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Preface

This project emerged from three simple facts: (i) Certain species of tephritid fruit
flies are among the world’s most notorious pests of commercially important fruits
and vegetables; (ii) trapping these flies is vital to identifying infestations, control-
ling detected populations, and establishing guidelines for international transport of
agricultural commodities; and (iii) despite its central role, there exists no compre-
hensive repository of factual or theoretical material relating specifically to trapping
issues for economically important Tephritidac. While the editors (and we assume
many of the authors) would admit to a scientific fascination with this group of
insects, production of a volume devoted strictly to trapping of a relatively small
number of pest species reflects, not just this scientific curiosity, but also the serious
impact these pests have on global commerce. As Aldo Malavasi notes in his
Introductory Remarks, every major fruit and vegetable growing county in the
world maintains some program relating to surveillance and control of tephritid
fruit fly pests. Thus, trapping issues concern scientists, regulatory agencies, and
trade organizations in countries of every continent, from Australia and Brazil
through the alphabet to Yemen and Zimbabwe.

We thank all the authors for their contributions, which were produced without
financial compensation. Collectively, they exhibited a spirit of industry, coopera-
tion, and patience that smoothed the task of editing. We extend special thanks to
A. Malavasi, who graciously provided introductory remarks. TS also thanks
J.C. Stewart, who allowed him time to initiate and complete this project.

Each chapter was reviewed by at least one editor and at least one external
reviewer. We extend deep appreciation and gratitude to the following individuals,
who served as reviewers: R. Dowell, J. Duan, R. Duthie, W. Enkerlin, Y. Gazit,
S. Geib, T. Holler, P. Kendra, L. Leblanc, A. Liebhold, N. Manoukis,
A. Manrakhan, D. Mclnnis, M. De Meyer, D. Midgarden, S. Myers, A. Norrbom,
J. Pifiero, J. Rojas, D. Rubinoff, M. San Jose, D. M. Suckling, S. Thornsbury,
M. Virgilio, T. Yamanaka, B. Yuval, and J. L. Zavala Lopez.

We also thank those who graciously provided the photos appearing in the
preceding gallery.
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viii Preface

Our goal was to produce a comprehensive synthesis of tephritid-centric trapping
issues, and accordingly the topics included are far-ranging and address lures and
traps, population ecology and detection, suppression and eradication strategies, and
regulatory issues. We hope we have achieved this goal and that this volume proves
useful for years to come.

Waimanalo, HI, USA Todd Shelly
Miami, FL, USA Nancy Epsky
Hilo, HI, USA Eric B. Jang
Vienna, Austria Jesus Reyes-Flores

Hilo, HI, USA Roger Vargas



Introductory Remarks

From an economic point of view, true fruit flies are, by far, the most important
insect family attacking horticultural crops. Tephritid flies cause both direct losses
and also indirect losses as their presence can result in major international trading
constraints. Total damage caused in all production, harvesting, packing, and mar-
keting worldwide is estimated to amount to more than 2 billion dollars annually.
Their economic and trading importance is so high that in every fruit growing
country there is at least one unit dedicated to fruit fly detection and control under
the National Plant Protection Organization.

In this context, an essential issue is to determine the density and distribution of
fruit fly populations in the field. In all cases, fly populations vary from zero to high
numbers, depending on many factors, but mainly host availability and climate
conditions. All this critical information, obtained mainly through trapping, is
required to design the most effective strategies in order to suppress or eliminate
the population.

The big challenge for researchers and managers of action programs is to choose
the best trapping system available for a particular growing area or region and for a
specific fruit fly species or group of species. Four critical parameters are involved:
trap type, fly attractant, trap density, and service interval. Once such parameters are
defined, the operation and logistics of the surveillance network need to be planned
to provide the most accurate possible estimates of the actual fruit fly populations in
the field — whether an orchard or vegetable field, natural vegetation or an urban
area, or an area-wide landscape that includes a mosaic of these different types of
areas.

Defining the optimal trap type and fly attractant is an endless task. Both by
chance or by active search, many researchers in all countries are deeply involved in
developing more effective, selective, inexpensive, and easier to handle combina-
tions of trap and attractant. A huge number of solutions can be found in the
literature or in local/regional fruit fly manuals. However, there is a worldwide
effort to harmonize the solutions in order to have comparable data that can be
internationally recognized.
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X Introductory Remarks

The fruit fly trapping system selected affects a wide range of stakeholders and
interests, from the government officer in charge of a detection program, to the
grower that needs to know the population density in his orchard to start control
measures, and up to the packers and trading partners who import or export horti-
cultural products.

With the ever increasing invasive process linked to globalization, resulting in the
movement of exotic fruit flies to all corners of the world, reliable detection pro-
grams are essential to plant protection services with the responsibility to safeguard
their countries from unwanted new fruit fly pests.

Furthermore, many exporting programs must have in place an efficient trapping
system to help both growers and inspectors make the right decisions regarding the
fresh fruit to be exported. Also, in cases of a systems approach, where a low resident
adult population is acceptable, the monitoring of fruit flies is a critical issue to
guarantee the quality of the commodity. In countries or regions considered fruit fly
free, an essential component is a surveillance system to demonstrate to trading
partners the absence of the target species.

In conclusion, the establishment of a trapping system should take into consid-
eration many elements from natural history to genetics and modeling, from design
to cost and logistics, from international plant protection standards to international
trade, and this exhaustive book will be an extremely valuable source of information
for all readers in this respect.

Many experts with deep knowledge and actual field experience on fruit fly
trapping contributed to this book. Here, for the first time, very valuable information
often not found in the refereed literature is consolidated, reviewed and synthesized,
not only for the fruit fly community — fruit fly technical officers, plant protection
inspectors, trappers in charge of surveillance and managers that need to update their
trapping program — but also for common growers and academic researchers with
interest on fruit fly biology. The editors of this book are commended for their
comprehensive effort.

Biofabrica Moscamed Brazil, Juazeiro, BA, Brazil Aldo Malavasi
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Introduction



Chapter 1
Fruit Fly Alphabets

Todd E. Shelly

Abstract The routine operations associated with tephritid fruit fly programs are
divorced from the workings of the underlying science on traps and lures, which has
developed more haphazardly through the work of individual researchers. Addition-
ally, all trapping outcomes are probabilistic, rendering data interpretation problem-
atic. Mark-release-recapture studies have proven valuable in providing estimates of
minimum detectable population sizes for invasive fruit fly species. Both intra- and
interspecific variation in lure/trap responsiveness demand further investigation, as
the notion that “one trap/bait combination fits all” is probably not maximally
effective.

Keywords Trapping program ¢ Detection probability ¢ Incipient populations e
Trimedlure « Ceratitis capitata » Mark-release-recapture ¢ Trapping sensitivity e
Male lures * Food baits * Fly responsiveness

In early morning, the working space of the fruit fly surveillance program resembles
a war room. A dozen workers are organizing and entering data on trap captures
from yesterday’s work. A few more are organizing supplies for today’s routes.
Another is on the phone trying to locate a replacement for a sick employee.
Encapsulating this whole process — its magnitude, its importance, its military feel —
is a large wall map of the surveyed region divided into regular grids, each bordered
with thick red lines and prominently numbered as a distinct sampling unit. Thousands
of grids, tens of thousands of traps, each checked every 2 weeks, each with bait
replenished every 6 weeks, all year long, year after year. The daily movement starts:
trappers check their supplies, grab their lunch, and drive away singly in their trucks to
run their daily routes. The room is empty. Data collection has begun.

T.E. Shelly (P<)
USDA-APHIS, 41-650 Ahiki Street, Waimanalo, HI 96795, USA
e-mail: todd.e.shelly@aphis.usda.gov

T. Shelly et al. (eds.), Trapping and the Detection, Control, and Regulation of Tephritid 3
Fruit Flies, DOI 10.1007/978-94-017-9193-9_1,
© Springer Science+Business Media Dordrecht (outside the USA) 2014
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The orderliness of the survey operation speaks to a dedication to routine. The
industrial nature of the process is unmistakable — a complex problem (sampling
fruit flies over a large area) is broken down into regular, well-defined units (grids)
whose uniform oversight and sampling are assigned to trained managers (trappers).
The logic and regularity of the process are strikingly clear and overwhelmingly
mechanistic. At its core, of course, the entire process is a sampling effort, but one in
which the underlying science exists separately from its implementation. Isolated,
the underlying science lacks the tenor of the trapping operations. Instead of constant
routine, it proceeds erratically via the trial-and-error approach, which, of course, is
the driver of progress in empirical research. Instead of certain routine, it faces
complex questions and generates partial answers, which then pose novel complex
questions for which partial answers are obtained and so on. In other words, until
some high level of reliability or predictability is achieved, the science of trapping
moves in a manner typical of empirical science in general: hypotheses are tested,
some are falsified, and new hypotheses emerge for further testing. In addition,
whereas survey operations constitute a unified group with a shared goal, the science
of tephritid trapping proceeds largely through the unconcerted efforts of single
individuals or laboratory teams working on specific projects chosen for any number
of reasons, including academic interests and research experience, available
tephritid species, local agricultural concerns, and international economic and
trade issues as well as more practical factors, such as funding opportunities,
availability of equipment and manpower for research, and travel possibilities.

This approach, which is hardly unique to trapping research, results in a mosaic of
knowledge and understanding of trapping-related issues. Some tephritid species are
well-studied, others not. Some trap types and baits have been examined extensively,
others not. And so on.

Compounding the matter is the obvious fact that, owing to the large number of
uncontrolled variables, field research on tephritid trapping typically produces
probabilistic conclusions, not absolute ones. Changes in weather (particularly,
temperature, rainfall and humidity, and wind speed and direction), inter-site differ-
ences (e.g., in climate, host plant availability, and predation risk), and spatiotem-
poral variability in population size and physiological profile (e.g., age structure and
mating status) are key factors that may render true replication problematic and so
promote variability in test results. This is neither a novel nor a particularly insight-
ful comment, but it does describe accurately the context in which both data
collection and data interpretation occur. A cynical view of statistics has no place
in field research on trapping. Nobel Laureate Ernest Rutherford’s quote “If your
experiment needs statistics, you ought to have done a better experiment” may suit
the laboratory setting in atomic research but is largely inapplicable to outdoor
trapping studies (catchy, but also equally irrelevant, is the statement “Torture
numbers, and they’ll confess to anything” attributed to the science journalist
Gregg Easterbrook).

If the topic being investigated addresses specific problems of limited generality,
then the situation of evolving research generating probabilistic outcomes has little
consequence. However, in broader questions with substantial academic as well as
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commercial implications, this situation becomes extremely important. Perhaps the
best illustration of this involves the current debate regarding the establishment of
the Mediterranean fruit fly (medfly), Ceratitis capitata (Wiedemann), in California.
Kaneshiro (1993) cited the low attractiveness of trimedlure (a male-specific lure
widely used in medfly surveillance programs) as a key factor responsible for — in his
opinion — the undetected invasion and establishment of C. capitata in California. As
evidence, he reported that, during a field study in Hawaii, 140 males were captured,
marked, and released within 10-20 m of a US Department of Agriculture
maintained trimedlure-baited trap, and none was captured in the trap over the
succeeding 3 days. Carey (1996) later cited this observation in proposing the idea
of ‘early stage subdetectability’, whereby incipient or small populations escape
discovery by virtue of their small size and, by implication, the poor attractancy of
sentinel lures.

Relative to the lures used for detection of certain lepidopterans (e.g., gypsy
moth) or even other tephritid fruit flies (e.g., Bactrocera spp.), trimedlure is clearly
a weak attractant. But, are we to conclude from Kaneshiro’s (1993) observation that
it is completely ineffective and that the state of California is simply wasting money
by purchasing trimedlure for use in tens of thousands of traps? Of course not. We
will never know why none of the 140 marked Hawaiian flies was trapped, but other,
more rigorous studies have recorded capture probabilities >0 for male medflies in
trimedlure-baited traps (a point made by Lance and Mclnnis (1993) in their reply to
Kaneshiro (1993)). Ultimately, the Hawaiian observation sheds more heat than
light, and the challenge is quantifying the effective capture rate of trimedlure-
baited traps.

Attraction of male medflies to trimedlure was described over 50 years ago
(Beroza et al. 1961), and since then trimedlure has been used in detection programs
worldwide. Given this rather long historys, it is surprising that data on capture rates
remain scant, i.e., few empirical studies have attempted to measure capture prob-
abilities of male medflies at varying distances from a trimedlure-baited traps.
Seminal papers by Cunningham and Couey (1986) and Lance and Gates (1994)
provided initial estimates, and the latter authors used distance-dependent capture
probabilities to estimate the detection sensitivity of the California trapping pro-
gram. Considering the area covered by an individual trap, Lance and Gates (1994)
weighted capture probabilities for specific release distances by the relative amount
(%) of area corresponding to these distances, summed these adjusted values across
distance zones, and calculated the probability that at least 1 fly would be trapped for
populations of varying sizes. The central question was: what is the minimum
population size certain (defined operationally as >99.9 % probability) to be
detected by the California trapping program? Assuming point occurrence of the
flies, the estimate provided by Lance and Gates (1994) was approximately 2,200
males. This value pertains to a single generation, however, and given a stable size
over 5 generations, populations with approximately 300 males were certain to be
detected within this time interval.

What is the importance of this estimate? Alone, of course, it does not answer the
question of whether the medfly is established in California, a complex, arguably
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unresolvable issue whose debate draws, not only from trapping data, but from
diverse sources, including interception records and molecular genetic analyses
among others (Papadopoulos et al. 2013 and references therein). However, it does
provide a key piece of information, namely a numerical estimate of the upper limit
of subdetectable populations, and given the possibility of multiple generations per
year in southern California, it sharpens attention on the postulated checks to
population growth (Carey 1991) that purportedly suppress populations to very
low (and subdetectable) levels in a region with a favorable climate and abundant
host plants. This has been a key argument of skeptics of medfly establishment in
California: How do we reconcile the r-selected, high reproductive capacity of the
medfly with its obvious scarcity? Again, an estimate of detectable population size
does not provide the answer, but it does generate an abundance limit below which
populations must exist through time in order to escape discovery through trapping.
Knowledge of this limit may also be useful in various modeling efforts, particularly
those involving the occurrence and impact of the Allee effect on the extinction of
small populations of medfly.

In logic, argument is a technical term (lacking emotional overtones) for the
process of convincing others to believe a certain statement or claim and consists of
one or more premises (statements proposed as true) and a conclusion (a statement
whose acceptance as true derives from the demonstrated validity of the premises).
For heuristic purposes, Kaneshiro’s (1993) observation (carried to its extreme)
produces the argument:

1. Even when placed in suitable locations, trimedlure-baited traps capture no male
medflies (premise).

2. Given this finding, male medflies are obviously not attracted at all to trimedlure
(premise).

3. Therefore, trimedlure-baited traps provide no useful information on medfly
presence or abundance (conclusion).

This caricature is plainly false as trimedlure-baited traps do, of course, capture male
medflies, and a more realistic argument is:

1. When placed in suitable locations, trimedlure-baited traps capture male medflies
(premise).

2. However, only a portion of the male population is attracted to and captured in
trimedlure-baited traps (premise).

3. Therefore, trimedlure-baited traps provide useful information, albeit couched in
probabilistic terms, on medfly presence and abundance (conclusion).

As stated above, a key challenge is the measurement, preferably through mark-
recapture studies, of trap capture rate and subsequent estimation of the sensitivity of
medfly trapping programs. Recognizing that trimedlure is a relatively weak lure
should not preclude efforts to obtain more robust estimates of detectable population
sizes; these estimates have inherent value regardless of the level of trap efficiency.
In fact, somewhat surprisingly, although the data set is small, existing studies for
the medfly suggest some uniformity across regions in estimates of minimum
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detectable population sizes for the medfly. Following the computational methods of
Lance and Gates (1994) for the trap density used in California, Shelly
et al. (unpublished data) found that data on distance-dependent capture probabilities
(single generation, point source) from Hawaii (Cunningham and Couey 1986) and
Australia (Meats and Smallridge 2007) yielded estimates of minimum detectable
population sizes of 2,000-6,000, which are similar to Lance and Gates’ (1994)
aforementioned estimate. Whether this conformity is an outcome of small sample
size or actually a robust finding awaits additional data.

The chapters of this book deal with a diversity of topics relating to trapping
tephritid fruit flies, including, not only detection, but also dispersion and invasive-
ness, suppression, and regulatory issues in phytosanitation. Still, the focus in this
introductory essay on detection was deliberate as the response of fruit flies to trap
stimuli is at the core of all trapping issues. The foremost student of tephritid
foraging behavior, Ron Prokopy (1995), emphasized this point in his contribution
to a medfly symposium held nearly 20 years ago:

It seems unlikely that truly robust progress can be made toward developing more sensitive
approaches to detecting medflies and safer or more effective approaches to controlling
medflies without first developing (a) a much firmer understanding of how medfly behavior
is organized in space and time in natural habitats, and (b) a more complete appreciation of
how variation in environmental factors and fly physiological, informational, or genetic state
factors affects patterns of behavioral organization.

Prokopy appears to be advocating for the quantification of capture probability for
each trap-lure combination and for each fly state in a population (e.g., sex, age, mating
status, hunger level, etc.) under different combinations of relevant environmental
factors (e.g., temperature, resource availability, predation risk, etc.). Implicitly, such
quantification would allow the development of traps that maximize captures for a
particular subset(s) of the population (e.g., virgin females) or over the entire popula-
tion (including all fly states). While this goal may be largely unachievable, it has value
in identifying factors potentially important in trap design and bait development.

By highlighting variable response to trap/lure parameters, Prokopy sends the
tacit warning that a “one trap/bait combination” fits-all-approach may not be
effective. Conceivably, differential attraction to a specific trap-bait combination
could represent interspecific or intraspecific variation. The latter could reflect
variation between different populations of the same species occurring in different
regions or different seasons in the same location or (as Prokopy emphasized)
between different sub-groups (based on gender, age, mating status, etc.) existing
within the same population. Working with two Anastrepha species, Diaz-Fleischer
et al. (2009) document both between- and within-species variation in response to
food baits. They conclude by acknowledging the appeal of a “generic, ‘magic’ trap”
that attracts flies of all physiological states of all species equally but suggesting,
more realistically, that effective trapping of multiple, syntopic tephritid species
may require species-specific trap/lure combinations.

While scant data exist regarding interspecific variability in response to food baits,
even fewer data exist regarding potential between-species differences in response to
male lures. For example, although methyl eugenol is well known as a powerful lure
for males of several economically important Bactrocera species, we know virtually
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nothing about interspecific variation in attraction to this lure. Yet, several studies
suggest that such variation exists and may have practical implications for control
efforts. Wee et al. (2002) offered different dilutions of methyl eugenol to mature
males of Bactrcera dorsalis (Hendel) and Bactrocera carambolae Drew and
Hancock and found that the dose required to elicit a response (landing and feeding
on a methyl eugenol source) was 17 times higher for B. carambolae than for
B. dorsalis males. In additional feeding trials, B. carambolae males consumed
significantly smaller amounts of the lure than B. dorsalis males. Based on these
findings, the authors describe B. carambolae as having a “lower sensitivity to methyl
eugenol”. Given this finding, it is noteworthy that the Male Annihilation Technique
(MAT), which involves the distribution of poisoned methyl eugenol-coated blocks in
the environment, was unsuccessful in eradicating B. carambolae in Suriname and
French Guyana (Vargas et al., Chap. 14, this volume), whereas the MAT has
successfully eliminated populations of B. dorsalis in various locations (e.g., Steiner
et al. 1965; Ushio et al. 1982; Seewooruthun et al. 2000). In a parallel example, Jang
and Siderhurst (unpublished data) investigated possible alternatives to cue-lure,
another male lure for certain Bactrocera species, and found that an analogue of
cue-lure is attractive to males of Bactrocera tryoni (Froggatt) but not those of
Bactrocera cucurbitae (Coquillett). Thus, interspecific variation in male responsive-
ness appears to exist among cue-lure-responding species as well.

The preceding examples validate Prokopy’s suggestion that the “one trap/bait
combination” fits-all-approach is perhaps not the most effective strategy when
surveying multiple species or multiple physiological states within a species. For
trapping aimed primarily at a single target species, it might be expected that the
most effective trap would simply combine male- and female-preferred odors.
However, the few studies that have tested multiple odors in a single trap have
generally not demonstrated enhanced trap performance. Several researchers (Hill
1986; Téth et al. 2004; Reboulakis et al. 2004) compared captures between traps
containing both a food odor and a male lure versus traps containing each of these
odors alone and found no improvement or even decreased capture in the combina-
tion traps. Likewise, the combination of food/host odor plus male pheromone has
not proven particularly effective. In Anastrepha ludens (Loew), for example, the
pairing of chapote fruit (both a larval and adult food source) odor plus male
pheromone was never more attractive than fruit odor alone, and, in certain tests,
was actually less attractive than either odor presented singly (Robacker and Garcia
1990). Similar studies on the olive fruit fly (Bactrocera oleae (Rossi)) have
generated inconsistent results (e.g., Haniotakis and Vassiliou-Waite 1987).

So, where does all this leave us? As noted above, large-scale surveillance pro-
grams, particularly in the USA, function as industrial processes, where globally
accepted trap/bait combinations (methyl eugenol, cue-lure, and trimedlure used in
Jackson traps and torula yeast solution used in McPhail traps) are deployed, and
have been deployed for the decades, according to international guidelines. Based on
the science of fruit trapping, however, it seems apparent that (i) fruit fly baits and
lures are — as a group — relatively weak attractants that attract only a proportion of
the flies in an area and (ii) particular bait/trap combinations do not sample all
individuals equally. Moreover, it seems likely that sampling biases — even for the
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same bait/trap pair — are themselves not constant but vary temporally and spatially
with climate, habitat, and/or population size and structure. Thus, there is an
apparent disconnect between the surveillance programs that rely on a standard set
of baits/lures and supporting science that shows these substances are weak and, to
some degree, selective attractants.

A straightforward explanation can account for this disconnect, i.e., while diversi-
fied trapping might be preferable, there are simply not sufficient resources to expand
the trapping protocol to include deployment of more and, in some cases, novel bait/
trap combinations. Financial restrictions on detection programs are clearly an impor-
tant element, but I suggest that the perceived success of the currently used food baits
and male lures has served to de-emphasize research and development of alternative
attractants. This opinion is admittedly coarse and heavy-handed, as research on new
substances continues. Jang et al. (2001), for example, investigated ceralure and
Mwatawala et al. (2013) studied enriched ginger root oil as possible alternatives to
trimedlure. The discovery by Tan and Nishida (2007) that the compound zingerone
attracts both methyl eugenol- and cue-lure-responding Bactrocera species is note-
worthy as well. Likewise, various researchers (e.g., Robacker et al. 2011) have
examined heretofore unstudied plant odors as possible trap baits; ongoing work by
Epsky and her colleagues (Niogret et al. 2011) is exploring the potential of essential
plant oils as fruit fly attractants. Still, despite these examples, there is little doubt that,
compared to the intensive screening of potential fruit fly attractants in the
mid-twentieth century (Beroza and Green 1963), contemporary efforts to identify
new or improve existing attractants reflect more the work of independent researchers
and less the shared objective of a large-scale, coordinated research project.

The following poem by W.S. Merwin serves as succinct conclusion to this essay.
Although he emphasizes the acoustic “language” of insect song (what else would a
poet do?), his thesis — much of insect biology, including communication, remains
unknown — applies equally well to olfactory communication, a process central to the
success of tephritid trapping. Thus, while this book describes important and substantive
progress in the efficacy of tephritid trapping, there is clearly much more work to be
done.

After the Alphabets

I am trying to decipher the language of insects
they are the tongues of the future

their vocabularies describe buildings as food
they can depict dark water and the veins of trees
they can convey what they do not know

and what is known at a distance

and what nobody knows

they have terms for making music with the legs
they can recount changing in a sleep like death
they can sing with wings

the speakers are their own meaning in a grammar without horizons
they are wholly articulate

they are never important they are everything
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Chapter 2
Pheromones, Male Lures, and Trapping
of Tephritid Fruit Flies

Keng Hong Tan, Ritsuo Nishida, Eric B. Jang, and Todd E. Shelly

Abstract Both sex pheromones and male lures appear to play an important role in
the mating systems of many species of economically important tephritid species.
Typically, stationary males emit pheromone attractive to searching females, and
recent evidence indicates that naturally occurring male lures may function as pre-
cursors in pheromone synthesis. Here, we review (i) the basic biology of sex
pheromones and the importance of naturally occurring male lures as pheromone
components or precursors and (ii) the use of sex pheromones and male lures as trap
baits, primarily in fruit fly detection programs, for the major genera of Anastrepha,
Bactrocera, Ceratitis, Dacus, Rhagoletis, and Toxotrypana. Relatively few studies
have examined the effectiveness of pheromone-based trapping, and most of these
have involved only three species, the Mediterranean fruit fly, Ceratitis capitata
(Wiedemann), the Mexican fruit fly, Anastrepha ludens (Loew), and the Caribbean
fruit fly, A. suspensa (Loew). In general, the results have been inconsistent, with
traps baited with live males or male pheromone extracts or components attracting
more females than blanks or food-baited traps in some studies but not in others.
This inconsistency, along with the chemical complexity of pheromones and the
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multimodal nature of sexual communication (where olfaction is but one of several
sensory channels used in male signaling and courtship), has limited research on the
development of pheromone baits. Male lures, on the other hand, have proven
incredibly useful and consistently effective trap baits. The major male lures —
methyl eugenol, cue-lure/raspberry ketone, and trimedlure — are discussed as are
possible replacements/modifications, such as fluorinated analogues of methyl euge-
nol, raspberry ketone formate, zingerone, ceralure, and enriched ginger root oil. In
addition, we discuss various factors influencing the efficacy of male lures, including
fly age, prior lure ingestion, selection for non-responsiveness, interspecific differ-
ences in responsiveness, and the use of liquid versus solid dispensers.

Keywords Aggregation ¢ Anisylacetone * Attractant ¢ o-copaene * Cuelure ¢
Electroanntenogram ¢ Floral volatile « Kairomone ¢ Male lure « Methyl eugenol
Orchid ¢ Phenylbutanoid « Phenylpropanoid ¢ Pheromone ¢ Raspberry ketone ¢
Rectal gland ¢ Sesquiterpene « Synomone ¢ Trimedlure

1 Introduction

Chemical cues and signals influence the behavior, physiology, and ecology of
insects in a remarkably large number of ways. It is hardly surprising, then, that
strategies designed to protect agricultural systems are often based on chemical
stimuli and cues important to pestiferous insects. These strategies are themselves
diverse and may involve the elimination, modification, disruption, imitation, or
circumvention of chemical information important to the target insect. Tephritid
fruit flies are trapped for a variety of reasons — surveillance, suppression, and
ecological study among others — and chemical baits have played a central role in
these efforts. The existence of male lures was reported approximately 100 years ago
(Howlett 1912, 1915), and such lures have been among the most widely used in
programs to detect and manage tephritid fruit fly pests. Likewise, the presence of
sex pheromones in economically important Tephritidae has been recognized for
over 50 years (Féron 1959), and though not yet as effective as male lures, they have
received considerable attention as possible tools in fruit fly surveillance and control.

This chapter provides an overview of the use of pheromones and male lures in
trapping economically important fruit flies of the genera Anastrepha, Bactrocera,
Ceratitis, Dacus, Rhagoletis, and Toxotrypana. Given the broad scope of this topic
and the accompanying rich body of literature, our review is not exhaustive. Though
somewhat idiosyncratic, reflecting invariably our own research experiences, we
nonetheless believe we have highlighted main themes and introduced some new
ideas or perspectives as well.

As evidenced by the chapter title, we have decided to describe compounds, such
as methyl eugenol, cue-lure, raspberry ketone, trimedlure, and others, as male lures
or male attractants and to avoid the oft-used term ‘parapheromone’. We do so for
three main reasons: (i) Payne et al. (1973) originally defined parapheromones as



2 Pheromones, Male Lures, and Trapping of Tephritid Fruit Flies 17

“compounds which are not naturally used in intraspecific insect communication”.
However, several studies (Nishida et al. 1988a, b, 1993; Tan and Nishida 1995,
2007; Tan et al. 2011) have demonstrated that certain male lures (e.g., methyl
eugenol, raspberry ketone, and zingerone) are used in synthesizing male sex
pheromones, and so the original definition of parapheromone does not apply to
tephritids; (ii) in a recent review of insect parapheromones, Renou and Guerrero
(2000) restrict parapaheromones to “chemical compounds of anthropogenic origin
not known to exist in nature”. Once again, this criterion does not apply to methyl
eugenol and raspberry ketone, which occur in many different plant species (Tan and
Nishida 1995, 2012), and so excludes these two important tephritid male attractants
(indeed, Renou and Guerrero’s review does not even include discussion of the
Tephritidae), and (iii) the very use of the root ‘pheromone’ implies that male lures
produce behavioral and/or physiological effects that resemble those of natural
pheromones. There is evidence that male-produced sex pheromones may attract
conspecific males and so act as aggregation pheromones (Nishida et al. 1988b; Tan
and Nishida 1996; Hee and Tan 1998; Khoo and Tan 2000; Wee and Tan 2005a;
Wee et al. 2007). Because male lures may (upon ingestion) be used in pheromone
synthesis (references above), the idea that the male lures mimic the male sex
pheromone appears reasonable and may eventually be shown to be valid. However,
the available data regarding male-male olfactory attraction derive exclusively from
laboratory studies (with a single exception, Nishida et al. 1988b). With few field
data available, we consider it premature to conclude that male lures resemble
pheromones in function. That said, we also recognize that the term male lure is
not completely accurate, since the lures are known to occasionally attract females
(Steiner et al. 1965; Nakagawa et al. 1970; Fitt 1981a; Verghese 1998). While not
dismissing the importance of these observations, our collective field experience
(except for a female Bactrocera umbrosa (Fabricius) captured by Tan in 2014) is
that males comprise the vast majority of all individuals observed at point sources
(traps, flowers, etc.) of known male lures, and hence the terms male lure or male
attractant are generally, if not always, appropriate.

2 Tephritid Pheromones and Trapping

The family Tephritidae contains several genera, namely Anastrepha, Bactrocera,
Ceratitis, Dacus, Rhagoletis and Toxotrypana, with species that are major agricul-
tural pests of fruits and vegetables. Information on the identification of pheromones
and their possible use in trapping programs is summarized below for each of these
genera.
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2.1 Anastrepha Pheromones

The genus Anastrepha contains approximately 200 species distributed in tropical
and subtropical areas of the New World (Norrbom et al. 2000) of which eight
(A. distincta Greene — Inga fruit fly, A. fraterculus (Wiedemann) — South American
fruit fly, A. grandis (Macquart) — South American cucurbit fruit fly, A. ludens
(Loew) — Mexican fruit fly, A. obligua (Macquart) — West Indian fruit fly,
A. serpentina (Macquart) — sapote fruit fly, A. striata Schiner — guava fruit fly,
and A. suspensa (Loew) — Carribean fruit fly) are major agricultural pests, attacking
a wide variety of fruits and vegetables (Aluja 1994; Norrbom et al. 2012). Although
field observations are incomplete, many of the polyphagous and economically
important species appear to display a lek mating system in which males occupy
mating territories on leaves and attract females to the territory via a complex suite
of visual, acoustic, and olfactory signals (Aluja et al. 2000). Regarding the latter,
pheromone-calling males emit volatiles from everted pleural pouches and anal
membranes, with aerial dispersion aided by intense bouts of rapid wing vibrations
(Nation 1972). Volatile components are also released via the mouth (Nation 1990),
and abdominal dipping of the evaginated anal membranes to the leaf surface may
amplify pheromone attractiveness by increasing the evaporative surface area of the
volatile components (Sivinski et al. 1994). Pheromone calling has been observed
for a small number of Anastrepha species, and chemical analysis and identification
of pheromonal components has been undertaken for only a subset of these species
(Fig. 2.1 and Table 2.1).

Measurements of female attraction to male sex pheromone, or components
thereof, have been made for an even smaller subset of all species, with nearly all
of the research conducted on A. suspensa (Table 2.2) or A. ludens (Table 2.3). The
biological activity of male pheromones has been studied in only four other species,
with only one study undertaken for each. In both A. fraterculus and A. obliqua,
freshly dissected salivary glands of males were found to attract mature and virgin
females in laboratory cage tests (Lima et al. 2001; Ibafez-Lopez and Cruz-Lopez
2001). However, in A. serpentina, three putative pheromonal components were
examined, with no strong female response observed for any of them (Robacker
et al. 2009a, b). In Anastrepha sororcula Zucchi, field tests found no difference in
female captures in traps baited with live calling males versus blank control traps
(Santos Felix et al. 2009).

Despite the large amount of research conducted on A. suspensa and A. ludens,
trapping and detection efforts for these two species still rely primarily on food-
based lures (e.g., Robacker and Thomas 2007; Epsky et al. 2011), and an effective
pheromone-based trap has not been developed. Several authors (Landolt and Heath
1996; Landolt and Averill 1999) have enumerated the reasons for this, and these
generally include:

First, the long-range attractiveness of the male sex pheromone has weak empir-
ical support, since the majority of research has been conducted in the small,
laboratory cages and thus measures only short-range attractiveness or arrestant
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Fig. 2.1 Some sex pheromonal components of Anastrepha (Adapted from Rocca et al. 1992)

properties of the test chemicals. The widely used cage-top bioassay, for example,
has generally been used in cubical cages only (0.2-0.3 m per side). Moreover,
although the cage-top assay has generally indicated female response to male-
derived chemicals, other laboratory tests involving slightly larger cages have failed
to demonstrate long-range attraction of females to male pheromone. For example,
arrivals of A. ludens females did not differ significantly between citrus trees having
chemically-treated (with male pheromone extract or pheromonal components) or
control (blank) leaves (Robacker and Hart 1986; Robacker 1988). However, using a
1.2 m long wind tunnel and a videotape system, Heath et al. (1993) found that
A. suspensa females land more frequently on male-baited traps than control traps
but spent equal amounts of time on the two trap types after landing. These data
clearly indicate that the male volatiles are an attractant and not a simple arrestant. In
sum, then, use of small cages does not allow rigorous identification of long-range
attraction of Anastrepha females, and other laboratory results from slightly larger
cages are inconsistent in this regard.

Second, field tests have yielded inconsistent results regarding female attraction
to male-produced odors. In an early study, sticky traps baited with aggregations of
20 or 40 males captured significantly more released virgin females of A. suspensa
than McPhail traps baited with an aqueous solution of yeast hydrolysate (Perdomo
etal. 1975). A follow-up study on the same species (Perdomo et al. 1976) generated
the same result and also documented attraction of released males to the male-baited
traps. In contrast, although the difference was not statistically significant, Robacker
and Wolfenbarger (1988) found that food-baited McPhail traps captured three times
as many A. ludens females as pheromonal traps (baited with extracts of male
abdomens). Similarly, and as noted previously, field tests involving A. sororcula
found no difference in female captures in traps baited with live calling males versus
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Table 2.1 Anastrepha species for which male pheromone calling has been observed and the
incidence of chemical analyses of pheromonal components in these species

Pheromone Pheromone

Species calling References Chemistry  References

A. bistrigata Bezzi + Da Silva et al. (1985) — -

A. fraterculus + Malavasi et al. (1983), + Caceres et al. (2009),

(Wiedemann) Morgante Lima et al. (1996),
et al. (1983), Lima (2001)
etal. (1994), Segura
et al. (2007)

A. ludens (Loew)  + Aluja et al. (1983), + Battiste et al. (1983),
(1989), Moreno Stokes et al. (1983),
et al. (1991), Robacker and Hart
Robacker (1985b), Rocca
etal. (1991), (2003), et al. (1992), Baker
Robacker and Hart and Heath (1993)
(1985a), Aluja
et al. (2008)

A. obliqua + Aluja et al. (1983), + Meza-Hernandez

(Macquart) (1989) Da Silva et al. (2002), Ibanez-
et al. (1985), Lépez and Cruz-
Meza-Hernandez Lopez (2001), Lopez-
et al. (2002), Lopez Guillén et al. (2008)
Guillén
et al. (2008),
Henning and
Matioli (2006)
A. pseudoparallela + Da Silva et al. (1985), - -
(Loew) Polloni and Da
Silva (1986)
A. robusta Greene  + Aluja (1993) - -
A. serpentina + Aluja et al. (1989), + Robacker et al. (2009a)
(Macquart) Castrejon -Gomez
et al. (2007),
Robacker
et al. (2009a)
A. sororcula + Da Silva et al. (1985) - -
Zucchi
A. striata Schiner  + Aluja et al. (1993), - -
(2008)
A. suspensa (Loew) + Nation (1972), (1989), + Nation (1975), (1989),

(1990), Dodson
(1982), Burk
(1983), (1984),
Landolt and
Sivinski (1992),

(1990), (1991)),
Battiste et al. (1983),
Chuman et al. (1988),
Mori and Nakazono
(1988), Tumlinson
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Table 2.1 (continued)

Pheromone Pheromone
Species calling References Chemistry  References
Epsky and Heath (1988), Rocca
(1993a, b), Sivinski et al. (1992), Epsky
et al. (1994) and Heath (1993a, b),
Baker and Heath
(1993), Heath
et al. (1993), Lu and
Teal (2001)
A. zenildae + De Almeida - -
(Zucchi) etal. (2011)

Table 2.2 Published accounts for Anastrepha suspensa regarding the behavioral response of
females to the sex pheromones of conspecific males

Positive response

Odor source Bioassay arena Identified Observed Reference
Live males Wind tunnel Move 25 cm Yes Nation (1972)
(0.45 m long) toward
source
Pheromonal components®  Screen cage Enter trap Yes Nation (1975)
(0.45 m per
side)

Live males Webb

Avocado grove

Capture in male-  Yes

baited sticky
traps®

et al. (1983)

Pheromone extract Field cage Capture in sticky ~ Yes Webb
traps et al. (1983)
Filter paper treated with ~ Screen cage Aggregation near  Yes Sivinski and
volatiles (0.20 m per treated paper® Heath
side) (1988)
Filter paper treated with Screen cage Aggregation near  Yes Nation (1991)
major pheromone (0.2x0.12 x treated paper®
componentsd 0.10 m)
Filter paper treated with ~ Screen cage Aggregation near  No' Nation (1991)
minor pheromonal (0.2 x0.12 x treated paper®
components® 0.10 m)
Live males Flight tunnel Enter trap Yes Heath
(0.3 x0.3 x et al. (1993)
1.22 m)
“Later identified (Nation 1983) as (Z)-3-nonenol, (Z,Z)-3; 6-nonadienol; anastrephin;

epianastrephin; attraction was observed for individual compounds as well as pairs and trios,
with greatest attraction observed for a combination of all four components

"Released 13 m from any trap

€A so-called cage-top test, where control and treated papers were placed, one per quadrant, placed
on top of cage, and distribution of females in four quadrants was measured

dSame four as in footnote a

“Bisabolene, ocimine, suspensolide

No response was observed when these compounds tested individually, but each increased female
response when added to blend containing the major components (listed in footnote a)
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Table 2.3 Published accounts for Anastrepha Iludens regarding the behavioral response of
females to the sex pheromones of conspecific males

Odor source

Bioassay Arena

Positive response

Identified

Observed? Reference

Filter paper treated
with pheromone
extract”

Filter paper treated
with pheromonal
components*

Citrus leaf treated
with pheromonal
components’

Citrus leaf treated
with combina-
tions of phero-
monal
components”

Citrus leaf treated
With pheromone
extract®

Citrus leaf treated
with pheromone
extract®

Cigarette filter
treated with
pheromone
extract®

Filter paper treated
with pheromone
extract®

Screen cage (0.3 m per

side)

Screen cage (0.3 m per

side)

Wind tunnel

(2% 0.7 x 1.3m)

Wind tunnel

2x0.7x13m)

Wind tunnel

2x0.7x1.3m)

Screen cage

(0.7 x 1.6 x 1.0 m)

Citrus grove

Hallway

(30.0 x 2.5 x 2.0 m)

Aggregation Yes®
near
treated
paper”

Aggregation Y
near
treated
paperb
Arrivals to  No#
treated
leaves
Arrivals to Yes
treated
leaves

Arrivals to Yes
treated
leaves

Arrivals to Yes!
treated
leaves

Capture in ~ Yes'
treated
McPhail
traps

Upwind Yes
move-
ment;
flight*

Robacker and Hart
(1984), Robacker
et al. (1990),
Moreno
et al. (1991)
Robacker and Hart
(1985b)

Robacker (1988)

Robacker (1988)

Robacker (1988)

Robacker and Hart
(1986)

Robacker and
Wolfenbarger
(1988)

Robacker and Moreno
(1988)
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Table 2.3 (continued)

Positive response

Odor source Bioassay Arena Identified Observed? Reference
Pheromone extract'  Screen cage (0.3 m per Aggregation Yes™ Robacker and Garcia
side) near (1990)
treated
paper”
Live males Flight tunnel Enter trap Yes Heath et al. (1993)

(30 x 30 x 122 cm)

“Obtained from filtering and concentrating extract obtained from grinding abdomens of adult
males

A so-called cage-top test, where control and treated papers were placed, one per quadrant, placed
on top of cage, and distribution of females in four quadrants was measure

“Attraction much stronger for mature virgin females than immature or recently mated females
ISix components were tested individually and in various combinations: (Z)-3-nonenol, (Z,Z)-3,6-
nonadienol, (R,R)-(+)-anastrephin, (S,S)-(—)-anastrephin, (R,R)-(+)-epianastrephin, (S,S)-(—)-
epianastrephin

°Only three components (the two alcohols plus epianastrephin) elicited female responses individ-
ually. Both synergistic and inhibitory effects were reported among the 15 combinations of paired
components

"The six components listed in footnote d were tested individually

EWith a single exception: (Z,Z)-3,6-nonadienol attracted more females than control (untreated)
leaves

"Three combinations involving pheromonal components listed in footnote d were tested: (Z)-3-
nonenol + (S,S)-(—)-epianastrephin;  (Z,Z)-3,6-nonadienol + (S,S)-(—)-epianastrephin; all 6
components

‘Females did not distinguish between treated and control trees but within trees were more attracted
to treated than control leaves

JHighest dose did not attract more females than control suggesting an overdose effect; male
attraction also observed

*Females behavior monitored in screen cages placed at different distances from odor source, with
upwind movement scored as the number of females on upwind versus downwind sides of cages
'Obtained from crushing whole males

"MHost fruit odor inhibited attraction of mature virgin females

blank control traps (Santos Felix et al. 2009). A field trial on the attractiveness of a
pheromonal blend likewise yielded negative results. In laboratory tests conducted
in small cages, A. suspensa females responded to four major components of the
male pheromone as well as various mixtures of these chemicals (Nation 1975; see
also Robacker and Hart 1985b for similar findings for A. ludens). However, a
synthetic blend of these same four components placed in the field failed to attract
flies of either sex over a 5-day period in Florida (Nation 1989). The uneven
performance of pheromone-baited traps in the field, coupled with data showing
that host fruit odors are equally or more attractive to females than male odors alone
(Robacker and Garcia 1990), has been an important constraint on further research
on the development of pheromone-based traps for Anastrepha.

Third, the pheromones of different Anastrepha males are complex and contain
multiple chemicals with different isomers (Heath et al. 2000). This complexity has
several important implications. It appears, for example, that the component ratios
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affect the attractiveness of the blend. Differences in the attractiveness of two
dispensers to A. ludens females, for example, apparently reflected differential
release of pheromone components, which resulted in the emission of abnormal
component ratios for one of the dispensers (Robacker and Wolfenbarger 1988). In
general, data support the conclusion that individual pheromonal components stim-
ulate little behavioral response but instead function as an integrated unit to elicit
behavior (Robacker 1988), and identifying the specific nature of this complex
signal is seen as a daunting challenge. Moreover, the composition of male phero-
mone may vary with time of day (Tumlinson 1988; Nation 1990), social context
(calling singly or in a group, Nation 1990), and food availability (Epsky and Heath
1993a), making it even more difficult to identify the particular blend most attractive
to females. Analogously, variability in pheromone release rate (Epsky and Heath
1993b; Meza-Hernandez et al. 2002) confounds identification of those rates that
may be maximally attractive to females. In addition, the different components have
different volatilities (Landolt and Averill 1999) and liabilities (Robacker
et al. 2009b), which render production of synthetic pheromones difficult from a
methodological perspective and imprecise from a biological one.

Finally, the importance of male pheromone to female mate searching remains
uncertain, and it appears likely that a combination of visual, auditory, and olfactory
cues may be involved. The pheromone appears to attract females to the vicinity of
calling males but not to point sources (Robacker 1988), and after approach, females
may rely on acoustic and/or visual signals to locate males (Webb et al. 1983;
Sivinski and Calkins 1986). As with the complex pheromonal blend, the multi-
faceted nature of mate location appears to have lessened the impetus to develop
pheromone-based traps for Anastrepha.

2.2 Bactrocera Pheromones

The genus Bactrocera consists of over 500 species distributed in the tropical and
subtropical regions of Asia (Smith et al. 2003) and includes many serious and/or
highly invasive polyphagus pest species, namely B. correcta (Bezzi) — guava fruit
fly, B. cucurbitae (Coquillett) — melon fly, B. carambolae Drew & Hancock —
carambola fruit fly, B. dorsalis sensu stricto (Hendel) — oriental fruit fly, B.
invadens Drew, Tsuruta & White, B. papayae Drew & Hancock — Asian papaya
fruit fly, B. philippinensis Drew & Hancock — Philippines fruit fly, B. latifrons
(Hendel) — solanaeous fruit fly, B. tryoni (Froggatt) — Queensland fruit fly,
B. umbrosa (Fabricius) — Artocarpus or jack-fruit fly, and B. zonata (Saunders) —
peach fruit fly. Males of these species, with the exception of B. cucurbitae and
B. tryoni (both attracted to cue-lure (CL)/raspberry ketone (RK)) and B. latifrons
(not attracted to either CL/RK or methyl eugenol (ME), are attracted to ME, a
compound found in a wide diversity of plant species (Tan and Nishida 2012) and
now known to be a pheromonal precursor. As discussed below, the strong attraction
of males to ME has, to some degree, limited impetus to explore sex pheromones as a
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trapping tool for Bactrocera species. Here, we summarize the chemistry of
Bactrocera pheromones and note studies that have monitored male or female
attraction to pheromonal emissions.

As true for most of the economically important tephritid species examined thus
far, sexual signaling in Bactrocera typically involves the production and broadcast
of sex pheromone by males (a behavior termed “calling”) while resting on vegeta-
tion and detection and subsequent mate searching by receptive females. Most
accounts of male calling and mating derive from laboratory or field cage observa-
tions (e.g., Tychsen 1977; Ohinata et al. 1982; Arakaki et al. 1984; Kuba and
Koyama 1985), and the few field studies conducted — all on B. dorsalis— indicate
plasticity in that species’ mating system. Working in Hawaii, Shelly and Kaneshiro
(1991) observed calling males and matings in the canopy of a single fruiting tree
within a citrus orchard, suggestive of a lek mating system. In contrast, Stark (1995),
also working in Hawaii, observed B. dorsalis females moving from papaya trees to
non-host (Panax) trees in the late afternoon followed by males 30-60 min later.
Although their incidence was not quantified, Stark (1995) observed matings on this
nonhost plant. Finally, working in Thailand, Prokopy et al. (1996) released
B. dorsalis within a non-fruiting orchard and experimentally added food, water,
and host fruits to the trees. In this case, and in contrast to the aforementioned
studies, all sexual behavior and all matings were recorded on trees with fruits and
on the fruit itself, leading the authors to suggest that the importance of host fruits as
foci for sexual activity may vary with microclimatic conditions. The behavioral
variability described for B. dorsalis, along with the lack of field studies on
Bactrocera species in general, serves as a cautionary prelude to the following
discussion: little is known about the importance of male pheromones in sexual
selection in the genus, and consequently evaluation of male pheromones as poten-
tial trap attractants is necessarily preliminary and inconclusive.

2.2.1 Sex Pheromone of B. dorsalis Complex Species

The B. dorsalis species complex comprises over 70 recognized species (White and
Elson-Harris 1992), several of which, namely B. dorsalis, B. invadens, B. papayae,
B. philippinensis, and B. carambolae, are serious agricultural pests. Recent molecular
(Tan et al. 2011, 2013; Schutze et al. 2012; Krosch et al. 2013), morphological
(Mahmood 1999, 2004; Schutze et al. 2012; Krosch et al. 2013), behavioral (i.c.,
mating compatibility; McInnis et al. 1999; Tan 2000, 2003; Wee and Tan 2005b;
Schutze et al. 2013), and pheromone chemistry (Tan and Nishida 1996, 1998; Tan
et al. 2011, 2013) data have raised doubts regarding the validity of species status for
these sibling taxa (except B. carambolae — see below). Below, we retain the names as
originally used but recognize that results obtained for one species may, if taxonomic
synonymies are eventually recognized (Schutze et al. 2014), apply to other currently
recognized species in the complex.

In the first published description on the pheromone chemistry of male Bactrocera,
Ohinata et al. (1982) analyzed “smoke” produced by male B. dorsalis and found that
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trisodium phosphate was the major component (90 %) with much smaller amounts of
N-(2-methylbutyl)propanamide and heptacosane. Perkins et al. (1990a) examined an
acetate extract of rectal glands of sexually mature male B. dorsalis from a colony
maintained in Hawaii and detected the trimethyl ester of citric acid (a major compo-
nent), the trimethyl ester of phosphoric acid, and dimethyl succinate along with
methyl esters of fatty acids and two spiroacetals. The males sampled in this study
had not fed on ME, and no biological activity was demonstrated for the compounds
identified. However, Nishida et al. (1988a, b) and Tan and Nishida (1996) demon-
strated that males of B. dorsalis and B. papayae transformed consumed synthetic ME
to two major pheromonal components — E-coniferyl alcohol (ECF) and 2-allyl-4,5-
dimethoxy phenol (DMP), with trace quantity of Z-3.4-dimethoxycinnamyl alcohol
(detected in some males). Nishida et al. (1988a) also detected these compounds in
wild B. papayae males, indicating the males had fed on ME-bearing plants in the
field, and a later study (Tan et al. 2002) showed that B. papayae males that fed on an
ME-bearing orchid flower contained ECF and DMP in the rectal gland (Fig. 2.2). In
laboratory tests, males deprived of ME did not have ECF or DMP in the rectal gland.
As an aside, B. papayae males visiting an orchid whose floral fragrance contained
zingerone (a compound structurally similar to ME) were found to have zingerol in the
rectal gland, suggesting a role in pheromone synthesis for this compound as well (Tan
and Nishida 2000, 2007). More recently, Tan et al. (2011, 2013) found ECF and DMP
in the rectal sac of ME-fed males of B. invadens and B. philippinensis. Males of
B. carambolae differ from the aforementioned species in that they produce only ECF
after ingesting ME (Tan and Nishida 1996; Wee and Tan 2005a). Moreover, the sex
pheromone of B. carambolae contains larger amounts of endogenously produced
compounds, including 6-o0xo-1-nonanol (a major component that is also detected in a
closely related sibling species, Bactrocera occipitalis (Bezzi) and a distant species,
B. umbrosa (Perkins et al. 1990b)) and three minor components, N-3-methylbutyl
acetamide, ethyl benzoate, and 1,6-nonanediol (Wee and Tan 2005a).

Since Nishida et al.’s reporting, a number of studies have demonstrated that ME
consumption increases male mating success in several species in the B. dorsalis
complex (Shelly and Dewire 1994; Shelly et al. 1996; Shelly 2010a; Tan and
Nishida 1996, 1998; Wee et al. 2007; Orankanok et al. 2013; Obra and Resilva
2013). However, the role of pheromone composition in determining this outcome is
not known with certainty. In laboratory cage assays, Kobayashi et al. (1978) dem-
onstrated attraction of B. dorsalis females to both live males and male rectal gland
extract even when males were not previously fed ME. Wee and Tan (2005a)
likewise reported zigzag anemotaxis by B.carambolae females to live males and
endogenously produced rectal gland substances. Thus, the breakdown products of
ME are not necessary to elicit female response. Nonetheless, using a wind tunnel or
laboratory cages, several studies on B. dorsalis complex species (Shelly and Dewire
1994; Hee and Tan 1998; Wee et al. 2007) have reported greater female attraction to
males that had previously fed on ME than to unfed males, and Hee and Tan (1998)
and Khoo et al. (2000) showed female attraction to ECF and DMP individually
(with greater attraction to ECF than DMP in these tests) and in combination
(Fig. 2.3). Importantly, greater female response to ME-fed males has been
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Fig. 2.2 Acquisition and biotransformation of methyl eugenol to sex pheromone by Bactrocera
dorsalis males

E-coniferyl alcohol

Fig. 2.3 Bactrocera dorsalis females and males attracted to E-coniferyl alcohol. A An attracted
female with ovipositor extruded (arrow), B Aggregation of males and an attracted female with
extruded ovipositor at bottom left

documented, not only using synthetic ME, but also after male feeding on natural
floral (Shelly 2000a, 2001a) or fruit (Shelly and Edu 2007) sources of ME. Several
studies (Hee and Tan 1998; Wee and Tan 2005a; Wee et al. 2007) have documented
maximum female attraction to male sex pheromone at dusk, the time of peak sexual
activity in B. dorsalis species complex.

To our knowledge, only two studies have examined the long-range attractiveness
of male pheromone to females in the field. In a study examining female attraction to
groups (leks) of varying size, Shelly (2001b) placed B. dorsalis males (none of
which had fed on ME) in screen-covered cups, which were in turn placed on trees
situated in a circular (10 m radius) array around a central female release point.
Approximately 10 % of released females were sighted near male-containing cups
over all groups. In a second study also conducted on B. dorsalis in Hawaii, Shelly
(2001c¢) performed two experiments in which groups of (i) ME-fed or ME-deprived
males or (ii) flower-fed or flower deprived males (where the flower used
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[puakenikeni, Fagraea berteriana A. Gray ex Benth] was known to contain
ME-like compounds [Nishida et al. 1997]) were placed in cups suspended in host
trees (one male type [i.e., fed or non-fed] per tree) situated in a circle (12 m radius),
and females were released from the center. Compared to non-fed males, both ME-
and flower-fed males were found to signal more frequently and attract greater total
numbers of females as well as greater numbers of females per signaling male. These
studies were not designed to test explicitly the function of pheromone signaling
(since blank controls were not run in either study), but they nevertheless hint at
long-range attraction mediated by male pheromone and thus suggest the potential
for male pheromone as a trap bait for species in the B. dorsalis complex.

Data on pheromonally-mediated male-male attraction are inconsistent. In labo-
ratory cages, B. dorsalis males showed no attraction to conspecific males (non-ME-
fed, Kobayashi et al. 1978). In contrast, Nishida et al. (1988b) found that traps
baited with DMP captured as many wild males as traps baited with ME. In wind
tunnel tests, Hee and Tan (1998) found that B. papayae males were attracted to both
ME-fed and control (unfed) conspecific males but showed greater attraction to the
treated males. Also using a wind tunnel, Wee et al. (2007) found non-ME-fed males
of B. carambolae were attracted to ME-fed conspecific males at a much higher level
than observed in the converse situation (i.e., ME-fed males responding to non-ME-
fed males). Moreover, field cage observations showed that unfed males aggregated
around ME-fed males and fed on anal secretions of ME-fed males (see also Tan and
Nishida 1996). Results for B. papayae and B. carmabolae thus suggest that male
sex pheromone may also serve as an aggregation pheromone. However, this
function implies an evolutionary advantage to aggregation per se (e.g., increased
mating success), whereas the possibility remains that male-male attraction simply
represents a special case of male attraction to ME (or ME-like compounds), where
the ME source is a male rather than a plant.

2.2.2 Presumed Sex Pheromone of Two Sibling Species of B. zonata
Complex

ME also acts as a pheromone precursor for both B. correcta and B. zonata. In
B. zonata, it is transformed to two male sex pheromonal components, DMP and Z-
coniferyl alcohol (ZCF), although final confirmation awaits tests of biological
activity on female response (Tan et al. 2011). In B. correcta, however, ME is
converted to ZCF and (Z)-3,4-dimethoxycinnamyl alcohol (ZDMC) (Tokushima
et al. 2010). Furthermore, wild B. correcta males also accumulate large quantities
of sesquiterpene hydrocarbons, namely [-caryophyllene, o-humulene, and
alloaromadendrene, in the rectal gland in addition to, or instead of, ZCF and
ZDMC (Tokushima et al. 2010). The distinct difference in sex pheromonal profiles,
albeit having a common ZCF component, between the two sibling species, most
likely, plays an important role in maintaining reproductive isolation.

Interestingly, recent comparative field tests conducted in Thailand during 2012—
2013 and based on average flies/trap/day using a similar lure dosage per trap
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showed that f-caryophyllene caught on average 7 (range 3—16) times more
B. correcta wild males than ME during the first 3 days of trapping (Tan,
Chinvinijkul, Wee & Nishida, unpublished data). This is the first case of a lure
being more attractive than the very potent ME to a ME-sensitive Bactrocera
species. Therefore, further behavioral/ecological studies, especially related to the
role of the sequiterpene and its possible replacement of ME in the trapping of
B. correcta, are warranted.

2.2.3 Sex Peromone of B. umbrosa

Rectal gland extracts showed the presence of (E)- and (Z)-2-methyl-1,6-dioxaspiro
[4.5]decanes, 3-methylbutanol, 1,7-dioxaspiro [5.5]undecane, and 6-oxononan-ol
(Perkins et al. 1990b). In addition, some unidentified ME metabolites (identities
currently being evaluated) were detected in the rectal gland after consumption of
ME by males (Nishida and Tan, unpublished data). In Malaysia, B. umbrosa and
B. papayae are endemic and sympatric species as well as serious pests of jackfruit,
Artocarpus heterophyllus Lam., but they do not interbreed. Apparent reproductive
isolation was observed between the two species even when both males and females of
both the species were kept together in a cage for approximately 2 months; intraspe-
cific but no interspecific matings were observed (Tan, unpublished observations).

2.2.4 Sex Pheromone of B. cucurbitae and B. tryoni

Males of these species are attracted to RK/CL. Rectal gland secretions of
B. cucurbitae contain N-3-methylbutyl acetamide, two spiroacetals, and three
pyrazines (Baker et al. 1982a; Baker and Bacon 1985). Later, ethyl
4-hydroxybenzoate (a major component) and propyl 4-hydroxybenzoate (a minor
component) were also detected in the rectal gland of the melon fly (Perkins
et al. 1990b). Nishida et al. (1990) showed that sexually mature male melon flies
produce, endogenously in the rectal gland, relatively small quantities of N-3-
methylbutyl acetamide, methoxy-acetamide, methyl, ethyl, and propyl
4-hydroxybenzoate, and a large quantity of 1,3-nonanediol, which was not detected
in the previous studies. The amounts of 1,3-nonanediol and ethyl 4-hydroxybenzoate
stored in the rectal gland increased with age, starting 2 weeks after adult eclosion,
thus coinciding with attainment of sexual maturity (Nishida et al. 1990). Addition-
ally, at sexual maturity males of B. cucurbitae consume and sequester RK from
anthropogenic (Nishida et al. 1990) and natural (Nishida et al. 1993; Tan and Nishida
2005) sources into the rectal gland. As noted above for B. papayae, males of
B. cucurbitae are also attracted to and feed on zingerone, an orchid floral volatile,
and store it unmodified in the rectal gland (Tan and Nishida 2000).

Males of B. tryoni produce endogenously six amides as major sex pheromonal
components, and three of the six, namely, N-3-methylbutyl acetamide (MBA), N-3-
methylbutyl propanamide (MBP), and N-3-methylbutyl-2-methyylpropanamide,
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are frequently detected in the rectal gland (Bellas and Fletcher 1979). Furthermore,
MBA and MBP increase significantly from 14 to 17 day-old males corresponding
with attaining sexual maturity (Tan and Nishida 1995). This suggests that the two
chemicals may act as close range sex pheromone. Males consume plant-borne RK
or RK from spontaneous hydrolysis of CL and sequester it in the rectal gland as a
major pheromonal component (Tan and Nishida 1995).

Analogous to the B. dorsalis complex, ingestion of CL/RK has been shown to
enhance male mating success, though the effect appears short-lasting both for
B. cucurbitae (1 day after feeding, Shelly and Villalobos 1995; Shelly 2000b) and
B. tryoni (1-3 days after feeding, Kumaran et al. 2013). More recently, B. tryoni
males fed zingerone were also found to have a mating advantage over control males
deprived this compound (Kumaran et al. 2013). The role of the sex pheromone in
influencing male mating success is unknown. Kobayashi et al. (1978) found that
B. cucurbitae females were attracted to male rectal glands as well as live males
(in neither case were males fed CL/RK) but that the attraction was far weaker than
that observed for B. dorsalis females to conspecific males. In wind tunnel trials,
Khoo and Tan (2000) demonstrated that CL-fed and zingerone-fed males of
B. cucurbitae attracted more females compared to males deprived these com-
pounds, which strongly suggests a sex pheromonal role for these exogenous
phenylbutanoids. To our knowledge, there are no laboratory or field data available
investigating the effect of the male sex pheromone on female attraction or male
mating success in B. tryoni.

2.2.5 Sex Pheromone of Bactrocera oleae

Bactrocera oleae (Rossi) [formerly Dacus oleae (Gmelin)], the olive fruit fly,
unlike the other major pest Bactrocera species mentioned above, is a monophagous
pest species. Additionally, the species differs from other Bactrocera in that the
B. oleae females attract males for mating and not vice versa (Haniotakis 1974; but
see below). Baker et al. (1980) identified the major component of the female sex
pheromone as (1,7-dioxaspiro[5.5]Jundecane (also known as olean; as noted above,
this compound was also identified from the pheromone of B. umbrosa). Additional
studies (Mazomenos and Haniotakis 1981) confirmed this finding and also identi-
fied three minor components, o-pinene, n-nonanal, and ethyl dodecanoate, in the
female pheromone (see also Baker et al. 1982b, who identified two hydroxyspir-
oacetals from B. oleae females). Other components of the female sex pheromone
were reported (Gariboldi et al. 1982), but their isolation and biological activity
(tested with synthetic products) was not corroborated (Jones et al. 1983;
Mazomenos 1989). Interestingly, olean was also isolated from the rectal gland of
male B. oleae along with other components (Mazomenos and Pomonis 1983).
Canale et al. (2012) reported that, among males, olean production is greatest
among young males (5-8 days old) and then ceases by 11 day of age. Also, in a
recent finding, Carpita et al. (2012) identified (Z)-9-tricosene from male rectal
gland extracts and reported female attraction to this compound in synthetic form.
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Fig. 2.4 Stereo enantiomers of (R)- and (S)-olean found in B. oleae sex pheromone

Several studies (Haniotakis 1974; Mazomenos and Haniotakis 1981, 1985) have
demonstrated male attraction to natural or synthetic components or whole blends of
the female pheromone in B. oleae. Laboratory and field experiments demonstrated
that olean was more attractive than the remaining three components but that the
combination of all four components was more attractive than olean alone. More
detailed chemical analysis (Haniotakis et al. 1986a) revealed that olean exists as (R)
and (S) mirror (stereo) image enantiomers, (R)-olean and (S)-olean (Fig. 2.4) and
that (i) males are more strongly attracted to (R)-(—)-oleanthan(S)-(+)-olean, (ii) the
converse was true for females, and (iii) overall, males showed greater attraction to
response to the compound than did females. Haniotakis et al. (1986a) suggest olean
may serve an aggregation or aphrodisiac function for females. Relative to the strong
evidence gathered for male attraction to the female sex pheromone, data regarding
female attraction to male olfactory signals are less conclusive. Mazomenos and
Pomonis (1983) reported negligible female response in laboratory tests to extracts
of rectal glands of mature males. More recently, however, Mavraganis et al. (2010)
demonstrated that whole body extracts of B. oleae males were highly attractive to
females and suggest that the previous negative results may have reflected low
pheromone concentrations in the rectal gland extracts compared to those of whole
body. Benelli et al. (2013) found that young males, which, as noted above, produce
olean at higher levels than old males, did not have a mating advantage over older
individuals.

In contrast to the other economically important species discussed here, several
studies have demonstrated the usefulness of olean in baiting traps. In general,
because olean is primarily a male attractant, the most effective traps appear to be
those that combine the pheromone with ammonium or some other food bait that
targets females (Haniotakis and Vassiliou-Waite 1987; Broumas and Haniotakis
1994). Traps baited with this combination have been used both in detection (Rice
et al. 2003; Yokoyama et al. 2006) and in mass-trapping efforts to lower olive
infestation (Haniotakis et al. 1986b, 1991; Iannotta et al. 1994; Petacchi et al. 2003;
Noce et al. 2009; see also Navarro-Llopis and Vacas, Chap. 15, this volume).
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2.2.6 Synthesis

Because males of many economically important Bactrocera species are strongly
attracted to male lures (see below), the development of pheromone-based trapping
for this genus would target females primarily. The important finding that ME and
CL/RK are used in pheromone synthesis and that their incorporation in this process
enhances the attractiveness of the male olfactory signal could facilitate the produc-
tion of effective pheromone baits. Nonetheless, many of the obstacles noted above
for Anastrepha apply to Bactrocera as well, namely the lack of data on (i) the long-
range attractiveness of the male pheromone, (ii) the optimal blend (relative
amounts) and release rate of pheromonal components that produce maximal attrac-
tiveness, and (iii) the importance of olfactory signals relative to other modalities
(i.e., visual, acoustic) in the mating behavior of Bactrocera species

2.3 Ceratitis Pheromones

The genus Ceratitis contains approximately 80 species, most of which are found in
tropical Africa, although C. rosa Karsch (Natal fruit fly) has invaded Mauritius and
Réunion and C. capitata (Wiedemann) (Mediterranean fruit fly or medfly) has
spread globally (South and Central America, Western Australia, and Hawaii)
(De Meyer 2000). The medfly is, of course, one of the most harmful agricultural
pests worldwide, with females ovipositing in soft fruits of more than 300 plant
species (Liquido et al. 1990). Other major economic pests in the genus include
C. rosa, C. cosyra (Walker) — mango fruit fly, and C. catoirii Guérin-Méneville
(White and Elson-Harris 1992). Because of its economic importance, the medfly
has been studied far more intensively than its congeners, and this review will
necessarily focus on this species.

Féron (1959, 1962) provided the first detailed description of calling behavior in
C. capitata males, which he associated with the emission of volatiles attractive to
females. While the notion of male-produced olfactory stimuli had been proposed
decades earlier (Martelli 1910; Back and Pemberton 1918, both cited in Jones
1989), Féron supplied empirical evidence by reporting female attraction to a cotton
wick previously exposed to calling males. Quilici et al. (2002) and Bricefio
et al. (2005) report similar pheromone-calling behavior in C. rosa and C. catoirii,
but data showing female attraction to calling males are not yet available for these
species. For the medfly, Ohinata et al. (1977) and Nakagawa et al. (1981a) provided
the first quantitative demonstration of the long-range, female attraction to calling
male in the field by recording female captures in male-baited traps. Female attrac-
tion to live, calling medfly males (or their odor) was reported in further laboratory
(Landolt et al. 1992a; Jang 1995; Jang and Light 1996; Jang et al. 1994, 1998) and
field (Shelly 2000c) studies. The importance of olfaction to females has been
demonstrated conclusively via antennal ablation: in existing studies, females with
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antennae removed either mated not at all (Nakagawa et al. 1973; Levinson
et al. 1987) or at very low levels (Shelly et al. 2007).

Research aimed at characterizing the chemical composition of the male sex
pheromone in C. capitata and identifying the biologically active components was
undertaken even before female attraction to calling males was demonstrated in the
field. Jacobson et al. (1973) identified two putative pheromonal components —
methyl (E)-6-nonenoate and (E)-6-nonen-1-ol — and indicated that females were
attracted to both compounds in assays performed in small cages. Ohinata
et al. (1977, 1979) identified the same two components as well as 15 carboxylic
acids, which were presumed to ‘activate’ the two main components. However,
contrary to Jacobson et al. (1973), various blends of these different chemicals were
found to attract males but not females. Delrio and Ortu (1987, cited in Millar 1995)
likewise reported no female attraction to methyl (E)-6-nonenoate. Jacobson and
Ohinata (1980) also reported (—)-p-fenchol in the medfly sex pheromone, but
subsequent analyses failed to detect this compound.

In fact, it appears that, due to inadequate analytical methods, initial efforts to
identify pheromonal components led to inaccurate results, which could not be
confirmed by later studies. Despite the potential usefulness of pheromone-based
lures in medfly surveillance programs, relatively few studies have further investi-
gated pheromonal composition and/or the role of particular components as female
attractants. Baker et al. (1985) identified nine components in male medfly emis-
sions, with the three most abundant being ethyl (E)-3-octenoate, geranyl acetate,
and (E, E)-a-farnesene. They further proposed that another component,
3,4-dihydro-2-H-pyrrole (1-pyrroline), functioned as the key attractive element to
females (although no data on its purported biological activity were provided). In a
follow-up study, Baker et al. (1990) tested the attractiveness of four compounds
(linalool, two pyrazines, and geranyl acetate) in field trials in Mexico. Both
individually and in various blends, these chemicals attracted both sexes of
C. capitata, although the olfactory stimuli used bore little resemblance to the
emissions of calling males.

More thorough chemical analyses (Jang et al. 1989a; Flath et al. 1993) confirmed
the presence of the nine components reported by Baker et al. (1985), with one
exception, and revealed a pheromonal complexity far greater than previously
documented. Jang et al. (1989a) identified a total of 56 compounds from the odor
of calling males, and Flath et al. (1993) identified four additional compounds, thus
revealing that the sex pheromone of C. capitata males consists of approximately
60 different compounds. Jang et al. (1989b) established four abundance categories
for the pheromonal constituents, with five considered major components (ethyl
acetate, 1-pyrroline, ethyl (E)-3-octenoate, geranyl acetate, and (E,E)-a-farnesene).
Based on electroantennogram (EAG) recordings, ethyl acetate, 1-pyrroline, and (E,
E)-a-farnesene elicited low EAG responses (relative to a standard), geranyl acetate
elicited a moderate response, and ethyl (E)-3-octenoate elicited a high response.
Overall, the sexes displayed similar EAG responses to the different pheromonal
components. Additional studies (Casafia-Giner and Primo-Millo 1999; Gongalves
et al. 2006) have identified additional components from the volatiles of calling
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C. capitata males, and Cossé et al. (1995) confirmed strong female EAG responses
to some of the previously identified compounds of the male pheromone.

Since Jang et al.’s (1989b) seminal paper, few studies have examined behavioral
responses to the sex pheromone of C. capitata males. These investigations have
employed simplified blends, including only the major components or a subset
thereof, owing to (i) the difficulty of creating close mimics to the naturally complex
male odor and (ii) the assumption that only a small portion of the pheromonal
chemicals identified actually have biological activity (Landolt et al. 1992a). Thus,
working in a coffee field in Guatemala, Heath et al. (1991) demonstrated attraction
of medfly females to a synthetic blend containing three of the major components
(ethyl (E)-3-octenoate, geranyl acetate, and (E, E)-a-farnesene). In two testing
periods (lasting 6 and 8 days, respectively), 259 and 368 wild females, respectively,
were captured in traps baited with the synthetic blend. However, the effectiveness
of the blend as a trap-bait, could not be ascertained, because (i) no estimates of the
size of the wild population were made and (ii) no traps baited with live males were
operated, thus precluding assessment of the relative competitiveness of the simpli-
fied blend. Working with the same 3-component blend, Landolt et al. (1992a)
reported an oriented response (i.e., upwind movement coupled with course-
correcting, zigzagging flight) of female medflies to the stimulus in a wind tunnel.
However, only a small proportion (3 %) of the females actually contacted the odor
source, a level not significantly different from the contact rate observed in the
absence of an olfactory stimulus. Jang et al. (1994) studied female response to live
males, each of the five major components, and a mixture of these five compounds in
a wind tunnel. Although females showed greatest attraction to live males, the five
component blend was more attractive than the individual compounds and appeared
to elicit a much greater female response than the 3-component blend used by
Landolt et al. (1992a). While the above studies reveal the attractiveness of simple
pheromone blends, Casafna-Giner et al. (2001) reported very low catch of female
medflies in traps baited with a 6-component mixture and questioned the long-range
effectiveness of male pheromone-baited traps.

Adopting a different approach, Mavraganis et al. (2008) obtained whole body
extracts of medfly males and monitored female attraction to complete extracts of
laboratory vs. wild males as well as the major components of the extracts either
individually or in different combinations. Interestingly, females showed greater
attraction in laboratory assays to the extracts from wild males than laboratory
males. Samples from wild males contained larger amounts of the compound
a-copaene than those from laboratory males, and this compound was found to
have greatest attractancy to females in comparisons of the individual components.
Field trials further revealed that total male extracts as well as synthetic blends of
major components were highly attractive to wild females, the majority of which
were virgin. Thus, in contrast to other studies (Heath et al. 1991; Casafna-Giner
et al. 2001), the total extracts and blends tested by Mavraganis et al. (2008) appear
to be highly attractive to female medflies and clearly merit additional field testing.

The chemical complexity of the male sex pheromone has, it appears, discour-
aged efforts to develop or improve the attractiveness of synthetic sexual lures to
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medfly females. Not only might some trace components await identification, but
knowledge of the relative amounts of the constituent compounds is imprecise. In
addition, the blend containing the five major components was far less attractive to
females than the odor emitted by live males, suggesting that simplified formulations
will not be able to compete against calling males in the wild (Jang et al. 1994).
Similarly, whole body extracts were far more attractive to wild females than
simplified blends with relatively few components (Mavraganis et al. 2008). In
this regard, Howse and Knapp (1996), noting similarity in the volatiles released
by host fruit, citrus in particular, and calling male medflies, suggest that competi-
tion with host fruit odors may further limit the effectiveness of male pheromonal
traps in orchards (but see Mavraganis et al. 2008). In addition to the chemical
composition, the importance of release rate in the development of a potent
pheromone-based lure is uncertain as relevant data are inconsistent. In particular,
results from Ohinata et al. (1977) and Jang et al. (1994) suggest that the amount of
male emission does not have a marked effect on its attractiveness, whereas Heath
et al. (1991) found that an intermediate release rate resulted in higher female
captures than lower or higher rates. Finally, while the identification of a female
lure for Ceratitis species is recognized as a worthy research objective, the wide
usage of a male-lure (trimedlure) may lessen the impetus to achieve this goal.

2.4 Dacus Pheromones

To date, little effort has been devoted to identifying possible sex or aggregation
pheromones of Dacus species. This lack of interest is probably due to a combination
of several factors, such as insufficient funding, the small number of pest species in
the genus, which are generally moderate pests relative to highly invasive
Bactrocera species, and the availability of male lures for surveillance purposes.

2.5 Rhagoletis Pheromones

Male sex pheromones have been demonstrated in several Rhagoletis species. Using
caged host trees, Prokopy (1975) and Katsoyannos (1976) furnished evidence for a
male sex pheromone in R. pomonella (Walsh), the apple maggot fly, and R. cerasi
Loew, the cherry fruit fly, respectively, by reporting attraction of mature, virgin
females to cages of live males as well as to empty cages that had housed males. No
male-to-female or male-to-male attraction was observed in either of these species.
Also, males of these two species did not display any behavior typically associated
with pheromone release in other tephritids (e.g., wing fanning), and consequently
the manner of pheromone release was unclear. Additional tests on R. cerasi further
showed that immature and mated females do not respond to male pheromone and
that mature virgin females responded to an extract obtained from whole body
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preparations of mature males (Katsoyannos 1982). In addition to the male phero-
mone, several studies (Prokopy and Bush 1972; Katsoyannos 1975) have shown
that female host marking pheromone acts as a male arrestant, possibly to increase
the frequency of intersexual encounters. Research on sexually-oriented, phero-
monal communication has not continued beyond these few studies, and the poten-
tial use of male pheromones in Rhagoletis trapping or detection has not been
investigated.

2.6 Toxotrypana curvicauda Pheromone

Landolt and Hendrichs (1983) reported “puffing” of the pleural areas of abdomen in
male Toxotrypana curvicauda Gerstaecker, the papaya fruit fly, a behavior associ-
ated with pheromome release in other tephritids, and Landolt et al. (1985) later
demonstrated female attraction to male pheromone in laboratory assays, including
wind tunnel trials. The pheromone has a single chemical component, which was
identified as 2-methyl-6-vinylpyrazine (Chuman et al. 1987). Additional observa-
tions (Landolt and Heath 1988; Landolt et al. 1991) showed that the pheromone
attracts, not only virgin females, but also mated females and males and that female
response is increased when green papaya fruit or an extract thereof was presented
with the male pheromone (Landolt et al. 1992b).

The male pheromone with sticky-coated green spheres was tested in Florida and
resulted in high captures of T. curvicauda females (Landolt et al. 1988; Landolt and
Heath 1990). To facilitate field use, Heath et al. (1996) developed a membrane-
based formulation system and showed that release rates, which were dependent on
the amount of pheromone loaded into the system, were relatively constant over
trials lasting 23 days. They also showed that green opaque cylindrical traps yielded
higher captures than spherical traps. In field tests conducted in a papaya orchard in
Guatemala, greater numbers of females were, as expected, captured in pheromone-
baited than blank cylinders. Surprisingly, however, similar tests run in a Mexican
papaya plantation detected no influence of pheromone presence/absence on female
captures in green cylindrical traps. Reasons for this discrepancy are unknown, and
additional field trials are required to evaluate the efficacy of pheromone-baited traps
in detecting and/or suppressing populations of T. curvicauda.

3 Male Lures

There are two types of male lures: anthropogenic (e.g., CL, trimedlure [TML],
fluorinated methyl eugenol analogs, raspberry ketone-formate (RKF)) and plant-
borne (e.g., a-copaene, ME, RK, and zingerone). For certain species, male lures are
relatively cheap to synthesize due to the simplicity of the chemical structures,
which are often not stereoisomeric. In addition, they are very potent attractants in
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most cases and thus appear a more robust option for trapping programs than the
development of the male sex pheromone as baits. As a result, they are frequently
used as baits in trapping for surveys and detection of invasive species, delimitation
of an infestation, and control or eradication via the male annihilation technique.
Because of their importance in trapping, numerous reviews (Chambers 1977,
Cunningham 1989; Metcalf 1990; Millar 1995; Jang and Light 1996; Sivinski and
Calkins 1986; Oliver et al. 2004; Vargas et al. 2010a) of male lures already exist,
and rather than re-hashing information, our present aim was to address a few
selected topics.

3.1 Anastrepha

At present, there are no identified male lures for any Anastrepha species. This fact
does not reflect a lack of effort. Approximately 8,000 compounds were screened as
possible attractants for A. ludens (Chambers 1977) and 1,320 compounds were
tested for A. suspensa (Burditt and McGovern 1979; cited in Cunningham 1989).
Despite intense screening, no male attractant was identified in both the
investigations.

3.2 Bactrocera

While most species in the genus remain untested, Bactrocera has been broadly
categorized into three groups of species based on male response to two very potent
attractants (Drew 1974; Hardy 1979; Drew and Hooper 1981; White and Elson-
Harris 1992; Fig. 2.5). Nearly 200 species have been identified as CL/RK
responders and 81 species as ME-responders (IAEA 2003). A third group includes
approximately 15 species (limited to an Australian survey) that do not respond to
either CL/RK or ME as evidenced by their absence in traps from areas where
species were known to be present (Drew and Hooper 1981). No species has been
identified that responds to both CL/RK and ME. Response to these compounds
correlates with morphologically-based taxonomic classification (Drew 1974; Drew
and Hooper 1981), and several authors (Metcalf et al. 1979, 1981, 1983, 1986;
Metcalf 1990; Raghu 2004) suggest that the existence of distinct CL/RK- and
ME-responding species groups reflects evolutionary divergence from a common
saprophytic relationship with rotting fruits. Broadly, coevolution between plants,
specifically the appearance of novel metabolic pathways and the subsequent inte-
gration of those products into essential oils, and dacine tephritids, specifically
adaptation of olfactory receptors to chemically diversified plant essential oils, is
considered to underlie the present-day CL/RK or ME distinction in species
responsiveness.
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Fig. 2.5 Chemical structures of lures for Bactrocera males

3.2.1 Methyl Eugenol

ME is widely recognized as the most powerful male lure currently in use for
detection, control, and eradication of any pestiferous tephritid species. The chemical
occurs naturally in more than 450 plant species representing 80 families spanning
38 different orders in varying amounts, from a trace quantity to over 90 %, in
essential oils extracted from flowers, leaves, roots, stems, or whole plant extracts
(see review by Tan and Nishida 2012). It was first discovered as a fruit fly attractant
by Howlett (1912, 1915), who observed males of B. dorsalis and B. zonata
responding to ME-containing citronella grass, Cymbopogon nardus (L.) Rendle.
Steiner (1952) further documented the strong attraction of B. dorsalis male to ME
and noted their vigorous feeding on the chemical. Metcalf et al. (1975) exposed
B. dorsalis males to ME as well as 34 analogs and found that ME elicited the greatest
feeding response. The powerful attraction of this lure was further demonstrated by
(a) a simple test in which approximately 1 nanogram (10~° g) of ME spotted on a
silica gel TLC plate placed in the field attracted B. papayae males, which readily
consumed the minute amount of attractant (Tan and Nishida 2000); and (b) trap
placement for trapping B. dorsalis and B. umbrosa hung at different heights — ground
level (0.3-0.5 m), below (1.5-2 m), middle (5—7 m) and above (10-12 m) tree canopy
— using traps baited with 0.5 ml ME/trap and set up using a 4 x 4 Latin square design
in a 5 ha Penang village (a 4-day experiment conducted in two fruiting seasons),
showed no significant difference in daily fly captured (flies/trap/day) (Tan 1984).
Because of its potency, ME-baited traps have been used in a variety of ways
including (i) detection and surveillance of invasive species (Drew et al. 2005;
McQuate et al. 2008a; Jessup et al. 2007), (ii) quarantine surveys and delimitation
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(Allwood 2000; Sookar et al. 2008; OEPP/EPPO 2010), (iii) suppression and
eradication (Steiner et al. 1965; Hancock et al. 2000; Hsu et al. 2010; Vargas
et al. 2008), and (iv) ecological studies, including faunal surveys (Tan and Lee
1982), population dynamics and phenology (Tan 1985; Tan and Serit 1988, 1994;
Ye and Liu 2005; Han et al. 2011; Kamala Jayanthi and Verghese 2011), adult
survivorship (Tan and Jaal 1986), and dispersal (Iwahashi 1972; Tan and Serit
1988; Chen et al. 2006; Froerer et al. 2010). As noted above, existing reviews
address many of these topics (see, in particular, Vargas et al. 2010a, b), and here we
briefly address three topics, namely (i) the effect of ME feeding on subsequent
attraction to ME-baited traps , (ii) age-dependent variation in response to ME, and
(iii) interspecific differences in attraction to ME.

There is some evidence that feeding on ME reduces the likelihood of future ME
feeding. Males of B. dorsalis given access to ME for 0.5-24 h prior to release were
captured in ME-baited traps at much lower rates (1-4 %) than control, unfed males
(22 %; Shelly 1994). In a second test, B. dorsalis males exposed to ME for 2 h and
then held for 7-35 days prior to release were also captured at lower rates (11-18 %)
than control, unfed males (34 %). Other studies, however, indicate that these results
may be an artifact of the experimental design. When treated males were provided
ME-bearing flowers instead of commercial ME, there was no difference in capture
rate in ME-baited traps between floral-exposed and control males, indicating that
the unnaturally high purity and availability of synthetic ME in the previous study
may have accounted for the diminished capture rate of treated males (Shelly
2000d). Moreover, dissection of wild males of several Bactrocera species attracted
to ME-baited traps (designed to prevent feeding) revealed the presence of ME
metabolites in the rectal gland of nearly all individuals. Wee and Tan (2001)
extracted the rectal gland from 76 wild B. papayae males in Penang, Malaysia,
and found that all individuals possessed some ME-metabolites, ranging from trace
quantities to approximately 103 pg per male. Similarly, Tan et al. (2011) reported
that nearly all wild-caught B. invadens and B. zonata males dissected contained at
least trace amounts of ME metabolites (maximum observed: 10 pg per gland for
both species). Interestingly, after ad libitum feeding on synthetic ME, laboratory
measurements regarding accumulation of ME breakdown products showed that
males of B. papayae, B. invadens, and B. zonata sequester, on average, 20, 170,
and 25 pg/gland 1-2 days after feeding (Wee and Tan 2001; Tan et al. 2011; see
also Tokushima et al. 2010 for comparable data on B. correcta). As the quantity of
ME derivatives detected in wild males attracted to ME traps was often less than
these averages, it appears that, in general, males are unable to “tank up” at any one
ME source and therefore must visit multiple ME sources to gather a sufficient
amount of the chemical, a result consistent with the aforementioned result regard-
ing the high capture rate at ME traps of B. dorsalis males experimentally fed
ME-bearing flowers in the laboratory (Shelly 2000d).

Interestingly, when B. papayae males were exposed to commercial ME (isolated
to prevent feeding) for various time periods within a trap, they became habituated
after an hour and would not respond to subsequent ME exposure for a week
(unpublished data, discussed in Tan et al. 2002). Because of this, the trapped
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males were removed from ME-traps every 0.5 h to avoid possible habituation to ME
when using the mark-release-recapture technique to estimate population size (Tan
1985). While access to commercial ME of high purity may induce habituation
depending on the length of exposure and underestimate the incidence of repeat ME
feeding in nature, it nonetheless suggests a means of improving the effectiveness of
control programs against B. dorsalis (or related species), namely the simultaneous
application of the male annihilation and sterile insect techniques. Providing sterile
males access to ME before release may both increase their mating competitiveness
(Mclnnis et al. 2011) and reduce their attraction to insecticidal-laden ME sources
deployed for male annihilation. Barclay and Hendrichs (Chap. 11, this volume)
examine the improved control afforded by this strategy through a modeling
approach.

As another caveat, to the extent that male responsiveness to ME has a heritable
component, it seems possible that prolonged application of a male annihilation
program might select for males showing low attraction to ME, thus eclipsing the
effectiveness of the program. Faced with persistent populations of B. dorsalis on
several Japanese Islands despite prolonged attempts at male annihilation, It6 and
Iwashashi (1974) and Habu et al. (1980, 1984) suggested that selection for
ME-insensitive males was responsible, and, as a result, SIT was implemented and
finally achieved eradication. In support of their claim, It6 and Iwahasi (1974)
exposed B. dorsalis males to ME in the laboratory and selected non-responding
males as sires. Within only two generations of such selection, they produced a strain
with lower ME responsiveness than a control line. Working with B. dorsalis in
Hawaii, Shelly (1997) likewise reported a consistent reduction in ME responsive-
ness over 8 generations for several lines sired by non-responding males. These
studies indicate that, while the evolution of lure-insensitivity has not been demon-
strated conclusively, programs of male annihilation are most effective when applied
intensely with the aim of rapid eradication.

Age-dependent response to ME has been examined in some detail for
B. dorsalis. While all studies confirm that ME response increases with male age,
they differ in their estimates of ME responsiveness among immature individuals.
On one hand, several studies (Umeya et al. 1973; It6 and Iwahashi 1974; Habu
et al. 1980; Tan et al. 1987) report no or very little attraction by very young males
(1-5 days-old) and a close association between ME response and male sexual
maturation (see also Fitt 1981b for data on B. opiliae). Tan et al. (1987), for
example, found that less than 2 % of 5 days-old laboratory-reared males responded
to ME in a wind tunnel and no wild males, emerged from naturally infested star
fruits (Averrhoa carambola Linn.), marked, and released, at less than 7 days of age
were captured in ME-baited traps. In contrast, several other studies (Steiner 1952;
Steiner and Lee 1955; Wong et al. 1989; Shelly et al. 2008) reported young males
(<5 days of age) showed relatively high response to ME. Wong et al. (1989), for
example, found that nearly 50 % of males responded to ME before their age of first
mating (13 days). Collectively, these studies involved different strains, different
procedures, and different test conditions, making it impossible to draw a robust
conclusion. Resolution is far from an arcane academic exercise, however, as
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knowledge of age-dependent response to ME is critical to predicting the success of
male annihilation efforts (see Barclay and Hendrichs, Chap. 11, this volume).

In contrast to intraspecific, age-dependent variation, little attention has been
given to interspecific differences in attraction to ME. In the most comprehensive
study to date, Wee et al. (2002) monitored the response of males of three closely
related Bactrocera species to serial dilutions of ME in small laboratory cages as
well as consumption of ME from microcapillary pipettes. The two assays yielded
the same trend, i.e., in decreasing order, the level of ME sensitivity was
B. dorsalis > B. papayae > B. carambolae. Most notably, males of B. carambolae
showed relatively weak attraction to the lure: the ME dose required to elicit
response of 50 % of B. carambolae males was 9 and 17 times higher than that
observed for B. papayae and B. dorsalis, respectively. Given the importance of ME
in trapping programs, additional studies of this type are clearly needed to better
characterize the detection sensitivity of area-wide trapping grids.

3.2.2 Fluorinated Analogs of Methyl Eugenol

One of the potential problems with the use of ME for fruit fly control is the reported
carcinogenicity of this compound in mice and rats (Miller et al. 1983) and microbes
(Schiestl et al. 1989; Sekizawa and Shibamoto 1982). ME has also been shown to
form DNA adducts in cultured human cells and thus may contribute to human
carcinogenesis (Zhou et al. 2007). However, several reviews (Smith et al. 2002;
Robinson and Barr 2006) conclude that ME does not pose a significant cancer risk
in humans, primarily because ME exposure in humans is as much as 1,000 times
below the level utilized to produce hepatic carcinoma in rats. Human subjects fed
approximately twice the daily average intake of safrole (a phenylpropene related to
methyl eugenol) over a 2 year period showed no carcinogenetic symptoms (Long
et al. 1963). In addition to the low exposure, ME in human blood serum is rapidly
eliminated and excreted (Schecter et al. 2004). ME may, in fact, have some benefits
to human health, e.g., reduction of cerebral ischemic injury (Choi et al. 2010) as
well as anti-anaphylactic properties (Kim et al. 1997). ME is a regular component
of the human diet (e.g., flavoring in baked goods and candy, Smith et al. 2002) and
is found in most spices and some plants, particularly in the family Lamiaceae, e.g.,
Ocimum basilicum (sweet basil) and O. sanctum (holy basil), which have high ME
contents and are regularly consumed as vegetables or used for culinary and medic-
inal purposes in Southeast Asian countries (Tan and Nishida 2012).

The fear of ME carcinogenicity and hepatoxicity to human health, whether
legitimate or a case of overreaction, has prompted some fruit fly scientists to search
for ‘safer’ alternative attractants for ME-responsive Bactrocera species and eval-
uate various phenylpropanoids with structural similarities to ME (Khrimian
et al. 1993, 1994, 2006, 2009; Liquido et al. 1998; Metcalf et al. 1975; Mitchell
et al. 1985). Two such analogs of ME are 4-[(2E)-3-fluoroprop-2-en-1-yl]-1,2-
dimethoxybenzene (FME), an analog fluorinated at the terminal carbon of the ME
side chain, and 1-fluoro-4,5-dimethoxy-2-(prop-2-en-1-yl)benzene (RFME), an
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analog fluorinated at the 4 position of the ME aromatic ring. In field tests, FME was
as attractive to B. dorsalis males as ME (Khrimian et al. 1994), while RFME was
only about 50 % as attractive as ME (Khrimian et al. 2009). The good performance
of FME in field bioassays (Khrimian et al. 1994, 2006, 2009; Liquido et al. 1998)
showed that this compound is not only equally attractive to B. dorsalis but has an
added value as a more persistent lure. The carcinogencity of the terminal carbon
fluorinated compound has not yet been determined, but, if negative, FME could
serve as an excellent replacement for ME in trapping programs.

Jang et al. (2011) synthesized two additional fluorinated ME analogs,
1-(3,3-difluoroprop-2-en-1-yl)-2-fluoro-4,5-dimethoxybenzene, a ME analog
trifluorinated at the 4 position of the aromatic ring and at the terminal carbon of
the side chain, and 1-fluoro-2-(3-fluoroprop-2-en-1-yl)-4,5-dimethoxybenzene, a
ring and side-chain difluorinated analog. Although B. dorsalis males were attracted
strongly to and fed on the trifluoroanalog and difluoroanalog in a cage experiment,
field attractiveness of male oriental fruit fly to both was markedly lower than to
ME. In field bioassays, traps baited with difluoroanalog captured roughly 50 % as
many flies as traps baited with ME, while the trifluoroanalog captured only about
10 % as many males. Thus, di- or tri-fluorinated ME are likely not viable replace-
ments for ME as attractants for B. dorsalis and related species.

3.2.3 Plant Phenylpropanoids, Dimethoxycinnamyl Analogs
as Parapheromones of ME-Responsive Species

E-3,4-dimethoxycinnamyl alcohol and E-3,4-dimethoxycinnamyl acetate from
Spathiphyllum cannaefolium Schott (Araceae) (Chuah et al. 1996) and Hawaiian
lei flower, Fagraea berteriana A. Gray ex Benth. (Loganiaceae) were characterized
as attractants for B. dorsalis (Nishida et al. 1997). Although these compounds are
less volatile than ME, the feeding stimulant activity of the former was as high as
that of ME (Nishida et al. 1997). However, they will not replace ME in trapping of
B. dorsalis because of their low volatility and attractancy.

3.2.4 Raspberry Ketone, Raspberry Ketone Formate, and Cue Lure

As noted above, among lure-responsive Bactrocera species, the majority is
attracted to RK/CL. RK (Fig. 2.5) is found naturally as a fungal metabolite (Ayer
and Singer 1980) and in many plants besides raspberries (Rubus idaeus L.),
including other species in Rosaceae, Asteraceae, and Lamiaceae (formerly
Labiatae) (Hirvi et al. 1981; Hirvi and Honkanen 1984; Lin and Chow 1984;
Marco et al. 1988) as well as Orchidaceae (Nishida et al. 1993; Tan and Nishida
2005; Tan 2009). Drew (1974) reported that RK was developed as a male attractant
for B. tryoni in Australia in 1959 but provided no additional information regarding
the nature of this discovery. At approximately the same time, the United States
Department of Agriculture (USDA) was engaged in a large-scale screening of
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thousands of chemicals as potential fruit fly baits (Beroza and Green 1963). Based
on this screening process, Barthel et al. (1957) reported attraction of B. cucurbitae
males to anisylacetone (4-(4-methoxyphenyl)-2-butanone), a synthetic aromatic
ketone. In turn, Beroza et al. (1960), through continued testing of compounds
related to anisylacetone, synthesized CL (4-(4-acetoxyphenyl)-2-butanone),
which was a much more potent attractant for B. curcubitae males and is now
used worldwide in detection efforts for this species and other RK/CL-responsive
Bactrocera species (Jang et al. 2007). CL has not been isolated as a natural product
but is hydrolyzed to RK (also known as rheosmin; 4-(4-hydroxyphenyl)-2-
butanone), which as noted above is widespread in nature (Metcalf 1990; Metcalf
and Metcalf 1992b). In field tests, CL is a more potent attractant than RK (Alex-
ander et al. 1962; Keiser et al. 1973), likely owing to its high volatility relative to
that of RK (approximately 20 times greater, Metcalf 1990).

At this juncture, it is pertinent to point out that Nishida, Howcroft and Tan
(unpublished data) recently detected anisylacetone and CL (hitherto, not known as
natural products as mentioned above) in certain bactrocerophillous orchid flowers
(Bulbophyllum spp.) found in Papua New Guinea. They also showed that both the
compounds have differential attraction against RK-sensitive Bactrocera species in
field capture of wild males — with significantly more B. cucurbitae and
B. triangularis (Drew) captured in RK- than anisylacetone-baited traps and vice
versa for B. atramentata (Hering), B. bryoniae (Tryon) and B. frauenfeldi (Schiner)
(unpublished data). This shows that anisylacetone and CL, along with RK and
zingerone (see below), in nature may (a) play an important evolutionary role in the
Bactrocera fruit fly-orchid interactions, and (b) affect trapping of wild flies in
surveillance and quarantine detection for an areawide IPM/SIT program.

Although quantitative data are scant, it is generally accepted that CL is a weaker
attractant than ME (Cunningham 1989; Jang and Light 1996). Data from a mark-
release-recapture study (Shelly and Nishimoto 2011) conducted in Hawaii and
California confirmed this notion. For example, among flies released 100 m from
the lure source, 1-19 % of B. dorsalis males were captured in an ME-baited trap
compared to only 0.4-1.2 % of B. cucurbitae males captured in a CL-baited trap.
Correspondingly, with 5 ME- and 5 CL-baited traps per 2.59 km?® (operational
density in California, for example), there would be near certainty (>99.9 %) of
detecting incipient B. dorsalis populations as small as 50-162 males, whereas the
same likelihood of detection for B. cucurbitae would require 310-350 males in the
population.

Although less potent, CL has been used in the same ways as ME, i.e.,
(i) detection and surveillance of invasive species (Gonzalez and Troncoso 2007;
Jessup et al. 2007), quarantine surveys and delimitation (Allwood 2000), suppres-
sion and eradication (Matsui et al. 1990; Vargas et al. 2000; Sookar et al. 2008), and
ecological studies, including faunal surveys (Osborne et al. 1997; Allwood 2000),
population dynamics and phenology (Itd et al. 1974; Harris et al. 1986; Vargas
et al. 1990), and dispersal (Fletcher 1989; Vargas et al. 1989; Kohama and Kuba
1996; Peck et al. 2005). As noted above, existing reviews address many of these
topics (see, in particular, Vargas et al. 2010a), and here we briefly address two
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topics, namely (i) age-dependent variation in response to ME and (ii) comparative
performance of CL and raspberry ketone formate.

As with the B. dorsalis-ME association, attraction of B. cucurbitae males to CL
is related to sexual maturation, and findings have been inconsistent regarding the
level of response displayed by very young males. In particular, whereas Beroza
et al. (1960) observed attraction of newly emerged B. cucurbitae males to CL, other
studies (Monro and Richardson 1969; Fletcher 1974; Wong et al. 1991) report no
attraction until males are at least several days old. In the most comprehensive study,
Wong et al. (1991) found that wild B. cucurbitae males did not respond to CL until
10 days of age and that the timing of CL response and mating activity were highly
correlated. Based on this finding, these authors concluded that male annihilation
would be less effective against B. cucurbitae than B. dorsalis, because the closer
coincidence of lure response and sexual maturation in the former than the latter
means that fewer B. cucurbitae males would be killed in lure-baited traps prior to
mating than would be the case for B. dorsalis.

In attempting to identify a more potent lure than CL, several studies have
investigated the attractancy of the formate ester of RK, formic acid 4-(3-oxobutyl)
phenyl ester (RKF). In the early 1990s, Metcalf and Mitchell (1990) and Metcalf
and Metcalf (1992a, b) showed that RKF was more attractive to B. cucurbitae males
than either RK or CL. Despite this finding, no further research on RKF was
undertaken for about a decade, apparently because of concern regarding the rapid
hydrolytic conversion of RKF to RK (which, as noted above, is less volatile and less
attractive than CL, which hydrolyzes to RK at a slower rate, Beroza et al. 1960).
However, subsequent work (Casafia-Giner et al. 2003a, b) showed that rate of
hydrolysis of RKF to RK was likely overestimated. Furthermore, field testing
(Casafia-Giner et al. 2003a, b; Oliver et al. 2004; Jang et al. 2007) showed that
RKF-baited traps generally captured more B. cucurbitae males than CL-baited
traps. Additional field data, however, have not corroborated this result. Working
with B. cucurbitae, Vargas et al. (2010c) reported no difference in the catch of traps
baited with CL or RKF embedded in a biologically inert, waxy matrix (SPLAT),
and Shelly et al. (2012a) reported that traps baited with liquid CL had significantly
higher captures than traps baited with RKF presented as a liquid or in a polymeric
dispenser. Reasons for these inconsistent results are unknown, though it is possible
that variation in abiotic factors, which affected the conversion of CL and RKF to
RK, is responsible.

RKF has also been found to attract many other RK-responsive Bactrocera
species. Preliminary tests (Jang et al. unpublished) in Australia showed that RKF
plugs recaptured 1.5 times more sterile male Queensland fruit flies compared to a
CL plug. In an unpublished survey, Jang and colleagues found 19 Bactrocera
species in traps baited with CL and RKF in the northern territories of Australia.
Most of the species responded equally to either CL or RKF, but a few showed
higher trap captures to RKF than CL. The results from trap evaluations in the
Northern Cape York Peninsula and the Torres Strait showed that RKF had higher
trap captures of B. frauenfeldi, Bactrocera peninsularis (Drew and Hancock), and
Bactrocera neohumeralis (Hardy) compared to the CL plug.
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3.2.5 Presentation of ME and RK/CL

In the early 1980s, a proprietary product of International Pheromones Ltd was
marketed as ‘dorsalure’ (a mixture, in unknown proportions, of ME and CL) in
order to capture males of both ME- and RK/CL-sensitive species. In a species
survey conducted in five different ecosystems in Penang Island, Malaysia, it was
shown that CL and ME traps caught five RK-responsive and two ME-responsive
species, respectively, while ‘dorsalure’ traps caught only two RK- and one
ME-responsive species of the seven total species (Tan and Lee 1982). In addition,
Tan (1983) tested combinations of ME and CL (three liquid mixtures (v:v) of 2:1,
1:1 and 1:2) in the same trap, and all blends caught significantly fewer males of two
ME-responsive species — B. dorsalis and B. umbrosa — when compared with
ME-only baited traps. Thus, CL appeared to have caused a slight interference in
the male olfactory system of the ME-responsive species. More studies (Hooper
1978; Vargas et al. 2000; Shelly et al. 2004) have corroborated a reduction in
ME-responsive species with bait mixtures of ME and CL. Data regarding effects on
RK/CL responding species are inconsistent, however, as ME/CL blends have been
found to increase (Taiwanese data, cited by Hooper 1978), decrease (Hooper 1978),
or have no effect (Vargas et al. 2000) on catch numbers of RK/CL sensitive species.

In several large-scale detection programs (e.g., California, USA), Bactrocera
lures are applied as liquids to cotton wicks, which are then placed in Jackson traps.
To minimize worker risk owing to inadvertent spillage and exposure, field tests,
conducted primarily in Hawaii, have compared the efficacy of the standard liquid
formulation with different solid dispensers containing ME and CL separately or in
combination in the same device. In general, studies (Hiramoto et al. 2006; Suckling
et al. 2008; Jang 2011; Jang et al. 2013; Vargas et al. 2009, 2010b; Shelly 2010b;
Shelly et al. 2011a, b; Leblanc et al. 2011) have shown that the solid dispensers
perform as well as or even better than the liquid application (but see Wee and Shelly
2013 for an exception). Interestingly, two studies (Vargas et al. 2012; Shelly
et al. 2012b) conducted in Hawaii further reported that traps baited with solid
wafers containing ME, RK, and TML captured as many males of B. dorsalis,
B. cucurbitae, and C. capitata as traps baited with a single lure in liquid form.
The use of such triple-lure dispensers holds promise, not only in reducing worker
safety, but also in reducing costs of trapping supplies and trap monitoring and
servicing.

3.2.6 Zingerone

Zingerone (4-(4-hydroxy-3-methoxy-phenyl)-2-butanone, 4-hydroxy-3-
methoxybenzyl- acetone, vanillylacetone) (Fig. 2.5) is a phenylbutanoid responsi-
ble for the pungency of ginger, Zingiber officinale (L.) H. Karst. Field studies
showed that zingerone present in flowers of Bulbophyllum patens King and
B. baileyi F. Muell. attracted males of both ME- and RK-responsive Bactrocera
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species, particularly, B. dorsalis and B. cucurbitae/B. albistrigata (Tan and Nishida
2000, 2007). Because of the presence of a hydroxyl group and a butanone side chain
(both are also found in RK) as well as a methoxy (found in ME) moiety attached to
the benzene ring (Fig. 2.5), zingerone attracts males of both ME- and
RK-responsive Bactrocera species, albeit relatively very weak attraction in com-
parison to ME and RK (Tan and Nishida 2007). Zingerone, when consumed by
B. dorsalis males, is converted to zingerol, attractive to conspecific females, as a
component of male sex pheromone (Tan and Nishida 2007). However, in
B. cucurbitae males, zingerone is sequestered largely unchanged into the rectal
gland (Nishida et al. 1993). Khoo and Tan (2000) and Kumaran et al. (2013) have
further examined the effects of male feeding on zingerone on their success in
attracting mates and obtaining matings in B. cucurbitae and B. tryoni, respectively.

After the discovery of floral zingerone attracting both ME and RK-responsive
species (Tan and Nishida 2000, 2007), Fay (2010) explored the structure-activity
relationships of 50 different phenylpropanoids and phenylbutanoids that might
attract the non-responsive Bactrocera and Dacus to the two potent attractants. It
was shown that certain non-responsive Bactrocera species, namely B. aglaiae
(Hardy), B. aurea (May), and B. speewahensis Fay and Hancock (a new species),
as well as a rarely trapped Dacus secamoneae Drew, were captured only in traps
baited with zingerone and not in ME and RK/CL traps (Fay 2010). Further, a
qualitative field evaluation using traps baited with zingerone, RK/CL, or ME
conducted in north-eastern Australia showed that Bactrocera jarvisi (Tryon), pre-
viously known to be attracted to RK/CL, was strongly attracted to zingerone, with
more than 97 % of flies of this species captured in traps baited with the attractant. In
contrast, B. neohumeralis and B. tryoni males were caught more frequently in RK
traps (Fay 2012). In north Queensland, B. jarvisi invariably constituted 97-99 % of
the total catch, and zingerone is “now starting to be used in various places around
the country (Australia) for both detection and male annihilation purposes” (Harry
Fay 2012 — personal communication). These very interesting results certainly
suggest that zingerone should be tested more widely throughout the Asia-Pacific
region for possible attraction of other non-responsive Bactrocera species (which
constitute approximately 50 % of the total Bactrocera species) to the commonly
used ME and RK/CL attractants.

3.2.7 a-Ionone Analogs for Bactrocera latifrons

a-lonol (latilure) and its analogs (Fig. 2.5) were found as attractants for trapping
males of the solanaceous fruit fly, B. latifrons, which shows no affinity to either ME
or CL (Flath et al. 1994a). Although the attractiveness of a-ionol is much lower than
that of ME and CL for B. dorsalis and B. cucurbitae, respectively, cade oil and its
ingredients (e.g., eugenol) synergistically enhanced the attraction (McQuate and
Peck 2001; McQuate et al. 2004, 2008a, b). On the contrary, isophorone (3,5,5-
trimethyl-2-cyclohexene-1-one) and isophorol mixed with a-ionol attracted more
males than the respective individual compounds (Ishida et al. 2008). Furthermore, a
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series of 3-oxygenated a-ionone analogs have been found as more potent attrac-
tants/phagostimulants than a-ionone/ionol (Ishida et al. 2008; Nishida et al. 2009;
Enomoto et al. 2010). These C;s-norterpenoid analogs, resembling raspberry
ketone-type phenylbutanoid structure, are present in various fruit tissues (mostly
in glycosidic-forms). Ingested 3-oxgenated a-ionones by B. latifrons males were
selectively biotransformed to a variety of derivatives, which were eventually
sequestered into the rectal gland — suggesting a possible role as sex pheromone,
although the actual biological function is still unknown (Nishida et al. 2009;
Enomoto et al. 2010).

3.3 Ceratitis

The history surrounding the development of male lures for C. capitata has been
recounted numerous times (Chambers 1977; Cunningham 1989; Millar 1995; Jang
and Light 1996), and no purpose is served in repeating it here. Instead, we focus on
a few selected topics, namely (i) a-copaene and natural oils as male attractants and
(ii) the chemical characterization and modification of trimedlure (TML).

3.3.1 «a-Copaene and Natural Oils as Male Attractants

Ripley and Hepburn (1935) first described the attraction of male Ceratitis, in
particular males of C. rosa, to angelica seed oil (Angelica archangelica (Linn.)).
Steiner et al. (1957) later reported the attraction of C. capitata males to the seed oil,
which was used intensively in the 1956 Florida campaign against C. capitata to the
point of exhausting the world supply. Over a decade later, two researchers
(Fornasiero et al. 1969; Guiotto et al. 1972) identified a-copaene as the main
attractant in angelica seed oil and a-ylangene as a secondary attractant. In a series
of field trials in Hawaii, a-copaene was found to be more attractive to medfly males
than TML (Flath et al. 1994b, c). In addition, the stereochemistry of this compound
was critical in determining its potency as even slight deviations from the
dextrorotary form ((+)-a-copaene) led to decreased attractiveness. Although data
are not provided and the enantiomer is not identified, a-copaene was reported to be
2-5 times more attractive to male medflies than TML in field tests (Cunningham
1989).

While highly attractive, (+)-a-copaene has limited practical use, because its
synthesis is extremely difficult and expensive and its concentration in most natural
(plant) sources is low. Methods for synthesizing (+)-a-copaene have been devel-
oped (Heathcock 1966; Heathcock et al. 1967; Corey and Watt 1973), but these are
laborious and yield only small amounts. Millar (1995) noted that new synthetic
pathways have been developed for copaene isomers (Kulkarni et al. 1987; Wenkert
et al. 1992), thus opening the possibility that simpler, and more easily synthesized,
analogs might be identified as practical alternatives. Regarding plant sources, where
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a-copaene occurs, the levorotatory isomer usually predominates, and in those
instances where (+)-a-copaene dominates, the overall content of copaene is typi-
cally low (<1 % of the essential oil prepared from the plant — Takeoka et al. 1990).
Angelica seed oil differs from most plant species sampled (Buttery et al. 1985;
Elzen et al. 1985) in that (+)-a-copaene appears to be the more common stereoiso-
mer and to be relatively abundant (0.16-0.34 % of commercial angelica seed oil)
(Jacobson et al. 1987).

Another commercially available, natural product, ginger root oil, also contains
relatively high amounts of (+)-a-copaene and has been investigated as a medfly
attractant. A distillation procedure has been developed that increases the concen-
tration of (+)-a-copaene from 0.4 % in commercially available oil to 8 % in the
enriched oil (Shelly and Pahio 2002). However, when applied as a paste at varying
doses to cotton wicks, traps baited with the enriched ginger root oil captured in
significantly fewer C. capitata males than traps baited with liquid TML (Shelly and
Pahio 2002). Moreover, the enriched oil appeared to lose its potency rather quickly:
paste aged 5 days resulted in 10-20 % fewer captures than fresh paste. A second
study (Shelly 2013) also conducted in Hawaii confirmed the greater attractancy of
TML plugs to enriched ginger root oil applied in liquid form. In contrast,
Mwatawala et al. (2013), working in Tanzania, found that trap captures with
enriched ginger root oil were equal to or greater than those with TML for four
Ceratitis species (including the medfly) and that the oil captured males of one
species (C. cosyra not typically found in TML-baited traps). Based on these results,
the authors suggest that enriched ginger root oil is a viable alternative to TML in
Ceratitis detection programs in Africa.

The discrepancy in the results for the medfly between Hawaii and Africa could
reflect differences in the composition of the oils used in the two regions. In a study
of avocado varieties, Niogret et al. (2011) found that the behavioral and EAG
responses of medflies were not directly related to the amount of a-copaene in the
volatiles of the different varieties. For example, a-copaene comprised 31 % of the
sesquiterpenes for one of the least attractive varieties but only 12 % for the most
attractive variety. Thus, the presence and concentration of sesquiterpenes other than
a-copaene may affect medfly response to natural oils, and variation in the chemical
composition of ginger oils from different suppliers could generate different results
in trapping studies.

3.3.2 Trimedlure

Since its discovery approximately 50 years ago (Beroza et al. 1961), TML (tert-
butyl 4(and 5)-chloro-trans —2-methylcyclohexane-1-carboxylate) has become
widely, but not universally (as noted below), adopted as the chief male attractant
used in detection and surveillance programs for C. capitata (Jang et al. 2001). These
authors recognized TML to be a mixture of isomers, with four isomers
predominating (Beroza and Sarmiento 1964), but complete resolution of the iso-
meric constitution of trimedlure was not achieved until Leonhardt et al. (1982)
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reported that the four frans isomers comprise 90-95 % of TML and the four cis
isomers comprise the remaining portion (see also Sonnet et al. 1984; Warthen and
McGovern 1986a, b). Nonetheless, prior to this more thorough chemical descrip-
tion, the structure (McGovern and Beroza 1966) and volatility and attractiveness of
the trans isomers (McGovern et al. 1966) were described, and based on laboratory
olfactometer trials, the relative attractiveness of these four isomers was
C > A >B1 > B2, with the latter being essentially inactive. Concerned over vari-
ability in the relative amounts of frans and cis isomers in commercial batches
of TML, and in particular, the possibility that cis isomers might diminish the
attractiveness of the frans counterparts (as noted for siglure, Steiner et al. 1958).
McGovern et al. (1986) conducted field tests comparing the attractancy of whole
TML with pure trans and cis formulations, respectively, as well as the attractancy of
formulations varying in the trans-cis ratios. Results of these tests showed conclu-
sively that traps baited with trans-TML captured as many C. capitata males as
whole TML and that both of these formulations were more effective than cis-TML.
Additionally, only when mixtures contained > 75 % cis isomers was attractancy
reduced. Further field tests confirmed the above mentioned findings (McGovern
etal. 1987, 1990). In addition, Jang et al. (1989a) compared the electroantennogram
responses of C. capitata males to the four trans isomers of TML and found the
responses were greatest to the cis isomer, consistent with behavioral assays.
Warthen et al. (1993) later investigated the relation between the molecular structure
of the different isomers and their attractiveness.

In addition, to identifying the components of TML and their relative attractive-
ness, several studies focused on the overall release rate of TML from trap dis-
pensers. When originally incorporated into monitoring programs, TML was applied
as a liquid (2 ml) to cotton wicks (Nakagawa et al. 1979). However, owing to its
high volatility from the cotton, TML was found to be effective for only 2—4 weeks
(Burditt 1975; King and Landolt 1984). Two solutions were explored to extend the
effective life of TML. The first involved testing solid dispensers to control (reduce)
evaporation rates. These alternatives included incorporation of TML in the adhe-
sive, insect-catching surface of the trap (Nakagawa et al. 1975), the middle layer of
laminated polymeric (plastic) sheets (Nakagawa et al. 1979; Leonhardt et al. 1989),
cups covered with a semipermeable membrane (Leonhardt et al. 1984), cylindrical
polymeric plugs (Leonhardt et al. 1989), or rubber septa (Leonhardt et al. 1984;
Baker et al. 1988). In addition, the effectiveness of compressed discs of TML cis
isomer has also been investigated (Heath et al. 1990). Owing to their ease of
handling and their lowered release rates (thus allowing a longer interval between
replacement), polymeric plugs have been adopted as standard male lure in
C. capitata detection programs (IAEA 2003).

The second solution involves adding extenders to TML to slow volatilization
(Leonhardt et al. 1984; King and Landolt 1984) as TML is costly to produce, this
procedure may also reduce costs. Capilure®, which replaces a portion of TML with
proprietary extenders, was developed in the early 1980s and is currently used in
Ceratitis detection program in South Africa (T.G. Grout, Pers. Comm.). Field tests
(Nakagawa et al. 1981b; Rice et al. 1984; Hill 1987; Baker et al. 1988) confirm that
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capilure is more persistent than TML and attracts male medflies (albeit in reduced
numbers) as long as 10-36 weeks after deployment. However, these same studies
have reported inconsistent results regarding the relative performance of the two
lures in the initial weeks of deployment, with several studies (Hill 1987; Nakagawa
et al. 1981b; Rice et al. 1984) finding equivalence between capilure and TML but
one (Baker et al. 1988) finding TML outperformed capilure in the 8 weeks imme-
diately following field deployment. Likewise, in trials in a Hawaiian coffee field,
Shelly (2013) found that TML captured more C. capitata males than capilure
during weeks 1-6 immediately following placement in the field.

3.3.3 Ceralure

In an investigation into various halogen and ester analogs of TML, ethyl 4- (and 5-)
iodo-trans-2-methylcyclohexane-1-carboxylate (ceralure), was found to be more
potent and persistent than trimedlure (McGovern et al. 1987 , DeMilo et al. 1994;
Warthen et al. 1998). Ceralure, like trimedlure, is composed of 16 regio and
stereoisomers, of which the B1 isomer was reported to be the most attractive
(Warthen et al. 1994). This molecule was tested in the field and found to be slightly
more attractive and persistent than trimedlure (Leonhardt et al. 1996).

In 2000, a novel method for synthesis of the stereoisomers of the ceralure B1
molecule was developed and tested (Raw and Jang 2000). The (—) enantiomer of
ceralure B1 was shown to be more attractive and persistent to laboratory-released
sterile flies than the (+) enantiomer, commercial trimedlure or commercial ceralure
(Jang et al. 2001). Follow-up studies (Jang et al. 2003, 2005) reported (—)-ceralure
B1 to be 4-9 times more attractive than the commercial trimedlure.

One of the problems that have prevented the adoption of (—)-ceralure B1 has
been development of a commercial, cost-effective synthesis of this molecule
relative to TML. Khriman et al. (2003, 2004) developed an easier synthesis of the
racemic (—/+)-ceralure B1, and subsequent studies showed that >75 % (—) opti-
cally pure ceralure B1 could be as effective as the (98 %) (—)-ceralure B1, and the
racemic ceralure B1 could be almost as attractive (Jang et al. 2005). More recent
research has focused on the applicability of the racemic ceralure B1 as a replace-
ment for TML.

Recently, Jang et al. (2010) compared the persistence and attractancy of the
trimedlure C isomer (racemic) with the ceralure B1 (racemic) isomer to determine
which of these two were the most attractive and persistent in a field setting. This
was accomplished by comparing equivocal amounts of the two racemic compounds
on a standard substrate (cotton wicks) and determining attraction and the residual
amounts after 0—7 days. Additionally we initiated studies on polymeric formula-
tions of the racemic ceralure B1 to determine how much of this mixture would be
needed to equal or surpass the 2 g TML standard polymer formulation. Results of
this test showed that the ceralure coin captured significantly more medflies com-
pared to TML for 6 weeks of testing (Fig. 2.6). The same treatments were tested in
sterile medfly release areas in Sarasota, Florida. Although the variation was high in
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Fig. 2.6 Responses of wild
Mediterranean fruit flies to
ceralure B1 and trimedlure
plug formulations

Fig. 2.7 Responses of
sterile released
Mediterranean fruit flies to
Ceralure B1 and Trimedlure
plug formulations (Adapted
from Jang et al. 2010)
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the weekly evaluations with released flies, results over a 6- week test period showed
significantly higher trap captures with the 300 mg ceralure coin compared to the

2 g-trimedlure plug (Fig. 2.7).

On a molecule-to-molecule basis, ceralure B1 was inherently more attractive and
more persistent than the C isomer of trimedlure. It also supports an earlier published
results showing that when applied to cotton wicks, as little as 40 mg of the (—)
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ceralure B1 (50 X less material) was as attractive as 2 g of commercial trimedlure
for the first few days in the field (Jang et al. 2003).

As little as 150 mg of ceralure B1, (13 times less compound), formulated in PVC
was not significantly different in trap capture compared to a 2 g also
PVC-formulated commercial trimedlure plug. Further, increasing ceralure load to
300 mg per coin, which is 6.6 times less than trimedlure, captured significantly
more medflies compared to a 2 g trimedlure plug in the entire 6 week test period.

Survey and detection programs are the first line of defense in keeping exotic
pests such as medfly from becoming established in key agricultural states such as
California, Florida and Texas. While costs of the lures used in detection programs
are a consideration in overall program management, it is generally acknowledged
that personnel and related costs of conducting surveys represent a much higher
proportion of the total costs than the chemical lures. Further tests of ceralure B1
coins versus 2 g trimedlure plugs weathered under environmental conditions found
in California, Florida and Texas are needed as to whether the increased cost of
ceralure B1 synthesis and formulation are justified. Several additional uses of
ceralure B1 might justify the additional costs of the product. As mentioned above
labor costs for deployment of detection traps are the most costly part of a survey
program. A more potent lure may reduce the number of traps required in a detection
array resulting in some cost savings. We have not tested whether ceralure B1 might
possibly catch younger aged flies that represent the “founder” population of an
incipient introduction. Early detection is arguably more important than merely
capturing the most flies, in that early detection allows for a more rapid eradication
response thus reducing the overall program costs (bait sprays, fruit stripping, sterile
insect releases and associated costs of quarantines). Ceralure B1, although currently
expensive might also be considered for mass trapping in small outbreaks, where,
when used with other control techniques would increase the likelihood of
eradication.

3.4 Dacus

This genus consists of approximately 300 species with a handful of pest species
(http://www.globalspecies.org/ntaxa/2083501). Over 40 species are known to
respond to CL while only two species respond to ME (IAEA 2003). A major pest
species in the Middle East region, Dacus persicus Hendel, but considered a
beneficial insect that infests weeds in India (Kapoor 2005/2006), is attracted to
ME, which has been used as bait in trapping of male flies.

Methyl paraben (methyl-4-hydroxybenzoate — detected in small quantity in the
rectal gland of B. cucurbitae see Sect. 2.2.2.4.) was discovered to be highly
attractive to the males of Dacus vertebratus Bezzi (Hancock 1985). It is currently
marketed as “vert-lure”, and used as a male attractant/lure for mass trapping of
D. vertebratus males in control or male annihilation techniques.
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For Dacus ciliatus Loew, pumpkin fly (a non-responder to either CL or ME), a
combination of four or five acetates isolated and identified from host fruits, benzyl,
hexyl, (Z)-3-hexenyl, octyl, (Z)-3-octenyl, and (Z)-3-decenyl, was most attractive,
but an addition of (E)-B-farnesene had a deterrent effect, albeit both sexes of this
species were responsive to each of the synthetic acetates in the laboratory
(Alagarmalai et al. 2009). It needs to be pointed out that the host fruit acetates
apparently are acting as a plant allelochemic, if they are released naturally, in the
insect-plant interaction. As to whether these fruit volatiles when released act as a
plant kairomone or synomone warrants further in depth chemo-ecological
investigation.

3.5 Rhagoletis

No male lure has yet been identified for any Rhagoletis species, though male
attraction to certain plant volatiles has been reported (Light and Jang 1996).
Therefore, this investigation represents a potentially productive avenue for future
research.

3.6 Toxotrypana

Other than the identified pheromone (see Sect. 2.2.6), there are few other attractants
used routinely for detection of T. curvicauda in the field. Early studies on the
behavior of T. curvicauda (Sharp and Landolt 1984) suggested that, unlike most
tephritids, this species is not readily attracted to proteinaceous food baits. They
further reported that both brown and white sugar had some attraction. Landolt and
Reed (1990) reported oviposition attraction of females to green papaya host fruit
and suggested that host odors may influence oviposition behavior. More recently,
Castrejon-Gomez et al. (2004) tested brown sugar and pineapple juice as two low
cost attractants for use in field trapping of T. curvicauda. The success of the
pheromone for use in trapping of this species has limited the search for a true
parapheromone or kairomone for use in applied trapping programs.

4 Conclusion

For most pestiferous species of tephritid fruit flies, aggregation and sex pheromones
have limited usage in trapping and control owing to a multitude of factors, includ-
ing multi-component composition of pheromone, chemo-structural complexity of
each component, high cost of synthesis, low effectiveness when compared to male
attractants/lures or food attractants, and other abiotic factors related to blending,
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chemical stability, changes in vapor pressure, and release ratio of a multicomponent
bait/pheromone in the field. In contrast, male lures, particularly ME, CL, and TML,
have been extensively and successfully used as bait in trapping and control of
Bactrocera and Ceratitis species, respectively. Moreover, with the knowledge
gained via behavioral and chemo-ecological studies, the exposure of sterile males
to certain lures to enhance their mating competitiveness in the field is now gaining
ground in area-wide SIT programs. There are some issues, which need to be
resolved amicably, related to trapping when comparing (i) formulated and
unformulated (e.g., liquid versus solid) male lures conducted in different regions/
countries, (ii) effectiveness of different colored traps, especially against clear traps,
or (iii) individual against a mixture of attractants used as a trap-bait. Also, the
urgency of identifying a replacement for a very potent natural male attractant
(ME) deemed to be carcinogenic deserves serious consideration. Further research
should also be conducted to seek new male lures from plants, like zingerone, that
can attract non-responsive species to the commonly used and known male attrac-
tants. We are confident that there are a few more attractants for fruit flies, especially
for the genera of Bactrocera and Dacus, may be isolated and identified through
proper and in depth behavioral and chemo-ecological investigations, especially via
understanding the probable co-evolution between plants and fruit flies.
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Abstract Adult tephrids require sugar and protein for survival and for develop-
ment of eggs, and volatile chemicals from these substances are the basis for food-
based lures developed as baits for these pests. In this chapter, we discuss food-based
lures that mimic food sources for adults other than host fruit. These have been
primarily nitrogen sources that provide the protein needed by adult flies, although
non-nitrogen-containing volatile chemicals are also included in this category. After
male lures, food-based lures have been the predominant attractants used in traps for
tephritid fruit flies. Although typically not as powerful as male lures, food-based
lures have several advantages over male-specific attractants. They can be used for
species for which there are no male lures known; they capture both females and
males of target species; they tend to be female-biased, that is, they capture a higher
percentage of females than males; and, at least for the Mediterranean fruit fly, traps
baited with food-based lures tend to capture flies earlier than traps baited with male
lure. There has been a long history of research on the development of food-based
attractants for pest tephritids. Several review articles have documented the early
history, which started with investigations of sugar-based food lures and lead to
the development of the liquid protein baits and synthetic protein-based food lures,
the standard food-lures that are currently in use. In this chapter, we discuss the
development of and, as much as possible, the diversity of food-based lures that have
been tested and/or are used in traps for pest tephritids. Future research directions are
also discussed.
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1 Introduction

Adult tephritids require sugar and protein for survival and development of eggs
(Christenson and Foote 1960), and volatile chemicals from these substances are the
basis for food-based lures developed for these pests. Host fruit is used for both
feeding and oviposition, and attractants based on host fruit are presented by Quilici
et al. (Chap. 4, this volume). In this chapter, we will be discussing food-based lures
that mimic adult food sources other than host fruit. These have been primarily
nitrogen sources that provide the protein needed by adult flies, although
non-nitrogen containing volatile chemicals are also included in this category.

After male lures, food-based lures have been the predominant attractants used in
traps for tephritid fruit flies. Although typically not as powerful as male lures, food-
based lures have several advantages over male lures. They can be used for a wide range
of species and for species for which there are no male lures known; they capture both
females and males of target species; they tend to be female-biased, that is, they capture
a higher percentage of females than males (IAEA 2003); and, at least for the Medi-
terranean fruit fly, Ceratitis capitata (Wiedemann), traps baited with food-based lures
tend to capture flies earlier in the season than male lure-baited traps (Papadopoulos
et al. 2001). Thus, it is not surprising that there has been a long history of research on
the development of food-based attractants for pest tephritids. Several review articles
have documented the early history, including Crawford (1927), Baker et al. (1944),
Gow (1954), Green et al. (1960), Morton and Bateman (1981), and Dominiak (2006).

Initial research focused on investigations of sugar-based food lures, which led to
the development of the aqueous protein baits (also known as liquid protein baits)
and synthetic protein-based food lures that are the standard food-based lures
currently in use. In this chapter, we will discuss the development of and, as much
as possible, the diversity of food-based lures that have been tested and/or are used in
traps for pest tephritids. Summaries of these materials are presented in Table 3.1
(natural products), Table 3.2 (synthetic lures) and Table 3.3 (bacteria). We then
discuss other factors to consider in deployment of food-based lures that can affect
effectiveness as well as approaches used to evaluate food-based attractants. Finally,
we conclude with a summary and discussion of future research needs.

2 Use of Natural Products as Bait

Natural products have long been used as bait for tephritid fruit flies, with the
emphasis on low cost and on use of materials that are available locally. From the
early 1900s through the 1950s, research focused on sugar sources and protein
sources as fruit fly attractants due to the importance of these nutrients for survival
and reproduction of adult flies. The effect of fermentation on effectiveness of sugar
baits was recognized during the 1920s, and this recognition has been important to
the development of food-based baits and lures used worldwide for fruit flies.
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2.1 Fermenting Sugar Bait

Initially, traps for tephritids were baited with sugar solutions. In a report by J. Isaac
to the California State Horticulture Commission (Cooper 1905), it was noted that
aqueous solutions of sugar (79 g/L) were used as attractant bait sprays for the
Mexican fruit fly, Anastrepha ludens (Loew), in Mexico. Crawford (1927) reported
that an aqueous solution of piloncillo (36 g/L), a brown sugar available in Mexico,
was used as a cheap alternative to white sugar in sweet bait sprays in studies
conducted from 1913-1914 in Mexico. Tests of these solutions in traps were
initiated but not completed, so no trapping results were available. Gurney (1925)
reported that traps baited with fruit juice and molasses or treacle were used in
Australia with varying success. At this time, there were several locally produced
proprietary baits (i.e., Watson’s specific and Harvey’s lure) that were also in use in
Australia, but ingredients for these baits were not disclosed.

During the 1920s and 1930s, there was active research on sugar-baited traps for
fruit-infesting Lepidoptera (Peterson 1925; Frost 1926; Yetter and Steiner 1931;
Eyer and Rhodes 1931; Eyer 1935). These baits were made as aqueous solutions
and, because it was noted that microbial action occurred quickly after field deploy-
ment and seemed to increase insect attraction, there was a change in terminology
from sugar bait to fermenting sugar bait. These research reports evaluated various
by-products of fermentation, including CO,, alcohol, and acetic acid. Research
during this time also tested combinations of aqueous sugar solutions with various
chemicals, which were known to be products of fermentation or hydrolysis of sugar,
as attractants for pest moths (Peterson 1925; Frost 1937; Eyer et al. 1937). Newell
(1936) noted that traps baited with a fermenting mixture of citrus juice and brown
sugar were used in traps during the 1932—1933 Florida eradication efforts for the
West Indian fruit fly, Anastrepha obliqgua (Macquart), and the Caribbean fruit fly,
Anastrepha suspensa (Loew).

2.2 Agqueous Yeast-Fermented Sugar Baits

Peterson (1924) evaluated sugar fermentation products as attractants for onion-
infesting Diptera and added various types of active yeast to increase the production
of attractive by-products with the goal of improving longevity of the baits. The
addition of yeast to sugar baits was an active area of research for improving baits for
fruit flies as well. McPhail added dry active brewer’s yeast to aqueous sugar bait as
an alternative to natural inoculation of wild yeast in field tests involving A. ludens
(Baker et al. 1944). There were conflicting reports of effectiveness of natural
inoculation of sugar baits, with McPhail (unpublished 1938 manuscript) finding
that natural inoculation was sufficient to increase fruit fly attraction but with others
reporting that wild microbes destroyed bait attractiveness (Green et al. 1960). Starr
and Shaw (1944) tested capture of A. /udens with fermenting aqueous sugar-yeast
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Table 3.2 Ammonia-based synthetic chemicals that have been tested and used as food-based

attractants for fruit flies

Trade name (commercial Species
Lure component(s) source if cited) tested 1st reference
Ammonium acetate BioLure (Suterra LLC, Bend, R. pomonella Hodson (1943)
OR, USA)

Ammonium acetate, cadaver- SEDQ (Barcelona, Spain) C. capitata  Navarro-Llopis
ine, trimethylamine et al. (2008)

Ammonium acetate, cadaver- Trypack (Econex, Santomera, C. capitata Navarro-Llopis
ine, trimethylamine Murcia, Spain) et al. (2008)

Ammonium acetate, n-methyl EPAlure (EPA, Valencia, C. capitata Navarro-Llopis
pyrrolidine Spain) et al. (2008)

Ammonium acetate, 2C BioLure (Suttera LLC, C. capitata, Heathetal. (1995)
putrescine Bend, OR, USA) A. ludens

Ammonium acetate, putres- 3C BioLure (Suttera LLC, C. capitata, Heathetal. (1997)
cine, trimethylamine Bend, OR, USA) A. ludens

Ammonium acetate, TMA Susbin (Mendoza, C. capitata Navarro-Llopis
trimethylamine Argentina) et al. (2008)

Ammonium bicarbonate AgriSense Lure (Suterra LLC, R. pomonella Hodson (1943)

Bend, OR, USA)

Ammonium bicarbonate, na B. cucurbitae 'Wakabayashi and
linolenic acid, putrescine, Cunningham
pyrrolidine (1991)

Ammonium bicarbonate, AFF lure (Advanced Phero-  A. ludens Robacker and
methylamine HCI, mone Tech., Marylhurst, Czokajlo
putrescine OR, USA) (2006),

Ammonium carbonate na R. cingulata  Frick (1952)

Ammonium carbonate na B. tryoni Perkins and Hines

(1934)

Ammonium carbonate Polycon dispenser (Great R. mendax Liburd

Lakes IPM, Vestaburg, et al. (1998)
MI, USA)
Ammonium hydroxide household ammonia R. pomonella Hodson (1943)
Ammonium hydroxide household ammonia Z. electa Boucher
et al. (2001)

Ammonium phosphate na B. oleae Gow (1954)

Ammonium sulfate na R. pomonella Hodson (1943)

Ammonium sulphate na B. oleae Zervas (1982)

bait (8 % sucrose and 0.15 % brewer’s yeast, allowed to ferment for 1-2 days at
room temperature before use) presented alone or with several different additives. Of
these additives, they found that pyridine provided a slightly improved lure. Steiner
reported in 1936 that sassafras oil added to fermenting sugar bait also increased
attractiveness (Green et al. 1960).
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2.3 Agqueous Protein Baits

McPhail (1939) began studies in Mexico on fermenting sugar baits for A. ludens and
Anastrepha striata Schiner. These studies initially focused on Mexican brown sugar
(piloncillo) and commercial syrup with various additives, including lye (sodium
hydroxide [NaOH]) to hydrolyze the sugar. He noted the presence of protein as an
impurity in the piloncillo by the smell of ammonia from the hydrolyzed solutions as
well as the appearance of a protein-like foam when the piloncillo was cooked in
limewater (calcium hydroxide [Ca(OH),]). The studies then shifted to tests of various
proteins hydrolyzed with NaOH. Attempts were made to correlate amounts of ammo-
nia released with attraction, but this was not confirmed. He did note, however, that
ammonia was not the only attractant produced as protein baits were more attractive
than aqueous ammonia bait. From this research he developed aqueous protein bait for
fruit flies that contained casein (40 g/L) and NaOH (15 g/L) (McPhail 1943).
Finney (1948, 1950) and Hagen (1950) were developing methods to mass rear
lacewings, Chrysopa californica Coquillett, and found that fecundity was increased
by replacing honey with either honeydew or hydrolyzed brewer’s yeast. In parallel
studies, they found that hydrolyzed brewer’s yeast improved fecundity of the
oriental fruit fly, Bactrocera dorsalis (Hendel), the melon fly, Bactrocera
cucurbitae (Coquillett), and C. capitata when it was used in place of dry brewer’s
yeast in adult diets (Hagen and Finney 1950). Steiner (1952) reported on
unpublished data from Finney and Hagan that demonstrated that solutions of
enzymatic yeast or soy hydrolysates were attractive to C. capitata and B. dorsalis.

2.4 Yeasts and Aqueous Protein Baits

In the context of human nutrition, Bekatorou et al. (2006) reviewed the use of yeasts
for traditional fermentation processes and as alternative protein sources. Saccha-
romyces cerevisiae Meyen ex E.C. Hansen has been the most commonly cultivated
yeast since ancient times. Yeast feeds on carbohydrates; the by-products of this
fermentation process include carbon dioxide (CO,) and alcohol (specifically etha-
nol), which are desirable to bakers and brewers, respectively. Beer brewers have
selected specific strains of S. cerevisiae that grow slowly, produce more alcohol,
and yet are able to thrive in high alcohol substrates. Similarly, bakers have selected
strains that grow rapidly and produce more CO,, which in turn gets trapped as tiny
bubbles within the dough giving bread its characteristic rise. These strains are
commonly known as brewer’s yeast and baker’s yeast, respectively. Wine makers,
however, have traditionally relied on wild yeasts present in the grape skins for the
fermentation, but because this produces inconsistent results, modern wine makers
prefer to add a known pure yeast culture that overpowers the wild yeasts (usually
strains of S. cerevisiae) to the grapes, thereby turning out a more consistent
fermented product (Gonzélez Techera et al. 2001).
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Once yeast has no more available carbohydrate to feed on, it dies and undergoes
autolysis, which is the process by which the yeast’s own digestive enzymes break
down the proteins into component peptides and amino acids. Autolyzed yeast,
which is commonly sold as yeast extract, is widely used as a nutritional supplement,
because it is high in protein. The manufacturing process for yeast extract products
relies on the autolysis of yeast, typically accomplished by subjecting the yeast
suspension to osmotic shock with the addition of NaCl (Anonymous 2009). The
shriveling and dying yeast cells are then heated to complete their breakdown after
which the thick cell walls are removed by centrifugation and subsequent filtration.
Removing the cell walls concentrates the flavors and changes the texture.

Torula yeast, Candida utilis (Henneberg) Lodder & Kreger-van Rij (formerly
known as Torula utilis), is a species of yeast widely used in its autolyzed form as a
nutritional supplement or as a flavor enhancer in processed foods. It is a by-product
of the paper mill industry and is propagated on wood sugars leftover after the pulp
has been removed from wood for the production of paper. In a manner similar to
that described above, the yeast undergoes autolysis in order to obtain peptides and
amino acids. It is then spray-dried to produce a fine, light grayish-brown powder
(Anonymous 1964), which is available commercially.

2.5 Role of Hydrolysis in Modifying Proteins
and the Chemistry of Hydrolysis

A number of substrates tested and ultimately used as fruit fly attractants have been
products of protein hydrolysis, and the type of hydrolysis can affect type and
amount of chemicals released as volatiles. Hydrolysis is a process whereby chem-
ical bonds are broken by the insertion of water between the atoms in the bond.
Proteins are composed of numerous amino acids joined together with peptide
bonds; hydrolysis destroys the peptide bonds resulting in a protein hydrolysate
solution composed of smaller chains of amino acids (peptides), free amino acids or
parts thereof, including ammonia (Univ. Waikato 2007). There are three general
methods used to hydrolyze protein: acid hydrolysis, alkaline hydrolysis, and enzy-
matic hydrolysis. Products of acid hydrolysis and enzymatic hydrolysis have been
used as fruit fly attractants. A strong acid, such as 6 M hydrochloric acid (HCI), is
ordinarily used for the hydrolysis of proteins, which involves boiling the proteins in
the acid for many hours (Anonymous 2011). This process attacks all peptide bonds
in the protein substrate, destroying some of the individual amino acids. However,
not all of them degrade to the same extent. For example, tryptophan is usually
totally lost in an acid hydrolysis, while cysteine, serine, and threonine are partially
broken down, and asparagine and glutamine are converted to their acidic forms. Salt
may be formed during neutralization of an acid hydrolysis, resulting in a product
with high salt content (Anonymous 2009). In enzymatic hydrolysis, proteins are
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hydrolyzed more gently than with acid hydrolysis, and the process does not require
high temperatures. This type of hydrolysis, however, is target-specific depending on
the enzymes used.

3 Ammonia Solutions and Salts, and Modifications
to Aqueous Protein Bait

Ammonia is one of the primary products of protein hydrolysis and, as there was a
redirection in use of fermenting sugar baits to use of protein-based baits for fruit fly
attractants, there were investigations into the use of ammonia as fruit fly bait.
Research that started in the 1940s evaluated the amino acid glycine along with
proteins such as casein, which is obtained from milk. The widespread search for
fruit fly attractants is cited by Hodson (1943) who describes ‘a review of extensive
Italian, South African and Australian literature’ on fruit flies ‘infesting especially
citrus fruits and olives, made it evident’ that ‘all of them contained ammonia and
release it upon decomposition.” Thus began an evaluation of various formulations
of ammonia, including ammonium salts (e.g., ammonium carbonate, ammonium
bicarbonate, ammonium acetate, ammonium sulfate, ammonium phosphate) and
ammonium solutions (e.g., ammonium hydroxide which is also known as house-
hold ammonia). There were also further investigations into hydrolyzed yeast or
other sources of commercially available proteins as well as modifications to
aqueous protein baits to improve effectiveness. This ultimately resulted in the
development of commercially available ammonia-based synthetic lures and the
pelleted formulation of protein bait that facilitated field use.

3.1 Ammonia Baits

Boyce and Bartlett (1941), after discussions with McPhail and Baker, found that
aqueous casein (200 g casein, 300 mL NaOH, 3,800 mL water; which they called
‘McPhail’s lure’) or aqueous glycine (2 % glycine and 3 % NaOH) were highly
attractive to the walnut husk fly, Rhagoletis completa Cresson. Dean (1941) found
that protein baits captured more apple maggot flies, Rhagoletis pomonella (Walsh),
than sugar baits. Hodson (1943, 1948) found that more R. pomonella were captured
in traps baited with various ammonia solutions, including household ammonia,
ammonium sulfate, ammonium acetate, or ammonium carbonate, than in traps
baited with solutions of glycine plus NaOH or casein plus NaOH. Baits were
deployed in open pans, and he found that the addition of soap to break the surface
tension improved the retention of attracted flies. Hodson also found good capture of
flies in dry sticky traps baited with ammonium carbonate. Frick (1952) found the
dry sticky trap with ammonium carbonate was effective for capturing the cherry
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fruit fly, Rhagoletis cingulata (Loew). Sticky traps baited with ammonium hydrox-
ide (59 mL of 27-31 % aqueous solution placed in vial with cotton balls) have been
used to capture the pepper maggot, Zonosemata electa (Say) (Boucher et al. 2001).
Raz (1998) used traps baited with ammonium sulfate (2 %) and hexanol to monitor
populations of C. capitata and the Mediterranean black fig fly, Silba adipata
McAlpine (Diptera: Lonchaeidae), in Israel. Several commercial formulations of
ammonia have been produced for use as lures in fruit fly traps, including ammo-
nium acetate (BioLure, Suterra LLC, Bend, OR, USA), ammonium bicarbonate
(AgriSense Lure, Suterra LLC), and ammonium carbonate (Great Lakes IPM,
Vestaburg, MI, USA; ISCA technologies, Riverside, CA, USA).

Gow (1954) reviewed the use of ammonia-based lures, which he refers to as
ammoniacal baits. This included the use in Australia of vanilla extract combined
with ammonia for various tephritids (Jarvis 1931; 0.44 % vanilla, 1.75 % household
ammonia) and ammonium carbonate for the Queensland fruit fly, Bactrocera tryoni
(Froggatt) (Perkins and Hines 1934). He also listed Clensel, described as proprie-
tary ammonium soap, as being attractive to the olive fruit fly, B. oleae (Rossi) (Bua
1933, 1938) and C. capitata (Newman and O’Connor 1931) and also various
ammonium salts and ammonium phosphate for attraction of B. oleae. Membrane-
based ammonium acetate lures (BioLure, Suterra LLC, Bend, OR, USA) were
found to be effective for capture of B. oleae (Economopoulos et al. 1986). Robacker
et al. (1996) provided a list of ammonium salts used as sources of ammonia in tests
of a number of tephritid species. In research by Gow (1954) to develop a protein
bait for B. dorsalis, test substances were compared to (1) van Zwaluenburg
fermenting bait, which was developed at the Hawaiian Sugar Planters Association
Experimental Station (raw sugar [80 g], white vinegar [13 mL], fresh yeast [1/4th
cake, the equivalent of 7.4 mL dry yeast] per liter of water), and 2) Jarvis ammo-
niacal bait (ammonium hydroxide [0.67 %], artificial vanilla extract [0.5 %]). The
fermenting bait was more attractive than the Jarvis bait. In these studies, Gow tested
several yeast hydrolysates alone or in combination with the fermenting bait. He
found that addition of antibiotics to inhibit mold growth resulted in improved
attraction and that soy hydrolysate was more attractive than casein hydrolysate or
lactalbumin hydrolysate. He also noted that attraction was due primarily to products
of microbial activity and that ammonia alone was only ‘mildly attractive’ and could
be repellent at some concentrations. Simanton (1958) noted that, at the start of the
C. capitata eradication effort in 1957 in Florida, USA, the standard detection
system was a glass McPhail trap baited with an aqueous solution of hydrolyzed
yeast (5 %) and ammonium chloride (5 %).

3.2 Agqueous Protein Bait and the Role of Borax

By the 1960s, dry lures were available as male lures for C. capitata (trimedlure),
B. dorsalis (methyl eugenol), and B. cucurbitae (cue-lure), or food-based lures
(ammonium carbonate) for temperate zone tephritids (Green et al. 1960). However,
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aqueous protein baits continued to be the best attractants for tropical tephritid
females or for capturing both sexes. Research continued in Mexico on aqueous
hydrolyzed protein baits for A. ludens. New protein sources were evaluated,
including an acid hydrolyzed corn product known first as Staley’s Insecticide Bait
No. 7 (SIB 7), then as Staley’s Protein Insecticide Bait No. 7 (PIB 7), and
subsequently (and referred to herein) as NuLure (Miller Chemical & Fertilizer
Co., Hanover, PA, USA). Tests were also conducted on another protein source,
enzymatic hydrolyzed cottonseed protein (CTPH; Lépez and Becerril 1967). Early
studies noted that aqueous NuLure solutions (1 %) quickly changed color and
putrefied after field deployment, which increased attraction of non-target flies,
and also that captured target flies disintegrated in the liquid. Lopez and Becerril
(1967) tested 76 chemical additives to NuLure solutions and found that sodium
tetraborate decahydrate (borax, sodium borate) was the most promising and
prevented the problems of bait discoloration and fly disintegration. Field trials
showed that more A. ludens were captured with aqueous NuLure:borax (1:0-3 %)
than with the standard fermenting aqueous sugar lure that contained light brown
sugar (8 %), dry brewer’s yeast (0.15 %), and pyridine (0.1 %). These authors noted,
however, that the addition of 1-3 % borax to 1 % NuLure aqueous solution
decreased total capture of A. ludens versus 1 % NuLure without borax. Addition
of 2 % borax to CTPH also prevented fly disintegration but without decreasing
capture. Other observations reported from this research included female-bias in
protein baits, a male-bias in fermenting sugar baits, and that addition of borax to
NuLure increased bait pH, which caused an immediate increase in ammonia
release. Transporting and deploying bait were improved by the development of
pelletized lures (Lopez et al. 1968). Pellets included 2 parts borax by weight to
1 part by volume of either NuLure or hydrolyzed CTPH and were added as 2 pellets
to 300 mL per trap. Solutions made using pelletized baits captured ~10 % fewer
flies than solutions made using non-pelletized baits, likely due to the slow dissolu-
tion of the pellets, which reduced initial attractiveness.

Lopez et al. (1971) compared capture of A. suspensa with solutions of NuLure:
borax, CTPH:borax, or enzymatic hydrolyzed torula yeast:borax (TYB) and
reported the highest capture with aqueous solution of hydrolyzed TYB (3:4 %).
Burditt (1982) tested solutions made using pellets that contained hydrolyzed TYB
(4:5 parts) for capture of A. suspensa in Florida. He found no difference in capture
in traps baited with either 2 or 6 pellets and confirmed that hydrolyzed TYB
solution captured equal or greater numbers of A. suspensa than other hydrolyzed
protein solutions tested (i.e., Amber BYF, a water soluble fraction of autolyzed
brewer’s yeast [Amber Laboratories, Milwaukee, WI, USA]; Zitan 85; Nasiman
73 [Tel Aviv, Israel]). Malo (1992) conducted field tests in Mexico that compared
TYB solutions that had aged 2, 4, 6, 8, and 10 days in the laboratory prior to field
placement, and found no differences in capture of A. ludens and A. obliqua.
Nakagawa et al. (1971), in tests of C. capitata in Hawaii, found that aqueous
solutions of NuLure:borax (5:5 %) sometimes captured more but more often
captured fewer flies than trimedlure-baited traps. They hypothesized that higher
captures in aqueous protein-baited traps reflected a lack of nutrients in the field,
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which resulted in increased female response. Cunningham et al. (1978) reported
that the standard lure in use in Hawaii was NuLure:borax (9:5 %), which was more
effective in areas with low rainfall than in areas with high rainfall. They hypoth-
esized that this was due to a combination of attraction to a water source as well as
lack of competing adult food sources in the drier areas. Keiser and Wakabayashi
(1981) found that addition of linolenic acid (0.1 %) to either NuLure:borax (9:5 %)
or Protein Insecticide Lure — Low Salt:borax (9:5 %; Mauri Flavours Pty.,
Homebush, New South Wales, Australia) increased capture of C. capitata,
B. cucurbitae, and B. dorsalis over either aqueous protein bait alone, although
linolenic acid alone as a bait captured few flies. In field tests of the South American
cucurbit fruit fly, Anastrepha grandis (Macquart), and Anastrepha fraterculus
(Wiedemann), there was equal capture in traps baited with aqueous corn protein
hydrolysate:borax (5:3 %) and aqueous TYB, and all captures were greater than in
traps baited with aqueous molasses (1 %, Malavasi et al. 1990).

Although ammonia lures had been found to be the best lures for Rhagoletis spp.
and B. oleae in earlier research (see 2.1 Ammonia baits), later research revisited the
use of protein hydrolysates for these species. Traps baited with ammonium acetate
and protein hydrolysate (Sheffield Hy Case 802, Sheffield Chem. Co., Norwich, NY,
USA) alone or in combination caught more R. pomonella than unbaited traps early
in the summer, but there was no difference in late summer (Moore 1969). In
subsequent tests, various combinations of protein hydrolysates (soy, yeast, casein
[Nutritional Bioch. Corp., Cleveland, OH, USA], Edamin T, NZ amine, Hy-Case
Amino [Sheffield Chem., Union, NJ, USA], Seclur FF tablets [3 M Co., St. Paul,
MN, USA]) alone or in combination with ammonium acetate, as well as ammonia
bait alone (ammonium acetate, ammonium carbonate, ammonium phosphate) were
evaluated (Reissig 1974). All lures were tested in dry traps, with aqueous protein
baits placed in vials containing cotton wicks. A combination of yeast hydrolysate
(5 %) and ammonium acetate solution (50 %) was found to be most attractive in tests
of R. pomonella. Reissig (1976) later tested similar treatments of protein hydroly-
sates alone or in combination with ammonium acetate. Again, the combination of
yeast hydrolysate (5 %) and ammonium acetate solution (50 %) was found to be
most attractive for the black cherry fruit fly, Rhagoletis fausta (Osten Sacken), while
ammonium acetate solution (50 %) alone was the most attractive for R. cingulata.
Liburd et al. (1998) found that dry sticky traps baited with ammonium carbonate or a
combination of ammonium acetate and dry protein hydrolysate could be used to
capture the blueberry maggot, Rhagoletis mendax Curran. Barry and Polavarapu
(2004) found that more R. mendax were attracted to aqueous solutions (vol:vol) of
Solbait (50 %; Moreno and Mangan 2002) than to NuLure (9 %), with intermediate
attraction to AY50% (2 %; Mauri Yeast Australia Pty. Limited). Katsoyannos
et al. (2000) found that sticky traps baited with ammonium acetate (BioLure)
were more effective for capture of the European cherry fruit fly, Rhagoletis cerasi
L., than traps baited with ammonium bicarbonate or aqueous NuLure:borax (9:3 %).

Tests of B. oleae found that an aqueous solution of protein hydrolysate (2 %,
Rodia, Rhone-Poulenc Inc., Paris, France) and borax (1.5 %) was more attractive
than the standard ammonium sulfate aqueous solution (2 %) tested at 300 mL per
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trap (Prokopy and Economopoulos 1975). Later studies used protein hydrolysate
(2 %, Entomogyl) and borax (1.5 %) for B. oleae capture (Fletcher and Kapatos
1981). Aqueous protein baits, such as Buminal (Bayer A.G.W., Germany), were
found to be more effective than ammonium salt solutions (Economopoulos 1986).
However, in tests conducted in olive orchards in Greece, Broumas and Haniotakis
(1994) found no difference in capture among six bait treatments that included
ammonium bicarbonate, ammonia carbonate, aqueous ammonium sulfate (2 %
wgt:vol), a mixture of protein hydrolysate and molasses (Dacona, Phytophyl,
Shimatari Viotias, Greece), and Dacus bait (Alesis S. A., Thessaloniki, Greece).
In research conducted in California, USA, Yokoyama et al. (2006) used traps baited
with ammonium bicarbonate (Vioryl, Athens-Lamia, Greece) or ammonium car-
bonate (Suterra LLC, Bend, OR, USA), and Villamil (2012) used traps baited with
aqueous TYB to monitor populations of B. oleae.

Although hydrolyzed TYB pellets were the standard bait for Anastrepha spp.
prior to ~1990, the hydrolyzed torula yeast was replaced by torula yeast and TYB
pellets are used currently to make the standard aqueous protein bait for these
species (Anonymous 2006).

3.3 Agqueous Protein Bait and the Role of pH in Fruit Fly
Alttraction

Matsumoto et al. (1985) and Flath et al. (1989) showed that increasing the pH of
NuLure from 4.5 to 8.7 increased attraction of C. capitata, B. dorsalis, and
B. cucurbitae in field tests. Laboratory bioassays of aqueous solutions of NuLure
(10 %) with borax (0, 1, 5 and 10 %) showed an increase in capture of A. suspensa
with increasing borax levels, but field tests found that traps baited with aqueous TYB
solution (3 pellets per 300 mL) captured equal or higher numbers of flies than any of
the NuLure solutions (Epsky et al. 1993). The same results were obtained in parallel
tests of A. ludens, but C. capitata capture was highest in traps baited with aqueous
solutions of NuLure (10 %) with the highest amounts of borax (5 and 10 %) (Heath
et al. 1994). Subsequent studies evaluated corn steepwater (E802 Masoferm [aka
Mazoferm], Corn Products, Summit Argo, IL, USA), another acid hydrolyzed corn
product, for attraction of A. suspensa. Field tests revealed that similar numbers of flies
were captured in traps baited with either TYB solutions or Masoferm (10 %) with
borax (1 %), but fewer flies were captured when more borax was added (3, 5 and
10 %) (Epsky et al. 1994). When the effect of aging in the field was examined, the
capture of A. suspensa with TYB solution decreased over the seven days in the field
but remained constant or increased with Masoferm plus borax over that time period.

Duyck et al. (2004) evaluated the role of pH in attraction of B. cucurbitae to
several aqueous protein baits in field cage tests. Borax (0, 1, 5 and 10 %) was added
to aqueous NuLure (5 %) and Buminal (5 %) solutions, which increased pH from
3.5 to 9.1 and 5.6 to 9.3, respectively, but decreased fruit fly capture relative to
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either bait without added borax (0 %). In a follow-up study, these authors examined
the effect of pH modification on NuLure, Buminal, and torula yeast alkalized with
the addition of NaOH, and Buminal and torula yeast acidified with nitric acid
(HNO3j). The alkalization using NaOH had no effect on the response of
B. cucurbitae to NuLure for solutions with pH 4 to pH 10, but again response to
Buminal decreased for solutions with pH 6 to pH 9. Torula yeast solution increased
in attractiveness as pH increased from pH 9 to pH 10.5 and remained high at pH 12.
Acidification of Buminal increased attraction as pH decreased from pH 6 to pH 3,
and acidification of torula yeast solution decreased attraction as pH decreased from
pH 9 to pH 7 and stayed low for pH 6 and pH 3 solutions. A number of factors may
affect the final pH of protein bait solutions and hence efficacy for various fruit flies
species. The most important factors likely include the pH of water used to make the
solutions (Epsky et al. 1993), the initial pH of protein bait, which may vary among
source of the bait and/or storage conditions prior to use (Epsky, unpublished data),
and the substance used to modify bait pH (Duyck et al. 2004).

4 Multiple Component Synthetic Lures

As noted above, one of the problems with aqueous protein baits is the high
variability in the source material, which increases the difficulty in using informa-
tion from traps for management decisions. Availability of synthetic lures with
controlled release of attractive chemicals would overcome this problem and
would allow more direct comparisons among results of tests conducted in different
areas or in different host plants. Although single component ammonia lures were
found to be equal to or more effective than aqueous protein baits for most
Rhagoletis spp. (see Sect. 3.1), research with Anastrepha spp., C. capitata and
some Bactrocera spp. typically found that traps baited with aqueous protein baits
captured more flies than traps baited with ammonia alone. Research on identifica-
tion of volatile chemicals from aqueous protein baits, in addition to ammonia, led to
the development of multiple component synthetic food-based lures.

4.1 Identification of Volatile Chemicals from Aqueous
Protein Baits

Baker et al. (1944) described the early research efforts primarily as empirical tests
of materials that were likely attractants or known attractants for other types of flies.
For the most part, the materials tested were various products of microbial action
(e.g., alcohol, acetic acid, etc.), protein degradation, (e.g., amino acids), or were
based on odors perceived from the test material (e.g., ammonia). Once attractive-
ness was confirmed, analyses were undertaken to relate it to chemical structure
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(Green et al. 1960). With improved analytical chemistry techniques available by the
1980s, there was a shift to identification and quantification of volatile chemicals
emitted from aqueous protein baits in addition to the continuation of empirical tests
of promising compounds. Morton and Bateman (1981) analyzed various aqueous
protein baits (including NuLure, enzymatic yeast hydrolysate [NBC], and bovine
serum albumin) using gas chromatography-mass spectrometry of methylene chlo-
ride extracts and head-space volatiles to identify volatile chemical constituents. A
total of 39 chemicals were identified in the aqueous protein baits, and the role of
these chemicals was hypothesized to be primarily as feeding stimulants, which
increased capture of flies that had been attracted to the bait by the ammonia.
Additional analyses of NuLure and autolyzed brewer’s yeast resulted in the iden-
tification of 43 volatile components obtained from headspace volatiles and from
vacuum steam distillation (Buttery et al. 1983). Matsumoto et al. (1985) identified
major chemicals from analysis of vacuum steam distillation extracts of NuLure. Lee
et al. (1997) identified 19 compounds from headspace collections from Masoferm
concentrate (pH 3.9) or Masoferm adjusted to pH 8 by addition of NaOH.

The importance of ammonia as the primary attractant released from aqueous
protein baits was documented in studies of the B. tryoni (Bateman and Morton
1981). Mazor et al. (1987) showed the importance of ammonia for C. capitata
attraction and, while showing a direct correlation between ammonia release and
fruit fly attraction, confirmed that additional chemicals added to the attractiveness
of aqueous protein baits. Keiser et al. (1976) found that acetic acid and acetic
anhydride, identified as contaminants of the male attractant cue-lure (Jacobson
et al. 1976), were attractive to C. capitata, B. dorsalis, and B. cucurbitae in
laboratory bioassays as 0.1 % solutions but repellent as 1 % solutions. Subse-
quently, Buttery et al. (1983) identified acetic acid as one of the major components
released from NuLure.

Casafia-Giner et al. (2001) evaluated the attractiveness of protein baits and
79 chemicals identified from protein baits, host fruit, and C. capitata male emis-
sions in field tests conducted in Spain. Chemical groups tested included (1) hetero-
cyclic nitrogen compounds, (2) male compounds, and (3) proteinaceous and
ammonia compounds, which included corn steep liquor, Buminal, ammonia,
methylamine-HCL, putrescine and cadaverine. They found that the highest capture
was in traps baited with mixtures of corn steep liquor (source not given), ammonia
compounds and amines followed by traps baited with fruit volatiles. Low capture
was obtained with traps baited with chemicals emitted by males.

Mazor (2009) confirmed the role of ammonia in C. capitata attraction and
documented potential competition from ammonia released from manure or other
agricultural supplements applied as fertilizer that may interfere with fly response to
traps baited with food-based lures. Laboratory bioassays using a six-choice olfac-
tometer found the highest response to pelletized poultry manure and aqueous
ammonium nitrite. The next highest response was to ammonium acetate, guano
and poultry litter, followed by Entomela (Vioryl, Athens, Greece), Buminal, and
cattle manure. Poor attractants included NuLure, Corn Steepwater Liquor
(Roquette, Lestrem, France), and Nasiman. The commercial baits were tested at
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the original concentration or as aqueous solutions (10 %). More flies were attracted
to the original concentrations of Entomela, Buminal, Corn Steepwater Liquor and
Nasiman than diluted baits, but they preferred diluted NuLure over original con-
centration. Mazor (2009) speculated that this was due to reduction in repellant
chemicals from the concentrated NuLure when it was diluted.

4.2 Development of Synthetic Chemical Blends
with Ammonia and Putrescine

In a series of field tests of synthetic chemicals that had been identified from
chemical analysis of aqueous protein baits or that were from known degradation
products of amino acids and fats, Wakabayashi and Cunningham (1991) found that
traps baited with an aqueous blend of ammonium bicarbonate, linolenic acid,
putrescine, and pyrrolidine were as effective in capturing sterile B. cucurbitae as
traps baited with NuLure:borax (9:5 %). Research by Robacker and Warfield
(1993) and Robacker (1995) showed that traps baited with a blend of ammonium
bicarbonate, methylamine HCI, and putrescine as an aqueous solution (10:10:1
ratio) or ammonium carbonate, methylamine HCI, and putrescine (AMPu) mixed
into agar (6:10:1) were equal to or better than traps baited with TYB aqueous
solutions in laboratory and field tests of sterile A. ludens. Heath et al. (1995) found
that the combination of ammonium acetate (BioLure) and a vial-formulation of
putrescine could be used in traps to capture C. capitata and A. ludens. Subse-
quently, a membrane-based putrescine lure was also commercially available for use
with the membrane-based ammonium acetate lure as a two component attractant
(2C BioLure, Suterra LLC) (Epsky et al. 1995). Traps baited with 2C BioLure
captured similar or greater numbers of flies than traps baited with TYB solution in
tests of A. suspensa (Florida), A. ludens (Texas, Mexico; Thomas et al. 2001), and
in tests that included 19 Anastrepha spp. and C. capitata (Guatemala; Martinez
et al. 2007). Comparisons of A. ludens capture in traps baited with 2C BioLure and
AFF lure, a commercial formulation of AMPu (Advanced Pheromone Tech.,
Marylhurst, OR, USA), found equal or greater capture with 2C BioLure (Robacker
and Czokajlo 2006; Robacker and Thomas 2007). Traps baited with TYB solution,
however, tended to capture more sterile A. [udens than traps baited with 2C BioLure
(Conway and Forrester 2007).

4.3 Addition of Trimethylamine to Ammonia and Putrescine
Blend

Robacker and Flath (1995) identified methylamine, dimethylamine, and
trimethylamine from a microbial supernatant that was attractive to A. ludens in
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laboratory bioassays. Although they had demonstrated previously that methylamine
was attractive to this fly, dimethylamine HCI and trimethylamine HCl were not
attractive. Heath et al. (1997), in field trials of C. capitata and A. ludens conducted
in Guatemala, tested these chemicals in combination with 2C BioLure. They found
that trimethylamine HCl was synergistic as traps with trimethylamine HCI alone
were not attractive, but traps baited with 2C BioLure plus trimethylamine HC] were
more attractive to C. capitata than traps baited with either 2C BioLure or TYB
solution. Trimethylamine HCI in combination with 2C BioLure was less attractive
to A. ludens than aqueous TYB, with intermediate capture with 2C BioLure alone.
Trimethylamine HCI, formulated in a membrane-based lure, is commercially avail-
able in combination with ammonium acetate and putrescine lures (3C BioLure,
Suterra LLC). In tests conducted in several continents, McPhail-type traps baited
with 3C BioLure and used with aqueous retention fluid containing triton as a
surfactant captured equal or more C. capitata than traps baited with aqueous
NuLure:borax (9:5 %) (Epsky et al. 1999; Miranda et al. 2001) or traps baited
with other aqueous protein baits (Broughton and de Lima 2002). There was also
equal capture of A. suspensa in traps baited with either 3C BioLure or aqueous
TYB, although both of those baits captured fewer flies than in traps baited with 2C
BioLure (Holler et al. 2006; Epsky et al. 2011). Leblanc et al. (2010a), however,
found that 3C BioLure-baited traps captured fewer B. cucurbitae and B. dorsalis
than aqueous TYB-baited traps and equal numbers of C. capitata in Hawaii.
Additional comparisons of 2C BioLure, 3C BioLure (called FA-2 and FA-3,
respectively), NuLure:borax (9:3 %), and trimedlure tested in various traps and
environments and against various target species were conducted as part of an
International Atomic Energy Agency Cooperative Research Programme (IAEA
CRP; TAEA 1999). Economopoulos (2002) and Robacker and Landolt (2002)
presented overviews of the role of 3C BioLure and other attractants for
C. capitata detection and monitoring. In field tests conducted in South Africa, 3C
BioLure was more effective for capturing males and females of the Natal fruit fly,
Ceratitis rosa Karsch, and females of the mango fruit fly (also known as the marula
fly), Ceratitis cosyra (Walker), than aqueous protein baits Questlure (Green Trad-
ing, Pretoria, S. Africa) and Ceratitislure (Green Trading, Pretoria, S Africa) (Grout
et al. 2011). However, in that study, Ceratitislure captured more male C. cosyra
than 3C BioLure.

2C and 3C BioLures were originally formulated as separate lures, however,
users requested that a single formulation containing ammonium acetate, putrescine,
and trimethylamine be developed to replace the separate components. Jang
et al. (2007) found that 3C BioLure and a “cone” solid matrix (3C cone, Scentry
Biologicals, Billings, MT, USA) were equal for capture of wild and sterile
C. capitata and wild A. suspensa. Holler et al. (2009) found no difference in capture
between individual lure and unipak formulations (Suterra LLC, Bend, OR, USD) of
either 2C BioLure or 3C BioLure for capture of sterile C. capitata and wild
A. suspensa. Similar results were found by Epsky et al. (2011) in field tests of
A. suspensa. In field tests conducted in Spain, Navarro-Llopis et al. (2008) evalu-
ated a single formulation of ammonium acetate, putrescine, and trimethylamine
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(Trypak; Econex, Santomera, Murcia, Spain) and found that it captured as many
C. capitata as 3C BioLure although not as many as 3C BioLure Medfly 100, a
higher release rate formulation of 3C BioLure.

4.4 Role of Putrescine in Synthetic Food-Based Lures

The combination of putrescine and ammonia formed the basis for synthetic lures
that were found to be as attractive as aqueous protein baits for B. cucurbitae,
A. ludens, and C. capitata (see Sect. 4.2). Alternatives to putrescine that have
been found to be as effective include pyrrolidine for B. cucurbitae (Wakabayashi
and Cunningham 1991), cadaverine for A. suspensa (Kendra et al. 2008), and
cadaverine and n-methyl pyrrolidine for C. capitata (Navarro-Llopis et al. 2008).
Robacker (2001) noted that 1-pyrroline can occur as a contaminant in technical
putrescine and can contribute to A. /udens attraction to putrescine lures. Initial
studies found that putrescine was a synergist when added to ammonium acetate for
C. capitata, and subsequent studies evaluated putrescine when added to ammonium
acetate and trimethlyamine. Heath et al. (2004) and Leblanc et al. (2010b) found no
difference in capture of C. capitata with ammonium acetate and trimethylamine
alone or in combination with putrescine unless population levels were very low
(<1.0 and 0.3 females per trap per day, respectively) in field tests conducted in
Guatemala and Hawaii, respectively. Typically, there is greater discrimination
found for both C. capitata and A. suspensa among baits when population levels
are low (Epsky, unpublished data), but the basis for this is unknown. It could be due
to changes in physiological state of flies at the start of the growing season or at the
end of the growing season or when tests are conducted in less suitable hosts (i.e.,
conditions that result in low population levels) versus during the middle of the
growing season or in preferred hosts (i.e., conditions that result in high population
levels). Navarro-Llopis et al. (2008) found no differences between the two lure
blends in field trials in Spain that had population levels >2 females per trap per day.
Similarly, Grout et al. (2011) found no differences between the two blends in field
tests conducted in South Africa even though populations were very low and there
were <0.1 females per trap per day.

4.5 Role of Acetic Acid in Synthetic Food-Based Lures

Acetic acid is emitted with ammonia from ammonium acetate, which distinguishes
ammonium acetate from other ammonium salts tested as fruit fly attractants. As
noted in the previous paragraphs, acetic acid is a by-product of microbial fermen-
tation of sugar, is a contaminant in cue-lure, is emitted from NuLure, and was found
to be attractive to C. capitata. Robacker et al. (1996) found that sticky traps baited
with acetic acid (17 mg/lure in agar [1 %]) were attractive to sterile A. ludens and
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that flies deprived of both protein and sugar were more attracted to acetic acid than
non-deprived flies in laboratory bioassays. However, acetic acid tested at a range of
concentrations (4.3-68 mg/lure) was as attractive to sterile A. ludens as AMPu alone
or combined with acetic acid. Hall et al. (2005) found that a greater number of wild
A. suspensa were captured in traps baited with 2C BioLure than with either ammo-
nium bicarbonate and putrescine or AMPu but that there was no difference in capture
of sterile flies. In tests of wild flies, Thomas et al. (2008) found more A. ludens,
A. suspensa, and A. obliqua were captured in traps baited with 2C BioLure than with
ammonium bicarbonate and putrescine, although the differences were not significant
for A. ludens, indicating that acetic acid is not as attractive to A. /udens as the other
species. There were also differences in ammonia release from the lures tested that
may have affected the responses in the above tests. The role of acetic acid along with
ammonia concentration was evaluated as part of an IAEA CRP (IAEA 2007), which
confirmed that ammonium acetate versus ammonium bicarbonate alone or in com-
bination with other components (e.g., putrescine and/or trimethlyamine), improved
capture of C. capitata, C. rosa, C. cosyra, Bactrocera zonata (Saunders) (the peach
fruit fly), B. cucurbitae, Bactrocera invadens Drew, Tsuruta, and White, and Dacus
ciliatus (Loew) (the Ethiopian fruit fly). These studies also indicated that acetic acid
did not increase capture of B. oleae, however, all synthetic lures worked poorly for
this fly in comparison with NuLure:borax (9:3 %).

5 Additional Aspects of Food-Based Lure Types and Use

Other aspects of food-based lure use will be addressed in the following sections.
These include preservatives that are used in traps with aqueous bait or retention
fluid but may provide additional attractant volatile chemicals, proprietary and/or
low cost baits that have been tested or are in use, and bacteria and/or bacterial
by-products. Although the research on these materials is more limited, information
from these studies may provide additional avenues of research that could be
pursued. The last two aspects to be discussed include results of tests that combine
food-based lures with other types of attractants, and the non-target capture that has
been documented for traps baited with food-based lures.

5.1 Role of Preservatives/Surfactants in Traps with Food-
Based Lures

With the development of synthetic food-based lures for tropical tephritids, it was
hoped that highly effective dry traps for females of these species would be avail-
able. This has been true for temperate tephritids for which ammonia-baited sticky
traps can be used. However, studies of tropical tephritids have found that McPhail-
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type traps with some type of aqueous retention fluid are more effective than
McPhail traps used with internal sticky panels or fumigant or in other types of
dry traps, including Jackson or delta traps (Heath et al. 1997; IAEA 1999; Thomas
et al. 2001). Surfactants, such as triton or liquid soap, can be added to water to
reduce escape of attracted flies. Some types of liquid soap contain ammonia and
thus may contribute to fruit fly attraction. As discussed above (Sect. 3.2), borax has
been added to aqueous protein baits to preserve both the bait and the captured flies.
Subsequently, propylene glycol (PG, environmentally-friendly antifreeze and food
additive) was added to the retention fluid. An aqueous solution of PG (10 %) was
found to both reduce evaporation of water from the trap and preserve trapped flies.
Thomas et al. (2001) found that the PG solutions increased capture of A. suspensa
and A. ludens in traps baited with 2C BioLure versus traps with 2C BioLure and
water alone, indicating that the PG added to fruit fly attraction. Robacker and
Czokajlo (2006) confirmed synergism for A. ludens of PG solution and 2C BioLure
in tests that compared retention fluid with PG versus retention fluid with triton.
Thomas and Robacker (2006) tested the use of PG with TYB solutions and found
improvement in capture of wild but not sterile A. ludens.

5.2 Proprietary Aqueous Protein Baits

Protein sources tested as food-based baits include proteins that are commercially
available as products for use as feeding supplements. These include inactive and/or
hydrolyzed yeasts, such as nutritional yeast, brewer’s yeast and baker’s yeast, and
proteins that are often used in insect artificial diets, such as casein or soy. Other
materials are by-products of manufacturing processes, such as corn (e.g., NuLure,
Masoferm) and wood/paper processing (e.g., torula yeast). However, there are a
number of other aqueous protein baits that have been tested and found to be
attractive to fruit flies. Because they are available locally they can provide a
low-cost alternative to the more expensive synthetic lures or protein baits that
may need to be imported. Often these products are only listed as hydrolyzed protein
with little information provided about original source or type of hydrolysis used in
the process, which makes it harder to compare results among baits. Some of the
proprietary baits that have been tested for fruit fly attraction are summarized in
Table 3.1.

Zervas (1982) found that more B. oleae were captured in traps baited with
Entomosyl (Hochst Hellas) than with ammonium sulfate, Buminal (Bayer SA,
Puteaux, France), or Dacus bait (E.V.Y.P., Thessaloniki, Greece) tested at a ratio
of 3 % bait:2 % borax. Fabre et al. (2003) conducted field cage tests of capture of
laboratory-reared B. cucurbitae in traps baited with six commercially available
aqueous protein baits, including NuLure, Masoferm, SolBait (modified Masoferm;
Moreno and Mangan 2002), Buminal, Hym-Lure RTU (Robertsons [Pty] Limited,
Durban, South Africa), and Pinnacle Protein Fruit Fly Bait (Mauri Yeast Products,
Brisbane, Australia). The highest capture was obtained in traps baited with SolBait
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(10 % aqueous solution). Vargas and Prokopy (2006) found that more female
B. dorsalis were attracted to Provesta 621 autolyzed yeast extract (Integrated
Ingredients, Bartlesville, OK, USA; product is now known as Ohly STV, Hamburg,
Germany), GF-120 Fruit Fly Bait (Dow AgroSciences, Indianapolis, IN, USA), and
Masoferm than to water, with intermediate attraction to NulLure, while male
attraction to all four protein baits was greater than attraction to water in field cage
tests conducted with laboratory-reared flies. In parallel tests with B. cucurbitae, all
protein baits captured more females and males than water. Additionally, more
females were attracted to Provesta and GF-120 than to the other two baits, and
more males were attracted to GF-120 than NuLure, with intermediate attraction to
Provesta and Masoferm. Barry et al. (2006) found no difference in attraction of
B. cucurbitae or B. dorsalis to GF-120, Provesta 621, and Masoferm in bioassays of
F1 generation laboratory flies, and response to all baits was greater than to water.
They also found higher numbers of B. cucurbitae responded to any protein bait than
B. dorsalis.

El-Gendy (2012) found the highest capture of C. capitata in traps baited with
Buminal (NABA GmbH, Germany) and B. zonata in traps baited with Cera Trap
bait (Bioiberica, Barcelona, Spain) when these baits were compared with Bio Nal
bait (Bio Tec Company) for capture of C. capitata and B. zonata in field tests in
Egypt. Moustafa (2009) found that Glan, Pro-lure, Agrisense, and Bioprox captured
more flies of both species than Amadene, Buminal, Norlan, and Agrinal (commer-
cial sources not given). Manrakhan and Kotze (2012) conducted field cage tests of
HymLure (Savoury Food Industries [Pty] Limited, Industria, South Africa), which
is a protein hydrolysate, (ii) GF-120, and (iii) M3 bait (also known as Questlure)
(River Bioscience [Pty] Ltd., Port Elizabeth, South Africa), which is used in the M3
bait station for capture of C. capitata, C. rosa, and C. cosyra. All baits were equally
attractive to C. capitata and C. rosa, but there was lower attraction of C. cosyra to
HymLure than the other two baits.

5.3 Low Cost Fruit Fly Baits

Choices of protein material used for tests for fruit fly attraction were often dictated
not only by what was readily or commercially available, but also by what was the
lowest in cost. Thus, many baits are the end-product of some type of processing,
which explains the wide variety of materials tested and also the variation inherent in
batches produced over time, from different substrates, or from different processing
methods. Efforts have also been directed toward identifying other readily available,
low cost materials that could be used locally by growers. Hendrichs and Hendrichs
(1990) observed C. capitata adults feeding on avian fecal material, and Prokopy
et al. (1993) found that bird and lizard droppings (diluted as 3 parts droppings to
1 part water) were as attractive as aqueous NuLure (80 %) to C. capitata in field
cage bioassays. A. suspensa adults were attracted to aqueous avian fecal material
preparations in laboratory bioassays (Epsky et al. 1997). Most of the response was
directly correlated with amount of ammonia emitted from the preparation, although



3 History and Development of Food-Based Attractants 97

additional unidentified chemicals were thought to be responsible for attraction to
preparations that had aged for three days and were low in ammonia release.
Robacker et al. (2000) quantified response of A. ludens to volatile chemicals from
avian fecal material, and chemical analysis identified ethanol, propanol, phenol,
ammonia, low-molecular weight amines, and pyrazines. A blend of ammonia,
methylamine, dimethylamine, trimethylamine, 1-pyrroline, phenol, and
2-ethylhexanol was as attractive as the original material.

Pifiero et al. (2003) found that traps baited with aqueous solutions of avian fecal
material (25 %) or human urine (HU, 50 %) could be used to capture A. obliqgua and
A. serpentina (Wiedemann), although they were not as effective as aqueous protein
baits (i.e., Captor Plus [Agroquimica Tridenta, S.A. de C.V. Mexico, D.F.] and
TYB) in field tests conducted in Mexico. Subsequent research found that HU-baited
traps also captured A. ludens and A. fraterculus and that, under some orchard
conditions, captured equal or greater numbers of flies than Captor Plus-baited
traps (Aluja and Pifiero 2004).

Grape products have also been evaluated for fruit fly attraction as low cost
alternative baits. Mangan and Thomas (2014) conducted field tests in Mexico that
compared three types of grape products, including juice, mixed concentrate, and
mixed powder (all available locally in Mexico), and aqueous TYB. Traps baited
with grape products captured A. ludens, A. striata, Anastrepha serpentina
(Wiedemann), and the papaya fruit fly, Toxotrypana curvicauda Gerstaeker. They
found that the grape products often captured equal or greater numbers of A. ludens
than aqueous TYB depending on the specific comparison or time of year. Mangan
and Thomas (2014) also reviewed results of various field tests conducted in Brazil
that showed that grape products can also be used for capture of A. fraterculus.
Although not always as effective as aqueous protein-baited traps, Castrejon-Goémez
et al. (2004) found that traps baited with aqueous solutions of brown sugar (1 kg/L)
could be used to capture T. curvicauda, and that the highest capture was obtained
after bait solutions had aged 3—4 days in the field. Such low cost, readily available
materials may provide alternatives for growers for population suppression and
improved crop protection.

5.4 Bacteria and Bacterial Fermentation as Fruit Fly
Attractants

Most of the studies evaluating the role of microorganisms in attraction of fruit flies
to aqueous protein baits have focused on yeasts, either through natural inoculation
or by introduction of active yeast cultures. However, there have also been studies on
the role of bacteria, either added to protein baits or tested alone, as a source of
volatile attractants. The bacterial species, the substrates used, and the target species
are summarized in Table 3.3. Microorganisms on fruit or leaves are used by adults
as a protein source (Drew et al. 1983), and mutualistic or symbiotic roles for
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bacteria associated with tephritid fruit flies have been proposed (Drew and Lloyd
1987a). Drew and Lloyd (1987b) identified several species of Enterobacteriaceae
from B. tryoni and Bactrocera cacuminatus (Hering) and hypothesized that
chemicals emitted from bacteria on leaves attract fruit flies to host trees.

Drew and Fay (1988) revisited the role of ammonia in B. tryoni attraction to
aqueous NuLure (5 %). They adjusted the pH of the aqueous solution by first adding
NaOH to increase the pH from the original pH 3.94 (as obtained from the manu-
facturer) to pH 9. They then added HCI to reduce the pH to 6.5. NuLure solutions at
both pHs were then inoculated with bacteria cultured from wild flies and were
tested in comparison to uninoculated solutions of NuLure as well as aqueous
ammonium bicarbonate at the same pH levels but without bacteria. Results of
field cage tests with colony flies indicated that inoculated NuLure at pH 6.5,
which had the greatest amount of bacterial growth and the lowest amount of
ammonia released, captured the highest number of flies and that the capture was
male-biased. They speculated that bacterial-produced metabolites other than
ammonia had a sex-specific role, possibly attracting males to female feeding and
oviposition sites to increase their mating success.

Jang and Nishida (1990) observed attraction of B. dorsalis in olfactometer
bioassays to Enterobacteriaceae isolated from lab-reared and wild flies. They also
found greater responses to both cultures with and without washed cells (i.e., broth
and broth-free cultures) than to water blanks but less than to aqueous NuLure (5 %).
Robacker et al. (1991) found that bacteria isolated from laboratory A. ludens and
presented as unwashed cells were equally attractive as aqueous TYB in flight
chamber and simulated field tests with sterile flies. In field tests using bacterium
isolated from R. pomonella, MacCollom et al. (1992) reported that traps baited with
washed cells were more attractive than unbaited traps or traps baited with apple
volatiles when the washed cells were presented alone or in combination with apple
volatiles. Subsequent tests revealed that traps baited with washed cells in combi-
nation with apple volatiles were more attractive than traps baited with apple
volatiles alone or with ammonium acetate in combination apple volatiles
(MacCollom et al. 1994). Martinez et al. (1994), in field trials of wild A. ludens,
found that traps baited with autoclaved supernatants from three bacterial species
were as attractive as traps baited with aqueous TYB or aqueous NuLure (10 %).

A series of tests evaluated attraction of A. ludens to supernatants obtained from
cultures of several bacterial species, and these were all found to be equal to aqueous
protein baits. In addition, volatile chemicals were identified from headspace col-
lections of supernatant from broth used to culture bacteria. Lee et al. (1995)
identified 21 volatile chemicals and found that the five most abundant were
3-methyl-1-butanol, phenethyl alcohol, 2,3-dimethylpyrazine, 2-methyl-1-
propanol, and 3-(methlthio)-1-propanol. Robacker and Flath (1995) identified
ammonia, trimethylamine, isoamylamine, 2-methyl-butylamine,
2,5-dimethylpyrazine, and acetic acid and found all attracted A. /udens when tested
as single component synthetics in laboratory bioassays. Their research also identi-
fied dimethylamine, obtained from an altered preparation of supernatant, as the
most effective attractant. DeMilo et al. (1996) identified 22 volatile chemicals and
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observed that 3-methly-1-butanol was the most abundant. Robacker and Bartelt
(1997) found that a synthetic chemical blend (ammonia, trimethylamine,
1-pyrroline, 3-methylbutanamine, pyrazine, 2,3,4,5-tetrahydropyridine,
2,5-dimethylpyrazine, and trimethylpyrazine) was 73-87 % as attractive as the
original bacterial supernatants. Epsky et al. (1998) reported that culture plates
with bacterial cultures attracted A. suspensa in laboratory bioassays and that the
attractants were ammonia and 3-methyl-1-butanol. Subsequent research has
revealed that a variety of bacteria produce fruit fly attractant chemicals (Robacker
et al. 1998) and that there may be within species variation in production of attractant
chemicals (Lauzon et al. 1998). For example, within species differences in enzy-
matic capability, specifically the ability to metabolize uric acid (Lauzon
et al. 2000), were found to be related to attraction of A. ludens (Robacker and
Lauzon 2002) and A. suspensa (Epsky and Lauzon, unpublished data) to bacteria
originally isolated from R. pomonella. Type of culture media as well as preparation
of test materials can also affect volatile chemical production (Robacker et al. 2009).

5.5 Combination of Food-Based Lures with Other Types
of Attractants

One of the advantages of food-based lures is that they capture both females and
males, although they are female-biased, that is, they tend to capture more females
than males. In contrast, male lures capture males almost exclusively. For example,
in comparative tests conducted in seven countries, percentage female C. capitata of
total capture in trimedlure-baited traps was 0—4.4 % but was 43-90 % in traps
baited with food-based lures (Epsky et al. 1999). There have been studies conducted
to evaluate combining food-based lures with male lures. Nadel traps baited with the
combination of trimedlure and NuLure:borax (5:5 %) captured fewer total flies than
Nadel traps baited with trimedlure alone in tests of C. capitata in Hawaii
(Nakagawa et al. 1971). Hill (1986), in tests conducted in Australia, found that
combining aqueous protein bait with male lures increased capture of male
C. capitata, B. tryoni, Bactrocera neohumeralis (Hardy), and B. cacuminatus but
decreased capture of females versus traps baited with only one type of attractant.
Liquido et al. (1993) conducted field trials of wild and sterile C. capitata that
compared capture of flies in Jackson traps baited with trimedlure alone or in
combination with a vial containing aqueous ammonium carbonate (2 mL saturated
solution). They observed that the addition of ammonia increased capture of both
wild and sterile males and tended to capture more sterile females, although the
difference was not statistically significant. No wild females were captured. The
authors hypothesized that the increase in male capture was due to males remaining
near the lure longer and increasing probability of retention. They also cited
unpublished data by Chambers et al. showing that suspending a trimedlure plug
3.8-5.1 cm below a McPhail trap baited with NuLure increased capture of male
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C. capitata over traps baited with either lure alone. But, they cited other studies
showing that the combination of aqueous protein bait and trimedlure in Jackson
traps increased female but not male capture (Zervas 1987; Hendrichs et al. 1989).
Katsoyannos (1994) found that trimedlure combined with NuLure:borax (9:3 %)
captured mostly males, with decreased female and non-target capture. Broughton
and De Lima (2002) observed that the combination of trimedlure and 3C BioLure
captured the same number of flies as 3C BioLure alone, but the percentage of
females per trap decreased. T6th et al. (2004) confirmed, in field tests conducted in
Italy, that there were decreases in both female and male C. capitata capture when
trimedlure and synthetic food-based lures were used in a single trap versus each
attractant deployed in a separate trap. Similarly, Yee et al. (2005) found that sticky
traps baited with combinations of host fruit lures and ammonium carbonate caught
fewer R. pomonella than sticky traps baited with ammonium carbonate alone.

The combination of food-based lures and sex pheromones has been tested for
B. oleae. Traps baited with the combination of aqueous protein bait (Entomozyl
[Hoechst, Athens, Greece]:borax, 3 %:1.5 % wgt:vol) and solvent (diethyl ether)
extracts of virgin flies increased male capture over traps baited with either lure
alone in field tests of released laboratory flies (Haniotakis and Skyrianos 1981).
There was no effect on capture of females. In subsequent research, Haniotakis and
Vassiliou-Waite (1987) found that the combination of ammonium bicarbonate and
synthetic female-produced pheromone lures increased female capture over traps
baited with ammonium bicarbonate alone but decreased male capture over traps
baited with pheromone alone in field tests of wild flies. Burrack et al. (2008),
however, found that traps baited with aqueous TYB captured more B. oleae than
traps baited with ammonium bicarbonate and synthetic pheromone lures. For
B. tryoni, the combination of orange juice solution plus ammonium was no more
effective than protein hydrolysate in McPhail traps (Dominiak et al. 2003).

5.6 Nontarget Capture

One of the disadvantages of food-based baits, especially aqueous protein baits, has
been the high capture of nontarget insects. Ammonia attracts muscid dipterans that
are associated with animal excrement (Richardson 1916), and a number of dipteran
families as well as hymenopterans and other insect orders have been collected in
aqueous protein-baited traps (e.g., Steyskal 1977). Katsoyannos et al. (1999) found
that 3C BioLure captured fewer nontarget insects than 2C BioLure, with the lowest
capture in NuLure:borax (9:3 %). In comparison with TYB solutions, fewer total
nontarget insects were captured in traps baited with 2C BioLure, although the
synthetic lure captured more chrysopids and halictid bees (Thomas et al. 2001;
Thomas 2003; Conway and Forrester 2007). Leblanc et al. (2010a, b, c) conducted a
series of experiments that evaluated capture of nontarget insects in traps baited with
food-based lures in Hawaii. They reviewed reports of nontarget capture and noted
that nontarget capture increased the time needed to sort through the samples for
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target flies and also increased capture of beneficial and endemic insects. Initial
studies evaluated the components of 3C BioLures alone and in combination in field
trials conducted in a variety of habitats, including native and non-native forests,
residential areas, and farmlands (Leblanc et al. 2010b). They found that ammonium
acetate was primarily responsible for nontarget capture, with putrescine contribut-
ing to a lesser effect. Most of the nontarget captures were saprophagous flies, with
few beneficials attracted. 3C BioLure was found to capture more nontarget insects
than either aqueous solulys (20 %) or aqueous TYB mixed with aqueous PG (20 %),
although they noted different responses among different insect families (Leblanc
etal. 2010c). Subsequent studies, which still recorded higher nontarget capture with
3C BioLure than with aqueous TYB, confirmed that use of PG (20 %) further
suppressed nontarget capture (Leblanc et al. 2010a).

6 Approaches for Evaluation of Food-Based Attractants

Field tests have been widely used to evaluate food-based attractants and to deter-
mine preferences of wild fruit flies. Widespread use historically of field tests has
contributed greatly to the development of the highly effective food-based attrac-
tants currently in use. Standard trapping procedures are used for trap placement
within a site (IAEA 2003). Treatments to be compared are placed typically in
replicated blocks within a planting, although spacing both among traps within a
block and among blocks within a study site may be variable based on type of
attractant as well as spacing among host plants and size of the field. Tests may be
conducted as choice tests, with all treatments placed less than 3 m apart around the
periphery of a tree, bush or planting (e.g., Epsky et al. 1993) or as no-choice tests
with traps placed greater than 5 m apart within a row (e.g., Heath et al. 1994; IAEA
1999; 2007). Spacing should be dictated by effective sampling range for an
attractant and additional tests may be needed to make this determination (Epsky
et al. 2010; Kendra et al. 2010). However, because variation in age structure and
density among wild populations that may affect response (e.g. Heath et al. 2004, see
Diaz-Fleischer et al., Chap. 5, this volume) and because wild populations are not
always available for tests, laboratory and simulated field tests are widely used to
evaluate lures and attractants. Use of behavioral bioassays and electrophysiological
analysis are two approaches that are used to fill this research gap.

6.1 Behavioral Bioassays

Behavioral bioassays are tests designed to quantify attraction to a specific bait or
determine preference among several baits. The advantages of these bioassays
include ability to manipulate factors, such as fly source (laboratory strain versus
wild adults obtained from field-infested fruit), population level (number per unit
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area), sex, sex ratio and physiological state. It is not unusual, however, for flies to be
attracted to materials in laboratory bioassays (especially if compared to response to
a blank or un-baited control) that elicit no response in the field. Therefore, it is
important to conduct parallel or subsequent field tests to confirm response observed
in laboratory tests and to compare response to standard baits. In addition to numbers
trapped, it is important to evaluate sex ratio of target flies and to document capture
of non-target and/or beneficial insects. Trapped females can be dissected to eval-
uate differences in capture of immature versus mature females among the test baits.

Release/recapture studies have been widely used as simulated field tests. Flies
may be marked to distinguish released flies from wild flies, which is a standard
procedure for sterile flies released as part of the Sterile Insect Technique (SIT).
Flies can be marked to test simultaneously different physiological states within the
same field cage, further improving the usefulness of comparative tests. Typically
release/recapture field tests use sterile flies to avoid release of crop-damaging fertile
flies. Recapture rates may be very low and sterile flies are less responsive to food-
based lure due to reduced need for protein (e.g., Midgarden et al. 2004). For tests of
fertile flies, field cage tests are often employed. Field cages are screened or mesh
cages of various sizes that enclose potted plants or are placed over field-planted
material. Fertile flies can be used in these tests, which increase the usefulness of the
results while preventing the escape of fertile flies. Additional information can be
obtained from fruit fly behavior easily observed in field cage tests (e.g., Prokopy
et al. 1993). Also, the larger the field cage, the better the assessment of long range
attraction to bait. Field cage tests can be run as choice tests, with multiple treat-
ments tested within the field cage, or as no choice tests, with one treatment
deployed per field cage.

Wind tunnel or flight tunnel bioassays have also been used to assess attraction to
test baits. Bait can be tested in traps hung within a tunnel or volatile chemicals can be
introduced from chambers placed outside of the tunnel (Heath et al. 1993). Typically,
these are conducted as choice tests of preference between two test substrates. This
limits the ability to determine preference among more than two test substrates at a
time since not all can be presented simultaneously. Flies tend to respond to any
substrate over a clean air blank, so if there is no attraction of flies in a wind tunnel
bioassay there will probably be no response in field tests. However, response to
substrates in a wind tunnel bioassay does not guarantee response in the field.
Concentration of the bait can also affect response in wind tunnel bioassays. Materials
presented in too high of a concentration may be repellant and typically when this
occurs, the flies may be observed to move to the downwind end of the wind tunnel.
This was observed in tests of ammonia, although it did confirm the difference in
antennal sensitivity between immature and mature A. suspensa (Kendra et al. 2005b).

Y-tube olfactometer bioassays are rarely used for tests of tephritids. These
bioassays assess walking responses primarily, and the small diameter of a typical
y-tube olfactometer increases potential problems of volatile chemicals that would
be attractive at an appropriate concentration becoming repellant due to being
presented at a concentration that is too high. Small cage bioassays such as the
cage top bioassay (Robacker et al. 1991) have also been used to quantify response.
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6.2 Electroantennography

The insect antenna is the primary organ responsible for chemoreception and
transduction of olfactory stimuli. Functionally, antennae serve as the interface
between environmental odors and insect behavior. The first electrophysiological
investigations of insect olfaction were conducted in 1954, using tungsten electrodes
to record peripheral olfactory responses from the cockroach antenna (Roys 1954).
That pioneering work documented both the fast nerve potentials (‘spikes’ generated
by individual olfactory receptors) and the slow potentials, now known as the
electroantennogram (EAG), which represents the summation of multiple receptor
potentials over the length of the antenna. The study also showed that an increase in
concentration of odor source resulted in an increase in amplitude of the EAG
response (i.e., EAG is a graded response due to recruitment of additional receptors).
Thus, comparative EAG recordings provide a useful method for ranking the relative
potencies of volatile stimuli, which in turn can provide insight into the potential
behavioral significance of those compounds (Mayer 2001). In current applications,
EAG is typically coupled with gas chromatography (GC), referred to as
electroantennal detection (EAD), which facilitates initial screening and identifica-
tion of potential attractants from a complex mixture of chemicals (e.g., host plant
volatiles). With this technique, a sample is first separated by GC and then split for
simultaneous delivery to the GC detector and the insect antenna. The GC trace
shows all of the chemical constituents present in the sample, and the antennal
response identifies those peaks of biological relevance (Ryan 2002).

The antennae of higher dipterans, including the Tephritidae, are particularly
conducive to EAG analysis. The majority of olfactory sensilla are located on the
enlarged third antennal segment (Shanbhag et al. 1999), but good quality EAG
recordings can be obtained by using simple whole head mounts, requiring minimal
dissection (Fig. 3.1a—d). EAG has been used to evaluate tephritid olfactory response
to a variety of behavior-mediating chemicals (semiochemicals), including phero-
mones, male lures, host volatiles, and food-based attractants, and studies have been
conducted on numerous pest species, including B. dorsalis (Light and Jang 1987),
B. tryoni (Hull and Cribb 2001), C. capitata (Light et al. 1988; Jang et al. 1989a, b;
Niogret et al. 2011), A. ludens (Robacker et al. 1986), A. obliqua (Lopez-Guillén
et al. 2011; Jenkins et al. 2012), and A. suspensa (Kendra et al. 2005a, b, 2008,
2009).

Although the relationship between behavioral response and amplitude of EAG
response is not always clear, (e.g., Cha et al. 2008), studies with A. suspensa have
shown good correlation between EAG and tephritid behavior with food-based
attractants. As part of an ongoing effort to develop better lures for pest Anastrepha,
USDA-ARS (Miami, FL) initiated a research program to address tephritid olfactory
ecology by integrating electroantennography and developmental physiology with
behavioral response to olfactory attractants. The goal is to identify the principal
factors influencing attraction to chemical cues and ultimately use that information
to develop improved female-targeted trapping systems compatible with sterile male
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Fig. 3.1 Electroantennography technique. A freshly dissected fly head is mounted between
micropipette electrodes with conductive gel (a) and placed under a stream of purified air (b).
Using gas-tight syringes, test samples are injected into the airstream and delivered to the antennae
(c). Upon binding specific olfactory receptors, test chemicals evoke an electrical response, the
electroantennogram or EAG (d)
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Fig. 3.2 Mean EAG response of female and male Anastrepha suspensa to quantified vapor
samples of ammonia (a), carbon dioxide (b), and an equimolar mixture of the two gases (c).
Responses were normalized and expressed as a percentage of the standard reference response
(20 pL 2-butanone saturated vapor) (Adapted from Kendra et al. 2005a)

release programs. Factors to be evaluated include the sex, age, nutritional require-
ments, sexual maturity, and mating status of the adult fly as well as the dose,
formulation, and potential interaction of the chemical components that comprise the
attractant lure. EAG technology (using quantified vapor samples) was utilized in
several ways, and three examples of those applications are presented here.

» Example 1. In an initial study (Kendra et al. 2005a), EAG was used to construct
dose-response curves for pure ammonia and carbon dioxide, the two volatiles
released from ammonium bicarbonate field lures. There was no difference in
female versus male response to ammonia alone (Fig. 3.2a), but female response
was significantly greater than male response to carbon dioxide (Fig. 3.2b) and
to a mixture of ammonia + carbon dioxide (Fig. 3.2¢). For both sexes, response
to ammonia was greater than response to carbon dioxide, and EAG responses
were additive when the two gases were combined and presently concurrently.
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These results suggest that there are separate antennal receptors for the two
chemicals, that both sexes have more receptors for ammonia than for carbon
dioxide, and that female antennae have more receptors for carbon dioxide than
male antennae. The results also suggest that the carbon dioxide component is
responsible for the female-biased attraction obtained with ammonium bicarbon-
ate lures.

» Example 2. Comparative analyses using known-aged females and fixed doses of
ammonia and carbon dioxide revealed that EAG response was not static but
varied depending upon age and maturity status (Kendra et al. 2005b). Dissec-
tions at 1-day intervals indicated that fully developed ovaries were not present in
the laboratory strain of A. suspensa until 8 days post-eclosion (Fig. 3.3a).
Maximum EAG response to ammonia was observed in immature females, 4-6
days old (Fig. 3.3b), just prior to synthesis and deposition of yolk proteins
(vitellogenesis) and rapid ovary development (Kendra et al. 2006). Conversely,
peak EAG response to carbon dioxide occurred in sexually mature females, 10—
12 days old, at the onset of oviposition (Fig. 3.3c). The antennal responses
correlated well with results obtained in behavioral bioassays. In two-choice
tests conducted in flight tunnels (Fig. 3.3d), more mature (gravid) females
were attracted to a mixture of ammonia + carbon dioxide than to the same dose
of ammonia alone. This difference was not observed with immature females.
These combined results support the functional roles of ammonia as a tephritid
protein cue (Bateman and Morton 1981) and carbon dioxide as a short-range
oviposition cue (Stange 1999). Another finding from this study was that imma-
ture females, which displayed the stronger EAG response to ammonia, were also
more sensitive to ammonia dose in flight tunnel assays. In a series of two-choice
test evaluating a range of ammonia release rates, mature and immature females
were captured in equal numbers when low doses of ammonia were presented.
However, at higher doses, ammonia became repellent to the immature females
and significantly fewer were captured relative to mature females. Therefore, a
strong EAG response must be interpreted with caution, as this is not necessarily
an indicator of attraction. EAG screening should always be complemented with
appropriate bioassays to determine behavioral response.

» Example 3. EAG with a series of related diamine compounds identified a new
attractant for A. suspensa (Kendra et al. 2008). EAG analyses were used to
quantify antennal response to a known synergistic attractant, putrescine
(1,4-diaminobutane, C4), and to four homologous diamines that differed only
in the length of the carbon chain (C5—C8). This comparative approach indicated
that cadaverine (1,5-diaminopentane, C5) elicited an antennal response compa-
rable to that of putrescine (Fig. 3.4a). When evaluated under field conditions
(Fig. 3.4b), cadaverine was found to be just as efficacious as putrescine for
capture of female A. suspensa when deployed in combination with ammonium
acetate (AA) lures. The 1,6-diaminohexane (C6) also conferred synergistic
attraction when combined with AA, but captures were less than those obtained
with putrescine or cadaverine.
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Through comparative EAG analyses using a synchronous population of
A. suspensa, it has been shown that antennal responses to specific olfactory stimuli
are not constant throughout the life of an adult fly but vary according to the
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physiological state and nutritional needs of the insect. Thus far, pure ammonia
vapor, pure carbon dioxide vapor, and emissions from commercial lures of ammo-
nium bicarbonate and putrescine have been evaluated, and age-related changes in
EAG response have been observed with each attractive substrate. Plasticity in the
olfactory system based on changing ecological needs is intuitively adaptive for
tephritids and can be correlated with developmental events in the life of a fly.
However, the underlying cellular and physiological processes have not yet been
studied in the Tephritidae. Possible mechanisms include hormone-mediated tem-
poral regulation of the protein components (and/or the corresponding encoding
genes) that comprise the peripheral olfactory system. Those proteins include the
transmembrane olfactory receptors themselves as well as a variety of soluble
protein constituents of the sensillum lymph, including odorant-binding proteins,
chemosensory proteins, and enzymes that remove active odorants from the den-
dritic membrane (de Bruyne and Baker 2008).

Despite the complexity of the system, quantitative EAG research with
A. suspensa suggests that development of improved female-target lures may be
realized by combining olfactory attractants that (1) elicit higher EAG responses in
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females, (2) convey the same functional message, since multiple feeding cues may
synergize attraction (e.g., ammonia plus putrescine), (3) have additive EAG
responses (recruit additional receptor types to send a stronger signal to the central
nervous system processing centers), and (4) elicit peak EAG responses at different
stages (physiological ages) of the adult female’s life, thereby achieving broad
attraction of flies regardless of the age structure of the population.

7 Summary and Future Research Needs

Availability of highly effective food-based lures has increased the opportunities
beyond use of these attractants for population monitoring and detection. Some of
these applications are discussed in other chapters in this volume, including bait
sprays (Mangan, Chap. 12), bait stations (Pifiero et al., Chap. 13), and mass trapping
(Navarro-Llopis and Vaca, Chap.15). Additionally, traps baited with food-based
synthetic attractants, as opposed to aqueous protein baits, can be used to capture
live females for other purposes. For example, traps can be used to obtain and assess
fertility of wild flies during sterile insect technique (SIT) programs (Katsoyannos
et al. 1999). In that study, female C. capitata captured in 3C BioLure-baited traps
failed to lay eggs in oviposition devices placed inside the traps, but females from
those traps did oviposit when placed individually in chambers with oviposition
substrates in the laboratory, which allowed quantification of percentage egg hatch
and assessment of sterility. The authors noted that this technique would be further
improved by development of female-specific lures that would reduce the number of
sterile males that could enter the trap and mate with wild females. Live trapping of
fruit flies could also be used to determine the age structure and reproductive
potential of a pest population (Kouloussis et al. 2009, 2011). Traps baited with
3C BioLure were also used to obtain wild C. capitata for use in release/recapture
studies to determine effective sampling range (Epsky et al. 2010).

Response to food-based attractants is variable among different species and
habitat (e.g., Epsky et al. 2004; IAEA 2007), and additional research is needed to
understand this variation and to identify new or additional substrates and chemicals
that may improve capture of target fruit flies. This continues to be an active area of
research. Flies responding to food-based lures are seeking protein primarily, and the
need for protein varies with factors such as species, gender, physiological state, and
availability of alternative protein sources in the habitat among other parameters
(Diaz-Fleischer et al., Chap. 5, this volume). For example, larvae of T. curvicauda
feed on seeds, and so adult females do not need protein for egg development (Drew
and Yuval 1999) and thus do not respond as strongly to food-based lures, although
they are occasionally captured in these traps (Heath et al. 1996). Higher capture in
aqueous protein-baited traps over synthetic lure-baited traps, which has been
observed in some tests of Anastrepha spp., for example, indicates that the identi-
fication of additional chemicals from the protein bait may provide an improved lure
for these species. However, overall poor response to food-based attractants may
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indicate that other cues are needed to obtain an optimal trapping system. These cues
may be chemicals from pheromones (Tan et al., Chap. 2, this volume); host fruit
(Quilici et al., Chap. 4, this volume) or visual cues that can be incorporated into a
trap design (Diaz-Fleischer et al., Chap. 5, this volume).

Use of a food-based attractant as bait in a trap for multiple species may not be
possible or even desirable (Diaz-Fleischer et al. 2009). A single multi-species trap
for detection of new invasions of fruit flies in areas currently fly-free may be
preferred to deploying multiple single species-targeted traps as this would decrease
overall costs and number of personnel needed to maintain the traps. However,
variations in bait efficacy among the different species and habitats may require
optimization for different conditions. Capture of unmated females before they have
the opportunity to develop eggs and oviposit would increase effectiveness of
attractants for fruit fly population suppression and control. Food-based attractants
tend to attract mated females with mature eggs, although changes in release rate of
ammonium acetate were found to affect the ratio of unmated, immature female to
mated, mature female C. capitata (Heath et al. 1995). Thus, it may be possible to
target flies with different physiological states by modifying the release rate/formu-
lation of food-based attractants or by combining these baits with other
semiochemicals. This would increase effectiveness of food-based attractants for
both fruit fly detection and control.
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Chapter 4
Plant Odors as Fruit Fly Attractants

Serge Quilici, Toulassi Atiama-Nurbel, and Thierry Brévault

Abstract Plant odors consist of a mixture of volatile compounds that are conveyed
by diffusion through air and may disperse over a long distance. They play a major
role in mediating insect-plant relationships, particularly food location and selection
of suitable sites for mating or oviposition. This chapter presents state-of-the-art
research on the response of fruit flies (Diptera, Tephritidae) to plant odors and their
potential for the development of trapping systems. Main research results from
Tephritids of economic importance (i.e., Rhagoletis, Ceratitis, Bactrocera/Dacus,
and Anastrepha) show evidence of response to (i) general plant volatiles from host
or non-host plants, the so-called ‘green leaf volatiles’, (ii) essential oils from host or
non-host plants, and (iii) fruit odors (whole fruit, wounded or crushed fruit, extracts,
etc.). Synergies between plant odors and food odors or sex pheromones are also
addressed. Factors including insect physiology (age, mating status, egg load, etc.),
experience (learning), and genetic background can substantially modify the
response pattern to plant odors.

One of the main challenges of using plant odors as fruit fly attractant is to
improve the technology for identification (analysis), synthesis and emission (dis-
pensers) of key compounds that may compete with natural volatile blends in the
field. Further research should include the role of microorganisms in host location
and recognition by fruit flies. Synthetic plant odors could be used either as
kairomones for trapping systems, as allomones to push flies away from the crop
or to disrupt host location, or as synomones to attract natural enemies to the crop.

Keywords Semiochemical « Kairomone ¢ Plant odor ¢ Blend ¢ Volatile ¢ Attractant
« Olfactory stimuli « Host location

S. Quilici () » T. Atiama-Nurbel
CIRAD, UMR PVBMT, 7 Chemin de I'IRAT, Saint-Pierre 97410, La Réunion, France
e-mail: serge.quilici@cirad.fr; toulassi.atiama@wanadoo.fr

T. Brévault
CIRAD, UR AIDA, Avenue Agropolis, 34398, Montpellier, France
e-mail: thierry.brevault@cirad.fr

T. Shelly et al. (eds.), Trapping and the Detection, Control, and Regulation of Tephritid 119
Fruit Flies, DOI 10.1007/978-94-017-9193-9_4,
© Springer Science+Business Media Dordrecht 2014


mailto:serge.quilici@cirad.fr
mailto:toulassi.atiama@wanadoo.fr
mailto:thierry.brevault@cirad.fr

120 S. Quilici et al.

1 Introduction

Semiochemicals are chemical signals that mediate interactions between living
organisms of the same or different species (Price et al. 2011). They are naturally
occurring and can be used by insects for intra- or interspecific communication and
for resource location. At the intraspecific level, pheromones are a group of
semiochemicals that play a major role in mediating interactions between conspe-
cifics, e.g., the location of a sexual partner (Wyatt 2003). By contrast,
allelochemicals play a role in the chemical communication between species.
Reflecting the co-evolutionary history between plants and insects, they are classi-
fied as allomones (advantage to the producer), kairomones (advantage to the
receiver), or synomones (advantage to both) (Kogan 1982; Metcalf and Metcalf
1992). In this review, we will focus mainly on plant volatile compounds that play a
major role in tephritid-plant relationships, primarily in food location or selection of
suitable sites for mating or oviposition. Generally, plant odors consist of a mixture
of volatile compounds (Metcalf and Metcalf 1992), mostly terpenoids,
phenylpropanoids, alcohols, aldehydes, esters, acid, and sulphur compounds
(Metcalf and Metcalf 1992; Birkett et al. 2004). They are conveyed by diffusion
through air and may disperse relatively long distances (Metcalf and Metcalf 1992).
From an applied perspective, these plant odors can be used for monitoring or
controlling tephritids of economic importance.

A comprehensive understanding of the resource-foraging behavior of an insect
pest as well as the identification of chemical and/or visual stimuli eliciting this
behavior is central for the development of effective trapping systems to monitor
and/or control its populations (Foster and Harris 1997). Visser (1986) proposed two
hypotheses regarding the attractiveness of volatile, plant-derived semiochemical
cues to foraging insects: (i) plant odors are highly specific due to specific com-
pounds and/or (ii) plant odors are highly specific due to the particular ratio between
ubiquitous constituents. Identification of plant volatiles involved in host plant
location by phytophagous insects can be achieved through different techniques. A
first step is to assess the behavioral response of insects to plant odors using bio-
assays (olfactometer, wind tunnel, etc.) (Haynes and Millar 1998). Concurrent odor
collection and chemical analysis of plant odors can be achieved to identify volatile
compounds (Millar and Haynes 1998; Goodner and Rousseff 2011). For example,
coupled gas chromatography-electroantennogram detection (GC-EAD) analysis
(Bjostad 1998) is a widely used technique to identify specific compounds from
plants. Further steps include formulation and test of attractive blends of volatile
compounds under laboratory and field conditions. The effectiveness of trapping
systems depends, not solely on the quality of chemical stimuli, but also on visual
characteristics and placement of the trap (Epsky et al. 2004).

The main objective of this chapter is to present state-of-the-art research on
tephritid attraction to plant odors, focusing on results that might be relevant for
the development or improvement of trapping systems. We successively examine
the main genera of tephritids of economic importance, i.e., Rhagoletis, Ceratitis,
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Bactrocera/Dacus, and Anastrepha. We have compiled scientific literature showing
evidence of fruit fly response to i) general plant volatiles from host or non-host
plants, such as the so-called ‘green leaf volatiles’; (ii) essential oils from host or
non-host plants, and (iii) fruit odors (i.e., whole fruit, wounded or crushed fruit,
extracts, varying ripeness). Research showing synergy between plant odors and
food odors or sex pheromone is also addressed. Lastly, the potential use of plant
odors as bait for trapping systems is discussed. Various parameters, including a fly’s
physiology (e.g., age, mating status, etc.), experience (learning), and genetic back-
ground, can substantially modify response pattern to host stimuli (Papaj 2000;
Schoonhoven et al. 2005), and relevant examples are noted (Diaz-Fleisher et al.,
Chap. 5, this volume).

2 Plant Odors for Trapping Fruit Flies

Frugivorous fruit flies have evolved mechanisms to use plant volatiles and visual
stimuli from the plant during the host plant location process (Roitberg 1985). Plant
volatiles are used at long or medium distance, whereas visual cues mediate host
location at close range (Aluja and Prokopy 1992; Zhang et al. 1999; Brévault and
Quilici 2010b). Research efforts on plant volatiles have been directed primarily at
species for which no male-specific attractant is available (i.e., the male lures
methyl-eugenol, cue-lure, trimedlure, and terpinyl acetate). Most studies on fruit
fly attraction to host plant odor concern stenophagous species (e.g., Rhagoletis spp.)
for which specific plant volatile attractants are much likely to be found than for
polyphagous species. Here, we review the current knowledge on plant odors as fruit
fly attractants, focusing on fruit flies of economic importance.

2.1 Genus Rhagoletis

Plant kairomones have been shown to play a significant role in the host plant
selection process of various Rhagoletis species. Aluja and Prokopy (1992) used
synthetic apple fruit volatiles to characterize the host searching behavior of Apple
Maggot Fly (AMF), Rhagoletis pomonella (Walsh), in the field. They showed that
flies released in the center of a patch containing host trees (Crataegus mollis
Scheele var. toba) permeated with synthetic apple fruit volatiles moved faster and
in more linear paths than flies released in the same plot with clean air. This suggests
that flies are able to use host odor to optimize their foraging efficiency. Orchard
studies clearly demonstrated that sexually mature females and males are strongly
attracted to the odor of ripe apple (Malus domestica Borkh.) relative to unripe and
non-host fruit (Prokopy and Bush 1973; Reissig 1974) and that this attraction may
occur over a considerable distance. In wind tunnel bioassays, a blend of volatile
compounds from whole Red Delicious and Red Astrachan apples was shown to be
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attractive to sexually mature AMF of both sexes (Fein et al. 1982). This blend
consisted of a mixture of 7 esters from ripening fruit: hexyl acetate, (E)-2-hexen-1-
yl acetate, butyl 2-methylbutanoate, propyl hexanoate, hexyl propanoate, butyl
hexanoate and hexyl-butanoate (35:2:8:12:5:28:10 ratio). Synthetics of the identi-
fied compounds and the natural extract elicited directed upwind movement towards
the source and EAG responses, but none of the components elicited full activity
when presented alone. In contrast, foliar volatiles were supposed to play a second-
ary role in the host location process (Fein et al. 1982). Carle et al. (1987) conducted
a comparative study of volatiles produced by whole hawthorn fruit (Crataegus
coccinea L.) and four cultivars of apple from early- to late-ripening cultivars. They
reported a total of 52 esters (31 esters in the hawthorn extract and 48 in the apple
extracts) and some similarity between the volatile profiles of apple cultivars and
hawthorn, but significant quantitative and qualitative changes of volatiles associ-
ated with fruit ripening. Response of AMF to these compounds was not tested.
Further chemical studies using solid phase microextraction (SPME) and GC-EAD
identified a new five component blend, including two of the previously identified
volatiles (hexyl butanoate, propyl hexanoate) and three compounds not previously
recorded (butyl butanoate, butyl hexanoate and pentyl hexanoate) in the respective
ratios of 44:4:10:37:5 (Zhang et al. 1999).

In two other Rhagoletis species, Rhagoletis mendax Curran and Rhagoletis
cingulata (Loew), Pelz-Stelinsky et al. (2005) showed that feral adults are attracted
to the volatiles of their host fruit, blueberry (Vaccinium myrtillus L.), and cherry
(Prunus avium (L.)), respectively, which could be exploited to improve the moni-
toring methods for these pests.

2.2 Genus Ceratitis

In the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), the perception of
plant volatiles has been investigated in both electroantennogram (EAG) and behav-
ioral studies. Light et al. (1988) reported positive EAG responses from unmated,
laboratory-reared males and females in response to a range of C1 and C2 to C12
carbon chain-length aliphatic alcohols, aldehydes, acetates, acids, and lactones,
some of which are known volatiles from leaves and fruits. The greatest EAG
responses of all compounds tested were elicited by C6 alcohols and aldehydes
that are constituents of the general ‘green-leaf odor’.

EAGs or electrophysiological recordings from olfactory sensilla on the antennal
funiculi of C. capitata showed that both males and females detect blends of citrus
peel essential oils (Levinson 1990; Hernandez et al. 1996) as well as most individual
compounds (Light et al. 1992; Hernandez et al. 1996). Total airborne volatiles from
fresh oranges elicited greater response of females than males (Levinson 1990;
Hernandez et al. 1996). Additional tests conducted in large field cages housing
naturally planted orange trees showed that both sexes of C. capitata respond to
chemicals released from artificial cuts made in the pulp of peeled oranges (Citrus
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sinensis L.) and also to natural or commercial orange juice applied to the surface of
yellow 7.0 cm diameter spheres (Katsoyannos et al. 1997). However, volatiles
released from artificial cuts made in the oily region (flavedo) of the orange peel
were found to be much more attractive to male than to female medflies (Katsoyannos
etal. 1997; Papadopoulos et al. 2001). Papaj et al. (1989) showed that medfly females
were more likely to land on and attempt to oviposit into oranges that were artificially
pricked than into unpricked control oranges. Deep wounds that pierced the fruit pulp
and caused the release of juices elicited more female landings than shallow ones that
only pierced the flavedo. These results suggest that the active compounds of orange
juice, if isolated, identified and synthesized, may prove useful as a monitoring or
control tool for C. capitata females (Heath et al. 1996).

Limonene, the most abundant chemical in citrus essential oils, stimulates ovi-
position in C. capitata females, whereas linalool, a compound representative of
immature citrus fruit associated with high toxicity against immature stages of fruit
flies and considered as an important compound conferring resistance against fruit
fly larval development, has a significant deterrent effect (Ioannou et al. 2012). As
citrus fruits mature from an immature green to an orange/yellow mature stage, the
linalool content of the peel oil declines progressively, and the less toxic limonene
becomes the major component. Limonene content acts as a potential stimulus for
the ovipositional responses observed with sweet orange oil, whereas high linalool
contents could mask or disrupt those effects in citrus oils (Ioannou et al. 2012).

Volatiles from coffee (Coffea arabica L.), the presumed ancestral host of the
medfly, are also attractive. The odor of ripe intact or crushed coffee fruit was
significantly more attractive to C. capitata than the odor of ripe intact or crushed
fruit of five lower-ranking hosts and three nonhosts (Prokopy and Vargas 1996).
Odor of crushed coffee fruit was significantly more attractive than odor of intact
coffee fruit, and odor of ripe or near-ripe coffee fruit was significantly more
attractive than odor of unripe coffee fruit. The odor of ripe (red) C. arabica fruit
was found to be more attractive than the odor of ripe fruit of several other Coffea
spp. (Prokopy et al. 1997). The odor of ripe C. arabica fruit was also more attractive
than the odor of less mature fruit or the odor of foliage or twigs of this species
(Prokopy et al. 1997). In addition, Prokopy et al. (1997) showed that the odor of a
24-h-old water extract of ripe C. arabica fruit was more attractive than the odor of
24-h-old extracts of such fruit with methanol, methylene chloride, or hexane and
that the odor of ripe C. arabica fruit that had been frozen, thawed, and crushed was
just as attractive as the odor of crushed unfrozen fruit. Based on the above
information, Warthen et al. (1997) used headspace analysis techniques to identify
28 volatile compounds emitted by crushed ripe C. arabica fruit that had been frozen
after picking and thawed just prior to volatile collection. They used a wind tunnel to
assess the attractiveness of each compound to mature, protein-fed laboratory-
cultured female medflies under dual choice conditions, wherein response to the
odor of each compound was compared to response to clean air. In these assays,
medflies responded positively to nine of the compounds: 3-methyl-1-butanal,
decanal, 3-methyl-1-butanol, 2-(Z)-pentenol, 2-(E)-hexenol, 2-heptanone, 2-(Z)-
hexanol, 2-heptanol, and 3-octanol. Follow-up assays in which an indoor
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olfactometer was used showed that among these nine compounds, the first six were
the most attractive (Jang et al., unpublished data). Among the six coffee fruit
volatile compounds tested in field cages, 2-heptanone always elicited greater
attraction of protein-fed females than did water, conferring to 2-heptanone a
possible role of oviposition-site signal (Prokopy et al. 1998).

Aside from citrus and coffee, few other fruits have been studied in relation to
fruit fly attraction. Jang (1995) observed female C. capitata to be strongly attracted
to the odor of ripe guavas (Psidium guajava L.) and to oviposit into spherical
dummies emitting guava odor. Cossé et al. (1995) identified three compounds from
mango (Mangifera indica L.) volatiles consistently triggering significant responses
in combined GC-EAG analyses with the antennae of C. capitata females. Marked
differences in fruit susceptibility to the medfly among peach cultivars (Prunus
persica L.) suggest that the composition of volatile molecules may have an influ-
ence. Repeated field observations confirmed a clear preference of the medfly for
nearly ripe fruit. A lower relative content of methyl esters, such as methyl
hexanoate and methyl octanoate, known to act as medfly pheromone and attractant,
respectively, was found in the least susceptible peach cultivars (Tabilio et al. 2013).

Natural substances have been found to attract male C. capitata, including
angelica seed oil, which was used to bait traps during the early eradication program
conducted in Florida in the 1950s (Steiner et al. 1957). The sesquiterpene
a-copaene is the chemical found to be primarily responsible for this response,
although other co-occurring chemicals may contribute to attraction (Jacobson
et al. 1987; Flath et al. 1994a, b). a-Copaene is a complex, highly-volatile,
widely-distributed plant compound found as a minor component in the essential
oils of various plant species, including medfly hosts such as orange, guava, and
mango (Nishida et al. 2000). The compound could play a role in the mating
behavior of C. capitata as a signal for potential rendezvous sites for courtship
and mating and is involved in mating success (Shelly 2001; Shelly and Villalobos
2004). Male C. capitata respond to material from both hosts (e.g., Litchi chinensis
Sonn.) and non-hosts (e.g., Ficus benjamina L.) that contain a-copaene (Warthen
and MclInnis 1989; Niogret et al. 2011). While a-copaene is reported to be 2-5
times more attractive than trimedlure, difficulties in obtaining this compound in
quantities sufficient for large scale trap deployment have prevented its use as a field
lure (Cunningham 1989). Enriched ginger root oil (EGROlure), which contains the
male attractant a-copaene may be a suitable alternative for monitoring and control
of African Ceratitis species, including C. capitata, Ceratitis rosa Karsch and
Ceratitis cosyra (Walker) males (Mwatawala et al. 2013; Shelly and Mclnnis
2001). However, further experiments in Hawaii showed that trimedlure-baited
traps captured more C. capitata males than EGRO-baited traps when lures were
aged 3-6 weeks (Shelly 2013).
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2.3 Genera Bactrocera/Dacus

The attractiveness of various materials of plant origin (from host and non-host
plants) has been investigated for many Bactrocera and Dacus species, both poly-
phagous and monophagous (Fletcher and Kitching 1995). Early investigations
include the pioneer work of Howlett (1912), who observed that citronella oil was
attractive to males of Dacus (Bactrocera) spp. and subsequently identified methyl
eugenol as the active attractant (Howlett 1915). Methyl eugenol is now widely used
in detection and/or control of the oriental fruit fly (Bactrocera dorsalis (Hendel))
(Jang and Light 1996), and its strong attractancy prompted its use in several
successful eradication programs based on the Male Annihilation Technique
(MAT; Koyama et al. 1984; Nakamori et al. 1988). However, its attractiveness is
limited to males. The value of methyl eugenol as a male lure has encouraged efforts
to develop female lures of comparable attractiveness, with significant efforts
focused on plant materials that are associated with flies in their environment.

A number of studies have demonstrated the attractiveness of non-host plants to
Bactrocera species. For Bactrocera cucurbitae (Coquillett), many non-host plants
have been shown to be attractive for both males and females, such as corn, Zea
mays L. (Nishida and Bess 1957; McQuate et al. 2003; Atiama-Nurbel et al. 2012),
guava, P. guajava, and some citrus varieties (Kazi 1976). Other non-host plants
include border (windbreak) plants, such as tiger’s claw, Erythrina tahitensis
Nadeaud (Stark 1995) and even weeds, such as castor bean, Ricinus communis L.,
spiny amaranth, Amaranthus spinosus L., and fuzzy rattlepod, Crotalaria incana
L. (Nishida and Bess 1957; Kazi 1976). However, no research has been conducted
on the potential causes of attraction to non-hosts, with the exception of McQuate
et al. (2003), who presented evidence supporting the potential importance of corn
pollen as food for B. cucurbitae and B. dorsalis. The general assumption is that
these non-host plants release volatiles attractive to the flies. Indeed, many plant
volatiles are more or less ubiquitous in various host as well as non-host plants and
provide insects with a plethora of semiochemicals in their environment. Plant
odors, such as common “green leaf volatiles” (GLVs) present in leaves of many
plant species, have been shown to modulate or enhance tephritid behavior, while
other semiochemicals, such as the odor of ripening fruit, serve as primary
kairomones (Jang and Light 1996). A study on electroantennogram (EAG)
responses of the oriental fruit fly to a spectrum of alcohols and aldehydes of plant
origin proved that GLVs are among the compounds that elicited the highest EAG
responses for both males and females (Light and Jang 1987). Jang et al. (1997)
investigated the attractiveness of volatile semiochemicals from leaves and extracts
of a non-host plant, Panax (Polyscias guilfoylei (W. Bull) L.H. Bailey) for the
females of B. dorsalis. An extract of Panax was attractive to mated females but less
attractive to males or unmated females. In an ambitious project, Keiser et al. (1975)
studied the attractiveness of ethyl ether extracts of 232 botanicals for the oriental
fruit fly, the melon fly, and the Mediterranean fruit fly. They recorded extracts
eliciting the greatest response for females of the three species: 61 extracts for the
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Mediterranean fruit fly, 31 for the melon fly, and only 7 for the oriental fruit fly.
Some extracts were attractive for both sexes of a given species, while some were
more attractive for females than for males. Only extracts of two plants (Coffea
robusta Pierre ex Froehne and Iva axillaries Pursh) were attractive for the three
species.

Most studies on female attractants have focused primarily on host plants as a
source of such attractants (Chiu 1990; Jang and Light 1991; Jang and Light 1996).
Host fruits are of particular interest since some tephritid females utilize host fruit
volatiles when searching for oviposition sites (Drew 1989; Fletcher and Prokopy
1991; Landolt et al. 1992; Jang and Light 1996; Jang et al. 1998, 1999; Jang 2002).
However, the isolation and identification of attractants from fruits is often difficult
as fruit odors are a complex blend of volatiles, changing in composition during
ripening (Chyau et al. 1992) and also differing among variety evaluated (Kamala
Jayanthi et al. 2012; Atiama-Nurbel et al. in press). The degree of host fruit ripening
influences its physical and chemical traits, such as color, tissue firmness, aroma,
proportion of starch to free sugars, and quantities of other organic compounds
(Bidwell 1979; Medlicott and Thompson 1985; Lalel et al. 2003; Yashoda
et al. 2007). Not surprisingly, such physiological changes during ripening influence
fruit fly oviposition behavior (Messina and Jones 1990; Messina et al. 1991) but in
different ways depending on the tephritid species considered. For instance, ripeness
stage of mango fruit was significant for oviposition decisions of C. cosyra,
in particular, ripe and fully ripe fruits had more probability of oviposition than
unripe ones, while ripeness stage appeared to have no significant effect on ovi-
position decisions in Bactrocera invadens Drew, Tsuruta & White (Migani
et al. 2013).

Syed (1969) found that B. dorsalis adults remained in orchards as long as ripe
fruits were present on the trees. Stark et al. (1991) also reported that the ratio of
females to males foraging in guava trees increased as the season progressed and
guava ripened. This is in agreement with the observations of Alyokhin
et al. (2000b), who suggested that areas with plentiful ripe guava fruit attract
females searching for oviposition sites. When offered papaya (Carica papaya L.)
fruits of different maturation stages, the females of B. dorsalis preferred spheres
with ripe papaya odor over blank air controls and, when presented with a choice of
three ripeness stages of fruit, females landed equally on the three stages but spent
more time and laid more eggs on spheres with the odor of the ripest stage (Jang and
Light 1991). With mango and common guava, females of B. dorsalis were most
attracted to odors of soft, ripe fruit over those of unripe fruit (Cornelius et al. 2000a;
Rattanapun et al. 2009). Therefore, gravid females of B. dorsalis searching for
suitable oviposition sites may use the odors of overripe fruits as their long-distance
orienteering cues. Comparing the attractiveness of different fruit odors for
B. dorsalis females in field cages, Cornelius et al. (2000a) showed that the odor
of common guava was more attractive than papaya and starfruit odors and equally
attractive as strawberry (Fragaria vesca L.), guava, orange, and mango odors. In
additional field tests, McPhail traps baited with mango, guava, and orange captured
equal numbers of B. dorsalis females.
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Coupled GC-EAD studies (Siderhurst and Jang 2006) were conducted on
B. dorsalis females with volatiles from tropical almond (Terminalia catappa L.)
fruit, which showed that 22 compounds are detected by the antennae of the female.
A nine-component subset of compounds showed relatively small EAD responses
but attracted mainly females. In field cage experiments with McPhail traps, this
blend was as attractive to females as torula yeast. A recent coupled GC-EAD study
on the response of gravid females of B. dorsalis using two varieties of mango also
revealed that 7 compounds from the variety ‘Alphonso’ and 15 from the variety
‘Chausa’ elicited an EAD; these compounds were subsequently identified using
GC-MS (Kamala Jayanthi et al. 2012). The attractiveness of individual compounds
was confirmed in olfactometer tests, but field tests are still needed to evaluate the
potential practical use of these kairomones.

For B. cucurbitae, the odor of cucumber, Cucumis sativus L. (crushed skin and
flesh) and cantaloupe, Cucumis melo L., (crushed flesh) was more attractive than the
odor of tomato, Lycopersicon esculentum L. (crushed skin and flesh). Also, the odor
of kabocha, Cucurbita maxima Duchesne (crushed flesh) was more attractive than
the odor of bittermelon, Momordica charantia L. (crushed skin and flesh) but not
more attractive than zucchini squash, Cucurbita pepo L. (crushed skin and flesh)
(Miller et al. 2004). The reason why females respond more strongly to some fruit
odors over others is not known. A correlation between female preference for host
fruits and larval performance still has to be demonstrated.

Coupled GC-EAD studies using fresh and aged puréed cucumbers enabled
(Siderhurst and Jang 2010) to identify 31 compounds detected by the females of
B. cucurbitae. Among various blends tested in an outdoor olfactometer in McPhail
traps, a nine-component blend was found to be the most promising. In subsequent
field tests, this blend showed a female-biased attraction and was twice as attractive
as ‘Solulys’ protein bait (Siderhurst and Jang 2010). Working with another cucurbit
pest, Dacus ciliatus Loew, Alagarmalai et al. (2009) conducted GC-EAD studies
with ripe melon volatiles and showed that 14 compounds elicited similar antennal
responses of both sexes. Twelve of them were identified by GC-MS and in bio-
assays the most attractive blend was a mixture of four or five acetates.

For polyphagous Bactrocera spp., such as B. dorsalis, trapping studies targeting
females have generally focused more on combining an attractive color with protein
odor than on the use of kairomones (Alyokhin et al. 2000a). A few studies,
however, considered the use of kairomones for trapping both sexes. In field-cage
tests, Cornelius et al. (2000b) showed that mature protein-fed females of B. dorsalis
were more attracted to orange odors than to protein odors, whereas protein-deprived
females were equally attracted to both. However, in field tests, traps baited with
‘Nu-Lure’ were more effective for capturing females than traps baited with orange
puree. In further field tests, Cornelius et al. (2000a) showed that McPhail traps
baited with fruit purees (mango, common guava, and orange) were equally attrac-
tive to wild females of B. dorsalis. McPhail traps baited with mango captured more
females than visual fruit-mimicking sticky traps (‘Ladd traps’) and equal numbers
of females as McPhail traps baited with protein odors. These authors conclude that
an effective strategy may require a combination of food odors to attract young
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females and host fruit odors to attract gravid females. Unfortunately, no long-
lasting synthetic fruit volatiles attractive to B. dorsalis females and capable of
competing with the odors of naturally occurring ripening fruit are yet available
(Alyokhin et al. 2000a). Clarke and Dominiak (2010) used orange-ammonia traps
(pulped orange based associated with ammonium carbonate, liquid lure used in
McPhail traps) to catch both sexes of Bactrocera tryoni (Froggatt).

2.4 Genus Anastrepha

Robacker et al. (1990a) showed that odor from fermenting fruit of yellow chapote,
Casimiroa greggii S. Wats (Rutaceae), acted as a food attractant for both sexes of the
Mexican fruit fly, Anastrepha Iudens (Loew). These authors developed a
3-component mixture of chemicals (1,8-cineole, ethylhexanoate, and hexanol at a
10:1:1 ratio) that proved to be more attractive than torula yeast in greenhouse
experiments (Robacker et al. 1990b). Further studies showed that the addition of a
fourth component, ethyl octanoate, further increased attractiveness (Robacker
et al. 1992). More recently, Gonzalez et al. (2006) studied the response of both
sexes of A. ludens to volatiles of white sapote, Casimiroa edulis Oerst. GC-EAD
analysis of white sapote extracts revealed that antennae of both sexes respond to eight
compounds among which GC-MS allowed identification of styrene, myrcene, 1,2.4-
trimethylbenzene, 1,8-cineole, linalool, and p-trans-ocimene. However, in field-cage
tests, the number of flies captured by traps baited with the white sapote blend was not
different from the catches with hydrolyzed protein. Studying the response of A. ludens
to volatiles of the fruit of the bitter orange Citrus aurantium L. (Rutaceae), Rasgado
et al. (2009) found that both sexes were more attracted to mature green bitter orange
fruit extracts than to controls (unbaited spheres or traps) in both flight tunnel and field
cage assays. Among the ten compounds identified by GC-MS, limonene was the most
abundant, while linalool, B-pinene, and methyl salicylate were found in lesser pro-
portions. In field cage tests, MultiLure traps (Better World Manufacturing, Fresno,
CA, USA) baited with this four-component blend captured significantly more flies of
both sexes than traps baited with hydrolyzed protein.

Malo et al. (2005) studied the response of both sexes of A. ludens to guava
(P. guajava) volatiles. GC-EAD analysis of guava extracts showed that eight and
seven single compounds elicited antennal response from males and females,
respectively. These compounds included ethyl butyrate, (E)-3-hexenol, (Z)-3-
hexenol, hexanol, ethyl hexanoate, hexyl acetate, (Z)-3-hexenyl butyrate, and
ethyl octanoate. Though both sexes showed a positive response to a blend of
these eight components in wind tunnel experiments, field tests are still needed to
better evaluate the potential of this mixture. In field tests, Loera-Gallardo
et al. (2006) found that both sexes of A. ludens were attracted to commercial
grape juice. Massa et al. (2008) sampled the volatile compounds of another
commercial grape juice with SPME and developed a nine-component synthetic
grape essence mixture that appeared to be 70 % as attractive as the juice in field
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tests. More recently, Robacker et al. (2011), using another grape juice, concluded
that propylene glycol, acetic acid, methyl anthranilate, water, and at least one of
three of methyl-branched esters are essential to induce the observed attraction.

Nigg et al. (1994) tested extracts of 22 fruits for their attractiveness to both sexes
of the Caribbean fruit fly, Anastrepha suspensa (Loew) and showed that
Box-orange (Severinia buxifolia (Poiret) Ten.), calamondin (Citrofortunella
microcarpa (Bunge) Wijnands), carambola (Averrhoa carambola L.), Cattley
guava (Psidium littorale Raddi), loquat (Eriobotrya japonica (Thunb.) Lindley),
and Surinam cherry (Eugenia uniflora L.) were equally attractive to males and
females. Chemical analysis revealed that farnesol, a-phellandrene, and 3-carene
were highest in attractiveness to both males and females. These data suggest that
host chemicals serve as attractants and that female and male specific attractants and
traps could possibly be developed for this species from host kairomone data.

Additional studies have been conducted with the West Indian fruit fly,
Anastrepha obliqgua (Macquart). GC-EAD studies on volatile compounds from
ripe fruits of Spondias mombin L. showed that nine chemicals (ethyl butyrate,
isopropyl butyrate, hexan-1-ol, propyl butyrate, isobutyl butyrate, ethyl hexanoate,
isopentyl butyrate, ethyl benzoate, and ethyl octanoate) individually elicited anten-
nal response in both sexes. Further field cage bioassays with MultiLure traps
showed that those baited with a blend of the nine compounds were more attractive
than those baited with hydrolyzed protein (Cruz-Lopez et al. 2006). Recently, Malo
et al. (2012) studied the response of A. obliqua to mature green fruits of three
cultivars of mango and identified various compounds from each cultivar. In field-
cage tests, traps baited with a blend of three synthetic components identified from
Amate mango (myrcene, o-pinene, and trans-f-ocimene) were as attractive to
A. obliqua as traps baited with the Amate mango volatiles.

3 Interactions Among Plant Odors, Other Attractants
and Traps

In addition to olfactory chemical cues, visual cues play an important role in the
host-finding behavior of fruit flies (Roitberg 1985; Jang and Light 1991; Vargas
et al. 1991; Cornelius et al. 1999; Alyokhin et al. 2000b). Once they arrive at the
host plant, visual cues are the main or sole stimuli guiding fruit detection. However,
Aluja et al. (1993) showed that olfactory cues may be important in short range
searching in the tree canopy when fruit are less apparent or scarce. Their results
indicate that upon arrival on host trees, AMF females find host fruit of high density
solely by visual stimuli. However, at low host fruit density, the females locate host
fruit both by chemical and visual stimuli. In field tests in commercial orchards,
sticky-red spheres baited with a blend of synthetic apple volatiles (Reissig
et al. 1982, 1985) or only with butyl hexanoate (Duan and Prokopy 1992) captured
significantly more male and female AMF than unbaited spheres, indicating the
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relevance of fruit odor. The red sticky sphere probably provides visual stimuli
mimicking a potential mating or oviposition site (Prokopy 1968). In flight-tunnel
choice tests and field trial captures involving red sticky spheres with odor sources,
the new five-component blend of apple volatiles attracted more flies than the
previous seven-component blend or the single compound (butyl hexanoate) used
with commercial apple maggot monitoring spheres (Zhang et al. 1999).

In a wind tunnel, mature females of the tomato fruit fly, Neoceratitis cyanescens
Bezzi, move upwind in response to specific olfactory cues from blends of host
flowers or host fruits (Brévault and Quilici 2010a). In the absence of wind, mature
females mainly use visual information to locate the host fruit. In wind, host fruit
odor significantly increases the probability and speed of locating the host fruit
(Brévault and Quilici 2010b). When odor source and fruit model were spatially
decoupled (90 or 180°), > 50 % flies that landed on the fruit model initially
performed an orienting flight toward the odor source and then turned back to the
fruit model while in flight or after one landing on the floor, suggesting visual
information to be the ultimate indicator of host fruit. Visual stimuli are sufficient
to elicit orientation response to host fruit; the integration of more specific olfactory
cues can improve the host finding efficiency in terms of speed and accuracy,
especially when visual cues are inadequate or poor (obstructed or weakly attrac-
tive), or when visual cues are similar to those of non-host plants. Although
N. cyanescens females do not lay their eggs in flowers or ripe fruit, the fragrance
emanating from these structures may constitute a good indicator of the presence of a
suitable host at a long distance. In another wind tunnel assay, Brévault and Quilici
(2010b) observed that leaf odor of host plants elicited a significant response of
N. cyanescens females (but lower than fruit odor), including orientation and upwind
towards source. Combining sets of host and non-host plants in the same field cage or
spraying leaf extract of host plants on non-host plants, Brévault and Quilici (2007)
showed that leaf volatiles of host plants assisted females of the tomato fruit fly,
N. cyanescens, in finding host fruit. Moreover, the response was specific to mature
females with a high oviposition drive, while starved mature females, immature
females, and males did not show preference for fruit-mimicking spheres hung in
plant foliage. Olfactory signals emitted by the host foliage could be an indicator of
an appropriate habitat, leading flies to engage in searching behavior.

Several studies have been conducted on host-associated visual stimuli for
Bactrocera spp. (Prokopy and Haniotakis 1975; Hill and Hooper 1984; Vargas
et al. 1991; Drew et al. 2003). Indeed, traps that combine visual and olfactory cues
may prove to be the most effective for capturing tephritid fruit fly pests (Prokopy
and Economopoulos 1975; Epsky and Heath 1998; Pifiero et al. 2006). Cornelius
et al. (2000a) used a mango bait in two commercially available fruit fly traps.
McPhail traps baited with mango puree captured more females than visual fruit-
mimicking sticky traps (‘Ladd traps’) and equal numbers of females as McPhail
traps baited with protein odors. Pifiero et al. (2006) showed that the addition of
cucumber odor strongly enhanced the attractiveness of yellow-colored hemi-
spheres, which indicates that both visual and olfactory stimuli are synergistic in
eliciting responses of sexually mature melon fly females.
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Some studies suggest that combinations of attractants are more attractive for
fruit flies than the individual attractants presented alone (Zervas 1989; Landolt
et al. 1992; MacCollom et al. 1994; Robacker and Heath 1996). Additive or
synergistic effects from combining host or plant odors with pheromones or bacteria
odors have, for instance, been reported for medfly (Dickens et al. 1990), papaya
fruit fly (Landolt et al. 1992), and AMF (MacCollom et al. 1994). In contrast, for
A. ludens, the combination of fermenting chapote odor and male produced phero-
mone was never more attractive than chapote odor alone. For immature females, the
presence of pheromone inhibited the response to chapote, while for virgin females
chapote odor inhibited the response to pheromone (Robacker and Garcia 1990). A
decrease of attraction of A. ludens to combinations of two synthetic lures, AMPu
(food attractant) (Robacker et al. 1992) and CEHO (fruit odor) (Robacker 1992),
was also demonstrated using different traps (McPhail and sticky traps) in outdoor
conditions (Robacker and Heath 1997). For this species, as for Bactrocera oleae
(Rossi) (Haniotakis and Vassiliou-Waite 1987), adding food odor to pheromone did
not improve the response at least for the sex most responsive to the pheromone
(males in B. oleae and females in A. ludens). In wind tunnel bioassays with the
Mexican fruit fly, Robacker and Rios (2005) showed that female attraction to
grapefruit oil was not enhanced if they had prior experience with grapefruit oil,
but in field experiments captures of females were higher in traps baited with
grapefruit oil than in unbaited ones. Furthermore, a combination of a nitrogenous
food odor (Anastrepha fruit fly lures) and grapefruit oil in field traps enhanced
captures of females but not those of males. For A. obliqua, males and females
(virgin and mated) were more attracted to Spondias monbin volatiles than to
putrescine and ammonium acetate, whereas sugar-fed virgin flies preferred putre-
scine and ammonium acetate over fruit odor (Lopez-Guillén 2008).

In A. ludens, Robacker (1991) evaluated the effects of specific hunger on
attractiveness of proteinaceous and fruit-derived lures. Sugar hunger led flies to
be more responsive to fruit odor than to food odors, while protein hunger led to a
higher response to bacteria (presumed protein source) than to fruit odor. The
combination of Torula yeast and fruit odor was never more attractive than fruit
odor alone for any age-feeding history groups of flies, while the combination of
bacterial odor and fruit odor was never more attractive to protein-hungry flies than
bacteria alone. Similarly, the combination of bacterial odor and fruit odor was less
attractive than fruit odor alone to sugar-hungry flies. This study suggests that fruit
odor bait (favored by sugar-hungry flies) is more effective in orchards where few
fruits are present and trees are rich in fly-type bacteria, while torula yeast (attractive
to protein-hungry flies) is more effective than fruit odor in orchards with few fly
type bacteria but with trees laden with fruit.
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4 Parameters Influencing Fruit Fly Response to Plant
Stimuli

The decision to engage in searching a plant is based not only on the perception of
suitable olfactory information, but also on the insect’s physiology (‘internal state’),
experience, and genetic background (Schoonhoven et al. 2005).

Physiological state, such as ovarian maturation, egg production, and mating
status, can greatly influence the response of females to host cues (Browne 1993).
In R. pomonella, age and sexual maturity of females significantly affected the
probability and time to discover fruit (Duan and Prokopy 1994). Rull and Prokopy
(2000) released marked AMF of different physiological states in blocks of apple
trees ringed by sticky red spheres. Spheres were unbaited, baited with butyl
hexanoate, or baited with both butyl hexanoate and ammonium carbonate. Large
proportions (2540 %) of released mature male and female AMF were recovered in
blocks having traps baited with butyl hexanoate. The presence of ammonium
carbonate had no significant effect on the response to synthetic fruit odors by
mature AMF. Immature flies of each sex responded weakly to traps and to both
types of synthetic lures.

Egg load (e.g., the number of mature oocytes available in the ovaries) also
influences female response to host fruits, such as the time invested in host
searching, the probability that the host is accepted once found, and the size of the
female clutch (Minkenberg et al. 1992; Bjorksten and Hoffmann 1998; Papaj 2000).
In studies conducted on potted host trees in field cages and in the laboratory,
Prokopy et al. (1994a) examined the influence of egg load on the finding and
acceptance of high-ranking (kumquat) and lower-ranking (grapefruit) hosts for
oviposition by wild-origin Mediterranean fruit flies. Egg load had no discernible
effect on behavior associated with finding either type of fruit. In another experiment
with potted nonfruiting host trees in outdoor field cages, immature females (without
eggs) were significantly more attracted to odor of a proteinaceous food lure than to
odor of ripe coffee fruit, whereas the reverse was true for mature females carrying a
high egg load (Prokopy and Vargas 1996). By contrast, for B. invadens and
C. cosyra, female egg load was the most important factor influencing host accep-
tance in both species (Migani et al. 2013).

Nutritional status can also influence female response to host odors. In field-cage
bioassays, protein-fed females always responded to a greater extent to the odor of
coffee fruit extract than to the odor of NuLure (Miller Chemical & Fertilizer
Corporation, Hanover, PA, USA), whereas the reverse was true for protein-deprived
females, which did not exhibit greater attraction to odor of any of the six coffee fruit
volatile compounds tested than to water. All types of mature, protein fed-females
tested (laboratory-cultured virgin, laboratory-cultured mated, wild mated) in field-
cage assays responded similarly to 2-heptanone, whereas protein-deprived females of
the same age (9- to 11-day-old) did not respond significantly to 2-heptanone (Prokopy
et al. 1998). Mated females of C. capitata were found to be attracted to the same
extent by fragrant orange fruits and odorless sham oranges, while unmated females



4 Plant Odors as Fruit Fly Attractants 133

were notably less attracted than mated females to oranges and odorless orange
dummies (Levinson et al. 2003). Immature, protein-hungry females of B. tryoni
and B. dorsalis were more responsive to odors of bacteria than to odors of host
fruit (Prokopy et al. 1991; Cornelius et al. 2000b). By contrast, protein-fed females
showed a greater level of attraction to host fruit odor over protein odor (Cornelius
et al. 2000b; Miller et al. 2004).

Females of the Mediterranean fruit fly exhibit a preferential switch in certain
olfactory-mediated behaviors as a result of mating. Unmated, laboratory-reared,
virgin females chose the odor of male-produced pheromone over host fruit odor
(guava) in a dual-choice flight tunnel bioassay (Jang 1995). Females continued to
respond preferentially to the male pheromone for several weeks if not allowed to
mate. Mated females chose the host fruit odor over the male-produced pheromone.
Females of N. cyanescens respond to host fruit odor regardless of their age, egg
load, or mating status, and do so more consistently in the afternoon, which is the
peak time of day for egg-laying (Brévault and Quilici 2010a). In another study,
Brévault and Quilici (1999) showed that females become responsive to a fruit-
mimicking sphere only when they have completed their reproductive maturity.

Learning can influence the visual ability of AMF to detect host fruit. For
example, the ability of AMF females to find fruit of unfamiliar color was signifi-
cantly affected by prior experience with host fruit color (Prokopy et al. 1994b).
Specifically, females exposed to red hawthorns or red apples were less able to find
green hawthorns or green apples than were females experienced with either of the
latter fruit types. Papaj and Prokopy (1989) demonstrated that females exposed to a
particular host fruit species tended to remain longer in test trees harboring fruits
than did inexperienced females or females exposed to another fruit. This could have
negative effects on the efficacy of traps depending upon the prior experience of
females, particularly the type(s) of fruits previously used for oviposition. Robacker
and Fraser (2005) found no evidence that A. [udens females learn fruit color or size
after experience with host fruit, including oviposition. However, females with
grapefruit experience were more attracted to fruit models with extract of either
grapefruit peel or pulp than to models without extract. Females with no experience
with grapefruit were not attracted to models treated with grapefruit extract. These
results suggest that the flies learn fruit odors after encountering host fruit during
general host foraging, then may increase their searching efficiency by responding to
the learned host odor.

Response to host fruit odor may also change according to genetic background as
shown by AMF populations associated with different hosts (Jones and Davis 1989).
Nojima et al. 2003b showed that hawthorn-infesting AMF have a preference for a
blend of four volatiles identified from hawthorn fruit that differs from the blend
previously identified from apple fruits. Further studies showed that R. pomonella
originating from flowering dogwood (Cornus florida L.) preferentially respond to
the dogwood volatile blend than to volatile blends from apple or hawthorn (Nojima
et al. 2003a). The recent shift of R. pomonella from its native host downy hawthorn,
C. mollis, to introduced domesticated apple in the eastern United States is a model for
sympatric host race formation (Linn et al. 2012). Apple- and hawthorn-native
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R. pomonella flies use fruit odor to distinguish between apples and hawthorns (Linn
et al. 2003; Forbes et al. 2005; Forbes and Feder 2006), leading to pre-mating
reproductive isolation (Dambroski et al. 2005). In addition to apple, R. pomonella
also infest two hawthorn spp. in the western United States, one the native black
hawthorn, Crataegus douglasii Lindl, and the other the introduced English ornamental
hawthorn, Crataegus monogyna Jacq. Linn et al. (2012) reported that western apple,
black hawthorn, and ornamental hawthorn flies show significantly increased levels of
upwind-directed flight to their respective natal compared to non-natal fruit volatile
blends, consistent with host race status. Recent studies on the response of AMF from
different Crataegus spp. also confirm that AMF respond maximally to their natal fruit
volatile blends and are relatively unresponsive to the alternative non-natal blends (Cha
et al. 201 1a, b, 2012). This sharp behavioral distinction underscores the diversity of
odor response phenotypes to host fruit odor in R. pomonella.

5 Deployment Strategies for Traps Baited with Plant
Odors

Up to now, traps baited with plant odors for use in tephritid control have been
deployed only for the apple maggot fly, R. pomonella. An IPM method achieving
good control of AMF was developed based on the use of red spheres baited with
butyl hexanoate placed on perimeter trees (“perimeter trapping”), while the other
trees were only protected by sticky-coated red spheres or sugar/flour pesticide-
treated red spheres (Prokopy et al. 2000). Field experiments in orchards with
varieties of different susceptibility showed that traps and lures should be deployed
on preferred rather than on less preferred cultivar trees (Rull and Prokopy 2005).
Comparing various trap/lure combinations, AliNiazee et al. (1987) showed that a
yellow rectangle with a red hemisphere in the center and apple volatile attractant
(consisting of a mixture of hexyl acetate, butyl 2-methyl butyrate, propyl
hexanoate, hexyl propionate, butyl hexanoate, and hexyl butanoate in a
36:7:12:5:29:11 ratio) captured the largest number of AMF. Yellow board traps
sandwiched between the two halves of red spheres sprayed with pyrethroid insecti-
cide loaded with butyl hexanoate in semi-permeable sachets and hung on branches
1.2-1.7 m above the ground at the orchard perimeter were an effective “attract and
kill” technique to control AMF in Quebec apple orchards (Bostanian et al. 1999;
Bostanian and Racette 2001). Agnello et al. (1990) reported that the addition of
apple odor increased catches for both yellow panel traps and red sphere traps. In a
test using these baited traps to time control sprays in commercial orchards, 70 %
fewer sprays (2.8 fewer applications) were applied than in a calendar-based pro-
gram. A possible factor, however, that may limit the effectiveness of trapping
systems using such synthetic blends is the increasing competition with natural
odors emitted by ripening fruits during the maturation process (Carle et al. 1987).
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Fruit volatiles have replaced ammonia as the AMF attractant for use with traps in
the northeastern United States (Prokopy et al. 2005). Release-recapture studies
showed that larger proportions of released mature adults of both sexes were
recovered with sticky spheres baited with butyl hexanoate, whereas adding ammo-
nium carbonate to butyl hexanoate did not enhance trap captures (Rull and Prokopy
2000). The five-component blend identified by Zhang et al. (1999) also attracted
more AMF than ammonium acetate or ammonium carbonate mixed in adhesive on
spheres (Stelinski and Liburd 2002). In contrast, ammonium carbonate with sticky
yellow panels is preferred to detect R. pomonella in the northwestern United States
(Klaus 2003). Field trials in Oregon and Washington showed that R. pomonella was
more attracted to spheres and yellow panels baited with various doses of ammo-
nium carbonate than to those baited with apple volatile blends (Yee et al. 2005). A
change in the attractiveness of different traps during the season has been frequently
reported, yellow panels being more effective at the beginning of the season, while
red spheres are more effective later in the season (Prokopy 1972; Reissig 1974;
Neilson et al. 1981).

6 Conclusion and Perspectives

One of the main challenges of using kairomones for trapping systems in the field is
to identify optimal concentrations of key compounds so that an artificial mixture
may act as a “super-stimulus” that may compete with natural volatile blends in the
field. For both polyphagous and stenophagous species, comparisons of the relative
attractiveness of blends of volatile compounds from different host fruit species, or
from different ripeness stages, should enable identification of key components. In
addition, GC-EAD-MS studies should also be conducted to identify or confirm the
optimal concentrations. Further research is also needed on dispensers that ensure
the emission of the different compounds at a suitable rate on a sufficiently long
period of time. Optimal plant odor blends should ideally be associated with
appropriate visual stimuli (e.g., shape, size, color, contrast with the background)
to provide a synergistic combination of stimuli. Though yellow is the main color
used for fruit fly traps, it is known that in some species, such N. cyanescens
(Brévault and Quilici 2007), sex- and maturity-specific response of females may
be used for improving trap specificity and efficacy.

Further development of semiochemicals for insect control should involve closer
attention on the potential role of microorganisms in host location and recognition by
fruit flies. For example, the codling moth Cydia pomonella (L.) uses yeast volatiles in
addition to plant volatiles to find a suitable host plant (Witzgall et al. 2012). Drosophila
melanogaster Meigen flies mainly use microbial, and not plant cues, to locate feeding
and oviposition sites (Becher et al. 2012). Several of the compounds that mediate
attraction of Rhagoletis flies to host fruits (e.g., apple, hawthorn, and flowering dog-
wood), such as isoamylacetate, ethylacetate, 3-methylbutan-1-ol, and 1-octen-3-ol
are known to be produced by fungi and yeasts (Witzgall et al. 2012).
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Novel technologies designed at identifying, reproducing, and dispensing plant
volatile blends open up a large and promising avenue of research for fruit fly
management. Synthetic plant odors could be used either as kairomones (attractant
or aggregation stimulant) for trapping systems or attract-and-kill devices (bait
sprays), as allomones (repellents) to push flies away from the crop or to disrupt
host location (push-pull systems), as synomones to attract natural enemies to the
crop, or even as pheromones (plant communication) to induce plant defense against
herbivores in the crop by production of toxic secondary metabolites, deterrents or
repellents.
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Chapter 5

Interactions Between Tephritid Fruit Fly
Physiological State and Stimuli from Baits
and Traps: Looking for the Pied Piper

of Hamelin to Lure Pestiferous Fruit Flies
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Abstract The development of effective fruit fly trapping methods depends on
knowing the factors that affect the temporal and spatial activity of the target
species. Several endogenous factors, such as nutritional and mating status, sexual
development, age, and gender, influence fly physiological condition and directly
impact the effectiveness of baits and trapping systems, since only a small portion of
the population is usually attracted to particular stimuli. Therefore, the identification
of signals and cues used by fruit flies to locate the resources that satisfy their needs
is the basis for developing effective lures and traps. Exogenous factors known to
impact fruit fly captures include abiotic (e.g., temperature, precipitation, and
relative humidity) and biotic conditions (e.g., resource availability). In this chapter,
we first discuss ways in which these factors affect the behavioral response of fruit
flies to traps and lures. Then, we analyze the specific response of fruit flies to natural
and synthetic attractants used for trapping them and also discuss aspects of life
history among fruit fly species in an attempt to explain variations in responses to
visual and olfactory cues associated with traps. Finally, directions of future research
are discussed.
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1 Introduction

Trapping systems for pestiferous fruit flies provide useful information about the
presence, seasonal abundance, and spatial distribution of the adults in order to make
predictions of host fruit infestation levels (IAEA 2007). The development of
effective trapping methods depends on knowing the factors that affect the temporal
and spatial activity of the target species. These factors can be divided into two types
according to their origin: exogenous and endogenous. Those considered exogenous
include various abiotic and biotic environmental conditions, such as temperature,
precipitation, humidity, risk of predation, and resource availability (e. g., host
phenology and seasonality). Endogenous factors are those related to the insect’s
physiological state that can modify the motivational level to perform different tasks
or forage for different resources. Physiological state is probably the most important
endogenous factor influencing resource-oriented behavior (Tschinkel 1985; Barton-
Browne 1993). For example, deprivation of a specific resource will increase the
probability of responding to some resource-related cues, possibly leading to accep-
tance of a previously unacceptable resource (Bell 1990). Thus, specific motivation
for resources, such as mates, oviposition site, or food, can result in the expression of
a variety of behaviors. This behavioral plasticity allows individuals to satisfy their
needs. A clear example of behavioral changes in response to physiological condi-
tion has been observed in the Mediterranean fruit fly, Ceratitis capitata
(Wiedemann), where females prefer the male sex pheromone to fruit odors when
virgin but show the opposite preference after mating (Jang 1995). Another example
of a physiologically-mediated behavioral change has been observed in the apple
maggot fly, Rhagoletis pomonella (Walsh). In this species, mating takes place on
host tree foliage (‘lek-like’ mating strategy) at the beginning of the fruiting season,
whereas mating occurs on fruits (male resource defense strategy) later in the season
(Prokopy and Bush 1973; Smith and Prokopy 1980). This strategic switch occurs in
response to changes in female physiological condition, since females, once mated,
primarily search for host fruits for oviposition. Also, it has been observed that
sexually mature, presumably mated, protein-fed females of the melon fly,
Bactrocera cucurbitae (Coquillett), tend to respond primarily to cucumber,
Cucumis sativus L., odor over protein odor (Miller et al. 2004). In these and other
instances, physiological state influences behavioral decisions in a manner that
maximizes reproductive fitness through the expression of specific behaviors at the
appropriate time and place.
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Endogenous processes that alter the physiological state of animals, and conse-
quently their behavior, can be divided arbitrarily into those triggered by hormones
or by homeostatic shifts (physiological adjustments in response to stress in order to
maintain its internal equilibrium). The latter reflects factors, such as development,
nutrition, and change in physical condition because of daily activities (Tschinkel
1985). In the case of adults, the behaviors activated by hormones are those related
with sexual maturation. As they mature sexually, flies respond to specific stimuli
emanating from those resources necessary for producing eggs, sperm, and phero-
mones (reviewed by Wheeler 1996; Drew and Yuval 2000; Hee and Tan 2004). It
has been observed that behaviors, such as oviposition, pheromone release (calling),
and copulation, show discrete circadian rhythms in most fruit flies (Hendrichs and
Hendrichs 1990; Warburg and Yuval 1997a, b; Aluja et al. 2000). Although these
behaviors are under hormonal control, exogenous factors, such as light intensity and
temperature, entrain their expression presumably as an adaptation to increase
reproductive success (Kaspi and Yuval 1999; Tychsen and Fletcher 1971;
Tschinkel 1985; Diaz-Fleischer and Arredondo 2011a, b). In the case of homeo-
static shifts, changes in energy budget are manifest both long-term as a function of
fly age and short-term as a function of homeostatic circadian variation in daily
nutrient requirements and energy expenditures. In other words, hormonal and
homeostatic effects on behavior are all endogenous, though behavioral expression
may be triggered by exogenous cues. Interactions between the two processes
(hormonal and homeostatic) affect the physiological state of flies and consequently
their response to traps. Changes in the need for specific resources of an adult insect
thus occur along two axes (Fig. 5.1): those related to sexual maturation and
reproduction in general with clear pre- and post-maturation periods and those
concerning homeostatic conditions, e.g., the need to replenish the energy spent
searching for resources, fighting, mating, which in many cases follows a circadian
pattern. Thus, individual fly response to a specific stimulus varies within a day as
well as over the complete life (Brieze-Stegeman et al. 1978; Malo and Zapien 1994;
Robacker 1998; Thomas et al. 2001). For example, insects need to replenish the
energy consumed performing activities undertaken at specific periods of the day
(Warburg and Yuval 1996, 1997a). However, immature flies exhibit a different
demand of nutrients in comparison with mature ones. In the Mexican fruit fly,
Anastrepha ludens (Loew), for example, flies less than 4 days old prefer sugar over
protein, while 5-9 day-old flies respond to protein and sugar equally (Robacker
1991). Thus, trapping programs encounter a variable mosaic of fly physiological
states, with certain lures and traps likely biased to capture only a subset of the
population (Thomas et al. 2001; Kouloussis et al. 2009).

In this chapter, we discuss the different ways some endogenous factors affect the
physiological state of tephritid fruit flies and the concomitant behavioral response
to cues used to locate their resources. We analyze the specific response of the flies to
natural and synthetic attractants used in trapping. We also consider aspects of life
history among fruit fly species in an attempt to explain interspecific differences in
responses to visual and olfactory cues associated with traps. Finally, directions of
future research are examined.
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2 Fly Response to Lures According to Physiological State

Several variables associated with the physiological state of pest tephritid fruit flies
can influence the probability of a fly responding to visual and olfactory stimuli
associated with trapping devices. Nutritional status, mating status, sexual develop-
ment, age, and gender generate natural sources of physiological variation that
directly impact the effectiveness of baits and trapping. Additionally, sterilized
insects and those treated with juvenile hormone or aromatherapy represent
non-natural variants in the catalogue of physiological conditions that may generate
variable response to the common trapping lures.

2.1 Effect of Dietary History and Nutritional Status

According to their life history strategies, tephritid flies of economic importance can
be considered, in parallel, as “income breeders” (refers to the use of concurrent
intake to pay for a reproductive attempt) and synovigenic (females continuously
produce and develop eggs throughout their adult period) (Papaj 2000; Houston
et al. 2007). Therefore, economically important tephritid species flies have a
continuous demand of resources for egg development as well as for somatic
maintenance and locomotion and, consequently, they must search continuously
for resources that satisfy their nutritional demands (Warburg and Yuval 1997b;
Aluja et al. 2011). Typically, insects with nutritional deficiencies will behave in
ways that increase the likelihood of encountering foods that satisfy their require-
ments, i.e., they will exhibit a higher responsiveness to food cues. Among nutrients,
flies need carbohydrates, especially sucrose, as a primary source of energy vital for
survival (Bateman 1972; Hagen et al. 1984; Hendrichs et al. 1993; Binder 1996;
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Jacome et al. 1995). However, flies can metabolize carbohydrates so rapidly that
they need to replenish their reserves at least every other day simply to remain
active, and they cannot survive more than 2—4 days when deprived of carbohydrates
(Yee 2003; Teal et al. 2004). Nevertheless, carbohydrates are not a limiting
resource in nature, since sources, such as fruit juices, honeydews, and extra-floral
nectaries, are available most of the year in subtropical and tropical regions.
Although less important for simple survival, protein sources provide the essential
amino acids that females require for developing eggs and are apparently less
abundant resources in the field (Drew and Yuval 2000). For example, body protein
level and oviposition of female A. ludens oscillate dramatically according to the
availability of protein (hydrolyzed yeast) (Aluja et al. 2011). In the case of the West
Indian fruit fly, Anastrepha obliqua (Macquart), protein deprivation severely alters
the discrimination threshold for protein (i.e., the smallest quantity of a given
nutrient that can be perceived by an insect in a given volume of food) leading
flies to search intensely for this resource (Cresoni-Pereira and Zucoloto 2001).
Many studies have demonstrated that protein-deprived flies offset this deficiency
by preferring meals that include proteins (reviewed in Drew and Yuval 2000 and in
Cresoni-Pereira and Zucoloto 2012).

Given that nearly all fruit fly species need protein for reproduction, it is puzzling
that species do not respond with the same intensity to a common source of proteins.
This variation is evident when testing the response of fruit flies to proteinaceous
lures. For example, A. obliqua and the guava fruit fly, Anastrepha striata Schiner,
respond more consistently to natural and synthetic protein lures than A. ludens and
the sapote fruit fly, Anastrepha serpentina (Wiedemann) (Pifiero et al. 2002; Diaz-
Fleischer et al. 2009; Utgés et al. 2011). Differences in their life histories could
explain such variable responses. For example, A. obliqua females exhibit a shorter
lifespan and a shorter reproductive period, with a peak of egg production during the
first 6 weeks of adult life. Conversely, A. ludens and A. serpentina have a longer
lifespan, a longer reproductive period, and produce fewer eggs per week (Liedo
et al. 1992). Thus, it is conceivable that temporally concentrated reproduction in
A. obliqua females results in a lower threshold for protein than in the other two
species. In A. striata proteins are also important for longevity and sexual selection,
since those males that have proteins in their diets are more successful in procuring
mates than protein-deprived males (Pérez-Staples and Aluja 2004).

Responses to a proteinaceous lure may also depend upon the type of diet a fly
ingested previously. In C. capitata, Prokopy et al. (1996) observed that 85 % of
protein-deprived females entered a food-baited McPhail trap (bell shaped glass
traps with a water reservoir [Newell 1936]), while only about 50 % of protein—fed
females did so. In general, fly responses to lures are highly influenced by their
nutritional state. As in C. capitata, individuals of Anastrepha spp. deprived protein
likewise show a stronger response to proteinaceous lures than previously protein
fed flies (Robacker 1998; Diaz-Fleischer et al. 2009). This pattern of response to
protein sources was also observed in females of Bactrocera tryoni (Froggatt) whose
levels of body carbon and body nitrogen were analyzed. It was observed that
females with high body nitrogen reduced protein foraging and increased oviposition



150 F. Diaz-Fleischer et al.

activity, however, high total body carbon levels also reduced protein hunger but do
not increased oviposition response (Balagawi et al. 2014). Also, a reduction in the
amount of available carbohydrates may also predispose flies to respond to protein-
aceous lures as observed in the western cherry fruit fly, Rhagoletis indifferens
Curran, with spinosad bait (GF-120® Naturalyte® Fruit Fly Bait; Dow
AgroSciences, Indianapolis, IN, USA) (Yee and Chapman 2009). These authors
observed that R. indifferens must feed on carbohydrates several times during the
day to maintain their energy levels and that their responses to spinosad bait will
increase if they do not.

Nutritional status also alters fly response to non-proteinaceous lures. For exam-
ple, if males of the Queensland fruit fly, B. tryoni are deprived of protein for 24 h,
their response to the male lure cue-lure, [CL, 4-(p-hydroxyphenyl)-2-butanone
acetate], is significantly lower compared to males with continuous access to protein
(Weldon et al. 2008). Similarly, Fitt (1981a) reported that, for Bactrocera opiliae
(Drew and Hardy), male responsiveness to the male lure methyl eugenol (ME) is
higher if they were protein fed. In contrast, physiological state of C. capitata (age or
nutritional status [protein-fed vs. protein-deprived]) had little or no effect on the
propensity of flies to enter Jackson or Nadel-Harris traps baited with the male lure
trimedlure (TML) (Prokopy et al. 1996).

2.2 Effect of Age and Mating Condition

Hormonal effects on behavior are clearly observed during aging. Physiological age
(often characterized by chronological age) may influence an animal’s behavior
either through differing levels of maturation or senescence (Carey and Molleman
2010). Aging and reproduction act in combination to influence nutritional require-
ments and may be responsible for dietary shifts once a fly reaches sexual maturity.
Commonly, post-mating physiological and behavioral changes in insects include
egg-production, oviposition, increased feeding behavior, changes in food prefer-
ences, and reduced mating readiness (Tschinkel 1985). In female fruit flies, mating
does not appear to increase egg production (Sivinski 1993; Chapman et al. 1998)
but may induce sexual refraction after their first mating. Mating-induced sexual
refraction has been found in C. capitata (Chapman et al. 1998; Miyatake et al 1999;
Mossinson and Yuval 2003; Kraaijeveld and Chapman 2004), the olive fruit fly,
Bactrocera oleae (Rossi), (Cavalloro and Delrio 1970; Tsiropoulos and Tzanakakis
1970), various Anastrepha species (Aluja et al. 2000) and B. tryoni (Barton Browne
1957; Harmer et al. 2006; Pérez-Staples et al. 2008; Radhakrishnan et al. 2008) but
not in R. pomonella (Opp and Prokopy 2000). Searching behavior is modified after
mating in C. capitata, since virgin females are preferentially attracted to the male
pheromone over host fruit odors, while the opposite characterizes mated females
(Jang 1995). Substances within the seminal fluid that are transferred together with
the sperm during copulation often induce behavioral changes in females (Jang
1995, 2002). In C. capitata, the effects of mating are expressed transcriptionally
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after copulation in both males and females with very different patterns. Broad
transcriptional changes were detected during female maturation, while post-mating
transcriptional changes in females were small in contrast. In male C. capitata,
transcriptional changes were consistent both during maturation and as a conse-
quence of mating (Gomulski et al. 2012). In spite of the small transcriptional
changes observed in females after copulation, dramatic behavioral changes are
observed (Jang 1995). It could be assumed that changes happened at the level of
expression of odorant-binding proteins (extracellular proteins found in insect
chemosensilla, where they participate in the sensing of odors, tastes, and phero-
mones). This would involve a change from ones specialized in perceiving sexual
pheromones to those specialized in fruit volatiles (Pelosi and Maida 1995;
Christophides et al. 2000).

Studies on the response of flies to food lures that compare mature vs. immature
flies or virgin vs. mated flies are somewhat conflicting. For example, in a laboratory
study with four Anastrepha species it was observed that sexually mature and
presumably mated individuals (primarily females) responded more strongly to
protein baits than did sexually immature individuals (Pifiero et al. 2002). However,
in a field cage study with A. ludens and A. obliqua, no differences were observed
between mature (also presumably mated) and immature female flies in their
response to commercial proteinaceous lures (Diaz-Fleischer et al. 2009). Using
electroantennography and behavioral bioassays with Caribbean fruit fly,
Anastrepha suspensa (Loew), Kendra et al. (2005) studied the effects of age on
fly response to ammonia (food related attractant) and carbon dioxide (host related
attractant), two volatile chemicals released from commercial ammonium bicarbon-
ate lures. Females were found to be more responsive to ammonia when sexually
immature (3-6 days old) and more responsive to carbon dioxide when mature and
mated (10-13 days old) (Kendra et al. 2005). In release-recapture studies with
sterile insects, there was higher recapture of immature than mature A. suspensa in
traps baited with either two-component synthetic food based lure or with aqueous
torula yeast/borax (Kendra et al. 2010). Also, in A. suspensa, female response to the
liquid protein bait NuLure (Miller Chemical & Fertilizer Corp., Hanover, PA,
USA) +sugar lures was higher at 8-9 days of age (when egg maturation normally
begins) compared to presumed unmated immature females and males (Nigg
et al. 1995).

Heath et al. (1995) found that female C. capitata captured in traps baited with a
low dose of ammonium acetate (AmAc) and putrescene were predominantly
unmated (55-69 %), while few were captured when a high dose of the same lure
was tested (4—13 %). In a study with the mango fruit fly, Ceratitis cosyra (Walker),
Ceratitis fasciventris (Bezzi), and C. capitata, Manrakhan and Lux (2008) demon-
strated that, for both males and females of all three species, nutritional state was
more important than mating status in influencing response to food odors. These
authors also found that protein deprivation had variable effects among the three
species. Mature, protein-deprived virgin C. capitata females and males had a higher
response to food odors than comparable C. fasciventris and C. cosyra flies, possibly
indicating a higher need for protein for C. capitata compared to the two other
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species (Manrakhan and Lux 2008). For B. dorsalis, in field and field-cage studies,
it was found that mated, protein-deprived females (10—12 days old) and unmated,
protein-fed females (2—-3 days old) were equally attracted to fruit and protein odors
(Cornelius et al. 2000).

Of particular interest are the interactions between age (related to egg load) and
nutritional status (specifically protein hunger) and the response to particular com-
pounds present in baits, since these are two key components of insect physiological
state known to influence the foraging behavior (Prokopy et al. 1995). However, fly
responses can vary among fly species independently of its age. For example, in a
comparative field cage study conducted in Hawaii, Pifiero et al. (2011) reported that
the response to different amounts of AmAc present in GF-120 (0 %, 1 %, or 2 %,
respectively) can be modulated by factors, such as age and level of protein starva-
tion, and that these effects can differ among fly species. These authors observed that
young females B. cucurbitae that were protein deprived since emergence responded
equally to GF-120 regardless of the presence and amount of AmAc. In contrast, for
young B. dorsalis females that were protein deprived since emergence, the highest
response recorded was to GF-120 with 2 % AmAc, whereas for young females that
were protein deprived for three days, there was a significant effect of the presence,
regardless of amount, of AmAc. The commercial (1 % AmAc) formulation of
GF-120 was found to be unattractive to old (35-38 days old) female B. dorsalis
that were protein deprived for only 15 h. In contrast, for B. cucurbitae, all GF-120
formulations were highly attractive to females regardless of female age and level of
protein hunger. Ammonia is a key olfactory component involved in fruit fly
attraction to sources of protein (Mazor et al. 1987). In general, the response of
female B. cucurbitae to GF-120 was consistently greater than that of B. dorsalis
over the various ages and levels of protein starvation regimes evaluated. The
stronger overall response of female B. cucurbitae to GF-120 compared to
B. dorsalis, for the various ages and levels of protein starvation regimes tested,
was hypothesized to result in more effective control of the former species.

While differences among species could reflect differences in life history as
observed in other tephritids (Aluja et al. 2001), differences between old and
young females may depend on the energy demands associated with egg production.
One of the main tasks for a newly eclosed female is to forage for the nutrients
required during oogenesis. A surge in protein feeding was observed in B. tryoni at
this stage (Meats and Leighton 2004). Behavioral studies have confirmed that
female tephritids with developing ovaries have a stronger response to proteinaceous
odors compared to mature females, which respond more intensely to host-fruit
odors (Prokopy et al. 1991; Nigg et al. 1995; Cornelius et al. 2000; Rull and
Prokopy 2000).

Differential age-related response to non-proteinaceous lures has also been
observed in fruit flies. In the case of host-related lures, for example, it was shown
that the proportion of female R. pomonella responding to red spheres baited with the
synthetic fruit odor lure butyl hexanoate was age-related, with 25, 68, 61, 71, and
64 % of 3,7, 11, 15 and 19 day-old flies responding, respectively (Duan and
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Prokopy 1994). Evidently, the relationship of age and fly egg load was related to
this skewed response.

In the case of male lures, the response of B. dorsalis and B. opiliae males to ME
and B. cucurbitae males to CL increased with age and corresponded with sexual
maturity (Fitt 1981a; Wong et al. 1989, 1991; Shelly et al. 2008). In another
example, females of three species of Bactrocera, Bactrocera sp. A*, Bactrocera
aquilonis (May), and Bactrocera tenuifascia (May) respond to male lures (CL or
ME) when sexually immature but do not respond at all after maturing and mating
(Fitt 1981b). In the case of C. capitata, virgin females responded to the male lures
TML, medlure, and angelica seed oil but stopped responding after mating
(Nakagawa et al. 1970). The response of male C. capitata to TML appears inde-
pendent of age as immature (1 day old) and mature (9-13 days old) males were
captured in similar numbers in TML-baited traps (Shelly and Pahio 2002). Age also
affects male response to female pheromone in B. oleae. In this fly, pheromone
response began on day 3 after adult emergence; increased gradually up to the day
6, and then dropped gradually thereafter up a minimum after 35 days (no more
measurements were done after this period) (Haniotakis and Pittara 1994).

2.3 Effect of Gender

Behavioral priorities may differ between the two sexes even within the context of a
single common behavior. Thus, preference for specific food items or food-related
odors may differ significantly between the sexes. For instance, B. tryoni males do
not require dietary protein to attain complete sexual maturity, however, in females
there is a threshold ration of approximately 0.7 mg per fly per day for a normal
oocyte development (Drew 1987). Male demand for protein is lower, presumably
because the cost of sperm production is lower. Since females of frugivorous
tephritid fruit flies are synovigenics and income-breeders, they require constant
consumption of carbohydrates, protein, and other nutrients, such as minerals,
vitamins, and sterols, for egg maturation and daily oviposition (Teran 1977,
Webster and Stoffolano 1978; Tsitsipis 1989; Aluja et al. 2001, 2011). Specifically,
protein consumption by C. capitata, A. ludens, A. suspensa, and A. serpentina
females is associated with ovarian development (Sharp and Chambers 1983;
Robacker 1991; Landolt and Davis-Hernandez 1993; Aluja et al. 2001). Given
this sexual difference, it is not surprising that females show greater attraction to
protein baits than do males (Houston 1981; Aluja et al 1989; Hendrichs et al. 1991;
Robacker 1991, 1999, Robacker and Warfield 1993; Landolt and Davis-Hernandez
1993). Nonetheless, post-teneral diet can play an important role in the sexual
competitiveness of males (Blay and Yuval 1997; Taylor and Yuval 1999; Kaspi
and Yuval 2000; Kaspi et al. 2000; Yuval and Hendrichs 2000; Maor et al. 2004;
Niyazi et al. 2004). These gender-characteristic needs are expressed in fly foraging
behavioral patterns. For example, C. capitata females feed more than males and
also forage for considerable periods off the primary host in search of a more diverse
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diet, while males feed for a shorter period, mostly during the afternoon after
courtship and mating, generally do not forage away from the primary host, and
also feed on a comparatively narrow diet (Hendrichs et al. 1991). In many lekking
tephritids, males display courtship behavior at dusk, thus feeding behavior takes
place earlier than for females, who, once inseminated, spend midday searching for
hosts and then later replenish their energy and nutrients (Hendrichs et al. 1991).
These different schedules of behaviors are reflected in the response to lures
according to the time of day. Schedules of response to feeding lures seems to be
a generalized pattern in fruit flies in spite of their different mating times. For
example, in A. ludens, which mate at dusk, and A. obliqua, which exhibit mating
peaks at dawn and at dusk, the greatest captures in protein baited McPhail traps of
females occur at 1600 h, whereas for males captures peak at 1400 h (Malo and
Zapien 1994).

In the case of male lures CL and ME, immature males and mature virgin females
show little attraction, mature males show strong attraction and feed on the lure, and
mated females exhibit no response at all (Fitt 1981b; Wong et al. 1989; Shelly
et al. 2008). For C. capitata flies, virgin females as well as one-month-old virgin
fertile females responded to TML, medlure, and angelica seed oil when males were
scarce in release/recapture studies (Nakagawa et al. 1970). Response of virgin
females to TML was equivalent to response to a trap baited with 1 sterile male
(Nakagawa et al. 1981). Interestingly, there is also a diurnal fluctuation in the
response of B. cucurbitae to CL, since males responded mainly in the morning
(Nakamori and Soemori 1985; Manoukis and Jang 2013).

2.4 Effect of Sterilization, Exogenous Juvenile Hormone,
and Aromatherapy on Mass Reared Flies

Fly sterilization, aromatherapy, and the use of topically applied juvenile hormone
(JH) may introduce variants into the constellation of potential physiological states
that result in altered foraging activity and resource demands. These procedures are
generally confined to males, and while their effect on male maturation and court-
ship behavior has received considerable attention, their effect on male foraging
behavior, and hence trap capture, has not. Mass rearing and sterilization via gamma
radiation may alter the response of male C. capitata to TML. Reduced response to
TML was observed in mass-reared (unirradiated) males of C. capitata from a tsl
genetic sexing strain, which were less likely to be captured in TML-baited traps
than males from a recently established (wild-like) strain (Shelly and Edu 2009). In
general, irradiation reduces male response to the lure. For example, in a field test
using Steiner traps (horizontal clear cylinder with openings on both ends of the
cylinder) baited with TML, it was observed that irradiated males were captured in
lower numbers than either irradiated ones or wild males (Wong et al. 1982).
Further, those males irradiated at a higher dose were trapped in lower numbers
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than those exposed to a lower dose (Wong et al. 1982). A similar pattern was observed
in C. capitata tsl all-male Vienna-7 strain where unirradiated flies showed a greater
response to TML than irradiated flies (Barry et al. 2003). This result implies that the
use of TML-baited traps to compare the relative abundance of sterile and wild males
may underestimate population levels of sterile males, potentially leading to misguided
actions in the control process. Additionally, it also could be an indication of a
reduction in flight ability of sterile flies (Barry et al. 2003).

Sterilization has also been found to reduce fly response to food baits. Studies on the
feeding behavior on C. capitata and A. suspensa demonstrated that irradiation affects
response to and consumption of protein. In C. capitata, irradiation resulted in reduced
olfactory response, reduced total food intake by flies of both sexes, and a significant
reduction in aggregation on and intake of protein by females and of sugar by males
(Galun et al. 1985). The ratio of C. capitata captures in TML-baited traps versus 3C
BioLure-baited (Suttera LLC, Bend, OR, USA) traps was 6.5:1 for sterile males and
1.7:1 for wild males in tests conducted in Guatemala (Midgarden et al. 2004), again
indicating lower response of sterile males to food-based lures. In irradiated
A. suspensa, there was a significant reduction in olfactory response of females to
protein (Galun et al. 1985), and lower recapture of sterile mature females than wild
mature females in traps baited with AmAc and putrescine (Kendra et al. 2010).
Gamma radiation was also found to greatly reduce the response of A. ludens and
A. obligua to synthetic food lures (Robacker 1998; Diaz-Fleischer et al. 2009).

The term aromatherapy was used originally for human alternative medicine and
was introduced in tephritid control jargon by Shelly et al. (2004b). It refers to the
use of volatile plant materials, essential oils or other aromatic compounds, for the
purpose of improving male sexual performance. Topical application of the JH
analog methoprene on the dorsal surface of adults accelerates sexual maturation
by several days (Teal and Gomez-Simuta 2002) and also increases male sexual
success apparently because it stimulates the production of male sex pheromone
(Pereira et al. 2009). Few studies have investigated the response of sterile insects
treated with aromatherapy or topical applications of JH to traps. Two studies on the
effect of aromatherapy on fly response to lures yielded differing results: pre-release
exposure of male C. capitata to ginger root oil (GRO) reduced the recapture
probability of mass-reared, sterile males in TML-baited traps in Hawaii but not in
Florida (Shelly et al. 2006, 2007). In Spain, GRO-treated sterile males exhibited a
higher response to proteinaceous baits than non-treated flies (San Andrés
et al. 2009), a tendency that might inhibit the effectiveness of sterile insect release
programs, since protein-baited traps are run concurrently with sterile releases. Thus,
even though GRO exposure may benefit SIT through enhanced male mating ability,
the effect of male response to lures must be carefully analyzed to obtain the best
results of combining two or more strategies of control. Bactrocera dorsalis males
have a greatly reduced tendency to visit an ME source if they fed previously on this
compound (Shelly 1994), and consequently concurrent use of pre-release feeding
on ME by sterile males and male annihilation appears feasible against this species
(MclInnis et al. 2011, see Shelly and Villalobos 1995 for similar results with
B. cucurbitae). In Anastrepha, immature (2-4 day old) male A. ludens and
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A. obliqua treated with JH were captured less frequently than non-treated immature
males but more frequently than non-treated mature males (15-18 day old)
(Arredondo et al. 2014).

3 Fly Responses to Trap and Bait Stimuli

Capturing the target insect is the objective of trapping activities in any insect
control program. Attracting insects to the trap is the sine qua non for capturing
them. Thus, the effectiveness of a trap will depend upon how well traps can
artificially mimic those cues or signals used by the insect to locate food, potential
mates, and oviposition sites (Katsoyannos 1994; Epsky and Heath 1998; Epsky
et al. 2008). Cues used to lure fruit flies may be divided in physical and chemical.
Physical cues include the visual cues of shape, size, and color of the trapping device
as well as the correct placement of traps inside the tree canopy where flies
congregate when foraging. Chemical cues involve pheromones, kairomones, pro-
teinaceous food, and host-based volatiles.

3.1 Physical Cues

Studies on a variety of tephritid species have demonstrated that visual cues asso-
ciated with hosts are important in host location and are important components of
trapping devices. Size and shape are two of the physical characteristics that have
received special attention. In general, flies exhibit a common preference for spheres
over any other shape. They also tend to accept larger spheres over smaller ones
(reviewed by Prokopy 1977b; Prokopy and Owens 1983; Katsoyannos 1989; Epsky
and Heath 1998; Cornelius et al. 1999). This preference is apparently independent
of natural host shape as seen in B. cucurbitae whose females showed a preference
for spherical objects compared to cylindrical objects even though the latter closely
mimic the shape of cucumber fruits, the preferred host fruit of this fly species
(Pifiero et al. 2006).

The role of insect vision in host plant detection and selection has been studied
intensively in some fruit fly species, but especially in R. pomonella (Prokopy and
Owens 1983). The relative influence of the components of color cues, such as hue
and surface reflectance, of fruit mimics has been demonstrated. With respect to
spectral range, tephritid species respond to a bandwidth of the color spectrum from
near-UV to red (360-650 nm) and respond most intensely to colors reflecting most
of their energy between 500 and 600 nm (Prokopy 1968b). Rhagoletis pomonella
flies respond to monochromatic light stimuli from ultraviolet (350 nm) to red
(675 nm) wavelengths, with the peak of response occurring from 380 to 570 nm
(blue-green to yellow), with a non-response plateau from 600 to 625 nm (orange-
red) (Agee 1985). In early studies, Prokopy (1968a, b) hypothesized that flies
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reacted to yellow on the basis of true color discrimination and suggested that large
yellow surfaces represented a super-normal foliage-type stimulus eliciting food-
seeking behavior in the cherry fruit fly, Rhagoletis cerasi L., and R. pomonella.
Research by Duan and Prokopy (1992) on R. pomonella, Mayer et al. (2000) on
R. indifferens, Katsoyannos et al. (2000) on R. cerasi, and Barry et al. (2004) on
Rhagoletis mendax Curran demonstrated that each species has a preference for
spheres of a particular diameter and color. Studies under field conditions on the
spectral sensitivities of C. capitata, B. oleae, and R. cerasi, showed that the spectral
sensitivities of all three species are basically similar, with a broad major peak at
485-500 nm (yellow-green) and a secondary peak at 365 nm (ultraviolet) (Agee
et al. 1982). In tests involving the Rebell trap (a yellow sticky trap that consists of
two intersecting rectangular panels), only R. cerasi displayed a distinct color
preference, with the yellow polypropylene (Rebell 78) trap being the most attrac-
tive of all colors tested (Boller 1969). Neither C. capitata nor B. oleae exhibited a
specific preference for any color (Agee et al. 1982). In the case of B. dorsalis,
yellow or green attracted flies equally (Cornelius et al. 1999; Wu et al. 2007).
However, when the wavelength was measured, fly preference was high in both UV
and green spectrum (300-380 nm and 500-570 nm, respectively), while the inter-
mediate blue reflection (380-500 nm) diminished the attractiveness (Wu et al. 2007).
Additionally, inter-specific differences in the visual responses expressed by fruit
flies have been documented. For example, laboratory and field studies have shown
that A. ludens females are attracted to yellow and green (Robacker et al. 1990;
Robacker 1992), whereas A. suspensa females showed a preference for orange
(580-590 nm), an indication of specific fruit-seeking behavior since the former
species exhibits a wider range of hosts than the later species (Greany et al. 1977). In
the case of B. oleae, among sticky traps of different colors, the yellow ones were
found to be the most attractive, and flies were particularly attracted to hues
reflecting maximally between 520 and 580 nm and minimally below 520 nm
(Haniotakis 1986; Prokopy et al. 1975).

Specific gender responses were observed in B. oleae, since more males were
captures by spheres with lower wavelength, 580 and 600 nm, with peak response at
590 nm (yellow to orange) than those that attracted females, 610 and 650 nm, with
peak response at 650 nm (orange to red) (Katsoyannos and Koulousis 2001).
However, no differences were detected between males and females of B. dorsalis
with respect to their response to color and spectrum (Wu et al. 2007). Bactrocera
cucurbitae females are particularly attracted to pigments that offer high reflectance
values (white, yellow, orange) regardless of hue, and conversely, they respond less
to objects associated with low-reflecting pigments (e.g., black, blue, and sap green)
(Pifiero et al. 2006). Thus, the visual response of B. cucurbitae females seems to be
more related to the amounts of light reflected by objects rather than the specific hue
associated with those objects. Sexual and age differences in fly response to shapes
and colors have also been documented for the Ethiopian fruit fly, Dacus ciliatus
Loew (Vayssieres and Dal 2004). Both sexes preferred spherical shapes to ovoid or
rectangular shapes, but sexually mature males responded more frequently than
females of the same age. Sexually mature females preferred orange colors, whereas
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immature females preferred yellow colors. In males, yellow colors were the most
attractive to both mature and immature individuals. In the case of the tomato fruit
fly, Neoceratitis cyanescens (Bezzi), females responded strongly to a visual stim-
ulus (bright orange spheres) after day six of emergence, when egg load increased,
apparently as a behavioral response related to host searching (Brevault and Quilici
1999). In A. obliqua, both sexes were similarly attracted to wavelengths ranging
from 340 to 670 nm (ultraviolet and visible spectrum light), although the broad
major peak of attraction occurred between 380 and 570 nm, corresponding to violet,
blue, green and yellow (Lopez-Guillén et al. 2009).

While the physical features of host fruit may trigger attraction as a simple
behavioral response, they may also stimulate egg development, which in turn
influences fly foraging behavior. For example, the color and shape of host fruit
stimuli apparently stimulate oogenesis in the first maturation cycle of Rhagoletis
juglandis Cresson and consequently have a large effect on the physiological state of
females (Alonso-Pimentel et al. 1998). This phenomenon could underlie the tem-
poral shift noted in this species from a preference for extremely large host fruit
models early in the season to smaller, more natural-size models later in the fruiting
season after considerable oviposition had occurred (Prokopy 1977a).

Although trap position within the tree canopy is not an intrinsic physical trap
characteristic, more flies will be captured in traps placed in sites where flies forage
for food or mates in higher frequency. Basically, trap sites must offer resting and
feeding areas in trees that provide, food, shelter from strong winds and predators
and, favours mating encounters (Drew 1987; IAEA 2003). Generally, fruit host
trees offer such characteristics, however, when host fruit trees are not available,
traps should be placed in trees that can provide shaded areas, protection, and food to
adult fruit flies TAEA 2003). Disregarding absolute tree height, studies generally
report that traps placed in the inside and in the upper half of the tree canopy capture
more flies than any other sector (Drummond et al. 1984; Robacker et al. 1990;
Boucher et al. 2001; Pelz-Stelinski et al. 2006; Ragab El-Gendy 2012, but see
Haniotakis 1986 for no effect of trap height). Also, to increase R. pomonella
captures it has been recommended that all fruit and leaves must be removed
30 cm around the trap to enhance the contrast against background (Rull and
Prokopy 2004). Additionally, it has been demonstrated that placing traps in the
north side of the tree attract more A. ludens flies than those placed in the south
(Robacker et al. 1990). Thus, when deciding the site to place a trap, factors such as
orchard design, tree architecture, season and latitude must be considered
(Katsoyannos et al. 1999; Thomas et al. 2001; Dimou et al. 2003).

3.2 Chemical Cues

Chemical lures used to attract tephritids can be divided into those related to feeding
behavior, those focused on host searching behavior (kairomones), and those related
to mating behavior (pheromones and parapheromones).
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3.2.1 Food-Based Attractants

Historically, lures related to feeding behavior have been based on protein volatiles to
attract females of different fruit fly species (Lopez and Hernandez-Becerril 1967,
Houston 1981; Malo 1992; Heath et al. 1993; Thomas et al. 2001; Kouloussis
et al. 2009; Diaz-Fleischer et al. 2009, Epsky et al., Chap. 3, this volume). Tradition-
ally, liquid proteins have been the standard bait for tropical fruit flies (McPhail 1939).
Lately, some protein based synthetic attractants have been developed using ammonia
and its derivatives as a foundation. Thus, a two-component attractant composed of
AmAc and putrescine (e.g., 2C BioLure) is used in traps that target Anastrepha spp.
(Heath et al. 1995; Epsky et al. 1995, 2011, Thomas et al. 2001; Holler et al. 2006).
The addition of trimethylamine to these two components improves capture of
C. capitata (Heath et al. 1997), and McPhail-type traps baited with the three-
component attractant (3C BioLure) are equal to or even better than liquid protein-
baited traps for capture of C. capitata females (Epsky et al. 1999; IAEA 2003, 2007).
Ammonium carbonate and/or AmAc lures are used to lure several Rhagoletis species
(Katsoyannos et al. 2000; Mayer et al. 2000).

3.2.2 Host-Based Lures (Kairomones)

Host-based lures are especially effective for monitoring and even suppressing
monophagous and oligophagous species. For example, apple esters are very attrac-
tive to both male and female R. pomonella (Averill et al. 1988; Zhang et al. 1999).
Traps with a complex five-component blend containing butyl butanoate (10 %),
propyl hexanoate (4 %), butyl hexanoate (37 %), hexyl butanoate (44 %), and
pentyl hexanoate (5 %) captured more flies than traps baited with butyl hexanoate
alone, which has been used with commercially available apple maggot monitoring
spheres (Zhang et al. 1999). The level of response to butyl hexanoate depends on
sexual development, since more mature than immature flies (of both sexes) are
attracted to this lure (Rull and Prokopy 2000). Interestingly, ammonium carbonate,
a food-based odor, was not attractive to mature or immature flies (Rull and Prokopy
2000).

Host-based lures that attract host-seeking females seem to have a different effect
in tephritids with a lekking mating system (e.g., Anastrepha, Bactrocera and
Ceratitis) from those that use a resource defense mating strategy (Rhagoletis). In
the first strategy, hosts are valuable primarily for females as an oviposition
resource, while in flies with resource defense strategy host fruits are important for
both males and females, since fruits represent oviposition resources and potential
sites for mating (Emlen and Oring 1977). Thus, in R. pomonella, males and females
are similarly attracted to traps that use plant volatiles cues as baits (Bostanian
et al. 1993; Rull and Prokopy 2000). Alternatively, traps baited with host fruit odors
favor female attraction in B. tryoni and A. obliqua (Dalby-Ball and Meats 2000;
Toledo et al. 2009). Also, in B. dorsalis and C. capitata, more females than males
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were captured in traps baited with juice from coffee berries (Vargas et al. 1997).
Recently, Siderhust and Jang (2006, 2010) demonstrated that blends of host plant
volatiles of Terminalia cattapa L. and cucumber fruit were highly attractive to
B. dorsalis and B. cucurbitae females and slightly to males, respectively. Non-host
fruit volatiles can also attract females and males as documented in A. [udens species
for which positive responses to volatiles emitted from commercial grape juice were
recorded (Loera-Gallardo et al. 2006). Investigation on non-host attractants may
lead to the development of more specific lures. For example, mated females of
B. dorsalis were more attracted to the volatile semiochemicals from leaves and
extracts of a nonhost plant, panax (Polyscias guilfoylei (Bull)) than flies of any
other physiological state (Jang et al. 1997). Sometimes, lures based on host volatiles
blends resulted more attractive to flies than single compounds as observed in
R. pomonella and A. obliqua (Zhang et al. 1999; Cruz-Lopez et al. 2006; Quilici
et al., Chap. 4, this volume).

3.2.3 Mating-Related Attractants

The role of sex pheromones and male lures in trapping tephritid fruit flies is
discussed at length by Tan et al. (Chap. 2, this volume), and here we briefly describe
efforts to combine (i) sex-related attractants with food lures and (ii) different male
lures in individual traps.

Tests on the effectiveness of combining food baits and sex pheromones have
been restricted to the olive fly, with mixed results. Working at an olive orchard in
Greece, Haniotakis and Vassiliou-Waite (1987) compared male and female cap-
tures in traps baited with ammonia (A) alone, sex pheromone (P) alone (which in
B. oleae is produced by the females), or a combination of food and pheromone (A
+P) odors. Based on data from the peak mating period, the sexes responded
differently to the combination baits. The greatest number of males was found in P
traps, followed by P + A traps and then A traps. In contrast, the greatest number of
females was found in P + A traps, followed by A traps, and then P traps. Thus, P+ A
traps caught fewer males than P traps but more females than A traps. For males, the
authors proposed that the reduced catch in P+ A traps could have resulted from the
interference of ammonia with pheromone or to increased female abundance in the
vicinity of the trap (owing to its effect as an arrestant on females), which in turn
decreased male entry into the traps. For females, the increased catch in the P+ A
traps was considered to reflect the combined response to food odors plus the
arrestant effect of the pheromone.

Subsequent studies have produced mixed results. Although the only comparison
drawn was between P+ A and P traps (i.e., traps with food baits alone were not
included), Yokoyama et al. (2006) presented data from California that were con-
sistent with Haniotakis and Vassiliou-Waite (1987): female captures were greater in
P + A traps than P traps, while the opposite was true for males. In contrast, however,
Broumas and Haniotakis (1994) reported that P+ A traps captured greater numbers
of both sexes than did traps baited with P or A only. Additional data from California


http://dx.doi.org/10.1007/978-94-017-9193-9_4
http://dx.doi.org/10.1007/978-94-017-9193-9_2

5 Interactions Between Tephritid Fruit Fly Physiological State and Stimuli. . . 161

were also at odds with the original findings. Rice et al. (2003) compared captures in
P+ A versus A traps (i.e., traps baited with pheromone alone were not included in
the test) and reported higher male captures in the P+ A traps but essentially no
difference in female captures between P+ A and A traps.

Seeking cost-cutting measures, various studies have tested the effect of mixing
the Bactrocera male lures ME and CL, which, if effective, could reduce the number
of traps deployed by half. Results from several studies (Hooper 1978; Vargas
et al. 2000; Shelly et al. 2004a), however, indicate that the mixture reduces the
response of ME-responding species. In contrast, data on CL-responding species are
inconsistent. Results on B. cucurbitae from Taiwan (cited by Hooper 1978) showed
that adding ME to CL nearly doubled the number of males captured compared with
traps baited with CL alone. On the contrary, Hooper (1978) found the ME-CL
mixture reduced trap capture of CL-responding species in Queensland, Australia,
and more recent studies (Vargas et al. 2000; Shelly et al. 2004a) found captures of
B. cucurbitae in ME-CL-baited traps did not differ from traps baited with CL alone.
Similarly, traps baited with solid dispensers containing both ME and raspberry
ketone (a plant-borne equivalent of CL) captured equal or greater captures of ME-
and CL-responding Bactrocera males as traps baited with liquid ME or CL (Vargas
et al. 2000; Leblanc et al. 2011; Shelly et al. 2012).

TML has been used routinely as the best practical attractant for survey and
detection traps for C. capitata IAEA 2007). It functions as a male C. capitata
attractant and possibly an arrestant, and confers some short lasting mating advan-
tages, but its sexual function is unclear (Shelly and Pahio 2002). It has been
reported that the hydrocarbon sesquiterpene a-copaene is highly attractive to wild
male medflies (Flath 1994a, b) and that pure samples of the compound confer a
mating advantage to the males that are exposed to it, even 6 days after exposure
(Shelly 2001). However, a-copaene, presented in enriched ginger root oil and used
as a lure, is less attractive than TML (Shelly and Pahio 2002).

4 Influence of Environmental Conditions

The role that abiotic factors, specifically rainfall and temperature, play in tephritid
capture in traps is poorly understood (Aluja et al. 2011). Cunningham et al. (1978)
documented an effect of rainfall on liquid protein-baited trap captures of three fruit
fly species in Hawaii. These authors reported that captures of B. dorsalis were about
20 times greater in comparatively dry areas than in comparatively wet areas and
about seven times greater than in areas with intermediate rainfall. Similar results
were noted for C. capitata and B. cucurbitae, species that were captured in
comparatively greater numbers in dry areas compared to intermediate rainfall
areas (18 times and four times more for C. capitata and B. cucurbitae, respectively).
In contrast, Aluja et al. (1996) found no relationship between rainfall and seasonal
variation in population size of Anastrepha spp. as indicated by capture in liquid
protein-baited traps. Rather, the population fluctuations of the dominant Anastrepha
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species seemed to be related to the availability of host fruits. For A. ludens,
A. serpentina, and A. obliqua under subtropical conditions during the dry season
(lower relative humidity and higher temperature) in Colombia, Mexico, and Hon-
duras, a synthetic food-based lure (AmAc and putrescine) was equally or more
effective than the conventional protein baits torula yeast/borax and NuLure/borax
(IAEA 2007). However, in these same locations during the rainy season (higher
relative humidity and lower temperature), the conventional protein baits were most
effective. Considering that the synthetic food-based lures are easier to handle, are
more likely to catch target species, and tend to be more consistent than liquid
protein baits, these attractants are considered to be a better choice under dry and hot
conditions.

5 Conclusions and Future Research Needs

Any insect population presents a mosaic of individual physiological states. Thus,
identifying a single lure to attract most of the individuals in the population is
problematic, since that lure likely attracts only a fraction of the population. In the
case of food lures, even individuals of the same sex and age vary in their immediate
nutritional needs depending on the local availability of food sources and an
individual’s ability to find these resources. These factors alone will result in the
variable effectiveness of any lure as a trapping tool. In the case of parapheromones,
the number of potential trapping targets is even smaller, since only males are
strongly attracted.

In lekking flies, sex pheromones offer a very specific lure that would target
females primarily and possibly sexually active males. However, the complexity of
these pheromones renders their use in trapping problematic. As Heath et al. (2000)
wrote, ““ “Not only are numerous chemical compounds released from calling males,
but the amounts and ratios may vary over time or among different populations of
flies of the same species. In addition, the range in volatilities of compounds
produced by male fruit flies has increased the difficulties in formulating synthetic
blends that mimic the release rates and ratios of pheromones from live males. Thus,
it is not known if lack of field efficacy of synthetic compounds that have been tested
is due to absence of biological activity or to inadequate formulation”. Perhaps
studies on odorant binding proteins, insect olfactory receptors genes, and the
transcriptomic response would help to determine with precision those volatiles
that elicit high fly response (Jang 1995; Bohbot and Dickens 2012; Gomulsky
et al. 2012; Siciliano et al. 2014).

Exploitation of the multiple sensory modalities used to detect essential resources
can have important implications for fruit fly monitoring (e.g., using traps) and
control (e.g., mass trapping). Integrated pest management (IPM) tools that do not
rely on a single cue are likely to work more reliably under changing environmental
conditions (Dorn and Pifiero 2009). For example, improving visual attraction by
adding some host fruit stimuli, like UV surfaces, may stimulate flies to alight on
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traps. This has been demonstrated in Bactrocera cacuminata (Hering), B. dorsalis
and B. tryoni (Drew et al. 2003; Wu et al. 2007). Studies on fly and host fruit
phenologies, which include surveys aimed at assessing the physiological condition
of the female flies, would help to decide the most effective bait/trap combination as
well as deployment strategies, including trap deployment patterns and trap density.

In summary, there are clearly interactions between the environment of an
orchard and the physiological state and behavior of flies. Research on fly responses
to a specific signal in a complex sensory environment must be considered to
enhance trap and lure attractiveness. In order to accomplish this goal, it is necessary
to improve the understanding of the mechanisms involved in the recognition of an
olfactory signal and its decodification leading to a behavioral response.
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Chapter 6

Trapping to Monitor Tephritid Movement:
Results, Best Practice, and Assessment

of Alternatives

Christopher W. Weldon, Mark K. Schutze, and Minette Karsten

Abstract Movement of tephritid flies underpins their survival, reproduction, and
ability to establish in new areas and is thus of importance when designing effective
management strategies. Much of the knowledge currently available on tephritid
movement throughout landscapes comes from the use of direct or indirect methods
that rely on the trapping of individuals. Here, we review published experimental
designs and methods from mark-release-recapture (MRR) studies, as well as other
methods, that have been used to estimate movement of the four major tephritid pest
genera (Bactrocera, Ceratitis, Anastrepha, and Rhagoletis). In doing so, we aim to
illustrate the theoretical and practical considerations needed to study tephritid
movement. MRR studies make use of traps to directly estimate the distance that
tephritid species can move within a generation and to evaluate the ecological and
physiological factors that influence dispersal patterns. MRR studies, however,
require careful planning to ensure that the results obtained are not biased by the
methods employed, including marking methods, trap properties, trap spacing, and
spatial extent of the trapping array. Despite these obstacles, MRR remains a
powerful tool for determining tephritid movement, with data particularly required
for understudied species that affect developing countries. To ensure that future
MRR studies are successful, we suggest that site selection be carefully considered
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and sufficient resources be allocated to achieve optimal spacing and placement of
traps in line with the stated aims of each study. An alternative to MRR is to make
use of indirect methods for determining movement, or more correctly, gene flow,
which have become widely available with the development of molecular tools. Key
to these methods is the trapping and sequencing of a suitable number of individuals
to represent the genetic diversity of the sampled population and investigate popu-
lation structuring using nuclear genomic markers or non-recombinant mito-
chondrial DNA markers. Microsatellites are currently the preferred marker for
detecting recent population displacement and provide genetic information that
may be used in assignment tests for the direct determination of contemporary
movement. Neither MRR nor molecular methods, however, are able to monitor
fine-scale movements of individual flies. Recent developments in the miniaturi-
zation of electronics offer the tantalising possibility to track individual movements
of insects using harmonic radar. Computer vision and radio frequency identification
tags may also permit the tracking of fine-scale movements by tephritid flies by
automated resampling, although these methods come with the same problems as
traditional traps used in MRR studies. Although all methods described in this
chapter have limitations, a better understanding of tephritid movement far out-
weighs the drawbacks of the individual methods because of the need for this
information to manage tephritid populations.

Keywords Area-wide management  Assignment tests ¢ Dispersal » Gene flow
e Insect movement « Mark-release-recapture « Marking methods ¢ Molecular
markers « Monitoring *« Remote sensing ¢ Sterile insect technique * Surveillance

The movement of pest species in the family Tephritidae (Diptera) has important
consequences for their establishment, survival, and reproduction, and understand-
ing their movement is crucial for the development and implementation of effective
management strategies. At the most fundamental level, the dynamics of tephritid
populations, like those of all other populations, are a function of fecundity (births),
mortality (deaths), and movement (either into or out of a defined area). Conse-
quently, the size of a tephritid population under control is influenced, not only by
control strategies that aim to reduce fecundity (e.g., sterile insect technique) or
increase mortality (e.g., bait sprays and male annihilation technique), but also the
tendency of individuals to move into and recolonize the treated area. Tephritid
survival and population growth also rely on the movement of individuals to forage
for food and water, thermoregulate, avoid predators, locate mates, and search for
suitable hosts for oviposition. These movements at the individual level, when
scaled up to include the entire population, have important consequences for popu-
lation size in a given area and consequently how the population should be managed.

This chapter will address the role of traps in monitoring tephritid movement.
Traps are most useful for addressing dispersive movements of insects, so dispersal
and the methodological variables that influence its measurement using mark-
release-recapture studies will form the focus of much of this discussion. Further,
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trapped individuals have been used in population genetic studies using nuclear and
mitochondrial genes to determine the genetic structure of populations of a small
number of pest tephritids. The use of these data from trapped individuals to infer
gene flow and the minimum distance required for populations to remain isolated
under particular sets of environmental conditions will be addressed. Finally, recent
developments in electronics that offer the tantalizing possibility to track individual
movements of insects will be discussed as an alternative to trapping for the study of
tephritid movement.

1 Definitions

There is a large literature addressing insect movement, including that of tephritid
flies. These studies, however, rarely explicitly define the types of movement that
they address, which has resulted in the inappropriate use of some terms. Turchin
(1998) proposed the following set of refined, interrelated definitions for the con-
cepts of movement, population redistribution, and dispersal in ecology: movement
is the process by which individual organisms are displaced in space over time;
population redistribution is the population-level consequence of movement by
individual organisms; and dispersal is population redistribution that leads to spatial
spread. This definition of dispersal is more specific than that given by Southwood
and Henderson (2000), who define dispersal as “any movement away from the
initial locality”, but differentiates dispersal from other forms of spatial redistri-
bution, such as aggregation (movement that results in non-uniform spatial distri-
bution at some locality) and congregation (aggregation as a result of behavioral
processes of organisms to conspecifics) (Turchin 1998). Further, using the lexicon
of Turchin (1998), dispersal can also be distinguished from migration, which can be
defined as population redistribution in response to environmental stimuli resulting
from individual movements with directional bias that leads to a net displacement of
the population. Dispersal should not be confused with dispersion, which is a
property of static spatial patterns (Turchin 1998).

Dispersing populations generally exhibit a characteristic pattern of density over
time. The majority of insects within a cohort will initially be found around a central
point (e.g., site of eclosion, release point of sterile insects), and density will drop to
immeasurably low levels within a short distance. The density of insects around the
origin drops over time, but individuals are detected at greater and greater distances
from the origin. The dispersal tail represents individuals that exhibit long-distance
movement and, as later described, may often represent the segment of the popu-
lation of most concern in the management of fruit fly populations. This spatio-
temporal pattern can be described mathematically using a diffusion framework
(Okubo 1980; Turchin and Thoeny 1993), which models population density based
on a normal distribution but with variance increasing linearly over time. Such a
distribution can also be regarded as a probability function that indicates the
likelihood of an individual within a population moving a particular distance within
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a certain time frame. These models, however, need to be parameterized appro-
priately to be accurate given that dispersal of flying insects from a single point can
vary with time, species, phenotype, and environmental variables (Baker and Chan
1991a; Banks et al. 1985; Gilchrist and Meats 2012; Turchin 1998; Weldon and
Meats 2010).

2 Ecological and Applied Consequences of Dispersal

Dispersal plays a fundamental role in the population dynamics of all organisms,
including tephritid flies. In addition to births and deaths, movement into and out of
an area are the key factors that determine population size (Turchin 1998). Immi-
gration can, in turn, affect population size by altering density-dependent, intra- and
interspecific interactions (Bowler and Benton 2005). Dispersal also has important
implications for population connectivity, which enables the persistence of
populations in habitat regions and patches (Dempster et al. 1995; Eber and Brandl
1996; Halley and Dempster 1996). In addition, dispersal permits gene flow, leading
to the maintenance of genetic diversity or limitation of local adaptation (Eber and
Brandl 1994). The role of dispersal in these fundamental ecological processes
positions it as a key parameter in population forecasting, conservation, and man-
agement. In fragmented habitats, knowledge of dispersal and how it is affected by
habitat heterogeneity plays a key role in defining protected areas (Svensson
et al. 2011) and planning for movements driven by forecasted climate change
(Le Galliard et al. 2012).

Beyond its importance for population dynamics and genetic diversity, dispersal
has a range of implications for the management of insect populations and their
invasions.

2.1 Delimitation of Quarantine and Treatment Zones
in Pest-Free Areas

Quantifying the mean and maximum distance for dispersal establishes the bound-
aries for management activities that attempt to limit the spread and impact of an
incursion of pests in newly invaded areas. The absence of particular pest species
reduces the cost of agricultural production and guarantees preferential access to the
markets of other pest-free countries. Countries importing biological material from
pest-affected countries understandably take measures to limit the risk of pest
incursions (Dominiak 2012). Trade restrictions may be imposed when the threshold
number of a pest deemed to be indicative of a breeding population is detected. The
duration of these trade restrictions and associated control measures is usually a
function of the life cycle of the pest, with the condition that an area must remain
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pest free for the equivalent of several generations before pest-free trade can
recommence. International Standards for Phytosanitary Measures (ISPM No. 26)
on establishment of pest-free areas for fruit flies recommend that a pest-free area
can be reinstated when no further detection of the species occurs for at least three
life cycles based on the prevailing temperature in the area (FAO 2006). Similarly,
the size of the area affected by trade restrictions, or quarantine distance, is deter-
mined by the dispersal capacity of the pest (Clarke et al. 2011). For example, a
quarantine area with radius of 5 km around a trapping point was recommended for
the invasive fruit fly, Bactrocera invadens Drew, Tsuruta & White, in South Africa
(Manrakhan et al. 2009), and in the USA, a quarantine area with radius 8 km is
applied when Anastrepha species are detected (Papadopoulos et al. 2013). For the
Queensland fruit fly, Bactrocera tryoni (Froggatt), it has been noted (Dominiak
2012) that the quarantine distance imposed by importing countries is dependent on
their level of risk aversion and is often unsupported by empirical data on the
dispersal of this species. This has led to a situation where different countries accept
different quarantine distances for B. tryoni (between 15, 50, and 80 km accepted by
10, 1, and 10 countries, respectively; Dominiak 2012), which is untenable from an
administrative perspective. Further, the imposition of unnecessarily large quaran-
tine radii can lead to excessive levels of pesticide application and places a financial
burden for pre- and post-harvest treatment on producers that are unlikely to be
affected by B. tryoni. Dominiak (2012) consequently presented a case for quaran-
tine distances for all tephritid flies to be based on their mean dispersal distance in
relation to the size of the outbreak as indicated by trap captures.

2.2 Location of the Epicentre of Incursions

Detailed knowledge of the pattern of dispersal enables accurate calculation of the
origin and size of an incipient population based on trap captures. Based on an
expected pattern of dispersal from a point source where density is initially highest
close to the point of origin, it can be assumed that a trap at or near the point of
introduction will catch the highest number of insects (Meats 1998a). Density, and
therefore trap captures, will then decline with distance from the point of origin
according to the shape of the dispersal curve. Using the known pattern of dispersal
and geographic location of traps, Meats (1998a) defined a Cartesian method for
locating the origin of single infestations based on data obtained from a trapping
array targeting the papaya fruit fly, Bactrocera papayae Drew & Hancock. Briefly,
the mean coordinates for fly captures were determined for a cluster of traps within a
2 km radius of traps catching more than 20 flies, and then the expected density at the
epicentre was estimated according to the change in trap catch with distance from the
epicentre, assuming that this relationship declined exponentially (Meats 1998a). It
was noted that more confident estimates of the epicentre of incursions could be
made with more precise knowledge of the decline in density with distance from the
point of origin (Meats 1998a).
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2.3 Optimal Spacing of Monitoring Traps

Dispersal influences the ability of an array of surveillance traps to detect an
infestation, which should determine the choice of effective trap density. This is
because the probability of trapping is related to insect density, trap density, and trap
efficiency and therefore to the probability of a trap being close enough to the centre
of an incipient population (Cunningham and Couey 1986; Meats 1998b; Meats and
Clift 2005). For example, Lance and Gates (1994) determined optimal density of
traps in a surveillance array for detection of the Mediterranean fruit fly, Ceratitis
capitata (Wiedemann), by empirically determining distance-dependent capture
rates and then using models based on binomial probabilities to define the trap
density required to detect a local population. Using this approach, they concluded
that ten rotating traps per 2.6 km? as used in the fruit fly detection grid in
California, USA, was sufficient to trap at least one fly from a population of several
hundred adults. For B. tryoni, by assuming that the decline in density with distance
from the origin of an incursion follows the ‘inverse square rule’ (as proposed by
Fletcher 1974a), it has been determined that estimating the size of an incursion is
not possible with an array of cue-lure baited traps with spacing greater than 1 km
(Meats 1998b). At this trap spacing, the likelihood that a fly dispersing from its
origin would be intercepted is so low and unpredictable that the exercise is
meaningless, especially if the purpose of trapping is to determine the presence of
a B. tryoni population large enough to breed.

2.4 Optimal Spacing of Sterile Insect Releases

Dispersal is also relevant to the control of pest fruit fly populations through the mass
release of sexually sterilized conspecific individuals (the ‘Sterile Insect Technique’,
SIT). Too little dispersal by released sterilized individuals may result in uneven
coverage or no coverage of patches of the target area (Meats 2007; Meats
et al. 2006), whereas too much may result in sterile individuals rapidly leaving
the target area. An equally important consideration is that dispersal of wild adults
from untreated areas into a treated one can have a dramatic influence of the success
of sterile insect technique programmes (Knipling 1959; Meats et al. 2003). Based
on a combination of field dispersal experiments and a mathematical model that
included parameters for diffusion, convection, “settling,” and mortality, Plant and
Cunningham (1991) suggested that release points or lines of sterile C. capitata be
spaced no more than 200-250 m apart, because approximately 70 % of individuals
surviving more than 3 days after release remain within 150 m of the release point. A
spacing of release lines of 200-250 m for sterile C. capitata was verified using
aerial releases and recommended for such an application (Vargas et al. 1995). More
recently, aerial release trials from fixed-wing aircraft have found that release lines
spaced 402 m apart provide sufficient coverage of sterile males in California, USA
(Andress et al. 2013); this is permitted by the tendency for flies released from fixed-
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wing aircraft to disperse further than ground or even helicopter releases (Vargas
et al. 1995). Field releases of sterile Mexican fruit flies, Anastrepha ludens (Loew),
found that 240 m was the typical distance that flies would move from a release point
within their lifespan (Thomas and Loera-Gallardo 1998). While Thomas and Loera-
Gallardo (1998) did not recommend an optimal spacing for release of sterile
A. ludens, their results aligned with the standardized flight lane spacing of 320 m
used to release these flies in Mexico.

3 Measuring Dispersal

Theoretical and empirical studies on the dispersal of organisms can take one or a
combination of two approaches termed Lagrangian and Eulerian (Turchin 1998).
Each term originates from, and is widely used in, fluid mechanics to describe
different approaches to investigate motion and the redistribution of particles
(Nathan et al. 2003). The Lagrangian and Eulerian approaches to studying and
modelling movement are related, but each has its own merits and limitations. The
Lagrangian approach is centered on movements made by the individual that can be
characterized by velocity, acceleration and turning, and the effect of habitat struc-
ture and interactions with competitors and predators on these parameters (Turchin
1998). Taken together, the movements of many individuals modelled or monitored
in this way can provide a mechanistic approach to understanding population spread
with time. Experiments using a Lagrangian approach are generally more difficult to
accomplish and have not usually been feasible for insects with small body size
(Nathan et al. 2003), although as discussed later in this chapter, technological
advances are changing this situation. Experiments of this kind are also limited to
a small number of individuals at a time (Nathan et al. 2003) so are not likely to
detect long distance dispersal events.

By contrast, the Eulerian approach is centered on a point in space that is
characterized by densities and fluxes of moving organisms with time (Turchin
1998). Eulerian methods (such as mark-release-recapture, ‘MRR’, discussed
below) are generally much more feasible for estimating the pattern of dispersal
but require large source strength to increase the likelihood of detecting individuals
that travel long distances. Additionally, Eulerian methods do not provide infor-
mation about events between the source and the recovery site (Nathan et al. 2003).

3.1 Mark-Release-Recapture Studies

Mark-release-recapture methods represent the most practical means for studying
movement of organisms, particularly over long distances (Southwood and Henderson
2000). In the case of dispersal studies, this method entails the marking of large
numbers of individuals to distinguish them from those already present in the area of
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the release and the release of these marked individuals from a single point or single
small area within an array of traps that extend away from the release point. After a
period of time, based on the speed of movement of the study organism, traps are
inspected and the number of recaptures determined with distance from the release
point. The relative numbers of recaptures in different traps are assumed to reflect the
density of released individuals in the vicinity of each trap. Traps are then inspected at
several later time points to monitor the spread of the released population over time.

3.1.1 Considerations of MRR
Marking of Individuals

Marking of animals destined to be released is the single most important methodo-
logical consideration of MRR studies. Depending on the aim of the study, marking
is required to discriminate between released individuals or to differentiate between
a released cohort and conspecifics already in the field. A successful marking
technique should be easily applied and cost-effective, persist for the full duration
of a study, and not affect the competitiveness, survival, longevity, or behavior of the
marked individuals (Hagler and Jackson 2001; Southwood 1978). There are a wide
range of techniques available to mark insects that are thoroughly reviewed else-
where (Hagler and Jackson 2001). The aim of this discussion is to summarize the
methods that have been, or show promise to be, applied to MRR studies measuring
tephritid dispersal.

Where the aim of a MRR study is to track movement of individual insects, a
number of variants on individual marking have been developed. These include
mutilation (Severin and Hartung 1912), hand painting (Aluja and Prokopy 1992;
Fletcher 1973, 1974a; Senger et al. 2009), labelled and/or colored tags (Robacker
et al. 1991), and microdots (Whitehead and Peakall 2012). Individual marking is
laborious and time-consuming, which limits the number of individuals that can be
released. Furthermore, available techniques are not amenable to very small insects.
Individual marking does, however, have the distinct advantage of permitting
re-release to generate data on longevity and persistence in an area and can enable
a Lagrangian approach, albeit crudely, to establish how the movement of individ-
uals contributes to dispersal. Because of these benefits, tephritid dispersal has been
successfully monitored using individual marking techniques, but because of their
drawbacks they are not commonly used. Robacker et al. (1991), while not measur-
ing dispersal, attached 2 mm-diameter plastic tags bearing a single black symbol to
the thorax of flies for individual identification of male A. ludens released into field
cages (see also MclInnis et al. 2002). Small spots of enamel paint of different colors
and locations on the thorax were used by Fletcher (1974a) to identify cohorts of
released, recaptured, and re-released flies in a study of the dispersal of B. tryoni
within and from an orchard. Differentiation of cohorts of the cherry maggot fly,
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Rhagoletis indifferens Curran, was also achieved by the application of up to two
different colors on the thorax (Senger et al. 2009).

By far the most common method for marking tephritids and other small insects
for MRR studies is mass-marking. Mass-marking of a released cohort can be
achieved using a range of techniques that, in general, can be grouped into the use
of recognisable phenotypes (genetic mutants), the application of colored marks,
isotopic markers, and molecular markers. The release of flies with a recognisable
phenotype has been reported most often in studies on the dispersal of B. tryoni,
where white marks and bent wings strains have been bred (Meats and Edgerton
2008; Meats et al. 2002; Weldon and Meats 2007, 2010). White marks is a strain
exhibiting a natural color mutation in adults caused by a homozygous recessive
allele on chromosome 2 (Zhao et al. 2003). This strain possesses white markings
rather than yellow markings typical of wild-type B. tryoni, which is a feature that
has been used to differentiate it from flies already in the field and other cohorts of
released flies (Meats and Edgerton 2008; Weldon and Meats 2007, 2010). The bent
wings strain also results from a recessive mutation on chromosome 2 (Zhao
et al. 2003), but the deformity from which its name derives renders it a poor choice
for dispersal studies. Both recapture rate and maximum recapture distance of
released bent wings were far lower than that of wild-type flies (Meats et al. 2002).

Colored paints, enamels, dyes and powders are used extensively to mass-mark
insects in MRR studies. Colored paints and enamels can be applied by hand after
subduing the animals by chilling or anaesthesia with carbon dioxide or ether
(Hamada 1980; Phipps and Dirks 1932, 1933). Like individual marking, this
technique is laborious and time-consuming, and the means by which individuals
are subdued can have adverse side effects on behavior and mortality (Barron 2000;
Champion de Crespigny and Wedell 2008; Phipps and Dirks 1932). However,
Froerer et al. (2011) suggest hand application of paints and enamels is one way in
which wild-caught insects can be marked and their movements tracked. Paints or
dyes can also be applied as an aerosol over large numbers of insects in a container.
Gilchrist and Meats (2012) applied fast-drying fluorescent acrylic paint onto
unsubdued adult B. tryoni in a fly wire cage using a spray can. With experience,
they could apply the paint in a way that left small spots of paint on the wings
(Gilchrist and Meats 2012). The dispersal of flies marked in this way did not differ
from that of conspecifics marked using fluorescent pigment powders (discussed
below) but did lead to a large proportion of ‘non-fliers’ because of the stickiness of
the paint, and for this reason, spray marking was not used for large-scale release
(Gilchrist and Meats 2012). A more promising example of aerosol application
involves the use of readmission ink, which dries rapidly and is invisible under
white light but fluoresces yellow under ultra-violet light (Froerer et al. 2010; Hagler
etal. 1992). In a topical application, Froerer et al. (2011) used 90 mL to mark 1,000
adult oriental fruit flies, Bactrocera dorsalis (Hendel), but they suggest that the
required volume can be reduced substantially with aerosol application and have
used it in a large-scale MRR study (Froerer et al. 2010).

The use of fluorescent pigment powder remains the dominant means for marking
large numbers of tephritid flies prior to release in MRR studies and for identifying
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flies used in SIT programmes. The pertinent methods were first developed for the
marking of the Australian sheep blowfly, Lucilia cuprina (Wiedemann), by Norris
(1957) but can potentially be used to mark any Diptera in the section Schizophora
due to the fact that flies from this group possess a ptilinum, an eversible sac on the
head used to break out from the puparium. As originally described, the method
involves covering the puparia with a layer of dry sand through which fluorescent
pigment powder is well mixed. Flies emerging from this treatment can be readily
identified under an ultra-violet light even when other traces of the dust have been
groomed away from the body surface, because they are ‘self-marked’ with a
quantity of fluorescent pigment powder that is retained in the ptilinal suture and
frontalia (Norris 1957). A similar self-marking method was used by Steiner (1965)
for melon flies, Bactrocera cucurbitae (Coquillett), B. dorsalis, and C. capitata
with Calco blue oil-soluble dye, with the added step of crushing the head and thorax
of recaptured flies on filter paper with an acetone rinse. Subsequent applications of
self-marking have used a range of different media in which the fluorescent pigment
powder is mixed, including sawdust (e.g., Gilchrist and Meats 2012; Macfarlane
et al. 1987), as well as direct application of the powder to puparia (e.g., Campbell
et al. 2009; Paranhos et al. 2010; Peck et al. 2005). Fly heads may be crushed to
detect powder even if fluorescence is visible on the body surface (e.g., Baker
et al. 1986; Bloem et al. 1994; Shelly and Edu 2010). The main benefits of self-
marking with fluorescent pigment powders are that it minimizes handling effort,
removes the need to hold and subdue adults prior to marking with the methods
described earlier, and makes identification relatively easy and rapid. However,
there are a number of drawbacks that should be considered prior to the use of
self-marking with fluorescent pigment powders, primary of which is that they can
dramatically reduce adult emergence rates and flight ability (Campbell et al. 2009;
Dominiak et al. 2000, 2010; Weldon 2005).

The amount of fluorescent pigment powder used per volume of pupae is one
factor that can affect adult emergence and flight ability (Dominiak et al. 2010). As
an example, adult eclosion rates of B. tryoni declined from 85.7 to 77.4 % and were
significantly different from a control with pigment concentrations of 1.5-4.5 g/L.
Over the same range of pigment concentrations, flight ability indices ranged from
92.1 to 83.3 %. As a generic standard for SIT operations, it has been recommended
that 1.5 g of fluorescent pigment powder be applied per litre of pupae (FAO/IAEA/
USDA 2003). However, there has been wide variation in the concentrations used
even after this recommendation was proposed. For example, Peck et al. (2005)
marked B. cucurbitae with 5 g of pigment powder per liter, Meats (2007) and Meats
and Edgerton (2008) used 50 g of pigment powder per 100,000 pupae (approx. 1 kg)
to mark B. tryoni, Shelly and Edu (2010) marked B. cucurbitae and B. dorsalis with
3 g per liter, and Rempoulakis and Nestel (2012) marked olive fruit flies,
Bactrocera oleae (Rossi), with 2 g per liter. Other reports do not indicate the
concentration at all (e.g., Dominiak et al. 2011; Hernandez et al. 2007; Kendra
et al. 2010; Paranhos et al. 2010; Peck and McQuate 2004). Further, the concen-
tration that negatively influences adult emergence and flight ability may vary with
particle size of the selected fluorescent pigment powder: Weldon (2005) reported
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poor emergence of B. tryoni from puparia associated with powders with a particle
size of 4-5 pm. Another issue that must be considered when using fluorescent
pigment powders is the visibility of different colors, the ability to discriminate
between different colors under ultra-violet light when multiple cohorts are released,
and their persistence (Dominiak et al. 2000; Schroeder and Mitchell 1981; Weldon
2005). Needless to say, attempts should be made to optimize the appropriate dose,
particle size, and color for the species to be marked using fluorescent pigment
powders.

Internal marking with a range of vital dyes is possible. Like all other marking
techniques, the key to choosing a successful vital dye is to ensure that it does not
negatively affect survival, modify behavior, and is persistent for the duration of the
experiment (Schroeder and Mitchell 1981; Sharp and Ashley 1984). Internal mark-
ing of trapped individuals is often difficult and time consuming to evaluate because
of the need for dissection and internal examination (Schroeder and Mitchell 1981).
Sudan Deep Black BB (1 g dissolved in vegetable oil) when added to 1 L of larval
diet colors adult B. cucurbitae deep black, because it becomes incorporated into the
hemolymph of the larva and adult (Schroeder and Mitchell 1981). Over a period of
2 weeks, the black color is gradually eliminated from the hemolymph, but the rectal
papillae are permanently dyed deep blue. Unfortunately, the behavior of adults
dyed internally with Sudan Deep Black BB differs from that of undyed adults; there
was evidence of assortative mating of undyed and dyed B. cucurbitae, and flight
propensity was reduced in dyed flies. Interestingly, however, dyed male
B. cucurbitae exhibited improved flight performance on a flight mill (Schroeder
et al. 1974). Another vital dye, fat red 7B, was found to internally mark adults of
A. suspensa (Loew) for 2 days after eclosion when incorporated into the larval diet
(125 mg dye in 125 g diet; Sharp and Ashley 1984). Fluorescent dyes fed to adults
have also been used to mark tephritid flies for dispersal studies. Arévalo
et al. (2009) fed adult blueberry maggot fly, Rhagoletis mendax Curran, a
1-mMol solution mixture of Fluorescent Brightener 28 in honey. Trapped adults
were then homogenized, and the fluorescence of each homogenate was determined
using a microplate fluorometer with a 355-nm excitation filter and a 460-nm
emission filter. Marks were persistent for at least 7 days (Arévalo et al. 2009).

Isotopes of a range of elements have been used to mark insects in MRR studies.
An isotope of an element has the same atomic number as the element but a different
number of neutrons and thus a different atomic mass. Both radioisotopes (e.g.,
phosphorus 32, Barnes 1959; Jones and Wallace 1955; strontium 89, Neilson 1971)
and stable isotopes (e.g., carbon 13, nitrogen 15, Hagler and Miller 2002) have been
used to mark tephritid flies, but the majority of recent studies have relied on stable
isotopes to discriminate released insects from their wild counterparts. Stable iso-
topes are preferred, because they are safe, non-radioactive, and hence do not decay
(Hagler 1997). In comparison with other forms of marking, the use of isotopes is
very non-invasive, because stable isotopes are easily incorporated into feeding
regimens and, depending on the stable-isotope enriched compounds used, remain
in the tissues of the animal (Hagler 1997). The cost and handling required for
isotope analysis is very competitive compared with endogenous molecular markers
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(Hagler 1997), but processing of samples is more time consuming than sorting
insects with a visual mark.

A range of molecular markers have become available to distinguish released
insects from their wild counterparts. These are discussed in more detail later in this
chapter (Sect. 3.2.2), but in the context of marking insects for MRR studies, here we
introduce the use of immunomarking. This approach involves the marking of insects
with mammalian (Hagler 1997; Hagler et al. 1992; Hagler and Miller 2002) or plant
proteins (Jones et al. 2006) that are then detected on trapped individuals using an
enzyme-linked immunosorbent assay (ELISA). A plate reader generates ELISA
optical density values for each insect sample, and the key result is the presence or
absence of a positive reaction to the presence of the marking protein (Hagler
et al. 1992). Application of the protein mark can be achieved by topical application
or incorporation into the insect diet (Hagler et al. 1992) or even by walking across
treated plant surfaces (Jones et al. 2006). Marks can be retained for over 20 days
(Hagler 1997; Jones et al. 2006). Immunomarking of insects has been most success-
fully achieved using rabbit immunoglobulin G (IgG; Hagler and Miller 2002) and
chicken egg albumin, and individuals marked in this way are best detected using
sandwich ELISA rather than direct ELISA (Hagler and Miller 2002). It has been
argued that the method is inexpensive, especially when using chicken egg albumin or
plant proteins as the immunomarker (between US$0.12 and $0.26 per litre; Jones
et al. 2006), but it does require considerable processing of trapped insects and a
capital outlay for a plate reader, ELISA plates, and reagents (Jones et al. 2006).
Immunomarking has been used in a study on the dispersal of solanum fruit flies,
Bactrocera latifrons (Hendel), where rabbit IgG was applied to adults both in
drinking water and topically (Peck and McQuate 2004). Recaptures of B. latifrons
marked in this way were much higher than those with ptilinal fluorescent pigment
marks: 3.1 % of immunomarked flies were recaptured, whereas only 0.92 % of those
with fluorescent pigment marks were recaptured (Peck and McQuate 2004).

Design of Trap Arrays

Trap array design has important consequences for the conclusions drawn from a
dispersal experiment. The spatial arrangement of traps needs to be carefully con-
sidered to ensure that it meets experimental aims while recognizing practical
limitations, such as the range of options available to track individual movement
and the costs associated with increased sampling in space and time (Skarpaas
et al. 2005). A number of alternative sampling designs of equivalent total trap
area have been assessed with Monte Carlo simulation. For a known release rate,
transects (linear or cross-shaped trap arrays radiating outwards from the release
point) and sectors (wedge-shaped trap arrays radiating outwards from the release
point) provided better data for estimating the distribution of dispersal distances (the
‘dispersal kernel’) than random placement, grid arrays, and annuli (Skarpaas
et al. 2005). In this scenario, ‘better data’ relates to the precision of model estimates
of the dispersal kernel relative to the true model. If dispersal was directional but
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unknown, annuli (i.e., concentric circles) or grid arrays performed better than
transects or sectors, but the performance of transects and sectors was once again
superior to annuli and grids if they were aligned with known directional movement
tendencies (Skarpaas et al. 2005). Considering these results, scientists conducting
dispersal studies that aim to determine the mean, median, and maximum limit of
dispersal should deploy their traps as transects or sectors to maximize the potential
for accurate sampling of the dispersal tail. Studies that aim to determine population
displacement as a consequence of environmental variables (e.g., prevailing wind,
habitat and resource heterogeneity) will be better served by a grid array. Baker and
colleagues advocated this latter approach for quantification of sterile tephritid fly
dispersal (based on replicated releases of A. ludens and C. capitata; Baker and Chan
1991a; Baker et al. 1986). However, data obtained using this approach are not
adequate if the ultimate goal is to define the dispersal distance of a species for the
purpose of setting quarantine radii or quantifying population connectivity. In this
circumstance, the methods of Baker and colleagues (Baker and Chan 1991a; Baker
et al. 1986) represent the preliminary stage of a rigorous program that aims to
ascertain factors causing directional displacement of marked individuals, which
could then be followed by releases on a transect or sector trap array aligned with
identified movement tendencies.

Trap array design also needs to take into consideration the attractiveness of the
traps being used. The majority of traps used in studies of tephritid movement rely
on an attractant, whether visual or chemical, to increase the likelihood of recap-
tures, but the properties of attractive traps led Baker and Chan (1991a) to question
their use in the quantification of dispersal and explanation of processes that shape
observed patterns for four reasons. First, flies do not enter traps by random
movement, therefore random movement can not be assumed or investigated when
using them. In relation to the regression-based null dispersal models employed by
Baker and Chan (1991a), this assertion is warranted. Most empirical dispersal
studies, however, have demonstrated that tephritid dispersal is not random, but
associated with ecological and physiological variables (e.g., habitat suitability,
oviposition sites, and wind direction) and that they likely override the localized
attraction of flies to traps. Second, trap efficiency may be density-dependent;
therefore, they can not be used to study density-dependent dispersal. It is certainly
the case that studies on trap performance recapture far fewer flies than are released
(e.g., Lance and Gates 1994; Shelly and Nishimoto 2011), so it stands to reason that
only traps in areas with high population density will detect flies. Third, the active
space of traps is continually changing, so that it is impossible to ascertain whether
variation in catch is real or apparent. Finally, food traps catch hungry flies, not
dispersing flies (Baker and Chan 1991a). This has certainly been proven to be
important in relation to the effectiveness of food-based traps when females have
been fed protein (e.g., in Anastrepha species, Diaz-Fleischer et al. 2009a, b; in
C. capitata, Rousse et al. 2005).

It has also been suggested that the use of strongly attractive traps in the vicinity
of the release point may have a dramatic effect on the density-distance curve
produced from a MRR study. Strong traps located close to the release point will
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capture a high proportion of marked individuals and reduce the number of insects
that would otherwise be caught in more distant traps (Turchin 1998). Additionally,
strong traps may arrest movement away from the release point by most insects that
are primed to respond to the attractant (Turchin 1998). The attractiveness of the
various lures for tephritid flies is discussed by Tan et al. (Chap. 2, this volume). At
this point, however, it is important to note that early work explicitly determined the
effectiveness of available traps and lures for some species: for B. dorsalis, 50 -
non-competitive traps (baited with methyl eugenol) are required per mile? (2.6 km?)
to exhaust the male population, whereas 80 traps (baited with cue-lure) are required
for B. cucurbitae and 500 traps (baited with trimedlure) are required for C. capitata
(Steiner 1969). It is likely that these values are influenced by dispersal capacity of
the species involved, but it is still apparent that traps baited with methyl eugenol are
considerably more attractive to B. dorsalis than those baited with trimedlure are to
C. capitata, and this should be considered when designing trap arrays. More
recently, it has been demonstrated that McPhail traps baited with ammonium
acetate and putrescine do not have a long-distance attractive action for the West
Indian fruit fly, Anastrepha obliqgua (Macquart), or the Caribbean fruit fly,
Anastrepha suspensa (Loew) (Jenkins et al 2013). As a result, these traps must be
placed in host trees where flies are already present.

Maximum Distance

Intimately associated with the spatial arrangement of traps for the purpose of
dispersal studies is the maximum distance sampled. Long distance dispersal events
are rare, and the probability of their detection decreases with distance from the
release point, but such events are important for the empirical assessment of popu-
lation connectivity and gene flow. In many cases, the maximum distance sampled
by a trap array is determined by practical constraints, including the costs associated
with maintaining a large trapping array and access to property on which to place the
traps. However, if a MRR study aims to estimate the dispersal capacity of an insect,
considerable effort should be made to adequately sample the dispersal tail. Counter
to this theoretical ideal, many studies (e.g., Fletcher 1974a, b; Hamada 1980;
Neilson 1971; Paranhos et al. 2010; Rempoulakis and Nestel 2012; Weldon and
Meats 2010; Wong et al. 1982) on tephritid dispersal are characterized by declining
sampling effort (i.e., fewer traps per unit area) with increasing distance from the
release point. One exception is a study reported by Barry et al. (2002) on C. capitata
that involved a concentric circular array of trimedlure-baited Jackson traps arranged
so that there was an equal distance between traps in each circle of traps (although
radius of the outer ring of traps was only 366 m). Another is a MRR study on the
dispersal capacity of B. dorsalis designed with the intent of recording rare, long-
distance, movements. Sampling effort in the immediate vicinity of the release point
was almost entirely absent with flies often released at least 2 km from the closest
trap of a haphazard grid array (trap spacing approximately 1 km) in Puna, Hawaii
(Froerer et al. 2010). The result was the detection of 23 flies moving greater than
5 km in less than 4 days (Froerer et al. 2010).
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If few data are available on the dispersal capacity of a species, it is difficult to
ascertain the distance over which dispersal should be sampled to detect long-
distance events. It is clear from published data from MRR studies that the mean
dispersal distance of tephritid flies is usually well below 1 km (Table 6.1, Fig. 6.1a).
But, it is also apparent that the maximum dispersal distance reported in many
studies was limited to the distance of the trap placed furthest from the release
point (Fig. 6.1b). One way to select the appropriate spatial scale for dispersal
studies is to use the relationship between spatial scale and recapture distance
reported in earlier studies (Jones et al. 2006). Plotting the relationship between
sampling area and mean recapture distance in reported MRR studies for a range of
tephritid species (although biased towards Bactrocera species, see Table 6.1)
indicates that mean recapture distance increases with sampling area up to a point
where further increases in spatial scale yield little benefit (Fig. 6.1a). Solving the
equation for the approximate asymptote of this relationship (mean recapture
distance = 1.4 km) yields an optimal sampling area of approximately 107 km?.
Assuming that this sampling area is a circle surrounding a single release point, the
maximum distance that should be sampled is 5.8 km. This approaches the maxi-
mum sampling distance required to detect the mean dispersal distance from most
published MRR studies (Fig. 6.1c). Outliers above the logarithmic fit in Fig. 6.1a
and c are from a single study on the movement of B. dorsalis between islets
(Iwahashi 1972).

Another approach that objectively optimizes the spatial extent of a trapping
array to estimate dispersal involves subsampling MRR data generated by a pilot
study. This approach has been used successfully by Franzén and Nilsson (2007) and
Hassall and Thompson (2012) to verify the minimum landscape scale used in
dispersal studies of burnet moths (Lepidoptera: Zygaenidae) and a damselfly
(Odonata: Coenagrionidae), respectively. In summary, cohorts of insects marked
with distinctive colors are released into a study area at different locations and later
recaptured. The study area is then divided into smaller compartments, the mean
recapture distance is calculated within each compartment, and then after the serial
addition of adjoining compartments, the optimal spatial scale for sampling is set at
the distance or area where mean recapture distance no longer increases with the
addition of further sampling effort.

Time Scale

Dispersal is a process involving changes in abundance over both space and time. It
is not surprising, therefore, that the time scale of sampling in MRR studies can
influence estimates of the shape of the density-distance relationship (e.g., Hassall
and Thompson 2012). Studies on the dispersal of species representing Anastrepha
(Baker and Chan 1991a; Kovaleski et al. 1999), Bactrocera (Gilchrist and Meats
2012; Weldon and Meats 2010), and Ceratitis (Baker et al. 1986; Paranhos
et al. 2010; Plant and Cunningham 1991) that incorporate repeated sampling
through time indicate that mean dispersal distance increases with time after release.
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Fig. 6.1 Effects of
sampling area and
maximum sampling
distance of trapping arrays
on mean and maximum
dispersal distances of
tephritid flies determined
from mark-release-
recapture studies. (a)
Relationship between
sampling area and mean
recapture distance. The
solid black line indicates the
logarithmic fit for the data.
(b) Relationship between
maximum sampling
distance and maximum
recapture distance. Points
lying on the gray dotted line
indicate recaptures in the
trap furthest from the
release point. (c)
Relationship between
maximum sampling
distance and mean recapture
distance. The black line
indicates the logarithmic fit
for the data
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However, it is also equally important to point out that tephritid flies can disperse
over relatively large distances very quickly following release. Shelly and Edu
(2010) reported that male B. cucurbitae and B. dorsalis released 500 m from a
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trap baited with cue-lure and methyl eugenol, respectively, were recaptured within
1-3 days. Even more remarkable is that only 1 day after release, B. dorsalis have
been recaptured in traps more that 10 km from the release point (Hagler et al. 1992).

The interval at which traps are emptied or replaced has important implications
for the type of models that can be used to explain changes in abundance over space
and time, because traps integrate density over time (Turchin 1998). If the change in
density of a dispersing population is small in the time period between trap collec-
tions, the density data can be considered ‘instantaneous’ and fit to a Gaussian curve
(normal distribution). The Gaussian distribution is the null model for movement
assuming that the movement pattern of the study organism is approximated by
simple diffusion. The emptying of traps at daily intervals to track dispersive
movement of A. [udens by Baker and Chan (1991a) is a good example of instan-
taneous density data from the tephritid dispersal literature, although the range of
phenomenological empirical models that were used to fit the data do little to aid in
understanding movement processes (Turchin 1998). It is more common to encoun-
ter time-integrated density data in dispersal studies. The key difference between
instantaneous and time-integrated analyses is that the latter include loss of organ-
isms in the diffusion model that arises from mortality, long distance dispersal, and
loss of marks (Turchin 1998). Of the numerous MRR studies to quantify dispersal
of tephritid flies, only Plant and Cunningham (1991) have paired empirical data (for
sterile C. capitata) with a diffusion model with loss terms to assess the movement
patterns of a release cohort. The diffusion-convection-settling-mortality model
predicted recapture values qualitatively similar to actual average trap captures
over time (Plant and Cunningham 1991).

Release and Recapture Rates

To determine population redistribution, MRR studies rely on the release of large
numbers of individuals. In general, Eulerian approaches require high source
strength to increase the number of recaptures and thereby increase the probability
of detecting insects that travel long distances (Nathan et al. 2003; Turchin 1998).
This is also evident, although weakly, in the data from tephritid dispersal studies
(Fig. 6.2). With the exception of the study by Iwahashi (1972) on B. dorsalis, which
are the outliers on Fig. 6.2, as source strength increases, so too does mean recapture
distance. However, the release of large numbers of insects from a point or small
area may bias measured dispersal distances: a higher incidence of long-distance
dispersal events may not be due to increased probability of detection but rather an
artefact of over-crowding. It has been reported that insect dispersal can be driven by
high density as a result of resource depletion or interference by conspecifics
(reviewed by Bowler and Benton 2005). The potential for overcrowding at the
release point to influence the results of studies on the dispersal of tephritid flies is
considerable. It has been suggested that dispersal of some species is related to the
availability of food and shelter (Fletcher 1973, 1979). Further, high density is
known to lead to reductions in mating performance and survival of males in some
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Fig. 6.2 Relationship between the number of adults released in mark-release-recapture studies
and mean recapture distance of tephritid flies. The black line indicates the logarithmic fit for the
data marked with black diamonds. Grey crosses represent data taken from a study on the inter-
island movement of the oriental fruit fly, Bactrocera dorsalis (Iwahashi 1972), and are not
included in the logarithmic fit

species (Diaz-Fleischer et al. 2009a, b; Gaskin et al. 2002), which may act as a
selective pressure to avoid such conditions as would prevail at a release point
during dispersal studies or when sterile insects are set loose.

3.1.2 Key Results from MRR Studies
Dispersal Distance

A review of the results of MRR studies is a frustrating exercise. While many studies
have been performed (Table 6.1), it is surprising how many of them do not clearly
state mean dispersal distance, or its variance, at specific time points. It could be
argued that measures of mean and maximum dispersal distance are irrelevant,
because the key aspect of dispersal is the shape of the density-distance relationship.
However, measures of central tendency and their variability can play an important
and easily understood role in defining quarantine distances for the purposes of trade
restrictions (Dominiak 2012). From those papers that do report mean dispersal
distances, it is evident that Rhagoletis are the most sedentary of the genera (mean
dispersal distance =0.03-0.14 km; Table 6.1), although this observation is based
exclusively on the results of studies on the movement of the apple maggot,
Rhagoletis pomonella (Walsh) (Neilson 1971; Phipps and Dirks 1932, 1933).
Several studies (Table 6.1) have shown that species of Ceratitis do not disperse
far from their point of origin. The same can be said for Anastrepha spp., because
mean and maximum dispersal distances for species in this genus overlap
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considerably with that of Ceratitis spp. (Table 6.1). Species of the genus Bactrocera
are by far the most mobile of the economically important fruit flies that have been
studied (Table 6.1), although as discussed earlier, it is important to interpret these
values in relation to the size of trap arrays that have been used, attractancy of traps,
release rates, and the time scale of the study.

Influence of Environment and Fly Condition

Factors that have been implicated in variation in dispersal distance of fruit flies
include sexual maturity (Fletcher 1973), the availability of fruiting host plants
(Drew and Hooper 1983; Drew et al. 1984; Sonleitner and Bateman 1963), which
interacts with seasonal changes in temperature and rainfall (Fletcher 1973), and
wind (Baker and Chan 1991b; Baker et al. 1986). It has been hypothesized that there
is a post-teneral dispersive phase in the life history of female and male B. tryoni that
probably includes periods of undistracted flight (Fletcher 1973). Fletcher (1973)
found that around 75 % of newly emerged B. tryoni disappeared from an orchard
within 1 week of release and that this rapid decline in abundance could not be
attributed to mortality (which was only ~20 % during the same stage). Drew
et al. (1984) suggested that arrival of B. tryoni and lesser Queensland fruit flies,
Bactrocera neohumeralis (Hardy), at a rainforest patch could be attributed to post-
teneral dispersal of adults that completed their larval development in hosts located
approximately 60 km away. Recapture of B. dorsalis greater than 10 km from the
release point after only one day of release may also be attributed to high activity in
post-teneral flies (Froerer et al. 2010).

Facultative dispersal in the absence of oviposition or other resources has been
proposed to explain some instances of long-distance dispersal. Steiner et al. (1961)
reported that the absence of ripening fruit stimulates dispersal of C. capitata.
Dispersal of B. cucurbitae appears to be related to habitat heterogeneity and
suitability of resources, with recaptures linearly related to the capture of resident
wild conspecifics and higher mean recapture distance when released in an area
unsuitable for this species (Hamada 1980). Fletcher (1973, 1974a) suggested that
long distances travelled by marked B. tryoni may be related to the absence of
fruiting trees near the release point, such that this species continues to disperse even
after sexual maturation. Laboratory flight mill studies have verified field observa-
tions, showing that tethered flight increased in the absence of fruit prior to testing
(Chapman 1982). Conversely, there is evidence that tephritids tend to move into,
and remain in, areas containing trees bearing ripe fruit (B. tryoni, Bateman and
Sonleitner 1967; B. dorsalis, Iwahashi 1972; A obliqua and A. suspensa, Jenkins
et al. 2013). Iwaizumi and Shiga (1989) reported that released sterile B. cucurbitae
moved into areas over time where wild conspecifics were abundant, which presum-
ably indicated areas of high habitat suitability. The tendency for flies to remain in
areas with oviposition resources, and higher dispersal than anticipated in the
absence of these resources, has also been observed in B. latifrons (Peck and
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McQuate 2004) and B. oleae (Fletcher and Economopoulos 1976; Fletcher and
Kapatos 1981; Rempoulakis and Nestel 2012).

The role of wind in dispersal of tephritid flies is still a subject of considerable
debate. Very early observations were made of wind direction influencing the initial
direction of flight and a tendency for recaptures downwind of release of C. capitata
(Severin and Hartung 1912). Baker et al. (1986) reported a directional bias in
dispersal. The direction of this drift was aligned with the prevailing wind direction,
leading Baker et al. (1986) to suggest that, in C. capitata, both wind direction and
wind strength interact to affect population redistribution. In the same study, how-
ever, it was noted that drift was not as apparent in A. /udens, which may have been
due to these flies being larger than C. capitata and exhibiting different activity
patterns (Baker et al. 1986). Prevailing wind direction has been associated with
remarkable movement distances in B. cucurbitae (Kawai et al. 1978) and
B. dorsalis (Iwahashi 1972), with ordinary wind speeds leading to the recapture
of marked flies on islands over 50 km from where they were released. The longest
recorded movement of B. cucurbitae involved the recapture of a single marked
sterile fly on an island 200 km from the release that was presumably transported by
cyclonic winds (Miyahara and Kawai 1979). It is important to note for the long-
distance movement events reported for B. cucurbitae that they followed the release
of approximately 300 million sterile flies during an eradication program on
Kume Island, Japan (Iwahashi 1977). There is no consensus on the influence of
wind direction or speed on the distribution patterns of released B. tryoni. Fletcher
(1974a, b) found no relation between the direction of prevailing winds and trap
recaptures. MacFarlane et al. (1987) found no consistent correlation between strong
winds and trap captures; strong south-westerly winds preceded long-distance
recoveries in areas north-east of the release point, yet long distance travel was
also detected in the absence of strong winds, which indicated multiple means of
such dispersal. Conversely, prevailing south-westerly winds with speeds of more
than 4 km/h tended to be associated with the recapture of sterile flies in traps to the
north and east of their point of release (Dominiak et al. 2003). However, no studies
on the dispersal of B. tryoni have employed a trap array that would definitively
establish the role of wind as a determinant of directional bias in dispersal.

The number of studies that have sought to document the dispersal of sterile
tephritid flies underscores the importance of this information for the success of SIT
programs. Of the 38 reports summarized in Table 6.1, 21 have involved the release
of sterile flies. Sterilization with gamma radiation may have deleterious effects on
locomotion, because it can result in mutations that lead to changes in the structure
of enzymes and proteins, including those involved with energy metabolism (Allen
and Sohal 1982) and neural signal transduction (Haddad et al. 1997). Despite this,
sterilized tephritid flies have been recorded moving very large distances (Fletcher
1974a, b; Froerer et al. 2010; MacFarlane et al. 1987), especially when dispersal is
aided by wind (Iwahashi 1972; Kawai et al. 1978; Miyahara and Kawai 1979). It is
surprising, however, that relatively few studies have directly compared dispersal of
wild and sterile tephritid flies. Further, some of these do not control for laboratory-
adaptation by simultaneously releasing a mass-reared fertile cohort. In a
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comparison of wild and mass-reared B. cucurbitae, Nakamori and Soemori (1981)
found that wild flies were consistently recaptured further away from the release
point than their mass-reared counterparts. Wong et al. (1982) reported that wild
C. capitata were recaptured less and did not move as far as laboratory-reared
conspecifics. In the same study, they demonstrated that dispersal declined with
increasing radiation dose. In A. ludens and A. obliqua, however, the dispersal of
mass-reared, sterile flies was not significantly different from that of wild flies
(Hernandez et al. 2007). Weldon and Meats (2010) found no evidence from direct
comparison of recaptures within 2 weeks of release that the dispersal distance of
sterile B. tryoni differs from that of their wild counterparts or a laboratory-reared
white marks strain. A later study involving the release of much larger numbers,
while not using sterile flies, did show that an out-bred laboratory strain of B. tryoni
dispersed further than the strain mass-reared for a sterile insect technique program
(Gilchrist and Meats 2012). Taken together, no overall trends are evident for the
effects of mass-rearing or sterilization on tephritid dispersal.

3.1.3 Limitations of Existing Studies and Suggestions for the Future

Itis evident from a review of the MRR studies used to measure dispersal of tephritid
flies with traps that the design of trap arrays has been influenced more by conve-
nience than the stated aims of these studies. There is a clear relationship between
maximum distance sampled by trap arrays and maximum recapture distance
(Fig. 6.1b), which suggests that the dispersal capacity of some species may be
underestimated. This situation is acceptable if the aim of the study is to determine
whether environmental conditions, abiotic or biotic, shape patterns of spatial
distribution over time (Baker and Chan 1991a). However, the data required for
this purpose are best acquired using a regular grid of traps, which is often not the
case (Table 6.1). It is therefore important to stress that the design of trap arrays
should be planned carefully to match the aims of future studies on tephritid
dispersal that utilize MRR methods. To this end, site selection and appropriate
allocation of resources to achieve optimal spacing and placement of traps when
resources are limited are essential considerations.

Trap spacing used in MRR studies on the dispersal of tephritid flies is highly
variable within and between species (Table 6.1). This is a concern, because little
attention has been paid to the effective radius of the traps used. In addition, there is
often a lack of consideration given to the potential influence of traps baited with an
attractant and located close to the release point on the pattern of dispersal. As
discussed earlier, strong traps (e.g., those baited with methyl eugenol) when located
close to the release point will likely capture a high proportion of marked individ-
uals, arrest movement of responsive males away from the release point, and
consequently reduce the number of insects that would otherwise be caught in
more distant traps (Turchin 1998). In many cases, there are few published data on
the effective radius of traps, which contributes to differences and potential confu-
sion when designing trap arrays. For example, while a regular grid of traps baited
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with cue-lure and spaced 400 m apart will recapture 8-9 % of sexually mature male
B. tryoni (Fletcher 1974b; Monro and Richardson 1969), the average distance over
which a single trap is attractive for this species has not been determined. This type
of information has been determined for B. cucurbitae responding to cue-lure and
B. dorsalis responding to methyl eugenol in Hawaii (Shelly and Edu 2010; Shelly
et al. 2010), and similar data would benefit the design of trap arrays for future
studies on tephritid dispersal.

Not surprisingly, most attention has been paid to the dispersal of tephritid
species of economic importance. This is particularly the case where a species is
regarded a severe quarantine concern by importing countries or regions where the
species is absent. Good examples of these are B. tryoni and C. capitata, which have
been more extensively studied than any other species (Table 6.1). The level of
interest in dispersal of B. tryoni is particularly notable considering that it is present
only in Australia and several Pacific islands. This research has been driven by the
desire of Australian producers and administrative bodies to simplify quarantine
conditions imposed by importing nations and to ensure that these conditions are
evidence-based (Dominiak 2012). It is disconcerting, however, that very little
research on dispersal has been undertaken (or at least reported in the English
literature) on tephritids of economic significance from developing economies in
Africa, Asia, and Central and South America. These regions are home to a very
large contingent of species in the genera Anastrepha, Bactrocera, Ceratitis, Dacus,
and Toxotrypana that represent considerable biosecurity risks for importing coun-
tries. However, these regions also have much to gain in terms of economic and
social development from the introduction of area-wide integrated pest management
plans for these pests. Dispersal of tephritid species in developing countries repre-
sents an important first step in devising strategies to protect pest-free areas and to
limit the spread of invasive fruit fly species, which can then increase production and
capacity to export to lucrative international markets.

3.2 Molecular Techniques

The limitations of directly measuring movement (such as MRR), coupled with the
development of molecular technologies, have resulted in the increased use of
molecular methods to infer dispersal of individuals in natural populations
(Raybould et al. 2001; Slatkin 1985; Whitlock and McCauley 1999). Molecular
marker data are often used to resolve population structure, which describes inter-
relatedness among groups of interbreeding individuals (populations) by revealing
the extent of effective gene flow, while accounting for processes such as genetic
drift, natural selection, and mutation (Bohonak 1999). Consequently, likely move-
ment patterns within the metapopulation can be inferred (e.g., sources and sinks or
range expansions and local extinctions) as gene flow is predicted, and often
demonstrated, to be positively correlated with dispersal rate (i.e., greater g