si}_{2} \mathrm{O}_{7}\right] \mathrm{group} \rightarrow\left[\mathrm{Si}_{2} \mathrm{O}_{6}\right]$ pyroxene chain $\rightarrow\left[\mathrm{Si}_{2} \mathrm{O}_{3}(\mathrm{OH})_{2}\right]$ sheet $\rightarrow\left[\mathrm{Li}_{2} \mathrm{SO}_{4}\right]$ framework. In the case of the framework only the connected unit is depicted; the way the tetrahedra are drawn indicates that they are linked by their top vertices (after Lima-de-Faria, 1986).

When one considers the packing of structural units, it is clear that their shapes and sizes are important characteristics. The packing efficiency of the structural units will be limited by the configuration of the structural units or, in the case of individual atoms, by their electronic configuration which may impose a particular coordination.

### 3.2.1. Kinds of close packing of individual atoms

In homogeneous close packings the layers are all alike and the way of stacking is the same for all of them.

The well-known cubic closest packing, (Kepler, 1611) the hexagonal closest packing and, the simple cubic packing, the simple hexagonal packing, and the body-centred cubic packing, were all been recognized by Barlow (1883). There are other more open arrangements, not so well-known but important, which exist in many inorganic crystal structures.

If one considers a closest-packed layer of atoms (designated by T , from triangular net), represented by spheres (in projection, by circles of radius R ) (Figure 13), with their centres in positions ' A ', another closest-packed layer may be stacked over its voids in two possible positions, either ' $B$ ' or ' $C$ ' (Figure 13). If the second layer is stacked with the centres of its atoms in positions B, see Figure 13, the projections of the voids of this second layer will
coincide with positions A and C , defined before. One can then realize that whatever the sequence of the stacking layers, all their relative positions will be projected on positions A, B and C. Therefore, any sequence of layers may be designated by the combination of the letters A,B,C (Pauling, 1928). The hexagonal closest packing is defined by the sequence ABAB...(example: Mg structure), the cubic closest packing by ABCABC...(example: Cu ), the double hexagonal closest packing by ABCBABCB...(example: La), the sequence for the Sm structure by $\mathrm{ABABCBCACABABC} . .$, ,etc. (Figure 13).

This way of expressing the various sequences of closest packing may be simplified by using the notation proposed by Ewald \& Hermman (1931) for the two possible kinds of layers, ' $p$ ' and ' $a$ ', which form these sequences. In fact, there are only two kinds of layers in relation to the two adjacent layers: either a symmetry plane exists and they are designated by p , or it does not exist, and they are designated by $a$. The letters $p$ and a have been replaced by ' $h$ ' and ' $c$ ' by Belov (1939) and these are presently most used. In the hexagonal closest packing, all the layers are of the kind $h$, and in the cubic closest packing they are all of the kind c . This was the reason to choose these two letters $h$ and c to designate the two different kinds of layer pure sequences. Considering the examples given above, one can write Th for Mg , Tc for Cu , Tch for La and


Fig. 13. The closest stacking of two closest-packed layers A and B. Some simple cases of stacking sequences of closest-packed layers, $\mathrm{c} / \mathrm{h}$, and the corresponding ball packing drawings.

Tchh for Sm or, in abbreviated form, h, c, ch, and chh, respectively (Figure 13).

The interstices generated in these closest packings are mainly the tetrahedral and octahedral voids. If we consider two layers stacked one over the other, we may notice that all the octahedral voids ( r $=0.414 \mathrm{R}$ ) are at the same level, while the tetrahedral voids $(r=0.225 R)$ are located in two different levels, namely, low and high. A low level tetrahedral void lies in between three spheres with one on the top; a high level tetrahedral void lies on the top of a sphere with three spheres over it (Figure 14).

One can also imagine triangular voids corresponding to the position between three atoms and at the level of the centre of these packing atoms, forming a triangle, as the polygon of coordination. However, these voids can only be occupied by atoms which are very small ( $\mathrm{r}=0.155 \mathrm{R}$ ) in relation to the packing atoms of radius R ; for this reason they are very rarely occupied in mineral structures, and are not indicated on Figure 14.

In closest packings there are as many octahedral voids as packing atoms, and twice as many tetrahedral voids (Figure 14).


Fig. 14. (a) Generation of octahedral and of tetrahedral (low and high) voids by the closest stacking of two closest-packed layers; (b) cross section along a vertical plane through three layers of a hexagonal closest packing; and (c) representation of the voids (dotted circles) in a closest-packed layer generated by a closest stacking.

The simple hexagonal packing is generated by the stacking of closest-packed layers, not over the holes, but over the atoms themselves (superimposition), each packing atom touching only one packing atom of the layer below. This kind of stacking has, obviously, no alternatives, that is, only one kind of this packing exists, and it generates two categories of interstices: trigonal prismatic (p) ( $\mathrm{r}=$ 0.527 R ), and square ( s ) ( $\mathrm{r}=0.414 \mathrm{R}$ ). The structure of $\mathrm{AlB}_{2}$ is based on a simple hexagonal packing of aluminium atoms, with boron atoms in trigonal prismatic voids (Figure 15).

One may now consider still other ways of stacking the closest-packed layers T, for instance, 'over valleys', that is, in such a way that in each layer the packing atoms touch only two packing atoms of the layer below. On the stacking over valleys, the projections of the centres of the atoms of the second layer may occupy positions $\alpha, \beta$ or $\gamma$ (Figure 16).

The simple sequences are $\mathrm{b}=\mathrm{A} \alpha \mathrm{A} \alpha \ldots$... $\mathrm{v}=$ $\mathrm{A} \alpha \beta \mathrm{A} \alpha \beta \ldots$...and $\mathrm{d}=\mathrm{A} \alpha \beta \gamma \mathrm{A} \alpha \beta \gamma \ldots$ (Lima-de-Faria \& Figueiredo, 1976). This kind of stacking over valleys generates three types of voids: distorted trigonal anti-prismatic (ap) ( $\mathrm{r}=0.225 \mathrm{R}$ ) and two categories of distorted tetrahedral voids ( $\mathrm{r}_{1}=$ 0.291 R and $\mathrm{r}_{2}=0.323 \mathrm{R}$ ).

An example of a structure with such kind of packing is $\beta$-beryllia, one synthetic polymorph of BeO , where the oxygen atoms form a packing designated by Tb and beryllium atoms are located in distorted tetrahedral voids. This packing is also designated by 'tetragonal packing' because of its tetragonal symmetry (Matkovich, Giese \& Economy, 1965).

If other kinds of layers are now considered besides the closest layers (T), other close packings may be generated and, some of them, are of great interest. Let us start from the square (or


Fig. 15. (a) Closest layers stacked over 'valleys' (loose packings); (b) simple hexagonal packing (s.h.p.); (c) $\mathrm{AlB}_{2}$ structure; the aluminium atoms form a simple hexagonal packing and the boron atoms occupy all the triangular prismatic voids with a honeycomb pattern (adapted from Laves, 1956).
quadrangular) layers ( Q ). The stacking of these layers over the holes (position B) with a sequence ABAB... (Figure 16) gives rise to the cubic closest packing, already described (Figure 17). In fact, instead of stacking the closest-packed layers, which are perpendicular to the triad axes, we may obtain the same cubic closest packing by stacking square layers Q , which are parallel to the cubic faces, in a sequence $\mathrm{f}=\mathrm{ABAB} .$. (Figs. 16 and 17). The cubic closest packing can then be expressed either by $T_{c}$ or $\mathrm{Q}_{\mathrm{f}}$.

It is handy to realize that the cubic closest pack-
ing can be generated in this way, because many cubic or tetragonal structures have unit-cell directions which can be easily marked on the Q layers, but only with difficulty on T layers.

The stacking of Q layers not over holes but over 'valleys', so that each packing atom touches only two atoms of the layer below, generates two main kinds of close packings, one with a sequence $\mathrm{A} \alpha \mathrm{A} \alpha \ldots$ designated by Qb , and another with a sequence $\mathrm{A} \alpha \mathrm{B} \beta \mathrm{A} \alpha \mathrm{B} \beta \ldots$ called Qd . This kind of stacking generates trigonal prismatic and square interstices (Figure 18). The Qb packing is equal to


Fig. 16. The main stacking sequences generated by the packing of triangular layers (T), of rhombic layers (B) (which form the bodycentred cubic packing), and of square layers (Q) (adapted from Lima-de-Faria \& Figueiredo, 1976).


Fig. 17. Cubic closest packing of spheres showing the two kinds of packing layers T and Q , which can generate it (adapted from Zemann, 1969).
the simple hexagonal packing Ts, but Qd is a new close packing. Examples of structures based on a

Qd close packing are PNb , where the Nb atoms form the packing and the P atoms occupy square voids, and $\mathrm{Si}_{2} \mathrm{Th}$, where the Th atoms form a Qd packing and the Si atoms occupy triangular prismatic voids.

The stacking of $Q$ layers, where there are superimposition of the atoms, sequence $s=A A . .$. , is called simple cubic packing and gives rise to cubic voids and square voids. Examples of structures based on simple cubic packings (Qs), are: fluorite, $\mathrm{CaF}_{2}$, where F forms the simple cubic packing and Ca occupies cubic voids (see Figure 53 of Chapter 7), and cooperite, PtS , with S forming the simple cubic packing with Pt in square voids. The different voids generated by the various stackings of layers $T$ or Q are represented on Figure 18.

The body-centred cubic packing is another category of close packing and it can be described by the stacking over 'valleys' of rhombic layers designated B layers (Figure 19). These packing layers are parallel to (110) planes of the body-centred cubic packing and are intermediate between the T and Q packing layers. They may be imagined as distor-


Fig. 18. Representation of the main interstices (dashed circles) generated by the three types of packing layers T and Q , corresponding to the various ways of stacking sequences: over holes, $\mathrm{c} / \mathrm{h}$, f; over 'valleys', $\mathrm{b}, \mathrm{v}$, d ; and by superimposition s (adapted from Lima-deFaria, 1965b; and Figueiredo \& Lima-de-Faria, 1978).
tions of either the triangular layers $\mathrm{T}\left(60^{\circ} \rightarrow 70^{\circ}\right.$ $32^{\prime}$ ), or the square layers $\mathrm{Q}\left(90^{\circ} \rightarrow 70^{\circ} 32^{\prime}\right)$ (Figure 16). This kind of packing generates two main categories of voids: distorted octahedral ( $\mathrm{r}=$
0.155 R ) and distorted tetrahedral ( $\mathrm{r}=0.291 \mathrm{R}$ ) (Figure 19). Since the voids of both categories are very small, few examples of such packings are found in mineral structures.


Fig. 19. Packing drawing of the body-centred cubic packing showing two layers: one parallel to the (110) plane (the rhombic layer B), and another parallel to the (100) plane (the open square layer «Q») (adapted from Figueiredo \& Lima-de-Faria, 1978).

This same body-centred cubic packing, like the cubic closest packing, can be represented by the stacking of other kind of layers, the square open layers, «Q» where the spheres are not tangent to each other. Double angular brackets are used to distinguish it from the normal $Q$ layer of the cubic closest packing (Figure 18). Its sequence is also $\mathrm{f}=$ ABAB... (Figure 19). The double angular brackets are also used to indicate any derivation from an imaginary packing, that is, only geometrically valid. An example is tellurium, ob [ $\left.\mathrm{Te}^{« c »}\right]$, where the tellurium atoms form infinite chains but are distributed geometrically in an approximate cubic closest packing.

The less dense close packings which are obtained by stacking closest packed layers over 'valleys' have been called 'loose packings' by Kripyakevich (1973). Similar modes of stacking have been found in structures based on square layers ( Q ). Therefore, these close packings are included under the same designation of loose packings.

The closest-layers T are formed exclusively by triangles of spheres, and the square layers $Q$ by squares of spheres. Continuing this generalization of packings, consideration may now be given to other kind of layers formed by triangles and spheres (Figure 20). Some of these layers are called $\mathrm{R}^{\mathrm{mn}}$ because they are formed by m rows of


Fig. 20. (a) $\mathrm{R}^{21}$ layers with voids (dashed circles) generated by a stacking ' f ' (after Figueiredo, 1976) and (b) $\mathrm{N}^{21}$ layer with voids generated also by a stacking ' f ' (after Figueiredo \& Lima-de-Faria, 1977).
triangles and n rows of squares. Lepidocrocite, $\gamma$ FeOOH , is a structure where the oxygen ions and the hydroxyls form $\mathrm{R}^{31}$ layers, that is, with three rows of triangles followed by one row of squares.

Another kind of layer which also occurs in certain inorganic structures is the one designated by $\mathrm{N}^{21}$, which is formed by interconnected triangles and squares, in the proportion of two triangles for one square (Figure 20). Examples are: $\mathrm{CuAl}_{2}$, where Al atoms form $\mathrm{N}^{21}$ layers, with Cu occupying anticubic voids; and $\mathrm{NbTe}_{4}$, with $\mathrm{N}^{21}$ layers of Te atoms and Nb occupying anticubic voids.

All the close packings that have been mentioned can be described in terms of the stacking of layers of atoms. However, there are structures with a high value of packing efficiency but that cannot be decomposed into layers. The packing has a three directional character, as in garnet, $\mathrm{Ca}_{3}{ }^{\mathrm{do}} \mathrm{Al}_{2}{ }^{\circ} \mathrm{Si}_{3}{ }^{4}\left[\mathrm{O}_{12}\right]^{*}$. This kind of homogeneous close packing is indicated by an asterisk.

So far, discussion has been restricted to packings where the layers are all alike and the kind of stacking is the same. However, continuing this generalization, one may also consider heterogeneous packings formed by different ways of stackings or by different layers of atoms.

There are packings formed by the same kind of layers but stacked in different ways. An example is molybdenite, $\mathrm{MoS}_{2}$, which is formed by slabs of two T layers stacked in 's' (simple hexagonal), these slabs being stacked together in the closest way, with a $h$ sequence. On the whole, the complete stacking is (2Ts)h of the S atoms, with Mo atoms in trigonal prismatic voids (Figure 21).

Matlockite, PbFCl , is built of two kinds of square packing layers but differing by the relative size of their atoms. The square layers formed by the larger packing atoms, designated by $\mathrm{Q}^{1}$, correspond to Cl atoms and the layers formed by the smaller packing atoms, $\mathrm{Q}^{2}$, correspond to fluorine. The packing $\mathrm{Q}^{2} \mathrm{Q}^{1}$ is built of alternate $\mathrm{Q}^{2}$ and $\mathrm{Q}^{1}$ layers, stacked together as close as possible, designated by $f$, with Pb atoms in the voids with coordination nine (Figure 22).

There are other kinds of heterogeneous packings which correspond to interpenetrated slabs of homogeneous closest packings ( $\mathbf{c}, \mathrm{h}$ ) or of other close packings (e.g., simple hexagonal and closest packings, $\mathrm{Ts} / \mathrm{h}$ ). They pertain to the so-called recombination structures. Examples are: galenobismutite, $\mathrm{Pb}^{[7]} \mathrm{Bi}_{2}{ }^{[67]}\left[\mathrm{S}_{4}\right]^{\mathrm{c} / \mathrm{h}}$, and apatite, $\mathrm{Ca}_{5}{ }^{\mathrm{p}}$ $\mathrm{P}_{3}{ }^{\mathrm{t}}\left[\mathrm{O}_{12}(\mathrm{OH}, \mathrm{F})\right]^{\mathrm{Ts}} / \mathrm{h}$.


Fig. 21. Representation of the molybdenite structure, $\mathrm{MoS}_{2}$, with a heterogeneous close packing (2Ts)h of sulphur atoms with Mo in trigonal prismatic voids: (a) close-packed description, and (b) polyhedral drawing (after Wyckoff, 1963, and adapted from Kostov, 1968, respectively).


Fig. 22. (a) Packing drawing of the matlockite structure, PbFCl , projected along one of the $a$ axis (adapted from Wells, 1962), (b) The corresponding $\mathrm{Q}^{2}$ and $\mathrm{Q}^{1}$ packing layers with the voids (dashed circles) generated by the ' f ' stacking (adapted from Figueiredo \& Lima-de-Faria, 1991b).


Fig. 23. (a) Representation of the $\mathrm{S}_{8}$ molecules of the $\alpha$-form of sulphur (after Kostov, 1968). (b) Packing drawing showing how the $\mathrm{S}_{8}$ molecules are packed together (after Bunn, 1964).

For a more detailed description of the various close packings, their corresponding layers and voids, see Lima-de-Faria \& Figueiredo (1990a and b) and Figueiredo \& Lima-de-Faria (1991a and b).

### 3.2.2. The packing of groups, chains and sheets

The other kinds of structural units also tend to pack together as closely as possible. When the structural units are groups, they tend to behave as organic molecules. The molecules tend to stack in such a way that the bumps in one are inserted in the hollows of another molecule. A very complete study of the packing of molecules in organic structures has been made by Kitaigorodskii (1955, 1961), based either on finite molecules, infinite molecular chains, or infinite molecular sheets. This study may be applied to the corresponding categories of inorganic structural units.

Let us consider the packing of groups. An example is the $\alpha$-form of sulphur, which is built of $\mathrm{S}_{8}$ groups (Figure 23).

As an example of infinite chains, we chose the pyroxenes, which pack in a close way (Figure 24). The infinite chains do not pack side by side (Figure 24b), but alternately up and down, giving rise to a
better fit (Figure 24c).
For sheet structures many examples could be given, such as muscovite, kaolinite and talc, the 'skeletons' of which are based on silicate sheets, [ $\mathrm{Si}_{2}{ }^{\mathrm{t}} \mathrm{O}_{5}$ ], packed together in a dense way.

### 3.2.3. The connectivity in frameworks

In framework structures, the structural unit is the whole framework. However, the framework may be imagined subdivided in parts, the so-called 'connected units' (Lima-de-Faria \& Figueiredo, 1976), so as to facilitate its description and representation. In this way a framework may be decomposed into sheets, or chains, or even groups, which by connection give rise to the whole framework. Whenever possible, the framework is decomposed into layers, because this is the best way which leads to a simpler representation. Examples of frameworks built of connected sheets are: cristobalite and tridymite, which may be considered formed by silicate puckered sheets connected in ' $c$ ' or ' $h$ ' close packing, respectively. The connected units also tend to link together in a close way, as if they were structural units.


Fig. 24. (a) Two schematic representations of the silicate $\mathrm{SiO}_{3}$ pyroxene chain and its cross section (after Kostov, 1968). (b) Imagined packing of the pyroxene chains in a non-close way: chains just packed side by side. (c) Representation of the real structure of diopside, $\mathrm{CaMgSi}_{2} \mathrm{O}_{6}$, showing the way these chains pack together in the closest way (after Lima-de-Faria \& Figuiredo, 1990b).

## CHAPTER 4

## The stability of crystal structures

### 4.1. The general conditions of stability

Mineral structures are possibly the most stable among inorganic crystal structures. Bragg (1964) said:

A mineral must be very stable in order that it may exist for so long, and so must have a structure of minimum energy.
In fact, the general condition of stability for a physical system corresponds to a minimum free energy G (of Gibbs),

$$
\mathrm{G}=\mathrm{U}+\mathrm{pV}-\mathrm{TS}
$$

where $U$ is the internal energy of the system, $p$ and V the pressure and volume, and T and S the temperature and entropy, respectively. When this principle is applied to crystal structures, it is concluded that, for stability at a given pressure and temperature, the internal energy of a structure should be a minimum, and its entropy, a maximum. A minimum internal energy corresponds to a minimum volume; this means that the atoms in a crystal structure will tend to be as close as possible. The maximum entropy should not be interpreted as a maximum disorder, but as a maximum homogeneity of the atomic distribution. A periodic orderly distribution may possibly be the most favourable situation. According to Buerger (1971)
a random assemblage is one of greater potential energy than an ordered one.
The measure of the internal energy, U , of a crystal structure has been the object of several studies. The theoretical studies of Madelung (1918) and of Born \& Landé (1918) were made on alkali halides, and afterwards developed by Born (1919), Haber (1919), Kapustinskii (1933) and Fersman (1935). This enabled theoretical values to be established for simple ionic structures, which are very nearly the experimental values. However, satisfactory
results have only been obtained for relatively simple ionic structures.

### 4.2. The extension of Laves principles to minerals

According to Laves $(1956,1963)$, what governs the stability of the alloy structures are three main principles: the 'space filling principle' (tendency of the atoms to optimize space filling), the 'high symmetry principle' (tendency to form arrangements of high symmetry), and the 'connection principle' (tendency of the atoms to form connections of high dimension). However, he admitted that other physico-chemical factors, such as the bond factor and the temperature factor, may also be important.

The space filling principle is in complete agreement with the minimum free energy condition, which implies a minimum volume of the atomic distribution. The high symmetry principle possibly expresses the equilibrium of forces reaching each atom; thus, for atoms of the same kind, it would also mean equal interatomic distances.

Certain structures, like pyroxenes, amphiboles, and micas, may be considered intermediate cases between their symmetrical and their packing analogues (Lima-de-Faria, 1988a). Belov (1951) was the first to consider these two extreme ideal cases in micas (Figure 25a). For micas with $\mathrm{Si}_{2} \mathrm{O}_{5}$ layers, the possible $\mathrm{SiO}_{4}$ tetrahedral distribution in a closest-packed layer can only have triangular shaped rings (Figure 25b), and the layer with hexagonal rings corresponds to the symmetrical analogue and does not fit in any closest-packed layer (Figure 25c). Moreover, Kitaigorodskii (1955) has also emphasized the importance of these two tendencies for layer stacking in molecular structures:

The nature of the layer stacking, like the

(a)

(b)

p 31 m

(c)


Packing analogue
Symmetrical analogue
Fig. 25. (a) Extreme ideal models of mica (after Belov, 1951); (b), (c) Tetrahedral sheets based on triangular shape rings, and on hexagonal shape rings, to which correspond the plane groups p 31 m and p 6 mm , respectively (after Lima-de-Faria, 1988a).
molecular packing in a layer, is determined by the closest packing requirements and by the tendency for the symmetry of the molecular arrangement to be as high as possible.
Consequently, the Laves principles of stability can possibly be extended to mineral structures by considering that there is a tendency for the formation of highly symmetrical structural units, and also a tendency for the close packing of such structural units. These two tendencies may conflict with each other, and give rise to intermediate situations between the twoextremeidealanalogues(Lima-de-Faria, 1988a).

### 4.3. Stability rules

### 4.3.1. Rules governing the polyhedral constitution of inorganic crystal structures (Pauling rules)

One of the ways to look at structures is to consider the coordination polyhedra formed by the anions around the cations, and how they are linked to each other. Pauling (1929) has proposed five rules for ionic structures, which govern the linkage of these polyhedra (whether linked by corners, edges or faces), in order to determine the possible stable structures.

## First rule:

A coordination polyhedra of anions is formed about each cation, the cation-anion distance equalling the sum of their characteristic packing radii and their radius ratio determining both the nature of the coordination polyhedron and, therefore, the coordination number of the cation.
In other words, the maximum number of large ions X that can be simultaneously tangent to a smaller ion $A$ is geometrically dependent on the value of $R_{A} / R_{X}$, their radius ratio.

## Second rule:

The strength of an electrostatic bond may be defined as a cation's valence charge divided by its coordination number. Pauling's second rule states that
an ionic structure will be stable to the extent that the sum of the strengths of the electrostatic bonds that reach an anion (from adjacent cations) equals the charge of that anion but with opposite sign.
In NaCl , for example, each $\mathrm{Cl}^{-}$anion is surrounded by $6 \mathrm{Na}^{+}$neighbours, each of which directs a bond of strength $+1 / 6$ towards it. Consequently, the negative unit of charge of a $\mathrm{Cl}^{-}$anion is completely neutralized by the six $+1 / 6$ bonds from the adjacent $\mathrm{Na}^{+}$ions; no portion of the positive charge from more distant cations is required to neutralize the $\mathrm{Cl}^{-}$anion charge. Pauling's second rule calls for the neutralization of charge around an anion in an ionic structure to be sharply localized, that is, at short range distance. Hence, the rule is often known as the electrostatic valence principle.

## Third rule:

The sharing of edges and particularly of faces, by two anion polyhedra, decreases the stability of an ionic crystal structure.
This is particularly true if the cation within each anion polyhedron is highly charged, has a small coordination number, and has a radius ratio in respect to the anions that is near the lowest limit tolerated by the anion polyhedron. This third rule might be acceptably restated as: highly charged cations prefer to maintain as large a separation as possible within a structure and to have anions intervening between them so as to screen one from
the other. Either feature decreases the potential energy of a crystal by minimizing the repulsive forces existing between neighbour cations.

To illustrate Pauling's third rule we may consider the tetrahedron that four $\mathrm{O}^{2-}$ ions typically form around a $\mathrm{Si}^{4+}$ ion in silicate crystals. In such crystal structures, these tetrahedra often share corners, but not edges or faces. Two reasons dictate this, namely, (i) the cation-to-cation distance is the greatest for corner sharing and the least for face sharing, and (ii) the $\mathrm{O}^{2-}$ ions positioned between one cation from the adjacent ones screen most effectively for corner sharing and least effectively for face sharing.

## Fourth rule:

In a crystal structure containing different cations, those of high valency and small coordination number tend not to share polyhedron elements with each other.
This 'fourth rule' is merely an extension of the third one and the considerations that justified the former also justify the latter.

## Fifth rule:

The number of essentially different kinds of constituents in a crystal tends to be small.
If the simplifying assumption is adopted that most crystal structures consist of a closest packing of the large ions, or a variation thereof, with the smaller ions in the interstices, then the fifth rule may be restated as: the number of types of interstitial sites present within a periodically regular packing of anions tends to be small. This is also called the rule of parsimony.

### 4.3.2. The bond-valence rules (Brown rules)

To predict the structure and properties of complex structures the bond-valence method can be of considerable help. Basic to the method is the prediction of both atomic valences and bond lengths, as achieved by solving a model that is based on a network of chemical bonds.

The fundamental concept of bond-valence stems from the assumption that the valence of an atom is distributed among the bonds that such an atom forms. Because bond-valences are found to correlate well with a number of parameters, namely with bond lengths, experimental values of the latter
can be used to estimate values of the former. These may then be of assistance in the evaluation of crystal structures.

In ionic networks, every bond has a Lewis acid (cation) at one end and a Lewis base (anion) at the other end. Brown (1981) established two empirical rules for compounds with acid-base networks:

## Stoichiometric rule:

The total valence of the Lewis acids is equal to the total valence of the Lewis bases.
Valence rule:
The sum of bond valences at each atom is equal to the atomic valence.
This rule is closely related to Pauling's electrostatic valence rule.

When identification is needed of elements that cannot be easily distinguished by X-ray diffraction, resorting to experimental values of atomic valences may prove quite useful. Si and Al are two such elements, because they frequently occur in a similar environment in a given crystal and they have nearly the same X-ray scattering factors. However, an atom can be readily identified as Si if its atomic valence is found to be 4.0 and as Al if its atomic valence is found to be 3.0. Should the atomic valence be found to be 3.60 , the conclusion would be drawn, to a first approximation, that the site is occupied $60 \%$ by Si and $40 \%$ by Al.

### 4.3.3. Rules governing the layer organization of inorganic crystal structures

The distribution in space of the structural units, which plays a fundamental role in the constitution of crystals, is a three dimensional problem (3D), though in most cases it can be formally decomposed into a two-plus-one dimensional problem ( $2 \mathrm{D}+1 \mathrm{D}$ ), that is, into the organization of the structural units in layers, and the way the layers stack together (Lima-de-Faria \& Figueiredo, 1976). The systematic derivation of simple inorganic close-packed structures based on the stacking of equal or alternate layers (Lima-de-Faria, 1965b; Lima-de-Faria \& Figueiredo, 1969) and the use of condensed models have shown that the constitution and the stacking of the layers obey certain rules (Lima-de-Faria, 1978).

In the representation of layered structures by condensed models (Lima-de-Faria, 1965a) the structures are sliced into atomic layers formed by
the packing atoms and the interstitial atoms which are immediately above them, so that the interstitial atoms which are below it will pertain to the layer located underneath. The slice formed by the packing layer and the corresponding interstitial atoms, as defined, is called 'constructive layer', to distinguish it from the packing layer alone, which involves just the packed atoms (Lima-de-Faria, 1978). The stacking of the constructive layers generates, completely, the crystal structure.

Many inorganic structures are built of the stacking not only of equal packing layers but also of equal constructive layers; this means that the distribution pattern of the interstitial atoms (Lima-deFaria, 1965a) is also the same in the constructive layers. This fact should be a very difficult guess with the sole help of the usual drawings and models of crystal structures; it only became apparent through the systematic use of condensed models.

The concept of constructive layers does not apply exclusively to the close packing of atoms, that is, to close-packed structures, but may be extended to structures based on the packing of other structural units such as groups, chains or sheets, and even to framework structures. The problem is to find the proper plane direction in the structure which leads to a simple description, and that in general coincides with the plane direction of the highest density of atoms. Most of the inorganic structures admit such a description by layers (Lima-de-Faria \& Figueiredo, 1976).

The rules which apply to constructive layers (in what follows called simply 'layers') of inorganic crystal structures (Lima-de-Faria, 1978) are:

1. Inorganic structures are in general built up of equal layers, in certain cases of two alternate layers, and in a very few cases of more than two different layers.
This rule expresses the simplicity of the architecture of crystal structures. It is related to the relatively small values of the lattice parameters and to the symmetry within the unit cell (Figure 58).
2. The way the layers stack together is, in general, the same for all the layers.
This expresses a short-range interaction in the structure, which seems to be related to local electrical neutrality.
3. In each layer the atoms of the same kind tend to be crystallographically equivalent, that is, to oc-
cupy a minimum number of sets of equivalent positions.
This rule expresses the fact that equal atoms tend to have the same environment, and corresponds to Pauling's fifth rule.
4. The distribution pattern of the atoms of the same kind (either interstitial or packed) tends to be as symmetrical and homogeneous as possible.
This rule expresses electrical equilibrium and is related to the symmetry principle (Laves, 1956) and the vector equilibrium principle (Loeb, 1970). Only in rare cases (certain particular proportions of interstitial atoms) is this rule not completely satisfied (Figueiredo, 1973).
5. The distribution pattern of the atoms of the same kind (either interstitial or packed) tends to be as distant as possible from the corresponding distribution pattern of the adjacent layers.

This rule expresses a minimum of electrostatic energy and corrresponds to the 'distant distribution rule' (Lima-de-Faria, 1965b). Related statements were presented by Iida (1957) for magnetic oxides, which he called 'assumption II', and by Radoslovich (1963) for certain silicate structures relative to the interstitial atoms and under the designation of 'cation-avoidance rule'. Pauling's third rule is again another form of expressing this statement, but in terms of the sharing of corners, edges and faces of coordination polyhedra.

These rules are especially useful in the domain of close-packed structures. It should also be noted that the rules presented here express tendencies, and do not take into account certain competing factors, such as the bond factor, which may lead to other equilibrium compromises.

## CHAPTER 5

## Structure and properties

### 5.1. Physical properties and crystal structure

There is an intimate relation between the internal structure of minerals and their properties. Povarennykh (1972) said:

Polymorphic species (diamond and graphite, calcite and aragonite, kyanite and sillimanite) provide the best evidence that the structure type and bond distribution are the decisive factors as regards properties[...]; only a consideration of structural features (bond distribution and strength) can give a full conception of all the major properties.
Certain physical properties are more sensitive to the geometrical arrangement of the atoms in space, that is, to symmetry; for example, elasticity, thermoconductivity, electroconductivity and thermoexpansion (Figure 26). Others, such as cleavage, habit, hardness and twinning, are more related to the kind of structural units and their packing.


Fig. 26. Schematic representation of the anisotropic thermoexpansion of a crystal of low symmetry: (a) Cut sphere of the crystal; (b) The sphere takes the shape of an ellipsoid by the action of heat (after Chaskolskaia, 1959).

Hardness is related to the surface resistance of the sample to abrasion. The facility in breaking the bonds depends on the behaviour of the bonds under the effect of an external perturbation, and it
is related to the symmetrical character of the electronic orbitals involved in the bonds. For instance, in diamond the crystal is built up of atoms linked by strong covalent bonds ( $\mathrm{sp}^{3}$ orbitals) which have a strong directional character. The displacement of an atom, or its removal, therefore requires the breaking of strong bonds, and this is why diamond is very hard.

The arrangement of the atoms in a crystal stucture is normally different in different directions and, as a consequence, the hardness may also depend on the particular face and direction under consideration. These differences are often rather small; however in the case of kyanite, $\mathrm{Al}_{2} \mathrm{SiO}_{5}$, the hardness may vary between 4 and 7 for the (100) face, depending on the direction.

The density of crystals depends on the atomic weight of the chemical elements and also on the degree of close packing of their atoms; normally, it will decrease from close-packed to framework structures.

The shape of crystals, their habit, depends on the relative rates of growth in the different directions. There is consequently a definite relation between structure and habit, though there are often obscure additional factors, such as the conditions of formation, which may play an important role. The kind of structural units seems to be the main factor. In sheet structures the habit is normally platy or leafy, in chain structures it is prismatic or acicular, and in close-packed, group and framework structures it is generally isometric, that is, the crystal develops more or less equally in all directions. However, in group structures, groups of certain particular shapes, like long sticks or flat disks, may give rise to platelike or needlelike crystals, respectively. In fact needleshaped molecules pack parallel like a bundle of sticks, and additional ones are added to their sides quite quickly, generating
(a)


Fig. 27. (a) Needleshaped molecules, packed parallel, give platelike crystals, while (b) flat molecules, packed parallel, give needlelike crystals (after Bunn, 1964).
platelike crystals. Small flat groups tend to pack together more quickly in a direction perpendicular to the plane of the groups, forming needlelike crystals (Figure 27).

It is clear that crystals will break more easily along the plane surfaces containing weak bonds, and therefore the bond strength distribution will define the cleavage directions. Cleavage will easily reveal chain or sheet structures because it will be parallel to one or to two directions, respectively. Structures belonging to close-packed, group or framework structures will normally show cleavage along three directions.

Structures having a common geometric arrangement may however show different directions of cleavage due to different bonds between the atoms. Examples are diamond and sphalerite, ZnS . In dia-
mond the cleavage is along the (111) plane, involving the smallest number of bonds per unit area, but in sphalerite it is along the (110) plane because the fragments formed have to be electrically neutral (Figure 28).

Optical properties are essentially symmetry dependent. The optical indicatrix is related to the symmetry, and the behaviour of crystals under polarized ligth is easily predictable on this basis. Optical properties are also greatly influenced by chemical composition. But the refractive index, birefringence and optical sign depend greatly on the structural character. The refractive index depends on the packing density and is normally low for framework structures. Birefringence and optical sign reveal minerals with chain or sheet structures if high or very high, respectively.

Twinning is related to interfaces of common atomic arrangement. The twinning of aragonite (Figure 29) is explained by its structure. The section of the crystal between the broken lines, the socalled twinning plane (Figure 29), may be regarded as belonging either to the original crystal on the left, or to the twin crystal on the right, since it conforms to both.

Every property may reflect, to a certain extent, the constitution of a structure, but it is by considering all the properties of a structure that its character may be revealed.

Epitaxy is an oriented overgrowth of two different crystalline substances, and is very dependent


Fig. 28. (a) Structure of diamond showing cleavage plane (111), and (b) structure of sphalerite showing cleavage plane (110) (after Zemann, 1969).


Fig. 29. The twinning of aragonite. The structure between the broken lines is consistent with the symmetry scheme in either individual (after Bragg \& Claringbull, 1965).
on the crystal structures involved. Although the crystals related by epitaxy have different structures, there will be structural planes where there may exist a good fit between the two individuals. As an example we may mention the epitaxial growth of albite over microcline (Figure 30).

Epitaxy is of great importance in thin-film technology, and in particular in the manufacture of semiconductors.


Fig. 30. Example of parallel growth in epitaxy: albite over microcline (after Kern \& Gindt, 1958).

### 5.2. The importance of crystal structure in phase transformations

### 5.2.1. Topotaxy

The study of phase transformations of minerals, that is, of their behaviour under heat, pressure and certain atmospheric conditions, may reveal important characteristics of their structures. When we break a mineral the cleavage reveals certain directions of weak bonds and, in a similar way, when a crystal is heated the first parts to collapse and transform are also regions of weak bonds.

The transformations of mineral structures by heat may give rise to new phases with random orientation in relation to the original mineral, to a certain preferred orientation, or to a well-oriented phase. In this last case the transformation is called 'topotatic' and the oriented phenomenon 'topotaxy'.

When the transformation of a mineral by heat is topotatic and irreversible, instead of using a temperature and a time which completely transform the mineral, one should use successive heat treatments at a relatively moderate temperature in order to obtain a kind of 'movie' of the transformation. This technique may reveal intermediate stages of the transformation which will help in interpreting its mechanism. Also, instead of powder X-ray photographs to follow the transformation, which do not give information on the relative orientation of the original and transformed structures, it is better to use single-crystal X-ray photographs.

As an example of a topotatic transformation, the goethite $\rightarrow$ hematite dehydration may be described. The orientation relationship of the original goethite to the formed hematite is [001] of hematite // [100] goethite , and [110] hematite // [010] of goethite (Francombe \& Rooksby, 1959). The crystal-chemical equation for this irreversible transformation is

$$
\underset{\text { goethite }}{2 \mathrm{Fe}^{\mathrm{o}}[\mathrm{O}(\mathrm{OH})]^{\mathrm{h}}} \rightarrow \underset{\text { hematite }}{\mathrm{Fe}_{2}\left[\mathrm{O}_{3}\right]^{\mathrm{h}}}+\mathrm{H}_{2} \mathrm{O}
$$

where ' $h$ ' means hexagonal closest packing, and ' $o$ ' octahedral coordination.

A convenient temperature for studying this dehydration is $350^{\circ} \mathrm{C}$ because successive and relatively short heat treatments at this temperature


Fig. 31. Sketches of X-ray oscillation photographs of a sample of original goethite, unheated, then heated at $350^{\circ} \mathrm{C}$ for several periods of time (oscillation about the 'a' axis) (after Lima-de-Faria, 1963).
may produce a good 'movie' of the transformation. After each treatment, a single-crystal X-ray photograph may be taken to indicate the stage of the transformation (Figure 31).

On the second sketch one can notice, together with the spots of the original goethite, already those of hematite with satellites; on the third sketch, the goethite spots have disappeared; on the fourth, the satellites transform to diffuse regions; only on the last sketch is goethite completely transformed to hematite.

The satellites (Figure 32) observed in the goethite-hematite dehydration correspond to intermediate stages of the transformation, and were very important for the interpretation of its mechanism (Lima-de-Faria, 1963).

The structure of goethite is based on a hex-
agonal closest packing of O and OH ions, with Fe ions in octahedral voids. Hematite is also based on a hexagonal closest packing of oxygen ions with iron ions in octahedral voids. Due to the similarity of the packing in both goethite and hematite, this hexagonal closest packing tends to be preserved during the transformation, and the iron ions change their positions from a row pattern to a honeycomb distribution within the close packing. The mechanism is inhomogeneous (Brindley, 1961, Ball \& Taylor, 1961), that is, certain regions of the crystal are preserved while others, where the water splits off, are completely destroyed, giving rise to micro cracks in the crystal. The preservation of certain parts of the close packing, where the hematite structure is developed, explains the topotatic character of this transformation (Lima-de-Faria, 1963).


Fig. 32. X-ray rotation photograph of transformed goethite corresponding to a treatment of $300^{\circ} \mathrm{C}$ for 19 hours, showing sattelites (FeK radiation, rotation along the 'a' axis of goethite) (after Lima-de-Faria, 1963).

Topotaxy involving structures based on closest packing can be studied in a more general way (Lima-de-Faria, 1967). The possible transformations of structures based on the two fundamental closest-packed arrangements, viz. cubic closest packing (c.c.p.) and hexagonal closest packing (h.c.p.) are: (a) h.c.p. $\rightarrow$ h.c.p., (b) c.c.p. $\rightarrow$ c.c.p., (c) h.c.p. $\rightarrow$ c.c.p. and (d) c.c.p. $\rightarrow$ h.c.p. A tendency for the preservation of the type of packing has been pointed out by several authors (e.g., Ervin, 1952; Dent Glasser, Glasser \& Taylor, 1962; Brindley, 1963). If the original structure and the transformed structure have the same type of packing, this is preserved throughout the transformation, the small ions only moving inside the packing. Moreover, when there is a change in the type of packing, the tendency for the preservation of the closest-packed layers determines the possible orientations.

The simplest way of preserving the closestpacked layers is for the transformation to proceed by slipping of the layers over one another. Because there are only two possible ways of placing one layer over another, the movement of a layer is restricted to the second possible position. This movement can consist of a single slip along one out of three different directions (spheres will move along valleys, that is, from one hole to the nearest hole) all giving rise to the same final state, and therefore being equivalent. To describe the movements of layers in these transformations, it is convenient to consider the (110) section of the c.c.p. structure and the section of the h.c.p. structure parallel to ( $2 \overline{1} \overline{1} 0$ ) (Christian, 1951) (Figure 33). The advantage of these sections is that the spheres corresponding to the sequences $A B A B \ldots$ and $A B C A B C \ldots$ all lie on the plane of the figure. With the help of packing models of plastic balls it can easily be seen that to


Fig. 33. Mechanism of h.c.p. $\rightarrow$ c.c.p. transformation and vice versa. The top part of the figure shows schematically the sections of close packing models of plastic balls, appropriate for the description of the mechanism of these transformations: (110) section of c.c.p. and ( $2 \overline{1} 10$ ) section of h.c.p. Two different movements are represented, corresponding one to the left-hand arrows and the other to the righthand arrows, leading respectively to structures (a) and (b). The layers slip by pairs, as locked together (after Lima-de Faria, 1967, and adapted from Christian, 1951).


Fig. 34. Normal orientations derived in transformations involving c.c.p. and h.c.p. (after Lima-de-Faria, 1967).
change from h.c.p. to c.c.p. the layers have to slip by pairs, as if locked together, in the [ $01 \overline{1} 0$ ] direction, and that all the pairs slip in the same direction (Christian, 1951) (Figure 33, middle section). The necessity for the layers to move in pairs is the consequence of the single new position that can be obtained by slipping, as pointed out above. For instance, if the third layer slips relative to the layer below, which has already slipped, the resulting position of this third layer will be the same as initially, the sequence ABA being maintained. Two possible c.c.p. orientations can be derived from h.c.p. as movements of pairs AB or BA take place (Figure 33), thus twinning is obtained in this transformation. Since a unique set of closest-packed planes exists in the h.c.p. structure, only two possible c.c.p. orientations are obtained in the transformation h.c.p. $\rightarrow$ c.c.p.

To transform the c.c.p. into h.c.p. the layers have again to be moved by pairs, slipping in the [112] direction and the two possible orientations derived for h.c.p. are parallel, not giving rise to
twinning (Figure 33, lower part). However, because there are four equivalent sets of close-packed planes in the c.c.p. structure, four different orientations are obtained in the transformation (Lima-deFaria, 1967). These results are summarized in Figure 34.

In Figure 34, lower section, the various packing orientations developed in transformations involving change from h.c.p. into c.c.p., and vice versa, are shown with their packing axial relationships. From the figure many particular transformations can be predicted if the packing characteristics of both the original and transformed structures are known.

### 5.2.2. Transformation twins: Packing and interstitial twinning

Apart from the twinning that comes from closest packing, twinning can also arise from different possible distributions of the interstitial ions within the closest packing. This is the case of the hematite


Fig. 35. The two possible different orientations of nucleation of the honeycomb iron pattern inside the hexagonal closest packing.
derived from heated goethite. In fact the X-ray oscillation photographs show a plane of symmetry which does not exist in single crystals of hematite with this same orientation (Figure 35). The reason is that two differently oriented hematites develop during the transformation, because the honeycomb pattern of the iron ions in hematite may develop in two possible positions inside the hexagonal closest packed layers.

Equal amounts of hematite crystallites are formed with the two orientations because these are equally probable, which is confirmed by the equal intensities of the spots (Lima-de-Faria, 1963).

Consequently, when considering transformation twins, one should distinguish between packing twinning, which derives from displacements of packing layers, and interstitial or internal twinning, derived from more than one possible distributions of the interstitial atoms inside the packing.

Another kind of twinning also arising from phase transformations was described by Lonsdale (1966).

### 5.2.3. The measure of symmetry in crystal structures and its application to phase transformations

When dealing with phase transformations, it is often needed to compare the symmetries ot two structures, that is, to judge which has higher sym-
metry. In fact, according to Megaw (1973), pseudo-symmetric structures are always likely to undergo transition to high-symmetry form and
a high-symmetry structure tends to have higher entropy (and therefore lower free energy),
and again
the higher-temperature phase is not necessarily characterized by the higher symmetry.
The measure of symmetry is a problem that has been ignored or disguised until now, and many crystallographers may have different opinions about it or even not to know how to tackle it. To a certain extent, it has been treated under the heading of group-subgroup relations, though in an implicit manner (see, for instance, Vol. A of the International Tables of Crystallography, 1983, 1987); however, it would certainly be useful if this problem were dealt with explicitly.

Admittedly, this is not a simple problem, and a recent proposal for measuring the symmetry of a crystal structure, as put forward by the author (1988b, 1991), may involve aspects hitherto not considered. However, should such a proposal provoke a wide discussion of this problem, it would certainly prove very useful.

What is crystallographic symmetry? Symmetry is essentially repetition. When a motif is repeated several times within a pattern, we say that a certain kind


Fig. 36. Asymmetrical (a) and symmetrical (b) figures (after Shubnikov \& Koptsik, 1972)
of symmetry exists. However, symmetry is not only repetition; it has to be produced in a regular way. In fact, according to Shubnikov \& Koptsik (1972), a symmetrical figure must have, in addition to geometric equality of its parts (a), identical arrangement of the parts (b)
(Figure 36).
According to Helen Megaw (1973),
An object possesses certain symmetry if after the application of a particular operation it looks exactly as it did before and continues to do so however often the operation is repeated. For instance, a hexagonal prism looks exactly the same after rotation through $60^{\circ}$.
Therefore, as Fedorov (1901) said,
symmetry is the property of geometrical figures to repeat their parts, or more precisely, it is the property of figures in different positions to bring them in coincidence with the figures in the initial positions.
Although symmetry is essentially repetition in a certain regular way, repetition by itself cannot be a measure of symmetry. In fact, if we compare a cube and an hexaoctahedron, the number of repeated faces in the cube is 6 , and that in the hexaoctahedron is 48 , but we cannot say that the hexaoctahedron has higher symmetry than the cube, because they have exactly the same symmetry.

What defines the crystallographic symmetry of these two forms is the group of elements of symmetry which is the same for both, and what should measure the symmetry is not the actual repetition of the faces but the maximum number of repetitions these elements of symmetry may generate. This number measures the 'power of repetition' or 'symmetry capacity' of these elements of symmetry, and corresponds to the multiplicity of the general form (Lima-de-Faria, 1988b). The maximum num-
ber of repetitions can obviously occur when the face is in a general position, giving rise to the general form (in this case the hexaoctahedron).

We can then propose that the crystallographic symmetry of a pattern should be measured by the capacity of symmetry, or power of repetition of its elements of symmetry.

A pattern may be finite (a figure or a form), or infinite (in two or three dimensions). In the case of a figure or a form (e.g., a crystal in the morphological sense), the symmetry capacity of its elements of symmetry corresponds to the multiplicity of the general form, or the 'order' of the point group (Shubnikov \& Koptsik, 1974; Vol. A of Int. Tables, 1983). If we consider the 10 twodimensional crystallographic point groups and the 32 three-dimensional crystallographic point groups, and arrange them according to their 'order', we obtain the results presented in Tables 11 and 12 , respectively. These tables correspond to the group-subgroup relations shown on Figure 10.3.1, and Figure 10.3.2, of Vol. A of Int. Tables, 1983 edition, (pages 774 and 775, respectively).

For the two- and three-dimensional infinite patterns we have to order them by the multiplicity of the general position of the corresponding crystallographic space groups (Lima-de-Faria, 1988b, 1991). We obtain Table 13 for the 17 crystallographic plane groups and Table 14 for the 230 crystallographic space groups. The latter table enables the ordering of crystal structures with respect to symmetry. Although there are several tables in Vol. A of Int. Tables involving the multiplicity of the space groups, no table could be found there to correspond to either Table 13 or Table 14.

Applying our definition to the comparison of two infinite patterns corresponding to the plane groups $p m$ and $c m$ (plane groups chosen for reasons of simplification), it is found that the multiplicity of $p m$ is 2 and that of cm is 4 . Therefore the symmetry of cm is higher than that of pm (Figure 37). Moreover, not only the multiplicity is higher in cm but more elements of symmetry are present, namely the glide planes.

Group-subgroup relations when applied to these examples may give contradictory results, depending on the sense and mechanism of the transformation (Lima-de-Faria, 1991).

Figure 38 represents the original plane group pm


Fig. 37. Comparison of the symmetries $p m$ and $c m$ (after Lima-de-Faria, 1991).
and the composed plane group cm . By considering that, in certain positions, the motif has slightly changed (full triangles), the composed plane group will show repeated distances twice the original ones. According to group-subgroup relations the formed plane group cm has lost the infinitely repeated translations $a_{1}$ and $b_{1}$, and has only translations at $2 a_{1}$ and $2 b_{1}$. On the other hand, certain mirror planes have been converted into glide planes. Consequently, pm has higher symmetry than cm .

However, one can imagine a transition which should lead precisely to the opposite conclusion. If one starts with the space group cm (Figure 39), one can transform it by a similar process into space group pm, as indicated in Figure 39. The infinitely repeated translations are maintained but the glide
planes are lost. Consequently $p m$ is a subgroup of cm , and cm has higher symmetry than $p m$. The fact that this result is in complete contradiction with the one presented in Figure 38 clearly expresses the ambiguity of the measure of symmetry based on group-subgroup relations.

Such contradiction might possibly be resolved if in Figure 38 one would compare the actual unit cells (double lined) of the original and the composed structures. Then it should be obvious that there is an increase of symmetry (the gain of the glide planes), rather than a loss, which leads to the conclusion that cm has higher symmetry than $p m$. What seems important is to consider the plane groups independently of their unit-cell size, that is, of their density of symmetry. Should this be admitted, the answer would be the same in both cases,

Table 11. Hierarchy of the 10 two-dimensional point-groups (after Lima-de-Faria, 1991)
Order Oblique

Table 12. Hierarchy of the 32 three-dimensional point-groups (after Lima-de-Faria, 1991)


Table 13. Hierarchy of the 17 plane groups (after Lima-de-Faria, 1991)

| Multiplicity ( ${ }^{( }$) | Oblique | Reatangular |  | Square |  | Hexagonal |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | p1 |  |  |  |  |  |  |
| 2 | p2 | pm | pg |  |  |  |  |
| 3 |  |  |  |  |  | p3 |  |
| 4 |  | cm | p2mm | p4 |  |  |  |
|  |  | p2mg | p2gg |  |  |  |  |
| 6 |  |  |  |  |  | p3m1 | p31m |
|  |  |  |  |  |  | p6 |  |
| 8 |  | c2mm |  | p4mm | p4gm |  |  |
| 12 |  |  |  |  |  |  |  |


pm

cm

Fig. 38. The transformation of a pattern with $p m$ symmetry into a pattern with symmetry cm (after Lima-de-Faria, 1991).
namely $\mathrm{cm}>p m$ (with respect to symmetry), and the ambiguity would vanish.

According to these ideas, density of symmetry of a crystal structure should be defined as the number of general equivalent positions per unit volume, that is, the ratio of the multiplicity of the general position of a space group to the volume of its unitcell. The density of symmetry may also be important in phase transitions, but should be considered separately from the symmetry itself.

It is interesting to notice that certain crystal structures with orthorhombic symmetry may have higher symmetry than others with tetragonal, trigonal or even hexagonal symmetry. An example is Cmmm (multiplicity 16) with higher symmetry than P 6 mm and P 3 ml (both with multiplicity 12)
and $\mathrm{P} \overline{\mathrm{4}} \mathrm{m} 2$ (multiplicity 8 ).
It may now be realized that in the goethitehematite transformation there is an increase of symmetry from Pbnm of goethite (multiplicity 8) to $\mathrm{R} \overline{3} \mathrm{c}$ of hematite (multiplicity 18 ).

The proposed measure of symmetry is independent of the size of the unit cell, therefore also of the density of symmetry. It is clear that an amplified pattern has the same symmetry as the original one (Figure 40).

On the contrary, the measure of symmetry based on group-subgroup relations intermixes symmetry with density of symmetry, which possibly gives rise to the mentioned ambiguity in group-subgroup relations. Some crystallographers would admit solving this ambiguity by using the concept of index of


Fig. 39. The transformation of a pattern with cm symmetry into another pattern with symmetry $p m$ (after Lima-de-Faria, 1991).

Table 14. Hierarchy of the 230 space groups (after Lima-de-Faria, 1991)


Table 14. Continued


* of the general position.

(a)

(b)

Fig. 40. (a) An example of a pattern with $p 2 \mathrm{~mm}$ plane symmetry; (b) amplification of (a). Both have obviously the same symmetry.
the space group, but this also involves the size of the unit-cell and therefore the density of symmetry.

Another sensitive point seems to be the relations between centred and primitive cells (Koptsik \& Belov, 1977). For certain mathematical crystallographers, centred and primitive cells may have different crystallographic multiplicities, but the same multiplicity from a mathematical point of view.

Anyhow, with regard to point groups, there is complete agreement between the group-subgroup theory and the present proposal. The only concern is in space groups divergence. This proposal cor-
responds to the natural extension of the definition of the measure of symmetry from point groups to space groups. In fact, to the multiplicity of the general form, or order of the point groups, corresponds the multiplicity of the general position in space groups.

As another application of these concepts, one may now return to the ideal models of mica (Chapter 4). The symmetrical model with plane symmetry p 6 mm has higher symmetry (multiplicity 12) than the packing model with plane symmetry p31m (multiplicity 6 ).

## CHAPTER 6

## Representation of crystal structures

### 6.1. Kinds of representation

There are several ways of representing crystal structures. The most common representations can be exemplified for the structure of olivine. In Figure 41 four main different ways of representing this structure are shown: (a) the projection of the atoms on one side of the unit cell, (b) the distribution of the atoms in perspective within the unit cell as a kind of ball and spoke model, (c) the coordination polyhedra description, and (d) the atomic packing.

The representation (a) indicates the exact pos-
ition of the atoms in the structure, though it gives no global visual idea of their distribution in space; (b) shows the coordination of the atoms, in terms of lines of valence, according to the chemical approach; (c) depicts the coordination po'yhedra and the way they are linked together; and (d) shows the relative size of the atoms and their packing.

The crystal structure models that we see in many mineralogical museums are still of the (b) type (ball and spoke), because they correspond more directly to the chemical classification of minerals. However, nowadays, there is a tendency in literature to


Fig. 41. Four different ways of representing the structure of olivine: (a) the projection of the atoms on one side of the unit cell (after Bragg \& Claringbull, 1965); (b) the distribution of the atoms in perspective within the unit-cell (after Povarennykh, 1972); (c) the coordination polyhedra description (after Zoltai, 1975) and (d) the atomic packing description (after Wyckoff, 1965).


Fig. 42. A condensed model with its supporting rack placed on a viewing screen. Also shown is a small index box containing condensed model sheets corresponding to several inorganic structure types (after Lima-de-Faria, 1986).
use the (c) representation, with coordination polyhedra, possibly because it gives a better idea of the whole structure and also because it enables to think in terms of the Pauling rules of stability.

To these kinds of representation another one should be added which is based on the layer description of crystal structures, the so-called 'condensed models' (Lima-de-Faria, 1965a). This will be treated in detail in the next section.

There are no representations of crystal structures which may be considered useless. Instead of being opposed they are complementary. Each has advantages and disadvantages.

### 6.2. Layer description and the condensed models of crystal structures

The layer description stems from slicing the crystal structure into atomic layers, and many authors have considered this kind of description of crystal structures (e.g., Smirnova, 1956; Iida, 1957; Frank \& Kasper, 1958; Kripyakevich, 1963).

In the condensed model technique (Lima-deFaria, 1965a) the atomic layers are formed by the packing atoms and the interstitial atoms which are immediately above them; they are represented by transparent plastic sheets (cellulose acetates), placed in an appropriate supporting rack (Figure 42). A viewing screen may be used underneath to improve the visibility of the model. The condensed model gives an idea of how a structure is built by layers of atoms, and shows how these layers stack together in order to produce the structure.

Although the condensed models were invented to study the mechanism of phase transformations, namely the dehydration of goethite into hematite (Lima-de-Faria, 1963), it was soon realized that they were a suitable tool for the description and relationship of inorganic structures, and for the study of crystal chemistry in general.

Coming back to the crystal structure of olivine (forsterite), $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$, it might be noted that the oxygen ions form a hexagonal closest packing while magnesium ions occupy octahedral voids and silicon ions tetrahedral voids. To build its con-


Fig. 43. (a) Standard sheet for building condensed models of structures based on closest packing, with all the octahedral and tetrahedral voids marked (small dotted circles); (b) first sheet of the condensed model of olivine (forsterite); the large open circles represent the oxygen ions while Mg occupying octahedral voids and Si tetrahedral voids correspond to the full circles.
densed model one should start with a hexagonal closest-packed sheet, where the oxygen atoms are represented by large open circles, and all the octahedral and tetrahedral voids generated by the layer to be placed above are indicated by small dotted circles (Figure 43a). Once the octahedral and tetrahedral voids that are occupied are painted black, the first sheet of the condensed model of olivine is obtained (Figure 43b).

Mg ions (the larger full circles) and Si ions (the smaller full circles) occupy $1 / 2$ of the octahedral voids and $1 / 8$ of the tetrahedral voids, respectively, within the closest-packed layer. In the olivine condensed model the sheets are all alike, only displaced in relation to one another. The condensed model of a crystal structure is formed by the minimum number of sheets necessary to get a repetition of the first sheet, and should also contain the unit-cell. The condensed model of olivine is formed by just three sheets (Figure 44). Because the sheets normally contain the projections of more than one unit cell, these models show certain atomic patterns that the other techniques do not. In the case of olivine, the zig-zag patterns of Mg ions and of Si ions may be noticed. The zig-zag of Mg ions is located over and midway between the two zig-zags of Mg ions pertaining to the layer below, that is, the cations in one
layer are as distant as possible from the cations on the adjacent layers, as stability demands. The same applies to the zig-zag pattern of Si ions.

The transparent sheets can be kept in an envelope and a large collection of models may be organized and kept in a small index box (Figure 42). This is the reason why these models have been called 'condensed models'. Another advantage of this kind of model is the possibility of visualizing and easily marking the elements of symmetry of the space group (Lima-de-Faria, 1966). In the case of olivine, one can notice the mirror planes, the glide planes, the screw axes, and the centres of symmetry acting on all the $\mathrm{O}, \mathrm{Mg}$ and Si atoms (Figure 43b).

The problem of slicing a structure into layers is not so easy as may be imagined and, whenever more than one simple layer description can be envisaged, the most appropriate one has to be found. As already seen, the structure of halite, NaCl , can be represented in two different ways, namely, by densest layers T parallel to the (111) planes (Figure 18), or by less dense layers, Q, parallel to the cubic faces (Figure 45). Of these two possible descriptions, the one parallel to the cubic faces is the more appropriate because one can mark on the sheets, quite easily, the elements of symmetry of the cubic space group of halite (Figure 45).


Fig. 44. Condensed model of olivine (forsterite), $\mathrm{Mg}_{2}{ }^{\circ} \mathrm{Si}^{\mathrm{t}}\left[\mathrm{O}_{4}\right]^{\mathrm{h}}$, formed by three transparent plastic sheets. The oxygen ions are represented by the large circles and form a hexagonal closest

Many other examples could be mentioned like AuCu (Figure 46).

An important characteristic of condensed models is their idealized geometry. The fact was borne in mind that there are hundreds of crystal structures based on slightly distorted closest packings, either cubic or hexagonal, of the larger atoms (normally the anions), with small cations in the octahedral and tetrahedral voids. Thus, instead of producing a specific and exact layer to each of the structures, the decision was made to standardize the problem by drawing idealized 'standard sheets'. These could adequately reproduce any closest packing: cubic (c), hexagonal (h), or mixed sequences ( $\mathrm{c} / \mathrm{h}$ ), with all the octahedral and tetrahedral voids marked on them (Lima-de-Faria, 1965a).

The shape of the standard sheet for condensed models was chosen rectangular because this was considered the most suitable (Lima-de-Faria, 1965a; Figueiredo \& Lima-de-Faria, 1977). The radius of the circles representing the packing atoms was chosen as 1 cm , and the spacing between the perspex plates in the supporting rack was taken as 1.63 cm , corresponding to the ideal distance between the layers of closest packing for T layers. Accordingly, additional minor distortions will accompany other packings, with different layers or different ways of stacking.

The second aspect to be considered for the appropriate standardization was the minimum number of standard sheets necessary to figure out the different packings (Lima-de-Faria, 1965a; Figueiredo \& Lima-de-Faria, 1978).

Because the plastic sheets are transparent and both faces are indistinguishable, one may take advantage of sheet rotations in order to produce, with the same sheet, several different stacking positions. To take the maximum advantage of the two diad axes of the rectangular sheet, the layer pattern has to be located asymmetrically with respect to the centre of the sheet, and all the possible layer stacking positions have to be taken into consideration. The maximum number of standard sheets necess-
packing (h). The magnesium atoms are placed in octahedral voids (o) and form a zig-zag pattern, the silicon atoms being placed in tetrahedral voids ( t ) (smaller full circles). The three sheets display the same pattern, and are only alternately shifted in relation to one another.


Fig. 45. The structure of halite, NaCl : (a) packing drawing (adapted from Barlow, 1883); (b) and (c) the two alternative layers for condensed model representation. The unit cell marked on (b) refers to the T layer and not to NaCl .


Fig. 46. The structure of AuCu : (a) packing model, showing various possible descriptions; (b) layers parallel to the cubic face (001) which are perpendicular to the vertical tetrad axis, and which corresponds to alternate layers of Au atoms (open circles) and of Cu atoms (hatched circles); (c) parallel to (100), and (d) parallel to (111).
ary to represent the closest, the loose, and the simple packings can then be easily derived.

For instance, in the case of square layers ( Q ), if the centre of the sheet is located over the middle of the small square formed by positions $\mathrm{A}, \alpha, \mathrm{B}, \beta$, only one sheet is needed to generate by rotation all possible positions $\mathrm{A}, \mathrm{B}, \alpha$, and $\beta$ (Figure 47).

If one starts with the packed spheres in position

A, position $\alpha$ is generated by rotating the standard sheet about axis I , and position $\beta$ is obtained by rotating it about axis II; position $B$ is produced by the combination of both rotations, or by rotation of the standard sheet about an axis perpendicular to its plane and passing through the same centre.

Letters are inscribed on each corner of the sheets (Figure 47) to report the above listed stacking pos-


Fig. 47. Positions of square ( Q ) and triangular (T) layers with the projections of all possible stacking positions of regular stacking modes: over holes, over valleys and over atoms. The location of the sheet centre in relation to the layer pattern for position $A$ is defined by the intersection of the two coplanar rotation axes I and II of the rectangular sheet. The sheets necessary to generate all possible stacking positions are also schematically represented. Some of the letters are printed upside down or reversed in order to achieve their normal reading when placed, by rotation, at the left hand corner of the sheet (adapted from Figueiredo \& Lima-de-Faria, 1978).
itions. A letter identifies a stacking position only when placed at the upper left-hand corner, which is chosen as a reference. To bring a letter to the reference position, a suitable rotation should be imposed on the sheet. This is the reason why, in condensed model sheets, some of the letters are printed upside down or reversed, in order to achieve their normal reading positions when placed, by rotation, at the left hand corner of the sheet. A standard sheet placed in a given position can then be specified by the letters labelling the four corners taken in a clockwise sequence, starting with that placed at the reference corner, and enclosed within square brackets. For instance, the first sheet schematically represented in Figure 47 corresponds to position A , and is specified by $[\mathrm{A} \alpha \mathrm{B} \beta]$.

If the pattern of all the interstices defined by the stacking of the layer placed above is added to the pattern of the packing atoms, then instead of one sheet, four standard sheets differing only by the marked interstices, and corresponding to the possible ways of stacking will be generated (Figure 48).

To simplify the building of a condensed model,
the letters indicating the stacking positions are supplemented by smaller letters, as subindices, indicating the position of the layer to be placed immediately above. Again, each letter pair is printed in such a way as to appear properly written after the rotation of the standard sheet that brings it to the upper left-hand corner (Figure 48).

To represent cubic closest packing by Q layers (Qf, see Chapter 17, namely Figure 16 and Figure 18) only one sheet is needed, $\left[\mathrm{A}_{\mathrm{B}} \alpha_{\beta} \mathrm{B}_{\mathrm{A}} \beta_{\alpha}\right.$ ]. Simple cubic packing also calls for one sheet only, [ $\mathrm{A}_{\mathrm{A}} \alpha_{\alpha} \mathrm{B}_{\mathrm{B}} \beta_{\beta}$ ]. However, for the representation of loose packing sequences, corresponding to the stacking over 'valleys', two sheets are necessary, namely $\left[\mathrm{A}_{\alpha} \alpha_{\mathrm{A}} \mathrm{B}_{\beta} \beta_{\mathrm{B}}\right]$ and $\left[\mathrm{A}_{\beta} \alpha_{\mathrm{B}} \mathrm{B}_{\alpha} \beta_{\mathrm{A}}\right]$. These last two sheets differ in the relative orientation of the rows of voids, which may be parallel either to the shorter or to the longer side of the rectangular sheet.

To derive the complete standard sheets with letter pairs at their corners, it is important to notice that when complementing the pattern of the packed atoms with interstices, satisfying a given stacking situation for the reference position (letter at the up-


Fig. 48. Schematic representation of the minimum set of complete standard sheets of $Q$ and $T$ layers, which enables the construction of all possible sequences of regular stacking modes. The sheets necessary to produce only pure stacking sequences are enclosed by dotted lines for close stacking, by dashed lines for simple stacking, and by dotted and dashed lines for loose stacking. Unlike real model sheets, and just for the readers' convenience, the schematic sheets in this figure show, at their four corners, letters that are in their normal reading positions (after Figueiredo \& Lima-de-Faria, 1978).
per left-hand corner), a similar stacking situation is attained by the remaining positions (letters at the other corners). Consequently, in a complete standard sheet, the letters grouped in pairs at each corner are related by the same kind of stacking. It is therefore easy to derive schematically the complete standard sheets because one only needs to imagine the superimposition of the incomplete sheets according to each situation, and combine the letters of the superimposed corners by pairs.

Figure 48 represents a full scheme of the standard sheets required to build any close packing based on square layers and involving one of the three modes of stacking mentioned above. It can be seen that all the sheet corners are different, and that they cover all the possible stacking situations. A similar process of derivation applies to the pack-
ings based on the stacking of T layers (Figure 48) (Figueiredo \& Lima-de-Faria, 1978).

For reasons of simplicity, in all the layers and stackings considered up to now, the standard dimension $\mathrm{R}=1 \mathrm{~cm}$ has been kept for the circles representing the packing atoms and the same supporting rack has been used, in spite of the minor distortions already mentioned, arising from small differences in the interlayer distances. However, as such difference is rather big for the (100) layers, «Q», of the body-centred cubic packing, the radius of the circles representing the packing atoms on these layers was increased ( $\mathrm{R}=1.41 \mathrm{~cm}$ ) to avoid great distortions.

The condensed model technique may also be applied to structures based on more complex close packings such as the packings of $\mathrm{R}^{21}$ or $\mathrm{N}^{21}$ layers,



Fig. 49. Two alternate layers of the structure of spinel, $\mathrm{Al}_{2}{ }^{\circ} \mathrm{Mg}^{\mathrm{t}}\left[\mathrm{O}_{4}\right]^{\mathrm{c}}$, drawn by the computing plotter. The small dotted circles represent Mg atoms in tetrahedral voids, and the larger hatched circles correspond to Al atoms in octahedral voids (after Langlet, 1975, 1976).
and $Q^{2} Q^{1}$ packings, or even other structures which are not based on close packings but that can be sliced in layers. Examples are pyroxenes and amphiboles (Figueiredo \& Lima-de-Faria, 1983), micas (Figueiredo, 1979a, 1986) and feldspars (Figueiredo, 1981).

### 6.3. Computing programs for layer description

The problem of cutting a certain structure into layers, and then searching for the densest layers, which normally yield the simplest description in equal layers, can be very much simplified by the use of computers. Computing programs for slicing a structure along any (hkl) direction and for the determination of the densest atomic layers have already been worked out by Langlet (1975) as the PRSH and PRCM programs, respectively (Figure 49).

In the cases of closest packings and of simple loose packings it is relatively easy to calculate the radii of the spheres which will fit into the interstices between two adjacent layers, stacked according to a certain stacking mode; however, in more complex cases this calculation becomes very difficult. Another computing program (void program) for the calculation of the sizes of such voids has also been worked out (Langlet, Figueiredo \& Lima-deFaria, 1977). Figure 50a represents a standard sheet of the condensed model of a $\mathrm{N}^{21}$ layer, that
is, a layer built of circles forming triangles and squares in a 2 to 1 proportion, corresponding to the stacking which displaces the unit-cell of the layer pattern from the origin to its middle point, the socalled ' f ' stacking. The large open circles represent the packing atoms, and the dotted circles, the various voids. In Figure 50b the same kind of layer is shown, but drawn by a computing plotter, as a result of the application of the void program. The great similarity between Figs. 50a and 50b clearly shows the large potentialities of computing methods to solve such kind of problems and to help drawing condensed model sheets.

### 6.4. Representation of real structures by ideal structures: Packing and symmetrical analogues of crystal structures

Since Kepler (1611) several authors have understood the great importance of the tendency for close packing in the mineral structures. In this respect, Belov declared in 1947:

In spite of the variety of the mineral crystalline world, the whole 'mineralogical game' just reduces to various modes of filling gaps in uniform close packing with various corresponding patterns.
Robert Hooke (1665) also said:
[...] had I time and opportunity, I could make


Fig. 50. (a) Condensed model standard sheet of $\mathrm{N}^{21}$ layers with stacking ' f ' (after Figueiredo \& Lima-de-Faria, 1977); (b) same layer $\mathrm{N}^{21}$, with same stacking ' f ', drawn by computing plotter as a result of the application of the void program (after Langlet, Figueiredo \& Lima-de-Faria, 1977).
probable, that all these regular Figures that are so conspicuously various and curious, and do so adorn and beautifie such multitudes of bodies, as I have above hinted, arise only from three or four several positions or postures of Globular particles,[...]
(quoted by Burke, 1966) (Figure 51). More recently Moore (1992) wrote:

I believe the principles of close packing are among the most fundamental and useful of chemical crystallographic concepts; and added:


Fig. 51. Hooke's drawing emphasizing the packing of spherical particles to account for the natural shape observed in crystals (after Hooke, 1665, quoted by Burke, 1966).

Crystallography is an intensely hierarchial science. One could offer in fact infinitely many representations of crystal structures. However highest in the hierarchy for mineral structures is representation of a structure based on principles of close- packing.
When we represent a structure based on the close packing of the larger atoms, with smaller atoms in the interstices, in the majority of cases we are adopting an ideal representation. The model of the structure based on an exact close packing is an ideal model of the real structure, which normally corresponds to a slightly distorted ideal packing. The condensed models are appropriate for such representation because they are ideal models.

When the structural units are not individual atoms, but groups, chains, sheets or frameworks, the structures can also be directly related to ideal models. The stability conditions reveal two tendencies, namely: (i) for highly symmetrical structural units, and (ii) for close packing of the structural units. Consequently, the real structures are normally intermediate between two different types of ideal models (Lima-de-Faria, 1988a). Well-known examples are the pyroxenes, amphiboles and micas (see Figure 25).

The ideal symmetrical structure, which is based on structural units of higher symmetry, may have lower symmetry, due to the distribution pattern of the interstitial atoms. But to layers formed by the structural units alone, that is, without considering the interstitial atoms, correspond a certain symmetry called the 'intrinsic symmetry' of the structure (Figueiredo, 1979a). For reasons of simplicity, the symmetry of the layers containing the structural units, or of the atomic layers forming the structures, is here evaluated by the plane of symmetry of the corresponding model sheets. For instance, the intrinsic symmetry of ideal structures based on sheets of hexagonal rings of tetrahedra is higher than the intrinsic symmetry of the ideal structures based on sheets of triangular rings which correspond to the closest packing (see Figure 25). In fact, the plane group symmetry of the ideal symmetrical sheets is p 6 m , and that of the packing layers is
p31m (Figueiredo, 1979a), the multiplicity of p6m being twelve and that of p 31 m , six (see Chapter 5). To emphasize the two stability tendencies, for high symmetry and for close packing, these ideal models are called symmetrical analogues and packing analogues, respectively. Other names have been proposed by other authors to express the second ideal category, the packing analogues, such as ideal close-packed or symmetrical packed model (Zoltai, 1975; Zoltai \& Stout, 1984), and close-packed or atomic analogue (Figueiredo, 1977, 1979a).

The structure of a pyroxene such as diopside, $\mathrm{CaMgSiO}_{6}$, can be regarded as intermediate between a structure built of ideal symmetrical tetrahedral chains, with a straight spine (Figure 52a,b), and the corresponding closest-packed structure of tetrahedral silicate chains with a zigzag shaped spine, based on the cubic closest packing of the oxygen atoms (Thompson, 1970; Papike, Prewitt, Sueno \& Cameron, 1973) (Figure 52c,d). It is interesting to notice that the packing analogue of diopside is not a mere speculation, but it corresponds to a real structure type, namely, cobalt germanate, $\mathrm{CoGeO}_{3}$ (Papike, Prewitt, Sueno \& Cameron, 1973).

Although the symmetrical analogue and the packing analogue have the same overall symmetry ( $\mathrm{C} 2 / \mathrm{c}$ ), they have different intrinsic plane symmetries with respect to the sheets formed by their tetrahedral silicate chains, that of the symmetrical analogue being higher than that of the packing analogue. In fact, the plane symmetry of the sheets formed by the tetrahedral chains of the symmetrical analogue is p 2 mg (multiplicity 4 ) and that of the packing analogue is pg (multiplicity 2) (Figure 52).

Many mineral structures possibly have their corresponding symmetrical analogues and packing analogues, and the search for them will certainly contribute to a better understanding of the stability of mineral structures. It is the kind of representation which is chosen that in many cases makes difficult the search for the ideal analogues of a certain mineral structure. A great part of the diversity and complexity of mineral structures is, possibly, only apparent.

## DIOPSIDE


a

b

c



Fig. 52. Alternate sheets of the condensed models of diopside: (a) and (b) of the symmetrical analogue, (c) and (d) of the packing analogue (identical to the cobalt germanate structure). Small full circles represent Si atoms, large full and hatched circles represent Mg and Ca , respectively. The dotted circles, small and large, correspond to non-occupied tetrahedral and octahedral voids, respectively. The superscript on the top right-hand side of the square brackets in the structural formulas characterizes the kind of structural unit and its packing (after Lima-de-Faria, 1988a).

## CHAPTER 7

## Nomenclature of crystal structures

Structural nomenclature is an important and very useful scientific tool if established appropriately. It will enable the structural characteristics of crystal structures to be seen at a glance and it will also facilitate the establishment of a number of relationships, in particular between structures with similar atomic arrangements.

### 7.1. Degrees of similarity among mineral structures. Concept of structure type

There are several ways to establish relationships among crystal structures to which different degrees of similarity correspond. Two crystal structures are similar when a correspondence exists between the structural arrangements of their atoms. For example, thorianite, $\mathrm{ThO}_{2}$, has a structure similar to that of fluorite, $\mathrm{CaF}_{2}$, these two structures having the same symmetry (space group), and the corresponding atoms occupying the same equivalent positions; they differ only by the parameters of their unit cells. In such cases, the compounds are called isotypic, that means, they belong to the same structure type. In this example the equivalent positions are invariant, and the atomic arrangement is exactly the same.

Even if equivalent positions are invariant, a change in radius ratio of the corresponding atoms may bring about a very different atomic arrangement, at least in what concerns anion and cation coordination. This is the case with $\mathrm{CaF}_{2}$ and $\mathrm{Li}_{2} \mathrm{O}$ structures (Lima-de-Faria \& Figueiredo, 1969). In the $\mathrm{Li}_{2} \mathrm{O}$ structure, the lithium ions are quite small (radius $0.60 \AA$ ) as compared to the oxygen ions (radius $1.40 \AA$ ), therefore this structure can be considered a cubic closest packing of oxygens with lithium ions occupying all the tetrahedral voids (Figure 53). On the other hand, the fluorine ions
(radius $1.36 \AA$ ) are much larger than the calcium ions (radius $0.99 \AA$ ), consequently the fluorite structure should be regarded not as a cubic closest packing of calcium ions with fluorine ions in tetrahedral voids, but rather as a simple cubic packing of fluorine ions with calcium ions in cubic voids. No doubt these two structures correspond to different structure types. Some investigators, noting only that cations are merely switched, call them 'antistructures'.

When the equivalent positions are not invariant and the radius ratio between corresponding atoms also changes, the problem may become more complicated. Variation in the atomic parameters may give rise to quite different coordinations of the corresponding atoms, and the atomic arrangements are no longer similar. Examples of this situation were given by Wells (1962), for the relationship among $\mathrm{LiNiO}_{2}, \mathrm{NaHF}_{2}$ and $\mathrm{CsICl}_{2}$, and in a more general way by Figueiredo (1976a) for AB compounds having the same symmetry, $\mathrm{P} 4 / \mathrm{nmn}$, and the same occupied equivalent positions, for instance, with A atoms in (2a) and B atoms in (2c). Several values of these equivalent positions and different radius ratios between atoms A and B may give rise to at least five different kinds of atomic arrangements (Figure 54).

These and other crystal-chemical considerations, such as bond strength distribution, bond character, electronegativities assigned to the atoms, and electronic states, may still complicate the definition of isotypy. A few attempts to clarify this problem have been presented (Kripyakevich, 1963; Buerger, 1967; Lima-de-Faria \& Figueiredo, 1976); more recently in a report of a Subcommittee of the Crystallographic Commission on Crystallographic Nomenclature of the International Union of Crystallography (Lima-de-Faria, Hellner, Liebau, Makovicky \& Parthé, 1990). In


Fig. 53. Packing drawings of the $\mathrm{Li}_{2} \mathrm{O}$ and $\mathrm{CaF}_{2}$ structures, with the packing atoms quite apart, in order to better see the distribution of the smaller interstitial atoms (adapted from Bloss, 1971).


Fig. 54. Five different structural arrangements for an AB compound corresponding to the symmetry $\mathrm{P} 4 / \mathrm{nmm}$, and atoms A and B in the same equivalent positions, namely, $A$ in ( 2 a ) and $\mathbf{B}$ in (2c) but different values of z , different values of radius ratio $\mathrm{rA} / \mathrm{rB}$ and different c/a ratio. X represents atoms B larger than A, and similar in size to Y (adapted from Figueiredo, 1976a).
that report, three main degrees of similarity between crystal structures have been defined:
(1) Two structures are isopointal if they have the same space group, or belong to a pair of enantiomorphous space groups, and the corresponding atoms occupy the same equivalent positions, either fully or partially at random (Ex.: $\mathrm{FeS}_{2}$ and $\mathrm{CO}_{2}$, and the examples considered in Figure 54).
(2) Two structures are isoconfigurational if they are isopointal, and their geometrical properties, such as axial ratios and interaxial angles, are similar ( Ex .: $\mathrm{CaF}_{2}$ and $\mathrm{Li}_{2} \mathrm{O}$, in the strict geometrical sense).
(3) Two structures are crystal-chemical isotypic, or belong to the same structure type if they are isoconfigurational and the corresponding atoms have similar physical/chemical characteristics (Ex.: $\mathrm{CaF}_{2}$ and $\mathrm{ThO}_{2} ; \mathrm{NaCl}$ and MgO ; $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$, olivine, and $\mathrm{Al}_{2} \mathrm{BeO}_{4}$, chrysoberyl). The word 'similar' arises from the inherent difficulty in defining a priori limits for similarity of geometrical configuration or physical/ chemical characteristics.
Consequently, crystal chemical isotypism may be defined in different ways according to the physical/chemical characteristics considered, as further discussed in the report referred to above. However, in this work the following definition will be adopted: two structures are isotypic if they are isoconfigurational and have the same structural units packed in the same way.

Other close relations between structures may be considered, which are called homeotypic. Two structures are homeotypic if one or more of the conditions required for isotypism are relaxed, such as identity of the space groups, similarity of axial ratios and interaxial angles, values of the adjustable positional parameters, coordinations of atoms, same site occupancy allowing given sites to be occupied by different atomic species.

Some of the important homeotypic structures are the so-called distortion and substitution derivatives (Buerger, 1947). In the case of distortion derivatives, the atomic arrangement suffers a slight distortion. Examples are NaCl , halite, space group Fd 3 m , and FeSi , fersilicite, space group $\mathrm{P}_{1} 3$; and $\mathrm{TiCaO}_{3}$, ideal perovskite, space group Fd 3 m , and $\mathrm{CuKF}_{3}$, with subgroup symmetry. The other cases are the substitution derivatives where a certain atom in the
basic structure is replaced by two or more atoms, but always in the same equivalent positions. Examples are $\mathrm{Cu}^{\mathrm{t}} \mathrm{Sb}^{\mathrm{t}}\left[\mathrm{S}_{4}\right]^{\mathrm{c}}$, famatinite, and $\mathrm{Cu}_{2}^{\mathrm{t}} \mathrm{Fe}^{\mathrm{t}} \mathrm{Sn}^{\mathrm{t}}\left[\mathrm{S}_{4}\right]^{\mathrm{c}}$, stannite, both substitution derivatives of $\mathrm{Zn}^{\mathrm{t}}[\mathrm{S}]^{\mathrm{c}}$, sphalerite, where Zn is replaced by Cu and Sb , and by $\mathrm{Cu}, \mathrm{Fe}$ and Sn , respectively.

One can also imagine the so-called 'coalescent derivatives' which are derived from close-packed structures by an imaginary 'coalescence process' of some of their packing or interstitial atoms, e.g., calcite, where three oxygen and one carbon atoms form a $\mathrm{CO}_{3}$ group within a hexagonal closest packing of oxygens, and $\mathrm{O}_{2} \mathrm{Rb}_{2}$, with dumbbells of $\mathrm{Rb}_{2}$ derived by the coalescence of two Rb atoms in prismatic voids of a simple hexagonal packing of oxygen atoms (Figure 55). (Lima-de-Faria, 1978b).

Apart from the homeotypic structures, many other interesting closely related structures may be considered such as: polytypic structures $\left(\mathrm{C}^{\mathrm{t}}[\mathrm{Si}]^{c / h}\right.$ polytypes), 'interstitial' (or 'stuffed') derivatives $\left(\mathrm{Ti}^{\circ}\left[\mathrm{CaO}_{3}\right]^{c}\right.$ of the basic structure $\left.\left[\mathrm{AuCu}_{3}\right]^{c}\right)$, and 'recombination' structures (cannizzarite; olivinenorbergite homologous series). More information on such structures may also be found in the mentioned report (Lima-de-Faria, Hellner, Liebau, Makovicky \& Parthé, 1990).

### 7.2. Structural formulas

### 7.2.1. General considerations

An appropriate scientific notation for a structure should obey certain fundamental characteristics: it should be as simple and self-explanatory as possible, and it should be kept as close as possible to the way chemists write their formulas in order to facilitate the transfer from chemical to crystalchemical nomenclature. On the other hand, so as to obtain appropriate structural formulas, not overloaded but containing sufficient information, one must select the most relevant structural characteristics, as inferred from the definition of structure type and from the structural classification used.

Although symmetry may account for some physical properties, it is not necessarily an expression of the kind of arrangement of atoms, since slight changes in the positions of the atoms may give rise to quite different symmetries. Conversely, the same symmetry and equivalent positions may


Fig. 55. Top sheet of the condensed model of rubidium peroxide. The small dotted circles represent prismatic and square voids of the simple hexagonal packing formed by the rubidium atoms, and where some of the prismatic voids are occupied by oxygen atoms, coalesced in pairs (after Lima-de-Faria, 1978b).
comply with quite different arrangements of atoms, as was seen before. Therefore, if one wants to express mainly the kind of arrangement of the atoms in the structure, an indication of symmetry can be omitted in structural formulas. However, chemical composition, the coordination of atoms, the category and constitution of the structural units and the way they pack together all are important structural features which should figure in structural formulas.

Several notations have been proposed for structural formulas, and among them the pioneer works of Niggli (1945) and of Machatschki (1947) may be distinguished.

### 7.2.2. Notation for the coordination of atoms

The definition of coordination and the most commonly observed types of coordination polyhedra in mineral structures have already been discussed (Chapter 2).

As an improvement on earlier notations (Machatschki, 1947; Donnay, Hellner \& Niggli, 1964; Lima-de-Faria \& Figueiredo, 1976), a specific set of symbols for coordination polyhedra has been proposed by Lima-de-Faria, Hellner, Liebau, Makovicky \& Parthé (1990). Such coordination symbols are added as trailing superscripts to the symbols used for the chemical elements in

Table 15. Symbols for common coordination polyhedra (adapted from Lima-de-Faria, Hellner, Liebau, Makovicky \& Parthé, 1990). The symbol ' tr ' is suggested as an alternative for [31], and 'sq' for square coordination in order to avoid confusion with symbol 's' which means stacking by superposition
Coordination polyhedron around atom $A$
Single neighbour
Two atoms collinear with atom $A$
Two atoms non-collinear with atom $A$
Triangle coplanar with atom $A$
Triangle non-coplanar with atom $A$
Triangular pyramid with atom $A$ in the centre of the base
Tetrahedron
Square coplanar with atom $A$
Square non-coplanar with atom $A$
Pentagon coplanar with atom $A$
Tetragonal pyramid with atom $A$ in the centre of the base
Trigonal bipyramid
Octanedron
Trigonal prism
Trigonal antiprism
Pentagonal bipyramid
Monocapped trigonal prism
Bicapped trigonal prism
Tetragonal prism
Tetragonal antiprism
Cube
Anticube
Dodecahedron with triangular faces
Hexagonal bipyramid
Tricapped trigonal prism
Cuboctahedron
Anticuboctahedron (twinned cuboctahedron)
Icosahedron
Truncated tetrahedron
Hexagonal prism
Frank-Kasper polyhedra with:
14 vertices
15 vertices
16 vertices


* Also [4s]. ** or sq
be used in further developments are as follows:
[N1] denotes a N -sided coplanar (collinear for $N<3$ ) coordination polygon around atom A ;
[ Nn ] denotes a N -sided non-coplanar coordination polygon around $A$;
[ Np ] denotes a $\mathrm{N} / 2$-sided coordination prism around A;
[ Ny ] denotes a ( $\mathrm{N}-1$ )-sided coordination pyramid around A;
[ Nby ] denotes a ( $\mathrm{N}-2$ )-sided coordination bipyramid around $A$;
(2) The simplified symbol requires only the coor-
dination number $[\mathrm{N}]$, without specifying the polyhedron type. On the other hand, for most common coordination polyhedra, a simplified letter notation can be used as a trailing superscript with or without square brackets (' $t$ ' for tetrahedron, ' $o$ ' for octahedron, 'cb' for cube, etc., as in Table 15); for example,

$$
\mathrm{Ca}^{[8]} \mathrm{F}_{2}{ }^{[4]} \text { or } \mathrm{Ca}^{[\mathrm{cb}]} \mathrm{F}_{2}{ }^{[\mathrm{t}]} \text { or } \mathrm{Ca}^{\mathrm{cb}} \mathrm{~F}_{2}{ }^{\mathrm{t}}
$$

The notation must be able to describe coordination by different sets of atoms, or coordination at different distances, or selfcoordination and coordination polyhedra composed of several distinct atomic species, in addition to giving the shape of coordination polyhedra and/or the number of coordinating atoms. The notation should also be flexible and able to express either the complete coordination or only the limited amount of information desired.
For normal oxycompounds, a simple coordination notation such as that for perovskite, $\mathrm{CaTiO}_{3}$ :

$$
\begin{aligned}
& \mathrm{Ca}^{[12 \mathrm{co}]} \mathrm{Ti}^{[60]} \mathrm{O}_{3}, \mathrm{Ca}^{[12]} \mathrm{Ti}^{[6]} \mathrm{O}_{3}, \mathrm{Ca}^{[\mathrm{co}]} \mathrm{Ti}^{[0]} \mathrm{O}_{3} \text { or } \\
& \mathrm{Ca}^{\mathrm{co}} \mathrm{Ti}^{\circ} \mathrm{O}_{3}
\end{aligned}
$$

will always be interpreted as coordination of Ca and Ti by oxygen.

However, in the general case such simplification results in ambiguity of interpretation. The coordination of atom $A$ in the compound $A_{a} B_{b} C_{c}$ for such a case is written:

$$
\mathrm{A}^{[\mathrm{m}, \mathrm{n} ; \mathrm{p}]}
$$

where ' $m$ ' and ' $n$ ' denote the numbers of atoms B and of atoms $C$ (always in the sequence they are presented in the formula), respectively, which are coordinated to atom $A$. These coordination numbers are separated by commas; the selfcoordination number ' p ', of A by atoms A , follows a semicolon. The coordination of atom $B$ is written

$$
\mathrm{B}^{\left[\mathrm{m}^{\prime}, \mathrm{n}^{\prime} ; \mathrm{p}^{\prime}\right]}
$$

where $m^{\prime}, n^{\prime}$ and $p^{\prime}$ denote the numbers of atoms A , $C$ and $B$ around atom $B$, respectively. Likewise for atom C.

For example, a more complete information on perovskite reads:

$$
\mathrm{Ca}^{[8 \mathrm{cb}, 12 \mathrm{co} ; 6 \mathrm{o}]} \mathrm{Ti}^{[8 \mathrm{cb}, 6 \mathrm{o} ;]} \mathrm{O}_{3}[41,21 ; 8 \mathrm{p}]
$$

The crystal-chemical formula can be simplified as follows:

$$
\mathrm{Ca}^{[8,12 ; 6]} \mathrm{Ti}^{[8,6]} \mathrm{O}_{3}{ }^{[4,2 ; 8]}
$$

and, if only information on coordination by oxygen atoms is required, it can be further simplified to
$\mathrm{Ca}^{[12]} \mathrm{Ti}^{[, 6]} \mathrm{O}_{3}{ }^{[8]}$ or $\mathrm{Ca}^{[12]} \mathrm{Ti}^{[6]} \mathrm{O}_{3}{ }^{[8]}$ or still $\mathrm{Ca}^{\mathrm{co}} \mathrm{Ti}^{\circ} \mathrm{O}_{3}$, as above.

### 7.2.3. Notation for the structural units and their packing

The constitution of a structural unit expresses its extensional and geometrical 'structure', i.e., the way the structural unit is built from its subunits, which may be dimers, polygons, polyhedra or any other clusters. Some of the constitutional aspects are concerned only with the structural unit as a whole, whereas other aspects are concerned only with the way each subunit is linked to other subunits. The former include dimensionality, multiplicity, branchedness and periodicity, and the latter linkedness and connectedness.

The dimensionality is the number of dimensions in which a structural unit has infinite extension. It is zero for individual atoms and finite groups, and one, two or three for infinite chains, sheets and frameworks, respectively. The corresponding symbols to be used in a crystal-chemical formula are ${ }_{\infty}^{0},{ }_{\infty}^{1},{ }_{\infty}^{2}$, and ${ }_{\infty}^{3}$, the well-known Machatschki symbols.

The following specific symbols may be used for 0 -dimensional structural units:

$$
\text { individual: }\{\mathrm{a}\}
$$

$$
\text { group: }\{\mathrm{g}\} \begin{cases}\text { ring: } & \{\mathrm{r}\} \text { or } \bigcirc \\ \text { chain fragment: } & \{\mathrm{f}\} \text { or } \Lambda \\ \text { cage: } & \{\mathrm{k}\} \text { or } \bigcirc\end{cases}
$$

Examples are: $\mathrm{Cs}_{2 \Lambda}\left[\mathrm{~S}_{6}\right], \mathrm{Na}_{4 \Theta}\left[\mathrm{Si}_{4}\right], \mathrm{Cu}_{6}\{\mathrm{r}\}\left[\mathrm{Si}_{6} \mathrm{O}_{18}\right]$ • $6 \mathrm{H}_{2} \mathrm{O}$.

For details of this notation see Parthé (1980).
If dimensionality is the only information expressed, the ${ }^{\mathrm{n}}$ and the pictorial symbols may be used without curly brackets. Otherwise, curly brackets are compulsory in order to avoid ambiguity.

Due to the fact that many mineral structures are based on close packings of individual atoms, the
symbol \{a\} may be omitted for reasons of simplicity; only for the other categories of structural units the dimensionality symbol is compulsory. If the packing is mixed, that is built of atoms of different kinds but similar in size, one may include the various packing atoms, together with their proportion, inside square brackets. For instance, in perovskite, one may write $\mathrm{Ti}^{\circ}\left[\mathrm{CaO}_{3}\right]^{\text {c }}$. Moreover, if the packing is heterogeneous, that is based on atoms with different sizes, then each kind of atom should be written within square brackets. For $\mathrm{MgCu}_{2}$ (Friauf-Laves phase), one should write

$$
\left[[\mathrm{Mg}]\left[\mathrm{Cu}_{2}\right]\right]
$$

In the case of group structures, e.g., ring, chain fragments and cage structures, the number of atoms of each chemical element within square brackets must be equal to the number of atoms of each chemical element in the finite group. For instance, calcite, $\mathrm{Ca}\{\mathrm{g}\}\left[\mathrm{CO}_{3}\right]$.

The multiplicity of a structural unit is the number of single subunits, e.g., polyhedra, single rings, single chains or single layers, which are linked to form a complex structural unit of the same dimensionality.

With regard to branchedness, finite structural units and single chains are called unbranched if they do not contain any subunits that are linked to more than two other subunits. They are called branched if they do.

The periodicity of a structural unit of infinite extension is the number of subunits, excluding branches, within one repeat unit of the infinite chain from which the strucutral unit can be generated by successive linking.

The main constitutional aspects concerned only with the way each subunit is linked to the other subunits are linkedness and connectedness.

The linkedness is the number L of peripheral atoms shared by two subunits.

The connectedness of a subunit is the total number ' $s$ ' of adjacent subunits with which it shares atoms, irrespective of its linkedness with a particular adjacent subunit.

The specific values $L_{1}, L_{2}$, etc., of linkedness $L$ and/or connectedness ' $s$ ' of a subunit are written within 'Japanese brackets' $\rfloor$ as trailing superscripts to its central atom, by analogy with the coordination symbols. The first entries in the Japanese brackets are the different values of $\mathrm{L}_{\mathrm{n}}$,
separated from the value of $s$ by a semicolon. The general formula for a structural unit with only one kind of subunit then reads

$$
\left[\mathrm{A}_{\mathrm{m}}{ }^{\left\lceil\mathrm{L}_{1}, \mathrm{~L}_{2} \ldots \mathrm{~s} \mathrm{~s}\right.} \mathrm{B}_{\mathrm{n}}\right]
$$

For example, $\mathrm{SiO}_{2}$ exists in a number of polymorphs having different values of linkedness and connectedness of the $\mathrm{SiO}_{4}$ tetrahedra. In fibrous silica the $\mathrm{SiO}_{4}$ tetrahedra form infinite chains with tetrahedra linked by their edges; the corresponding formula is

$$
\left.\infty\left[\mathrm{Si}^{[4 t]}{ }^{[2 ; 2}\right\rfloor \mathrm{O}_{2}\right]
$$

For details of these concepts, see Liebau (1982, 1985).

A notation has also been proposed to emphasize the 'polymerization' (or 'condensation') process of the structural units (Lima-de-Faria \& Figueiredo, 1976), in which the number of silica tetrahedra in a group silicate is designated by a Roman numeral, with a superscript to differenciate it from other groups with the same number of silica tetrahedra (Figure 56).

The symbol of a chain derived from a certain group by polymerization is formed by the symbol of the group plus another superscript, to distinguish different chains derived from the same group. In this way the symbol of the structural unit indicates immediately what is the structural subunit from which it derives (Figure 56).

A framework is in itself an infinite structural unit, but it can be imagined subdivided in parts which can be infinite sheets, infinite chains, or finite groups. These subunits are called 'connected units', and the framework may be considered a condensation of such 'connected units'.

The packing of the structural units shall now be considered. Normally, the packing of structural units (either individual atoms or more complex units) is indicated by layer description, that is, by stating the type of layer formed by the structural units, and the way the layers stack together.

However, as a matter of convenience, a few simplifications are adopted in the notation. Because cubic and hexagonal close packings are so common in close-packed and group structures, use is made of symbols c and h instead of Tc and Th , respectively. Also, for the body-centred cubic packing, b is substituted for Bb , while the other pack-


Fig. 56. Nomenclature of structural units expressing the 'polymerization' process. The number of subunits of a group is expressed by a Roman numeral (adapted from Lima-de-Faria, 1986).
ings with b stacking, like Tb and Qb , are written in their complete form.

When no other packing information is provided but the close packing (closest, loose and simple packings), symbols for the latter may be given as trailing superscripts to the square brackets which contain the structural unit. In this case, angle brackets are not compulsory, for instance, $[\mathrm{ABC}]^{c}$. Any other packing information, particulary the packing (or stacking) symbolism used by individual authors should be given in angle brackets on the line, e.g., $[\mathrm{ABC}]<>$.

If packing information is to be given for a set of atoms which does not constitute a structural unit, the symbol should be placed within vertical bars followed by the packing information:

$$
|\mathrm{ABC}|^{\mathrm{c}} \text { or }|\mathrm{ABC}|<>
$$

The symbolism for the packing in close-packed structures calls for a few definitions and the use of a small set of numbers and letters. When dealing with complex layers of the kind found in the packing of group, chain and sheet structures, rather than introducing new symbols, one may extend previous ones while generalizing their meaning. Complex layers which normally correspond to plane directions of higher density of atoms are symbolized, their unit cells are marked, and their ways of stacking indicated by stacking vectors (Figure 57).

To describe the packing in group structures, the layer with highest density of groups is selected, the geometrical centres of the groups are considered as if they were individual atoms, and the symbolism for atomic packings is applied. However, for groups whose shape is far from spherical, an uncertainty remains regarding orientation relative to the plane of the layers, and the same packing description may correspond to various assemblages of the groups.

In chain structures, it is also necessary to choose the plane direction along which the chains are packed with highest density and mark on them their unit cell.

In framework structures, where the structural units extend in three dimensions, the concept of packing has no meaning. The packing of structural units is replaced by the connectivity of connected units, but the symbolism is the same as is used for the other categories of structures, accounting for the possibility to consider a framework derived from the connectivity of infinite sheets, infinite chains or finite groups.

### 7.2.4. General scheme for the structural formulas

To build the structural formula of a mineral structure one has to know first its chemical composition. The atoms belonging to the structural unit should be written within square brackets [ ], information on the packing should follow between angle brackets < > , then information on the constitution of the structural unit as a whole should be added within curly brackets < > or else be expressed by


Fig. 57. Generalized stacking symbols. R and O mean rectangular and oblique unit cell, respectively (adapted from Lima-de-Faria \& Figueiredo, 1976).
trailing superscripts to the chemical elements or subunits inside the structural unit. Ex.: cristobalite, $\mathrm{SiO}_{2}$,

$$
{ }_{\infty}^{3}\left[\mathrm{Si}^{[44]}[1 ; 4] \mathrm{O}_{2}\right]
$$

Information concerning interstitial atoms and/or interstitial groups of atoms is placed before
the structural unit. Coordination is expressed, in general, within small square brackets as trailing superscripts to the chemical symbols, the written sequence being preferably from high to low coordination.

The structural formula for a compound $\mathrm{A}_{\mathrm{a}} \mathrm{B}_{b^{-}}$ $\mathrm{C}_{\mathrm{c}} \mathrm{D}_{\mathrm{d}} \mathrm{E}_{\mathrm{c}} \mathrm{F}_{\mathrm{f}} \mathrm{G}_{\mathrm{g}}$ should thus read:
$\mathrm{A}_{\mathrm{a}}{ }^{[\alpha]} \mathrm{B}_{\mathrm{b}}{ }^{[\beta]} \mathrm{C}_{\mathrm{c}}{ }^{[\gamma]} \mathrm{D}_{\mathrm{d}}{ }^{[\delta]}$ \{ interstitial atoms
$\left[\mathrm{E}_{\mathrm{e}}{ }^{[l]} \mathrm{F}_{\mathrm{f}}^{[f]} \mathrm{G}_{\mathrm{g}}^{[\eta]}\right]$ < > structural unit structural unit
constitution of structural unit

Table 16. Examples of different ways and criteria of writing the crystal-chemical formulas of some mineral and other inorganic structures (adapted from Lima-de-Faria, Hellner, Liebau, Makovicky \& Parthé, 1990)


If several distinct structural units are present, each should be considered separately with its information in curly brackets followed by that in square brackets. Ex.:

$$
\mathrm{A}_{\mathrm{a}}{ }^{[\alpha]} \mathrm{B}_{\mathrm{b}}^{[\beta]} \mathrm{C}_{\mathrm{c}}^{[\gamma]}\left[\{ \} [ \mathrm { D } _ { \mathrm { d } } ^ { [ \delta ] } \mathrm { E } _ { \mathrm { e } } ^ { [ f ] } ] \{ \} \left[\mathrm{F}_{\mathrm{f}}^{[f]} \mathrm{G}_{g}^{[\eta]]]]}<>\right.\right.
$$

The packing information within angle brackets describes the way the two different structural units pack together.

In accordance with IUPAC (1990) rules, the valency state of each atom is expressed immediately after its chemical symbol by a Roman numeral in parentheses (e.g., $\mathrm{Fe}^{(\mathrm{III})}$ ), a superscripted Roman numeral (e.g., $\mathrm{Fe}^{\mathrm{II}}$ ), or by a superscripted Arabic numeral followed by the + or $-\operatorname{sign}$ (e.g., $\mathrm{Fe}^{3+}$ ).

The hierarchy of bonds leads to a hierarchy of structural units when several degrees of bond strength may be discerned in a structure. This often translates into weaker bond-strength units incorporating previous more strongly bonded units, and can be expressed by multiple brackets, with the central brackets referring to the structural unit having the strongest bonds. Ex.:

$$
A_{a}{ }^{[\alpha]} \mathbf{B}_{b}{ }^{[\beta]} C_{c}^{[\gamma]}\left[D_{d}{ }^{[\delta]}\{ \}\left[E_{c}{ }^{[\epsilon]} F_{f}[f] G_{g}{ }^{[\eta]}\right]<>\right]<>
$$

The same structural formula may correspond to
more than one polymorph of a certain compound, e.g., $\alpha$ and $\beta$ quartz. This may happen only when the symmetry and/or the distribution pattern of the interstitial atoms vary in the structures. In such cases, the designation of the particular form has to be included in the structural formula in order to avoid ambiguity.

The structural formula can be used with any amount and any selection of structural information depending on the purpose of the study. Examples are given in Table 16.

### 7.2.5. The importance of structural formulas for the relationship of crystal structures

The widely adopted use of the chemical formula alone to ascribe the crystal structures makes their relationship very difficult. The use of superscripts and other symbols added to the chemical formula, expressing their structural characteristics, makes this relationship much easier. From table 17, where the structures of some binary compounds are indicated by their chemical formula alone, and by the corresponding structural formula, one can recognise the importance of the structural nomenclature.

Authors would certainly gain by writing the

Table 17. Chemical formulas and corresponding structural formulas of some binary compounds

| A | AB | $\mathrm{AB}_{2}$ | $\mathrm{AB}_{3}$ |
| :---: | :---: | :---: | :---: |
| Cu | UPb | $\mathrm{MoPt}_{2}$ | $\mathrm{CuPt}_{3}$ |
| Mg | PtCu | $\mathrm{CdTi}_{2}$ | $\mathrm{AuCu}_{3}$ |
| Pa | AuCu | $\mathrm{ZrGa}_{2}$ | $\mathrm{TiAl}_{3}$ |
| Pu | AuCd | $\mathrm{HfGa}_{2}$ | $\mathrm{ZrAl}_{3}$ |
| W | LiRh | $\mathrm{ZrSi}_{2}$ | $\mathrm{SbAg}_{3}$ |
| Po | NaCl | $\mathrm{TaPt}_{2}$ | $\mathrm{SnNi}_{3}$ |
|  | NiAs | $\mathrm{TiO}_{2}$ | $\mathrm{TiCu}_{3}$ |
|  | ZnS (c) | $\mathrm{CTi}_{2}$ | $\mathrm{AlCl}_{3}$ |
|  | ZnS (h) | $\mathrm{CdCl}_{2}$ | $\mathrm{MoO}_{3}$ |
|  | FeS | $\mathrm{PbO}_{2}$ | $\mathrm{PdF}_{3}$ |
|  | CuTi | $\mathrm{CaCl}_{2}$ | $\mathrm{NNi}_{3}$ |
|  | CW | $\mathrm{CdI}_{2}$ | $\mathrm{TiCl}_{3}$ |
|  | PV | $\mathrm{NFe}_{2}$ | $\mathrm{BiI}_{3}$ |
|  | NW | $\mathrm{Li}_{2} \mathrm{O}$ | $\mathrm{OTi}_{3}$ |


| $\wedge$ | AB | ${ }^{A B}{ }_{2}$ | ${ }^{A B}{ }_{3}$ |
| :---: | :---: | :---: | :---: |
| $[\mathrm{Cu}]^{c}$ <br> $[\mathrm{Mg}]^{h}$ <br> $[\mathrm{Pa}]^{\mathrm{Tb}}$ <br> $[\mathrm{Pu}]^{\mathrm{Td}}$ <br> $[\mathrm{w}]<\mathrm{Q}{ }^{2}$ <br> $[\mathrm{Po}]^{2 s}$ | $\begin{aligned} & {[\mathrm{UPb}]^{\mathrm{C}}} \\ & {[\mathrm{PtCu}]^{\mathrm{C}}} \\ & {[\mathrm{AuCu}]^{\mathrm{C}}} \\ & {[\mathrm{AuCd}]^{\mathrm{C}}} \\ & {[\mathrm{LiRh}]^{\mathrm{h}}} \\ & \mathrm{Na}^{\mathrm{o}}[\mathrm{Cl}]^{\mathrm{C}} \\ & \mathrm{Ni}^{\mathrm{O}}[\mathrm{As}]^{\mathrm{h}} \\ & \mathrm{Zn}^{\mathrm{t}}[\mathrm{~s}]^{\mathrm{C}} \\ & \mathrm{Zn}^{\mathrm{t}}[\mathrm{~s}]^{\mathrm{h}} \\ & \mathrm{Fe}^{\mathrm{t}}[\mathrm{~s}]^{\mathrm{C}} \\ & \left.\mathrm{CuTi}^{\mathrm{CuT}}\right]^{\mathrm{Tb}} \\ & \mathrm{C}^{\mathrm{P}}[\mathrm{~W}]^{\mathrm{Ts}} \\ & \mathrm{P}^{\mathrm{P}}[\mathrm{v}]^{\mathrm{Ts}} \\ & \mathrm{~N}^{\mathrm{P}}[\mathrm{~W}]^{\mathrm{Ts}} \end{aligned}$ | $\begin{aligned} & {\left[\mathrm{MoPt}_{2}\right]^{\mathrm{C}}} \\ & {\left[\mathrm{CdTi}_{2}\right]^{\mathrm{c}}} \\ & {\left[\mathrm{ZrGa}_{2}\right]^{\mathrm{C}}} \\ & {\left[\mathrm{HfGa}_{2}\right]^{\mathrm{c}}} \\ & {\left[\mathrm{ZrSi}_{2}\right]^{\mathrm{c}}} \\ & {\left[\mathrm{TaPt}_{2}\right]^{\mathrm{c}}} \\ & \mathrm{Ti}^{\mathrm{o}}\left[\mathrm{O}_{2}\right]^{\mathrm{C}} \\ & \mathrm{C}^{\mathrm{o}}\left[\mathrm{Ti}_{2}\right]^{\mathrm{c}} \\ & \mathrm{Cd}^{\mathrm{o}}\left[\mathrm{Cl}_{2}\right]^{\mathrm{C}} \\ & \mathrm{~Pb}^{\circ}\left[\mathrm{O}_{2}\right]^{\mathrm{h}} \\ & \mathrm{Ca}^{\mathrm{o}}\left[\mathrm{Cl}_{2}\right]^{\mathrm{h}} \\ & \mathrm{Cd}^{\circ}\left[\mathrm{I}_{2}\right]^{\mathrm{h}} \\ & \mathrm{~N}^{\mathrm{o}}\left[\mathrm{Fe}_{2}\right]^{\mathrm{h}} \\ & \mathrm{Li}_{2}^{\mathrm{t}}[\mathrm{O}]^{\mathrm{C}} \end{aligned}$ | $\begin{aligned} & {\left[\mathrm{CuPt}_{3}\right]^{\mathrm{C}}} \\ & {\left[\mathrm{AuCu}_{3}\right]^{\mathrm{C}}} \\ & {\left[\mathrm{TiAl}_{3}\right]^{\mathrm{C}}} \\ & {\left[\mathrm{ZrAl}_{3}\right]^{\mathrm{C}}} \\ & {\left[\mathrm{SbAg}_{3}\right]^{\mathrm{h}}} \\ & {\left[\mathrm{SnNi}_{3}\right]^{\mathrm{h}}} \\ & {\left[\mathrm{TiCu}_{3}\right]^{\mathrm{h}}} \\ & \mathrm{Al}^{\circ}\left[\mathrm{Cl}_{3}\right]^{\mathrm{C}} \\ & \mathrm{Mo}^{\circ}\left[\mathrm{O}_{3}\right]^{\mathrm{C}} \\ & \mathrm{Pd}^{\mathrm{O}}\left[\mathrm{~F}_{3}\right]^{\mathrm{h}} \\ & \mathrm{~N}^{\mathrm{O}}\left[\mathrm{Ni}_{3}\right]^{\mathrm{h}} \\ & \mathrm{Ti}^{\circ}\left[\mathrm{Cl}_{3}\right]^{\mathrm{h}} \\ & \mathrm{Bi}^{\mathrm{O}}\left[\mathrm{I}_{3}\right]^{\mathrm{h}} \\ & \mathrm{O}^{\mathrm{O}}\left[\mathrm{Ti}_{3}\right]^{\mathrm{h}} \end{aligned}$ |

structural formulas of mineral structures, because it would impel them to summarize their structural results in an explicit way (structural category, coordination of the atoms, etc.).

Structural formulas are also important to express the relationship among parental structures. On Table 18 various structures closely related to the ideal perovskite structure are represented.

### 7.3. Structure type symbolism

There is a difference between the structural formula and the symbol of a mineral structure type. The structural formula of a mineral structure is the chemical formula of the compound with the addition of superscripts, parentheses, etc., expressing its various structural characteristics. The symbol of a structure type represents a certain kind of structural arrangement and may be based on various notations such as letters and numbers, chemical formulas, lattice complexes, or structural formulas (Table 19).

A general notation for structure types was first proposed by Ewald and Hermann in 1931. 'A' for the chemical elements, ' $B$ ' for simple binary compounds $A B$, ' $C$ ' for $A B_{2}$, and so on. Within each category they were distinguished by an ordering number. Ex.: copper symbol A1; diamond A 4 ; NaCl , halite, B 1 ; PtS , cooperite, B 17 ; $\mathrm{MoS}_{2}$, molybdenite, C 7 . This notation has not been very widespread, possibly because of its lack of structural information. Consequently, structure types are frequently referred to by the best known substance or earliest analysed compound having that structure type. Hence about two hundred compounds having the NaCl arrangement are regarded as pertaining to the NaCl structure type. The American Society for Testing and Materials (1957) proposed a nomenclature for ordering alloy phases, which expressed the chemical formula of a representative substance followed by the number of atoms per unit cell, then the Bravais lattice type codified in a literal symbol. Improvements on this nomenclature were proposed by Schubert (1964) for elements and binary compounds, and by Pear-

Table 18. An example of the efficiency of the structural nomenclature. The perovskite family, showing the corresponding basic and derivative structures: by distortion (dist.), substitution (subs.), insertion (inser.), subtraction (subtr.) and displacement of packing layers (disp.)


son (1967) for metals and alloys. However, such a nomenclature is ambiguous because the same Pearson symbol may pertain to several structure types. Ex.: oP8 (orthorhombic primitive, eight atoms per unit cell) corresponds to $\mathrm{SiTi}, \mathrm{BFe}, \mathrm{CuS}$ and MnP , which are different structure types. Although this symbolism is simple and useful, especially for ordering structure types in a list for structure determination purposes, it is of no use when expressing the relationship between crystal structures.

A more structurally oriented nomenclature has been attempted by Hellner (1965) and by Donnay, Hellner \& Niggli (1966), who proposed descriptive symbols based on lattice complexes. For instance, to the copper structure corresponds the F lattice complex and to ZnS , sphalerite, the symbol $\mathrm{F}+\mathrm{F}$ ". However, this symbolism becomes very complicated for less symmetrical structures and it seems of little practical use.

Offering still more importance to atomic arrangement than to symmetry characteristics, Lima-
de-Faria (1965b) proposed a symbolism for closepacked structure types based on general structural formulas. For instance, the NaCl structure type, symbol B1 in the Ewald-Hermann notation, was represented by the symbol $A^{\circ} X^{c}$, where $X^{c}$ meant a large packing atom $X$ in cubic close packing(c), and $\mathrm{A}^{\circ}$ meant an interstitial atom A in an octahedral void (o). However, this notation called for the addition of superscripts to distinguish among structure types with the same general structural formula but with different distribution patterns of interstitial atoms. For instance, $\mathrm{TiO}_{2}$, rutile, and $\alpha$ $\mathrm{PbO}_{2}$ would be represented by the same symbol $\mathrm{A}^{0} \mathrm{X}^{\mathrm{h}}$, while corresponding to different structural arrangements, namely, one with rows of Ti atoms and the other with Pb forming a zig-zag pattern.

To solve this ambiguity it was proposed that the structural formula of a certain substance be used instead of the general structural formula. Such symbolism, in addition to its own descriptive value, would also have the advantage of being in agree-

Table 19. Various symbolisms proposed for the structure types

|  | Ewald and Hermann SB(1931) | Hellner (1965) | Lima-de-Faria (1965 ( | ```Lima-de-Faria and Figueiredo (1976)``` |
| :---: | :---: | :---: | :---: | :---: |
| Cu | Al | F or (c) H | $\mathrm{x}^{\text {c }}$ | $[\mathrm{Cu}]^{\mathrm{c}}$ |
| Mg | A3 | E or (h) H | $x^{h}$ | $[\mathrm{Mg}]^{\mathrm{h}}$ |
| NaCl | B1 | $F+F^{\prime}$ | $\mathrm{A}^{0} \mathrm{X}^{c}$ | $\mathrm{Na}^{\mathrm{O}}[\mathrm{Cl}]^{\mathrm{C}}$ |
| ZnS (sphalerite) | B3 | $F+{ }^{\prime \prime}$ | $A^{t} x^{c}$ | $\mathrm{Zn}^{\text {t }}[\mathrm{S}]^{\text {c }}$ |
| $\mathrm{Al}_{2} \mathrm{Mg} \mathrm{O}_{4}($ spinel $)$ | H11 | $\mathrm{F}_{222}^{\prime \prime \prime}+\mathrm{D}, \mathrm{T}^{\prime}$ | $A_{2}^{o} B^{t} x_{4}^{c}$ | $\mathrm{Al}_{2}^{\mathrm{o}} \mathrm{Mg}^{\mathrm{t}}\left[\mathrm{O}_{4}\right]^{\mathrm{C}}$ |
| $\mathrm{Mg}_{2} \mathrm{SiO}_{4}$ (olivine) | H12 | $\begin{aligned} & \text { (h) } \mathrm{nC}_{22}+001 / 2 \mathrm{I} 2_{\mathrm{xy}}, \\ & \mathrm{~A}_{211} 1 / 4 \mathrm{l} / 4 \mathrm{~F} \end{aligned}$ | $A_{2}^{o} B^{t} x_{4}^{h}$ | $\mathrm{Mg}_{2}^{\mathrm{o}} \mathrm{Si}^{\mathrm{t}}\left[\mathrm{O}_{4}\right]^{\mathrm{h}}$ |

ment with the custom of making use of wellknown compounds when representing structure types. Thus, the structural formula of the most representative substance, or Megaw's aristotype (Megaw, 1973) has been proposed (Lima-de-Faria
\& Figueiredo, 1976) for the corresponding structure type. The B1 structure type would then be represented by the symbol $\mathrm{Na}^{\circ}[\mathrm{Cl}]^{\mathrm{c}}$. On Table 19 are presented the various symbolisms that have been proposed for the structure types.

## CHAPTER 8

# Systematics of minerals on structural grounds 

### 8.1. Choice and presentation of data

Approximately three thousand and five hundred mineral species are known and the structures of many of them have been determined. In a first approach to a structural classification of minerals, it would be impracticable to appropriately treat all of them; consequently, the necessity was felt to reduce their number and to define a convenient domain of mineral species to be considered in this book. We chose the most common minerals, and a few others were added which fulfilled some links in the structural classification, or had a certain particular structural interest.

For the choice of the most common minerals the list was adopted that is given in Kostov's 'Mineralogy' and which includes approximately 300 mineral species. Because emphasis on the various kinds of structural arrangements is important, mineral species have been grouped according to mineral structure types. In this way, the 300 minerals are reduced to approximately 190 mineral structure types. With the addition of 40 mineral structure types, a total of 230 different structure types are described.

The mineral chosen to define the mineral structure type was the most representative mineral species, the so-called aristotype in the sense of Megaw (1973). There are certain mineral species to which several names correspond, but the name given in Hey's 'Chemical Index of Minerals' has been adopted (Ex.: sphene, rather than titanite). There are also some mineral species which pertain to an homologous series, and then the extreme cases are mentioned just below the series name (Ex.: the olivine series: forsterite-fayalite).

The structural data presented include the structural formula, the space group, the cell parameters, the number of structural formulas per unit cell (Z),
and the atomic positions of the corresponding chemical elements.

The rules proposed by the Nomenclature Subcommittee Report (Lima-de-Faria, Hellner, Liebau, Makovicky \& Parthé, 1990) for the structural formulas were adopted, with a few alterations. Main differences are the location of the structural units at the end, and of all the interstitial atoms in the beginning.

The space group and the atomic positions were taken from Wyckoff's 'Crystal Structures' unless a more recent structure determination was known to give substantially different or unambiguous results. The symbolism presented for the space groupin some cases is not the standard but that used by the authors, in order not to change the description of the atomic positions. The experimental errors in the atomic positions are omitted for reasons of simplicity.

The population corresponding to the same mineral structure type, that is, the mineral species having the same structure (isotypic), are indicated by their names and corresponding structural formulas. Underlined mineral names correspond to the most common minerals of Kostov list. Due to the lack in many books of a clear definition of isotypy, many minerals that were designated isotypic have not been included in the population. The conviction is felt that in the future many other mineral species will be added, substantially increasing their population. The population is followed, when it is the case, by the distortion and/or substitution derivatives. Only when a derivative is sufficiently important is it described on a separate page.

Several complementary representations of the same mineral structure type are given, in order to enable a better view and understanding of the structure. These representations may include: packing drawing and corresponding projection of the unit cell content, polyhedral representation,
ball and spoke description, layer dercription (condensed model) or any other suitable structural pictorial information, like special coordination polyhedra of some of the chemical elements. Among the various kinds of representations particular attention is given to the close-packing description, based on condensed models, because the general tendency in mineral structures is toward the densest packing.

The original figures are, in many cases, modified, adapted or completed for continuity and to avoid certain misunderstandings. They are often completed with the chemical symbols of atoms, when these are not explicit in the original, and the axes of the unit cell may have been changed in order to produce a uniform description of the structures, and facilitate the comparison among the various representations.

The figures are referred to their original authors, whenever possible. If a figure is taken from a textbook where the original is not mentioned in full, then it is also indicated that it is quoted by the author of the book.

The properties of the mineral representing the structure type had to be selected due to shortage of space and lack of uniform information. The main properties chosen are: habit, cleavage (cleav.), fracture (fract.), twinning (twin.), hardness (hard.), density (dens.), colour, transparence (transp.), refractive index/reflectance (refr./reflect.), birefringence (birefr.), lustre, streak, melting point (melt. p.), and the packing efficiency under the designation of 'close packing index' (CPI).

The packing efficiency of a structure deserves special treatment. It refers to the density of packing in the structure, and is determined by the ratio of the volume occupied by the packing atoms within the unit-cell and the volume of the unit cell. It is called here 'close packing index' (CPI). The maximum packing efficiency would be 1 if parallelepipedic shaped atoms could be imagined to occupy the whole space of the unit cell, and 0.74 if spherical atoms were considered corresponding to the closest packing. Normally, the packing atoms are anions, but in some cases they may also be cations, e.g. in perovskite, $\mathrm{Ti}^{\circ}\left[\mathrm{CaO}_{3}\right]^{\text {c }}$, where $\mathrm{Ca}^{++}$and $\mathrm{O}^{=}$are the packing ions. It was realized that several authors give different definitions of the packing efficiency, some considering only the anions and others the anions
and the influence of the expansion effect of cations located in tetrahedral or octahedral voids. This situation and the use of different values of atomic radii have given rise to different values of the packing efficiency for the same mineral structure. Exs.: Rutile $\mathrm{Ti}^{\circ}\left[\mathrm{O}_{2}\right]^{\text {h }}: 72$ for Zoltai \& Stout (1984), 0.74 for Giacovazzo, Monaco, Viterbo, Scordari, Gilli, Zanotti \& Catti (1992). and 6.6 for Berry \& Mason (1959); perovskite $\mathrm{Ti}^{\circ}\left[\mathrm{CaO}_{3}\right]^{\mathrm{c}:} 68$ for Zoltai \& Stout (1984), and 0.62 for Giacovazzo et al. (1992). Though we think that this is a very important subject, we decided to use in the present approach the values of the 'Symmetrical Packing Index' (SPI) established by Zoltai \& Stout, and leave the clarification of this problem for a future opportunity.

The properties refer to the mineral that represents the structure type, and in the case of homologous series, the values of the extreme members of the series are indicated whenever possible. The sources of all this information are indicated in the references in a simplified manner, the complete references being given in the bibliography at the end of the book.

The description of the structure type is often brief in order to enable all the structural data to be included in one page. In a very few cases two pages have been used to describe the same mineral structure type.

### 8.2. Ordering of the main categories of mineral structure types

The mineral structure types are ordered according to the five main categories of crystal structures, namely: close-packed, group, chain, sheet and framework structures. Within each main structural category the mineral structure types are organized from the simplest to the most complex, with respect to the structural formula or structural arrangement. In certain cases, the insertion (or stuffed) derivatives are placed near the corresponding basic structure type. Although this contradicts the principle of hierarchy of formula simplicity, it facilitates the relationship among closely related mineral structure types.

The close-packed structures are divided in two main subcategories: homogeneous and heterogeneous, and these may or may not admit a layer
description. The various subdivisions are distinguished by their packing characteristics.
A) Layered homogeneous close-packed structures, based on the packing of equal layers stacked in the same way; they correspond to structures based on the various well-known packings: closest packings, cubic body-centred packing, simple cubic packing, etc.
A.1. Closest packings
A.1.1. Without occupied interstitial atoms:

Ex.: copper $[\mathrm{Cu}]^{\text {c }}$
A.1.2. With occupied octahedral voids:

Ex.: halite $\mathrm{Na}^{\circ}[\mathrm{Cl}]^{\circ}$
A.1.3. With occupied tetrahedral voids:

Ex.: wurtzite $\mathrm{Zn}^{\mathrm{t}}[\mathrm{S}]^{\mathrm{h}}$
A.1.4. With occupied octahedral and tetrahedral voids:

$$
\text { Ex.: olivine } \mathrm{Mg}_{2}{ }_{2} \mathrm{Si}^{\mathrm{t}}\left[\mathrm{O}_{4}\right]^{\mathrm{h}}
$$

A.2. Cubic body-centred packings:

$$
\text { Ex.: iron }[\mathrm{Fe}]^{\mathrm{Bb}}
$$

A.3. Simple cubic and simple hexagonal packings

$$
\text { Ex.: fluorite } \mathrm{Ca}^{\mathrm{cb}}\left[\mathrm{~F}_{2}\right]^{\mathrm{Qs}}
$$

A.4. Packings based on R-layers with a pattern formed by rows of triangles and rows of squares, or based on N -layers formed by other patterns of interconnected triangles and squares.

$$
\begin{aligned}
& \text { Exs.: andalusite } \mathrm{Al}^{\mathrm{o}} \mathrm{Al}^{[5]} \mathrm{Si}^{\mathrm{t}}\left[\mathrm{O}_{5}\right]^{\mathrm{R}_{b y}^{21}} \\
& \text { by vysotskite } \mathrm{Pd}^{\mathrm{sq}}[\mathrm{~S}]_{\mathrm{s}}^{\mathrm{N}_{\mathrm{s}}}
\end{aligned}
$$

B) Non-layered homogeneous close-packed structures, based on a three-dimensional network (*) of atoms packed in a close way.

$$
\text { Ex.: garnet } \mathrm{Ca}^{\mathrm{do}} \mathrm{Al}_{2}{ }^{\circ} \mathrm{Si}_{3}{ }^{\dagger}\left[\mathrm{O}_{12}\right]^{*}
$$

C) Layered heterogeneous close-packed structures, based on different layers and/or different kinds of stacking.
C.1. Packings based on equal layers but with different kinds of stacking

$$
\text { Ex.: molybdenite } \mathrm{Mo}^{\mathrm{P}}\left[\mathrm{~S}_{2}\right]^{(2 \mathrm{Ts}) \mathrm{h}}
$$

C.2. Packings based on different layers Ex.: matlockite $\mathrm{Pb}^{[9]}[[\mathrm{F}][\mathrm{Cl}]]\left(\mathrm{Q}^{2}, 2 \mathrm{Q}^{1} \mathrm{f}\right) \mathrm{f}$
D) Non-layered heterogeneous close-packed structures, based on interpenetrated parts (blocks, rods or slabs) of homogeneous close packings

Exs.: galenobismutite $\mathrm{Pb}^{[7]} \mathrm{Bi}_{2}{ }^{[6 / 7]}\left[\mathrm{S}_{4}\right]^{\mathrm{c} / \mathrm{h}}$ apatite $\mathrm{Ca}_{5}{ }^{\mathrm{p}} \mathrm{P}_{3}\left[\mathrm{O}_{12}(\mathrm{OH}, \mathrm{F})\right]^{\mathrm{Ts} / \mathrm{h}}$

The group, chain, and sheet structures may also be divided in homogeneous and heterogeneous, as regards their formation by one only or several kinds of structural units. The homogeneous structures can be considered simple or composite as their structural units consist of one only or a number of building units (dimers, polygons or polyhedra). The structures may still be subdivided, according to the shape of their building units into linear, polygonal and polyhedral.

When a structure is built up of several structural units of different dimensionalities it is classified according to the structural unit of highest dimensionality.

The classification of the mineral structures considered in this work, and according to the principles referred to above, is summarized on Table 20.

A number (24) of mineral structures pertaining to the most common (Kostov's list) could not be clearly classified; for a few of them, a guess of their probable structural category is indicated. The most numerous structures in this unclassified category are sulphates, such as thenardite $\mathrm{Na}_{2}{ }^{\circ} \mathrm{S}^{\mathrm{t}} \mathrm{O}_{4}$, and kieserite $\mathrm{Mg}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{S}^{\mathrm{t}} \mathrm{O}_{4}$. With more structural information and the help of computer programs they will come to be appropriately classified.

### 8.3. Final remarks

The 230 mineral structure types that have been described are distributed among the following structural categories:
84 Close-packed structure types including 255 mineral structures
29 Group structure types with 73 mineral structures
21 Chain structure types with 30 mineral structures
26 Sheet structure types with 38 mineral structures

Table 20. Scheme of the structural classification of minerals


46 Framework structure types with 65 mineral structures
24 Non-classified structures with 41 mineral structures
This summary clearly shows the predominance of close-packed structures, and confirms the stability principle that expresses the tendency for the densest packing.

Another fact that strikes one's attention is the great number of close-packed structures which admit a simple layer description, that is, which are based on equal layers or on two different alternate layers. This may be related to the small values of the unit-cell parameters, (less than $15 \AA$, for most mineral structures) with the consequence that any plane direction of high density of atoms repeats at very short distances (Figure 58).

It is also important to notice the simple and symmetrical character of the atomic layers (condensed model sheets) in which most of the close-packed structures can be decomposed. Such layers normally correspond to the most symmetrical distri-
bution of the interstitial atoms within the packing layers. This fact shows that the stability of atomic layers is also an important factor in crystal structures. Stability in two dimensions is possibly related to the process of crystal growth by addition of atomic layers over one another.

One of the goals of crystal chemistry is the systematic derivation of crystal structures. The results mentioned above point to a systematic derivation based on the determination of the most symmetrical distributions of the interstitial atoms within the packing layers, carried out by application of adequate stacking rules (Lima-de-Faria, 1965b; Lima-de-Faria \& Figueiredo, 1969).
This is a first attempt to present a detailed systematics of minerals based on structural features, and much work will be needed in order to reveal all its potentialities. The author is aware of severe difficulties that still exist in the application of the structural classification, though they are but a natural characteristic of any new development in science. Spronsen (1969) said:


Fig. 58. The densest atomic plane direction is marked (d.p.) on a plane unit cell with parameters ' $a$ ' and ' $b$ '. If ' $a$ ' and ' $b$ ' are small, the distance $D$ between two densest planes is also small, and will only accommodate a few atoms in between. Normally, there will be space for no more than one or two atomic layers.

There are three distinguishable main stages in the history of the periodic system, namely that of initiation, that of phenomenological development and that of theoretical development.
Such stages seem not to be confined to the periodic system of chemical elements; most likely they are
main stages in every historic development in scientific work. In what regards the structural classification of minerals, and of inorganic structures in general, no doubt we are at the beginning, that is, just at their initiatial stage.

### 8.4. Descriptive charts of mineral structure types

### 8.4.1. Close-packed structures









| $\begin{array}{ll} \frac{\text { ANATASE }}{\text { (octahedrite })} & \mathrm{Ti}^{\mathrm{O}}\left[\mathrm{O}_{2}\right]  \tag{4a}\\ & \mathrm{I}_{4} / \text { amd } \end{array}$ | $\begin{aligned} & a=3.785 \AA \\ & c=9.514 \AA \\ & z=4 \end{aligned}$ <br> $0(8 e) u=$ |  |
| :---: | :---: | :---: |
| (a) <br> (b) <br> Fig. 2 <br> Fig. 3 <br> Fig. 1 |  |  |
| Properties |  |  |
|  | $\frac{\text { Hardn. }}{5.5-6}$ $\frac{\text { Dens. }}{3.90}$ $\frac{\text { Colour }}{\text { brown, }}$variable <br> vansp. Transparent <br> to translu- <br> cent <br> Luster $\frac{\text { Streak }}{\text { adaman- }}$ Melt.p. $\frac{\text { CPI }}{\text { colourless }}$ |  |
| Figures | Description | +2 ${ }^{2} e^{2}$ |
| Fig. 1. (a) Packing representation of the anatase structure, and (b) projection on (010) of the unit-cell content (afer Wyckoff, 1963, Vol. 1). <br> Fig. 2. Polyhedral representation of the anatase structure (after Povarennykh, 1972). <br> Fig. 3. First sheet of the con densed model corresponding to a description based on closest packed layers; all the closest packed layers are alike, showing the zig-zag pattern of the occupied octahedral interstices by Ti atoms. The unit cell is inclined in relation to this layer. <br> In the anatase structure the oxygens form a cubic closest packing, and the Ti atoms are located in octahedral voids. On a layer description parallel to (001) the Ti atoms show a square pattern, but in a description parallel to the closest packed layers the Ti atoms show a zig-zag pattern. |  |  |




RAMSDELLITE

| BROOKITE $\begin{aligned} & \mathrm{Ti}^{\mathrm{o}}[0 \\ & \mathrm{Pb} \mathrm{c} \text { a } \end{aligned}$ | $\begin{array}{rlrl} \mathrm{ch} & \mathrm{a} & =9.184 \AA & \mathrm{Ti} \quad(8 \mathrm{c}) \\ \mathrm{b} & =5.447 \AA & & \\ \mathrm{c} & =5.145 \AA & 0_{\mathrm{I}} \quad(8 \mathrm{c}) \\ \mathrm{z} & =8 & & \\ & & 0_{\text {II }} \quad(8 \mathrm{c}) \end{array}$ | $\begin{aligned} & x=0.1290 \\ & y=0.0972 \\ & z=-0.1371 \\ & x=0.0101 \\ & y=0.1486 \\ & z=0.1824 \\ & z=0.2304 \\ & x=0.1130 \\ & y=0.0 .1 \\ & z=-0.4629 \end{aligned}$ |
| :---: | :---: | :---: |
| Fig. 1 |  |  |
| Properties |  | \%or \% \% \% \% 10 |
|  |  |  |
| Figures | Description | ${ }^{\circ} \mathrm{C}$ |
| Fig. 1. Polyhedral representation of the brookite structure (after Povarennykh,1972). <br> Fig. 2. Condensed model of the brookite structure. Notice the zig-zag pattern of the titanium atoms, like in anatase. | The oxygens form a closest packing with a ch sequence, where the Ti atoms are located in one half of the octahedral voids. On the closest packed layers, which are parallel to (100), the Ti atoms form a zig-zag pattern. |  |
| ```Kostov (1968) 245. Povarennykh (1972) 135. Wyckoff (1963) Vol. 1, 254-256. Zoltai+Stout (1984) 408. Palache et al. (1944) Vol. l, 588-590.``` |  | Fig. 2 |







| $\frac{\text { TELLURBISMUTH }}{(\text { Tellurobismuthite })}$ |  |  | (hex. description) $\begin{aligned} & \mathrm{Bi}(6 \mathrm{c}) \mathrm{u}=0.399 \\ & \mathrm{Te}_{\mathrm{I}}(6 \mathrm{c}) \mathrm{u}=0.792 \\ & \mathrm{Te}_{\mathrm{II}}(3 \mathrm{a}) \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: |
| Fig. 1 <br> Fig. |  |  |  |  |
|  |  |  |  |  |
| $\begin{array}{lll} \text { Habit } & \text { Cleav. } & \text { Fract. } \\ \begin{array}{l} \text { irregular } \\ \text { plates, } \\ \text { foliated } \end{array} & \begin{array}{l} \text { perfect } \\ \text { (0001) } \end{array} & \end{array}$ |  |  |  | $y^{5} \varphi_{5}^{\circ} \varphi \varphi_{0}^{-1} \varphi^{\circ} \psi^{-}$ |
| masses <br> Refr. index/Reflect. Bire |  |  |  |  |
| Figures |  |  |  |  |
| Fig. 1. Packing model of the tellurbismuth structure. <br> Fig. 2. Ball and spoke representation of the tellurbismuth structure (adapted from Povarennykh, 1972). <br> Fig. 3. Polyhedral representation of the tellurbis muth structure (adapted from Kostov, 1968). <br> Fig. 4. Condensed model of the tellurbismuth structure. The large open circles are the Te atoms (packing atoms), and the small black circles the Bi atoms in octahedral voids. |  |  | . 4 |  |





| $\begin{array}{ll} \text { CRYOLITE } & \mathrm{Na}^{\mathrm{O}} \mathrm{Al}^{\circ}[\mathrm{N} \\ & \mathrm{P} 2{ }_{1} / \mathrm{n} \end{array}$ | $\left.\begin{array}{ll} \mathrm{a}_{2} & \mathrm{~F}_{6} \end{array}\right]^{\mathrm{C}} \quad \begin{array}{lll} \mathrm{a} & =5.46 \AA & \mathrm{Al}(2 \mathrm{a}) \\ \mathrm{b} & =5.61 \AA & \mathrm{Na}_{\mathrm{I}}(2 \mathrm{~b}) \\ \mathrm{c} & =7.80 \AA & \\ \beta & =90^{\circ} 11^{\prime} & \\ \mathrm{Na} & \\ & & =2 \end{array}$ |  |
| :---: | :---: | :---: |
| Fig. 1 |  |  |
| Properties |  |  |
|  | Hardn. Dens. Colour Transp. <br> 2.5 <br>  2.96 colourless, <br> transparent <br> variable to trans- <br> lucent <br> $\frac{\text { Luster }}{\text { vitreous }}$ $\frac{\text { Streak }}{\text { white }}$ $\frac{\text { Melt.p. }}{1020^{\circ} \mathrm{C}}$ $\frac{\mathrm{CPI}}{(\mathrm{SPI})}$ <br>    60 |  |
| Figures | Description | "0, Mo Mo |
| Fig. 1. Drawing of the cryolite structure (after Povarennykh, 1972). <br> Fig. 2. Condensed model of the cryolite structure. Large open circles represent fluorine atoms, and large lined circles certain sodium atoms (those within the square brackets). Small black circles correspond to aluminium atoms, and the small lined circles to the other sodium atoms. | The fluorine and certain sodium atoms form a cubic closest packing and the other sodium atom and aluminium atoms occupy $1 / 4$ of the octahedral voids. <br> It may be considered as a substitution + distortion derivative of perovskite, or as a distortion derivative of elpasolite. | Fig. 2 |










| $\begin{array}{r} \text { WURTZITE } \mathrm{Zn}^{\mathrm{t}}[\mathrm{~S}]^{\mathrm{h}} \\ \mathrm{P} 6_{3} \mathrm{mc}^{\mathrm{c}} \end{array}$ | $\begin{array}{ll} a=3.82 \AA & \operatorname{Zn}(2 b) \\ c=6.26 \AA & S(2 b) \\ z=0 & \end{array}$ |  |
| :---: | :---: | :---: |
| (a) <br> (b) <br> Fig. 1 | Fig. 2 <br> Fig. | Fig. 4 |
| Prope | erties |  |
|  | $\frac{\text { Hardn. }}{3.5-4}$ $\frac{\text { Dens. }}{3.98}$ Colour <br> brownish <br> black Transp. <br> translucent <br> $\frac{\text { Luster }}{\text { resinous }}$ $\frac{\text { Streak }}{\text { brown }}$ Melt.p. CPI |  |
| Population | occupy one half of the tetrahedral voids. |  |
| Greenockite $\mathrm{Cd}^{\mathrm{t}}[\mathrm{s}]^{\mathrm{h}}$ <br> Cadmoselite $\mathrm{Cd}^{\mathrm{t}}[\mathrm{Se}]^{\mathrm{h}}$ <br> Zincite $\mathrm{Zn}^{\mathrm{t}}[\mathrm{O}]^{\mathrm{h}}$ <br> Bromellite $\mathrm{Be}^{\mathrm{t}}[0]^{\mathrm{h}}$ <br> Iodargyrite $\mathrm{Ag}^{\mathrm{t}}[\mathrm{I}]^{\mathrm{h}}$ <br> Moissanite $\mathrm{C}^{\mathrm{t}}\left[\mathrm{Si}_{i}\right]^{\mathrm{h}}$ |  |  |
| Figures | Description |  |
| Fig. 1. (a) Packing drawing of the wurtzite structure (after Wyckoff 1963, Vol. l) and (b) unit cell content projected on (OOl). <br> Figs 2 and 3. Ball and spoke models of the wurtzite structure (after Wuensch, 1974, Kostov, 1968, respectively). <br> Fig. 4. Polyhedral representation of the wurtzite structure (after Zoltai, 1974). <br> Fig. 5. Condensed model of the wurtzite structure. The large open circles represent $S$ atoms, and the small black circles correspond to the Zn atoms which | The wurtzite structure is formed by a hexagonal closest packing of the S atoms, and Zn atoms occupying one half of the tetrahedral voids, with a triangular distribution pattern. |  |























| $\begin{gather*} \text { WAIRAUITE } \quad[\mathrm{FeCo}]^{\mathrm{Bb}}  \tag{1a}\\ \mathrm{Pm} 3 \mathrm{~m} \end{gather*}$ | $\begin{array}{ll} \mathrm{a}=2.856 \AA & \text { Co (1a) } \\ \mathrm{Z}=1 & \text { Fe (1b) } \end{array}$ |  |
| :---: | :---: | :---: |
| (a) <br> (b) <br> Fig. 2 |  |  |
| Properties |  |  |
| Habit Cleav. Fract. Twin. cubic, octahedral Refr. index/Reflect. Birefr. <br> Refr. index/Reflect. Birefr. <br> Figures | $\frac{\text { Hardn. }}{5}$ $\frac{\text { Dens. }}{8.23}$ Colour <br> steel <br> grey Transp. <br> metallic <br> $\frac{\text { Luster }}{\text { metreak }}$ Melt.p. CPI  <br> Description    |  |
| Fig. 1. (a) Packing representation of the wairauite structure, and (b) projection on a cube face. <br> Fig. 2. Ball and spoke model of the wairauite structure. <br> Fig. 3. Condensed model of the wairauite structure. Large open circles represent $C o$ atoms and large lined circles Fe atoms. | The wairauite structure has been considered as isotypic with the cesium chloride strcture that is $\mathrm{Fe}^{\mathrm{cb}}[\mathrm{Co}]^{\mathrm{Q}}$. However, as the Co and Fe atomic radii are practically the same $\left(\mathrm{R}_{\mathrm{Fe}}=1.26 \AA\right.$ and $\mathrm{R}_{\mathrm{Co}}=1.25 \AA$, after the periodic table of Sargent \& Co.) a more correct interpretation is to consider that wairauite is a substitution derivative of the iron structure which forms a body-centred cubic packing. Therefore its formula should be $[\mathrm{FeCo}]^{\mathrm{Bb}}$, or $[\mathrm{FeCo}]^{<Q \gg}$. <br> References <br> Kostov (1968) 190. <br> Wyckoff (1963) Vol. 1, 15. <br> Roberts et al. (1974) 660. <br> Povarennykh (1972) 193. | Fig. 3 |





| PYROCHLORE $(\mathrm{Ca}, \mathrm{Na})_{2}^{\mathrm{cb}} \mathrm{Nb}_{2}^{6}\left[\mathrm{O}_{6}\right.$ | $\begin{array}{ll} \mathrm{d} 3 \mathrm{~m} & \begin{array}{l} \mathrm{a}=10.397 \AA \\ \mathrm{z}=8 \end{array} \\ \mathrm{H}) \\ \text { Qs } \end{array}$ | $\begin{aligned} & (\mathrm{Ca}, \mathrm{Na})(16 \mathrm{c}) \\ & \mathrm{Nb}(16 \mathrm{~d}) \\ & (\mathrm{O}, \mathrm{OH})_{I}(8 \mathrm{~b}) \\ & (0,0 \mathrm{OH})_{\mathrm{II}}(48 \mathrm{f}) \mathrm{u} \simeq 0.19 \end{aligned}$ |
| :---: | :---: | :---: |
| Fig. 1 |  |  |
| Properties |  |  |
| Habit Cleav. Fract. Twin. <br> octahedral, distinct subcon- rare <br> in grains $\quad$ (11l) choidal (11l)  <br> Refr. index/Reflect. Birefr.  <br> n $=1.96-2.01$      |  |  |
| Population | Figures | \%etcescofters |
| Microlite ( $\mathrm{Ca}, \mathrm{Na})_{2}^{\mathrm{cb}} \mathrm{Ta}_{2}^{6}\left[\mathrm{O}_{6}(\mathrm{OH}, \mathrm{F}) \square\right]^{\ell \mathrm{s}}$ <br> Betafite $(\mathrm{Ca}, \mathrm{U})_{2}^{\mathrm{cb}}(\mathrm{Nb}, \mathrm{Ti})_{2}^{6}\left[\mathrm{O}_{6}(\mathrm{OH}, \mathrm{F})\right]^{\mathrm{Ds}}$ <br> Pandaite $\mathrm{Ba}_{2-\mathrm{x}}^{\mathrm{cb}} \mathrm{Nb}_{2}^{6}\left[0_{7-x}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{x} \square\right]^{\mathrm{ls}}$ <br> $\underset{\underset{\text { rite }}{\text { Rijkeboe- }}}{ } \quad \mathrm{Ba}_{2-\mathrm{x}}^{\mathrm{cb}} \mathrm{Ta}_{2}^{6}\left[\mathrm{O}_{\left.\left.7-\mathrm{O}^{\left(H_{2}\right.}{ }^{0}\right)_{x} \square\right]^{l \mathrm{~s}}}\right.$ <br> Sukulaite $\mathrm{Sn}_{2}^{\mathrm{cb}} \mathrm{Ta}_{2}^{6}\left[\mathrm{O}_{7} \square\right]^{\text {Qs }}$ <br> Romeite $\quad \mathrm{Ca}_{2}^{\mathrm{cb}} \mathrm{Sb}_{2}^{6}\left[\mathrm{O}_{7} \square\right]^{\mathrm{Qs}}$ <br> Bindhei- mite $\mathrm{Pb}_{2}^{\mathrm{cb}} \mathrm{Sb}_{2}^{6}\left[\mathrm{O}_{7} \square\right]^{\mathrm{Qs}}$ <br> Partzite $\mathrm{Cu}_{2}^{\mathrm{cb}} \mathrm{Sb}_{2}^{6}\left[\mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right) \square\right]^{\text {ls }}$ <br> Stetefeld- $\mathrm{Ag}_{2}^{\mathrm{cb}} \mathrm{Sb}_{2}^{6}\left[\mathrm{O}_{6}\left(\mathrm{H}_{2} \mathrm{O}\right) \square\right]^{0 \mathrm{~s}}$ tite <br> References <br> Kostov (1968) 253. <br> Wyckoff (1965) Vol. 3, 439,440. <br> Povarennykh (1972) 276, 277. <br> Palache et al. (1944) Vol. 1, 748,749. <br> Roberts et al. (1974) 499. | Fig. 1. Polyhedral drawing of the pyrochlore structure (after Belov, quoted by Kostov, 1968). <br> Fig. 2. Condensed model of the pyrochlore structure. Large open circles represent $O H$ and $O$ atoms. The black circles correspond to Ca or Na atoms with cubic coordination, and the crossed lined circles to Nb with coordination six. The crosses represent vacancies in the simple cubic packing. <br> Description <br> The pyrochlore structure is based on a defect simple cubic packing of the OH and O atoms, with $\mathrm{Na}, \mathrm{Ca}$ and Nb occupying $1 / 2$ of the cubic voids. The large cations Na and Ca have cubic coordination. and Nb atoms 6 coordination, due to the vacancies ( $\square$ ). Both have a row pattern. | Fig. 2 |









Fig. 1

| Properties |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Habit Cleav. <br> bladed, <br> perfect <br> (100) Fract.$\quad$ Twin. | Hardn. <br> 5 <br> Luster <br> subme- <br> tallic | Dens. <br> 4.0 <br> Streak <br> orange | Colour red brown Melt.p. | Transp. <br> trans- <br> lucent $\frac{\mathrm{CPI}}{(\mathrm{SPI})}$ |
| Population |  |  |  |  |
| Boehmite $\quad A 1{ }^{\circ}[0(\mathrm{OH})]^{\mathrm{R}_{\text {my }}^{31}}$ |  |  |  |  |
| Figures |  |  |  |  |
| ```Fig. 1. Polyhedral representation of the lepidocrocite structure (adapted from Povarennykh, 1972).``` |  |  |  |  |
|  | Description |  |  |  |
|  | The lepidocrocite structure is based on $\mathrm{R}^{31}$ packing layers of OH and 0 atoms. The Fe atoms are located in octahedral voids, forming a double row pattern. |  |  |  |
|  | References |  |  |  |
|  | ```Kostov (1968) 231. Povarennykh (1972) 146, 322,323. Wyckoff (1963) Vol. 1, 293. Zoltai + Stout (1984) 423,424.``` |  |  |  |

VYSOTSKITE





| $\begin{gathered} \text { HETEROGENITE } \mathrm{Co}^{\circ}[0(0 \\ \mathrm{R} \overline{3} \mathrm{~m} \end{gathered}$ | $\mathrm{H})] \begin{aligned} (2 \mathrm{Ts}) \mathrm{C} \quad \mathrm{~A}_{\mathrm{R}} & =4.676 \AA \\ \alpha & =35^{\circ} 28^{\prime} \\ \mathrm{z}_{\mathrm{R}} & =1 \\ \mathrm{a}_{\mathrm{H}} & =2.894 \AA \\ \mathrm{c} & =13.130 \AA \\ \mathrm{z}_{\mathrm{H}} & =3 \end{aligned}$ | (rhombohedral description) $\begin{aligned} & \text { Co (la) } \begin{aligned} \mathrm{x} & =0 \\ \mathrm{z} & =0 \\ & =0 \end{aligned} \\ & 0,0 \mathrm{H}(2 \mathrm{c}) \mathrm{x}=0.41 \end{aligned}$ |
| :---: | :---: | :---: |
| Fig. 1 |  |  |
| Properties |  |  |
| $\frac{\text { Habit }}{\text { needle }}$ Cleav. Fract. Twin. | Hardn. Dens. Colour Transp. |  |
| $\begin{aligned} & \text { needre } \begin{array}{l} \text { perfect conchoi- } \\ \text { like, } \\ \text { massive (ool) dal } \\ \text { Refr. index } / \text { Reflect. Birefr. } \end{array} \\ & \hline \end{aligned}$ | 4.5 $4.13-4.47$ black, <br> steel <br> Luster <br> metallic <br> dull $\frac{\text { Streak }}{\text { gelt.p. }}$ black, <br> dark <br> brown |  |
| Figures | Description |  |
| Fig. 1. Polyhedral drawing of $\mathrm{NaHF} \mathrm{H}_{2}$ which is isotypic with heterogenite (after Povarennykh, 1972). <br> Fig. 2. Condensed model of the heterogenite structure. Large open circles represent oxygen, and OH . The small black circles represent Co atoms in octahedral voids. | The heterogenite structure is based on a heterogeneous packing (2Ts)c of OH and O atoms. Two layers $\mathrm{O}+\mathrm{OH}$ are superimposed in a simple hexagonal packing (Ts) and these double layers are stacked in a closest packing way with a cubic sequence (c), giving rise to empty trigonal prismatic voids. The Co atoms fill up completely the octahedral voids of the double layers $\mathrm{O}(\mathrm{OH})$ stacked in a closest way. |  |
|  | ```Kostov (1968) 228. Kondrasev + Fedorova (1954) 229-231. Structure Reports (1961) Vol. 18, 515,516. Wyckoff (1964) Vol. 2, 294. Povarennykh (1972) 144,145, 322. Roberts et al. (1974) 271.``` | Fig. 2 |









| $\begin{gathered} \frac{\text { STIBNITE }}{(\text { Antimonite })} \end{gathered} \quad\left[\mathrm{Sb}_{2}\right.$ | $\begin{array}{lll} \mathrm{a}=11.299 \AA & \mathrm{Sb}_{\mathrm{I}}( \\ \mathrm{b}=11.310 \AA & \\ \mathrm{c}=3.8389 & \mathrm{Sb}_{\mathrm{II}}( \\ \mathrm{z}=4 \end{array}$ |  |
| :---: | :---: | :---: |
| (a) <br> Fig. 1 <br> (b) |  |  |
| Properties |  |  |
|  |  |  |
| Figures | Description |  |
| Fig. 1. (a) Representation of the stibnite structure: (a) projected along the $c$ axis, and (b) showing the way the $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ chains are linked together (after Povarennykh, 1972). <br> Fig. 2. The structure of stibnite projected along the caxis (after Hellner, 1958). <br> Fig. 3. The structure of galena, PbS, projected on (110) (after Hellner, 1958). <br> The stibnite structure is a recombination structure based on a heterogeneous packing formed by interpenetrated slabs of closest packings ( $\mathrm{c} ; \mathrm{h}$ ) of deformed galena type structure parallel to (110). <br> The stibnite structure may also be considered based on $\mathrm{Sb}_{2} \mathrm{~S}_{3}$ chains linked together along the a axis forming bands, what is in agreement with the perfect (010) cleavage. |  |  |
| References |  |  |
| ```Kostov (1968) 164,165. Povarennykh (1972) 128, 246. Wyckoff (1964) Vol. 2, 27,28. Hellner (1958) 504, 519. Palache et al. (1944) Vol. l, 271-273. Ingerson (1955) 350.``` |  |  |







### 8.4.2. Group structures














| PINAKIOLITE $\mathrm{Mg}_{3}^{\mathrm{o}} \mathrm{Mn}_{\mathrm{M}}^{\mathrm{M}} \mathrm{M}_{2}^{\mathrm{o}}\left[[0]_{4}\{\mathrm{~g}\}[\mathrm{B}\right.$ | $\left.\begin{array}{ll} 2 / \mathrm{m} \\ 0 & \\ 3 \end{array}\right] \begin{aligned} & \mathrm{a}=5.36 \AA \\ & \mathrm{~b}=5.988 \\ & \mathrm{Mg}_{\mathrm{I}} \end{aligned} \quad($ |  |
| :---: | :---: | :---: |
|  | (b) <br> Fig. |  |
|  |  |  |
|  | $\frac{\text { Hardn. }}{6}$ $\frac{\text { Dens. }}{3.88}$ Colour Transp. <br> opaque    <br> Luster <br> metallic Streak <br> brewnish <br> grey Melt.p. CPI |  |
| Figure | Description |  |
| Fig. 1. The structural units of the pinakiolite structure: $\mathrm{BO}_{3}$ groups and 0 atoms. <br> Fig. 2. (a) Packing drawing of the pinakiolite structure, sho wing the way the $\mathrm{BO}_{3}$ groups pack with the oxygen atoms, and (b) unit cell content pro jected along the baxis (afte Wyckoff, 1964, Vol. 2). <br> Fig. 3. Polyhedral representation of the pinakiolite structure (after Povarennykh, 1972). <br> Fig. 4. Structure of pinakiolite (after Kostov, 1968). <br> Fig. 5. Condensed model of the packing analogue of the pinakiolite structure based on a puckered simple hexagonal pac king. The large open circles represent oxygen atoms which form the packing layers, and the medium black and dashed circles correspond atoms in octahedral voids. The boron atoms (very small black circles) are placed in triangular voids and linked to the three neighbouring oxygen atoms forming $\mathrm{BO}_{3}$ groups (embraced by curved ${ }^{3}$ line). In each layer the packing atoms are at two different levels ( 0 and $1 / 2$ ) which are distinguished by the heavy and light lines of the corresponding circles. | The pinakiolite structure is based on the complex packing of $\mathrm{BO}_{3}$ groups and 0 atoms. This packing is formed by two different parts of simple hexagonal packing, at four levels $(0,1 / 4,1 / 2$ and $3 / 4$ ) which fit in the closest way, giving rise to octahedral voids. These octahedral voids are occupied by Mg and Mn atoms. The packing of the oxygens may also be imagined as forming a puckered simple hexagonal packing ( $\sim T s$ ), or an interpenetration of simple hexagonal with closest hexagonal packing (Ts;'h). <br> Crystallographic data (continued) <br> References <br> Kostov (1968) 430, 431. <br> Povarennykh (1972) 467,468. <br> Wyckoff (1964) Vol. 2, 523,524. <br> Palache et al. (1951) Vol. 2, 324, 325. | Fig. 5 |







| HYDROMAGNESITE $\mathrm{Mg}_{5}^{\mathrm{o}}\left[[(\mathrm{OH})]_{2}\left[\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{4}\right.$ | $\begin{aligned} & 2_{1} / \mathrm{c} \\ & 5\}\left[\begin{array}{ll} \mathrm{tr} & \mathrm{C}_{3} \\ & \\ 4 \end{array}\right] \end{aligned}$ |  |
| :---: | :---: | :---: |
| $\mathrm{H}_{2} \mathrm{O}$ <br> (10) OH <br> Fig. 1 <br> Fig. 2 | Fig. 3 |  |
| Properties |  |  |
|  | $\frac{\text { Hardn. }}{3.75}$ $\frac{\text { Dens. }}{2.236}$ Colour <br> colourless <br> to white Transp. <br> Luster <br> vitreous Streakent Melt.p.  |  |
| Figures | Description | Crystallographic data (continued) |
| Fig. 1. The structural units of the hydromagnesite structure are $\mathrm{CO}_{3},\left(\mathrm{H}_{2} \mathrm{O}\right)$ and OH ions. <br> Fig. 2. Hydromagnesite structure viewed along the $c$ axis of the pseudo-orthorhombic cell (after Akao et al. 1974). <br> Fig. 3. Hydrogen-bonding scheme of hydromagnesite projected along the b axis. Hydrogen bonds are marked with dashed lines (after Akao + Iwai, 1977). | The hydromagnesite is based on the packing of $\mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$ and OH ions. Magnesium atoms occupy voids in this packing with octahedral coordination. |  |
| Kostov (1968) 526. <br> Povarennykh (1972) 620. <br> Akao et al. (1974) 2670-2672. <br> Akao + Iwai (1977) 1273-1275. <br> Palache et al. (1951) Vol. 2, 271, 272. |  |  |





| $\begin{gathered} \text { ZOISITE } \\ \left.\mathrm{Ca}_{2}^{[7]} \mathrm{Al}_{3}^{\mathrm{o}} \mathrm{Si}^{\mathrm{t}}\left[[\mathrm{O}]_{5}[\mathrm{OH}]\{\mathrm{g}\}\left[\mathrm{Si}_{2}^{\mathrm{t}} 0_{7}\right]\right]\right] \end{gathered}$ |  |  |
| :---: | :---: | :---: |
|  <br> OH 0 <br> Fig. 1 | Fig. 2 |  |
| Properties |  |  |
|  |  |  |
| Figures | Description | Crystallographic data (continued) |
| Fig. l. Structural units of the zoisite structure: $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups, OH and 0 atoms. <br> Fig. 2. Polyhedral representation of the zoisite structure (after Dollase, 1968). | Zoisite is based on $\mathrm{Si}_{2} \mathrm{O}_{7}$ groups which pack together with OH and O atoms. The interstitial Al and Ca atoms have octahedral and 7 coordination respectively. Some Si atoms are also interstitial, having tetrahedral coordination. <br> References ```Kostov (1968) 312. Wyckoff (1968) Vol. 4, 251-253. Dollase (1968) 1889. Roberts et al. (1974) 691.``` |  |







| AXINITE $\mathrm{Ca}_{4}^{\mathrm{ap}}(\mathrm{Fe}, \mathrm{Mn})_{2}^{\mathrm{o}} \mathrm{Al}_{4}^{\mathrm{o}}(\mathrm{OH})_{2}\{\mathrm{~g}\}$ |  |  |
| :---: | :---: | :---: |
| Fig. 1 <br> Fig. 2 <br> Fig. 3 |  |  |
| Properties Fig. 4 |  |  |
| Habit <br> tabular <br> wedge-$\quad$ good Fract. <br> uneven <br> conchoi-  <br> -shaped $(100)$ Twin. <br> Refr. index $/$ Reflect. Birefr.  <br> $\mathrm{n}_{\alpha}=1.674-1.693$ $(-)$  <br> $\mathrm{n}_{\beta}=1.681-1.701$ $2 \mathrm{~V}=63^{\circ}-80^{\circ}$  <br> $\mathrm{n} \gamma=1.684-1.70 \dot{4}$   |  |  |
| Figures | Description | Crystallographic data (continued) |
| Fig. 1. Structural unit of the axinite structure: $B_{2}^{t} \mathrm{Si}_{8}^{\mathrm{t}} \mathrm{O}_{30}$ group (after Takeuchi et al., 1974). <br> Fig. 2. Projection of the axinite structure viewed along the $\underline{b}$ axis (after Takeuchi et al., 1974). <br> Fig. 3. Crystal structure of axinite (after Takeuchi et al., 1974). <br> Fig. 4. Polyhedra around $\mathrm{Al}, \mathrm{Fe}$ and Ca in the axinite structure (after Takeuchi et al., 1974). | The axinite structure is a group structure formed by the packing of $\mathrm{B}_{2}^{\mathrm{t}} \mathrm{Si}_{8}^{\mathrm{t}}{ }_{0}{ }_{30}$ groups, with $\mathrm{Al}, \mathrm{Fe}$ and Ca in the interstices. The Ca atoms have trigonal anti-prismatic coordination, and Al and Fe are located in octahedral voids. |  |

### 8.4.3. Chain structures








Fig. 4









| $\begin{gathered} \frac{\text { RHODONITE }}{(\mathrm{Mn}, \mathrm{Ca})^{[7]}(\mathrm{Mn}, \mathrm{Ca})_{4}^{\mathrm{O}} \stackrel{1}{\infty}[\mathrm{Si}} . \end{gathered}$ |  |  |
| :---: | :---: | :---: |
|  |  |  |
| Properties |  |  |
|  |  | Crystallographic data (continued) |
|  |  |  |
| Figures | Description |  |
| Fig. 1. Polyhedral representation of the $\mathrm{Si}^{\mathrm{t}} \mathrm{O}_{3}$ rhodonite infinite chain: symmetrical analogue and real chain (after Kostov, 1968, and Povarennykh, 1972). <br> Fig. 2. Rhodonite chain adjustment to the calcium octahedra (after Belov, 1963). | The rhodonite is based on the packing of $\mathrm{Si}^{\mathrm{t}} \mathrm{O}_{3}$ infinite chains. Some of the Ca atoms have seven coordination, and others octahedral coordination. <br> References ```Kostov (1968) 329, 350. Povarennykh (1972) 152. Wyckoff (1968) Vol. 4, 319, 320. Zoltai + Stout (1984) 348. Ingerson (1955) 352. Belov (1963) 16.``` |  |






### 8.4.4. Sheet structures




| $\begin{aligned} & \text { ORPIMENT } \\ & \begin{array}{c} 2 \\ \infty \end{array} \mathrm{AS}_{1} /[3 \mathrm{~S}] \\ & \left.\mathrm{AS}_{3}\right]^{I I} \end{aligned}$ | $\begin{array}{ll} \mathrm{a}=11.46 \AA & \mathrm{As}_{\mathrm{I}}(4 \mathrm{e} \\ \mathrm{b}=9.57 \AA & \\ \mathrm{c}=4.22 \AA & \mathrm{As}_{\mathrm{II}}(4 \mathrm{e} \\ \beta=90^{\circ} 30^{\prime} & \\ \mathrm{Z}=4 & \mathrm{~S}_{\mathrm{I}}(4) \end{array}$ |  |
| :---: | :---: | :---: |
| $1 I^{201}$ <br> ideal <br> Fig. 1 | 晚. |  |
| Properties |  |  |
|  | Dens. $\frac{\text { Colour }}{3.49}$ Transp. <br> yellow <br> orange <br> transparent <br> to opaque   <br> Streak Melt.p. CPI <br> yellow $310^{\circ} \mathrm{C}$  |  |
| Figures | Description |  |
| Fig. 1. (a) Schematic ideal representation of the corrugated sheet of the orpiment structure, and (b) real sheet (after Povarennykh, 1972). <br> Fig. 2. Structure of orpiment (after Structure Reports, 1952, Vol. 12). <br> Fig. 3. Structure of orpiment projected along the c axis (after Kostov, 1968). | The orpiment structure is based on $\mathrm{As}_{2} \mathrm{~S}_{3}$ sheets where As is trigonal pyramidal coordinated by $S$ atoms. <br> The $\mathrm{As}_{2} \mathrm{~S}_{3}$ sheets are packed along the $\underline{b}$ axis, and repeat at the third sheet. The perfect cleavage parallel to (010) is in agreement with this structural description. | Fig. 3 |



| $\begin{gathered} \frac{\text { TALC }}{(2 \mathrm{M})} \mathrm{C} 2 / \mathrm{c} \\ \mathrm{Mg}_{3}^{\mathrm{o}}(\mathrm{OH})_{2} \stackrel{2}{\infty}\left[\mathrm{Si}_{4}^{\mathrm{t}} \mathrm{O}_{10}\right]^{( } \end{gathered}$ |  |  |
| :---: | :---: | :---: |
| $\mathbf{A N A M}^{\mathrm{II}} 101$ <br> (a) <br> Fig. 2 | (b) Trioctahedral |  |
| Properties |  |  |
| $\frac{\text { Habit }}{\text { platy, }}$ $\frac{\text { Cleav. }}{\text { perfect }}$ Fract. <br> flexible  $\quad$ Twin. | Hardn. $\frac{\text { Dens. }}{2.8}$ Colour <br> white, <br> grey$\frac{\text { Transp. }}{\text { translucent }}$ |  |
| Refr. index /Reflect.  <br> $\mathrm{n}_{\alpha}=1.54$ Birefr. <br> $\mathrm{n}_{\beta}=1.58$ $(-)$ <br> $\mathrm{n} \gamma=1.58$ $2 \mathrm{~V}=6^{\circ}-30^{\circ}$ | Luster <br> resinous, <br> silky Streak Melt.p.  |  |
| Population | Description <br> Talc is a sheet structure based on the packing of $\mathrm{Si}_{2}^{\mathrm{t}} \mathrm{O}_{5}$ infinite sheets. The 2 M notation means monoclinic (M), and (2) two structural modules per unit cell. |  |
| $\begin{aligned} & \text { Willemseite } \\ & \left.\mathrm{Ni}_{3}^{\mathrm{o}}(\mathrm{OH})_{2} \stackrel{2}{\infty}_{\infty}^{\mathrm{Si}_{4}^{\mathrm{t}}} \mathrm{o}_{10}\right]^{\left(2, \mathrm{II}_{\mathrm{h}}^{101}\right)_{\mathrm{c}}} \end{aligned}$ <br> Figures |  |  |
| Fig. 1. Polyhedral representation of the structural unit of talc (symmetrical analogue) and its cross section (adapted from Liebau, 1985). <br> Fig. 2. Polyhedral description of: (a) the way the $\mathrm{Si}_{2}^{\mathrm{t}} \mathrm{O}_{5}$ infinite sheets pack together (after Liebau, 1985) and (b) the trioctahedral layer located in between the $\mathrm{Si}_{2}^{\mathrm{t}} \mathrm{O}_{5}$ sheets. | References Kostov (1968) 355. Povarennykh (1972) 432. Wyckoff (1968) Vol. 4, 365, 366. Zoltai + Stout (1984) $\quad 322$. Figueiredo (1979 b). Zoltai (1975) IV-9. Liebau (1985) 116, 218. |  |













| CHRYSOTILE Cm | $\begin{aligned} & \mathrm{a}=14.65 \AA \\ & \mathrm{~b}=9.25 \AA \end{aligned}$ | $M g g I ~_{\text {I }}(2 \mathrm{a})$ | $\begin{aligned} & x=0.227 \\ & y=0 \\ & z=0.873 . \end{aligned}$ | $\left.{ }^{(O H)}\right)_{\text {II }}{ }^{(2 a)}$ | $\begin{aligned} & x=0.292 \\ & y=0.02 \\ & z=0.217 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $2\left[\mathrm{Mr}^{\mathrm{O}}\right.$ (OH) $\left.{ }^{2}\left[\mathrm{Si}_{2}\right]^{101}{ }^{101}\right]$ | $\begin{aligned} & c=5.34 \AA \\ & \beta=93^{\circ} 16 . \end{aligned}$ | $\mathrm{Mg}_{\text {II }}(4 \mathrm{~b})$ | $\begin{aligned} & x=0.227 \\ & y=0.167 \\ & z=0.373 \end{aligned}$ | $\left.{ }^{(0 H)}{ }_{\text {III }}{ }^{(4 \mathrm{~b}}\right)$ | $\begin{aligned} & x=0.292 \\ & y=0.167 \\ & z=0.717 \end{aligned}$ |
| $\infty\left[\begin{array}{lll}\mathrm{Mg}_{3}(\mathrm{OH})_{4} & \infty\left[\begin{array}{ll}\mathrm{Si}_{2} & 0_{5}\end{array}\right] \quad \mathrm{c}\end{array}\right.$ |  | (OH) $^{(2 a)}$ | $\begin{gathered} x=0.150 \\ y=0 \\ z=0.523 \end{gathered}$ | Si  <br> $\ldots$ $(4 \mathrm{~b})$ | $\begin{aligned} & x=0.033 \\ & y=0.167 \\ & z=0.006 \end{aligned}$ |



Fig. 1




Fig. 2


Fig. 3


Fig. 4


| ANTIGORITE $\mathrm{Mg}_{6}^{\mathrm{o}}(\mathrm{OH})_{8} \stackrel{2}{\infty}\left[\mathrm{Si}_{4}^{\mathrm{t}} \mathrm{O}_{10}\right.$ |  |  |
| :---: | :---: | :---: |
| T8 AASAAAA TVTVTVTVi <br> Fig. 1 | Fig. 2 |  |
| Properties |  |  |
| $\begin{array}{lcl} \frac{\text { Habit }}{\text { platy, }} & \frac{\text { Cleav. }}{\text { perfect }} & \frac{\text { Fract. }}{\text { flexible }} \\ \text { massive } & \text { Twin. } \\ \end{array}$ | $\frac{\text { Hardn. }}{3-4} \quad \frac{\text { Dens. }}{2.6} \quad \frac{\text { Colour }}{\substack{\text { green } \\ \text { yellow }}} \frac{\text { Transp. }}{\text { translucent }}$ |  |
| $\begin{array}{lc} \text { Refr. index } / \text { Reflect. } & \text { Birefr. } \\ \mathrm{n}_{\alpha}=1.56 & (-) \\ \mathrm{n}_{\beta}=1.57 & 2 \mathrm{~V}=20^{\circ}-60^{\circ} \end{array}$ | Luster Streak <br> resinous, white <br> silky  CPI  |  |
| $\mathrm{n}_{\boldsymbol{\gamma}}=1.57$ |  | Crystallographic data (continued) |
| Figures | Description |  |
| Fig. l. Structural unit of antigorite: the $\mathrm{Si}_{2}^{\mathrm{t}} \mathrm{O}_{5}$ infinite puckered silicate sheet and its cross-section (after Liebau, 1985). <br> Fig. 2. Schematic drawing of the way the silicate sheets pack together (adapted from Liebau, 1985). | Palygorskite is a sheet structure formed by the packing of puckered infinite silicate sheets of composition $\mathrm{Si}_{2}^{\mathrm{t}} \mathrm{O}_{5}$, with brucite type layers located in between the silicate sheets. It could also be considered as a complex framework of structural formula: $\stackrel{3}{\infty}\left[\mathrm{Mg}_{6}^{\mathrm{o}}(\mathrm{OH})_{8} \quad \stackrel{2}{\infty}\left[\mathrm{Si}_{4}^{\mathrm{t}} \mathrm{O}_{10}\right]\right]$ |  |


|  |  |  |
| :---: | :---: | :---: |
|  | Fig. 2 |  |
| Properties |  | Fig. 3 |
|  | $\frac{\text { Hardn. }}{2-2.5}$ $\frac{\text { Dens. }}{2.2}$ Colour <br> white, <br> grey Transp. <br> transparent <br> to translu- <br> cent <br> Luster <br> vitreous, <br> dull $\frac{\text { Streak }}{\text { white }}$  Melt.p. <br>    CPI |  |
| Figures |  |  |
| Fig. 1. Structural unit of palygorskite, the $\mathrm{Si}_{2}^{\mathrm{t}} \mathrm{O}_{5}$ infinite puckered silicate sheet (after Liebau, 1985). <br> Fig. 2. Schematic drawing of the way the silicate sheets pack together (adapted from Liebau, 1985) and polyhedral representation of the octahedral infinite chain which exist in between the silicate sheets. <br> Fig. 3. Structure of palygorskite projected along the c axis (after Povarennykh, 1972). <br> Fig. 4. Structure of palygorskite viewed along a normal to (001): (a) arrangement of silicons with respect to continuous oxygen sheet; (b) octahedral chain (adapted from Caillère + Hénin, 1961). | Palygorskite is a sheet structure formed by the packing of puckered infinite silicate sheets of composition $\mathrm{Si}_{2}^{\mathrm{t}} \mathrm{O}_{5}$, with Mg atoms, OH and $\mathrm{H}_{2} \mathrm{O}$ within the interstices. The infinite silicate sheets are formed by amphibole infinite chains linked together in a reverse and alternate way. Certain water molecules are bounded to the extremities of the octahedral chains, and another possible structural description of the palygorskite structure would be to consider it as a framework with structural formula: $\left(\mathrm{OH}_{2}\right)_{4} \stackrel{\mathbf{3}}{\infty}\left[\mathrm{Mg}_{5}^{\mathrm{o}}\left(\mathrm{OH}_{2}\right)_{4}^{(\mathrm{OH})_{2}} \stackrel{\mathbf{2}}{\infty}\left[\mathrm{Si}_{8}^{\mathrm{t}} \mathrm{O}_{2 \mathrm{O}}\right]\right]$ | (a) <br> Fig. 4 |






| META-AUTUNITE $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\left[\begin{array}{cc} {[6]} & 2 \\ \mathrm{Ca} & \infty \end{array} \begin{array}{cc} {[2+4]} & \mathrm{t}^{\mathrm{U}} \\ & \mathrm{PO}_{4} \end{array}\right]\right]$ | nmm  Only one C <br> tically distr <br>  $\mathrm{a}=6.980 \AA$  <br> $\mathrm{c}=8.420 \AA$   <br> $\mathrm{z}=1$ (2c) $\mathrm{u}=0.61$ <br> Six water  <br>   statistically <br> among (8j) u   | $\begin{aligned} & U \quad(2 c) u=0.106 \\ & { }^{O_{I} \quad(2 c) u}=0.343 \\ & O_{I I}(2 c) u=0.893 \\ & O_{I I I}(8 i) u=0.584 \\ & \mathrm{~V}(2 \mathrm{a}) \end{aligned}$ |
| :---: | :---: | :---: |
|  | Fig. 2 |  |
| Properties |  |  |
| Habit <br> tabular, <br> platy $\quad$ perfect <br> $(001)$ <br> Refr. index $/$ Reflect. <br> $\mathrm{n}_{\alpha}=1.585-1.600$ <br> $\mathrm{n}_{\beta}=1.595-1.610$ <br> $\mathrm{n}_{\gamma}=1.595-1.613$ |  |  |
| Figures | Description |  |
| Fig. 1. Structural units of the me-ta-autunite structure: the $\mathrm{UO}_{2} \mathrm{PO}_{4}$ sheets, and Ca atoms which are also structural units because they are part of the packing. The corresponding cross-section of the $\mathrm{UO}_{2} \mathrm{PO}_{4}$ sheet is also represented (adapted from Ramdohr + Strunz. 1980). <br> Fig. 2. Packing drawing of the meta--autunite structure, showing the way the sheets pack together. The water molecules are omited (after Kostov, 1968). | Meta-autunite is a sheet structure based on the packing of $\mathrm{UO}_{2} \mathrm{PO}_{4}$ sheets and Ca atoms, with some water molecules within the interstices. Meta-autunite is the result of dehydration of autunite. The perfect cleavage parallel to (001) is in agreement with this structural description. |  |


| $\underline{\text { CARNOTITE }}$ P 2 $\mathrm{K}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \stackrel{2}{\infty}\left[\left[\begin{array}{c} {[2+5]} \\ \mathrm{UO} \\ 2 \end{array}\right] 2\right.$ | ${ }_{1}$ /a $\left.\left.\mathrm{V}_{2}^{-[5]} \text { O} 8 ~ l\right] ~\right] ~$ $\begin{aligned} & a=10.47 \AA \\ & b=8.41 \AA \\ & c=6.59 \AA \\ & \beta=103^{\circ} 50^{\prime} \\ & Z=2 \end{aligned}$ | Atomic positions for the Cs analogue of anhydrous carnotite. |
| :---: | :---: | :---: |
| Fig. 1 |  |  |
| Properties |  | Fig. 2 <br> Fi.g. 3 |
|  | $\frac{\text { Hardn. }}{2}$ $\frac{\text { Dens. }}{4.5}$ $\frac{\text { Colour }}{\text { yellow, }}$ $\frac{\text { Transp. }}{\text { green }}$ |  |
| Figures | Description |  |
| Fig. 1. $\left[\left[\mathrm{UO}_{2}\right]_{2}\left[\mathrm{~V}_{2} \mathrm{O}_{8}\right]\right]$ sheet of the anhydrous carnotite structure, and coordination polyhedra of $U$ atoms and $V$ atoms (after Povarennykh, 1972). <br> Fig. 2. $\left[\left[\mathrm{UO}_{2}\right]_{2}\left[\mathrm{~V}_{2} \mathrm{O}_{8}\right]\right]$ anhydrous carnotite sheet parallel to (001) (after Kostov, 1968). <br> Fig. 3. Representation of the cesium analogue of the anhydrous carnotite structure (after Appleman + Evans, 1965). | Carnotite is formed by $\left[\left[\mathrm{UO}_{2}\right]_{2}\left[\mathrm{~V}_{2} \mathrm{O}_{8} 7\right]\right]$ sheets laying parallel to (001), with $K$ atoms and water molecules located in between these sheets. |  |
| Crystallographic data (continued) | References |  |
| (4) $\begin{aligned} & \text { x }\end{aligned}$ | ```Kostov (1968) 480. Povarennykh (1972) 167, 503. Zoltai + Stout (1984) 453. Appleman + Evans (1965) 825-842.``` |  |
|  |  |  |
|  |  |  |



| $\begin{array}{cc} \frac{\text { TRONA }}{} & \mathrm{C} 2 / \mathrm{c} \\ 2 \\ \infty & {\left[\mathrm{Na}_{3}^{\mathrm{o} / \mathrm{P}} \mathrm{H}\right.} \\ \left(\mathrm{H}_{2} \mathrm{O}\right) & \{\mathrm{g}\}\left[\mathrm{C}^{t}\right. \end{array}$ |  |  |
| :---: | :---: | :---: |
| Fig. 1 | Fig. 2 |  |
| Properties |  |  |
|  |  | Fig. 3 |
| Figures | Description |  |
| Fig. 1. Cross-section of the sheet of the trona structure, which consists of $\mathrm{CO}_{3}$ triangular groups linked to Na atoms and water molecules (adapted from Povarennykh, 1972). <br> Fig. 2. Ball and spoke representation of the trona structure projected along the $\underline{b}$ axis (after Povarennykh, 1972). <br> Fig. 3. Packing drawing of the trona structure (after Brown et al., 1949, quoted in Structure Reports, 1952, Vol. 12). | Trona is formed by sheets parallel to (100) consisting of $\mathrm{CO}_{3}$ triangular groups, and Na atoms in octahedral and prismatic coordination, and water molecules. Between the sheets there are hydroxyl-hydrogen bonds. The perfect cleavage parallel to (100) is in agreement with this structural description. |  |
| Crystallographic data (continued) | References |  |
|  | Kostov, 529. <br> Povarennykh, 626, 627. <br> Structure Reports (1952) 12, 238-240. <br> Structure Reports (1963) 20, 389-392. <br> Brown et al. (1949) 167. <br> Bacon + Curry (1956) 82-85. <br> Roberts et al. (1974) 630. |  |

### 8.4.5. Framework structures

| $\begin{array}{ll} \text { DIAMOND } & \\ \left.\begin{array}{c} 3 \\ \infty \end{array} \mathrm{C}^{\mathrm{t}}\right]^{\tilde{\mathrm{H}}_{\mathrm{c}}} \end{array}$ | $\begin{aligned} & a=3.56679 \AA \quad\left(\text { at } 20^{\circ} \mathrm{C}\right) \\ & z=8 \end{aligned}$ | C (8a) |
| :---: | :---: | :---: |
| $I^{102}=\tilde{H}$ <br> Fig. 1 | (a) <br> . 2 | Fig. 3 <br> (b) |
| Properties |  |  |
|  | $\frac{\text { Hardn. }}{10}$ $\frac{\text { Dens. }}{3.5}$ Colour <br> colourless Transp. <br> transparent <br> $\frac{\text { Luster }}{\text { damantine }}$white  $\frac{\text { Streak }}{\text { (SPI) }}$ <br>    <br> 30      |  |
| $\frac{\text { Polytypes }}{\text { Lonsdaleite } \quad \stackrel{3}{\infty}\left[c^{t}\right]^{\tilde{H} h}}$ | lel to the corrugated honeycombed carbon layers (after Zemann, 1969). | Fig. 4 |
| Figures | Description |  |
| Fig. 1. Corrugated honeycombed layer of carbon atoms, perpendicular to a cube diagonal [111], which cons titutes the connected unit of the diamond structure. <br> Fig. 2. Representation of the diamond structure showing the way the connected units are linked together in a $A B C$, or $c$, sequence (after Krebs, 1968). <br> Fig. 3. (a) Packing drawing of the diamond structure, and (b) corresponding unit cell content projected along an a axis (after Wyckoff, 1963, Vol. 1). <br> Fig. 4. Ball and spoke model of the diamond structure (after Povarennykh, 1972). <br> Fig. 5. Representation of the diamond structure sowing the location of the cleavage plane (111) paral- | The diamond structure is a typycal framework structure, with channels along [110]. <br> The carbon atoms are all interlinked, and have a tetrahedral coordination. <br> References <br> Kostov (1968) 101, 102. <br> Povarennykh (1972) 118. <br> Wyckoff (1963) Vol. 1, 25, 26. <br> Zoltai + Stout (1984) 378. <br> Krebs (1968) 153. <br> Zemann (1969) 109. |  <br> Fig. 5 |






| ICE Fd3m | $\left.a=6.350 \quad \text { (at }-130^{\circ} \mathrm{C}\right)$ $z=8$ | $\begin{aligned} & O(8 a) \\ & H(16 c) \end{aligned}$ |
| :---: | :---: | :---: |
| (high-pressure form, $\left.\xrightarrow{\text { antartic) }} \begin{array}{l}3 \\ \infty\end{array} 0^{t} \mathrm{H}_{2}^{[2]}\right]^{\mathrm{II}}{ }^{201}$ |  |  |



Fig. 1

(a)

(b)


Fig. 3


| $\beta$ - TRIDYMITE $\quad \mathrm{P} 6_{3} / \mathrm{mmc}$ | $\begin{aligned} & a=5.03 \AA \\ & c=8.22 \AA \end{aligned}$ | Si(4f) $u=0.44$ |
| :---: | :---: | :---: |
| (high-temperature form) | $z=4$ | $\mathrm{o}_{\mathrm{I}}$ (2c) |
| $\stackrel{3}{\infty}\left[\mathrm{Si}^{\stackrel{\text { tch }}{ } 0_{2}}{ }_{2}[2] \quad \mathrm{II}^{201}\right.$ |  | ${ }^{0} \mathrm{II}^{(6 \mathrm{~g})}$ |



Fig. 1


Fig. 2


Fig. 3





| $\begin{array}{lc} \text { NEPHELINE } & \mathrm{P} 6_{3} \\ K^{[9]} \mathrm{Na}_{3}^{[8]}{ }^{3} \infty & \mathrm{Si}_{4}^{\mathrm{t}} \mathrm{Al}_{4}^{\mathrm{t}}{ }^{<c \mathrm{ch>}}[2] \end{array}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Fig. 1 <br> Fig. | $\Delta(S, A))_{0}$ K <br> - N | Tridymbe $\qquad$ * (ILayer) <br> g. 3 |  |
| Properties |  |  |  |
|  | rdn. Dens. Colour Transp. <br> 2.60 colourless, <br> turbid transparent  |  |  |
| Figures | Description |  |  |
| Fig. l. Schematical drawing of the ideal corrugated tetrahedral silicate layer which constitutes the connected unit of the nepheline structure. <br> Fig. 2. Polyhedral representation of the nepheline structure (after Zoltai + Stout, 1984). <br> Fig. 3. Comparison between the ideal tridymite and the nepheline tetrahedral layers (after Steele + Pluth, 1990). | The structure of nepheline is a stuffed derivative of the tridymite structure. It is also distorted in relation to the ideal tridymite structure. |  |  |
|  |  |  |  |
| $\begin{aligned} & \text { Kostov (1968) } 401 . \\ & \text { Povarennykh (1972) } 345,346 . \\ & \text { Wyckoff (1968) Vol. 4, } 453,454 . \\ & \text { Zoltai + Stout (1984) } 310,311 . \\ & \text { Steele + Pluth (1990) } 1189 . \end{aligned}$ |  |  |  |








Fig. 2

$\stackrel{\substack{b \\+}}{ }$

Fig. 1




Fig. 1
Fig. 2


Fig. 3





| $\underline{\text { KEATITE }} \quad \mathrm{P}_{1}{ }_{1}$ $\stackrel{3}{\infty}\left[\mathrm{Si}^{\mathrm{t}} 0_{2}\right]^{I I I^{I}} \mathrm{Qd}$ | $\begin{array}{ll} a=7.456 \AA & S i_{I}(8 b) \\ c=8.604 \AA & \\ z=12 & \\ & S_{I I}(4 a) \\ & o_{I} \quad(8 b) \end{array}$ | $\begin{aligned} & o_{I I}(8 b) \begin{array}{l} x=0.117 \\ y \end{array}=0.123 \\ & z=0.296 \\ & x=0.344 \\ & o_{I I I}(8 b) \begin{array}{l} y=0.297 \\ z \end{array}=0.143 \end{aligned}$ |
| :---: | :---: | :---: |
| Fig. 1 <br> Fig. 2 | Fig. 3 |  |
| Properties |  |  |
| $\begin{aligned} & \text { Habit Cleav. Fract. Twin. } \\ & \begin{array}{l} \text { Refr. index /Reflect. Birefr. } \\ \mathrm{n}_{\omega}=1.522 \\ \mathrm{n}_{\epsilon}=1.513 \end{array} \end{aligned}$ | Hardn. Dens. Colour Transp. 2.50 Luster Streak Melt.p. CPI |  |
| Figures | Description |  |
| Fig. 1. Group of three silicon tetrahedra which constitutes the connected unit of the keatite structure. <br> Fig. 2. Polyhedral description of the keatite structure (after Liebau, 1985). <br> Fig. 3. Polyhedral drawing of the keatite structure projected along the caxis (after Kostov, 1968). | The keatite structure is similar to that of quartz but instead of threefold spirals, it has four-fold spirals of silicon tetrahedra along the tetragonal axis. Morphological data is lacking because it is only known as microcrystalline synthetic product. <br> References <br> Kostov (1968) 390, 391. <br> Wyckoff (1963) Vol. 1, 321-324. <br> Liebau (1985) 127. <br> Frondel (1982) 307. |  |


|  |  |  |
| :---: | :---: | :---: |
| $\left.\begin{array}{c} 3 \\ \infty \end{array} \mathrm{Cu}_{2}^{[2]}{ }_{0}^{\mathrm{t}}\right] \quad \mathrm{z}=2 \quad 0(2 \mathrm{a})$ |  |  |
| (a) <br> Fig. 1 <br> (b) <br> Fig. 2 <br> Fig. 3 |  |  |
| Properties |  |  |
| $\frac{\text { Habit }}{\text { cubic, }}$Cleav. <br> octahedral$\quad \frac{\text { Fract. }}{\text { conchoi- }}$ Twin.Refr. index $/$ Reflect.$23 \%$ | $\frac{\text { Hardn. }}{3.5-4}$ $\frac{\text { Dens. }}{5.9-6.1}$ $\frac{\text { Colour }}{\text { red }}$  <br> opaque <br> Luster $\frac{\text { Streaksp }}{\text { subme- }}$ $\frac{\text { Melt.p. }}{\text { brown }}$ $\frac{\text { CPI }}{1235^{\circ} \mathrm{C}}$ |  |
| Distortion derivatives | Description |  |
| $\begin{array}{ll} \frac{\text { Argentite }}{3}\left[\mathrm{Ag}_{2}^{[2]} \mathrm{S}^{\mathrm{t}}\right] & \operatorname{Im} 3 \mathrm{~m} \\ \text { Naumannite } & \\ \infty\left[\mathrm{Ag}_{2}^{[2]} \mathrm{Se}^{\mathrm{t}}\right] & \operatorname{Im} 3 \mathrm{~m} \end{array}$ | The cuprite structure is a framework of $0^{\mathrm{t}} \mathrm{Cu}_{4}$ tetrahedra. |  |
| Figures |  |  |
| Fig. 1. (a) Ball and spoke drawing of the cuprite structure, and (b) corresponding unit cell projection along an axis. <br> Fig. 2. Ball and spoke description of the cuprite structure (after Povarennykh, 1972). <br> Fig. 3. Polyhedral drawing of the cuprite structure (after Povarennykh, 1972). | References <br> Kostov (1968) 258. <br> Povarennykh (1972) 294. <br> Wyckoff (1963) Vol. 1, 331, 332. <br> Zoltai + Stout (1984) 419. <br> Ingerson (1955) 351. |  |






| SPHENE <br> (Titanite) <br> C $2 / \mathrm{c}$ ${ }_{\infty}^{3}\left[\mathrm{Ca}^{\mathrm{p}} \mathrm{Ti}^{\mathrm{o}} 0 \mathrm{Si}^{\mathrm{t}} 0\right.$ | $a=6.55 \AA$ $\mathrm{Ca}(4 \mathrm{e}) \mathrm{u}=$ <br> $\mathrm{b}=8.70 \AA$  <br> $\mathrm{c}=7.43 \AA$  <br> $\beta=119^{\circ} \mathrm{K} 43^{\prime}$ $\mathrm{Ti}(4 \mathrm{c})$ <br> $\mathrm{Z}=4$ $\mathrm{Si}(4 \mathrm{e}) \mathrm{u}=$ <br>  $\mathrm{O}_{\mathrm{I}}(8 \mathrm{f})$$\mathrm{x}=$ <br> $\mathrm{y}=$ <br> $\mathrm{z}=$ | $\begin{aligned} & \begin{array}{l} x \end{array}=0.028 \\ o_{I I}(8 f) & y=0.322 \\ z & =0.100 \\ & \\ o_{I I I}(4 e) u & =-0.187 \end{aligned}$ |
| :---: | :---: | :---: |
| Fig. 1 |  |  |
| Properties |  |  |
|  |  |  |
| Population | Description |  |
|  | The structure of sphene is a framework. It consists of infinite chains of $\mathrm{Ti}^{\circ} \mathrm{O}_{6}$ octahedra linked |  |
| Figures | ains and parallel to the $c$ axis |  |
| Fig. 1. Partial representation of the structure of sphene (after Groat et al., 1990). <br> Fig. 2. Ball and spoke representation of the structure of sphene projected along the $\underline{b}$ axis (after Kostov, 1968). <br> Fig. 3. Polyhedral description of the structure of sphene projected on the $\underline{b}$ axis (after Povarennykh, 1972). | run columns of distorted calcium prisms. $\mathrm{SiO}_{4}$ tetrahedra link the Ti chains in the (010) plane. <br> References <br> Kostov (1968) 298, 299. <br> Povarennykh (1972) 388, 389, 392. <br> Wyckoff (1965) Vol. 3, 181, (1968) Vol. 4, 190. <br> Zoltai + Stout (1984) 366. <br> Groat + al. (1990) 992-1008. |  |





|  |  | $\begin{aligned} \mathrm{B}_{\mathrm{IV}}(4 \mathrm{a}) \mathrm{y} & =0.500 \\ \mathrm{z} & =0.330 \\ x & =0.415 \\ \mathrm{x} & =0.500 \\ \mathrm{~B}_{\mathrm{V}}(4 a) \mathrm{y} & =-.330 \\ z & =0.415 \\ x & =0.170 \\ \mathrm{~B}_{\mathrm{VI}}(4 a) \mathrm{y} & =0 \\ \ldots & z=0.085 \end{aligned}$ |
| :---: | :---: | :---: |
| Fig. 1 <br> Fig. 2 <br> Fig. 3 |  |  |
| Properties |  |  |
|  |  |  |
| Figures Description |  |  |
| Fig. 1. Polyhedral partial description of the boracite structure (after Povarennykh, 1972). <br> Fig. 2. Polyhedral description of the high temperature form of boracite which is cubic, $\mathrm{F} \overline{4} 3 \mathrm{c}$, $a=12.1$ (after Kostov, 1968). <br> Fig. 3. Polyhedral representation of the Mg octahedron position in a square section of the framework and chain of distorted Mg octahedra (after Povarennykh, 1972). <br> The boracite structure is a framework consisting of regular $\mathrm{B}^{\mathrm{t}} \mathrm{O}_{4}$ tetrahedra and $\mathrm{B}^{\mathrm{tr}} \mathrm{O}_{3}$ triangles, with large square holes where are located Mg and Cl atoms forming infinite octahedral chains. <br> Kostov (1968) 432, 433. <br> Povarennykh (1972) 462, 463. Wyckoff (1968) Vol. 4, 60-64. Zoltai + Stout (1984) 435. |  |  |
| Crystallographic data (continued) |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |





| $\begin{aligned} & \frac{\text { MARIALITE }}{(\text { Scapolite ) }} \quad \mathrm{I} 4 / \\ & \mathrm{Na}_{4}^{[9]} \mathrm{Cl}_{\infty}^{3}\left[\mathrm{Si}_{3}^{\mathrm{t}} \mathrm{Al}^{\mathrm{t}} 0_{8}\right. \end{aligned}$ |  | $\begin{aligned} & \mathbf{x}=0 \\ & \mathbf{y}=0 \\ & \mathbf{z}=0 \\ & \mathbf{x}=0.3388 \\ & \mathbf{y}=0.4104 \\ & \mathbf{z}=0 \\ & \mathbf{x}=0.3374 \\ & \mathbf{y}=0.0851 \\ & \mathbf{z}=0.2060 \end{aligned}$ | $\begin{aligned} & 0_{I} \quad(8 h) \\ & 0_{\text {II }} \quad(8 h) \\ & 0_{\text {III }}(16 i), \end{aligned}$ | $\begin{aligned} & \mathbf{x}=0.4587 \\ & \mathbf{y}=0.3483 \\ & \mathbf{z}=0 \\ & \mathbf{x}=0.3066 \\ & \mathbf{y}=0.1206 \\ & \mathbf{z}=0 \\ & \mathbf{x}=0.0517 \\ & \mathbf{y}=0.3500 \\ & \mathbf{z}=0.2148 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| (a) <br> Fig. 1 | (b) |  |  |  |
| Properties |  |  |  |  |
| Habit <br> prismatic $\quad$Cleav. <br> good <br> $(100)$ <br> Fract. <br> conchoi- <br> dal <br> Refr. index $/$ Reflect. <br> $\mathrm{n}_{\omega}=1.540$ <br> $\mathrm{n}_{\epsilon}=1.536$$.$Birefr. <br> $(-)$ | $\frac{\text { Hardn. }}{5-6}$ $\frac{\text { Dens. }}{2.55}$ Colour <br> colourless, <br> variable Transparent <br> to trans- <br> lucent <br> $\frac{\text { Luster }}{\text { vitreous }}$ $\frac{\text { Streak }}{\text { white }}$  Melt.p.$\frac{\frac{\text { CPI }}{\text { (SPI) }}}{}$  45 |  |  |  |
| Figures | Description |  |  |  |
| Fig. 1. Polyhedral representation of the marialite structure: (a) viewed along the $\subseteq$ axis, and (b) viewed along an a axis (after Povarennykh, 1972). | Its structure consists of a framework of $\mathrm{Si}^{\mathrm{t}} \mathrm{O}_{4}$ and $(\mathrm{Si}, \mathrm{Al})^{\mathrm{t}} \mathrm{O}_{4}$ tetrahedra, with sodium and chlorine atoms in the holes. |  |  |  |
|  | Crystallographic data (continued) |  |  |  |
|  | $0_{I V}(16 i) \begin{aligned} & x=0.2293 \\ & y=0.1289 \\ & z=0.3281 \end{aligned}$ |  |  |  |
|  | References |  |  |  |
|  | ```Kostov (1968) 404, 405. Povarennykh (1972) 348. Wyckoff (1968) Vol. 4, 434-437. Zoltai + Stout (1984) 313.``` |  |  |  |



| GMELINITE $(\mathrm{Na}, \mathrm{Ca})_{2}{\left(\mathrm{H}_{2} \mathrm{O}\right)_{\sim 6}}_{\substack{3}}^{\infty}$ | $\left.\left.\begin{array}{ll} \mathrm{P}_{3} / \mathrm{mmc} & \begin{array}{l} \mathrm{a}=13.756 \\ \mathrm{c}=10.048 \\ \mathrm{Si} \\ \mathrm{Si}_{4}^{\mathrm{t}} \\ \mathrm{Al} \\ 2 \end{array} \\ \mathrm{O}=4 \end{array}\right] \begin{array}{l} \mathrm{O} \end{array}\right] \quad \begin{aligned} & \mathrm{Al}, \mathrm{Si})(241) \end{aligned}$ |  |
| :---: | :---: | :---: |
|  <br> Fig. 1 |  <br> Fig. 2 |  |
| Properties |  |  |
|  |  |  |
| Figures | Description |  |
| Fig. .1. Structural scheme of the silica-oxygen framework of the gmelinite structure (after Barrer + Kerr, 1959, quoted by Bragg + Claringbull, 1965). <br> Fig. 2. Tubular building unit of the silicate framework of the gmelinite structure (after Liebau, 1985). <br> Fig. 3. Projection on the basal plane of the gmelinite structure (after Povarennykh 1972). | Gmelinite is a zeolite mineral. Its structure consists of a framework of (Si,Al)O ${ }_{4}$ tetrahedra, with ( $\mathrm{Na}, \mathrm{Ca}$ ) atoms and water molecules located in large holes. <br> Crystallographic data (continued) |  |








| $\begin{aligned} & \text { ANALCIME } \quad \mathrm{I}_{1} / \mathrm{a} \overline{3} 2 \\ & \mathrm{Na} \mathrm{(H2O)} \stackrel{3}{\infty}\left[\mathrm{Si}_{2}^{\mathrm{t}} \mathrm{Al}^{\mathrm{t}}\right. \end{aligned}$ | $\begin{array}{cc} \mathrm{d} & \mathrm{a}=13.43 \AA \\ \mathrm{O}_{6} \\ z=16 \\ 1 / 2 \mathrm{Na} \quad(24 \mathrm{c}) \\ \left(\mathrm{H}_{2} \mathrm{O}\right)(16 \mathrm{~b}) \end{array}$ | $\begin{aligned} &(\mathrm{Si}, \mathrm{Al})(48 \mathrm{~g}) u=0.66239 \\ & \mathrm{x}=0.10506 \\ & 0(96 \mathrm{~h}) \begin{array}{l} \mathrm{y} \\ \mathbf{z} \end{array}=0.13490 \\ &=0.71976 \end{aligned}$ |
| :---: | :---: | :---: |
|  | Fig, 2 |  |
| Properties |  |  |
|  |  |  |
| Figures | Description |  |
| Fig 1. Polyhedral representation of the structure of analcime (after Zoltai + Stout, 1984). <br> Fig. 2. System of non intersecting one-dimensional channels in the analcime structure, running parallel to the $[111]$ zone axis (after Liebau, 1985). | Analcime is a zeolite mineral. Its structure consists of a framework of (Si, Al) ${ }^{\mathrm{t}} \mathrm{O}_{4}$ tetrahedra, with sodium and water molecules in the holes. <br> References <br> Kostov (1968) 416. <br> Povarennykh (1972) 351. <br> Wyckoff (1968) Vol. 4, 399-401. <br> Zoltai + Stout (1984) 309, 310. <br> Liebau (1985) 158. |  |







| $\begin{array}{ccc} \frac{\text { STILBITE }}{(\text { Desmine })} & & \mathrm{C} 2 / \mathrm{m} \\ (\mathrm{Ca}, \mathrm{Na})\left(\mathrm{H}_{2} \mathrm{O}\right) & \stackrel{3}{\infty}\left[\mathrm{Si}_{7}^{\mathrm{t}}\right. \end{array}$ | $\left.\mathrm{Al}_{2}^{\mathrm{t}} \mathrm{O}_{18}\right] \quad \begin{aligned} \mathrm{a} & =13.64 \AA \\ \mathrm{~b} & =18.24 \AA \\ \mathrm{c} & =11.27 \AA \\ \beta & =128^{\circ} .0 \\ \mathrm{z} & =4 \end{aligned}$ |  |
| :---: | :---: | :---: |
| $\Delta(\mathrm{Si}, \mathrm{A}) \mathrm{O}$, Ca Na <br> Fig. 1 | (a) <br> Fi |  <br> Fig. 2 <br> (b) |
| Properties |  |  |
| Habit Cleav. Fract. <br> prismatic, perfect subcon- <br> striated $(010)$ choidal <br> Refr. index /Reflect. Birefr.  <br> $\mathrm{n}_{\alpha}=1.49$ $(-)$  <br> $\mathrm{n}_{\beta}=1.50$ $2 \mathrm{~V}=30^{\circ}-50^{\circ}$  <br> $\mathrm{n}_{\mathcal{Y}}=1.50$   |  |  |
| Fi.gures | Description |  |
| Fig. 1. Polyhedral representation, in perspective, of the stilbite structure (after Zoltai + Stout, 1984). <br> Fig. 2. Representations of the stilbite framework:(a) viewed along the a axis, and (b) along the [102] axis (after Galli, 1971). | Stilbite is a zeolite mineral. Its structure consists of a framework of (Si,Al)O ${ }_{4}$ tetrahedra, with Ca and Na atoms and water molecules located in relatively open channels. | - ${ }^{\text {Crystallographic data (continued) }}$ |
|  |  | Crystallographic data (continued) |
|  |  |  |
|  | ```Kostov (1968) 412. Zoltai + Stout (1984) 317, 319. Galli (1971) 833-841.``` | $\begin{array}{lll} x=0.3406 \\ o_{V I I}(8 j) y=0.162 \\ y & =0.31014 \end{array} \quad H_{2} O_{V}(4) \begin{aligned} & x=0.4028 \\ & y=0.5000 \end{aligned}$ |
|  |  |  |



### 8.4.6. Structures not classified

| $\begin{aligned} \text { HESSITE } & \mathrm{Ag}_{2}^{\mathrm{t}} \mathrm{Te} \\ & \\ & \mathrm{P} 2_{1} / \mathrm{c} \end{aligned}$ | $\begin{aligned} \mathrm{a} & =8.09 \AA \\ \mathrm{~b} & =4.48 \AA \\ \mathrm{c} & =8.96 \AA \\ \beta & =123^{\circ} 20^{\prime} \\ \mathrm{z} & =4 \end{aligned}$ | $\begin{aligned} & \mathrm{Ag}_{\mathrm{I}}(4 \mathrm{e}) \\ & \mathrm{Ag}_{\mathrm{II}}(4 \mathrm{e}) \\ & \mathrm{Te}(4 \mathrm{e}) \end{aligned}$ | $\begin{aligned} & x=0.018 \\ & y=0.152 \\ & z=0.371 \\ & x=0.332 \\ & y=0.837 \\ & z=0.995 \\ & x=0.272 \\ & y=0.159 \\ & z=0.243 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| (a) <br> Fig. 1 | (b) <br> Fig. 2 |  |  |
| Properties |  |  |  |
|  |  | $\mid$ |  |
| Figures | Description |  |  |
| Fig. 1. (a) Perspective view of the hessite structure, and (b) projection on (010) (after Frueh, 1959). <br> Fig. 2. Perspective projection along the $\underline{b}$ axis of the structure of hessite (after Lee + + Boer, 1993). | In the hessite structure the Ag atoms are approximately tetrahedrally coordinated by the Te atoms. Hessite can be regarded as a strongly distorted antifluorite structure (Lee+Boer, 1993). <br> Kostov (1968) 158. <br> Povarennykh (1972) 211. <br> Wyckoff (1963) Vol. 1, 340. <br> Frueh, Jr. (1959) 44-52. <br> Lee+Boer (1993) 1444-1446. <br> Palache et al. (1944) Vol. 1, 184. <br> Roberts et al. (1974) 270. |  |  |




| BISCHOFITE <br> C $2 / \mathrm{m}$ $\mathrm{Mg}^{\mathrm{o}} \mathrm{Cl}_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ |  |  |
| :---: | :---: | :---: |
| (a) <br> Fig. 1 | $\begin{gathered} \text { s} \\ 0 \\ 0 \\ x^{n} \\ 3 \\ 0 \\ 0 \\ 0 \end{gathered}$ |  |
| Properties |  |  |
|  | Dens. Colour <br> colourless, Transpa- <br> white <br> Streak rent to <br> translucent  <br> Melt.p. $\xrightarrow[C P I]{ }$  |  |
| Figures | Description |  |
| Fig. 1. Structure of bischofite in projection: (a) on (201), and (b) on a plane perpendicular to the previous one (after Povarennykh, 1972). <br> The structure of bischofite has distinct $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{6} \mathrm{Cl}_{2}$ groups formed by $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$ octahedra, with Cl located at the octahedron faces above and below. Six Cl atoms not in this group form a ring in a plane perpen dicular to the axis of the molecule. <br> This structure is possibly based on a defect close packing of C1 and water molecules. |  |  |


| $\underline{\text { VIVIANITE }} \quad$ C $2 / \mathrm{m}$ | $\begin{array}{ll} \mathrm{a}=10.08 \AA & \mathrm{Fe}_{\mathrm{I}}(2 \mathrm{a}) \\ \mathrm{b}=13.43 \AA & \end{array}$ | $\begin{aligned} & x=0 \\ & y=0 \\ & z=0 \end{aligned}$ | $\begin{array}{lll}  \\ 0_{I} & (4 i) & \begin{array}{l} x=0.155 \\ y \\ z \end{array}=0 \end{array}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{Fe}_{3}^{\mathrm{o}} \mathrm{P}_{2}^{\mathrm{t}} \quad \mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ | $\begin{array}{ll} \mathrm{c}=4.70 \AA & \mathrm{Fe}_{\mathrm{II}}(4 \mathrm{~g}) \\ \beta=104^{\circ} 30^{\prime} & \\ \mathrm{Z}=2 \end{array}$ | $\begin{align*} & x=0 \\ & y=0.390 \\ & z=0 \\ & x=0.315 \\ & y=0  \tag{4i}\\ & z=0.410 \end{align*}$ | $\begin{array}{ll} 0_{I I}(4 i) & \begin{array}{l} x=0.400 \\ y \\ z=0 \end{array} \\ & \begin{array}{l} x=0.750 \\ x \end{array} \\ 0_{I I I}(8 j) & \begin{array}{l} y=0.100 \\ z \end{array}=0.245 \end{array}$ |
|  |  | * |  |
| Properties |  | Fig. 3 |  |
|  |  |  |  |
| Population | Description |  |  |
| Erythrite $\mathrm{Co}_{3}^{\mathrm{O}} \mathrm{As}_{2}^{\mathrm{t}}$ $\mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ <br> Köttigite $\mathrm{Zn}_{3}^{\mathrm{O}} \mathrm{As}_{2}^{\mathrm{t}}$ $\mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ <br> Parasym- <br> plesite $\mathrm{Fe}_{3}^{\mathrm{O}} \mathrm{As}_{2}^{\mathrm{t}}$ $\mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ <br> Hoernesite $\mathrm{Mg}_{3}^{\mathrm{O}} \mathrm{As}_{2}^{\mathrm{t}}$ $\mathrm{O}_{8}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}$ | The vivianite structure is probably based on a distorted closest packing of oxygen and water molecules, with iron atoms in octahedral voids, and phosphorus atoms in tetrahedral voids. |  |  |
| Figures |  |  |  |
| Fig. 1. Structure of vivianite, showing the $\mathrm{FeO}_{2}(\mathrm{OH})_{4}$ octahedra and the $\mathrm{PO}_{4}$ tetrahedra forming layers parallel to (010) (after Povarennykh, 1972). <br> Fig. 2. Layer of the clino-symplesite structure (after Mori + Ito, 1950, quoted in Structure Reports, 1954, 13). <br> Fig. 3. Polyhedral representation of the vivianite structure, in a section parallel to (001) (after Fedji et al., 1980, quoted in Structure Reports, 1982, 46A). | Crystallographic data (continued) |  |  |




| THENARDITE$\begin{array}{ll} \mathrm{Na}_{2}^{\mathrm{o}} \mathrm{~S}^{\mathrm{t}} \mathrm{O}_{4} & \mathrm{a}=5.863 \AA \\ & \mathrm{~b}=12.304 \AA \\ & \mathrm{c}=9.821 \AA \\ \mathrm{z}=9 \end{array}$ |  | $\begin{aligned} & \mathrm{Na}(16 \mathrm{~g}) \mathrm{u}=0.436 \\ & \mathrm{~S}(8 \mathrm{a}) \\ & \mathrm{O}(32 \mathrm{~h}) \begin{array}{l} \mathrm{x}=-0.022 \\ \mathrm{y}= \\ \mathrm{z}=0.056 \\ \end{array}=0.214 \end{aligned}$ |
| :---: | :---: | :---: |
|  | Fig. 2 |  |
| Properties |  |  |
|  |  |  |
| Figures | Description |  |
| Fig. 1. Polyhedral representation of the thernadite structure (after Povarennykh, 1972). <br> Fig. 2. Ball and spoke representation of the thernadite structure (after Nord, 1973, quoted in Structure Reports, 1975, Vol.39A). | The thenardite structure consists of isolated $\mathrm{SO}_{4}$ tetrahedra linked by Na atoms, which have distorted octahedral coordination. <br> References <br> Kostov (1968) 502, 503. <br> Povarennykh (1972) 582. <br> Wyckoff (1965) Vol. 3, 109, 110. <br> Roberts et al. (1974) 612, 613. <br> Ingerson (1955) 351. <br> Structure Reports (1975) Vol. 39A, 306 . |  |



| $\begin{gathered} \text { BARYTE } \mathrm{Ba}^{[12]} \mathrm{S}^{\mathrm{t}} 0_{4} \\ \text { Pnma } \end{gathered}$ | $\begin{array}{ll} \mathrm{a}=8.8701 \AA & \mathrm{Ba}(4 \mathrm{c}) \begin{array}{l} \mathrm{x} \\ \mathrm{y} \\ \mathrm{z} \end{array}=0.1 / 4 \\ \mathrm{z}=5.458 \\ \mathrm{~b}=5.4534 \AA & \mathrm{~S}(4 \mathrm{c}) \begin{array}{l} \mathrm{x} \\ \mathrm{y} \end{array}=0.06 \\ \mathrm{z}=7.1507 \AA & \\ \mathrm{z}=0.69 \\ \mathrm{z}=4 & \\ & \mathrm{o}_{\mathrm{I}}(4 \mathrm{c}) \\ \mathrm{x} & \mathrm{y}=-0.0 \\ \mathrm{z} & =1 / 4 \end{array}$ | $\begin{array}{ll}  & \begin{array}{l} x=0.187 \\ o_{I I}(4 c) \\ y=1 / 4 \\ z=0.543 \\ \\ \\ o_{I I I}(8 d) \\ \\ y=0.079 \\ z=0.034 \\ z=0.813 \end{array} \end{array}$ |
| :---: | :---: | :---: |
| Fig. 1 | g. 2 <br> Fig. 3. |  |
| Properties |  |  |
|  |  |  |
| Population | Description |  |
| $\begin{array}{lll} \text { Anglesite } & \mathrm{Pb}^{[12]} \mathrm{S}^{\mathrm{t}} & \mathrm{O}_{4} \\ \text { Celestite } & \mathrm{Sr}^{[12]} \mathrm{S}^{\mathrm{t}} & 0_{4} \end{array}$ <br> Figures | The baryte structure consists of isolated $\mathrm{SO}_{4}$ tetrahedra linked by Ba atoms with coordination [12] in relation to oxygen. |  |
| Fig. 1. Ball and spoke representation of the baryte structure (after Povarennykh, 1972). <br> Fig. 2. Baryte structure projected along the $\mathbf{c}_{\text {axis (after Ramdohr }+}$ Strunz, 1980). <br> Fig. 3. Polyhedral representation of the baryte structure showing the cleavage direction (after Kostov, 1968). |  |  |




| $\text { GLAUBERITE } \quad \mathrm{Na}_{2}^{7} \mathrm{Ca}^{8}$ <br> C $2 / \mathrm{c}$ | $\begin{array}{ll} \mathrm{S}_{2}^{\mathrm{t}} \mathrm{O}_{8} & \begin{array}{l} \mathrm{a}=10.129 \AA \\ \mathrm{~b} \end{array}=8.306 \AA \\ & \mathrm{c}=8.533 \AA \\ \beta & =112.19^{\circ} \\ & z=4 \end{array}$ |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| Properties |  |  |  |
|  |  |  |  |
| Figures | Description |  |  |
| Fig. 1. Polyhedral description of the glauberite structure (after Araki + Zoltai, 1967). <br> Fig. 2. Ball and spoke representation of the glauberite structure projected along the $\underline{b}$ axis (after Cocco et al., 1965). | The glauberite structure consists of regular $\mathrm{SO}_{4}$ tetrahedra, with 8 coordinated Ca atoms, at the corners of an irregular antiprism. Na is coordinated by 7 oxygens forming a distorted mono-capped octahedron. |  |  |
|  | Crystallographic data (continued) |  |  |
|  | $\mathrm{o}_{I V}(8 f) \begin{aligned} & x=0.1134 \\ & y=0.3697 \\ & z=0.1325 \end{aligned}$ |  |  |
|  | References |  |  |
|  | Kostov (1968) 504. <br> Araki + Zoltai (1967) 1272-1277. <br> Cocco et al. (1965) 182. <br> Roberts et al. (1974) 237, 238. |  |  |


| $\begin{aligned} & \frac{\text { LINARITE }}{} \quad \begin{array}{l} \text { P } 2 / \mathrm{m} \\ \mathrm{~Pb}^{3} \mathrm{Cu}^{6} \\ (\mathrm{OH})_{2} \mathrm{~S}^{\mathrm{t}} \end{array} . \end{aligned}$ |  |  |
| :---: | :---: | :---: |
|  | Fig. 2 |  |
| Properties |  |  |
|  |  |  |
| Figures | Description |  |
| Fig 1. Ball and spoke representation of the linarite structure projected along the $\underline{b}$ axis (after Povarennykh, 1972). <br> Fig. 2. Partial representation of the linarite structure (after Kostov, 1968). | The structure of linarite consists of $\mathrm{Cu}(\mathrm{OH})_{2}$ infinite chains of $\mathrm{Cu}(\mathrm{OH})_{4}$ squares sharing edges, $\mathrm{SO}_{4}$ isolated tetrahedra linked together by $\mathrm{PbO}_{3}$ pyramids. |  |
|  | Crystallographic data (continued) |  |
|  |  |  |
|  | References |  |
|  | ```Kostov (1968) 515. Povarennykh (1972) 587. Wyckoff (1965) Vol. 3, 196-199. Structure Reports (1969) Vol. 26, 452. Bachmann + Zemann (1961) 747-753. Roberts et al. (1974) 358.``` |  |












## References

Adams, F.S. (1954) The birth and development of the geological sciences, Dover Publications, New York.
Agricola, G. (Georg Bauer) (1546) De natura fossilium. Froben, Basel.
Ahrens, L. H. (1952) "The use of ionization potentials". Geochim. Cosmochim. Acta, 2, 155-169.
Akao, M. \& Iawai, S. (1977) "The hydrogen bonding of hydromagnesite". Acta Cryst., B33, 1273-1275.
Akao, M., Marumo, F. \& Iawai, S. (1974) "The crystal structure of hydromagnesite". Acta Cryst., B30, 2670-2672.
Alexander, V. D., Griffen, D. T. \& Martin, T. J. (1986) "Crystal chemistry of some Fe - and Ti- poor dumortierites". Amer. Miner., 71, 786-794.
American Society for Testing and Materials (1957) "What can be done to improve alloy phase nomenclature?" A report of Nomenclature Subcommittee E-4 on Metallography. ASTM Bulletin, 226, 23-30.
Amirov, S. T., Iljukhin, V. V. \& Belov, N. V. (1967) "The crystal structure of leonhardite (laumontite) $\mathrm{CaAl}_{2} \mathrm{Si}_{4} \mathrm{O}_{12} \bullet \mathrm{nH}_{2} \mathrm{O}$ ( $2<\mathrm{n}<4$ )". Dokl. Akad. Nauk SSSR, 174, 667-670. English translation Dokl. Acad. Sci. URSS, Earth Sci. Section, 174, 121-124.
Andersson, S. \& O'Keeffe, M. (1977) "Body-centred cylinder packing and garnet structure". Nature, 267, 605-606.
Andress, K. R. \& Gundermann, K. R. (1934) "Kristallhydrate. I. Die Struktur von Magnesiumchlorid- und Magnesiumbromidhexahydrat". Zeit. Krist., (A), 87, 345-369.
Andress, K. R. \& Saffe, O. (1939) "Rontgenographische Untersuchung der Mischkristallreihe Karnallit-Bromkarnallit". Zeit. Krist., (A), 101, 451-469.
Appleman, D. E. \& Evans, H. T. Jr. (1965) "The crystal structure of synthetic anhydrous carnotite, $\mathrm{K}_{2}\left(\mathrm{UO}_{2}\right)_{2} \mathrm{~V}_{2} \mathrm{O}_{8}$ and its cesium analogue, $\mathrm{Cs}_{2}\left(\mathrm{UO}_{2}\right)_{2} \mathrm{~V}_{2} \mathrm{O}_{8} "$. Amer. Miner., 50, 825-842.
Araki, T. \& Zoltai, T. (1967) "Refinement of the crystal structure of a glauberite". Amer. Miner., 52, 1272-1277.
Araki, T. \& Zoltai, T. (1968) "The crystal structure of wavellite". Zeit. Krist., 127, 21-38.
Armbruster, T. (1986) "Role of Na in the structure of lowcordierite. A single-crystal X-ray study". Amer. Miner., 71, 746-757.
Artioli, G., Smith, J. V. \& Pluth, J. J. (1986) "X-ray structure refinement of mesolite". Acta Cryst., C42, 937-942.
Avicenna (Ibn Siná) (980-1037) Quoted by A. S. Povarennykh (1972), pp. 4 and 12.

Bachmann, H. G. \& Zemann, J. (1961) "Die Kristallstruktur von Linarit, $\mathrm{PbCuSO}_{4}(\mathrm{OH})_{2} "$. Acta Cryst., 14, 747-753.

Bacon, G. E. \& Curry, N. A. (1956) "A neutron diffraction study of sodium sesquicarbonate". Acta Cryst., 9, 82-85.
Bacon, G. E. \& Curry, N. A. (1962) "The water molecules in $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ ". Proc. Royal Soc. Lond., A 266, 95-108.
Ball, M. C. \& Taylor, H. F. W. (1961) "The dehydration of brucite". Miner. Mag., 32, 754-766.
Barlow, W. (1883) "Probable nature of the internal symmetry of crystals". Nature (London) 29, 186-188, 205-207.
Barrer, R. M. \& Kerr, I. S. (1959) Trans. Faraday Soc., 55, 1915. Quoted by W. L. Bragg \& G. F. Claringbull (1965), p. 351.
Baur, W. H. (1964a) "On the crystal chemistry of salt hydrates. III. The determination of the crystal structure of $\mathrm{FeSO}_{4} \bullet$ $7 \mathrm{H}_{2} \mathrm{O}$ (melanterite)". Acta Cryst., 17, 1167-1174.
Baur, W. H. (1964b) "On the crystal chemistry of salt hydrates. IV. The refinement of the crystal structure of $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$ (epsomite)". Acta Cryst., 17, 1361-1369.
Belov, N. V. (1939) "Classification of closest and close packings". Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, Vol. XXIII, $\mathbf{N}^{0} 2,170-174$.
Belov, N. V. (1947) Structure of ionic crystals and metallic phases (in Russian), Izd. Akad. Nauk SSSR, Moscow. Quoted by I. Kostov (1981), p. 707.
Belov, N. V. (1951) "Studies in structural mineralogy. II" (in Russian). Mineralogitscheski Sbornik Lvovskoho Geologitscheskoho Obschestva, $\mathrm{N}^{\circ}$ 5, 13-36.
Belov, N. V. (1956) "Essays of structural mineralogy" (in Russian) Mineral. Sb. (Lvov), (10), 10-32.
Belov, N. V. (1963) Crystal chemistry of large-cation silicates. Consultants Bureau, New York. English translation of the Russian original (1961). Akademy of Sciences Press, Moscow.
Berry, L. G. \& Mason, B. (1959) Mineralogy. Concepts, descriptions, determinations. W. H. Freeman and Company, San Francisco.
Berzelius, J. J. (1819) Nouveau système de Mineralogie. Méquignon-Marvis, Paris.
Bloss, F. D. (1971) Crystallography and chemistry. An introduction. Holt, Rinehart and Wilson, New York.
Bokii, G. B. (1954/1960) Introduction to crystal chemistry. United States Joint Publ. Research Service, New York (1960). English translation of the Russian original (1954). Izdatel'stvo Moskovskogo Universiteta.
Born, L. \& Hellner, E. (1960) "A structural proposal for boulangerite". Amer. Miner., 45, 1266-1271.
Born, M. (1919) "A thermo-chemical application of the lattice theory". Verh. Dtsch. Phys. Ges., 21, 13-24.
Born, M. \& Landé, A. (1918) "The calculation of the com-
pressibility of cubic crystals from the space lattice theory". Verh. Dtsch. Phys. Ges., 20, 210-216.
Bragg, W. L. (1913) "The structure of some crystals as indicated by their diffraction of X-rays." Proc. R. Soc. London Ser. A, 89, 248-277.
Bragg, W. L. (1929) "Atomic arrangement in the silicates". In Crystal structure and chemical constitution. A general Faraday discussion held by the Faraday Society (pp. 291-314).
Bragg, W. L. (1930) "The structure of the silicates". Zeit. Krist., 74, 237-305.
Bragg, W. L. (1964) "Minerals". Proceedings of the Royal Institution of Great Britain, 40, Part I, No 182, 64-81.
Bragg, W. L. \& Claringbull, G. F. (1965) Crystal structures of minerals. G. Bell and Sons, London.
Brindley, G. W. (1961) "Crystal structure and thermal behaviour of some ceramic materials" (in Japanese). J. Jap. Ass., 69, C 189-194. Quoted by G. W. Brindley (1963), p. 8.
Brindley, G. W. (1963) "Crystallographic aspects of some decomposition and recrystallization reactions". In Progress in ceramic science, Vol. 3 edited by J.E. Burke. Pergamon Press, Oxford (pp. 1-55).
Brown, C. J., Peiser, H. S. \& Turner-Jones, A. (1949) "The crystal structure of sodium sesquicarbonate", Acta Cryst., 2, 167. Quoted in Structure Reports (1952), 12, 238-240.
Brown, I. D. (1981) "The bond-valence method: an empirical approach to chemical structure and bonding". In Structure and bonding in crystals II, edited by M. O'Keeffe and A. Navrotsky. Academic Press, New York (pp. 1-30).
Buerger, M. J. (1947) "Derivative crystal structures". J. Chem Physics, 15, 1-16.
Buerger, M. J. (1967) (Private communication)
Buerger, M. J. (1971) Introduction to crystal geometry. McGrawHill, New York, p.5.
Buerger, M. J., Burnham, C. W. \& Peacor, D. R. (1962) "Assessment of the several structures proposed for tourmaline". Acta Cryst., 15, 583-590.
Bunn, C. (1964) Crystals. Their role in nature and in science. Academic Press, New York.
Burke, J. H. (1966) Origins of the science of crystals. University of California Press, Berkeley
Burns, R. G. \& Burns, V. M. (1979) "Manganese oxides". In Marine minerals. Reviews in Mineralogy, Vol. 6, Mineralogical Society of America (pp. 1-46).
Bystrom, A. \& Mason, B. (1943) "The crystal structure of braunite $3 \mathrm{Mn}_{2} \mathrm{O}_{3} \bullet \mathrm{MnSiO}_{3}$ ". Ark. Kemi, Min. Geol., $16, \mathrm{~N}^{0}$ 15, 1-8.
Caillère, S. \& Hénin, S. (1961) "Palygorskite". In The X-ray identification and crystal structures of clay minerals, edited by G. Brown. Mineralogical Society, London (pp. 343-353).

Calleri, M., Gavetti, A., Ivaldi, G. \& Rubbo, M. (1984) "Synthetic epsomite, $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$ : Absolute configuration and surface features of the complementary $\{111\}$ forms". Acta Cryst., B40, 218-222.
Chaskolskaia, M. (1959) Crystals. Editions en Langues Etrangères, Moscow.
Christ, C. L., Clark, J. R. \& Evans, H. T. Jr. (1958) "Borate minerals (III). The crystal structure of colemanite, $\mathrm{CaB}_{3} \mathrm{O}_{4}(\mathrm{OH})_{3} \bullet \mathrm{H}_{2} \mathrm{O} "$. Acta Cryst., 11, 761-770.
Christian, J. W. (1951) "A theory of the transformation in pure cobalt". Proc. Roy. Soc. A, 206, 51-64.

Cid-Dresdner, H. (1965) "Determination and refinement of the crystal structure of turquoise, $\mathrm{CuAl}_{6}\left(\mathrm{PO}_{4}\right)_{4}(\mathrm{OH})_{8} \bullet 4 \mathrm{H}_{2} \mathrm{O}$ ". Zeit. Krist., 121, 87-113.
Cocco, G. (1962) "La struttura della mirabilite". Rend. Accad. Naz. dei Lincei Ser. 8, 32, 690-698.
Cocco, G., Corazza, E. \& Sabelli, C. (1965) "The crystal structure of glaubite, $\mathrm{CaNa}_{2}\left(\mathrm{SO}_{4}\right)_{2} "$. Zeit. Krist., 122, 175-184.
Cooper, W. F., Larsen, F. K. \& Coppens, P. (1973) "Electron population analysis of accurate diffraction data. V. Structure and one-center charge refinement of light-atom mineral kernite $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{6}(\mathrm{OH})_{2} \bullet 3 \mathrm{H}_{2} \mathrm{O}$ ". Amer. Miner., 58, 21-31.
Corbridge, D. E. C. (1971) "The structural chemistry of phosphates". Bull. Soc. Miner. Cristallographie, 94, 271-299.
Cronstedt, F. (1758) An essay towards a system of mineralogy (in Swedish), Stockholm.
Dachs, H. von (1963) "Neutronen- und Röntgenuntersuchungen an Manganit, MnOOH". Zeit. Krist., 118, 303-326.
Dana, J. D. (1850) The system of mineralogy. Third edition John Wiley, New York.
Dana, J. D. (1854) The system of mineralogy. Fourth edition John Wiley, New York.
Deer, W. A., Howie, R. A. \& Zussman, J. (1962) Rock-forming minerals, Vol. 1. Ortho and ring silicates. Longmans, London.
Deer, W. A., Howie, R. A. \& Zussman, J. (1962) Rock-forming minerals, Vol. 3. Sheet silicates. Longmans, London.
Deer, W. A., Howie, R. A. \& Zussman, J. (1962) Rock-forming minerals, Vol. 5. Non-silicates. Longmans, London.
De Jong, W. F. (1959) General Crystallography. A brief compendium. Freeman, San Francisco.
Dent Glasser, L. S., Glasser, F. P. \& Taylor, H. F. (1962) "Topotatic reactions in inorganic oxy-compounds". Quarterly Reviews. Chem. Soc. London, 16, 343-360.
Dollase, W. A. (1967) "The crystal structure at $220^{\circ} \mathrm{C}$ of orthorhombic high tridymite from the Steinbach meteorite". Acta Cryst., 23, 617-623.
Dollase, W. A. (1968) "Refinement and comparison of the structures of zoisite and clinozoisite". Amer. Miner., 53, 1882-1898.
Dollase, W. A. (1971) "Refinement of the crystal structure of epidote, allanite and hancockite". Amer. Min., 56, 447-464.
Dollase, W. A. \& Baur, W. H. (1976) "The superstructure of meteoritic low tridymite solved by computer simulation". Amer. Miner., 61, 971-978.
Donnay, J. D. H., Donnay, G., Cox, E. G., Kennard, O. \& King, M. V. (1963) "Crystal data. Determinative tables". Second edition. American Crystallographic Association.
Donnay, J. D. H., Hellner, E. \& Niggli, A. (1964) "Coordination polyhedra". Zeit. Krist., 120, 364-374.
Donnay, J. D. H., Hellner, E. \& Niggli, A. (1966) "Symbolism for lattice complexes, revised by a Kiel Symposium". Zeit. Krist., 123, 255-262.
Eitel, W. (1964) Silicate science, Vol. 1. Silicate structures. Academic Press, New York.
Ernst, W. G. (1968) Amphiboles. Springer-Verlag, Berlin.
Ervin, G. (1952) "Structural interpretation of diasporecorundum and boehmite- $\gamma-\mathrm{Al}_{2} \mathrm{O}_{3}$ transitions". Acta Cryst., 5, 103-108.
Evans, H. T. Jr. (1979) "The crystal structures of low chalcocite and djurleite". Zeit. Krist., 150, 299-320.

Evans, H. T. Jr. \& Konnert, J. A. (1976) "A crystal structure refinement of covellite". Amer. Miner., 61, 996-1000.
Evans, R. C. (1939) An introduction to crystal chemistry. First edition. Cambridge University Press, Cambridge.
Evans, R. C. (1964) An introduction to crystal chemistry. Second edition. Cambridge University Press, Cambridge.
Ewald, P. \& Hermman, C., Editors (1931) Strukturbericht, Vol. 1 (for 1913-1928). Akademische Verlagsgesellschaft MBH, Leipzig.
Ewing, F. J. (1935) J. Chem. Phys., 3, 203. Quoted by A. F. Wells (1962), p. 556.

Fedorov, E. S. (1901) A course of crystallography (in Russian). Rikker, St. Petersburgh. Quoted by B.K. Vainshtein. (1981) p. 28.

Fedorov, E. S. (1913) "Mineralogy". Encyclopedia Assoc. Granat., 28, 681. Quoted by Povarennyk (1972), p. 15.
Fejdi, P., Poullen, J. F. \& Gasperin, M. (1980) Bull. Miner., 103, 135-138. Quoted in Structure Reports (1982), 46A, 327.
Fersman, A. E. (1935) "The geochemistry of alkaline magmas" (in Russian). Bull. Acad. Sci. URSS, 1419-1424.
Figueiredo, M. O. (1973) "Tesselations and plane symmetry groups as applied to the derivation of close-packed binary layers". Acta Cryst., A29, 234-243.
Figueiredo, M. O. (1976a) "Discriminatory characters for structure-type identification isopoint crystal structures". III European Crystallographic Meeting, Zurich (Abstract I-54-M).
Figueiredo, M. O. (1976b) (Private communication on condensed models).
Figueiredo, M. O. (1977) "Estabilidade e estrutura cristalina: o caso tipo das fases da sílica". Comunicação dos Serviços Geológicos de Portugal, Tomo LXII, 19-34.
Figueiredo, M. O. (1979a) Caracteristicas de empilhamento e modelos condensados das micas e filossilicatos afins. Junta de Inv. Cient. do Ultramar. Estudos, Ensaios e Documentos, ${ }^{\circ}$ 131, Lisboa.
Figueiredo, M. O. (1979b) (Private communication on condensed models).
Figueiredo, M. O. (1981) "A structural model for feldspars and related compounds" (in Portuguese). Presented at the VII Congresso Iberoamericano de Cristalografia, Coimbra (Abstract).
Figueiredo, M. O. (1985) "An interplay of chemical and structural data in the classification of minerals". Presented at the $I X$ European Crystallographic Meeting, Torino (Abstract).
Figueiredo, M. O. (1986) "A unified geometrical scheme for polytypism in phylosilicates". Bull. Minéralogique, 109, 31-44.
Figueiredo, M. O. \& Lima-de-Faria, J. (1977) "Theoretical approach to the derivation of condensed models of crystal structures based on square-type layers". Acta Cryst., A33, 395-398.
Figueiredo, M. O. \& Lima-de-Faria, J. (1978) "Condensed models of structures based on loose packings". Zeit. Krist., 148, 7-19.
Figueiredo, M. O. \& Lima-de-Faria, J. (1983) "Condensed models of pyroxenes and amphiboles". Garcia de Orta, Sér. Geologia, 6, 101-108.
Figueiredo, M. O. \& Lima-de-Faria, J. (1991a) "Standard sheets for condensed models of crystal structures. III - $\mathrm{CuAl}_{2}$-like intermetallic phases and affine structures". Garcia de Orta,

Sér. Geologia, 14, 29-35.
Figueiredo, M. O. \& Lima-de-Faria, J. (1991b) "Standard sheets for condensed models of crystal structures. IV - Sillén phases and related structures". Garcia de Orta, Sér. Geologia, 14, 37-43.
Finger, L. W. \& Hazen, R. M. (1991) "Crystal chemistry of sixcoordinated silicon: a key to understanding the earth's deep interior". Acta Cryst., B47, 561-580.
Ford, W. E. (1932) Dana's textbook of mineralogy. Fourth edition. John Wiley \& Sons, London.
Francombe, M. H. \& Rooksby, H. P. (1959) "Structure transformations effected by the dehydration of diaspore, goethite and delta ferric oxide". Clay Miner. Bull., 4, 1-14.
Frank, F. C. \& Kasper, J. S. (1958) "Complex alloy structures regarded as sphere packings. I. Definitions and basic principles". Acta Cryst., 11, 184-190.
Frondel, C. (1982) The system of mineralogy, Vol III. Silica minerals. John Wiley, New York.
Frondel, C. (1983) "An overview of crystallography in North America". In Crystallography in North America, edited by Dan McLachlan Jr. and Jenny P. Glusker. Amer. Cryst. Association, New York (pp. 1-24).
Frueh, A. J. Jr. (1959) "The structure of hessite, $\mathrm{Ag}_{2} \mathrm{Te}$ ". Zeit. Krist., 112, 44-52.
Galli, E. (1971) "Refinement of the crystal structure of stilbite". Acta Cryst., B27, 833-841.
Garrido, J. \& Orlando, J. (1946) Los rayos-X y la estructura fina de los cristales. Dossat, Madrid.
Geber (Jabir Ibn Hayan) (721-c.803) Quoted by J. W. Spronsen (1969), p. 25.

Ghose, S. (1964) "The crystal structure of hydrozincite, $\mathrm{Zn}_{5}(\mathrm{OH})_{6}\left(\mathrm{CO}_{3}\right)_{2}$. Acta Cryst., 17, 1051-1057.
Ghouse, K. M. (1968) "Refinement of the crystal structure of heat-treated monazite crystal". Indian J. Pure and Applied Physics, 6, 265-268.
Giacovazzo, C., Monaco, H. L., Viterbo, D., Scordari, F., Gilli, G., Zanotti, G. \& Catti, M. (1992) Fundamentals of crystallography. Published by Oxford University Press for the International Union of Crystallography.
Giuseppetti, G. \& Tadini, C. (1983). Neues Jb. Miner., Mh., 410-416. Quoted in Structure Reports, 50A, p. 264.
Goble, R. J. (1985) "The relationship between crystal structure, bonding and cell dimensions in the copper sulfides". Canad. Miner., 23, 61-76.
Goldschmidt, V. M. (1926) "Geochemische Verteilungsgesetze der Elemente". Skryfter det Norske Videnskaps Akad. Oslo. I. Mat. Natur, K1.
Goldschmidt, V. M. (1929) "Crystal structure and chemical constitution". In Crystal structure and chemical constitution. A general Faraday discussion held by the Faraday Society (pp. 253-283).
Gottardi, G. \& Galli, E. (1985) Natural zeolites. Springer-Verlag, Berlin.
Gottardi, G. \& Meier, W.M. (1963) "The cyrstal structure of dachiardite". Zeit. Krist., 119, 53-64.
Grigoriev, D.P. (1964) Fundamentals of the constitution of minerals. Israel Program for Scientific Translations, Jerusalem.
Groat, L. A., Randseff, M., Hawthorne, F. C., Ercitt, T. S., Sherriff, B. L. \& Hartman, S. T. (1990) "The ambligonite-
montebrasite series: Characterization by single-crystal structure refinement, infrared spectroscopy, and multinuclear MAS-NMR spectroscopy", Amer. Miner., 75, 992-1008.
Groth, P. H. R. von (1874) Tabellarische Ubersicht der Mineralien nach ihren Kristallographysch-chemischen Beziehungen. Braunschweig.
Haber, F. (1919) "Betrachtungen zur Theórie der Wärmetönung". Verh. Dtsch. Phys. Ges., 21, 750-768.
Hambley, T. W. \& Taylor, J. C. (1984) "Neutron diffraction studies on natural heulandite and partially dehydrated heulandite". J. Solid State Chem., 54, 1-9.
Haüy, R.J. (1801), Traité de Mineralogie. 5 vols. Delance, Paris.
Hawthorne, F. C. (1983) "Graphical enumeration of polyhedral clusters". Acta Cryst., A39, 724-736.
Hawthorne, F. C. (1984) "Towards a structural classification of minerals". Presented at the XIII International Congress of Crystallography, Hamburg (Abstract).
Hawthorne, F. C. (1985) "Towards a structural classification of minerals: The $\left.{ }^{{ }^{\mathrm{VI}}} \mathbf{M}^{\mathrm{IV}} \mathrm{T}_{2}\right|_{\mathrm{n}}$ minerals". Amer. Miner., 70, 455-473.
Hellner, E. (1958) "The structural scheme for sulfide minerals". The Journal of Geology, 66, 503-525.
Hellner, E. (1965) "Descriptive symbols for crystal-structure types and homeotypes based on lattice complexes". Acta Cryst., 19, 703-712.
Hellner, E. (1984) "Frameworks and a classification scheme for inorganic and intermetallic structure types". Presented at the XIII International Congress of Crystallography, Hamburg. Acta Crystal. (Abstract).
Hellner, E. (1986) "Einfürung in eine anorganische Strukturchemie". Zeit. Krist., 175, 227-248.
Hellner, E. \& Leineweber, G. (1956) "Uber complex zusammengesetz sulfidische Erze. I. Sruktur des Bourmonits $\mathrm{CuPbSbS}_{3}$ and Seligmannits, $\mathrm{CuPbAsS}_{3} "$. Zeit. Krist., 107, 150-154.
Hermann, C., Editor (1935) Internationale Tabellen zur Bestimmung von Kristallstrukturen. Gebrüder Bornträger, Berlin.
Hermann, C. (1960) "Zur Nomenklatur der Gitterkomplexe". Zeit. Krist., 113, 142-154.
Hermann, C., et al. (1937) See Strukturbericht (1937), Vol. II, p. 126.

Hey, M. H. (1955) An index of mineral species and varieties arranged chemically. British Museum, London.
Hooke, R. (1665) Micrographia. Jo. Martin and Js. Allestry for the Royal Society, London. Quoted by J. H. Burke, (1966), p. 38 .

Iida, S. (1957) "Layer structures of magnetic oxides". Journ. Physic, Soc. Japan. 12, 222-233.
Iitaka, Y. \& Nowacki, W. (1962) "A redetermination of the crystal structure of galenobismutite, $\mathrm{PbBi}_{2} \mathrm{~S}_{4}$ ". Acta Cryst., 5, 691-698.
Infeld, L. (1950) Albert Einstein. His work and its influence on our world. Scribner Publishers, New York.
Ingerson, E. (1955) "Methods and problems of geologic thermometry". Economic Geology, Fiftieth Anniversary Volume, Part I (1905-1955) pp. 341-410.
International Tables of Crystallography, Vol. A, Space-group symmetry, edited by T. Hahn. Published for the IUCr by Reidel Publishing Co., Dordrecht, Holland, 1983, and 1987 (Second edition).

Iskhakova, L. D., Trunov, V. K., Schegoleva, T. M., Ilyukhin, V. V. \& Vedernikov, A. A. (1983) "Crystal structure of chalcantite $\mathrm{CuSO}_{4} \bullet 5 \mathrm{H}_{2} \mathrm{O}$ grown under microgravity" (in Russian). Kristallografiya, 28, 651-657. English translation Soviet Physics-Crystallography (1983), 28, 383-386.
Ito, T. (1950) "The crystal structure of antigorite". In $X$-ray studies on polymorphism. Maruzen, Tokyo (pp. 160-167).
IUPAC (1990) Nomenclature of inorganic chemistry. Blackwell, Oxford.
Jarchow, O. (1965) "Atomanordnung und Strukturverfeinerung von Cancrinite". Zeit. Krist., 122, 407-422.
Johnson, N. E., Craig, J. R. \& Rimstidt, J. D. (1988) "Crystal chemistry of tetrahedrite". Amer. Miner., 73, 389-397.
Jones, J. B. \& Taylor, W. H. (1961) "The structure of orthoclase". Acta Cryst., 14, 443-456.
Joswig, W., Bartl, H. \& Fuess, H. (1984) "Structure refinement of scolecite by neutron diffraction". Zeit. Krist., 166, 219-223.
Kapustinskii, A. F. (1933) "General formula for the lattice of crystals of arbitrary structure". Z. Phys. Chem. Abt., 22, 257-260.
Kepler, J. (1611) Strena Seu de Nive Sexangula. Gottfried Tampach, Frankfurt.
Kern, R. \& Gindt, R. (1958) "Contribution à l'étude des accolements réguliers des feldspaths potassiques et des plagioclases". Bull. Soc. Franc. Min. Crist., 81, 263-266.
Kerrick, D. M. (1990) The $\mathrm{Al}_{2} \mathrm{SiO}_{5}$ polymorphs. Reviews in Mineralogy, Vol. 22. Miner. Soc. America.
Kitaigorodskii, A. I. (1955) Organic chemical crystallography (in Russian). Press of the Academy of Sciences of the URSS, Moscow. English translation and revision (1961), Consultants Bureau Enterprises, New York.
Klein, C. \& Hurlbut, C. S. Jr. (1985) Manual of Mineralogy. John Wiley, New York.
Kniep, R. \& Mootz, D. (1973) "Metavariscite. A redetermination of its crystal structure". Acta Cryst., B29, 2292-2294.
Kniep, R., Mootz, D. \& Vegas, A. (1977) "Variscite". Acta Cryst., B33, 263-265.
Kondrasev, J. M. D. \& Fedorova, N. N. (1954) "The crystal structure of $\mathrm{CoHO}_{2}$ " (in Russian). Dokl. Akad. Nauk., 94, 2, 229-231. Quoted in Structure Reports (1961), 18, 515-516.
Koptsik, V. A. \& Belov, N. V. (1977) "Towards a theory of translationally centered Fedorov groups" (in Russian). Kristallografiya, 22, 1140-1146. English translation Soviet Physics-crystallography, (1977), 22, 650-653.
Kostov, I. (1954) "A note on a more rational classification of minerals" (in Russian). Zap. Vses. Min. obshch. Part 83, $\mathrm{N}^{\circ}$ 4, 328-347.
Kostov, I. (1968) Mineralogy. Oliver and Boyd, Edinburgh.
Kostov, I. (1981) "Structural patterns and structural genetic trends in minerals". Kristallografiya, 26, 1244-1247. English translation Soviet Phys. Crystallogr., (1981), 26, 707-708.
Krebs, H. (1968) Fundamentals of inorganic chemistry. English translation, McGraw Hill, London.
Kripyakevich, P. I. (1963) "A systematic classification of types of intermetallic structures" (In Russian). Zhurnal Strukturnoi Khimii, 4, $\mathrm{N}^{\circ} 1$, p. 117 and $\mathrm{N}^{\circ} 2$ p. 282. English translation, Consultants Bureau Enterprises, New York (1964).
Kripyakevich, P. I. (1973) "Loose packings of dense layers". Kristallografiya, 18, 730-736. English translation Sov. Phys.

Crystallography, (1974), 18, 460-463.
Landé, A. (1920) "Bemerkungen über die Grosse der Atome". Z. Physik 1, 87-89.

Langlet, G. A. (1975) "Extension of the FIGATOM program to the automatic plotting of layers in close-packed structures". J. Appl. Cryst., 8, 515-519.
Langlet, G. A. (1976) "Extension of the FIGATOM program to the automatic plotting of layers in close-packed structures: erratum". J. Appl. Cryst., 9, 320.
Langlet, G. A., Figueiredo, M. O. \& Lima-de-Faria, J. (1977) "Determination of spherical voids in layered structures (Void program)". J. Applied Crystallography, 10, 21-23.
Lapparent, A. (1884) Mineralogie, Paris.
Laves, F. (1930) "XVI. Die Bau-Zusammenhänge innerhalb der Kristallstrukturen. I. Teil". Zeit. Krist., 73, 202-265.
Laves, F. (1956) "Crystal structure and atomic size". In Theory of alloy phases, edited by the American Society for Metals. Cleveland, Ohio (pp. 124-198).
Laves, F. (1963) "Factors governing the structure of intermetallic phases". In Advances in X-ray analysis, Vol. 6, edited by W. M. Mueller and M. Fay. Plenum Press, New York (pp. 43-61).
Lee, A. van der \& Boer, J. L. de (1993) "Redetermination of the structure of hessite, $\mathrm{Ag}_{2} \mathrm{Te} "$. III. Acta Cryst., C49, 1444-1446.
Liebau, F. (1956) "Bemerkungen zur Systematik der Kristallstrukturen von Silikaten mit hochkondensierten Anionen". Physik. Chem., 206, 73-92.
Liebau, F. (1966) "Die Kristallchemie der Phosphate". Fortschr. Miner., 42, 266-302.
Liebau, F. (1982) "Classification of silicates". Rev. Mineral., 5, $1-24$.
Liebau, F. (1985) Structural chemistry of silicates. Structure bonding, and classification. Springer-Verlag, Berlin.
Lima-de-Faria, J. (1963) "Dehydration of goethite and diaspore". Zeit. Krist., 119, 176-203.
Lima-de-Faria, J. (1965a) "A condensed way of representing inorganic close-packed structures". Zeit. Krist., 122, 346-358.
Lima-de-Faria, J. (1965b) "Systematic derivation of inorganic close-packed structures: AX and $\mathrm{AX}_{2}$ compounds, sequence of equal layers". Zeit. Krist., 122, 359-374.
Lima-de-Faria, J. (1966) "Space group representation in condensed models of inorganic close-packed structures". Nature, 211, 281.
Lima-de-Faria, J. (1967) "Anomalous orientations of cubic close packing in the dehydration of goethite in an inert atmosphere". Acta Cryst., 23, 733-736.
Lima-de-Faria, J. (1978a) "Rules governing the layer organization of inorganic crystal structures". Zeit. Krist., 148, 1-5.
Lima-de-Faria, J. (1978b) "Improved notation for inorganic group structures derived from atomic structures by coalescence of atoms". R. Iberoam. Crist. Miner. Metalogen., 1, 47-52.
Lima-de-Faria, J. (1983) "A proposal for a structural classification of minerals". Garcia de Orta, Sér. Geologia, 6, 1-14.
Lima-de-Faria, J. (1986) "The need of a structural classification of minerals". Rendiconti Soc. Ital. Miner. Petrolog., 41, 157-179.
Lima-de-Faria, J. (1988a) "The two kinds of ideal analogues of mineral structures and the Laves principles of stability". Gar-
cia de Orta, Sér. Geologia, 11, 33-42.
Lima-de-Faria, J. (1988b) "The hierarchy of symmetry". Presented at the XI European Crystallographic Meeting (Vienna) (Abstract). Published in Zeit. Krist. (1988), 185, 286.
Lima-de-Faria, J. (1990) "The packing analogues of some carbonates and borates". Acta Cryst., A46. C267 Supplement (Abstract).
Lima-de-Faria, J. (1991) "On the problem of the measure of the symmetry of crystal structures". Garcia de Orta, Sér. Geologia, 14, 45-50.
Lima-de-Faria, J., Buerger, M. J., Glusker, J. P., Megaw, H. D., Moore, P. B., Senechal, M. \& Wooster, W. A. (1990) Historical Atlas of Crystallography, edited by J. Lima-deFaria. Published by Kluwer Academic Publishers, Dordrecht. Holland, for the International Union of Crystallography.
Lima-de-Faria, J. \& Figueiredo, M. O. (1969) "Systematic derivation of inorganic basic structure types: $X_{m} Y_{n}$ and $A_{m} X_{n}$ compounds, $X$ and $Y$ in cubic or hexagonal close packing, A in octahedral voids". Zeit. Krist., 130, 54-67.
Lima-de-Faria, J. \& Figueiredo, M. O. (1976) "Classification, notation, and ordering on a table of inorganic structure types". J. Solid State Chem., 16, 7-20.
Lima-de-Faria, J. \& Figueiredo, M. O. (1978) "General chart of inorganic structural units and building units". Garcia de Orta. Sér. Geologia, 2, 69-76.
Lima-de-Faria, J. \& Figueiredo, M. O. (1990 a) "Standard sheets for condensed models of crystal structures. I. Structures based on close packings". Garcia de Orta, Sér. Geologia, 13, 43-58.
Lima-de-Faria, J. \& Figueiredo, M. O. (1990 b) "Standard sheets for condensed models of crystal structures. II. Pyroxenes and amphiboles". Garcia de Orta, Sér. Geologia, 13, 59-72.
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. \& Parthé, E. (1990) "Nomenclature of inorganic structure types". Report of the International Union of Crystallography Comission on Crystallographic Nomenclature Sub-Committee on the Nomenclature of inorganic structure types. Acta Cryst., A46, 1-11.
Lindberg, M. L. \& Christ, C. L. (1959) "Crystal structures of the isostructural minerals lazulite, scorzalite and barbosalite". Acta Cryst., 12, 695-697.
Linnaeus, C. von (1735) Systema naturae, sive regna tria naturae systematice proposita per classes, ordinis, genera et species. Theodorum Haak, Leiden.
Loeb, A. L. (1970) "A systematic survey of cubic crystal structures". J. Solid State Chem., 1, 237-267.
Lonsdale, K. (1966) "A new kind of twinning". Acta Cryst., 21, 5-7.
Machatschki, F. (1928) "Zur Frage der Struktur und Konstitution der Feldspate". Cbl. Min. Geol. Paläont., Abteilung A. Miner. Petr., 97-104.
Machatschki, F. (1947) "Konstitutionsformeln für den festen Zustand". Monatsch. Chem., 77, 333-342.
Machatschki, F. (1953) Spezielle Mineralogie auf geochemischer Grundlage mit einem Anhang ein kristallchemisches Mineralsystem. Springer-Verlag, Wien.
Madelung, E. (1918) "Das elektrische Feld in Systemen von
regelmässig angeordeneten Punktladungen". Phys. Z., 19, 524-533.
Makovicky, E. (1983) "Archetypes structure building principles and homologous series for sulphosalts of $\mathrm{As}, \mathrm{Sb}$ and Bi ". VIII European Crystallography Congress, Liege (Abstract).
Makovicky, E. (1985) "Cyclically twinned sulphosalt structures and their approximate analogues". Zeit. Krist., 173, 1-23.
Matkovich, V. I., Giese, R. F. Jr. \& Economy, J. (1965) "Packing of $\mathbf{B}_{12}$ groups in boron and boride structures". Zeit. Kris., 122, 116-130.
Mazzi, F., Galli, E. \& Gottardi, G. (1976) "The crystal structure of tetragonal leucite". Amer. Miner., 61, 108-115.
McDonald, W. S. \& Cruischank, D. W. J. (1967) "Refinement of the structure of hemimorphite". Zeit. Krist., 124, 180-191.
Megaw, H. D. (1973) Crystal structures. A working approach. W. B. Saunders Company, Philadelphia.

Meier, W. M. \& Olson, D. H. (1978) "Atlas of zeolite structure types". Structure Commission of the International Zeolite Association. Quoted by J. V. Smith (1982), 165-169.
Merkle, A. B. \& Slaughter, M. (1968) "Determination and refinement of the structure of heulandite". Amer. Miner., 53, 1120-1138.
Merlino, S., Galli, E. \& Alberti, A. (1975) "The crystal structure of levyne". Tschermaks Min. Petrogr. Mitt., 22, 117-129.
Meulendijk, P. N. (1956) "An X-ray study of glaubersalt". Proc. K. Ned. Akad. Wet., B59, 493-495. Quoted in Structure Reports (1963), 20, 345-346.
Moore, P. B. (1973) "Pegmatite phosphates. Descriptive mineralogy and crystal chemistry". Mineral. Rec., 4, 103-130.
Moore, P. B. (1992) "Betapakdalite unmasked, and a comment on bond valences". Aust. J. Chem., 45, 1335-1354.
Moore, P. B. (1993) (Private communication).
Moore, P. B. \& Araki, T. (1972) "Atomic arrangement of merwinite, $\mathrm{Ca}_{3} \mathrm{Mg}\left[\mathrm{SiO}_{4}\right]_{2}$, an unusual dense-packed structure of geophysical interest". Amer. Miner., 57, 1355-1374.
Moore, P. B. \& Araki, T. (1976) "Braunite: its structure and relationship to bixbyite, and some insights on the geneology of fluorite derivative structures". Amer. Miner., 61, 1226-1240.
Moore, P. B. \& Araki, T. (1977) "Gerstmannite, a new zinc silicate mineral and a novel cubic close-packed oxide structure". Amer. Miner., 62, 51-59.
Moore, P. B. \& Araki, T. (1978) Neus Jb. Min. Ab., 132, 231-241.
Mori, H. \& Ito, T. (1950) "The structure of vivianite and symplesite". Acta Cryst., 3, 1-6.
Mumpton, F. A. (1981) "Natural zeolites". In Mineralogy and Geology of natural zeolites. Reviews in Mineralogy, Vol. 4. Amer. Soc. America (pp. 1-17).
Náray-Szabó, St. v. (1930) "Ein auf der Kristallstruktur basierendes Sylicatsystem". Zeit. Phys., Abteilung B, 2, 356-377.
Náray-Szabó, St. v. (1943) "Der Strukturtyp des Perovskits $\left(\mathrm{CaTiO}_{3}\right)$ ". Naturwiss., 31, 202.
Nickel, E. H. \& Nichols M. C. (1991) Mineral reference manual. Van Nostrand Reinhold, New York.
Niggli, P. (1919) Geometrische Kristallographie des Diskontinuums. Gebr. Bornträger, Leipzig.
Niggli, P. (1945) Grundlagen der Stereochemie. Verlag Birkhäuser, Basel. French translation "Les bases de la Stéréochimie". Dunod, Paris (1952).

Nithollon, P. (1955) Structure cristalline de la cancrinite. Publications Scientifiques et Techniques du Ministère de l'Air, France, N. T. 53.
Nord, A. G. (1973). Acta Chem. Scand., 27, 814-822. Quoted in Structure Reports (1975), 39A, 306.
Okada, K. \& Ossaka, J. (1980) "Structures of potassium sodium sulphate and tripotassium disulphate". Acta Cryst., B36, 919-921.
Pabst, A. (1950) "A structural classification of fluoaluminates". Amer. Miner., 35, 149-165.
Palache, C., Berman, H. \& Frondel, C. (1944) The system of mineralogy of James Dawght Dana and Edward Salisbury Dana. Vol. 1. Elements, sulfides, sulfosalts, oxides. Seventh edition. John Wiley, London.
Palache, C., Berman, H. \& Frondel, C. (1951) The system of mineralogy of James Dawght Dana and Edward Salisbury Dana. Vol. 2. Halides, nitrates, borates, carbonates, sulfates, phosphates, arsenates, tungstates, molybdates, etc. Seventh edition. John Wiley, London.
Papike, J. J. \& Cameron, M. (1976) Review of Geophysics and Space Physics, 14, 74. Quoted by C. Klein \& C. S. Hurlbut Jr. (1985), 456.

Papike, J. J., Prewitt, C. T., Sueno, S. \& Cameron, M. (1973) "Pyroxenes: comparisons of real and ideal structural topologies". Zeit. Krist., 138, 254-273.
Papike, P. P. (1987) "Chemistry of the rock-forming silicates: ortho, ring and single-chain structures". Review of Geology, 25, 1483-1526.
Papike, P. P. \& Zoltai, T. (1967) "Ordering of tetrahedral aluminium in phrenite $\mathrm{Ca}_{2}\left(\mathrm{Al}, \mathrm{Fe}^{+3}\right) \mathrm{Si}_{3} \mathrm{AlO}_{10}\left(\mathrm{OH}_{2}\right)$ ". Amer. Miner., 52, 974-984.
Parthé, E. (1964) Crystal chemistry of tetrahedral structures. Gordon and Breach, New York.
Parthé, E. (1980) "Crystal-chemical formulae for simple inorganic crystal structures". Acta Cryst., B36, 1-7.
Parthé, E. (1990) Elements of inorganic structural chemistry. A course on selected topics. K. Sutter Parthé, Petit-Lanay, Switzerland.
Pauling, L. (1927) "The sizes of ions and the structure of ionic crystals". J. Amer. Chem. Soc., 49, 765-790.
Pauling, L. (1928) Proc. Nat. Acad. Sci., USA, 14, 603-606. Quoted in N. V. Belov (1936) "Classification of closest and close packings". Comptes Rendus (Doklady) de l'Académie des Sciences de l'URSS, XXIII, No. 2, 170-174.
Pauling, L. (1929) "The principles determining the structure of complex ionic crystals". J. Amer. Chem. Soc., 51, 1010-1026.
Pauling, L. (1960) The nature of the chemical bond. Cornell University Press, London.
Pearson, W. B. (1967) Handbook of lattice spacings and structures of metals and alloys, Vol. 2. Pergamon Press, Oxford.
Pearson, W. B. (1972) The crystal chemistry and physics of metals and alloys. Wiley-Interscience, New York.
Petrova, I. V., Kaplunnik, L. N., Bortnikov, N. S., Pobedimskaya, E. A. \& Belov, N. V. (1978) "The crystal structure of synthetic robinsonite" (in Russian). Dokl. Acad. Nauk SSSRR, 241, 88-90.
Plinius (the older) Gajus Secundus (77 A. D.) Natural history (in Latin). Quoted by Povarennykh (1972), p. 12.
Povarennykh, A. S. (1972) Crystal chemical classification of minerals. English translation by Plenum Press, New York
(2 Vols.) of the Russian edition (1966), Naukova Dunka, Kiev.
Putnis, A. \& Angel, R. J. (1985) "Al, Si ordering in cordierite using «magic angle spinning» NMR. II. Models of A1, Si order from NMR data". Phys. Chem. Minerals, 12, 217-222.
Prewitt, C. T. (1967) "Refinement of the structure of pectolite". Zeit. Krist., 125, 298-316.
Prewitt, C. T. \& Buerger, M. J. (1963) "Comparison of the crystal structure of wollastonite and pectolite". Miner. Soc. Amer. Sp. Paper 1, 293-302.
Radoslovich, E. W. (1963) "The cell dimensions and symmetry of layer-lattice silicates. IV Interatomic forces". Amer. Miner., 48, 76-99.
Ramdohr, P. \& Strunz, H. (1978/1980) Klockmanns Lehrbuch der Mineralogie. Sixteenth edition. Ferdinand Enke Verlag, Stuttgart.
Ribbe, P. H. (1979) "The structure of a strained intermediate microcline in cryptoperthitic association with twinned plagioclase". Amer. Miner., 64, 402-408.
Ribbe, P. H., Gibbs, G. V. \& Norris, W. J. (1968) "Cation and anion substitutions in the humite minerals". Miner. Mag., 36, 966-975.
Rinaldi, R., Pluth, J. J. \& Smith, J. V. (1974) "Zeolites of the phillipsite family. Refinement of the crystal structures of phillipsite and harmotome". Acta Cryst., B30, 2426-2433.
Roberts, W. L., Rapp, G. R. Jr. \& Weber, J. (1974) Encyclopedia of minerals. Van Nostrand Reinhold \& Company, New York.
Robinson, P. D., Fang, J. H. \& Ohya, Y. (1972) "The crystal structure of kainite". Amer. Miner., 57, 1325-1332.
Ruben, H. W., Templeton, D. H., Rosenstein, R. D. \& Olovsson, I. (1961) "Crystal structure and entropy of sodium sulphate decahydrate". Amer. Chem. Soc., 83, 820-824.
Sanderson, R. T. (1960) Chemical periodicity. Reinhold Publishing Corporation, New York.
Schlatti, M., Sahl, K., Zemann, A. \& Zemann, J. (1970) "Die Kristallstruktur des Polyhalits, $\mathrm{K}_{2} \mathrm{Ca}_{2} \mathrm{Mg}\left[\mathrm{SO}_{4}\right]_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O}$ ". Tschermaks Min. u. Petrogr. Mitt., 14, 75-86.
Schlemper, E. O., Gupta, P. K. S. \& Zoltai, T. (1985) "Refinement of the structure of carnallite, $\mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{KCl}_{3}$ ". Amer. Miner., 70, 1309-1313.
Schubert, K. (1964) Kristallstrukturen zweikomponentiger Phasen. Springer-Verlag, Berlin.
Shannon, R. D. \& Prewitt, C. T. (1969) "Effective ionic radii in oxides and fluorides". Acta Cryst., B25, 925-946.
Shubnikov, A. V. \& Koptsik, V. A. (1972) Symmetry in science and art (in Russian). Naüka Press, Moscow. English translation Plenum Press, New York (1974).
Smirnova, N. L. (1956) "Structure types with atomic close packings. Possible structure types for the composition $\mathrm{AB}_{3}$ " (in Russian). Kristallographiya, Acad. Sc. URSS. 1, 165-170. English translation Soviet Phys.-Crystallography, (1956), 1, 128-131.
Smith, D. K., Gruner, J. W. \& Lipscomb, W. N. (1957) "The crystal structure of uranophane $\left[\mathrm{Ca}\left(\mathrm{H}_{3} \mathrm{O}\right)_{2}\right]\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{SiO}_{4}\right)_{3}$ $3 \mathrm{H}_{2} \mathrm{O}$ ". Amer. Miner., 42, 594-618.
Smith, J. V. (1982) Geometrical and structural crystallography. John Wiley, New York.
Sololeva, L. P. \& Belov, N. V. (1964) "Precise determination of the crystal structure of bertrandite $\mathrm{Be}_{4}\left[\mathrm{SiO}_{7}\right](\mathrm{OH})_{2}$ " (in Rus-
sian). Kristallogr., 9, 551-553. English translation Soviet Phys., Crystallography (1965), 9, 458-460.
Spice, J. E. (1964) Chemical binding and structure. Pergamon Press, Oxford.
Spronsen, J. W. van (1969) The periodic system of the chemical elements. An history of the first hundred years. Elsevier, New York (p. 1).
Srikrishnan, T. \& Novacki, W. (1974) "A redetermination of the crystal structure of cosalite, $\mathrm{Pb}_{2} \mathrm{Bi}_{2} \mathrm{~S}_{5} "$. Zeit. Krist., 140 , 114-136.
Steele, I. M. \& Pluth, J. J. (1990) "Crystal structure of synthetic joshiokaite, a stuffed derivative of the tridymite structure". Amer. Miner., 75, 1186-1191.
Steinfink, H. (1962) "The crystal structure of the zeolite phillipsite". Acta Crystal., 15, 644-651.
Structure Reports (1951) Vol. 11, (1952) Vol. 12, (1954) Vol. 13, (1955) Vol. 9, (1959) Vol. 16, (1961) Vol. 18, (1963) Vol. 17, Vol. 20, (1964) Vol. 21, (1965) Vol. 23, (1969) Vol. 26, (1971) Vol. 27, (1975) Vol. 32A, (1975) Vol. 33A, (1975) Vol.39A, (1978) Vol. 42A, (1982) Vol. 46A, (1988) Vol. 50A, (1989) Vol. 49A. International Union of Crystallography, UtrechtDordrecht.
Strukturbericht (1931) Vol. 1, (1937) Vol. 2, (1937) Vol. 3, (1943) Vol. 7. Akademische Verlagsgesellschaft, Leipzig.

Strunz, H. (1982) Mineralogische Tabellen. Eighth edition. Akademische Verlagsgesellschaft, Leipzig.
Taga, T. (1969) "Crystal structure of $\mathrm{Na}_{2} \mathrm{CO}_{3} \bullet 10 \mathrm{H}_{2} \mathrm{O}$ ". Acta Cryst., B25, 2656-2658.
Takéuchi, Y., Ozawa, T., Ito, T., Araki, T., Zoltai, T. \& Finney, J. J. (1974) "The $\mathrm{B}_{2} \mathrm{Si}_{8} \mathrm{O}_{30}$ groups of tetrahedra in axinite and comments on the deformation of Si tetrahedra in silicates". Zeit. Krist., 140, 289-312.
Tendeloo, G., van Wenk, H. R. \& Gronsky, R. (1985) "Modulated structures in calcium dolomite. A study by electron microscopy". Phys. Chem. Miner., 12, 333-341.
Theophrastus ( $372-287$ B.C.) Quoted by A. S. Povarennykh (1972), pp. 4 and 12.

Thompson, J. B. Jr. (1970) "Geometrical possibilities for amphiboles structures: model biopyriboles". Amer. Miner., 55, 292-293.
Uklonskii, A. S. (1940) Mineralogy (in Russian). Gostoptekhizdat, Moscow.
Vainshtein, (1981) Modern Crystallography. I. Symmetry of crystals. Methods of structural crystallography. SpringerVerlag, Berlin.
Wadsley, A. D. (1952) "The structure of lithiophorite". Acta Cryst., 5, 676-680.
Wang, R., Bradley, W. F. \& Steinfink, H. (1965) "The crystal structure of alunite". Acta Cryst., 18, 249-252.
Wasastjerna, J. A. (1923) Soc. Sci. Ferm. Comm. Phys. Math., 38, 1 Quoted by L. Pauling (1960) p. 517.
Wells, A. F. (1962) Structural inorganic chemistry. Third edition. Clarendon Press, Oxford.
Werner, A. G. (1774) Von den ausserlichen Kennzeichen der Fossilien. Siegfried Lebrecht Crusius, Leipzig.
Werner, A. G. (1817) Abraham Gottlob Werner's letztes mineral System, Freiberg. Quoted by A. D. Adams (1954) p. 204.
Whewell, W. (1837) History of the inductive sciences. First edition. London, 3, 227. Quoted by C. Frondel, (1983), p. 12. Whittaker, E. J. W. (1956) "The structure of chrysotile. II.

Clino-chrysotile ". Acta Cryst., 9, 855-862.
Winter, J. K. \& Ghose, S. (1979) "Thermal expansion and hightemperature crystal chemistry of the $\mathrm{Al}_{2} \mathrm{SiO}_{5}$ polymorphs". Amer. Miner., 64, 573-586.
Winter, J. K., Ghose, S. \& Okamura, F. P. (1977) "A hightemperature study of the thermal expansion and the anisotropy of the sodium atom in low albite". Amer. Miner., 62, 921-931.
Wuensch, B. J. (1974) "Sulfide crystal chemistry". In Sulfide mineralogy, short course notes. Vol. 1 Edited by P. H. Ribbe. Miner. Soc. America, W-21-W-44.
Wyckoff, R. W. G. (1963) Crystal structures, Vol. 1. Second edition. John Wiley Interscience Publishers, New York.
Wyckoff, R. W. G. (1964) Crystal structures, Vol. 2. Inorganic compounds $R X_{n}, R_{n} M X_{2}, R_{n} M X_{3}$. Second edition. John Wiley Interscience Publishers, New York.
Wyckoff, R. W. G. (1965) Crystal structures, Vol. 3. Inorganic compounds $R_{x}\left(M X_{4}\right)_{y}, R_{x}\left(M_{n} X_{p}\right)_{y}$, hydrates and ammoniates. Second edition. John Wiley Interscience Publishers, New York.
Wyckoff, R. W. G. (1968) Crystal structures, Vol. 4. Miscellaneous inorganic compounds, silicates, and basic structural information. Second edition. John Wiley Interscience Publishers, New York.

Yakubovich, O. V. \& Simonov, M. A. (1985) "Refined crystal structure of zeolite laumontite $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \bullet{ }_{8}\left[\mathrm{Al}_{2} \mathrm{Si}_{4} \mathrm{O}_{12}\right] \mathrm{O} \bullet$ $5 \mathrm{H}_{2} \mathrm{O}$ " (in Russian). Kristallografiya, 30, 1072-1076. English translation Soviet Physics, Crystallography (1985), 30, 624-626.
Yamaguchi, G. \& Suzuki, K. (1967) "Structural analyses of merwinite". J. Ceram. Assoc. Japan, 75, 220-229. Quoted in Structure Reports (1975), 32A, 431-433.
Zemann, J. (1969) "Part I. Crystallography". In Introduction to mineralogy, crystallography and petrology, edited by C. W. Correns. Springer-Verlag, Berlin (pp.3-178).
Zoltai, T. (1960) "Classification of silicates and other minerals with tetrahedral structures". Amer. Miner., 45, 960-973.
Zoltai, T. (1974) Systematics of simple sulfide structures. University of Minnesota, Minneapolis (Private communication).
Zoltai, T. (1975) Notes on the systematics of close-packed silicate structures. University of Minnesota, Minneapolis (Private communication).
Zoltai, T. (1977) Crystal structures. University of Minnesota, Minneapolis (Private communication).
Zoltai, T. \& Stout, J. H. (1984) Mineralogy. Concepts and principles. Burgess Publishing Company, Minneapolis, U.S.A.

## Mineral index

(= means isotypic, $\cong$ distortion derivative)

Achavalite $=$ Niccolite
Actinolite $=$ Tremolite
Adamite = Andalusite
Alabandite $=$ Halite
Albite 40, 269
Allanite $=$ Epidote
Alleghanyite $=$ Chondrodite
Allemontite $=$ Arsenic
Allophane $=\mathrm{SiO}_{2}$ colloidal
Almandine $=$ Garnet
Altaite $=$ Halite
Alunite 311
Amblygonite 278
Analcime 293
Anatase 90
Andalusite 78, 144
Andesine = Albite
Andradite = Garnet
Anglesite = Baryte
Anhydrite 151
Ankerite = Dolomite
Anorthite 270
Anthophyllite 211
Antigorite 240
Antimonite-syn. Stibnite 160
Antimony = Arsenic
Antlerite 129
Apatite 29, 78, 165
Apophyllite 242
Aragonite 38, 40, 175
Arfvedsonite = Hornblende
Argentite $=$ Cuprite
Argentopyrite $=$ Cubanite
Arsenic 224
Arsenopyrite 170
Aurostibite $=$ Pyrite
Autunite 245
Avicennite $=$ Bixbyite
Axinite 197
Azurite 185
Barbosalite $=$ Lazulite
Barylite 119

Baryte 312
Bayerite $=$ Gibbsite
Behierite = Zircon
Berndtite $=$ Melonite
Bertrandite 118
Beryl 274
Betafite $=$ Pyrochlore
Bindheimite $=$ Pyrochlore
Biotite $=$ Phlogopite
Bischofite 306
Bismoclite $=$ Matlockite
Bismuth = Arsenic
Bixbyite 139
Blende 110
Boehmite $=$ Lepidocrocite
Boracite 280
Borax 219
Bornhardtite $=$ Spinel
Bornite-defect Digenite 109
Boulangerite 164
Bournonite 161
Bracewellite = Diaspore
Braunite 141
Breithauptite $=$ Niccolite
Briartite = Stannite
Bromellite $=$ Wurtzite
Brookite 95
Brucite $=$ Melonite
Bunsenite $=$ Halite
Byströmite $=$ Tapiolite
Bytownite $=$ Albite
Cadmoselite $=$ Wurtzite
Calamine-syn. Hemimorphite 194
Calcite 38, 172-173
Calderite $=$ Garnet
Calomel 203
Cancrinite 300
Carnallite 309
Carnotite 247
Carobbiite 137
Carrolite $=$ Spinel
Cassiterite = Rutile

Cattierite $=$ Pyrite
Celestite $=$ Baryte
Cerargyrite $=$ Halite
Cerianite $=$ Fluorite
Cerussite $=$ Aragonite
Chabazite 287
Chalcanthite 317
Chalcocite 304
Chalcopyrite 111
Chalcosine-syn. Chalcocite 304
Chernovite $=$ Zircon
Chloanthite $=$ Skutterudite
Chlorite 234-235
Chloritoid 326
Chloromagnesite 97
Chondrodite 124
Chromatite $=$ Zircon
Chromite = Spinel
Chrysoberyl $=$ Olivine 65
Chrysotile 238
Churchite $=$ Gypsum
Cinnabar 202
Clausthalite $=$ Halite
Clinochlore = Chlorite
Clinoenstatite $=$ Diopside
Clinohumite 126
Cobaltite $=$ Pyrite
Coesite 265
Coffinite $=$ Zircon
Colemanite 217
Coloradoite $=$ Blende
Columbite 93
Cooperite 13, 73, 142
Copper 18, 83
Cordierite 275
Coronadite $=$ Hollandite
Corundum 99
Cosalite 162
Coulsonite $=$ Spinel
Covelline 156
Covellite-syn. Covelline 156
Crandalite $=$ Alunite
$\alpha$-Cristobalite 71, 72, 256
$\beta$-Cristobalite 255
Crocoite $=$ Monazite
Cryolite 105
Cryptomelane $=$ Hollandite
Cubanite 115
Cuprite 272
Cyanite-syn. Kyanite 127
Danalite $=$ Sodalite
Descloizite 325
Desmine-syn. Stilbite 299
Diaboleite 158

Diamond 12, 13, 38, 39, 253
Diaspore 96
Dickite = Kaolinite
Digenite 109
Diopside 36, 62, 205-206
Dioptase 196
Disthene-syn.Kyanite 127
Dolomite 174
Dumortierite 324
Durangite $=$ Sphene
Eckermannite $=$ Hornblende
Electrum = Copper
Elpasolite 104
Enargite 116
Enstatite 207
Epidote 190
Epsomite 313
Erythrite = Vivianite
Eskolaite = Corundum
Eveite $=$ Andalusite
Famatinite 65, 112
Fayalite-var. Olivine 76, 122
Ferberite-var. Wolframite 92
Ferroselite $=$ Marcasite
Fluoborite 182
Fluorite 63, 64, 78, 138
Forsterite-var. Olivine 53, 54, 55, 76, 122
Franklinite = Spinel
Freboldite $=$ Niccolite
Frohbergite $=$ Marcasite
Fukuchilite $=$ Pyrite
Gahnite $=$ Spinel
Galaxite $=$ Spinel
Galena $=$ Halite
Galenobismutite 29, 78, 163
Gallite $=$ Chalcopyrite
Garnet 29, 78, 148
Gaspeite $=$ Calcite
Gehlenite $=$ Melilite
Genthelvite = Sodalite
Gerstmannite 132
Geversite $=$ Pyrite
Gibbsite 155
Gismondine 295
Gismondite-syn. Gismondine 295
Glaserite 305
Glauberite 315
Glauconite = Muscovite
Glaucophane $=$ Tremolite
Gmelinite 286
Goethite $=$ Diaspore 40, 41, 44
Gold = Copper

Goldmanite $=$ Garnet
Graphite 38, 223
Greenockite $=$ Wurtzite
Grossular-syn. (or var.) Garnet, 148
Groutite = Diaspore
Gudmuntite $=$ Arsenopyrite
Gypsum 248
Halite 56, 65, 73, 78, 85
Halloysite 239
Hamlinite = Alunite
Hardystonite = Melilite
Harmotome $=$ Phillipsite
Hastite $=$ Marcasite
Hauerite = Pyrite
Hausmannite $\cong$ Spinel 121
Hawleyite = Blende
Helvine = Sodalite
Helvite-syn. Helvine
Hematite = Corundum 40, 41, 43, 44
Hemimorphite 194
Hercynite = Spinel
Hessite 303
Heterogenite 152
Heulandite 298
Hidalgoite $=$ Alunite
Hieratite 106
Hocartite = Stannite
Hodgkinsonite 134
Hoernesite $=$ Vivianite
Hollandite 107
Hollingworthite $=$ Pyrite
Hornblende 210
Hübnerite-var. Wolframite 92
Humite 125
Huttonite $=$ Monazite
Hyalophane $=$ Orthoclase
Hydrargillite-syn. Gibbsite 155
Hydromagnesite 187
Hydrophilite 87
Hydrozincite 186
ICE (antartic) 257
ICE (ordinary) 262
Idocrase 193
Igdloite $=$ Perovskite
Ilmenite 100
Ilvaite 192
Imgreite $=$ Niccolite
Indite $=$ Spinel
Indium $\cong$ Copper
Iodargyrite $=$ Wurtzite
Irarsite $=$ Pyrite
Iridium $=$ Copper
Iridosmine 84

Iron 78, 135
Ixiolite - basic structure of Wolframite
Jacobsite $=$ Spinel
Jaipurite $=$ Niccolite
Jarosite $=$ Alunite
Kaersutite $=$ Hornblende
Kainite 319
Kalsilite 260
Kaolinite 31, 236-237
Karelianite $=$ Corundum
Kawazulite $=$ Tetradymite
Keatite 271
Kernite 218
Kieserite 277
Kimzeyite = Garnet
Kitkaite $=$ Melonite
Knebelite = Olivine
Kongsbergite $=$ Copper
Kösterite $=$ Stannite
Köttigite $=$ Vivianite
Kotulskite $=$ Niccolite
Közulite = Hornblende
Kullerudite $=$ Marcasite
Kutnahorite = Dolomite
Kyanite 38, 127
Labradorite $=$ Albite
Langisite = Niccolite
Latrappite $=$ Perovskite
Laumontite 294
Laurite $=$ Pyrite
Lawrencite $=$ Chloromagnesite
Lazulite 322
Lead $=$ Copper
Lepidocrocite 29, 146
Lepidolite $=$ Phlogopite
Leucite 279
Levyne 288
Libethenite $=$ Andalusite
Lime $=$ Halite
Linarite 316
Linnaeite $=$ Spinel
Litharge 117
Lithionite-syn. Lepidolite
Lithiophorite 153
Löllingite $=$ Marcasite
Lonsdaleite - polype of Diamond
Loparite = Perovskite
Ludwigite 183
Luzonite $=$ Famatinite
Mackinawite $=$ Littarge
Magnesiobiotite-syn.Phlogopite 231

Magnesioferrite $=$ Spinel
Magnesite = Calcite
Magnetite $=$ Spinel
Magnocolumbite $=$ Columbite
Malachite 184
Manganite 89
Manganohumite $=$ Humite
Manganosite = Halite
Marcasite 169
Marialite 284
Marshite = Blende
Massicot $\cong$ Litharge
Matlockite 29, 30, 78, 157
Melanostibite $=$ Ilmenite
Melanterite 314
Melilite 189
Melnikovite = Spinel
Melonite 98
Mercury $\cong$ Copper
Merenskyite $=$ Melonite
Merwinite 308
Mesolite 290
Meta-autunite 246
Metacinnabarite $=$ Blende
Metavariscite - related to Variscite
Michenerite = Pyrite
Microcline 40, 268
Microlite $=$ Pyrochlore
Miersite $=$ Blende
Millerite 273
Mimetite $=$ Apatite
Minium 204
Mirabilite 318
Modderite $\cong$ Niccolite
Moissanite $=$ Wurtzite
Molybdenite 29, 30, 73, 78, 154
Monazite 321
Moncheite $=$ Melonite
Monteponite $=$ Halite
Montmorillonite 232
Montroseite = Diaspore
Mordenite 297
Mossite = Tapiolite
Mullite $\cong$ Sillimanite
Muscovite 31, 72, 229-230
Nantokite = Blende
Natrolite 289
Natron 188
Naumannite $=$ Cuprite
Nepheline 261
Niccolite 86
Nickel = Copper
Niggliite $=$ Niccolite
Nisbite $=$ Marcasite

Nitre = Aragonite
Nitronatrite $=$ Calcite
Nontronite $=$ Montmorillonite
Norbergite 65, 123
Nordenskiöldine $=$ Dolomite

Octahedrite-syn. Anatase 90
Oldhamite $=$ Halite
Oligoclase = Albite
Olivenite $=$ Andalusite
Olivine 8, 52, 53, 54, 65, 72, 76, 78, 122
Ordoñezite $=$ Tapiolite
Orpiment 225
Orthite-var. Allanite
Orthoclase 267
Osbornite = Halite
Otavite $=$ Calcite

Palladium $=$ Copper
Palygorskite 241
Pandaite $=$ Pyrochlore
Paragonite $=$ Muscovite
Paramontroseite $=$ Ramsdellite
Parasymplesite $=$ Vivianite
Pargasite = Hornblende
Partzite $=$ Pyrochlore
Pectolite 213
Penroseite = Pyrite
Pentahydrite $=$ Chalcanthite
Pentlandite 131
Periclase $=$ Halite
Perite 159
Perovskite 65, 74, 77, 103
Phenakite 145
Phillipsite 296
Phlogopite 231
Pigeonite $=$ Diopside
Pinakiolite 181
Platarssulite $=$ Pyrite
Platinum = Copper
Plattnerite $=$ Rutile
Plumbojarosite $=$ Alunite
Polydymite $=$ Spinel
Polyhalite 320
Portlandite $=$ Melonite
Powellite = Scheelite
Prehnite 243
Priderite - substitution derivative of Hollandite
Protoenstatite- (artificial) related to Enstatite
Proustite 178
Psilomelane 108
Pyrargyrite $=$ Proustite
Pyrite 72, 171
Pyrochlore 140
Pyrochroite $=$ Melonite

Pyrolusite $=$ Rutile
Pyromorphite $=$ Apatite
Pyrope $=$ Garnet
Pyrophanite $=$ Ilmenite
Pyrophyllite 226
Pyrrhotine $=$ Niccolite
$\alpha$-Quartz 72, 264
$\beta$-Quartz 263
Rammelsbergite $=$ Marcasite
Ramsdellite 94
Realgar 179
Rhodochrosite $=$ Calcite
Rhodonite 215
Rijkeboerite $=$ Pyrochlore
Romeite = Pyrochlore
Roquesite $=$ Chalcopyrite
Ruby-var. Corundum
Rutile 74, 77, 88
Safflorite $\cong$ Marcasite
Sanmartinite $=$ Wolframite
Sanidine 266
Saponite $=$ Vermiculite
Sapphire-var. Corundum
Scacchite = Chloromagnesite
Scapolite-syn. Marialite 284
Schafarzikite $=$ Minium
Scheelite 150
Scolecite 291
Scorodite $=$ Variscite
Scorzalite $=$ Lazulite
Sederholmite $=$ Niccolite
Seligmannite $=$ Burnonite
Sellaite $=$ Rutile
Siderite $=$ Calcite
Siderotil $=$ Chalcanthite
Sillimanite 38, 216
Silver $=$ Copper
Sinhalite = Olivine
Skutterudite 176
Smaltite $=$ Skutterudite
Smithsonite $=$ Calcite
Sodalite 285
Sonolite $=$ Clinohumite
Sperrylite = Pyrite
Spessartine = Garnet
Sphalerite-syn. Blende 39, 65, 74, 110
Sphene 76, 276
Spinel 8, 59, 72, 120
Stannite 65, 113
Staurolite 130
Stetefeldite $=$ Pyrochlore
Stibnite 160

Stilbite 299
Stilleite = Blende
Stishovite = Rutile
Stolzite $=$ Scheelite
Strontianite $=$ Aragonite
Sukulaite = Pyrochlore
Sulphur 31, 177
Swedenborgite 133
Sylvine = Halite
Talc 31, 227-228
Tantalite $=$ Columbite
Tapiolite 91
Tellurbismuth 101
Tellurium 28, 201
Tellurobismuthite-syn. Tellurbismuth 101
Tennantite $=$ Tetrahedrite
Tenorite 143
Tetradymite 102
Tetrahedrite 283
Thenardite 310
Thomsonite 292
Thorianite $=$ Fluorite 63
Thorite = Zircon
Tiemannite $=$ Blende
Tilasite $=$ Sphene
Tin 254
Titanite-syn. Sphene 76, 276
Topaz 128
Torbernite $=$ Autunite
Tourmaline 195
Tremolite 208-209
Trevorite $=$ Spinel
$\alpha$-Tridymite 259
$\beta$-Tridymite 258
Trippkeite $=$ Minium
Tripuhyite $=$ Tapiolite
Trogtalite $=$ Pyrite
Trona 249
Trüstedtite $=$ Spinel
Tschermakite $=$ tremolite
Tungstenite $=$ Molybdenite
Turquoise 281
Tyrrellite $=$ Spinel
Ulvöspinel = Spinel
Uraninite $=$ Fluorite
Uranophane 244
Uvarovite $=$ Garnet
Vaesite $=$ Pyrite
Vanadinite $=$ Apatite
Variscite 282
Vermiculite 233
Vesuvianite-syn. Idocrase 193

Villamaninite $=$ Pyrite
Villiaumite $=$ Halite
Violarite $=$ Spinel
Vivianite 307
Vysotskite 78, 147
Wakefieldite $=$ Zircon
Wairauite 136
Warwickite 180
Wavellite 323
Willemite $=$ Phenakite
Willemseite = Talc
Witherite $=$ Aragonite
Wolframite 92

Wollastonite 212
Wulfenite $=$ Scheelite
Wurtzite 78, 114
Wüstite = Halite
Xenotime $=$ Zircon
Xonotlite 214
Zavaritskite = Matlockite
Zinc $\cong$ Iridosmine
Zincite = Wurtzite
Zircon 149
Zoisite 191

## Subject index

Atoms 9-20
constitution 9
electronegativity 11
electronic configurations 10,12
hybrid orbitals 12
orbitals 9-12
size 14-17
Bauverband 4, 6
Bonds 11-14
covalent 13
directional character 12
hydrogen 14
intermediate 14
ionic 12
metallic 13
strength distribution 3
van der Waals 13
Categories of inorganic (and mineral) structures 4 chain 4
close-packed (or atomic) 4
coordination 3
framework 4
group 4
linkage 8
packing 8
recombination 29
sheet 4
Chemical elements 10,11
metaloides 11
metals 11
non-metals 11
transition 10
Classification of inorganic structures 1-6
aluminates 1
based on bond strength 3
based on coordination 3
based on interatomic bonds 3
fluoaluminates 1
phosphates 1
silicates 1
Classification of minerals 1-8, 76-80
chemical 1
chemical + structural 2
physical 1
physical + chemical 1
practical 1
structural 1,76
structural + chemical 3,76
Close packing efficiency 77
CPI (close packing index) 77
SPI (symmetrical packing index) 77
Computing programs 59
layer description (condensed models) 59
PRCM 59
PRSH 59
VOID program 59, 60
Connectivity in frameworks 31
connected units 31
Coordination of atoms 17-20
coordination number 17
more common 18
stability 19,20
Crystal structure definition 9
Degree of similarity among crystal structures 63 aristotype 6, 75
crystal-chemically isotypic 65
homeotypic 65
isoconfigurational 65
isopointal 65
structure type definition 65
structure type symbolism 73-75
Derivative structures 65
coalescent 65, 66
distortion 65
interstitial (or stuffed) 65
substitution 65
Diadochy 15
Dirichlet domain 17
Epitaxy 39, 40
Evolution of basic criteria of classification of minerals 1-3
Ewald-Hermann notation for structure types 73, 75
Friauf-Laves phases 69
General chart of structural units and building units 5
General table of inorganic structure types 4
Ideal crystal structures 59-61
packing analogues 59-61
symmetrical analogues 59-61
IUPAC nomenclature of chemical compounds 72
Japanese brackets 69
Lattice-complexes 6
Lewis acid and Lewis base 36
Machatschki symbols 68
Nomenclature for closest packing 22
Packing 21-32
cubic-body-centred 26, 28
cubic closest 22, 23, 26
double hexagonal 22
heterogeneous 29
hexagonal closest 22, 23
homogeneous 29
interpenetrated 29
layered 29
loose 28
non-layered 29
over atoms (superposition) 24
over holes 22,25
over 'valleys' 24,25
$\mathrm{Q}^{2} / \mathrm{Q}^{1} 29$
simple cubic 26
simple hexagonal 24
tetragonal 24
three-dimensional network 29, 78
Packing layers 22-31
B (cubic bondy centred) 28
constructive layers 36
$\mathrm{N}^{\mathrm{mn}} 28,29$
Q (quadrangular) 25
«Q» (opened Q layers) (cubic bondy centred) 28
Q ${ }^{\text {n }} 29$
$\mathrm{R}^{\mathrm{mn}} 28$
T (triangular) 22
Packing of structural units 31
chains 31
groups 31
molecules 31
sheets 31
Physical properties and crystal structure 38-51
cleavage 39
density 38
elasticity 38
electrocondutivity 38
habit 38
hardness 38
optical 39
thermoconductivity 38
thermo expansion 38
twinning 39
Quasicrystals 9
Radius of atoms 14-17
covalent 16
ionic 15
metallic 16
van der Waals 15
Representation of crystal structures 52-61
ball and spoke models 52
condensed models 53-59
coordination polyhedra 52
$2 \mathrm{D}+1 \mathrm{D}$ description (layer description) 36,53
packing 52
projection of atoms 52
standard sheets for condensed models 55
Stability of crystal structures 33-37
connection principle 33
general condition 33
Gibbs free energy 33
Laves principles 33
space filling principle 33
symmetry principle 33
vector equilibrium principle 37
Stability rules 34-37
Brown rules 35
cation avoidance rule 37
distant distribution rule 37
layered rules 36
Pauling rules 34
Stacking symbols 26,58
Structural 'modules' 4, 8
Structural nomenclature 63-75
characteristics 65
coordination 66
structural formulas 70
Structural units 3, 4, 5, 21, 68
branchdness 69
building units 5, 21
connectedness 69
constitution 68
dimensionality 68
linkdness 69
multiplicity 69
notation 68
packing information 69,70
periodicity 69
polymerization' (or condensation) 21, 70
subunits 21, 68
Symmetry 44
capacity 45
crystallographic 44
definition 45
density 46, 48
measure 44-50
Transformations
inhomogeneous mechanism 41
preservation of packing 41
topotatic 40
Twinning 39, 40, 43, 44
interstitial 43, 44
packing 43, 44
transformation 43, 44
Voronoi polyhedra 17
Wirkungsbereich 17

## Author index

Agricola, G. (Georg Bauer) 1
Ahrens, L. M. 15
Akao, M. 187
Alexander, V. D. 324
Amer. Soc. for Test. and Materials 73
Amirov, S. T. 294
Andersson, S. 148
Andress, K. R. 306
Angel, R. J. 275
Appleman, D. E. 247
Araki, T. 132, 141, 308, 315, 323, 324
Armbruster, T. 275
Artioli, G. 290
Avicenna (Ibn Siná) 1
Bachmann, H. G. 316
Bacon, G. E. 249, 317
Ball, M. C. 41
Barlow, W. 22, 56
Baur, W. H. 259, 313, 314
Belov, N. V. 21, 22, 33, 34, 51, 59, 118, 215, 226, 287
Berry, L. G. 77
Berzelius, J. J. 1
Bloss, F. D. 11, 12, 64, 109, 138
Boer, J. L. De 303
Bokii, G. B. 3, 12, 20, 86, 97-100, 224, 257
Born, L. 164
Born, M. 33
Bragg, W. L. xi, 1, 8, 33, 40, 52, 89, 148, 149, 196, 212, 286, 288, 289, 295
Brindley, G. W. 41
Brown, C. J. 249
Brown, I. D. 35, 36
Buerger, M. J. xi, 33, 63, 195, 213
Bunn, C. 31, 39, 177
Burke, J. H. 60
Burns, R. G. 87, 88, 89, 91, 94, 107, 108, 169, 170
Burns, V. M. 87, 88, 89, 91, 94, 107, 108, 169, 170
Caillère, S. 241
Calleri, M. 313
Cameron, M. 61, 279
Chaskolskaia, M. 38

Christ, C. L. 217, 322
Christian, J. W. 42, 43
Cid-Dresdner, H. 281
Claringbull, G. F. 40, 52, 89, 149, 196, 212, 286, 288, 289, 295
Cocco, G. 315, 318
Cooper, W. F. 218
Corbridge, D.E.C. 1
Cronstedt, F. xi, 1
Cruischank, D. W. J. 194
Curry, N. A. 249, 317
Dachs, H. Von 89
Dana, J. D. xi, xii, 1
Deer, W. A. 103, 148, 189, 197, 233, 238
De Jong, W. F. 3
Dent Glasser, L. S. 42
Dollase, W. A. 190, 191, 259
Donnay, J. D. H. 66, 74, 195, 196
Economy, J. 24
Eitel, W. 214
Ernst, W. G. 208
Ervin, G. 42
Evans, H. T. Jr. 156, 247, 304
Evans, R. C. 3, 10, 19
Ewald, P. P. 22, 73, 74, 75
Ewing, F. J. 96
Fedorov, E. S. 1, 45
Fedorova, N. N. 152
Fersman, A. E. 33
Figueiredo, M. O. xi, 3, 4, 5, 6, 8, 21, 24, 26, 27, 28, 29, $30,31,32,36,37,55,57,58,59,60,61,63,64,66,67$, $71,75,79,127,129,134,137,144,227-231,234,236$, 263
Finger, L. W. 100
Ford, W. E. 189, 269
Francombe, M. H. 40
Frank, F. C. 53
Friauf, J.B. 69
Frondel, C. 271
Frueh, A. J. Jr. 303

Galli, E. 290-292, 298, 299
Garrido, J. 3
Geber (Jabir Ibn Hayyan) 1
Ghose, S. 186, 216
Ghouse, K. M. 321
Giacovazzo, C. 77
Giese, R. F. Jr. 24
Gilli, G. 77
Gindt, R. 40
Giuseppetti, G. 322
Glasser, F. P. 42
Glusker, J. P. xi
Goble, R. J. 156
Goldschmidt, V. M. 3, 15, 17
Gottardi, G. 290-292, 298
Groat, L. A. 276-8
Groth, P. H. R. Von xi, 1
Gundermann, J. 306
Haber, F. 33
Hambley, T. W. 298
Hawthorne, F. C. 4, 6, 8
Hazen, R. M. 100
Hellner, E. 4, 6, 63, 65, 66, 67, 72, 74, 75, 76, 160, 161, 162, 163, 164
Hénin, S. 241
Hermann, C. 4, 22, 73, 74, 75, 194
Hooke, R. 59, 60
Howie, R. A. 103
Hurlbut, C.S. Jr. 279
Iwai, S. 187
Iida, S. 37, 53
Iitaka, Y. 163
Ingerson, E. 85-88, 99, 103, 120, 122, 135, 138, 149, 151, $160,165,172,201,202,205,215,225,254,256,267$, 269-270, 272-275, 279, 300, 304, 310, 312
Intern. Tables of Crystal. 44, 45
Iskhakova, L. D. 317
IUPAC 72
Jarchow, O. 300
Johnson, N. E. 283
Jones, J. B. 267
Joswig, W. 291
Kapustinskii, A. F. 33
Kasper, J. S. 53
Kepler, J. 22, 59
Kern, R. 40
Kerrick, D. M. 216
Kitaigorodskii, A. I. 31, 33
Klein, C. 279
Kniep, R. 282
Kondrasev, J. M. D. 152

Konnert, J. A. 156
Koptsik, V. A. 45, 51
Kostov, I. 3, 30, 76, 78, 83-86, 88-131, 133-165, 169-197, 201-219, 223-249, 253-300, 303-326
Krebs, H. 137, 253
Kripyakevich, P.I. 28, 53, 63
Landé, A. 14, 15, 33
Langlet, G. A. 59, 60
Lapparent, A. 3
Laves, F. 3, 4, 25, 33, 34, 37, 69
Lee, A. Van der 303
Leineweber, G. 161
Liebau, F. 1, 21, 63, 65, 66, 67, 69, 72, 76, 226-232, 234-243, 259, 271, 285, 286, 293, 297, 300
Lima-de-Faria, J. xi, 2, 3, 4, 5, 6, 7, 8, 21, 22, 24, 26, 27, $28,29,30,31,32,33,34,36,37,41,42,43,44,45,46$, $47,48,49,53,54,55,57,58,59,60,61,62,63,65,66$, $67,69,70,71,72,74,76,79,94,137,172,196$
Lindberg, M. L. 322
Linnaeus, C. Von xi
Loeb, A. L. 37
Lonsdale, K. 44
Machatschki, F. 1, 3, 66, 68, 171
Madelung, E. 33
Makovicky, E. 63, 65, 66, 67, 72, 76, 162, 164, 182
Mason, B. 77
Matkovich, V. I. 24
Mazzi, F. 279
McDonald, W. S. 194
Megaw, H. D. xi, 6, 8, 44, 45, 75, 76
Merkle, A. B. 298
Merlino, S. 288
Meulendijk, P. N. 318
Monaco, H. L. 77
Moore, P. B. xi, 21, 60, 132, 141, 194, 308, 324
Mootz, D. 282
Mumpton, F. A. 258
Náray-Szabó, St. v. 1, 103
Niggli, A. 66, 74
Niggli, P. 3, 4, 66
Nowacki, W. 162, 163
Okada, K. 305
O'Keeffe, M. 148
Orlando, J. 3
Ossaka, J. 305
Pabst, A. 1
Palache, C. 83-93, 95-113, 116, 117, 120, 121, 131, 133, $139,140,142,143,154,157,158,160-163,169-188$, 201, 202-204, 303-304
Papike, J. J. 61, 279

Papike, P. P. 216, 243
Parthé, E. 18, 63, 65, 66, 67, 68, 72, 76, 111-113
Pauling, L. 14, 15, 22, 34, 35, 36, 53
Pearson, W. B. 73, 109, 110, 114
Plinius (the older) Gajus Secundus 1
Pluth, J. J. 260, 261
Povarennykh, A. S. 1, 6, 38, 52, 83-88, 90-108, 110, 112-125, 127, 131, 133, 136, 138-163, 165, 169-190, 194, 195, 201-211, 214-219, 224-236, 240-249, 253-255, 257, 260-266, 268-270, 272, 274-278, 280-287, 289, 292-294, 300, 303-304, 306, 307, 310, 312, 313, 316, 317, 321, 323, 324, 326
Prewitt, C. T. 15, 61, 213
Putnis, A. 275
Radoslovich, E. W. 37
Ramdohr, P. 98, 172, 195, 242, 245, 246, 274, 283, 304, 312
Ribbe, P. H. 126, 268
Rinaldi, R. 296
Roberts, W. L. 84, 87, 94, 97, 98, 114, 116, 118, 119, 125, $133,134,136,137,140,145,147,152-154,157,158$, 160, 191, 192, 194, 197, 223-225, 232, 238, 239, 244, $246,249,254,258,260,273,277,283,286,287,290$, 291, 295-296, 300, 303, 305-306, 308-310, 312-317, 319-321, 323-325
Robinson, P. D. 319
Rooksby, H. P. 40
Ruben, H. W. 318
Sanderson, R. T. 16
Schlatti, M. 320
Schlemper, E. O. 309
Schubert, K. 73, 147
Scordari, F. 77
Senechal, M. xi
Shannon, R. D. 15
Shubnikov, A. V. 45,
Simonov, M. A. 294
Slaughter, M. 298
Smirnova, N. L. 53
Smith, D. K. 244
Smith, J. V. 149
Soloveva, L. P. 118
Spice, J. E. 10
Spronsen, J. W. Van 79
Srikrishnan, T. 162
Steele, I. M. 260, 261
Steinfink, H. 296
Stout, J. H. 61, 77, 83-86, 88-90, 92, 93, 95, 96, 99, 100, $103,105,108,110,111,120-124,126,127,129-131$, $135,138,144,146,148-151,155,156,165,172-175$, 177, 184, 185, 190, 193, 195, 202, 203, 205-213, 215-219, 223, 224, 226-231, 234, 236, 240, 242, 243,

246-248, 253, 256, 260, 261, 263-270, 272-276, 278-285, 287, 289, 293-294, 298, 299, 307, 311-313, 317, 321, 323, 326
Strunz, H. 84, 85, 89, 98, 108, 109, 111, 164, 169, 172, 195, $196,223,242,245,246,258,274,283,287,304,312$
Sueno, S. 61
Suzuki, K. 308
Tadini, C. 322
Taga, T. 188
Takéuchi, Y. 197
Taylor, H. F. W. 41, 42
Taylor, J. C. 298
Taylor, W. H. 267
Tendeloo, G. Van 172, 174
Theophrastus 1
Thompson, J. B. Jr. 61
Uklonskii, A. S. 3
Viterbo, D. 77
Wadsley, A. D. 153
Wang, R. 311
Wasastjerna, J. A. 15
Wells, A. F. 3, 30, 87, 88, 94, 96, 104, 106, 130, 157-159, 255
Werner, A. G. 1
Whewell, W. 1
Whittaker, E. J. W. 238
Winter, J. K. 216, 269
Wooster, W. A. xi
Wuensch, B. J. 114, 116, 169, 170
Wyckoff, R. W. G. 30, 52, 76, 83-108, 110-131, 133-152, 154, 155, 157-163, 165, 169-185, 189-196, 201-219, 223-236, 242, 244-246, 248, 253-258, 260-268, 270-280, 283-285, 287, 289, 292, 293, 295-297, 300, 303-304, 307, 310-314, 316, 321, 322, 324-326

Yakubovich, O. V. 294
Yamaguchi, G. 308
Zanotti, G. 77
Zemann, J. 26, 39, 110, 253, 316
Zoltai, T. 52, 61, 77, 83-86, 88-90, 92, 93, 95, 96, 98, 99, $100,103,105,108,110-111,114-116,120-131,135$, $138,144,146,148-151,155,156,165,169,171-177$, 184, 185, 190, 193, 195, 202, 203, 205-213, 215-219, 223, 224, 226-231, 234, 236, 240, 242, 243, 245, 247-248, 253, 256, 258-270, 272-276, 278-285, 287, 289, 293-294, 298, 299, 305, 307, 308, 311-313, 315, 317, 321, 323, 326
Zussman, J. 103


[^0]:    ${ }^{\text {a }}$ From 'Structure of Ionic Crystals and Metallic Phases' (1947). Izd. Akad. Nauk SSSR. Moscow.
    ${ }^{\mathrm{b}}$ From 'Albert Einstein. His work and its influences on our world' (1950). Scribner Publishers, New York.

[^1]:    

    Chart. 1. General chart of inorganic structural units and building units (after Lima-de-Faria \& Figueiredo, 1978). Reproduced in a very reduced size just to give an idea of its organization and appearence.

