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Chapter 1
Life Through Ages: An Overview

The idea of this brief chapter is to introduce students to the concept of fossil
occurrences and their use, through geological time. An approach that defines the
geological time scale, a method of relating the timing and relationship between
events that have occurred during Earth’s history. The Geologic time is divisible into
four Eons, Hadean, Archean, Proterozoic, and Phanerozoic (Fig. 1.1). The Eons are
further divided into Eras; the Phanerozoic is divided into Paleozoic, Mesozoic, and
Cenozoic (Fig. 1.1). The Eras are based on major changes in fossils record (such as
extinction and origination; the latter is the appearance of new forms). The Eras are
further divided into smaller units called Periods, in which a single type of rock
system is formed; these are further divided into Epochs like the Paleogene is
divisible into Paleocene, Eocene, and Oligocene (Fig. 1.1). However, in spite of a
long impressive fossil record, it is also interrupted by major and minor extinction
events (Fig. 1.1; see also Hart 1996; Hallam and Wignall 1997; Koeberl and
MacLeod 2002; Taylor 2009). The Phanerozoic record of marine invertebrates, in
particular, is interrupted by numerous, geologically short-term intervals (generally
<3 Ma) during which biotic diversity and abundance declined significantly (<40 %
at the familial level and <63 % at the generic level) (Raup and Sepkoski 1986) (see
Fig. 1.1). Extinctions (major and minor) do not fall within the preview of this book
but have only been mentioned to allude to the interruptions within the fossil record.

© Springer India 2017 1
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Fig. 1.1 The Geological timescale (all age used here and throughout the book, are after Gradstein
et al. 2012) mentioning major advent of life forms, corresponding events in North America, and
occurrence of major and minor extinction events

Here, for this book, only major invertebrate faunal groups, whenever, they
assume important age or duration marker characteristics, are mentioned (see
Figs. 1.2 and 1.3). Figure 1.3 shows marine family-level diversity with some dis-
tinctive invertebrate forms discussed in this book, through time. Thus, this chapter
lays the foundation of the book where major invertebrate groups are mentioned, and
detailed later in subsequent chapters.
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Fig. 1.2 Invertebrate groups discussed in the book. The black shaded portions indicate when an
organism assumed important age or duration marker characteristics, i.e., they are stratigraphically
useful and used for finer biostratigraphic divisions. The width of bands indicate the approximate
abundance of each group through time

Interesting to note is that life (as a single-celled simple organism like
Stromatolites, Bacteria, etc.) actually evolved very early (Fig. 1.4) and
multi-cellularity (such as Sponges; see Chap. 2), came quite late during the
Cryogenian (last ~760 Ma; Neoproterozoic; see Figs. 1.1 and 1.4). All ages
mentioned in this book are after Gradstein et al. (2012).

The book contains illustrations of around 1200 species through time in over
3000 well-labeled hand-drawn classroom-friendly diagrams. The illustrations are
also indexed (Appendix A, at the end of the book) mentioning the chapter number,
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Fig. 1.3 Stratigraphic distribution of major invertebrate forms discussed in the book
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Fig. 1.4 Earliest events in Earth’s history and the timing of the birth of life on Earth. All ages are
after Gradstein et al. (2012)
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Fig. 1.5 The distribution of Asia Africa Others
illustrated specimens based on 1% 1% 29%
geographic regions Canada \
5%
United
Kingdom
5%

species name, age, and locality of the illustrated specimen along with its figure
number within the said chapter, to make the book more user-friendly. Of the 1200
illustrated species, 72 % are from the United States of America, 14 % from Europe,
5 % from Canada, 5 % from United Kingdom (including Scotland, Ireland, and
Wales), 1 % from Asia and Africa (Fig. 1.5). Others (2 %) include a host of
countries with single or less than 4 samples.
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Chapter 2
Sponges

2.1 Introduction

The recent discovery of a 750 million years old sponge-like organism, Otavia
antiqua [Fig. 2.1(1-5)], a calcareous sponge with Ca-based skeleton, from the
Cryogenian—Ediacaran successions of Namibia (South Africa) makes sponges the
oldest living animal (Brain et al. 2012; Maloof et al. 2010) [Fig. 2.1(6, 7)]. Their
phosphatised body fossils also demonstrate a complex rigid structure [Fig. 2.1(1-5)],
indicating the presence of a high level of organization, and supporting the results
based on genetic sequencing and biomarkers that the first animals were sponges
(Love et al. 2009; Sperling et al. 2010; Brain et al. 2012). In fact, with this discovery,
the sponges are now the most basal metazoan taxon. They are also the most diverse
and successful of the extant phyla, known so far (Gehling and Rigby 1996;
Borchiellini et al. 2002; Philippe et al. 2009; Pick et al. 2010) (Fig. 2.1).

Sponges are invariably sessile in habit, being attached either by means of a stem
or a bundle of anchoring spicules, or simply encrusting at the base (substrate).
There are about 9000 living species of sponges: most are marine but few (~ 200
species) also inhabit freshwaters. Sponges of Class Calcarea largely inhabit shallow
waters (<100 m) and are most common in intertidal habitats. Class Demospongiae
that contains about 95 % of all sponge species are found at almost all depths
ranging from intertidal to abyssal zones (Rigby et al. 1993).

Sponges are simple or primitive multicellular sedentary organisms that show
remarkable variability in form (Fig. 2.2), size (from 1 mm to >1 m), and shape.
Even among individuals of the same species, shapes vary depending largely on
environmental factors such as hydrodynamics, light, and turbidity.

© Springer India 2017 7
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<« Fig. 2.1 Otavia antiqua. Vertical bars measure 100 pym. /—4 Scanning electron microscopy
images of Otavia. Note the presence of a consistent globular to ovoid shape, external bounding
surface pierced by numerous small pores and larger openings commonly forming raised mounds
(particularly in Figs. 2.1 and 2.2). 5 Features of Otavia. Note the presence of an overall ovoid to
globular shape, the external wall pierced with Ostia and the interior peripheral labyrinth
surrounding an irregularly shaped internal void connected to the outside by large Oscula. 6-7
Cyrogenian and Ediacaran stratigraphy of the Neoproterozoic Otavi and Nama Groups of northern
and southern Namibia (South Africa) yielding Otavia antiqua. Figures illustrated with permission
from the South African Journal of Science (these are also free illustrations under the Creative
Commons Attribution license)

2.2 Structural Features

Sponges are filter feeders where the water is pumped in through Ostia [small
inhalant openings; singular: Ostium; see Fig. 2.3(1, 2)], or by the irregular beating
of flagella of Choanocytes or Collar cells that bear a mobile, whip-like flagellum
guarded by a cylindrical wall, the collar [Fig. 2.3(3, 4)]. The interior chambers of
the sponge houses the Choanocytes [Fig. 2.3(4)]. These are responsible for the
circulation of the fluid through numerous canals within the sponge body; the
Osculum, the larger exhalant opening, allows for the exit of fluids [Fig. 2.3(3, 4)].

The sponges are broadly characterized by three body plans types: Ascon, Syon,
and Leucon [Fig. 2.3(5-10)]; these are briefly described below.

2.2.1 Ascon Type

This is the most basic type [Fig. 2.3(5, 8)]. Such simple sponges, belonging to Class
Calcarea, are usually smaller and largely radially symmetrical. They possess a typical
central spongocoel lined by choanocytes, with single osculum where water exits from
the spongocoel [the pseudogastric cavity; Fig. 2.3(5)]. The spongocoele opens to the
outside through an excurrent pore called the Osculum. The surface has numerous
pores (incurrent pores or Prosopores) that allows water to enter the sponge [Fig. 2.3
(8)]. This type of sponge represents a “flagellate chamber” and Leucosolenia, a living
calcareous sponge, is a good example of this type of body plan.

2.2.2 Syon Type

This is made up of a group of several flagellate chambers of the Ascon type around
an Excurrent canal [or Apochete; the pseudogastric cavity; see Fig. 2.3(6)]. The
excurrent pores lead into this and it empties to the outside through an Apopore (or
Osculum). In simple terms, the body wall folds to form secondary choanocyte
chambers, which then empties into the spongocoel through a system of canals
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<« Fig. 2.3 Sponge canal systems. /-2 Water enters the Spongocoel through the incurrent pores or
Ostia and passes out through the Osculum. 3 The flagellated collar has withdrawn to small, radial
chambers, each of which communicates to the Spongocoel. 3 The small chambers lined with collar
cells are deeply embedded in Mesenchyme and connected by intricately branched incurrent and
excurrent canals. 5—/0 Major structural types of sponges (modified from Boardman et al. 1992). 5
Ascon type—a single flagellate chamber lined by a layer of choanocytes (choanosome). 6 Sycon
type—several independent flagellate chambers opening directly into the Pseudogastric cavity
(spongocoele). 7 Leucon type—several sycon structures with a system of pores connected by
canals, and with incurrent canals leading toward flagellate chambers and then through excurrent
canals and pores emptying into the cloaca. Arrows indicate the direction of water circulation. 8~70
Cross sections of body walls of three structural types. 5 and 8 Leucosolenia Bowerbank; 6 and 9
Sycetta sagittifera Haeckel; 7 and 10 Leuconia Grant

[Fig. 2.3(9)]. Many calcareous sponges have such a plan of construction such as the
recent Sycetta sagittifera Haeckel.

2.2.3 Leucon Type (or Rhagon Type)

This emerges from the merging of several Sycon units. The excurrent canals or
apopores open into a pseudogastric cavity (or Cloaca) which empties to the outside,
through a true osculum [Fig. 2.3(7, 10)]. The presence of a dermis and/or cortex in
certain syconoid forms and in all leuconoid forms consequently entails the devel-
opment of a complex network of incurrent canals (or prosochetes) between the
incurrent pores (prosopores), which are open to the outside and that empty into the
flagellate chambers through the prosopyles. These are homologous to the incurrent
pores of the basic asconoid forms. All species of Demospongiae, and most of
Calcarea, have a Leuconoid plan of construction. The Recent calcareous sponge
Leuconia is a good example of this type of body plan.

2.3 Cell Terminology

The cell terminology used to describe the sponge body plan (see also Boury-Esnault
and Riitzler 1997) is briefly given below and illustrated Fig. 2.3.

2.3.1 Archaeocyte (Amoebocyte): These are cells in the Mesenchyme
(=Mesohyl). They possess pseudopods that are used for processing food
and distributing it to other cells

2.3.2 Choanocyte (Collar Cell): These cells line the inner cavity of the sponge.
The flagellum enables the organism to obtain nutrients and oxygen by
processing the flowing water

2.3.3 Flagellum: A whip-like structure of the choanocyte cell that moves, pushing
water (containing nutrients) through the sponge
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2.3.4 Mesenchyme (Mesohyl): A gelatinous layer between the outer body of the
organism and the spongocoel (the inner cavity = pseudogastric cavity)

2.3.5 Osculum (Plural = Oscula): Large openings that allow the water to flow out
of the organism

2.3.6 Pinacocyte (Epidermis): These are the thin, flattened cells of the epidermis
(a layer of cells that covers the outer surface of the sponge)

2.3.7 Porocytes: These are cells with pores located all over the sponge body; the
water flows into the sponge through them

2.3.8 Spicule: Located in the mesenchyme, these sharp spikes made of calcium
carbonate, form the “skeleton” of most sponges

2.3.9 Spongocoel (Cloaca): It is the central, open cavity through which water
flows

2.4 Skeleton

The internal skeleton of sponge which supports its soft parts (tissues) is either made
of organic fibers or mineralized needle-like or multirayed spicules, or a combination
of both (Bergquist 1998) (see Fig. 2.4). The spicules are distributed throughout the
sponge’s soft tissue or intertwined, and sometimes fused, into a rigid skeleton that
facilitates their fossilization, sometimes even preserving the original shape (Uriz
et al. 2003). The group’s excellent geological record is largely due to its mineral-
ized skeleton (both calcareous and siliceous). Hence, the discussion below on
spicule is largely about the calcareous and siliceous types and of Class
Desmospongea.

2.4.1 Spicules

The composition spicules is opaline silica or crystalline to microgranular calcium
carbonate, although, no sponge will secrete both materials at the same time. Thus,
the presence of a skeleton and its corresponding structure provides a first basic
subdivision—sponges without a skeleton and sponges with a calcareous, collage-
nous, or siliceous skeleton.

Hence, sponge classification is based on the nature, shape, and the interrela-
tionships of spicules (see also Butler 1962; De Vos et al. 1992; Uriz et al. 2003;
Dohrmann et al. 2012). Their composition further enables differentiation wherein
Calcarea, Archaeocyatha, and Sclerospongiae contain calcium carbonate as layered,
granular to crystalline aragonite or calcite. In Sclerospongiae and the hypercalcified
sponges in two subclasses of the Demospongea have intermixed siliceous and
carbonate skeletal elements.
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Fig. 2.4 Spicules. The sponge soft parts are supported by internal skeletons made of organic
fibers, mineralized needle-like or multirayed spicules, or a combination of fibers and spicules.
These are distributed throughout the soft tissue or intertwined, and sometimes fused, into a truly
rigid skeleton which facilitates their fossilization. This mineralized skeleton makes up most of the
geological record for the group
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2.4.2 Spicule Size and Nomenclature

Both the spicule size and numbers of rays (axes) enable categorization. However, a
single sponge may possess different kinds of spicules, and the same kind of spicule
may also occur in several sponges.

Broadly, spicules are of two types: the large ones that make the skeletal
framework are called the Megascleres [Fig. 2.4(1-36)] and the smaller ones, the
Microscleres [Fig. 2.4(37-52)]. These are irregularly distributed and always form
only an accessory element of the skeleton. The microscleres measure <100 pm and
megascleres >300 um (see also Wang et al. 2009). Therefore, the size of megas-
cleres extends over 4-5 orders of magnitude; the microscleres are much more
uniform in size. The largest known natural silica structure, the 3 m long Giant Basal
spicule is of the recent hexactinellid sponge Monorhaphis chuni (Schulze). The
diameter of megascleres commonly varies between 3 and 30 um (De Laubenfels
1955) but can grow up to 12 mm (Levi et al. 1989). The spicules are secreted by
specialized mobile cells (the archaeocyte/amoebocytes) within the mesenchyme
[Fig. 2.3(4)].

Names for the general categories of spicules are formed by adding a numerical
prefix, mono- (=one), di- (=two), tri- (=three), and tetra- (=four), to the word “axon”
when the number of axes composing the spicule is referred to, or to the word
“actine” when the number of rays is referred to. In the latter case additional prefixes
pent- (=five) or hex- (=six) may occur. A rod-shaped spicule pointed at both ends is
called a monaxonid diactine; if pointed at one end and rounded at the other, it is
monactine. Tetraxonid and triaxonid spicules also occur, as do tetractine and
hexactine spicules. Among calcitic spicules (as in class Calcarea), triactines and
tetractines have three or four rays, respectively. The calcareous tetractines with
eight rays (=Octactines) are characteristic of Heteractinida, a Palacozoic class. The
polyactines or polyaxons, or sphaeractines are those that possess multiple rays and
axes of growth. All these terms refer to the larger spicules of sponges, that is, the
megascleres that make up the primary framework of the skeleton [Fig. 2.4(1-36)].

2.4.2.1 Megascleres

Broadly, these siliceous skeletal elements are resolvable into a few fundamental
types (Fig. 2.4), such as the following:

2.4.2.1.1 Uniaxial spicules or Monaxons. Straight or bent, smooth, prickly or
knotty, bevelled, sharpened or truncated needles, rods, hooks, clasps,
pins, and anchors (amphidisc). They almost always contain an axial
canal, which may be either entirely sealed up, or open at one or at both
ends

2.4.2.1.2 Tetraxial spicules or Tetraxons. The normal form is characterized by
four equal rays intersecting like the bisectrices of the plane angles of a
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regular tetrahedron. Triaxial forms result from the occasional abortion of
one of the rays. One of the rays may become elongated or otherwise
modified so as to form anchors (triaens) with three simple or furcate
hooks. Three of the rays may be numerously divided or foliately expanded
so as to produce forms resembling thumb-tacks (trichotriaens, phyllotri-
aens; atrophy of the fourth ray in the last-named form reduces the spicule
to a delicate silicious disk. A peculiar forking of the shaft gives rise to
candelabras or amphitriaens, while other modifications may produce
umbel-like spicules, etc. Certain skeletal elements of the Lithistids may be
regarded as irregular tetraxons (desmas), in which the extremities of the
four rays are prolonged in knotty, root-like excrescences

Hexactinellid spicules (Hexactins or Triaxons). The groundform is an
axial cross with six equal arms intersecting at right angles like the axes
of a regular octahedron. Atrophy of one or more of the rays may result in
pentaxial, tetraxial, triaxial, or even nail-shaped forms, without their real
character becoming entirely obliterated. Bifurcation or other modifica-
tions of a number or all of the rays produce those exquisite siliceous
structures so characteristic of the group Hexadinellida, which resemble
candelabras, double-headed anchors, fir trees, pitchforks, rosettes, etc.
The fusion of juxtaposed hexactins produces more or less symmetrical
latticeworks with cubical interstices. Anaxile or polyaxile bodies of
spherical, cylindrical, stellate, or discoidal shape, which are not
derivable from either of the three ground forms, occur in only a few
varieties of recent and fossil siliceous sponges

2.4.2.2 Microscleres

The Microscleres [Fig. 2.4(37-52)] are small-sized spicules that provide a dermal
armor at the surface, strengthen the ground substance of the cortex or mesenchyme,
or may reinforce the pinacoderm that line the canals. Many kinds of microscleres
occur in Demosponges and Hexactinellids and are given names of Latin or Greek
origin to describe their shapes [Fig. 2.4(37-52)]. The Microscleres, due to their low
preservational potential through geological time, are of minor use in paleontology.

2.5 Classification

The fossil sponges are traditionally classified on the following three parameters:
composition and forms of spicules, canal systems, and structural grades. Recently, a
more balanced multicharacter approach is taken in which spicules, skeletal struc-
ture, soft parts, and life history characteristics are included resulting in three
unchallenged classes: Calcarea, Hexactinellida, and Demospongea (see also Hooper
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1991; Van Soest 1991; Clarkson 1993; Van Soest et al. 1994; Hooper and
Wiedenmayer 1994; Hooper and Van Soest 2002) and the fourth Archaeocyatha
(contentious) (Table 2.1; Fig. 2.5). To the established three, Chaetetids and
Stromatoporoids (Sclerospongia) have recently been included, making them five

(see Table 2.1).

Table 2.1 Traditionally, five classes have been recognized in the phylum, including the Calcarea,
Demospongea, and Hexactinellida

Class

Subclass

Order

Age range

Calcarea
Bowerbank 1864

Cambrian-Holocene

Calcinea Bidder,
1898

?Precambrian, Cambrian-Holocene

Clathrinida Hartman, Holocene
1958
Murrayonida Vacelet, ?Precambrian, Cambrian-Holocene
1981
Calcaronea Bidder, ?Cambrian,? Triassic,
1898 Jurassic-Holocene
Leucosoleniida Holocene
Hartman, 1958
Sycettida Bidder, 1898 | Holocene
Sphaerocoeliida Cretaceous

Vacelet, 1977

Lithonida Doederlein,

Jurassic-Holocene

1892
Demospongea Precambrian-Holocene
Sollas, 1875
Clavaxinellida Precambrian-Holocene
Lévi, 1956
Choristida Sollas, Late Ordovician-Holocene
1880
Tetractinomorpha, Middle Ordovician-Holocene
Lévi, 1953
Ceractinomorpha Middle Cambrian, Middle-Late
Lévi, 1953 Ordovician, ? Pennsylvanian,
Holocene
Lithistida Schmidt, Cambrian-Holocene
1870
Hexactinellida Precambrian-Holocene
Schmidt, 1870
Amphidiscophora Precambrian-Holocene
Schulze, 1887
Amphidiscosa Ordovician-Holocene

Schrammen, 1924

Reticulosa Reid, 1958

Precambrian-Upper Permian

(continued)
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Table 2.1 (continued)

Class Subclass Order Age range
Hemidiscosa Late Pennsylvanian-Cretaceous
Schrammen, 1924
Hexasterophora Ordovician-Holocene
Schulze, 1887
Lyssacinosa Zittel, Ordovician-Holocene
1877
Hexactinosa Permian-Holocene
Schrammen, 1903
Lychniscosa Upper Triassic-Holocene
Schrammen, 1903
Heteractinida de Lower Cambrian-Lower Permian
Laubenfels, 1955
Octactinellida Hinde, Early Cambrian-Lower Permian
1887
?Hetairacyathida Early Cambrian
Bedford and Bedford,
1937
7Sclerospongiae Cambrian-Holocene

Chaetetids and
Stromatoporoids

To these have recently been added Chaetetids and Stromatoporoids (Sclerospongia) (see text above for further
explanation)

However, as simple as it seems, the classification of the Porifera is still largely
based on morphological characters, spicules, and fibers. But, with recent molecular
studies, discrepancies between the results of morphological and molecular analysis
are increasingly becoming common and hence, new tools are needed to weigh the
competing results.

Representative examples of fossil sponges through time are illustrated in
Figs. 2.6, 2.7, 2.8, 2.9, 2.10, and 2.11, and the classes are briefly discussed below
(Figs. 2.12 and 2.13).

2.5.1 Class Calcarea Bowerbank (Calcispongia
or Calcareous Sponges)

This class includes sponges with calcareous skeletal elements that lack both silica
and spongin. Skeleton is characterized by the range from three-rayed spicules of
calcite or aragonite, to those with rigid skeletons of fused polygonal elements or
imbricate calcitic plates. Their present day analog is exclusively marine and com-
monly found in shallow tropical environments.

Calcarea have a worldwide distribution. Their structure is of the leucon type but,
in contrast to the other classes, of the sycon and ascon types (see Fig. 2.3 for types).
Three types of spicules are found in virtually all species: monaxon diactinal; triaxon
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Reef builders Calcarea Desmospongia Hexactinellida

Other taxa Tertiary

Sphinctozoans

Cretaceous

Jurassic

Triassic

Permian

Carboniferous Stromatoporoids

Devonian

Silurian
Ordovician

Archaeocyatha
L

Cambrian
Vendian

-_—
10 Families

Fig. 2.5 Simplified classification of sponges. Traditionally, five classes have been recognized in
the phylum, including the Calcarea, Hexactinellida, and Demospongea (see also Table 2.1). To
these have recently been added Chaetetids and Stromatoporoids (Sclerospongia). Fossil
“sphinctozoan” (“chambered sponges”) families for which calcarean or demosponge affinities
cannot be determined are known from the Cambrian to the Cretaceous. Calcarea is the smallest
class with 860 species (9 % of the total sponges) (Fig. 2.5). This has exclusively calcareous
skeletal material and are predominantly whitish and small, and of fragile consistency. The second
class (600 species or 6 %) is the Hexactinellida (“glass sponges”), have siliceous skeletons built of
hexaradiate spicules. These occur predominantly in deep oceanic habitats. The third and by far the
most diverse class (8400 species or 85 %) are the Demospongiae. Their skeletons are built of
siliceous spicules of various forms (but not hexaradiate) and are often cemented together with a
keratinous protein called Spongin

triactinal with the rays arranged at an angle of 120° in the same plane of symmetry
(triod) or in different planes (tripod); and a particular type in the shape of a tuning
fork called “pharetron” (see also Fig. 2.4).

Some consider Heteractinida (Early Cambrian to Early Permian) as a class but
most assign it as an order of Calcarea. Heteractinida is characterized by a skeleton
made of large calcareous octactine spicules [Fig. 2.4(13)]. This is one of the only
two classes of sponges to have become extinct. Examples of Class Calcarea
illustrated here include the following: Girtyocoelia typica King, Girtyocoelia beedei
(Girty), Maeandrostia kansasensis Girty, Girtyocoelia dunbari King, Cotyliscus
ewersi King, Amblysiphonella prosseri Clarke, Cystauletes mammilosus King,
Barroisia anastomans (Mantell), Stellispongia glomerata (Quenstedt), and
Corynella quenstedti Zittel.
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Fig. 2.6 Sponge reef builders across ages. A simplified diagram of the contribution of sponges in
reef building through time is shown in Fig. 2.5
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Fig. 2.8 Representative Middle Cambrian (Burgess Shales) sponges, British Columbia, Canada,
and their major distinguishing characters

2.5.2 Class Demospongea Sollas

The Demosponges are a dominant, heterogeneous group, characterized by varied
shapes, canal patterns, and spicule shapes (and their inter-relationships). There are
several thousand known living species and about 500 fossil genera. They mainly
inhabit shallow marine niches and are the only known living and fossil freshwater
sponges. Their structure is Leucon type [Fig. 2.3(7, 10)]. They usually possess a
skeleton made up entirely or partly of organic spongin fibers (with a poor pale-
ontological record), siliceous spicules, or mixed spongin, and siliceous spicules
(with a much better preservational geological record). Diversity of shapes and
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Fig. 2.9 Representative Middle Ordovician sponges and their major distinguishing characters

skeletal structures is huge (Fig. 2.2). The skeletons are composed either of spongin
fibers or with siliceous spicules. These are usually divided into larger megascleres
and smaller microscleres. Spicules of the class range from loose monaxons to
tetractines whose rays do not join at right angles or to irregular root-like forms
(Fig. 2.4). Their skeleton is composed of particular spicules or desmas, which are
formed by the complex deposition of silica on an original megasclere (as “mortar”)
[Fig. 2.4(35, 36)]. The spicules are diactinal or tetractinal and are recognizable from
the axial canals. Among Demosponges, Order Lithistida is the dominant fossil
group, due to their higher preservational potential; their skeleton is made up of
spicules fused together to form a rigid network, making them “as hard as rock,” as
their name implies.

Examples of Class Demospongea illustrated here include the following:
Protospongia fenestrata Salter, Chancelloria eros Walcott, Eiffelia globosa
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Fig. 2.10 Representative Late Ordovician-Late Devonian sponges and their major distinguishing
characters

Walcott, Brachiospongia digitata (Owen), Astaeospongia meniscus (Roemer),
Prismodictya telum (Hall), Prismodictya prismatica (Hall), Hydnoceras tuberosum
Conrad, Titusvillia drakei Caster, Ventriculites striatus Smith, Coscinopora
infundibuliformis Goldfuss, and Coeleptychium agaricoides Goldfuss.
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Fig. 2.11 Representative Early Mississippian sponge and their major distinguishing characters

2.5.3 Class Hexactinellida Schmidt
(Hyalosponges or “Glass Sponges”)

The siliceous hexactine spicules [Fig. 2.4(14)] characterize the skeleton of this
exclusively marine class. In modern day seas, the Hexactinellida commonly inhabit
on seafloors, from depths ranging from 200 to 2000 m, although many species have
been reported from lower bathyal depths also (up to 4000 m).

In contrast to the demosponges, the hexactinellids form a homogeneous group of
a simple leucon type with a large pseudogastric cavity of the sycon type [Fig. 2.3
(7-10)]. Their megascleres are characterized by rays arranged at right angles from a
point of divergence. They build triaxon—hexaradiate spicules (i.e., the three axes of
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Fig. 2.12 Representative Early Cretaceous-Late Jurassic sponges and their major distinguishing
characters

the spicules intersect at right angles) (Fig. 2.4). The triaxon hexactinal spicule,
sometimes considered as the basic type, is characteristic only of the dictyids (with
the hexactinellid family), and other types may be dominant in other species.
A tetraxon spicule with the four rays lying in the same plane (also known as
stauractinal) is a common type. There are also pentactinal (five), hexactinal
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Fig. 2.13 Representative Late Pennsylvanian-Permian sponges and their major distinguishing
characters

(six) and octactinal (eight) types, and even polyactinal spicules with more than eight
rays. The heteractinids, with a skeleton made up essentially from polyactinal spi-
cules assimilated into megascleres (Fig. 2.4). Hexactinellids lack any calcareous or
spongin components in the skeleton.

2.5.4 Class Sclerospongiae

Class Sclerospongiae was proposed to include a few living sponges. It was intro-
duced fairly recently to cover some recent “relict” sponges, and two fossil groups
usually placed with the Coelenterata: the Stromatopora, historically compared to the
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hydrozoans, and the Chaetetids, sometimes also placed among the hydrozoans or,
more frequently, with Tabulata (Corals; Chap. 9).

Stromatoporoids possess a laminated calcareous skeleton that is perforated by
astrorhizal canals, and the living animal is thought to have occupied essentially only
the upper surface. They have domal, tabular, branching, or bulbous growth forms.

The Chaetetids were shallow-water marine organisms. Their growth form,
skeletal structure, and the rare occurrence of spicules indicate a strong relationship
to other Sclerosponges. They have compound skeletons that range from plate-like
or domed to columnar and are composed of clustered narrow tubes, or calicles, that
are less than 1 mm in diameter and commonly polygonal to irregular in
cross-section.

The Stromatoporoida exhibit greater diversity, and during the Devonian, and
were among the main builders of the earliest bioherms (see Fig. 2.6) (see also
Maldonado et al. 1999; Mueller 2003). Chaetetids, on the other hand, were
important and abundant reef builders during the Paleozoic (Suchy and West 2001;
May 2008).

2.5.5 Archaeocyatha

The Archaeocyaths (Fig. 2.12) are an extinct class of the phylum Porifera, close to
the living Demospongiae (Debrenne 2007; Debrenne and Vacelet 1984). They are
sessile, benthic, and filter feeders. They lived only in environments with restricted
temperatures (stenothermal), salinity (stenohaline), and depth (stenobathic; 20—
30 m). The archaeocyathans have been recorded from low latitudes during the
Cambrian such as in Antarctica, Australia, China, Kazakhstan, Siberia, and North
America. This latitudinal distribution is similar to that of modern colonial corals
that inhabit warm shallow seas.

Typically, the archaeocyathan skeleton is solitary conical to branching [Fig. 2.12
(1)]. The central cavity of the organism is surrounded by a porous inner wall
followed by a cavity called Intervallum and then outside it, a thin porous outer wall
[Fig. 2.12(1)]. The Intervallum is divided into longitudinal openings by radial septa
that acts as a bridge between the two porous walls [Fig. 2.12(1)]. At the base,
root-like attachment structures occur that also act as holdfasts [Fig. 2.12(1)].
Various body forms have been reported from simple (single-walled) to more
complex thalamid chambered forms. Rare are branched colonial forms with mod-
erately complex walls (fan-shaped and bowl-shaped genera).

The Archaeocyaths were the oldest of the calcified sponges, and the first
metazoans to build reefs (in association with calcimicrobes; see Fig. 2.6), are
characteristic fossils used for the biozonation of the first, pre-trilobitic Cambrian
stage (Tommotian) (Kerner et al. 2012).

The Archaeocyaths appeared close to the base of the Cambrian and became
extinct by Middle Cambrian. The Cambrian Archaeocyathan occurrences can be
broadly grouped into two associations—the Early Cambrian sponges from China,
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and the Middle Cambrian sponges in North America (mainly from the Canadian
British Columbia and American Utah) (see also Carrera and Botting 2008). These
first metazoan reef formers were relatively abundant during the Early Cambrian,
from where over 300 genera have been described. The first subdivision of a stage
based on archaeocyaths was established on the Siberian Platform (Zhuravleva
1960). Morocco, western Europe, Australia, and Canada have since provided
regional scales, which allow stratigraphic comparisons that parallel trilobites bio-
zones or replace them when necessary.

Appendix A gives the list of illustrated specimens mentioning the chapter
number, species name, age, and locality along with its figure number within the
chapter.
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Chapter 3
Cephalopods

3.1 Introduction

Cephalopods are bilaterally symmetrical swimming marine carnivore molluscs that
include modern day cuttlefish, octopus, squid, pearly Nautilus, and a large number
of and mostly Paleozoic and Mesozoic forms. At present there are 800 living
cephalopod species (~ 175 genera) and more than 17,000 (~600 genera) fossil
forms; these are the largest group after Arthropods.

Cephalopods are active marine predators that were able to swim swiftly and
compete with fishes within the marine habitat (although the early forms were most
likely drifters). They are also the most advanced, intelligent, mobile, and largest of
all the molluscs (Pojeta and Gordon 1987). As compared to Pelecypods (bivalves)
and Gastropods, their brain is much more developed, with highly specialized sense
organs. The cephalopods, especially the nautiloids in the Paleozoic and ammonoids
in the Mesozoic are of enormous stratigraphic importance and are amongst the best
known index fossils (i.e., organisms that are short-ranging in time but widespread in
geographic distribution) (see also Tables 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7).

The earliest cephalopod, Plectronoceras cambria Walcott [a gastropod-like
molluscs; Fig. 3.1(1-3)], comes from the Late Cambrian of NE China of the earliest
Fengshanian stage (492.5-488.3 £+ 1.7 Ma) from the basal Fengshan Formation
(see also Dzik 1981; Clarke and Trueman 1985). The latest Cambrian of North
America has also yielded Palaeoceras mutabile Flower [Fig. 3.1(4-9)] and
Ectenolites primus Flower (Flower 1954).

The Nautiloids diversified into many different orders, and some of them were
huge predators like the North American and European Cameroceras (Ordovician;
4854 £ 194434 £ 1.5 Ma) that grew as much as 10-11 m (~32-36 ft).
However, most became extinct by the end of Devonian (358.9 £ 2.5 Ma). Only
one order survived, the Nautilida (which peaked abundance between 515 and
250 Ma); from this only five species of Nautilus are alive today. During
mid-Devonian, the ammonoids began to evolve as an offshoot of one of these
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Table 3.1 Early-Middle Triassic and Permian index ammonites

3 Cephalopods

Ma Period Epoch Age/Stage Substage Tethyan Ammonoids
229 Daxatina canadensis

= Frankites regolendanus
230

3 Protrachyceras archelaus
231 Longobardian Y
232

- - Protrachyceras gredleri
233 Ladinian
2343
235+ Fassanian Eoprotrachyceras curionii
236
237 Midd|

- I e N .

m Nevadites secedensis
238

3 Reitziites reitzi
239 ) | Kellnerites felsoecersensis |

m o liitrian Paraceratites trinodosus
2404  Triassic " Schreterites binodosus

3 Balatonites balatonicus
2415 Aghdarbandites ismidicus

3 Anisian Nicomedites osmani
2423 Lenotropites caurus

3 Pelsoian  H__Silberlingites mulleri |
243 Pseudokeyserlingites guexi

5 Japonites welteri H
2443 o MNeopopanoceras haugi

3 Birthnian Prohungarites-Subcolumbites
245— Procolumbites

B Aegean I Columbites parisians |l
2467 Tirolites cassianus -

3 Anasiirites kingianus
247 Spathian Meekoceras gracilitatis |

4 _ - _Flemingites flemingianus 1
2483 Olenekian Rohillites rohilla i

3 Early Sithian G;I:ronltes ?reqt{enie
2493 : : Pleutogyrpm;es_

3 i| | planidorsatus-Disciphiceras|
250 T Late \ Otoceras tibeticum

3 Induan Griesbachian Otoceras woodwardi

E (Gangetian) Otoceras fissisellatum g
251 Hypophiceras changxingense
252_: Pleuronodoceras occidentale

= Changhsingian Paratt_rohtes kittli :

3 permi Lopinai Shevyevites shevyrevi-
253 Sirman opingian \ Dzhulfites spinosus flll

3 Iranites transcaucasicus
2547 | [l

Wuchiapingian

\

Phisonites triangulum__|
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Table 3.2 Late Triassic index ammonites
Ma Period Epoch Age/Stage Substage Tethyan Ammonoids
200§
201_2 Choristoceras marshi
E Rhaetian
202—: Choristoceras haueri
203? Cochloceras suessi
204_f Sagenites reticulatus
3 Sagenites
20573 quinqugpunctatus
206—; Sevatian
207_; Halorites macer
2083
Meschimavatites
209 ; columbianus
3 Alaunian
210 Naorian z
= Cyrtopleurites
2113 icrenatus
212—5 Juvavites magnus
2133 Malayites paulckei
214_; Triassic Late Lecen
21 5_5 Guembelites jandianus
2163
2173
218—2 Anatropites spinosus
219—;
2203 Tuvalian Tropites subbullatus
2213
2223 Tropites dilleri
223_5 Carnian
224 Austrotrachyceras
3 austriacum
225+
= Julian
229 - Trachyceras aonoides
227
3 Trachyceras aon
228—

Daxatina canadensis
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Table 3.3 Early Jurassic index ammonites

3 Cephalopods

Ma Period Epoch Age/Stage Substage Tethyan Ammonoids
1764 Pleydellia aalensis
1773 Dumortieria

3 pseudoradiosa
A Phlyseogrammoceras
178 3 Late dispansum
1793 : Grammoceras
3 Toarcian thouarsense
1803
= - /___Haugia variabilis
181 Middle Hildoceras bifrons
132.§ Early Harpoceras serpentinum
183 _f JDaclonceras tenuicostaturi
3 Emaciaticeras emciatum
184 —
3 Arieti Igovi
155 E Late rieticeras algovianum
3 Domerian
‘186~E Plionsbachizn Fuciniceras lavinianum
1875 - :
E 2 Prodactylioceras davoei
3 Jurassic Early
188 5 Early Tragophylloceras ibex
3 Carixian
189 Uptonia jamesoni
190 . .
3 Echioceras raricostatum
1915
1923 Late Oxynoticeras oxynotum
E . Asteroceras obtusum
193—: Sinemurian
3 Caenisites turneri
194 5
195 _E Early Arnioceras semicostatum
196 —f Arietites bucklandi
197 3 Schlotheimia angulata
. Alsatites liasicus
198—: Hettangian : i

Psiloceras planorbis
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Table 3.4 Middle-Late Jurassic index ammonites

35

Ma Period Epoch Age/Stage Substage Tethyan Ammonoids
146“':“ Durangites
3 Late Micracanthoceras
1473 microcanthum
3 Micracanthoceras ponti/
= s . -\ Burckhardticeras peroni ,r
1483 Tithonian
3 Semiformiceras fallauxi
149— Early Semiformiceras semiforme
150_: Semiformiceras darwini |
3 Hybonoticeras hybonotum
1513
B Hybonoticeras beckeri
152 Late
3 Aulacostephanus eudoxus
153 ) o Aspidoceras acanthicum
3 Late Kimmeridgian L. Crussoliceras divisum A
154 Ataxioceras hypselocyclum
3 Early Sutneria platynota
155 Idoceras planula
156 Epipeltoceras bimammatum
3 Late
1573 Perisphinctes bifurcatus
5 Gregoryceras
158— . tra nsg\.re rsarium
3 Oxfordian Middle
1595 Perisphinctes plicatilis
1603 _ Early Cardioceras cordatum
161 T Quenstedtoceras mariae
3 Quenstedtoceras lamberti
162 Late Peltoceras athleta
= [/ Erymnoceras coronatum \
= . Middle ./ Reineckeia anceps '\
163 3 Callovian Macrocephalites gracilis ™
= Bullatimorphites bullatus
1643 Early  U—Clydoniceras discus \\.
165 3 Heclicoceras retrocostatum ‘t
3 Late Cadomites bremeri
= [ Morrisiceras morrisi__\
R Bathonian Middle [/ Tulites subcontractus
167 3 Procerites progracilis
675 Early  ~_Procerites aurigerus /|
E \__Zigzagiceras zigzag A
168 = Midd ~__Parkinsonia parkinsoni -
3 ladle Late Garantiana garantiana
1695 Strenoceras niortense
Bajocian £ Stephanoceras N
1703 humphriesianum
3 Early ~__Sonninia propinquans
171 = —.__Witchellia laeviuscula A
3 \_Hyperlioceras discites A
1725 Late Graphoceras concavum
1734 Brasilia bradfordensis
3 Aalenian Middle
1744 Ludwigia murchisonae
1754 Early Leioceras opalinum
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Table 3.5 Early Cretaceous index ammonites

3 Cephalopods

Period Epoch Age/Stage Substage Tethyan Ammonoids
Late
Albian Same as Boreal
(NW Europe)
Middle
Early
Hypacanthoplites jacobi
Late
Clansayesian Nolaniceras nolani
Perahoplites melchioris
) Middle
Aptian Gargasian )
Epicheloniceras
subnodosocostatum
Dufrenoyi furcata
Early Early Deshayesites deshayesi
3 Cretaceous Bedoulian Deshaygsﬂes weissi_ N
= Deshayesites oglanlensis
| Pseudocrioceras waagenoides |y
Imerites giraudi
Late | [ Hemihoplites fer; iSIn A\
Barremian An clooeras_i vande‘n:beckii \
—Lor - \
,—mmammmmh
Nicklesia pulchella ]
Early E Nicklesia nickles; ~
Spitidiscus hugil —
b Pseudothurmannia ohmi
Late M Plisgitiscs igalus '
Hauterivian Subsaynella sayni
L nodosoplicatu
Early Crinceralites loryi
Acanthodiscus radiatus
Criosarasinella furcillata
Late Neocomites peregrinus
Saynoceras Verrucosum
Valanginian .
Busnardoites campylotoxus
Early
Timovella pertransiens
/" Thurmanniceras otopeta |
Late Subthrumannia boissieri
Berriasian Subthrumannia occitanica
Early

Berriasella jacobi

Durangites
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Table 3.6 Late Cretaceous index ammonites
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Ma Period Epoch Age/Stage Substage Tethyan Ammonoids
66 -g Anapachydiscus terminus
67 =
E Late :
E Anapachydiscus
68 4 Maastrichtian frgsvmgnsis
69
E Pachydiscus neubergicus
70 i to Pachy. epiplectus
714 Nostroceras hyatti
72
733 Didymoceras
3 Late cheyennense
74—
753
763
77 Campanian Bostrychoceras
3 polyplocum
78 <
83 Middle
79 =
80 = -/ Hoplitoplacenticeras marroti \J
813 vari va
3 Delawarella delawarensis
82 Early
83 = Cretaceous Late Placenticeras bidorsatum
84 —§ Lale
85—5 Santonian Middle Placenticeras polyopsis
E Early
86 5 Paratexanites
- 3 o Late serratomarginatus
3 Coniacian Earl Gauthiericeras margae
88 E Y Peroniceras tridorsatum
895
90 E Late
91 _; Turonian Middle
92 5
933 Early
94 —f Same as Boreal
E Late (NW Europe)
o Middle
96 —;
97 ;:_‘ Cenomanian
98 4 Early
99 =
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Table 3.7 The geological history of cephalopods

Geological history
Age Events Extinction
One Nautiloid genera with 5 species survived and is
restricted to the south-west Pacific
Tertiary Rare Nautiloid records
Only 5 ammonoid families are known by the K/T boundary.
However, the Nautiloids survived the crash; genera like
Aturia and Hercoglossaare recorded in the Danian,
Paleogene; similarly the belemnites also crashed although

Present

Cretaceous-Tertiary boundary

(KM few Eocene records are noted but they were soon heavily
outcompeted by the modern Coleoidea (octopus, squid,
cuttlefish, etc.).

Only 11 ammonoid families remained; widespread
Late
Cretaceous Heteromorphs
The remaining ammonoid genera radiated again with 90
families in the Jurassic and 85 in the Cretaceous; first
Jurassic confirmed fossil record of squid, octopi and belemnites from
the Jurassic
Most Ceratites were wiped out by end-Triassic extinction
Late (Age of lziviqlg (_)(;ﬂy ;ewpgen;ra t;l) surv_idve; demise of straight shelled
o Ceratites) autiloids (the seu ort oceri 's) _ _
Triassic The Ceratites dominated the Triassic with 80 families and
over 500 genera
Ammonoids order Phylloceratids arose that gave rise to all
Early L .
post-Triassic ammonoids
One ammonoid genera survived the Permian catastrophe;
. Late extinction of Bactritids and Goniatites
Permian P - -
Decline in ammonoid diversity
Middle 27 ammonoid families
Improvement in Late Pennsylvanian with 30 ammonoid
families
Pennsylvanian Great reduction in the ammonoids diversity due to the
Carboniferous Mississippian / Pennsylvanian extinction; only 9 ammonoid
families survived
o 2 genera of ammonoids remained; the Actinoceratids
Mississippian ) .
struggled to survive
Famennian Radiation of ammonoids-80 genera present
Fransmgn / Only 3 ammonoid genera survived the Fransnian /
Famennian . LS
. Famennian extinction event
Devonian Event
Late Rise of Bactritids, Ammonoids and Coleoids; 30 genera of
ammonoids present
Early Ammonoids diversified
Silurian Disappearance of Endoceratoids
Ordovician Late Decline of Endoceratoids and Actinoceratoids
(Age of Middle 20 genera of Actinoceratoids
Nautiloids) Early 40 genera of Endoceratoids
Late The earliest recorded Nautiloid is Plectronoceras
[Fig. 3.1(1-3)]
. Cephalopods arose from a Monoplacophoran ancestor with
Cambrian a tall, conical, slightly curved shell such as that of Late
Cambrian Knightoconus (Knightoconus antarcticus;
Figs. 3.1 (10-11)

extinct groups of straight-shelled nautiloids, called the Bactritida; the evolution of
coiled shells began during this time (Table 3.7). The Bactritids are an obscure
group, and are regarded as a transitional stock between nautiloids and ammonoids.
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Gradually, three forms of ammonoids (Goniatites, Ceratites, and Ammonites)
evolved, over time. The Goniatites in the mid-Devonian (393.3 4+ 2.7-
382.7 £ 2.8 Ma) through Permian (252.2 4+ 0.5 Ma), the Ceratites during the
Triassic (252.2 £ 0.5-201.3 £ 0.2 Ma) and following their extinction, the
Ammonites in the Jurassic (201.3 &+ 0.6-145 + 4 Ma). Thus, their evolutionary
history spans an impressive ~ 500 Ma, recording repeated speciation and extinction
events (Table 3.7).

3.2 General Morphology

The name cephalopoda comes from the Greek words cephale meaning “head” and
podos meaning “feet.” The foot consists of a cluster of tentacles (arm-like appen-
dages) that surrounds the mouth [Fig. 3.2(1)] which is used to capture prey. Part of
the foot is modified into a muscular organ called the Hyponome [Fig. 3.2(1)] that
jets water when it is compressed, facilitating swimming. Thus, the cephalopod is
jet-propelled in the opposite direction at a velocity controlled by the force with
which the water is expelled. Cephalopods are streamlined and the most streamlined
living squid can reach speeds up to 70 km/h. In the chambered Nautilus, the
ejection of water through the hyponome results from the retraction of the body into
the conch with simultaneous contraction of the hyponome muscles rather than by
the mantle muscles alone, as done by squids (Fig. 3.2).

At the onset, it must be kept in mind that no ammonite has yet been found that
possesses preserved soft tissues. Hence, our best estimate of its physiology is based
on the living Nautilus; a suitable comparison despite anatomical differences. Here,
preserved hard parts and their observed main morphological features are briefly
described with corresponding figures.

3.2.1 Chamber (Camera; pl. Camerae): The living chambered Nautilus (the
only cephalopod that has retained its exterior shell) is planispirally coiled
and is divided into gas-filled chambers called Camerae [Fig. 3.2(1)].
Camera, excluding the siphuncle, is the space enclosed between two
adjacent septa (Fig. 3.2)

3.2.2 Septa: These are curved calcareous walls, invariably concave adorally, and
are pierced by the siphuncle. The chambers are partitioned by the Septa
[Fig. 3.2(2)]

3.2.3 Aperture: This is the opening at the anterior end of the shell through which
the head—foot protrudes [Fig. 3.2(1)]

3.2.4 Peristome: This is the edge of the aperture [Fig. 3.3(1)]

3.2.5 Hyponomic sinus: At the mid-ventral margin of the aperture there is an
indentation (a large concave sinus in the middle of the aperture) called the
Hyponomic Sinus [Fig. 3.3(4, 5)]. This depression accommodates the
Hyponome and is invariably ventral in position. The side which has the
hyponome is the Ventral side and the opposite is the Dorsal side [Fig. 3.3(4-7)]
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Fig. 3.1 Earliest known
cephalopods. /-3
Plectronoceras cambria
Walcott. It emerged in the
Cambrian, 540 Million years
in the Fengshan formation of
NE China. It was a nautiloid.
Its shell enclosed an air space
which provided buoyancy.
This is evidenced by the
observation of septa with a
siphuncle or tube for the
extraction of water from its
chambers, Figs. 3.4, 3.5, 3.6,
3.7, 3.8 and 3.9: Palaeoceras
mutabile flower, d—i;
Paratype, d—f (modified from
Flower 1954). 4 Ventral view.
5 Lateral view, venter is on
the left. 6 Cross-section of 5.
7 Reconstructed shell, ventral
view. 8-9 Holotype and
ventral and lateral views,
respectively, the venter is on
the left. 10—11 Knightoconus
antarcticus recorded from
Western Antarctica

3 Cephalopods

Eye

Mantle

1 2 3

Plectronoceras cambria (Walcott)

Knightoconus antarcticus
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Fig. 3.2 /-3 Structural details of a chambered Nautilus (adapted from Treatise on Invertebrate
Paleontology, Part K. Mollusca 3: Cephalopoda General Features). 4 External expression of a
constriction on an ammonite

Nautilus

3.2.6 Venter: When the shell is planispirally coiled, the ventral side that forms the
circumference is the Venter [Fig. 3.3(2)]

3.2.7 Phragmocone: The remaining part of the chambered shell where the
organism does not live is called the Phragmocone [Fig. 3.3(1)]

3.2.8 Body chamber: This is where the organism lives and is the last chamber of
the shell [Figs. 3.2(1) and 3.3(1)]. This moves forward each time a new
chamber is secreted. The length of the body chamber varies from half a
volution (whorl) (as in Brevidome ammonoids) to more than a complete
whorl (as in Longidome ammonoids) (see Fig. 3.4). The length of the living
chamber is a function of the static stability and of the position of the aperture
(see also Trueman 1941; Saunders and Shapiro 1986; Westermann 1996).
These types are briefly mentioned below

3.2.8.1 Brevidome: These have a body chamber length of 160°-180°
[Fig. 3.4(1)]. These are short rapidly expanding conchs. Example:
Dactylioceras

3.2.8.2 Mesodome: These have a body chamber length of about 260°
[Fig. 3.4(2)]. Example: Hildoceratides

3.2.8.3 Longidome: These have a body chamber length of more than 360°
[Fig. 3.4(3)]. Example: Perisphinctids.
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Fig. 3.3 [-3 Shell terminology. 4—7 Position of the hyponomic sinus

3.3 Modifications of the Shell

The main morphological features are briefly described below and their corre-
sponding figures mentioned therein.

3.3.1 Apertural Modifications

The presence of apertural modifications (Lappets; Lateral and Ventral) suggests that
ammonites were highly visual as such a feature would be virtually invisible at
darker depths. Hence, the ammonites were inferred to be fairly shallow water
creatures (Saunders and Shapiro 1986; Westermann 1996). Some have suggested
the use of Lappets for sexual display.
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1 2 3
Brevidome Mesodome Longidome
body chamber body chamber body chamber
length = 160°-180° length = ~260° length = >360°.

Fig. 3.4 Length of body chamber. / Brevidome ammonoids have a body chamber length between
160° and 180°. 2 Mesodome about 260°. 3 Longidome ammonoids with more than 360° body
chamber length

A mature shell shows several modifications which are indications of maturity
instead of being transient features of the growing shell (Makowski 1962, 1963;
Callomon 1963, 1969) (Figs. 3.5, 3.6, 3.7 and 3.8). The presence or absence of
Lateral lappets enables to assign dimorphism within an organism—Microconch
(adult male; without lappets) and Macroconch (adult female; with lappets) (see
Fig. 3.8(9-10); respectively). The smaller form, the microconch, looks very similar
to the early whorls of the larger macroconch [Fig. 3.8(9-10)]. Sexual dimorphism
has considerable implications for ammonite taxonomy, stratigraphy, paleoecology,
and evolutionary reconstructions (see also Callomon 1963). However, in spite of
numerous variations in the types of aperture (Figs. 3.5, 3.6, 3.7, and 3.8), these can
broadly be grouped into five major types (Fig. 3.9), besides the Lateral and Ventral
lappets, as enumerated below.

3.3.1.1 Lateral Lappets: These are projections from the lateral part of the
peristome [Fig. 3.9(1-3)]

3.3.1.2 Ventral Lapetts (Rostrum): The Ventral Lappet or the Rostrum projects
from the venter or the ventral part of the peristome. Example: Late
Callovian Quesntedoceras [Fig. 3.9(4—6)]

3.3.1.3 Contracted: Contraction is closing off [Fig. 3.9(7-9)],

3.3.1.4 Constricted: Constriction is necking down [Fig. 3.9(10-12)]

3.3.1.5 Expanded: Sometimes the later part of the whole body chamber is
expanded [Fig. 3.9(13-15)].
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Fig. 3.5 Apertural modifications (lappets) of Triassic and Early Jurassic ammonites
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Fig. 3.6 Apertural modifications (lappets) of Middle Jurassic ammonites

3.3.2 Constrictions and Growth Lines

Cephalopod shells are either unornamented (total absence of constrictions) or could
be varied with as much as nine constrictions (Fig. 3.10). Additionally, all cepha-
lopod shells at maturity are also ornamented with Growth Lines (Fig. 3.11),
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Fig. 3.7 Apertural modifications (lappets) of Late Jurassic ammonites

representing former growth positions of a chamber. As each chamber is added
to the shell, it leaves a scar on the shell, visible as growth lines; there is a
periodic increase in size and hence, represents the former position of the aperture
(Fig. 3.11).

3.3.3 Phragmocone

The main morphological features of a phragmocone are briefly described below:

3.3.3.1 Siphuncle: It is a thin porous tube that connects cephalopod chambers
up to the anterior part of the shell (Fig. 3.12). The siphuncle consists of
soft and shelly parts, including septal necks, connecting rings, calcareous
deposits, and siphuncular cord. These are briefly enumerated below and
illustrated in Fig. 3.12



3.3 Modifications of the Shell 47

Albian '% W
1 2 "3

Holcophylloceras Angolaites
ononense (Stanton) gregoryi Spath

Barremian
4
Barremites difficilis (Orbigny)
w
3 :
§ Hautervian 5
3] Kilianella pexiptycha (Uhlig)
Valanginian e
Olcostephanus ast
Barriasian
s,
Negreliceras Kilianella pexiptycha
Djanelidze (Unlig)

Types of Aperture in Cretaceous Ammonites

Microconch (Male) Macroconch (Female)

Kosmoceras (Late Callovian; Middle Jurassic)

Fig. 3.8 1-8 Apertural modifications (lappets) of Cretaceous ammonites. 9—/0 The dimorphic
pair. Microconch (adult male) and macroconch (adult female) of the Late Callovian (Middle
Jurassic) Kosmoceras (courtesy Late John H. Callomon)
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Categories Examples
é 1 3
Lateral lappets Ataxioceras Creniceras
renggeri (Oppel)
4 5
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Fig. 3.9 [-15 Broad categories of apertural modifications (lappets) noted in Triassic—Cretaceous
ammonites with examples (wherever possible specific examples are given)
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None Into three parts Into four parts

4 5 6

Into five parts Into six parts Into nine parts

Fig. 3.10 Constrictions

3.3.3.2  Septal neck: It is the portion of septum that is bent adapically (or
backwards) around the septal foramen and is reinforced by Septal Necks
and Connecting Rings [Fig. 3.12(2-17)]. A Septum is the partition
dividing the phragmocone into chambers; attached to the inside of shell
wall [see Fig. 3.11(1)]. There are various types of septal neck
orientations [Fig. 3.12(2-12)]. These are:

3.3.3.2.1 Prochoanitic: These are directed adorally, i.e., toward the
aperture [Fig. 3.12(2)]

3.3.3.2.2 Retrochoanitic: These are directed adapically, i.e., away
from the aperture [Fig. 3.12(3)]

3.3.3.2.3 Achoanitic: These are barely developed or are extremely
short [Fig. 3.12(4)]

3.3.3.2.4 Laxochoanitic: They point inward at moderate lengths
[Fig. 3.12(5)]

3.3.3.2.5 Orthochoanitic: These necks are directed adapically and
are less than half the chamber length [Fig. 3.12(6)]
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Fig. 3.11 Growth lines,

3.3.3.3
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3.3.3.2.6

3.3.3.2.7

3.3.3.2.8

3.3.3.2.9

3.3.3.2.10

3.3.3.2.11

3 Cephalopods

Body chamber

the former growth positions of a chamber

Hemichoanitic: These necks extend half to three quarters of
the chamber length [Fig. 3.12(7)]

Subholochoanitic: These curve inwards, just before reach-
ing the next septum [Fig. 3.12(8)]

Holochoanitic: These necks reach to the next septum or
slightly beyond it [Fig. 3.12(9)]

Macrochoanitic: These necks extend longer than the
distance to the next septum [Fig. 3.12(10)]
Suborthochoanitic: These necks are barely recurved
[Fig. 3.12(1)]

Crytochoanitic: These necks are recurved; some even touch
the free part of the septum [Fig. 3.12(12)]. They are
comparatively short retrochoanitic septal necks

Connecting Rings: Connecting Rings [Fig. 3.12(13)] are in part
calcareous and conchiolinous tubular structures. They connect the septa
or septal necks. Some rings are thin and simple; others are thick and

composed

of two or three layers of deposits. Connecting rings come in

varied styles; they can be straight, concave, convex, or bulbous
[Fig. 3.12(14-17)].
Ectosiphuncle, Endosiphuncle, and Endosiphuncular Deposits

3.3.34.1

Endosiphuncular Deposits: The nonliving part of the
siphuncle that covers the living siphuncular chord is the
Ectosiphuncle. The ectosiphuncle is composed of septal
necks and connecting rings. The area inside the Ectosiphuncle
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is the Endosiphuncle [Fig. 3.12(18-27)] which is the space
within the Ectosiphuncle (the walls of the siphuncle) and
includes all organic tissues and calcareous structures. In
Nautilus, the Ectosiphuncle is composed of a shelly material,
conchiolin, and spicules of calcium carbonate. There are no
shelly deposits in the Endosiphuncle in Nautilus.

3.3.3.4.1.1 Endocones: These are cone-shaped calcareous
deposits [Fig. 3.12(18, 23)] formed in the
adapical portion of the siphuncle. These are
noted mainly in endocerid and discosorid shells

3.3.3.4.1.2 Diaphrams: These are transverse partitions
[Fig. 3.12(19, 24)]

3.3.3.4.1.3 Lamellae: These are longitudinal partitions
[Fig. 3.12(20, 25)]

3.3.3.4.1.4 Rods: These are round structures lying on the
ventral wall of the siphuncle [Fig. 3.12(21, 26)]

3.3.3.4.1.5 Annulosiphonate deposits: These are donut
shaped deposits inside the siphuncle [Fig. 3.12
(22, 27)]

3.3.3.4.2 Cameral Deposits: These are calcareous deposits secreted against the
walls of the chamber during the organism’s life. These are named
according to their depositional position on the wall of the chamber
[Fig. 3.12(28)].

3.3.3.4.2.1 Episeptal: These are deposited on the anterior wall of a
septum [Fig. 3.12(28)], i.e., the concave (or adapertural)
side of the septum

3.3.3.4.2.2 Hyposeptal: These are deposited on the posterior wall
[Fig. 3.12(28)]; the convex (adapical) side of the septum

3.3.3.4.2.3 Mural: These line the outer wall of the chamber [Fig. 3.12
(28)] or along the mural parts of septa (i.e., parts of the
septum attached to wall of shell).

The shapes and forms of cameral deposits are important in the classification of
some cephalopods. Functionally, these aid in counteracting the positive buoyancy
of the gas-filled phragmocones of orthoconic or cyrtoconic longicones.

3.3.3.5 Suture: The cephalopod body chamber during its secretion leaves a
distinctive pattern at its edge called the Suture (Fig. 3.11). It is a line of
attachment of the septum to the shell’s interior that is not exposed on the
exterior surface of the shell. Hence, fossil cephalopods commonly display
sutures preserved as internal molds, with the outer shell being dissolved
away. It is a character immensely useful for species level taxonomic
identification. Although, particular types of sutures characterize distinct
ammonoid families (Fig. 3.13) but if the sutures are not well preserved,
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Fig. 3.15 Evolution of suture through time, suture types, and their major characteristics. Overall
an increase in sutural complexity is noted; from simple sutures with shallow lobes and saddles
(goniatites) to those where lobes and saddles are divided into second-order and sometimes into
third-order lobes and saddles

homeomorphy in shell form and ornament can make specific identification
very difficult.

3.3.3.5.1 Lobes and Saddles: Suture terminology commonly used is
given in Fig. 3.13(1) and its outward expression (particularly
the position of lobes) is given in Fig. 3.13(5). Parts of the
suture line that are directed adorally (i.e., toward the aperture)
are called Saddles, and those directed adapically (i.e., away
from the aperture) are termed Lobes [Fig. 3.13(1)]. Ordinarily,
only half of a suture, from midventer to middorsum is
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illustrated as sutures are usually bilaterally symmetrical; the
midventral point is marked by an arrow pointing adaperturally
(adorally or toward the aperture; Fig. 3.13(1-4). Generally,
three principal types of sutures are recognized (Fig. 3.13).
These are:

3.3.3.5.1.1 Goniatitic (named after the Mississippian genus
Goniatites): These have strong, mostly angular
lobes, and angular to rounded saddles [Fig. 3.13
(2)]. Lobes are narrowly rounded to pointed; the
ventral one is commonly divided into two prongs
by a median saddle. Saddles are typically but not
invariably rounded

3.3.3.5.1.2 Ceratitic: These have strong rounded saddles and
serrated lobes [Fig. 3.13(3)]

3.3.3.5.1.3 Ammonititicc Ammonitic sutures have complex
lobes and saddles [Fig. 3.13(4)]
Although, there are two more types. These are
quite rare and include

3.3.3.5.1.4 Orthoceratiticc These are relatively simple
sutures with shallow (broadly undulating and
gently rounded) lobes and saddles [Fig. 3.14(1)]

3.3.3.5.1.5 Agoniatitic: These have broad lateral lobes and
saddles with a characteristic narrow mid ventral
lobe [Fig. 3.14(2)].

Overall an increasing sutural complexity is noted from simple sutures with
shallow lobes and saddles (Goniatites) to those where lobes and saddles are divided
into second-order and third-order lobes and saddles in Ammonites (Fig. 3.15).

3.3.4 Shell Shape

The cephalopod shell shapes are varied, ranging from being coiled in one plane
(planispirally coiled), to open spirals, called Heteromorphs (Fig. 3.16). Various
shell shapes are illustrated in Fig. 3.16 and briefly described below

3.3.4.1 Orthocone: These are straight shells [Fig. 3.16(1)]

3.3.4.2 Cyrtocone: These are curved shells that complete less than one whorl
[Fig. 3.16(2)]
For both Orthocones and Cyrtocones, the longer ones are called
Longicones [Fig. 3.16(1-2)] and the shorter ones are Brevicones
[Fig. 3.16(3-4)]
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Fig. 3.16 Shell types along with relevant examples of open spiral forms (the Heteromorphs)

3.3.4.3 Ancylocone: They possess an open or closed, planispiral or helical coiled
early whorls, followed by a hook [Fig. 3.16(5, 9)]

3.3.4.4 Torticone: They have helical whorls [Fig. 3.16(6, 10)]

3.3.4.5 Hamitocone: These shells form two or more straight shafts [Fig. 3.16(7,

1D)]
3.3.4.6 Vermicone: These are irregular, worm-like shells [Fig. 3.16(8, 12)].

3.3.5 Shell Outline

Shell outlines vary considerably (Fig. 3.17). These include

3.3.5.1 Platycone: Spiral with flat whorl sides (flanks). Example: Meekoceras
[Fig. 3.17(1)]
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3.3.5.2
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3.3.5.5
3.3.5.6
3.3.5.7
3.3.5.8
3.3.5.9
3.3.5.10
3.3.5.11
3.3.5.12

3.3.5.13

3.3.6
3.3.6.1

3 Cephalopods

Cadicone: Thick shell with low whorls. Example: Gastrioceras
[Fig. 3.17(2)]

Oxycone: Disc-like shape. Example: Oxycerites [Fig. 3.17(3)]
Coronate: The whorls are vertically flattened to give a crow-like look.
Example: Erymnoceras [Fig. 3.17(4)]

Spherocone: Shell has globular outline. Example: Stacheoceras
[Fig. 3.17(5)]

Ellipticone: Oval or egg-shaped outline caused by the bending of the last
part of the outer most whorl. Example: Parodontoceras [Fig. 3.17(6)]
Serpenticone: These are closed spiral forms whose whorls touch each
other. Example: Perisphinctes [Fig. 3.17(7)]

Baculiticone: These are straight forms. Example: Taxanites [Fig. 3.17
®)]

Hamiticone: These are single or double hairpin forms. Example:
Hamites [Fig. 3.17(9)]

Criocone (Gryocone of old literature): These are open spiral, i.e., a
loosley coiled shell whose successive whorls are not in contact with each
other. Example: Crioceras [Fig. 3.17(10)]

Taxocone: Very open spiral. Example: Spiroceras [Fig. 3.17(11)]
Scaphicone: Flat spiral forms with a separated body chamber (the
straight part of the hook). Example: Scaphites [Fig. 3.17(12)]
Turriticone: 3D spiral forms sometimes open or ending in a separated
body chamber. Example: Turrilites [Fig. 3.17(13)].

Shell Form

Heteromorphic: These non-planispirally coiled shells are characterized by
the detachment of the body chamber from the rest of the spiral (Pojeta
1987) [see Fig. 3.18(1, 3)]. This detachment led to the formation of very
aberrant forms such as the Cretaceous Nipponites [=a very long tubular
shell coiled in a series of U-bends into a tangle; Fig. 3.16(2)]. Such
aberrant forms (=Hetermorphism) was first noted in the Triassic, with
diversification in the Jurassic and acme during the Cretaceous. In general,
the Triassic is characterized by simpler forms, with more complex ones in
the Jurassic and Cretaceous (Lehmann 1981; Westermann 1996)

3.3.6.1.1 Heteromorph: Example: Nipponites mirabilis  Yabe
[Figs. 3.16(12), 3.18(2)]

3.3.6.1.2 Open heteromorph: Example: Hamites alternatus Sowerby
[Fig. 3.18(5)]

3.3.6.1.3 Part open-plan heteromorph: Example: Ancycloceras math-
eroni Sowerby [Fig. 3.16(9)]
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Fig. 3.18 -5 Shell forms. 6 Endogastic shell. 7 Exogastic shell

3.3.6.2 Planispiral: This category includes ammonites ranging from Cadiconic
(Fig. 3.17(2); Meekoceras gracilitate White) to Serpenticonic (Fig. 3.17
(5); Perisphinctes tiziani Oppel)

3.3.6.2.1 Planispiral: Example: Meekoceras gracilitate  White
[Fig. 3.18(2)]
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3.3.6.2.2 Open-plan spiral: Example: Crioceras [Fig. 3.18(7)]

3.3.6.2.1.1 Endogastric: These are coiled or curved shells
whose dorsal side, or Dorsum, is convex and on
the outer side [Fig. 3.18(6)]

3.3.6.2.1.2 Exogastric: These are coiled or curved shells
whose ventral side, or Venter, is convex [Fig. 3.18
(4)] or whose venter is on or near the outer convex
side.

Whorl

One complete volution (360°) of a coiled shell [Fig. 3.19(1)].

3.3.71

3.3.7.2

3.3.7.3

3.3.74

3.3.7.5

3.3.7.6

3.3.7.7

3.3.7.8

3.3.7.9
3.3.7.10

Umbilicus (U): It is the space that is enclosed on either sides by the last
whorl [Fig. 3.19(1)]

3.3.7.1.1 Involute: These are shells with narrow umbilicus [Fig. 3.19(4,
5)]

3.3.7.1.2 Mesovolute: In these, the whorls overlap each other partially
[Fig. 3.19(6, 7)]

3.3.7.1.3 Evolute: These are shells with wide umbilicus [Fig. 3.19(8, 9)]

3.3.7.1.4 Open: These shells have whorls that are completely open
[Fig. 3.19(10-13)]

Umbilical seam: Attachment of the shell wall with the preceding whorl

[Fig. 3.19(3)]

Umbilical wall: It is the portion between umbilical shoulder and

umbilical seam [Fig. 3.19(1-3)]

Umbilical shoulder: The shell wall (high or low) bends toward the

preceding whorl [Fig. 3.19(1-3)]

Ventrolateral shoulder: The shell bends (steep or sloping) toward the

venter [Fig. 3.19(1-3)]

Venter: The underside of an organism’s shell, marked by the hyponomic

sinus and often by the conchal furrow [Fig. 3.19(1, 2)]

Flank or Side: It is the area between the ventrolateral shoulder and the

umbilical shoulder [Fig. 3.19(1)]

Diameter (D): It is the maximum length of the shell [Fig. 3.19(2)]

Whorl thickness (T): It is the maximum width of the shell [Fig. 3.19(3)]

Whorl height (H): It is the maximum height of the whorl [Fig. 3.19(3)].

While describing the cephalopod shell, the parameters commonly used are:
Diameter (D), Whorl width (T), Whorl height (H), Umbilical diameter (U), and
their ratios—coiling (U/D) and thickness (T/H). An arrow or a cross marking at the
last septum, if visible, indicates the end of the phragmocone or the beginning of the
body chamber [Fig. 3.19(1-3)].
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3.3.8 Types of Whorl Section

A whorl section is the cross sectional shape of the whorl. This shape is very varied
[Fig. 3.20(1, 2)] and includes

3.3.8.1
3.3.8.2
3.3.8.3

3.3.84
3.3.8.5
3.3.8.6
3.3.8.7
3.3.8.8
3.3.8.9

3.3.8.10
3.3.8.11
3.3.8.12
3.3.8.13
3.3.8.14

3.3.8.15

Round: Example: Liroceras liratum Girty [Fig. 3.20(3)]

Ellipse: Example: Sporadoceras milleri (Flower and Caster) [Fig. 3.20(4)]
Wide-ellipse: Example: Parajaubertell  kawakitana Matsumoto
[Fig. 3.20(5)]

Square: Example: Keyserlingites subrobustus (Mojsisovics) [Fig. 3.20(6)]
High-square: Example: Prouddenites primus Miller [Fig. 3.20(7)]
Wide-square: Example: Bihenduloceras gregoryi Spath [Fig. 3.20(8)]
Octagonal: Example: Saghalinites cala Forbes [Fig. 3.20(9)]
Trapezoid: Example: Tropites subbulatus (Hauer) [Fig. 3.20(10)]
Reverse trapezoid: Example: Plesiovascoceras santoni (Reeside)
[Fig. 3.20(11)]

Triangular: Example: Girthiceras pernodosum Diener [Fig. 3.20(12)]
Peak: Example: Prodromites primus Miller [Fig. 3.20(13)]

Egg: Example: Epengonoceras dumbli (Cragin) [Fig. 3.20(14)]
Reverse egg: Example: Cooperoceras texanum Miller [Fig. 3.20(15)]
Lancet (Lanceolate): Example: Hudlestonia affinis (Seebach) [Fig. 3.20
(16)]

Gothic: Example: Inyoites oweni Hyatt and Smith [Fig. 3.20(17)].

3.3.9 Types of Venter

The shape of the ventral side (the Venter) is also varied. The types are mentioned
below and illustrated in Fig. 3.21.

3.3.9.1

3.3.9.2

3.3.9.3

3.3.94

3.3.9.5

3.3.9.6

3.3.9.7

Carinate: Shell has a marked keel. Example: Tropites subbulatus
(Hauer) [Fig. 3.21(1)]

Fastigate: Shell has a triangular keel. Example: Sublunuloceras lariense
Waagen [Fig. 3.21(2)]

Lanceolate: Shell has a flat or no keel at all. Example: Dipoloceras
(Oxytropidoceras) roissyi D’Orbigny [Fig. 3.21(3)]

Tabulate: Shell has a tabulate keel. Example: Stenopoceras dumblei
(Hyatt) [Fig. 3.21(4)]

Sulcate: Shell has a sulcus in the middle of the keel. Example:
Pseudacompsoceras vectense Spath [Fig. 3.21(5)]

Tabulate-Sulcate: Shell has a flat ventral side with a single groove.
Example: Sharpeiceras schluteri Hyatt [Fig. 3.21(6)]
Tricarinate-bisulcate: Shell has a flat ventral side with three keels and
two grooves. Example: Delecticeras delectum Arkell [Fig. 3.21(7)]
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3.3.9.9
3.3.9.10
3.3.9.11
3.3.9.12

3.3.9.13

3.3.10
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Concave-bicarinate: Shell has two keels with a wide hollow groove.
Example: Otohoplites raulinianus D’Orbigny [Fig. 3.21(8)]
Septicarinate: Shell has a hollow keel with a floor. Example: Haugia
variabilis (D’Orbigny) [Fig. 3.21(9)]

Crossing ribs: Shell has uninterrupted ribs crossing the ventral side.
Example: Erymnoceras coronatum (Brugiére) [Fig. 3.21(10)]
Crenulate: Shell has a keel with small teeth. Example: Ochetoceras
(Cubaochetoceras) burckhardti (O’Connell) [Fig. 3.21(11)]

Rope: Shell has a keel with cord-like ornamentation. Example:
Amaltheus margaritatus Montfort [Fig. 3.21(12)]

Roval: Shell has no keel, groove(s) or crossing ribs, essentially smooth
and oval. Example: Psilophyllites hagenowi (Dunker) [Fig. 3.21(13)].

Ornamentation

Ornamentation in cephalopods is represented by Ribs (Fig. 3.22) and is categorized
on the basis of (a) Rib direction, (b) Rib distance and combination (the distance
between ribs), (c) Rib type, and (d) Rib spreading. These are explained below and
illustrated in Fig. 3.22.

3.3.10.1

3.3.10.2

Rib direction [Fig. 3.22(1-4)]
This categorization is based on the orientation of ribs with respect to the
aperture.

3.3.10.1.1 No ribs: The whorls are smooth. Example: Tmaegoceras
latesulcatum (Hauer) [Fig. 3.22(1)]

3.3.10.1.2 Prorsiradiate: The whorls have forward projecting ribs.
Example: Inyoites oweni Hyatt and Smith [Fig. 3.22(2)]

3.3.10.1.3 Rectiradiate: The whorls have straight outward projecting
ribs. Example: Epideroceras roberti Spath [Fig. 3.22(3)]

3.3.10.1.4 Rusrsiradiate: The whorls have backward projecting ribs.
Example: Popanoceras bowmani (Bose) [Fig. 3.22(4)]

Rib distance and combination [Fig. 3.22(5-9)]

This categorization is based on the distance between of ribs and

combinations thereof.

3.3.10.2.1 No ribs: The whorls are smooth. Example: Saynella
clypeiformis (D’Orbigny) [Fig. 3.22(5)]

3.3.10.2.2 Close bundled/Close Fascilutaed: The ribs are bundled on
the dorsal side and the distance between individual bundles is
close. Example: Lithacoceras ulmense (Oppel) [Fig. 3.22(6)]

3.3.10.2.3 Wide bundled/Wide Fascilutaed: The ribs are bundled on
the dorsal side and the distance between individual bundles
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3.3.10.3

3.3.104

3.3.10.2.4

3.3.10.2.5

3 Cephalopods

is wide. Example: Virgatosphinctes brollii (Uhlig) [Fig. 3.22
(N1

Close: The ribs are closely spaced. Example: Blanfordiceras
wallichi (Gray) [Fig. 3.22(8)]

Wide: The ribs are widely spaced. Example: Andiceras
trigonostromum Krantz [Fig. 3.22(9)]

Rib type [Fig. 3.22(10-19)]
This categorization is based on the type of ribs with respect to the

aperture.

3.3.10.3.1

3.3.10.3.2

3.3.10.3.3

3.3.10.3.4

3.3.10.3.5

3.3.10.3.6

3.3.10.3.7

3.3.10.3.8

3.3.10.3.9

3.3.10.3.10

No ribs: The whorls are smooth. Example: Haploceras
rlimatusm (Oppel) [Fig. 3.22(10)]

Straight: The ribs are straight with respect to the aperture.
Example: Tmetoceras scissum (Benecke) [Fig. 3.22(11)]
Concave: The ribs are concave with respect to the aperture.
Example: Euhoploceras acanthodes Buckman [Fig. 3.22
(12)]

Proconcave: The ribs are initially straight and the bend
toward the aperture [Fig. 3.22(13)]

Biconcave: The ribs are double hollow toward the aperture.
Example: Neodimorphoceras texanum (Smith) [Fig. 3.22
(14)]

Convex: The ribs are convex toward the aperture. Example:
Popanoceras scrobiculatum (Gammellaro) [Fig. 3.22(15)]
Biconvex: The ribs are double convex toward the aperture
[Fig. 3.22(16)]

Falcoid: The ribs form a clear wave with no or a weak
wave through. Example: Sublunuloceras lairense (Waagen)
[Fig. 3.22(17)]

Falcate: The ribs form a “reaping-hook” shape. Example:
Poecilomorphus cycloides Buckman [Fig. 3.22(18)]
Sinus/Sinuous: The ribs are “S-shaped,” form a wave
through. Example: Campylites delmontanum (Oppel)
[Fig. 3.22(19)]

Rib spreading [Fig. 3.22(20-34)]
This categorization is based on the relative spread of ribs on the whorl.

3.3.104.1

3.3.10.4.2

3.3.104.3

No ribs: The whorl is smooth. Example: Subpulchellia
oechlerti (Nicklés) [Fig. 3.22(20)]

Single: The ribs are single (i.e., Primary ribs). Example:
Bajocia farcyi Brasil [Fig. 3.22(21)]

Switched (Intercalated): Complete ribs with one or more
incomplete ribs in between them (i.e., an Intercalatory).
Example: Hypacanthoplites plesiotypicus (Fritel) [Fig. 3.22
(22)]
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3.3.10.2

3.3.10.4.4

3.3.104.5

3.3.10.4.6

3.3.104.7

3.3.10.4.8

3.3.10.4.9

3.3.10.4.10

3.3.10.4.11

3.3.10.4.12

3.3.104.13

3.3.10.4.14

3.3.10.4.15

3 Cephalopods

Bipartite (branching into Primary and Secondary ribs):
The ribs split into two ribs (two Secondaries). Example:
Subdichotomoceras lamplughi Spath [Fig. 3.22(23)]
Tripartite: The ribs split into three ribs (three Secondaries).
Example: Kerberites kerbus Buckman [Fig. 3.22(24)]
Quadripartite: The ribs split into four ribs (four
Secondaries). Campylotoxia campylotoxa campylotoxa
(Uhlig) [Fig. 3.22(25)]

Multipartite: The ribs splits into more than four ribs (more
than four Secondaries). Example: Zaraiskites zarajskensis
(Michalski) [Fig. 3.22(26)]

Polyploke: The primary rib splits into two secondaries,
which split again, i.e., double splitting. Example:
Androgynoceras sparsicosta (Trueman) [Fig. 3.22(27)]
Fibulate/Looped: The ribs are looped. Example:
Tramelliceras trachinotum (Oppel) [Fig. 3.22(28)]
Zigzag: The ribs display a zigzag shape. Example:
Otohoplites raulinianus (D’Orbigny) [Fig. 3.22(29)]
Plicate: The ribs are faint, folded, and radial. Example:
Ebrayiceras pseudoanceps Buckman [Fig. 3.22(30)]
Diverse plicate: The ribs split multiple times in a certain
direction. Example: Juraphyllites mimatensis (D’Orbigny)
[Fig. 3.22(31)]

Polygrate: The ribs are straight with respect to the aperture.
Example: Orthosphinctes polygratus (Reinecke) [Fig. 3.22
(20)]

Parabolic: It is the remainder of a former growth pause.
Examples: Genera Alligaticeras and Passendorferia
[Fig. 3.22(32)]

Virgatome: The ribs split into a variable number of ribs at
the front side (toward the aperture) of the rib. Example:
Virgatites virgatus (Buckman) [Fig. 3.22(33)]

Modifications of Ornamentation

The type
massive S
Fig. 3.23.

3.3.10.2.1

3.3.10.2.2

of ornamentation varies ranging from faint (Lirae) to
pines. Various types are mentioned below and illustrated in

Lirae: These are characterized by small transverse or
longitudinal raised portions (parallel fine ridges or raised
lines) on the shell’s surface and are separated by the Striae
[Fig. 3.23(1)]. Example: Phyllopachyceras forbesianum
D’Orbigny

Striae: These are small longitudinal grooves. They are
parallel, small to minute grooves or channels (either
transverse or longitudinal) on the surface of the shell,
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separated by Lirae. If strong enough, they are visible on
the internal mold also and form ribs. Example:
Falciferella millbournei Casey

3.3.10.2.3 Tubercles: One or more rows of pronounced protuber-
ances. Example: Collotia fraasi (Oppel) [Fig. 3.22(12)]
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3.3.10.2.10

3.3.10.2.11

3.3.10.2.12

3.3.10.2.4

3.3.10.2.5

3.3.10.2.6

3.3.10.2.7

3.3.10.2.8

3.3.10.2.9

3 Cephalopods

Nodes: On an internal mold, the base of a spine, is a Node
[Fig. 3.22(9-12)]. Some have considered them as large,
blunt, or formless tubercle. Example: Mosjsisoviczia
ventanillensis (Gabb)

Knobs: One or more rows of protuberances [Fig. 3.22(9—
12)]. Example: Pseudaspidoceras footeanum (Stoliczka)
Spines: One or more rows of pointed protuberances
[Fig. 3.22(13-15)]. Spines are initially hollow on the
peristome but are sealed later as the shell grows.
Example: Epaspidoceras (E.) subdistractum (Waagen)
Bullae: These are elongated knobs often spreading into
two or more ribs. In other words, the Tubercles when
elongated radially are called Bullae [Fig. 3.22(5-8)].
Example: Reineckeia (R.) anceps (Reinecke)

Clavi: These are longitudinally arranged (i.e., parallel to
the direction of the whorl) elongated Tubercles [Fig. 3.22
(5)]. Example: Tramelliceras trachinotum (Oppel)

Keel: It is a raised longitudinal ridge on the venter
[Fig. 3.22(9, 13)]. It could be Entire, Serrated, or Clavate

3.3.10.2.9.1 Entire: The keel is smooth. Example:
Oxytropidoceras (0. roissyanum
(D’Orbigny)

3.3.10.2.9.2 Serrated: The keel is serrated. Example:
Amoebites (A.) kitchini (Salfeld) [Fig. 3.22
)]

3.3.10.2.9.3 Clavate: The keel is clavate in outline.
Example:  Eudiscoceras gabbi Hyatt
[Fig. 3.22(7)]

Furrow or Groove: Sometimes a Furrow or Groove [Fig. 3.22(3, 4)]
can be found on each side of the keel. Example: Arietoceltites
arietitoides (Diener)
Sulcus: In venteral or lateral positions of the shell, a large, deep,
longitudinal groove exists, called the Sulcus [Fig. 3.22(3)]. Example:
Tmetoceras scissum (Benecke)
Constriction: Constrictions are also present in some shells and range
from total absence to nine (Figs. 3.22(2) and 3.10)
3.3.10.3 Position of ornamentation
The positions of ornamentation are varied and are often distinctive
characters for a particular genus; a good example of this is the late
Paleozoic Nautiloid genus Cooperoceras (large spines). Its living
relatives include the squid, cuttlefish, octopus, and nautilus. Its spines
were probably either for defence, for telling each other apart or possibly
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for attracting a mate. Various positions of ornamentation types are
mentioned below and illustrated in Fig. 3.24.

3.3.10.3.1
3.3.10.3.2

3.3.10.3.3

3.3.10.3.4

3.3.10.3.5

3.3.10.3.6

3.3.10.3.7

3.3.10.3.8

No ornamentation: The shell is smooth [Fig. 3.24(1)]
Ventral: The ornamentation is on the external side of the
whorl.  Example:  Lytohoplites  burckhardti  (Mayer)
[Fig. 3.24(2)]

Ventrolateral: The ornamentation between the external side
and the flank (lateral side) of the whorl. Example:
Hemihaploceras nobilis (Neumayr) [Fig. 3.24(3)]

Lateral: The ornamentation is on the flank (lateral side) of
the whorl. Example: Himalayites treubi Uhlig [Fig. 3.24(4)]
Umbilical: The ornamentation is on the internal side of the
whorl. Example: Spiticeras spitiense (Blanford) [Fig. 3.24
Q)

Ventralumbilical: The ornamentation is on the external and
internal side of the whorl. Example: Spathiceras antipodeum
(Etheridge) [Fig. 3.24(6)]

Ventroumbilical: The ornamentation is on the internal side
and between the external side and the flank of the whorl.
Example:  Pseudaspidoceras  footeanum  (Stoliczka)
[Fig. 3.24(7)]

Combined: Ornamentation present in all combinations.
Example: Texanites texanus (Roemer) [Fig. 3.24(8)].

3.4 Size of a Cephalopod Shell

Among the molluscs, the cephalopods are large with an average size ranging
between 6 and 70 cm (including tentacles). However, the Architeuthis (the giant
modern day squid), can measure up to 16 m (including tentacles). The Ordovician
straight-shelled endocerid nautiloid Cameroceras [Fig. 3.32(1-3)] was 10-11 m in
length, and the Cretaceous ammonoid Pachydiscus seppenradensis, a planispirally
coiled shell, measured 3 m, and is the largest known invertebrate, with a weight
close to two tons. These giants were top predators, played the same ecological role
of a top predator as those of the Devonian arthrodire placoderms, Mesozoic plio-
saurs and Cenozoic toothed whales.
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3.5 Classification

The extant cephalopods are categorized into three informal groups (after Pojeta
1987) (Fig. 3.25):

1. Those having external shells and a thin internal mantle, with as many as 94
tentacles, represented by the living genus Nautilus (six species).

2. Those having internal shells, a thick external mantle, and ten tentacles, repre-
sented by squids and cuttlefishes, with more than 450 living species.

3. Those having internal or no shells, a thick mantle, and eight tentacle, repre-
sented by octopuses and the paper Nautilus (Argonaut) with around 150 living
species.

The classification of fossil cephalopods is after Arkell (1957) and Teichert
(1964) (see also Moore 1957, 1964; Teichert and Moore 1964).

Class Cephalopoda

In this chapter only the major orders are discussed such as Endocerida (485-
430 Ma), Actinocerida (480-312 Ma) and Bactritida (418.1-260.5 Ma) of Subclass
Nautiloidea, Goniatitida, Ceratitida, and Ammonitida of Subclass Ammonoidea and
Belemnitida of Subclass Coleoidea (see Table 3.8).

3.6 Geological History

Late Cambrian [~ 515 Ma; Fig. 3.25(1)] marks the first appearance of cephalopods
with gently curved (horn shaped) shells like those of Plectronoceras [Fig. 3.1(1-3)].
During the Ordovician Nautiloids underwent a rapid evolutionary radiation, as the
extinction of anomalocarids, a top predator, at the end of the Cambrian, provided
new ecological niches for their diversification [Fig. 3.25(2)]. Tremendous diversity
with varied shell forms (from long straight shells, to tightly coiled ones) is noted for
the eight new Nautiloid orders that appeared during this time. This paraphyletic class
Nautiloidea also showed great variety in the internal structure of the shell, primarily
in the structure of the siphuncle. The early forms were slow movers, as compared to
today’s agile forms. They were also the ones that possessed large shells, straight
shells that reached 3-5 or even 10 m in length. The Nautiloid dominated the
Ordovician and Silurian seas, but by Late Devonian, gives way to the ever
increasing presence of large predatory fishes. About this time the ammonoids began
to take over from the nautiloids. Although rare during the early Devonian, but by the
start of the Carboniferous, they proliferated. During this period of increased
ammonite diversity, only two nautiloid orders persisted. Meanwhile, the Coleoidea
made their first appearance in the Late Mississippian (Middle Carboniferous) but
remained rare.
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Fig. 3.25 1 Cephalopod phylogeny. 2 Cephalopod diversity through time

Only one ammonoid family was able to survive the end-Permian extinction.
However, by Mesozoic, they recovered quickly and strongly. The Ceratite lineage
reached its acme (over 80 families) in the Triassic so much so that the period is
called “The Age of Ceratites” (Table 3.8). The mass extinction at the end of the
Triassic saw the final demise of the Ceratites, and also of the remaining
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Table 3.8 Cephalopod
classification

Subclass Nautiloidea

Order Plectronocerida (Cambrian)
Order Ellesmerocerida (500-470 Ma)
Order Endocerida (485-430 Ma)
Order Actinocerida (480-312 Ma)
Order Discosorida (482-392 Ma)
Order Pseudorthocerida (432-272 Ma)
Order Tarphycerida (485-386 Ma)
Order Oncocerida (478.5-324 Ma)
Order Nautilida (extant; 410.5-0 Ma)
Order Orthocerida (482.5-211.5 Ma)
Order Ascocerida (478-412 Ma)
Order Bactritida (418.1-260.5 Ma)
Subclass Ammonoidea (479-66 Ma)
Order Goniatitida (388.5-252 Ma)
Order Ceratitida (254-200 Ma)
Order Ammonitida (215-66 Ma)
Subclass Coleoidea (410.0 Ma-Rec)
Order Belemnoidea: Belemnites and kin
Genus Jeletzkya
Order Aulacocerida (265-183 Ma)
Order Phragmoteuthida (189.6-183 Ma)
Order Hematitida (339.4-318.1 Ma)
Order Belemnitida (339.4-66 Ma)
Genus Belemnoteuthis (189.6—-183 Ma)

Only important groups (in bold) are discussed in this chapter

straight-shelled nautiloids (the Pseudorthocerids). Thereafter, new groups of
ammonoids with more complex sutures (‘“ammonites” in the strict sense) took over.
At the start of the Jurassic, like the ammonites, the squid-like belemnites, repre-
senting the Coleoidea, also underwent a massive evolutionary radiation. It is during
the Jurassic that the first representatives of modern coleoid groups like octopus and
squid, appeared. The ammonoids and belemnoids, the proto-modern-style coleoids
formed a substantial part of Jurassic and Cretaceous nektonic marine ecosystem.
Both the ammonoids and belemnoids proliferated until end Cretaceous. The end
Cretaceous asteroid that caused the dinosaur extinction also killed of the ammo-
noids. However, a few belemnoids straggled on until the Eocene, but they were
heavily outcompeted by the modern day Coleoidea (octopus, squid, cuttlefish, etc.),
that remained an important and successful group. The once important and dominant
Nautiloidea survived only through the six species of the pearly Nautilus.

In terms of evolutionary history, the Jurassic suborder Phylloceratina and its
daughter suborder Lytoceratina, acted together as root stock for all the superfamilies
from which suborder Ammonitina sprung. Each stock remained more or less
unchanged, periodically budding off a subgroup. This pattern of evolution, with the
main stock continuously branching sideways but remaining intact by itself is called
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Fig. 3.26 Ordovician nautiloids and their major distinguishing characters
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Iterative Evolution. Since Ammonitina is derived from two ancestral stocks, it is
therefore a polyphyletic group.

3.7 Distribution Through Time

3.7.1 Subclass Nautiloidea

Salient features:

1. Age: Late Cambrian to Holocene

2. Number of genera: ~700 (Representative genera are illustrated in Figs. 3.26,
3.27, 3.28, 3.29, 3.30 and 3.31)
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Phragmoceras broderipi Lechtricoceras desplainense

Barrande (McChesney)

Silurian nautiloids

Fig. 3.27 Silurian nautiloids and their major distinguishing characters
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Fig. 3.28 Devonian nautiloids and their major distinguishing characters

. Orthoconic to involute shell

. Simple to slightly undulatory sutures

. Retrochoanitic septal necks

. Prominent straight connecting rings

. Cameral deposits

. Siphuncle central and relatively small

. Coiled or straight in fossils; coiled in modern.

O 0O L AW

Nautiloids have orthoconic to tightly coiled planispiral shells. They started with
a straight-shell (orthoconic; siphuncle running down the center of the septa) or
slightly curved (Cyrtoconic) and evolved into a strongly coiled involute form as the
present day Nautilus, somewhere during the Ordovician. Sutures are Orthoceratitic,
generally simple and rarely with prominent lobes and saddles. Septal neck is
Retrochoanitic. Siphuncle is not large in diameter, and is mostly marginal and
ventral to subdorsal in position. The Ordovician and Silurian early nautiloids were
grazers on algal mats. However, gradually they fed on arthropods, worms, and other
molluscs, thereby adopting a more carnivorous habit. Nautiloids, the dominant
cephalopods of the early and middle Paleozoic, declined in numbers and species
since the Ordovician, barring few episodes of diversification and also extinction.
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Carboniferous and Permian nautiloids

Fig. 3.29 Carboniferous and Permian nautiloids and their major distinguishing characters

One genus, Nautilus (a living fossil) lives today with six species restricted to the
deep waters of the SW Pacific and in tropical waters form depths ranging from 5 to
550 m. Nautilus is a nocturnal carnivore, strong active swimmer and an excellent
predator. Additionally, its ability to change position within the water column also
made it successful. The squids and cuttlefishes, the ten-armed cephalopods, occur in
all oceans from depths up to 3000 m, whereas the eight-armed living cephalopods
(the octopuses) live at depths up to 5000 m. Both occur in all oceans. Their average
size ranges between 5 cm and 10 m. They have 90 tentacles and migrate vertically,
daily. They are also the only living cephalopod with an external shell.
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Fig. 3.30 Triassic to Cretaceous nautiloids and their major distinguishing characters

3.7.2 Order Endocerida (485-430 Ma)

Salient features

Age: Early Ordovician to Silurian

Number of genera: ~80 (Representative genera are illustrated in Fig. 3.32)
Straight to slightly curved

Simple to slightly undulatory sutures

Large subcentral siphuncle (up to 1/4 shell diameter)

Retrochoanitic septal necks

Prominent straight connecting ring

Endocones within siphuncle

No cameral deposits

Some very large forms such as Cameroceras (10 m!).
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Fig. 3.31 Tertiary nautiloids
and their major distinguishing
characters

Genus intermediate between
Eutrephoceras and Hercoglossa

Cimomia haughti (Olsson)

Suture intermediate between Cimomia and Aturia

Hercoglossa harrisi Miller and Thompson

Most

complex

Tertiary

nautiloid 7

Aturia vanuxemi Conrad

Tertiary nautiloids
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Cameroceras Endoceras

Order Endocerida

Fig. 3.32 Representative genera of Order Endocerida

These are medium to large orthoconic (rarely Cyrtoconic)-shelled cephalopods.
Suture is orthoceratitic, usually simple, but less commonly having midventral lobe
or saddle. Siphuncle is large; marginal to submarginal and ventral (Exogastric) in
most species. Septal necks are Retrochoanitic. They were major predators in the
Ordovician but died out in the beginning of Silurian. Cameroceras is the largest
known Middle Ordovician Endoceratoid [Fig. 3.32(1-3)] that reached a length of
10 m (see also Teichert and Kummel 1960). Endoceras [Fig. 3.32(4-6)] attained
lengths as much as 3.5 m (~ 13 ft) (see Flower 1955).

3.7.3 Order Actinocerida (480-312 Ma)

Age: Middle Ordovician to Late Mississippian

Number of genera: ~40 (Representative genera are illustrated in Fig. 3.33)
Straight to Cyrtoconic

Simple to slightly undulatory sutures

Siphuncle large with bulges between septa

Cameral deposits common.

SNk L=
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Fig. 3.33 Representative
genera of Order Actinocerida

of

Ordosoceras sphaeriforme
otoktiensis

3
1

Actinoceras beloitense
(Whitfield)

Order Actinocerida

These were medium-sized to very large cephalopods having orthoconic shells
with Orthoceratitic sutures. Septal necks are Retrochoanitic. Cameral deposits are
present. Connecting rings are inflated and filled with siphuncular deposits.
Siphuncle is large and exogastic.

3.7.4 Order Bactritida (418.1-260.5 Ma)

1. Age: Latest Silurian (or Ordovician) to Late Triassic

2. Number of genera: ~27 (Representative genera are illustrated in Fig. 3.34)
3. Seem to have come out of Nautiloidea

4. But have characteristics of later groups (esp. ammonoids)
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Fig. 3.34 Representative
genera of Order Bactritida

Bactrites biidesheimensis  Bactrites ausavensis
Roemer Steininger

. Shell small, Orthoconic to Cyrtoconic

. Bulbous protoconch

. Siphuncle small and ventral, possibly prochoanitic
. No secondary deposits.

0 3 ON

These are small Orthoconic (or Cyrtoconic) forms with Exogastric external
shells. Sutures are orthoceratitic. Septal necks are Retrochoanitic. Both siphuncular
and cameral deposits are absent in most. The Bactritoides are a link between the
nautiloids and the ammonoids. They gave rise to the ammonoids by evolving
planispiral coiling, a homeomorphic feature, having been independently developed
in various nautiloids as well as in ammonoids.

3.7.5 Subclass Ammonoidea (479-66 Ma)

Age: Early Devonian to Late Cretaceous

. Number of genera: ~2000 (Representative genera are illustrated in Figs. 3.35,
3.36, 3.37, 3.38, 3.39, 3.40, 3.41, 3.42, 3.43, 3.44, 3.45, 3.46, 3.47 and 3.48)
Mostly planispiral

Biostratigraphically most useful (resolution to 1 Ma)

5. Siphuncle small, ventral, and prochoanitic

N =

B w
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Fig. 3.35 Representative genera of Middle-Late Devonian ammonites and their major distin-
guishing characters
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Fig. 3.36 Representative genera of Mississippian ammonites and their major distinguishing
characters

6. Informally division based on sutural morphology
7. Goniatitic (in the Palaeozoic)

8. Ceratitic (in the Triassic)

9. Ammonitic (in the Jurassic-Cretaceous).

During the Devonian, these cephalopods arose from the nautiloids through an
intermediate stock such as the straight-shelled bactritid nautiloids. These are
Exogastric, and small to large in size, with planispirally coiled external shells
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Fig. 3.37 Representative genera of Pennsylvanian ammonites and their major distinguishing
characters
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Fig. 3.38 Representative genera of Permian ammonites and their major distinguishing characters
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Fig. 3.39 Representative genera of Early Triassic ammonites and their major distinguishing
characters

(mostly). Septal necks are most commonly prochoanitic in adult stages. Siphuncular
deposits are rare and cameral deposits are absent. Siphuncle is small in diameter,
usually marginal and ventral in mature stages; in most, ventral throughout onto-
geny; in few, dorsal. Sutures are Agoniatitic, Goniatitic, Ceratitic, or Ammonitic.
The ammonoid shells that are not planispiral are called Heteromorphs [Fig. 3.18(1,
3 and 5)]. These are recorded from Devonian sediments, but appear in significant
numbers only in Late Triassic.

The shells of adult ammonoids range from 10 mm to 3 m in diameter. They
show great variety in size, shape, style of coiling, thickness of shell external
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Fig. 3.40 Representative genera of Middle Triassic (Anisian and Ladinian) ammonites and their
major distinguishing characters

ornament, and sutural complexity suggesting that ammonoids were well adapted to
many modes of life. In Carboniferous, ammonoids with shark bite marks are
recorded; in Jurassic, specimens are known with bony fish bite marks; and in
Cretaceous, specimens are known with Mosasaur bite marks (Kase et al. 1998;
Kauffman 2004). The Plesiosaurs may also have preyed on ammonoids.

Some ammonoids have a pair of calcareous chitinous plates called Aptychi
(Aptychus: singular; Fig. 3.49). It is a heart shaped structure [Fig. 3.49(1, 2)] and is
sometimes found in the final body chamber [Fig. 3.49(3-6)]; interpreted as jaws or
a hood with which the creature protected itself once it withdrew into its shell. They
may have closed the shell, as Operculum does so in Gastropods. Sometime they are
massive [Fig. 3.49(6)]. However, their exact function is debated. In some Mesozoic
rocks, they are more common than the ammonoid shells themselves.
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Fig. 3.41 Representative genera of Late Triassic ammonites and their major distinguishing
characters

3.7.6 Subclass Coleoidea (410 Ma to Recent)

. Age: Early Devonian to Holocene

. Number of genera: ~250 (Representative genera are illustrated in Fig. 3.50)
. Internal to no shell at all

. 2 gills (instead of four as in Nautilus)

. Sepia/Spirula (cuttlefish), squids, octopods

. Belemnites (Late Carboniferous to Late Cretaceous).

AN N B W=

Except Nautilus, all living cephalopods (including cuttlefish, octopus and
squids) are Coleoids. They either have a highly reduced internal shell (as the Cuttle
bone of the cuttlefish and the thin flexible rod as in squids) or none at all (as in
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Fig. 3.42 Representative genera of Early Jurassic ammonites and their major distinguishing
characters
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Middle Jurassic ammonites

Fig. 3.43 Representative genera of Middle Jurassic ammonites and their major distinguishing
characters

octopus). Hence, their bodies are not preserved well enough. Shell is orthoconic,
cyrtoconic, or rarely coiled. Head has 8 or 10 tentacles. The most important group
of coleoids is the order Belemnitida, which ranges from the Late Mississippian to
Late Cretaceous and is particularly well represented in the Mesozoic rocks. Like the
ammonoids, coleoids may have evolved from the bactritoids. The heavy internal
shelled extinct belemnite, resembled squids with a cylindrical body, a head and a set
of anterior arms (Fig. 3.51). Morphologically, they resemble the look of a 0.50
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Fig. 3.44 Representative genera of Late Jurassic ammonites and their major distinguishing
characters

caliber bullet. The belemnites possess a phragmocone, a chambered area, a rudi-
mentary siphuncle, and a massive rostrum that acted as a counterweight (Fig. 3.51).
Earliest belemnites have been recorded in Mississippian sediments, became
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Fig. 3.45 Representative genera of Early Cretaceous (Hauterivian to Berriasian) ammonites and
their major distinguishing characters

common in middle and late Mesozoic deposits and died out by the end of the
Cretaceous. A doubtful example has been recorded from the Eocene.

Appendix 1 gives the list of illustrated specimens mentioning the chapter
number, species name, age, and locality along with its figure number within the said

chapter.
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Fig. 3.46 Representative genera of Early Cretaceous (Aptian and Albian) ammonites and their
major distinguishing characters
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Chapter 4
Pelecypoda

4.1 Introduction

The name “Bivalve” was first coined by Linnaeus in 1758 (later known as “Carl von
Linné”; see Bonnani 1681). “Pelecypoda’ and “Lamellibranchia” are later and more
commonly used terms; “Pelecypoda’ is used in this book. Pelecypods evolved from the
Early Cambrian (Tommotian) molluscan class Rostroconchia (Pojeta et al. 1972;
though this hypothesis is debatable). Rostroconchia are a group of Palacozoic bivalved
molluscs that now belong to a distinct class of their own (Pojeta and Runnegar 1976).
The Cambrian genera, Fordilla and Pojetaia, are the earliest known pelecypod
representatives (Elicki and Giirsu 2009). Fordilla troyensis Barrande (Fig. 4.1) and
have been recorded from the Early Cambrian rocks (513-520 Ma) of North
America, Greenland, Europe, Middle East, and Asia. Pojetaia runnegari has been
recorded from Australia (Barrande 1881; Pojeta 1975; Elicki and Giirsu 2009).
Both are small forms (few mm in length), and shallow burrowers. This is followed
by a stratigraphical hiatus from Middle to Late Cambrian (521-485.4 Ma), before
pelecypods reappeared in the Earliest Ordovician (Tremadoc: 485.4-477.7 Ma).

4.2 Basic Morphology

These bilaterally symmetrical, equivalved (two similar valves on either side of the
commissure) aquatic molluscs (pelecypods; = the modern mussels, cockles, oys-
ters, and scallops) are often elongated in the anteroposterior direction as left and
right valves [Fig. 4.2(2)]. The shell, secreted by the mantle through marginal
accretion, in most forms, is external. The presence of growth lines on the valve’s
surface [Fig. 4.2(1, 4, 5)] are evidence of shell growth by mantle section. The
Ligament [Fig. 4.2(5)], an elastic structure, connects the valves, dorsally and opens
and closes by hinging along the valve that passes through or close to it (Moore

© Springer India 2017 103
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Shell laterally compressed
» Faint costation

Shell equivalve and oval in shape

Fig. 4.1 Fordilla troyensis Barrande is the earliest known pelecypod representatives and comes
from Early Cambrian rocks (513-520 Ma) of North America, Greenland, Europe, the Middle East
and Asia. Genus Fordilla contains three species, F. germanica, F. sibirica, and the type species
F. troyensis. Pojetaia has two species, P. runnegari, the type species, and P. sarhroensis. The
genera Buluniella, Jellia, and Oryzoconcha are considered synonyms of Pojetaia (see also Elicki
and Giirsu 2009)

1969a, b) (see also ligament area and hinge ligament; Fig. 4.2(3, 4), respectively;
see Sect. 4.3 for details).

Within molluscs, pelecypods represent one end of the spectrum (lacking a head,
radula, and anterior sense organs) whereas cephalopods, the other, with intelligence,
agility, and cephalization (Pojeta 1987).

4.3 Terminology

The pelecypod terminology used in this chapter is explained briefly under the
following eight subheads, and illustrated in Fig. 4.2:

4.3.1 General shell morphological
4.3.2 Shell form

4.3.3 Ornamentation

4.3.4 Umbo/Beak position

4.3.5 Shell structure

4.3.6 Dentition

4.3.7 Ligament

4.3.8 Muscle scars

4.3.9 Gills

Each subhead is detailed below:

4.3.1 General Shell Morphological Terms

The morphological features that are visible externally on the shell are enumerated
here and illustrated in Fig. 4.2.
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Fig. 4.2 Morphological features and terminology used to describe a bivalve

4.3.1.1 Alate: Shell characterized by possession of wings or auricles [Fig. 4.2

12)].

4.3.1.2 Anterior: This is the part of shell that contains the mouth. Beaks of most
bivalves point forward, i.e., are inclined anteriorly and when muscle scars
are unequal, the anterior is the smaller one [Fig. 4.2(1, 4)].

4.3.1.3 Auricle: Forward or backward projection of shell along hinge line (i.e.,
wing-shaped or ear-like extensions of the valve, anteriorly and posteri-
orly) [Fig. 4.2(8)]. Best noted in Pectinidae and Teredinidae.
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4.3.14

4.3.1.5
4.3.1.6

4.3.1.7

4.3.1.8

4.3.1.9

4.3.1.10

4.3.1.11

4.3.1.12

4.3.1.13

4.3.1.14

4.3.1.15

4.3.1.16

4.3.1.17

4.3.1.18

4 Pelecypoda

Auricular sulcus: Furrow or groove of shell exterior separating shell
exterior form remainder of the valve (i.e., junction of auricle with the
body of shell) [Fig. 4.2(10)].

Auriculate: Shell possessing auricles, equivalent to Alate [Fig. 4.2(9)].
Beak: The tip of the valve and is the oldest part of the shell. It is a more
or less sharp pointed projection located along or above the hinge line
[Fig. 4.2(1, 5)].

Byssal notch: Indentation of the anterior edge (between the anterior
auricle of the right valve with Lunula) for protrusion of thread-like
attachment called Byssus; most common in pectinoid shell on the right
valve, which is lowermost, allowing protrusion of the small foot without
opening valve widely [Fig. 4.2(8)]. Byssal notch is best noted in
Pectinacea.

Byssal sinus: It is the indentation beneath the auricle of left valve of
pectinoid shells on the anterior margin and corresponds to the byssal
notch of right valve but is usually shallower [Fig. 4.2(11)]. Byssal sinus
is best noted in Pectinacea.

Byssus: A muscular structure for burrowing and locomotion composed
of a bundle of hair-like strands used for attachment [Fig. 4.2(14)].
Commissure: This is the line of junction of both valves and makes the
Plane of commissure [Fig. 4.2(2)].

Compressed: Transversely flattened shell having small thickness
[Fig. 4.2(15)].

Dorsal: Directed toward that part of shell which contains the hinge line
[Fig. 4.2(1, 4)].

Equilateral: When the growth of the shell (generally symmetrical or
almost so) is on either side of the beaks. In such equilateral shells, the
beak is positioned close to the middle of the length of the shell [Fig. 4.2
(15)].

Equivalve: With two valves are of same size and shape, i.e., they are
bilaterally symmetrical; they are termed left and right valves [Fig. 4.2
(©)].

Escutcheon: It is the posterior part of cardinal area, a depression (or a
curved area), along the hinge and behind the beak marked by a change in
sculpture or color [Fig. 4.2(4, 5)].

Gape: It is the space left between the valves (anterior or posterior) when
the adductor muscles are fully contracted [Fig. 4.2(13)].

Growth line: These irregularly arranged concentric lines (parallel to the
shell margin), represent growth stages [Fig. 4.2(4, 5)].

Height: The total distance, measured as a straight line, between the apical
and basal extremities of a shell (i.e., perpendicular to the plane of
commissure that just touches the most dorsal and ventral parts of the
shell) [Fig. 4.2(1)].
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4.3.1.19

4.3.1.20

4.3.1.21

4.3.1.22

4.3.1.23

4.3.1.24

4.3.1.25

4.3.1.26

4.3.1.27

4.3.1.28

Inequilateral: Anterior and posterior parts of valve unequal and lacking
symmetry. A condition when the growth on either side of the beaks is
asymmetrical. In such forms, the beak is closer to one end of the shell
than the other [Fig. 4.2(1, 3)].

Inequivalve: The valves differ in size or shape or both, i.e., the valves are
asymmetrical about the commissure.

Left valve: It is the valve lying on the left-hand side when the shell is
placed with the anterior end pointing away from the observer and the
commissure is vertical; the hinge being uppermost [Fig. 4.2(2)].
Length: Distance from anterior to posterior margin at farthest points or
measured parallel to the hinge line [Fig. 4.2(1)].

Lunule: A depressed plane or curved area (commonly cordate in shape)
along hinge line in front of the beak (in one or both valves), marked by a
change in sculpture or color [Fig. 4.2(4, 5)].

Plane of commissure: A surface that approximately coincides with the
margins of the valve [Fig. 4.2(2)].

Posterior: Direction or part of shell toward position of anus and siphonal
opening; in most bivalves it is opposite to inclination of beak. The pallial
sinus and ligament are always posterior in position [Fig. 4.2(1, 4)].
Prodissoconch: It is the earliest formed part of shell, secreted by the
larva or embryo and generally preserved at tip of beak (in some adult
shells) [Fig. 4.2(18)].

Right valve: Shell on the right side of the antero-posterior axis; it is
generally lowermost in pectinoids and uppermost in oysters and
pachyodonts. Alternatively, if the shell is considered to be in the hands
of the observer, with the beaks and umbones uppermost, the right valve
will always be in the right hand and the left valve in the left hand
[Fig. 4.2(2)] when:

(a) the external ligament is placed between the beaks and the observer’s
body; or when,

(b) the opening of the pallial sinus is toward the observer’s body; or
when

(c) the center of the single adductor muscle scar in monomyarian forms
is placed on the observer’s side of the midline of the shell
To identify the right valve from the left, the anterior and posterior
margins needs to be ascertained [Fig. 4.2(1)]. Then, if the shell is
held with the hinge margin uppermost and the posterior and anterior
in the same plane as the observer, then the right valve will be in the
right hand of the observer and vice versa [see Fig. 4.2(2)].

Thickness: Maximum dimension of a bivalve shell measured normal to
plane of commissure [Fig. 4.2(2)].
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4.3.1.29 Umbo: Very strong convex part of valve that is adjacent to the beak
[Fig. 4.2(4, 5)]. The term “umbo” is often used interchangeably with
“beak”, however, for most shells two distinct terms are required.

4.3.1.30 Valve: Part of calcareous shell lying on either side of hinge line [Fig. 4.2
31

4.3.1.31 Ventral: Direction or part of shell lying opposite the hinge line; generally
located lowermost [Fig. 4.2(1, 4)].

4.3.2 Shell Form

Broadly, 34 types of shell forms are illustrated (Fig. 4.3). However, these are by no
means an end-all, as minor variations and varied combinations of these would exist.
Descriptive terminology used in this book is elaborated and illustrated in Fig. 4.3

(1.

4.3.3 Shell Ornamentation

Shell ornamentation is a widely used character for species-level identification.
Figure 4.4 provides a broad (certainly not all encompassing) pattern of ornamen-
tation that is common to most pelecypods. However, like shell form (Fig. 4.3),
minor variations and varied combinations of these would exist.

General descriptive terms explaining the pattern of shell ornamentation are
enumerated first followed by a brief description and illustration of the types of shell
ornamentation (Fig. 4.4).

4.3.3.1 General Terms

4.3.3.1.1 Carina: It is a prominent keel-like ridge [Fig. 4.2(20)].

4.3.3.1.2 Carinate: The shell surface is marked by a sharp-angled edge extending
outward from the beak [Fig. 4.2(17)].

4.3.3.1.3 Costae (Costa: sing.): The shell bears radial ribs formed by localized
thickening. These thickenings are moderately broad and prominent
elevation of surface of shell, directed radially or otherwise [Fig. 4.2(9)].

4.3.3.1.4 Costellae: These are narrow linear elevations on shell’s surface [Fig. 4.2
16)].

4.3.3.1.5 Plica: These are radially disposed ribs that are formed by fold or costa
that involves the entire thickness of shell [Fig. 4.2(9)].

4.3.3.1.6 Plicate: The shell is radially folded to form ribs that also increase the
shell’s surface area [Fig. 4.2(7)].
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Fig. 4.3 Shell form terminology (1) and varied shell forms of a pelecypod (2-35)
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Fig. 44 Types of pelecypod ornamentation (1-19), Rib terminology (20), terminology to
describe rib cross section (21), and types of external rib sculpture (22)

4.3.3.2 Types of Shell Ornamentation
Shell ornamentation broadly consists of two elements: Simple and Combined
(Fig. 4.4).

4.3.3.2.1 Simple

4.3.3.2.1.1 Radial: A linear pattern originating from the beak/umbo
and radiating toward the margins of the shell [Fig. 4.4(1)].
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This is commonly represented by the direction of costa (a
broad prominent elevation) or other elements of ornamen-
tation. The strength of sculpture may vary from faint to
strong thorough a series—Lines, Threads, Riblets, and Ribs
[Fig. 4.4(8-11)]. Incised sculpture is usually very fine
designated as Striations or Grooves.

4.3.3.2.1.2 Co-marginal or Concentric: An ornamentation pattern

(ridges) that follows the margins of the shell [Fig. 4.4(2)],
coinciding with growth lines. The strength of raised concen-
tric pattern (ridges) ranges from faint to strong thorough a
series termed Lines, Lirations, Ridges, and Undulations.

Other less common patterns [Figs. 4.4(3—7)] that do not conform to the above

two are:

4.3.3.2.1.3

4.3.3.2.14

4.3.3.2.1.5

4.3.3.2.1.6

4.3.3.2.1.7

Divergent: The radial elements diverge from their normal position;
secondary elements appear [Fig. 4.4(3)].

Divaricate: The divergent radial element are angled in opposite
directions, the angulations in a line medially or post-medially [Fig. 4.4
@]

Oblique or Acentric: This is a linear feature and is angled across the
shell. The pattern does not radiate from the beaks [Fig. 4.4(5)].
Scissulate: These are dense oblique striations often abruptly angled to
concentric striations [Fig. 4.4(6)].

Nonlinear: The shell is wholly or partly textured, if the pattern is
raised then it is granular or pustulose, but if not sunken then it is pitted
[Fig. 4.4(7)].

4.3.3.2.2 Combined patterns: It is formed by a combination of both radial and

co-marginal patterns. At times, the radial pattern dominates with the
co-marginal forming a variety of structures on the riblets or ribs [Fig. 4.4
(12-19)].

4.3.3.2.2.1 Cancellate: These are regular rough rectangular blocks

made by the intersection of radial and co-marginal elements
[Fig. 4.4(12)].

4.3.3.2.2.2 Decussate: These are angular block pattern ornamentation

that is finer than the Cancellate made by the intersection of
radial and co-marginal elements [Fig. 4.4(13)].

4.3.3.2.2.3 Imbricate: These are interrupted series of co-marginal

scales crossing radial elements [Fig. 4.4(14)].

4.3.3.2.2.4 Reticulate: In this, the shell surface is characterized by a

fine network of intersecting raised threads [Fig. 4.4(15)].

4.3.3.2.2.5 Cross bars: These are closely spaced narrow ridges set at

right angles on radial ribs [Fig. 4.4(16)].

4.3.3.2.2.6 Tubercles: These are rounded raised ornamentation set on

radial ribs [Fig. 4.4(17)].
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4.3.3.2.2.7 Scales: These erect or flush like tiles are borne by the radial
ribs [Fig. 4.4(18)].
4.3.3.2.2.8 Spines: These are erect pointed structures arising from the
ribs [Fig. 4.4(19)].
Ribbing pattern: In most pelecypods shells, the ornamentation (ribs)
remains simple and consistent (in terms of the number of ribs),
throughout shell growth [Fig. 4.4(20)]. Though, in some, the primary
ribs divide or new secondary ribs appear between primaries; this process
is repeated, at times, and gives rise to Tertiary ribs [see Fig. 4.4(20)].
Cross sections and spacing: The ribs have a variety of cross sections
[see Fig. 4.4(21)], from Rounded, Rectangular, Acute, Tabulate to
Skewed [see Fig. 4.4(21)]. Additionally, rib spacing also varies; from
equal to, wider than or narrower than the ribs. Cross sections vary from
broad low rounded ridges to down-curved or up-curved lamellae to
vertical foliations [see Fig. 4.4(22)].

Umbo/Beak Position

Acline: Shell having neither forward nor backward obliquity, i.e., the
midline of umbo is normal to the hinge line [Fig. 4.2(6)].

Opisthocline: Shell having backward obliquity, i.e., the approach along
midline to beak is pointed backward [Fig. 4.5(1)].

Opisthogyral (Opisthogyrate): The shell is curved; the beak points in the
posterior direction (a term applied to umbos) [Fig. 4.5(2)].

Prosocline: The shell possess forward obliquity; the approach to beak
along midline of shell is inclined forward [Fig. 4.5(3)].

Prosogyral (Prosogyrate): The shell is curved so that the beaks point in
the anterior direction, i.e., the beaks are directed forward [Fig. 4.5(4)].
Rostrate: The shell possesses prominent beaks [Fig. 4.5(5)].

Shell Structure

Ostracum: Calcareous structure that the pelecypod shell is composed of,
except for the thin outer conchiolin layer (periostracum) (Fig. 4.6).
Conchiolin is a proteinaceous layer.

Periostracum: This is the outer thin layer of conchiolin. It is a nonliving,
horny layer overlying the external, calcareous, surface of the shell;
sometimes called the Epidermis. In some forms, it also covers the
calcareous Ostracum. Periostracum gives rise to shell sculpture and
ornamentation.
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Fig. 4.5 Morphological features and terminology used to describe a pelecypod (continued from
Fig. 4.2)
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Fig. 4.6 Shell layers — \e—>Periostracum

” o Prismatic layer

| amellar layer

L Ostracum

4.3.5.3 Prismatic layer: This is the outer part of the Ostracum and consists of
closely spaced polygonal prisms of calcite.

4.3.5.4 Lamellar layer: It is the innermost part of the pelecypod shell, consisting
of microscopically thin sheets of calcite or aragonite separated by layers of
conchiolin.

4.3.6 Dentition

Dentition, considered collectively, is hinge teeth and sockets [Fig. 4.5(5)]. At the
dorsal margin, the valves are united to one another for a shorter or longer distance,
along a line, which is called the Hinge line [Fig. 4.2(2)]. The teeth, ligament, and all
structures that support and attach these to the shell, make up the Hinge [Fig. 4.5(5)].

The hinge line is mostly curved, but it may be quite straight. The teeth perform
three functions: enables alignment of the two valves when they close, interlocks
them to prevent shearing, and above all, during burrowing, maintains contact
between valves. Sockets are depressions on the opposite side of the valve where the
teeth fit [Fig. 4.5(6)]. Two types of teeth are noted—Cardinal teeth, located below
the beak (umbo), and Lateral teeth, located at a distance from the beak and located
on either side of the Cardinal teeth [Fig. 4.5(5, 6)]. Sometimes there may be lateral
teeth only; sometimes the cardinal teeth alone are present; in some cases (as in
Arcadce) there is a row of similar and equal teeth or they could just be absent (as in
Edentulous). However, when teeth are present, they do differ much in their form
and arrangement (see also Sect. 4.3.6.2—Types of dentition).

4.3.6.1 General Terms

General descriptive terms explaining dentition and associated structures (see
Fig. 4.5) are enumerated first followed by a brief description and illustration of the
types of dentition in Fig. 4.7.
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Many small similar teeth and sockets all
along hinge plate. They are numerous and
subparallel or radially arranged. They usually
increase in number with growth, all taking the
form of simple projections and situated in a
row along the dorsal margins.

Two or three large teeth with prominent
grooves. The grooves are parallel and normal
to the axis of the tooth.

Small simple teeth near the edge of the valve.
Example: Mytilus

Mytilus conradinus
d'Orbigny

ery large teeth located on either side of a
central ligament pit i.e. this hinge has only a
few teeth placed symmetrically either side of
the ligament. The teeth are ridge like or
rectangular and are called Crura, They may
interlock so well that the valves cannot be
separated without breaking the teeth

Spondylus
) regis Linné

This is the hinge form found in the majority of
bivalves. Two or three cardinal teeth (varying
in size and shape; number from 1-3) below
the umbo (radiate from the beaks), as well

as elongated lateral teeth (number

from 1-2 either side of the cardinal set)
anterior and posterior to these. Most Tertiary
and Recent bivalves possess this type of
dentition.

The teeth are very reduced or absent with
accessory ridges lying along the margin to
take their place. There are no true teeth, only
a few small, ill-defined denticles situated
either side of the ligament. They resemble
the marginal denticles of many bivalves.
This is a commaon form of dentition and all
bivalves that possess it are infaunal
suspension feeders.

Cyprimeria alta Conrad

eft valve Right valve

Large, heavy, blunt teeth. This dentition
occurs only in Rudists. k!
f valve  Teeth

Hippurites gosaviensis Douville

Fig. 4.7 Types of pelecypod dentition
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4.3.6.1.1 Buttress: It is a ridge on the inner surface of a valve, which serves as
support for the hinge plate or a Chondrophore [Fig. 4.5(10, 11)].

4.3.6.1.2 Cardinal area: A triangular area amidst beak and hinge margin and
occupied partly or wholly by a ligament [Fig. 4.5(7)]. It is distinguished
from the remainder of valve exterior by a sharply angulated border.

4.3.6.1.3 Cardinal teeth: These are vertical or oblique projections of the hinge
line and are placed directly beneath or at close proximity to the beak.
The teeth fit into sockets of the opposite valve [Fig. 4.5(5, 6)].

4.3.6.1.4 Hinge line: Along dorsal margin of the shell, it is the edge of valve that
is in contact with the opposite valve [Fig. 4.5(5)].

4.3.6.1.5 Hinge plate: It is the internal shelly surface adjacent to hinge line along
which the hinge teeth project [Fig. 4.2(3)].

4.3.6.1.6 Hinge: It is the dorsal region of the shell along which the valves meet
and where they may be held together by interlocking teeth; these may sit
directly on the hinge line or on an infolding of it called the Hinge plate.
Hence, structures that are in the dorsal region of the shell, and those that
enable opening and closing of valves, are collectively called Hinge
[Fig. 4.5(5)].

4.3.6.1.7 Lateral teeth: These are placed in front or behind the cardinal teeth, and
nearly parallel to the hinge line, these bony projections from hinge plate
are the Lateral teeth [Fig. 4.5(5, 6)]. Those on the anterior side of the
valve are called the Anterior lateral tooth and on the posterior, the
Posterior lateral tooth [Fig. 4.5(5)].

4.3.6.1.8 Socket: This is a depression in the hinge plate where the hinge tooth of
the opposite valve fits [Fig. 4.5(6)].

4.3.6.2 Types of Dentition (Fig. 4.7)

There are seven types of dentition namely Taxodont, Schizodont, Dysodont,
Isodont, Heterodont, Desmodont and Pachydont, and these are illustrated and
briefly described in Fig. 4.7. Pelecypods that lack teeth are called Edentate (or
Edentulous or Anodont) [see Fig. 4.5(16)].

4.3.7 Ligament

Posterior to the umbones, is another structure passing between the valves called the
Ligament [Fig. 4.5(5-7)]. It is usually composed of two parts—External ligament,
and the Cartilage (Internal ligament) which enables the opening of the shell. The
ligament is horny and elastic and its main function is to join valves along the hinge
margin. It also serves to open the shell when the adductor muscles relax. The
ligament is difficult to interpret, as it is a complex structure but is an important
diagnostic shell character.
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Below, general descriptive terms are enumerated first [see Fig. 4.5(5-11)] and
are followed by a brief description and illustration of the types of ligament in
Fig. 4.7.

4.3.7.1 General Terms

4.3.7.1.1 Chevron groove: It is a narrow depression on the cardinal area having
an inverted V shape, marking ligament attachment. Examples: Some
Arcacea and early Pectinacea [Fig. 4.5(7)].

4.3.7.1.2 Chondrophore: This is a relatively prominent internal spoon-shaped
structure (which may or may not project). It holds the internal ligament
[Fig. 4.5(11)].

4.3.7.1.3 Ligament groove: A narrow linear depression in the cardinal area or
ligament area marking the attachment of ligament fibers [Fig. 4.5(7)].

4.3.7.1.4 Ligament: It is a horny and elastic structure (or sometimes, structures).
It joins the two valves of the shell dorsally, and acts as spring causing
them to open when the adductor muscles relax [Fig. 4.5(8)].

4.3.7.1.5 Resilifer: It is the portion of the hinge plate that bears the internal
ligament (the Resilium). The Resilifer is generally a simple shallow pit; a
process for the attachment of the internal ligament [Fig. 4.2(11)].

4.3.7.1.6 Resilium: It is part of the ligament below valve margins; an internal
cartilage of the hinge best noted in Pectinidae [Fig. 4.5(8)].

4.3.7.2 Types of Ligament

There are four main types of ligament—Alivincular, Duplivincular, Parivincular,
and Planivincular [see Fig. 4.5(12-15)].

4.3.7.2.1 Alivincular: It is the type of external ligament with greatest length
transverse to the plane of commissure [see Fig. 4.5(12)]. It is located
between the cardinal areas (where present) of respective valves. Lying
between the beaks on a flat cardinal area, alivincular is a flattened,
usually triangular, structure bounded by lamellar layers on either side.
External alivincular ligaments are typical of Lima (see Fig. 3.44),
Limopsis and Ostrea.

4.3.7.2.2 Duplivincular: It is a ligament with a lamellar component. The latter is
repeated as a series of bands, each with its two edges inserted in narrow
grooves within cardinal areas of respective valves, forming V-shaped
chevrons [see Fig. 4.5(13)]. The ligament is composed partly of fibrous
(compressional) tissue and partly of lamellar (tensional) tissue. Example:
best noted in Arcidae, Glycymeridae and Noetiidae.
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4.3.7.2.3 Parivincular: It is a curved structure positioned behind the beaks with
its long axis parallel to the hinge line, and consisting mainly of lamellar
(tensional) tissue [Fig. 4.5(14)]. Example: typical of Veneridae and
Tellinidae.

4.3.7.2.4 Planivincular: It is a long slightly bent (arched) ligament extending
posteriorly as a narrow band [Fig. 4.5(15)]. Example: typical of
Mytiloidea.

Additionally, the ligaments may lie symmetrically both in front (anterior) and
behind (posterior) the beak (Amphidetic; Fig. 4.5(17) or generally behind (poste-
rior) to the beak (Opisthodetic; Fig. 4.5(18) and very frequently in front of the
beaks (Prosodetic).

4.3.8 Muscle Scars

The adductors muscles leave a distinct muscular impressions or scars, in the interior
of the shell, so that it is easy in any given specimen to determine where there was
only one adductor, or whether two were present [Fig. 4.5(19)].

4.3.8.1 General Terms

4.3.8.1.1 Adductor muscle scar: Scars (impressions on inside of valve; normally
one or two) left by muscles that close the valves as well noted in species
of the family Pectinidae and Pholadidae. A third accessory adductor scar
may be present where the pallial line is expanded as it bends back into
the pallial sinus (=ventral adductor scar) [Fig. 4.2(3)].

4.3.8.1.2 Myophone: Plate or rodlike structure on inside of shell for attachment of
muscle (usually adductor) [Fig. 4.5(9)].

4.3.8.1.3 Pallial line: The mantle lobes when attached to the inside of a shell leave
a mark at their position of attachment; it is called a Pallial line. It is
normally concentric and follows the ventral margin as it connects the
anterior and posterior adductor scars. The Pallial line possesses an
indentation called the Sinus [Fig. 4.5(19)].

4.3.8.1.4 Pallial sinus: It is the inward deflection of the pallial line in the posterior
part of the shell, defining a space for the retraction of siphons [Fig. 4.5
191

4.3.8.2 Types of Ligament

4.3.8.2.1 Monomyarian: Having only one adductor muscle, originally posterior
but tending to be central in position [Fig. 4.5(20)].
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4.3.8.2.2 Dimyarian: Valves having two adductor muscle scars in each valve,
whether equal or unequal [Fig. 4.5(21)].

4.3.8.2.3 Isomyarian (Homomyarian): Having two adductor muscles of approx-
imately equal size [Fig. 4.5(22)].

4.3.8.2.4 Anisomyarian (Heteromyarian): Adductor muscle scars conspicuously
unequal. The anterior adductor muscle is much reduced or absent
[Fig. 4.5(23)].

4.3.9 Gills

Gills are flat, thin layers of tissue, ciliated and attached to the two sides of the
visceral mass and/or to the proximal part of the foot [Fig. 4.8(1)]. Their ciliated
nature generates inhalant currents that brings oxygenated and food-laden water into
the mantle cavity. Hence, they function both as a respiratory and a food gathering
organ. Gills are rarely preserved in the fossil record but are an important component
for taxonomic identification. Fossilized gills have been noted in the Late Jurassic
Trigonia and are similar to the present day Neotrigonia!

Four basic gill types are recognized: Filibranch, Eulamellibranch, Protobranch,
and Septibranch; these are illustrated with their major characteristics given in
Fig. 4.8(2-5), respectively. The Filibranch and Eulamellibranch are the most
common types (see also Clarkson 1993).

4.4 Classification

Major taxonomic characters used for pelecypod -classification includes shell
microstructure, dentition, hinge structure, and the type of gills (see Table 4.1).
Lesser characters (and rarely used or for extant forms) include stomach anatomy
and nature of labial palps (see also Clarkson 1993). Classification followed here
follows Treatise on Invertebrate Paleontology Part N, Volume 1. Representative
examples mentioning their major distinguishing characters are illustrated in
Figs. 4.9, 4.10, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, and 4.18.

4.5 Geological History

Pelecypods, since their inception, have lived in the marine environment at depths
ranging from intertidal to abyssal (Pojeta 1987). During Cambrian and Ordovician
times, few species were present, but thereafter, they became abundant and by
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type. This type is of individual filaments in the filibranch, but with across the mantle cavity.
characterized by small in W-shape. cross partitions joining This is the most
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resembling those of many common type of gills.. Filibranchs, this is one and is noted in only in a
gastropods, cephalopods of the most common type; small group.
and chitons. both have advanced

gill structures.

Examples

Cuspidaria moreauensis
Meek & Hayden

Nulcula percrassa Barbatia micronema Ostrea cretacea Cuspidaria ventricosa
Conrad (Meek) Morton Meek & Hayden

Fig. 4.8 Pelecypod gill terminology and types of gills (2-5)

Middle Ordovician all major groups were established. Post Early Ordovician, the
pelecypods became the dominant benthic fauna, at scattered stratigraphic levels.
During the Mesozoic and Cenozoic, they were common to dominant shallow water
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Fig. 4.9 Examples of select Ordovician and Silurian pelecypods and their major distinguishing
characters

benthos (Pojeta 1987; Clarkson 1993). Most modern pelecypods belong to one of
two subclasses: the largely epifaunal Pteriomorphia and the infaunal Heterodonta
(see also Table 4.1) (Fig. 4.19).
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Fig. 4.10 Examples of select Devonian pelecypods and their major distinguishing characters
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Fig. 4.11 Examples of select Early Mississippian to Late Pennsylvanian pelecypods and their
major distinguishing characters
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Fig. 4.12 Examples of select Early Permian pelecypods and their major distinguishing characters

Appendix gives the list of illustrated specimens mentioning the chapter
number, species name, age, and locality along with its figure number within the
said chapter.
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Fig. 4.13 Examples of select Middle Triassic to Late Jurassic pelecypods and their major
distinguishing characters
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Fig. 4.14 Examples of select Cretaceous pelecypods and their major distinguishing characters
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Barbatia micronema
(Meek)

Cyprimeria alta Conrad Lima reticulata Forbes Crassatellites vadosus
(Marton)

Fig. 4.15 Examples of select Late Cretaceous pelecypods and their major distinguishing
characters
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Fig. 4.16 Examples of select Paleogene pelecypods and their major distinguishing characters
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Fig. 4.17 Examples of select Miocene pelecypods and their major distinguishing characters
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Fig. 4.18 Examples of select Miocene pelecypods and their major distinguishing characters
(continued from Fig. 4.17)
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Fig. 4.19 Pelecypod diversity, mineralogy (aragonite, calcite; after Skelton and Benton 1993;
Amler et al. 2000) and stratigraphically important taxa. Only marine families, no freshwater ones
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Chapter 5
Trilobites

5.1 Introduction

Trilobites, marine arthropods, belong to phylum Arthropoda, the most diverse
phylum that includes all insects, millipedes, centipedes, scorpions, and crustaceans,
such as crabs and lobsters.

The first trilobites appeared in Early Cambrian sediments (early part of Series
2, ~521 Ma; Fig. 5.1) in Africa (Morocco), Europe (Siberia, Spain), and North
America (Laurentia) (Hollingsworth 2008). The earliest forms include
Profallotaspis jakutensis Repina from SE Siberia (in the Atdabanian Stage = Stage
3 of Series 2; see Fig. 5.1; Table 5.1), Fritzaspis sp. from the Esmeralda Basin of
western Nevada and eastern California (USA), Hupetina antiqua (Marruecos) and
Eofallotaspis tioutensis Sdzuy from the Anti-Atlas Mountains of Morocco and
Serrania gordaensis Linani from Spain (Hughes 2007; Hollingsworth 2008; Lifian
et al. 2008; Clarkson et al. 2006). Thus, the Olenellids are the earliest occurring
trilobites that include the members of order Redlichiida (Fig. 5.2; see also Hughes
2007), suborder Olenellina, and particularly that of Fallotaspididae (see also
Harrington et al. 1959; Fortey and Owens 1997; Brezinski 1999; Chatterton and
Speyer 1997; Fortey 2000, 2001; Hollingsworth 2008; Gon 2014). Trilobite’s long
geological record (of ~270 Ma; see Figs. 5.1 and 5.2), until their end-Permian
extinction (251 Ma), is largely due to their mineralized exoskeleton (of calcite and
phosphate) which provided the required preservational edge. Albeit this long
geological history, the trilobites also witnessed a continuous decline throughout the
Late Palaeozoic; from their high of 63 families in Late Cambrian to a low of 2 in
Late Permian (Fig. 5.1). Orders Redlichiida (Fallotaspidoidea) and Ptychopariida
(Ellipsocephaloidea) were the first Early Cambrian orders of trilobites [Fig. 5.5(2)].
Since then, trilobites proliferated, diversified, and gave rise to 10 orders, ~ 150
families, ~5000 genera, and ~ 20,000 species (Mikulic et al. 2007; Lieberman and
Karim 2010; Gon 2014).

© Springer India 2017 137
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Fig. 5.1 Summary of the evolutionary history of the major trilobite clades plotted against
stratigraphic time (see also Hughes 2007). The y-axis is in log scale to permit detailed illustration
of Cambrian and Ordovician diversifications. No singular character (such as facial sutures,
numbers of thoracic segments, etc.) define the mode of classification. Instead, several characters
(such as facial sutures, glabellar shape and pattern of lobation, eyes, thoracic features and numbers
of thoracic segments, pygidial shape, size and segmentation, spinosity, hypostomal conditions and
shared ontogeny) play a role in defining trilobite orders. With permission, figure modified after
Gon (2014). All numerical ages have been recalibrated to the latest Gradstein et al. (2012)
timescale. Black arrows mark extinction events where trilobites suffered (see also Fig. 5.2)

Trilobites were mainly bottom dwellers, and developed marked provincialism in
their faunas (see Sect. 5.7) that also made them useful paleobiogeographic indi-
cators, especially in the Cambrian and Early Ordovician times. For rocks of this
time period, they are also very useful for biostratigraphy, more so for the Cambrian
(especially agnostoid trilobites, particularly in Late Cambrian). In fact, most of the
Cambrian stratigraphy is based on the use of trilobite marker fossils (see Tables 5.1
and 5.2) (see also Geyer 1998; Babcock et al. 2005; Peng et al. 2012).

5.2 Shell

The exoskeleton of trilobites is longitudinally divided into three parts—a Cephalon
(cephalic shield or head-shield) with a pair of compound eyes, a jointed Thorax
(composed of 2-40 segments) and a Pygidium (tail) made up of fused segments
(Fig. 5.3). Typically, trilobites measure between 2—-8 cm (20-800 mm) in length;
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Fig. 5.2 The stratigraphic distribution and diversity of Trilobite families. Only to two families
(Proetidae and Brachymetopidae, both in the order Proetida) remained before their end-Permian
extinction. With permission, figure modified after Gon (2014). All numerical ages have been
recalibrated to the latest Gradstein et al. (2012) timescale. Black arrows mark extinction events
where trilobites suffered
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5 Trilobites

Table 5.1 Trilobite-based regional biostratigraphic zonal schemes of the Cambrian, 505483 Ma
(modified after Peng et al. 2012; see also Gradstein et al. 2012)
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Table 5.2 Trilobite-based regional biostratigraphic zonal schemes of the Cambrian, 521-503 Ma
(modified after Peng et al. 2012; see also Gradstein et al. 2012)
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Acanthopleurella, when fully grown, is just over 1 mm in length, whereas, the
largest known trilobite, Isotelus, is 72 cm long (720 mm). Some of the largest
forms are illustrated in Fig. 5.4 (see Reimann 1942; Rabano 1989; Whittington
1992; Kaesler 1997; Rudkin et al. 2003).

The trilobite head is covered by the unsegmented, semicircular or triangular
Cephalon (Fig. 5.3). The cephalon is characterized by a median Glabella [Fig. 5.5
(1-5)] and two lateral portions, called Cheeks [Fixed and Free; Fig. 5.5(4)]. The
Axial furrow separates the glabella from the cheeks [that are more or less triangular
in shape and less convex than the glabella; Fig. 5.5(4)], by means of a furrow on
either side [Fig. 5.5(1)]. The posterior angles of the cheeks [the Genal angle;
Fig. 5.5(7)] may be rounded (as in Calymene) but is often pointed or produced into
spines [called the Genal spines; as in Trinucleus; Figs. 5.5(1 and 4)]. A suture
[Facial suture; Fig. 5.5(4)] divides each cheek into two halves. The Fixed cheek
which is immovable is the inner part between the facial suture and the glabella,
whereas the Free cheek is movable on the Fixed cheek [Fig. 5.5(4)]. Cephalon has
eyes on its upper surface, one on each free cheek near the facial suture, and near the
middle of the cheek [Fig. 5.5(4)]; the eyes are compound, each consisting of a
number of lenses. In a few genera, the eyes are absent such as in Agnostus and
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Fig. 5.4 Comparative scales depicting the largest recorded trilobites. For reference a household
common cat is shown. Trilobite gigantism is well noted in Orders of Asaphida, Redlichiida, and
Lichida. The Late Ordovician Isotelus rex, as asaphid, from Churchill, Manitoba (Canada) is the
largest of them all (see Rudkin et al. 2003)

Ampyx. The Cephalon continues on the lower surface of the head forming a mar-
ginal rim. Attached to the rim and situated just in front of the mouth, is an
oval-shaped plate called the Hypostome [Fig. 5.5(5)]. A more detailed cephalic
nomenclature is given in Fig. 5.5 and corresponding terms are briefly described
under Terminology (Sect. 5.3).

The Thorax [Figs. 5.3 and 5.6(1 and 7)] is formed of a series of segments, which
varies in number, from 2 to 40. The segments are movable upon one another, and in
some cases sufficiently spaced to enable the animal to roll itself like a wood-louse.
Two Axial furrows [Fig. 5.6(1)], divide each segment into a median and two lateral
parts. The more convex median (central) part forms the Axis [Fig. 5.6(3)]; the
lateral parts are called Pleurae [singular: Pleura; Fig. 5.6(1)]. The pleura is curved
downwards and backwards, slightly away from the median axis [Fig. 5.6(1)]; this
point of curvature is called the Fulcrum [Fig. 5.6(1)]. Generally the anterior part of
each pleura overlaps the succeeding one and the rounded fulcrum forms an artic-
ulating facet [Fig. 5.6(2)]. The terminal end of each pleura is modified; either
rounded or produced into a spine, called a Pleural spine [Fig. 5.6(1)]. A more
detailed thorax nomenclature is illustrated in Fig. 5.6(1-7) and corresponding terms
are briefly described below under Terminology (Sect. 5.3).

The triangular or semicircular Pygidium [Fig. 5.6(8 and 9)] is made up by a
variable number of segments that are immovable and fused, hence different from
those of the thorax. The region of segmentation in the pygidium is marked by a
groove called the Interpleural groove [Fig. 5.6(8)].

Segments in both thorax and pygidium possess an axis (a central part) and lateral
portions; the axis may reach to the posterior extremity or only part of the way
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Fig. 5.5 Cephalic nomenclature
[Fig. 5.6(8 and 9)]. The pygidial margin may be even or entire [Fig. 5.6(8 and 9)],

or it may be modified into a posterior spine [Fig. 5.6(8)] or a Telson [Fig. 5.6(1)] or
have lateral spines [Fig. 5.6(8)].
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A more detailed pygidial nomenclature is illustrated in Fig. 5.6(8 and 9) and
corresponding terms are briefly described under Terminology (Sect. 5.3).
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5 Trilobites

5.3 Terminology

5.3.1 Cephalon

5.3.1.1
5.3.1.2
5.3.1.3
5.3.14

5.3.1.5

5.3.1.6

5.3.1.7

5.3.1.8

5.3.1.9

5.3.1.10

5.3.1.11

Antenna: Many-segmented sensory appendage attached to the front part
of the head [Fig. 5.5(5)]

Anterior border furrow: Furrow defining the adaxially border of
cephalon [Fig. 5.5(1)]

Anterior margin: The anterior portion of the cephalon [Fig. 5.5(1)]
Border furrow: It is a furrow that marks the adaxially border of
cephalon, pygidium, and hypostome (syn., marginal furrow) [Figs. 5.5(9)
and 5.6(9)]

Border: Outer raised peripheral parts (dorsal in case of cephalon and
pygidium and ventral in case of hypostome) [Figs. 5.5(9) and 5.6(9)],
and is generally bounded by a border furrow (also called as Marginal rim,
or Marginal limb and rarely Rim)

Brim: Part of cranidium bounded anteriorly by marginal furrow and
posteriorly by front of glabella and ocular ridges, or lines running from
front of eyes to glabella [Fig. 5.5(8)]

Cephalon (pl., cephala): This is the part of carapace in front of thorax
(Fig. 5.3)

Cranidium (pl., cranidia): Bounded laterally by facial sutures, it is the
central part of the cephalon; those having marginal sutures, it includes the
dorsal part of the cephalon [Fig. 5.5(1)]

Eye: Visual area containing one or many lenses, located on either side of
the glabella; generally curved in plan and sloping steeply outwards;
among proparians and opisthoparians borne by inner margins of free
cheek [Fig. 5.5(4)]. Three types of eyes are noted: Holocroal,
Schizocroal, and Abathocoral (Fig. 5.7). Their distribution in time is
illustrated in Fig. 5.8 (see also Clarkson 1979, Clarkson et al. 2006) and
their evolutionary trends are given in Fig. 5.9(1) (see also Feist and
Clarkson 1989; Thomas 2005; Clarkson et al. 2006)

Facial suture: This is the line of junction between cranidium and free
cheeks; it may be wholly marginal [Protoparian; see Fig. 5.10(1)], partly
marginal [Hypoparian; see Fig. 5.10(2)] and partly dorsal [Proparian; see
Fig. 5.10(3)], or wholly dorsal [Opisthoparian; see Fig. 5.10(4)]. The
facial suture separates free cheek from fixed cheek and may even be
present when the eye is absent. The position of the facial sutures
determines the relative size of the fixed and free cheeks. After the death
of the animal, or after molting, the cephalic shield frequently falls into
pieces, dividing along these suture lines

Fassula: Ciliated growth at the margins of the preglabellar furrow
[Fig. 5.5(1)]
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Holochroal
Cornea

Lense

Found in nearly all Orders,

few to very many lenses (to >15,000),
lenses typically small and numerous,
one corneal layer covers all lenses,
lenses in direct contact with each other,
no sclera between lenses, corneal
membrane covers surface only

(Sclera is the thick cuticular material
between the lenses).

The earliest trilobites, of Early
Cambrian age, had holochroal eyes,
as did the last trilobite in the Late
Permian. Holochroal eyes are
regarded as the ancestral eye type.

The holochroal eye remained the
standard kind of visual organ
throughout the ~270 million years of
trilobite history

Examples

Paladin eichwaldi shunnerensis King
Asaphus raniceps Dalman
Sphaerophthalmus alatus Boeck

NI
1]

l
/

T
[1]
i

\
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4

Asaphus raniceps
Dalman

2

Schizochroal

Lense

Sclera  Cornea

Found in Phacopida only, typically
contains fewer lenses (to ~700), lenses
much larger, each lens bears an
individual cornea, lenses separated
from each other, sclera between lenses
very deep, corneal membrane extends
into sclera

These eyes are confined to one
group only, the Suborder Phacopina
(Early Ordovican to Late Devonian).

They are unique amongst Arthropoda.

Examples

Eldredgeops rana crassifuberculata
Stumm

Phacops fecundus Barrande
Reedops cephalotes Barrande
Geesops sparsinodosus Struve

Reedops cephalotes
(Hawle and Corda)

Fig. 5.7 Types of Trilobite eyes
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3
Abathochroal
Sclera Lense Cornea

Found in Cambrian Eodiscina only,
few lenses (to ~70), lens size small,
not numerous, each lens bears an
individual cornea, lenses separated
from each other, interlensar sclera
not deeper than lenses, comeal
membrane ends at lens margin

The Aabathochroal type, is confined
to the Eodiscina, a suborder of small
Early and Middle Cambrian trilobites.
The lenses are tiny, slightly separated
from each other, and each lens may
have had its own external calcitic
membrane.

These are amongst the

earliest of all trilobite eyes to appear
in the fossil record, and are well
formed. It is most likely that such
eyes, were derived from a
holochroal ancestor.

Examples

Shizhudiscus longuanensis S-G.
Zuang and Zhu

Neocobboldia chinlinica Lee

7

Neocobboldia chinlinica
Lee
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Fig. 5.8 The geological history of trilobites, showing various eye-types and major historical
events. Single vertical bars represent suborders, grouped bundles represent orders (modified from
Clarkson et al. 2006). Major events numbered 1-13 are: / Base of Cambrian System; 2 First
appearance of trilobites; 3 Origin of the agnostine system (median eye and reduced ventral
compound eyes); 4 Cryptic origin of eodiscid abathochroal eyes; 5 The earliest holochroal eyes in
Redlichiida; 6 Extinction event at the end of the Cambrian; 7 Acme of trilobites and proliferation,
amongst others, of blind, pitted-fringe taxa—Harpetidae (Ha) and Trinucleoidea (Tr); 8 Origin of
schizochroal eyes by paedomorphosis; 9 End-Ordovician major extinction event; /0 Gradual
decline and final extinction of many taxa; // Loss of eyes in many proetids and phacopids; /2 Late
Devonian major extinction event; /3 Proetida continue to the latest Permian; /4 Final extinction of
trilobites. All numerical ages have been recalibrated to the latest Gradstein et al. (2012) timescale

5.3.1.12 Fixed cheek: Part of cranidium on either side of glabella; the two fixed
cheeks comprise all of cranidium exclusive of glabella and may be
confluent in front of it [Fig. 5.5(4)]. The fixed cheeks are the lateral
extension of the glabella, to which they are firmly joined, forming the
central portion of the cephalon. They may occupy more than two-thirds
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Evolutionary trends of the eye

Evolutionary trends of the glabella

Evolutionary trends of the pygidium

Reduction of eye size l
Protoparian type Smaller eyes joined to glabella by occular Reduction of eyes to
(long cresent eyes) ridges a state of blindness
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Fig. 5.9 Evolutionary trends of the Trilobite eye (1), glabella (2) and pygidium (3)
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Protoparian

é Hypostome
(H)

These have marginal
sutures (i.e. possessing
a primitive character)

Cranidium
and Glabella
Submarginal
Free cheek

Paedeumias
transitans

Walcott

2

Hypoparian

@ Suture

These also have marginal
sutures but the position
is interpreted to signify
evolutionary specialization

Marginal suture

Cryptolithus tesselatus
Green

3

Proparian

5 Trilobites

4

Opisthoparian

(A

of Cephalon

0o~z

The sutures bend outwards
to the lateral margins of the
head.
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Phacops rana
Green

Facial sutures

Fig. 5.10 Types of facial sutures and their corresponding examples
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5.3.1.13

5.3.1.14

5.3.1.15

5.3.1.16

5.3.1.17

5.3.1.18

5.3.1.19

5.3.1.20

5.3.1.21

5.3.1.22

of the cephalon, as in Conocoryphe, or become greatly reduced, as in
Asaphus, Lichas, or Proetus

Free cheek: Part of cephalon separated by facial suture from cranidium,
including part of all of doublure on one side of cephalon; the two free
cheeks may be confluent in front of glabella divided by a suture or
separated by an accessory plate (Rostrum). In other words, it is the
portion of cephalon abaxial to the facial suture [Fig. 5.5(4)]. The free
cheeks carry the compound eyes, and are separated from the cranidium
by a suture. They may form (a) a continuous ventral plate, as in Harpes,
Agnotus, and Trinucleus; they may include (b) a greater or lesser portion
of the dorsal surface, being either entirely separated by the cranidium or
(c) meeting, and (d) sometimes coalescing in front. They are widely
separated in Ptychoparia, in juxtaposition in Asaphus, and continuous in
Dalmanites

Frontal lobe: It is entire portion of the glabella that lies in front of the
anterior lateral furrows, and is often somewhat enlarged laterally
[Fig. 5.5(1)]

Genal angle: These are the posterior lateral angles of the cephalon
[Fig. 5.5(7)]. They may be rounded, as in Illaenus, angular, as in
Bronteus, or spiniform, as in Trinucleus and Dalmanites. They belong
either to the fixed cheeks, as in Dalmanites, or to the free cheeks, as in
lllaenus, Bronteus, and Proetus

Genal spine: Backward extension of the posterolateral corner of
cephalon in the form of a spine [Fig. 5.5(1 and 4)]. It is a hollow,
posteriorly directed, pointed projection and the axial part of cranidium
bounded by the dorsal furrow at its front and sides [Fig. 5.5(1 and 4)]
Glabella: Bounded by axial and preglabellar furrows, it is the axial part
of the cephalon, [Figs. 5.5(1-4), 5.6 and 5.7]. The glabella may
constitute nearly the whole of the cephalon, as in Deiphon or Aeglina,
or it may be narrow, as in Harpes, and Eurycare. In some cases it does
not extend over half the length of the cephalon, as in Harpes and
Arethusina, but it may extend to the frontal border, as in Placoparia or
Calymmene, or even beyond, as in Phacops, Ampyx, and Conolichas.
The evolutionary trends of glabella are given in Fig. 5.9(2)

Glabellar furrow: Straight or curved groove extending inward from side
of glabella [Fig. 5.5(2)]

Glabellar lobe: Part of glabella bounded in front or behind, or on both of
these sides by short glabellar furrow [Fig. 5.5(2)]

Glabellar segment: Part of glabella bounded in front and behind by long
glabellar furrows [Fig. 5.5(2)]

Hypostome (Labrum): Plate or underside of cephalon in front of mouth
[Fig. 5.5(5)]

Hypostomial suture: Line at anterior edge of hypostome where it joins
doublure or rostrum [Fig. 5.5(6)]
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5.3.1.23

5.3.1.24

5.3.1.25
5.3.1.26
5.3.1.27
5.3.1.28

5.3.1.29

5.3.1.30

5.3.1.31

5.3.1.32

5.3.1.33

5.3.1.34

5.3.1.35

5.3.1.36

5 Trilobites

Lateral glabellar furrow: These narrow and pairs of bilaterally
symmetrical grooves on external surface extend partway across glabella,
from (or near) the axial furrow (Fig. 5.1). They are formed by fold in the
exoskeleton. Furrows show great variation in terms of length, depth, and
direction. Additionally, they may be short, limited to pits in or close to
axial furrow, or isolated from the axial furrow. When in three pairs, they
are called anterior, median, and basal (syn., posterior glabellar furrow,
preoccipital glabellar furrow). Their numbering is from back forward—
occipital as SO, preoccipital as S1, and continued forward as S2, S3, etc.
[Fig. 5.5(3)]

Lateral glabellar lobe: It is the inflated (generally) portion of the
glabella and separated by successive lateral glabellar furrows [Fig. 5.5
(1)]. Numbering is from posterior end forward: L1, L2, etc. [Fig. 5.5(3)].
When in three pairs, anterior, median, and basal lobes are used to
designate them [Fig. 5.5(1)]

Marginal furrow: Groove or abrupt inflection of surface along inner
edge of border of cephalon or pygidium [Fig. 5.5(8)]

Marginal spine: Sharp projection at edge of Pygidium [Fig. 5.6(8)]
Metastome: Small plate behind mouth [Fig. 5.5(5)]

Occipital furrow: A furrow (transverse in nature) that separates the
occipital ring from the remainder of the glabella [Fig. 5.5(1) and 5.8]. It
is the transverse groove in front of the hindmost glabellar segment
Occipital node: Tubercle on mid-portion of occipital segment, in some
trilobites observed to have structure of a simple eye [Fig. 5.5(1)]
Occipital ring: Axial region of most posterior segment of cephalon,
bounded at sides by axial furrows, at front by occipital furrow, and at
back by posterior margin. Considered part of glabella in all trilobites
[Fig. 5.5(1)]

Occipital segment: Hindmost part of glabella bounded in front by a
complete transverse groove (occipital furrow) [Fig. 5.5(8)]

QOcular platform: Part of fixed cheek behind brim and extending laterally
outwards from eye [Fig. 5.5(8)]

Ocular ridge: Narrow elevation extending from front edge of each eye to
glabella; lacking in many genera [Fig. 5.5(9)]

Palpebral furrow: Groove or abrupt inflection of surface along inner
edge of palpebral lobe [Fig. 5.5(4)]

Palpebral lobe: It is the raised portion (a protruding subsemicircular
flange) of fixed cheek along the inner edge of the visual area of eye. It is
distally bounded by the palpebral suture [Figs. 5.5(1) and 5.4]
Preglabellar furrow (= Border furrow): It is the portion of the axial
furrow outlining front of glabella [Fig. 5.5(1)]
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5.3.2 Thorax

5.3.21

5.3.2.2

5.3.2.3

5.3.24

5.3.2.5

5.3.2.6
5.3.2.7

5.3.2.8

5.3.2.9

5.3.2.10

5.3.2.11

5.3.2.12

5.3.2.13

5.3.2.14

5.3.2.15

5.3.2.16

5.3.2.17

5.3.2.18
5.3.2.19

Articulating facet: Sharply down bent areas along outer front edges of
pleura and pygidium; in articular movement providing for impingement
on adjacent parts of skeleton [Fig. 5.6(2 and 9)]

Articulating furrow: Transverse grove between axial segment of thorax
[Fig. 5.6(7)]

Articulating half segment: Arched anterior extension of axial segments
of thorax [Fig. 5.6(4)]

Axial furrow: It defines the axial region of cephalon, thorax, and
pygidium. Formed by the fold in the exoskeleton, axial furrow is a
groove on external surface [Fig. 5.6(3 and 9)]

Axial lobe: It is the central region of the dorsal exoskeleton, bordered by
axial furrow including the preglabellar furrow [Fig. 5.5(1)]

Axial node: Centrally located tubercle on an axial segment [Fig. 5.6(2)]
Axial ring: Central portion of the thoracic of pygidium segment,
bounded laterally by an axial furrow [Fig. 5.6(2)]

Axial segment: Transverse division of axis of thorax or pygidium
[Fig. 5.6(7)]

Axis: Longitudinal central part of cephalon, thorax, and pygidium
bounded by dorsal furrow [Fig. 5.6(3)]

Dorsal furrow: Groove bounding axis; it is located along sides and front
of glabella, sides of axial lobe of thorax, and sides and rear of axial lobe
of pygidium [Fig. 5.6(3)]

Doublure: Reflexed continuation of dorsal exoskeleton along ventral
margins of cephalon, pleura, and pygidium [Fig. 5.6(6)]

Endopodite: Inner branch (walking leg) of biramous paired appendages
attached to each post-antennal segment [Fig. 5.5(5)]

Interpleural furrow: These is a transverse groove indicating the
boundary of fused pleurae. The furrow extends from axial furrow across
the pleural region of the pygidium, (syn., interpleural groove, rib furrow)
[Fig. 5.6(9)]

Interpleural groove: Transverse furrow between adjoining pleura of
thoracic region or crossing a pleural lobe of pygidium [Fig. 5.5(9)]
Pleura (pl., pleurae): Lateral portion of a thoracic segment [Fig. 5.6(4
and 8)]

Pleural furrow: Groove extending outward and generally backward
from inner front edge of each pleuron; interpreted as a trace of primary
segmentation, formed by fold in exoskeleton [Fig. 5.6(9)]

Pleural lobe: Lateral portion of thorax or pygidium and abaxial (away
from the axis) to the axial furrow [Fig. 5.6(5)]

Pleural spine: Sharp-pointed extremity of a pleuron [Fig. 5.6(4)]
Pre-epodotide: Outer and upper branch of paired biramous post-antennal
appendages on ventral side [Fig. 5.5(5)]
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5.3.2.20

5.3.2.21

533
5.3.3.1

5.3.3.2

5.3.3.3

5 Trilobites

Thoracic segment: Transverse division of thorax, consisting of an axial
and two pleural portions [Fig. 5.6(4)]

Thorax: Post-cephalic part of body [Fig. 5.6(1-7)] composed of
individually movable segments (articulation of successive somites
(somites are the transverse divisions of the arthropod body); region
between cephalon and pygidium. The thoracic segments are movable
upon one another, in some cases enough so that the animal can roll itself
up like a wood-louse (see Enrolment). Each segment is divided into a
median (central) and two lateral parts by means of two furrows. The
median part is more convex and forms the Axis; the lateral parts are
called Pleurae (see above). The number of thoracic segments varies
exceedingly among different genera. The smallest number (2) occurs in
Agnostus. The largest number so far observed (29) is found in some
species of Harpes. A variation is to be noted even among the species of a
single genus; hence this character is not of general application for
purposes of classification. For example, there are species of Ampyx and
Aeglina with 5-6 thoracic segments, Phillipsia with 9-15, Cheirurus
with 10-12, Cyphaspis with 10-17, and Paradoxide 16-20. In general,
there seems to be a sort of mutual relationship between the number of
thoracic segments and the size of the pygidium. When the latter is large,
the thoracic segments are usually few; but if small, the number of
segments is large. The evolutionary trends of thorax are given in
Fig. 5.9(2).

Pygidium

Pygidial segment: Transverse division of pygidium representing one of
fused body segments composing it; homologous to thoracic segment
[Fig. 5.6(8 and 9)]

Pygidium (pl., pygidia): Posterior part of trilobite carapace (the exoskele-
ton) generally formed by fusion of several body segments (fused somites)
[Fig. 5.6(8 and 9)]. The outline of the pygidium is most frequently
semicircular, parabolic, or elliptical; more rarely it is triangular or
trapezoidal. The evolutionary pattern of pygidium is given in Fig. 5.9(3).
Based on size, four categories of pygidium are noted: these are Micropygous
(pygidium < cephalon), Subisopygous (pygidium # cephalon), Isopygous
(pygidium = cephalon) and Macropygous (pygidium > cephalon)
(Fig. 5.11)

Telson: Prominent backwardly directed spike borne by an axial segment at

Or near rear extremity; may or may not be equivalent to true telson of other
arthropods [Fig. 5.6(1)].
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Fig. 5.11 Types of pygidium

5.4 Growth Stages

The Trilobite development begins when each molt adds articulated segments (the
Anamorphic mode) and then switches to another mode in which no more segments
are added (the Epimorphic mode) (Fig. 5.12). This half anamorphic, half epimor-
phic mode is called Hemianamorphic mode. The addition of articulated segments
for each molt is best noted during the meraspid period, whereas the holaspid period
includes the epimorphic growth during which the unarticulated segments might be
added to the fused pygidium, but the total number of articulated units remain stable
(Fig. 5.12). For demarcating the developmental patterns in trilobites (and enabling
their higher grouping), the understanding of the timing of segment additions versus
articulations is fundamental (see also Chatterton and Speyer 1990; Levi-Setti 1993;
Hughes 2005; Hughes et al. 2006). Based on this distinction, three developmental
stages are recognized—Protaspid, Meraspid, and Holaspid (Fig. 5.12). These are
briefly described below

5.4.1 Protaspid: The Protaspis is a larva with a planktonic habit. It is made by an
unarticulated exoskeletal shield, and is a fraction of a millimeter in length.
As molting progresses, cranidium develops and is followed by the addition
of a protopygidium with fused thoracic segments. Later, at the posterior end
of the pygidium, successive segments are added. They grow forward, and
are released into the thorax (Meraspid stages) until the full complement of
segments is achieved (and is now represented by the Holaspid stage (see
Fig. 5.12)

5.4.2 Meraspid: Two or more articulated segments characterize this stage
(Fig. 5.12). Each molt adds one or two, but rarely greater numbers of
articulated thoracic segments to the body. Several molts occur, until the
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number of thoracic segments added to the meraspis achieves the number
typical of the adult form of the species. Thus, by now, the general pattern of
the body morphology (as evidenced by its shape and ornamentation)
resembles the adult of the species

The first complete articulation between cephalon and trunk is noted as
Degree 0 (MO; see Fig. 5.12; the trunk is shown as a white background); the
Thoracopygon, a combined thorax and pygidium is formed. By M1, the first
thoracic segment appears (shown as dark gray in Fig. 5.12). By M2, the
long-spined segment is still not obvious, albeit a hint of it is noted in the
expression of a pair of larger spines in meraspis degree 1. It moves forward
in the pygidium (shown as white background in Fig. 5.12) until it is released
into the thorax in meraspid degree 4 (see Fig. 5.12). The addition of two
more segments in subsequent molts follows. Each segment is added from
behind the reference segment (i.e., released from the pygidium into the
thorax) until the last complete articulation yields six thoracic segments, and
the holaspid stage is attained (Fig. 5.12)

5.4.3 Holaspid: At this stage, with each molt, no articulated segments are added
and is the last stage of trilobite development (Fig. 5.12). Now, there is no
major form change, but only increase in size. At this stage, the fused
pygidium may have some increase in the number of segments, but no further
articulated segments are added to the thorax. Hence, maximum size increase
in the life cycle of a trilobite occurs during this stage, only (Fig. 5.12).

5.5 Enrolment

The bodies of most Trilobites are capable of being rolled up completely like many
of the Isopods (a crustacean order that includes woodlice, sea slaters and their
relatives). In the enrolled condition the margin of the pygidium is closely applied to
the doublure of the cephalon, thus entirely concealing the ventral side of the body
[Figs. 5.13(6-8) and 5.17(11-14)]. The thoracic segments overlap, and have an
overlapping motion upon one another. The pleura also imbricate, and their fulcra
are provided with facets upon which the fulcra of adjacent segments impinge. Thus,
when the animal is enrolled, the ends of the pleura protect the ventral surface, along
the sides. But, only few forms had this ability. In them, the organism is usually
found extended, and the facets on the fulcra are either rudimentary or absent. In
Isopygous condition (Fig. 5.11), the cephala and pygidia are of comparable size and
thus, they enroll spherically as in Agnostida, Proetida, Asaphida, Illaenina, and
some Phacopida (see Fortey 2001).
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5.6 Classification

In higher level classification, “no single character (e.g., facial sutures) dominates.
Instead, such characters as facial sutures, glabellar shape and pattern of lobation,
eyes, thoracic features and numbers of thoracic segments, pygidial shape, size and
segmentation, and spinosity all play a role in helping define the orders. In addition,
hypostomal conditions and shared ontogeny also play an important role in defining
the orders of trilobites” (see Hughes 2007; Gon 2014) (see also Fig. 5.1; Tables 5.3
and 5.4). Table 5.3 lay out the classification of Trilobites and major characters of
the Orders and Table 5.4 gives their age range (modified after Gon 2014).

5.7 Geological History and Distribution

Trilobite diversity have been hardest by mass extinctions (Lieberman and Karim
2010) with major losses during end Ordovician (Melott et al. 2004) and Late
Devonian (McGhee 1996). After this, they failed to recover fully (Brezinski 1999)
and the group was eventually wiped out during the largest mass extinction of all
time, at the end of the Permian (Fortey and Owens 1997).

5.7.1 Cambrian: Trilobite’s early history is still a mystery. The earliest form
appeared in shallow marine settings, and assigned to a number of separate
clades, suggesting that trilobites had a prior history, probably as unminer-
alized or weakly mineralized forms. The earliest trilobites were recorded
around 521 Ma in Morocco (Africa), Siberia, Spain, and Laurentia (North
America) (see Lieberman 1998, 2002; Hollingsworth 2008; Lifian et al.
2008; Brasier 2009). These include Profallotaspis jakutensis from Siberia;
Fritzaspis sp. from the Esmeralda Basin of western Nevada and eastern
California; Hupetina antiqua from Morocco and Serrania gordaensis
(opisthoparian bigotinid; an endemic olenelloids) from Spain. The earliest of
the clade, the Olenellina went on to radiate particularly in the Early
Cambrian of USA. During the same time, Redlichiida dominated in south
China and extended their spread to Morocco, where they were associated
with the endemic olenelloids. This Early Cambrian provinciality of
shallow-water assemblages continued well into the Middle Cambrian, but
as trilobites colonized deeper waters, the Arthricocephalus, certain
Agnostida, and Centropleura crossed from one continental margin to
another; now trilobites had become cosmopolitan.

The Late Cambrian saw an expansion of ptychopariid deposit feeders, with
endemic faunas in Laurentia, north and south China, Australia, Kazakhstan,
and NW Siberia, while the dysaerobic environment of the ‘olenid sea’
around Baltica provided conditions that allowed the Olenidae to flourish.
The widely distributed pelagic taxa, Glyptagnostus and Irvingella, reached
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all these sites. Some important Cambrian forms are illustrated in Figs. 5.13,
5.14, 5.15 and 5.16

Ordovician: The trilobites reached their acme during the Ordovician. By
now many Cambrian groups had disappeared, and many new ones appeared,
characterized by Order Asaphida, including remopleuridids, trinucleids, and
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cyclopygids. Provincialism was somewhat maintained in shallow platformal
areas with the bathyurids in Laurentia and Siberia, dikelokephalinids in
eastern Gondwana (south China and Australia), and calymenoideans in the
west Gondwana. But by mid- to late Ordovician, blurring of this
provinciality occurred. Few Ordovician forms are illustrated in Fig. 5.17
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5.7.3

5.74

5.7.5

5.7.6

5 Trilobites

Silurian: The phacopida, proetida, styginids, lichids, and odontopleurids
(~74 % of trilobite fauna) survived the end-Ordovician extinction, and
persisted well into the Late Devonian. Many of the genera were now
cosmopolitan. In the cold waters of the southern hemisphere, a new
province, the Malvinokaffric Province, arose. Few Silurian forms are
illustrated in Fig. 5.18

Devonian: The Calmoniids (a clade of phacopids), homalonotids, aula-
copleurids, and odontopleurids, part of the Silurian fauna of the
Malvinokaffric Province dominated the Devonian seas

The Silurian fauna of the temperate and tropical latitudes, gradually
diversified in warmer, more varied conditions of Early Devonian. The
following extinction events due to eustatic changes led to the demise of
cheirurids, calymenids, and lichids in the Givetian Stage; odontopleurids,
harpetids, and styginids in the Frasnian; and the last phacopids at the end of
the Famennian (see Fig. 5.2); only proetida survived to the Carboniferous.
Few Devonian forms are illustrated in Figs. 5.18 and 5.19.
Carboniferous: Post-extinction, during the Mississippian (Early
Carboniferous), the proetid trilobites (represented by just 4 families),
diversified to occupy niches in the inner-shelf, carbonate mound, and
outer-shelf settings. And post the mid-Carboniferous crisis, the
Pennsylvanian (Late Carboniferous) and Permian trilobites now lived in
shallow shelf settings, only. Few Carboniferous forms are illustrated in
Fig. 5.20

Permian: The already diminished proetida, now represented by only three
families, survived in the Permian. The mid-Permian saw the diversification
of the phillipsiids. But by end Permian marine regression, which limited
their habitats, wiped the trilobites out, just before the end of the Palacozoic
era. Few Permian forms are illustrated in Fig. 5.20.

Appendix 1 gives the list of illustrated specimens mentioning the chapter
number, species name, age and locality along with its figure number within
the said chapter.



5.7 Geological History and Distribution 169

—

/ 5

fr,—-:"!"‘;? Odontocephalus

Phacops Phacops 7 Hall Coronura aspeclans
rana Green rana Green == 4 (Conrad)  Anchiopsis anchiops
(Green)

Dipleura dekayi
Green

Calymene blumenbachi
Brongniart

=

Bumastus
niagarensis

Green (Whitfield)

Encrinurus ornatus Lichas speciosus Bumastus niagarensis
Hall and Whitfield Beyrich (Whitfield)

Late Ordovician to Middle Devonian trilobites

Fig. 5.18 Selected Late Ordovician to Middle Devonian trilobites and their major distinguishing
characters



5 Trilobites

170

(Barrois)

Greenops boothi (Green)

Akantharges gourdoni

stralis (Clarke)

Metacryphaeus au

£

= HINN

i

Pennaia pauliana Clarke

— —— ]
p——

Early and Middle Devonian trilobites

Fig. 5.19 Selected Early and Middle Devonian trilobites and their major distinguishing characters



5.7 Geological History and Distribution 171

2
Delaria antiqua (Girty) Paladin
e morrowensis
Neogriffithides (Mather)
gemmellaroi
Toumansky
7
Eocyphinium
clitheroense 8
Reed
Excohops portlocki
(Meek and Worthen)
Phillipsia Bollandia
gemmuliferous glibiceps (Phillips)
(Phillips)
[ &
—
%%é 9
1
Griffithides longicepa Griffithides
Vodges Weberides mucronatus ~ seminiferus Humilogriffithides
(M'Coy) (Phillips) divinopleurus Inai

Mississippian to Permian trilobites

Fig. 5.20 Selected Mississippian to Early Permian trilobites and their major distinguishing
characters



172 5 Trilobites

References

Babcock, L.E., S. Peng, G. Geyer, and J.H. Shergold. 2005. Changing perspectives on Cambrian
chronostratigraphy and progress toward subdivision of the Cambrian system. Geoscience
Journal 9(2): 101-106.

Brasier, M. 2009. Darwin’s lost world - The hidden history of animal life. Oxford University Press.
Brezinski, D. K. 1999. The rise and fall of late Paleozoic trilobites of the United States. Journal
of Paleontology 73: 164-175.

Brezinski, D.K. 1999. The rise and fall of late Paleozoic trilobites of the United States. Journal of
Paleontology 73: 164—175.

Chatterton, B.D.E., and S.E. Speyer. 1990. Applications of the study of trilobite ontogeny. Short
Courses in Paleontology, Paleontological Society 3: 116-136.

Chatterton, B.D.E., and S.E. Speyer. 1997. Ontogeny. In Treatise on Invertebrate Paleontology,
Part O, Arthropoda 1, Trilobita, ed. Kaesler, R.L., 173-247, revised. Volume 1: introduction,
order agnostida, order redlichiida, 554. The Geological Society of America, Inc. and The
University of Kansas. Boulder, Colorado and Lawrence, Kansas.

Clarkson, E.N.K. 1979. The visual systems of trilobites. Palaeontology 22: 1-22.

Clarkson, E., R. Levi-Setti, and G. Horvath. 2006. The eyes of trilobites: the oldest preserved
visual system. Arthropod Structure and Development 35: 247-259.

Feist, R., and E.N.K. Clarkson. 1989. Environmentally controlled phyletic evolution, blindness
and extinction in Late Devonian tropidocoryphine trilobites. Lethaia 22: 359-373.

Fortey, R.A. 2000. Trilobite! eyewitness to evolution. London: HarperCollins.

Fortey, R.A. 2001. Trilobite systematics: the last 75 years. Journal of Paleontology 75(6): 1141—
1151.

Fortey, R.A., and R.M. Owens. 1997. Evolutionary history. In Treatise on invertebrate
paleontology, O (arthropoda 1, trilobita, revised), ed. R.L. Kaesler, 249-287. Lawrence,
Kansas: Geological Society of America and University of Kansas Press.

Geyer, G. 1998. Intercontinental, trilobite-based correlation of the Moroccan early middle
Cambrian. Canadian Journal of Earth Sciences 35(4): 374-401.

Gon, S.M., III. 2014. A guide to the orders of trilobites. http://www.trilobites.info/.

Gradstein, F.M., J.G. Ogg, M. Schmitz, and G. Ogg. 2012. The Geologic Time Scale 2012. doi:10.
1016/B978-0-444-59425-9.00026-3.

Harrington, H.J., G. Henningsmoen, B.F. Howell, V. Jaanusson, Ch. Lochman-Balk, R.C. Moore,
Ch. Poulsen, F. Rasetti, E. Richter, R. Richter, H. Schmidt, K. Sdzuy, W. Struve, L. Stprmer,
C.J. Stubblefield, R. Tripp, J.M. Weller, and H.B. Whittington. 1959. Systematic descriptions.
In Treatise on invertebrate paleontology, Part 0, arthropoda 1, ed. R.C. Moore, 170-539.
Lawrance, Kansas: Geological Society of America and University of Kansas Press.

Hollingsworth, J.S. 2008. The first trilobites in Laurentia and elsewhere. In Advances in trilobite
research. Cuadernos del Museo Geominero 9, ed. 1. Rabano, R. Gozalo, and D.
Garcia-Bellido. Instituto Geoldgico y Minero de Espafia, Madrid.

Hughes, N.C. 2007. The evolution of trilobite body patterning. Annual Reviews in Earth and
Planetary Sciences 35: 401-434.

Hughes, N.C. 2005. Trilobite construction: building a bridge across the micro and macroevo-
lutionary divide. In Evolving form and function: fossils and development, ed. D.E.G. Briggs,
138-158. Peabody Museum of Natural History: Yale University, New Haven, Conn.

Hughes, N.C., A. Minelli, and J. Fusco. 2006. The ontogeny of trilobite segmentation: a
comparative approach. Paleobiology 32(4): 602—627.

Kaesler, R.L. (ed.). 1997. Treatise on invertebrate paleontology, Pt. O, arthropoda 1, trilobita,
revised, vol. 1, 530. Lawrence: Geological Society of America and University of Kansas Press.

Levi-Setti, R. 1993. Trilobites, 2nd ed. University of Chicago Press.

Lieberman, B.S. 1998. Cladistic analysis of the early Cambrian olenelloid trilobites. Journal of
Paleontology 72: 59-78.


http://www.trilobites.info/
http://dx.doi.org/10.1016/B978-0-444-59425-9.00026-3
http://dx.doi.org/10.1016/B978-0-444-59425-9.00026-3

References 173

Lieberman, B.S. 2002. Phylogenetic analysis of some basal early Cambrian Trilobites, the
biogeographic origins of the Eutrilobites, and the timing of the Cambrian radiation. Journal of
Paleontology 76(4): 692-708.

Lieberman, B.S., and T.S. Karim. 2010. Tracing the trilobite tree from the root to the tips: a model
marriage of fossils and phylogeny. Arthropod Structure and Development 39: 111-123.

Lifian, E., R. Gozalo, M.E. Dies Alvarez, J.A. Gamez Vintaned, and S. Zamora. 2008. Nuevos
trilobites del Ovetiense inferior (Cambrico Inferior bajo) de Sierra Morena (Espaifia),
Ameghiniana, 45(1).

McGhee, G.R. 1996. The late Devonian mass extinction: the Frasnian/Famennian crisis, 303.
New York: Columbia University Press.

Melott, A.L., et al. 2004. Did a gamma-ray burst initiate the late Ordovician mass extinction?
International Journal of Astrobiology 3: 55-61.

Mikulic, D.G., E. Landing, and J. Kluessendorf. 2007. Fabulous fossils: 300 years of worldwide
research on Trilobites. USA: New York State Museum.

Peng, S., L.E. Babcock, and R.A. Cooper. 2012. The Cambrian period. In: The Geologic Time
Scale 2012. ed. F.M. Gradstein, J.G. Ogg, M. Schmitz, and G. Ogg, 437-488. Elsevier.
Rabano, 1. 1989. El genero Uralichas Delgado, 1892 (Trilobite, Lichida) en al Ordovicico de la

Peninsula Iberica. Boletin Geologico y Minero 100(1): 21-47.

Reimann, L.G. 1942. A new restoration of Terataspis. Bulletin of the Buffalo Society of Natural
Sciences 17: 39-51.

Rudkin, D.M., G.A. Young, R.J. Elias, and E.P. Dobrzanski. 2003. The world’s biggest trilobite -
Isotelus rex new species from the Upper Ordovician of Northern Manitoba. Canada Journal of
Paleontology 77(1): 99-112.

Thomas, A.T. 2005. Developmental palaeobiology of trilobite eyes and its evolutionary
significance. Earth Science Reviews 71: 77-93.

Whittington, H.B. 1992. Fossils illustrated 2. Trilobites: Woodbridge, Boydell Press.



Chapter 6
Echinoids

6.1 Introduction

Of the five classes of echinoderm (Fig. 6.1), echinoids are the most diverse and well
represented, from shallow waters to abyssal depths. The echinoderm account for
90 % of the biomass even at the depth of ocean trenches; echinoderm are
bottom-dwellers except for a few swimming sea cucumbers. They are radially
symmetrical in adults, and range from a few mm to more than a meter in diameter
and live with their mouth downward-facing. The echinoderm group includes ani-
mals such as sea urchins and sand dollars (Echinoids), sea lilies and feather stars
(Crinoidea), sea stars (starfish; Asteroidea), brittle stars (Ophiuroidea), sea
cucumbers (Holothuroidea), sea daisies (Concentricycloidea) and the extinct classes
of Cystoidea and Blastoidea (blastoids) (Fig. 6.1). The echinoderm fossil species
number ~ 13,000 and 3500 genera and the living number ~ 65,000 species
grouped in 20 classes.

The Echinoids, one of the groups dealt in this chapter (Fig. 6.1), are exclusively
marine benthic macroinvertebrates. These “spiny skin” forms have an endoskeleton
made of hard calcium-rich plates (of single calcite crystal) just beneath their thin
skin. Paleontologically, echinoids are, by far the most significant group. They range
in size from just a few mm in diameter to over 350 mm (both size spectrum is noted
in living sea cucumbers and brittle stars). They also occur in varied shapes
(globular, heart-shaped, cylindrical, hemispherical, or even flattened discoidal).
However, irrespective of their overall shape, the skeleton (test) is always con-
structed along the same standardized plan, as outlined later in the chapter.
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Fig. 6.1 The echinoderm group includes sea urchins and sand dollars (Echinoids), sea lilies and
feather stars (Crinoidea), sea stars (starfish; Asteroidea), brittle stars (Ophiuroidea), sea cucumbers
(Holothuroidea), sea daisies (Concentricycloidea) and the extinct classes of Cystoidea and
Blastoidea (blastoids). In this chapter, however, only Echinoids are dealt (shaded)

6.2 General Morphology

In Echinoids, a rigid and robust calcitic test (skeleton) built by a mosaic of plates is
firmly bound together, thus, making the skeleton is architecturally complex and
mesodermal. Their excellent preservational history (good fossil record) is a testa-
ment of the rigid skeleton and hence, the echinoids are extensively studied for their
phylogeny. Contextually, they are also a valuable palaeobiological tool.

The extant echinoid species are equally divided between regular forms (radial,
fivefold symmetry; Figs. 6.2 and 6.3) whose anus opens in the aboral plated surface
(i.e., the anus is located opposite to the mouth), and irregular forms (bilateral
symmetry) whose anus is displaced away from the aboral plates into the posterior
interambulacral zone (Fig. 6.4). The regular forms live epifaunally, whereas the
irregular ones live predominantly infaunally. Table 6.1 lists major differences
between Regular and Irregular echinoids.

In Echinoderms, instead of using “dorsal” and “ventral” (as in Brachiopods:
Chap. 8), the position relative to the mouth is used; the side where the mouth lies is
Oral, and the side opposite is Aboral. In regular echinoids the mouth is on the
underside and the anus is at the top [see Fig. 6.2(1, 2)]. When viewed from the
upper surface, the outline of the type of echinoid test just described is a circle, with
the apical system at its center, and the double columns of plates forming the radii
[Fig. 6.2(2, 9)]. The ambulacra are said to be Radial in position, since each overlies
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Fig. 6.2 Morphology of a regular echinoid. / Internal anatomy in cross section; 2—4 Regular
echinoid—for Echinoderm, instead of using “dorsal” and “ventral” (as in Brachiopods), the position
relative to the mouth is used; the side where the mouth lies is the Oral side, and the side opposite is
called Aboral. Test shows pentaradial symmetry with ambulacra, inter ambulacra and spine
attachments; 5 Perigrathic girdle (see Fig. 6.1), this serves to anchor muscles that raise and lower the
complex jaw system (= the Aristotle’s lantern; here Figs. 6.7 and 6.8); 6 Detail of a spine [see also
Fig. 6.3(4)]; 9 Upper surface of a Regular echinoid (with no tubercles and spines) showing the Apical
disc (10) of Echinus esculentus Linnaeus and paired pores (//); 12 Orientation of echinoids (Aboral
side with shaded ambulacral areas). Echinoid orientation is based on the position of the Madreporite
(M). Numerals or letters are used to designate various ambulacral and inter ambulacral areas; the areas
may also be designated by reference to their position—anterior, lateral, right, left or posterior
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Fig. 6.3 Nomenclature of a regular echinoid Sterocidaris tubifera Mortensen

a radial canal of the water vascular system and the interambulacra are said to be
Inter-Radial [Fig. 6.2(1, 9)]. The only asymmetric feature in the radial symmetry of
this test is the position of the Madreporite [Fig. 6.2(1, 11)], and this is used to
define the Anterior—Posterior orientation [Fig. 6.2(12)]. The test is conventionally
aligned [Fig. 6.2(12)] with the madreporite on the right, toward the anterior end.
The lower surface on which the mouth lies is the Oral surface; and the upper surface
is the Aboral surface [Fig. 6.2(1)].
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Fig. 6.4 Morphology of an irregular echinoid

The pattern of symmetry shown by the test is a convenient basis for separating
the echinoids two groups—Regular forms in which the coronal plates show radial
symmetry [Fig. 6.2(9)], and Irregular forms, in which the five rays are arranged in
bilateral symmetry (Fig. 6.4). In regular form, the anus (surrounded by the
Periproct) lies within the apical system [Fig. 6.2(10)], and the mouth is at the center
of the oral surface and contains jaws (= the Aristotle’s lantern) [Fig. 6.2(7-8)].
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Table 6.1 Major differences between Regular and Irregular echinoids

Dissimilarities

Parameters Regular Irregular
Test shape Circular test Distinctively elongate in adult stage
Mode life Benthonic, epifaunal, seabead, Benthonic, infaunal, burial, low energy

high energy

Position of
Anus

Dorsally (central location—
directly above the mouth)

Posterior

Feeding Aristotles lantern, grazes on Particle feeds, extracts from water
seabed

Symmetry Fivefold (pentameral) Bilateral

Ambulacrum | Runs from center of aboral to oral | Moddified over test, fused together

Tube feet Respiration, attachment and Respiration, digging and maintaining a

function movement burrow

Fasicles Absent Two present to direct water to mouth

and direct waste away
Tubercles Small number of large tubercles Uniform, fine, and dense tuberculation
Similarities

Both live in a marine environment

Both have 5 ambulacrum

Tube feet used for respiration

Both have anus and mouth

In regular forms the anus lies outside the apical system in the posterior ambulacrum,
and the mouth may lie either in the center of the oral surface and have jaws or
toward the anterior margin and lack jaws.

The test of a typical echinoid is hemispherical in shape [Fig. 6.2(1-4)]. It
consists of many interlocking plates, arranged in 10 double rows, which radiate
from the apex of the upper surface to the mouth in the center of the lower surface
[Fig. 6.2(2—-4)]. Five of these columns carry tube feet and are known as Ambulacra
plates [Fig. 6.2(3, 9)]. The other five, with no tube feet, are Interambulacra plates
[Fig. 6.2(3, 9)]. Both ambulacra (ambs) and interambulacra (interambs) and are
composed of two rows of plates meeting centrally at a zigzag suture [Fig. 6.2(9)].

The Ambulacral plates bear pore pairs near their outer edges, each pair, when the
organism is alive, leads to a single tube foot [Fig. 6.2(11)]. Both ambs and inter-
ambs widen to the ambitus and narrow again on the oral surface (under side), where
they terminate at the Peristome, i.e., around the mouth [Fig. 6.2(4)]. Peristome is a
large hole where the mouth and the complex jaw apparatus known as Aristotle’s
lantern sit [Figs. 6.2(7-8) and 6.5(1-3)]. The other opening on the opposite side of
the peristome (i.e., on the aboral side) is the Periproct (around the anus) [Fig. 6.2
(10)]. Both peristome and periproct make up the Corona (= Crown). The equatorial
region of the corona is called the Ambitus and is the area of greatest width.



6.2 General Morphology 181

Short, separate Long, joined
Epiphysis Epiphysis

i Tooth i
Aulodont type Camarodont type
lantern lantern
Auricle
2 3

Aristotle's lantern

Madreporite
Ocular plate

Insert condition
(occular plates Genital
extend to the pore
periproct)
Exert condition

Genital pore
4 : (occular plates do not 5
{smaller in males) extend to the periproct)
Schizocidari imilis M 1 ) Goniocidaris sibogae Mortensen
Apical system

§\\\\\§ 2 e
8. 8

6 Suranal plate 7
Polysalenia Pseudosalenia
zumoffenia
Salenid type of try Strirodont type
(periproct has shifted (Periproct is displaced
towards the right towards the posterior
posterior interambulacrum,

ambulacral area)

hence,
bilateral symmetry)

Excentricity of periproct Gill slits and Buccal plate
(Plesiodiademay)



182 6 Echinoids

<« Fig. 6.5 Aristotle’s lantern and Apical system. /-3 Aristotle’s lantern. This is the jaw of the
echinoid and consists of no less than 40 individual bones (ossicles) operated by more than 60
individual muscles arranged in seven sets. In Cidaroids (as illustrated in Fig. 6.1) the projections
around the peristome are interambulacral apophyses rather than ambulacral auricles, and adjacent
apiphyses of the lantern are not joined; 2 Aulodont lantern; 3 Camarodont lantern. The Aulodont
lantern has short separate epiphyses, whereas the Camarodont lantern has long epiphyses that join
each other. 4-5 Apical system. The oculogenital ring surrounding the periproct consists of
ambulacral ocular plates and interambulacral genital plates. The genital plates contain the Genital
pores. The left anterior genital plate is also the Madreporite. The Apical systems are grouped as
Insert, if the ocular plates extend to the periproct, and Exert, if they do not. Size of the genital pores
marks as Male (see Fig. 6.4) and Female (see Fig. 6.5). 6—7 Excentricity of the periproct. 6
Saleniid type of symmetry in which the periproct has shifted toward the right posterior ambulacral
area; the entire oculogenital ring has assumed a bilateral symmetry along the plane passing through
the left anterior interambulacrum and the right posterior ambulacrum. 7 A Stirodont in which the
periproct is displaced toward the posterior interambulacrum, hence, the plane to bilateral symmetry
coincides with the conventionally defined anterior—posterior axis established by location of the
madreporite (shaded gray). The strippled area (large central plate) is the Suranal plate. The arrow
points forward. 8 Gill slits and Buccal plates. Two features common to all regular echinoids—
embayments (gill slits) in the peristomial margin which make room for gills and a circle of large
buccal plates on the peristome. The shaded area is the peristomial membrane

Both ambs and interambs that make up the corona are arranged in 10 double
rows, terminate aborally at a genital plate [Fig. 6.2(10)]. The five large double rows
of interambulacra plates make the Interambulacra area and five small double rows
of ambulacra plates form the Ambulacra area.

The Interambulacral plates are imperforate and generally larger, and often bear
knobs or tubercles [Fig. 6.2(2)]. These are the articulation bases for the many spines
[Figs. 6.2(6) and 6.6(1-6)] which bristle from the test surface in life [Fig. 6.2(1)].
On both sides of the ocular plate, the Interambulacral plates arise [Fig. 6.2(9, 10)].
The tubercles that cover the outside surface of both ambulacral and interambulacral
plates, greatly vary in size; these are also the sites for the articulation points for
spines.

Spines are rarely preserved in place, but occur commonly in bioclastic lime-
stones. The spines tend to be longest at the equatorial region of the test (= the
Ambitus). On a smaller scale, the test surface is protected by pedicellariae [Fig. 6.6
(7-15)], minute pincers sometimes invested with poison glands. In detail, each
Interabulacral plate bears a shallow pit called the Areole that bears a conical Boss,
surmounted by a globular Mamelon [Figs. 6.2(6) and 6.3(4)]. Both the boss and the
mamelon make up the Primary tubercle [Figs. 6.2(6) and 6.3(4)] which carries
Primary spines or Radioles. The Mamelon, because of a dimple on its surface, is
considered Perforate. The areole is surrounded by a ring of small Scrobicular
tubercles [Fig. 6.3(4)]. These along with smaller tubercles that lack areole, are
classed as Secondary tubercles and the microscopic ones are called Miliary
tubercles [Fig. 6.3(1, 4)]. The scrobicular tubercles carry the scrobicular spines and
the miliary tubercles carry tiny spines called Pedicellariae [Fig. 6.6(7—15)]. The
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N(ig

Porocidaris Nortonechinus Cyathocidaris Balanocidaris Balanocidaris  Plegiocidaris

schmidelii welleri erebus glandifera pleracantha cervicalis
(Munster) Thomas Lambert (Goldfuss) (Agassiz) (Agassiz)
1 2 3 4 5 6

Triphyllous
(Heterocentrotus
mammillatus (Linnaeus))

Globiferous
((Selenechinus armatus
(de Meijere))

11
14
Tridentate Globiferous Dactylous
({Goniocidaris prunispinosa (Allocentrotus fragilis (Aerosoma fenestratum
(Chapman & Cudmore)) (Jackson)) (Wyville-Thompson))

Fig. 6.6 Spines and pedicellariae. /-6 Spines; 7—14 Pedicellariae of modern echinoids. The
Pedicellariae are groups of two, three, or more minute snapping jaws (valves), mounted at the tip
of small spines scattered over the surface of the test

primary spines or radioles are complex; their base is concave forming a socket
called the Acetabulum which articulates with the Mamelon of the primary tubercle
[Fig. 6.3(4)]. Above the Acetabulum, the spine expands into a Milled Ring to
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which the muscles are attached [Fig. 6.3(4)]. Above this, the Collar of the spine
tapers into a smooth cylindrical Neck which is then succeeded by a rough longi-
tudinally striated Shaft (which makes up most of the spine) [Fig. 6.3(4)]. Each
Ambulacral plate bears a prominent Marginal tubercle on the edge between por-
ifeous and inteperiferous zones [Fig. 6.3(1)]. The Secondary tubercles are, how-
ever, distributed in the inteperiferous zone. The marginal tubercles carry the flat
Marginal spines (similar to the scrobicular spines of the Interambulacral plate)
[Fig. 6.3(1)].

At the aboral (upper) extremity of the shell, each ambulacral area ends by a
single Ocular plate and each interambulacral area by a Genital plate; these 10 plates
form the Oculogenital Ring that surrounds the Periproct [Figs. 6.2(9—-10) and 6.3
(3)]. Each of the ocular plates bears a small Ocular pore. Each genital plate is
perforated by a Genital pore [Fig. 6.2(10)]; females have larger pores, enabling
differentiation of sexes. One of the genital plates, the Madreporite is riddled with
microscopic pores and acts as a sieve for the intake of water [Fig. 6.3(3)].

Situated at the top is the Apical System [Fig. 6.5] consisting of about 10 small
plates that are connected with specialized functions, and one of which is the
Madreporite [Fig. 6.5(4, 5)]. The central part of the apical system consists of a
membrane, the Periproct, which surrounds the anus. In the center of the lower
surface of the test, is a similar membrane, the Peristome which surrounds the mouth
[Fig. 6.2(7)]. Most of the surface of the test is covered by spines which are attached
to Tubercles.

The Aristotle’s lantern is a highly complex structure with 50 skeletal elements
and 60 muscles [Fig. 6.5(1-3)]. It is pentaradially symmetrical with the five teeth,
braced in a hemipyramid [Fig. 6.5(1)]. Like a grab, the entire structure can open
and close, and move in and out of the test. As the echinoids possess a rigid test with
a fixed internal volume, a large and active lantern that moves in and out poses
severe space constraints. To compensate for changes in internal volume there are 10
expandable soft tissue sacs around the edge of the peristome that connect directly to
the interior and that accommodate any displaced body cavity fluids. For this, the
echinoid body plan has come up with 10 expandable soft tissue sacs around the
edge of the peristome. These connect to the interior directly and accommodate any
displaced body cavity fluids. For each sac, there is a small notch in the exterior
within the peristome called the Buccal notch. The latter are always absent in such
echinoids that either lack a lantern or have an entirely internal lantern. The lantern is
moved by primary muscles that are attached to the interior of the test around the rim
of the peristome. Such sites of muscle attachment are modified into enlarged
skeletal flanges; those developed from the adoral ambulacral plates are called
Auricles while others from interambulacral plates are called Apophyses. All muscle
attachments of the Aristotle’s lantern form the Perignathic girdle [Fig. 6.2(1, 5)].
The latter serves to anchor muscles that raise and lower the complex jaw system
(= the Aristotle’s lantern).

In Regular echinoids, the apical system contains 10 plates, arranged in one or
two rings around the periproct [Figs. 6.2(9, 11), 6.5(4, 5)]. Five of these, the Ocular
plates, are situated radially; and alternating with them are five inter-radial Genital
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plates [Figs. 6.2(9, 11), 6.5(4, 5)]. The ocular plates each bear a pore through which
passes the terminal tentacle of the radial water vessel. The genital plates are the
larger and each has a pore through which eggs or sperms are discharged. One
genital plate (the right anterior) is also the Madreporite and is finely perforated
[Figs. 6.2(9, 11), 6.5(4, 5)]. In irregular echinoids [Fig. 6.4], the apical system does
not enclose the periproct and it is small and compact; it may contain less than five
genital plates, but always has five oculars [Fig. 6.2(9)].

The Ambulacral plates are small and each is pierced by one pair of pores
[Figs. 6.2(11) and 6.5(5)], A Pore Pair [Fig. 6.2(11)], except in the gill-bearing
regular echinoids are housed in the Compound ambulacral plates [Fig. 6.7]. The
latter consist of two or more plates fused together and possess two or more pairs of
pores. The pores are round and close-set, except in irregular echinoids that have
respiratory tube feet; in these, one or both pores of each pair may be elongated
[Fig. 6.4(5)]. Interambulacral plates are large and have no pores. Their surface is
covered by many tubercles and granules to which, in life, movable spines are
attached by muscles [Fig. 6.4(3)]. The spines are rarely preserved, situ, in fossil
echinoids. The Tubercle consists of a round knob, the Mamelon, protruding from a
shallow mound, called the Boss [Fig. 6.3(4)]. Tubercles occur on both ambulacral
and interambulacral plates, but they are more numerous and larger on the latter. In

Multiple type

(Diademoid compound

plates are combined

into a multiple compound 7
plate)

Diademoid type (Pefanechinus) Echonoid type
(lowest member is small) (lowest member is large)

Phormosoma

Strongylocentrotus

Fig. 6.7 Compound plates. Compound ambulacral plates are formed by the fusion of simple
plates in which one (gray) remains larger than the others. Most Mesozoic and Cenozoic regular
echinoids possess compound ambulacral plates. Two basic types of compound plates are noted:
Diademoid and the Echinoid. Multiple type is a special condition where the diademoid compound
plates are combined into a multiple compound plate
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regular echinoids they vary in size from large primary tubercles to small granules,
but they are rather small and close-set in irregular echinoids.

The Mesozoic and Cenozoic regular echinoids have compound ambulacral
plates, instead of the normal monotonously added new rows of similar plates. Two
basic styles are recognized: Diademoid and Echinoid (Fig. 6.7). In the diademoid,
the middle one of the three component elements (or one below the middle in
combination of 4 or 5) is largest, whereas in the Echinoid type, the lowest member
is largest. The third style is the Multiple where the diademoid plates are combined
into a multiple compound plate as in the Jurassic echinothurid Pelanechinus
(Fig. 6.7).

The Spines and Pedicellariae are appendages which are attach to the test
(Fig. 6.6). The Spines [Fig. 6.6(1-6)], based on their function (more so in irregular
echinoids where maximum functional differentiation is noted), come in varied
shapes and sizes and are generally long [Fig. 6.3(1, 2)]; they can be hollow or solid
and smooth or ornamented, externally. A central ligament binds the spine to its
articulation ball, and the associated tubercle is then, perforate; the surrounding
platform may be smooth or crenulated. Pedicellariae which evolved from clusters of
spines, resemble tulips in shape [Fig. 6.6(8—15)]. They are microscopic stalked,
jawed appendages that are common in all echinoids from the Silurian onwards.
They are used to deter small ectoparasites and occur in many different forms
making them very useful species-level identification. However, they are rarely
preserved as fossils.

6.3 Orientation of Echinoids

From the aboral view, the ambulacra are labeled with capital letters or roman
numerals, in a counterclockwise sequence, the anterior ambulacrum being C or III
[Fig. 6.2(12)]. The Interambulacral areas are numbered by lower case letters or by
Arabic numerals or may simply be designated by listing the adjoining ambulara;
thus, interambulacral “a” or “1” may likewise be listed as interambulacrum A-b or
I-II. It must be noted that when the shell is viewed from the oral side, the directions

are reversed, and the sequence of numbering is clockwise.

6.4 Irregular Echinoids

The morphological features of irregular echinoids have been taken up earlier.
However, below each group is briefly dealt as they differ considerably from others.
The morphological features of the following 4 (Holectypoids, Cassiduloida,
Clypeasteroids and Spatangoids) are briefly described and illustrated (Figs. 6.8, 6.9,
6.10 and 6.11).
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2
Holectypus
hemisphaericus
Agassiz

1
Holectypus
depressus Leske

Clypeus ploti Klein Pygaster semisulcatus Phillips

Fig. 6.8 Jurassic irregular echinoids. They first appeared in the Jurassic and are comparatively
primitive in body plan. /-2 Jurassic Holectypoid in which the peristome is extended into gill slits;
the periproct is located at the margin (2) but in others (/), it is on the oral side and extends close to
the mouth. 3—4 Jurassic Cassiduloid whose periproct is surrounded on three sides by oculogenital
rings. 56 Jurassic Cassiduloid. This is an advanced irregular echinoid with well-developed petals
and elongate posterior genital plates which border on the periproct. 7-8 Jurassic Holectypoid in
which the periproct is a keyhole-shaped structure

Bourrelet

Petal Peristome
Fig. 6.9 Cassidulinoid structure. / Portion of an ambulacral area of Cassidulus eugeniae
(Agassiz); 2 Rear view of Cassiduls subconicus Clarke showing the periproct; 3 Peristomial region
of Cassiduls subconicus Clarke; 4-5 Cassiduls subconicus Clarke 4 Aboral view; 5 Oral view; 6
Portions of a petal of Cassiduls subconicus Clarke as in 4
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Aristotle’s lantern Aboral view

Clypeastrinid plates

Plate structure in
sand dollar

sfield

n

Encope tamiamiensis Ma

Spi
(Aboral)
Internal partitions
6 Encope grandis Agassiz
Encope grandis Oral view 7

Clypeastroid morphology

Fig. 6.10 Calypeasteroid morphology. / Aristotle’s lantern; 2 Oral view; 3 Aboral view; 4-5
General plate structure among Calypeasteroids; 6 Aboral spine; 7 Oral view showing grooves; 8
Part of test showing internal structures
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Anterior
ambulacral area

Petal

Peripetalous
fasciole

Peristome

Labrum

Sternals

Episternals

Endopetalous
fasciole

Subanals Pourtalesia miranda
Eupatagus mooreanus Pilsbury Anal Agassiz
fasciole

Echinocardium ¢
ubanal
cordatum (Pennant) fasciole

Peripetalous fasciole

Lateral fasciole

) Linthia trechmanni
Eupatagus mooreanus Pilsbry Hawkins

Fig. 6.11 Spatangoids morphology. /-3 Eupatagus mooreanus Pilsbury; I Oral view; 2 Aboral
view; 3 rear view. 4 Pourtalesia miranda Agassiz, a modern deep sea dweller, oral view, the
ambulacral plates are shaded; 5—6 Echinocardium cordatum (Pennant); 5 Oral view; 6 Rear view;
7 Linthia trechmanni Hawkins, aboral view
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6.4.1 Holectypoids

These are the most primitive (and least specialized) forms and are the closest to
regular echinoids (Duncan 1889). Globally, they dominated the Jurassic—
Cretaceous landscape, from Pliensbachian (Early Jurassic) to Maastrichtian (Late
Cretaceous), and are best exemplified by Jurassic forms such as Galeropygus
agariciformis (Forbes), Holectypus depressus Leske, Holectypus hemisphaericus
Agassiz, Clypeus ploti Klein and Pygaster semisulcatus Phillips (Fig. 6.8).
Holectypoids are small echinoids with a flattened oral side and a hemispherical to
conical aboral surface. Except for the posterior displacement of the periproct, the
test retains radial symmetry, becoming elliptical only in very advanced forms. They
possess a functional jaw apparatus and a large central peristome. The periproct
opens orally in Holectypina, but aborally in Pygasterina. The next group, the
Cassiduloids, differ in having a much smaller peristome and have pore pairs
crowded adorally to form phyllodes.

6.4.2 Cassiduloida

The Recent Cassidulus [C. eugeniae (Agassiz)] best exemplifies its structure
(Fig. 6.9). It is characterized by the presence of flower-like Floscelle [Fig. 6.9(3)]
centered around the peristome and is composed of depressed leaf-like areas called
Phyllodes within the ambulacral segments separated by the bulging interambulacral
Bourrelets [Fig. 6.9(1)]. The radiating arrangement of the five resulting ellipses on
the aboral surface is aptly called Petals [Fig. 6.9(4)]. The most primitive ones do
not possess petals whereas the advanced Cassidulinids, do. The jaws in
Cassidulinids are present only in the early ontogeny stage. The Cassiduloida are
considered paraphyletic. They range from Early Jurassic (Toarcian) to Recent.
Cladistic analysis suggests that cassiduloids are a grade taxon comprising a small
number of clades leading to the Clypeasteroida (see also Mooi 1990; Smith 2001).
The majority of Jurassic cassiduloids belong to the common stem group of living
cassiduloids plus clypeasteroids.

6.4.3 Clypeasteroids

The Clypeasteroids (Fig. 6.10) are characterized by possessing multiple micro-
scopic pores to each ambulacral plate, usually arranged in broad bands. The
primitive Clypeasteroids (small, and microscopic; such as the Fibularia subglo-
bosa) resemble the most advanced Holectypoids in possessing the Aristotle’s
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lantern (well-developed) and petals (Fibularia shows the beginning of the same).
The advanced Clypeasteroids are mostly flat (like Encope; Encope tamiamiensis
Mansfield; Fig. 6.10) with strongly petaloid ambulacra on the aboral side. The
Actinal furrows (branching radial grooves) lead to the peristome which is small and
surrounded by a floscelle. The test is covered by short spines. In some flat-disc or
shield-shaped testes marginal indentations (Notches) are also noted for unknown
functions. Clypeasteroid’s sheer abundance, global distribution and short strati-
graphic occurrence, especially within the Cenozoic (Late Paleocene to Recent)
make them valuable index fossils.

6.4.4 Spatangoids

These heart-shaped sea urchins are highly specialized for a burrowing mode of life.
Eupatagus (E. mooreanus Pilsbury; Fig. 6.11), a characteristic spatangoid, has a
bun-shaped test, and is indented by the depressed Anterior ambulacrum. The
peristome is a transversely elongated opening and the periproct is placed vertically
at the end of the test. However, the most distinctive character of Eupatagus are the
petals (4 in number); the anterior ambulacrum is non-petaloid. The posterior
interambulacrum is highly modified; the single plate next to the mouth is called the
Labrum and in some advanced spatangoids (as in Eupatagus), it is completely
separated from the remainder of the posterior interambulacral area. This is suc-
ceeded by paired Sternal plates, followed by a pair of Episternal plates which are
barely in contact with the succeeding pair of interambulacral plates called Subanals.
The beading on the test is interrupted by two narrow depressed bands bearing
miliary granules. One of these bands (Peripetalous fasciole) forms a ring around the
petals; the other (Subanal fasciole) includes the subanal plates and parts of the
adjacent ambulacral plates beneath the periproct. In some other spatangoids, the
Anal fasciole extend part way around the periproct; Endopetalous fascioles lie
within the petals. The Lateral fascioles lead from the peripetalous fasciole to the
rear, along the flank of the test.

6.5 The Echinoderm-Backbone Connection

The Echinoderms are closely related to the vertebrate group, Chordates. This
resemblance is based on Echinoderm’s early cell division, embryonic development,
and larvae. Additionally, the chemical similarities associated with muscle activity
and the chemistry of oxygen-carrying pigments in the blood of echinoderms is also
similar to that of chordates.
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6.6 Terminology

6.6.1
6.6.2
6.6.3
6.6.4
6.6.5
6.6.6
6.6.7
6.6.8
6.6.9
6.6.10

6.6.11

6.6.12

6.6.13
6.6.14
6.6.15
6.6.16

6.6.17

6.6.18
6.6.19
6.6.20
6.6.21

6.6.22

Abactinal (interchangeably used as Aboral, Posterior): body area
opposite to the mouth [Fig. 6.2(1)]

Aboral (interchangeably used as Abactinal, Posterior): Direction away
from the mouth; the part of the body opposite the mouth [Fig. 6.2(1)]
Adapical: This is the highest part of an echinoids test [top part of Fig. 6.12
2)]

Ambulacral area: Five narrow bands extending from periproct to
peristome, composed of a double row of ambulacral plates [Fig. 6.2(9)]
Ambulacral plates: Skeletal elements which bear pores for passage of tube
feet [Fig. 6.2(9, 11)]

Ambulacral pores: Perforation in each ambulacral plate, serving as
passage way for a tube foot [Fig. 6.2(9, 11)]

Ambulacrum (pl. ambulacra): An area of the body that carries tube feet;
in echinoderms there are generally 5 ambulacra [Fig. 6.2(9)]

Anal fasciole: Groove encircling periproct [Fig. 6.11(6)]

Anals: Plates surrounding periproct [Fig. 6.11(3)]

Anterior: Direction or position of interambulacral area at left of
madreporite [Fig. 6.2(12)]

Anus: Outlet of digestive tract, located at center of periproct, opposite
mouth [Fig. 6.2(1)]

Apical system: It is a ring of specialized skeletal plates that includes
genital and ocular plates. In echinoids, it is usually located on the highest
point of the test [Figs. 6.2(10), 6.3(3) and 6.5(4)]

Appendage: A tube foot [Fig. 6.2(1)], spine (Fig. 6.6), pedicellaria
(Fig. 6.6), or arm of an adult, or a projection from the larval body
Areole: Broad, shallow pit in each interambulacral plate, bearing a large
tubercle which serves as base for a primary spine [Fig. 6.2(1)]

Auricle: Internal projection for attachment of lantern muscles, located in
each ambulacral area at edge of peristome [Fig. 6.5(1)]

Base: Portion of a spine below milled ring [Fig. 6.3(4)]

Bilateral Symmetry: A pattern of symmetry in which the left side of the
body is a mirror image of the right based upon an anterior—posterior axis
[Fig. 6.4(3)]

Boss: Cone which support mamelon of a tubercle [Fig. 6.2(6) and 6.3(4)]
Buccal: Lying within the mouth [Fig. 6.5(8)]

Clypeastrinids plates: Structure characteristic of petals of Clypeastroids,
in which alternate plates are shortened and thereby restricted to outer
poriferous zones of ambulacral area [Fig. 6.2(10)]

Collar: Smooth, tapering portion of a spine located above the milled ring
[Fig. 6.3(4)]

Compass: Slender arched radial rod in ambulacral position, at top of
lantern [Fig. 6.5(1)]
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6.6.23

6.6.24

6.6.25

6.6.26

6.6.27

6.6.28

6.6.29

6.6.30

6.6.31

6.6.32

6.6.33

6.6.34

6.6.35

6.6.36

6.6.37

6 Echinoids

Dactylous: Having a variable number of stalked, spoon-shaped valves
[Fig. 6.6(15)]

Dorsal: This term is variously applied. In asteroids, ophiuroids and
echinoids, it refers to the surface opposite to the mouth (i.e., the uppermost
surface). In holothuroids, with mouth and anus are at opposite ends, here,
the uppermost surface is considered dorsal. In crinoids, the surface opposite
the mouth is dorsal even though it is functionally the ventral (lower) side
[Fig. 6.2(1)]

Endopetalous fasciole: Elliptical groove located within margins of petals
[Fig. 6.11(5)]

Epiphysis: Rugged crossed member composed of two fused ossicles;
occurs in each interambulacrum at top of lantern [Fig. 6.5(1)]
Episternals: Pair of interambulacral plates lying between sternals and
subanals [Fig. 6.11(1, 4)]

Fasciole: Groove on test lacking larger tubercles and spines; minute spines
located within these grooves are thickly covered with cilia, which move
streams of mucus or currents of water for removal of foreign matter from
the surface of the animal. These are narrow bands of small, specialized
spines in many irregular echinoids; visible on the denuded test as bands of
densely packed, tiny tubercles (Fig. 6.11)

Genital Plate: Large plate in each interambulaeral area, bordering
periproct, and bearing and genital pore. In ophiuroids, a bar-like ossicle
connecting the radial shield to the arm and supporting the radial edge of the
bursal slit [Fig. 6.2(10)]

Globiferous pedicellaria: An echinoid pedicellaria (three-valved)
equipped with venom sacs [Fig. 6.6(14)]

Granules: Minute and nearly equidimensional, small structures fixed to the
surface of scales or plates [Fig. 6.6]

Heart Urchin: A burrowing echinoid (usually in the order Spatangoida)
that is more or less heart-shaped (Fig. 6.11)

Interambulacral areas: Five broad bands trending from peristome to
periproct, each composed of a double row of large interambulacral pores
[Fig. 6.2(9)]

Interambulacral plate: Large, imperforate skeletal element composing
larger part of interambulacral areas; each plate carries a primary spine
[Figs. 6.2(9, 11)]

Interambulacrum: Lying between two ambulacra, it is the oral or aboral
sector of the body [Fig. 6.2(9)]

Internal partitions: Pillars and anastomosing walls, which buttress
interiors of Clypeastroids [Fig. 6.2(10)]

Interporiferous zone: Mid-region of each ambulacral area, between
pore-bearing margins of ambulacral areas [Fig. 6.3(5)]
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6.6.38

6.6.39

6.6.40
6.6.41

6.6.42

6.6.43
6.6.44
6.6.45
6.6.46
6.6.47
6.6.48

6.6.49
6.6.50

6.6.51

6.6.52

6.6.53

6.6.54

6.6.55

6.6.56
6.6.57

Irregular echinoid: These are heart-shaped or disc-shaped echinoid with
very short spines (Fig. 6.4). They possess some degree of bilateral
symmetry as the anus is not at the center of the dorsal surface

Jaw: It is a moveable triangular structure that extends into the mouth
[Figs. 6.2(7, 8), 6.5(1, 3)]

Lateral fasciole: Groove alongside of test [Fig. 6.11(7)]

Lunule: “Keyhole-like” perforations in test of many flat sand dollars (as in
the five or six-holed sand dollars) [Fig. 6.10(7)]

Madreporite: A plate (right anterior genital plate) with numerous
perforations that is connected to the water vascular ring by a so-called
stone canal. In some it is internal (holothuroids), whereas in others, it opens
to the exterior on the dorsal surface of the body (asteroids and echinoids).
In ophiuroids it opens near the mouth, on the ventral surface [Fig. 6.2(10,
12)]

Mamelon: Spheroidal summit of a tube feet [Figs. 6.2(6) and 6.3(4)]
Marginal notches: Embayments in margins of sand dollars [Fig. 6.10(3)]
Marginal spines: Flat, blade-like spines, occurring singly on ambulacral
plates, protecting tube feet [Fig. 6.3(1)]

Marginal tubercle: Small elevation near an ambulacral pore, for
attachment of marginal spine [Fig. 6.3(1)]

Miliary spine: Tiny spines scattered over surface of interambulacral and
oculogenital plates [Fig. 6.3(1)]

Milled ring: Flange near base of a spine, serving for attachment of muscles
that move spine [Fig. 6.3(4)]

Mouth: Opening located in center of underside [Fig. 6.2(1)]

Neck: Smooth cylindrical portion of a primary spine laying between collar
and shaft [Fig. 6.3(4)]

Ocular plate: A plate in the apical system of echinoids, adjoining the
periproct in ambulacral (radial) position (there are five in umber). Along
with the genital plates, the ocular plates form the Oculogenital ring
[Fig. 6.2(10) and 6.3(3)]

Oculogenital ring: Circlet of 10 plates (2 ambulacral oculars, and 5
interambulacral genitals, including one madreporite), which surround
periproct [Fig. 6.2(9, 10)]

Oral: Part of the body that is on the same surface as the mouth [Fig. 6.2(1)]
Pedicellariae: Elements used for defense and grooming, these are small
stalked or unstalked pincer-like organs [Fig. 6.6(8-15)]

Perforate Tubercle: A primary or secondary tubercle that has an apical
perforation for the insertion of a ligament [Fig. 6.2(11)]

Peripetalous fasciole: Groove which encircles petals [Fig. 6.11(7)]
Peripetalous: A Fasciole, placed at the distal ends of the anterior and
posterior petals (ambulacra I, II, IV and V) and that which crosses the
ambulacrum IIT [Fig. 6.11(2)]
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Periproct: Area surrounding anus and enclosed by oculogenital ring;
covered with leathery skin in which small plates are embedded loosely
[Fig. 6.2(1, 9, 10)]

Peristome: In echinoids, the area of the test which carries the mouth (the
membranous area around mouth). The surrounding peristomial membrane is
commonly plated (= leathery skin studded with small plates) [Fig. 6.2(1)]
Petal: Aboral portion of some or all of ambulacral areas, on which pore
pairs are confluent in closely spaced, elongate slits [Fig. 6.11(2)]

Plates: Tubular structures with a characteristic shape and a fixed position
[Fig. 6.6]

Pore (in a primary tubercle): Pit for attachment of a ligament which
fastens spines to the tubercle [Fig. 6.2(9 and 11)]

Pore Pair: These are ambulacral pores divided by a skeletal wall, through
which a tube foot passes [Fig. 6.2(11)]

Poriferous zone: Pore-bearing outer edges of ambulacral areas, as
contrasted with non-perforate strip which extends down middle of each
ambulacral plate [Fig. 6.3(5)]

Postanals: Interambulacral plates which lie above the periproct [Fig. 6.11
3]

Primary spines: Placed on the interambulacral plates, these are large
movable projections that occur singly [Fig. 6.3(1)]

Primary tubercles: Prominent rounded elevations which bear primary
spines [Fig. 6.3(1)]

Proximal: Toward the center of the body

Radial symmetry: A pattern where identical segments are arranged around
a central axis; the echinoderms mostly possess a five-part (pentamerous)
radial symmetry [Fig. 6.2(9)]

Regular echinoid: A more or less spherical echinoid characterized by anus
situated at center of the aboral surface, and with long spines [Figs. 6.6(2,
3)]

Scales: These are flat, thin structures that are overlapping, tesselate, or
haphazardly arranged [Fig. 6.6]

Scrobicular spines: Flat spines arranged in a ring around scrobicule of
each areole, protecting muscles which move large primary spines [Fig. 6.3
(D]

Scrobicular tubercles: Small elevations for attachment of scrobicular
spines encircling areoles

Scrobicular: It is the area surrounding the base of a spine, in echinoids
[Figs. 6.3(1, 4)]

Scrobicule: Depressed marginal area of an aureole, or any depressed ring
around base of a tubercle, serving for attachment of muscles which move
spines [Fig. 6.3(4)]

Secondary spines: These smaller spines are carried on secondary tubercles
within the ambulacra and interambulacra, in echinoids [Fig. 6.3(5)]
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Secondary tubercles: Tubercles which carry small (secondary) spines
[Fig. 6.3(5)]

Shaft: Main part of a spine [Fig. 6.3(4)]

Simple plates: Ambulacral plate structure in which adjacent plates are
equally developed, contrasting with more specialized clypeastrinid-type
[Fig. 6.3(5)]

Spinules: Small, usually sharp-pointed, spines [Fig. 6.6].

Spines: These are long, slender, and attenuated moveable, articulating
structures [Fig. 6.6]

Spinelets (small spines): These are enlarged, elongate cylindrical, or
angular granules, fixed to the surface of scales or plates (Fig. 6.6)
Spinules: They have various number of pointed apical projections (bifid,
trifid, multifid), fixed to the surface of scales or plates (Fig. 6.6)
Sternals: Pair of plates or single plates in posterior interambulacrum, lying
between labrum and episternals [Fig. 6.11(1, 4)]

Stone canal: Usually reinforced with ossicles, it is a tube, starting from the
madreporite to the water vascular ring canal [Fig. 6.2(1)]

Stumps: Small structures, fixed to the surface of scales or plates, are
relatively larger than granules; they are usually prickly (see also Fig. 6.6)
Subanal fasciole: Elliptical groove located below periproct [Fig. 6.11(6)]
Subanals: Pair of interambulacral plates located between episternals and
annals [Fig. 6.11(1)]

Teeth: In echinoids, these are the five hard, sharp, and moveable ossicles
incorporated in the Aristotle’s Lantern [Figs. 6.2(7, 8) and 6.5(1-3)]
Test: The “shell” of an echinoid, made up of many small skeletal plates.
A “naked” test is one from which soft tissue, and projecting structures such
as spines, have been removed. This process occurs naturally after the death
of a sea urchin. To identify some urchins, it is necessary to clean a portion
of the test with bleach, to see the underlying plates [Fig. 6.2(1-4)]
Tooth: Rod located in each pyramid, having an uncalcified arched upper
end but hard; nearly straight lower end; only the chisel-edged tip protrudes
from lower end of pyramid [Fig. 6.2(7-8)]

Tridentate: Having three long, slender valves which generally have sharp,
finely serrate edges [Fig. 6.6(11, 12)]

Triphyllous: Having three leaves or paddle-shaped valves (Fig. 6.8)
Tube Feet: These are fluid-filled, finger-like extensions of the water
vascular system that protrude through openings in the skeleton or between
skeletal elements [Fig. 6.2(1)]

Tubercle: A smooth, rounded and massive prominence on the skeleton.
They can also be referred as outgrowths of plates, rather than to articulated
elements (see also Fig. 6.6). In echinoids and some asteroids, a spine
articulates with a tubercle [Fig. 6.2(11)]

Tuberculated: Carrying numerous tubercles. Various skeletal elements are
also noted. These are: Plates, Scales, and Spines. Small structures fixed to
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the surface of scales or plates include: Granules, Spinelets, Spinules,
Stumps and Tubercles

6.6.97 Ventral: In echinoderms, this term is variously applied. In asteroids,
echinoids, and ophiuroids, it denoted the surface of the body that carries the
mouth and in contact with the substrate. In holothuroids, where the mouth
and anus are at opposite ends of a cylindrical body, the ventral surface is
lowermost—and also in contact with the substrate. In crinoids, the ventral
surface carries the mouth, and is functionally the uppermost surface [see
Fig. 6.2(1-4)].

6.7 Classification

Phylum Echinodermata is divided into 5 major groups (Subphylum) that contain 20
Classes, and about half of which are known only from the Paleozoic (see
Table 6.2). The current classification is based on multiple characters such as general

Table 6.2 Phylum Echinodermata is divided into 5 major groups (Subphylum)

Subphylum | Class Genera | Species Age range

Asterozoa | Asteroidea 430 1500 Early Ordovician—Recent
Ophiuroidea 325 2000 Early Ordovician—Recent

Echinozoa | Echinoidea 765 940 (living) | Late Ordovician—Recent
Holothuroidea 200 1150 (living) | Middle Cambrian—Recent
Edrioasteroidea |35 - Early Cambrian—Pennsylvanian
Helicoplacoidea |4 - Early Cambrian
Cyclocystoidea | — - Middle Cambrian—Devonian
Edrioblastoidea 1 - Ordovician

Crinozoa Crinoidea ~1000 |625 (living) | Cambrian—Recent

Blastozoa Blastoidea 95 - Middle Ordovician-Late Permian
Rhombifera 60 - Early Ordovician-Late Devonian
Diploporita 42 - Early Ordovician- Early Devonian
Eocrinoidea 32 - Early Cambrian—Late Silurian
Parablastoidea - - Early-Middle Ordovician
Paracrinoidea ~15 - Early Ordovician- Early Silurian

Homalozoa | Stylophora 50 - Middle Cambrian—Pennsylvanian
Homoiostelea - - Middle Cambrian—Silurian
Homostelea - - Middle Cambrian
Ctenocystoidea - - earliest Middle Cambrian

Those in bold are briefly discussed in the text
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morphology, ossicle structure, arrangement of the water vascular system, and
embryology. Major classes are briefly discussed below.

6.7.1 Class Asteroidea (Sea Stars; Starfishes)

The star-shaped echinoderms, the Asteroidea (=Sea stars or Starfishes), is the lar-
gest, most speciose (~ 1600 extant species), diverse and the common class within
Phylum Echinodermata (see Duncan 1889; Beaver et al. 1978) and prime predators
within many marine ecosystem. Their size varies from a centimeter to a meter
across. They thrive in the intertidal zone, although, they also occur at depths as
great as 10,000 m. The carnivorous asteroids are very sluggish movers and crawl
by the concerted actions of their podia. The Asteroids generally have hollow arms
and into this the coelomic cavity extends. The radial canals are located on the
skeleton’s exterior. Their skeleton is rarely robust and consists of a series of small
elements embedded in a collagenous membrane. Hence, after death, they disartic-
ulate quickly, leaving a poor fossil record. The asteroids first appeared in Early
Ordovician but were never common or abundant in the fossil record, since then.
They experienced major faunal transitions concurrently with two large extinction
events; one in Late Devonian and the other in Late Permian.

6.7.2 Class Ophiuroidea (the Brittle Stars)

The Ophiuroids are a large group (over 1600 species) that include brittle stars
(Ophiurida) and basket stars (Euryalida). The Ophiuroids are remarkable in that
they are able to release their arms at ossicle sutures to escape predation, hence, they
are also called brittle stars. This process of releasing a limb is called Autotomy; the
lost limb is eventually regenerated. The Ophiuroids are somewhat different from the
Asteroids (see Table 6.3), the sea stars, from which they are often mistaken, and

Table 6.3 Comparative account of Ophiuroids and Asteroids

Ophiuroids Asteroids

Similarity Both have a stellate body plan

Both have five or more arms radiating from a small robust circular disc that
contains the viscera

Both have a skeleton that is fragile and readily disintegrates upon death, hence,
both they have left a relatively sparse fossil record

Difference | The ophiuroid arms are solid, being supported by a series The asteroids have
of internal disc-like ossicles termed vertebrae hollow arms
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hence, often lumped with them in higher taxa, Stelleroidea or Asterozoa. Unlike
asteroids, the ophiuroids are active crawlers with thin whip-like five arms that
wriggle like snakes, hence, their name (ophi = snake, in Greek); they are sometimes
also called Serpent stars. The Ophiuroids are recorded from the Early Ordovician
and achieved global distribution in the Paleozoic. They survived the Permian—
Triassic extinction and increased in numbers during the Mesozoic—Cenozoic (see
also Jagt 2000a, b).

6.7.3 Classes Holothuroidea and Concentricycloidea
(Sea Cucumbers and Sea Daisies)

These soft-bodied sea cucumbers (~200 genera) are without arms (see also
Gilliland 1993). They are the most recently discovered class of echinoderms; sea
daisies are tiny, primitive echinoderms that live at great depths. Sea cucumbers
resemble cucumbers. They possess Sclerites, microscopic hard parts that occur in
various shapes resembling hooks, wheels and anchors. Although, the sea cucumber
possess pentaradial symmetry, the anus is opposite to the mouth on an elongated
oral-aboral axis. The Holothurians are the most diverse of the five extant classes of
echinoderm, with over 2000 extant species. However, like the asteroids and the
ophiuroids, they also have left a very poor fossil record and after death, their
skeleton is reduced to thousands of microscopic spicules. The only fossilized part
are the 10 ossicles that surrounds the mouth and provide an anchorage for the oral
tentacles; forming the Circumoral ring. The earliest holothurian body fossil is
recorded from Late Silurian, however, spicules attributable to holothurians are
known from Ordovician onwards.

6.7.4 Edrioasteroids

These discoidal, clavate, or subglobular echinoderms are an extinct group of sessile
stemgroup eleutherozoans (see also Bell 1976; Guensburg and Sprinkle 1994).
They are characterized by possessing five ambulacra radiating from a central
mouth. The Stromatocystitids, the earliest forms were completely plated and not
attached to the substrate. They represent the basal eleutherozoans, ancestral to all
later forms. The Stromatocystitids first appeared in Early Cambrian, while iso-
rophids (a derived clade and specialized as hard ground colonizers) appeared a little
later, in Late Cambrian, and survived through to Late Carboniferous.
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6.7.5 Class Crinoidea (Sea Lilies and Feather Stars;
Crinoids)

The Crinoids are unusual looking animals as they look more like plants than
animals. Hence their name “sea lilies”. Superficially, the stem or column of a
crinoid resembles the stalk of a flower, the calyx or head resembles the sepals of a
flower, and the arms resemble the petals of a flower. The Crinoids (with over 1000
known genera), are the only echinoderms that live attached to the sea bottom for
most of their lives. Two groups of living crinoids are noted—those with columns,
the living stalked crinoids, and those without, the Comatulids. Typically, a crinoid
has a long stem with “roots” or a holdfast (an attachment device) at the bottom, and
a cup-shaped thecum at the top. Some crinoids have become mobile by losing stem;
living crinoids are swimmers, and not attached. Recent crinoids have both a wide
vertical distribution (from bathyal depths to tropical reef and shallow cave habitats)
and spatial (from polar to tropical latitudes). The Paleozoic forms were very
common on shallow carbonate platforms. Except in the Cambrian, crinoids were
common fossils in the Paleozoic.

6.7.6 Class Blastoidea (Blastoids)

Blastoids are the best known stalked echinoderm of the Paleozoic and widely
distributed in Early and Middle Paleozoic rocks with 95 genera, known, so far. The
Extinct Blastoids (such as Pentremites) are characterized by an armless bud-like
calyx on a stem. The primitive stemmed blastoids have pentaradial symmetry with a
very regular distribution of thecal plates; there are 13 thecal plates arranged in three
circlets. The theca is the size of a rosebud, and a commonly preserved. Although
they show pentaradiality, however, diverse body forms, symmetries, and ambu-
lacral architectures are noted in this group. The hydrospire, a respiratory device, is a
distinctive structure in all blastoids hat hangs into the body cavity beneath each
ambulacrum. The blastoids resemble crinoids in appearance and lifestyle. The
blastoids first appeared in Middle Ordovician, peaked in abundance by
Mississippian (Early Carboniferous), with a general decline in the Paleozoic and the
final extinction in the Permian.
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6.7.7 Eocrinoids

These stalked arm-bearing echinoderms are a paraphyletic assemblage of basal
pelmatozoans with irregularly plated theca. The eocrinoids include the ancestors of
all other blastozoan groups and probably of the crinoids also. The eocrinoids were
the likely ancestors to Diploporita, Rhombifera, Coronoidea, Blastoidea,
Parablastoidea and Paracrinoidea. The Diploporites are characterized by larger and
regular plating with no ambulacral flooring plates; the brachioles arise directly from
the thecal plates. The thecal plates are pierced by numerous pairs of pores
(diplopores) that had a respiratory role. The Rhombiferans, arising directly from
around the mouth, had stout arms. The most regular thecal plating is noted in the
pentameral symmetry bearing Blastoids that possess three basals, five radials and
five lancet plates. The well-developed ambulacra form an essential part of the theca,
giving rise to a dense fan of brachioles. The oldest blastozoans are eocrinoids of
Early Cambrian age. Diploporites and rhombiferans appeared at beginning of the
Ordovician, while the blastoids in the Silurian. The Eocrinoids finally went extinct
by end Permian.

6.7.8 Class Paracrinoidea (Allied to Crinoids)

The Paracrinoid plates show no definite arrangement but commonly contain pores
that are covered (as noted in deeply weathered specimens). In Camarocystites, the
best know genus, the plates of the calyx are concave. The two arms bear side
branchlets which are relatively thick. The Paracrinoid are recorded in Ordovician
and Silurian sediments. They are abundant in mid-Ordovician strata. Some workers
believe that Paracrinoid are highly modified blastozoans.

6.7.9 Carpoids

The Carpoids (Stylophorans; Class Ctenocystoidea; see also Robison and Sprinkle
1969) are unusual forms of the Cambrian strata, and common in the fossil record
from 500 to 300 million years ago. Three competing hypotheses are proposed for
the group’s evolutionary origins:
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1. Carpoids are very primitive echinoderms with a mobile stalk or single arm filled
with muscle

2. Stylophorans are advanced echinoderms related to crinoids having an ambu-
lacrum with a tube feet and an oral tegmen with pharynx, and

3. Carpoids are neither of the above two, but primitive chordates that retained a
calcite exoskeleton from an older common ancestor of echinoderms and chor-
dates, with the stalk possessing muscle, notochord and brain.

Recent studies, based on Middle Cambrian ceratocystid stylophoran from
Morocco supports the first hypothesis (for details see Clausen and Smith 2005).

6.8 Geological History

The early Paleozoic is marked by a large number of echinoderm classes with low
diversity, followed by moderate improvement in mid-Paleozoic and by Late
Paleozoic, few classes had become common [such as crinoids and blastoids; see
Fig. 6.1] (see also Kier 1965, 1966; Sprinkle 1982; Smith 1984; Littlewood et al.
1997; Waters and Maples 1997; Smith et al. 2004). Select fossil examples are
illustrated in Figs. 6.8, 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16.

After the great Permo-Triassic extinction, the echinoids [sea urchins (regular
echinoids), heart urchins (spatangoids), sea biscuits and sand dollars (clypeast-
eroids)] became the most prolific class of echinoderms as their hard test fossilized
exceedingly well (Fig. 6.1) (see also Sprinkle 1980; Clarkson 1993). Echinoids are,
in fact, the third most skeletonized phylum after arthropods and molluscs within the
marine realm. Echinoderms are dominantly calcitic, and so tend to fossilize well,
but after their death, they often disintegrate. Echinoderm plates and spines are
important sediment-forming materials as a result of this, and are especially abun-
dant in certain limestones.

The echinoderms, known since the Cambrian, evolved from bilaterally sym-
metrical ancestor(s) as they have a bilateral larvae. The characteristic radial sym-
metry developed later, in the adult body. The Holothurians are the closest living
relative of the echinoids and their ancestry presumably lies amongst the
“Asterozoan” taxa of the Early Ordovician. However, the early interval in echi-
noid’s history is still not fully known.
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Melonechinus
multiporus
(Norwood and

Meekechinus
elegans Jackson

Echinocrinus rossica (van Buch)

Fig. 6.13 Representative Early Mississippian echinoids. The tests are flexible. Their radial vessels
lay on the inner surface of the skeleton, but were generally bordered by skeletal ridges. The mouth
contained an Aristotle’s lantern



6.8 Geological History

Hemicidaris

Cotteau

Hemicidaris
crenularis

Diademopsis
heeri Merian

Plesiocidaris durandii
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5-9: Palaeopedina
globulus Agassiz

Pelanechinus
corallinus
Keeping

Pseudocidaris mammosa
Agassiz

Fig. 6.14 Representative Jurassic regular echinoids. /-4 Pedinothuria cidaroides Gregory, 1
ambulacral plates from aboral side, 2 from ambitus, 3—4 oral side; 5—9 Palaeopedina globulus
Agassiz, 5 side view, 6 Aristotle’s lantern, 7 apical system, 8 oral ambulacral plates, 9 pedicellaria;
10 Hemicidaris crenularis Lamark; 11 Hemicidaris jauberti Cotteau; 12 Diademopsis heeri
Merian; 13-15 Pelanechinus corallinus Keeping, 13 oral view, 14 supercompound plate, /5
pedicellaria; 16 Plesiocidaris durandii Peron and Gauthier; /7 Pseudocidaris mammosa Agassiz
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<« Fig. 6.15 Representative Cretaceous echinoids. I Micraster cortestudinarius Goldfus, aboral
side; 2 Pygurus oviformis d’Orbigny, oral side; 3—5 Hemiaster whitei Clark, 3 rear view, 4 apical
system, 5 aboral side; 6—7 Fibularia subglobosa Goldfus, 6 aboral side, 7 oral side; 8 Hyposalenia
wrighti (Cotteau); 9 Hyposalenia clathrata (Cotteau); 10 Hyposalenia heliophora (Cotteau); 11
Hyposalenia acanthoides (Desmoulins); 12 Hyposalenia bunburyi (Forbes); 13—15 Archiacia
sandalina (d’ Archiac), 13 frontal view, 14 aboral, 15 oral; 16 Tylocidaris clavigera Koing; 17-19
Caenholectypus planatus (Roemer), 17 apical system, I8 oral, /9 aboral; 20-22 Dumblea
symmetrica Cragin, 20 side view, 2] ambulacral plates, 22 apical system; 23-24 Cyphosoma
taxanum Roemer, 23 oral view, 24 enlarged oral ambulacral plate; 25-26 Stereocidaris sceptrifera
(Mantell), 25 side view, 26 aboral view

The echinoids, during the Early Palaeozoic, were a minor constituent of the
marine benthic community. But, by Devonian, as they developed enlarged adoral
tube feet and became specialized deposit feeders, they thrived through the Permian,
before going extinct. By Carboniferous, the archaeocidarids, made their appearance.
They possessed a single large tubercle on each interambulacral plate with long
highly muscular spines; they were the first active predators. The Palacozoic
Miocidaris, is the only echinoid that has the test architecture of post-Palacozoic
forms, and which evolved directly from the Archaeocidaris by the reduction of
plating columns in each interambulacral zone.

All echinoids in the Paleozoic were regular forms; the irregular ones underwent a
spectacular radiation in the Mesozoic and were much more common and with a
much better fossil record. The Irregular echinoids, on the other hand, appeared only
in the Early Jurassic but evolved quickly as deposit feeders; they possessed a
lantern like that of the regular echinoids. By the Middle Jurassic, the cassiduloids
and spatangoids evolved; the sand dollars arose in the Early Tertiary from cas-
siduloid ancestors. The modern heart urchins, appeared in the Early Cretaceous and
have diversified constantly, since then. The end-Cretaceous extinction did affect the
echinoids, but selectively; the deposit feeders were the hardest hit. The regular
echinoids thrived throughout the Mesozoic; but only became a major group (as also
today), only by the Late Cretaceous.

Appendix 1 gives the list of illustrated specimens mentioning the chapter
number, species name, age and locality along with its figure number within the said
chapter.
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<« Fig. 6.16 Representative Paleogene and Neogene echinoids. /—16 Paleogene. -2 Laganum
sorigneti Cotteau, I aboral view, 2 oral view; 3 Schizaster arminger Clark, aboral view; 4-5
Oligopygus wetherbyi de Loriol, 4 aboral view, 5 oral view; 6—7 Fibularia vaughani (Twitchell), 6
aboral view, 7 oral view; 8—12 Periarchus lyelli (Conrad), 8 aboral view, 9—12 a series of “varieties”
(largely geographical) are illustrated by various profiles; /3—16 Linthia tumidula Clark, 13 aboral
view, 14 oral view, 15 end view, 16 apical system; /7-24 Neogene. /7 Encope tamiamensis
Mansfield; 18-20 Cassidulus gouldii (Bouvre), 18 side view, 19 rear view, 20 oral view; 21 Rotula
orbiculus (Linne); 22-23 Scutella leognanensis Lambert; 24 Dendraster gibbssi (Remond)

References

Beaver, H.H., K.E. Caster, J.W. Durham, et al. 1978. Treatise on invertebrate paleontology.
Part S, Echinodermata 1. The Geological Society of America and the University of Kansas
Press.

Bell, B.M. 1976. A study of North American Edrioasteroidea. New York State Museum, Memoirs
21: 1-447.

Clausen, S., and A.B. Smith. 2005. Palaeoanatomy and biological affinities of a Cambrian
deuterostome (Stylophora), Nature 438(7066): 351-354.

Clarkson, E.NN.K. 1993. Invertebrate palaeontology and evolution. London: Chapman and Hall.
434 p.

Duncan, P.M. 1889. A revision of the genera and great groups of the Echinoidea. Journal of the
Linnean Society, Zoology 23: 1-311.

Gilliland, P. 1993. The skeletal morphology, systematics and evolutionary history of holothurians.
Special Papers in Palaeontology 47: 1-147.

Guensburg, T.E., and J. Sprinkle. 1994. Revised phylogeny and functional interpretation of the
Edrioasteroidea based on new taxa from the Early and Middle Ordovician of Western Utah.
Fieldiana Geology 29: 1-41.

Jagt, J.W.A. 2000a. Late Cretaceous Early Palaeogene echinoderms and the K/T boundary in the
southeast Netherlandsand northeast Belgium. Part 3, Ophiuroids. Scripta Geologica 121: 1-
179.

Jagt, JW.A. 2000b. Late Cretaceous Early Palacogene echinoderms and the K/T boundary in the
southeast Netherlands and northeast Belgium. Part 5, Asteroids. Scripta Geologica 121: 377-
503.

Kier, P.M. 1965. Evolutionary trends in Paleozoic echinoids. Journal of Paleontology 39: 436—
446.

Kier, P.M. 1966. Noncidaroid Paleozoic echinoids. In Treatise on Invertebrate Paleontology, ed.
R.C. Moore. Boulder: University of Kansas Press and Geological Society of America.

Littlewood, D.T.J., A.B. Smith, K.A. Clough, and R.H. Ensom. 1997. The interrelationships of the
echinoderm classes: morphological and molecular evidence. Biological Journal of the Linnean
Society 61: 409-438.

Mooi, R. 1990. Living cassiduloids (Echinodermata: Echinoidea): a key and annotated list.
Proceedings of the Biological Society of Washington 103: 63-68.

Robison, R.A., and J. Sprinkle. 1969. Ctenocystoidea: new class of primitive echinoderms.
Science 166(3912): 1512-1514.

Smith, A.B. 1984. Echinoid Palaeobiology. London: George Allen and Unwin.

Smith, A.B. 2001. Probing the cassiduloid origins of clypeasteroid echinoids using stratigraph-
ically restricted parsimony analysis. Paleobiology 27: 392-404.

Smith, A.B., K. Peterson, D.T.J. Littlewood, and G.A. Wray. 2004. From bilateral symmetry to
pentaradiality: the phylogeny of hemichordates and Echinodermata. In Assembling the Tree of
Life, ed. J. Cracraft, and M. Donoghue. Oxford: Oxford University Press.



210 6 Echinoids

Sprinkle, J. 1980. An overview of the fossil record. In: Broadhead, T.W. and Waters, J.A. (Eds.),
Echinoderms, Notes for a Short Course, University of Tennessee Department of Geological
Sciences, Studies in Geology 3: 15-26.

Sprinkle, J. 1982. Echinoderm faunas from the bromide formation (middle Ordovician) of
Oklahoma. The University of Kansas Paleontological Contributions Monograph 1: 1-369.
Waters, J.A., and C.G. Maples. 1997. Geobiology of echinoderms. The Paleontological Society

Papers 3: 1-35.



Chapter 7
Graptolites

7.1 Introduction

The Graptolites (grapto = write, lithos = stone) are very small (<1 cm) extinct
planktonic and colonial forms (inference based on shape of colonies, theca, and
their recovery from deep “bottom” deposits). They secrete a chitino-phosphatic
exoskeleton, and, are hence, grouped under Hemichordates. Most graptolites are
found flattened and carbonized in black shales and mudstones, in deep offshore
fine-grained sedimentary rocks (Frazier and Schwimme 1987; Benton and Harper
2009). Thus, owning to their unique process of carbonization and highly com-
pressible nature (most fossils being flat), they are also very difficult to study
(Prothero 2013; Maletz 2015). However, there are two major graptolite orders that
have significance due to their higher preservational potential, Graptoloidea and
Dendroidea. Graptoloidea are pelagic, with one basic type of thecae, and the sicula
is the initial part of the colony, whereas the Dendroidea are benthic, with two types
of theca (autotheca and bitheca), and a stolon. The Dendroidea are stratigraphically
less important as they occur attached to the sea floor, they are only important
locally.

7.2 General Morphology

Graptolite morphology is considered either at the level of theca (i.e., at the indi-
vidual level) or that of a rhabdosome (i.e., at the level of a colony; [Fig. 7.1(1-3)].
The graptolite skeleton comprises of rows or lines of small tubes or cups called
thecae [Fig. 7.1(1-3)]. It is in these theca that an individual lives called Zooid and
each individual is linked together by a common canal [Fig. 7.1(9)]. Overall, the
skeleton bears a “saw-tooth-like” appearance [Fig. 7.1(1-2)]. The rows or lines of
small thecae may occur on opposing sides of a stipe (biserial), i.e., long blade-like
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<« Fig. 7.1 Graptolite morphology. /, 2 Graptolite rhabdosome (skeleton) showing thecae; 3 Biserial
(two rows) thecae of Diplogratidae (Dendrograptus (Orthograptus) gracilis Hall); 4 Thecal
additions in a Diplogratid; 5 Thecal additions in a uniserial Monograptid; 6 Variation in thecal
morphology (Monograptidae); 7 Types of thecae; 8 Thecal terminology; 9 Common canal in
thecae (longitudinal section); /0, /1 Internal structure of theca; /1 sicula of D. (O.) gracilis Hall;
12, 13 Wall structure showing Fusellar rings and half-rings
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: | ; | | )
Uniserial Biserial Quadriserial Biramous Quadriramous
(one row of thecae) (two rows of thecae) (four rows of thecae) (two stipes) (four stipes)
Monograptus Diplograptus Phyllograptus Didymograptus Tetragraptus
Monograptus Phyllograptus Tetragraptus
triangulatus angustifolius 0 sera
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Fig. 7.2 Graptolite stipes. / Stipe types; 2 stipe attitude. The branches of the graptoloids show an
evolutionary trend from a position in which they hang downwards from nema and sicula, through
intermediate positions, to the scandent type of growth, in which the stipes grow upwards along the
nema
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<« Fig. 7.3 Evolution of the graptoloid colony. The diagram illustrates the following trends. /—4
Reduction in number of branches from many to four; 4-8 development of four-branched forms
pendent (4), to declined (5), horizontal (6), recurved (7), and scandent (8). 8, 9 By loss of two rows
of thecae, production of early biserial forms (9); 4, 10, 11 Loss of branches, resulting in two-stiped
(10), one-stiped (/1) forms; 10, 12—17 Elevation of stipes in two-branched forms, leading from
pendent (/0), to declined (12), horizontal (I3), reclined (/4), partly scandent (/5), to scandent (/6,
17); 16—18 loss of one row of thecae, producing a uniserial scandent type form; /9—-21 Modification
of the monograptid type leading to coiled unbranched (20) and coiled branched (217) forms

colonies, or be arranged along one side (uniserial) ([Fig. 7.1(2—4, 5-8)] and,
respectively). The graptoloids consist of one or more stipes of theca—usually there
are 1, 2, 4, or 8 stipes (= uniramous, biramous, and multiramous, respectively)
(Fig. 7.2). The entire colony is called a Rhabdosome [Fig. 7.1(1, 2)]. The size of a
graptolite colony is often less than one centimeter in length.

At the theca level [Fig. 7.1(3)], variations in thecal orientation and shape and in
the presence of lappets and their shape [Fig. 7.1(6, 7)] are noted. However, as these
change through an individual’s ontogeny, the older and younger theca may differ
also within one rhabdosome [Fig. 7.1(6)].

All of these features (i.e., shapes of thecae, and the number and attitude of stipes)
are used in the classification and identification of evolutionary relations (Fig. 7.3).
The monograptid thecal changes have been used to define successive faunas for
stratigraphical correlation—the Early Llandovery (Early Silurian) monograptids
have straight or gently curving thecae, followed by simple and triangulate thecae;
Late Llandovery is marked by lobate and hooked thecae. The terms used for thecal
description are illustrated in Fig. 7.1.

The cavity of the first formed theca connects to that of the sicula through a
foramen [Fig. 7.1(10)]. The first formed part of the graptolite is the sicula [Fig. 7.1
(10, 11)], a conical tube with its aperture pointing downwards and terminating at its
apex in a long hollow rod-like nema or virgula [Fig. 7.1(10, 11)]. The sicula is
divided into two parts—the lower matasicula and the upper prosicula [Fig. 7.1(10,
11)]. The prosicula are ornamented by longitudinal and spiral striae [Fig. 7.1(10,
11)]. The metasicula is ornamented with well-marked rings representing growth
increments called fusellae [Fig. 7.1(12, 13)]. The fusellar tissue consists of thin
half-rings or complete rings of skeletal material stacked one above the other and
uniting along zigzag sutures [Fig. 7.1(12)]. The fusellar half-rings [Fig. 7.1(13)] are
joined to a stout rod (or a projecting spine) called the virgella [Fig. 7.1(10)].

In Dendroidea, Dendrograptus represents the most representative structure
(Fig. 7.4; see also Koszlowshi 1948; Clarkson 1983). The inverted conical sicula
stands upright into the sea with its expanded apical base as a holdfast [Fig. 7.4(1, 2)].
Half-way up the sicula arises the stolotheca [Fig. 7.4(3-6)]. It forms a continuous
closed chain all the way up the rhabdosome. Two types of thecae arise at equally
spaced nodal points—the larger stolotheca and the smaller and narrower, bitheca
[Fig. 7.4(4)]. The arrangement of stolotheca and bitheca follow the Winman Rule of
alternating triads; the bitheca usually arise at alternate nodal points on opposite sides
of the main stem and are carried distal to the autothecae [Fig. 7.4(4—6)]. Unlike in
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<« Fig. 7.4 Dendroid morphology. I, 2 Dissepiments: these are transverse bars that cross link
branching stipes, / beginning of a colony, 2 the proximal portion of the colony; 3, 4 Relationship
of thecae with stolon, 3 portion of a branch, 4 enlarged view of 3; 5 morphology of the proximal
end of a dendroid (reverse view), Dendrograptus communis Kozlowski (modified after Clarkson
1983); 6 budding in a dendroid graptolite; 7 dendroid rhabdosome

Dome«—e ~\
Larval [ s —» Prosicula
development 7
| < V4 , Second
Founding <l - Zooidal — >4 = zooid
zooid (Zooid 1) [ A development U
) ¥ t—_el—»Metasicular
| 1~/ Second —_| zooid (Zooid 1)
1 7] zooid 2 ~—
Rhabdopleurida Graptolithina

Fig. 7.5 Morphological comparison between modern Hemichordate, Rhabdopleura (1) and a
graptoloid (after Maletz et al. 2005)

Graptoloidea, in Dendroidea, along the length of stolotheca, runs a tubular thread
called stolon [Fig. 7.4(3)], a rudimentary nerve cord that places the graptolites under
Hemichordates.

7.3 Taxonomic Relationships of Graptolites

The morphological resemblance and the phosphatic composition of graptolites
colonies place them close to the extinct Hemichordates. However, no firm evidence
of their biological relationship exists as there are no known living representatives of
graptolites to compare with.

7.3.1 Chordates

Graptolites are closely related to Chordates based on the possessing of three
characters, (a) a cartilage strengthening/supporting dorsal rod called notochord; this
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is firm but flexible, (b) a hollow nerve cord and (c) phrangeal gill slits. The
Tunicates, “sea squirts” (chordates), also resemble graptolites and share the above
three chordate characteristics. Tunicates are attached marine filter feeders with a
superficial resemblance to sponges. Their larval stages are mobile and resemble a
tadpole; upon maturing, the tail with its notochord is reabsorbed; the animal atta-
ches to the bottom, and begins its filter feeding adult life. The resemblance between
the lanclets (small streamlined fish-like chordate) and juvenile tunicates is
remarkable, and many believe that the earliest true chordates may have descended
from a tunicate-like ancestor.

7.3.2 Hemichordates

Rhabdopleura, a modern Hemichordate, has a colonial lifestyle (with a “stalk” and
a theca) somewhat similar in appearance to the stipes of a graptolite (see Fig. 7.5;
see also Rigby 1994; Maletz et al. 2005). Rhabdopleura also possess thecal walls
with a fibrous-like pattern known as the Fusellar fabric. The graptolite zooid soft
parts are essentially unknown; so it’s internal anatomy (whether it possesses pha-
ryngeal gill slits or not) is not known. The Graptolites, due to their phosphatic
composition and similarities with modern Hemichordates like Rhabdopleura, are
considered to be more like the hemichordates than any other animal group. Hence,
most workers classify graptolites as a Class of Phylum Hemichordata (see
Table 7.1).

7.4 Classification

The graptolite classification is complex (see Bulman 1955, 1970; Clarkson 1983),
and hampered by poor preservational record and convergent evolution, i.e., their
morphological characters have evolved more than once in different stocks. Hence,
species and genera based on these characters could contain graptolites from varied
linages (i.e., polyphyletic). Therefore, a classification based on several characters is
preferred (Fig. 7.6). A more recent alternate classification of the Pterobranchia is
given in Table 7.1 (after Maletz 2014). Recent systematic work suggests that the
group is equivalent to modern pterobranchs (Mitchell et al. 2013).

7.5 Geological History

The Graptolites first evolved in Middle Cambrian (Siberian Platform; Obut 1974)
and became extinct in either the Late Carboniferous or Early Permian. By Late
Cambrian they had become quite common; being most abundant and diverse in
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Table 7.1 Graptolite
classification (after Maletz
2014)

219

Phylum Hemichordata. Bateson (1885)

Class Enteropneusta, Gegenbaur (1870)

Class Planctosphaeroidea, van der Horst (1936)

Class Pterobranchia, Lankester (1877)

Subclass Cephalodiscida, Fowler (1892)

Family Cephalodiscidae, Harmer (1905)

Subclass Graptolithina, Bronn (1849)

Incertae sedis Family Rhabdopleuridae, Harmer (1905)

Incertae sedis Family Cysticamaridae, Bulman (1955)

Incertae sedis Family Wimanicrustidae, Bulman (1970)

Incertae sedis Family Dithecodendridae, Obut (1964)

Incertae sedis Family Cyclograptidae, Bulman (1938)

Order Dendroidea, Nicholson (1872b)

Family Dendrograptidae, Roemer (1897) in Frech
(1897)

Family Acanthograptidae, Bulman (1938)

Family Mastigograptidae, Bates and Urbanek
(2002)

Order Graptoloidea, Lapworth (1875) in Hopkinson and
Lapworth (1875)

Suborder Graptodendroidina, Mu and Lin (1981) in Lin
(1981)

Family Anisograptidae, Bulman (1950)

Suborder Sinograpta, Maletz et al. (2009)

Family Sigmagraptidae, Cooper and Fortey (1982)

Family Sinograptidae, Mu (1957)

Family Abrograptidae, Mu (1958)

Suborder Dichograptina, Lapworth (1873b)

Family Dichograptidae, Lapworth (1873a, b)

Family Didymograptidae, Mu (1950)

Family Pterograptidae, Mu (1950)

Family Tetragraptidae, Freeh (1897)

Suborder Glossograptina, Jaanusson (1960)

Family Isograptidae, Harris (1933)

Family Glossograptidae, Lapworth (1873b)

Suborder Axonophora, Freeh (1897)

Infraorder Diplograptina, Lapworth (1880)

Family Diplograptidae, Lapworth (1873b)

Subfamily Diplograptinae, Lapworth (1873b)

Subfamily Orthograptinae, Mitchell (1987)

Family Lasiograptidae, Lapworth (1880)

Family Climacograptidae, Freeh (1897)

Family Dicranograptidae, Lapworth (1873b)

Subfamily Dicranograptinae, Lapworth (1873b)
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Fig. 7.6 Graptolite classification. The graptolite classification is complex and hampered by poor
preservational record and convergent evolution (Polyphyletic). Therefore, a classification based on
several characters is preferred. Recent systematic work suggest that the group is equivalent to
modern pterobranchs (Mitchell et al. 2013), see also Table 7.2

earlier Paleozoic times. The graptolites evolved from Dendroids in Late Cambrian
to Early Devonian times involving changes in the (a) decrease in number of stipes;
(b) change in attitude of stipes; (c) increase in complexity of the thecae, and
(d) change in the positioning of the thecae. The sessile types like Dictyonema
[Fig. 7.7(1)], appeared first.

Graptolites are excellent index fossils for Ordovician and Silurian rocks (see
Tables 7.2 and 7.3) because of their wide geographic distribution (due to their
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Fig. 7.7 Late Cambrian-Late Ordovician graptolites and their major distinguishing characters
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Table 7.2 Ordovician index graptolites. Graptolites are extinct marine colonial animals that
thrived from Middle Cambrian to Silurian. They reached their greatest diversity during the
Ordovician and are important index fossils for dating Paleozoic rocks
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Table 7.3 Silurian index graptolites
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- . Monograptus bouceki- l
415= Devonian transgrediens-perneri
Monograptus \L
branikensis-
lochkovensis l

J] Monograptus arullimus%

-ultimatus

Pridoli

Neocullograptus
kozlowskii-

Polonograptus
podoliensis

Ludfordian / Saetograptus

I leintwardinensis

Lobograptus scanicus | |

Neodiversograptus

Gorstian nilssoni

i
N
o

IIKIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIHIIIIIIIIIIIIIIIIIIIIII IIIII

Ludlow

"/ Colonograptus \]
praedeubéli-deubeli

-/ Pristiograptus parvus-
Gothograptus nassa A

Homerian

Wenlock [ Cyrtograptus rigidus- |
i perneri i
J Monograptus \
2 " riccartonensis-
Sheinwoodian belophorus-

B antennularis fl
1 Cyrtograptus |7
\_centrifugus-murchisoni |
= Cyrtograptus lapworthi-
4 insectus |
Oktavites spiralis
Interval zone
Monograptus
griestoniensis-
Telychian B crenulata /
Monograptus crispus

N
N
[&)]

Silurian

430

Spirograptus turriculatus

Spirograptus guerichi

B
w
[&)]

S

Liandovery Stimulograptus

sedgwickii
Lituigraptus convolutus

Aeronian Monograptus argenteus
I\ - leptotheca
_ Demirastrites
triangulatus-pectinatus

Coronograptus cyphus

440

Orthograptus

Rhuddanian vesiculosis

Parakidograptus
acuminatus

Akidograptus ascensus

444



7.5 Geological History 223

planktonic nature), restriction to latitudal belts (due to their eurythermic nature),
ability to thrive in both deep and shallow waters (due to their epipelagic nature),
and their short stratigraphic range (Sadler et al. 2009).

However, there are some problems too—graptolites are usually preserved in
highly compressed forms, hence, correct species identification is sometimes diffi-
cult, and they are rarely preserved in coarse-grained rocks, hampering correlation
between areas of different facies. Thus, correlation based on faunal units (succes-
sive faunas), i.e., based on the first appearance of a new species, and is the best
possible option for global correlation. Faunal data suggests that the earliest
Ordovician (Tremdoc) is marked by the “anisograptid fauna” consists
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Fig. 7.8 Early Ordovician graptolites and their major distinguishing characters
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predominantly of anisograptids (graptoloids with bitheca and multiramous). The
succeeding “dichograptid fauna” (Arenig) are largely known from Order
Dichograptina; though they lack bitheca, they are multiramous. The most common
forms in the “diplograptid fauna” (in the rest of the Ordovician) which have fewer
stipes (commonly biramous), and are biserial. Finally, the “monograptid fauna” (in
Silurian to Early Devonian times) is dominated by uniramous and uniserial forms.
Representative graptolite species are illustrated in Figs. 7.7, 7.8, 7.9, 7.10.
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Appendix 1 gives the list of illustrated specimens mentioning the chapter
number, species name, age, and locality along with its figure number within the said
chapter (Fig. 7.11).
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Chapter 8
Brachiopods

8.1 Introduction

Brachiopods are the oldest known shelly invertebrate fossils. Askepasma sapro-
concha Topper, a Paterinida, is the oldest known brachiopod coming from a
pre-trilobitic strata (Terreneuvian, Cambrian Stage 2, lower Atdabanian; ~526—
530 Ma) within the Early Cambrian succession from South Australia (Topper et al.
2013).

Brachiopods are exclusively marine solitary organisms that live on the ocean
floor, inhabiting a wide range of water depths from very shallow waters of rocky
shorelines to ocean floors (at places three-and-a-half miles beneath the ocean sur-
face). Spatially, they are found from the warm tropical waters of the Caribbean to
the cold Antarctic seas. Around 300 species (~ 120 genera) are present today and
over 30,000 fossil species (~900 alone in the Devonian) have been described, so
far. Some living species today appear much like their fossil ancestors such as the
modern Lingula unguis Linne that looks almost identical to its Paleozoic ancestor of
400 Ma ago. Brachiopods are also called “Lamp shells” based on their close
resemblance with the shape of an oil lamp used in ancient Greece and Rome (to
mostly Mediterranean terebratulid species Magellania).

Brachiopods have an excellent geological record especially throughout the
Phanerozoic (Cambrian—Quaternary) and are also amongst the most successful
benthic invertebrates of the Paleozoic (Cambrian—Permian). Hence, the Paleozoic is
often referred as the “Age of Brachiopods” with several orders dominating the
shallow shelf environments; giving way grudgingly to the rapidly diversifying
pelecypods in the Mesozoic (Gould and Calloway 1980; Sepkoski 1996) (see
Fig. 8.1). As a phylum, brachiopods show a great variety of changes in the form
and function through time, and hence are important for biostratigraphic, paleoe-
cologic, and evolutionary studies marked by characteristic and dominant assem-
blages through time (Table 8.1). Most Brachiopods are small (<7 cm) with the
largest living species having a shell length of about 100 mm (4 in.). However, the

© Springer India 2017 229
S. Jain, Fundamentals of Invertebrate Palaeontology, Springer Geology,
DOI 10.1007/978-81-322-3658-0_8



230

Fig. 8.1 Generic diversity of
Brachiopods and Pelecypods
in the Phanerozoic (modified
from Gould and Calloway
1980; Sepkoski 1996). The
Brachiopods are among the
most successful benthic
invertebrates of the Paleozoic
(Cambrian-Permian) so much
so that the Paleozoic is often
termed as the “Age of
Brachiopods” with several
orders dominating; giving
way grudgingly to the rapidly
diversifying Pelecypods of the
Mesozoic (see Chap. 4).
Arrow marks major extinction
events in brachiopod geolog-
ical history (see Sect. 8.5 for
details)
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Table 8.1 Dominant brachiopod assemblages through time

500

600

|Cenozoic

Mesozoic

Palenzoic

Dominant assemblage

Age

Abundance of Richthofenids and

Oldhaminids

Permian

Abundance of Productids

Pennsylvanian (Late Carboniferous) and

Permian

Abundance of Spirifers and Productids

Mississippian (Early Carboniferous)

Abundance of Spirifers Devonian
Abundance of Pentamerids Silurian
Flat Orthids (Resserella or Hebertella) Ordovician
Abundance of “D-shaped” Strophomenids Ordovician
Lingulid-Orthid assemblage Cambrian

Early Carboniferous (Mississippian) Gigantoproductus giganteus Martin is the
largest of them all with a shell length of over 300 mm (12 in.). Another big form,
but somewhat smaller than Gigantoproductus, is another Early Mississippian bra-
chiopod Delepinea. In general, brachiopod shells with width less than 20 mm
(0.8 in.) are considered “small,” those between 20 and 50 mm (0.8-2 in.) are
“medium” sized and those greater than 50 mm (>2 in.) are large.
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8.2 The Shell

Brachiopod terminology is complex with a very elaborate shell description (see also
Clarkson 1993). Hence, only major features are covered and illustrated here. Other
minor features are enumerated under Terminology, Sect. 8.3. Table 8.2 summarizes
the outline of the chapter description that unfolds.

The two mineralized valves that enclose most of the soft body parts constitute
the brachiopod shell (Fig. 8.2). Brachiopods extract minerals from the sea water.
The mineralized shell is made up of ~50 % calcium carbonate (CaCOs3) or
phosphate and the other 50 % is composed of chitin or proteins with varying
amounts of organic material. The Late Cretaceous Crania is the only genus to have
chitin as the choice for building its shell (see Lee and Brunton 1986; Emig 2009;
Moore 1965). The Paterinates, the earliest brachiopods, possess an organophos-
phatic shell, the Linguliformeans have phosphatic material combined into their shell
fabric, the Craniiformean’s shell consists of organocarbonate and in
Rhynchonelliformeans it is of low-magnesian calcite.

Table 8.2 A broad outline of
the description followed in
this chapter

» Two valves: pedicle (ventral) and brachial (dorsal)

* Shell orientation and dimensions

* General shell features

— Brachiopod shell shape

— Fold and sulcus

— Lateral profile

— Size of the two valves

— Position of the umbo

— Strophic versus non-strophic

— Shell ornamentation

* Hinge features: teeth and socket; hinge line

* Features of the anterior part of shell

— Commissure and commissural plane

— Pedicle valve: umbo, interarea, delthyrium, and deltidial
plates

Types of deltidial plates

— Brachial valve: notothyrium, chilidium, chilidial plates
and Listrium

— Position of the Pedicle foramen relative to the beak ridge

* Brachiopod feeding mechanism: Lophophore, Brachidium,
Spiralia and Jugum

Types of Brachidium

* Brachiopod musculature: Diductors, Adductors and Adjusters

* Pallial markings (Vascular markings)

* Shell structure: Punctuate, Pseudopunctate and Impunctate
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The two valves of brachiopods are of unequal size; the smaller half is called the
dorsal or brachial valve and the larger half is called the ventral or pedicle valve; the
latter hosts the edicle [Fig. 8.2(1, 2)]. Unlike pelecypods (Chap. 4) that have
inequilateral valves with a symmetry of the upper and lower valves, the brachiopod
valves are symmetrical about a median plane thus, giving it a left-right symmetry
[Fig. 8.2(3, 4)]. Hence, brachiopods are bilaterally symmetrical about a plane
drawn perpendicular to the line of contact of the two closed valves, i.e., each valve
is bilaterally symmetrical and the shell as a whole is asymmetrical [Fig. 8.2(3, 4)].

The brachiopod shell, while describing, is always oriented with the posterior
margin (the hinge line) placed above, and the anterior margin, below [Fig. 8.2(3)].
A line drawn from the beak to the anterior margin describes its length [Fig. 8.2(3)];
and one at right angles to the same, in the direction of right and left, is its width
[Fig. 8.2(3)]; a third line drawn perpendicularly to the other two, and passing
through the centers of the valves, measures its thickness [Fig. 8.2(2)]. In some, the
posterior margin of the pedicle valve is convex, and curved to form a beak [Fig. 8.2
(5)] which may be pointed, or perforated by a round opening, called the pedicle
foramen [Fig. 8.2(3)]; the pedicle protrudes from the latter [Fig. 8.2(1)].

At the anterior end of the brachiopod shell, the Commissure forms a line of
junction between the two valves [Fig. 8.2(2)]; its plane of symmetry is called the
commissural plane which divides the shell into two unequal halves [Fig. 8.2(4)]. In
some brachiopod lineages (as in Rhynchonellida) a zigzag commissure is noted.
This “zig-zag” pattern increases the amount of water filtered and also protects the
delicate lophophore by not allowing entry to overly large-sized particles [Fig. 8.2
(5)]. Three major types of commissure are noted and are illustrated in Fig. 8.3(1, 3).

The shape of the brachiopod shell varied; the major types are illustrated in
Fig. 8.3(4-16). Additionally, the two brachiopod valves also join together in dif-
ferent ways; the anterior margin of one valve is frequently indented by a median
Sinus, and the other (in the Pedicle valve) usually exhibits a corresponding Fold, or
elevation [Fig. 8.3(17-30)]. Their lateral profile also varies from being smooth to
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Fig. 8.3 Key to brachiopod identification. Seven parameters are used to identify brachiopods,
namely type of commissure, shell shape, type of frontal (anterior) shell view, type of shell lateral

profile, size of valves, position of umbo and type of hinge line. These are basic morphologies but
in nature there may also exist several combinations of these
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zigzag to wavy [Fig. 8.3(31-33)]. The size of the two valves (brachial and pedicle)
also differs [Fig. 8.3(34-39)]. The position of the umbo varies from being straight
to curved [Fig. 8.3(40-43)] and last, the hinge line (the posterior margin of the shell
parallel to the hinge axis) can be either straight (strophic) or curved (astrophic)
[Fig. 8.3(44-47)].

In the earliest growth stages of the shell, it is invariably smooth, and may remain
so throughout life, but the greater number of shells develops radial striae, ribs, or
undulations, and these are usually crossed by concentric growth lines, or lamellar,
which are sometimes of great width, or may extended into spines (see Fig. 8.4).
Fundamentally, the ornamentation on the brachiopod shell is a combination of
radiating ribs and concentric growth lines [Fig. 8.4(1)] resulting in varied patterns
of ornamentation [Fig. 8.4(2-16)]. Additional ornamentation terminology is enu-
merated under Sect. 8.3.3

On the basis of shell structure, the brachiopods have traditionally been divided
into two taxonomic groups—Aurticulata and Inarticulata. The Articulata are char-
acterized by the presence of teeth, sockets, and a definite hinge (the place where the
two valves meet at their posterior end) (see [Fig. 8.5(1-4)]). The hinge area found
in them is important for taxonomic classification and is a diagnostic feature of
certain brachiopod groups. On the other hand, the Inarticulates have no teeth or
hinge and the pedicle, when present, passes between the two valves of the shell.

Between the two valves, the posterior portion of the hinge structure is the
Interarea [Fig. 8.5(1)]. Its left and right portions are often closed off by plates,
thereby leaving a triangular opening through which the pedicle protrudes. In the
brachial valve, the opening (a notch instead of the round pedicle foramen) in the
interarea, is called the Notothyrium and Delthyrium for the pedicle valve [Fig. 8.5
(2—4)]. The pedicle foramen (the opening for the pedicle; [Fig. 8.5(2, 5, 6)] may be
enclosed on the anterior end by a single plate; it is then called a Xenidium [Fig. 8.5
(6)] and when done by a pair of plates, the structure is called a Deltidium [Fig. 8.5
(13)], and the plates are then called Deltidium plates [Fig. 8.5(14)]. Varied types of
deltidial plates are illustrated in [Fig. 8.5(8-12)]. If plates enclose the notch
(Notothyrium/Delthyrium), it is called Chilidium [Fig. 8.5(15)] and the plates are
called Chilidial plates [Fig. 8.5(16)]. The Chilidium is a convex plate which often
covers the cardinal process of the dorsal valve [Fig. 8.5(15)]. The cardinal area is a
term applied to the flattened or curved triangular area which is observed frequently
between hinge line and beak ([Fig. 8.5(4)]; the cardinal process encloses it). It is
well developed in the pedicle valve rather than in the dorsal valve, and is bisected
medially by the triangular delthyrium [Fig. 8.5(2)]. Listrium is a plate closing the
progressive track of the pedicle opening or pedicle cleft, posterior to the apex of the
pedicle valve [Fig. 8.5(21)], as is commonly noted in Discinids. The position of the
pedicle foramen relative to the beak ridge also varies [Fig. 8.5(26-31)]. Other
relevant terminology of the brachiopod shell are enumerated under Sect. 8.3.5 and
illustrated in Fig. 8.5.
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Fig. 8.4 Key to brachiopod ornamentation. These are the basic types of ornamentation but in
nature there may also exist several combinations of these
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Brachiopods are filter feeders and collect food particles through a ciliated organ
called the Lophophore (see [Fig. 8.6(1)]; also noted in Recent Terebratulids).
Lophophore is a feeding structure and is a characteristic feature of the phylum,
consisting of a pair of ciliated, twisted projections that create water currents and
then filters out the microscopic food particles [Fig. 8.6(1)]. It is symmetrically
placed around the mouth, and is suspended from the anterior body wall; it may also
be attached to the dorsal mantle and occupies the mantle cavity (see [Fig. 8.6(1)]).

Mephrodium
Anteriror body wall
Mantle epithelium

Body cavity
Diductor muscle

Adjustor muscle Lophophore

Cardinal process
Pedicle

=

w

=2

@
Anterior

Posterior

Hinge axis
Posterior section
of brachidium

=

Mantle canal 1

LoopA™y,
4 Median 8
septum
Brachiophore Rhynchonellid Terebratulid Zeillerid Terebratellid
Very short brachail Lengthened Small loop Complex curved Complex curved,
appratus brachail appratus, linked with
no loop median septum
9 10 12
Megantherid Stringocephalid Athyrid Atrypid Spiriferid

Spiral-like loops Complex
"spring-like" loops

Brachaial appratus

Fig. 8.6 The lophophore and types of brachidium. The lophophore is a feeding structure and the
calcareous support of the lophophore is the brachidium which consists of an elaborate long
calcareous loop system (4—13). The pair of spirally coiled lamellae is called the Spiralia (2) and the
medially placed structure of secondary shell connecting two primary lamellae of spiralia is called
the Jugum (3). The shape of the brachidia is highly variable; from a short stout set of supports
called the brachiophors (4) to a conical spiral pointing laterally as in spiriferids (/3)



238 8 Brachiopods

The calcareous support of the Lophophore is called the Brachidium, an elaborate
long calcareous loop system; the pair of spirally coiled lamellae supporting the
lophophore is called Spiralia (see [Fig. 8.6(2, 3)]). Jugum is the medially placed
structure of secondary shell connecting two primary lamellae of spiralia [Fig. 8.6
(3)]. The shape of the Brachidia is highly variable; from a short stout set of supports
called the Brachiophors [Fig. 8.6(4)] to a conical spiral pointing laterally as in
Spiriferids [Fig. 8.6(13)]. Various types are illustrated in Fig. 8.6(3—12). The bra-
chidia are of great importance in brachiopod systematics.

The brachiopod uses muscles to open and close its shell [Fig. 8.7(1, 2)]. In
Articulates, there are three sets of muscles [Fig. 8.7(3, 4)]—the diductors, which by
contraction opens the valves; the adductors, which by contraction closes the valves;
and the pedicle muscles, or adjustors that by contraction withdraws the pedicle
[Fig. 8.7(1, 2)]. The points of attachment (i.e., points of insertion and origin) of
these muscles leave more or less distinct impressions (scars) in the valves [Fig. 8.7
(1, 2, 5)]. The number and form of these scars provide important diagnostic
characters. The two adductor muscles, each divided dorsally, are commonly present
to produce a single pair of scars located between diductor impressions in the pedicle
valve [Fig. 8.7(5)] and two pairs (Anterior and Posterior adductors) in the brachial
valve [Fig. 8.7(1, 2)]. The Diductor muscles open the shell. The Adjustor muscles
constitute two pairs of muscles in many articulated brachiopods; they provide
movement to pedicle or shell and arise from the proximal end of the pedicle valve
[Fig. 8.7(5)]. The diductors, or opening muscles, originate at the anterior ventral
edge of the visceral area, and on either side of the median ridge; the scars of these
muscles being usually the largest and deepest of any in the animal [Fig. 8.7(5, 6)].
They taper rapidly in crossing the interior cavity, and their small extremities are
attached to the anterior portion of the cardinal process. Myophore is the differen-
tiated site of the diductor muscle attachment on the cardinal process [Fig. 8.5(18)].

The Pallial markings (also called Vascular markings) (Fig. 8.8) are impressions
of mantle canals on the shell’s interior. The mantle canals are flattened tube-like
extensions of the body cavity into the mantle.

The brachiopod shell in thin section has two layers; the inner, made up of
inclined fibers of calcite and the outer, a lamellar layer, with low angle calcite
crystals (Fig. 8.9). If small tubes or pores penetrate the shell, the shell is called
punctuate [Fig. 8.9(1, 4)]. If there are perpendicular rods of calcite in the fibrous
inner layer, it is called Pseudopunctate (as in Strophominids) [Fig. 8.9(3, 6)]. If the
shell is solid it is called impunctate [Fig. 8.9(2, 5)]. Both punctate and impunctate
types have little taxonomic relevance. A puncta (pl., punctae) is a perforation
penetrating the shell to connect with the periostracum (the organic external layer of
shell) [Fig. 8.9(1, 4)]. Punctate shells have punctae (sing. Puncta: [Fig. 8.9(1)]).
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Fig. 8.7 Muscle attachments and scars. /-2 General overview of muscle attachments and scars of
both pedicle and brachial valves. 3—4 Muscles used for closing and opening of valves. 5 Details of
muscle attachments and scars. 6 Arrangement of muscle scars as noted in Plaesiomys Hall and
Clarke, a Middle to Late Ordovician brachiopod genus (Ohio, USA)
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1 - 2 N 3
Plaesiomys Campylorthis Levenea Eatonia Hall
Hall and Clarke Ulrich and Cooper Schuchert and Cooper

Strophomena Stricklandina Atrypa Hypothyridina
Rafinesque Billings Dalman Buckman

) I’__'_ = \
INYAW
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j ot by (B0 10 11
Dallina Beecher Dallina Beecher Orthis Dalman Levenea
(Brachial valve) (Brachial valve) Schuchert and Cooper

(Brachial valve)
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Fig. 8.8 Types of Pallial markings (also called vascular markings) are impressions of mantle
canals on the shell’s interior. Illustrated examples include: Plaesiomys Hall and Clarke, Middle to
Late Ordovician (Ohio, USA); Campylorthis Ulrich and Cooper, Middle Ordovician (Wisconsin,
USA); Levenea Schuchert and Cooper, Silurian to Middle Devonian (Tennessee, USA); Eatonia
Hall, Early Devonian (Maryland, USA); Strophomena Rafinesque, Middle to Late Ordovician
(Ohio, USA); Stricklandina Billings, Early Silurian (North America); Afrypa Dalman, Early
Silurian to Late Devonian (Nova Scotia, Canada); Hypothyridina Buckman, Middle to Late
Devonian (Plymouth, England); Dallina Beecher, Eocene to? Recent (Japan); Orthis Dalman,
Early to? Middle Ordovician (Russia)
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8.3 Terminology

The brachiopod terminology is explained briefly under the following four subheads
and illustrated in Figs. 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10:

8.3.1
8.3.2
8.3.3
8.34

8.3.1
8.3.1.1

8.3.1.2

8.3.1.3

8.3.14

8.3.1.5

8.3.1.6

General terms

Shell features

Shell ornamentation

Cardinal area (Posterior region of the shell).

General Terms

Beak: The commonly pointed extremity of the umbo. It is the valve’s
apical portion [Fig. 8.2(5)]

Commissure: A junction line between the margins of valves [Figs. 8.2(2)
and 8.3(1-3)]

Dorsal valve: It is smaller than the pedicle valve and possess a distinctive
muscle-scar pattern and Lophophore (as it houses the lophophore, it is also
called the Brachial valve) [Fig. 8.2(1, 2)]

Protegula node (= Protegulal node): This is the apical portion of the
adult shell and the site of Protegulum and of later shell growth [Fig. 8.4
(O]

Protegulum: This is the first formed shell of organic material secreted by
both mantles [Fig. 8.2(4)]

Umbo: This is the apical portion of a valve that houses the beak [Fig. 8.2(2)]
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Fig. 8.10 Inclination of cardinal area or of pseudointerarea

8.3.1.7 Valve: One of the two separate halves that make up the brachiopod shell
[Fig. 8.2(1)]

8.3.1.8 Ventral valve (= Pedicle valve): Larger than the dorsal valve and containing
teeth (when present), and the pedicle that commonly emerges from it (as it
houses the pedicle, it is also called the pedicle valve) [Fig. 8.2(1)].

8.3.2 Shell Features

8.3.2.1 Fold: Major elevation of the valve’s surface; externally convex in
transverse profile and radial from the umbo [Fig. 8.3(23)]

8.3.2.2 Growth lines: Concentric line on outer shell’s surface formed when the
forward growth of shell temporarily ceased [Fig. 8.2(3)]

8.3.2.3 Sulcus: Major depression of the valve’s surface; externally concave in
transverse profile [Fig. 8.3(23)].
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83.3

8.3.3.1

8.3.3.2
8.3.3.3

8.3.34
8.3.3.5

8.3.3.6

8.3.3.7

8.3.3.8

8.3.4

8.34.1

8.34.2

8.34.3

8.3.44

8.34.5

8.3.4.6

Shell Ornamentation

Costa (pl., costae): These are the first-formed radial ridge on the shell’s
surface; often interchangeably used for any coarse rib [Fig. 8.4(1)]
Costate: Radially disposed costae [Fig. 8.4(13)]

Costella (pl., costellae): Costellae are a fine ribs; Capilla/Capillate are
very fine ribs (see [Fig. 8.4(1, 6)]). Costellate possess Costellae. Costella
is a radial ridge on the shell’s surface originating later than costa
bifurcation of costa or costella or formed by the intercalation between
earlier formed ribs [Fig. 8.4(1)]

Fascicostellate: These are Costae and Costellae arranged into bundles
[Fig. 8.4(1)]

Parvicostellate: Numerous Costellae arising by intercalation between
widely spaced costae [Fig. 8.4(1)]

Plication: These are prominent undulation of the commissure. On the
shell’s interior, it is reflected as a crest directed dorsally [Fig. 8.3(2)] and
is often associated with a fold on the dorsal and sulcus on the ventral valve
Ramicostellate: Having a Costellae on the shell resulting from branching
[Fig. 8.4(1)]

Ruga (pl., rugae): These are concentric and rarely oblique wrinkling
noted on the shell’s exterior surface [Fig. 8.4(16)].

Cardinal Area (Posterior Region of the Shell)

Cardinal process: Blade or variably shaped boss of secondary shell. The
cardinal process is positioned medially in the posterior end of the brachial
valve. Its function is the separation or attachment of paired diductor
muscles (muscles that open valves) [Fig. 8.5(4)]

Cardinalia: Placed in the posterio-median region of the dorsal valve,
these are structures of secondary shell that are associated with the support
of lophophore, muscle attachment, and articulation [Fig. 8.5(4)]
Chilidium: It is a crescentic-shaped plate that covers the top of the
notothyrium. When present, it is convex externally and spans for variable
distances, ventrally, over the proximal end of the cardinal process and
chilidial plates [Fig. 8.5(15, 16)]

Crura (sing., Crus): These are paired processes that support the distal
end of the lophophore [Fig. 8.5(18)]

Crural plates: A plate extending from the inner edge of the outer hinge
plate or crural base to the floor of the dorsal valve [Fig. 8.5(18)]
Deltidial plates: These are two plates that are medially placed from the
margins of the delthyruim, and partly or completely closing the latter
[Fig. 8.5(13, 14)]
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8.3.4.7

8.3.4.8

8.34.9

8.3.4.10

8.3.4.11

8.3.4.12

8.3.4.13

8.3.4.14

8.3.4.15

8.3.4.16

8.3.4.17

8.3.4.18

8.3.4.19
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Delthyruim: An aperture bisecting the ventral cardinal area or
pseudointerarea. It serves as a pedicle opening [Fig. 8.5(13, 14)]

Hinge line: It is straight, parallel with hinge axis, and constitutes the
posterior margin of the shell. Previously used as synonym for cardinal
margin [Figs. 8.3(44, 46); 8.5(1, 7)]

Homeochilidium: An externally convex triangular plate closing almost
all or only the apical part of the notothyrium (best seen in Paterinides)
[Fig. 8.5(6)]

Homeodeltidium: An externally convex triangular plate closing almost
all or only the apical part of the delthyrium (best seen in Paterinides)
[Fig. 8.5(6)]

Inclination of cardinal area or of pseudointerarea: These are terms
used to describe the condition of valves (dorsal or ventral) when viewing
the specimen in a lateral profile with beaks to left, and the dorsal
(brachial) valve uppermost. Then, referring the cardinal area to its
position within one of four quadrants defined by the commissure plane
and plane normal to it and symmetry plane, touching base of cardinal
areas (Fig. 8.10). It is Orthocline when the cardinal area is lying on the
continuation of the commissure plane. Thence, moving clockwise, if
cardinal area in the first quadrant, it is weakly to strongly Apsacline;
Catacline is at 90° to the Orthocline; and continuing counterclockwise
into the bottom right quadrant, the cardinal area is weakly to strongly
Procline

Notothyrium: A median subtriangular opening bisecting the dorsal
cardinal area or pseudointerarea [Fig. 8.5(6, 7)]

Palintrope: A curved surface of shell, bounded by beak ridges and
cardinal margin of astrophic shells [Fig. 8.5(2)]

Pedicle foramen: Subcircular to circular perforation of the shell through
which the pedicle passes [Figs. 8.2(3), 8.5(2, 3, 24-29)]

Pedicle groove: It divides the ventral pseudointerarea medially thereby
allowing passage for the pedicle; the groove is subtriangular in shape
[Fig. 8.5(19)]

Pedicle: It is a cuticle-covered, stalk-like appendage that is variably
developed and protrudes from the pedicle valve [Fig. 8.2(1)]
Pseudointerarea: In some inarticulated brachiopods, it forms the
flattened, posterior sector of the shell and is secreted by the posterior
sector of the mantle [Fig. 8.5(20)]

Socket: These are pits for the accommodation of the hinge teeth within
the posterior margin of the dorsal valve [Fig. 8.5(4)]

Spondylium: It is a trough shaped, spoon-like apparatus composed of
dental plates found in the pedicle valve (in the beak region); it is a curved
calcareous platform for muscle attachment and best noted in Pentamerids
[Fig. 8.5(22, 24, 25)].
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8.4 C(lassification

Brachiopods have a long and varied geological history going back to the Early
Cambrian. Over 12,000 fossil species and ~ 350 living species have been recorded,
belonging to nearly 6000 genera; a great majority of the modern brachiopods are the
Rhynchonelliforms (Articulata, excluding Craniida) (see also Williams et al. 2000).

The brachiopods experienced significant convergent evolution and reversals
(where the latest group loses a characteristic feature that it acquired from an
intermediate group and reverts back to the characteristics of the older group).
Hence, defining higher levels of classification (such as Order) would be premature.
Hence, workers have a recommended a bottom—up approach that identifies genera
and then places them into intermediate groups (Carlson 2001). But, others are of the
view that some characteristic patterns are stable enough to merit higher level
classifications, although the fundamental premise, “what constitutes higher-level
classification” is still a matter of intense debate (see also Carlson 2001).

The “traditional” classification was defined in 1869 (see ITIS), but the 1990s
saw the establishment of two more approaches (see Table 8.3; see also Carlson
2001). These are

Table 8.3 Traditional classification

Inarticulata® Articulata

No hinge Hinge present

Complex muscle system Simple muscle system

Common since Ordovician-Devonian
Calcite shell

No anus

Common in Cambrian
Shell Ca;(PO,)?, chitin

Digestive system has anus

Cambrian—recent Cambrian-recent

~220 genera ~3200 genera

Class inarticulata: Class articulata:

Most common brachiopods of the Cambrian
that eventually gave way to the articulates (the
“Paleozoic fauna”) during the Ordovician. The
shell is composed of chitinophosphate
(calcium phosphate embedded in an organic
matrix), although in several groups a calcium
carbonate skeleton is also secreted. The valves
are almost always simple, without complex
ribbing, spines, or other types of
ornamentation; held together by muscles and
body wall. The Cardinal process is absent

They are a diverse and complex class that
makes up ~958 % of all the known
brachiopods. They remained benthic
filter-feeders for most of the Paleozoic. Shell
is made of calcium carbonate. They are
characterized by an articulated hinge structure
in the posterior. In some brachiopods the
hinge is either straight (strophic) or curved
(astrophic). Teeth in pedicle valve and socket
in brachial valve

This class contains five orders, only three are
commonly recorded and only two extant
orders (Lingulida and Acrotretida) have fossil
records that go beyond the Early Paleozoic

Seven orders are recognized

“Lingula is the oldest “living fossil”
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1. In the “traditional” classification, the Articulata have toothed hinges (i.e., hin-

ged valves) between the valves, while the hinges of the Inarticulata are held
together only by muscles (i.e., unhinged valves; lacking tooth-and-socket
articulation) (see also Moore 1965). In inarticulates the valves are mostly of
chitinophosphatic composition while articulates possess calcareous valves (see
Table 8.3).

. A 1990s classification based on shell composition placed Craniida and “articulate”
brachiopods within Calciata; the former two have calcitic shells. Similarly, based
on common chitin and calcium phosphatic composition, the Lingulida and
Discinida were combined under Lingulata (see also Carlson 2001) (see Table 8.4).
. Another tripartite 1990s classification scheme has Craniida as a separate
group—the Craniformea. Here, Linguliformea includes Lingulida and Discinida,
and Rhynchonelliformea has Rhynchonellida and Terebratulida (see Table 8.5;
Fig. 8.11) (see also Williams et al. 2000; Holmer 2001; Carlson and Leighton

2001; Milsom and Rigby 2009).

Table 8.4 Three high-level classification of brachiopods

Parameters Description
Traditional Inarticulata Articulata
classification
Calciata approach | Lingulata Calciata
Three-part Linguliformea Craniformea | Rhynchonelliformea
approach
Orders Lingulida | Discinida Craniida Terebratulida | Rhynchonellida
Hinge No teeth Teeth and sockets
Anus On front of body, attend of U-shaped None
gut
Pedicle Contains coelom with No pedicle No coelom, muscles where
muscles joins
Long Short, None, Short, attached to hard surfaces
burrows | attached to cemented to
hard surface
surfaces
Periostracum Glycosaminoglycans and | Chitin Proteins
chitin

Primary (middle)
mineralized layer
of shell

Glycosaminoglycans and
apatite (calcium
phosphate)

Calcite (a form of calcium carbonate)

Inner mineralized | Collagen and other Calcite Proteins and calcite
layer of shell proteins,
chitinophosphate and
apatite
Chaetae around Yes No Yes
opening of shells
Coelom fully Yes No Yes
divided
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Fig. 8.11 The three-part scheme classification of brachiopods. The current classification places
the Craniida in a separate group of its own, the Craniformea. The Lingulida and Discinida are
grouped as Linguliformea, and the Rhynchonellida and Terebratulida as Rhynchonelliformea (after
various workers; see Williams et al. 2000; Holmer 2001; Carlson and Leighton 2001; Milsom and

Rigby 2009)
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<« Fig. 8.12 Few representatives of Cambrian brachiopods. /-23 Late Cambrian. I, 2 Lingulella
similis Walcott, I pedicle valve, 2 brachial valve; 3-5 Dicellomus politus (Hall), 3 and 5 pedicle
valve, 4 brachial valve; 6, 7 Lingulelpis pinnaformis (Owen), 6 brachial valve, 7 pedicle valve
produced posteriorly; 8, 9 Siphonotreta tertia (Walcott), 8 brachial valve, 9 pedicle valve; 10, 11
Schizambon typicalis Walcott, 10 brachial valve, 11 pedicle valve; 12—14 Apheoorthis linecosta
(Walcott), 12 and 14 pedicle valve, 13 brachial valve, pedicle valve has unclosed delthyrium and a
pseudospondylium; 15, 16 Billingsella corrugata Ulrich and Cooper, 15 interior of a pedicle valve,
16 brachial valve; 17-20 Billingsella perfecta Ulrich and Cooper, 17, 18 pedicle valve, 19, 20
brachial valve; 2/-23 Acrrotreta idahoensis Walcott, 21 brachial valve, 22, 23 pedicle valve,
posterior and side views, respectively. 24-36 Middle Cambrian. 24, 25 Nisusia montanaensis Bell,
24 brachial valve; 25 posterior view, this is the oldest and well-developed articulate brachiopod;
26-28 Micromitra sculptilis (Meek), 26 and 28 pedicle valve, 27 brachial valve; 29-32 Prototreta
trapeza Bell, 29, 30 pedicle valve, 31, 32 brachial valve; 33, 34 Dictyonina pannula (White),
pedicle valve; 35, 36 Acrothele coriacea Linnarsson, 35 brachial valve, 36 pedicle valve. 37—44
Early Cambrian. 37, 38 Obolella chromatica Billings, 37 brachial valve, 38 pedicle valve; 39, 40
Rustella edsoni Walcott, 39 posterior view, 40 pedicle valve; 41-44 Kutorgina cingulata
(Billings), 41 Side view, 42 brachial valve, 43 pedicle valve, 44 Interareas

8.5 Geological History

The Earliest Cambrian Tommotian Stage (see Kouchinsky et al. 2001 for Stage
details) saw the appearance of the oldest group of brachiopods—the Paterinates (see
also Table 8.5). The Paterinates share compositional similarity with linguli-
formeans, both have an organophosphatic shell. However, the shell structure of the
group is quite different, possessing true interareas, delthyria, notothyria, with a
functional diductor muscle systems.

The Precambrian is marked by the absence of brachiopods.

The non-articulated groups dominated the Cambrian faunas (Fig. 8.12) in
association and as minor constituents by chileids, naukatids, obolellids, kutorginids,
billingsellids, protorthids, orthids, and pentamerids (the articulated taxa).

The Ordovician (Figs. 8.13, 8.14, 8.15, 8.16, 8.17) saw the dominance of del-
tidiodont orthides and strophomenids. The spire (lophophore)-bearing brachiopods
reached their acme after the end-Ordovician extinction and by the mid-Palacozoic
(particularly during the Silurian—-Devonian: Figs. 8.19, 8.20, 8.21, 8.22, 8.23, 8.24,
8.25, 8.26) in favorable carbonate environments (Fig. 8.18).

Remarkable experimentations were noted in Carboniferous (Mississippian—
Pennsylvanian: Figs. 8.27, 8.28, 8.29) and particularly in the Permian (Fig. 8.30)
where they mimicked corals [Fig. 8.30(7-9)] or developed extravagant clusters of
spines; some reduced their shells, thereby presenting soft tissues to the outside
environment. However, this spectacular show of diversity came to an end due to the
end-Permian extinction (Fig. 8.1).

In general, for the Mesozoic and Cenozoic brachiopod landscape, the cyr-
tomatodont rhynchonelliformeans possessing either crurae (rhynchonellids) or
loops (terebratulids) dominated.

Over time, the brachiopods experienced five major extinction events, namely
Late Ordovician (445—443 Ma), Late Devonian (at the Frasnian—Famennian stage
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<« Fig. 8.13 Few representatives of Late Ordovician brachiopods. -3 Austinella kankakensis
(McChesney), I side view, 2 pedicle valve, 3 brachial valve; 4 Catazyga headi (Billings), brachial
valve; 5—10 Hebertella sinuta (Hall), 5 brachial valve, 6 pedicle valve, 7 anterior view, § posterior
view, 9 interior of pedicle valve, 10 side view; 11, 12 Lepidocyclus sp., 11 interior of pedicle
valve, 12 interior of brachial valve; 13—17 Orthorhynchula linneyi (James), 13 posterior view, /4
side view, 15 brachial valve, 16, 17 interior of brachial valve; 18, 19 Retrorsirostra carleyi (Hall),
18 side view, 19 pedicle valve; 20-23 Plaesiomys subquadrata (Hall), 20 brachial valve, 21
interior of pedicle valve, 22 pedicle valve, 23 interior of brachial valve; 24-26 Platystrophia
crassa James, 24 brachial valve, 25 pedicle valve, 26 side view; 27, 28 Platystrophia cypha James,
27 anterior view, 28 brachial valve; 29, 32 Platystrophia ponderosa Foerste, 29 brachial valve, 30
pedicle valve, 31 posterior view, 32 anterior view; 33—36 Rasserella meeki (Miller), 33 interior of
brachial valve, 34 interior of pedicle valve, 35 brachial valve, 36 pedicle valve

boundary; ~372.2 Ma), Late Permian (252.2 Ma), Late Triassic (202 Ma), and
Late Cretaceous (66 Ma) (see Fig. 8.1).

Almost 80 % of the existing brachiopod families were wiped out (in two phases)
by the Late Ordovician (late Katian-Hirnantian; about 445443 Ma) glaciation (see
also Rasmussen and Harper 2011). However, there was recovery and subsequent
radiation. The deltidiodont groups (such as the orthids and strophomenids),
declined, thereafter. On the other hand, the spire-bearing groups (the atrypids,
athyridids, and spiriferids, together with the pentamerids), dominated, largely due to
the prevailing carbonate environment.

The climatic change at the Frasnian—Famennian stage boundary (~ 372.2 Ma;
Late Devonian) saw the demise of atrypids and pentamerids, and severely affected
the orthides and strophomenids. The spiriferids and rhynchonellids due to their
preference for deeper water habitats, survived, and staged an impressive recovery,
thereafter (see also McGhee 1996; Sokiran 2002). But the most characteristic
feature of this stage boundary event was the show of spectacular diversity by
recumbent brachiopod megaguilds, largely dominated by the productids.

Most of the ecologically and taxonomically diverse brachiopods saw their
demise in the massive Late Permian extinction event (~252.2 Ma) which also led
to the disappearance of over 90 % of all living species (see Bottjer et al. 2008).
Thereafter, disaster taxa such as lingulids dominated. However, the brachiopod
fauna later diversified and were largely dominated by rhynchonellids and
terebratulids.

Most of the remaining spiriferids and the last of strophomenids disappeared due
the Late Triassic extinction event (~202 Ma). However, the rhynchonellide and
terebratulide continued to dominate from the Permian (see Tanner et al. 2004).

Seventy percent of Chalk brachiopod faunas in NW Europe disappeared by the
Late Cretaceous event (~66 Ma). However, in the subsequent Danian (Early
Paleogene) limestone facies saw radiation that involved many of the preextinction
taxa (see also Johansen 1987, 1988).

Appendix 1 gives the list of illustrated specimens mentioning the chapter
number, species name, age, and locality along with its figure number within the said
chapter.
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Fig. 8.14 Few representatives of Late Ordovician brachiopods. /-11 Latest Ordovician
(Richmondian). /-4 Glyptorthis insculpta (Hall), 1 interior of brachial valve, 2 brachial valve,
3 interior of pedicle valve, 4 side view; 5-7 Rafinesquina loxorhytis (Meek), 5 brachial valve, 6
pedicle valve, 7 interior of pedicle valve; 8~10 Rhynchotrema dentatum Hall, 8 pedicle valve, 9
side view, 10 brachial valve; 11 Sowerbyella clarksvillensis (Foerste), interior of brachial valve.
12-23 Late Ordovician. 12 Rhynchotrema argenturbicum (White), side view; 13—15 Strophomena
neglecta James, 13 interior of pedicle valve, /4 pedicle valve, 15 brachial valve; 16-18
Strophomena planoconvexa Hall, 16 side view, 17 pedicle valve, /8 brachial valve; 19-21
Zygospira modesta (Say), 19 interior of brachial valve, 20 brachial valve, 21 side view; 22-25
Syntrophopsis magna Ulrich and Cooper, 22 side view, 23 brachial valve, 24 interior of pedicle
valve, 25 interior of brachial valve
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Fig. 8.15 Few representatives of Ordovician brachiopods. /-8 Latest Ordovician (Trentonian). /
Dinorthis pectinella Winchell and Pchuchert, pedicle valve; 2—4 Heterorthis clytie (Hall), 2
interior of brachial valve, 3 interior of pedicle valve, 4 brachial valve; 5-8 Sowerbyella
punctostriata (Mather), 5 brachial valve, 6 interior of pedicle valve, 7 brachial valve, 8 interior of
brachial valve; 9-15 Middle Ordovician. 9—13 Triplesia cuspidata Clarke; 14, 15 Dicaelosia
biloba (Linne), 14 pedicle valve, 15 brachial valve; 16—19 Late Cambrian to Early Ordovician,
Finkelburgia virginica Ulrich and Cooper, 16 brachial valve, /7 interior of pedicle valve, I8
pedicle valve, /9 brachial valve
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Fig. 8.16 Few representatives of Middle Ordovician brachiopods (except 1 which ranges from
Middle to Late Ordovician). I Strophomena nutans (Meek), pedicle valve. 2-23 Middle
Ordovician. 2 Ancistrorhyncha costata Ulrich and Cooper, brachial valve; 3, 4 Bimuria superba
Ulrich and Cooper, 3 brachial valve, 4 interior of brachial valve; 5, 6 Camerella plicata (Schuchert
and Cooper), 5 brachial valve, 6 interior of pedicle valve; 710 Christiania subquadrata (Hall), 7
pedicle valve, 8 posterior view of brachial valve; 9 interior of brachial valve, /0 brachial valve; 11,
12 Doleroides gibbosus (Billings), 11 posterior view, [2 pedicle valve; 13-16 Hesperorthis
tricenaria (Conrad), /3 brachial valve, /4 interior of brachial valve, 15 side view, /6 posterior
view; 17, 18 Opikina septata Salmon, 17 brachial valve, I8 interior of brachial valve; 19, 20
Valcourea strophomenoides (Raymond), 19 interior of pedicle valve, 20 brachial valve; 2/-24
Pionodema subaequata (Conrad); 25-27 Sowerbyites triseptatus Willard, 25 interior of pedicle
valve, 26 brachial valve, 27 interior of brachial valve
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Fig. 8.17 Few representatives of Early Ordovician brachiopods (except /-3 which ranges from
Early to Middle Ordovician). /-3 Leptellina tennesseensis Ulrich and Cooper, / brachial valve, 2
pedicle valve, 3 posterior view of the interior of brachial valve; 4—6 Nanorthis hamburgensis
(Walcott), 4 brachial valve, 5 interior of brachial valve, 6 interior of pedicle valve; 7-9
Diparelasma elegantulum (Butts), 7 brachial valve, 8 posterior view, 9 side view; 10, 11
Orthambonites eucharis Ulrich and Cooper, 10 brachial valve, /1 interior of brachial valve; 12, 13
Tetralobula delicatula Ulrich and Cooper, 12 interior of pedicle valve, /3 pedicle valve; 14, 15
Tritoechia typica (Ulrich), 14 Interarea of pedicle valve, 15 Interarea of brachial valve
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<« Fig. 8.18 Few representatives of Middle Silurian brachiopods (except / which is Late Silurian). /
Dayia navicula (Sowerby), brachial valve; 2-36 Middle Silurian. 2, 3 Atrypella shrocki Cooper
[Middle Silurian (Niagaran)], 2 side view, 3 brachial valve; 4-6 Barrandella fornicata (Hall), 4
pedicle valve, 5 side view, 6 brachial valve; 7, 8 Conchidium sp., 7 brachial valve, 8 side view; 9—
11 Cyrtia exporrecta (Wahlenberg), 9 brachial valve, /0 posterior view, /1 side view; 2
Trimerella ohioensis Meek, brachial valve: 13, 14 Dinobolus conradi Hall, 13 interior of pedicle
valve, 14 pedicle valve; 15, 16 Eospirifer radiatus (Sowerby), 15 brachial valve, 16 side view; 17—
19 Fardenia subplana (Conrad), 17 brachial valve, I8 pedicle valve, 19 posterior view; 20
Homeospira evax (Hall), brachial valve; 2/-23 Hyattidina congesta (Conrad), 2/ Divided hinge
plate of brachial valve, 22 brachial valve, 23 spiralium of brachial valve; 24-26 Meristina maria
(Hall), 24 side view, 25 pedicle valve, 26 brachial valve; 27-29 Parmorthis waldronensis
(Foerste), 27 brachial valve, 28 side view, 29 interior of brachial valve; 30, 31 Pentamerus laevis
Sowerby, 30 brachial valve, 3/ cross section with pedicle valve below; 32, 33 Rhipidium knappi
(Hall and Whitfield), 32 side view, 33 brachial valve; 34-36 Plectodonta transversalis (Dalman),
34 pedicle valve, 35 brachial valve, 36 interior of brachial valve
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Fig. 8.19 Few representatives of Silurian brachiopods. /-22 Middle Silurian. /-3 Rhynchotreta
americana Hall, I pedicle valve, 2 brachial valve, 3 side view; 4 Stegerhynchus indianense (Hall),
pedicle valve; 5-7 Stegerhynchus whitei (Hall), 5 pedicle valve, 6 brachial valve, 7 side view; 8-
10 Whitfieldella nitida (Hall), 8 side view, 9 brachial valve, 10 pedicle valve; 1113 Trimerella
ohioensis Meek (Middle Silurian, Niagaran), /1 interior of pedicle valve, 12 pedicle valve, 13
transverse section of pedicle valve; 14-17 Dolerorthis flabellites (Foerste) (Middle Silurian,
Niagaran), /4 pedicle valve, 15, 16 interior of brachial valve, 17 pedicle valve; 18-20
Stegerhynchus acinus (Hall), 18 side view, 19 pedicle valve, 20 brachial valve; 21, 22 Sieberella
roemeri Hall and Clarke, 2/ side view, 22 brachial valve; 23-30 Early Silurian. 23-25
Cryptothyrella cylindrica (Hall), 23 section showing spiralium, 24 brachial valve, 25 side view;
26-28 Dalmanella edgewoodensis Savage, 26 brachial valve, 27 pedicle valve, 28 interior of
brachial valve; 29-31 Triplesia ortoni (Meek), 29 pedicle valve, 30 brachial valve, 3/ side view
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Fig. 8.20 Few representatives of Devonian brachiopods. /-/6 Late Devonian. /-3 Atrypa
devoniana Webster, 1 side view, 2 pedicle valve, 3 brachial valve; 4-6 Cryptospirifer whineyi
(Hall), 4 pedicle valve, 5 brachial valve, 6 side view; 7, 8 Paurohyncha sp., 7 brachial valve, 8 side
view; 9, 10 Schizophoria australis Kindle, 9 pedicle valve, 10 posterior view; / /—14 Tenticospirifer
cyrtiniformis (Hall and Whitfield), /] pedicle valve, 12 brachial valve, 13 posterior view, /4 side
view; 15, 16 Theodossia hungerfordi (Hall), 15 brachial valve, 16 side view; 17-24 Middle
Devonian. 17, 18 Ambocoelia umbonata (Conrad), 17 interior of brachial valve, /8 brachial valve;
19-21 Athyris spiriferoides (Eaton), 19 brachial valve, 20 pedicle valve, 2/ side view; 22-24
Atrypa independensis Webster, 22 brachial valve, 23 side view, 24 pedicle valve
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Fig. 8.21 Few representatives of Middle Devonian brachiopods. /-5 Atrypa reticularis (Linne), 1
brachial valve, 2 interior of brachial valve showing the spiralia, 3 side view, 4 posterior view, 5
sectional view; 6 Brachyspirifer audaculus (Conrad), brachial valve; 7-9 Camarotoechia
congregata (Conrad), 7 side view, 8 brachial valve, 9 anterior view; 10 Chonetes aurora Hall,
pedicle valve; 11-14 Chonetes coronatus (Conrad), 11 interior of brachial valve, 12 side view, /3
pedicle valve, 14 brachial valve; 15, 16 Cranaena romingeri (Hall), 15 side view, 16 brachial
valve; 17, 18 Cryptonella rectirostra (Hall), 17 brachial valve, I8 side view; 19, 20 Douvillina
inequistriata (Conrad), 19 pedicle valve, 20 brachial valve; 21, 22 Cyrtina hamiltonensis (Hall), 21
pedicle valve, 22 posterior view; 23 Fimbrispirifer venustus (Hall), brachial valve; 24-26 Elytha
fimbriata (Conrad), 24 brachial valve, 25 pedicle valve, 26 side view; 27, 28 Gypidula comis
(Owen), 27 brachial valve, 28 side view
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Fig. 8.22 Few representatives of Middle Devonian brachiopods. 1, 2 Gypidula romingeri Hal and
Clarke, / interior of brachial valve, 2 brachial valve; 3-5 Hypothyridina venustula (Hall), 3
brachial valve, 4 anterior view, 5 side view; 6-9 Leptaena rhomboidalis Wilckens, 6 brachial
valve, 7 interior of pedicle valve, 8 pedicle valve, 9 interior of brachial valve; 10, 11 Longispina
emmetensis (Winchell), 10 brachial valve, /1 pedicle valve; 12, 13 Megastrophia concava (Hall),
12 brachial valve, 13 pedicle valve; 14, 15 Mucrospirifer consobrinus (d’Orbigny), 14 brachial
valve, 15 pedicle valve; 16—18 Mucrospirifer mucronatus (Conrad), 16 posterior view, /7 pedicle
valve, 18 brachial valve; 19, 20 Mucrospirifer thedfordensis Shimmer and Grabau, /9 brachial
valve, 20 pedicle valve; 21, 22 Pentagonia bisulcata (Hall), 21 brachial valve, 22 posterior view
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Fig. 8.23 Few representatives of Middle Devonian brachiopods. I Petrocrania hamiltoniae
(Hall), two specimens attached to a larger Stropheodonta shell, brachial valve; 2, 3 Platyrachella
oweni (Hall), 2 side view, 3 brachial valve; 4 Pustulina pustulosa (Hall), brachial valve; 5, 6
Rhipidomella penelope (Hall), 5 pedicle valve, 6 interior of pedicle valve; 7, 8 Spinocyrtia
granulosa (Conrad), 7 posterior view, 8 brachial valve; 9, 10 Stropheodonta demissa (Conrad), 9
interior of pedicle valve, 10 interior of brachial valve; 11, 12 Stropheodonta erratica Winchell; 13,
14 Tropidoleptus carinatus (Conrad), 13 brachial valve, 14 pedicle valve; 15-18 Trematospira
gibbosa (Hall), 15 brachial valve, 16 pedicle valve, 17 posterior view, /8 anterior view
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Fig. 8.24 Few representatives of Early Devonian brachiopods. -4 Amphigenia elongata
(Vanuxem), I brachial valve, 2 interior of pedicle valve, 3 interior of brachial valve, 4 side
view; 5-8 Anastrophia verneuili (Hall), 5 pedicle valve, 6 brachial valve, 7 interior of pedicle
valve, 8 side view; 9 Atrypina imbricata (Hall), brachial valve; 10—13 Beachia suessana (Hall), 10
interior of brachial valve, 1/ sectional view, /2 side view, /3 brachial valve; 14, 15 Brevispirifer
gregarius (Clapp), 14 side view, 15 brachial valve; 16-20 Costellirostra tennesseensis (Dunbar),
16 side view, 17 posterior view, /8 anterior view, /9 pedicle valve, 20 brachial valve; 21, 22
Costispirifer arenosus (Conrad), 21 brachial valve, 22 pedicle valve; 23 Delthyris prelamellosus
(Hall), brachial valve; 24, 25 Eodevonaria arculata (Hall), 24 pedicle valve, 25 interior of brachial
valve; 26-28 Eatonia medialis (Hall), 26 pedicle valve, 27 brachial valve, 28 side view; 29, 30
Etymothyris gaspensis (Clarke), 29 side view, 30 brachial valve
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<« Fig. 8.25 Few representatives of Early Devonian brachiopods. I, 2 Gypidula pseudogaleata
(Hall), 1 brachial valve, 2 side view; 3-5 Gypidula coeymanensis Schuchert, 3 brachial valve, 4
side view, 5 posterior view; 6 Hipparionyx proximus Vanuxem, interior of pedicle valve; 7-9
Leptocoelia flabellites (Conrad), 7 brachial valve, 8 interior of brachial valve, 9 interior of pedicle
valve; 10, 11 Meristella nasuta (Conrad), 10 side view, 1/ brachial valve; 12, 13 Metaplasia
pyxidata (Hall). 12 brachial valve, 13 interior view; 14—-16 Paraspirifer acuminatus (Conrad), 14
anterior view, 15 side view, 16 brachial valve; 17 Pentamerella arata (Conrad), brachial valve;
18-20 Platyorthis planoconvex (Hall), 18 pedicle valve, 19 interior of brachial valve, 20 brachial
valve; 21, 22 Rensselaeria marylandica (Hall), 21 interior of brachial valve, 22 sectional view; 23,
24 Rensselaeria elongata (Conrad), 23 side view, 24 brachial valve
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Fig. 8.26 Few representatives of Early Devonian brachiopods. I, 2 Rhynchospirina formosa
(Hall), / brachial valve, 2 side view; 3 Schizophoria nevadensis Merriam, pedicle valve; 5-7
Schuchertella woolworthana (Hall), 5 brachial valve, 6 pedicle valve, 7 interior of pedicle valve;
8-10 Sphaerirhynchia nucleolatus (Hall), 8 side view, 9 brachial valve, /0 pedicle valve; /1-14
Sphaerirhynchia ventricosus (Hall), 11 anterior view, 12 posterior view, /3 side view, /4 brachial
valve; 15 Trematospira multistriata (Hall), sectional view; 16, 17 Athyris spiriferoides (Eaton), 16
interior of pedicle valve, /7 interior of brachial valve; 18, 19 Strophonella ampla (Hall), 18 interior
of pedicle valve, 19 brachial valve
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Fig. 8.27 Few representatives of Mississippian brachiopods. 1-25 Late Mississippian. /-3 Avonia
oklahomensis Snider, 1 pedicle valve, 2 anterior view, 3 side view; 4-6 Chonetes oklahomensis
Snider, 4 interior of pedicle valve, 5 brachial valve, 6 interior of brachial valve; 7, 8 Brachythyris
subcardiformis (Hall), 7 side view, 8 brachial valve; 9 Buxtonia semicircularis Sutton and Wagner
(Late Mississippian, Chesteran), brachial valve; 10, 11 Diaphragmus cestriensis (Worthen) (Late
Mississippian, Chesteran), /0 side view, /1 pedicle valve; 12, 13 Spirifer arkansanus Girty, 12
brachial valve, 13 posterior view; 14—17 Dictyoclostus inflatus (McChesney) (Late Mississippian,
Chesteran), /4 posterior view, 15 interior of brachial valve, /6 side view, 17 brachial valve; 18, 19
Dielasma illinoisense Weller (Late Mississippian, Chesteran), /8 side view, /9 brachial valve; 20—
22 Nudirostra carbonifera (Girty), 20 pedicle valve, 21 brachial valve, 22 side view; 23-25 Spirifer
lateralis Hall (Late Mississippian, Meramecian), 23 brachial valve, 24 anterior view, 25 posterior
view; 26—33 Early Mississippian. 26—-28 Shumardella missouriensis (Shumard), 26 anterior view,
27 pedicle valve, 28 side view; 29, 30 Linoproductus ovatus (Hall) (Early Mississippian, Osagian),
29 side view, 30 pedicle valve; 31-33 Spirifer keokuk Hall (Early Mississippian, Osagian), 3/
brachial valve, 32 side view, 33 anterior view
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Fig. 8.28 Few representatives of Middle Pennsylvanian and Permian brachiopods. 7, 2 Late
Pennsylvanian, Derbyia crassa (Meek and Hayden) (Late Pennsylvanian, Virgilian), / brachial
valve, 2 pedicle valve; 3—/4 Middle Pennsylvanian. 3, 4 Heteralosia slocomi King, 3 brachial
valve, 4 pedicle valve; 5 Spirifer rockymontanus Marcou, side view; 6-8 Crurithyris
planoconvexa (Schumard), 6 brachial valve, 7 side view, § interior of brachial valve; 9, 10
Marginifera mauricatina Dunbar and Condra, 9 pedicle valve, 10 brachial valve; 11, 12
Mesolobus mesolobus (Norwood and Pratten); 13, 14 Neospirifer cameratus (Morton), 13 brachial

valve, 14 posterior view

Fig. 8.29 Few representatives of Late Pennsylvanian brachiopods. /-3 Chonetina granulifer »
Owen, / pedicle valve, 2 brachial valve, 3 interior of brachial valve; 4-6 Dielasma bovidense
(Morton), 4 brachial valve, 5 side view, 6 pedicle valve; 7—10 Dictyoclostus americanus Dunbar
and Condra, 7 brachial valve, 8 pedicle valve, 9 posterior view, /0 side view, /] interior of
brachial valve; 12, 13 Echinoconchus semipunctatus (Shepard), /2 brachial valve, /3 pedicle
valve; 14, 15 Marginifera lasallensis (Worthen), 14 pedicle valve, 15 brachial valve; 16-18
Juresania nebrascensis (Owen), 16 interior of brachial valve, 17 side view, I8 brachial valve; 19—
21 Meekella striatocostata (Cox), 19 brachial valve, 20 posterior view, 21 side view; 22, 23
Juresania symmetrica (McChesney), 22 pedicle valve, 23 brachial valve; 24, 25 Spiriferella
texanus (Meek), 24 brachial valve, 25 side view; 26, 27: Chonetina flemingi (Norwood and
Pratten) (Late Pennsylvanian, Missourian), 26 pedicle valve, 27 brachial valve; 28-31 Derbyia
cymbula Hall and Clarke (Late Pennsylvanian, Virgilian), 28 interior of pedicle valve, 29 posterior
view of brachial valve, 30 posterior view, 31 brachial valve; 32—34 Nudirostra carbonifera (Girty)
(Late Pennsylvanian, Missourian), 32 pedicle valve, 33 brachial valve, 34 side view; 35, 36
Linoproductus oklahomae Dunbar and Condra (Late Pennsylvanian, Missourian), 35 pedicle
valve, 36 brachial valve; 37—43 Enteletes hemiplicatus (Hall) (Late Pennsylvanian, Missourian),
37 side view, 38 brachial valve, 39 pedicle valve, 40 interior of brachial valve, 4] sectional view
normal to commissure, 42, 43 interior of pedicle valve
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Brachidium is
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Fig. 8.30 Few representatives of Permian brachiopods. ! Buxtonia peruviana (d’Orbigny),
brachial valve; 2—4 Heterelasma sp., 2 brachial valve, 3 side view, 4 interior of brachial valve; 5, 6
Leptodus americanus (Girty), 5 interior of pedicle valve, 6 interior of brachial valve; 7-9
Prorichthofenia uddeni (Bose), 7 oblique view of brachial valve, 8 interior of brachial valve, 9 side
view of pedicle valve; 10—15 Stenoscisma venustum (Girty), 10 brachial valve, //—13 interior of
brachial beak, /4, 15 spondylium; /16—18 Early Permian, Neospirifer condor (d’Orbigny), 16 side
view, 17 brachial valve, /8 interior of brachial valve showing spiralia
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Chapter 9
Class Gastropoda

9.1 Introduction

Gastropods are one of the main divisions of phylum Mollusca and include
organisms that bear a coiled [Fig. 9.1(1)] or uncoiled (Vermiform or worm-like;
[Fig. 9.1(2)] calcareous shell; few others, such as slugs, have no hard parts.
Gastropods, originally, were exclusively marine but during Mesozoic and Cenozoic
times, became adapted for life in fresh waters, and finally also enabled them to
invade dry land. However, a large majority of the group still maintained existence
in the sea. Taken together, recent and fossil species of gastropods considerably
outnumber all other species of mollusks combined.

Gastropods essentially live on shallow sea bottoms, but few have been dredged
from the ocean depths of more than 3 miles (~4.8 km). Still others swim in
near-surface waters of the open oceans far from land. Terrestrial snails are the only
mollusks that have acquired lungs, and are able to move out of water bodies. They
can climb trees and ascend mountains to an elevation of 18,000 ft (~5486 m)
above mean sea level. On the whole, gastropods are inactive animals, well char-
acterized by the adjective “sluggish,” a word derived from slug. They depend on
their shell and on their retiring habits to protect them from enemies.

9.2 Shell

The average size of a gastropod shell is ~25 mm (1 in.) in length or diameter,
though, fully grown adults range from 0.5 mm to ~60 cm (0.002 to ~2 ft).
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9.2.1 Uncoiled Shells

Uncoiled gastropods are conispiral forms (shells with coil that lie nearly or exactly
in a plane) during their early ontogeny but later change the parameters of shell
growth so that the youngest whorls cease to maintain contact [Fig. 9.1(2)].

9.2.2 Coiled Shells

Gastropods generally possess coiled shells, and in most, the plan of coiling gives
rise to or is associated with pronounced asymmetry of the body [Fig. 9.1(1)]. A few
gastropods have curved shells which define only part of a single 360° volution.
Although such shells can be said to exhibit only a tendency toward coiling, either
incipient or vestigial, they may be associated with those having a distinctly coiled
form.

9.3 Types of Coiling

Gastropod shells typically have a spirally coiled structure, and the spiral is
invariably one or other of two types: planispiral and conispiral (Fig. 9.2). The
simplest and seemingly most primitive type of gastropod coiling is that in which the
mid-line of the curved tubular shell lies entirely in a single plane—this is Planispiral
[Fig. 9.2(1-3)]. The initial turns are close to the point of origin, and the later ones
are progressively farther out from the center, following the course of a logarithmic
spiral, but the mid-line does not swerve from a plane. The half of a shell lying on
one side of the plane of coiling is the mirror image of the other half [Fig. 9.2(3)].
Such coiling is illustrated by Bellerophon and it is the normal type of coiling among
cephalopods; only few living gastropods have planispiral shells. Planispiral coiling
is thus morphologically intermediate between depressed hyperstrophic coils and the
raised orthostrophic coils [see Fig. 9.2(4-9)].

Another much more common pattern of spiral coiling in gastropods is marked by
the deviation from a plane [Figs. 9.2(4-6)]. A component of shift away from a
plane produces a form similar to that of a wire wound around a cone, from the apex
to its base. Such a spirally wound wire, representing the mid-line of the coiled
gastropod shell, defines a Conispiral form [Figs. 9.2(4-6)]. Nearly all snails have
gently to steeply sloping conispiral patterns.

Some shells coil in a depressed cone and are designated as Hyperstrophic (hy-
per = ultra; stroph = turn) [Figs. 9.2(4-6)]; the normal type of conispiral shell is
termed as Orthostrophic (ortho = erect) [Figs. 9.2(7-9)].
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Some conispiral shells are so flat that the mid-line of all turns of the coil may lie
nearly or exactly in a plane. Such shells are not planispiral, because one side is not
the mirror image of the other; they are Pseudoplanispiral [Figs. 9.2(10-12)].

The axis of coiling, in all types, is an imaginary line drawn through the origin of
the spiral in such direction that successive points outward along the spiral mid-line
of the coiled shell have a gradually (logarithmically) increased distance from any
selected point on the axis [Fig. 9.2(1, 4) and 9.2(10)]. It is the line around which the
shell seems to coil. In planispiral shells, the axis is normal to the plane of coiling
[Fig. 9.2(1)] and in conispiral shells, it runs from the apex to the center of the base
of the cone [Fig. 9.2(4) and (7)].
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9.4 Shell Orientation

Coiled gastropod shells are oriented in a consistent manner for purposes of
description and illustration. Planispiral shells ordinarily are placed with the plane of
coiling in a vertical position and the axis horizontal (Fig. 9.3). Use of the prefixes
“ad” and “ab” provides a directional terminology for describing gastropod shells;
“ad” means toward, and “ab” means away from (Fig. 9.3). Thus, adapical means
toward the apex, and abapical means away from the apex.

Planispiral shells, like that of Bellerophon [Fig. 9.2(1-3)], presumably were
carried by the snails which inhabited them with the plane of coiling vertical and the
aperture directed downward. The outer part of the aperture, farthest from the center
of coiling, is interpreted as the most posterior and an opposite point toward the head
of the animal, the most anterior (Fig. 9.3).

Conispiral shells are placed with the axis of coiling vertical and with the origin
of coiling (apex of the shell) uppermost [Fig. 9.2(7-9)]. These shells normally are
borne by living snails with the aperture directed forward and downward and the
point of the coiled shell backward. Thus, posterior means in the direction of the
aperture, as used for these shells, and anterior is toward the point of the cone
(Fig. 9.3). As such, shells are oriented in illustrations; the anterior extremity is
uppermost and the posterior part lowermost (Fig. 9.3). Some terminology to
describe shell orientation is given in Fig. 9.3.

9.5 Terminology

The general terms describing the features of a gastropod shell are briefly described
below and illustrated in Figs. 9.1, 9.2, 9.3 and 9.4.

9.5.1 Anterior: It is toward the point of the shell cone (Fig. 9.4).

9.5.2 Aperture: The opening of a gastropod shell (Figs. 9.1 and 9.3).

9.5.3 Apex: The tip of the spire of a shell (Figs. 9.1 and 9.3).

9.54 Axis: An imaginary line that runs straight from the anterior to the posterior
side of the shell (Figs. 9.1 and 9.3).

9.5.5 Basal fasciole: A shell corrugation marked by curved growth lines which
define the shift in position of the siphonal notch is termed Basal fasciole
[Fig. 9.4(2)].

9.5.6 Base: It is the extremity opposite to the Apex [Fig. 9.4(1)].

9.5.7 Body whorl: This is where the organism lives [Figs. 9.1 and 9.4(1)].

9.5.8 Callus: A localized thickened part of the inductura outside the aperture,
which may partly or entirely seal the umbilicus [Fig. 9.4(12)].

9.5.9 Canal: Semi-tubular anterior extension of aperture, enclosing siphon; at
least slightly open alongside, not closed like a pipe [Figs. 9.1 and 9.4(3)].
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Carina: Spiral keel on exterior of whorl, generally at edge of shelf.
Sharply accentuated angulation between the ramp or shelf and the surface
next to it [Fig. 9.4(5)].

Columella: Solid or perforate pillar formed by inner walls of a conispiral
shell. Shells in which the inner edges of the whorls touch the axis of coiling
have a solid rod-like center, which is termed Columella (Fig. 9.4(11)]; see
also Fig. 9.1). Shells having a narrow umbilicus are said to possess a
Perforate columella.

Columellar fold: Spiral elevation on columella produced by localized
thickening of shell [Fig. 9.4(11); see also Fig. 9.1]. Columella may be
smooth or bear spirally arranged ridges. These are Columellar folds.
Columellar lip: Part of inner lip of aperture adjoining columella [Fig. 9.4
(2); see also Fig. 9.1].

Costa: Coarse threadlike thickening of shell running spirally or axially
[Fig. 9.4(2)].

Digitation: Finger-like outward projection of outer lip of aperture [Fig. 9.4
(6)]. The outer lip of some gastropods carries projections, those which
extend inward being called teeth, and periodically formed outward
extensions being known as digitations. A few species are distinguished
by remarkably long and slender digitations, which denote unusual narrow
and attenuated temporary protrusions of the shell-secreting mantle in
building them.

Dip: Deviation of suture from a plane normal to the shell axis [Fig. 9.4(1)].
Growth lines: Marking on shell parallel to apertural margin, denoting a
former position of aperture (Fig. 9.1).

Gutter: Groove or canal at posterior extremity of aperture, in some
gastropods marking location of anal outlet. An ex-current passageway is
marked at the posterior edge of the aperture in some gastropods by a notch
or groove (gutter). This also may indicate the position of the anus [Fig. 9.4
(D]

Heterostrophy (hetero = different; strophy = turning): Abrupt change in
the type of coiling between nucleus and later-formed part of shell; this
involves change in position of the axis of coiling. Best noted in the Late
Triassic—Early Cretaceous genus Bandellina (see Bandel 1995, 1996 and
2002) [Fig. 9.4(14)].

Inductura: Layer of lamellar shell material made by the mantle along
inner lip of aperture or extending over shell surface beyond outer lip
(next-to-last whorl), characterized by smooth surface; includes callus
[Fig. 9.4(12)].

Inner lip: Margin of aperture adjacent to the next-to-last whorl; may
include parietal lip and columellar lip [Fig. 9.4(1)].

Labral outline: Shape of outer lip in view normal to aperture [Fig. 9.4(8)].
Labral profile: Shape of outer lip in view parallel to edge of aperture
[Fig. 9.4(4)].
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9.5.24

9.5.25

9.5.26

9.5.27

9.5.28

9.5.29

9.5.30
9.5.31

9.5.32
9.5.33

9.5.34

9.5.35

9.5.36

9.5.37

9.5.38

9.5.39

Lunula (plLunulae): Crescentic growth line on selenizone. The extremity
of the slit, on the side away from the aperture, is narrowly rounded, and as
the shell margin is built forward the shape of the base of the slit is recorded
by successive sharp-curved growth lines [Fig. 9.4(4)].

Neck: Constricted anterior part of body whorl of some gastropods,
exclusive of canal (Fig. 9.1).

Nucleus: Embryonic gastropod shell, commonly consisting of one to four
whorls.

Operculum: Horny or horny-calcareous plate carried on posterior part of
foot, used to close aperture when gastropod withdraws into its shell
(Fig. 9.3).

Ornamentation: Raised or depressed markings of shell surface other than
growth lines (Fig. 9.1).

Outer lip: Edge of aperture on side away from next-to-last whorl. The
outer side of the aperture, away from the shell, is the outer lip (Fig. 9.1).
Parietal lip: Part of inner lip which adjoins next-to-last whorl (Fig. 9.1).
Periphery: Part of whorl farthest from shell axis; the exterior of the shell
farthest removed from the axis of coiling (Fig. 9.1).

Peristome: Margin of whole aperture (Fig. 9.1).

Posterior: Direction backward from head of gastropod, in spiral shells
toward apex (Figs. 9.1 and 9.3).

Ramp: Sloping surface of a whorl next below a suture (= sutural ramp;
Fig. 9.1; see also [Fig. 9.4(4)]).

Rib: Well-marked linear elevation of shell surface, larger and broader than
a costa [Fig. 9.4(2)].

Selenizone (Slit band): Sharply defined band parallel to coiling of whorls,
which bears crescentic growth lines denoting a notch or slit in outer
lip. The belt of lunulae, which commonly is defined by bordering ridges,
constitutes the selenizone or so-called slit band [Fig. 9.4(4)].

Shelf: Horizontal or sub-horizontal part of whorl surface next to a suture,
bordered on side toward periphery of whorl by a sharp angulation or by a
carina (Fig. 9.1).

Shoulder: Salient angulation of a whorl parallel to coiling. An angulation
between the ramp or shelf and the surface next to it constitutes a Shoulder
(Fig. 9.1).

Sinus: Reentrant in outer lip with nonparallel sides. Other snails, including
especially many Paleozoic planispiral and conispiral genera, have an
indentation of varying depth in the outer lip which is inferred to have
served the same function as the gutter—a passageway for waste from the
anus and for water after it had bathed the gills. This indentation is called a
sinus, if it is comparatively broad, and a slit (see below), if it is narrow,
parallel-sided, and more or less deep. In a few fossil snails, the slit is
excessively deep, reaching more than half-way around the body whorl
[Fig. 9.4(15-16)].
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Siphonal notch: Reentrant at junction of outer and columellar lips
occupied by siphon. At the anterior extremity of the aperture, where outer
and inner lips meet, many advanced types of gastropods bear a groove
(siphonal notch) which may be extended along a shell outgrowth (canal)
that holds the siphon [Fig. 9.4(2)].

Slit: More or less deep, parallel-sided reentrant in outer lip, which gives
rise to a selenizone [Fig. 9.4(4)].

Spire: Coiled gastropod shell exclusive of body whorl (Fig. 9.1).

Spiral angle: Angle formed by lines tangent to two or more whorls on
opposite sides of shell; inasmuch as lines tangent to all whorls of the spire
may define a curve, spiral angle is commonly determined by drawing
straight-line tangents to lowermost whorls of spire [Fig. 9.4(3)].

Suture: Spiral line of junction between surfaces of any two whorls;
includes external sutures on outer side of shell and umbilical sutures within
umbilicus. Sutures can be of different types such as flush, impressed, or
channeled, and their inclination (Dip) may be a significant shell character
(Fig. 9.1).

Trema (pl. tremata): Perforation of shell, generally formed by periodic
closure of a slit, but occurring also at apex of some cap-shaped shells. In
some shells, like that of the modern abalone (Haliotis), the slit is
discontinuous, and unsettled openings (tremata, sing. trema) are left
behind; these function as outlets for water and waste from the shell interior
[Fig. 9.4(13)].

Umbilicus: Central cavity of a shell formed by walls on inner sides of
whorls; most common is basal umbilicus of orthostrophic conispiral shells
but also included are apical umbilicus of convolute and hyperstrophic
shells and lateral umbilici of planispiral (isotrophic) shells. All shells in
which the inner sides of the whorls lie outside the axis of coiling possess a
narrow or wide open space within the encircling whorls. This is an
Umbilicus [Fig. 9.4(9)].

Varix: Ridge, flange, or row of spines parallel to growth lines and marking
modification of shell at former position of aperture [Fig. 9.4(3)]. On parts
of the body whorl and spire behind the aperture, this may be shown
distinctly by the growth lines and in some shells also by flange-like ridges
called varices. A varix marks a former location of the aperture where a
pause in forward growth of the shell was accompanied by construction of
special apertural features. These may include digitations which have to be
cut away by resorption when growth of the body whorl brings the
functional aperture around to the position of the abandoned one. Varices on
successive whorls may be aligned, indicating rather remarkable regularity
in pulsatory building of the shell, or they may be offset, indicating
unevenly distributed pauses in growth.

Whorl: Single complete loop of a spiral shell. It is a 360° volution (a
complete turn) of the shell (Fig. 9.1).
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9.5.49 Whorl profile: Transverse contour of surface of a whorl in a plane
intersecting the axis of coiling; differs from labral profile and labral outline
(Fig. 9.1).

9.6 Shell Form

All shell forms are illustrated in Fig. 9.5. However, these twenty five types of shell
forms are by no means an end-all, as minor variations and varied combinations of
these would exist.

9.7 Classification

Gastropod classification is problematic for 3 reasons: the group possess huge
morphological and anatomical variability; the use of limited number of distin-
guishing morphological characters (in initial classification schemes) such as shape
of the shell, position of the mantle cavity, or the arrangement of various organs
(such as gills or head) and the recent knowledge of deep-sea faunas associated with
hydrothermal vents that revealed new gastropod groups with unusual anatomical
features.

The German zoologist, Johannes Thiele, integrated earlier classifications and
identified three subclasses, Prosobranchia, Opisthobranchia, and Pulmonata
(Table 9.1). The Prosobranchia were further divided into three orders,
Archaeogastropoda, Mesogastropoda, and Neogastropoda. Thiele’s system was
used by Clarkson (1993) and is given in Table 9.2.

However, the application of new methods such as transmission electron
microscopy (TEM), discovery of deep-sea hydrothermal vent faunas, and the
analyses with more morphological and developmental characters have necessitated
the need for a new classification scheme based on phylogenetic analysis using
morphological characters (Ponder and Lindberg 1997) (Fig. 9.6). The
Patellogastropoda (Docoglossa, Cyclobranchia) represents the sister group to all
other living gastropods. The former along with their coiled ancestors form a sub-
class, Eogastropoda. Others and their ancestors are placed in the subclass,
Orthogastropoda, which has four main groups of living gastropods—Neritimorpha,
Archaeogastropoda, Caenogastropoda, and Heterobranchia (Fig. 9.6). The latter
two are sister groups, united under Apogastropoda. The extant Caenogastropoda
has two orders, Architaenioglossa and Sorbeoconcha. Terrestrial Cyclophoroidea
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Table 9.1 The German zoologist Johannes Thiele’s classical three-partite classification

Class Subclass Order Age
Gastropoda Prosobranchiata Early Cambrian—Recent
Mesogastropoda Ordovician—Recent
Neogastropoda Cretaceous—Recent
Archaeogastropoda Cambrian to Recent
Opisthobranchiata Cretaceous—Recent
Pleurocoela Mississippian-Recent
Pteropoda Cretaceous-Recent
Sacoglossa Recent
Pulmonata Pennsylvanian—Recent
Basommatophora Jurassic-Recent
Stylommatophora Pennsylvanian-Recent

and fresh water Ampullarioidea form the Architaenioglossa. The mostly marine
Sorbeoconcha represents a highly diverse group.

The Heterobranchia includes Thiele’s “Opisthobranchia” and “Pulmonata,” as
well as some “prosobranch” groups, such as the Valvatoidea and Architectonicoidea.
The majority of the lower Heterobranchia (Opisthobranchia or sea slugs) are also
marine gastropods. The higher Heterobranchia (Pulmonata) form a dominant group
of terrestrial gastropods, but also occur in fresh water environments. In several
classifications, Pulmonata have been divided into three orders, Systellommatophora
(terrestrial gastropods), Basommatophora, and Eupulmonata. The ancient marine
Basommatophora have been separated into the Archaeopulmonata and the fresh
water Basommatophora into the Brachiopulmonata. The classification followed here
is given in Table 9.2.

Figures 7.22 illustrate gastropods through time mentioning their major distin-
guishing characters.

9.7.1 Class Amphigastropoda

The shells are symmetrical, non-coiled or planispirally coiled. The mantle cavity
and gills are located in posterior; primitive position (amphi = on both sides, refers
to symmetry). The Amphigastropods range from Cambrian to Permian (possibly
Triassic). They include the superfamily Tryblidiacea and possibly also the
Bellerophontacea, which together contain nine families. Both super families
appeared in the Cambrian but attained peak development during the early
Palaeozoic.
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Table 9.2 Gastropod
classification as followed here
(after Clarkson 1993)

9 Class Gastropoda

Class Amphigastropoda

Tryblidiids

Bellerophontids

Class Prosobranchia

Order Aspidobranchia

Order Pectinibranchia

Order Archaeogastropoda (or Aspidobranchs)

Suborder Rhipidoglossa

Suborder Docoglossa

Suborder Macluritids

Suborder Euomphalids

Suborder Pleurotomariids

Patellids and Cocculinids

Trochonematids and Trochids

Loxonematids and Subulitids

Naiads

Order Mesogastropoda

Superfamily Cerithiids

Superfamily Epitoniids

Superfamily Strornbids

Superfamily Tonnids

Superfamily Naticids

Superfamily Cypraeids

Superfamily Pyrarnidellids

Superfamily Calyptraeids and Hipponicids

Superfamily Nerineids

Superfamily Rissoids

Superfamily Cyclophorids, Valvatids, and Littoriaids

Order Neogastropoda

Suborder Muricids

Suborder Buccinids

Suborder Volutids

Suborder Conids

Class Opisthobranchia

Order Pleurocoela

Order Pteropoda

Order Sacoglossa

Class Pulmonata

Order Basommatophora
Order Stylommatophora
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Fig. 9.6 Gastropod classification. Recent classification scheme of living gastropods, illustrating
their phylogenetic relationships and the distribution of fresh water and terrestrial groups

9.7.1.1 Tryblidiids

These include shells ranging from high conical non-coiled shapes to very low,
partly coiled forms. All are symmetrical, and the tip of the coiled shells is pointed
forward. They range from Cambrian to Devonian.

9.7.1.2 Bellerophontids

The bellerophontids are more abundant and advanced than the Tryblidiids. Some
have an evolute, incompletely coiled shell form, whereas others are advolute,
slightly to strongly involute, or distinctly convolute. The advolute and involute
shells have a more or less open umbilicus on each side, but the convolute types lack
umbilici and only the body whorl is visible from the exterior. Generally, a slit is
present at the mid-point of the outer lip, and a selenizone can be traced along the
mid-line of the last-formed whorl by the sharply curved pattern of growth lines
(lunulae) and commonly by the slightly raised or depressed surface along the band.
Different species exhibit a considerable range of spiral and transverse markings.
The occurrence of both together produces a reticulate pattern. Peak development of
the bellerophontids is from Ordovician to Devonian.
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9.7.2 Class Prosobranchia

These have cap-shaped or conispiral shell with mantle cavity, gills in anterior
position and a neural loop twisted like a figure of eight (proso = forward; bran-
chia = gills). They range from Cambrian to Recent and are an important constituent
of the post-Palaeozoic faunas. More than half of all gastropods are prosobranchs;
there are two living orders.

9.7.2.1 Aspidobranchia (Aspido, Shield; Branchia, Gills)

These have one or two gills which bear double rows of respiratory leaflets, and the
heart contains two auricles.

9.7.2.2 Pectinibranchia (Pectin = Comb)

These have only one gill which bears a single row of leaflets, and the heart contains
one auricle. The Pectinibranch snails include both Mesogastropoda and
Neogastropoda. This class is also known as Streptoneura (strepto = twisted;
neura = nerve cord), in reference to the figure-eight pattern of their nerve cord.

9.7.2.3 Order Archaeogastropoda

The primitive form have two unequal gills with double rows of leaflets but
advanced forms have only one gill (archaeo = ancient). They range from Cambrian
to Recent. Living Archaeogastropods (or Aspidobranchs) are divided into two
suborders on the basis of the structure of the radula:

9.7.2.3.1 Rhipidoglossa (rhipido, fan; glossa, tongue):

In which the radula has rows of very numerous teeth that diverge like ribs of a
fan.

9.7.2.3.2 Docoglossa (doco, bar):

In which the radula has rows made up of a few strong teeth.

These suborders can be recognized fairly well among fossils by their shell
characters, but because the radulas are not preserved, hence many fossil genera
cannot be classified definitely in terms of the suborders.

9.7.2.3.3 Macluritids:

These important, but short-lived group (Early Ordovician—Devonian) is typified
by Genus Maclurites. Most of the shells are large. They are very low conispiral
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coils having advolute or slightly involute whorls. One side of the shell is nearly flat,
and the opposite one bears a concavity formed by the wide umbilicus.

9.7.2.3.4 Euomphalids:

Thes low-to-flat-spired snails, some hyperstrophic like the Macluritids, are
grouped under superfamily Euomphalacea. They are very abundant in the
Palacozoic and are useful index fossils. Euomphalids (Early Ordovician—
Cretaceous) peaked twice—in Devonian and Triassic by disappeared by the
Cretaceous.

9.7.2.3.5 Pleurotomariids:

Genus Pleurotomaria (Late Cambrian—Recent) has a conispiral shell charac-
terized by its moderately wide spiral angle, fairly even sides, and a somewhat
flattened base, but its most characteristic feature is a prominent slit, accompanied by
a well-defined selenizone or slit band. The selenizone extends around the outer part
of the body whorl and can be seen on spiral whorls near the sutures between whorls.
Most genera are described from the Silurian. Modern snails classed among the
Pleurotomariacea are characterized chiefly by slit-bearing, cap-shaped shells.

9.7.2.3.5.1 Patellids and Cocculinids

These are cap-shaped shells, most of which lack a sign of coiling in the adult.
They are moderately common in the Mesozoic and Cenozoic and absent from the
Palacozoic. Living genera are more than twice as numerous as those genera known
in Tertiary or Mesozoic times.

9.7.2.3.5.2 Trochonematids and Trochids

These were probably derived from Pleurotomariid ancestors. Trochonematids
are common in Devonian and other Palacozoic systems. They mostly have a
pleurotomarian shape but lack the slit and slit band. The first-mentioned group is
mainly Palaeozoic (Early Ordovician) but ranges to the close of Mesozoic, whereas
the second group is exclusively post-Palacozoic and mostly Cenozoic.

9.7.2.3.5.3 Loxonematids and Subulitids

These are distinguished by their high and narrow spire. Both make an appear-
ance in the Ordovician and persist throughout the Mesozoic; the Subulitids are the
longer lasting superfamily. The Loxonematids show a gradual increase of genera
with peak diversity in the Triassic, then followed by a quick decline.

9.7.2.3.5.4 Naiads

The superfamily Neritacea consists mostly of ovoid shells but contains some
cap-shaped forms. Deposits of callus on the inner lip and other special features of
the aperture distinguish many genera, especially the later ones. The neritids are a
minor constituent of the Palaeozoic gastropod faunas but have increased since
Permian to a present-day maximum.
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9.7.2.4 Order Mesogastropoda

These have only one gill with a single row of leaflets (Meso = intermediate). They
range from Middle Ordovician to Recent. The Mesogastropoda include consider-
ably more than half of the order, defined by characters of the gill and heart, which is
called Pectinibranchia (pectini = comb) because of the single row of gill leaflets, or
Monotocardia because of the single auricle of the heart. Living mesogastropods are
all classed on the basis of their radula structure in the suborder Taenioglossa
(taenio = band), which typically has seven teeth in each row. If we neglect half a
dozen genera from Pennsylvanian and Permian rocks, which are rather doubtfully
placed with mesogastropods, then this order would wholly be post-Palaeozoic in
distribution. It includes most known Mesozoic snails, but the number of Cenozoic
genera is far greater than those of Mesozoic age.

9.7.2.4.1 Cerithiids

Cerithiacea is one of the leading superfamily groups, characterized by very
numerous whorls and the tall, turreted form of the shell. The aperture of many, but
not all, is siphonostomatous, although the long canal is not developed. Among
genera which are especially numerous and important as fossils are Cerithium
(Cretaceous-Recent), including well-ornamented high-spired shells, and Turritella
(also Cretaceous-Recent but chiefly Tertiary), containing a host of exceptionally
tall, slender, many-whorled shells. The aberrant cerithiid genus, Vermicularia
(Cretaceous to Recent), starts growth like Turritella but soon builds its narrow shell
tube irregularly in almost any direction. Another member of the superfamily is
Vermetus (Pliocene to Recent), which is attached by the apical part of its shell in a
fixed position with the aperture pointed upward; individuals of some species grow
closely packed together in the form of gastropod “reefs.”

9.7.2.4.2 Epitoniids

The superfamily Epitoniacea somewhat resembles the cerithiids, but the shells
have round holostomatous apertures and the whorls commonly are marked by
oblique frill-like expansions. Many species have very distinctive, rather delicate
shells. They are smaller on the average than the cerithiids, and they are less
numerous. A few genera occur in Cretaceous rocks, but they are mainly Tertiary
and Recent group.

9.7.2.4.3 Strornbids

The Strombacea are an important superfamily of marine mesogastropods, which
is represented by some of the larger, more colorful shells belonging to genus
Strombus found on Florida (USA) and other sea beaches. The exterior generally
bears axial and revolving ribs and nodes. The spire is moderately elevated in turret
form, and the aperture is long, with flaring lips in the adult. The group first appeared
in the Triassic, but numerous, distinctive fossils are noted from Jurassic,
Cretaceous, and Tertiary formations. Some of these, such as Aporrhais,
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Drepanocheilus, and Anehura, from the Jurassic and Cretaceous, have very striking
digitations of the adult outer lip, which make them very distinguishable. Even more
unique in its display of long curved digitations is Pterocera, a modern strombid,
which is known as a fossil only in some Pleistocene deposits.

9.7.2.4.4 Tonnids

These late-appearing, highly organized marine mesogastropods resemble
strombids in many ways are grouped in the superfamily Tonnacea. Most of them
have a strongly siphonostomatous aperture, and they are rather strongly sculptured.
The shells are medium to large, with the body whorl predominating greatly over the
spire. Several genera are characterized by the strong development of varices, which
tend to be aligned on the whorls.

9.7.2.4.5 Naticids

These are a conservative assemblage of ovoid to globose marine snails having
nearly smooth shells that mostly is only an inch or two in diameter. They span from
Triassic to Recent. Many of them bear a prominent callus deposits that modifies the
configuration of the inner lip and tends to close the umbilicus. The naticid shells are
very common in some Tertiary formations.

9.7.2.4.6 Cypraeids

The brilliantly polished, mostly very smooth-surfaced “cowry shells” that bear
no visible spire as adults and possess a long, narrow apertural slit on one side are
members of Cypraeacea. They occur as fossils in Cretaceous and Tertiary rocks but
have not been found in older deposits. They are exclusively marine gastropods of
world-wide distribution that have their peak development at the present time.

9.7.2.4.7 Pyrarnidellids

The high-spired marine snails called pyramidellids closely parallel the cypraeids
in number of genera represented by fossils and in geologic distribution, but they are
far less conspicuous because a majority of them are less than 0.5 in. in height.
Indeed, the adults of many species range from 0.04 to 0.10 in., being appropriately
classifiable as microfossils.

9.7.2.4.8 Calyptraeids and Hipponicids

These are two quantitatively less prominent assemblages of marine mesogas-
tropods (Cretaceous to Recent), but they are structurally distinctive, especially in
the development of internal platforms for muscle attachment. Also, a few genera,
such as Calyptraea and Crepidula, the latter commonly known as the “slipper
shell,” are well represented.

9.7.2.4.9 Nerineids

The superfamily Nerineacea includes Jurassic and Cretaceous gastropods, many
of which draw attention on account of their exceptional form, for the height of the
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shell may be more than 20 times the diameter of the body whorl. The spiral angle is
so small that the sides of the spire are nearly parallel. The most distinctive feature of
the nerineids, however, is their internals that can be seen only in broken shells or by
making sections. When cut in half longitudinally, the inner walls of the whorls are
found to bear projections which run spirally from the aperture to the apex, or nearly
to it. Some shells are umbilicate, whereas others have a strong columella. The spiral
ridges occur in both, and they produce varying cross sections of the whorl interiors
from genus to genus.

9.7.2.4.10 Rissoids

A numerically important but otherwise rather unimpressive division of the
mesogastropods comprises the Rissoacea. They include a few fresh water forms,
but most of them live in the sea. The shells are small, and a large majority of them
have a height-range of 0.5-1 in. They have slightly rounded conical outlines and a
holostomatous aperture which generally lacks a rim. The shell surface is smooth or
moderately sculptured. A few genera have been recorded from Jurassic and
Cretaceous rocks. The main development of the group is in Tertiary and Recent.

9.7.2.4.11 Cyclophorids, Valvatids, and Littoriaids

Superfamilies composed mainly of fresh water mesogastropods, but include
some that are at home in brackish waters or live along coasts in the zone between
high and low tides, are grouped together here. They have low conical to nearly flat
coiled shells which are smooth or moderately sculptured, mostly with axially dis-
posed ribs. The aperture is Holostomatous. Except few doubtfully genera of
Pennsylvanian and Permian, the group is wholly post-Palaeozoic, having maximum
development in Tertiary and Recent.

9.7.2.5 Order Neogastropoda

Neogastropoda (order; neo = new, recent) have a gill structure like that of the
Mesogastropoda but have a siphonostomatous aperture, and typically provided with
a well-developed canal. The range from Cretaceous to Recent and are less diverse
than Mesogastropods. The Neogastropods comprise the more progressive, highly
specialized Pectinibranchs, and as represented by living genera, are equivalent to
the suborder Stenoglossa (steno = narrow), as they have a radula in which only one
to three teeth occur in each row. Fossil Neogastropods are grouped in four super-
families: Muricacea, Buccinacea, Volutacea, and Conacea.

9.7.2.5.1 Muricids

This group of Neogastropods is distinguished especially by the prominence of
the canal that extends forward from the aperture and by the absence of columellar
folds. The surface is strongly sculptured, and many shells bear knobby or spinose
varices. Although Muricids were first noted in the Cretaceous, the majority of forms
come from Tertiary.
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9.7.2.5.2 Buccinids

The shells are mostly spindle-shaped and less strongly sculptured than the
Muricids. The Buccinids have a long or short canal, and generally, the columella
lacks folds. They range from the Cretaceous to Recent.

9.7.2.5.3 Volutids

These are characterized by egg-shaped to fusiform shells that mostly somewhat
sculptured; some may bear fairly strong axial or spiral ribs and a few have knobby
spines along the shoulders of the whorls. A well-developed canal may be present, or
the anterior edge of the aperture merely contains a siphonal notch. The columella is
generally marked by spiral folds. Many common living marine snails belong in this
group. Athleta, Cancellaria, Harpa, Liopeplum, Oliva, Olivella, Volutoderma, and
Volutomorpha are important constituents of various Cretaceous and Tertiary faunas.

9.7.2.5.4 Conids

The shell form of Conus, which gives this superfamily its name, is readily
distinguished from that of other Neogastropods, because the elongate body whorl
tapers evenly, with straight or gently curved sides, from the widest part of the shell,
at the shoulder of the body whorl, to the anterior extremity. The spire may be
moderately elevated or nearly flat, but it has a conical form, and the shell as a whole
may be described as biconical or obconical. The aperture is slit-like. The conids
occur rarely in the Cretaceous, but their number expands greatly in the Tertiary.

9.7.3 Class Opisthobranchia

Shell reduced in size, commonly internal or absent; mantle cavity and gill, where
present, in rear position as a result of twisting back from prosobranch condition, gill
commonly absent, being replaced by respiratory structure developed in the mantle
or entire outer surface; neural loop not crossed in figure-eight (opistho = back-
ward). The Opisthobranchs ranges from Pennsylvanian to Recent are exclusively
marine form, and are much less important in the fossil record when compared with
other classes. They possess diverse shell-less forms; only two groups have hard
parts and hence, capable of preservation, the Pleurocoela (that live in shallow seas,
like most Prosobranchs), and the Pteropoda (open-ocean pelagic snails).

9.7.3.1 Order Pleurocoela

Shell, mantle cavity, and gill present. They range from Mississippian to Recent. The
Pleurocoela have conispiral shells; some are subglobular or ovoid in outline, others
rather high conical with a rounded base, and still others biconical or obconical.
A few have thick shells. Some are very delicate and ill-suited for preservation.
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A few genera, such as the fairly common and widely distributed Actaeonina, are
recorded from Mississippian to Recent. However, a large majority of them are
restricted to the Mesozoic and Cenozoic.

9.7.3.2 Order Pteropoda

Slender conical shell present or absent; lack distinct head, foot modified as paired
wing-like fins for swimming; gills present (ptero = wing; pod = foot). They range
from?Cambrian-?Permian; Cretaceous-Recent. The Pteropods (wing-footed swim-
ming gastropods), are generally elongated and bilaterally symmetrical. Only part of
this group is provided with a shell, but the majority are naked. Both kinds swarm in
many portions of the open sea. The calcareous covering of shelled forms is very
thin and may be transparent. They are mostly very small, less than a half inch in
length, and shaped like a very narrow straight-sided cone, but a few are spirally
coiled. Some have flattened shells provided with lateral keels, and the aperture may
be covered by a thin operculum. Abundance of pteropod shells in deep-sea deposits
is the basis for calling them pteropod ooze. A widely distributed pteropod-like fossil
in Cambrian rocks, and recorded at many places in Ordovician and Silurian strata, is
termed Hyolithes. The genus occurs sparingly in younger Palacozoic deposits as
high as Permian. The shell has an elliptical or subtriangular cross section and
narrows from the aperture to a sharp point. The surface is smooth or marked by fine
longitudinal striations. An operculum fits over the aperture. That this fossil is really
a gastropod has been doubted, for conceivably it belongs to some other, entirely
extinct group of invertebrates. Fossils which are identified certainly as pteropods
range from Cretaceous through Pleistocene, and these are a good deal smaller than
most specimens of Hyolithes. Discovery of a Middle Cambrian Hyolithes in the
Burgess shale of western Canada, which not only has the operculum joined to the
aperture but shows two symmetrical impressions projecting laterally in the position
of the paired wing foot of the pteropods, suggests that this ancient fossil belongs to
Pteropods. If this is true, the range of the order is Cambrian to Recent. However, the
Burgess Shale fossils do not at all prove the pteropod affinities of Hyolithes.

9.7.3.3 Order Sacoglossa

Shell lacking except in larval stage; no gills; unknown as fossils. Stratigraphic range
is Recent.

9.7.4 Class Pulmonata

Mostly shell-bearing but lacking an operculum; neural cod not in form of figure of
eight; mantle cavity modified as an air-breathing lung (pulmo = lung). Next to the
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Prosobranchs, Pulmonate gastropods are the most numerous. Although they range
from Pennsylvanian to Recent, they are quite common in Tertiary deposits. They
are adapted to fresh water and terrestrial modes of living, and hence supplement
marine invertebrates in furnishing paleontological materials for zonation and cor-
relation of the rock column, inasmuch as they occur where marine shells are
lacking. Pleistocene stratigraphy of the non-glaciated part of the Great Plains
(USA) has been worked out reliably in recent years mainly because it has been
found possible to differentiate and correlate widely distributed Pulmonate gastropod
faunas within the sediments.

9.7.4.1 Order Basommatophora

Fresh water Pulmonates having eyes at the base of posterior tentacles (bas = base;
ommato = eye; phora = carry). They range from Jurassic to Recent. This group is
invariably provided with shells that range in shape from moderately elevated cones
with rounded bases to discoidal forms, all classifiable as conispiral. A few
left-handed genera, such as Physa, are very common, but most shells are dextral
(right-handed). The aperture is holostomatous, and the inner lip is smooth or bears
spiral folds. Callus deposits near the umbilical opening, if present, are inconspic-
uous or lacking, and accordingly most shells are either phaneromphalous or
anomphalous, the latter possessing a columella. Genera represented by fossil shells
belong to Basommatophora; this group assignment is based either by studying the
soft parts of living representatives, or by the comparison of shell with that of some
living member of the order.

9.7.4.2 Order Stylommatophora

These terrestrial Pulmonates have eyes at the tip of posterior tentacles (stylo =
stalk). They range from Pennsylvanian to Recent. These land snails include many
shell-less forms; others have thin to moderately thick calcareous conispiral shells
that range from very low-spired to steep-sided, high-spired forms. Majority forms
have many whorls, generally but not always, more than among basommatophorans.
They are small to medium in size, averaging about 0.5 in. in length or width. The
aperture, which mostly has a rather evenly rounded outer lip, has a thin peristome or
bears a thickened rim. Tooth-like projections of the inner lip, and in some shells, in
the outer lip also, modify the appearance of aperture. Pupidae are characterized by
such features, and because of their close resemblance of some Pennsylvanian
non-marine gastropods to modern Pupa, these Palaeozoic fossils are judged to
belong among the Stylommatophorans.
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9.8 Geological History and Distribution

The geological range of the Gastropoda is from Early Cambrian to Present. The
oldest gastropod, Aldanella attleborensis (Shaler and Foerste), comes from basal
Tommotian (~525-521 Ma; see Peng et al. 2012 for chronology) in northern
Siberia and Newfoundland strata; it is an mm-sized, low trochospiral, and dextrally
coiled shell (Figs. 9.1, 9.10). Gastropods are not common in the Cambrian, but at
least nine families of amphigastropods and archaeogastropod prosobranchs are
noted that include non-coiled cap-shaped forms, and planispiral, orthostrophic
conispiral, and hyperstrophic conispiral shells (Fig. 9.7; Cambrian forms). The
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Fig. 9.7 Early to Late Cambrian gastropods and their major distinguishing characters
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Fig. 9.8 Middle and Late Ordovician gastropods and their major distinguishing characters
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Fig. 9.9 Early Ordovician gastropods and their major distinguishing characters

beginning of the amphigastropods and all main divisions of the early Prosobranchs
are recognized within the Cambrian strata, itself.

Ordovician records a great diversity; forms belonging to families that previously
were in the Cambrian and 14 additional ones. Nearly all of these are confined to the
Palaeozoic rocks. Eight additional families of archaeogastropods appeared in the
Silurian strata, two in the Devonian, one in the Mississippian, and three in the
Permian (Figs. 9.8, 9.9, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, 9.19,
9.20, 9.21 and 9.22).
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Fig. 9.10 Middle Silurian gastropods and their major distinguishing characters

The Mesogastropods range through Mesozoic rocks but increase in the
Cenozoic, whereas Neogastropods are confined to Cretaceous and post-Cretaceous
deposits. All but a few superfamily groups of these two orders are more abundant
today than at any time in the past.

The Opisthobranch gastropods are recorded from Mississippian to Recent. If the
narrow conical Hyolithids are pteropods, which is very doubtful, the Opisthobranch
group is as old as Cambrian. The Opisthobranchs are far outranked by Prosobranchs
in paleontological importance.
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Fig. 9.11 Early and Middle Devonian gastropods and their major distinguishing characters
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Fig. 9.12 Early and Late Mississippian gastropods and their major distinguishing characters

The Pulmonate gastropods are late arrivals, due to their evolutionary advance-
ment in being adapted to life on land. A few forms belonging to this class seem to
be represented among the Pennsylvanian fossils, but the main geological record
comes from the Cenozoic. Modern faunas include nearly 1000 genera of
Pulmonates. Thus, they seem to be at the peak of their development.
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Fig. 9.13 Middle and Late Pennsylvanian gastropods and their major distinguishing characters
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Fig. 9.14 Late Pennsylvanian and Permian gastropods and their major distinguishing characters
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Fig. 9.15 Early, Middle and Late Jurassic gastropods and their major distinguishing characters

Appendix 1 gives the list of illustrated specimens mentioning the chapter

number, species name, age and locality along with its figure number within the said
chapter.
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Fig. 9.16 Early and Late Cretaceous gastropods and their major distinguishing characters
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Fig. 9.17 Late Cretaceous gastropods and their major distinguishing characters
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Fig. 9.18 Late Eocene gastropods and their major distinguishing characters
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Fig. 9.19 Late Eocene gastropods and their major distinguishing characters
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Fig. 9.20 Late Eocene gastropods and their major distinguishing characters
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Fig. 9.21 Pliocene-Pleistocene gastropods and their major distinguishing characters
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Fig. 9.22 Pleistocene gastropods and their major distinguishing characters
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Chapter 10
Corals

10.1 Introduction

Corals belong to Phylum Cnidaria (Ni-dd-ri-a: corals, sea anemones, hydra, jelly-
fish, sea fans, and the Portuguese man-of-war) that contain stinging cells
[Cnidoblasts: variously referred to as Nematocyte or Cnidocyte; Fig. 10.1(1)]
commonly located in tentacles. The tentacles are the extension of the Ectoderm
(=outer Epidermis). A cnidoblast (stinging cell) is an explosive cell containing a
secretory organelle or cnida for prey capture and as a mechanism of defense from
predators. Although, many corals appear to be a single organism (a corallite), are in
fact a colony of many individual (corallum), and yet with genetically identical coral
polyps [Fig. 10.1(2)].

The Cnidarians have two basic body plans: swimming medusae and sessile
polyps [Fig. 10.1(3)], both are radially symmetrical with mouths surrounded by
tentacles that bear cnidocytes. The polyp is somewhat cylindrical [Fig. 10.1(3)]
with a body wall surrounding the Enteron [Fig. 10.1(3)], and an oral disk (or
surface) in which a central mouth is surrounded by one or more circlets of tentacles,
consisting of a basal disk [Fig. 10.1(4, 5)] commonly attached to a substrate. The
body wall of a polyp is divided into an inner Gastrodermis (Endoderm) and an outer
Epidermis (Ectoderm), and separated by a third layer, the gelatinous Mesogloea
[Fig. 10.1(3)]. Coral polyps have a ciliated Pharynx [Fig. 10.1(5)], a tube extending
from the mouth down into the Enteron [Fig. 10.1(3)]. Radiating vertical partitions
in the enteron are called Mesenteries [Fig. 10.1(4, 5)] and these are attached to the
body wall of the polyp and the oral disk. Some of the mesenteries are also attached
at their inner ends to the pharynx and these are said to be complete; others are not,
and are accordingly called incomplete; mesenteries consist of an infold of gastro-
dermis enclosing the mesogloea [Fig. 10.1(3-5)]. The position and number of
mesenterial pairs can be deduced in fossil corals as skeletal partitions (septa) grow
upward in positions corresponding to the space between the mesenteries of each
pair. The arrangement of early mesenteries in the larva defines a plane of symmetry
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Fig. 10.1 Coral morphology. I Corals contain stinging cells called Cnidoblasts (often referred
as Nematocyte or Cnidocyte) are located in tentacles. The tentacles are extension of the ectoderm,
the outer epidermis. 2 The internal structure of a Corallum. 3 The two basic body plans of a
Cnidarian—the swimming medusae and sessile polyp. 4 Sectional view of anthozoan polyp
showing the pharynx and radially arranged mesenteries that characterize anthozoan polyps.
5 Sectional view of a young solitary Scleractinian coral. 6 Top view of a corallite showing septae
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by which all other adult structures are oriented. Subsequent mesenteries appear in
couples symmetrically about the plane in a definite sequence, position, and number
that forms the basis of classification into different subclasses and orders (see also
Hill 1956, 1981; Wells 1956; Moore 1956; Oliver and Coates 1987; Clarkson
1998).

10.2 Classification

Class Anthozoa are exclusively marine solitary or colonial polyps that differ from
other Cnidarians in lacking the medusoid stage (see Table 10.1). Geologically the
anthozoans are important as their polyp produces calcified skeletons that are pre-
served as fossils. The anthozoans are divided into two subclasses, Octocorallia and
Zoantharia. The Octocorallia (octocorals or soft corals) have a poor fossil record but
are well represented in modern seas. The Zoantharia are common as fossils and are
divided into three orders; the Tabulata, Rugosa, and Scleractinia (see also
Table 10.1). Most of the fossils of these orders are referred informally as “corals.”
Class Anthozoa is divided into three subclasses—Ceriantipatharia, Octocorallia,
and Zoantharia. Only Zoantharia are considered here (see also Table 10.1). Their
general characteristics are given in Fig. 10.2.

10.2.1 Subclass Zoantharia (“Corals”; Cambrian-Recent)

This exclusively marine subclass includes corals (with skeletons) and sea anemones
(without skeletons). Most Zoantharia are colonial and reef builders, living as deep
as 90 m in the present oceans (Piper 2007). However, some solitary forms live as
deep as 1000 m whereas rare occurrences are even noted at the depth of trenches
(~6000 m) (Broadhurst and Simpson 1972). Zoantharia prefer warm shallow seas
and are attached to pebbles or boulders when the current is strong or to different
substrates such as sand patches when the current is weak. There are eight extinct
orders based on differences in their skeletal structure, septal arrangement, and mode
of colony formation (Oliver 1980, 1996); all have calcitic skeletons, except for
Kilbuchophyllida and Numidiaphyllida that were probably aragonitic (Scrutton
1997).

Three orders are detailed here namely Rugosa, Tabulata, and Scleractinia (see
also Table 10.1). The epithecal wall, radial septa, and tabulae are central to a coral
structure and its classification; these vary in number and in prominence, thus,
separating one order from the other (see Fig. 10.2).

Each coral skeleton, the Corallum [Figs. 10.1(2) and 10.3(1)], is composed of
relatively few characters. Common to all corals is Epitheca, the outer wall
[Fig. 10.3(1)] which is often irregular in form and has a rough (rugose) texture,
usually with a series of incremental growth bands on its surface [Fig. 10.2(1)].
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Table 10.1 Simplified classification of Phylum Cnidaria

Phylum Cnidaria
* Tissue-grade organisms
« diploblastic metazoa with radial, biradial or radial bilateral symmetry lacking a through gut
or anus; tentaculate, equipped with specialized stinging cells (cnidoblasts or nematocysts).
* Generally polymorphic.
Class Hydrozoa
* Radial or tetrameral symmetry
* polypoidal stage dominant
« typically colonial and polymorphic
* hydrocorallines (fire coral) Tertiary to Recent (Milliporina and Stylasterina)
« trachylines (entirely medusoid) ?Jurassic to Recent
« siphonophores (complex medusoid colonies lacking hard parts), Ordovician to Recent
« actinulids
Class Scyphozoa
* predominantly marine and medusoid
* radial tetrameral symmetry
« thick mesoglea
« fission and strobilation
* no velum
« Ediacaran to Recent
Class Anthozoa
* marine
* no medusoid stage, always possess a stomodaecum
Subclass Ceriantipatheria
* no fossil record
Subclass Octocoralla
* horny branching skeletons, commonly spiculate or with calcified core,
anastomosing branches, includes gorgonians, eight tentacles on polyps.
* Pennatulacea are also present in Ediacaran faunas, first spicules are Ordovician,
good gorgoneans first appeared in Cretaceous.
Subclass Zooantheria
« includes unmineralized anemones
Order Tabulata
« Calcite corallum, invariably colonial, individual corallites small,
prominent tabulae, septae reduced or commonly absent
* Early Middle Ordovician through Permian
Order Rugosa or Tetracorallia
« Calcite corallum, solitary or colonial, septal insertion in quadrants.
commonly forming a biradial symmetry, epitheca normally present
and commonly rugose
» Middle Ordovician (Blackriveran) to Permian
« proseptum divided into cardinal (C) and counter (K) septae; alar (A)
septae are next inserted adjacent to the cardinal septum; counter-
lateral (KL) septae are then inserted next to the counter septum
« fossulae occur because of lack of metaseptae inserted in later growth
stages adjacent to cardinal or alar septae.
Order Scleractinia or Hexacorallia
* Aragonite corallum, solitary or colonial, septal insertion between
directing mesentaries in multiples of six
» Middle Triassic to Recent
¢ Probably evolved from unmineralized Zoantherian after the Permo-
Triassic extinction event
 hermatypic forms with Zooxanthellae
« reef ecology hinges around Zooxanthellae (largely governed by photic
zone, temp constraints, latitudinal restrictions, etc.)

Shaded portion is detailed in this book (see text for explanation)
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Heliophyllum halli Heliolites interstinctus Montlivaltia
Edwards and Haime (Linne) nattheimensis
Milaschewitsch

Coral group Rugose Tabulate Scleractinia
Features
Growth mode colonial and solitary colonial colonial and solitary
Speta 6 prosepta; later septas septa weak or absent 6 prosepta; later

in only 4 spaces septas in all 6 spaces
Tabulae usual well-developed absent
Skeletal material calcite calcite aragonite
Stability poor poaor good with basal plate
Range Ordovician-Permian Ordovician-Permian Triassic-Recent
Colonial Low High Low to very high
integration

Fig. 10.2 Identification key for the three main groups of hard corals showing their distinctive
morphology

These growth bands are added by the polyp which secretes the shell at its junction
with the top surface of the skeleton, the Calice [Figs. 10.1(2) and 10.3(1)]. Each ¢
the polyp and the skeleton. In solitary (individual) corals an individual calice takes
up the whole of the corallum surface [Figs. 10.1(2) and 10.3(1)]. In colonial
(compound) corals there may be many corallites, each with its own calice serving
one of the many polyps of the colony [Fig. 10.1(1)].

In all the three coral orders, some of the interior structural elements within the
coral skeleton are not developed; only Tabula and Septa are (singular: Tabula and
Septum, respectively). The Tabulae [Figs. 10.2 and 10.3(1, 6, 12)] approximate to
the horizontal that are added as the coral grows upwards; they represent the
development of successive calices with growth of the coral. Septa [Fig. 10.3(2-5)]
are vertical walls that are radially arranged so that they extend inwards from the
inner wall of the epitheca [Figs. 10.3(1, 2)]. Septa supports mesenteries, the folded
inner surface of the enteron [Fig. 10.1(4, 5)]. With continued coral growth, more
septa are added radially [Fig. 10.3(3-5)]. The pattern of septal additions is
important to the classification of a coral type (Fig. 10.2).

The most complex of all corals, the Rugose corals [Fig. 10.2(1)], have two
additional structural components to their skeleton—Axial complex and
Dissepiments [Fig. 10.3(5, 6)]. The Axial complex is characteristic and comprises
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Fig. 10.3 Rugose coral morphology

of an array of features, ranging from a single column of calcite [the Columella;
Fig. 10.3(13)] to a series of net-like and web-like structural elements [Fig. 10.3(5)].
The Axial complex (sometimes also mentioned as the Axial structure) generally
occupies the central axis of the corallum [Fig. 10.3(5)]. The Dissepiments are
generally restricted to the outermost part of the shell’s interior, close to the interior
of the outer wall, the epitheca [Fig. 10.3(6)]. They serve as a junction between the
tabulae and the interior of the epitheca, thereby improving the fit of the polyp to the
calice [Fig. 10.3(6)].
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Coral shapes are highly variable (Figs. 10.4 and 10.5), as also their modes of
colony formation [Fig. 10.4(23-30)]. The corallites can be arranged in certain
pattern, thus aiding in their classification. Major types of colony formation are
enumerated in Table 10.2 and illustrated in Figs. 10.4 and 10.5.

As mentioned above, rugose, tabulate and scleractinian corals contribute to the
fossil record. Both rugose and tabulate corals are characteristic of the Palaeozoic but
were wiped out in the end-Permian extinction; to be replaced by scleractinians,
sometime in the mid-Triassic. The scleractinians continued to proliferate to the
present day. The general characteristics of these three fossil groups are briefly given
below.

10.2.1.1 Rugose Corals

The rugose corals:

are extinct, solitary, and colonial and are relatively complex.

have calcite corallum, tabulae, septa, dissepiments, and an axial complex.

have dissepiments organized into a special area called the Dissepimentarium.

have a variable axial complex.

have septal insertion in quadrants.

have biradial symmetry; the epitheca is generally present and is mostly rugose.

have proseptum divided into cardinal (C) and counter (K) septae; the Alar

(A) septae are next that are inserted adjacent to the cardinal septum. The

counter-lateral (KL) septae are then inserted next to the counter septum.

e have fossulae due to the absence of metaseptae; the latter are inserted in later
growth stages adjacent to the cardinal or alar septae.

e have septae that are inserted in four specific areas, forming gaps called Fossulae,

with the development of a bilateral symmetry.

The Rugose corals are also called “Tetracoralla” or “Horn corals” due to their
unique horn-shaped chamber with a wrinkled or rugose wall or epitheca [Figs. 10.2
(1) and 10.3(1)]. The solitary ones are generally horn-shaped and hence, called
“Horn corals” (such as the Carboniferous genus Zaphrentites). The colonial types
commonly possess hexagonal corallites. These individual corallites are either fused
together forming massive colonies (compound coralla) or remain separate to form
fasciculate colonies. The solitary corals range in diameter from few mm in length to
14 cm, with a height of almost a meter. Some colonies are as big as 4 m in
diameter.

Internally, the rugose coral skeleton is composed of tabulae and septae, but the
skeleton characteristically possesses an axial complex, and a zone of dissepiments
(dissepimentarium) around the outer edge of each corallite (Fig. 10.3). It is perhaps
these two characteristics, more than any other, which helps distinguish the rugose
corals from the other two skeletal types (Fig. 10.2). The axial complex is unique to
rugose corals [Fig. 10.3(5, 6)] and consists of modifications of the major septa to
form a column [the columella; see Fig. 10.3(13)] as in Siphonodendron, or
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Table 10.2 The corallites can be arranged in certain patterns, thus aiding in their classification

Major modes of colony | Characteristics

formation

Cerioid The corallites are juxtaposed, but each corallite retains its own wall
[Fig. 10.4(29)]; massive corals that have corallites sharing common
walls

Dendroid The corallites branch from each other in a dendritic pattern
[Fig. 10.4(29)]

Fasciculate The corallites are cylindrical but not in contact. They may be

dendroid [with irregular branches; Fig. 10.5(20)] or phaceloid [with
more or less subparallel corallites with connecting processes;

Fig. 10.5(18)]

Flabelloid The corallites are arranged in a single series, in long meandering
rows or valleys that share a common base, but the walls (or ridges)
of adjacent valleys are not connected [Fig. 10.5(12)]

Flabello-meandroid Corallites are arranged in long meandering rows with a common

(=flabellate) base; the walls may be partially fused [Figs. 10.4(28) and 10.5(13)]

Hydrophoroid Coral that possess cone-shaped protuberances between corallites
[Figs. 10.4(24) and 10.5(17)]

Meandroid The corallites are arranged in multiple series; the adjacent valleys
share the same ridge [Figs. 10.4(23) and 10.5(14, 15)]

Phaceloid The corallites separated by a void space; the walls are distinct and
separated by coenosteum [Figs. 10.4(26) and 10.5(18)]

Plocoid These are short stalked and isolated corallites, and separated by
coenosteum [Figs. 10.4(25) and 10.5(10)]

Solitary The corallum is formed by a single corallite (one individual)
[Figs. 10.4(2-6), 10.5(1, 2)]

Subplocoid The corallites are sometimes separated by the coenosteum; each

corallite possess its own wall

Thamnasterioid The septa of adjacent corallites are confluent and often twisted or
sinuous in form; plating coral with no walls surrounding corallites
[Figs. 10.4(27) and 10.5(16)]

modifications of the tabulae to form a broad axial zone, as in Aulophyllum [see
Fig. 10.3(5)]. Dissepiments are found in Scleractinians, but in rugose corals these
are concentrated into a Dissepimentarium [Fig. 10.3(6)].

Each rugose corallum has a bilateral symmetry imposed by the mechanism of
septal insertion through the growth or ontogeny of a single individual [Fig. 10.6(1)]
(see also Nield and Tucker 1985; Doyle 1996; Clarkson 1998). As the coral grows,
septa are inserted regularly at four specific points. The first is a single septum, the
proseptum, which divides the corallite into two. With additional growth, the
proseptum is divided into two: the cardinal (C) and counter (K) prosepta [Fig. 10.6
(1.1)]. Continued growth is noted along a set pattern with additional septa insertion;
first, on either side of the cardinal septum [Alar septa; A; Fig. 10.6(1.2)], and
second, on either side of the counter septum [counter-lateral septa; KL; Fig. 10.6
(1.3)]. Further insertions of smaller septa are then made adjacent to each of the four
alar and counter-lateral septa together [Fig. 10.6(1.4)]. Insertion of further septa
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arranged in certain pattern, thus, aiding in their classification



328 10 Corals

TIPS 12 Flabelioid

Solitary
; fungoid ..Iff{{{{;g;%{f.{\“m,
S0
. “‘*“‘"“ Flabellate
. sl
Solitary
/’@ 2 Gitached
&\ 3 Discoid
e iscoi
I ™ 3
14
Patellate Meandroid
4
15
5 calceoloid Meandroid
Pachyseris type
6 Pyramidal 16
Thamnasterioid
7 Turbinate
Hydrophoroid
17
Trochoid 18
8 Phaceloid
Phaceloid
Fasciculate
9 Ceratoid
Phaceloid
19

Fasciculate
Dendroid

Cylindrical ~ Scolecoid

Structural diversity of corals (basic types)

Fig. 10.5 The structural diversity of Corals (shapes continued from Fig. 10.4)



10.2 Classification 329

forces a readjustment of their position to make room, and crowding together in the
four insertion points eventually leads to the creation of areas which are free from
septa, the Fossulae [Fig. 10.6(1.5, 1.6)]. Although it is often difficult to identify
fossulae in many rugose corals, the most noticeable is the Cardinal fossula adjacent
to the cardinal septum [Fig. 10.6(1.6—-1.7)], particularly well developed in the
Carboniferous genus Zaphrentites (see also Nield and Tucker 1985; Doyle 1996;
Clarkson 1998). This pattern of septal insertion, leading to a strong bilateral
symmetry is unique to rugose corals, and distinguishes them from the scleractinians
which have a radial pattern of septal insertion [see Fig. 10.6(1.2)].

Thus, the main items of classificatory importance among the rugose corals are
(a) details of septal pattern, (b) presence or absence of tabulae, dissepiments, and
carinae, (c) presence or absence of an epitheca and (d) shape of the corallite (see
also Nield and Tucker 1985; Doyle 1996; Clarkson 1998).

10.2.1.2 Tabulate Corals

The tabulate corals:

are always compound and relatively simple.

e have variable colony shapes, most commonly with polygonal or rounded
corallites surrounded by a dense calcareous mass (brain-coral-like); with indi-
vidual corallites joined in a kind of chain, forming the “fence” (picket
fence-like); or forming simple branching corallites.

e possess calcite corallum that is mostly colonial; individual corallites are small.

e possess tabulae that are prominent; the septae are reduced or commonly absent.

e possess only tabulae as major internal shell features.

The Tabulate corals are characterized by the reduction of septa and the relative
prominence of the horizontal elements in their structure (the tabulae). The indi-
vidual corallites are small and open (mm sized), but their colonies are often a meter
(m) across. The closely packed corallites (=the “honeycomb” arrangement) and the
presence of mural pores (that in some corals [Favosites; see Middle Silurian corals;
Fig. 10.12(11, 12)]) indicate that some degree of colonial integration was present in
tabulate corals. Even in Syringopora [see Middle Silurian coral; Fig. 10.12(13)], a
fasciculate form, cross-linking tubes have been recorded.

10.2.1.3 Scleractinian Corals

The Scleractinian corals:

e are compound or solitary; compound corals may be massive (brain-coral-like);
arranged in linear series; branching; or composed of subparallel, cylindrical
corallites

e possess aragonitic corallum
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<« Fig. 10.6 Septal growth. I As growth proceeds, the metasepta are introduced between the
prosepta in a regular fashion. The process of insertion can be investigated by taking serial sections
along the corallum. Here, we see the six primary septa. Note how the metasepta are then inserted at
four separate points, coming to lie on either side of the cardinal septum as well as on the “counter”
side of each alar septum. Detailed analysis of similar sequences is vital to the fine taxonomy of
these fossil corals. The early portion of the corallite consists of a nonseptate cup. Septa (vertical
partitions) are added two at a time until a total of six (designated Protosepta) is present. The six
protosepta are identified as Cardinal (C), Counter (K), Alar (two in number; A), and
Counter-lateral (two in number; KL). Secondary septa are later added in cycles of four, one
septum in each of the quadrants on either side of the cardinal septum, secondary septa appear after
progressively branching off both sides of the cardinal septum. In the counter quadrants, between
the alar and counter-lateral septa, secondary septa are added by branching off the counter side only
of the alar septa. Counter-lateral septa lose their distinctive appearance and come to resemble the
secondary septa. The primary and the secondary septa are termed Major septa. Minor septa are
short septa between major septa that do not follow the rules of insertion outlined above. Most
rugose corals will have an equal number of major and minor septa. 2 Comparative septal growth
between Rogose and Scleractinian corals (see text for details)

e possess tabulae and septa, but no dissepimentarium or axial complex
have septa which are inserted radially in regular groups of six, with no fossulae.
are hermatypic forms with Zooxanthellae; their reef ecology hinges around
Zooxanthellae (photic zone, temp constraints, latitudinal restrictions, etc.)

e evolved from the unmineralized Zoantherian, post the Permo-Triassic extinction
event

The Scleractinians (Fig. 10.7), like rugose corals (from which they probably
evolved), can be either solitary or compound; the former have a less complex
skeleton (see also Nield and Tucker 1985; Doyle 1996; Clarkson 1998). The
scleractinians possess an aragonite skeleton whereas the rugosan’s skeleton is made
of calcite. The scleractinians possess tabulae and septae together with dissepiments,
but lack the axial complex or dissepimentarium (Fig. 10.7). Septal insertion is less
complex than in Rugosa. The scleractinians are often referred to as “hexacorals”
because the septal insertion is regular and in multiples of six which results in a
radially symmetrical corallite [Fig. 10.6(1.2)]. Like the Rugosa, they also have six
prosepta in the calyx. Subsequent metaseptal insertions, are, however, in multiples
of six [Fig. 10.6(1.2)]. The septa are closely associated with messentaries of the
endoderm. Solitary polyps may be large (up to 25 mm across), but in compound
forms they average about 1-3 mm in diameter. Both corallite morphology and the
coenosteum among them are distinguishing characters for assigning species names
(see also Nield and Tucker 1985; Doyle 1996; Clarkson 1998).

The scleractinians owe their success partly to being able to cement themselves
down, and partly to their ability to fuse polyps. But the major element in their
success has been their symbiotic relationship with nonmotile Dinoflagellates. The
Dinoflagellates are photosynthesizing microorganisms that live in the endodermal
cells and are usually referred to as Zooxanthellae. Being plant-like, these manu-
facture food from CO, and sunlight, and they probably donate some of the products
to their hosts. But the dinoflagellate and the coral both require phosphorus to grow,
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Fig. 10.7 Morphology of Scleractinian corals

and this element is rare in sea water. However, it is noted that the two partners
recycle their phosphorus from one to the other, hence ensuring that there is little lost
to the environment. Most significant of all (from a geological viewpoint) is that the
removal of CO,, by photosynthesis eases the precipitation of calcium carbonate.
Scleractinia can actually calcify ten times more quickly by day than by night, when
photosynthesis cannot occur. But this symbiosis only works if the coral lives in the
photic zone of the upper ocean. In fact, it is found that corals which grow in reefs
(the hermatypic corals) are also those in which the symbionts are found (Fig. 10.8).
Hermatypic corals are ecologically restricted to waters of precise salinity, temper-
ature and clarity in tropical seas. Ahermatypic corals (which are non-reef-forming
and lack zooxanthellae) are much less particular. They can exist at depths of
6000 m and survive temperatures as low as 1 °C. They are mostly solitary, and
some even live in icy but clean waters.
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10.3 Terminology

A brief alphabetically arranged glossary of morphological terms employed for

description of Rugosa, Scleractinia, and Tabulata is given below. Note that as many

terms are applied to 2 or more of these ordinal divisions of the Zoantharia, wherever
need the classification of terms is indicated as Rugosa, Scleractinia, and Tabulata.

10.3.1  Ahermatypic: Not reef-forming corals (Fig. 10.8).

10.3.2 Alar fossula: Relatively prominent interseptal space developed in
position of an alar septum or adjoining it on side toward counter septum
[Rugosa; Fig. 10.6(1.4)].

10.3.3  Alar septum (symbol, A): One of two protosepta located about midway
between cardinal and counter septa, distinguished by insertion of newly
formed metasepta on side facing counter septum [Rugosa; Figs. 10.3(3, 4)
and 10.6(1.2)].

10.3.4 Apical end: It is the pointed proximal extremity of a corallite where
growth begins [Fig. 10.3(2)].

10.3.5 Axial boss: It is the central prominence in calyx formed by an axial
structure [Fig. 10.3(5)].

10.3.6  Axial structure: A collective term used for various longitudinal
structures (be it a solid or spongy rodlike columella or an axial vortex)
in the axial region of a corallite, typically consisting of or in various
combinations: adaxially extended septa, septal elements more or less
detached from septa proper (e.g., median plate), pali, paliform lobes, a
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styliform axial rod, tabular modifications, dissepimental structures, and
tabellae [Rugosa, Scleractinia; Figs. 10.1(5) and 10.3(5, 13)].

Axial: With reference to corallite oral-aboral axis [Fig. 10.1(6)].

Basal disk: Aboral fleshy part of coral polyp, typically subcircular in
outline (see oral disk, basal plate) (Scleractinia) [Fig. 10.1(3-5)].

Basal plate: Thin, initially formed part of corallite from which septa
begin to be built upward [Scleractinia; Fig. 10.1(5)].

Calice: A cup-shaped depression on the corallite’s oral surface [Rugosa,
Scleractinia; Figs. 10.1(2) and 10.3(1)].

Calycal platform: Part of calice floor having a sub-horizontal plane or
outwardly sloping (everted) form; generally surrounds a calicular pit
[Rugosa; Fig. 10.3(7)].

Calyx: A cup shapes structure in which the polyp sits and secreted by the
lower portion of the polyp [Fig. 10.3(2)].

Cardinal fossula: Relatively prominent interseptal space developed in
position of cardinal septa (See closed fossula, open fossula, also other
types alar, counter) [Rugosa; Figs. 10.3(1, 3) and 10.6(1.6)].

Cardinal quadrant: It is the part of thecarium between cardinal septum
and either of alar septa [Fig. 10.3(3)].

Cardinal septum (symbol, C): Protoseptum in plane of bilateral
symmetry of a corailite, distinguished from other protosepta by insertion
of newly formed metasepta adjacent to it on both sides (Sec other types:
alar. counter, counter-lateral) [Rugosa; Fig. 10.3(3—4) and 10.6(1.6)].
Carina: Flange-like elevation on side of septum formed by thickened
trabeeula [Rugosa; Fig. 10.3(8)].

Ceratoid: Very slenderly conical, horn-shaped solitary corallite [Rugosa,
Scleractinia; Figs. 10.4(4) and 10.5(9)].

Cerioid: Massive corallum in which walls of adjacent polygonal corallites
are closely united (Rugosa, Scleractinia, Tabulata) [Figs. 10.4(29) and
10.5(11)].

Coenenchyme (=Coenosarc): It is a collective term for both eoenosteum
and coeoosarc; in compound anthozoans, it is the mesogloea that
surrounds and unites the polyps [Scleractinia, Tabulata; Fig. 10.1(2)].
Coenosarc: This is a common soft tissue connecting coral in a colony
[Fig. 10.1(2)].

Coenosteum (-a) [or peritheca (-ae)]: The skeleton between corallites
within a colony [Scleractinia; Fig. 10.1(2)].

Coenosteum: These are skeletal deposits formed between individual
corallites of a colony [Scleractinia; Fig. 10.1(2)].

Coensarc (=peritheca): This is the living axial part of a coral colony
[Scleractinia; Fig. 10.1(2)].
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Columella (-ae): A central axial (solid or non-solid calcareous) structure
within a corallite formed by various modifications of inner edges of septa;
commonly projects into calice in the form of a calicular boss [Rugosa,
Scleractinia; Figs. 10.1(2), 10.3(13) and 10.7(1)].

Corallite: This is the exoskeleton formed by an individual coral polyp
within a colony [Rugosa, Scleractinia, Tabulata; Figs. 10.1(2), 10.3(2, 7)
and 10.4(1)].

Corallum: Exoskeleton of a coral colony or solitary coral [Rugosa,
Scleractinia, Tabulata; Figs. 10.1(2), 10.3(2, 7) and 10.4(1)].

Costa (-ae): extension of a septum on the outer side of a corallite wall; a
rib or rib-like structure [Scleractinia; Fig. 10.1(2)].

Counter septum (symbol, K): Protoseptum opposite cardinal septum in
position (see other types: alar, cardinal, counter-lateral) [Rugosa;
Figs. 10.3(3) and 10.6(1.1)]

Counter-Lateral septum (symbol, KL): One of 2 protosepta that adjoin
counter septum on either side (see other types: alar, cardinal, counter)
[Rugosa; Fig. 10.6(1.3)].

Cyanotheca: Inner wall formed by sharp deflections and union of tabulae
Dissepiment: Small domed plate forming a cyst-like enclosure in
peripheral region of a corallite [Rugosa, Scleractinia, Tabulata;
Fig. 10.3(6)].

Dissepimentarium: Peripheral zone of corallite interior occupied by
dissepiments [Rugosa, Scleractinia; Fig. 10.3(6)].

Ectoderm: Outer layer of oral and basal disks, tentacles, and column wall
of coral polyp [Fig. 10.1(2)].

Edge zone: Fold of body wall of coral polyp extending over edge of wall
[Scleractinia; Fig. 10.1(5)].

Endoderm: Inner layer of outer body walls of coral polyp and occurring
as a double lamina in mesenteries [see ectoderm, mesogloea; Fig. 10.1
31

Endotheca: Collective term for dissepiments inside corallite wall
[Scleractinia; Fig. 10.1(2)].

Enteron: It is the intestine or gut of an organism [Fig. 10.1(3)].
Epidermis: External epithelium of a coral polyp and coenenchyme
derived from the ectoderm [Fig. 10.1(3)].

Epitheca: Sheath of skeletal tissue laterally surrounding a corallite
comprising extension of basal plate [Rugosa, Scleractinia, Tabulata;
Fig. 10.3(1)].

Fossa: [Fig. 10.7(5)].

Fossula: Interseptal space distinguished by its unusual shape and size (see
types; alar, cardinal, counter, closed, open) [Rugosa; Figs. 10.3(6)].
Gastrodermis: The tissue lining the stomach [Fig. 10.1(3)].
Hermatypic: Reef-forming corals (Fig. 10.8).
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10 Corals

Holotheca: It is the wrinkled lamina deposited by colonial corals to cover
base of corallum [Fig. 10.3(7)].

Interseptal ridge: The external surface of the theca may be either
smooth, or show longitudinal grooves and ridges. Grooves correspond in
position to the septa and are called septal grooves (in Rugosa corals). The
bulging out of the polyp wall between the septa forms a ridge, called the
Interseptal ridges. The longitudinal ridges are extensions of the septa
through the wall, and the grooves correspondingly indicate interseptal
positions (in Hexacoralla) [Fig. 10.3(2)].

Lamella: These are short longitudinal plates within the axial region
[Fig. 10.3(5)].

Major septum: One of the protosepta or metasepta (see minor septum)
[Rugosa, Scleractinia; Fig. 10.3(4)].

Massive: Corallum composed of corallites closely in contact with one
another (Rugosa, Scleractinia, Tabulata; Fig. 10.4).

Mesentery: Fleshy radially disposed lamina (a fold of the peritoneum)
attached to inner surface of oral disk and column wall of a coral polyp
[Scleractinia; Fig. 10.1(4, 5)].

Mesogloea: Noncellular jellylike middle layer of outer walls and
mesenteries of coral polyps [see ectoderm, endoderm; Fig. 10.3(3)].
Metaseptum: One of the main septa of a corallite other than protosepta,
generally distinguished by their extension axially much beyond that of
minor septa (see major septum) [Rugosa, Scleractinia; Fig. 10.3(4)].
Minor septum: One of the relatively short septa that commonly are
inserted between adjacent major septa [Rugosa, Scleractinia; Fig. 10.3
@]

Mural pore: Circular or oval small hole in wall between adjoining
corallites, as in some tabulates [Tabulata; Fig. 10.12(11, 12)].
Nematocyst: Stinging or adhesive body characteristic of cnidarians
[Fig. 10.1(1)].

Oral disk: It is that part of the polyp through the center of which the
mouth opens, including peristomal tissue and tentacles. [Fig. 10.1(5)].
Peritheca: the living tissue surrounding or between corallites
(=coenosarc) [Scleractinia; Fig. 10.3(1)].

Pharynx: [Fig. 10.1(4, 5)].

Polyp: It is the fundamental structural unit of an anthozoan [Fig. 10.1(1)].
It consisting of a sac-like cylindrical body, a basal (aboral) disk and an
oral disk bearing mouth and tentacles [Fig. 10.1(1)].

Septal cycle: All septa belonging to a single stage in ontogeny of corallite
as determined by order of appearance of septal groups, 6 protosepta
comprising first cycle and later-formed exosepta and entosepta in
constantly arranged succession being introduced in sextants
(Scleractinia; Fig. 10.6).
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Septum (-a): These are radially arranged vertical partitions within a
corallite. They can be exsert, insert or even, with respect to the corallite
wall and occurring between or within mesenterial pairs (Rugosa,
Scleractinia, Tabulata) [Figs. 10.1(2, 4, 5), 10.3(2) and 10.7(1)].
Solitary: Corallite of polyp not forming part of a colony [Rugosa,
Scleractinia; Fig. 10.7(1, 9)].

Stereozone: Peripheral or subperipheral in position, this is an area of
dense skeletal deposits in a corallite (Rugosa, Scleractinia, Tabulata)
[Fig. 10.3(5)].

Stomodaeum: Esophagus-like tubular passageway or pharynx leading
from mouth of coral polyp to gastrovascular cavity [Fig. 10.1(2)].
Synapticulum (-ae): Small rods or bar connecting opposed faces of
adjacent septa and perforating mesenteries between them [Scleractinia;
Fig. 10.1(6)].

Tabella: Small subhorizontally disposed plate in central part of corallite
forming part of an incomplete tabula (Rugosa, Tabulata) [Fig. 10.3(5)].
Tabula (-ae): Transverse partition of corallite, nearly plane, or upwardly
convex or concave, extending to outer walls or occupying only central
part of corallite. These are horizontal partitions that allow for upward
growth of a polyp by isolating the surface from the underlying calcium
carbonate skeleton [Rugosa, Scleractinia, Tabulata; Figs. 10.1(5), 10.3(1,
6) and 10.7(3)].

Tabularium: Axial part of the interior of a corallite in which tabulae are
developed [Rugosa, Scleractinia, Tabulata; Fig. 10.3(6)].

Tentacle: Movable tubular extension of soft integument rising from oral
disk of coral polyp, closed terminally at tip, commonly simple but rarely
forked [Fig. 10.1(1-4)].

Trabecula: These are pillar of radiating calcareous fibers comprising
skeletal element in the structure of septum and related components
[Rugosa, Scleractinia, Tabulata; Figs. 10.3(9) and 10.7(5)].

Transverse division: Formation of new coral polyps by separation of
parent by splitting into two parts transverse to oral-aboral axis
(Scleractinia) [Fig. 10.1(6)].

Wall [or theca (-ae)]: Skeletal deposit inclosing column of polyp and
uniting outer edges of sepia; it is variously formed in different corallites
(see septotheca, paratheca, synapticulotheca) [Scleractinia; Figs. 10.3(1),
10.1(5) and 10.7(1, 2, 4)].

Zooxanthella: Symbiotic unicellular yellow-brown protistan in endoderm
of hermatypic coral polyps.
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10.4 Coral Reefs

Coral reefs proliferate in the warm waters (25-30 °C) of the mid-latitudes (between
30°N and 25°S) where the water is strongly illuminated by sunlight. In areas, where
much of the sunlight is filtered out (deep waters between 50 and 100 m), the
number of reef-building coral species is greatly reduced, and at greater depths
(>100 m), most reef builders disappear (Fig. 10.8).

Corals are divided into two major ecological groups. Some corals contain
numerous tiny, microscopic, brownish colored spheres (single-celled symbiotic
algae called zooxanthellae) in their endodermal tissues that require sunlight for
photosynthesis. Some corals do not these and hence, disappear in absence of
sunlight. This basic difference in their light requirements, categorizes them into
hermatypic or reef-building corals and ahermatypic or Non-reef-building corals
(Fig. 10.8), respectively.

The hermatypic types grow faster and deposit mineralized skeletal materials at a
much more rapid rate than the ahermatypic types. Although these two groups are
the primary constructors of the reef framework, many other attached organisms
contribute their skeletal materials, as well. Some of these secondary framework
constructors include hydrozoan corals in the orders Milleporina and Stylasterina,
Heliopora, and Tubipora in the anthozoan orders Coenothecalia and Stolonifera,
encrusting foraminifers, bryozoans, attached gastropod and bivalve molluscs, cal-
careous sponges, and a few ahermatypic scleractinian corals. Also included are
coralline algae that cements various corals together with compounds of calcium,
and tube worms and molluscs that donate their hard skeletons (Cousteau 1985).

Reef-building (or hermatypic) corals, especially those belonging to order
Scleractinia (“Stony corals”) are largely responsible for establishing the framework
of reefs (Fig. 10.9). They are important today and were also in the past due of their
extraordinary ability to calcify. The tiny coral polyps produce calcium carbonate
(CaCOs) that form reefs. Interestingly, huge CaCOj5 deposits, some with important
hydrocarbon reserves, owe their origin to ancient coral reefs. The rate at which
CaCQOgs; is laid down varies from species to species; stony coral colony can increase
in height or length (and hence, in CaCO3) by as much as 10 cm a year (similar to
the growth of a human hair), whereas, other corals, like the dome and plate species
are more bulky and may only grow 0.3-2 cm per year (Ross 2007).

The Tabulate corals have contributed to the Palaeozoic reef formation (Fig. 10.9)
and were accompanied by the stromatoporoids, to which they were subordinate in
reefs that grew in vigorous, shallow waters (Fig. 10.9). Deeper-water reefs tend to
have a greater proportion of tabulates. Forms such as Halysites [see Fig. 10.12(1)]
were characteristic of areas with very high sedimentation; their mode of
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Fig. 10.9 The history of Reef habitat. There are two subhabitats—nutrient-rich and nutrient-poor.
Until the Cambrian, Archeocythids, Stromatolites, and Thrombolites occupied the nutrient-poor
environments whereas the nutrient-rich niche remained unoccupied. Serious reef-building started
only in the Late Ordovician and dominated during Silurian-Devonian times. Carboniferous was
essentially vacant, and by Permian, was occupied by calcified sponges and bryozoans. By Middle
Triassic, the scleractinian corals occupied the long vacant nutrient-poor ecospace again and since
have been major reef builders for the rest of the Mesozoic and Cenozoic times
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construction allowed fast growth to keep ahead of burial. Moreover, corallites at the
center of the colony could clean themselves and dump the material into the shafts
between the interlocking palisades. Tabulates were unable, however, to cement
themselves to their substrata—a disability that put them at a severe disadvantage in
reef habitats (Fig. 10.9). In general, the Palacozoic reefs were built predominantly
by tabulates in conjunction with other reef-building, non-cnidarian organisms, such
as stromatoporoids and bryozoans; rugose corals, only played a subordinate role
(Fig. 10.9).

Most extant reefs have been growing for over 5000 years, spanning more than
100 countries and occupying more than 600,000 km” of tropical oceans. They
require clear, warm waters with high intensity of light for growth and are thus
limited to shallow waters, with maximum abundance between 10 and 30 m below
the sea surface (Fig. 10.8). Reefs thrive in nutrient-poor environments and thus, any
small changes in the nutrient content of the water adversely affects their survival
(Fig. 10.9). Coral reefs also exert considerable control both on global climate and
the marine environment, particularly in the recycling of carbon. The Great Barrier
Reef, off the NE coast of Australia, is the largest (80 miles wide and 1200 miles
long) and the most famous extant reef. The fossil reefs, prolific in the Silurian and
Devonian and from Late Triassic to late Tertiary (Fig. 10.9), were largely confined
to low latitudes. Best examples include those in the Alps (Triassic), Western
Australia and Canada (Devonian). The Canadian reefs form important petroleum
reservoirs because of porous limestones that result from reef growth.

10.5 Geological History

The Cambrian yields scarce tabulae-bearing coral-like fossils (“skeletal organisms
resembling tabulatomorph corals”; Grotzinger et al. 2000; Wood et al. 2002). But
the first real evidence of the tabulate corals is found in the Ordovician, when they
first radiated (Fig. 10.10). The rugose corals also appeared in the Ordovician, and
together they became common components of the Palaecozoic marine ecosystem
(more so in Silurian-Devonian duration). The end-Devonian extinction severely
affected both tabulate and rugose corals, although the latter recovered and became
common in the Carboniferous (Fig. 10.10). But the next major mass extinction of
the Permian, proved too much for them; they were completely wiped off as also a
great many reef-dwelling organisms.

Most Tabulates are of no special stratigraphic value, though certain forms are
useful markers, such as the Pleurodictyum which is restricted to the Early
Devonian.
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The Rugose corals, originating in the Ordovician (Fig. 10.10), also rose to
prominence during the Silurian. They continued to diversify through the Devonian.
It is during this time that slipper coral Calceola [Fig. 10.13(4, 5)] appeared, an
excellent marker for the Middle Devonian. In the Carboniferous the rugose corals
reached their acme, and are used as zonal indices. However they, like the tabulates,
eventually died out—not, in this case, at the end of the Permian, but shortly after.

The first of the scleractinians appeared in the Triassic, replacing the rugose and
tabulate corals, and since then remained the most important skeletal coral
group. Their origin is still debated, and involves two possible routes. The first
involves direct derivation from the rugose corals. However, there are two problems:
no evidence of an intermediate between the two groups, and there is a considerable
time gap from the last appearance of the rugosa in the late Permian to the first
appearance of the scleractinians in the mid-Triassic. The second possibility is that
the scleractinians were derived from a soft-bodied anthozoan ancestor, such as a sea
anemone, via a route involving the creation of a mineralized skeleton. However,
little evidence exists to substantiate either hypothesis, also. The Scleractinia,
evolved possibly from the Rugosa, and dominated the Mesozoic and Cenozoic
scene (Fig. 10.10). They developed along two lines, the reef-building hermatypic
corals living in symbiosis with algae, the zooxanthellae; and the deeper water
ahermatypic corals, without zooxanthellae. The hermatypic corals flourished in the
later part of the Cenozoic, producing a great phase of reef development which has
continued, with some interruption, to the present day (Fig. 10.9).

The scleractinians are not of much stratigraphic use, but they can build reefs
ranging from very small atolls to massive structures on the scale of continents. The
Great Barrier Reef, off the east coast of Australia, is even visible from space!
Within these diverse and often enormous structures, the plasticity of coral growth
and the distinct ecological zones into which they fall, are striking. An understanding
of coral ecology is important in the interpretation of their environment, and the
great reservoir potential of reefal build-ups and has led the oil industry to finance
much research into this complex field.

Selected corals species characteristic of a particular time interval are illustrated
in Figs. 10.11, 10.12, 10.13, 10.14, 10.15, 10.16, 10.17, 10.18, 10.19, 10.20, 10.21
and 10.22.

Appendix A gives the list of illustrated specimens mentioning the chapter
number, species name, age, and locality along with its figure number within the said
chapter.
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Fig. 10.11 Selected Ordovician corals and their major distinguishing characters
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Fig. 10.12 Selected Middle Silurian corals and their major distinguishing characters
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Fig. 10.13 Selected Middle Silurian corals and their major distinguishing characters
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Fig. 10.14 Selected Early Devonian corals and their major distinguishing characters
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Fig. 10.15 Selected Early Devonian corals and their major distinguishing characters
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Fig. 10.16 Selected Late-Middle Devonian corals and their major distinguishing characters
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Fig. 10.17 Selected Late Mississippian corals and their major distinguishing characters
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(Mather) Moore and Jeffords

Fig. 10.18 Selected Pennsylvanian corals and their major distinguishing characters
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Moore and Jeffords

9
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Moore and Jeffords

Lophophyliidium dunbari
Moore and Jeffords

Palaeosmilia schucherti Heritsch

Fig. 10.19 Selected Early and Late Permian corals and their major distinguishing characters
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Fig. 10.20 Selected Triassic-Jurassic corals and their major distinguishing characters
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Compound corals

Solitary corals

Strotogyra
undulata (Reuss)
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Roemer
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oIS Roemer —
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(Mantell)

Cretaceous corals

Fig. 10.21 Selected Cretaceous corals and their major distinguishing characters
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Fig. 10.22 Selected Cenozoic corals and their major distinguishing characters
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