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Preface

This volume grew out of a personal interest in the Late Triassic, an interest that was 
nurtured by the realization early in my career that this roughly 30 million-year inter-
val is unique in Earth’s history. The Late Triassic saw the origination of dinosaurs 
and pterosaurs, but the near simultaneous decline of many other archosaur groups; 
it witnessed the spread of reptiles in the oceans and on land, the first appearance of 
mammals. All of this was against a backdrop of climate, tectonics, bolide impacts, 
and the eruptions of one of the largest of the Large Igneous Provinces, all of which 
made for an Earth far different from today’s world.

This collection of peer-reviewed papers, from researchers distinguished for their 
work on this time period, presents both reviews and compilations of the latest stud-
ies, as well as fresh ideas and new data. Everyone, professionals and students, 
whose work or interests intersect the Late Triassic will find this collection an essen-
tial addition to their library.

The volume begins with an overview of the Earth on which the biologic events 
played out, starting with a review by Spencer Lucas of the timescale of the Late 
Triassic, including the certainties and uncertainties of the stage boundaries. Next, 
Jan Golonka and colleagues provide a global overview of the tectonic activity of the 
period. The climate of this time, what we know, or suspect, and how we know it, is 
reviewed by Lawrence Tanner. Andrea Marzoli and colleagues provide a thorough 
description of the largest volcanic event of the entire early Mesozoic, the eruption 
of the Central Atlantic magmatic province. More than one bolide impact occurred 
during the Late Triassic, and the evidence for these, and their consequences, is dis-
cussed by Michael Clutson and colleagues.

The next section of the volume is dedicated to the marine environment. Much 
Triassic biostratigraphy depends on conodonts, and Manuel Rigo and colleagues 
propose a new Upper Triassic biozonation. Similarly, ammonoids are an essential 
tool of biostratigraphers, and Spencer Lucas reviews their biostratigraphy and key 
biotic events. The radiation of the marine reptiles during the Late Triassic is reviewed 
by Renesto and Dalla Vecchia. Finally, Tintori and Lombardo examine the diversi-
fication of actinopterygian fish through the lens of the superbly preserved fossil 
deposits in the Zorzino Limestone.
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The final portion of this collection is centered on the land environment. Spencer 
Lucas provides a review of terrestrial tetrapods, with attention to their biostratigra-
phy and key biotic events. The cynodonts and their evolutionary transition to mam-
mals are the focus of the chapter by Abdala and Gaetano. Next, Adrian Hunt and 
colleagues present a wide-ranging review of the diverse trace of fossils, both verte-
brate and invertebrate, found in nonmarine strata of the Upper Triassic. The floral 
kingdom is not ignored here; Evelyn Kustatscher and colleagues provide a global 
overview of Upper Triassic floral diversity. Next, Conrad Labandeira and colleagues 
review the diverse Molteno flora in the course of describing the record of plant- 
arthropod interactions of this time. To conclude, Lucas and Tanner give a close eye 
to the biotic decline at the end of the Triassic and the putative mass extinction that 
marks the end of this period.

In addition to the authors, who rose quite admirably to the challenge of produc-
ing these chapters, more or less on deadline, I must thank the numerous individuals 
who contributed measurably to the success of this project. One of these would have 
to be Zachary Romano, of Springer US, who invited me to consider the project and 
encouraged me as I developed the concept. Spencer Lucas, my friend and colleague 
of many years, was a major factor in bringing this project to completion, through his 
chapter contributions, chapter reviews, and suggestions regarding authors and 
reviewers. Finally, there are the many individuals I list here who agreed to lend their 
time and expertise in reviewing the chapters herein: Gloria Arratia, Sid Ash, Brian 
Axsmith, Marion Bamford, Paula Dentzian-Dias, Ezat Heydari, Mark Hounslow, 
Adrian Hunt, Jim Jenks, Julien Kimmig, Tea Kolar-Jurkovšek, Karl Krainer, Evelyn 
Kustatscher, Spencer Lucas, Michael Orchard, Rose Prevec, John Puffer, Manuel 
Rigo, Martin Sanders, Martin Schmieder, Hans Sues, Valery Vernikovsky, and 
Robert Weems.

Syracuse, NY, USA Lawrence H. Tanner 

Preface
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Chapter 1
The Late Triassic Timescale

Spencer G. Lucas

Abstract The Upper Triassic chronostratigraphic scale consists of one Series, the 
Upper Triassic, divided into three stages (in ascending order)—Carnian, Norian and 
Rhaetian. Only the base of the Carnian currently has an agreed on GSSP (global 
boundary stratotype section and point), though agreement on GSSPs for the bases 
of the Norian and Rhaetian is imminent. Substages of the Carnian and Norian pro-
vide more detailed subdivisions of Late Triassic time than do the relatively long 
Carnian and Norian stages. These substages need boundary definitions and greater 
use in Late Triassic correlations. Numerical chronology of the Late Triassic is based 
on very few radioisotopic ages from volcanic ash beds directly related to marine 
biostratigraphy. The numerical calibration of the Late Triassic favored here is 
Carnian ~220–237  Ma, Norian ~205–220  Ma and Rhaetian ~201–205  Ma. Late 
Triassic magnetostratigraphy is fraught with problems because the most complete 
record from the Newark Supergroup of eastern North America cannot be correlated 
based on pattern matching to any co-eval magnetostratigraphy from a marine sec-
tion. The long Norian (beginning at ~228 Ma) was created by magnetostratigraphic 
correlations that abandoned biostratigraphic constraints and has produced extensive 
miscorrelation, particularly of nonmarine Carnian strata. A reliable Late Triassic 
magnetostratigraphy is a succession of multichrons that identifies the Carnian-early 
Norian and late Norian-Rhaetian as dominantly of normal polarity. Late Triassic 
cyclostratigraphy of the Newark Supergroup has been advanced as a floating 
astrochronology of the Late Triassic, but is problematic given evident hiatuses in the 
Newark record and the presence of non-cyclical lithofacies. Isotope stratigraphy of 
the Late Triassic, for example the late Rhaetian carbon-isotope excursion, has great 
potential for use in Late Triassic correlations. The Late Triassic timescale is still 
very much a work in progress that needs more precise chronostratigraphic defini-
tions, additional numerical ages directly related to marine biostratigraphy, a whole-
sale rethinking of magnetostratigraphic correlations and additional cyclostratigraphic 
and isotopic data to achieve greater precision and stability.

S.G. Lucas (*) 
New Mexico Museum of Natural History and Science,  
1801 Mountain Road N. W., Albuquerque, NM 87104-1375, USA
e-mail: spencer.lucas@state.nm.us

mailto:spencer.lucas@state.nm.us
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Keywords Late Triassic • Chronostratigraphy • Radioisotopic ages • 
Magnetostratigraphy • Astrochronology • Isotope stratigraphy

1.1  Introduction

The Late Triassic was a major juncture in Earth history when the vast Pangean 
supercontinent began its fragmentation, and numerous biotic groups first evolved or 
suffered extinction on land and in the sea (e.g., Lucas 1999; Lucas and Orchard 
2004; Sues and Fraser 2010). The temporal ordering of geological and biotic events 
during Late Triassic time thus is critical to the interpretation of some unique and 
pivotal events in Earth history. This temporal ordering is based on the Late Triassic 
chronostratigraphic scale integrated with numerical ages and other geochronologic 
tools, notably magnetostratigraphy, cyclostratigraphy and isotope stratigraphy. 
Here, I review the Late Triassic timescale to highlight ongoing issues and to present 
its current status.

1.2  Some History

Recognition of a distinctive interval in Earth history (originally identified as a dis-
tinct succession of stratified rocks) that corresponds to the current concept of 
Triassic began in Germany more than 200 years ago. Alberti’s (1834) monograph in 
which he coined the term Trias culminated this early work. The 200-year-long his-
tory of the development of a Triassic relative timescale (the standard global chro-
nostratigraphic scale) has been reviewed by Zittel (1901), Silberling and Tozer 
(1968), Tozer (1984) and Lucas (2010).

Alberti’s type Triassic in southwestern Germany (Fig. 1.1) is a sandwich of dom-
inantly nonmarine red beds (Buntsandstein and Keuper) with a restricted marine 
middle portion (Muschelkalk). Already in the nineteenth century, the recognition of 
Muschelkalk-equivalent marine strata, based largely on their content of ceratites 
(ammonoids), became key to recognition of the Trias outside of Germany.

The Alps contain a relatively complete section of Triassic marine strata, so exten-
sion of the Triassic into the Alpine marine strata became central to further subdivi-
sion and correlation of Triassic time. This subdivision owes more to Austrian 
geologist Edmund von Mojsisovics (1839–1907) than to any other geologist. 
Recognition of subdivisions of Triassic time based on ammonoids by Mojsisovics 
and his collaborators produced most of the stage-level terminology of Triassic time 
still used today.

This work was culminated by Mojsisovics et al. (1895), the singlemost important 
article written on the Triassic timescale. It coined the names of most of the marine 
stages and sub-stages recognized today. This timescale was refined subsequently, 

S.G. Lucas
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especially by the addition of Bittner’s (1892) Ladinian, but remained the basic 
Triassic timescale until at least the 1960s.

Beginning in the 1960s, Canadian paleontologist E. Timothy Tozer (1928–2010), 
in part collaborating with American geologist Norman J. Silberling (1928–2011), 
assembled a Triassic timescale based on North American ammonoid zones (e.g., 
Silberling and Tozer 1968; Tozer 1971, 1974, 1984, 1994). Key components of 
Tozer’s Triassic timescale were that it defined Triassic stage boundaries based on 
North American ammonoid localities and it rejected the Rhaetian as a distinctive 
stage. During the 1970s and 1980s, Tozer’s timescale found wide acceptance in the 
English language literature on the subdivision of Triassic time, though few aban-
doned the Rhaetian (e.g., Kummel 1979; Harland et al. 1982, 1990).

Conceived in 1968, and beginning its meetings in the 1970s (Tozer 1985), the 
Subcommission on Triassic Stratigraphy (STS), as part of the International 
Commission on Stratigraphy (ICS), was primarily charged to establish a global 
Triassic timescale based on GSSP (global stratotype section and point) definitions 
of the bases of the Triassic stages (e.g., Gaetani 1996). The STS began its published 
discussion (in the STS journal Albertiana) with a lively debate over the Tozer tim-
escale—particularly over whether or not to recognize the Rhaetian as a separate 
stage, which Tozer had regarded as a substage of the Norian. After initial acceptance 
in 1984 of most aspects of the Tozer timescale, in 1991, the STS agreed on a stage 
nomenclature of the Triassic that included the Rhaetian as a separate stage (Fig. 1.2). 
To date, GSSPs in the Upper Triassic have been defined only for the bases of the 
Carnian (base of Upper Triassic Series) and the Hettangian (base of the Jurassic 
System) (Fig. 1.2).

Fig. 1.1 The Triassic world with locations of some key sections and outcrop areas discussed in the 
text. A Southern Alps/central Europe (mainly Austria and northern Italy, see Fig. 1.3), B British 
Columbia, Canada; C Chinle basin, western USA, K Keuper, Germanic basin, northern Europe 
(principally Germany), N Newark basin, NJ, Pennsylvania, USA; P Peru

1 The Late Triassic Timescale
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1.3  Upper Triassic Chronostratigraphy

1.3.1  Upper Triassic Series

The most significant thing we have learned about the Triassic timescale from 
numerical chronology is that the three traditional Triassic series are of very uneven 
duration. The traditional Early Triassic is about 5 million years long, the traditional 
Middle Triassic is about 10 million years long and the rest of the Triassic (the tradi-
tional Late Triassic) is about 36 million years long (Mundil et al. 2010; Ogg 2012; 
Ogg et  al. 2014). Thus, by numerical chronology, the Early and Middle Triassic 
together make up only about the first third of the period.

Therefore, Lucas (2013) advocated recognizing four Triassic series (epochs) of 
more even duration. Note that Mojsisovics et al. (1895) also divided the Triassic into 
four series similar to (but not exactly congruent with) those recognized by Lucas 
(2013). The four Triassic series that Lucas (2013) proposed are the (ascending order) 
Scythian, Dinarian, Carnian and Norian. The first two names are from Mojsisovics 
et al. (1895), and the last two are elevation of the very long Carnian and Norian 
stages to series rank. However, the traditional and agreed on single Upper Triassic 
Series and three stages—Carnian, Norian and Rhaetian—are used here (Fig. 1.2).

Fig. 1.2 The Triassic 
chronostratigraphic scale 
(after Lucas 2010)

S.G. Lucas
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Marine sections critical to definition of Upper Triassic chronostratigraphic sub-
divisions are primarily those in the Alps of central and southern Europe (Figs. 1.1 
and 1.3).

1.3.2  Carnian Stage

Mojsisovics (1869: 127) introduced the term Carnian Stage for ammonoid-bearing 
strata in the Austrian state of Kärnten (Carinthia). He initially and erroneously 
regarded it as younger than the Norian. Mojsisovics (1874) assigned three ammo-
noid zones to the Carnian (ascending order): Trachyceras aon, Trachyceras aonoi-
des and Tropites subbullatus zones. Later, Mojsisovics (in Mojsisovics et al. 1895) 
divided it into three substages (ascending order): Cordevolic (=Aon zone), Julic 
(=Aonoides Zone) and Tuvalic (= Subbullatus Zone).

Tozer (1984) regarded the type locality of the Carnian as vague, as it was stated 
to refer to the Trachyceras and Tropites beds of the Hallstatt Limestone, but also 
included localities at Raibl, Bleiberg and San Cassiano (Fig. 1.3). Lieberman (1980) 
proposed the Raibl section as the stratotype of the stage. Tozer (1984) and some oth-
ers have spelled the name “Karnian,” but this spelling has not been widely adopted.

Fig. 1.3 Map of Austria and adjacent areas showing localities important to Upper Triassic chro-
nostratigraphy that are discussed in the text

1 The Late Triassic Timescale
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Today, the Carnian Stage is typically divided into two substages named by 
Mojsisovics (in Mojsisovics et  al. 1895)—Julian (lower) and Tuvalian (upper). 
However, Mojsisovics (in Mojsisovics et al. 1895) also recognized a third (lower-
most) Carnian substage, the Cordevolian, still used by some workers. Based on the 
St. Cassian Beds, Cordevolian derives its name from the Cordevol people who lived 
in the type area in northern Italy (Mojsisovics et al. 1895: 1298). Krystyn (1978) 
discussed the original definition of the Cordevolian and argued that it essentially 
referred to the same time interval as the Julian (also see Tozer 1967, 1974).

The Julian was based on the Raibl Formation in the Julian Alps (southern Alps) 
by Mojsisovics (in Mojsisovics et al. 1895: 1298), and has come to be viewed by 
most workers as the lower Carnian (cf. Krystyn 1980; Tozer 1984, 1994; Lucas 
2010) (Fig.  1.2). Mojsisovics (in Mojsisovics et  al. 1895: 298) took the name 
Tuvalian from the Tuval Mountains (Bavaria-Austria), which was the Roman name 
for the area between Hallein and Berchtesgarden in Austria-Germany. He based it 
on the Tropites subbullatus ammonoid zone. Krystyn and Schlager (1971) sug-
gested using the section at Feuerkogel near Aussee, Austria, as the Tuvalian strato-
type as well as the place to define the base of the Norian, in large part because the 
original ammonoids of Mojsisovic’s stratotype Tuvalian came from syntectonic fis-
sure fills at Rappolstein. The term Tuvalian has come to be used by most workers to 
refer to the entire upper Carnian (e.g., Krystyn and Schlager 1971; Tozer 1984, 
1994; Lucas 2010) (Fig. 1.2).

A GSSP for the base of the Carnian Stage (= base of the Upper Triassic) has been 
agreed on (Gaetani 2009). It is the LO (lowest occurrence) of the ammonoid 
Daxatina canadensis (Whiteaves) at the Parti di Stuores/Stuores Wiesen section in 
northern Italy (Mietto et al. 2007a, b, 2012; Jenks et al. 2015) (Fig. 1.3).

With regard to ammonoid bioevents (Balini et al. 2010; Jenks et al. 2015; Lucas 
2017 this volume), the Julian is dominated by Trachyceratinae, in particular 
Trachyceras and Austrotrachyceras, and by Sirenitinae. The base of the Tuvalian is 
marked by one of the major changes in the evolution of Triassic ammonoids, namely 
the near extinction of the Trachyceratinae, whose only survivor in the late Carnian 
is Trachysagenites, as well as the radiation of Tropitidae (e.g., Tropites and closely 
allied forms) and to a lesser extent Arpaditinae. Among the conodonts, the develop-
ment of Metapolygnathus from Paragondolella and the diversification of 
Mesogondolella species marks the base of the Carnian (Orchard 2010).

1.3.3  Norian Stage

Mojsisovics (1869: 127) named the Norian Stage for the Roman province of Noria, 
which was south of the Danube and included what is now the area of Hallstatt, Austria. 
He based the stage on the Hallstatt Limestone of the Salzkammergut in Austria, strata 
containing “Ammonites” (Pinacoceras) metternichi Mojsisovics (Tozer 1984). 
Mojsisovics originally thought the Norian was between the “Alpine Muschelkalk” 
and the Carnian. When that mistake was discovered, Mojsisovics (1892) moved the 
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term Norian to refer to pre-Carnian Hallstatt strata and named the Juvavian Stage, 
which is now regarded as synonymous with the Norian. This caused an acrinomius 
debate with fellow Austrian geologist Bittner (1892), who argued to retain Norian as 
originally defined and proposed Ladinian to refer to the time interval before the 
Carnian (Zittel 1901: 494–497; Tozer 1984). Adding further to the confusion, 
Mojsisovics also provided no type section for the Juvavian, but instead referred to a 
succession of ammonoid zones (Mojsisovics 1902), a succession critiqued by Kittl 
(1903) and Diener (1921, 1926).

The stratotype of the Norian has been considered to be the Bicrenatus Lager at 
Sommeraukogel, Hallstatt (Zapfe 1971; Krystyn and Schlager 1971; Krystyn et al. 
1971) (Fig.  1.3). The Norian is generally divided into three substages: Lacian 
(early), Alaunian (middle) and Sevatian (upper).

Mojsisovics (in Mojsisovics et al. 1895: 1298) used the term Lacian to refer to 
the “lower Juvavian.” He took the name from the Roman name Lacia, which referred 
to the Salzkammergut area in Austria, and based it on the Cladiscites ruber and 
Sagenites giebeli ammonoid zones of the Hallstatt Limestone. As Tozer (1974) 
stressed, technically the Lacian was based on upper Norian ammonoids, so it is not 
a designation for the lower Norian, as it is now recognized. However, this technical-
ity has been largely ignored, and Lacian is frequently used to refer to the lower 
Norian substage (Fig. 1.2).

Mojsisovics (in Mojsisovics et al. 1895: 1298) named the Alaunian substage for 
the Alauns, a people who lived around the Hallein, Austria area during Roman 
times. He based it on what is now the Cyrtopleurites bicrenatus ammonoid zone, 
and it is well accepted as the name of the middle Norian substage.

Mojsisovics (in Mojsisovics et al. 1895: 1298) named the Sevatian substage for 
a Celtic people who lived between the Inn and Enns Rivers in Austria. It was based 
on the Pinacoceras metternichi and Sirenites argonautae ammonoid zones in the 
Hallstatt area. The term is used by many workers to refer to the upper Norian, 
though Tozer (1974, 1984), who did not recognize the Rhaetian, did not use it. 
Problems with the Sevatian have largely been associated with defining a Rhaetian 
base.

The base of the Norian Stage will likely be defined by a GSSP located either at 
Black Bear Ridge in British Columbia, Canada or at Pizzo Mondello in Sicily 
(Fig. 1.1), and it probably will be based on a conodont event close to the base of the 
Stikinoceras kerri ammonoid zone, which has been the traditional Norian base in 
North American usage (Orchard 2010, 2013, 2014). Both candidate sections have 
relatively poor ammonoid records but good conodont records. However, the choice 
of a conodont-based GSSP for the Norian base has been delayed for years by chang-
ing stratigraphic ranges and the fluid taxonomy of the relevant conodonts (e.g., 
Mazza et al. 2010, 2011, 2012; Orchard 2010, 2013, 2014).

The base of the Norian and of the Lacian is characterized by major ammonoid 
biochronological events (Balini et al. 2010; Jenks et al. 2015; Lucas 2017, this vol-
ume): the nearly complete disappearance of Tropitidae and the appearance of new 
members of Juvavitinae, such as Guembelites and Dimorphites, and of the 
Thisbitidae, such as Stikinoceras. The base of the Alaunian is marked by the appear-
ance of new genera of Cyrtopleuritidae (Drepanites and Cyrtopleurites). Members 
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of this family (including Himavatites, Mesohimavatites, Neohimavatites), together 
with some Haloritinae, such as Halorites, and Thisbitidae, such as Phormedites, 
characterize the Alaunian. The base of the Sevatian is characterized by a decrease in 
ammonoid diversity and the first heteromorphic ammonoid, Rhabdoceras. Common 
Sevatian ammonoids are Haloritinae (Gnomohalorites and Catenohalorites) and 
Sagenitidae (Sagenites ex gr. S. quinquepunctatus Mojsisovics).

Among conodonts, there is a turnover in Metapolygnathus species that has been 
used to mark the base of the Norian (Orchard 2010).

1.3.4  Rhaetian Stage

Gümbel (1859, 1861: 116) used the term “Rhätische Gebilde” to refer to the upper-
most Triassic strata (Kössen beds) in the Bavarian Alps. The name was either for the 
Roman province of Rhaetium or the rätische Alpen. No type locality was specified, 
but Gümbel did refer to the “Schichten der Rhaetavicula contorta” (beds with the 
bivalve R. contorta). Thus, to Mojsisovics et al. (1895), the Rhaetian was the “Zone 
der Avicula contorta.”

Lengthy debate about the Rhaetian (e.g., Pearson 1970; Ager 1987; also see 
above) has focused on three issues: (1) whether or not the stage should be assigned 
to the Jurassic; (2) whether or not the stage should be recognized or just subsumed 
into the Norian; and (3) how to define the Rhaetian base.

The Subcommission on Triassic Stratigraphy now recognizes a distinct Rhaetian, 
which is the youngest Triassic stage (Fig. 1.2). The currently favored definition of 
the Rhaetian base is the FAD (first appearance datum) of the conodont Misikella 
posthersteini (Krystyn 2010).

In about 2007, the proposed definition of a GSSP for the base of the Rhaetian 
was at the classic Steinbergkogel section near Hallstatt in Austria based on the FAD 
(first appearance datum) of the conodont Misikella posthernsteini (Krystyn et al. 
2007a, b). The favored definition of the Rhaetian base has as its primary signal the 
FAD of the conodont Misikella posthernsteini. This produces a so-called “long” 
Rhaetian composed of two or three ammonoid zones. The youngest substage of the 
Norian, the Sevatian, is thereby reduced to one ammonoid zone. However, after 
2007, the formal proposal to ratify the base Rhaetian GSSP at Steinbergkogel never 
went to the International Commisssion on Stratigraphy.

Some would say that was a fortunate delay, as Giordano et al. (2010) and Rigo 
et al. (2016) concluded that the LO (lowest occurrence) of Misikella posthernsteini 
is actually younger at Steinbergkogel than it is in the section they studied in the 
Lagonegro basin in northern Italy, though the taxonomy of M. posthernsteini may 
also be an issue. Thus, the LO of M. posthernsteini at Steinbergkogel is not the FAD 
(first appearance datum) of the species. Currently, the Pignola section in the 
Lagonegro basin is also proposed as the GSSP location for the base of the Rhaetian 
(Giordano et al. 2010; Rigo et al. 2016; Bertinelli et al. 2016; Casacci et al. 2016).
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The appearance of the heteromorphy ammonoids Cochloceras and 
Paracochloceras marks the Rhaetian base among ammonoid bioevents (Balini et al. 
2010; Jenks et al. 2015; Lucas 2017 this volume). A substantial drop in diversity of 
conodonts characterizes the Rhaetian, and the appearances of Epigondolella 
mosheri and Misikella posthersteini, though not co-eval, approximately mark its 
base (Orchard 2010).

The base of the Hettangian Stage (= base of the Jurassic, = base of the Lower 
Jurassic) is defined by the FAD of the ammonoid Psiloceras spelae at the Kuhjoch 
section in Austria (2013). This, of course, defines the top of the Rhaetian (= top of 
Triassic, = top of Upper Triassic).

1.3.5  Other Upper Triassic Chronostratigraphic Scales

Current stratigraphic practice seeks to recognize a single global stage for each inter-
val of time, and each series and system base corresponds to the base of a stage. 
Furthermore, the definition of stages is now based on the GSSP concept and the 
practice of integrated stratigraphy that applies multiple data sets to the definition of 
chronostratigraphic units (e.g., Salvador 1994; Remane et  al. 1996; Walsh et  al. 
2004; Smith et al. 2015). However, the provinciality of fossil taxa compounded by 
limitations of facies distributions (rarely is any taxon or facies global in extent) have 
often prevented universal recognition and use of a single chronostratigraphic termi-
nology. Indeed, there remains great value in provincial stages, which Cope (1996) 
has aptly called the “secondary standard” in stratigraphy.

The Triassic has a variety of secondary standards, including that for New 
Zealand—(ascending) Oretian, Otamitan, Warepan and Otapirian stages encompass 
the Upper Triassic (e.g., Carter 1974). Here, I do not review these provincial scales, 
but note that their regional utility will guarantee their continued use.

1.4  Radioisotopic Ages

Ogg (2004, 2012), Mundil et al. (2010) and Ogg et al. (2014) reviewed the Late 
Triassic numerical timescale (Fig. 1.4). A precise and detailed numerical timescale 
does not yet exist for the Late Triassic because of the rarity of datable volcanic ash 
beds that can be correlated unambiguously to marine biostratigraphy.

The few ages that meet those criteria, and that have been published in full, are: 
(1) various U-Pb ages on ash beds in marine Ladinian strata that indicate the base of 
the Carnian is no older than 237 Ma (Mundil et al. 2010; Stockar et al. 2012; Ogg 
et al. 2014); (2) a U-Pb single zircon age of 230.9 ± 0.3 Ma on an ash bed in Italy 
within the upper Carnian (Tuvalian) Metapolygnathus nodosus conodont zone 
(Furin et al. 2006); (2) U-Pb ages of 205.70 ± 0.15 Ma and 205.30 ± 0.14 Ma on ash 
beds that bracket the base of the Rhaetian (picked largely on the disappearance of 
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the bivalve Monotis) in Peru (Wotzlaw et al. 2014); and (3) another ash bed in the 
Peruvian section that yields a U-Pb age of 201.36 ± 0.17 Ma that is just below the 
LO of Psiloceras spelae, and thus just below the base of the Jurassic (Schaltegger 
et al. 2008; Schoene et al. 2010; also see the detrital zircon ages of Rhaetian strata 
in western Canada reported by Golding et al. 2016). Most of the other numerical 
ages being used to calibrate the Late Triassic timescale are detrital zircon ages, 
which means they are from reworked zircon grains, and thus provide maximum 
ages of deposition at best.

Fig. 1.4 Some Late Triassic numerical timescales of the last 20 years
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Lucas et al. (2012) reviewed these detrital zircon ages, which are mostly from the 
Upper Triassic Chinle Group, nonmarine fluvial strata in the American Southwest 
(Fig. 1.5). They also reviewed some other, non-detrital ages, such as those from the 
Carnian Ischigualasto Formation in Argentina (Rogers et al. 1993; Shipman 2004; 
Currie et al. 2009; Martínez et al. 2013; Kent et al. 2014). Using the biostratigraphy 
of palynomorphs, conchostracans and vertebrate fossils advocated by Lucas et al. 
(2012, and references therein), the lower part of the Chinle Group is Carnian, with 
the base of the Norian close to the base of the Sonsela Member of the Petrified 
Forest Formation and its correlatives. The Chinle Group detrital zircon ages 
(Fig. 1.5) indicate that the inferred base of the Norian (~ base of Sonsela Member) 
is no older than about 220–222 Ma, and the other ages reviewed by Lucas et al. 
(2012) are either consistent with that conclusion or are unreliable.

Since the review of Lucas et al. (2012), only a few numerical ages relevant to the 
age of the Norian base have become available. Thus, in an abstract, Diakow et al. 
(2011) reported a U-Pb age of 224.52 ± 0.22 Ma from a tuff below early middle 

Fig. 1.5 Summary of most of the Chinle Group detrital zircon ages placed on a generalized  
Chinle lithostratigraphy of the Petrified Forest National Park in Arizona. Sources of numerical 
ages are primarily Ramezani et al. (2011, 2014). Note that stratigraphic position, supported by 
biostratigraphy, indicates the age of the Placerias quarry reported by Ramezani et al. (2014) is 
younger than stratigraphically higher ages
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Norian conodonts and 223.81 ± 0.78 Ma from a tuff below early Norian conodonts. 
These ages suggest a Norian base older than 223 Ma, but remain to be fully docu-
mented. Indeed, given that the two ages repoported by Diakow et al. (2011) are out 
of order (older above younger), the reliability of these ages may be questioned.

Atchley et al. (2013) reported two detrital zircon U-Pb ages from Chinle Group 
strata in Arizona—227.604  ±  0.082  Ma at about the base of the Chinle Group 
(Carnian by the Lucas et al. 2012 correlation) and 220.124 ± 0.068 Ma from a strati-
graphic level close to the Carnian-Norian boundary using the Lucas et al. (2012) 
correlation. These ages are concordant and consistent with Chinle Group detrital 
zircon ages reported by Ramezani et al. (2011) (see Ramezani et al. 2014, Fig. 2) 
and suggest a Norian base no older than about 220–222 Ma.

However, a U-Pb age recently reported from Chinle Group strata in eastern 
Arizona by Ramezani et al. (2014) is not consistent with the earlier published ages. 
This is an age of 219.39 ± 0.16 Ma from near the base of the Chinle Group at the 
Placerias fossil locality in Arizona. Stratigraphic position puts this age well below 
a series of ages in the 220–227 Ma range reported by Ramezani et al. (2011) and 
Atchley et al. (2013). To explain this contradiction, Ramezani et al. (2014) claim 
massive lateral facies changes in the lower Chinle lithosome, and even conclude that 
“geochronological correlation independent of conventional stratigraphic methods 
[lithostratigraphy, biostratigraphy] is the only viable means for deciphering the 
depositional history of rock similar to the Chinle Formation” (p.  995). I prefer 
instead to rely on a century of geologic mapping, detailed lithostratigraphic analysis 
and the biostratigraphy of palynomorphs, conchostracans and vertebrates (e.g., 
Heckert and Lucas 2002 and references cited therein, particularly Darton 1910, 
1928; Cooley 1957; Stewart et al. 1972) that demonstrates that the Placerias quarry 
numerical age of Ramezani et  al. (2014) is stratigraphically below many older 
numerical ages. The Placerias quarry age is thus anomalously young, possibly due 
to postcrystallization lead loss.

Very recently, Kohút et al. (2017) published the ages of syn-sedimentary volca-
nic zircons from the Carnian of Slovakia that have a concordia age of 221.2 ± 1.6 Ma. 
This also runs contrary to the “long Norian” having a base as old as 227–228 Ma.

In summary, numerical ages can be assigned to the Upper Triassic stage bound-
aries with varying degrees of precision (Fig. 1.4; also see Mundil et al. 2010; Lucas 
et al. 2012; Ogg et al. 2014). However, more numbers on primary ash fall deposits 
that can be correlated unambiguously to marine biostratigraphy are needed to 
resolve current uncertainties and contradictions among datasets.

1.5  Magnetostratigraphy

There is no agreed GPTS (global polarity timescale) for the Triassic, although a 
composite GPTS is now becoming available based on successions assembled from 
marine and nonmarine sections in North America, Europe, and Asia. Hounslow and 
Muttoni (2010) provided a comprehensive review of Triassic magnetic polarity 
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history. I rely on this review and some more recent data and reappraisals (e.g., Lucas 
et  al. 2011, 2012) and also emphasize the multichron concept of Lucas (2011), 
which recognizes intervals of dominant polarity rather than individual polarity 
chrons. The reason for this is that we are a long way from a well-established succes-
sion of Triassic polarity chrons that can receive numbers (or names), like those of 
the Late Cretaceous-Cenozoic GPTS. We do, however, at least seem to know the 
polarity of each of the Triassic stage boundaries and the dominant polarity of the 
stages with some confidence (Hounslow and Muttoni 2010).

One of the largest hindrances to developing a Triassic GPTS is the polarity record 
of the Newark Supergroup of eastern North America, which has confounded all 
attempts to correlate it to other Late Triassic magnetostratigraphic records (Fig. 1.6). 
The Newark Supergroup is the thick (up to 4.5 km) succession of nonmarine sedi-
mentary and intercalated igneous rocks of Triassic and Jurassic age that filled a 
series of half-graben extensional basins that developed along the eastern seaboard 
of North America as Pangea began to fragment (e.g., Manspeizer et  al. 1978; 
Froehlich and Olsen 1984; Manspeizer 1988; Olsen 1997; Weems et  al. 2016) 
(Fig.  1.1). A complete Newark magnetostratigraphy, obtained from overlapping 
drill cores in the Newark basin of New Jersey-Pennsylvania, USA, is arguably the 
single most complete record of Late Triassic magnetic polarity history available 
(Fig. 1.6).

Given the great thickness of the Newark section (~ 4 km of section is equivalent 
to much of the Late Triassic), it likely captures a more complete polarity history than 
do the much thinner marine sections in Europe for which a magnetic polarity record 
is available. That, however, is the only thing to recommend the Newark magnetic 
polarity record, because age control of this record is highly problematic. For decades, 
the Triassic-Jurassic boundary was located incorrectly in the Newark, below the 
CAMP basalt sheets; this has only recently been corrected (Kozur and Weems 2005, 
2007, 2010; Lucas and Tanner 2007; Cirilli et al. 2009; Lucas et al. 2011).

Biostratigraphic placement of the Carnian-Norian boundary in the Newark (near 
the base of the Passaic Formation) is one of the few tiepoints to the SGCS and is 
based on reinforcing correlations from palynomorphs, conchostracans and verte-
brate biostratigraphy (Lucas et al. 2012). Abandonment of this boundary was based 
on an unsupportable correlation of magnetostratigraphy in the marine section at 
Pizzo Mondello in Italy with the Newark and, coupled with a supposed 
astronomically- calibrated timescale based on Newark cyclostratigaphy, created the 
proposal that the Carnian-Norian boundary is at about 228 Ma, the so-called “long 
Norian” (Muttoni et al. 2004). Correct placement of the Carnian-Norian boundary 
in the Newark section means it and the beginning of the Jurassic are the only reli-
able biostratigraphic tiepoints for the Newark magnetic polarity stratigraphy. 
Placement of any subdivisions of the Carnian and Norian, including identification 
of the base of the Rhaetian, are currently impossible in the Newark section.

From its initial publication, no convincing correlation of the Newark magneto-
stratigraphy to broadly correlative magnetostratigraphies could be made, simply 
because it contains approximately 10 times the number of reversals found in cor-
relative marine sections (Fig. 1.6). Indeed, alternative correlations of the Newark 
magnetostratigraphy to a GPTS for the Late Triassic based on marine sections are at 
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best multichron matches, not detailed correlations of chrons (Hounslow and Muttoni 
2010, Fig.  12). Given what I call the rubber ruler effect—sedimentation rate 
stretches or contracts magnetic polarity chron thicknesses so that matching patterns 
can be difficult—and the lack of biostratigraphic tiepoints, how could any unam-
biguous correlation of the Newark magnetostratigraphy be made to other polarity 

Fig. 1.6 Magnetostratigraphic correlations of the Pizzo Mondello (Sicily) and Newark (USA) 
sections. On the left, the correlation matches the marine and nonmarine, biostratigraphically- 
determined Carnian-Norian boundary. On the right is the “pattern matched” correlation of Muttoni 
et al. (2004), which became the basis of the “long Norian” (after Lucas et al. 2012)
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stratigraphies? And, why use the Newark polarity history as the standard column for 
the Late Triassic if nothing else can be correlated to it? Indeed, attempts to correlate 
the Newark polarity record to broadly co-eval records have produced a fractious 
literature with little agreement on what correlations are reliable. Both Hounslow 
and Muttoni (2010) and Ogg (2012) have presented the “Solomenesque” solution of 
advocating at least two correlations (“long Carnian” and “long Norian”), neither of 
which is defensible (Lucas et al. 2012).

More recent problems with attempting to pattern match the magnetostratigraphy 
of Rhaetian marine sections to the Newark section are well revealed by Muttoni 
et  al. (2010), Hüsing et  al. (2011) and Maron et  al. (2015). Thus, Hüsing et  al. 
(2011) present the magnetostratigraphy of the Rhaetian section at Steinbergkogel, 
Austria (it is mostly of reversed polarity) and match the Rhaetian base to the E16n 
chron in the Newark magnetostratigraphy. Using the astrochronology of the Newark 
section of Kent and Olsen (1999), they assign the Rhaetian base an age of ~211 Ma. 
Muttoni et al. (2010) report the magnetostratigraphy of Rhaetian marine sections in 
the southern Alps of northern Italy. The polarity patterns (mostly normal polarity) 
of these sections are very different from that reported by Hüsing et  al. (2011). 
Muttoni et al. (2010) pattern match their results to the Newark magnetostratigraphy 
to correlate the Rhaetian base to the E17r-E19r interval of the Newark, which is in 
the range of 207–210 Ma according to the Newark astrochronology. In contrast, 
Maron et al. (2015) honor a Rhaetian base at ~205 Ma in their attempt to correlate 
the magnetostratigraphy of Rhaetian strata in the Lagonegro basin of Italy. However, 
there is no clear pattern match of the Newark magnetostratigraphy to the magneto-
stratigraphies of the Italian and Austrian sections, as is clear from Maron et  al. 
(2015, Fig. 1.6).

The Late Triassic magnetic polarity timescale I advocate is a set of multichrons 
(Fig. 1.7). This is a realistic abstraction of what we now know about the Late Triassic 
GPTS. The obvious way forward in advancing Late Triassic magnetostratigraphy is 
to ignore the Newark record for the time being and improve the GPTS for the Late 
Triassic based on marine sections (cf. Hounslow and Muttoni 2010). This still faces 
the problem that if the Newark polarity record is more complete than the marine 
records, then the marine sections must contain substantial hiatuses. Much more 
needs to be understood about Late Triassic magnetic polarity history to make it an 
important part of Triassic correlation and timescale definition.

1.6  Cyclostratigraphy

At present, a cyclostratigraphy-based numerical timescale, called the astronomical 
timescale (ATS), is reasonably well-established for much of Cenozoic time. Older 
parts of the timescale have less complete, disconnected cyclostratigraphies that have 
been referred to as “floating astrochronologies” (e.g., Hinnov and Ogg 2007). The 
Newark Supergroup strata in the Newark basin have an inferred cyclostratigraphy 
that has been proposed as one such floating astrochronology capable of providing a 
high resolution geochronometry for most of the Late Triassic and the older part of 
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the Early Jurassic (Olsen and Kent 1996; Olsen et al. 1996, 2011; Kent and Olsen 
1999; Olsen and Whiteside 2008; Ogg 2012; Kent et al. 2017).

Thus, spectral analyses of apparent cyclicity of Triassic-Jurassic strata in the 
Newark basin have been used to generate peak recurrence intervals within the 
sequence. When calibrated to sedimentation rates derived from varve counts in 
lacustrine mudstones, these recurrence intervals yield cycles inferred to correspond 

Fig. 1.7 A Late Triassic timescale
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to orbital forcing at basic precession, eccentricity and long eccentricity frequencies. 
Consequently, the Newark basin cyclostratigraphy has been proposed as a floating 
astrochronology capable of providing a continuous high resolution geochronometry 
for most of the Late Triassic and part of the Early Jurassic.

Orbitally-forced cyclicity does appear to be the dominant control of some por-
tions of the Newark basin section. But, the application of the Newark basin 
cyclostratigraphy as chronostratigraphy requires that the stratigraphic record is 
complete (no substantial erosional or depositional gaps exist) and cyclical through-
out. Several lines of evidence indicate that these requirements are not met (Tanner 
and Lucas 2015). Outcrop and core data demonstrate that portions of the Newark 
Basin stratigraphic section are non-cyclic, particularly in the fluvial-dominated 
strata of the upper Passaic Formation and the Stockton Formation. Correlation of 
available biostratigraphic data, including both pollen and conchostracan zones 
between the Newark Supergroup and the Germanic Keuper, indicates that most of 
Rhaetian and a portion of late Norian time is not represented by sediment in the 
Newark basin and elsewhere in the Newark Supergroup (Kozur and Bachmann 
2005, 2008; Kozur and Weems 2005, 2007, 2010; Weems and Lucas 2015; Weems 
et al. 2016). This suggests that at least 3 million years of Late Triassic time are not 
recorded by strata in the Newark Basin.

Indeed, the inability of the Newark cyclostratigraphy to locate and date the base of 
the Rhaetian or to produce a numerical age for the base of the Norian compatible with 
independently derived constraints demonstrate that the Newark Basin cyclostratigra-
phy is not a valid “floating astrochronology.” At best, only the middle late Carnian 
through early late Norian interval, about 10 my in duration, may be sufficiently com-
plete to be useful for astrochronological purposes (Tanner and Lucas 2015).

Ikeda and Tada (2014) have presented another “floating astrochronology” for the 
Triassic-Early Jurassic based on bedded cherts in Japan that they claim record a range 
of orbitally-forced cycles. They refer to this as the Inuyama ATS, principally tuned by 
405-kyr eccentricity cycles and anchored to the end-Triassic radiolarian extinction to 
which they assign a numerical age of 201.4 ± 0.2 Ma. However, this astrochronology 
is questionable. As an example, Ikeda and Tada (2014) claim that their astrochronol-
ogy establishes a Rhaetian base (identified as close to the LO of the conodont 
Epigondolella and of the radiolarian Betraccium deweveri: Carter and Orchard 2007) 
close to 210 Ma, which conflicts with what appear to be reliable radioistopic ages that 
make it much younger, close to 205 Ma. Similarly, the Inuyama ATS supposedly sup-
ports the long Norian with its base close to 228 Ma. Instead, the presentation of the 
cyclostratigraphy of the Japanese bedded cherts is very incomplete and not convinc-
ingly tied to Milankovitch cycles, which may explain its evident inaccuracy as an ATS.

1.7  Isotope Stratigraphy

Determination of the history of fluctuations in isotopic values in stratigraphic suc-
cessions—isotope stratigraphy or chemostratigraphy—is increasingly important in 
the Triassic (Tanner 2010; Ogg 2012; McArthur et al. 2012; Saltzman and Thomas 
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2012). In order to create a usable isotope stratigraphy the isotopic history of multi-
ple sections with well established ages needs to be obtained so that local effects can 
be ruled out and a global pattern can be established. At present, such data are being 
established in parts of the Triassic for carbon and strontium isotopes. In the Late 
Triassic, only the late Rhaetian negative excursion of carbon has been verified in 
multiple sections with good age constraints and thus is of value to correlation (Lucas 
et al. 2007).

The most widely studied isotope has been δ13C, and, indeed, the carbon isotope 
record for the Triassic System is now known generally, and, in some parts of the 
Triassic, it has been established in some detail. Relative isotopic stability character-
izes much of the Middle and Upper Triassic, with pronounced negative excursions 
in the early Carnian and late Rhaetian that have been linked to significant biotic 
turnover (e.g., Korte et al. 2005; Dal Corso et al. 2012). A brief positive excursion 
of δ13C at the Norian-Rhaetian boundary coincides with an extinction of deep water 
invertebrates (Sephton et al. 2002; Rigo et al. 2016). Some workers have considered 
the late Rhaetian carbon isotope excursion to be at the Triassic-Jurassic boundary 
(for example, McElwain et al. 2007), but it is actually well constrained in various 
sections as a late Rhaetian event (Lucas et al. 2007; von Hillebrandt et al. 2013).

General trends in the fluctuation in 87Sr/86Sr ratios have also been established for 
the Late Triassic (e.g., Korte et al. 2003; McArthur et al. 2012; Tackett et al. 2014). 
The strontium isotope stratigraphy shows an early Carnian minimum, and a peak in 
the late Norian followed by a fall during the Rhaetian.

The construction of reliable global carbon and strontium isotope curves for the 
Late Triassic is thus well underway. These curves, with judicious calibration, should 
become an increasingly important tool for Late Triassic correlation. However, iso-
tope curves, like magnetostratigraphy, are not independent correlation tools and 
always need to be tied to biostratigraphic or radioisotopic data in order to be of 
value in correlation.

1.8  Conclusion: A Late Triassic Timescale

The Late Triassic timescale presented here (Fig. 1.7) incorporates the traditional 
chronostratigraphic subdivisions. Numerical age control of the bases of the Carnian, 
Rhaetian and Hettangian stages is relatively good, but the numerical age of the base 
of the Norian remains open to discussion. The magnetostratigraphic record is a 
series of multichrons that identify the Carnian, early Norian and late Norian- 
Rhaetian as dominantly of normal polarity. Ammonoid bioevents that could poten-
tially define stage and substage bases are indicated.

This review demonstrates that the Late Triassic timescale is still very much a 
work in progress. Greater precision and stability needs more precise chronostrati-
graphic definitions, additional numerical ages directly related to marine biostratig-
raphy, a wholesale rethinking of magnetostratigraphic correlations and additional 
cyclostratigraphic and isotopic data.
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Chapter 2
Late Triassic Global Plate Tectonics

Jan Golonka, Ashton Embry, and Michał Krobicki

Abstract The Late Triassic was the time of the Early Cimmerian and Indosinian 
orogenies that closed the Paleotethys Ocean, which occurred earlier in the Alpine- 
Carpathian- Mediterranean area, later in the Eastern Europe-Central Asia and latest 
in the South-East Asia. The Indochina Southeastern Asian and Qiangtang plates 
were sutured to South China. The new, large Chinese-SE Asian plate, including 
North and South China, Mongolia and eastern Cimmerian plates, was consolidated 
by the end Triassic, leaving open a large embayment of Panthalassa, known as 
Mongol-Okhotsk Ocean, between Mongolia and Laurasia,. The Uralian Orogeny, 
which sutured Siberia and Europe continued during Late Triassic times and was 
recorded in Novaya Zemlya. The onset of Pangaea break-up constitutes the main 
Late Triassic extensional event. Continental rifts originating then were filled with 
clastic deposits comprising mainly red beds. The pulling force of the north-dipping 
subduction along the northern margin of Neotethys caused drifting of a new set of 
plates from the passive Gondwana margin, dividing the Neotethys Ocean. Carbonate 
sedimentation dominated platforms on the Neotethys and Paleotethys margins as 
well as the Cimmerian microplates. Synorogenic turbidites and postorogenic molas-
ses were associated with the Indosinian orogeny. The late stages of the Uralian 
orogeny in Timan-Pechora, Novaya Zemlya and eastern Barents regions filled the 
foreland basin with fine-grained, molasse sediments. Siliciclastics were common in 
the Siberia and Arctic regions. The widespread, large magnitude, base-level changes 
of the Late Triassic are interpreted as an expression of relatively rapid and substan-
tial changes in the horizontal and vertical stress fields that affected the Pangaea 
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supercontinent. Such stress changes may be due to abrupt changes in the speed and/
or direction of plate movements, which episodically affected Pangaea.

Keywords Paleogeography • Plate tectonics • Paleoenvironment • Paleolithofacies 
• Paleoclimate • Sea level changes

2.1  Introduction

The Triassic maps used here (Figs. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8) were 
derived from a series of global and regional Phanerozoic paleogeographic and plate 
tectonic maps which depicted present day coastlines, plate boundaries (sutures), 
selected transform faults, spreading centers, rifts, normal and thrust faults as well as 
paleoenvironment and lithofacies (Golonka 2000, 2002, 2007a, b, 2011; Golonka 
et al. 2003a, 2006a,b). Also included is a corrected and improved version of the 
Triassic maps previously presented (Golonka 2007a, b). The base maps, (past posi-
tion of present day coastlines and plate boundaries) were generated by PLATES, 
PALEOMAP and GPLATES computer software (see Sect. 1.2). The definitions of 
mapped time slices were presented by Golonka and Kiessling (2002), however, 
recently the simple stratigraphic “Late Triassic” slice was used (Golonka 2007a, b). 
The name “Triassic” was derived from the German Trias defined by von Alberti 
(1834), referring to the division of the period into three stages: the Buntsandstein, 
Muschelkalk, and Keuper (see Köppen and Carter 2000; Feist-Burkhardt et  al. 
2008; Scheck-Wenderoth et  al. 2008; McKie and Williams 2009 and references 
therein). This sequence is valid for Central Europe (Germany, Poland), but causes 
many problems when applied to other regions. The global Late Triassic (Ogg et al. 
2016) is now divided into the Carnian, Norian and Rhaetian ages (Fig. 2.9). For the 
environment and facies assembly we used two units, applying the methods used for 
the Phanerozoic reefs map (Kiessling and Flügel 1999) and also presented by 
Golonka (2007a, b). The base maps (Figs. 2.1 and 2.2) depict the configuration of 
land masses, rifts, spreading centers and subduction and the beginning (Fig. 2.1) 
and end (Fig.  2.2) of the Late Triassic. The paleoenvironments and lithofacies 
(Figs. 2.3, 2.4, 2.5, 2.6, 2.7 and 2.8) represent the whole of the Late Triassic Epoch. 
They are posted on the 224 Ma base maps.

2.2  Methods

The Phanerozoic maps were constructed using a plate tectonic model that describes 
the relative motions between approximately 300 plates and terranes (Golonka 
2000). This model was originally constructed using PLATES and PALEOMAP 
software, later the GPLATES program was used (see the detailed reconstruction 
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methodology in Golonka et al. 2003b. The rotation file was presented in Golonka 
(2007a), and is shown in the appendix of that paper.

We modified this model using new paleomagnetic data, especially in the Tethys 
and Arctic areas (Kravchinsky et al. 2002; Hounslow and Nawrocki 2008; Kovalenko 
2010; Metelkin et al. 2011, 2012; Uno et al. 2011; Domeier et al. 2012; Choulet 
et al. 2013; Vernikovsky et al. 2013; Wang et al. 2013; Song et al. 2015; Huang and 
Opdyke 2016; Li et al. 2016a, b; Zhou et al. 2016). We left the position of the major 

NORTH
AMERICA

GREENLAND

IBERIA
APULIA

GREECE

ARABIA

AFRICA

AUSTRALIA

INDOCHINA

SOUTH CHINA

NORTH CHINA
IRAN

SOUTH
AMERICA

E U R A S I A

INDIA

SIBERIA

KAZAKHSTAN

NEOTETHYS

LHASA

MALAYSIA

JAPAN

NEW GUINEA

INDONESIA

MONGOLIA

EAST ANTARCTICA
WEST ANTARCTICA

CHUGACH
ALEXANDER

STIKINE

YUKON CHUKOTKA
NORTH SLOPE

TARIM

P A N G E A

OMOLON

PANTHALASSA

3

1 2

4 5

0

30S

60S

60N

30N

0 4000
kilometers

Fig. 2.1 Global plate tectonic map of Late Triassic at 224 Ma ago. Molweide Projection. (1) oce-
anic spreading center and transform faults, (2) subduction zone, (3) thrust fault, (4) normal fault, 
(5) transform fault

NORTH
AMERICA

GREENLAND

IBERIA
APULIA

GREECE

ARABIA

AFRICA

AUSTRALIA

INDOCHINA

SOUTH CHINA

NORTH CHINA
IRAN

SOUTH
AMERICA

E U R A S I A

INDIA

SIBERIA

KAZAKHSTAN

NEOTETHYS

LHASA

MALAYSIA

JAPAN

NEW GUINEA

INDONESIA

MONGOLIA

EAST ANTARCTICA
WEST ANTARCTICA

CHUGACH
ALEXANDER

STIKINE

YUKON CHUKOTKA
NORTH SLOPE

TARIM

P A N G E A

OMOLON

PANTHALASSA

3

1 2

4 5

0

30S

60S

60N

30N

0 4000
kilometers

LHASA

QIANGTANG

Fig. 2.2 Global plate tectonic map of Late Triassic at 200 Ma ago. Molweide Projection. (1) oce-
anic spreading center and transform faults, (2) subduction zone, (3) thrust fault, (4) normal fault, 
(5) transform fault

2 Late Triassic Global Plate Tectonics



30

continent unchanged due to the absence of important new data. For example, accord-
ing to Metelkin et al. (2011) there is an absence of authentic data for the Middle and 
Late Triassic from Siberia.

The facies were reconstructed using established sedimentological concepts for 
reefs and other sedimentary environments (Kiessling and Flügel 1999; Kiessling 
et al. 2003) and also presented by Golonka et al. (2006b) and Golonka (2007a, b). 
The calculated paleolatitudes and paleolongitudes were used to generate computer 
maps in Microstation design (.dgn format) converted later into Corel Draw (.cdr 
format). Facies and paleoenvironment information were posted after reviewing 
database files, regional paleogeographic maps and relevant papers. Information 
from several general and regional paleogeographic papers were filtered and utilized 
(Vinogradov 1968; Ziegler 1982, 1988; Hongzen 1985; Ronov et al. 1989; Cook 
1990; Zonenshain et al. 1990; Doré 1991; Dercourt et al. 1993, 2000; Golonka et al. 
1994, 2006a; Metcalfe 1994, 2011, 2013a, b; Veevers 1994, 2006, 2013; Nikishin 
et al. 1996; Sengör and Natalin 1996; Puchkov 1997; Kiessling and Flügel 1999; 
Golonka 2000, 2002, 2007a, b, 2011; Golonka and Ford 2000; Ford and Golonka 
2003; Scotese 2004; Miller et al. 2006; Robertson 2007; Feist-Burkhardt et al. 2008; 
Heydari 2008; Maurer et al. 2008; Miall and Blakey 2008; Miall et al. 2008; Pčelina 
and Korčinskaja 2008; Scheck-Wenderoth et  al. 2008; Schmid et  al. 2008; Peng 
et al. 2009; McKie and Williams 2009; Glørstad-Clark et al. 2010; Metelkin et al. 
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Fig. 2.3 Plate tectonic, paleoenvironment and lithofacies map of the western Tethys, future 
Central Atlantic and adjacent areas during Late Triassic time. Molweide Projection. Modified from 
Golonka (2007b)
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2011, 2012; Schettino and Turco 2011; Sibuet et al. 2012; Li and Huang 2013; Luo 
et al. 2014; Ershova et al. 2015a, b; Pease et al. 2015; Lane and Stephenson 2016; 
Müller et al. 2016; Toro et al. 2016; Cai et al. 2017; Centeno-García 2017).

2.3  Convergent Tectonics

The Late Paleozoic supercontinent Pangaea included North America, South 
America, Africa, Australia, Europe and Siberia and was surrounded by the 
Panthalassa Ocean (Figs. 2.1 and 2.2). The collision between Siberia and Europe 

Fig. 2.4 Explanations to Figs, 2.3, 2.4, 2.5, 2.7. Qualifiers: B bauxites/laterites, C coals, E evapo-
rites, F flysch, Fe Iron, G glauconite, M marls, O oolites, P phosphates, R red beds, Si silica, T 
tillites, V volcanics

2 Late Triassic Global Plate Tectonics
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formed the Ural Mountains during the Uralian Orogeny (Zonenshain et al. 1990; 
Nikishin et al. 1996; Puchkov 1997). The last episode of this orogeny occurred at 
the end of the Triassic in Novaya Zemlya (Toro et al. 2016; Zhang et al. 2017a). 
Deformation also affected the Taimyr Peninsula (Torsvik and Anderson 2002; 
Golonka 2007a, b). According to Zhang et al. (2017b) the Taimyr Permo-Triassic 
magmatic rocks were locally folded and faulted as a result of Late Triassic to Early 
Jurassic dextral transpression. According to Vernikovsky (1995) and Vernikovsky 
et al. (2003) the formation of the Taimyr structures is connected with the collision 
of the Kara microcontinent with Siberia. The uplift of the adjacent areas of Europe 
and Siberia was related to these orogenic events (Figs. 2.2 and 2.8). The Crockerland 
uplifted area of the Alaska-Chukotka micro-plate supplied sediments to the adja-
cent Sverdrup Basin in North America and was linked with Siberia at this time 
(Fig. 2.8; Anfinson et al. 2016). The subduction zones, known as the Late Paleozoic 
Pangaean Rim of Fire, were still active during the Triassic (Golonka and Ford 
2000; Golonka 2002, 2004, 2007a, b; Matthews et al. 2016). This Rim of Fire was 
especially active along the western coast of Pangaea (Figs. 2.1 and 2.2). Active 
volcanism, terrane accretion, and back-arc basin development accompanied the 
subduction zones (Golonka 2007a, b). The subduction accompanied by magma-
tism was active in Central and North America (Goodge 1989, 1990; Dorsey and 
LaMaskin 2007; Centeno-García et al. 2008; Arvizu and Iriondo 2015) as well as 

Africa

Gondwana

S. America

Antarctica

India

Panthalassa

km
0 1000

Australia

Fig. 2.7 Plate tectonic, paleoenvironment and lithofacies map of the western Gondwana and adja-
cent areas during Late Triassic time. Molweide Projection. Modified from Golonka (2007b)
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in South America (Bustamante and Juliani 2011; del Rey et al. 2016). The move-
ment of terranes within Panthalassa was related to the activity of this subduction 
(Figs. 2.1 and 2.2). According to Dorsey and LaMaskin (2007), the collision of 
terranes in North America happened during Late Triassic times in the Blue 
Mountains of Oregon. The position of these terranes is a subject of controversy, 
however (e.g. Engebretson et al. 1985; Panuska 1985; Debiche et al. 1987; Sengör 
and Natalin 1996; Keppie and Dostal 2001; Belasky et al. 2002; Trop et al. 2002; 
Piercey et al. 2006; Golonka 2007a, b; Colpron and Nelson 2011; Roniewicz 2013; 
Matthews et  al. 2016). The relationship between Panthalassa terranes and 
Cimmerian plates was previously postulated and mapped (Golonka 2007a, b). The 
Panthalassa terranes bearing reef complexes were also mentioned by Flügel 
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(2002). According to Peyberness et al. (2016, see also Stanley and Onoue 2015) 
the Western Panthalassa reefs from Japan corresponds with those of the Tethys 
Ocean during the Late Triassic. The Late Triassic was the time of the collisions 
now known as the Early Cimmerian and Indosinian orogenies. Blocks of the 
Cimmerian provenance and Eurasia (Sengör 1984; Sengör et al. 1984; Sengör and 
Natalin 1996) were involved in these collisions with the southern margin of Eurasia 
(Golonka 2000, 2002, 2007a, b; Golonka et al. 2003a, 2006a,b; Robertson 2007; 
Richards 2015). This series of collisions closed the Paleotethys Ocean. The clo-
sure happened earlier in the Alpine- Carpathian- Mediterranean area, later in the 
Eastern Europe-Central Asia and latest in the South-East Asia (Figs. 2.1 and 2.2). 
Microplates now included in the Alpine- Carpathian systems formed the marginal 
part of Europe. Subduction developed south of this zone. Late Triassic collisional 
events occurred also in the Moesia-Rhodopes areas (Tari et  al. 1997; Golonka 
2004, 2007a, b; Okay and Nikishin 2015; Petrík et al. 2016). The Alborz and the 

Fig. 2.9 Late Triassic stratigraphy of various basins contains sequence boundaries of basal 
Carnian, mid-Carnian, basal Norian, mid-Norian, basal Rhaetian, and latest Rhaetian age. The 
features of these boundaries indicate they represent relatively short-lived, tectonic episodes. Each 
tectonic episode was characterized by a rapid base level fall followed by rapid rise which punctu-
ated the relatively slow, long term subsidence of the basins
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South Caspian Microcontinent collided with the Scythian platform in Eastern 
Europe, and the other Iranian plates, including the large Lut block, collided with 
the Turan platform (Zonenshain et al. 1990; Kazmin 1991; Nikishin et al. 1996, 
1998a; Golonka 2004, 2007a, b; Heydari 2008; Wilmsen et  al. 2009; Masoodi 
et al. 2013; Okay and Nikishin 2015; Zanchi et al. 2009, 2016). Compressional 
deformations were recorded in the Caucasus, and Kopet Dagh areas, accompanied 
by the general uplift of the Fore-Caucasus, Caucasus and Middle Asia regions 
(Golonka 2004). According to Okay and Nikishin (2015), the accretion of an oce-
anic plateau was recorded by Late Triassic eclogites in the Pontides. Collisional 
events were also noted in Afghanistan and Pamir areas (Sengör 1984; Zonenshain 
et al. 1990; Golonka 2004, 2007a, b; Montenat 2009; Robinson 2015).

The Paleotethys between Qiangtang and Eurasia was closed during Late Triassic 
times (Figs. 2.1 and 2.2; Metcalfe 2013a; Zhai et al. 2013; Zhu et al. 2013; Luo et al. 
2014; Song et al. 2015; Wu et al. 2016). The eastern Cimmerian plates were involved 
in the Indosinian orogeny. This name was derived from Indochina, the region where 
the orogeny was noted over one hundred years ago (Deprat 1913, 1914; Fromaget 
1927, 1934, 1941, 1952). A major unconformity was observed in Northwest 
Vietnam. The deformed Lower – lowermost Upper Triassic (up to Carnian) marine 
metamorphosed rocks arranged into nappes and thrusts are covered by Upper 
Triassic continental red conglomerates (“terraines rouges”, see Deprat 1913, 1914, 
also Golonka et al. 2006b). According to Lepvrier et al. (2004 see also Maluski et al. 
2001, 2005; Lepvrier and Maluski 2008 and references therein), the main metamor-
phic event occurred during the Early Triassic, 250–240  Ma. The Late Triassic 
unconformity and 225–205 Ma postorogenic plutonism was noted by Faure et al. 
(2014). Hung (2010) describes magmatism in northeastern Vietnam related to 
Triassic Indosinian orogeny. According to Faure et al. (2014) the Jinshajiang and 
Ailaoshan belts in China and their geodynamic evolution, with Vietnam orogeny 
marking the same Indosinian Orogeny. It was related to the closure of Paleotethys 
Ocean along Raub-Bentong, Sra Kaeo and Nan-Uttaradit suture between Sibumasu 
and Indochina and Ailaoshan suture between Sibumasu and South China (Metcalfe 
1994, 1996, 2000, 2011, 2013a, b; Golonka et al. 2006b and references therein).

One of the best examples of the Late Triassic orogenic event occurs in the 
Thailand/Myanmar trans-border zone. The Triassic-Jurassic succession in the Mae 
Sot area (northern Thailand), belongs to the Shan-Thai terrane. This block is subdi-
vided into several zones from the west to east, including the Mae Sariang zone, 
where the Mae Sot area is located. This zone contains rocks of Triassic cherts (radi-
olarites), carbonates and flysch (turbiditic) facies, which indicate both pelagic con-
dition and synorogenic deposits. From a paleogeographic point of view, the 
Shan-Thai block was a remnant of Paleotethys Ocean (Meesook and Sha 2010), 
which occupied a wide realm between Cimmerian Continent and Eurasian plate 
during Late Paleozoic-Early Mesozoic times. On the other hand, the Late Triassic 
Indosinian orogenic event has been associated with the docking and amalgamation 
of the Indoburma, Shan-Thai (Sibumasu) and Indochina terranes, which recently 
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constituted the main part of Southeast Asia. Therefore, entire Jurassic units of these 
regions are represented by post-orogenic continental-shelf deposits, which are 
underlain discontinuously by older rocks. The oldest Jurassic bed, or the youngest 
Triassic bed, is the so-called “base-conglomerate”, in  local nomenclature, and is 
characterized by limestone and chert pebbles-bearing conglomerate, which is sig-
nificant for the understanding of the tectonic evolution of the Shanthai terrane 
(Ishida et al. 2006; Meesook and Sha 2010). The underlying cherts are dated bio-
stratigraphically (based on radiolarians) as Middle-Late Triassic. Limestone and 
chert pebbles from the “base-conglomerate” are dated as Early-Late Triassic by 
conodonts and as Middle-Late Triassic by radiolarians, respectively. These micro-
fossils from pebbles constrain the age of the Indosinian (ShanThai = Mae Sariang) 
orogeny. Additionally, the youngest clasts, both limestones and siliceous rocks, 
indicate a strictly pelagic character of sedimentation up to Late Triassic time (see 
Ishida et al. 2006). A full open ocean condition must have existed at least before the 
end of the Triassic. The “base-conglomerate” is characterized by poorly-sorted, 
chaotically organized, pebble/fragment-bearing sedimentary breccia with no evi-
dence of bivalve borings on their surfaces. The multicolored clasts are subrounded 
and subangular, and occur within reddish silt matrix. Chert clasts are red, green and 
grey and carbonate pebbles are represented both by micritic, pelagic limestones and 
the entire spectrum of packstones and grainstones, including extremely shallow- 
water bioclastic limestones (with bivalve fragments, crinoids, fragments of corals, 
etc.) with ooids and coated grains. The “base-conglomerate” is overlain by lime-
stones and marls with mudstone intercalations of the Khun Huai Formation of the 
Hua Fai Group, dated by ammonites and bivalves as Early Toarcian. These facts 
indicate, by superposition, that the “base-conglomerate” is the latest Triassic or 
earliest Jurassic in age, according to the latest Triassic age of the chert and lime-
stone pebbles within it. Sedimentological features indicate, on the other hand, a 
very rapid sedimentation event during its origin, such as erosion of steep, submarine 
“cliffs” that formed proximal aprons of debris flows. Additionally, the composition 
of this conglomerate, which has both deep-marine clasts and shallow-water ones, 
without any evidence of their long-distance transport, suggests erosion of different 
type of source material, which most probably originally took place in a different 
part of the primary Paleottethys Ocean. Then, they were removed, folded (forming 
nappes?) and overthrust to another location where they were destroyed and eroded, 
and produced marine molasse-type deposits unconformably overlying Indosinian 
deformed rocks. In fact, these data indicate both time and space reorganization of 
this orogenic system, which took place possibly during latest Triassic to earliest 
Jurassic time. The examination of the main orogenic events in the Southeast Asia 
regions indicates diachronous, multi-stages movements of the Indosinian orogeny. 
These include Early Triassic and Carnian/Norian orogenic pulses in Vietnam 
(Lepvrier et al. 2004), late Middle Triassic–early Late Triassic activity, the so-called 
second Indosinian event (Hahn 1984; Lepvrier and Maluski 2008, see also Cai et al. 
2017) and close to the Triassic/Jurassic boundary in Thailand, as the Asian plate 
docked first on the East and later on the West (in modern coordinates).
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Additionally, the Late Triassic volcanogenic-sedimentary event in Myanmar cor-
relates presumably with synorogenic processes, which are represented by the Late 
Triassic flysch deposits with basaltic pillow lavas of the Shweminbon Group (Upper 
Triassic – Lower Jurassic turbidites), formerly part of Loi-an Group, the Bawgyo 
Group (Upper Triassic) and their equivalents, and with Upper Triassic turbidites 
represented by the Thanbaya/Pane Chaung Group/formations (Bannert et al. 2011; 
Win Swe 2012; Cai et al. 2017).

The collision between the South Chinese plate and the North Chinese block 
began during the Late Permian and continued during the Triassic (Yin and Nie 
1996; Golonka et al. 2006b; Golonka 2007a, b). The Qinling orogenic belt records 
this collision. According to Dong et  al. (2011) the Shangdan zone between the 
North and South Qinling belts is the suture separating the convergence and collision 
between North South Chinese plates. The post-suturing plutons were emplaced 
along the suture zone and on the adjacent plates (Bao et al. 2015; Liang et al. 2015; 
Lu et al. 2016). Consolidation of North China and Mongolia occurred mainly earlier 
but continued during the Triassic between North China and Mongolia. The newly 
formed, larger plate contains volcanics and collisional granites (Fig. 2.6; Chen et al. 
2000; Wu et al. 2002; Shi et al. 2016). This consolidation left open a large embay-
ment between Mongolia and Laurasia, the so-called Mongol-Okhotsk Ocean 
(Zonenshain et al. 1990; Golonka 2000, 2007a; Zeng et al. 2014). Active subduction 
existed along the margin of this ocean (Figs.  2.6 and 2.8), dipping cratonwards 
towards East Siberia (Zonenshain et al. 1990; Golonka 2007a, b), and granitic intru-
sions occurred along the Siberian margin (Zonenshain et al. 1990; Donskaya et al. 
2013, 2016). The new, large Chinese-Southeast Asian plate including North and 
South China, Mongolia and eastern Cimmerian plates was consolidated at the 
Triassic-Jurassic Boundary (Fig. 2.2).

2.4  Extensional Tectonics

The onset of Pangaean break-up constitutes the main Late Triassic extensional tec-
tonic event (Golonka 2007a, b). The rift basins originated between North America 
and Africa. The extensional rifting was accompanied by strike-slip faulting and block 
rotation (Ford and Golonka 2003; Laville et al. 2004; Golonka 2007a, b). Incipient 
continental rifting occurred also between northern Europe and North America 
(Fig. 2.2), reactivating the Late Paleozoic fracture system (Ziegler 1982; Doré 1991; 
Nikishin et al. 2002; Golonka 2011), and activating the North Sea rifts. The Central 
European Permian rift system known as the Polish/Danish Aulacogene was still 
active during Late Triassic times. The Upper Permian (Zechstein) salt went into salt 
tectonic phase with incipient salt diapirism and extrusion (Kutek 2001; Krzywiec 
2012). Continental extension also began in isolated areas in South America during the 
Late Triassic (Macdonald et al. 2003; Ford and Golonka 2003; Golonka 2007a, b). 
Additionally, rift basins developed behind the subduction zone along the western 
Pangaean margin (Goodge 1989, 1990; Golonka and Ford 2000; Golonka 2007a, b; 
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Centeno-García et al. 2008; Dickinson 2009; Bustamante and Juliani 2011; Giambiagi 
et al. 2011; Baby et al. 2013; Helbig et al. 2013; Spikings et al. 2016; Centeno-García 
2017).

The Pangaea rift systems extended also to the Barents shelf, Arctic, and Siberia 
(Golonka 2011; Golonka et  al. 2003a, 2006b). Rifting in Siberia was associated 
with the subduction zone at the Mongol-Okhotsk Ocean margin (Figs. 2.1, 2.2 and 
2.8). Late Triassic sea-floor spreading in Siberia constituted an extension of the 
Anyui Ocean, which existed between the Alaska-Chukotka and Verkhoyansk ter-
ranes (Fig. 2.8; Zonenshain et al. 1990; Sengör and Natalin 1996; Golonka et al. 
2003a; Golonka 2011). The opening of the Amerasia Basin appears to have begun 
near the Norian/Rhaetian boundary resulting in the rotational separation of the 
Alaska-Chukotka terrane from northern Laurasia (Embry and Anfinson 2014).

The volcanics (flows and intrusions) of the Central Atlantic Magmatic Province 
(CAMP), were emplaced at the end of Triassic and beginning of the Early Jurassic 
(e.g., Olsen 1997; Withjack et al. 1998; Marzoli et al. 1999, 2004, 2011; Knight 
et al. 2004; Golonka 2007a; Cirilli et al. 2009). CAMP constitutes one of the largest 
known Phanerozoic flood basalt provinces. It triggered climate changes and the end-
Triassic extinction event (Wignall 2001; Lucas and Tanner 2008; Preto et al. 2010; 
Bond and Wignall 2014; Müller et al. 2016). The Late Triassic northward drift of the 
Cimmerian continent was accompanied by active seafloor spreading within the 
Neotethys Ocean. The spreading was driven by trench-pulling forces related to the 
north-dipping subduction, as well as the ridge-pushing forces related to mantle 
upwelling, expressed by hot spot activity (Golonka and Bocharova 2000; Golonka 
2004, 2007a, b). Rifting and the opening of oceanic type basins could have occurred 
in the Alpine, Carpathian, Balkans and future Mediterranean area (Figs. 2.1, 2.2 and 
2.3; Golonka et al. 2006a). The opening of the incipient Pindos–Maliac Ocean was 
related to the establishment of the Pelagonian, Sakariya and Kirsehir blocks as sepa-
rate microplates within the Western (Robertson et  al. 1991, 1996; Ferriere et  al. 
2016). The proto-Transylvanian and Vardar oceans originated within Carpathian-
Balkan. The Tisa block was perhaps fully separated from the European margin by 
the Meliata-Halstatt Ocean. The positions of the Vardar, Meliata-Halstatt, 
Transylvanian, Pindos, Maliac oceans and their embayments within the Western 
Tethys remain quite speculative and are subjects of the debate (e.g., Kozur and Krahl 
1987; Săndulescu 1988; Kozur 1991; Channell and Kozur 1997; Mock et al. 1998; 
Ivan 2002; Golonka 2004; Haas and Pero 2004; Golonka et al. 2006a; Dallmeyer 
et  al. 2008; Schmid et  al. 2008; Hoeck et  al. 2009; Gawlick and Missoni 2015; 
Meinhold and Kostopoulos 2013). The Eurasian platform east of the Carpathians 
and Meliata Ocean was dissected by rifts that extended from the Dobrogea, through 
the proto-Black Sea area and along the margins of Scythianturan platform and prob-
ably were connected with Polish/Danish Aulacogene (Fig. 2.3; Zonenshain et al. 
1990; Kazmin 1990, 1991; Nikishin et  al. 1998a, b; Golonka 2004). The Tauric 
basin, which belonged to this rift system, was located between Pontides and the 
Dobrogea-Crimea segment of the Scythian platform (Golonka et  al. 2006a). The 
North Dobrogea part of the rift zone separated Moesia and Eastern European plat-
form (Muttoni et al. 2000; Golonka 2004; Golonka et al. 2006a). Several blocks 

2 Late Triassic Global Plate Tectonics



40

were located between the rifted zone and the Neotethys (Golonka 2004; Golonka 
et al. 2006a; Okay and Nikishin 2015). This rifted zone can be interpreted as a back-
arc basin resulting from the northward subduction of the Neotethys Ocean (Figs. 2.1, 
2.2 and 2.3). The deep-water basin was located between Apulia, the Taurus platform 
and the African continent (Fig. 2.1; Catalano et al. 1991; Kozur 1991; Marsella et al. 
1993; Golonka 2004, Golonka et al. 2006b). It was connected eastwards with an 
oceanic-type basin recorded by the Mamonia ophiolites complex in Cyprus 
(Robertson and Woodcock 1979; Morris 1996; Robertson 1998). The rifts cutting 
Apulia were connected with the western part of Neotethys.

The whole Paleotethys was closed in the western part of the Tethyan realm in the 
Early Jurassic (Fig. 2.2). The pulling force of the north-dipping subduction along 
the northern margin of Neotethys caused the drift of a new set of plates from the 
passive Gondwanian margin. These plates divided the Neotethys Ocean into north-
ern and southern branches (Golonka 2004). Metcalfe (2013a) distinguished 
Cenotethys as the southern branch. The Lhasa block was the most prominent plate 
which drifted away from Gondwana (Sengör 1984; Dercourt et al. 1993; Metcalfe 
1994, Metcalfe 2013a, b; Sengör and Natalin 1996; Yin and Nie 1996; Golonka 
2004; Cai et al. 2016; Li et al. 2016a, b; Lu et al. 2016; Meng et al. 2016; Zhou et al. 
2016). According to Li et al. (Li et al. 2016a, b), the Kirsehir, Sakarya (Robertson 
et  al. 1991, 1996), and perhaps the Lesser Caucasus-Sanandaj-Sirjan, Biston- 
Avoraman plates drifted in the central Neotethys area (Adamia 1991; Robertson 
et al. 1991, 1996, 2004; Arfania and Shahriari 2009; Mehdipour Ghazi and Moazzen 
2015; Nouri et al. 2016). According to Metcalfe (2013a, b) South West Borneo and 
East Java-West Sulawesi were separated from Northwest Australia in the Late 
Triassic in the easternmost Tethys area. The consolidation of the Chinese and south-
eastern Asian blocks was followed by extensional tectonics caused by the pulling 
force if the new Neotethys subduction. Consequently, rift basins developed in China 
and adjacent areas (Golonka et  al. 2006b; Luo et  al. 2014). This process was 
enhanced by the Panthalassa (Paleo-Pacific) plate sliding beneath the Eurasian plate 
(Luo et al. 2014; Li et al. 2016a, b).

2.5  Sedimentation and Paleolithofacies

Continental rifts, which originated during Triassic times, were filled with clastic 
deposits, particularly abundant red beds consisting of fluvial deposits and accompa-
nied by evaporites (Ziegler 1988; Withjack et al. 1998; Golonka and Ford 2000; 
Kutek 2001; Feist-Burkhardt et al. 2008). Mixed siliciclastics, carbonates and evap-
orates were deposited in Central Europe (Figs.  2.3 and 2.9) as to the upper part 
(Keuper) of the Central European tripartite facies sequence that gave the Triassic its 
name (Köppen and Carter 2000). The Keuper Formation encompasses the Carnian, 
Norian and Rhaetian stages (Fig. 2.9). The accumulation of sediments in this area 
reached up to 4000 m due to significant subsidence (Köppen and Carter 2000; Kutek 
2001; Golonka 2007a, b; Feist-Burkhardt et al. 2008). Meanwhile, continental red 
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beds were deposited in the eastern United States while a marine shelf existed on the 
western North America margin. Continental rifting occurred between northern 
Europe and Greenland (Fig.  2.8). The Pangaea rift systems extended from the 
Newark and Central Europe basins through the North Atlantic, to the Barents shelf 
and Arctic Alaska (Figs. 2.3, 2.8 and 2.9). These rifts were filled primarily with red 
continental clastics reflecting arid climate (Ronov et al. 1989; Olsen 1997; Golonka 
et al. 2003a, 2006a, b; Golonka 2007a, b; Dickinson 2004, 2008, 2009; Miall et al. 
2008; Miall and Blakey 2008). Carbonate sedimentation dominated in the Alps and 
Carpathians (Golonka 2004, 2007a, b; Feist-Burkhardt et al. 2008). This sedimenta-
tion was associated with existence of platforms on the Neotethys and Paleotethys 
margins as well as on Cimmerian microplates. Shallow-water limestones and dolo-
mites with algal/coral-dominated reefs were deposited on these platforms (Golonka 
2007a, b). They were accompanied by fine grained clastics (Figs.  2.3 and 2.9). 
Many of the western Tethyan reefs were located on these platforms. Triassic carbon-
ate platforms and reefs were formed not only in the Tethys, but also in the western 
and eastern parts of the Panthalassa (Paleo-Pacific) Ocean (Golonka 2007a, b). A 
large carbonate platform that spread from Apulia to the Taurus zone provides an 
example (Dercourt et al. 1993, 2000; Golonka 2004, 2007a, b; Feist-Burkhardt et al. 
2008) in that it contains significant numbers of reefs (Kiessling and Flügel 1999; 
Flügel 2002) and was connected with the Alpine-Inner Carpathian carbonate plat-
forms, which also contained abundant reefs (Kiessling and Flügel 1999; Flügel 
2002). Dolomitization of the platform limestones was common and dolomites are 
widespread in Southern Europe and Central Asia. The Dolomia Principale (Fig. 2.9) 
represents a classic example of the Tethyan dolomites. The Dolomites range in the 
Italian Southern Alps took their name from the mineral and rock dolomite, which in 
turn were named after the French geologist Dieudonné Sylvain Guy Tancrède de 
Gratet de Dolomieu by de Saussure (1792). Dolomites were also widespread on the 
southern margin of Eurasia in the Caspian area and in Central Asia (Figs. 2.5 and 
2.7). Continental and marginal marine sediments with evaporites and volcanics 
were also deposited in this part of Eurasia (Zonenshain et al. 1990; Dercourt et al. 
1993, 2000; Nikishin et  al. 1996, 1998a, b; Brunet et  al. 2002; Zharkov and 
Chumakov 2001; Golonka 2004, 2007a, b). The neritic and lagoonal sediments of 
so-called Carpathian Keuper were deposited in the Northern Carpathians during the 
latest Triassic, marking the uplift of the Inner Carpathian plate (Kotański 1961; 
Golonka 2004; Feist-Burkhardt et  al. 2008; Rychliński 2008). The Neotethyian 
margins of Greater India, Arabia and Australia (Figs. 2.5 and 2.7) were occupied by 
mixed carbonate-clastic facies (Cook 1990; Alsharhan and Magara 1994; Golonka 
and Ford 2000; Golonka 2007a, b). Basins containing Triassic continental red bed 
deposits were located in Gondwana (Fig. 2.7), in South America, Africa, Antarctica, 
Madagascar and India (Golonka 2007a, b). The deposition of synorogenic flysch 
sequences in South-East Asia was linked to the Indosinian orogenic collisional 
events (Hahn 1984; Golonka et al. 2006b; Lepvrier and Maluski 2008; Cai et al. 
2017). They were accompanied by pelagic cherts, cherty limestones and fine- 
grained clastics as well as by volcanoclastics and pillow lavas (Ishida et al. 2006; 
Bannert et al. 2011; Win Swe 2012; Cai et al. 2017) and followed by post-orogenic 
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molasses. Post-orogenic Upper Triassic continental red conglomerates are known as 
“terraines rouges” of Deprat (1913, 1914) in Vietnam (Golonka et  al. 2006a, b). 
These red-bed postorogenic facies that follow synorogenic turbidites and pelagic 
cherts are also known from the Malaysian Peninsula (Oliver and Prave 2013; Ridd 
2013). Flysch sequences and volcanoclastic deposits occur on the Lhasa plate, 
South Tibet (Liu et al. 2012). Shallow marine, carbonate and clastic sedimentation 
dominated on the Qiantang plate (Zhu et al. 2013; Wu et al. 2016). Various strati-
graphic sequences representing different paleogeographic facies existed in South 
China where paralic clastics, shallow marine clastics, shelf carbonate platform 
facies and deep water turbidites can be distinguished. Siliciclastic sedimentation 
prevailed in North China, including shallow marine clastics, marginal marine depos-
its such as deltas, as well as turbidites accompanied by volcanoclastics (Fig. 2.6; 
Hongzen 1985; Tong and Yin 2002; Golonka 2007a, b; Cao et al. 2010; Luo et al. 
2014; Li et al. 2014). The sediments consisting mainly of fine-grained molasse-type 
filled the foreland basins following the Uralian orogeny in Timan-Pechora, Novaya 
Zemlya and eastern Barents regions. Siliciclastics were common in the Siberia and 
Arctic regions (Figs. 2.8 and 2.9; Embry 1988, 1993, 1997; Nikishin et al. 1996; 
Golonka and Ford 2000; Golonka et al. 2003a; Golonka 2007a, b, 2011; Toro et al. 
2016); the Sverdrup Basin of Arctic Canada was a main depocenter with the Late 
Triassic succession of fluvial to marine slope deposits being over 2500  m thick 
(Embry 1997). Triassic, restricted-marine shelf basins contain black shales that 
have source rock potential (Leith et al. 1993; Golonka et al. 2003a; Golonka 2007b). 
Upper Triassic source rocks, important for hydrocarbon exploration in the North 
Atlantic, were identified in the Jameson Land Basin, East Greenland (Andrews 
et al. 2014).

2.6  Global Base-Level Changes

In this section, we briefly review postulated base-level changes that have been inter-
preted to affected numerous basins throughout Pangaea during the Late Triassic. We 
first look at small scale changes with frequencies of less than 500,000 years. Then 
we address large scale base-level changes with frequencies of greater than 2 million 
years.

Tanner (2010) comprehensively reviewed the literature for high frequency, small 
scale cycles for the entire Triassic. Such cycles have been recorded in various Late 
Triassic successions with the best documentation being from the rift valley deposits 
of the Newark Group of the northeastern USA (Olsen and Kent 1996) and the car-
bonate platforms of the Italian Alps (Cozzi et al. 2005; Schwarzacher 2006). The 
Late Triassic small scale cycles of the Italian Alps are characterized by the presence 
of exposure surfaces and paleosols. This leaves little doubt as to such cycles being 
generated by base-level changes caused by either eustasy or tectonics. It must be 
noted that any high frequency, small scale cycles which do not include exposure 
surfaces may well have an auto-cyclic explanation for their generation.
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Given the occurrence of such high-frequency base level changes in the Late 
Triassic of the Italian Alps and the apparent coincidence of the calculated frequen-
cies with those of the Milankovitch spectrum (Cozzi et  al. 2005; Schwarzacher 
2006), it seems reasonable to assume that small-scale, global sea-level changes 
driven by climate changes characterize the Late Triassic. However, as cautioned by 
Tanner (2010), this interpretation cannot be considered as unassailable for two main 
reasons. Given the greenhouse climate of the Late Triassic (Preto et al. 2010) and 
the consequent unlikelihood that substantial amounts of water could have been 
stored as ice during cold periods, there are no obvious mechanisms for climate 
changes to drive eustatic sea level change of the magnitude seemingly recorded by 
the cycles. The other problem is the general lack of precise radiometric age dates to 
constrain the interpreted cycle periods.

More studies are needed for Late Triassic, very shallow water carbonate and 
siliciclastic strata in a number of basins of Pangaea to see if they are characterized 
by high-frequency cycles that are capped by exposure surfaces. If Milankovitch 
climate change cycles were operating during the Late Triassic, then such cycles 
should be present in the successions of most, if not, every basin. In summary, it is 
quite possible that Milankovitch climate cycles were operating during the Late 
Triassic but further studies are needed to confirm or deny such a phenomenon.

Large scale, base-level changes are recorded in most Late Triassic successions 
and are expressed as large-magnitude, sequence boundaries. Such boundaries are 
characterized by an extensive unconformable portion on the basin margins and are 
the product of base-level changes that can exceed 100 m. Both eustatic and tectonic 
explanations have been offered for the generation of these boundaries.

Late Triassic, large-magnitude, sequence boundaries, which have been recorded 
in different basins throughout Pangaea, have been biostratigraphically dated as near 
the base Carnian, mid-Carnian, near the base Norian, mid-Norian, near the base 
Rhaetian and latest Rhaetian. Initially, these boundaries were interpreted to be the 
product of eustasy, including a significant sea level fall followed by sea level rise 
(Haq et al. 1987, 1988; Embry 1988; De Zanche et al. 1993; Gianolla and Jacquin 
1998). Given a climate change/continental glaciation explanation was not possible, 
the authors appealed to changes in the volume of the world ocean (tectono-eustasy) 
as the main driver of such large scale eustatic changes.

Embry (1989, 1997) reversed his earlier interpretation and postulated that the 
large-magnitude sequence boundaries, which punctuated the entire Mesozoic suc-
cession of the Sverdrup Basin of Arctic Canada, were of tectonic origin. This inter-
pretation was based on various characteristics of such boundaries which strongly 
favor a tectonic origin. Such characteristics included:

• A widespread, often angular, unconformity on the basin margins and positive 
elements

• A major change in depositional regime
• A notable change in tectonic regime and subsidence pattern
• A change in provenance for siliciclastic sediments
• A widespread transgression with significant deepening directly following the 

boundary.
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Furthermore Embry (1997) demonstrated that the five, Late Triassic large- 
magnitude sequence boundaries present in the Sverdrup Basin are also present in 
basins in western Canada, southwestern USA, Barents Sea, Germany, Italian Alps, 
western Siberia, and northern Himalayas (Fig. 2.9). Notably, the unconformities in 
all these areas exhibit characteristics which favor a tectonic origin.

To explain the occurrence of simultaneous tectonic episodes in multiple and 
widely separated basins of Pangaea, Embry (1997) invoked the tectonic model of 
Cloetingh et al. (1985). The widespread, large magnitude base-level changes of the 
Late Triassic were interpreted to be an expression of relatively rapid and substantial 
changes in the horizontal and vertical stress fields that affected the Pangaea super-
continent (Fig. 2.9). Such stress changes would be possibly due to somewhat abrupt 
changes in the speed and/or direction of the plate movements that episodically 
affected Pangaea. Notably, it is possible that secondary tectono-eustatic effects were 
associated with such plate tectonic reorganizations (Embry 1997).

2.7  Climate Change and Episodic Tectonism

The climate of the Triassic has been reviewed by Preto et al. (2010) and they have 
interpreted that it “was characterized by a non-zonal pattern, dictated by a strong 
global monsoon system with effects that are most evident in the Tethys realm”. For 
the Late Triassic, Preto et al. (2010) postulated that the monsoonal climate had its 
maximum expression and that there were three climatic zones which did not have a 
clear latitudinal distribution. These three zones included a dry climate for the west-
ern margin of Tethys and the central part of Pangaea, a wet and dry climate for the 
coasts of eastern Laurasia and Gondwana and the western coasts of Pangaea, and a 
wet climate in the high latitudes.

Although, in general, there was not much variability in climate throughout the 
Late Triassic, significant climate changes seem to be associated with the five tec-
tonic episodes discussed in the last section. The most well-known of these is the 
“Carnian Pluvial Episode” (Ruffell et al. 2015) which corresponds with the mid- 
Carnian tectonic episode. This event was marked by warmer, more humid condi-
tions in various parts of Pangaea and a notable increase of siliciclastic supply to 
numerous basins (Ruffell et  al. 2015). Climate changes seem to have occurred 
associated with the other four tectonic episodes as shown by the marked changes 
in spore/pollen ratios associated with these boundaries (Hochuli and Vigran 2010). 
Climate change associated with the latest Rhaetian has been documented by vari-
ous workers as summarized by Preto et al. (2010). The CAMP flood basalts, which 
were associated with the extensional phase of the latest Rhaetian tectonic episode, 
produced enormous amounts of CO2, triggered global warming, and increased 
ocean acidification. These factors caused the end of Triassic extinction event 
(Wignall 2001; Lucas and Tanner 2008; Preto et al. 2010; Bond and Wignall 2014; 
Müller et al. 2016).
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2.8  Concluding Summary

Herein, we present a new set of global and regional paleogeographic maps for the 
Late Triassic (Carnian-Rhaetian) time interval. The global maps depict the plate 
tectonic configuration, present day coastlines, subduction zones, selected transform 
faults, spreading centers and rifts during the beginning (224 Ma) and end (200 Ma) 
of Late Triassic. The regional maps illustrate the Late Triassic paleoenvironment 
and paleolithofacies distribution for most important regions. The stratigraphic chart 
shows Late Triassic stratigraphy of various basins and sequence boundaries of basal 
Carnian, mid-Carnian, basal Norian, mid-Norian, basal Rhaetian, and latest 
Rhaetian age.

The Late Triassic was a time of collisional events, now known as Early Cimmerian 
and Indosinian orogenies. This series of collisions closed the Paleotethys Ocean. 
The closure happened earlier in the Alpine-Carpathian-Mediterranean area, later in 
the Eastern Europe-Central Asia and latest in the South-East Asia. The Indochina, 
Southeastern Asian and Qiangtang plates were sutured to South China. The new, 
large Chinese-Southeast Asian plate, including the North and South China, Mongolia 
and eastern Cimmerian plates, was consolidated at the Triassic-Jurassic Boundary. 
This consolidation left open a large embayment of Panthalassa, between Mongolia 
and Laurasia, known as Mongol-Okhotsk Ocean. The Uralian Orogeny, which 
sutured Siberia and Europe continued during Late Triassic times and was recorded 
in Novaya Zemlya.

The onset of the break-up of Pangaea constitutes the main Late Triassic exten-
sional tectonics event. Continental rifts, which originated during this event, were 
filled with clastic deposits. Abundant red beds, accompanied by fluvial deposits and 
evaporites, were deposited in classic sedimentary systems. The pulling force of the 
north-dipping subduction along the northern margin of Neotethys caused the drift of 
a new set of plates from the passive Gondwana margin. These plates divided the 
Neotethys Ocean. Carbonate sedimentation was associated with existence of plat-
forms on the Neotethys and Paleotethys margins as well as on Cimmerian micro-
plates. Synorogenic turbidites and postorogenic molasses were associated with the 
Indosinian orogeny. The late stages of the Uralian orogeny in Timan-Pechora, 
Novaya Zemlya and eastern Barents regions included the filling of the foreland 
basin with fine-grained, molasse sediments. Siliciclastics were common in the 
Siberia and Arctic regions.

The widespread, large magnitude, base level changes of the Late Triassic are 
interpreted to be an expression of relatively rapid and substantial changes in the 
horizontal and vertical stress fields that affected the Pangaea supercontinent. Such 
stress changes would be possibly due to somewhat abrupt changes in the speed and/
or direction of plate movements, which episodically affected Pangaea. The Late 
Triassic climate changes seem to be associated with the main tectonic episodes. The 
most well-known of these is the “Carnian Pluvial Episode” which corresponds with 
the mid-Carnian tectonic episode. The Central Atlantic Magmatic Province flood 
basalts, which were associated with the extensional phase of the latest Rhaetian 
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tectonic episode, produced enormous amounts of CO2, triggering global warming, 
increasing ocean acidification, and causing the latest Triassic extinction event.
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Chapter 3
Climates of the Late Triassic: Perspectives, 
Proxies and Problems

Lawrence H. Tanner

Abstract The majority of paleoclimate evidence, including climate-sensitive litho-
facies, paleobotanical evidence and a lack of evidence of glaciation, indicates a 
climate that was significantly  warmer during the Late Triassic than at present. 
Multiple proxies demonstrate higher atmospheric pCO2 during the Late Triassic as 
the driver for this warmth. Historically, the results of pCO2 estimates from measure-
ments of stomatal indices and calculations from the isotopic composition of pedo-
genic carbonate have produced differing results. More recent estimates based on 
improved methodologies and sampling constraints yield more consistent results, 
indicating pCO2 levels well over 1000 ppm, potentially higher, with excursions to 
even higher levels. Sedimentary evidence, particularly paleosols, indicate a highly 
seasonal climate for broad areas of Pangaea, suggesting a strongly monsoonal cli-
mate controlled by the arrangement of land areas. Most of the seasonal precipitation 
was limited to coastal regions, while the interior was largely semi-arid to arid at low 
to mid-latitudes. Humid climates were limited to mid- and higher latitude. The mid-
dle Carnian experienced a brief interval of increased warmth and humidity, with 
high-resolution records indicating that the event occurred as multiple pulses. A 
trend of aridification from the late Carnian to the Norian is evident across much of 
Pangaea, generally explained as the result of either weakening monsoonal flow due 
to the northward shift of Pangaea, or the drifting of regions between latitudinally- 
controlled climate zones. Biotic events at the end-Triassic have been attributed to 
CO2-forced warming caused by outgassing of flood basalts, although initial SO2- 
aerosol forced cooling followed by warming is more likely.
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3.1  Global Overview

Since the work of pioneers like Edward Suess and Alfred Wegener, a portrait of Late 
Triassic Earth has emerged of a paleogeography dominated by the supercontinent 
Pangaea, which enclosed the Tethys Sea and was itself encircled by the ocean 
Panthalassa. The climate of this continent, straddling as it did the paleoequator, was 
controlled by the great size of the landmass in each hemisphere, resulting in extreme 
seasonality, termed by some the “mega-monsoon” (Parrish and Peterson 1988; 
Kutzbach and Gallimore 1989; Parrish 1993; Yan and Zhao 2002), although the 
interior of the continental landmass is predicted to have been largely semi-arid to 
arid. Generally warm and widespread dry conditions during the Late Triassic are 
evidenced by abundant evaporite and carbonate deposition, the restriction of coal 
formation mainly to higher latitudes, and a lack of evidence for glaciation (Frakes 
et al. 1992; Lucas 1999). Overall warmth during the Late Triassic has been further 
demonstrated by the documented occurrences of warm-climate paleosols and floras 
to paleolatitudes as high as 85° (Taylor 1989; Retallack 1999; Kidder and Worsley 
2004). Taylor et al. (2000) specifically noted (from studies of tree rings in permin-
eralized wood) that light, not temperature, was the limiting factor for the rate of tree 
growth in polar regions.

Reefs and carbonate platforms, considered to have been confined then as now by 
the 20  °C ocean isotherm, extended throughout the western Tethyan region and 
extending eastward, encompassed an area that included Papua (N.G.), Thailand, 
Timor, northern India, and Malaysia. Along the western coast of Pangaea reefs 
extended from Oregon (U.S.A.) to Chile by Norian time, encompassing a paleolati-
tudinal range of ca. 35°N to 35°S (Flügel 2002; Sellwood and Valdes 2006). 
Kiessling (2010), conversely, has argued that a greater latitudinal range for reefs 
during the Permian and Jurassic periods indicates a cooler Triassic. Widespread and 
gradual aridification during the Late Triassic, commencing in the early Norian fol-
lowing a wet Carnian (see Sect. 3.5), is indicated across large areas of tropical to 
midlatitude Pangaea by abundant sedimentary evidence. These reports are most 
consistent from formations deposited at low paleolatitudes and in interior regions of 
Pangaea. Rift basins bordering the future Atlantic rift, such as those of the Newark 
Supergroup in eastern North America (Fig. 3.1), which occupy a roughly 13° latitu-
dinal transect from the southeastern United States to Atlantic Canada, display a 
temporal transition of facies that demonstrate progressively decreasing moisture 
(Whiteside et al. 2011). These are discussed in more detail in Sect. 3.4. Similar to 
the northern Newark basins is the succession of the Timezgadiwine and Bigoudine 
formations in the Argana basin, Morocco (Olsen 1997; Hofmann et al. 2000), which 
would have been near the Newark basins in paleogeographic reconstruction. Another 
well-known example of aridification in the northern hemisphere for this time is the 
facies change in the Upper Triassic Mercia Mudstone Group of England (Talbot 
et al. 1994; Ruffell and Shelton 1999).

Similar climate-related facies trends are reported from southern Pangaea from 
Madagascar (Wescott and Diggens 1998), and from the Karoo Supergroup of South 
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Africa, as in the transition from the Molteno Formation to the Elliot Formation 
(Sciscio and Bordy 2016). In the Ischigualasto basin of Argentina (Fig. 3.1), the 
Carnian-age Ischigualasto Formation is interpreted as recording a climate varying 
from cool-humid to dry and seasonal and back to humid at the top of the formation 
(Tabor et al. 2004, 2006; Colombi and Parrish 2008). Overall, however, the Carnian 
Ischigualasto Formation is generally regarded as having been deposited under sig-
nificantly more humid conditions than the redbeds of the latest Carnian to Norian 
Los Colorado Formation (Curtin and Parrish 1999; Currie et al. 2009; Tabor et al. 
2004; Colombi and Parrish 2008). The trend of aridification was not uniform across 
Pangaea, however. Australia became wetter during the Late Triassic, at which time 
extensive coal deposits formed there (Fawcett et al. 1994), and strata of the Jameson 
Land Basin of eastern Greenland are interpreted also as exhibiting a trend of increas-
ing humidity (Clemmensen et al. 1998). Similarly, study of the paleosols in the Blue 
Nile Basin, central Ethiopia, indicate increasing humidity during the Late Triassic 
(Dawit 2016).

Generally humid climates during the Late Triassic are more evident at middle to 
higher latitude regions than lower latitude regions. Much of the land area between 
30° and 50° in both hemispheres was dominantly warm and temperate (Sellwood 
and Valdes 2006). This climate was not entirely stable, however. As noted by 
Ahlberg et al. (2002), the northern parts of the Germanic Basin (or Central European 
Basin), which was located in the lower midlatitudes, experienced a dramatic change 
from red-bed deposition during the Norian, to deposition during the Rhaetian in 
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Fig. 3.1 Paleogeographic reconstruction for the Late Triassic illustrating approximate locations of 
some sedimentary basins/sections described in the text: (1) Newark Basin, USA; (2) Fundy Basin, 
Canada; (3) Chinle Basin/Colorado Plateau, USA; (4) Ischigualasto Basin, Argentina; (5) Karoo 
Basin, South Africa; (6) Argana Basin, Morocco; (7) Jameson Land Basin, Greenland; (8) 
Germanic Basin, Germany; (9) Eiberg Basin, Austria; (10) Dolomites, Italy; (11) Sichuan Basin, 
China
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alluvial and lacustrine environments characterized by gleyed, kaolinitic paleosols 
and coals.

Elsewhere at midlatitudes, for example in the Junggar Basin of northwestern 
China, the megaflora from the Huangshanjie Formation indicates a warm, season-
ally wet climate during the Norian, while the overlying coal-bearing Haojiagou 
Formation indicates a warmer, wetter Rhaetian (Ashraf et al. 2010). The latitudinal 
position of the basin during the Late Triassic has been interpreted variously, how-
ever, as at either midlatitudes (Ashraf et al. 2010), or higher paleolatitude (as high 
as 60° N; Sha et al. 2015). The Sichuan Basin, which was well to the south of the 
Junggar Basin at a paleolatitude of 35° to 40° N (Fig. 3.1), was characterized by a 
warm and humid climate through most of the Late Triassic (Li et al. 2016). The 
palynology of the Xujiahe Formation here demonstrates fluctuations in this climate 
during the Norian and Rhaetian, with two intervals of increased warmth and humid-
ity, and a cool, dry episode at the very end of the Rhaetian (Li et al. 2016). There is 
not complete agreement on the paleoclimate of the Sichuan Basin, however, as Tian 
et  al. (2016) interpreted the occurrence of Xenoxylon wood from the Xujiahe 
Formation as an indication of a cool (≤15 °C), wet climate in the basin during the 
late Norian. The general trends for the Triassic in the Boreal realm are possibly best 
presented in a study of palynology from boreholes in the Barents Sea by Hochuli 
and Vigran (2010). In comparing the ratios of hygrophytic elements, such as smooth 
and ornamented trilete spores, Cycadopites and Araucariocites Group against xero-
phytic elements, including bisaccate pollen in particular, the authors demonstrate an 
increase in humidity in the middle Carnian, following a much drier early Carnian, 
that persists until the early Rhaetian.

3.2  Global Climate Models

Models of the Pangaean climate for the Late Triassic suggest a largely azonal pat-
tern of climate with mostly dry equatorial and continental interior regions and 
humid belts at higher latitudes and around the Tethyan margin (Parrish and Peterson 
1988; Crowley et  al. 1989; Kutzbach and Gallimore 1989; Dubiel et  al. 1991; 
Parrish 1993; Fawcett et al. 1994). Precipitation across Pangaea is generally consid-
ered to have been strongly seasonal, produced by a strong monsoonal effect con-
trolled by summer heating of the large land masses (Kutzbach and Gallimore 1989; 
Parrish 1993; Sellwood and Valdes 2006; Preto et al. 2010; Stefani et al. 2010) that 
was enhanced during the Late Triassic by the location of the Pangaean superconti-
nent neatly bisected by the equator (Parrish 1993).

Sellwood and Valdes (2006) modeled the climate of the Late Triassic using an 
atmosphere-sea ice coupled GCM with 19 atmospheric layers and an atmosphere 
grid with cells of 2.5° latitude by 3.75° longitude to predict high summer tempera-
tures (in excess of 20 °C) over land at very high latitudes, but similarly extreme 
winter cold temperatures (−20 °C) at these latitudes. Nevertheless, no permanent 
snow or ice cover is predicted by this model. Between latitudes 40° N and 40° S, 

L.H. Tanner



63

mean annual temperatures would have exceeded 20 °C, with summer temperatures 
commonly above 30 °C and even 40 °C. Most precipitation would have fallen over 
the oceans, but was very unevenly distributed over land. Much of the interior of the 
continents from 40° N to 40° S received little precipitation, and over a larger area, 
extending to 50°, evaporation exceeded precipitation, resulting in vast desert interi-
ors. Seasonal, summer precipitation characterized the equatorial region and Tethyan 
margins. Higher latitudes were characterized by humid, temperate climates to ca. 
60°, and winter-wet climates at even higher latitudes. Panthalassa would have been 
dominated by a strong semi-permanent El Niño. In this model of a largely azonal 
climate (e.g., Preto et al. 2010), large swaths of Pangaea experienced strongly sea-
sonal precipitation, including the western Tethyan region, central Pangaea, the sub-
tropical latitudes, the eastern coasts of Laurasia and Gondwana, and the western 
coast of Pangaea (Mutti and Weissert 1995), while the higher latitudes were domi-
nated by a moist climate produced by westerlies and polar easterly winds (Robinson 
1973). In this model, the greater aridity of the Norian relative to the Carnian in those 
regions described above is explained by a weakening of the monsoonal system, 
potentially a consequence of the shifting position of the land areas as Pangaea 
drifted northward (Parrish 1993).

In contradiction to the azonal climate model, a zonal model of latitudinal climate 
gradients is favored by some (Olsen 1997; Kent and Olsen 2000; Olsen and Ken 
2000; Ziegler et al. 2003; Kent et al. 2017). The utility of the zonal climate model 
for Pangaea lies primarily in its explanation of aridification in the basins of the 
Newark Supergroup basins as a result of a 5–10° northward drift away from a very 
narrow humid tropical toward more arid climate zones of the subtropics, produced 
by Hadley circulation, as today. In the latest iteration of this model (Kent et  al. 
2017), the tropical climate zone produced by the ITCZ is limited to 5° on either side 
of the paleoequator, and broad arid belts extended to over 30° (Fig. 18, Kent et al. 
2017); humid mid- to high latitude belts extended to about 80°.

The apparent increase of humidity in eastern Greenland as it drifted northward, 
presumably deeper into the humid mid-latitudes (Clemmensen et  al. 1998), has 
been cited in support of the interpretation of zonal climatic gradients (Kent and 
Olsen 2000; Olsen and Kent 2000). The Jameson Land Basin of eastern Greenland 
was located at a paleolatitude estimated at near 40° N at the start of the Norian and 
drifted north by possibly 10° by the end of the Rhaetian (Kent et al. 2017). Deposition 
of the Fleming Fjord Formation occupied the later part of this time interval (late 
Norian through Rhaetian) and records a transition from a dry, seasonal climate, dur-
ing which the ephemeral lake beds of the Malmros Klint and Carlsberg Fjord mem-
bers were deposited (during the Norian), to the humid climate deposition of 
perennial lake sediments in the Taitbjerg Beds (during the Rhaetian). Likewise, 
Dawit (2016) suggested that the trend of increasing humidity evidenced by paleo-
sols in the Blue Nile Basin of Ethiopia described above may have resulted from 
either orographic effects, due to rift-related doming, or the northward drift of 
Pangaea, which carried the basin from a paleolatitude of about 20° S to around 10° 
S by the end of the Triassic, from the drier subtropics toward the ITCZ. Similarly, 
the zonal climate model also could explain the Norian aridification of the 
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Ischigualasto Basin in southern Pangaea as the basin moved northward from higher 
latitude (40o–45° S; Golonka 2007) toward more arid mid-latitudes.

Hence, climatic trends in some regions have been cited as evidence for an azonal 
model of climate for the Late Triassic, while other regions are presented as exhibit-
ing evidence for a zonal climate for the same time interval. In fact, these disparate 
views may not be totally incompatible. It is generally conceded that a strong mon-
soonal system existed from the late Paleozoic through most of the Triassic that cre-
ated a climate system in which precipitation patterns were determined largely by 
proximity to Tethys or Panthalassa, not latitude, at low to mid-latitudes. Hence, 
monsoonal flow, driven by summer heating/winter cooling air pressure contrasts, 
was more important than Hadley circulation. Potentially, however, weakening of the 
monsoonal system during the Late Triassic, from repositioning of the northward 
drifting Pangaea, allowed strengthening of latitudinally controlled atmospheric 
cells, which permitted the strengthening of zonal climate belts, as suggested by 
Parrish (1993).

3.3  Estimating Paleo-pCO2

Decades of investigation into Earth’s climate history combined with the use of vari-
ous proxies for estimating concentrations of CO2 in the atmosphere from the past 
have resulted in the firm conclusion that the partial pressure of CO2 in the atmo-
sphere (pCO2) is a major controlling factor of climate due to its role in amplifying 
radiative forcing (reviews in Berner 1998, 2004; Royer et al. 2007). Several tech-
niques have been employed to produce paleo-pCO2 estimates, including geochemi-
cal modelling, isotopic analysis of pedogenic minerals and statistical measurements 
of stomatal indices from fossil leaf cuticles (reviewed in Ekart et al. 1999; Royer 
et al. 2001; Tanner et al. 2004). The isotopic composition of fossil plant remains is 
used to interpret changes in the isotopic composition of atmospheric carbon, rather 
than paleo-pCO2, presumably identifying perturbations of the global carbon cycle 
(e.g., McElwain et al. 1999), not paleo-pCO2. The study by Fletcher et al. (2008) is 
notable in that it interpreted changes in paleo-pCO2 across most of the Mesozoic 
based on the unique methodology of analyzing the isotopic composition of fossils 
of nonvascular plants (liverworts). Notably, their work suggested pCO2 of less than 
500 ppm at the end of the Triassic, contrary to most other estimates.

Geochemical modelling, at its simplest, examines the relative sizes of the carbon 
reservoirs in the atmosphere and geosphere and estimates of the rates of exchange 
between reservoirs by silicate weathering and carbon burial via mass-balance calcu-
lations based on the abundances of different sedimentary rock types. Overall, the 
Triassic Period, including the Late Triassic, is modeled as a time of much higher 
pCO2 than present, in great part due to the presumed decreased rate of carbon burial 
in sedimentary rocks (coal in particular); Berner and Kothavala (2001) projected 
pCO2 of ca. 2000 ppm early in the Triassic, falling to ca. 1500 ppm by the Late 
Triassic, implying an overall long-term cooling trend. Similarly, Goddéris et  al. 
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(2008) developed a geochemical model based on paleogeographic reconstructions 
and hydrologic controls on silicate weathering to estimate a dramatic decrease in 
pCO2 from a Middle Triassic high of over 3000 ppm to a low of less than 1000 ppm 
by the end of the Rhaetian.

3.3.1  Isotopic Composition of Pedogenic Carbonate

The use of pedogenic carbonate to estimate the concentration of atmospheric CO2 
in Earth’s past was pioneered by Cerling (1991), who developed the methodology 
based on the carbon isotopic composition, the ratio of 13C to 12C (measured as δ13C), 
of pedogenic carbonate. The of δ13C of soil carbonate is controlled by several fac-
tors, including: the ratio of C4 to C3 vegetation, although C4 vegetation had not yet 
appeared in the Mesozoic; the depth of carbonate accumulation below the soil sur-
face, which controls the extent of atmospheric mixing; the temperature of carbonate 
precipitation, which determines fractionation; the isotopic composition of atmo-
spheric carbon, a value well-constrained by analysis of marine carbonates; and soil 
productivity (S(z) = pCO2soil - pCO2atmos), a factor that is largely dependent on cli-
matic regime (Cerling 1991; Ekart et al. 1999; Tanner 2010a). Values of paleo-pCO2 
derived from δ13C are broadly consistent with values from other sources, such as 
geochemical modelling (e.g. Berner 1994; Berner and Kothavala 2001). Ekart et al. 
(1999), in their invaluable review, cautioned that not all pedogenic carbonate is suit-
able for this analysis. Specifically, the carbonate must be precipitated 50 cm below 
the ground surface to avoid direct atmospheric interaction, but also not precipitated 
under the influence of groundwater; should be from mature Calcisols or calcic 
Argillisols, but not Protosols; and must be demonstrably free of evidence for recrys-
tallization (Ekart et  al. 1999). Ekart et  al. (1999) presented tabulated data that 
included previously published and new measurements from Upper Triassic forma-
tions, including the Chinle Group, the Newark Supergroup and the Ischigualasto 
Formation. The pCO2 values they calculated ranged from 1650  ppm, from an 
unspecified formation in the Chinle Group (Colorado Plateau, southwestern U.S.A.) 
to 3160  ppm in the Sugarloaf Member of the Passaic Formation (formerly New 
Haven Arkose; Weems et al. 2016), from the Norian of the Hartford Basin, Newark 
Supergroup (data previously published by Suchecki et al. 1988). Tanner et al. (2001) 
presented new data from the Newark Supergroup and Chinle Group that suggested 
fairly stable pCO2 during the Norian, ca. 2250 ppm (± 900 ppm to account for vari-
ance in soil productivity). Tanner (2003) published additional data from the Chinle 
Group that represented a more complete sampling of the stratigraphic range of the 
group and found a consistent enrichment (increase in δ13C of the carbonate) from 
the stratigraphically lowest formation sampled, the Carnian Blue Mesa Member of 
the Petrified Forest Formation, to the uppermost formation, the Rhaetian-age Rock 
Point Formation. The morphology of the paleosols that were sampled varied consid-
erably, suggesting increasing aridity, at least in part. Hence, Tanner (2003) varied 
the S(z) to account for climatically-controlled variations in soil respiration and 
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derived pCO2 values ranging from 2150 to 3300 ppm for the upper Carnian-lower 
Norian Petrified Forest Formation to 2300 to 3750 ppm for the upper Norian Owl 
Rock Formation. The paleosol profiles in the Rhaetian Rock Point and equivalent 
formations were judged too thin to provide reliable measurement of pCO2 and were 
discounted for pCO2 calculation. Prochnow et al. (2006), however, also calculated 
pCO2 from pedogenic carbonate in Chinle Group formations from the Colorado 
Plateau. Their calculations suggested extreme fluctuations in Late Triassic atmo-
spheric composition, with pCO2 falling to less than 300 ppm during the Carnian, but 
rising to values of 1390 to 1760 ppm during the Norian. Notably, there is no sedi-
mentary evidence to support the glacial cold that would have accompanied pCO2 
near modern pre-industrial levels during the Carnian, nor is there reason to expect 
sudden and short-term changes in the carbon cycle that would result in pCO2 fluc-
tuations of this magnitude. Cleveland et al. (2008a) contributed an additional study 
of the Chinle, but focused on sampling upper Norian to Rhaetian-age formations 
from the Chinle Group at just two locations. This study also found evidence of 
highly variable pCO2, but characterized by relatively lower levels during the Norian, 
rising during the Rhaetian, and higher peaks near the end-Rhaetian. Although 
Cleveland et al. (2008a) attempted well-controlled sampling protocols, they admit-
ted limitations in their data analyses. For instance, rather than analyses of the δ13C 
of organic matter from the soils from which they sampled pedogenic carbonate, they 
relied on the average of two analyses of fossil charcoal from a single horizon for all 
pCO2 calculations. While this is not an uncommon practice, due to the typical pau-
city of organic matter in the strongly oxidized soils in which pedogenic carbonates 
are usually found, it is a major source of inaccuracy, as the isotopic composition of 
vegetation can differ significantly within the same plant community, and is also 
affected by transient climatic factors, such as heat stress or water availability. The 
other common source of inaccuracy is use of an incorrect value for S(z), which can 
only be grossly approximated. One or both of these factors could account for sys-
tematic differences between the two sections sampled in pCO2 calculations.

3.3.2  Use of Stomatal Indices

The use of stomatal indices measured from fossil plants to interpret paleoatmo-
spheric composition derives from many laboratory studies that have demonstrated a 
correlation between atmospheric pCO2 and stomatal frequency in some, although 
not all plant genera. Beerling et al. (1998) selected Gingko biloba for study because 
the order to which the species belongs has a fossil record dating back to the Permian. 
Beerling et al. (1998) showed that specimens grown for three years in growth cham-
bers at elevated (560  ppm) pCO2 exhibited a demonstrable decrease in both the 
density (the number of stomata per unit area) and index (the number of stomata rela-
tive to the number of epidermal cells) compared to G. biloba grown at present CO2 
levels. This effect is generally considered an adaptation that improves water-use 
efficiency that evolved in plants that grew when CO2 levels are high. Thus, fossil 
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leaves on which stomatal counts are possible theoretically can provide a record of 
paleo-pCO2. For example, Chen et al. (2001) utilized this apparent correlation to 
analyze fossils of Gingko spp. of various geologic ages and found an approximate 
(inverse) correlation of stomatal index with the theoretical variation of pCO2 as 
calculated by geochemical modeling (Berner and Kothavala 2001). However, this 
paleofloral evidence is also not without potential sources of error. McElwain et al. 
(1999) attempted to quantify changes in pCO2 across the Triassic-Jurassic bound-
ary, but drew their conclusions of a sudden and dramatic increase from measure-
ments of the stomatal indices from different species below and above the boundary 
interval, rather than comparison within a single taxon on both sides of the 
boundary.

Retallack (2001a) extended the utilization of the fossil record of stomatal indices 
to include seed ferns and found evidence of similar transient increases in pCO2 lev-
els at several important paleontologic boundaries, including the Permian-Triassic, 
the Triassic-Jurassic, and the Cretaceous-Paleogene. However, the statistical valid-
ity of these data has been critiqued by Haworth et al. (2005). Notably, Retallack 
(2013) used the stomatal indices of the single taxon, Lepidopteris, to calculate a 
history of pCO2 variation for much of the Permian and all of the Triassic. Although 
the temporal resolution of the data presented is very coarse, he suggested a series of 
“greenhouse crises” in which pCO2 spiked at levels of 1500 to 3000+ ppm, com-
pared to much lower background levels of less than 1000 ppm.

Implicit in the utilization of stomatal indices to calculate paleo-pCO2 are the 
assumptions that the physiologic response was quantitatively similar for the fossil 
plants as in their modern representatives (typically the nearest living relatives), that 
the stomatal response resulted solely from variation of a single parameter (atmo-
spheric CO2) and that the physiological response was similar at both low and high 
atmospheric-CO2 levels. However, all of these assumptions are debatable (Boucot 
and Gray 2001; Royer et al. 2001; Tanner 2002a, b; Haworth et al. 2005). In fact, it 
has been made clear from experimental data that other environmental stresses, such 
as heat, sun, water deficit and exposure to SO2 also have the potential to elicit a 
strong stomatal response (Beerling et al. 1998; Tanner et al. 2007). Most of these 
factors are not easily evaluated directly from the geologic record. Thus, the applica-
tion of stomatal indices to quantitative determinations of paleo-pCO2 should be 
viewed cautiously (Boucot and Gray 2001; Royer et al. 2001; Tanner 2002a; Tanner 
et al. 2004; Haworth et al. 2005).
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3.4  Regional Trends

3.4.1  Marine Record: Tethyan Realm

Korte et al. (2005) compiled an extensive set of δ18O analyses comprising 160 artic-
ulate brachiopods and a nearly equal number of whole rock analyses from the 
Middle and Upper Triassic of the Tethyan realm. The Upper Triassic brachiopod 
δ18O values range from −0.6 to 3.4‰ (VSMOW) for samples ranging in age from 
early Carnian (St. Cassian Limestone) to late Rhaetian (Kössen Limestone). Using 
the equations of O’Neil et al. (1969) and Hays and Grossman (1991), Korte et al. 
(2005) calculated water temperatures ranging from 18 to 32 °C for brachiopods that 
coexisted with corals. In comparison to the earlier Muschelkalk sea, for which they 
calculated water temperatures of 25–37 °C (Korte et al. 2005), δ18O rose ca. 2‰ in 
the early Carnian (Cordevollian), which Korte et al. (2005) interpreted as a tempera-
ture decrease of ca. 10  °C, but this decline was reversed in the middle Carnian 
(Julian).

Taken at face value, the data of this study suggest significant temperature varia-
tions through the Late Triassic, including episodes of cooling in the early Carnian 
and Norian, and warming events in the middle Carnian and Rhaetian. However, 
interpretation of a temperature record from the isotopic signature of marine carbon-
ates (whole rock or brachiopods) is far from straightforward. As Korte et al. (2005) 
noted, some part of the early Carnian isotopic excursion could be due to increasing 
salinity, rather than temperature decrease. Furthermore, the rise in δ18O for the late 
Carnian through Norian in samples of the Hallstatt Limestone at Silická Brezová 
(Slovakia) may in fact result from carbonate deposition in deeper waters, close to 
the thermocline, rather than cooling of surface waters. Moreover, the isotopic deple-
tion exhibited by brachiopods collected from the Rhaetian Kössen Limestone may 
represent the sheltered water conditions of an intra-basin platform rather than a 
warming event. Hence, the isotopic signature of marine carbonates must be inter-
preted carefully to consider water depth and salinity when applied to paleoclimate 
studies. Stefani et al. (2010) presented a thorough review of the depositional system 
for the Triassic carbonate platforms exposed in the Dolomites, which during the 
Late Triassic were situated on the western margin of Tethys at a subtropical paleo-
latitude of 15–18° N (Muttoni et al. 2010). The Upper Triassic portion, starting with 
the Wengen and San Cassiano formations, records an initially dry early Carnian, 
evidenced by the paucity of terrigenous vegetation remains, and arid carbonate 
paleosols on the platform tops exhibiting pisoids and tepee structures. The carbon-
ate ramps of the middle Carnian Heiligkreuz Formation present evidence for a sig-
nificant increase in humidity; the mature paleokarst contains caves and dolines, 
plant remains suggest abundant terrigenous vegetation, the palynomorph assem-
blage contains many hygrophytic elements and paleosols contain histic and spodic 
horizons (Stefani et al. 2010). Breda et al. (2009) interpreted this mid-Carnian inter-
val as consisting actually of three distinct humid pulses separated by intervals of 
dryness. The presence of calcareous paleosols and evaporites in the upper Carnian 
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to lower Norian Travenanzes Formation demonstrates a return to consistently arid 
conditions that were maintained through most of the Norian during deposition of 
the Dolomia Principale (Stefani et al. 2010). Berra et al. (2010) similarly described 
the evidence for widespread aridity during the Norian in the western Tethyan region, 
but also noted the cessation of this climate with the onset of humidity at the end of 
the Norian, coinciding with the sea-level fall that resulted in the emergence of car-
bonate platforms throughout the region. Interestingly, the authors cite the isotopic 
data described above (Korte et al. 2005) in support of a cooling climate associated 
with falling sea level. Trotter et  al. (2015) used the oxygen isotope composition 
from conodonts (δ18Ophos) to track ocean temperatures from conodont apatite from 
the Lagronegro Basin (Italy), an open ocean depositional basin in northwestern 
Tethys. The use of conodont apatite rather than marine carbonate has the advantage 
of avoiding the problems of diagenetic alteration of the isotopic signal (e.g., Veizer 
et al. 1999; Korte et al. 2005). This study differs from most earlier work in that the 
isotopic composition of individual conodonts was analyzed by secondary mass ion 
spectrometry (SIMS), allowing species-specific analyses, rather than bulk analyses. 
The authors acknowledge, however, that calculating seawater temperature requires 
knowing, or making assumptions about the isotopic composition of the seawater 
(δ18OSW), which is itself controlled by factors such as precipitation, evaporation and 
salinity. Nevertheless, Trotter et al. (2015) have reconstructed a δ18Ophos curve for 
the entire Triassic of the Lagronegro Basin that indicates a cool start to the Carnian 
encompassing the entire Julian, followed by a negative δ18Ophos excursion of ca. 
1.5‰, suggesting a strong warming event starting at the Julian-Tuvalian boundary. 
The authors calculate warming of 6 °C or more for this event, which continues into 
the Norian; these data support the interpretation of dramatic warming as the driver 
of an apparent wide-spread increase in precipitation during the Carnian, the so- 
called Carnian Pluvial Event (CPE, discussed below). A further excursion, of ca. 
1.7‰, suggests additional late Norian (Alaunian) warming that is reversed at the 
Norian-Rhaetian boundary. Notably, Rigo et al. (2012), also using δ18Ophos of con-
odont apatite, found that water temperatures were significantly lower in basins mar-
ginal to the Tethys Sea. In the Sicani Basin, for example, conodont δ18Ophos indicates 
water temperatures 8 °C cooler than contemporaneous water temperatures in the 
nearby open-ocean Lagronegro Basin (Rigo et  al. 2012), which they attribute to 
upwelling currents driven by the predicted monsoonal atmospheric flow.

3.4.2  Continental Record: North America

3.4.2.1  Colorado Plateau

Formations of the Upper Triassic (Carnian through Rhaetian) Chinle Group pre-
serve a semi-continuous record of climate change during the Late Triassic in the 
Colorado Plateau region of the southwestern United States, and paleosols are prom-
inent features of most formations of the group. The oldest (Carnian-age) formations 
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of the Chinle Group (Zuni Mountains and Shinarump formations) contain kaolinitic 
paleosols that display gley features and spodic horizons, and lack calcretes (Fig. 3.2; 
Tanner and Lucas 2006). Numerous authors (Hasiotis et  al. 1998; Tanner 2003; 
Prochnow et al. 2006; Tanner and Lucas 2006) have interpreted a humid, but sea-
sonal climate during the Carnian in the Colorado Plateau region on the basis of 
these gleyed and illuviated paleosols. As reviewed in Lucas et al. (2012), the most 
likely age assignment of these strata based on biostratigraphy is Julian. Prochnow 
et al. (2006) described the landscape of the “lower Chinle,” referring to all Chinle 
Group formations stratigraphically below the Petrified Forest Formation, as one 
with humid open forest communities and estimated mean annual precipitation 
(MAP) from geochemical indices and depth-to-carbonate paleosol measurements as 
increasing to levels above 1200 mm a−1.

Fig. 3.2 Pedogenic features in a chronological sequence of formations from the Upper Triassic 
Chinle Group, Colorado Plateau (USA) demonstrating progressive aridification during the Late 
Triassic. (a) Paleosol in the middle Carnian Zuni Mountains Formation (northwestern New 
Mexico) is heavily gleyed and kaolinitic, indicating high but fluctuating water table during deposi-
tion. (b) Paleosols in the upper Carnian Blue Mesa Member of the Petrified Forest Formation 
(photographed in southeastern Utah) are commonly reduced but contain isolated calcrete nodules 
(arrow). (c) Paleosols in the lower Norian Painted Desert Member of the Painted Desert Member 
of the Petrified Forest Formation (northeastern Arizona) are reddened, illitic and typically contain 
abundant calcrete nodules. (d) The upper Norian Owl Rock Formation (northeastern Arizona) is 
characterized by paleosols containing mature calcrete horizons (arrows)

L.H. Tanner



71

Subsequent Chinle deposition produced the laterally equivalent Cameron, 
Monitor Butte and Bluewater Creek formations and the overlying Blue Mesa 
Member of the Petrified Forest Formation, all of likely Tuvalian age (Lucas 2010; 
Lucas et  al. 2012). Paleosols of these strata are primarily vertic Alfisols that are 
calcic (stage II to III calcretes) in some locations, gleyed, in others, varying by loca-
tion on the alluvial plain (Tanner and Lucas 2006). By analogy to modern soils, this 
classification implies that the soils formed in woodlands and forests in subhumid to 
semiarid climates (Birkeland 1984; Buol et al. 1997; Retallack 2001b). The abun-
dance of pedogenic slickensides and pseudoanticlines noted at some locations in 
these paleosols further suggests a seasonal, semi-arid climate (Therrien and 
Fastovsky 2000). The maturity (i.e., horizonation) of the Blue Mesa floodplain 
paleosols is notable, attesting to a low rate of sediment accumulation. The general 
absence of spodic and histic horizons in these strata, and the lack of kaolinite dem-
onstrate a decrease in precipitation near the end of the Carnian stage. The overlying 
Sonsela Member, specifically the Jim Camp Wash Bed, and the Painted Desert 
Member of the Petrified Forest Formation, lower to middle Norian (Lacian to 
Alaunian), host mature paleosols with abundant stage II to stage IV calcretes 
(Tanner and Lucas 2006). Calcrete horizons in these members are generally more 
mature than in the underlying Blue Mesa Member, and gleying less common, as 
noted by Therrien and Fastovsky (2000), and thus likely reflect more arid condi-
tions. Paleosols of the overlying (late Norian, likely Sevatian) Owl Rock Formation 
increase in maturity, with stage II to stage III calcretes characterizing the lower part 
of the formation transitioning to stage III to IV calcretes higher (Tanner 2000a; 
Tanner and Lucas 2006). Nordt et  al. (2015) noted the occurrence of relatively 
mature calcretes in the Sonsela Member and interpreted this as evidence of “sud-
den” collapse of the monsoonal system during the Norian. This ignores the pedo-
genic evidence of gradual aridification present in the strata underlying the Sonsela. 
In fairness, however, Sonsela paleosols do appear significantly more arid than those 
in the underlying Blue Mesa Member, which are separated by an unconformity. The 
upper Norian-Rhaetian Rock Point Formation generally lacks pedogenic features in 
many areas, but the uppermost strata in some locations host multiple pedogenic 
horizons that display drab root traces, desiccation cracks, and stage II to III cal-
cretes. Prochnow et  al. (2006) described the “upper Chinle,” in reference to the 
Petrified Forest, Owl Rock and Rock Point formations, as a semiarid desert-shrub 
landscape with MAP of 400–600  mm a−1. In general, the sedimentary evidence 
from the Colorado Plateau, in particular from the pedogenic features of the Chinle 
Group, indicates that climate was drier during the Norian-Rhaetian than during the 
Carnian, confirming the interpretation of Blakey and Gubitosa (1984) and Tanner 
(2000a, 2003). Cleveland et  al. (2008b) also used the pedogenic features of the 
Chinle Group formations, specifically the Petrified Forest and Rock Point forma-
tions, to interpret an overall semi-arid to arid climate, corroborating the earlier stud-
ies. Additionally, they estimated mean annual precipitation from measurement of 
the depth to carbonate in individual profiles to suggest 200–500 mm MAP during 
the Norian through Rhaetian. Conversely, Dubiel et al. (1991) and Parrish (1993) 
interpreted the same evidence as indicating a relatively moist climate at least until 
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the end of the Norian. As noted above, Parrish (1993) modeled a strong monsoonal 
effect during the Triassic, and predicted abundant moisture in the western equatorial 
region, which included the Colorado Plateau. Potentially, weakening of the mon-
soon could have resulted in insufficient strength to draw moisture from the west and 
aridification of the western equatorial region. Nordt et al. (2015) attribute the weak-
ening of the monsoon on the Colorado Plateau to the orographic effects from the 
rise of a magmatic arc in the Western Cordillera at this time, rather than to the 
repositioning of the Pangaean continent. Alternatively, if the Pangaean climate was 
in fact zonal, as has been proposed by some (Kent and Olsen 2000; Olsen and Ken 
2000; Kent et al. 2017), northward drift of the continent over the course of ca. 20 Ma 
carried the Colorado Plateau region by 5–7° away from the humid tropical belt 
(Kent et al. 2017). As suggested earlier, the zonal and azonal models are not neces-
sarily mutually exclusive, as weakening of the monsoonal system from continental 
drift may have allowed strengthening of a latitudinally controlled zonal climate.

3.4.2.2  Newark Supergroup Basins

Vertical changes in sedimentary facies, localized occurrences of evaporites, and 
paleosol morphology all have been cited in support of a general trend of increasing 
aridity during deposition of the Upper Triassic to Lower Jurassic formations of the 
Newark Supergroup, spanning 13° paleolatitude (Olsen 1997; Kent and Olsen 
2000). Coals occur in the lower to middle Carnian formations of the southern basins 
(Olsen 1997), e.g., the lower Chatham Group (formerly the Cumnock, Leaksville 
and Tuckahoe formations of the Deep River, Danville and Richmond basins, respec-
tively; Weems et al. 2016). Deep-water, perennial lacustrine deposits are interpreted 
from the middle to late Carnian strata of many of the basins, including the Lockatong 
Formation of the Danville (former Leaksville Formation), Richmond (former 
Turkey Branch Formation) and Newark basin. In the southern basins (the Deep 
River and Taylorsville basins), an increase in the maturity of calcrete paleosols with 
stratigraphic height (decreasing geological age) is noted in the Norian-age forma-
tions (Coffey and Textoris 1996; LeTourneau 2000; Driese and Mora 2003). In the 
more northerly Newark basin, the thick succession of the Lockatong and Passaic 
formations is locally evaporite-bearing and interbedded with minor eolian sand-
stones close to the Rhaetian-age top of the sequence (Olsen 1997). In the Fundy 
basin, the northernmost of the Newark basins, calcrete-bearing alluvial deposits of 
the mostly Carnian-age lower Passaic Formation (former Wolfville Formation; 
Weems et al. 2016) are succeeded by eolian sandstones and evaporite-bearing sheet-
wash deposits of the Norian to Rhaetian-age upper Passaic Formation (former 
Blomidon Formation) (Olsen et al. 1989; Olsen 1997; Tanner 2000a, b). As described 
above, this climate trend in the Newark Supergroup strata has been interpreted in 
support of the zonal climate model as a consequence of the latitudinal drift of east-
ern North America by 5–10°, which carried the basins from a moist subtropical to a 
more northerly arid climate zone (Olsen 1997; Kent and Olsen 2000; Whiteside 
et al. 2011). Parrish (1993), in contrast, postulated that aridification on the Colorado 
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Plateau occurred due to the weakening of monsoonal circulation. The weakening 
monsoon, potentially controlled by the northerly drift of Pangaea, as described 
above, resulted in strengthening of zonal circulation and allowed the latitudinal drift 
of the Newark basins, as well as the Colorado Plateau, between climate zones 
(Parrish 1993). But according to this interpretation, the drying trend occurred dur-
ing the Early Jurassic, whereas the evidence from the Newark basins suggests that 
this aridification took place much earlier, during the Norian. Some formations of the 
Newark Supergroup have long been noted for the cyclical bedding of the lithofacies. 
Van Houten (1962, 1964) recognized an apparent fine-scale periodicity in the lacus-
trine cycles of the Lockatong Formation in which he described coarsening-upward 
cycles of shale, calcareous mudstone and siltstone to sandstone, some of which 
contained dolomite and zeolites in the mudstones. Van Houten proposed that these 
sedimentary cycles resulted from the expansion and contraction of shallow, ther-
mally stratified lakes in an alluvial-lacustrine basin. By assuming that thin carbonate- 
clastic couplets within the dark mudstones recorded the net annual deposition of 
varves, Van Houten estimated an average sedimentation rate for the cycles, and from 
this calculated an average depositional duration of approximately 21 kyr per cycle. 
From this, Van Houten hypothesized that the Milankovitch precessional orbital fre-
quencies controlled the cycles. Van Houten further recognized groupings of the 
cycles in compound cycles of five and 20 individual cycles, corresponding to the 
frequency of eccentricity cycles, and suggested that these cycles resulted from 
longer- term variations in climate that modified the basin hydrology from closed to 
open, or through-flowing (Van Houten 1964). The original work of Van Houten was 
expanded upon by Olsen et al. (1989), mainly through the application of spectral 
analysis to time series of the facies in stratigraphic successions. This allowed iden-
tification of a period of 18 kyr to 25 kyr for the basic Van Houten cycle, 95 kyr and 
125 kyr for the eccentricity cycle and 400 kyr for the long eccentricity cycle. 
Although the applicability of the cyclicity of the strata as a complete and accurate 
astrochronology has been argued (cf. Tanner 2010b; Tanner and Lucas 2015), it is 
generally acknowledged that the cyclicity stems from climatic variations. 
Specifically, the Newark cycles are attributed to variations in the strength of the 
monsoon controlled by variations in solar insolation (Olsen 1986). During the Late 
Triassic, the Newark Basin would have been located in a near-equatorial position, 
for which modeling suggests the dominant orbital cycle of insolation variation 
would have been precession, modulated by eccentricity (Laskar et  al. 2004). 
Computer models have suggested that precipitation in low-latitude regions could 
have varied by as much 25% due to precession-forced changes in insolation 
(Kutzbach 1994). Milankovitch-frequency climate variations have been interpreted 
in other Upper Triassic terrestrial sequences, but definitive evidence of the periodic-
ity of the cycles is lacking for the most part (see review in Tanner 2010b).
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3.5  Major Climate Events

3.5.1  The Mid-Carnian Event

3.5.1.1  Evidence for Mid-Carnian humidity

As described elsewhere in this volume (Lucas and Tanner 2017), climate change has 
been suggested as a contributing factor in biotic turnover during the Late Triassic, 
specifically in regard to nonmarine tetrapods (Tucker and Benton 1982; Simms and 
Ruffell 1990). Tucker and Benton (1982), in particular, believed that a major biotic 
turnover occurred at the Carnian-Norian boundary, which they attributed to the ces-
sation of humid climate conditions at the end of the Carnian. The development of 
the concept of a widespread climatic event in the mid-Carnian, termed the Carnian 
Pluvial Event (CPE) was largely advanced by Simms and Ruffell (Simms and 
Ruffell 1989, 1990) for the western Tethys and Germanic Basin. The general cli-
mate of the Carnian has been projected as strongly monsoonal, powered in part by 
the equatorial position of Tethys (Hay et al. 1982; Hallam 1985; Simms and Ruffell 
1990). Mean annual precipitation in the tropics and subtropics, extending to as far 
as 40° paleolatitude, has been estimated as increasing to over 400 mm. Plant com-
munities during the middle Carnian show more humid affinities, consisting of filo-
copsids, lycopods, equisetopsids and cycadaleans, followed by a return to xerophytic 
communities in the lower Tuvalian (Roghi 2004; Roghi et al. 2010; Dal Corso et al. 
2015). Visscher et al. (1994), however, disputed that the hygrophytic flora associ-
ated with the mid-Carnian in the Germanic Basin were the consequence of a change 
in climate, but were instead the record of the riparian vegetation of a fluvial system 
in an otherwise arid setting. Kozur and Bachmann (2010), in contrast to Visscher 
et al. (1994), described a wet late Julian in the Germanic Basin and northwestern 
Tethys, which they termed the Middle Carnian Wet Intermezzo (MCWI), with a 
duration of just 0.7 to 0.8 Ma. Although precipitation exceeded evaporation across 
this region, they contended that is was not a true pluvial event except between 30° 
and 50° N paleolatitude. Kozur and Bachmann (2010) attributed their MCWI to 
Julian strengthening of the megamonsoon, noting the apparent freshening of the 
Germanic Basin during deposition of the Stuttgart Formation, evidenced by lacus-
trine, fluvial and brackish facies that contrast with the underlying evaporate-rich 
Lower Keuper. In their interpretation, monsoonal air flow from northwest Tethys 
through the Germanic Basin was intercepted by an uplifted rift shoulder in the 
Caledonides between Scandinavia and Greenland, resulting in an influx of freshwa-
ter into the Germanic Basin. On the Iberian Peninsula, the CPE is expressed by the 
occurrence of continental siliciclastic sediments of Julian age sandwiched between 
marine evaporites (Arche and López-Gómez 2014). Correlative expressions of a 
mid-Carnian increase in moisture cited by Arche and López-Gómez (2014) include 
the Argana basin of Morocco (the Bigoudine Formation), the Fundy Basin of the 
Canadian Maritimes (the lower Passaic Formation) and the Newark Basin of New 
Jersey, U.S.A. (the Stockton Formation). Each of these examples presents a similar 
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stratigraphic case of an upward transition from alluvial fan deposition to a fluvial 
system that is overlain in turn by eolian and/or playa sediments. We note, however, 
that although these stratigraphic sequences present evidence for aridification in the 
upper portion, the superposition of the fluvial systems on basal alluvial fan deposits 
demonstrates a decrease in the initial high depositional relief on the margin of a rift 
basin, and does not by itself demonstrate an arid paleoclimate prior to the onset of 
mid-Carnian humidity.

The CPE has been particularly well studied in the Tethyan realm. Hornung et al. 
(2007a) examined the δ18O record of conodont apatite from northwestern Tethys 
and documented a negative shift at the Julian 1-Julian 2 boundary of 2‰. They 
interpreted an ocean temperature from 12 to 16 °C in the early Carnian rising to 
19 °C during Julian 2, and continuing to rise to as high as 22–25 °C in the Tuvalian. 
The CPE appears to have been synchronous with a late-early Carnian fall in sea 
level (Arche and López-Gómez 2014). In much of the western Tethyan realm, the 
middle Julian (start of Julian 2) through early Tuvalian was marked by the wide-
spread collapse of carbonate platforms, which were exposed during regression, and 
multiple incursions of siliciclastic sediments, as in the Dolomites, the Northern 
Calcareous Alps and the Southern Calcareous Alps (Roghi et al. 2010; Stefani et al. 
2010; Arche and López-Gómez 2014). Admittedly, there are difficulties in some of 
these examples in disentangling the effects of the proposed climate shift from 
eustatic changes and the consequent facies changes (Arche and López-Gómez 
2014). In the Lagronegro Basin in the southern Apennines, the event is marked by 
the incursion of a six-meter thick green clay and radiolarite in the otherwise 
carbonate- dominated sequence (Rigo et al. 2007). The CPE has also been recog-
nized at Spiti in the Himalayas (Hornung et  al. 2007b), which had an estimated 
palaeolatitude of 28° S (Golonka 2007), thus demonstrating the extent of this per-
turbation extending to the southern hemisphere, reaching to the southern margin of 
Neotethys.

Evidence that the CPE extended to eastern Tethys is provided by the Long Chang 
section at the edge of the Nanpanjiang Basin in southern China at a paleolatitutde of 
15° N (Sun et al. 2016). Evidence suggests that the effects of the CPE extended even 
to the Boreal region. Sedimentary facies in the Barents Sea indicate a dry start to the 
Carnian, but humidity increased sufficiently to allow coal formation (Hochuli and 
Vigran 2010). On Spitsbergen, a transition to humid sporophytes from Julian 1 to 
Julian 2 coincides with the xerophytic to hygrophytic transition observed in the 
Tethyan (Mueller et al. 2015). The CPE apparently is recorded in Panthalassa as 
well. Nakada et al. (2014) presented analyses of the clay mineralogy in cherts from 
Japan that demonstrate a change in the clays consistent with increased weathering 
in continental environments that sourced pelagic sediment during the late Julian. 
Notably, the paleoclimatic record of the Ischigualasto Basin from southern Pangaea 
suggests variable humidity during the Carnian, with the greatest moisture during the 
middle Carnian (Colombi and Parrish 2008), implying that the CPE may have been 
global in extent.

3 Climates of the Late Triassic: Perspectives, Proxies and Problems



76

3.5.1.2  Isotopic Record of the CPE

Dal Corso et al. (2015) presented carbon isotope data from the Dolomites (Southern 
Calcareous Alps) that display a negative excursion of 4‰ in terrestrial biomarkers 
(n-alkanes) and of 2‰ in bulk organic matter approximately at the Julian1—Julian 
2 boundary. They correlate this excursion to similar excursions of 2–4‰ in bulk 
organic matter from the Northern Calcareous Alps (Austria) and the Transdanubian 
Range (Hungary). Dal Corso et al. (2015) noted a lack of a carbon isotope excursion 
in the δ13Ccarb record from the Dolomites, but considered the excursion in the higher 
land-plant biomarkers as more compelling evidence for a perturbation of the global 
carbon cycle. In the Long Chang section (Sun et al. 2016), δ13Ccarb, δ13Corg, δ18O and 
U/Th all deviate strongly in Julian 2, with the excursions terminating abruptly at the 
base of the Tuvalian 1. Although the δ13Corg record exhibits just a single excursion 
lasting through all of Julian 2, the δ13Ccarb record exhibits multiple shifts. Sun et al. 
(2016) interpreted a warming trend consisting of two separate pulses from the geo-
chemical data and calculated an increase in SST of 4 °C from the initial excursion, 
followed by a 7 °C increase.

3.5.1.3  Causal Mechanism

Significant to discussions of the age of the Carnian-Norian boundary (see Lucas 
et al. 2012), Kohút et al. (2017) determined an isotopic age of 221.2 ± 1.6 Ma for 
zircons from the Lunz Formation, which represents the siliciclastic expression of 
the CPE in the Carpathians (Slovakia); this finding thereby places the age of the 
Carnian-Norian boundary as younger than 221 Ma. In the estimation of Kozur and 
Bachmann (2010), the CPE was a rather brief event of 0.7–0.8 Ma duration; this is 
reinforced by the interpretation of Arche and López-Gómez (2014) of a duration of 
less than 1 Ma. In contrast, Miller et al. (2017) recently applied astrochronology to 
the multiple isotope excursions associated with the CPE in a core from southwest-
ern England to interpret a duration of 1.09 Ma for the CPE. Regardless, the rela-
tively short duration and apparent pulsed nature of the CPE raises questions about 
the forcing mechanism. Kozur and Bachmann (2010) attributed the influx of fresh-
water into the Germanic Basin primarily to tectonic factors, as discussed above. 
Arche and López-Gómez (2014), in reviewing potential causes, considered tectonic 
uplift and potential reorganization of atmospheric flow as responsible for the tem-
porary increase in precipitation, citing the suggestion of Hornung and Brandner 
(2005) that uplift of Fennoscandia could have been responsible. Additionally, they 
note the suggestion that the Late Triassic was a time of peak land area and that 
increased land-ocean temperature contrast could have heightened the strength of 
monsoonal flow. However, Arche and López-Gómez (2014) also noted the sugges-
tions that the trigger for the CPE was related to volcanism, either the basaltic erup-
tions of the Wrangellia province (Furin et al. 2006), or alkaline volcanism in the 
eastern Mediterranean (Hornung et al. 2007a, b), but conceded that proving cause 
and effect is difficult. Indeed, the voluminous basalt eruptions that produced the 
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Wrangellia Large Igneous Province have been suggested by numerous authors as 
the ultimate cause of the CPE (Furin et al. 2006). In particular, the outgassing of 
13C-depleted CO2 during the extrusion of perhaps 106 km3 of basalt lava is suggested 
as the proximal cause of the negative carbon isotope excursion (Dal Corso et al. 
2012, 2015; Xu et al. 2014). Miller et al. (2017) insist that a highly depleted source 
of carbon is required to explain the isotope excursions and therefore invoke a com-
bination of volcanic activity and dissociation of marine methane clathrate. We note, 
however, that attribution of the CPE to Wrangellian activity is somewhat problem-
atic. Although the age of the LIP does overlap the timing of the CPE, it is biostrati-
graphically constrained only broadly as initiating in the late Ladinian and potentially 
continuing to the early Tuvalian (Dal Corso et al. 2015). Similarly, 187Os/188Os data 
suggest initiation in the late Ladinian (Xu et al. 2014), 3 Ma prior to the onset of the 
CPE. Without more definitive evidence that peak eruptive activity occurred during 
Julian 2, the interpretation of a volcanic trigger for the CPE remains speculative.

3.5.2  End-Triassic Event

As described elsewhere in this volume (Lucas and Tanner 2017), the latest Triassic 
was a time of biotic crisis, marked by a significant decline in diversity resulting 
from the combination of low origination rates and several pulses of extinction, the 
last and largest of which, during the late Rhaetian, reduced or eliminated some char-
acteristic Triassic taxa (Hallam 1990; Sepkoski 2002; Tanner et al. 2004; Kiessling 
et al. 2007; McElwain et al. 2007; Götz et al. 2009; Guex et al. 2012; McRoberts 
et al. 2012; Lucas and Tanner 2017). Various forcing mechanisms have been pro-
posed to explain the final extinction pulse, including sea-level change, widespread 
marine anoxia, climate change, bolide impact, catastrophic release of methane and 
flood basalt volcanism (reviewed in Tanner et al. 2004; Hesselbo et al. 2007, van de 
Schootbrugge et al. 2013; Lucas and Tanner 2017). There now exists ample evi-
dence to support the hypothesis that the final biotic decline of the Triassic was 
largely a consequence of the environmental effects of the eruptions of the flood 
basalt of the Central Atlantic Magmatic Province (CAMP), the outgassing of which 
may have sufficiently affected atmospheric properties to impact climate on multiple 
time scales. Investigation continues on identifying the precise mechanisms by which 
biota were impacted by the CAMP eruptions; these may have included some com-
bination of intense warming forced by outgassed CO2, alternating with episodes of 
SO2 aerosol-induced cooling and ocean acidification (Hautmann 2004; Marzoli 
et al. 2004, 2017; Tanner et al. 2004, 2007; Nomade et al. 2007; van de Schootbrugge 
et  al. 2007, 2008, 2009, 2013; Hautmann et  al. 2008; Schaltegger et  al. 2008; 
Whiteside et al. 2010; Ruhl et al. 2011; Schaller et al. 2011; Steinthorsdottir et al. 
2011; Pálfy and Zajzon 2012; Pieńkowski et al. 2012, 2014; Richoz et al. 2012; 
Blackburn et al. 2013; Lucas and Tanner 2017).

The association of the CAMP eruptions with the late Rhaetian extinctions was 
driven in part by the recognition of a negative carbon isotope excursion (CIE) in the 
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δ13C record (typically ca. −3.5 °/oo) in both marine carbonate and organic carbon in 
multiple Rhaetian-Hettangian boundary sections, including St Audrie’s Bay, south-
west England (Hesselbo et al. 2002, 2004), Csövár, Hungary (Pálfy et al. 2001), and 
several sections in the Northern Calcareous Alps of Austria (Kuerschner et al. 2007; 
Ruhl et al. 2009). For the greater part, the excursions begin below the highest occur-
rence of conodonts and Triassic ammonites (e.g. choristocerids), supporting their 
correlatability, and also consistently below the lowest occurrence of the oldest 
Jurassic ammonites (i.e. (psilocerids). A similar negative CIE, purportedly correla-
tive with that in the marine realm, has been interpreted for terrestrial plant δ13Corg 
(McElwain et al. 1999, 2009; Hesselbo et al. 2002; McElwain and Punyasena 2007), 
although the terrestrial records are much less robust than those of the marine, and 
their correlation much less certain. The general assumption by the authors of most 
studies has been that the negative CIEs in both marine and terrestrial environments 
resulted from the catastrophically large injection of isotopically light carbon into 
the atmosphere, presumably from outgassing during the CAMP eruptions, poten-
tially accompanied by the release of frozen methane hydrate from the ocean floor.

Review of the calculations of the volumes and composition of the CO2 involved 
in producing this perturbation have found errors and flaws in the assumptions, most 
typically in the form of unrealistic estimates of the volume of gas released (cf. 
Tanner et al. 2004; Lucas and Tanner 2008, 2017). Nevertheless, the association of 
CAMP activity with the (marine) negative CIE, and by extension with the late- 
Rhaetian extinctions, is strongly indicated by Pálfy and Zajzon (2012) and Zajzon 
et al. (2012), who described pseudomorphs of mafic mineral grains, clay spherules 
and HREE enrichment in REE profiles, all indicative of mafic volcanism, at the top 
of the Kössen Formation at Kendlbachgraben, Eiberg Basin, Austria, coincident 
with the initiation of the CIE. CAMP outgassing of CO2, and resultant greenhouse 
warming, was long cited as the primary driver of late Rhaetian extinction, as noted 
elsewhere in this volume (Lucas and Tanner 2017). Increased pCO2 during the late 
Rhaetian has been interpreted from the isotopic composition of soil carbonates, 
although the published results have been inconsistent. Yapp and Poths (1996) ana-
lyzed pedogenic goethite to interpret a catastrophic pCO2 increase at the end of the 
Triassic, by a factor of 16, but this conclusion has been reviewed unfavorably 
(Tanner et al. 2001, 2004). The research of Tanner et al. (2001) directly contradicted 
this earlier work, finding only a modest pCO2 increase of several hundred ppm, 
although neither work used samples tightly constrained to the latest Rhaetian- 
earliest Hettangian time interval. Schaller et  al. (2011, 2012) presented samples 
with appropriate temporal constraint and interpreted multiple pulsed increases in 
pCO2 from 2000 to 4400 ppm, but as critiqued by Lucas and Tanner (2017), these 
calculations also are compromised by significant methodological flaws. Evidence 
for an increase in atmospheric CO2 at this time primarily has been derived from 
analyses of fossil leaf stomatal indices, a potentially useful proxy for paleo-pCO2, 
as described above. McElwain et al. (1999) and Retallack (2001a) presented stoma-
tal evidence for a very large increase of paleo-pCO2 at the system boundary. The 
study by McElwain et al. (1999) interpreted a near four-fold pCO2 increase, from 
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600 to 2100–2400 ppm. As critiqued by Tanner et al. (2004), however, this conclu-
sion is methodologically flawed by the use of different species from below and 
above the interpreted system boundary, rather than the same species. Nonetheless, 
McElwain et  al. (1999) interpreted 3° to 4  °C warming as a consequence of the 
increased pCO2 and cited decreased leaf size and increased leaf dissection as sup-
porting evidence. Bonis et al. (2010), in contrast to McElwain et al. (1999), used 
stomatal indices data collected from Gingko and Lepidopteris samples that contin-
ued across the boundary and estimated an increase in pCO2 of 67%, from 1650 to 
2750 ppm, although they acknowledged that their conclusion could overestimate 
the increase due the effects on stomata of atmospheric SO2 also produced by CAMP 
outgassing as predicted by Tanner et al. (Tanner et al. 2007; reviewed in Lucas and 
Tanner 2017). Similar to Bonis et al. (2010), Steinthorsdottir et al. (2011) utilized 
taxon-specific stomatal data from fossil gingkos and bennetitaleans at the presumed 
system boundary in East Greenland to interpret a pCO2 rise from 1000  ppm to 
2000–2500 ppm, following which pCO2 declined to pre-boundary levels during the 
Hettangian.

In contrast to the interpretation of significant CO2-induced warming at the end- 
Rhaetian based on stomatal data, palynological data from northern European bound-
ary sections have been interpreted as indicating the onset of an abrupt and widespread 
cooling event (Hubbard and Boulter 1997, 2000). This interpretation is based on 
analyses of stratigraphic sections spanning the Rhaetian-Hettangian boundary in 
Great Britain, East Greenland, southern Sweden, and Austria, and posits that 
Heliosporites and Concavisporites pollen assemblages are cold-tolerant and hydro-
philic, although this interpretation has been disputed by others (cf. McElwain et al. 
2007; Steinthorsdottir et al. 2011). The climatic consequences of large sulfur emis-
sions during prolonged flood basalt eruptions are not particularly clear, primarily 
for lack of modern analogs of large igneous provinces. Explosive volcanism, associ-
ated with volcanic arcs, is well-known to be capable of rapidly injecting large vol-
umes of SO2 into the atmosphere, where it can form H2SO4 aerosols, which, in 
addition to causing acidic precipitation, are known to increase atmospheric opacity 
and result in reduced short-wave radiant heating, causing global cooling (Sigurdsson 
1990; Robock 2000). Unfortunately, the behavior of volcanic sulfur produced by 
long-term mafic eruptions, and the consequent formation of aerosols, is less predict-
able than that of CO2, so the effects are even more difficult to quantify. Sulfur emit-
ted as SO2 by the CAMP eruptions may have been driven upward convectively by 
the heat of the eruptions to the stratosphere where it was converted to H2SO4 aero-
sols (Woods 1993; Parfitt and Wilson 2000). This is considered an important mecha-
nism of global cooling because of the increased atmospheric opacity from the 
aerosol droplets and the resultant decrease in radiative forcing (Sigurdsson 1990; 
Robock 2000). In the troposphere, these aerosols may have residence times of only 
several weeks because they are washed out quickly. In the stratosphere, however, 
aerosols may reside for periods of several years, and the effects of continuing erup-
tions may be cumulative. Schmidt et al. (2016) recently modeled that LIP eruptions 
at the scale of CAMP and Deccan may release 2.4 Gt SO2 a−1 for decades at a time, 
and the formation of aerosols could force a net radiative decrease of −16.2 W m−2, 
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potentially causing 4.5° cooling over decadal intervals. Importantly, the conversion 
of SO2 to H2SO4 is limited by the availability of atmospheric oxidants in the strato-
sphere, so the climatic response to a large supply of SO2 is expected to be nonlinear 
at the size and time scales of CAMP or Deccan-sized igneous provinces. A very 
likely scenario is that during the Rhaetian and earliest Hettangian, climate cycled 
between short, potentially very intense cooling episodes, forced by sulfur emis-
sions, alternating with longer term CO2-forced warming, throughout the duration of 
CAMP activity. Schaller et  al. (2011, 2012) presented such an interpretation, 
although as described elsewhere (Lucas and Tanner 2017), their assumptions on the 
volume of CO2 emissions appear unrealistic. The relative durations of these climate 
swings would have been greatly unequal, given the very short residence time of the 
sulfate aerosols and the much longer residence time of CO2 in the atmosphere, last-
ing until equilibration with the mixing layer of the ocean and silicate weathering 
reduced pCO2 to near pre-eruption levels.

Hence, the cold episodes lasted only as long as the actual eruptive events, pos-
sibly tens to hundreds of years, while warming occupied the extended intervals 
between major eruptive episodes, lasting tens of thousands to hundreds of thou-
sands of years. Other than the aforementioned and disputed interpretation of cool-
ing from the palynological record (Hubbard and Boulter 1997, 2000), there is little 
direct evidence of such short but intense cold episodes. Importantly, however, the 
changes in leaf morphology during the latest Rhaetian are not incompatible with 
episodes of strong cooling. Studies of modern leaves indicate that increased leaf 
dissection is produced by the decreased precipitation (Royer et al. 2005; Peppe et al. 
2011; Royer 2012) that would accompany sudden cooling; increased precipitation, 
as might be expected during warming episodes, produces less dissected leaf shapes. 
These studies were conducted on modern tree species, however, and the response of 
species more similar to those of the Late Triassic has not been studied.

Perhaps the most unequivocal evidence for warming is found in the clay mineral-
ogy of sedimentary sections from the latest Triassic-earliest Jurassic (van de 
Schootbrugge et al. 2009; Pieńkowski et al. 2012; Pálfy and Zajzon 2012). Zajzon 
et  al. (2012), for example, found that the kaolinite-dominated assemblage at the 
base of the Tiefengraben Member of the Kendlbach Formation transitioned up- 
section to an illite/muscovite dominated assemblage, suggesting more intense 
weathering conditions during initial Tiefengraben deposition driven by greenhouse 
warming. This interpretation is consistent with changes in the Al2O3/TiO2 ratio in 
equivalent strata from the section at Kuhjoch (Tanner et al. 2016). Pálfy and Kocsis 
(2014), however, noted that increased weathering could also result from acidifica-
tion of the environment by SO2 released by the CAMP eruptions. In summary, 
despite the numerous estimates of CO2-induced warming and/or SO2-forced cool-
ing, there is as yet no conclusive geologic evidence that allows direct calculation of 
the magnitude and duration of the climate changes that occurred during the CAMP 
eruptions.
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3.6  Conclusions

Although there remain many questions regarding the climate of the Late Triassic to 
be answered, some aspects are now well understood.

 1. The Late Triassic was an interval of relatively warm climate, as indicated by 
lithofacies, the distribution of warm climate flora and coral reefs and the lack of 
evidence for glaciation, although temperature variations occurred. In particular, 
episodes of warming occurred during the middle Carnian and end-Rhaetian.

 2. This overall warmth was a consequence of high atmospheric pCO2, as indicated 
by estimates based on geochemical modeling, the isotopic composition of pedo-
genic carbonate and stomatal indices measured from fossil leaves, all of which 
suggest paleo-pCO2 greater than 1000 ppm, possibly over 2000 ppm, for most of 
the Late Triassic. Some, but not all, of these proxies suggest declining pCO2 
through the Late Triassic, and consequent overall cooling. The evidence for such 
a trend is equivocal, however.

 3. The sedimentary evidence for highly seasonal precipitation patterns for much of 
Pangaea is consistent with a highly monsoonal climate, as predicted for the 
arrangement of large land areas on either side of the equator. Thus, the global 
climate system at the start of the Late Triassic was primarily azonal.

 4. Many regions show evidence of aridification during the Norian, which may have 
been a consequence of weakening of the monsoonal system and allowed the 
strengthening of latitudinally-controlled climate belts. Hence, specific regions 
experienced climate shifts as they drifted from humid climate belts to arid cli-
mate belts during the northward drift of Pangaea.

 5. The middle Carnian experienced an interval of increased humidity, the CPE, that 
more precisely seems to have consisted of multiple warm and humid pulses that 
appear to have been global in extent. Although strengthening of the monsoonal 
system has been suggested as the cause of the increased humidity, the pulsed and 
sudden nature of the humidity is consistent with volcanic outgassing as a forcing 
mechanism. The Wrangellia Igneous Province has been suggested as the erup-
tive source of the greenhouse gases responsible for the increased warmth and 
consequent humidity, but the age of the Wrangellian basalts cannot be shown 
conclusively to match the timing of the humid events.

 6. The Rhaetian concluded with an episode of environmental disruption and biotic 
extinction that can be linked to the eruption of the CAMP basalts. Outgassing of 
the CAMP caused climate disruption through short episodes of intense cooling 
forced by H2SO4 aerosols (from outgassed SO2), followed by longer-lasting 
intervals of warming produced by CO2-triggered radiative forcing.
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Chapter 4
The Central Atlantic Magmatic Province 
(CAMP): A Review
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Massimo Chiaradia, Nassrrdine Youbi, Hervé Bertrand, Laurie Reisberg, 
Renaud Merle, and Fred Jourdan

Abstract The Central Atlantic magmatic province (CAMP) consists of basic rocks 
emplaced as shallow intrusions and erupted in large lava flow fields over a land sur-
face area in excess of 10 million km2 on the supercontinent Pangaea at about 201 Ma. 
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The peak activity of the CAMP straddled the Triassic-Jurassic boundary and proba-
bly lasted less than 1 million years, while late activity went on for several Ma more 
into the Sinemurian. Emission of carbon and sulfur from the CAMP magmas and 
from intruded sediments probably caused extinctions at the end-Triassic. Intrusive 
rocks are represented by isolated dykes up to 800 km-long, by dense dyke swarms 
and by extremely voluminous sills and a few layered intrusions. Lava fields were 
erupted as short-lived pulses and can be traced over distances of several hundred km 
within sedimentary basins. They consist of either compound or simple pahoehoe 
flows. Globally, the intrusive and effusive rocks are estimated to represent an origi-
nal magmatic volume of at least 3 million km3. Herein we subdivide the CAMP 
basalts for the first time into six main geochemical groups, five represented by low-
Ti and one by high-Ti rocks. Except for one low-Ti group, which is ubiquitous 
throughout the entire province, all other groups occur in relatively restricted areas 
and their compositions probably reflect contamination from the local continental 
lithosphere. Major and trace elements and Sr-Nd-Pb-Os isotopic compositions indi-
cate that the basaltic magmas had an enriched composition compared to Mid-Ocean 
Ridge basalts and different from Atlantic Ocean Island basalts. The enriched compo-
sition of CAMP basalts is only in part attributable to crustal contamination. It also 
probably requires subducted upper and lower continental crust material that enriched 
the shallow upper mantle from which CAMP basalts were generated. A contribution 
from a deep mantle-plume is not required by geochemical and thermometric data, 
but it remains unclear what other possible heat source caused mantle melting on the 
scale required to form CAMP.

Keywords Large igneous province • End-Triassic • Radioisotopic ages • Mantle 
melting • Volcanic • Thermogenic gases

4.1  Introduction

The Central Atlantic magmatic province (CAMP; Marzoli et  al. 1999) is a large 
igneous province (LIP) formed by basaltic magmas emplaced on Pangaea shortly 
before its break-up (Fig. 4.1). The peak CAMP magmatic activity occurred at ca. 
201 Ma and lasted for less than 1 Ma (Marzoli et al. 2011; Blackburn et al. 2013; 
Davies et al. 2017). CAMP shares some features with other well-known LIPs, such 
as the Deccan Traps, the Karoo and the Paranà-Etendeka (Melluso et  al. 2006; 
Jourdan et  al. 2007; Peate 1997). All these LIPs are associated with continental 
break-up events and are composed of widespread, mainly basaltic magmas emplaced 
within a short time span. On the other hand, CAMP is peculiar because of its enor-
mous aerial extent and volume of intruded mafic magmas, coupled with only thin 
and relatively rare preserved lava piles. Unlike many other LIPs, CAMP lacks alka-
line magmatism and acid rocks are also very rare. The atypical traits of the CAMP 
indicate that its formation cannot easily be attributed to the same processes invoked 
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Fig. 4.1 Schematic map of the Central Atlantic magmatic province (CAMP), on the Pangaean 
continent. Modified from Marzoli et al. (2011). The dashed line indicates the approximate surface 
wherein CAMP remnants have been sampled. The colored fields with dotted outlines indicate the 
area of occurrence of the Tiourjdal (NW-Africa), Holyoke, Recurrent, and High-Ti groups, all 
other CAMP rocks belong to the Prevalent-CAMP group

4 The Central Atlantic Magmatic Province (CAMP): A Review
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for other LIPs. In particular, classical mantle-plume models seem not to be consis-
tent with its large area and relative sparseness of erupted basalts. Therefore, while 
mantle-plume models have been previously proposed for the CAMP, especially, but 
not exclusively during the later twentieth century (e.g., May 1971; Morgan 1983; 
Hill 1991), more recently alternative scenarios of mantle melting have emerged 
(McHone 2000; Coltice et al. 2007; Ruiz-Martínez et al. 2012). In this review, we 
briefly describe the main aspects of the CAMP, including its age, surface area and 
volume, its volcanologic and geochemical characteristics, and its origin and links 
with the end-Triassic mass extinction. We also propose a new subdivision of CAMP 
basalts into six main geochemical groups.

4.2  Defining the Central Atlantic Magmatic Province

The CAMP is a newcomer among the recognized LIPs. Although portions of it, 
notably in Morocco and in the USA, have been recognized as belonging to the same 
event since the work of May (1971), until the end of the twentieth century (e.g., 
Coffin and Eldholm 1994) and even later the CAMP was not considered among the 
main Phanerozoic LIPs.

May (1971) recognized that dyke swarms were radially emplaced around a cen-
ter located between the southeastern USA (Florida) and northwestern Africa 
(Senegal) and interpreted them as resulting from an uprising mantle plume. The first 
geochemical-petrologic studies were subsequently conducted on basaltic lava flows 
and dykes from eastern North America (e.g., Weigand and Ragland 1970; Dostal 
and Dupuy 1984) and North-West Africa (Bertrand et  al. 1982; Bertrand 1991). 
These studies showed that the compositions of basaltic dykes and flows on both 
sides of the Atlantic (Bertrand and Coffrant 1977) were largely identical, even 
though subtle time-related changes were recognized in lava piles from the USA 
(Puffer et  al. 1982; Puffer 1992; Tollo and Gottfried 1992) and from Morocco 
(Bertrand et al. 1982; Youbi et al. 2003). In the northeastern USA in particular, geo-
chemical data combined with field evidence allowed recognition of the association 
between flow units and feeder dykes (e.g., McHone 1996; Philpotts and Reichenbach 
1985; Philpotts and Asher 1993). The first geochemical-petrologic studies on the 
South American CAMP were published in the 1990s (Bellieni et al. 1990; Fodor 
et al. 1990; Montes-Lauar et al. 1994) and early studies of the European basalts date 
back to the works of Alibert (1985), Azambre et al. (1981, 1987), Bertrand (1987), 
and Caroff et al. (1995). The first Sr-Nd-Pb isotopic data for CAMP basalts were 
published by Alibert (1985), Dupuy et al. (1988), Pegram (1990), and Puffer (1992), 
but it is only since the beginning of the twenty-first century that numerous geo-
chemical studies reporting large sets of Sr-Nd-Pb-Os isotopic data have been made 
available on CAMP basalts from Europe (Cebriá et al. 2003; Jourdan et al. 2003; 
Martins et al. 2008; Marzoli et al. 2014; Callegaro et al. 2014a), Africa (Verati et al. 
2005; Deckart et  al. 2005; Chabou et  al. 2010), North America (Callegaro et  al. 
2013; Merle et al. 2014; Whalen et al. 2015), and South America (Nomade et al. 
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2002; De Min et al. 2003; Merle et al. 2011; Klein et al. 2013; Bertrand et al. 2014). 
These works confirm the global similarity of basalts all over the province, with all 
samples showing an incompatible element enriched character compared to Mid- 
Ocean Ridge basalts (MORB). Even so, a quite large spread of Sr-Nd-Pb isotopic 
compositions highlights regional differences which represent contributions from 
distinct (mantle) source components and shallow contamination by the diverse com-
ponents of the continental crust and lithosphere (e.g., Alibert 1985; Pegram 1990; 
Callegaro et al. 2013; Merle et al. 2014).

The first geochronological data were whole-rock K-Ar analyses (e.g., Hailwood 
and Mitchell 1971; Dalrymple et al. 1975) that resulted in a large spread of ages. 
However, the implementation of the more modern 40Ar/39Ar technique to date min-
eral separates (plagioclase, mostly) has produced a much refined constraint on the 
emplacement age of the CAMP. Starting from the first studies on African basalts 
(Sebai et al. 1991; Deckart et al. 1997) and then on the South American CAMP 
(Baksi and Archibald 1997; Marzoli et al. 1999), it became clear that basaltic mag-
mas were emplaced at ca. 200 Ma over a total surface area of several millions of 
km2. Successive 40Ar/39Ar geochronological studies (Jourdan et  al. 2003, 2009; 
Marzoli et al. 2004, 2011; Knight et al. 2004; Verati et al. 2007; Nomade et al. 2007; 
Merle et al. 2011; Bertrand et al. 2014), combined with a revised value for the 40Ar 
decay constant (Renne et al. 2010, 2011) further refined this age, and indicated that 
peak magmatic activity occurred synchronously throughout the province at ca. 
201 Ma. More recently, Schoene et al. (2010), Blackburn et al. (2013) and Davies 
et  al. (2017) obtained 206Pb/238U ages on zircon from two flows and 14 intrusive 
units, which confirm the ca. 201 Ma peak activity. Globally, high quality 40Ar/39Ar 
ages (as screened following the criteria presented in Nomade et al. 2007, and in 
Marzoli et al. 2011) range from about 202 to 192 Ma, demonstrating an early peak 
of magmatism followed by late protracted low-volume magmatism.

4.3  Outcrops and Estimates of Surface Area and Volume

Remnants of basaltic lava flows and basic intrusions (sills and dykes, mostly) pres-
ently crop out over a North-South (France to Bolivia) distance of more than 
10,000 km in the four continents rimming the Atlantic Ocean. Sample coverage in 
several remote areas of Africa (e.g., Ivory Coast, Burkina Faso, Ghana and 
Mauritania) and South America (e.g., Guyana, Venezuela, or Peru) is still sparse, 
making the definition of the surface area covered by the LIP partially incomplete. 
Several intrusive CAMP rocks, sills mainly, are known from core data only (e.g., in 
Senegal; Ndiaye et al. 2016). Lava flows are preserved in sedimentary basins only 
and are relatively rare. The thickness of the preserved lava piles is much less than in 
most other LIPs (e.g., Deccan Traps, Paranà-Etendeka, Karoo) and does not exceed 
500 m. In contrast, the CAMP intrusions show quite impressive dimensions; dyke 
swarms (e.g., in southeastern USA, Mali, Liberia, Guyana, Brazil) are formed by 
hundreds of dykes intruded over areas of thousands of km2, while single dykes (e.g., 
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in Spain-Portugal, Morocco, Algeria, USA, Canada, Brazil) reach lengths of several 
hundred km (up to ca. 800 km) and widths of up to 300 m. Sill swarms are known 
from France and Spain, USA, Morocco, Algeria, Mali, Guinea, and are formed by 
tens of shallow level intrusions, covering hundreds to thousands of km2. The sills 
intruding the Paleozoic Amazonian (s.l.) basins of northern Brazil are particularly 
impressive. These sills reach a global volume of nearly 1 million km3, although they 
crop out only locally in NE-Brazil (De Min et al. 2003; Milani and Zalàn 1999).

It is very difficult to estimate the total original volume of erupted CAMP basalts. 
A large part of the CAMP was quickly eroded away shortly after its emplacement, 
as suggested by Sr and Os isotopic variations in sea sediments and fossils (Cohen 
and Coe 2002; Callegaro et al. 2012) and also by mineralogical composition and C 
stable isotope variations in sediments at the base of the oldest preserved Moroccan 
CAMP flows (Dal Corso et al. 2014).

A total pre-erosional CAMP volume of 2 × 106 km3 generally has been used 
since the data presented by Marzoli et al. (1999). However, other estimations of the 
original CAMP volumes have since been attempted by McHone (2003) and Svensen 
et al. (2004). Some of the more recently recognized CAMP occurrences were not 
taken into account in McHone (2003), e.g. the layered intrusions from Guinea and 
Sierra Leone, and intrusive and extrusive rocks from Bolivia, Morocco, Algeria, and 
Europe. However, the basalts and intrusive rocks forming East Coast Magnetic 
Anomaly (ECMA; Oh et al. 1995) were considered part of the CAMP. This massive 
coastal wedge has a volume of ~2.75 × 106 km3 according to McHone’s (2003) esti-
mation. Furthermore, along the northwestern African coast, a similar structure (the 
West African Coast Magnetic Anomaly) has been identified (Sahabi et  al. 2004; 
Labails et al. 2010). Due to lack of conclusive data (age data, in particular) concern-
ing the link of the North American East Coast and African West Coast oceanic 
margin volcanics to the CAMP, we do not include them here.

A minimum estimate of the pristine CAMP volume can be given based on assess-
ments of the surface of Paleozoic and Mesozoic basins intruded by CAMP sills or 
flooded by CAMP lavas. Besides the sedimentary basins, CAMP basalts also occur 
as dykes in Proterozoic areas. CAMP sills and flows often can be tracked for the 
entire extension of the basin that hosts them, thus the surface of the basin multiplied 
by the cumulative thickness of the CAMP products can give their total volume. With 
this approach, we estimate a volume of about 1.5 million km3 for the CAMP sills. 
Due to the lack of published data, this appraisal does not include large sill bodies 
probably occurring in the sub-surface of the southern USA and in the forested areas 
of South America (Brazil, Venezuela, Bolivia) and western Africa (Ivory Coast, 
Ghana, Sierra Leone). The preserved lava flows make up about 0.1 million km3 
within the Triassic-Jurassic basins. The layered intrusions (Kakoulima laccolith in 
Guinea and the Freetown Layered Complex in Sierra Leone) sum up to ca. 0.03 mil-
lion km3. Estimating the total dyke volume is even more difficult, due to the lack of 
constraints concerning the depth to which these bodies extend. McHone (2003) 
assumed 50 km depth for dykes with widths ranging between 0.01 and 0.05 km. We 
were able to sum up a length of 52,300 km of CAMP dykes. Notably, CAMP dykes 
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can be subdivided into two main types, i.e. isolated extremely long (up to 500 km) 
and wide (about 200–300 m) dykes or thinner and shorter ones occurring within 
swarms of tens of dykes.

Considering that the vast majority of CAMP rocks are found as sills and flows 
with slightly evolved basaltic compositions, requiring some 30–50% fractionation 
from the parental mantle-derived magma (see below), a volume equivalent to that 
intruded as sills and erupted as flows must have intruded also into the deep conti-
nental crust, possibly at the MOHO (cf., Black and Manga 2017). It is therefore 
possible to estimate a total volume of CAMP magmas in the neighborhood of 3 
million km3, including those intruded at various levels of the crust and those erupted 
to the surface.

4.4  Volcanologic Aspects

The physical volcanology of the extrusive products of the CAMP has been investi-
gated in Portugal, Canada, USA, and Morocco (e.g., Puffer and Student 1992; 
Puffer and Volkert 2001; Martins et al. 2008; Kontak 2008; El Hachimi et al. 2011). 
These studies focused on the morphology and internal structures of lava flows and 
their emplacement mechanisms. For the description of the morphology and internal 
structures of the CAMP lava flows, we followed the terminology and methodology 
proposed by Self et al. (1997).

The thickest, best preserved and most complete lava flow sequences of the 
Moroccan CAMP are exposed in the Central High Atlas (Fig. 4.2a, c). Four lava 
flow fields, emplaced in a subaerial environment, are recognized: the Lower, 
Intermediate, Upper and Recurrent basalts. The Lower unit is a 55–173 m-thick suc-
cession of 2–9 individual flows. The Intermediate basalt (up to 130 m) is also com-
posed of 2–9 individual flows. The Upper basalt (15–76 m-thick) is formed of one 
or two lava flow units. The Recurrent basalt is formed by one single flow, 5–50 m 
thick (Fig. 4.2c). These basaltic lava flow fields are separated by thin sedimentary 
units (siltstones, sandstones, stromatolitic limestones) and paleosols that represent 
short periods of volcanic quiescence (Marzoli et al. 2017). Compound pahoehoe 
flows are almost exclusively present in the Lower and Intermediate basalts 
(Fig.  4.2b), while simple flows dominate the Upper and Recurrent basalts. The 
larger lobes forming the compound pahoehoe flows display a characteristic three- 
tiered structure with a thin “basal lava crust”, a dense “lava core”, and an “upper 
lava crust”. The latter may present “tumuli”, “squeeze up” and horizontal “squeeze” 
structures, whereas the lava core displays segregation structures such as vesicle cyl-
inders, spherical vesicles and vesicle sheets. The simple flows are simple cooling 
units and can be traced over large distances. They also display a three-tiered struc-
ture with a thin basal zone, a dense central zone, and a thick vesicular crust. 
Segregation structures are rare in the central zone of simple flows. Pillow lavas, 
displaying radial jointing and glassy rinds, are occasionally found at the base of the 
Intermediate basalt (Fig. 4.2d) or in the Upper one. The pillows represent subaerial 
flows that entered small lakes occupying depressions on the volcanic topography.
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The CAMP basalt flows of Morocco show clear evidence of internal growth or 
inflation (e.g. Self et al. 1997). They are similar to the inflated pahoehoe flows in 
Hawaii (Hon et al. 1994), the Columbia River Basalt Province (e.g. Self et al. 1997), 
and the Deccan Traps (Bondre et  al. 2004). The features indicating endogenous 
growth are: (a) the three-tiered structural division of the flows; (b) the presence of 
break-outs, tumuli, and associated structures (squeeze-ups and horizontal squeezes); 
(c) a vertical distribution of vesicles with the presence of segregation structures.

CAMP basalt flows are preserved in the Saharan Atlas (Algeria), cropping out as 
three (Lower, Intermediate, Upper) units separated by sedimentary levels. Compared 
to Morocco, their thickness is considerably reduced (down to 5 m, 2–3 m and 5 m, 
respectively; Meddah et al. 2007, 2017).

The CAMP volcanic products of the Algarve (southern Portugal) include sub-
aerial lava flows, pyroclastic deposits and peperites, and their contemporaneous 
sedimentation is dominated by mudstones and conglomerates, often containing vol-
canic fragments (Martins et  al. 2008). The thickness of the preserved volcano- 
sedimentary pile is 30–50 m. Five to eight pahoehoe lava flows are present in the 
most complete sections. The CAMP lava flows of the Algarve basin are simple 
flows.

In Nova Scotia, Canada, three lava members were defined for the North Mountain 
Basalt flows (Kontak 2008): (i) East Ferry; (ii) Margaretsville; and (iii) Brier Island. 

Fig. 4.2 Pictures of CAMP lava flows from Morocco. (a) (top left) The lava sequence at Tiourjdal 
(central High Atlas). (b) (top right) Lava lobes of a compound pahoehoe flow, Intermediate Unit, 
Middle Atlas. (c) (bottom left) Simple flow, Recurrent Unit at Agouim, Central High Atlas. (d) 
(bottom right) Pillow lava structures, Intermediate Unit, Ait Ourir, Central High Atlas
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The lower and upper members are massive flows with pervasive joint development 
on varying scales; the most notable difference between the two is the presence of 
pegmatite layering in the oldest East Ferry member, whereas segregation pipes are 
locally present in the youngest Brier Island member. Although neither of these flows 
contains internal features like the sheet lobe flows of the Margaretsville member, 
they are nevertheless considered to reflect products of inflation (Kontak 2008). 
These large flows are the products of single sustained effusive events, while numer-
ous, shorter duration effusive events are reflected in the thinner sheet lobe flows of 
the Margaretsville member. Thus, the East Ferry and Brier Island members are sim-
ple flows, whereas the Margaretsville member is a compound flow.

Studies on the physical volcanology of different Continental Flood Basalt (CFB) 
provinces indicate that they do not have a simple “layer-cake stratigraphy”, but 
rather that they display complex internal and external architectures governed by the 
volume of individual eruptions, the location and abundance of volcanic centres, and 
the evolution of the centres through time (e.g., Jerram and Widdowson 2005). In the 
Moroccan CAMP, “compound pahoehoe flows” are found almost exclusively at the 
bottom of the volcanic pile, while “simple flows” dominate the Upper and Recurrent 
basalts. In contrast, the Nova Scotia basaltic flows show alternating simple, com-
pound, and again simple flows. In Portugal and the USA, all subaerial lava flows are 
simple pahoehoe flows (the Orange Mt. and Talcott flows are mostly sub-aqueous 
pillow lava flows). Compound flows are characteristic of near-vent settings in active 
basaltic systems and, by analogy, are likely to represent vent proximity when found 
in a prehistoric succession. In contrast, simple flows, where each individual thick 
a’a or pahoehoe flow represents an eruptive event, are commonly found at distal 
locations (Lesher et al. 1999). In general, the architecture of most, if not all, of the 
CFB provinces reveals that, like for the Moroccan CAMP, compound pahoehoe 
flows were followed in time by flows with a simple sheet-like geometry, indicating 
a fundamental temporal change in the emplacement of flows (e.g., Jerram and 
Widdowson 2005). It appears that flood basalt volcanism initially starts out at rela-
tively low effusion rate, with low-volume eruptions that gradually accelerate to high 
effusion rate, with high volume eruptions. This must reflect a common gradual 
increase of magma production rates pointing to similar magma generation processes 
associated with the origin of other CFBs throughout the world.

4.5  Age of CAMP Basalts

The age of the CAMP has been investigated since the early 1970s, when the first 
K-Ar measurements from dykes and intrusions in Morocco (Hailwood and Mitchell 
1971) and Liberia (Dalrymple et  al. 1975) suggested that widespread magmatic 
activity was associated with the breakup of Pangaea and the opening of the Atlantic 
Ocean at ca. 190 Ma. Since then, the advent of the 40Ar/39Ar technique on carefully 
picked plagioclase feldspars using single collector machines enabled a significant 
improvement in the accuracy and precision of the dated CAMP samples, with 
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uncertainties in the range of ±1–2  Ma (2σ) attainable for a given sample (e.g. 
Jourdan et  al. 2009; Marzoli et  al. 2011). Furthermore, the 40Ar/39Ar technique 
includes a quality assessment of an age date with its age spectrum and inverse iso-
chron allowing screening of accurate emplacement ages from apparent error-ages 
perturbed by geological events (e.g., alteration; Verati and Jourdan 2014). Thanks to 
those features, the number and reliability of CAMP 40Ar/39Ar ages increased dra-
matically though the 1990s to the present day (e.g. Sebai et al. 1991; Baksi and 
Archibald 1997; Deckart et al. 1997; Marzoli et al. 1999, 2004, 2011; Hames et al. 
2000; Knight et al. 2004; Verati et al. 2005, 2007; Beutel et al. 2005; Nomade et al. 
2007; Jourdan et al. 2009; Merle et al. 2011).

In concert with the increase in accuracy and precision of the CAMP ages, the 
estimated duration of the CAMP event decreased to around 10 Ma. Most of the ages 
fall between 200 and 202 Ma, suggesting that most of the volume of the province 
was emplaced at ~201 Ma (Fig. 4.3). However, the accuracy of these 40Ar/39Ar ages 
still suffers from the small concentrations of potassium in the Ca-rich plagioclase 
derived from basaltic rocks, and the propensity of basalts for weathering and altera-
tion with the consequence that (1) the eruptions of some completely altered forma-
tions are impossible to date with this technique and (2) due to the relatively low age 
precision, the effect of alteration on a given age may remain undetected. The most 
up-to-date compilations of 40Ar/39Ar data which are filtered for suspect analyses 
include >80 ages (Marzoli et al. 2011 and the dataset therein). Using only the most 
robust data, various geochronological trends have been postulated, such as a north 
to south age progression (Jourdan et  al. 2009) and early onset of magmatism in 
Africa relative to the rest of the province (Nomade et al. 2007). Although the north- 
south age progression remains speculative without more precise data, the early 
onset of magmatism in North Africa is supported both by geochemical and paleo-
magnetic records (Bertrand et al. 1982; Deenen et al. 2010; Marzoli et al. 2004; 
Knight et al. 2004; Dal Corso et al. 2014). 40Ar/39Ar ages highlight that prolonged, 
though volumetrically minor activity continued until about 192 Ma, i.e. through the 
Hettangian stage into the Sinemurian stage. Such prolonged activity has been rec-
ognized also in other LIPs, such as the Karoo (Jourdan et al. 2008).

More recently, the U-Pb technique on zircon and baddeleyite has been applied to 
some of the sills, dykes, intrusives and lava flows of the CAMP (Schoene et  al. 
2010; Blackburn et al. 2013; Davies et al. 2017). Two sills and a basalt flow from 
the eastern USA and Canada were dated using this technique in the 1990s with a 
precision similar to the 40Ar/39Ar ages (Dunning and Hodych 1990; Hodych and 
Dunning 1992). With the development of single-zircon analysis, the chemical abra-
sion technique, and finally the EARTHTIME initiative which created and calibrated 
a double U-double Pb spike solution for interlaboratory use (Condon et al. 2015), 
the reproducibility and accuracy of U-Pb ages has improved to the level that 
weighted mean ages with uncertainties of <0.05% of the actual age now are rou-
tinely possible throughout geologic time (e.g., Wotzlaw et al. 2014). A compilation 
of the recent U-Pb ages from the CAMP is shown in Fig. 4.3 and is compared to the 
filtered 40Ar/39Ar dataset. It is immediately apparent that the U-Pb ages form a much 
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tighter cluster in time than the 40Ar/39Ar ages. The U-Pb ages cover most of the 
geographic extent of the CAMP however there are four times less U-Pb ages than 
40Ar/39Ar ages and therefore the U-Pb ages may be biased. Nonetheless, the short 
duration of CAMP magmatism suggested by the U-Pb data is likely to be real, and 
is consistent with the durations of other LIP’s also dated to high precision (Burgess 
et al. 2015; Schoene et al. 2015; Renne et al. 2015; Parisio et al. 2016) indicating 
that peak activity of LIP events typically lasts ~1 Ma. Nevertheless, the selection of 
the rocks used for U-Pb dating is restricted to rocks that contain zircon (usually 
found in Si-rich late crystallized pockets in intrusive and much more rarely volcanic 
rocks) and this introduces a sample bias in the age coverage achievable for a given 
province.

As far as geochronology is concerned, the next challenge is to obtain precise yet 
widespread age coverage of CAMP. Precisely dating plagioclase at the ±0.1–0.2% 
level using the 40Ar/39Ar technique is now possible using the latest generation of 
multicollection noble gas mass spectrometers, so it will be interesting to test the 
distribution of ages on a province scale using this new approach.

In summary, modern geochronological studies of the CAMP indicate that this 
province likely formed relatively rapidly (ca. 1 Ma for the peak activity), even if the 
total global activity persisted much longer, probably from the Rhaetian to the 
Sinemurian, i.e. for some 10 Ma. The CAMP may have been emplaced as distinct 
pulses (see Fig. 4.3). Of great relevance for the global effect of the CAMP is its 

Fig. 4.3 Probability density functions (PDFs) and Kernel density estimates (KDEs) of the 
40Ar/39Ar and U-Pb ages from the CAMP. The 40Ar/39Ar plateau ages are from the compilation of 
Marzoli et al. (2011). The U-Pb zircon ages are from Blackburn et al. (2013) and Davies et al. 
(2017), and the North Mountain Basalt age from Schoene et al. (2010), which has been updated 
with the new spike calibration by Wotzlaw et al. (2014). The black stars mark the pulses of mag-
matism suggested by the PDF and KDE (Vermeesch 2012) of the U-Pb data
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relation to the end-Triassic mass extinction. While both of these events yield 
 indistinguishable radio-isotopic ages, the exact relationship is stratigraphically 
rather complex and is discussed in detail in Sect. 4.8.

4.6  Rock Compositions

4.6.1  Major and Trace Element Composition and Volcano- 
Stratigraphic Correlations

Almost all CAMP rocks can be classified as basalts or as basaltic andesites (SiO2 in 
the range 48–55 wt.%) in the TAS diagram (Fig. 4.4). A few of the over 500 ana-
lyzed samples are relatively enriched in Na2O + K2O and can be described as mod-
erately alkaline basic rocks, however all these apparently alkaline samples are 
altered and display a LOI (loss on ignition) higher than 2 wt.%. The few samples 
that are relatively enriched in SiO2 (55–60 wt.%) are altered and are classified as 
andesites, while rocks with high SiO2 (>60 wt.%) are found only as segregation 
sheets within thick flows, sills, and dykes (e.g., Shirley 1987; Puffer et al. 2009; 
Block et al. 2015). It thus can be concluded that the CAMP is entirely characterized 
by basaltic and basaltic andesite magmas, while high-Si and alkaline rocks are 
essentially absent.

Basaltic CAMP rocks are also generally evolved (not primitive) in composition, 
i.e. their MgO (general range 12–2 wt.%, with most samples yielding between 10 
and 4 wt.% MgO), Ni and Cr concentrations are lower than in primitive basaltic 
melts. Mg-rich intrusive rocks from Kakoulima and Freetown are in fact cumulates 
of mafic minerals (olivine mainly) and thus cannot be considered as representative 
of a primitive magmatic liquid. In contrast, some porphyritic dykes from the south-
eastern USA and lava flows from Morocco, which have high Mg# up to 70 
(Mg# = 100 × Mg/(Mg + Fe2+), where Fe2+ is 87% of total Fe), as well as high Cr and 
Ni (up to 1400 ppm), may be considered to be near-primitive. These primitive com-
positions only represent 2–3% of the several hundreds of analyzed rocks.

As has been observed in other LIPs such as the Paranà-Etendeka or the Karoo 
(De Min et al. 2003; Jourdan et al. 2007), CAMP rocks include both low- and high-
 Ti varieties (Fig. 4.5). However, CAMP rocks with TiO2 < 2.0 wt.% represent the 
vast majority of the lithologies in the province (more than 90% of the analyzed 
rocks). Phosphorous (P2O5) contents are positively correlated with TiO2, while 
incompatible trace elements such as La, Nb, Zr or incompatible element ratios such 
as La/Yb reach similar values in both low- and high-Ti basalts. In general, incom-
patible trace element contents of CAMP basalts are similar to those found in some 
other CFB provinces. Typically, they show depletion in high field strength elements 
(HFSE), such as Nb or Ta, and enrichment in large ion lithophile elements (LILE). 
Such geochemical features are frequently encountered in within-plate continental 
basalts that interacted with the continental lithosphere (crust or mantle), e.g., those 

A. Marzoli et al.



103

Fig. 4.4 Total-Alkali-Silica classification diagram (after Le Bas et al. 1986) for CAMP intrusive 
(dykes and sills) and effusive rocks. Data are taken from: Alibert (1985), Azambre et al. (1981, 
1987), Bellieni et  al. (1990), Bertrand (1987, 1991), Bertrand et  al. (1982, 2014), Block et  al. 
(2015), Callegaro et al. (2013, 2014a), Caroff et al. (1995), Cebriá et al. (2003), Chabou et al. 
(2010), Deckart et al. (2005), De Min et al. (2003), Dostal and Dupuy (1984), Dupuy et al. (1988), 
Fodor et  al. (1990), Grossman et  al. (1991), Jourdan et  al. (2003), Klein et  al. (2013), Kontak 
(2008), Martins et  al. (2008), Marzoli et  al. (2004), 458, 130–140 (2017), Merle et  al. (2011, 
2014), Nomade et  al. (2002), Philpotts and Reichenbach (1985), Philpotts and Asher (1993), 
Philpotts (1998), Puffer et  al. (1982, 2009), Puffer (1992), Shirley (1987), Tollo and Gottfried 
(1992), Verati et al. (2005), Whalen et al. (2015), Weigand and Ragland (1970)
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of the Paranà-Etendeka, Karoo or Siberian Traps CFB provinces (Jourdan et  al. 
2007; Peate 1997; Puffer 2001), but are not typical of Mid Ocean Ridge basalts 
(MORB) or Ocean Island basalts (OIB).

In general whole-rock compositions are rather uniform across the entire CAMP 
region even though moderate space- and time-related variations can be recognized. 
In particular, high-Ti rocks are known from a restricted area of the CAMP, i.e., 
northeastern South America (Amapà and Tocantins states of Brazil; Surinam and 
French Guiana) as well as Liberia and Sierra Leone in western Africa (Dupuy et al. 
1988; Bertrand 1991; Chalokwu 2001; Nomade et al. 2002; De Min et al. 2003; 
Deckart et al. 2005; Merle et al. 2011). Interestingly, the areas where high-Ti basalts 
occur are all close to cratonic regions, i.e. the Man shield in Africa and the 
Amazonian craton in South America.

In volcanic sequences from Morocco and eastern North America, TiO2, P2O5, and 
other incompatible elements such as Nb, Zr, La or trace element ratios such as La/
Yb show clear up-section trends. This allows definition of geochemical groups (or 
Units) for CAMP lava-piles hosted in Moroccan and North American sedimentary 
basins (e.g., Weigand and Ragland 1970; Bertrand et al. 1982; Weems et al. 2016). 
In general, incompatible elements show a progressive decrease in the first part of the 
sequence (e.g. from Lower to Upper basalts in Morocco and from Talcott or Orange 

Fig. 4.5 Major (wt.%) and trace element (ppm) compositions of CAMP intrusive and effusive 
rocks. Same data sources as for Fig. 4.4
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Mt. to Holyoke or Preakness) basalt in the Newark Supergroup basins), while the 
youngest flows in these basins (Recurrent basalt in Morocco and Hampden or Hook 
Mt. basalt in the Newark Supergroup basins) are further enriched in Ti and Zr but 
display low La and the lowest La/Yb ratio.

It is intriguing that lava flows with nearly identical composition can be traced in 
the northeastern USA (from Virginia to Connecticut), in central-northern Morocco 
(from the High Atlas to the Mediterranean coast), and also from western Morocco 
to the Saharan Atlas in Algeria, respectively, for distances of hundreds of km. 
Likewise, in these areas the time-related evolution of magma compositions seems 
identical. Based on these observations, attempts have been made to correlate CAMP 
lava flows within and among continents (Bertrand and Coffrant 1977; Manspeizer 
et al. 1978; Marzoli et al. 2004). When Moroccan and North American flows are 
compared, close similarity is observed between the Intermediate and Upper Units in 
Morocco and the Talcott (or Orange Mt.) basalts in Newark Supergroup basins, as 
well as between the Moroccan Recurrent Unit and the Newark Supergroup Hampden 
(or Hook Mt.) basalts. Notably, flows of the Moroccan Lower Unit are unique 
because they yield relatively high TiO2 (ca. 1.4 wt.%) and La/Yb unlike any lava 
flow from the USA Newark Supergroup basins. On the other hand, the Newark 
Supergroup Holyoke (or Preakness) -type basalt also displays its own peculiar com-
position, for example in terms of quite low TiO2 (<1.0 wt.%) and relatively low La/
Yb. In Algeria, lava flows from the Saharan Atlas display a close similarity in com-
position with those from Moroccan Lower, Intermediate and Upper units, while 
those from the Bechar basin are similar to the Lower unit. Lava flows from Portugal 
are almost identical in composition to the Moroccan Intermediate-Upper and the 
Newark Supergroup Talcott (or Orange Mt.) basalts. The North Mt. basalts from 
Nova Scotia in Canada have compositions mostly resembling the Moroccan 
Intermediate-type while only a few Canadian samples overlap the composition of 
the Moroccan Lower Unit basalts. Most lava flows from South America (Brazil and 
Bolivia) are geochemically similar to the Moroccan Intermediate basalts, with only 
two flows from Tocantins State in Brazil being high in TiO2 (ca. 2.1 wt.%).

Dykes and sills show a significantly larger geochemical variability than the 
flows, at least in terms of major element contents (Figs. 4.4 and 4.5). For example, 
many dykes from the southeastern USA have high MgO contents (10–13 wt.%) and 
low TiO2 (about 0.5 wt.%). There are also several dyke samples from Europe and 
Africa that yielded low MgO (2–5  wt.%). Most notably, high TiO2 contents (> 
2.1 wt.%) are found in dykes and sills from Africa and South America only. Despite 
this local geochemical variability, most dykes and sills from throughout the CAMP 
show compositions comparable to the Moroccan-Intermediate-Upper lava flows. 
This is the case for the dykes and sills from Europe, most dykes and sills in north-
eastern North America, in northwestern Africa (e.g., Mali, Morocco, Algeria), and 
in South America. Some intrusive rocks also have compositions similar to the 
Moroccan-Lower group, e.g. dykes and sills from Mali. Finally, a few dykes and 
sills from Morocco, Algeria (Tindouf basin), and the northeastern USA resemble 
the Recurrent-Hampden flows.
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Direct comparison between volcanic and intrusive rocks can be tricky, since the 
latter may not represent original magmatic liquid compositions. An example of an 
incorrect correlation between sills and lava flows was reported in Blackburn et al. 
(2013). There, the Butner (or Durham) sill from North Carolina was considered as 
geochemically equivalent to the Hampden and Hook Mt. flow of the Newark 
Supergroup. While samples from the two sites overlap for some geochemical 
parameters (e.g., the Y/Nb ratio cited by those authors), they differ for others, for 
example in terms of MgO (9 vs. 5 wt.% in the Butner sill vs. the Hampden and Hook 
Mt. flows, respectively) or TiO2 (0.5 vs. 1.5  wt.%; Tollo and Gottfried 1992; 
Callegaro et al. 2013; Merle et al. 2014). Moreover, the Butner sill and the Hampden 
(or Hook Mt.) flows display markedly different Sr-Nd-Pb isotopic compositions 
(see below) that exclude derivation from the same magma.

4.6.2  Sr-Nd-Pb-Os Isotopic Compositions of CAMP Rocks

Sr-Nd-Pb-Os isotopic compositions of CAMP rocks (back-calculated to the 
emplacement age of ca. 201 Ma) show a wide range of values (Fig. 4.6). However, 
most low-Ti basalts (flows and intrusions) display high 87Sr/86Sri (0.705–0.707), low 
143Nd/144Ndi (0.5125–0.5122, epsilon-Nd +1 to −4), and high radiogenic Pb isotopic 
compositions (206Pb/204Pbi  =  18.2–18.7; 207Pb/204Pbi  =  15.59–15-67; 
208Pb/204Pbi = 38.00–38.50). They yield slightly less radiogenic Sr-Pb isotopic com-
positions than the EM-2 mantle end-member of Zindler and Hart (1986). Such com-
positions are typical, for example, for all African, European, and North American 
CAMP lava flows, as well as for all low-Ti lava flows from South America. An 
exception is represented by the dykes from southeastern USA (Pegram 1990; 
Callegaro et al. 2013; Whalen et al. 2015), whose Sr-Nd-Pb isotopic compositions 
plot between the DMM, EM-1 and EM-2 mantle end-members. High-Ti flows from 
South America and high-Ti intrusive rocks from South America and Africa display 
the most depleted Sr-Nd isotopic compositions as well as relatively low Pb isotopic 
ratios (De Min et al. 2003; Deckart et al. 2005; Merle et al. 2011; Klein et al. 2013), 
reaching compositions comparable to those of Mesozoic Atlantic Mid-Ocean- 
Ridge-basalts (Janney and Castillo 2001). Notably, high-Ti CAMP basalts do not 
overlap in their Sr-Nd-Pb isotopic compositions with the low-Ti ones.

187Os/188Osi compositions of most analyzed CAMP rocks (from Europe, North 
America, and South America), including both high- and low-Ti groups, range from 
0.125 to 0.145 (Merle et al. 2011, 2014; Callegaro et al. 2013, 2014a). Such range 
of values is common for mantle-derived magmas that are not significantly contami-
nated by old continental crust. Only a few samples show 187Os/188Osi considerably 
higher than 0.150, and these are all evolved rocks with low MgO, Ni, and Os and 
thus prone to modification of their initial magmatic isotopic signature by crustal 
assimilation. If samples with less than 0.03 ppb of Os are excluded, more than two- 
thirds of these rocks have initial 187Os/188Os ratios in the range of 0.126–0.136, 
which are compositions similar to or slightly more radiogenic than the Primitive 

A. Marzoli et al.



107

Upper Mantle (Meisel et al. 2001) or asthenospheric melts (Gannoun et al. 2007; 
Dale et al. 2009). CAMP samples with 187Os/188Osi ratios less than 0.125, which are 
typical of ancient sub-continental mantle lithosphere, are extremely rare.

4.6.3  Main Magma Types and Intra- and Inter-Continental 
Correlations

Combined major and trace element and Sr-Nd-Pb isotopic compositions suggest 
that CAMP basaltic lava flows, dykes and sills can be subdivided into six main 
groups (Fig. 4.7):

 1. The Tiourjdal group (named for the locality in Morocco where these flows are 
thickest) includes the Lower Unit flows from Morocco and Algeria, a few lava 
flows from Canada (from the East Ferry member) and some dykes and sills from 
northern Africa (e.g., Mali, Taoudenni basin). This group has TiO2 in the range 
1.3–1.5 wt.% for 6–8 wt.% MgO and La/Yb 6–8.

Fig. 4.6 87Sr/86Sri, 143Nd/144Ndi, 206Pb/204Pbi, 207Pb/204Pbi and 187Os/188Osi compositions of CAMP 
rocks. NHRL is the northern hemisphere reference line (Hart 1984). Data sources: Alibert (1985), 
Bertrand et al. (2014), Block et al. (2015), Callegaro et al. (2013, 2014a), Cebriá et al. (2003), 
Deckart et al. (2005), De Min et al. (2003), Dupuy et al. (1988), Jourdan et al. (2003), Klein et al. 
(2013), Merle et al. (2011, 2014), Verati et al. (2005), Whalen et al. (2015)
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 2. The Prevalent-CAMP group (TiO2 about 1.0–1.3 wt.% for MgO 6–8 wt.%; La/
Yb = 3.5–5.5), which includes the Moroccan Intermediate and Upper Unit flows, 
all flows from Portugal, the Talcott (or Orange Mt.) basalts from the Newark 
Supergroup from Virginia to Connecticut (cf. Weems et al. 2016), most of the 
Canadian flows, and nearly all South American flows. Most dykes and sills from 
Africa and some from northeastern North America (New England to Canada) 
also belong to this group.

 3. The Holyoke group (TiO2 0.8–1.0 wt.%, for MgO 6–8 wt.%; La/Yb = 2.5–3.5), 
which includes the Holyoke flows and the stratigraphically equivalent flows 
from Massachusetts to Virginia in the USA and their feeder dykes and sills.

 4. The Recurrent group (TiO2 1.4–1.6 wt.%, for MgO about 4–6 wt.%; La/Yb about 
2.0), which is composed of the Moroccan Recurrent lava flows and the Hook Mt. 
and Hampden basaltic flows from the northeastern USA and their feeder dykes. 
Also some dykes and sills from Algeria (Tindouf basin) belong to this group.

 5. The Carolina group formed by dykes from the southeastern USA (Georgia to 
Virginia), which are generally rich in MgO (up to 13 wt.%) and low in TiO2 
(about 0.5 wt.%) and La/Yb (1–3).

 6. The high-Ti group (TiO2 > 2.1 wt.%, 3–8 wt.% MgO, La/Yb 2–8), which includes 
high-Ti flows from the Parnaiba basin (Brazil) and the high-Ti dykes from 
Liberia, French Guiana, Suriname, and north-eastern Brazil, as well as the 
Freetown Layered Intrusion in Sierra Leone (Callegaro et al. 2017).

Fig. 4.7 TiO2 (wt.%) vs. La/Yb of CAMP samples (data sources as for Fig. 4.4). The six geo-
chemical groups described in the text are outlined. Most of the outliers are coarse-grained intrusive 
rocks, for example samples from the Kakoulima layered intrusion
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The Tiourjdal, Prevalent-CAMP, and Holyoke groups have almost identical 
Sr-Nd-Pb-Os isotopic compositions. The Recurrent group has slightly lower 
87Sr/86Sr and slightly higher 143Nd/144Nd and 206Pb/204Pb, compared to the previously 
cited groups. The Carolina group has more depleted Sr-Nd isotopic compositions 
than the previous groups, and also displays a large scatter of Pb isotopic composi-
tions ranging from compositions similar to those of the other low-Ti basalts to sub-
stantially lower 206Pb/204Pb. The High-Ti group shows variable Sr-Nd-Pb isotopic 
ratios, which are in general closer to typical depleted mantle values compared to all 
of the low-Ti groups and broadly similar to the isotopic compositions of Jurassic 
Atlantic Mid-Ocean Ridge basalts (Janney and Castillo 2001).

Given the above definitions of the main geochemical groups of CAMP basalts, 
one main observation is that the Prevalent-CAMP group is nearly ubiquitous in the 
entire LIP, from France to Bolivia. All other geochemical groups are geographically 
limited. The Tiourjdal group occurs in a rather restricted area of northwestern 
Africa, from Mali to Algeria and Morocco at the northern margin of the West African 
Craton (Fig. 4.1). The Carolina group has an even more limited area and is found 
only in the southeastern USA occurring as dykes only. The Holyoke group is limited 
to the Newark Supergroup from Massachusetts to Virginia. The Recurrent group is 
represented by volumetrically very scarce flows in the northeastern USA and north-
western Africa (Morocco and Algeria). The High-Ti group occurs only in the areas 
surrounding the southeastern margin of the West African Craton (Liberia and Sierra 
Leone) and the northeastern margin of the Amazonian craton in northeastern South 
America.

4.7  Origin of CAMP Magmas

4.7.1  Fractional Crystallization

A large majority of the analyzed CAMP basalts have MgO ranging between 14 and 
3 wt.%. This range is even more restricted when only the lava flows are considered 
(MgO generally 9–5 wt.%). Therefore, very few, if any, of these rocks may be con-
sidered as representing a primary mantle-derived melt composition. The lack or 
scarcity of high-Mg (i.e. primary) magmas is common also to some other LIPs, such 
as the Paranà-Etendeka LIP (Peate 1997). In contrast, in other LIPs such as the 
Deccan Traps, high-Mg picritic compositions are rather common (Melluso et  al. 
2006). Notably, the presence of high-Mg picritic magmas are considered to be one 
of the signatures for the involvement of an anomalously hot mantle source, i.e. a 
mantle-plume in the genesis of LIPs (Campbell and Griffiths 1990).

The majority of CAMP rocks are quite evolved, reflecting some 10–50  wt.% 
fractional crystallization of primary mantle melts. This can be estimated for exam-
ple by considering experimentally derived mantle melts as primary magmas and 
modelling the formation of CAMP basaltic composition with the MELTS code 
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(Ghiorso and Sack 1995; cf. Callegaro et al. 2013). Even so, evolved rocks such as 
andesites or dacites are virtually absent. All acid rocks are limited to thin grano-
phyre levels within some sills, dykes, or thick flows, resulting from in-situ differen-
tiation processes within the sill and intrusions (e.g., Philpotts and Reichenbach 
1985). In general, the range of differentiation of CAMP magmas is roughly similar 
to that of MORBs, which suggests that they erupted in a similar extensional tectonic 
regime (Jennings et al. 2017).

4.7.2  Crustal Assimilation

The enriched Sr-Nd-Pb isotopic composition of most CAMP basalts and of the low-
 Ti groups, in particular, coupled with depleted Nb and relatively high LILE (such as 
Rb, Ba) and light REE (such as La) may suggest that CAMP magmas were contami-
nated by the continental crust assimilated within crustal magma chambers or en- 
route to the surface. However, the relatively low 187Os/188Os ratios of the vast 
majority of analyzed CAMP basalts argue against any substantial contamination by 
continental crustal rocks. Modeling of the crustal assimilation process, based either 
on whole-rock or on mineral compositions, has been attempted by several authors 
(Dorais and Tubrett 2008; Callegaro et al. 2013, 2014a; Merle et al. 2011, 2014; 
Marzoli et al. 2014). These results suggest that the maximum amount of assimilated 
crustal rocks generally does not exceed about 10 wt.% of the primary magma mass. 
Such relatively low degrees of crustal contamination may shift the pristine isotopic 
compositions to slightly more enriched compositions, but cannot explain the geo-
chemical difference observed between almost all CAMP samples and basaltic rocks 
from Atlantic ocean islands (i.e., deep mantle plume products) or present-day 
Atlantic MORBs (i.e., shallow upper mantle products).

4.7.3  Mantle Source of CAMP Basalts

Given that the enriched Sr-Nd-Pb isotopic ratios and the only mildly radiogenic 
187Os/188Os of CAMP basalts can only partially be explained by crustal contamina-
tion, an enriched mantle component has to be envisaged for the source of CAMP 
magmas. According to most authors the enriched signature of the CAMP mantle 
source is provided by recycled continental crustal material (e.g., Pegram 1990; 
Puffer 2001; Dorais and Tubrett 2008; Callegaro et al. 2013, 2014a; Merle et al. 
2011, 2014; Whalen et al. 2015). This material may have been introduced into the 
shallow mantle during Paleozoic or Proterozoic subduction events. In particular, 
most low-Ti basalts (except the Carolina group) plot quite close to the EM-II mantle 
pole. For these basalts, the above cited authors suggested an origin from a mantle 
that was enriched by subducted continental sediments. Small amounts of this 
enriched material within the mantle source would explain the enriched Sr-Nd-Pb 
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isotopic compositions of CAMP basalts, leaving their Os isotopic ratios largely 
unchanged due to the much higher Os content in the ambient peridotitic mantle 
compared to the recycled sediments. In order to explain the low-radiogenic Pb iso-
topic composition observed for some CAMP dykes of the Carolina group, Callegaro 
et al. (2013) and Whalen et al. (2015) have suggested the involvement of subducted 
lower continental crust material in their mantle source.

The peculiar isotopic composition of the High-Ti group basalts requires a dis-
tinct mantle source component. According to Deckart et  al. (2005), Merle et  al. 
(2011) and Callegaro et al. (2017), the composition of high-Ti CAMP basalts from 
northeastern South America trending towards the EM-I mantle pole would require 
contributions from enriched portions of the sub-continental lithospheric mantle, 
possibly metasomatic veins. Given the paleo-proximity of the cratonic areas of the 
West African and Amazonian shields, it may be envisaged that enriched veins may 
occur in the continental lithospheric mantle, in particular within the deep cratonic 
keels (Callegaro et al. 2017).

In general, what emerges from the geochemical studies of CAMP basalts is the 
involvement of enriched components of variable nature, i.e. recycled upper or lower 
crustal materials or lithospheric mantle veins that are significant at a local scale. 
However, for all CAMP basalts the volumetrically dominant component seems to be 
the depleted upper mantle or DMM.  CAMP basalts appear to derive from such 
depleted mantle that was variously enriched by 2–5% subducted material (Callegaro 
et al. 2013, 2014a; Merle et al. 2014). In this sense, it is interesting to note the simi-
larity of some CAMP basalts, in particular the high-Ti group, with Mesozoic mid- 
ocean- ridge basalts from the Central Atlantic Ocean (Janney and Castillo 2001). 
Therefore, the geochemical signatures of CAMP basalts, which are characterized by 
a dominant depleted component with subordinate enrichments of variable origins, 
point to a shallow mantle source. If this interpretation of the geochemical data for 
the CAMP is correct, deep mantle (i.e. mantle-plume) involvement seems unneces-
sary or at least is undetectable within the available geochemical data.

The geochemical and isotopic data do not explain, however, why the shallow 
mantle should melt. CAMP basalts are tholeiitic magmas and require melting 
degrees of about 5–10% of a peridotitic mantle probably located at the base of the 
continental lithosphere, i.e. at about 60–100  km depth. For such conditions, an 
excess mantle temperature of about 50–100 °C is required compared to the “nor-
mal” ambient mantle temperature, i.e. that necessary to produce normal MORB 
(Herzberg et al. 2007). This excess temperature may have been slightly lower in the 
presence of enriched components, such as those described above, which would 
lower the melting temperature (solidus) of the peridotites. According to Herzberg 
and Gazel (2009), Callegaro et  al. (2013), and Whalen et  al. (2015) the mantle 
potential temperature for the CAMP source, calculated from its olivine composi-
tions, would have been about 1430–1480 °C. Such a temperature value is slightly 
higher than that of the ambient upper mantle (about 1300–1400 °C), but signifi-
cantly lower than temperatures obtained with the same method for plume-related 
LIPs (> 1500 °C and up to 1600 °C; Herzberg and Gazel 2009).
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Such moderately hot mantle temperatures may be the expression of a weak man-
tle plume or may be explained by alternative models such as edge-driven convection 
(McHone et al. 2005) or heat incubation underneath the Pangaea super-continent 
(Coltice et al. 2007; Hole 2015). Torsvik et al. (2010) suggested that the origin of 
CAMP and other LIPs is linked to mantle structures rooted at the core-mantle 
boundary called Large Low Shear Velocity Provinces (LLSVPs). One LLSVP is 
apparently located under the African plate and the other one under the Pacific plate 
(Burke et al. 2008). In this scenario, the steep sides of the LLSVPs generate plumes, 
channeling hot lower mantle portions that find their surface expression in LIP and 
kimberlitic volcanism. Plate reconstructions show that at 200 Ma (Ruiz-Martínez 
et al. 2012) part of the CAMP coincided spatially with the margin of the African 
LLSVP.  This LLSVP margin, from which the main flux of deep-mantle magma 
would be expected (Torsvik et al. 2010), was probably located under a belt going 
from NE-Brazil to NW-Africa and NE North America. While we cannot exclude a 
thermal role played by the African LLSVP, we do not see any clear evidence of a 
geochemical lower mantle component in CAMP basalts, whose geochemical com-
positions seem more consistent with derivation from the depleted upper mantle 
overprinted by variously enriched lithospheric signatures.

Globally, we conclude that none of these models fully explains the peculiar fea-
tures of the CAMP, in particular its enormous surface area extent, coupled with its 
relatively low volume of basalts erupted near-synchronously over about 10 million 
km2. The mantle plume model is not compatible with the relatively low temperatures 
calculated from olivine compositions, and geochemical data similarly do not require 
a deep mantle contribution. At the same time however, the shallow mantle melting 
models (such as edge-driven convection or thermal incubation) do not justify a sud-
den onset of voluminous melt production over distances of thousands of kilometers. 
Therefore, the origin of the CAMP is certainly not fully explained at present.

4.8  CAMP and the End-Triassic Extinction

As previously mentioned, the emplacement of CAMP basalts has an age that is very 
similar to that of the end-Triassic mass extinction (ETE), suggesting a cause-and- 
effect relationship between the two phenomena. The ETE is one of the “big five” 
biological crises that occurred during the Phanerozoic (e.g., Raup and Sepkoski 
1982; Tanner et al. 2004). The environmental and biological crisis at the end of the 
Triassic is synchronous with a major disturbance of the global carbon cycle, a char-
acteristic that is also observed during other LIP-related events (Wignall 2001). This 
carbon cycle perturbation is recorded in the geological record as multiple sharp 
negative carbon isotope excursions (CIEs). These excursions suggest sudden inputs 
of huge quantities of 13C-depleted CO2 into the ocean–atmosphere system. The exact 
origin of this CO2, either from dissociation of ocean floor clathrates, thermogenic 
production of methane from the sediments, or volcanic CO2, is still debated (e.g. 
Hesselbo et al. 2002; Ruhl et al. 2011; Paris et al. 2016; Bachan and Payne 2016).
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To date, three consecutive negative CIEs (named “precursor”, “initial”, and 
“main”) have been detected in different end-Triassic stratigraphic successions 
(Fig. 4.8). The “main” CIE corresponds to the Triassic-Jurassic boundary as it is 
defined in the Global Boundary Stratotype Section and Point (GSSP) at Kuhjoch, 
Austria (von Hillebrandt et al. 2007), which is dated at 201.36 ± 0.17 Ma (U-Pb 

Fig. 4.8 Carbon-isotope stratigraphy across the Triassic-Jurassic boundary (modified after Dal 
Corso et  al. 2014). The correlation between the sections is based on biostratigraphy, magneto-
stratigraohy and chemostratigraohy (e.g. Hesselbo et al. 2002; Ruhl et al. 2009; Deenen et al. 2010; 
Whiteside et  al. 2011; Dal Corso et  al. 2014). Three major negative carbon-isotope excursions 
(CIEs) record major disruptions of the carbon cycle associated to the end-Triassic mass extinction 
(ETME) and the CAMP volcanism. The Global Boundary Stratotype Section and Point (GSSP) of 
the base of the Hettangian (Jurassic) is placed at Kuhjoch at the level of the first occurrence of the 
ammonite Psiloceras spelae Guex, within the “main” CIE (von Hillebrandt et al. 2007). Based on 
the ammonoid biostratigraphy and δ13C data from the New York Canyon section (Nevada, USA), 
other authors put the Triassic–Jurassic boundary between the “initial” and the “main” CIEs (‘A’ in 
St. Audries Bay curve; Guex et al. 2004; Bartolini et al. 2012). In the continental stratigraphic suc-
cessions of the Newark Basin (USA) and the High Atlas (Morocco) the “initial” negative CIE and 
associated ETE occur below the first outcropping CAMP basalt. However, mineralogical and geo-
chemical analysis of the sediments underlying the first basalt in Morocco show CAMP volcanism 
was already active at least from the positive rebound of the “precursor” CIE (Dal Corso et  al. 
2014). The alternative correlation proposed by Lindstrom et al. (2017) for the end-Triassic events 
is shown in pale-gray. The little crosses indicate the stratigraphic position of the first CAMP lava 
flow in the Newark Supergroup (USA) and High Atlas basins (Morocco)
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zircon age; Schoene et al. 2010; Wotzlaw et al. 2014). However, the peak extinction 
event (ETE) should correspond to the “initial” CIE, estimated at 201.564 ± 0.015 Ma 
in the Newark basin by Blackburn et al. (2013) and dated at 201.51 ± 0.15 Ma in 
marine strata from Peru and Nevada (Schoene et al. 2010; Wotzlaw et al. 2014). 
More recently, Lindström et al. (2017) proposed a new model for the negative CIE 
succession during the latest Triassic. Consistent with this interpretation, the “pre-
cursor” CIE may be correlated with the CIE observed in the sediments at the base 
of the CAMP lava piles in Morocco and Canada (Deenen et al. 2010, 2011; Dal 
Corso et al. 2014), while the “initial” CIE may postdate the onset of CAMP volca-
nism (Lindström et al. 2017).

Radioisotopic ages show that the end-Triassic CAMP volcanism, carbon cycle 
disruption and mass extinction are geologically synchronous (Schoene et al. 2010; 
Marzoli et al. 2011; Blackburn et al. 2013; Davies et al. 2017). For example, the 
U–Pb ages for the Messejana dyke (Spain), Tarabuco sill (Bolivia) and an Amazonas 
sill (Brazil) (201.585  ±  0.034  Ma, 201.612  ±  0.046  Ma, 201.525  ±  0.065  Ma, 
respectively) are equal to the age (201.564 ± 0.015 Ma) of the ETE in the Newark 
Basin (Davies et al. 2017). Moreover, Dal Corso et al. (2014) demonstrated that 
CAMP volcanism was active when the first two negative CIEs occurred. Therefore, 
after years of debate (cf. Marzoli et al. 2004, 2008; Whiteside et al. 2007, 2008), 
there now is general consensus in the scientific community that volcanic gases 
released by CAMP likely were the trigger mechanisms of the end-Triassic mass 
extinction and accompanying carbon cycle disruption (e.g., Hesselbo et al. 2002; 
Marzoli et al. 2004; Guex et al. 2004; Pálfy et al. 2007; Deenen et al. 2010; Whiteside 
et al. 2011; Ruhl et al. 2011; Schaller et al. 2011; Lindström et al. 2012, 2017; Dal 
Corso et al. 2014; Callegaro et al. 2014b).

4.8.1  Volcanogenic Gases from the CAMP

Transfer of CAMP volcanogenic gases (chiefly water vapor, carbon and sulfur diox-
ide and halogens) into the ocean and the atmosphere has been invoked as the mecha-
nism responsible for the end-Triassic climate change and mass extinction (Wignall 
2001; Ernst and Youbi 2017). A causal relationship is substantiated by the temporal 
overlap between these events (e.g. Marzoli et al. 2011; Blackburn et al. 2013; Davies 
et al. 2017), as well as by the existence of modern examples of volcanically forced 
climate changes following big eruptions (Robock 2000).

High quality data for S, H, C, F and Cl are difficult to obtain for old, largely 
degassed, and slightly altered basaltic rocks such as those of the CAMP. Based on 
whole-rock data reported in Grossman et al. (1991), McHone (2003) estimated a 
total degassed volume of 5.19 × 1012 tons CO2, 2.31 × 1012 tons S and 1.11 × 1012 
tons F from the CAMP. However, it should be considered that volatile elements are 
controlled also by secondary processes. Moreover, initial degassing of volatiles may 
commence within crustal magma chambers and in particular within shallow intru-
sions such as those analyzed by Grossman et al. (1991).
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Callegaro et al. (2014b) calculated that CAMP basalts were able to release up to 
8 Mt. per km3 of volcanogenic SO2 by analyzing sulfur concentration in clinopyrox-
enes and combining it with a cpx/melt sulfur partition coefficient. These data show 
that CAMP melts are close to sulfide saturation, i.e., ca. 2000  ppm for near- 
anhydrous basaltic melts at an oxygen fugacity around the FMQ buffer. Sulfur con-
tent in CAMP magmas is similar to that found by Self et al. (2008) for Deccan Traps 
magmatism. Schmidt et al. (2015) modeled the atmospheric response to volcano-
genic injections of sulfur and demonstrated that sulfur loads compatible with 
Deccan estimations would only cause environmental stress if eruption rates were 
sustained and long-lived.

Reliable carbon data are lacking for the CAMP and, to our knowledge, for all 
basaltic LIPs. Indirect evidence for the amount and isotopic composition of carbon 
emitted during the latest Triassic emplacement of the CAMP comes from the previ-
ously described CIEs and from proxy data. Stomatal index data and carbon-isotope 
analysis of pedogenic carbonates show doubling of pCO2 levels at the Triassic–
Jurassic boundary (McElwain et al. 1999; Schaller et al. 2011). What appears from 
interpretation of the CIEs, however, is that the source of volatiles degassed during 
the CAMP event was not merely “juvenile”. Indeed, in paleoclimatic reconstruc-
tions volcanic CO2 is considered to be insufficiently depleted to cause a negative 
CIE given that its carbon-isotope signature (δ13C) is generally fixed at −6 ± 2‰ on 
the basis of present-time observations on asthenosphere-derived basalts from, for 
example, Hawaii, Iceland and Ethiopia (Gerlach and Taylor 1990; Barry et al. 2014). 
Therefore, the need for additional depleted carbon to be introduced into the system 
forced paleoclimatologists to invoke alternative reservoirs with strongly negative 
δ13C signatures, i.e., ocean floor methane hydrates (δ13C ca. -60‰; Dickens et al. 
1995) and methane thermally released by organic-rich sediments (δ13C ca. −35 to 
−50‰; Svensen et al. 2004). Clathrate destabilization is hard to prove with inde-
pendent proxies in the geological record. Release of thermogenic methane might 
instead have been initiated by intrusion of voluminous CAMP sills into the organic- 
rich sediments of the Amazon and Solimoes basins in Brazil (De Min et al. 2003).

4.9  Conclusions

The Central Atlantic magmatic province (CAMP) was emplaced over an area of 
more than 10 million km2 at ca. 201 Ma and its peak magmatic activity had a short 
duration of about 1  Ma or less. Magmas were erupted as short-lived pulses and 
formed lava fields flowing over distances of hundreds of km. Lava flows are either 
of compound or of simple pahoehoe type, the latter perhaps reflecting a higher 
magma eruption rate. The total volume of intruded and erupted magmas can be 
conservatively estimated at 3 million km3, the vast majority being represented by 
intrusive rocks, e.g. dykes, sills and layered intrusions. Deep crustal intrusions 
should correspond in volume to about 50–100% of the volume of the shallow intru-
sions and the erupted products.
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Nearly all CAMP rocks are basalts or basaltic andesites, while acid rocks are 
limited to small layers or pockets within the larger flows and shallow intrusions. 
Primitive magmatic rocks are absent and MgO contents ranging between about 10 
and 5 wt.% for the vast majority of analyzed basalts indicate that CAMP rocks are 
the result of about 30–50% fractionation from parental mantle-derived melts. The 
rock geochemical compositions and, in particular, their relatively low radiogenic Os 
isotopic compositions allow for a maximum of 10% crustal assimilation. Together 
these characteristics indicate that the enriched trace element and Sr-Nd-Pb isotopic 
compositions demand some contribution from enriched mantle components, super-
imposed on a dominantly depleted mantle source. It is proposed here that the mantle 
source enrichment happened either through shallow recycling of subducted conti-
nental sediments or lower crust or through assimilation of enriched material hosted 
within the sub-continental lithospheric mantle.

Six main groups of rock compositions can be defined based on trace element and 
isotopic compositions. Of these, five are low-Ti basalts. One of these groups (the 
Prevalent CAMP) is found nearly everywhere within the CAMP. The other four 
low-Ti and the only high-Ti group are geographically limited to restricted areas of 
the LIP, arguing in favor of a strong regional control on magma composition, pos-
sibly related to the age, thickness, and composition of the local lithospheric 
mantle.

CAMP magmatism straddled the Triassic-Jurassic boundary and most likely trig-
gered the end-Triassic mass extinction and global climate changes. This is sup-
ported by high pre-eruptive sulfur contents inferred for CAMP magmas based on 
their clinopyroxene S contents. A simple magmatic origin of the increased end- 
Triassic CO2 is not easy to constrain but seems inconsistent with the carbon isotopic 
composition of CAMP basalts, assuming that these were similar to present-day 
basalts.

Overall, the state of the art of CAMP-related literature reveals that some aspects 
of this LIP are well studied and understood, whereas other aspects still need to be 
investigated. Sampling in remote areas of South America and Africa is still limited, 
as are borehole data from intrusive CAMP rocks from the southern USA and the 
Brazilian basins. Available high quality 40Ar/39Ar geochronological data are 
 sufficiently numerous to allow statistical definition of the main peak of magmatism; 
U-Pb ages are mostly limited to intrusive rocks. The geochemical dataset is abun-
dant for low-Ti rocks, but very limited for the High-Ti group, over represented for 
the USA and European CAMP and scarce for the African and South American 
CAMP. CAMP magmatism straddled the Triassic-Jurassic boundary and quite pos-
sibly triggered the end-Triassic mass extinction and global climate changes.
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Chapter 5
Distal Processes and Effects of Multiple Late 
Triassic Terrestrial Bolide Impacts: Insights 
from the Norian Manicouagan Event, 
Northeastern Quebec, Canada

Michael J. Clutson, David E. Brown, and Lawrence H. Tanner

Abstract The Late Triassic (Carnian to Rhaetian Stages: ca. 237–201 Ma) has a 
long history of geological research, although controversy remains over the precise 
definition of key sub-unit boundaries, including those defining the three constituent 
stages. Within this context, at least five terrestrial bolide impact structures ranging 
from 9 to 85 km in diameter have been identified at present-day northern latitudes, 
the proximal remnant crater aspects of which have been studied in increasing detail 
over the last few decades. The more elusive distal sedimentary expressions of these 
multi-sized hypervelocity events remain largely unknown, although if preserved, 
identified and interpreted correctly, may (as precisely dateable event horizons) help 
to address certain existing stratigraphic uncertainties, particularly pertaining to the 
(longest) Norian Stage. Detailed absolute age-dating using a range of radioisotopic 
methods (e.g. U-Pb and 40Ar/39Ar) currently indicates that at least three of the con-
firmed Late Triassic impact craters formed prior to commencement of the major 
Rhaetian Central Atlantic Magmatic Province (CAMP) volcanic episode by several 
million years. Impact research efforts to date have focused mainly on describing and 
process modeling the relatively well-preserved largest impact structure, Manicouagan 
(215.5 Ma; 85 km diameter) located in northeastern Quebec, Canada and, to a lesser 
extent, the Saint Martin (227.8 Ma; 40 km) and Rochechouart (ca. 207–201 Ma; ca. 
23–50 km) structures in central Manitoba, Canada and west- central France respec-
tively. The smaller, subsurface Red Wing structure (ca. 200 Ma; 9 km diameter, ca. 
2.5 km burial depth) located in South Dakota, USA, also has attracted significant 
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economic interest. Unlike the well-documented End Cretaceous Chicxulub impact 
(66 Ma; ca. 180 Km), attempts to establish a globally significant causal extinction 
connection between the larger impacts (e.g. Manicouagan and Rochechouart) and 
Late Triassic marine and terrestrial bioevents, culminating with the ‘End Triassic 
Extinction’ (ETE), have essentially proved unsuccessful.

Keywords Bolide • Impact structure • Microtektite • Spherule • Ejecta • 
Paleoseismology • Paleoearthquake • Synsedimentary deformation • Microfracture 
• Biotic extinction

5.1  Introduction

5.1.1  Previous Work

The identification, description and interpretation of bolide (asteroid, meteoroid or 
comet) impact-cratering events on Earth’s crust have focused largely on continental 
intracratonic occurrences, where impact structural preservation potential and recog-
nition are generally considered to be highest (Grieve 2017, Fig. 6). Impact research 
to date has mostly entailed a series of integrated studies relating to a particular 
impactor type, size, velocity, target response and timing. As stated by the latter 
author, impacts typically represent hypervelocity high-energy collisional events 
resulting in the redistribution, disruption and reprocessing of multiple target litholo-
gies. The constituent factors are generally described as interrelated suites of shock- 
metamorphic and thermally modified petrofacies, contained within variably 
preserved surface and subsurface crater configurations (morphometries), ranging 
from simple to highly complex. Detailed descriptions of impact cratering processes 
and products, and the diverse traces they have left in the mainly terrestrial geologic 
record, are provided in French (1998) and Osinski and Pierazzo (2013) respectively. 
Recently Grieve (2017) presented a comprehensive summary of large-scale impact 
contributions to Earth history, expressed in geological, environmental and socio- 
economic terms. On comparatively rare occasions, impact investigations (Glass and 
Simonson 2013) have extended to characterize the contents and inferred deposi-
tional histories of often thin, correlative units (‘event horizons’) containing first- 
order distal ejecta, especially sand-grade spherules (Glass and Simonson 2012) and/
or detrital shocked quartz and other minerals. This has allowed tentative assess-
ments of potentially global catastrophic paleoenvironmental effects, including asso-
ciated biotic responses, as discussed in Koeberl and MacLeod (2002), Kring (2007), 
Racki (2012) and Schedl (2015).

The global locations of 190 confirmed impact structures illustrated in the Earth 
Impact Database (EID June 2017: www.passc.net/EarthImpactDatabase/Worldmap.
html) collectively display a non-random spatial distribution that partly reflects a 
recognition bias towards Northwest Europe, North America and Australia—as 
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opposed to an “original random bombardment flux” throughout the geologic times-
cale (French 1998). Meier and Holm-Alwmark (2017) have further suggested that 
there is also no current evidence for any periodicity in the (‘robustly-dated’) impact 
record. Approximately 50% of the total structures shown are considered understud-
ied based on current research standards (Osinski 2013), with an even higher per-
centage still requiring reliable age control (Schmieder et al. 2014). Interest in Earth 
impacts historically has been driven by a combination of crater/impact size and 
complexity, geologic/economic importance, degree/style of preservation, geo-
graphic accessibility and various environmental factors. In addition to the EID 
mapped occurrences, numerous other (300+), mostly smaller (<6  km diameter) 
impact structures are estimated probabilistically to exist (Hergarten and Kenkmann 
2015). These may also include glacially-constrained target imprints relating, for 
example, to possibly the last (Wisconsinan) Ice Age (cf. Spooner et al. 2009, 2015) 
and/or geophysically-defined (inferred) impact structures located within continental 
polar regions such as present-day Antarctica (von Frese et al. 2009). Also omitted 
on the EID map are larger-scale cataclastic lithofacies assemblages. These are 
exemplified by the well-studied, although controversial Azura/Rubielos de la Cérida 
structures in northeast Spain (Ernstson et al. 1985, 2001; Diaz-Martinez et al. 2002), 
and large subsurface complexes such as that in South Australia described by Glikson 
et al. (2013) to contain multiple quartz microdeformation styles of currently uncer-
tain origin. The global locations and general details of suspected impact sites 
(including possible and probable among other technical confidence categories) was 
provided by Rajmon (2010).

A confirmed (≫95% probability) impact structure status requires established 
technical recognition criteria in support of any proposed model that satisfactorily 
preclude alternative causal explanations, e.g. tectono-metamorphic, diapiric and/or 
cryptoexplosive volcanic processes. French and Koeberl (2010) stated that only the 
presence of diagnostic shock-metamorphosed (planar deformation in quartz, and 
melt) rocks or breccias, and/or the discovery of actual meteorites (either whole or 
most likely in part), constitute unambiguous evidence of an impact origin for inter-
preted ‘crater-like’ (typically circular) structures. More precise definitions of these 
terms are discussed in Reimold et al. (2014, and references therein). Confirmation 
of any associated distal impact ejecta (identifiable beyond ca. 2.5–5 times crater 
radii from impact loci (Glass and Simonson 2012; Osinski et al. 2013) also requires 
a carefully considered geochronological approach, in the absence of more geospa-
tially and temporally constrained proximal crater evidence. Ejecta deposits may 
consist of various mixtures of impact-generated air-fall material including transport- 
abraded and/or diagenetically-modified microtektitic melt/vapor products (e.g. 
spherule pseudomorphs), shocked clasts/grains (e.g. quartz, feldspar, mica and 
heavy minerals), as described in Glass and Simonson (2012, 2013 and references 
therein). Depending on original projectile composition, certain layers also may be 
characterized by extraterrestrially-sourced geochemical signatures related to origi-
nal bolide composition. These often comprise anomalous concentrations, relative to 
normal crustal abundances, of platinum group elements (PGEs) such as iridium (Ir) 
(Alvarez et  al. 1980; Orth 1989; Orth et  al. 1990; Rampino and Haggerty 1996; 
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Pearson 1999; Smit 1999; Kyte 2002) or unusual isotopic ratios of these elements, 
in particular osmium (Os) (Sato et al. 2016).

As mentioned above, almost all the currently identified Proterozoic (2000 Ma+) 
through Recent-aged impact structures occur in present-day continental areas, which 
infers that both the number and environmental consequences of historical impacts, 
especially within the geologically ephemeral oceanic plate domain, are likely to be 
significantly underestimated (Hergarten and Kenkmann 2015). In this context, Racki 
(2012) has noted that the apparent paucity of unequivocal impact evidence (con-
firmed craters ± diagnostic ejecta) found to be synchronous with stratigraphically-
dateable mass extinction events, for example, could be misleading. Currently only 
the well-studied terminal Cretaceous Chicxulub impact (66 Ma; ca. 180 Km diam-
eter) is unequivocally associated with a major global extinction event (Alvarez et al. 
1980; Renne et al. 2013; Bond and Grasby 2017). This attribution reflects the fact 
that many components of the benchmarked Cretaceous-Palaeogene (K-Pg) strati-
graphic boundary bed(s) had already been identified, described and modeled in sig-
nificant detail in crater absentia (Izett 1990 and references therein), prior to discovery 
of the parent impact structure buried beneath the Yucatán Peninsula of southern 
Mexico (Hildebrand et al. 1991). Racki (2012) has provided a detailed discussion on 
the practicalities of (ongoing) attempts to apply similar ‘Alvarez-type’ extraterres-
trial causal models to other Phanerozoic mass extinction events, including that mark-
ing the end-Triassic. In a similar vein, Reimold et al. (2014) and others, continued to 
caution extinction researchers against rushing too quickly to join the “impact band-
wagon” without an appropriate technical boarding pass.

5.1.2  Impact Research Databases

The most significant (centralized) repository of published impact research informa-
tion and supporting data is the on-line Earth Impact Database (EID) comprising part 
of the Planetary and Space Science Center at the University of New Brunswick, 
eastern Canada under the management of Dr. John Spray. PASSC also hosts the 
Manicouagan Impact Research Program (MIRP), a 10-year multidisciplinary proj-
ect designed in part to investigate potential terrestrial impact cratering analogues for 
planetary applications. The searchable EID website contains general details and 
publication listings pertaining to all 190 confirmed impacts, plus other impact- 
related subjects with links to multiple on-line sources (Related Sites) sharing addi-
tional information, including country-specific and planetary data. Impact specialists 
such as Reimold et al. (2014), however, have queried the EID ‘confirmation’ status 
of certain listed structures that “did not seem to be justified on the basis of geologi-
cal contexts and/or lack of bona fide impact evidence.” The latter comment serves 
to illustrate the often controversial nature of qualitative impact geology research, in 
the disputable absence of, for example, confirmed planar deformation features and 
shatter cones (high magnitude shock indicators) and/or quantifiably significant PGE 
anomalies (extraterrestrial connectivity), in both proximal and distal geologic 
settings.
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5.2  Late Triassic Terrestrial Impact Structures

The globally mappable impact crater total includes only five (northern hemisphere) 
Late Triassic (Carnian, Norian and Rhaetian) impact structures. These range in 
interpreted size (collapsed transient diameter—sensu EID) from 9 to 85  km 
(Fig. 5.1), with general details presented in Tables 5.1 and 5.2. Scientific interest in 
these features commenced mostly during the late 1970s and has increased signifi-
cantly in the twenty-first century (Schmieder 2010; Schmieder et  al. 2010a, b; 
Schmieder et al. 2014; and references therein). Their current research status—per-
taining to impact cratering processes/products, timing and possible paleoenviron-
mental consequences—is described and discussed at length by Spray et al. (2010), 
Schmieder et al. (2014), and Sapers et al. (2014) among others. Ranked according 
to decreasing size, the structures are: Manicouagan (215.5 Ma, 85 km diameter) 
located in northeastern Quebec, Canada; Lake Saint Martin (227.8 Ma; 40 km) in 
central Manitoba; Rochechouart (206.9 Ma; ca. 23–50 km) in west-central France; 
and the smallest (buried) structure, Red Wing (ca. 200 Ma; 9 km; ca 2500 m TVD) 
located in South Dakota, USA. A fifth, relatively new addition is Paasselkä (228.7–
231 Ma; 10 km), located in Finland (Schmieder et al. 2010b; Schwarz et al. (2015). 
This replaces the former 18–20 km Obolon (subsurface marine) impact structure in 
Ukraine, the radioisotopic age of which is reassigned from 215 ± 25 Ma (Masaitis 
et al. 1980) to 169 Ma (Mid-Jurassic) based on K-Ar dating by Gurov et al. (2009). 
Similarly, it should be noted that Racki (2012) references the poorly dated, although 
large (80 km diameter) Puchezh-Katunki structure in Russia (Pálfy 2004; Schmieder 
and Buchner 2008) as being Late Triassic. However, the EID currently lists this as a 

Fig. 5.1 Late Triassic global paleogeographic map showing the locations of confirmed terrestrial 
Carnian-Rhaetian impact structures (craters) and locally preserved interpreted distal ejecta depos-
its in southwestern Britain and central/southwestern Japan (Sakahogi, Inuyama-Kamiaso), assign-
able to the mid-Norian Manicouagan impact event. (Modified from Onoue et al. 2012, Suppl. I)
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smaller (40  km) Mid-Jurassic (167  ±  3  Ma) impact feature (also dated as Early 
Jurassic: 192 ± 0.8 Ma by Holm-Alwmark et al. 2016).

For several of the above Late Triassic impact structures, the estimated absolute 
ages have significant uncertainty ranges (Table 5.2), resulting in temporal overlap 
with the Triassic-Jurassic boundary. This allowed early speculation concerning their 
potential effects on extinction patterns, including whether the largest impact, 
Manicouagan, could have ‘triggered’ the major ‘end-of-Triassic’ mass extinction 
(ETE; Olsen et al. 1987, 2002a, b). The latter hypothesis was refuted by subsequent 
Manicouagan absolute age-dating (Hodych and Dunning 1992), although the com-
pounded impact effects on various interpreted earlier, lower magnitude Late Triassic 
biotic crises cannot yet be ruled out (Tanner et al. 2004; Lucas and Tanner 2008, 
2017). A key impact research imperative has therefore been to refine further the 
respective cratering age estimates to establish/confirm relationships between proxi-
mal impact datasets and their more loosely constrained stratigraphic distal signa-
tures. Currently, the latter are evidenced (only for the Manicouagan event) in 
southwestern Britain (Walkden et al. 2002; Kirkham 2003), central and southwest-
ern Japan (Onoue et al. 2012, 2016; Sato et al. 2013, 2016) and, based on mostly 
associative interpreted paleoseismic evidence, eastern Canada (Tanner 2006, 2013).

The five structures listed above vary significantly in current morphological 
expression, reflecting different combinations of original (simple and complex) cra-
tering style and subsequent tectonostratigraphic (burial, uplift, and unroofing) plus 
regional glacial modifications. Characteristic present-day features include flooded 
‘negative’ topographic expressions (e.g. Manicouagan, Saint Martin and Paasselkä) 
which have affected outcrop accessibility in the field. The majority of existing Late 
Triassic impact research efforts have focused on Manicouagan, as the largest, most 
complex and best-preserved structure (Grieve and Head 1983; Spray et al. 2010; see 
also Schmieder 2010), further aspects of which are discussed below as a potential 
distal impact signature case study.

Detailed radioisotopic absolute age-dating (summarized in Schmieder et  al. 
2014; see also Cohen et al. 2017) currently indicates that as many as four of the 
above impacts occurred within a ca. 229–207  Ma time window preceding com-
mencement of the major Late Triassic-Early Jurassic Central Atlantic Magmatic 
Province (CAMP) volcanic episode by several million years. This igneous activity 
was associated with early passive margin rifting of the northern Pangaea supercon-
tinent, prior to initiation of Atlantic seafloor spreading (Cirilli et al. 2009; Withjack 
et al. 2012). It is now widely considered a significant contributor to the late Rhaetian 
extinctions, primarily from the environmental effects owing to outgassing 
(Hautmann 2004; Marzoli et al. 2004, 2017; Tanner et al. 2004, 2007; Nomade et al. 
2007; van de Schootbrugge et al. 2007, 2008, 2009, 2013; Hautmann et al. 2008; 
Schaltegger et al. 2008; Whiteside et al. 2010; Ruhl et al. 2011; Schaller et al. 2011; 
Steinthorsdottir et al. 2011; Pálfy and Zajzon 2012; Pieńkowski et al. 2012, 2014; 
Richoz et  al. 2012; Blackburn et  al. 2013; Lucas and Tanner 2017). Beyond the 
uncertainties of age, any assessment of impact paleoenvironmental contributions is 
constrained because of the complete destruction of many original crater expressions 
by erosion and/or tectonic processes, especially subductive plate margin activity. 
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Grieve (2017), for example has recently stated that most of the 30 impact events 
currently recorded in the stratigraphic column (as confirmed ejecta deposits) do not 
have an associated impact structure. Given the paleogeographic plate configuration 
at the time (Fig. 5.1), the long-ranging Late Triassic impact record is therefore very 
likely incomplete. Consequently, several workers (Olsen et al. 1987, 2002a, b) have 
postulated that certain terrestrial (and marine) impact events causally relatable to 
observed Late Triassic biotic turnovers (e.g. Tanner et al. 2004) may now only be 
represented by more subtle evidence preserved distally (Glass and Simonson 2013). 
However, unlike that for the Late Cretaceous Chicxulub impact, all previous impact- 
related attempts to establish similar causal connections with both regional and/or 
global Late Triassic extinction phenomena (including the ETE) have essentially 
proved unsuccessful (Pálfy et al. 2000; Tanner et al. 2004; Lucas and Tanner 2008, 
2015, 2017; Racki 2012). The question therefore remains as to why, in spite of his-
torical research efforts, more distal impact sedimentological evidence has not 
proved identifiable, at least regionally and possibly globally, especially ejecta asso-
ciated with the Manicouagan event, which offers the capacity to provide insights for 
developing an ‘Alvarez-lite’ Late Triassic impact biospheric crisis analytical tool, as 
discussed in Racki (2012). Presumably, this absence relates to: a) Late Triassic geo-
chronologic inconsistencies (where to look geospatially and temporally), b) lack of 
preservation (nothing left to identify), c) poor and/or subtle diagnostic feature rec-
ognition (uncertainty in exactly what to look for), or, d) any combination of these 
factors. Concerning where stratigraphically-constrained distal impact evidence 
potentially exists, Schedl (2015) has suggested preservation potential may have 
been greater in epeiric/epicontinental marine (and by extension possibly long-lived 
lacustrine) successions, namely, those areas where sedimentation/accommodation 
rates exceeded continental erosion run-off and/or extensive sedimentary reworking 
at the time of impact and during subsequent, paleoclimatically-influenced strewn 
field development.

5.2.1  Paleogeographic Setting

The timing and paleomagnetically-constrained intra-Pangaean impact distributions 
during the Late Triassic provoked Spray et al. (1998) to investigate the three largest 
structures (Manicouagan, Rochechouart and Saint Martin) interpreted to occur co- 
latitudinally at an estimated 22.8° N (Fig. 5.1). What was striking is that the two 
smaller craters at the time, Red Wing and Obolon (the latter now re-assigned to the 
Mid-Jurassic) plotted on great circles with the other impact locations. This observa-
tion led these authors to propose that the five structures represented a long crater 
chain formed by multiple impacts—possibly within a period of hours—similar in 
pattern to the Comet Shoemaker-Levy 9 multiple impact events witnessed on the 
planet Jupiter in 1994 (Noll et al. 1996). However, Kent (1998) quickly rejected this 
hypothesis because of opposing paleomagnetic polarities identified in the respective 
Manicouagan and Rochechouart melt rocks. In addition, subsequent and more 
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accurate 40Ar/39Ar dating of the latter two impacts (Schmieder et  al. 2010a; 
Schmieder et  al. 2014; Cohen et  al. 2017) have confirmed the respective events  
were not synchronous. This refutation, however, does not necessarily preclude the 
near terminal Triassic synchroneity apparent between the Red Wing and (possibly) 
Rochechouart structures dated at ca. 200 Ma and 201–206.9 Ma respectively, pend-
ing any geochronologic confirmation of the former crater age that is only broadly 
constrained stratigraphically. The approximate paleogeographic location of the 
Manicouagan impact structure in relation to interpreted coeval ejecta deposits in 
southwestern Britain (Walkden et al. 2002; Kirkham 2003; Thackrey et al. 2008, 
2009), eastern Canada (Tanner 2006) and central Japan (Onoue et al. 2012) is shown 
in Fig. 5.1.

5.2.2  Stratigraphic Distribution

Schmieder (2010, Fig.  9.5) has provided a detailed summary of Triassic-aged 
impact structures categorizable as ‘proven, probable and possible’ (see also general 
terminology in Rajmon 2010). The general temporal distributions of Late Triassic 
impacts are also shown plotted on various composite stratigraphic charts in Walkden 
et al. (2002, Fig. 1), Tanner et al. (2004, Fig. 4), Onoue et al. (2012, Fig. 1) and 
Schmieder et al. (2014, Fig. 7), illustrating mostly radioisotopic absolute ages and 
their associated uncertainty ranges. Differences in the stage boundaries indicated 
reflect the stratigraphic dating controversy that currently exists, particularly con-
cerning duration of the Norian and Rhaetian units (Lucas 2010, 2013; Lucas et al. 
2012; Wotzlaw et al. 2014; Tanner and Lucas 2015; Ogg et al. 2016; Kent et al. 
2017; and multiple references therein). Fig. 5.2 shows the Manicougan event timing 
in relation to Norian-Rhaetian biostratigraphic chart nomenclature used by Weems 
et al. (2016), Lucas et al. (2012) and Onoue et al. (2016). This enables a tentative 
(visual) comparison of the non-marine Newark Basin palynoflora, conchostracan 
and vertebrate faunachronology to the marine American Cordilleran/European 
Tethyan (ammonoid) and Japanese east Panthalassan (radiolarian and conodont) 
zonal schemes. Olsen et al. (2010) and others have, however, discussed the limita-
tions imposed on marine versus non-marine biostratigraphic correlation attempts, 
specifying the general absence of scientifically reliable temporal control at both 
stage and substage levels within what Racki (2012) has termed a “flawed” epoch. 
For example, Lucas et al. (2012) drew attention to what they considered the ques-
tionable paleomagnetostratigraphic basis for the ‘long Norian’ that resulted in the 
abandonment of the previous palynologically-determined Carnian-Norian bound-
ary in the Newark Basin. Indeed, these “short Norian” advocates have received 
recent support from new radioisotopic data published by Kohút et al. (2017). Other 
recent examples of current attempts to address this issue by using a combination of 
bio-, cyclo- and chemostratigraphic (elemental isotope) criteria as a high-resolution 
correlation tool are presented in Kent et al. (2017, and references therein). In addi-
tion, recently revised dating of the Rochechouart impact from 201 Ma to 206.9 Ma 
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by Cohen et al. (2017) would suggest both this, and the earlier Manicouagan event 
(215.5  Ma) may have played a significant role in shaping Late Norian through 
Rhaetian biotic evolutionary trends.

5.2.3  Geochronologic Control

Kelley and Sherlock (2013) provide a general overview of the geochronological 
methodologies applied to impact craters (see also Cohen et al. 2017 and references 
therein, for latest updates). The multiple interpretational challenges imposed by 
ambiguous impact-based geologic datasets, particularly when constrained by poor 
extra-crater chronostratigraphic control, has been reviewed and discussed by Racki 
(2012) using various examples of unsuccessful attempts to apply Alvarez-type 
extinction models to potential other Phanerozoic impact scenarios. With the excep-
tion of the (subsurface) Red Wing, all confirmed Late Triassic impact structures 
have proved dateable using a variety of radioisotopic techniques (according to sam-
ple type/availability) resulting in (often overlapping) ranges of acceptable (median) 
absolute ages and their respective uncertainty ranges (Table 5.2).

Fig. 5.2 Norian-Rhaetian biostratigraphic nomenclature. (a) The non-marine Newark Basin: pal-
ynology, conchostracans and vertebrate faunachronology. (b) The marine American Cordilleran/
European Tethyan ammonoid zonation. (c) Japanese east Panthalassan radiolarian zonal assem-
blages. The label ‘DH1/DH2?’ indicates the approximate stratigraphic position of the Blomidon 
Formation deformation units (interpreted evaporite dissolution products and/or Manicouagan- 
related ‘seismites’) in the eastern Fundy Basin. (After Weems et al. 2016; Lucas et al. 2012 and 
Onoue et al. 2016)
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5.2.3.1  Radioisotopic Age-dating

Differences in projectile size/type, target lithologies, ‘impactofacies’ and preserva-
tion status of Late Triassic impact structures has necessitated the application of 
several radioisotopic dating techniques to determine their absolute ages. Reviews of 
the various chronometric methods used for dating the Late Triassic impacts are 
given in Schmieder (2010; see also Jourdan et al. 2012; Wartho et al. 2012). In a 
more recent paper explaining their rational behind ‘unchaining’ of the Late Triassic 
terrestrial impact crater model originally proposed by Spray et al. (1998), Schmieder 
et al. (2014) noted that the majority of confirmed impact structures still require fur-
ther method refinements, the accuracy of which is likely to be constrained by melt 
rock type, timing of deformation, degree of hydrothermal diagenetic overprinting 
and stratigraphic context, in addition to confidence in the respective methods avail-
able (40Ar/39Ar, U-Pb, K/Ar or Rb/Sr etc.). The same publication (pp. 45–46) also 
offered a short discussion highlighting the accuracy and pitfalls of the differing 
isotopic dating techniques historically applied to Late Triassic impact structure melt 
products (Schmieder 2010; Schmieder et al. 2010a, b), as reflected in the absolute 
age ranges presented (Table 5.2). Schmieder et al. (2014) concluded by stating a 
preference for high-temperature isotopic chronometers as the most accurate method 
for dating impact events. They referenced (p.  47) the 40  km Lake Saint Martin 
(227.8 ± 0.9 Ma) structure in central Manitoba as one of the “most precisely dated 
larger impact structures on Earth”, given the relatively small error bar of ±0.4% 
using the 40Ar/39Ar chronometer. This was applied to both impact-melted potassium 
feldspars and impact melt rock with an accuracy considered to compare favourably 
to the widely accepted U-Pb method used for dating the Manicouagan structure 
(214–215.5  Ma) by Hodych and Dunning (1992), and Ramezani et  al. (2005) 
respectively, based on zircons from the impact melt sheet (Biren et al. 2014). In 
conclusion, Cohen et  al. (2017) have also emphasized that (e.g. Rochechouart) 
chronometric sample location (as well as type)—ideally analyzed by a single labo-
ratory—offers the potential for higher-precision 40Ar/39Ar dating, especially the lat-
est generation of noble gas mass spectrometers (e.g. ARGUS VI), potentially 
applicable to selective (‘cleaner’) subsurface sample material acquired as part of the 
ongoing Rochechouart 2017 drill core program (Lambert et al. 2016).

5.2.3.2  Biostratigraphic Dating/Correlation

Of the five currently confirmed Late Triassic impact structures only the small (9 km) 
Red Wing structure, buried up to 2500 m beneath a Jurassic and younger sedimentary 
succession, is completely lacking suitable melt samples for isotopic measurements 
(Schmieder 2010), and thus only datable stratigraphically (Butcher et  al. 2012). 
Although this hydrocarbon-bearing (and -producing) structure has been drilled 
extensively and defineable geophysically, its age can only be estimated as widely 
bracketing the Triassic-Jurassic boundary (TJB) viz.: ca. 220–200 Ma (Koeberl et al. 
1996); 200 ± 25 Ma (Gerhard et al. 1982) and 200 ± 5 Ma (Grieve 1991).
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Whilst timing of the remaining four impact collisions is constrained radioisotopi-
cally, only one, Manicouagan, has a confirmed distal ejecta record (in Britain, Japan 
and tentatively eastern Canada). However, this factor does not necessarily preclude 
causal associations of the identified (Norian-aged) ejecta layers with possibly other 
synchronous impact events, the crater evidence for which is either currently unrec-
ognized or has been removed by erosion and/or, in the case of potential Panthalassan-
Tethyan marine impacts, oceanic plate subduction processes. While the linkage 
between the British continental red bed occurrence is supported by authigenic potas-
sium feldspar absolute age-dating (214 ± 2.5 Ma) and (Grenvillian) mineral prove-
nance studies (Thackrey et al. 2008, 2009), its precise chronostratigraphic position 
within an unconformable and unfossiliferous Norian (basal Mercia Mudsone Group) 
host section still remains uncertain. In contrast, the more distal Japanese pelagic 
marine claystone ejecta horizon is biostratigraphically well constrained, but displays 
differing, impact-diagnostic (PGE/other) geochemical anomalies. This suggests the 
latter relates potentially to a different extraterrestrial event, pending demonstration 
within time-equivalent beds at other localities of a common impact signature(s), in 
addition to the ubiquitous ‘shocked quartz’ tag. This presents an interpretational 
need for additional supporting associative evidence (sensu Racki 2012), preferably 
within more proximal, seismically sensitive areas, including northern Atlantic conju-
gate margin rift domains such as the early Mesozoic Fundy Basin in eastern Canada.

5.3  Types of Evidence (Proximal vs. Distal)

5.3.1  Impact Geoscience Terminology

The descriptive terminology and classification schemes applicable to the impact 
cratering process, the products (‘impactites’ sensu lato) and subsequent geologic 
history (impact structuration and preservation) are presented in a systematic manner 
in several key publications. Among these are French (1998, 2004), Stöffler and 
Grieve (2007), Glass and Simonson (2013), Osinski and Pierazzo (2013) and 
Reimold et al. (2014), with Grieve (2017) having recently provided a detailed con-
textual summary of Earth processes and effects pertaining to large impacts. Listed 
impactite categories include both proximal (shocked/brecciated/melted target rocks) 
and distal (glass melt, tektites/microtektites, air-fall beds). The processes discussed 
in Osinski and Pierazzo (2013) include hypervelocity contact and compression, 
ejecta mobilization, crater formation/collapse kinematics and impact-induced 
hydrothermal activity. In addition, French and Koeberl (2010) have discussed the 
potentially deceptive nature of various types of deformation features (e.g. tectono- 
metamorphic quartz planar lineaments) that are commonly misinterpreted as ‘con-
vincing’ impact shock-diagnostic planar deformation features (PDFs) in both 
proximal and distal settings. Racki (2012) also provided a critical review of the 
applicability of mass extinction theories based on cataclysmic impact scenarios 
expressed at variable scales using the terms ‘conclusive’ and ‘incredible’ applicable 
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to (mostly distal) tracer elements. General descriptive aspects of potential impact 
evidence pertinent to specific biostratigraphic intervals are summarized also in 
Tanner et al. (2004), as part of their review of the record and interpreted causes of 
Late Triassic extinctions.

The complex inter-relationships of both diagnostic and supplementary proximal 
impact signature data noted above are shown in Fig. 5.3a, modified from an original 
process chart by Stöffler and Grieve (2007) to include interpreted ‘associative’ dis-
tal expressions (Fig.  5.3b, sensu Racki 2012), candidate examples of which are 
briefly described in Sect. 5.4. Reference is also made to comments by Walkden and 
Parker (2008) on comparative Chicxulub versus Manicouagan impact effect model-
ing results, plus the use of multivariate analysis to model-match outcrop and drill 
core records of the K-Pg (Chicxulub) event horizon (Artemieva and Morgan 2009).

5.3.2  Shock Metamorphism

The visual identification of shock-metamorphosed detrital mineral grains, particu-
larly a certain type of quartz crystallographic microdeformation, is uniquely diag-
nostic (and durable) evidence of hypervelocity impact pressure signatures in the 
10–35 GPa range (Osinski and Pierazzo (2013). Similar features may also be pres-
ent in (less mineralogically-stable) feldspar grains, particularly plagioclase the 
impact shock metamorphic effects on which have been described by Pickersgill 
(2014), Pickersgill et al. (2015) and Thompson (2015), as well as accessory miner-
als e.g. zircon. The latter publication includes analyses of samples from the 
Manicouagan structure central uplift gneisses, which display multiple orientated 
sets of planar features within twins, in association with typical shocked quartz and 
isotropic glasses. Several other petrographic studies, however, have indicated that 
shock metamorphism, as typically evidenced (in quartz) by one or more sets of 
PDFs, may also appear stylistically similar to other, singular lamellar features. The 
latter resulting from either tectono-metamorphic (Alexopoulos et al. 1988; French 
and Koeberl 2010; Hamers and Drury 2011; Glikson et al. 2013) and/or cryptoex-
plosive volcanic mechanisms (Carter et al. 1986; Sharpton and Schuraytz 1989a, b; 
Chesner 2011; Osinski et al. 2011, 2013).

Formally defined, PDFs are linear crystallographic microstructures typically less 
than a micron wide and arranged as crosscutting sets in which individual parallel 
discontinuities are spaced several microns apart (Grieve et al. 1996; Ferrière et al. 
2009). The latter filled initially with amorphous glass, although annealing over time 
may form ‘decorative’ sets of distinctive linear inclusions, locally resulting in a 
cloudy appearance observable in thin section (Grieve 1998). As stated above, 
tectono- metamorphic processes are also capable of forming superficially similar 
features (e.g. Böhm lamellae and Brazil twins) visually resembling PDFs (Grieve 
and Pesonen 1996; Reimold et al. 2014). Consequently, the employment of optical 
microscopy methods using a universal stage mount (USM or U-Stage) has now 
largely become mandatory for diagnosis of impact shock signature. This four-axis 
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Fig. 5.3 Chart illustrating the relationships of proximal and distal impact signatures with applica-
tion to Manicouagan. (a) Geologically identifiable key diagnostic and supplementary proximal/
distal impact signatures. (b) Currently interpreted Manicouagan-related distal features. (Modified 
from Stöffler and Grieve 2007)
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method enables confirmation of the orientation of PDF planes of low Miller indices 
at separate angles to the granular crystallographic c-axis, which serves to differenti-
ate shock metamorphism from other microdeformation mechanisms. It also enables 
estimations of shock magnitudes in (preferably) multiple grain samples, based on 
the frequency and orientation of individual PDF sets.

Mossman et al. (1998; after Goltrant et al. 1991) have further demonstrated that 
transmission electron microscopy (TEM) also offers a high-resolution capability of 
discriminating between ‘true’ shock-metamorphosed and ‘apparent’ PDFs (i.e. pla-
nar features/fractures, or  =  ‘PF’s) identifiable optically using a standard petro-
graphic microscope only. TEM specifically permits recognition of those features 
indicative of a tectonic origin such as a) non-parallel sub-grain boundaries, b) fringe 
patterns at the boundaries and c) the presence of perfect dislocations. Cavosie et al. 
(2015) have also applied both TEM and cathodoluminescence (CL) to interpret 
mechanical Brazil twin sets as a secondary record of shock metamorphism pre-
served in detrital quartz grains sourced from the Meso-Proterozoic (2.02  Ga) 
Vredefort Dome impact structure in South Africa. Hamers and Drury (2011) have 
additionally documented how scanning electron microscopy (SEM) combined with 
cathodoluminescence (SEM-CL) can be used (relatively reliably) to distinguish 
shock features from tectonic deformation lamellae in quartz. In addition to the 
above methods, SEM of whole siliciclastic (notably quartz) grains partially etched 
by exposure to (undiluted) hydrofluoric acid (HF) is considered a reliable (destruc-
tive) secondary technique for identification of shock-metamorphosed minerals 
(Gratz et al. 1996). Recent applications of both TEM and SEM methodologies for 
differentiating multiple quartz planar microstructure styles are discussed in detail 
by Glikson et al. (2013), as related to granite-hosted occurrences in a large, deeply 
buried potential impact structure located in the eastern Warburton Basin of South 
Australia.

5.3.3  Distal Impact Signatures

5.3.3.1  Ejecta Layer Characteristics

Hypervelocity impact crater excavation generates high initial volumes of ballistic 
ejecta of variable particle size (blocks, clasts, grains, melt, dust, vapor condensates) 
sourced from a combination of highly shocked target lithofacies and disintegrated/
vaporized projectile material (Glass and Simonson 2013; Grieve 2017). The latter 
also commonly, though not exclusively, occur in association with impact diagnostic 
(extraterrestrial/melt) geochemical signatures e.g. anomalously concentrated PGE 
(e.g. Ir) levels. Osinski et al. (2013) have defined impact ejecta deposits as “any 
target materials, regardless of their physical state, that are transported beyond the 
rim of the transient cavity formed directly by the cratering flow-field.” According to 
them, the term ‘distal ejecta’ is applied correctly to deposits that occur at distances 
≥5 times crater radii from the impact center (see also Glass and Simonson 2012). 
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Melosh (1989) noted that relatively-recent age impact craters on terrestrial planets 
are surrounded typically by a “continuous ejecta blanket”. This extends approxi-
mately 1–2 times crater radii beyond the rim perimeter, the constituents of which 
then generally thin out distally. Wrobel and Schultz (2003) also have discussed the 
potential effect of Earth’s rotation on impact trajectories and the resultant global 
distribution of ejecta, using the Chesapeake Bay, Popigai and Manicouagan events 
as examples. A key ejecta modeling case study by Artemieva and Morgan (2009) 
utilized a multivariate numerical approach to determine the global effects of the 
Chicxulub impact and resultant strewn field characteristics. The range of Chicxulub 
models presented was designed specifically to match the ejecta material currently 
evidenced within the ‘benchmark’ K-Pg boundary layer/event horizon. Input vari-
ables included impactor mass, velocity, impact angle, target lithology (generic) and 
target status (wet vs. dry) among other factors. In addition, Schedl (2015) has dis-
cussed in detail the significance of post-impact atmospheric conditions and distance 
controls on ejecta timing, flow and emplacement, presumably modifiable by paleo-
climatic wind patterns and extant paleotopography. Laboratory mesoscale model-
ing, based on high velocity impacts into both wet and dry porous sandstone targets 
using a range of projectiles at variably high velocities also has been conducted by 
Güldemeister et al. (2013), Kowitz et al. (2013) and Wünnemann et al. (2016). This 
provides a basis for understanding Late Triassic siliciclastic microdeformation 
styles potentially resulting from proximal coseismicity (Thompson and Spray 
2014), and possibly (lower magnitude) seismically-induced distal sedimentary fab-
rics (Tanner 2006, 2013). Recent work by Fazio et al. (2014, Fig. 5) describes rare 
natural field evidence from the 45 m Kamil crater located in an arid desert area of 
southern Egypt, which provides additional insights into the shorter-term effects of a 
small, hypervelocity (iron) meteorite impact on a naturally layered sandstone target 
(cf. Kieffer 1971). Kamil displays a wide range of largely undegraded (‘fresh’) 
shock metamorphic features (shatter cones, coesite, stishovite, diamond, and melt 
products) offering the potential to be an important small impact case study, includ-
ing investigations of the early (first order) depositional history of associated distal 
ejecta.

As noted above, the physical character of primary distal impact ejecta layers 
relates to paleodistance from the crater site, climate-influenced depositional setting 
(dry/wet/frozen), thickness, composition (host section and allochthons) and respec-
tive lithofacies. Physical features include depositional style and energy, contact 
relationships, bed thickness, accretionary lapilli diameter, grain-size range and the 
respective degrees of subsequent transportational, diagenetic and compactional 
alterations. Schedl (2015) has discussed how this information may be used to estab-
lish workable causal linkages between interpreted ejecta layers and source craters 
(impact structures), which may offer constraints on where to look for either compo-
nent in the absence of the other. For the Chicxulub impact, Artemieva and Morgan 
(2009) used modeling results to explain the presence and size distribution of shocked 
quartz in distal ejecta up to distances of 15,000 km, in addition to clarifying controls 
on timing, thickness trends (down to millimeter-scale) and specific, diagnostic com-
positional elements including Ir-enriched spinel-bearing microspherules. This 
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ground-truthing approach enabled these authors to establish a working range of 
impact scenarios to determine which models best reproduce the observable field 
data, the paleogeographic expressions of which are considered to have varied 
considerably.

With respect to the lower magnitude Late Triassic impact signatures, Schedl 
(2015) has repeated the widely held mantra that distal ejecta layers are “rare and 
hard to spot in the field because of their thinness”, contingent on the causal factors 
noted above plus final depositional setting and subsequent burial history. The same 
author referred to earlier observations by Melosh (1989) in stating that only ca. 10% 
of ejecta material is likely classifiable as distal, significantly reducing its subsequent 
detectability in geologically overprinted stratigraphic successions (see also Glass 
and Simonson 2013; Grieve 2017). Consequently, the suggestion of an ‘identifica-
tion by association’ approach, based on iterative impact-modeled relationships with 
larger-scale sedimentary features would appear practical for primary level research. 
The latter for example, include assessment of terrestrial soft/synsedimentary defor-
mation structures (SSDS sensu lato) plus or minus competing causal deformation 
models (cf. Ackermann et al. 1995; Tanner 2006). Other scenarios might include 
geophysically-identifiable marine slope failure packages (e.g. Deptuck and 
Campbell 2012) plus high energy tsunami deposits (‘tsunamites’) (Plado 2012; 
Brookfield et al. 2013) in former shallow marine (and possibly permanent lake) set-
tings. As earlier noted by Tanner (2006) reference is also made to vertical strati-
graphic relationships, suggesting that distal ejecta (candidates) may directly overlie 
(post-date) SSDS units resulting from initial seismic shock (and weaker aftershock) 
waves. The latter having traveled faster within the upper crustal subsurface than any 
associated clastic air-fall (Fig.  5.3b). However, Shanmugam (2016, 2017) has 
stressed that a significant majority of SSDS do not require a seismic triggering 
mechanism, thus introducing the interpretational dangers of impact force-fitting as 
discussed in Racki (2012). A preliminary decision tree process chart for determin-
ing distal impact data (singular diagnostic and associative) assemblages potentially 
resulting from the five confirmed, terrestrial Late Triassic impact events, based on 
the current Manicouagan example is presented in Fig. 5.4.

5.3.3.2  Late Triassic Shocked Quartz Occurrences

Detrital quartz grains displaying ‘shock-like’ characteristics have been reported 
from a number of Late Triassic sections in both Europe and North America. Because 
of causal implications relating to the ETE, initial search emphasis was focused 
mainly on the uppermost Rhaetian Stage, either approximating, or at the Triassic- 
Jurassic system boundary (TJB). Badjukov et al. (1987, 1988) published abstracts 
that reported finding quartz grains with ‘PDF’s in the Kendlbach Formation at 
Kendlbachgraben in the Northern Calcareous Alps of Austria, although these occur-
rences do not appear to have been verified by any published follow-up research 
(Tanner et al. 2016). Bice et al. (1992) similarly reported quartz with multiple ‘PDF’ 
sets from a section of the Calcare á Rhaetivicula near Corfino in Tuscany, Italy at 
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several horizons that occur several meters below a marl bed traditionally interpreted 
as the TJB. However, most grains described from within the Tuscan section con-
tained only a single set of lamellae, some of which appear sinuous in nature, unlike 
verifiable PDFs as defined above. Nonetheless, the tentative identification of these 
putative shocked grains in several beds both near, and at the Italian system boundary 
led Bice et  al. (1992) to postulate by causative association, that multiple bolide 
impact events had occurred towards the end of the Triassic (latest Rhaetian). 
Consequently, Hallam and Wignall (1997) and Hallam (1998) specifically labeled 
all reports of shock-metamorphosed quartz occurrences approximating the TJB as 
“dubious”, citing questions concerning both the technical validity of the identifica-
tions and the petrographic techniques employed (e.g. Grieve and Pesonen 1996). 
Research efforts undertaken to identify shocked quartz in Rhaetian-aged (Newark 
Supergroup) rift-related continental sediments within the Fundy Basin (Olsen et al. 
1990; Mossman et al. 1998) and the Jacksonville syncline (Upper Passaic Formation) 
of the Newark Basin (Mossman et al. 1998; Olsen et al. 2002a) similarly proved 
unsuccessful. The latter authors, for example, found quartz grains with Böhm-style 
lamellae and other PFs in the uppermost (Late? Norian-Rhaetian Partridge Island 
Member) strata of the Blomidon Formation (recently reassigned to the overlying 
Talcott Formation in Weems et al. 2016) of the eastern Fundy Basin. However, they 
were unable to confirm these unequivocally as the product of impact shock, as 
opposed to progressive regional metamorphism.

Fig. 5.4 Preliminary decision-tree process chart for determining possible distal evidence (sensu 
Schedl 2015) sourced from confirmed (and potentially unconfirmed/undiscovered) Late Triassic 
impact events, using the Manicouagan example
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Verifiable shocked quartz in older (mid-Norian) sediments, however, has been 
identified and described in Western Europe (Walkden et al. 2002; Kirkham 2003)) 
and to a lesser degree, from the Canadian Atlantic rift margin (Tanner 2006) east of 
the Mossman et al. (1998) Fundy Rhaetian sample localities. All occurrences have 
been interpreted to represent distal effects of the Manicouagan impact, based on 
(heavy) mineral provenance/age analysis (Thackrey et  al. 2008, 2009) and tec-
tonostratigraphic setting ca. 750  km southeast of the Quebec crater site (Tanner 
2006, 2013) respectively. Walkden et al. (2002, Figs. 4 and 5) used both USM-based 
analysis and SEM/HF acid etching to confirm an agreed impact origin for fine- 
grained detrital quartz found in association with spherulized microtektite pseudo-
morphs in a thinly developed calcarenite quarry section in southwest Britain (see 
also descriptions in Kirkham (2003, 2006) based on earlier unpublished work from 
the 1970s). Tanner (2006) applied similar techniques to verify shock characteristics 
of rare sandstone grains present near the top of a stacked synsedimentary deforma-
tion zone of comparable age in the lower Blomidon Formation of the north shore of 
the Minas Subbasin. The latter unit, a possible impact-induced ‘seismite’, is also 
reported to contain other quartz grains with a ‘toasted’ appearance (sensu Whitehead 
et al. 2002), that occur locally in association with sub-spherical sericitized feldspars 
of uncertain diagenetic origin, though described as having a ‘chondulitic’ appear-
ance in thin section, as discussed in Sect. 5.4. However, unlike the British shocked 
quartz occurrence, there is no report of diagnostic distal impact spherules (or 
microtektites) from the Blomidon Formation, or any other North American Norian 
successions referenced in Sues and Olsen (2015) and Weems et al. (2016)—despite 
locally extensive core-based and other stratigraphic evaluations.

5.3.3.3  Impact Spherule Evidence

As noted above, diagenetically-altered microtektites (microspherules) are identified 
only in southwestern Britain and Japan from widely differing fluvial continental and 
deep marine sections respectively, though possibly sharing a common impact ori-
gin. Various details of these Norian-aged spherules—interpreted as probable 
Manicouagan ejecta (Walkden et  al. 2002; Kirkham 2003; Onoue et  al. 2012, 
2016)—are presented in Sect. 5.4. The collective descriptions provided by these 
authors invoked direct comparisons to the globally-distributed Chicxulub impact 
ejecta ‘splash form’ spherule beds as described in Kring and Boynton (1991) and 
Bohor and Glass (1995) (see also Izett 1990, Figs. 15–16; Kring 2007 and Glass and 
Simonson 2012, 2013).

5.3.3.4  Geochemical Anomalies

The initial hypothesis by Alvarez et al. (1980) postulating a bolide impact concur-
rent with the Cretaceous-Paleogene boundary (K-Pg) was inspired by the measure-
ment of anomalous Ir concentrations of up to 30 parts per billion (ppb), in the 
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marine boundary clay beds of Italy, Denmark and New Zealand. It is widely known 
that Ir occurs at very low concentrations in the Earth’s crust; Fenner and Presley 
(1984) suggested that the typical crustal concentration is 40 parts per trillion (or 
picograms per gram, pg/g), an estimate based on the concentration in the suspended 
sediment load of the Mississippi River. McLennan (2001) was more specific, esti-
mating that the concentration ranges from 20 pg/g in the upper continental crust to 
130 pg/g in the lower crust, for an average concentration of 100 pg/g for bulk con-
tinental crust. By comparison, the mean Ir concentration in CI chondrites is ca. 
465  ppb (Osawa et  al. 2009). Hence, the discovery of the anomaly at the K-Pg 
boundary led to a search for similar Ir anomalies coincident with other extinction 
horizons. There are, of course, terrestrial Ir sources e.g. mantle-sourced volcanism, 
and depositional or diagenetic processes that can result in selective enrichment at 
certain stratigraphic horizons. Therefore, elevated levels of Ir are not considered 
indicative of solely extraterrestrial impact contributions. Sato et al. (2016), com-
menting on a recently recognized middle Norian Ir occurrence in central Japan, 
have also highlighted the possibility of significant contamination in PGE assess-
ments based on sources extracted from dominantly sedimentary ejecta. Commonly, 
PGEs, including Ir and Os, are analyzed and their ratios compared to those of ordi-
nary chondrite (Orth et al. 1990). Also, potential mafic sources may be identified by 
their geochemical signatures such as rare earth element (REE) profiles (Pearson 
1999). Consequently, terrestrial (i.e. non-impact) sources are considered a feasible 
alternative for many of the Ir anomalies that have historically been reported at other 
paleontologically-defined boundaries (Orth et al. 1990; Hallam 1998).

Olsen et  al. (1987, 2002a, b) hypothesized a connection between the end- 
Rhaetian extinctions and one or more bolide impact events, specifically the 
Manicouagan structure in northeastern Quebec, Canada, discussed in the next 
 section. The initial proposal (Olsen et al. 1987) predated establishment of the now 
generally accepted mid-Norian radioisotopic age determination for this largest Late 
Triassic impact structure (Hodych and Dunning 1992; Ramezani et al. 2005) and 
more recently, a supportive biostratigraphic age (Onoue et al. 2012, 2016). However, 
subsequent 40Ar/39Ar age dating (e.g. Schmieder et al. 2010a; Jourdan et al. 2012; 
Sapers et  al. 2014) for the significantly smaller (23  km diameter) Rochechouart 
structure in west-central France overlapped the late-Rhaetian extinction horizon 
(see also subsequent Ar-Ar dating at 206.9 Ma (Late Norian–Early Rhaetian) by 
Cohen et al. 2017). This raises the possibility of a preserved sedimentary record of 
the impact associated with these, or possibly other more regional extinctions, as 
noted in Schmieder et al. (2010a, pp. 1235–1236). Investigating the potential con-
nection of the extinctions to impact, Orth et  al. (1990) analyzed Ir levels in the 
boundary marl beds (“Grenzmergel”) at Kendlbach, Austria where they observed a 
maximum level of 51 pg/g. These authors noted that Ir concentration in the section 
correlated strongly with aluminum content, and concluded that enrichment resulted 
from decreased sediment accumulation. Recent work by Tanner et al. (2016) on the 
Kendlbach section and the GSSP section at Kuhjoch, Austria, has largely supported 
this conclusion, although the more recent study also found peak concentrations up 
to 145 pg/g above the extinction horizon, which the authors link to the CAMP flood 
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basalt eruptions. At the boundary section in St. Audrie’s Bay, on the north Somerset 
coast of southwestern England, McLaren and Goodfellow (1990) measured Ir as 
high as 400 pg/g, but this enrichment occurred in phosphatic nodules and conse-
quently attributed to diagenesis. Hori et al. (2007) analyzed a deep-sea section of 
bedded cherts spanning the system boundary in Japan and noted PGE enrichment, 
including a maximum Ir concentration of 70 pg/g, at a stratigraphic level corre-
sponding to a radiolarian extinction that precedes the end-Triassic extinction by less 
than 500 kyr. The authors discounted a volcanic origin for the PGEs based on the 
REE profile, which resembled that for continental shale, plus the lack of volcanic 
debris, but unequivocally did not declare an impact origin.

The end-Triassic record in continental sediments is well represented in the vari-
ous synrift basins of the Newark Supergroup (Newark and Fundy Groups) of eastern 
North America, including the Blomidon Formation within the northernmost inshore 
Fundy Basin. Orth et al. (1990) reported Ir concentrations up to 150 pg/g from mid- 
Norian to latest Rhaetian in the Blomidon. Mossman et al. (1998) also later reported 
a maximum Ir level of approximately 200 pg/g in its uppermost 2 m, directly beneath 
the terminal Triassic North Mountain Formation (CAMP basalt), although using 
less precise techniques than those employed by Orth et al. (1990). Tanner and Kyte 
(2005) and Tanner et  al. (2008) subsequently re-examined these strata in detail 
using neutron activation analysis (NAA) and found that Ir occurred at concentra-
tions up to 450 pg/g in multiple horizons in which the organic carbon content was 
also elevated. Their interpretation was that the Ir had a volcanic igneous (i.e. CAMP) 
source, potentially via extrusive fallout and/or outgassing, leading to localized Ir 
concentrations within the sedimentary section at redox boundaries. In the Newark 
Basin, Olsen et  al. (2002a, b) reported a “modest Ir anomaly” maximizing at 
285 pg/g, which correlates with the ‘fern spike’ (peak abundance of trilete spores) 
at the horizon of maximum palynological turnover in the upper Passaic Formation. 
Olsen et al. (2002b) interpreted this floral anomaly as analogous to that noted at 
certain K-Pg boundary sections considered to represent the aftermath of an ecologi-
cal catastrophe (Tschudy et al. 1984). Olsen et al. (op cit.) discounted a volcanic 
source for the anomaly based on a lack of correlation between the Ir concentrations 
and other trace elements that might indicate mafic volcanism, or with other sidero-
phile elements, such as cobalt, nickel, or chromium. To date, there are no confirmed 
reports of impact debris (shock-metamorphosed grains, tektites, microtektites, 
microspherules or microdiamonds) in the horizons containing the end-Rhaetian Ir 
anomalies. Thus, an extraterrestrial source for reported latest Triassic Ir occurrences 
still remains unlikely.

Elsewhere, Onoue et al. (2012) originally reported ‘Manicouagan impact-aged’ 
geochemical and microtektite evidence, including PGE anomalies, nickel-rich mag-
netite and microspherule pseudomorphs, from a thinly developed mid-Norian (late 
Alaunian) pelagic marine claystone bed near Sakahogi in the Mino Belt of central 
Japan. A high degree of chronostratigraphic control is provided in the section by 
detailed radiolarian and conodont zonal analyses. Sato et al. (2016) subsequently 
demonstrated that the high abundances of Ir, up to 41.5  ppb (comparable to the 
K-Pg levels), plus other concentrated PGEs such as Os, Ru and Pt occur within the 
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same ejecta deposit at several offset localities, and consequently might provide a 
chemostratigraphic basis for determining similar ejecta layers on a wider, possibly 
global scale. A paleomagnetic analysis of Late Triassic ferruginous-bedded chert 
samples from the Sakahogi sample locality (Uno et al. 2015) suggested that ejecta 
dispersal most likely sourced directly from the Manicouagan impact (at 22.8° N; 
Spray et al. 1998) had extended to near-equatorial eastern Panthalassan latitudes 
(Fig. 5.1).

5.3.3.5  Associated (syn- to post-) Sedimentary Deformation

The occurrence of distal ejecta deposits has occasionally been associated with often 
complexly deformed brittle and/or ductile sedimentary units (observable at both 
macro- and microscale) collectively referred to as ‘seismites’ (cf. Tanner 2006). 
This naming convention, however, presumes one specific (coseismic) primary 
causal mechanism out of a potentially wide range of feasible alternatives e.g. grav-
ity overloading or evaporitic dissolution contingent on regional geologic setting. 
Definition of the genetic term ‘seismite’ (comparable to that of ‘tsunamite’) has 
thus been the subject of much discussion in the literature, most recently by 
Shanmugam (2016, 2017 and references therein; see also Montenat et al. 2007) who 
cited multiple examples of inappropriate usage “without a rigorous scientific analy-
sis”. The same author noted that paleoearthquake displacement(s) comprise a 
dynamic triggering mechanism only (rather than a specific depositional process) 
which in the context of both terrestrial and marine impacts requires a demonstrable 
structural connectivity at upper crustal level, synchronously between source crater 
and distal signature location. Key interpretative issues pertaining to this matter 
relate largely to confidence in the timing of the respective events, distal bedding 
relationships and the diagnostic quality of ejecta components (unequivocal mineral-
ogic shock evidence, microtektites, spherules, etc.) required in support of any 
remote tectono-sedimentological impact connection.

Further to the above, Schedl (2015) has discussed the timing relationship between 
ejecta arrival and liquefaction associated with transmissible seismic ‘wave’ genera-
tion and concomitant ground shaking, raising the issue of what best constitutes evi-
dence for an “impact-induced seismite”, and (associatively) suggesting this 
comprises identifiable ejecta either overlying, or entrained within SSDS.  This 
author also distinguished between impact- and earthquake-induced SSDS (e.g. the 
Recent Dead Sea—Lake Lisan area examples in Alsop and Marco 2011; see also 
lacustrine discussion in Doughty et al. 2014) that share similar deformation signa-
tures—notably concerning bedding-style repeatability. The latter relating to the fact 
that impact-induced sedimentological responses are generally considered to repre-
sent ‘one-off’ catastrophic geologic signatures, the distal expressions of which are 
typically thinly constrained between undeformed, more cyclically bedded units 
contingent on depositional setting, physical stability, etc.

Well-developed Late Triassic (Rhaetian) ‘seismites’, are known to occur widely 
throughout parts of northwest Europe as described in detail by Simms (2003, 2007) 
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who postulated a then undetermined impact-triggered origin, subsequently associ-
ated with the French Rochechouart impact (then dated at 201 Ma, although recently 
revised to ca. 207 Ma in Cohen et al. 2017; see Table 5.2). However, Lindström 
et al. (2015) have since postulated an alternative causal mechanism for the Cotham 
Member seismites of repeated shallow crustal disturbances induced by (CAMP) 
volcanic activity, which, presumably may also be represented within various Newark 
Supergroup successions associated with similarly active igneous areas. Tanner 
(2013) tentatively proposed a potential Manicouagan impact-induced seismic origin 
for brittle deformation (interpreted concussion fracturing) observed in the conglom-
eratic clasts of the coarsely fluvial Fundy Group Quaco Formation (Ladinian in 
Weems et al. 2016) of coastal New Brunswick, eastern Canada (discussed below). 
The latter author drew comparisons to the currently unconfirmed (EID) northeast 
Spanish Azura and Rubielos de la Cérida impact structures (Palaeogene). These are 
characterized by a similar, though more intense variety of (Early Triassic 
Bundsandstein) cobble deformation fracture styles (clast spallation, radial fractur-
ing, quartz planar features/PDFs) considered to be indicative of Hertzian-style 
dynamic shock mechanisms at impact magnitudes (Ernstson et al. 2001; Ernstson 
and Hiltl 2002; see also www.impact-structures.com).

The previously mentioned occurrence of rare shocked quartz at the top of a 
‘seismically- deformed’ mid-Norian Blomidon Formation coastal section at Red 
Head 120 km east of the Quaco section (Tanner 2006) does not necessarily indicate 
synchronicity of (possibly uniquely styled) Late Triassic deformation processes 
within the western North Atlantic rift-margin. However, the above author has pre-
sented evidence to suggest the two Fundy Group examples (Blomidon and Quaco 
Formations), by association, collectively demonstrate the possibility of impact- 
triggered structural reactivation, namely a singular, major Norian paleoearthquake 
event. As suggested by this author, a primary candidate mechanism is trans- 
cratonic margin linkage via the east-west trending terrane-bounding Minas Fault 
Zone. This microplate boundary was active in an extensional sense regionally dur-
ing Late Triassic-Early Jurassic rifting of the Fundy Basin region (Wade et  al. 
1996; Withjack et al. 2009), as well as precursory Late Palaeozoic basin develop-
ment (Eisbacher 1969; Murphy et al. 2011; Waldron et al. 2015). When originally 
proposing this model, Tanner (2002, 2003) referred to preliminary numerical 
Manicouagan impact modeling results. These suggested a potential energy release 
of 108 megatons resulting in earthquake(s) within the Richter-scale Magnitude 10 
range, and estimated vertical ground displacements of up to 5 m at 700 km distance 
from the crater site to the northwest (see also Walkden and Parker 2008; Collins 
et al. 2005). However, as in the case of many impact-related geologic models, tech-
nical acceptance of this ‘cause and effect’ association presumably will require 
more detailed, data- constrained intra-Norian tectonostratigraphic modeling. Schedl 
(2015) for example, has discussed various Recent age earthquake magnitudes and 
effects in a marine impact-related context, highlighting the physical constraints on 
fault-slip trigger mechanisms imposed by tectonic setting and the style of plate 
margin activity.
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5.3.3.6  Additional Tectono-sedimentological Evidence

None of the confirmed terrestrial Late Triassic impacts currently has a direct 
marine connection, other than the interpreted Manicouagan-associated pelagic 
ejecta deposits identified in central and southwestern Japan. However, as noted in 
Schedl (2015), relatively thin distal ejecta units potentially may also be found to 
directly overlie marine ‘seismites’, i.e., slope-failure features such as slumps and 
possibly displaced Norian olistostrome shelfal units as described in Fink (1975, 
p. 33; see also Orchard et al. 2007, Fig. 4), if remotely triggered by larger terres-
trial (as well as marine) impacts. The former author has also discussed the poten-
tial nature and stratigraphic implications of impact-related tsunami deposits in 
epeiric marine (and presumably larger lacustrine) domains (see also Dypvik and 
Jansa 2003), subject to the interpretational constraints/approaches discussed in 
Shanmugam (2016, 2017). Of particular note is the competing diversity of alterna-
tive wave-generating mechanisms, especially paleoearthquake triggers in response 
to both plate margin tectonism and dynamic (back arc) volcanic activity. With 
regard to the Manicouagan event, this may be addressed in part by employment, 
where possible, of refined marine chronostratigraphic calibration techniques 
potentially incorporating the distal chemo- and biostratigraphic signatures recently 
described from Japan (Onoue et al. 2012, Supplement 1; Onoue et al. 2016; Sato 
et al. 2016).

5.4  The Norian Manicouagan Impact

General geological summaries of the Manicouagan impact structure (N 51° 23°, W 
68° 42°) are presented in Spray et  al. (2010), Thompson and Spray (2013) and 
Brown et al. (2016) together with supporting technical references. Approximately 
130 pertinent publications are listed on the EID (MIRP) website, with initial 
research commencing in the early 1960s. Further details including field images (as 
well as complementary information on other Late Triassic impacts) are presented 
at www.craterexplorer.ca/manicouagan-impact-structure/. Being large, complex, 
relatively well preserved, and accessible, Manicouagan has become one of the 
most extensively studied impact structures on Earth. The impact crater site is con-
sidered “unique amongst the large terrestrial impact craters (D ≥ 90 km) in that its 
impact melt sheet is exposed, accessible, and undeformed…” (O’Connell-Cooper 
and Spray 2010). Research is continuing currently through MIRP (Thompson and 
Spray 2013). Recent work (e.g. Thompson and Spray 2017) has focused on increas-
ing the already significant understanding of complex crater tectonic processes, the 
formation and evolution of impact melt and subjacent breccias plus associated 
hydrothermal circulation systems, in addition to controls on assorted shock phe-
nomena. Interpretations have been based on multiple datasets acquired through 
extensive fieldwork, supported by extensive drill cores (38 holes, ~18  km total 
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footage) plus subsurface remote sensing, including both 2D seismic and vintage 
gravity surveys (Brown and Spray 2015). Results of these integrated analyses have 
also allowed terrestrial analogue comparisons with various planetary and lunar 
crater configurations, including those visible on Earth’s moon and Mars (Spray 
et al. 2010).

5.4.1  General Description (Crater Area and Vicinity)

The Manicouagan impact structure (ca. 215.5 Ma, U-Pb melt rock zircon; Ramezani 
et al. 2005) is located within the Precambrian Grenville geologic province of north-
eastern Quebec, Canada. This circular remnant crater feature (markedly visible 
from space) comprises several topographic components, the most pronounced is a 
flooded, 70 km diameter annular moat (dammed reservoir) surrounding a central, 
dissected plateau capped by melt rocks (O’Connell-Cooper and Spray 2010). With 
an estimated crater diameter of ca. 85–100 km (collapsed transient to full) this com-
plex structure is the third largest of the Phanerozoic, after Chicxulub (ca. 150–180 
Km) and Popigai (90 km). The Manicouagan target rocks originally formed part of 
an intracratonic semi-arid area of the northern Pangaea supercontinent (Figs. 5.1 
and 5.5) at an approximate paleolatitude of 23° N (Spray et al. 1998), comparable 
to the present-day mid-Sahara desert. Target lithologies at the time of impact (mid- 
Norian) consisted of variably thin (<200 m) Ordovician carbonate and shale sedi-
mentary cover resting on Late Proterozoic (ca. 1  Ga) metamorphic basement 
dominantly comprising quartz-feldspar gneisses and local anorthosites. Thackrey 
et al. (2008) noted these crystalline target rocks are “exceptionally rich in heavy 
minerals, typically garnet, zircon, biotite, olivine and rutile.”, and used the respec-
tive garnet suites to provenance-match those found within interpreted Manicouagan 
clastic ejecta deposits preserved locally in southwestern Britain, some 2000 km to 
the east at the time (Thackrey et al. 2009).

Sato et al. (2016) analyzed the elemental ratio of the concentrated PGE (Ir, Ru, 
Rh) anomalies within the Sakahogi pelagic claystone ejecta layer, and several other 
chemostratigraphically correlatable sections in central Japan. They suggest that the 
Manicouagan (or possibly another, similar-aged) bolide may have been a large (ca. 
3–8 km diameter), non-specific chondritic impactor (i.e. current data resolution pre-
cluded an “unequivocal assignment to specific chondrite groups e.g. carbonaceous, 
ordinary and enstatite.”). These authors did not fully discount the possibility of an 
iron meteoritic component, concluding (pp.  44–45) that the impact most likely 
resulted in substantial volumes of clastic debris, potentially accompanied by the 
injection of substantial (chondrite) meteoritic sulphates into the stratosphere. Here, 
they would be converted to H2SO4 aerosols, which block incoming solar radiation 
and can cause sudden cooling, as documented for large volcanic eruptions 
(Sigurdsson 1990; Robock 2000). This interpretation suggests the Manicouagan 
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event may have had significant, probably global, paleoenvironmental and associated 
biotic consequences during the mid- to late Norian (Alaunian-Sevatian; Chron E15r 
equivalent in Kent et al. 2017) substage transition, contingent on stage length defini-
tion (Lucas 2013).

From a broader perspective, several Manicouagan researchers (including 
Walkden et al. 2002) have highlighted the apparent global paucity of distal ejecta 
predicted from modeling (Walkden and Parker 2008; Sato et al. 2016; after Collins 
et al. 2005). This reasonably might be expected to have occurred, either as a discrete 
post-impact Chicxulub-style (K-Pg) layer (cf. Artemieva and Morgan 2009), and/or 
more locally disseminated via syndepositional reworking throughout a broader 
stratigraphic section (Schedl 2015). As noted above, attempts to identify a similar 
globally significant PGE-enriched spherule-bearing event horizon within the Norian 
and uppermost Rhaetian stages sensu lato have essentially proved unsuccessful 
(Tanner et al. 2004; Racki 2012). However, based on preliminary trajectory model-
ing, Wrobel and Schultz (2003) suggested that Manicouagan would make a “unique 
crater” for distal ejecta studies. The model presented by these authors (based on 45° 
and 70° ejection angles) predicted ejecta thicknesses of 5  cm or greater in mid- 
Norian depositional catchment areas located within ~30° of the impact, i.e. includ-
ing all of North America, parts of northwest Africa and Western Europe (Figs. 5.1 
and 5.5).

In spite of the above model predictions, with the possible exception of the rare 
“shocked” quartz described by Tanner (2006), no diagnostic Manicouagan (or any 
other Late Triassic impact) ejecta material have yet been identified within the imme-
diately adjacent (pre-drift) Atlantic conjugate margin synrift successions (Fig. 5.5). 
This is particularly notable considering that the Passaic and Blomidon Formations 
of the upper Newark Supergroup (sensu Leleu and Hartley 2010, Fig. 1; Sues and 
Olsen 2015), in addition to their northwest African Moroccan equivalents, are the 
most accessible and best-studied Norian-aged host sections present within the near- 
distal strewn field areas.

In comparing potential biotic effects of large Phanerozoic bolide impacts such as 
Chicxulub and Manicouagan, Walkden and Parker (2008, Fig.  3) modeled a ca. 
14 mm-thick ejecta layer for the latter event at a Norian section in southwestern 
Britain 2000 km (pre-drift configuration) from the crater site in eastern Canada. 
However, the layer thickness observable at this (former quarry) outcrop locality was 
described as being locally variable in distribution and thickness, probably a result of 
high energy reworking (Kirkham 2003, 2006). In contrast, the significantly more 
distal Japanese Sakahogi ejecta layer of Onoue et  al. (2012) is separated from 
Manicouagan by nearly 180° longitude and comprises a compacted, but otherwise 
undeformed and continuous, 8 mm-thick, PGE-rich pelagic claystone layer. This 
implies significantly greater ejecta layer thicknesses were likely deposited across 
proximal strewn fields, particularly within North America, the Boreal Arctic region, 
Northwest Africa and Europe (northern Pangaea, Fig. 5.5).
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5.4.2  Distal Evidence: Continental Sections

5.4.2.1  Europe: Wickwar, Southwestern Britain

Mercia Mudstone Group. Localized occurrences of non-marine ‘glauconitic’ spher-
ule (microtektite) pseudomorphs and secondary shocked quartz from southwestern 
Britain (Fig. 5.6a) have been described in situ by both Walkden et al. (2002) and 
Kirkham (2002, 2003, 2006, based on earlier 1970s work) as diagnostic evidence of 
a Late Triassic Norian (probably Manicouagan) impact. The latter author (Kirkham 
2003, Figs. 4–10) described these as being “emerald green” in appearance, up to 
1.0 mm in diameter and present within “erosional troughs” unconformably resting 

Fig. 5.5 Late Triassic (210 Ma) paleogeographic map showing the Manicouagan impact crater 
location in relation to key North American sedimentary basins, containing the (cored) Newark 
Supergroup and Chinle Group lithofacies units among other successions. The general locations of 
the eastern Canadian (Fundy Group) and southwestern British (Mercia Mudstone Group) sections 
discussed in Sect. 5.4 are highlighted. (Modified from Blakey 2014)
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on Lower Carboniferous (Arundian-Holkerian) Clifton Down Limestone Formation 
basement at Churchwood Quarry, Wickwar, north of Bristol. The basal Mercia 
Mudstone Group (Carnian-Rhaetian) host section comprises a “partly cross-bedded 
deposit, approximately 6 m across and 1 m thick dominated by hard and soft silty 
marls.” (as illustrated in Kirkham’s Fig. 3; see also Fig. 5.6b). In contrast, Walkden 
et al. (2002) described a different spherule bed in the same quarry as ranging “in 
thickness from 0 to 150 mm (average of 25 mm from eight points that were sampled 
within a 200 m-wide region) and shows evidence of turbulent reworking in water 
such as grading, convolution, rippling, and mixing with local mud and lithoclasts”. 

Fig. 5.6 Location and outcrop features of Mercia Mudstone spherule deposit. (a) Outline map of 
the eastern Bristol Channel area, southwestern Britain indicating the location of the (former) 
microspherule localities at Churchwood Quarry, near Wickwar, north of Bristol. (b) Sketch detail 
of the “largest and most accessible spherule-bearing lens” within the Norian-aged basal Mercia 
Mudstone Group resting unconformably on Lower Carboniferous (?karst) limestone. (Modified 
from BGS Geology of Britain Map [Accessed 2017] and Kirkham 2003, Figs. 2 and 3)
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Both authors described in contrasting detail, the morphological, geometric and geo-
chemical characteristics of the respective spherule datasets, concluding, via com-
parisons with Chicxulub impact spherule ejecta, that the Late Triassic spherules 
represented ‘splash form’ microtektite pseudomorphs resulting from extensive dia-
genetic clay alterations of original unstable (impact melt/vaporization) glass prod-
ucts. The role in this process of glauconite sensu lato (Jeans 2006) and its 
implications for an aqueous marine contribution was subsequently discussed in 
Huggett (2004). The feasibility of the proposed spherule model was also reviewed 
by Glass et al. (2003), who accepted the interpreted impact melt origin subject to 
further geochronological constraints with respect to a source crater, and demonstra-
tion of spherule-bearing beds at other localities. In a follow-up study, Thackrey 
et al. (2008, 2009) later confirmed a ‘Manicouagan-aged’ (i.e. ca. 214 Ma) microtek-
tite source via authigenic K-feldspar radioisotopic dating and discrete geochemical 
fingerprinting of associated allochthonous heavy mineral suites. The latter included 
detrital garnets that display geochemical characteristics comparable to those anal-
ysed from the Manicouagan Grenvillian target rocks, impact melt and central uplift. 
Use of both techniques suggesting that similar clastic ejecta may be identifiable in 
other parts of the Manicouagan strewn field in the absence of spherulitic- 
microtektites and the more traditionally diagnostic shocked quartz evidence, within 
age-correlative stratigraphic units if preserved.

Confirmed (USM/HF-etch method) shocked quartz (Walkden et al. 2002, Figs. 4 
and 5) associated with the spherules strongly support an impact source, although 
the precise ‘fluvial’ depositional origin of the variably thick host beds (since 
removed by quarrying operations) remains uncertain. Particularly concerning is the 
apparent mineralogic uniqueness of this deposit within the well-studied Mercia 
Mudstone Group (Leslie et al. 1993; Milroy 1998; Jeans 2006). Kirkham (2003) 
provided a detailed discussion of the spherule component and its potential origins, 
with comparisons to widely distributed Chicxulub ejecta that show similar grain 
morphologies, intragranular geometries and clay mineralogy indicative of diagenet-
ically-altered glassy microtektites, possibly within a saline-influenced environment. 
This allows speculation on the relative contributions of climatically-driven eolian 
and aqueous depositional influences on dynamic catastrophic events (Ruffell 1991; 
Milroy 1998).

5.4.2.2  North America: Bay of Fundy, Eastern Canada

Blomidon Formation. The Late Triassic outcrop maps of key Fundy Group coastal 
localities interpreted to contain potential distal Manicouagan impact evidence 
(Tanner 2006, 2013) include the Blomidon Peninsula and Five Islands-Red Head 
coastal sections, respectively located on the southern and northern margins of the 
Minas Subbasin of western Nova Scotia (Figs. 5.7 and 5.8). A major structural ele-
ment in this region comprises the east-west trending Minas Fault Zone (MFZ, 
including the Cobequid-Chedabucto master fault), an historically active, microplate 
transform-oblique slip tectonic boundary that separates the northern Precambrian 

M.J. Clutson et al.



157

Avalon terrane from the Early Palaeozoic Meguma terrane to the south. The south-
ern Minas Subbasin coastal cliff sections described in Ackermann et al. (1995; after 
Olsen et al. 1989), Gould (2001) and Tanner (2006) are shown in Fig. 5.9. These are 
assignable to the Norian White Water Member of the Blomidon Formation (Sues 
and Olsen 2015; also named the Blomidon Member of the Passaic Formation in 
Weems et  al. 2016). Ackermann et  al. (1995) attributed the variably-developed 
‘soft-sediment deformation structures’ (SSDS sensu lato, Fig. 5.10) to subsidence 
and gravity collapse in response to intra-Norian meter-scale evaporite dissolution 
processes in the subjacent section(s). The timing of dissolution is considered to have 
begun “following the partial lithification of the [upper] fish bed” unit (also contain-
ing conchostracans; Ackermann et al. 1995, Fig. 2). However, there is no evidence 
elsewhere within the Fundy Group successions of comparable evaporite (halite and 
gypsum) units and/or their derivatives. Whilst the trigger for this (potentially unique) 

Fig. 5.7 Late Triassic outcrop maps of key Fundy Group coastal localities interpreted to contain 
potential distal Manicouagan impact evidence. (a) Regional setting showing the present-day loca-
tion of the Manicouagan impact structure. (b) Shaded-relief map of the Minas Subbasin, highlight-
ing major structural elements including the Cobequid-Chedabucto (C-CF) master fault (part of the 
‘Minas Fault Zone’ = MFZ), an historically active continent-microplate boundary that separates 
the northern Avalon terrane from the Meguma terrane to the south. (c) Late Triassic Fundy Group 
stratigraphic column. (d) Regional geology map showing key coastal outcrops and locations of 
pertinent onshore/offshore subsurface and industry well control (i.e. N-37 and P-79). (Modified 
from USGS I-2781, Thomas 2006, Withjack et al. 2009, 2012, and Sues and Olsen 2015)
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basin-wide sedimentary deformation event remains disputed, fault-related seismic-
ity is considered to be one of several potential causal mechanisms (cf. Lake Lisan 
examples in Alsop and Marco 2011). Given this possibility, Tanner (2003, 2006, 
2013) subsequently suggested such movement(s) may have been related to the 
Manicouagan bolide impact located in northeastern Quebec, Canada approximately 
750 km to the northwest. Supporting evidence presented by the latter author included 
“potential impact-generated” shocked quartz and chondrulitic-style feldspar sand-
stone grains from the top of Unit ‘DZ1’ exposed in the northern Minas Subbasin 
Red Head section located ca. 35 km northeast of the Blomidon Peninsula (Figs. 5.11 
and 5.12). More recently Thompson and Spray (2014) have described proximal 
impact-related arenaceous ‘seismites’ from within the Manicouagan crater vicinity, 
containing both fine angular (?fluvial) and larger rounded (?eolian) quartz grains, 

Fig. 5.8 Generalized stratigraphy and age relationships of Fundy Group (Blomidon and Wolfville) 
formations described within the Minas Subbasin (Sues and Olsen 2015). The magnetostratigraphy 
of the Blomidon Formation (BF) for the GAV-77-3 drill core and interpreted correlative magneto-
chrons from the Newark Basin (Kent and Olsen 2000; Kent et al. 2017), are indicated. The approxi-
mate stratigraphic positions of the various ‘soft-sediment deformation structures’ (SSDS sensu 
Shanmugam 2016, 2017), plus the radioisotopic age bars for the Manicouagan and Rochechouart 
impact structures are also shown. Minor scale(?) salt dissolution-related features evident at ca. 
390 m and 397 m in the GAV-77-3 industry drill core were interpreted by Olsen et al. (2003) as 
potentially correlative with the ‘DH1-DH2’ deformation zones at Delhaven/Red Head described 
by Ackermann et al. (1995). Tanner (2006, 2013) subsequently suggested these deformed units 
may represent seismicity triggered by the Manicouagan bolide impact (ca. 214–215.5 Ma)
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Fig. 5.9 Features of the Blomidon Formation deformation zones. (a) Panorama of the southern 
Minas Subbasin coastal cliff section at Houston Beach ‘South’ (HBS/Delhaven) described in 
Ackermann et  al. (1995), Gould (2001), and Tanner (2006). The arrow shows the approximate 
location of the Aluanian (mid-Norian) conchostracan identified as Redondestheria grovetonensis 
(Weems et  al. 2016, pers. comm.). (b) Location in the southern Minas Subbasin of Blomidon 
Formation (Norian White Water Member) coastal outcrops ca. 5 km SSW of the stratigraphic type 
section defined in Sues and Olsen (2015). (c) Detail of a Houston Beach ‘North’ (HBN) confined 
fluvial channel (‘Cfc’) subfacies (Gould 2001). (d) Basal channel sandstone containing locally- 
developed brittle microdeformation features including quartz grain spallation (d, e, & f) suggestive 
of contact concussion (Solid geology map modified from Moore et al. 2009)
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considered by these authors to be of possible early post-impact mid-Norian age. 
This description suggests a proximal impact signature may exist for siliciclastic 
comparisons, specifically relating to potential seismites and/or early post-impact 
transportation of unconsolidated sand-grade material. An impact-triggered 
paleoearthquake origin for similar ‘seismite-style’ sedimentary expressions within 
the younger Rhaetian (Lilstock Formation, Cotham Member) exposed throughout 
western Britain was also suggested by Simms (2003, 2007), although this model 
was subsequently disputed by Lindström et  al. (2015) in favor of synchronous 
CAMP-related volcanic activity (Blackburn et al. 2013).

Cashman et al. (2007) have evaluated sedimentary microstructures in unlithified, 
near-surface siliciclastics in an attempt to differentiate between earthquake rupture- 
related (seismic) and creep-related (aseismic) deformation mechanisms within the 
San Andreas Fault region of western California. These authors concluded that cer-
tain grain microdeformation styles (among other factors) might be indicative of 
coseismicity in variably saturated unlithified sediments, potentially comparable to 
the weak (Barringer Class 1b) impact shock concussion fractures reported by 

Fig. 5.10 Examples of macroscale sedimentary deformation (SSDS sensu lato) observed within 
the Blomidon Formation (White Water Member) at Houston Beach. (a) Deformation unit termi-
nology (DH) after Ackermann et  al. (1995). (b) Complexly-faulted sandstone/mudstone brittle 
deformation and brecciation. (c) Convoluted (c) fluvio-eolian sandstones. (d) Low-angled intra- 
mudstone minor reverse fault (arrowed) with uppermost bed undisturbed. (e) Variable synsedimen-
tary fault styles in color-banded DH2 fluvial channel sandstones, (f) Chaotic sandy mudstone 
collapse breccia (DH1). (g) Vertical flame (p pipe) and other fluid escape structures (t)—detail in 
(h), showing typically coarse-grained eolian sand component. (i) Disorganized brittle and ductile 
‘chaotic’ bedding
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Fig. 5.11 Event horizons within or bounding the Blomidon Formation exposed on the northern 
shore of the Minas Subbasin near Five Islands. (a) Coastal section of the Blomidon Formation 
(Norian-Rhaetian?) below the North Mountain Basalt (NMB) looking east. Constituent units are, 
from top to base, the Partridge Island (PIM), White Water and Red Head Members (Fig. 5.8). (b) 
Detail of the ‘seismite’ zones DZ1 and DZ2 described by Tanner (2006) at Red Head, beneath the 
uppermost ‘collapsed unit’ (CU) interpreted by Ackermann et al. (1995) as potentially correlative 
with the southern Minas ‘DH2’ deformed sandstone unit (Figs. 5.9 and 5.10). The radioisotopically- 
dated ‘event horizons’ indicated refer to the interpreted Manicouagan impact (1) and onset of 
northern Minas CAMP volcanism (2 = basal NMB; Blackburn et al. 2013), representing a time 
interval of approximately 14 Myr
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Kieffer (1971) from the Coconino Sandstone at the 1.2  km-diameter Meteor 
(Barringer) Crater, Arizona. Preliminary petrographic work (binocular microscope 
and SEM) conducted by the current authors on sandstone samples from several 
Fundy Basin localities in both the southern and northern Minas Subbasin has 
revealed relatively rare examples of quartz grain concussion signatures (Figs. 5.9 
and 5.12). Samples of particular interest include fluvio-eolian sandstones collected 

Fig. 5.12 Photomicrographs of fluvio-eolian siliciclastic grains from the lower Blomidon 
Formation Red Head section (Fig. 5.11b) potentially indicative of (?impact-related) seismic shock. 
(a) Toasted quartz grain showing a single set of planar lamellae (PPL). (b) Subspherical grain of 
partially sericitized albite (XPL) described in Tanner (2006). (c) For comparison to (b), Houston 
Beach DH2 channel sandstone feldspar diagenetic alteration and associated heavy minerals (gar-
nets). (d) SEM view of an HF acid-etched DZ1 quartz grain displaying intersecting planar features 
(Tanner 2006). (e) For comparison to (d), an example from the upper Wolfville Formation (Carnian 
-?Ladinian Evangeline Member) coastal section in the southern Minas Subbasin (Tanner et  al. 
2016, pers. comm.). (f) Examples of eolian quartz grain alterations from near base collapsed unit 
‘CU’ (Ackermann et al. 1995), including brittle microfracturing similar to that observed in: (g) 
Tectonized grain samples collected from the Lower? Norian eolian sandstone Red Head Member 
fault-juxtaposed to the east
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from the DH1 and DH2 deformation zones described by Ackermann et al. (1995) at 
Houston Beach. Here are found grains displaying open fracture (‘spallation’) fea-
tures (Figs. 5.9d–f) similar to those considered by Ernstson et al. (2001) to represent 
dynamic contact concussion. However, controls and timing of the observed granular 
microdeformation features, as well the potential co-occurrence of diagnostic distal 
ejecta material (shocked quartz, spherules and/or heavy minerals) remain 
uncertain.

Quaco Formation. Highly fractured, dominantly quartzite cobbles characterize 
the (Carnian-Ladinian) fluvial conglomeratic Quaco Formation (Nadon and 
Middleton 1985; Leleu and Hartley 2016; see also Weems et  al. 2016) at St. 
Martins on the western Bay of Fundy coast (Fig. 5.7). They have also tentatively 
been interpreted by Tanner (2013) as evidence of a major regional paleoseismic 
event, possibly synchronous with that discussed above for the lower Blomidon 
Formation. As noted by the latter author, the observed brittle deformation styles 
(Fig. 5.13) share similar characteristics with early Triassic Buntsandstein intensely 
fractured conglomerate cobbles interpreted by Ernstson et al. (2001), and Ernstson 
and Hiltl (2002) as (proximal) shock signatures of an undetermined Palaeogene 

Fig. 5.13 Summary of the Quaco Formation cobble deformation features described and discussed 
in Tanner (2013). (a) Circular to elliptical surface markings and indentations. (b) Halo and radial 
fracture details. (c) Outcrop detail showing in situ cobble deformation features within a fluvial 
sandstone matrix. (d) Illustration of external versus internal collision marks, contact halo and 
associated fracture expressions (polished slice courtesy of Kord Ernstson)
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terrestrial impact. General similarities, notably in both external and internal 
microfracture patterns (Fig. 5.13) plus intragranular planar features observable in 
thin-section (Fig. 5.14c) would appear to support a common, dynamic clast con-
cussion causal mechanism. However, consistent with the general interpretative 
impact-connection constraints discussed by Racki (2012), past workers (deVries 
Klein 1963; Chapman et al. 2004) have suggested a variety of alternative, causal 
explanations, including transport percussion, overburden compaction/contact 
pressure-solution and local/regional tectonism. While a precise origin of the mul-
tiple Quaco cobble fracture styles still remains uncertain, the Tanner (2013) model 
considers that, contingent on post-Carnian burial history, they more likely reflect 
major (fault-assisted) regional seismicity potentially triggered by the Manicouagan 
impact. As acknowledged by this author (pp. 579–581) any original impact-related 
effects are also very likely to have been overprinted (diluted) by a combination of 
subsequent terminal Triassic and younger CAMP activity, regional plate margin 
extensional rifting, basin inversion and possibly glacial isostasy.

Paleoearthquake analogues for the Quaco clast deformation styles possibly com-
prise similarly fractured Late Carboniferous and Late Cretaceous (Oakland) con-
glomeratic lithofacies described by Eisbacher (1969, Fig. 7) and Strayer and Allen 

Fig. 5.14 Photomicrograph images of internal Quaco Formation quartzite clast microdeformation 
features. (a) Parallel planar sets observed locally on a thin quartzite chip using a variably-angled 
transmitted light source. (b) Binocular enlargement of a single quartz grain lamellae applying the 
same technique. (c) Traditional petrographic thin section (XPL) views of multiple quartz intra-
granular planar lamellae sets (PF and/or ?PDFs) interpreted, among other factors, to be indicative 
of dynamic clast-on-clast (seismic) shock collision (prepared by Kord Ernstson)
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(2008) from geologically active strike-slip fault zones in central Nova Scotia (CC-F/
MFZ) and northern California (Hayward Fault) respectively. More locally, Latjai 
and Stringer (1981) described preferentially orientated (orthogonal joint system ‘A’) 
fracture sets within the Quaco unit, which extend throughout parts of eastern New 
Brunswick and are possibly tectonically inherited from older, more regionally 
extensive Palaeozoic stress fabrics discussed in the same paper. In this context Plint 
(1985) subsequently described a Late Carboniferous (Pennsylvanian) “earthquake 
bed” (SSDS) potentially reflective of shallow upper crustal, plate suture weakness 
trends in the greater Fundy region (Thomas 2006; Withjack et al. 2009, 2012).

5.4.3  Distal Evidence: Marine Sections

Sakahogi, central Japan. As referred to above, clear evidence of impact ejecta 
(spherules and PGE anomalies) preserved in a distal marine setting occurs within 
Upper Triassic successions of the subduction-generated accretionary complexes of 
central and southwestern Japan (Onoue et  al. 2012; Sato et  al. 2013, 2016). 
Specifically, Onoue et al. (2012, Fig. 4) and Sato et al. (2013, 2016) described late 
mid-Norian (latest Alaunian) clinochlore-rich chlorite microspherules and Ni-rich 
magnetite-spinel grains from thin pelagic marine claystones in various bedded 
chert-dominated sections. These were first observed at Sakahogi in the Inuyama- 
Kamiaso area of the Mino Belt of central Japan (Fig. 5.1), where they are confined 
to the lower part of a single 4–5 cm-thick claystone bed (Sato and Onoue 2010; Sato 
et al. 2013, Fig. 2). Subsequently, they were identified at other Mino Belt locations 
as well as in the Chichubi Belt to the southwest (Sato et al. 2016, Fig. 2). The age of 
the claystone layer is tightly constrained by radiolarian and conodont biostratigra-
phy and potentially contemporaneous with the southwestern Britain spherule 
layer(s). An impact origin for the deposit components is supported by detailed PGE 
(including Ir) and Os isotopic analyses. In addition to elevated levels of PGEs in the 
microspherule-bearing claystone, Sato et  al. (2013, 2016) document peak PGE/
Al2O3 and siderophile element/Al2O3 ratios, demonstrating that these concentrations 
were not a consequence of simple changes in sedimentation rate. Specific details of 
the supporting biostratigraphic datasets are provided in Supplement 1 of Onoue 
et al. (2012). Additional information on these occurrences also appears in Onoue 
et al. (2016) and Sato et al. (2016).

5.4.4  Stratigraphic Implications

Significant uncertainty still exists concerning the timing of the Manicouagan event 
based on the nature of presented (extra-crater) stratigraphic evidence alone. The 
radioisotopic crater ages shown in Table 5.2 range from 208.9 Ma ± 5.1 Ma by 
(U-Th)/He measurement of titanite grains from the central uplift (Biren et al. 2014) 
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to 215.5 ± 1 Ma using the U-Pb method on meltrock zircons (Ramezani et al. 2005). 
As the latter accords well with the earlier U-Pb measurement of 214 ± 1 Ma (Hodych 
and Dunning 1992), and is much more tightly constrained, it is now widely cited as 
the agreed impact age. This timing overlaps with a wide selection of candidate sec-
tions representing the thickly developed mid-Norian (Aluanian) Substage (sensu 
Ogg et al. 2014, 2016) in eastern North American (Figs. 5.2 and 5.8). However, in 
spite of extensive research, supported by highly calibrated core control through key 
sections, unequivocal Manicouagan distal ejecta is not reported from any of the Late 
Triassic Newark Supergroup basins, or in similar-aged units in the southwestern 
United States. The latter include the continental Chinle and equivalent groups in the 
Colorado Plateau area, shallow marine equivalents represented by the Luning/
Gabbs and San Hipolito Formations in western Nevada and southern California 
respectively, in addition to the western Canadian and Arctic basins to the north 
(Fig. 5.5). The reasons for this apparent absence are uncertain, but possibly related 
to poor ejecta preservation potential in sedimentologically-active, semi-arid to arid 
continental environments and/or depositional hiatii in the Norian sections of interest 
examined to date.

Microspherules/tektites and shocked detrital quartz were originally described 
from localized fluvial deposits of the (undifferentiated) Norian Mercia Mudstone 
Group in southwestern England (Walkden et  al. 2002; Kirkham 2002, 2003). 
40Ar-39Ar dating of authigenic K-feldspar from this layer in the former publication 
yielded an age of 214 ± 2.5 Ma, consistent with the then widely-supported U-Pb 
zircon value obtained by Hodych and Dunning (1992) for the Manicouagan crater. 
Referring to glassy (splash form) microtektite preservation at the British ejecta site, 
Walkden et al. (2002) suggested that preservation potential may have been enhanced 
by the presence of standing water, which is essential for the hydration and palago-
nitization processes evident in the highly altered spherulized microtektite pseudo-
morphs (‘spherules’). On the same subject Tanner (2006) also referenced the 
potentially preventative “dynamics of eolian and sheetwash sediment movement” in 
an environment of “exceedingly slow” sediment accumulation, although deforma-
tion of the sediment surface by gravity collapse (Ackermann et al. 1995) potentially 
may have allowed localized ‘nesting’ of ejecta material within paleotopographic 
lows. Kirkham (2003, 2006) commenting on the uncertain stratigraphic nature of 
the spherule deposits in southwestern Britain, concluded they were most likely 
fluvially- reworked, although this author’s figured spherule images do not show 
signs of extensive transport abrasion.

Subsequent work on marine pelagic deposits of onshore central and southwest-
ern Japan (Onoue et al. 2012, Fig. S7; Sato et al. 2013, 2016, Fig. 1) identified a 
microspherule (tektite) layer also potentially attributable to the Manicouagan 
impact, with a suggested age of late Alaunian (or possibly earliest Sevatian; 
Epigondolella postera to E. bidentata zonal transition) based on a detailed radiolar-
ian and conodont biostratigraphy (Fig. 5.2).
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5.5  Late Triassic Impact Effects

5.5.1  Paleoenvironmental Changes

As described above, early searches for Late Triassic distal impact signatures, namely 
shocked quartz and/or associated PGE (Ir) geochemical anomalies, in familiar 
stratigraphic sections of North America and Europe have largely proved disappoint-
ing. The extinction-related multiple impact hypothesis (Spray et  al. 1998) tenta-
tively suggested that widely distributed distal ejecta were likely to occur in vicinity 
of the then accepted terminal Triassic extinction event, and by extension, earlier 
horizons would likely record similar biotic crises, albeit of lower magnitude. 
Walkden and Parker (2008) presented generalized Chicxulub (150  km) vs. 
Manicouagan (85  km) comparative models based on relative size, hypervelocity 
speed, approach angle and other trigger factors, to determine potential global envi-
ronmental effects of two of the largest Phanerozic terrestrial impacts. These authors 
concluded (Fig. 2) that impact location (target geology and paleogeographic posi-
tion) and timing (biological/geological evolutionary status) were most likely major 
contributory factors to any associated extinction severity. Schedl (2015) provided a 
comprehensive account of potential marine impact effects including seismically 
induced shelf-slope failure, submarine landslides, slump sheets and offshore tsuna-
mis (cf. Bralower et al. 1998; Deptuck and Campbell 2012, after Jansa and Pe-Piper 
1987). Tackett et al. (2009) have also remarked that the apparent disparity between 
the Chicxulub and Manicouagan events with respect to biotic effects possibly 
reflects differences in paleoecological resilience and/or resistance to rapidly induced 
change. Alternatively, perhaps insufficient biostratigraphic control currently exists 
to determine accurately the appropriate biotic group responses within multiple 
affected marine and terrestrial habitats (see also discussion in Schmieder 
et al. 2010a).

Racki (2012) has similarly reviewed the general manner in which mass extinc-
tions causally reflect interaction(s) of both longer-term biospheric stress processes 
and comparatively rapid (punctuated/catastrophic) events sensu Ager (1995). 
Consequently, a satisfactory understanding of major (potentially unique) biotic cri-
ses requires an integrated, case-by-case approach that also considers alternative 
contributory causal mechanisms, the geological expressions of which may further 
be complicated by temporal and/or geospatial overlap. White and Saunders (2005) 
for example, have discussed the coincidental significances of volcanism, impact 
and mass extinction phenomena (see also Ernst and Youbi 2017). A number of 
mechanisms are invoked to explain the Late Triassic extinctions, such as paleocli-
matic changes (long-term aridification and/or pluvial episodes; Simms and Ruffell 
1990), eustatic sea-level fluctuations, changes in ocean salinity or oxygenation, 
and, atmospheric perturbations caused by severe CAMP volcanic outgassing and/
or dissociation of sea-floor methane hydrates (Hautmann 2004; Marzoli et al. 2004, 
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2017; Tanner et  al. 2004, 2007; Golonka 2007; Nomade et  al. 2007; van de 
Schootbrugge et al. 2007, 2008, 2009, 2013; Hautmann et al. 2008; Schaltegger 
et al. 2008; Whiteside et al. 2010; Ruhl et al. 2011; Schaller et al. 2011; Pálfy and 
Zajzon 2012; Pieńkowski et al. 2012, 2014; Richoz et al. 2012; Blackburn et al. 
2013; Lindström et  al. 2017; Lucas and Tanner 2017). Thus, the environmental 
significance of bolide impact events would seem to depend on the context and tim-
ing of extant terrestrial and marine biospheric processes, in addition to bolide size 
and location.

Tanner et al. (2004) discussed the nature of several interpreted extinction sce-
narios in a comprehensive review of potential causes of multiple Late Triassic 
biotic turnovers. The authors concluded that the common misconception of a single 
catastrophic end-Triassic extinction (cf. Chicxulub) is unsupported by the paleon-
tological record, but instead results from location/sample bias and stratigraphic 
correlation uncertainties. Instead, they suggested a significant number of major 
marine and terrestrial biotic groups experienced step-wise pulses of decline in 
diversity throughout the entire epoch, combined with low origination rates. These 
crises are evidenced at: (i) the Carnian-Norian boundary, (ii) within the Early 
Norian, (iii) the Norian–Rhaetian boundary, (iv) within the Rhaetian, and (v) at/
near the TJB (see also Lindström et al. 2017 and references therein). In the case of 
impact-induced environmental traumas, the same authors stated that their clarifica-
tion has traditionally remained largely contingent on the dual confirmation of cra-
ter age and unambiguously identifiable (i.e. correlative) distal evidence upon which 
to base detailed paleoecological assessments. These constraints are further compli-
cated by the wide diversity of declining marine faunal groups such as ammonoids, 
bivalves and conodonts during the Norian-Rhaetian (Silberling 1985; Tanner et al. 
2004; Tackett and Bottjer 2012, 2016; Onoue et al. 2012, 2016) and various ter-
restrial vertebrate assemblages, notably tetrapods (Olsen et  al. 2010). The latter 
authors noted that direct evidence for an impact precisely at the TJB (201.4 Ma; 
Ogg et al. 2016) is lacking, although currently bracketed by the radioisotopic age 
uncertainty ranges of both Rochechouart (ca. 207–201 Ma; see Cohen et al. 2017) 
and Red Wing (200 ± 25 Ma) noted in Schmieder (2010). However, the smaller 
sizes of these two particular impacts dictates their limited role as significant drivers 
of extinction.

5.5.2  Biotic Response

Attempts to apply a catastrophic impact theory (Alvarez et  al. 1980) to other 
Phanerozoic mass extinction boundaries, including (unsuccessfully) the ammonoid- 
defined Triassic-Jurassic transition (Olsen et al. 1987; Tanner et al. 2004; Onoue 
et al. 2012) are summarized and discussed at length by Racki (2012). The latter 
author expressed concern regarding data-constrained interpretational ‘force-fitting’ 
to preconceived biotic crisis models, which he termed the “great expectations 
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syndrome.” Based on this critical review, he assigned research categories leading to 
potential misunderstandings into three successional model ‘test’ levels respectively 
relating to (a) factual misidentification (ambiguous datasets), (b) correlative misin-
terpretation (geochronologic uncertainty), and (c) causal overestimation (signature 
and scale of contemporaneous catastrophe). Until recently (cf. Onoue et al. 2016) 
most, if not all previously proposed Late Triassic impact-related extinction ‘sce-
narios’ failed to progress beyond the first level, reflecting “an erroneous or indefi-
nite recognition of the extraterrestrial record in sedimentological, physical and 
geochemical contexts.” This terminology is equally applicable to both the marine 
and continental terminal Triassic candidate extinction horizons across multiple 
regions. They all failed to confirm an unequivocally unique impact origin for either 
‘PDF-style’ detrital quartz lamellae (Badjukov et  al. 1987); Bice et  al. 1992; 
Mossman et  al. 1998) and/or anomalously elevated (terrestrial) Ir levels (Olsen 
et  al. 2002a, b; Tanner and Kyte 2005; Tanner et  al. 2008, 2016), as discussed 
above.

Recognition that mass extinction causes represent a complex interaction of 
long- term ecosystem stress processes and geologically rapid, catastrophic distur-
bances (including bolide impacts; cf. Chicxulub discussion in Renne et al. 2013) 
led Racki (2012) to recommend a “holistic event-stratigraphic approach” to multi-
causal environmental traumas, refinable on a case-by-case basis. Preliminary mod-
eling of the Manicouagan impact (Walkden and Parker 2008; Wrobel and Schultz 
2003) suggests that this major mid-Norian event could have had a measurable 
global impact on both marine and continental biospheres. The potential (biochemi-
cal, climatic) effects of the impact significantly predate (ca. 215.5 vs. 201.5 Ma), 
and are thus not causally competitive with, the late Rhaetian CAMP emissions, 
associated seismicity and other chemical imbalancing described by Lindström 
et al. (2015, 2017) and others. Consequently, a conclusive Manicouagan signature 
may yet prove to be determinable for certain biotic groups, especially those in the 
marine realm.

The taxonomic and paleoecological aspects of Late Triassic benthic, nektonic 
and pelagic marine faunal assemblages within the Tethyan, Panthalassan and 
Boreal Ocean domains have been studied extensively, in variable detail and col-
lectively provide a practical basis for correlatable Carnian, Norian and Rhaetian 
biostratigraphic reference. Onoue et al. (2012, 2016) have recently demonstrated 
that a stepwise radiolarian and conodont extinction event occurred during the last 
15 Myr of the Triassic (late Norian-Rhaetian), reflecting a catastrophic collapse of 
the pelagic ecosystem, initially associated with a decline in pelagic faunal diversity 
which commenced towards the end of the mid-Norian (Alaunian). These authors 
tentatively regard this biocrisis as the first documentation of a paleoecological 
response (decreased biogenic radiolarian silica flux) to the Manicouagan impact 
event (ca. 214–215.5 Ma). Subject to results of ongoing chemostratigraphic cor-
relative work, the Sakahogi spherulitic claystone section of interest would now 
appear to provide critical biostratigraphic control for determining whether similar 
biospheric responses occurred in other marine provinces. Locations to investigate 
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initially may include paleogeographically discrete Panthalassan and northern 
Tethyan Norian benthic assemblages in west-central Nevada, USA (Tackett et al. 
2009; Tackett et al. 2014; Tackett and Bottjer 2016) and northern Italy (Tackett and 
Bottjer 2012).

Based on their current accepted ages, the terrestrial effects of confirmed Late 
Triassic impacts may potentially be reflected within the Adamanian (?Saint Martin), 
Revueltian (Saint Martin and Manicouagan) and Apachean (Rochechouart, ?Red 
Wing) land-vertebrate faunachrons (LVFs) proposed by Lucas (2010). Identification 
of precisely dateable and correlatable ‘event horizons’ within, or at the boundaries 
of any of these units would allow a ‘before and after’ approach to investigating both 
catastrophic and transitional biotic responses, as discussed in Tanner et al. (2004). 
More specifically, from a paleogeographic perspective, ejecta distribution modeling 
of the Manicouagan impact may enable high-grading (via estimated thickness map-
ping) of those regional biospheres likely to have been most affected. In this respect 
areas for consideration include selective Norian successions in the Colorado Plateau, 
USA, such as the Chinle Group, various parts of Europe e.g. the Germanic Basin or 
the Northern Calcareous Alps region, the Argana Basin of northwestern Africa and 
the East Greenland Jameson Land Basin.

Impact response investigations within the continental invertebrate community 
are likely to be more challenging, given the biostratigraphically barren nature of 
much of the representative Late Triassic continental fluvio-eolian and playa- 
lacustrine facies associations. However, the presence and biozonal significance of, 
for example, conchostracans found to occur throughout the generally poorly fos-
siliferous Newark Supergroup red beds (Kozur and Weems 2010; Weems and Lucas 
2015) suggests this faunal group may have been affected, though possibly only 
within ‘local biospheres’ (sensu Grieve 2017; see also Weems and Lucas 2015, 
Fig.  16). In this regard, Cameron and Jones (1987) and Olsen and Et-Touhami 
(2008) have both noted “abundant clam shrimp” (i.e. conchostracans) plus other 
more discrete occurrences at various Minas Subbasin coastal localities containing 
the Blomidon Formation deformation zones shown in Figs. 5.9 and 5.10. The Late 
Triassic Fleming Fjord Formation of the Jameson Land Basin (Clemmensen et al. 
1998) has also recently been reported to contain (?Norian-aged) conchostracans 
locally in association with diverse terrestrial vertebrate assemblages (Sulej et  al. 
2014). However, if an interpreted distal impact signature in the Bay of Fundy area 
proves correct, this may have had only a limited, possibly short term ‘catastrophic’ 
effect on the respective faunal communities.

5.6  Directions and Recommendations

As recommended by Racki (2012) and others, future attempts to clarify potential 
impact-related geologic contributions may benefit from applying an integrated 
research approach that (ideally) is able to:
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 1. Constrain erroneous/indefinite impact-diagnostic sedimentological, physical and 
geochemical data, notably petrographic/mineralogical shock and/or melt feature 
identifications, potentially supported by accepted associative signatures.

 2. Minimize impact structure absolute age-dating uncertainty concurrent with 
proximal to distal correlation errors through (where practical) the integration of 
high-resolution lithostratigraphic, biostratigraphic, petrographic, radioisotopic, 
and geochemical data to determine/promote a respective ‘event horizon’ and ref-
erence locality.

 3. Avoid causal overestimation of stratigraphic relationships concerning confirmed 
impact signatures that appear to be only temporally coincident with a given bio-
diversity decline (turnover/extinction) and other ecosystem collapse attributes, 
as evidenced within marine, terrestrial and atmospheric domains.

The two widely separated occurrences of interpreted Manicouagan microtektite 
spherule pseudomorphs, plus associated shocked mineral grains within late mid- 
Norian (Alaunian) pelagic marine and continental facies of central Japan and south-
western Britain respectively, is significant. Subject to geochronologic confirmation 
(initially biostratigraphic, mineralogic and geochemical), these deposits strongly 
suggest that similar stratigraphically-discrete ejecta units are likely to be preserved, 
and are thus identifiable in other basins possibly in association with impact-induced 
sedimentary units including ‘seismites’ sensu stricto, tsunami deposits and/or larger 
chaotic lithofacies groups such as olistostromes. With the dual benefit of PGE- 
enrichment (e.g. Ir, Os) plus detailed (radiolarian and conodont) biostratigraphic 
control, global exportation of the Japanese (late Alaunian Substage) event horizon, 
particularly, would now appear feasible assuming any future impact-diagnostic 
ejecta datasets have not been subject to extensive sedimentary reworking. 
Recognition of potentially synchronous, locally fossiliferous fluvio-playa- lacustrine 
‘seismite’ deposits in eastern Canada, located <750  km (ca. 9 crater diameters) 
southeast of the Manicouagan impact site may provide additional insights concern-
ing the nature and controls on distal ejecta distribution patterns. The respective Bay 
of Fundy coastal sections thus merit further investigation as a potential paleoearth-
quake response to the Manicouagan impact event (sensu Tanner 2003, 2006), via 
dynamic regional tectonism, possibly expressed uniquely within a near-distal strewn 
field capture area. Directly comparable microspherule deposits have yet to be 
reported anywhere on the North American host continent. However, the demon-
strated presence of rare quartz grains displaying possible shock features in similar- 
aged (mid-Norian) seismically-affected zones suggest critical technical comparisons 
(sensu Reimold et al. 2014) of the reported PDFs. Other granular microdeformation 
style(s) will be required to determine any common ?Grenvillian provenance, in sup-
port of a Manicouagan impact causal origin.

In conclusion, while the evidence relating to virtually all Late Triassic terrestrial 
bolide impact effects significantly beyond crater signature appears to be severely 
limited and/or controversial, important clues now exist as to where it might be found 
stratigraphically, and possibly expressed discretely within the geologic record. As 
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the third largest impact in the Phanerozoic (after Chicxulub and Popagai), the cur-
rently evolving Manicouagan ‘global’ scenario, if supportable by additional and 
correlatable diagnostic impact datasets, will enable the development of a working 
multi-regional (initially North America, Western Europe and Eastern Asia) geologic 
model with the capacity to be expanded globally. Such an integrated approach offers 
the potential to:

 1. Clarify why researchers have consistently been unable to identify remote impact 
diagnostic evidence throughout most of the international Carnian, Norian and 
Rhaetian sections—is it really an ejecta preservation issue?

 2. Determine—through selectively focused research—the types of diagnostic 
impact evidence (physical, geochemical/isotopic and biological) that have 
remained preserved within the distal stratigraphic record—and the factors con-
trolling these occurrences.

 3. Facilitate the applicability of Manicouagan project methods and results to inves-
tigating other Triassic impact scenarios, e.g. Saint Martin and Rochechouart, 
including any direct or indirect contributions to the end-Triassic mass extinction 
plus multiple earlier, potentially hereditary terrestrial and marine biotic crises 
events.

5.7  Conclusions

The globally distributed Late Triassic stratigraphic succession represents a combi-
nation of variably thick continental and marine tectonostratigraphic units reflecting 
a complex geologic history of Pangaean supercontinent break-up, CAMP flood 
basalt volcanism, and initiation of passive conjugate plate margin formation. At 
least five variably-sized (9–85 km diameter) terrestrial bolide impacts are currently 
interpreted to have occurred during this paleoenvironmentally sensitive time-frame, 
three of which (Saint Martin, ca. 228 Ma; Manicouagan, ca. 215.5 Ma; Rochechouart, 
201–206.9 Ma) are considered sufficiently large to have left significant traces within 
the geologic record at local, multi-regional, and possibly global scale. Until recently, 
research on these (and impacts in general) has traditionally focused on impact struc-
ture morphometry, impactite distribution/composition and hypervelocity process 
modeling, including post-impact metasomatism. An ongoing investigation of longer 
range distal impact effects, including potential contributions to multiple biotic cri-
ses recognized throughout the Late Triassic, has proved to be less successful, espe-
cially relating to the latest Rhaetian ETE.  Recent confirmation of spherule 
(microtektite) deposits and associated PGE anomalies in mid-Norian deep sea sedi-
ments of central and southwestern Japan supports a need for further investigation of 
the Manicouagan distal impact signature.
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Chapter 6
New Upper Triassic Conodont Biozonation 
of the Tethyan Realm

Manuel Rigo, Michele Mazza, Viktor Karádi, and Alda Nicora

Abstract Conodonts are biostratigraphically very important microfossils in the 
Upper Triassic, occurring in different marine habitats, from deep-ocean to shallow- 
shelf waters. Because of their great abundance, worldwide distribution, strong resis-
tance to rock metamorphism, and mineralogical composition that makes them 
reliable tools for biostratigraphic and geochemical studies, conodonts have proven 
to be important tools in defining the Geological Time Scale (GTS) and Global 
Stratotype Section and Points (GSSPs). We present here an original Upper Triassic 
conodont biozonation for the Tethyan Realm integrated, where possible, with 
ammonoid and radiolarian zones, providing also numerical ages for stages and sub-
stages. Based on the most recent conodont biostratigraphic and systematic studies, 
we propose a subdivision of the Upper Triassic interval into 22 conodont zones 
(nine for the Carnian, ten for the Norian, and three for the Rhaetian), correlated, 
where possible, with the most recent North American conodont zonations. 
Discussions on the most biostratigraphically important conodont taxa are also pro-
vided, in particular for the stratigraphic intervals around the base of the Norian and 
Rhaetian stages, the GSSPs of which have yet to be defined. In this view, we provide 
data supporting the validity of conodonts as reliable tools for global correlations, 
recommending two conodont biovents as possible primary biomarkers: the FAD 
(First Appearance Datum) of Metapolygnathus parvus for the base of the Norian 
and the FAD of Misikella posthernsteini for the base of the Rhaetian. The conodont 
species Norigondolella carlae n. sp. from the upper Tuvalian (Carnian) is also 
defined.
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6.1  Introduction

The Upper Triassic was first divided by Mojsisovics von Mojsvár (1869) into three 
stages, the Carnian, Norian and Rhaetian. Originally, these stage definitions were 
based on ammonoids (Carnian and Norian) and bivalves (Rhaetian) and described 
in different localities in the northern Alps (Austria) with uncertain stratigraphic 
relationships between Carnian and Norian (Tozer 1984; Ogg 2012). Only after the 
discovery of conodonts in unequivocally Triassic strata in Sinai (Egypt) by Eicher 
(1946) was the presence of conodonts in Triassic sediments considered suitable for 
a reliable biostratigraphy for the early Mesozoic. Since then, and following the pio-
neering papers by Youngquist (1952), Tatge (1956) and Müller (1956), Triassic con-
odonts have become one of the most important biostratigraphic tools for dating and 
regional to global correlations. In the last few decades, Triassic conodonts have 
been the subject of intensive investigation and an extensive literature is now avail-
able. In fact, in recent years the number of species of Upper Triassic conodonts 
known has increased quickly as a result of detailed researches conducted in multiple 
sections worldwide, mostly in order to define the Upper Triassic GSSPs. 
Unfortunately, the taxonomic position of many conodont species is not firmly 
defined, mostly because of personal approaches to their taxonomy. Furthermore, the 
true distribution of most conodont species is represented only by scattered and spo-
radic occurrences in several stratigraphic sections, hampering the recognition of 
phylogenetic relationships. However, a constantly increasing amount of available 
data—conodont distributions on long and continuous sections, sometimes tied to 
ammonoid and radiolarian occurrences or chemo- and magnetostratigraphy—is 
improving the situation.

Unfortunately, few authors have presented images and/or range distributions of 
the species collected during their studies, preferring more often to use open nomen-
clature to gather conodont elements with presumably similar features. Furthermore, 
some proposed conodont biozonations are affected by stratigraphic condensation, 
which at the extreme may result in fossil associations consisting of species of differ-
ing age or in the loss or misinterpretation of important bioevents horizons (Salvador 
1994). Similarly, an inappropriate and confused classification and nomenclature, 
mostly due to a general lack of consensus, has failed to provide an “unambiguous 
species concept”, as stated also by Orchard (1991a). This has had a severely nega-
tive impact on conodont biostratigraphy. Moreover, the misinterpretation of the 
originally-described features of species can also have a negative effect on chro-
nostratigraphy, with repercussions in all the other fields for which time is the key 
point (e.g. palaeoclimate reconstructions, geodymanics), for instance, the inclusion 
of an older chronostratigraphic unit (Sevatian 2) into a younger one (Rhaetian) 
(Krystyn et al. 2007a, b).

In this paper we propose a conodont biozonation based mainly on very detailed 
and tightly spaced samplings of continuous sections, rather than on isolated occur-
rences, following the recommendations of Tanner et al. (2004) among others. Where 
possible, our biozonation is built on phylogenetic reconstructions in order to  provide 
a framework in which taxonomical attributions and biostratigraphic studies could be 
less aleatory. There are several reasons why phylogenetic reconstructions are neces-
sary. First, within a phylogenetic framework, the distribution of conodont species 
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would be constrained by their phylogenetic relationships. Second, open taxonomic 
issues, including disputed synonymies and the position of transitional forms, may be 
best untangled on the basis of phylogeny. Third, the recognition of transitional forms 
and morphoclines in the biostratigraphic practice would greatly improve the chances 
of identifying true FADs (First Appearance Datum). The phylogenetic approach to 
biostratigraphy is, in fact, an ultimate achievement of well- established scales, and 
this approach is recommended by Remane (2003). Fourth, provincialism and migra-
tions can be fully understood only within an established phylogeny. Finally, the 
reconstruction of Upper Triassic conodont phylogeny unveils the evolutionary trends 
of the class Conodonta during its last 40 Myrs.

The biozonation presented herein, based on 20 Interval Zones and 2 Taxon- 
Range Zones, is meant to facilitate the discussion of the three stages, despite the fact 
that only the base of the Carnian stage is formally defined and ratified by the 
International Commission on Stratigraphy (Mietto et al. 2012). When possible, the 
proposed conodont biozonation are compared with ammonoid, radiolarian or 
bivalve biozones or numerical ages. We consider this proposed biozonation as a 
starting point for future Upper Triassic investigations, hoping for a constructive 
integration in order to delineate a reference conodont biozonation commonly 
applied to Tethyan and global correlations.

6.2  Upper Triassic Conodonts: Overview

The pectiniform conodont record of the Upper Triassic documents pulses of severe 
extinctions followed by recovery events, testifying that the evolutionary history of 
the class Conodonta in its last 38 Myrs is characterised by a continuous decline of 
the conodonts specific diversity (see e.g. Martínez-Pérez et al. 2014 and references 
therein). The same decline was noticed earlier by De Renzi et al. (1996), who identi-
fied an irregular decrease from a climax of lineage during the Middle Triassic (late 
Anisian) until the final extinction of conodonts at the end of the Triassic.

In the Late Triassic, conodonts suffer four main extinction events before the end 
of the Rhaetian: the first, a weak one, in the early Julian; the second, more signifi-
cant, at the Julian/Tuvalian boundary (mid-Carnian); the third one, which is more 
similar to a faunal turnover rather than to a proper extinction, occurred at the 
Tuvalian/Lacian boundary (Carnian/Norian boundary); the fourth, across the 
Norian/Rhaetian boundary, testifies to a morphological change towards simple cavi-
tated species. From the point of view of conodont morphology, each extinction was 
followed by a new speciation and by evident changes in the morphological diversity 
of the platform elements. These morphological trends were observed also by Mosher 
(1968), although he did not connect them with extinctions. Notably, all of these 
faunal turnovers seem to be related to climatic changes (Trotter et al. 2015).

The Julian (Lower Carnian) pectiniform species that survive the first extinction in 
the early Julian might be considered as the relict forms inherited from the richness 
climax of lineages achieved during the Ladinian (De Renzi et al. 1996). The most 
complex and advanced species disappear (i.e. budurovignathids), while the survivors 
are morphologically simple, characterised by elongated platforms without ornamen-
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tation and a posterior pit (i.e. paragondolellids). After the first extinction pulse, 
within the Julian substage, some small conodonts with tiny nodes on the platform 
occur (genera Mazzaella and Hayashiella). The second extinction, at the Julian/
Tuvalian boundary (Lower/Upper Carnian), is more intense and related to the well 
know humid pulse called the Carnian Pluvial Event (Rigo et al. 2007, 2012b; Rigo 
and Joachimski 2010; Kolar-Jurkovšek and Jurkovšek 2010; Trotter et al. 2015). The 
following recovery is slow, but it brings conodont specific diversity to a new peak in 
the middle-late Tuvalian (i.e. the rise of genera Carnepigondolella, Metapolygnathus, 
and Epigondolella). All the Tuvalian substage is thus characterised by conodonts 
with node or denticle ornamented platforms, independently of which lineage they 
arose from, and by a gradual reduction of the platform length and the forward shift-
ing of the pit, except for rare paragondolellids in the lowermost Tuvalian.

Late Triassic conodonts experienced another extinction event around the Carnian/
Norian boundary, when almost all Tuvalian carnepigondolellids became extinct. 
Conodonts exhibit two different evolutionary trends. The first trend is characterised 
by the returning to ancestral features, by the extension of the platform with loss of the 
lateral margin nodes and of the free blade (i.e. genus Norigondolella). The second 
trend, instead, consists of species (i.e. Epigondolella and Mockina) that bear high 
denticles, distributed on the platform margins, which make the pectiniform elements 
compact and robust. After this last pulse, the evolutionary history of conodonts until 
the end of the Triassic is characterised by a constant morphological and diversity 
decline. At the end of the Norian, the tendency to a general simplification of the mor-
phological features may be observed, following a progenetic process started in the 
Early Norian (Mazza and Martínez-Pérez 2015). Even if two different branches 
evolved from the same species Mockina bidentata, all the uppermost Triassic pectini-
form conodonts loose the platform and decrease in dimension (genera Parvigondolella 
and Misikella). This evolutionary decline is similar to that observed at the Permian/
Triassic boundary for genus Hindeodus, which brings analogous characters to genus 
Misikella (stressful environmental conditions). But, in contrast to the Early Triassic, 
this morphological simplification represented by Misikella is no longer successful, 
and after the disappearance of the last platform- bearing conodonts (such as 
Norigondolella), also platformless genus Misikella disappears at the end of Rhaetian.

6.3  The New Conodont Zonation

Conodonts are a leading fossil group for the definition of the biostratigraphic scale 
of Palaeozoic and Triassic, as demonstrated by the GSSP database of the International 
Commission on Stratigraphy (Gradstein et al. 2012). For instance, the stratigraphic 
importance of conodonts is testified by the FAD of Hindeodus parvus to define the 
Induan Stage (=base of the Mesozoic Era), after the end-Permian extinction (Yin 
et al. 2001). During Triassic, however, conodonts are less favoured from the strati-
graphic point of view than other fossil groups such as ammonoids. In the Upper 
Triassic, in particular, the uncertain age attribution and the ambiguous systematic of 
some taxa have created confusion during the time, leading some Lower Mesozoic 
specialists of other disciplines to state that Upper Triassic conodonts are almost 
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stratigraphically useless (e.g. Lucas 2016). But incredible improvements achieved 
in conodont research in the last years have disentangled many of these issues, prov-
ing the reliability of conodonts as a valid and sound biostratigraphic tool for the 
Lower Mesozoic as for the Palaeozoic Era, making conodont a leading fossil group 
also for the Upper Triassic (e.g. Orchard 2016).

The dawn of the modern Upper Triassic conodont taxonomy and systematics 
began in the late 1950s and continued through the 1960s and 1970s, when most of 
the conodont genera and species representing the key taxa for modern Upper 
Triassic conodont biostratigraphy were established and described. The research 
include forms described by Huckriede (1958) (for genus Epigondolella), Budurov 
and Stefanov (1965) (Paragondolella polygnathiformis), Mostler (1967) (Misikella 
hernsteini), Mosher (1968) (genus Paragondolella, Mockina bidentata), Hayashi 
(1968) (genus Metapolygnathus, Metapolygnathus communisti), Budurov (1972) 
(Epigondolella triangularis), Kozur (1972) (genus Mockina, Metapolygnathus par-
vus), and Kozur and Mock (1974) (Misikella posthernsteini). A selection of con-
odont biozonations is here presented. Mosher (1968) subdivided the Carnian and 
the Norian into two zones. Subsequently, Sweet et al. (1971) subdivided the Carnian 
in two and the Norian in three zones. In both the papers the Rhaetian presented no 
zones (Fig. 6.1). In 1972, Kozur proposed the first detailed Upper Triassic conodont 
biozonation for both Tethys and North America, suggesting a total of nine zones. 
However, this biozonation was affected by some biases due to conodont taxonomic 
misinterpretations by the author, as noted by Krystyn (1980). The same biases were 
also reported in the successive conodont biozonation by Kovács and Kozur (1980), 
with ten zones (Fig. 6.1). Successively, Krystyn (1980) proposed a new conodont/
ammonoid integrated biozonation (Fig. 6.1) of 4 zones and 14 subzones, which dif-
fered from that proposed by Kozur (1972) in both the taxonomic concepts and 
ammonoid correlations (as stated in Orchard 1991b). In North America, the first 
accurate conodont biozonations were by Orchard (1983, 1991a, b), followed by 
some successive refinements during the years (Orchard et al. 2000, 2001, 2007b; 
Orchard 2007), which remain valid at present (Fig.  6.2). The most detailed and 
recent zonation for the Carnian-Norian interval is by Orchard (2014), being the 
result of intense studies on the conodonts of the Norian GSSP candidate section of 
Black Bear Ridge (British Columbia, Canada) (Fig.  6.2), in which he described 
numerous new taxa, consisting of 80 new species and 47 morphotypes, and present-
ing a new conodont biozonation, making also important calibrations with ammo-
noids and halobiids (bivalves) in the perspective of correlations with the Tethys. The 
most recent Tethyan conodont biozonation of the Upper Triassic is by Kozur, in 
Moix et al. (2007) modified after Kozur (2003), in which the author proposed a total 
of 17 conodont zones (Fig. 6.3).

The conodont biozonation presented in this work (Figs  6.4, 6.5, 6.9, 6.14) is 
completely original and it is based on personal studies on Tethyan successions and 
comparisons with data from literature on conodonts from the Tethys and North 
America Provinces. All the conodonts present in the biozones are indicated, but in 
Fig. 6.4 only the index species and biostratigraphically most important species are 
reported. For the lower Carnian (Julian) most of the data are from the literature 
whilst for the Tuvalian (upper Carnian) to the Rhaetian we followed the same 
 methodology applied in Orchard (2014). In fact, the biozones proposed are based on 
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phyletic lineages and conodont ranges from continuous pelagic successions with 
highly detailed and tightly spaced sampling. The main sources of data are the GSSP 
Tethyan candidate sections for the base of the Norian (Pizzo Mondello, western 
Sicily, Italy) and the base of the Rhaetian (Pignola-Abriola, southern Appennins, 
Italy), integrated with the conodont distributions from other localites in all the 
Tethyan provinces, taken from the literature.

6.4  The Ladinian/Carnian Boundary and the Carnian Stage

The Carnian was named after the Austrian localities in the Carinthia region (Kärnten) 
and applied for all those strata yielding the ammonoids belonging to genera 
Trachyceras and Tropites (Mojsisovics von Mojsvár 1869). Originally, the base of 
the Carnian stage was placed at the base of the ammonoid Trachyceras aon or 

Fig. 6.3 Most recent Upper Triassic conodont/ammonoid biozonations, integrated also with 
radiometric ages (modified after Moix et al. 2007)
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Fig. 6.4 The new Upper Triassic conodont biozonation proposed in this work and ranges of the 
index species and the most important conodonts for global correlations. The zonation is con-
strained, where possible, with radiometric ages. B. = Budurovignathus, C. = Carnepigondolella, E. 
= Epigondolella, H. = Hayashiella, Me. = Metapolygnathus, Ma. = Mazzaella, Mi. = Misikella, 
Mo. = Mockina, Ne. = Neocavitella, Nh. = Neohindeodella, Ni.? = Nicoraella, No. = Norigondolella, 
P. = Paragondolella, Pa. = Parvigondolella. T1 = Turnover 1, T2 = Turnover 2, T3 = Turnover 3 
sensu Mazza et al. (2010)
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Trachyceras desatoyense zones in Tethys and Canada respectively, but the occur-
rence of genus Trachyceras appeared to be asynchronous (e.g. Mietto and Manfrin 
1999). Thus, the FAD of Daxatina canadensis was proposed (Broglio Loriga et al. 
1999) and accepted to define the base of the Carnian Stage, the GSSP of which is 
placed at the Prati di Stuores type locality in the Dolomites (Northern Italy) (Mietto 
et al. 2012). The Carnian is subdivided into two substages, Julian and Tuvalian. The 
Cordevolian was originally the first substage of the Carnian Stage proposed by 
Mojsisovics von Mojsvár et al. (1895). Kozur (2003) suggested that Cordevolian 
was characterised by a mixture of Ladinian fossils (i.e. conodonts, ammonoids, 
bivalves) that ranged up into the earliest Carnian. Later, the Cordevolian substage 
was included in the Julian by Krystyn (1980), even if Cordevolian is still occasion-
ally used by some authors in their biostratigraphic scales (e.g. Kozur 2003; Moix 
et al. 2007). It is noteworthy that the radiation of the Julian species is not compara-
ble with the large variety of species occurring during the Tuvalian radiation. We 
consider the Julian, defined by the FAD of ammonoid Daxatina canadensis (Mietto 
et al. 2012), as the base of the Carnian stage and of the Upper Triassic (Fig. 6.5). 
The appearance of D. canadensis is very close to the FO of the conodont 
Paragondolella polygnathiformis, suggested as a secondary marker to recognize the 
base of the Carnian (Mietto et al. 2012).
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Fig. 6.5 New conodont/ammonoid integrated biozonation of the latest Ladinian and Carnian 
stages. See caption of Fig. 6.4 for genera abbreviations
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6.4.1  Julian Conodont Biozonation

6.4.1.1  Paragondolella polygnathiformis Interval Zone

Definition: the lower boundary is marked by the FO of the index species 
Paragondolella polygnathiformis (Budurov and Stefanov 1965); the upper bound-
ary by the FO of Mazzaella carnica (Kristan-Tollmann and Krystyn 1975).

Paragondolella polygnathiformis (Fig. 6.6a) descends from P. inclinata (Kovács 
1983; Kozur 1989; Mazza et al. 2010, 2011), by developing an abrupt step at the 
geniculation point, on the anterior platform margins. The transitional forms between 
Paragondolella inclinata/polygnathiformis are documented in the latest Ladinian, 
during a period characterised by a monotonous conodont association persisting also 
in the early Carnian (e.g. Gallet et al. 1998; Broglio Loriga et al. 1999; Balini et al. 

Fig. 6.6 Index conodont species for the Julian (Lower Carnian) zones. Where possible, all the 
three views are provided: (1) upper view, (2) lateral view, (3) lower view. Scale bars are 200 μm. 
(a) Paragondolella polygnathiformis (Budurov and Stefanov) (from Gaetani et  al. 2013). (b) 
Budurovignathus diebeli (Kozur and Mostler) (from Mastrandrea et al. 1998). (c) Mazzaella car-
nica (Kristan-Tollmann and Krystyn) (from Krystyn 1983). (d) Paragondolella praelindae Kozur 
(from Mazza et al. 2012a) (e) Nicorella ? budaensis Kozur and Mock (from Kolar-Jurkovšek and 
Jurkovšek 2010)
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2000; Rigo et al. 2007; Mietto et al. 2012). This conodont assemblage characterises 
the upper portion of the Ladinian Stage (i.e. Longobardian) and is represented 
mainly by species belonging to genera Budurovignathus [e.g. B. deibeli (Fig. 6.6b), 
B. mostleri, B. mungoensis, B. longobardicus], Paragondolella (e.g. P. foliata; P. 
inclinata), Pseudofurnishius (P. murcianus murcianus; P. murcianus preacursor), 
and Gladigondolella (e.g. G. malayensis malayensis, G. tethydis, G. arcuata). 
Paragondolella polygnathiformis is a long-ranged species, present until the mid 
Tuvalian (Upper Carnian) and, more important, it is the ancestor of most of the 
Tuvalian conodonts (e.g. Rigo et al. 2007; Mazza et al. 2010, 2011, 2012a, b). We 
thus suggest P. polygnathiformis Zone as the first conodont Interval Zone for the 
base of the Carnian stage, defined by the first occurrence of the index species.

We subdivided this Zone into two Subzones, which we informally named 
Paragondolella polygnathiformis 1 and 2 Subzones (Fig. 6.5), basing on the disappear-
ance of the Ladinian conodont Budurovignathus relict species at the end of Subzone 1.

Age: The P. polygnathiformis Zone corresponds to the ammonoid Zone Daxatina 
candensis and the lower portion of the Trachyceras aon Zone, at the base of which 
the Ladinian relict species disappear definitely (e.g. Broglio Loriga et  al. 1999; 
Mietto et al. 2012) (Fig. 6.5).

6.4.1.2  Mazzaella carnica Interval Zone

Definition: the lower boundary is marked by the FO of the index species Mazzaella 
carnica (Kristan-Tollmann and Krystyn 1975); the upper boundary by the FO of 
Paragondolella praelindae Kozur (2003).

After the disappearance of the surviving Ladinian conodonts (i.e. 
Budurovignathus) in the Lower Carnian, new species as Mazzaella carnica 
(Fig. 6.6c) and Paragondolella auriformis, along with Ma. baloghi, appear in the 
upper part of the lower Julian. A correlation with ammonoid zonation is not well 
defined, in fact the occurrence of Paragondolella auriformis might fall in both the 
Trachyceras aon and T. aonoides Zones (Krystyn 1983), followed by the occurrence 
of the conodont Ma. carnica.

Age: The disappearance of the conodont Ma. carnica corresponds to the occur-
rence of Austrotrachyceras triadicum, which is a species characterising the base of 
the ammonoid Austrotrachyceras austriacum Zone (Krystyn 1983) (Fig. 6.5). We 
thus suggest that the Ma. carnica Interval Zone corresponds to the upper portion of 
the ammonoid Trachyceras aonoides Zone (Krystyn 1983; Mastandrea 1995), tak-
ing into account that the first occurrence of the P. aurifomis should be better con-
strained within the Trachyceras aon or T. aonoides Zones. Locally, in particular in 
the Buda Mountains, Slovenian and Julian Alps, Nicoraella? budaensis (Fig. 6.6e) 
occurs along with ammonoids of the T. aonoides Zone up to the Julian/Tuvalian 
boundary (e.g. Kozur and Mock 1991; Kolar-Jurkovšek et al. 2005; Kolar-Jurkovšek 
and Jurkovšek 2010).
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6.4.1.3  Paragondolella praelindae Interval Zone

Definition: the lower boundary is marked by the FO of the index species 
Paragondolella praelindae Kozur (2003); the upper boundary by the FO of 
Hayashiella tuvalica Mazza and Rigo, 2012 (in Mazza et al. 2012a).

After the disappearance of Mazzaella carnica, the conodont species 
Paragondolella praelindae (Fig. 6.6d) occurs in the uppermost Julian commonly. 
Paragondolella praelindae occurs with indisputable Julian species, such as 
Gladigondolella spp., Paragondolella inclinata, P. foliata, P. tadpole, Nicoraella 
postkockeli (Rigo et al. 2007, 2012a).

Age: The P. praelindae conodont zone corresponds to the ammonoid 
Austrotrachyceras austriacum Zone (Rigo et al. 2007, 2012a) (Fig. 6.5).

6.4.2  The Julian/Tuvalian Boundary and the Tuvalian 
Substage

The Julian/Tuvalian boundary is traditionally placed with the first occurrence of the 
ammonoid Tropites dilleri (Krystyn 1978; Kovács and Kozur 1980; Tozer 1994; 
Kozur 2003; Lucas 2010). At the Julian/Tuvalian boundary a significant faunal and 
floral turnover occurs (Simms and Ruffell 1989, 1990; Simms et al. 1995), and it 
coincides with important ecological events linked to the so called Carnian Pluvial 
Event (CPE): a warming cycle (Rigo and Joachimski 2010; Rigo et al. 2012b; Trotter 
et al. 2015), an enhanced siliciclastic input in the basins (e.g. Simms and Ruffell 
1989; Rigo et al. 2007), a rise in carbonate compensation depth (CCD) (Rigo et al. 
2007), and a δ13C perturbation (Dal Corso et al. 2012). All these events were proba-
bly linked to the onset of the Wrangellia magmatic province (Furin et al. 2006).

At the base of the Tuvalian substage (Upper Carnian) only few conodont taxa sur-
vive the extinction caused by the CPE (Paragondella praelindae, P.  polygnathiformis, 
Hayashiella nodosa, Neocavitella spp., Cornudina/“Misikella” spp.) (Rigo et  al. 
2007; Mazza et al. 2012b; Chen et al. 2015), and a new radiation arose from P. polyg-
nathiformis (Rigo et al. 2007; Mazza et al. 2012a, b). In the early Tuvalian the specific 
diversity is still low and populations are quite poor, because conodonts are still recov-
ering from the environmental crisis affecting their ecosystem. The faunas are mainly 
represented by P. polygnathiformis, P. noah, Hayashiella tuvalica, H. carpathica, 
Carnepigondolella zoae and the first primitive representatives of C. pseudodiebeli. 
The true evolutionary radiation occurs in the late Tuvalian, when genus 
Carnepigondolella dominates the conodont faunas, originating a great variety of spe-
cies and intraspecific morphologies (see Orchard 1991a, b, 2014; Channell et  al. 
2003; Mazza et al. 2012b; Martínez-Pérez et al. 2014). The peak of the late Carnian 
radiation is reached in the latest Tuvalian, when species belonging to genera 
Epigondolella and Metapolygnathus occur together with genus Carnepigondolella, 
while genus Paragondolella became only a relict Middle Triassic taxon with few 
representatives (P. noah and P. oertlii) (Kozur 2003; Mazza et al. 2012a, b).
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6.4.2.1  Hayashiella tuvalica Interval Zone

Definition: the lower boundary is marked by the FO of the index species Hayashiella 
tuvalica Mazza and Rigo 2012 (in Mazza et al. 2012a); the upper boundary by the 
FO of Metapolygnathus praecommunisti Mazza, Rigo and Nicora (2011).

Hayashiella tuvalica (Fig. 6.7e) is a long ranging species that encompasses all 
the Tuvalian and replaces the old late Carnian range of Hayashiella nodosa, which 
is now morphologically better defined with a range restricted to the Tuvalian (for 
discussion see Moix et al. 2007; Noyan and Kozur 2007; Mazza et al. 2012a; Kiliç 
et al. 2015). Hayashiella nodosa still occurs sporadically in the H. tuvalica Zone, 
together with the Julian species Paragondolella polygnathiformis and P. praelindae 
(Moix et al. 2007; Mazza et al. 2012a; Rigo et al. 2012a). Characteristic of this zone 
is also the Tuvalian conodont association of H. tuvalica with P. noah, H. carpathica, 
C. zoae and the first primitive representatives of C. pseudodiebeli (Channell et al. 
2003; Mazza et al. 2012a).

Age: The Hayashiella tuvalica Zone corresponds to the lower part of the ammo-
noid Tropites dilleri Zone (Fig. 6.5).

6.4.2.2  Metapolygnathus praecommunisti Interval Zone

Definition: the lower boundary is marked by the FO of the index species 
Metapolygnathus praecommunisti Mazza, Rigo and Nicora (2011); the upper 
boundary by the FO of Neocavitella cavitata Sudar and Budurov (1979).

The index species of this zone, Metapolygnathus praecommunisti (Fig. 6.7b), is 
an important Tuvalian conodont because it is the first representative of genus 
Metapolygnathus, sensu Mazza et  al. (2011). Furthermore, the lineage 
Paragondolella noah-Metapolygnathus praecommunisti-Metapolygnathus commu-
nisti permits documenting the transitional forms (morphoclines) between the ances-
tor P. noah and Me. praecommunisti, and thus recognising the first appearance 
datum (FAD) of the descendent species Me. praecommunisti (Mazza et al. 2011), 
according to Remane (2003). The Me. praecommunisti Zone is also characterised 
by the occurrence of P. oertlii and by rich populations of C. zoae, which develops 
into two very distinctive morphotypes (morphotype A and B; Mazza et al. 2012a). 
Furthermore, in this zone the last occurrence of P. polygnathiformis, P. praelindae, 
and Hayashiella nodosa is documented.

Age: Metapolygnathus praecommunisti has been collected in the Santa Croce/
Heiligkreuz Formation (Dolomites—Maron et al. 2017), along with the ammonoid 
Shastites cf. pilari that is typical of the Tropites dilleri Zone (Gianolla et al. 1998; 
De Zanche et al. 2000; Breda et al. 2009; Gattolin et al. 2015; Maron et al. 2017). 
Thus, the base of the Me. praecommunisti Zone falls into the ammonoid Tropites 
dilleri Zone and spans into the ammonoid Anatropites spinosus Zone (Balini et al. 
2010b) (Fig. 6.5). In particular, the occurrence of Me. praecommunisti seems to be 
global, since this species has been collected in the Neotethys, in northern Tethys and 
in North America (Mazza et al. 2011; Orchard 2014).
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Fig. 6.7 Index conodont species for the Tuvalian (Lower Carnian) zones. For each specimen all 
the three views are provided: (1) upper view, (2) lateral view, (3) lower view. Scale bar is 200 μm, 
all the specimens are at the same scale. (a) Carnepigondolella tuvalica Mazza and Rigo (from 
Mazza et  al. 2012a, b). (b) Metapolygnathus praecommunisti Mazza, Rigo and Nicora (from 
Mazza et al. 2011). (c) Neocavitella cavitata (Sudar and Budurov) (from Mazza et al. 2012a). (d) 
Carnepigondolella orchardi (Kozur) (from Mazza et  al. 2012a). (e) Carnepigondolella pseu-
doechinata (Kozur) (from Mazza et al. 2012a). (f) Epigondolella vialovi (Burij) (from Mazza et al. 
2010). (g) Epigondolella quadrata Orchard (sample FNP112, from the Pizzo Mondello section, 
Italy; see Mazza et al. 2012a). (h) Metapolygnathus communisti Hayashi (sample FNP125 from 
the Pizzo Mondello section, Italy; see Mazza et al. 2012a)
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6.4.2.3  Neocavitella cavitata Interval Zone

Definition: the lower boundary is marked by the FO of the index species Neocavitella 
cavitata Sudar and Budurov (1979); the upper boundary by the FO of 
Carnepigondolella orchardi (Kozur 2003).

Neocavitella cavitata (Fig. 6.7c) is a platformless P1 conodont, characterised by 
a densely denticulated and arched blade, with a subterminal cusp, and a large and 
deep basal cavity. Even though the ancestry of this species is doubtful (probably Ne. 
tatrica), we establish a Ne. cavitata Zone as this species is easily recognizable, very 
common and spread in the middle Tuvalian in all the Tethyan province (e.g. Sudar 
and Budurov 1979; Krystyn and Gallet 2002; Channell et al. 2003; Mazza et al. 
2012a). Within this biozone in the Sicani Basin (Pizzo Mondello section), the acme 
and the intraspecific diversification of Hayashiella tuvalica and Metapolygnathus 
praecommunisti is documented. It is notable that Norigondolella carlae n. sp. 
(Fig.  6.8) has its entire range in this Zone (see Systematics chapter below). 
Norigondolella carlae was illustrated for the first time (but not described) as 
Gondolella cf. navicula by Krystyn in 1980, from Tuvalian II strata at Feuerkogel 
(Austria). It was also reported as Norigondolella cf. navicula in Balini et al. (2010b), 
and Mazza et al. (2012a, b) or in open nomenclature in Nicora et al. (2007) and Rigo 
et al. (2007). Furthermore, Metapolygnathus dylani has its FAD in the middle part 
of this Zone, lower than documented in Black Bear Ridge. The appearance of Me. 
dylani occurs along the phylogenetic lineage of Me. praecommunisti-Me. commu-
nisti, being Me. dylani evolved from a morphotype of Me. praecommunisti. Thus, in 
the Tethys Me. dylani appears earlier than in North America.

Age: The Neocavitella cavitata Zone falls in the lower part of the ammonoid 
Anatropites spinosus Zone, in particular in the mid Discotropites plinii subzone 
(sensu Balini et al. 2012) (Fig. 6.5).

6.4.2.4  Carnepigondolella orchardi Interval Zone

Definition: the lower boundary is marked by the FO of the index species 
Carnepigondolella orchardi (Kozur 2003); the upper boundary by the FO of 
Epigondolella vialovi (Buryi 1989).

Carnepigondolella orchardi (Fig.  6.7d) is the direct descendant of C. pseu-
dodiebeli (Kozur 2003; Mazza et al. 2012b), the morphocline of which allows to 
define the first appearance datum of C. orchardi. At the base of the C. orchardi 
Zone, the conodonts C. angulata, C. samueli and Metapolygnathus mersinensis 
occur together, and they represent an important evolutionary step of the Carnian 
carnepigondolellids, which is characterised by the development of sharp denticles 
on the platform lateral margins. These become thinner and sub-parallel, while the 
posterior platform margin turns out to be more squared. Furthermore, typical C. 
pseudodiebeli reaches its acme, and it is characterised by sharp nodes in the number 
of four-five, growing all along the lateral platform margins (Plate 2, Figs. 8–10 in 
Mazza et al. 2012a). Instead, in the upper part of the C. orchardi Zone, species with 
very reduced platform length, covering half or less than half of the entire element, 
such in C. pseudoechinata, C. spenceri, and Epigondolella heinzi, first occur (Mazza 
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et  al. 2012a; Orchard 2014). These species represent the beginning of another 
important evolutionary trend of the Upper Triassic conodonts, which is the shorten-
ing of the platform and the forward shifting of the pit (Mazza et al. 2012a). The 
appearance of morphologies with a reduced platform is a global event, because it is 
documented in the upper Tuvalian both in the Tethys and in North America (Mazza 
et al. 2012a; Orchard 2014). Particularly significant species are C. pseudoechinata 
(Fig. 6.7e) and C. spenceri, since their occurrence is reported in Black Bear Ridge 
(BBR) section (British Columbia, Canada) in the C. spenceri Subzone (Orchard 
2014) and in the tethyan Pizzo Mondello (PM) section (Sicily, Italy). The occur-
rences of E. heinzi, together with E. miettoi and primitive E. triangularis at the top 
of the zone, mark the beginning of the Epigondolella genus, even if the representa-
tives of this genus are still scarce.

Age: The C. orchardi Zone represents the upper part of the ammonoid Discotropites 
plinii subzone (lower Anatropites spinosus Zone sensu Balini et al. 2012).

6.4.2.5  Epigondolella vialovi Interval Zone

Definition: the lower boundary is marked by the FO of the index species 
Epigondolella vialovi (Buryi 1989); the upper boundary by the FAD of 
Metapolygnathus communisti Hayashi (1968).

The more common conodont of this zone  is Epigondolella vialovi (Fig. 6.7f), 
established as Metapolygnathus vialovi by Buryi in 1989, but never really consid-
ered by other specialists, who assigned E. vialovi to other species such as E. abnep-
tis, E. triangularis or E. quadrata (e.g. De Capoa-Bonardi 1984; Channell et  al. 
2003; Celarc and Kolar-Jurkovšek 2008; Mazza et  al. 2010). Only recently, this 
species has been revaluated and its occurrence documented both in the Tethys and 
in North America (Mazza et al. 2010, 2012a; Karádi et al. 2013; Orchard 2014). In 
this zone Epigondolella heinzi, E. miettoi, and Carnepigondolella pseudoechinata 
are very abundant (at least in the Sicani Basin). The upper part of the E. vialovi Zone 
is characterised by the occurrences of E. quadrata (Fig. 6.7g), E. rigoi, and E. uni-
formis (Mazza et al. 2012a, b; Mazza and Martínez-Pérez 2015) (Figs. 6.4 and 6.5). 
This zone represents thus an important faunal turnover in all the Tethys, described 
as T1 (=Turnover 1) in Mazza et al. (2010). In T1, the carnepigondolellids become 
scarcer until they completely disappear towards the upper boundary of the zone, 
except for C. pseudoechinata. Contemporaneously, rich populations of the genus 
Epigondolella replace the carnepigondolellids (Mazza et al. 2010).

Age: The E. vialovi Zone represents the lower part of the ammonoid Gonionotites 
italicus subzone, which is the upper Anatropites spinosus Zone sensu Balini et al. (2012).

6.4.2.6  Metapolygnathus communisti Interval Zone

Definition: the lower boundary is marked by the FO of the index species 
Metapolygnathus communisti Hayashi (1968); the upper boundary by the FO of 
Metapolygnathus parvus Kozur (1972).
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This is the last conodont zone of the Carnian and it marks the beginning of the 
rise of the Metapolygnathus genus over the other genera (Carnepigondolella and 
Epigondolella), reaching its acme at the base of the following Me. parvus Zone. The 
documentation of the transitional species between Me. praecommunisti and Me. 
communisti identified the FAD of Me. communisti (Fig. 6.7h) during the mass pro-
liferation of the metapolignathids. In his Fig. 46, Orchard (2014) described seven 
morphotypes belonging to Metapolygnathus ex gr. communisti of the Black Bear 
Ridge section that can be referred to the Tethyan species Me. praecommunisti and 
Me. communsti of Mazza et  al. (2011, 2012a). In particular, morphotypes 1–3 
(Fig.  46, 1–9) are referable to Me. praecommunisti; morphotypes 4–5 (Fig.  46, 
10–18) to transitional forms between Me. praecommunisti and Me. communisti; and 
morphotypes 6–7 (Fig. 46, 19–32) to true Me. communisti. Since the phylogenetic 
lineage between Me. precommunisti-communisti is documented in both the Tethys 
and North America, the FAD of Me. communisti can be considered a synchronous 
event and the Me. communisti Zone, which corresponds to the upper part of the 
North American Acuminatella angusta—Metapolygnathus dylani Zone (Orchard 
2014), can be useful for global correlation.

The Me. communisti Zone is almost a monogeneric interval, being composed 
mainly by species belonging to the Metapolygnathus genus that are Me.  mersinensis, 
Me. communisti, Me. mazzai (= Metapolygnathus cf. primitius in Mazza et  al. 
2012a, b), Me. dylani, and Me. praecommunisti that disappears in the lower part of 
this zone. Occurrences of Epigondolella vialovi, E. quadrata, E. rigoi and E. trian-
gularis are sporadic.

Age: The range of the Me. communisti Zone is restricted to the upper part of the 
ammonoid Gonionotites italicus subzone, corresponding to the upper Anatropites 
spinosus Zone sensu Balini et al. (2012) (Fig. 6.5).

6.5  The Carnian/Norian Boundary and the Norian Stage

The Norian Stage (Fig. 6.9) is named after the Roman province of Noria in Austria 
(Mojsisovics von Mojsvár 1869) and reviewed by Tozer in 1984, who assigned its 
base to the first occurrence of ammonoid Stikinoceras kerri in Canada, overlying the 
Klamathites macrolobatus Zone (Silberling and Tozer 1968). The S. kerri Zone is 
considered approximately coeval with the Tethyan ammonoid Guembelites jandianus 
ammonoid zone (Krystyn 1980; Orchard et al. 2000). The Norian Stage is subdivided 
in three substages by Mojsisovics von Mojsvár et al. (1895) that are in stratigraphic 
order: (1) Lacian that was the name of the Salzkammergut region (northern Austrian 
Alps) during Roman time; (2) Alaunian after Alaun tribe from the Hallein region 
(Austria), the base of which is defined by the Tethyan ammonoid Cyrtopleurites bicre-
natus; and (3) Sevatian, after the name of the Celtic tribe, the base of which is marked 
by the occurrences of the ammonoids Sagenites quinquepunctatus or Gnomohalorites 
cordilleranus in the Tethys and North America respectively. Informally, Lacian and 
Alaunian are subdivided into 1, 2 and 3, while Sevatian is split into 1 and 2.
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6.5.1  Lacian Conodont Biozonation

6.5.1.1  Metapolygnathus parvus Interval Zone

Definition: the lower boundary is marked by the FO of the index species 
Metapolygnathus parvus Kozur (1972); the upper boundary by the FO of 
Carnepigondolella gulloae Mazza and Rigo, 2012 (in Mazza et al. 2012a).

This is the first zone of the Norian and its base approximates the second important 
conodont faunal turnover of the Late Triassic, named as T2 (=Turnover 2) by Mazza 
et al. (2010), characterised by a great abundance of genus Metapolygnathus species 
over the epigondolellids and carnepigondolellids (Mazza et al. 2010), and well docu-
mented in all the Tethys (Krystyn and Gallet 2002; Mazza et al. 2012a, b; Mazza and 
Krystyn 2013, 2015; Karádi and Mazza 2015). Metapolygnathus parvus (Fig. 6.10a) 
is the last representative of the lineage Paragondolella noah -Me. praecommunisti- 
Me. dylani-Me. parvus and it is thus easily possible to recognise the FAD of Me. 
parvus documenting the transitional forms of the Me. dylani/parvus morphocline. The 
conodont species Me. parvus was first defined by Kozur in 1972, and successively 
amended by Noyan and Kozur in 2007 as those forms similar to Me. communisti, but 
characterised by a shorter platform, the absence of nodes on the anterior platform 
margins and with a more forwarded pit (Fig. 6.11), indicating thus the strict phyloge-
netic relationship with Me. dylani (see also Mazza et al. 2012b). Orchard (2014) iden-
tified and included the species described and illustrated as “advanced forms of Me. 

Fig. 6.9 New conodont/ammonoid integrated biozonation of the Norian stage. See caption of 
Fig. 6.4 for genera abbreviations
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praecommunisti” by Mazza et al. (2011) as typical Me. dylani, recognizing thus the 
presence of Me. dylani at Pizzo Mondello section. This important occurrence of Me. 
dylani permits to document also in the Tethys the phylogenetic lineage between the 

Fig. 6.10 Index conodont species for the Lacian (Lower Norian) zones. For each specimen all the 
three views are provided: (1) upper view, (2) lateral view, (3) lower view. Scale bar is 200 μm, all 
the specimens are at the same scale. (a) Metapolygnathus parvus Kozur (sample NA40a of the 
Pizzo Mondello section, Italy; see Mazza et al. 2012a). (b) Carnepigondolella gulloae Mazza and 
Rigo (from Mazza et al. 2012a). (c) Norigondolella trinacriae Mazza, Cau and Rigo (from Mazza 
et al. 2012b). (d) Epigondolella rigoi Noyan and Kozur (from Mazza and Martínez-Pérez 2015). 
(e) Epigondolella quadrata Orchard (from sample NA60 of the Pizzo Mondello section, Italy; see 
Mazza et al. 2012a)

6 New Upper Triassic Conodont Biozonation of the Tethyan Realm



210

F
ig

. 6
.1

1 
C

om
pa

ri
so

n 
be

tw
ee

n 
si

x 
sp

ec
im

en
s 

of
 M

et
ap

ol
yg

na
th

us
 p

ar
vu

s 
K

oz
ur

 f
ro

m
 th

re
e 

di
ff

er
en

t a
re

as
: N

or
th

er
n 

Te
th

ys
, N

eo
te

th
ys

 a
nd

 N
or

th
 A

m
er

ic
a.

 
M

or
ph

ol
og

ic
al

ly
 s

im
ila

r 
sp

ec
im

en
s 

ar
e 

al
ig

ne
d 

ve
rt

ic
al

ly
 t

o 
fa

ci
lit

at
e 

co
m

pa
ri

so
ns

 (
a–

b,
 c

–d
, 

e–
f)

. 
T

he
 s

pe
ci

m
en

s 
fr

om
 N

eo
te

th
ys

 a
re

 f
ro

m
 M

az
za

 a
nd

 
M

ar
tín

ez
-P

ér
ez

 2
01

5 
an

d 
w

er
e 

cl
as

si
fie

d 
as

 “
M

. c
om

m
un

is
ti

 m
or

ph
ot

yp
e 

w
ith

ou
t n

od
es

” 
th

at
, a

cc
or

di
ng

 to
 th

e 
de

sc
ri

pt
io

n 
em

en
de

d 
in

 N
oy

an
 a

nd
 K

oz
ur

 2
00

7,
 

co
rr

es
po

nd
s 

to
 t

ru
e 

M
. p

ar
vu

s.
 (

a)
 N

or
th

er
n 

Te
th

ys
 (

fr
om

 N
oy

an
 a

nd
 K

oz
ur

 2
00

7,
 fi

g.
 7

.1
).

 (
b)

 N
eo

te
th

ys
 (

fr
om

 M
az

za
 a

nd
 M

ar
tín

ez
-P

ér
ez

 2
01

5,
 P

l. 
6,

 fi
g.

 
24

).
 (

c)
 N

eo
te

th
ys

 (
fr

om
 M

az
za

 a
nd

 M
ar

tín
ez

-P
ér

ez
 2

01
5,

 P
l. 

6,
 fi

g.
 2

3)
. (

d)
 N

or
th

 A
m

er
ic

a,
 f

ro
m

 O
rc

ha
rd

 2
01

4,
 fi

g.
 4

8,
 1

4–
16

; (
e)

 N
eo

te
th

ys
 (

fr
om

 M
az

za
 

an
d 

M
ar

tín
ez

-P
ér

ez
 2

01
5,

 P
l. 

6,
 fi

g.
 2

5)
. (

f)
 N

or
th

 A
m

er
ic

a 
(f

ro
m

 O
rc

ha
rd

 2
01

4,
 fi

g.
 4

8,
 1

7–
19

).
 S

ca
le

 b
ar

s 
ar

e 
20

0 
μm

M. Rigo et al.



211

ancestor Me. dylani and descendant Me. parvus (Mazza et  al. 2011; Mazza et  al. 
2012b), allowing thus to recognize the FAD of Me. parvus. In North America, Orchard 
(2014) described three different morphotypes of Me. parvus, named alpha, beta and 
gamma from the Metapolygnathus ex gr. parvus population. The morphotype alpha of 
Metapolygnathus parvus by Orchard (2014, Fig. 48, 1–25) corresponds to the Tethyan 
Me. parvus (Fig. 6.11), which first occurs above the FAD of its precursor Me. dylani, 
both in PM and BBR sections. The appearance of Me. parvus is thus a synchronous 
bioevent in both Tethyan and North America realms and it can be thus considered as 
a real First Appearance Datum. In fact, in the two condidate sections Pizzo Mondello 
and Black Bear Ridge, the FAD of Me. parvus occurs not only along its phylogenetic 
lineage but also homotaxially between the last occurrence (LO) of the last Carnian 
ammonoid genus Anatropites and the first occurrence (FO) of the first Norian ammo-
noid genus Dimorphites or Geumbelites in Tethys or North America respectively 
(Balini et al. 2010b; Orchard 2014). Recently, the STS (Subcommission on Triassic 
Stratigraphy) has also recognised the occurrence of the bivalve Halobia austriaca as 
another possible primary marker event to define the base of the Norian Stage (Balini 
et al. 2010a, 2012; McRoberts and Krystyn 2011; Levera 2012). At both the GSSP 
candidate sections PM and BBR, the bivalve Halobia austriaca occurs just above the 
occurrence of Me. parvus (Balini et al. 2010b; Levera 2012; Orchard 2014). However, 
the occurrence of H. austriaca is also documented below the FAD of Me. parvus and 
from Carnian strata (e.g. Levera 2012 and references herein), and from the Carnian 
ammonoid macrolobatus Zone as reported by Orchard (2014). Furthermore, the FAD 
of Metapolygnathus parvus is documented close to the positive δ13Ccarb trend recog-
nized in both PM and the BBR sections (Muttoni et al. 2004, 2014; Mazza et al. 2010; 
Onoue et al. 2015). It should be also noted that independent of the possible primary 
bioevents suggested to define the GSSP, which are the FAD of Me. parvus or the 
occurrence of the bivalve H. austriaca, the typically Carnian ammonoid genus 
Anatropites would range up into the Norian.

Thus, we propose the Me. parvus Interval Zone as the first conodont biozone for 
the Lacian and the FAD of Metapolygnathus parvus as the primary marker bioevent 
to define the base of the Norian (Figs.  6.4 and 6.9), as previously suggested by 
Nicora et al. (2007) and Orchard (2013). Metapolygnathus parvus is easily recog-
nizable in lineage from its ancestor Me. dylani (another global species easy to iden-
tify), and its occurrence is homotaxial between indisputably Carnian (below) and 
Norian (above) ammonoids in both the two GSSP candidate sections PM and BBR.

In the Me. parvus Interval Zone, the conodont species Me. communisti, Me. mul-
tinodosus, Me. parvus, Me. echinatus, Me. mazzai, and M. linguiformis reach their 
acme. Epigondolella quadrata, E. rigoi, E. triangularis, E. uniformis, and E. vialovi 
also occur. At the very base of the Me. parvus Interval Zone, the species Me. dylani 
has its last occurrence.

6.5.1.2  Carnepigondolella gulloae Taxon-range Zone

Definition: taxon range distribution of the index species Carnepigondolella gulloae 
Mazza and Rigo, 2012 (in Mazza et al. 2012a).
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Close to the first occurrence of Carnepigondolella gulloae (Fig. 6.10b), the dis-
appearance of the metapolignathids is documented in the Tethyan Realm. In fact, 
the base of this zone approximates the third important conodont faunistic turnover 
of the Tethys, defined as T3 (=Turnover 3) by Mazza et al. (2010), in which almost 
all the metapolygnathids disappear just above the base of the zone, except for 
Metapolygnathus mazzai, which ranges up higher  into the C. gullaoe Zone  (Fig. 
6.4). Metapolygnathids are replaced by a new rich conodont population, probably 
belonging to a new genus, which shows intermediate morphologies between the 
Tuvalian carnepigondolellids and paragondolellids. These characters are a more 
forward position of the pit and a more posteriorly oriented platform development, 
often associated with the occurrence of nodes behind the cusp, as stated in Mazza 
et al. (2012b). The forms belonging to this population were assigned in the past to 
Metapolygnathus communisti B by Krystyn (1980), but this species was never for-
mally established nor described. Thus, Mazza et al. (2012a, b) redescribed partially 
the old Me. communisti B population, splitting Me. communisti B into two new spe-
cies, Carnepigondolella gulloae and Norigondolella trinacriae (Fig.  6.10c). The 
occurrence of No. trinacriae is very close to the base of the C. gulloae Zone 
(Fig. 6.4). The described turnover and the occurrence of this population can be eas-
ily recognized in all the Tethys synchronously (Karádi et  al. 2013; Mazza and 
Krystyn 2013, 2015; Muttoni et al. 2014). Genus Norigondolella is instead facies 
controlled (Trotter et al. 2015) and not all the species belonging to this genus are 
globally documented. Furthermore, E. triangularis has been proved to occur below 
the C. gullaoe Zone, even if as primitive forms (Mazza and Martínez-Pérez 2016). 
Orchard (2014) referred the forms belonging to the C. gullaoe-No. trinacriae popu-
lation to genus Primitella, a generic name not adopted here due to unclear diagnos-
tic features. Contemporaneous with the occurrence of Primitella species (sensu 
Orchard 2014), the metapolygnathids slowly disappear, recording a similar con-
odont turnover T3 documented in the Tethys (Mazza et al. 2010). The stratigraphic 
range of Primitella units has been documented in the uppermost Tuvalian but they 
became predominant in the first Norian conodont biozone Pr. asymmetrica—
Norigondolella sp. of Orchard (2014) at Black Bear Ridge, easily correlatable to the 
Tethyan C. gulloae Zone. In the C. gulloae Zone, the metapolygnathids disappear 
but the epigondolellids proliferate: for instance, E. spatulata has its first occurrence 
while E. uniformis and E. triangularis become very abundant.

Age: The C. gulloae Zone corresponds to the ammonoid the Dimorphites selec-
tus subzone, which is the first subzone of the Guembelites jandianus Zone sensu 
Balini et al. (2012) (Fig. 6.9).

6.5.1.3  Epigondolella rigoi-Epigondolella quadrata Interval Zone

Definition: the lower boundary is the LO of Carnepigondolella gulloae, the upper 
boundary is the FO of Mockina spiculata. The zone is characterised by the predomi-
nant association of the species Epigondolella rigoi Noyan and Kozur (2007) and 
Epigondolella quadrata (Orchard 1991b).
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Both in the Tethys and in North America, the mid and upper part of the Lacian 
corresponds to a stratigraphic interval characterised by an intense proliferation of 
evolved epigondolellids with advanced morphological characters (Mazza et  al. 
2012a, b; Orchard 2014; Mazza and Martínez-Pérez 2015). The diagnostic features 
of these species are a centrally or anteriorly located pit, a long free blade, a carinal 
node growing behind the cusp, and the occurrence of large and high denticles on the 
platform lateral platform margins and sometimes on the posterior one. In North 
America these kinds of epigondolellids are considered by Orchard (2014) as epig-
ondolellids sensu stricto where they seem to first occur above the occurrence of 
Metapolygnathus ex gr. parvus. In the Tethys the first representatives of Epigondolella 
occur already in the upper Tuvalian (i.e. below the FAD of Me. parvus) and no first 
occurrences of epigondolellids are documented in the upper part of the 
Carnepigondolella gulloae Zone. At Pizzo Mondello section it is possible to iden-
tify a conodont association given by massive presence of E. quadrata, E. rigoi, E. 
uniformis, and E. triangularis. Epigondolella spatulata also occurs, along with the 
last representatives of E. viavoli (Mazza et al. 2012a). This corresponds to the pro-
fileration documented by Orchard (2014) at BBR.  In particularly, data from the 
Pizzo Mondello section, indicate that E. rigoi (the more numerous) (Fig. 6.10d) and 
E. quadrata (Fig. 6.10e) are the most abundant species, thus giving the name to the 
E. rigoi-E. quadrata biozone. When the conditions are favorable (Trotter et  al. 
2015), in the E. rigoi-E. quadrata Zone representatives of the genus Norigondolella, 
like N. navicula and N. halstattensis, also occur in the Tethys realm (Krystyn and 
Gallet 2002; Channell et al. 2003; Kozur 2003).

Age: This zone resembles the ammonoid Malayites paulckei Zone (sensu Balini 
et  al. 2012), the Juvavites magnus Zone (sensu Balini et  al. 2012), and the 
Cyrtopleurites bicrenatus Zone (sensu Krystyn in Zapfe 1983) (Donofrio et  al. 
2003) (Fig. 6.9). Similarly, in North America, these species occur in the ammonoid 
Malayites dawsoni, Juvavites magnus and Drepanites rutherfordi zones (e.g. 
Orchard 1991a; Orchard and Tozer 1997).

6.5.2  The Lacian/Alaunian Boundary and the Alaunian 
Substage

The base of the Alaunian substage is traditionally marked by the first occurrence of 
the ammonoid Cyrtopleurites bicrenatus (Krystyn 1973; Kozur 2003; Lucas 2010). 
The usage of open nomenclature and oversimplified concept of conodont species 
together with the lack of proper illustration of the lower and mid Alaunian speci-
mens affected the definition and subdivision of the Alaunian substage in conodont 
biozones. This issue is in part attributable to the studies of Alaunian successions that 
are condensed (e.g. Gallet et  al. 1992, 2000); brecciated (Channell et  al. 2003); 
disturbed with allodapic blocks (Gallet et al. 1992); not well exposed (Mazza et al. 
2012a; Karádi 2017) or where the Alaunian interval is incomplete (Gallet et  al. 
2000; Moix et al. 2007; Bertinelli et al. 2005; Rigo et al. 2012a). In most of the stud-
ies, Alaunian conodonts of the Tethyan Realm were assigned only to three species, 
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Epigondolella abneptis, “Epigondolella” postera and “Epigondolella” multidentata 
(e.g. Krystyn 1973; Cafiero and De Capoa-Bonardi 1981; Wang and Dong 1985; 
Mao and Tian 1987; Wang and Wang 1990; Gallet et al. 1992, 1993, 1996). Orchard 
(1991a, b) established several new species from middle Norian strata of the Canadian 
Cordillera (e.g. Epigondolella carinata, E. elongata, E. matthewi, E. serrulata, E. 
spiculata, E. tozeri), all of which are also present in the Tethys (Channell et  al. 
2003; Donofrio et al. 2003; Kozur 2003; Rigo et al. 2005, 2012a, b; Karádi et al. 
2016, Karádi 2017). “Epigondolella” multidentata is restricted to North America 
(Kozur 2003), while Epigondolella abneptis is an ambiguous species in which the 
lower Alaunian epigondolellids E. rigoi, E. uniformis, E. triangularis and E. spatu-
lata are gathered. Furthermore, due to the small size and neotenic features of 
Mockina postera, many juveniles or subadults of other mockinae were determined 
as “Epigondolella” postera. Recent studies revealed that the diversity of middle 
Norian conodont species in the Tethyan Realm is much higher (Ji et al. 2003; Karádi 
et al. 2016, Karádi 2017) and a palaeontological revision needs to be carried out 
along with clear conodont illustrations and detailed range charts.

6.5.2.1  Mockina spiculata Interval Zone

Definition: the lower boundary is marked by the FO of the index species Mockina 
spiculata (Orchard 1991b); the upper boundary by the FO of Mockina postera 
(Kozur and Mostler 1971).

In North America the Mockina spiculata Zone characterises the lower Alaunian 
following the Orchardella multidentata Zone (e.g. Orchard 1991a, b, 2010). 
However, Orchardella multidentata is absent in the Tethys and the FO of Mockina 
spiculata is not yet well calibrated with other biostratigraphically important fossil 
groups. In 2003, Kozur established the condont species Mockina medionorica, 
index species of the homonymous biozone, which should correspond to the North 
American Orchardella multidentata Zone. Mockina medionorica was described 
from the uppermost Lacian to middle Alaunian brecciated interval of the Silická 
Brezová section (Channell et al. 2003; Kozur 2003). However, Mo. medionorica is 
not easy to recognize because it is very similar to the juvenile specimens of other 
middle Norian mockinae and its occurrence is rather sporadic (Kovács and Kozur 
1980; Moix et al. 2007). We thus prefer to avoid using Mo. medionorica as zonal 
marker and we suggest Mo. spiculata (Fig. 6.12a) as index species for the lower 
Alaunian, because it is easily recognizable, and it commonly appears in the entire 
Tethys (Ji et al. 2003; Rigo et al. 2005, 2012a; Karádi 2017) and North America 
(Orchard 1991a, b). In the Mockina spiculata Zone, Epigondolella rigoi, E. spatu-
lata, E. transitia, E. triangularis, and E. uniformis are common, while Mockina 
matthewi and Mo. tozeri are scarce (Ji et al. 2003; Rigo et al. 2005, 2012a, b; Karádi 
2017). In the lower part of this zone Epigondolella quadrata disappears.

Age: In the Tethys, the Mockina spiculata Zone corresponds to the ammonoid 
Himavavites watsonii subzone, which is the lower part of the ammonoid Himavavites 
hogarti Zone (sensu Krystyn in Zapfe 1983; Donofrio et al. 2003; Rigo et al. 2005) 
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(Fig.  6.9), and to the lower Himavavites columbianus Zone in North America 
(Orchard et al. 1991a, b; Donofrio et al. 2003).

6.5.2.2  Mockina postera Interval Zone

Definition: the lower boundary is marked by the FO of the index species Mockina 
postera (Kozur and Mostler 1971); the upper boundary by the FO of Mockina ser-
rulata (Orchard 1991b).

The Mockina postera Zone is the second conodont zone of the Alaunian. Mockina 
postera (Fig. 6.12b) is abundant all over the Tethys and easily to identify. However, 
its small size caused incorrect determinations in many cases. To avoid misinterpre-
tations, it is very important to assign to Mo. postera only the original characters that 
are an asymmetric platform with a pointed posterior end, a prolonged keel with a 
pointed end, two denticles on one anterior platform margin and one denticle on the 
other and a short posterior carina that never reaches the end of the platform. The last 

Fig. 6.12 Index conodont species for the Alaunian (Middle Norian) zones. For each specimen all 
the three views are provided: (1) upper view, (2) lateral view, (3) lower view. Scale bar is 200 μm. 
(a) Mockina spiculata Orchard (from Karádi 2017). (b) Mockina postera (Kozur and Mostler) 
(from Karádi 2017). (c) Mockina serrulata Orchard (from Orchard 1991b); (d) Mockina slovaken-
sis (Kozur) (from Belvedere et al. 2008)
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occurrences of Epigondolella rigoi, E. triangularis, E. uniformis are in the Mockina 
postera Zone. Mockina spiculata and Mo. tozeri are still present.

Age: In Tethys, the Mockina postera Zone corresponds to the upper part of the 
ammonoid Himavavites hogarti Zone (sensu Krystyn in Zapfe 1983; Donofrio et al. 
2003; Rigo et al. 2005), and to the mid Himavavites columbianus Zone in North 
America (Fig. 6.9) (Orchard 1991a, b; Donofrio et al. 2003).

6.5.2.3  Mockina serrulata Interval Zone

Definition: the lower boundary is marked by the FO of the index species Mockina 
serrulata (Orchard 1991b); the upper boundary by the FO of Mockina slovakensis 
(Kozur 1972).

The Mockina serrulata Zone represents the third conodont zone of the Alaunian 
and its index species is documented throughout the Tethys (e.g. Pl. 1, Fig. 10  in 
Wang and Wang 1990; Ishida and Hirsch 2001; Rigo et  al. 2005, 2012a). 
Characteristic of this zone is the presence of E. spiculata (the range of which ends 
in the middle part of the zone), Mo. postera (which ranges until the upper part of the 
zone), and Mo. elongata (the distribution of the latter is not well defined) and the 
FAD of Mo. zapfei. In the upper part of the Mo. serrulata Zone, “Mockina” vrien-
lyncki is common. This species is characterised by the absence of a platform around 
a long blade but this is probably derived from Mo. serrulata (Fig. 6.12c), which 
shares the same blade and carina profile by losing entirely the platform.

Age: In the Tethys, the Mockina serrulata Zone corresponds to the lower part of 
the ammonoid Halorites macer Zone (Fig.  6.9) (sensu Krystyn in Zapfe 1983; 
Donofrio et al. 2003; Rigo et al. 2005), and to the upper Himavavites columbianus 
Zone in North America (Orchard 1991a, b; Donofrio et al. 2003).

6.5.2.4  Mockina slovakensis Interval Zone

Definition: the lower boundary is marked by the FO of the index species Mockina 
slovakensis (Kozur 1972); the upper boundary by the FO of Mockina bidentata 
(Mosher 1968).

In the Tethys, Mockina slovakensis (Fig. 6.12d) directly descends from E. praes-
lovakensis Kozur, Masset and Moix (in Moix et al. 2007) and it is very common in 
the uppermost part of the Alaunian and documented in open sea environments 
(Martini et  al. 2000; Moix et  al. 2007; Rigo et  al. 2012a; Mazza et  al. 2012a), 
restricted basins (e.g. Budai and Kovács 1986; Kovács and Nagy 1989; Roghi et al. 
1995; Donofrio et al. 2003) and even in carbonate platform sediments (Belvedere 
et al. 2008). Even though in the northern Tethys, Mockina slovakensis seems to be 
rather rare in pelagic facies (Channell et al. 2003), we describe the Mockina slovak-
ensis Zone because its index species is easy to identify and almost occurred in lin-
eage with its predecessor and mostly because it is an opportunist species thriving in 
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all marine environments, making this species a good biostratigraphic tool for also 
spatial correlation.

The zone is characterised by the presence of Mo. serrulata (which ends in the 
middle part) Mo. zapfei, “Mockina” vrienlyncki and Epigondolella 
praeslovakensis.

Age: In the Tethys, the Mockina slovakensis Zone corresponds to the upper part 
of the ammonoid Halorites macer Zone (Fig. 6.9) (sensu Krystyn in Zapfe 1983; 
Donofrio et al. 2003).

6.5.3  The Alaunian/Sevatian Boundary and the Sevatian 
Substage

For the uppermost Triassic, conodonts and radiolarians are the main biostratigraphic 
tools for regional and global correlations (e.g. Carter and Orchard 2007; Giordano 
et al. 2010, 2011; Rigo et al. 2012a, 2016; Bertinelli et al. 2016).

During this time interval, the overall trend recorded by conodonts is character-
ised by general size decrease and retention of juvenile conditions (progenesis). The 
trend is well illustrated by the Mockina (=Epigondolella) bidentata population 
(Orchard 1983, pp. 189–190), which preserves only a single pair of sharp denticles, 
sometimes with tiny accessory nodes. Adult specimens of Mo. bidentata look simi-
lar to the small growth stages of the lower/middle Norian Epigondolella quadrata 
and E. triangularis (Orchard 1983, 1991a; Mazza and Martínez-Pérez 2016), which 
do not reach the same size, however, but still present juvenile features (i.e. poorly- 
fused carina denticles).

6.5.3.1  Mockina bidentata Interval Zone

Definition: the lower boundary is marked by the FO of the index species Mockina 
bidentata (Mosher 1968); the upper boundary by the FO of Parvigondolella 
andrusovi Kozur and Mock, 1972.

Mockina bidentata (Fig. 6.13a) is the index species of the homonymous zone, the 
occurrence of which marks the base of the zone, in accordance with Kozur and 
Mock (1991) and Orchard (1991a). Even if Mockina bidentata is the typical Sevatian 
conodont, some specimens have been collected associated with undoubtedly 
Rhaetian conodonts (i.e. Misikella posthernsteini) (e.g. Kozur and Mock 1991; 
Orchard 1991a; Rigo et al. 2005, 2012a, 2016). Noteworthy, Mo. bidentata is the 
common ancestor of most of the latest Triassic conodont taxa, such as genera 
Parvigondolella (Kozur and Mostler 1971; Kozur 1989; Moix et  al. 2007) and 
Misikella (Figs. 5-1a,b in Rigo et al. 2005). The zone is characteriszed by the occur-
rence of Mockina slovakensis, Mo. zapfei, “Mockina” vrienlyncki and Mo. 
bidentata.
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Age: The Mo. bidentata Zone commonly defines the substage Sevatian 1 (lower 
Sevatian) and it is correlated to the lower portion of the Tethyan ammonoid Sagenites 
quinquepunctatus Zone (Fig. 6.9) (e.g. McRoberts et al. 2008; Rigo et al. 2016) and 
the lowermost part of the Gnomohalorites cordilleranus Zone from North America 
(Orchard 1991a). Mockina bidentata Zone corresponds also to the lower part of the 
radiolarian Betraccium deweveri Zone (Giordano et al. 2010), applicable both for 
Tethyan and North America domains (Carter 1993).

6.5.3.2  Parvigondolella andrusovi Interval Zone

Definition: the lower boundary is marked by the FO of the index species 
Parvigondolella andrusovi Kozur and Mock, 1972; the upper boundary by the FO 
of Misikella hernsteini (Mostler 1967).

The top of the Mo. bidentata Zone is commonly placed with the first occurrence 
of Misikella hernsteini (e.g. Kozur and Mock 1991), a descendant of Mockina 
bidentata (transitional form illustrated in Rigo et al. 2005), which names the overly-
ing biozone (i.e. Misikella hernsteini Zone). However, between these Mo. bidentata 
and Mi. hernsteini biozones there is another important bioevent, which corresponds 
to the occurrence of the conodont genus Parvigondolella with the species Pa. 
andrusovi (Fig. 6.13b). Parvigondolella andrusovi consists of a single blade with-
out a vestigial platform, which instead charaterizes the transitional forms between 
Mo. bidentata (mother) and Pa. andrusovi (daughter), and it occurred in the upper-
most portion of the Mo. bidentata Zone. However, this genus did not find a broad 
consensus as an independent genus (e.g. Krystyn et al. 2007a; Pálfy et al. 2007), 
being considered by some as a morphological variation or ecostratigraphic morpho-
type of Mockina bidentata in unfavourable conditions/environments (Krystyn et al. 
2007a). Genus Parvigondolella was instead collected from different settings both in 
the Tethys and North America (e.g. Kozur and Mock 1991; Orchard et al. 2007a; 
Rigo et al. 2016) and it originates during a warm period (W3) (Trotter et al. 2015). 
Since its stratigraphical distribution spans between upper Sevatian 1 to mid-upper 
Rhaetian, Pa. andrusovi also crosses a drastic climate change of ca. 6  °C corre-
sponding to ∼1.7‰ of δ18Ophos, at least in the Tethys where this genus is common 
(Trotter et al. 2015), testifying that Pa. andrusovi is not a ecostratigraphic morpho-
type of Mo. bidentata, but instead an independent species.

We consider this bioevent as an important biomarker, and thus we prefer distin-
guishing an independent biozone as first suggested by Kozur (2003) and Channell 
et al. (2003), and used by Korte et al. (2005), since a clear stratigraphic range of this 
biozones is easily recognisable. The zone is characterised by the occurrence of Mo. 
slovakensis (which last occurs in the middle part), Mo. bidentata, Mo. zapfei, 
“Mockina” vrienlyncki and Parvigondolella andrusovi.

Age: The Pa. andrusovi Zone corresponds to the upper portion of the Mockina 
bidentata Zone sensu Kozur and Mock (1991), and thus represents the uppermost 
Sevatian 1. It is thus correlated to the mid portion of the Tethyan ammonoid 
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Sagenites quinquepunctatus Zone (Fig. 6.9) and the mid portion of the radiolarian 
Betraccium deweveri Zone (sensu Carter 1993).

6.5.3.3  Misikella hernsteini Interval Zone

Definition: the lower boundary is marked by the FO of the index species Misikella 
hernsteini (Mostler 1967); the upper boundary by the FO of Misikella posthern-
steini Kozur and Mock (1974).

Misikella hernsteini is the first species that belongs to the genus Misikella. 
Misikella hernsteini is characterised by 4–6 denticles decreasing forwardly, with 
posterior cusp and a teardrop-shaped basal cavity (Fig. 6.13c). It occurs in the upper 
Sevatian and is a useful species to characterise the Sevatian 2 (Kozur and Mock 
1991). Within this biozone it is possible to collect those specimens belonging to the 
Misikella hernsteini/posthernsteini morphocline (Giordano et  al. 2010; Bertinelli 
et al. 2016; Rigo et al. 2016), allowing the definition of the FAD of Mi. posthern-
steini undoubtedly since it occurs along its phylogenetic lineage. The misinterpreta-
tion of some specimens belonging to the Misikella hernsteini/posthernsteini 
morphocline led to the inclusion of an entire Norian chronostratigraphic unit, such 
as substage Sevatian 2, into a different and younger Stage (i.e. Rhaetian) (Krystyn 
et  al. 2007a, b). The zone is characterised by the occurrence of Mockina zapfei 
(which last occurs in the first half of the zone), Mo. bidentata, Parvigondolella 
andrusovi, and Misikella hernsteini.

Age: The Mi. hernsteini Zone represents the upper Sevatian, that is Sevatian 2, 
and it corresponds to the upper ammonoid Gnomohalorites cordilleranus and 
Sagenites quiquepunctatus Zones of the North American and Tethyan Realms 
respectively (Fig. 6.9) (Dagys and Dagys 1994; McRoberts et al. 2008; Rigo et al. 
2016). It also corresponds to the upper portion of the radiolarian Betraccium dewe-
veri Zone (Bazzucchi et al. 2005; Giordano et al. 2010; Rigo et al. 2016).

6.6  The Norian/Rhaetian Boundary and the Rhaetian Stage

The Rhaetian stage (Fig. 6.14) was named after the Roman Province of Raetia by 
von Gümbel in 1861, applying to the strata containing the bivalve (Rhaet)Avicula 
contorta. After more than one century of debate, the Rhaetian became an indepen-
dent Stage in 1991 (e.g. Ogg 2012; Rigo et al. 2016). A formal definition for its 
GSSP is still pending, although the FAD of conodont Misikella posthernsteini has 
been identified as primary event to define the Rhaetian base by the Norian/Rhaetian 
Working Group (e.g. Krystyn 2010; Ogg 2012; Rigo et al. 2016). Recently, a physi-
cal marker corresponding of a negative shift of the δ13Corg has been also proposed to 
define the NRB (Maron et al. 2015; Rigo et al. 2016), which has been documented 
worldwide (Bertinelli et al. 2016; Rigo et al. 2016; Zaffani et al. 2017).
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Across the Norian/Rhaetian boundary specific conodont bioevents occurred 
homotaxially within at least the Tethyan basins. These events were first recognized 
and described by Kozur and Mock (1991) and they correspond to the first occur-
rence of Mockina bidentata, Parvigondolella andrusovi, Misikella hernsteini, 
Misikella posthernsteini and Misikella ultima. All these bioevents define the Tethyan 
conodont biozonation here proposed for the uppermost Norian and Rhaetian stages, 
the biozones of which are defined by the first occurrence of the homonymous con-
odont species. In particular, the FAD of Misikella posthernsteini is conventionally 
adopted to place the Norian/Rhaetian boundary (Krystyn 2010; Gale et al. 2012; 
Bertinelli et al. 2016; Rigo et al. 2016). To minimize the error for the definition of 
the first occurrence, and thus place a GSSP independently from the common taxo-
nomic issues, Remane (2003) suggested considering those descendent species 
where the transitional forms from the ancestral (morphocline) are well documented 
along the stratigraphic succession. In this way, the consistency of the appearance of 
the descendent species is thus greatly improved. According to Remane (2003), the 
definition of descendent species, including its morphology and phylogenesis, should 
be thus clear and well defined to avoid misunderstandings and confusion that can 
have repercussions on the chronostratigraphy, and thus on the Geological Time 
Scale (GTS).

Biostratigraphically, the most important Rhaetian conodont genus for the Tethyan 
is Misikella, which is very common and frequent in both fully pelagic and shallow- 
marine sediments (e.g. Kozur and Mock 1991; Krystyn et  al. 2007a, b; Muttoni 
et al. 2010). Other genera represented by Mockina, Parvigondolella and Zieglericonus 
are often present throughout the Rhaetian. Also, genus Norigondolella can be pres-
ent in Rhaetian sediments (e.g. Pálfy et al., 2007; Kolar-Jurkovšek 2011; Rigo et al., 
2016), but it seems to be restricted to cool water conditions (Trotter et al. 2015). In 
the uppermost Triassic, ramiform elements are very often collected with few other 
pectiniform conodonts or even without any in the uppermost Rhaetian (e.g. Kozur 
and Mock 1991; Kozur 1993; Pálfy et al. 2007). This issue is probably due to a 

Fig. 6.14 New conodont/ammonoid integrated biozonation of the Rhaetian stage. See caption of 
Fig. 6.4 for genera abbreviations
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conodont loss during extraction, commonly using 0.1 mm sieves (Kozur and Mock 
1991). In fact, the youngest conodont zone consists of Neohindeodella detrei (Kozur 
and Mock 1991), a ramiform index species occurring above the LOs of Misikella 
and all the other Rhaetian genera, at the “Initial” CIE and below the Triassic/Jurassic 
boundary (e.g. Hesselbo et al. 2002; Pálfy et al. 2007).

6.6.1  Rhaetian Conodont Biozonation

6.6.1.1  Misikella posthernsteini Interval Zone

Definition: the lower boundary is marked by the FO of the index species Misikella 
posthernsteini Kozur and Mock (1974); the upper boundary by the FO of Misikella 
ultima Kozur and Mock (1991).

The occurrence of Misikella posthernsteini (Fig. 6.15a) defines the base of its 
homonymous biozone and most important the base of the Rhaetian after being voted 
by the Norian/Rhaetian Boundary Task Force (Krystyn 2010), and conventionally 
adopted as the primary marked for the NRB. The definition of Misikella posthern-
steini was given by Kozur and Mock (1974) and largely argued in Giordano et al. 
(2010) and more recently in Rigo et al. (2016) and Bertinelli et al. (2016), and here 
is accepted and used. The zone is characterised by Parvigondolella andrusovi 
(which last occurs at the base), Mockina bidentata (rare), Misikella koessenensis, 
“Mockina” vrienlyncki and Mi. hernsteini.

Age: Misikella posthernsteini with features corresponding to the original descrip-
tion by Kozur and Mock (1974) has been documented occurring within the radiolar-
ian Proparvicingula moniliformis Zone (sensu Carter 1993; Giordano et al. 2010), 
and mostly coincident with a marked negative δ13Corg excursion (Maron et al. 2015; 
Bertinelli et  al. 2016; Rigo et  al. 2016; Zaffani et  al. 2017). Similarly, in North 
America (Nevada and British Columbia), Mockina (=Epigondollela) mosheri A 
occurred at the P. moniliformis Zone (Orchard et al. 2007a; Tackett et al. 2014), 
which is biochronologically equivalent to the North American ammonoid 
Paracochloceras amoenum Zone (e.g. Carter 1993; Orchard and Tozer 1997; 
Orchard et  al. 2007a). The P. moniliformis Zone occurs after the radiolarian 
Betraccium deweveri Zone (i.e. Carter 1993), at the end of which the standard-size 
Monotis bivalves disappear (Ward et al. 2001), and coinciding with a negative shift 
of δ13Corg (Ward et al. 2004; Whiteside and Ward 2011; Rigo et al. 2016; Zaffani 
et al. 2017) and 87Sr/86Sr ratio (e.g. Callegaro et al. 2012). The close correlation of 
the end-Norian extinction of Monotis and the negative δ13Corg shift is further recorded 
in Canada (British Columbia) at Williston Lake, during background anoxic condi-
tions punctuated by transient oxygenation events (Wignall et al. 2007). These envi-
ronmental conditions have been documented also in the western Tethys (Casacci 
et al. 2016; Rigo et al. 2016; Zaffani et al. 2017). The negative shift of δ13Corg at the 
NRB is thus documented on both sides of the Panthalassa Ocean, representing an 
important physical tool for global correlations (Rigo et al. 2016; Zaffani et al. 2017). 

M. Rigo et al.



223

F
ig

. 6
.1

5 
In

de
x 

co
no

do
nt

 s
pe

ci
es

 f
or

 t
he

 R
ha

et
ia

n 
zo

ne
s.

 W
he

re
 p

os
si

bl
e,

 a
ll 

th
e 

th
re

e 
vi

ew
s 

ar
e 

pr
ov

id
ed

: 
(1

) 
up

pe
r 

vi
ew

, (
2)

 l
at

er
al

 v
ie

w
, (

3)
 l

ow
er

 v
ie

w
. 

Sc
al

e 
ba

rs
 a

re
 2

00
 μ

m
. 

(a
) 

M
is

ik
el

la
 p

os
th

er
ns

te
in

i 
K

oz
ur

 a
nd

 M
oc

k 
(f

ro
m

 M
az

za
 e

t 
al

. 
20

12
a)

. 
(b

) 
M

is
ik

el
la

 u
lt

im
a 

K
oz

ur
 a

nd
 M

oc
k 

(f
ro

m
 M

az
za

 e
t 

al
. 

20
12

a)
. (

c)
 N

eo
hi

nd
eo

de
ll

a 
de

tr
ei

 K
oz

ur
 a

nd
 M

oc
k 

(f
ro

m
 K

oz
ur

 a
nd

 M
oc

k 
19

91
)

6 New Upper Triassic Conodont Biozonation of the Tethyan Realm



224

All these events are well correlated and occurred around the age of 205.7 Ma, as 
further confirmed by the high-precision U-Pb geochronology age of 205.70 ± 0.15 Ma 
(Wotzlaw et al. 2014; Golding et al. 2016) for the NRB (LO of bivalve Monotis) and 
the statistical correlation with the Newark APTS of the NRB (FAD of Mi. posthern-
steini and negative δ13Corg) at 205.7 Ma by Maron et al. (2015).

6.6.1.2  Misikella ultima Interval Zone

Definition: the lower boundary is marked by the FO of the index species Misikella 
ultima Kozur and Mock (1991); the upper boundary by the FO of the of 
Neohindeodella detrei Kozur and Mock (1991).

Misikella ultima was first illustrated by Kozur and Mock (1991) who described 
its evolution directly from Misikella posthernsteini, developing 1–3 denticles in a 
secondary posterior blade (Fig. 6.15b). This secondary blade grows up within the 
deep groove along the backside of the cusp, which is the last denticle posteriorly 
reclined of Mi. posthernsteini. In this zone, Mockina bidentata last occurs at its base 
while Misikella hernsteini in the middle; Mi. posthernsteini and Mi. ultima are com-
mon, along with Mi. kovacsi.

Age: Misikella ultima is constrained with the base of the radiolarian 
Globolaxtorum tozeri Zone (Pálfy et al. 2007). In North America, the base of G. 
tozeri Zone is considered coeval to the base of the ammonoid Choristoceras crick-
mayi Zone (Carter 1993), which in turn corresponds to the base of the Tethyan 
ammonoid Vandaites stuerzenbaumi Zone (Dagys and Dagys 1994; Whiteside and 
Ward 2011). The ammonoid V. stuerzenbaumi Zone is subdivided by Maslo (2008) 
into two ammonoid subzones that are Vandaites saximontanus (=ex-“Choristoceras” 
haueri Subzone) and Vandaites stuerzenbaumi s.s. Subzone.

6.6.1.3  Neohindeodella detrei Taxon-range Zone

Definition: presence of Neohindeodella detrei Kozur and Mock (1991) and disap-
pearance of other conodont index fossils; the upper boundary is represented by the 
extinction of the class Conodonta.

Conodont Neohindeodella detrei is a ramiform conodont first described by Kozur 
and Mock (1991) (Fig.  6.15c), occurring above the last observed occurrence of 
ammonoid Choristoceras along with no other conodont index elements. For this 
reason, Kozur and Mock (1991) established the Nh. detrei Zone as the last conodont 
biozone, uppermost Rhaetian in age. Neohindeodella detrei was found above the 
last occurrence of Misikella ultima and other conodonts, and it was described along 
with Neohindeodella sp. A, supporting the suggestion that conodonts survived to the 
End-Triassic mass exctinction (ETE) within the latemost Rhaetian (Kozur 1993; 
Pálfy et al. 2007).
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6.7  Systematic Palaeontology

Phylum CHORDATA (Bateson 1886).
Subphylum VERTEBRATA (Linnaeus 1758).
Class CONODONTA (Eichenberg 1930).
Order OZARKODINIDA (Dzik 1976).
Superfamily GONDOLELLACEA (Lindström 1970).
Family GONDOLELLIDEA (Lindström 1970).
Genus Norigondolella (Kozur 1989).
Norigondolella carlae n. sp.

1980  Gondolella cf. navicula—Krystyn, pl.11, figs 8, 9
2007  Norigondolella sp.—Nicora et al. pl.3, fig.1
2007  Norigondolella sp.—Rigo et al. fig. 5/9
2010  Norigondolella cf. navicula—Balini et al. pl.2, fig.11
2012b  Norigondolella cf. navicula—Mazza et al. fig. 3B

Origin of the name—In honor of Mrs. Carla Galli Nicora, mother of Alda Nicora.
Holotype—The specimen illustrated in Fig. 6.8a.
Type horizon—Bed NA16 (Upper Carnian) of the Pizzo Mondello section, a 

white micritic calcilutite with black-brown cherty nodules, belonging to the Scillato 
Fm.

Type locality—Pizzo Mondello section (Monti Sicani, Western Sicily, Italy), the 
abandoned quarry (“la Cava” locality) on the south-western slope of Pizzo Mondello 
Mountain.

Repository—The holotype is stored at the Dipartimento di Scienze della Terra 
“A. Desio”, Università degli Studi di Milano (Italy). Repository number: Micro- 
Unimi no. 2019.

Diagnosis—Small conodont with a long and broad platform extending for the 
entire length of the element. The platform margins are flat and they have no orna-
mentation on the margins, except for a coarse microcrenulation. The cusp is always 
the last denticle of the carina, it is big in size and posteriorly inclined, and it is 
located just in front of the posterior platform margin. The keel is prominent and the 
pit is terminal both to the platform and to the keel end. The blade is high anteriorly 
but it gradually descends into a low carina posteriorly. The carinal nodes are fused 
at their base but the tips are widely spaced.

Description—This species has a low intraspeciefic variability, with very few rec-
ogniziable characters. The element has a small size (about 500 μm length), charac-
terised by a wide platform with sub-parallel margins that never bear any 
ornamentation, except for the typical conodont microcrenulation. The platform is 
tapered at the anterior and posterior ends and it covers the entire length of the ele-
ment, leaving no free blade. The lateral margins are low, giving a flat profile to the 
lateral platform. The posterior end of the platform is always rounded. Cusp and 
carina are distinctive elements of this species. The cusp is always the last denticle, 
it is located just in front to the posterior margin of the platform, it is bigger in size 
with respect to the preceding carinal nodes and it is posteriorly reclined. The carina 

6 New Upper Triassic Conodont Biozonation of the Tethyan Realm



226

is low, composed by nodes that are fused at their base but characterised by widely 
spaced tips. The pit is very narrow, surrounded by a prominent loop and it is termi-
nal with respect both to the platform and to the keel end. The keel termination is 
rounded and it is never prolonged. Laterally the element is usually arched in its 
middle part and the keel is prominent. The blade is high in correspondence to the 
anterior third of the element but it descends gradually into the low carina.

Remarks—Norigondolella carlae was mentioned for the first time (but not 
described) as Gondolella cf. navicula by Krystyn in 1980, from Tuvalian II strata at 
Feuerkogel (Austria). Successively it was reported as Norigondolella sp. in Nicora 
et al. (2007) and Rigo et al. (2007), and as Norigondolella cf. navicula in Balini 
et al. (2010a, b), and Mazza et al. (2012a, b). This species is now formally described 
and established here. No. carlae is a primitive and less evolved Norigondolella spe-
cies, with a smaller size than typical norigondolellids and with more spaced carinal 
nodes, thus seemingly representing a forerunner of genus Norigondolella.

Stratigraphical and geographical distribution—Norigondolella carlae has a 
short stratigraphic range that is limited to the Neocavitella cavitata Zone. This spe-
cies is never present in rich populations, but its short range and very distinctive 
morphological characters makes No. carlae a very useful guide form for the Upper 
Tuvalian.

No. carlae is spread in all the Tethys: Austria (Feuerkoegel section, Krystyn 
1980), southern Apennines (Pignola 2 section, Rigo et  al. 2007), Sicily (Pizzo 
Mondello section, Mazza et al. 2012a), and Turkey (Buleketasi Tepe and Erenkolu 
Mezarlik sections, unpublished data).

6.8  Conclusion

Conodonts have proven to be important tools for detailed biostratigraphic investiga-
tions for the Upper Triassic, because of their great abundance and worldwide distri-
bution. We present here an original Upper Triassic conodont biozonation for the 
Tethyan Realm, consisting of 22 conodont zones (nine for the Carnian, ten for the 
Norian, and three for the Rhaetian), integrated with ammonoid and radiolarian 
zones. We also provide data supporting the validity of conodonts as reliable tools for 
global correlations, recommending two conodont biovents as possible GSSP pri-
mary biomarkers that are the FAD (First Appearance Datum) of Metapolygnathus 
parvus for the base of the Norian and the FAD of Misikella posthernsteini for the 
base of the Rhaetian.
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Chapter 7
Late Triassic Ammonoids: Distribution, 
Biostratigraphy and Biotic Events

Spencer G. Lucas

Abstract Late Triassic ammonoids have been studied for nearly 200 years. Their 
most extensive fossil records come from Canada (British Columbia), the USA 
(Nevada), Mexico (Sonora), the Alpine regions of southern Europe (especially 
Austria and northern Italy), the Himalayas and Russia (Siberia). At least two prov-
inces (Tethyan and Boreal) can be identified using Late Triassic ammonoids, but the 
cosmopolitanism of selected genera allows Late Triassic ammonoid correlations 
between provinces. The official definition of the base of the Carnian stage is based 
on a GSSP (global stratotype section and point) in northern Italy with its primary 
signal the lowest occurrence of the ammonoid Daxatina canadensis (Whiteaves). 
Ammonoids are also used (less formally) to define the bases of the Carnian and 
Norian substages, the (ascending order) Julian, Tuvalian, Lacian, Alaunian and 
Sevatian. The LO of the ammonoid Psiloceras spelae Guex is the primary signal for 
the GSSP of the base of the Hettangian (base of Jurassic = top of Triassic) in Austria. 
The Late Triassic evolutionary history of the Ammonoidea was punctuated by a 
series of events: (1) the near extinction of the trachyceratids at the beginning of the 
Tuvalian, followed by the diversification of the Tropitidae; (2) the extinction of the 
Tropitidae at the beginning of the Norian followed by the diversification of the 
Thisbitidae and Juvavitinae; (3) a drop in diversity and the appearance of hetero-
morphs during the Sevatian; (4) a substantial extinction across the Norian-Rhaetian 
boundary; (5) a final extinction of most of the remaining Rhaetian ammonoids fol-
lowed by their Early Jurassic recovery. The Late Triassic ammonoid extinction thus 
was stepwise, with the most substantial drop in diversity at the end of the Norian, 
not at the end of the Triassic.

Keywords Late Triassic Ammonoidea • Carnian • Norian • Rhaetian • Biotic 
Events • Extinctions
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7.1  Introduction

The Triassic Period was an important time interval in the history of the subclass 
Ammonoidea. The group almost disappeared during the Permian-Triassic extinc-
tions, and suffered a major extinction later in the Early Triassic (late Smithian) only 
to again suffer near extinction across the Triassic-Jurassic boundary. The interven-
ing 51 million years of the Triassic saw an impressive succession of evolutionary 
radiations and crises, including the first experiment in heteromorphic coiling by the 
Ammonoidea. The Triassic ammonoid record encompasses three orders, and about 
80 families, 700 valid genera and 5000 valid species (e.g., Tozer 1981a, b).

Late Triassic ammonoids were among the first ammonoids described scientifi-
cally during the early 1800s. By the end of the 1800s, ammonoid biostratigraphy 
became the basis of the Triassic chronostratigraphic scale. Indeed, the Standard 
Global Chronostratigraphic Scale of the Triassic (Fig.  7.1) was, until the 1990s, 
totally based on ammonoid biostratigraphy. Today, ammonoids still provide a strong 
basis for Late Triassic marine correlations and are used to define two of the Triassic 
stage boundaries and, less formally, all of the substage boundaries (e.g., Lucas 
2010; Balini et al. 2010; Jenks et al. 2015).

My goal here is first to discuss briefly the history of study of Late Triassic ammo-
noids. I then present a short overview of the geographic and stratigraphic distribu-
tion of the Late Triassic ammonoids (Fig. 7.2). A review follows of the ammonoid 
biostratigraphy and biochronology of the Upper Triassic. I conclude by discussing 
major biotic events in the Late Triassic history of the Ammonoidea.

7.2  Some History

Tozer (1984) provided a detailed history of the use of ammonoids in the develop-
ment of the Triassic chronostratigraphic scale. Additional discussion of aspects of 
this history can be found in Zittel (1901), Silberling and Tozer (1968), Tozer (1984), 
Lucas (2010), Balini et al. (2010) and Jenks et al. (2015). Here, I provide a brief 
historical review of the discovery and development of our knowledge of Late 
Triassic ammonoids.

After the first description of a Triassic ammonoid (“Ammonites nodosa”) in 1789 
(cf. Rieber and Tozer 1986), the first 60 years of the 1800s saw numerous descrip-
tions of Triassic ammonoids from the Alpine regions of western Europe (Tozer 
1984). This work was part of the effort to extend the “Trias formation” of von 
Alberti (1834) from its largely nonmarine “type section” in southwestern Germany 
into the marine strata of the Alps (e.g., von Hauer 1850). As part of this work, one 
of the first formally named Upper Triassic ammonoids was Ammonites subbullatus 
of von Hauer (1849; now Tropites subbullatus).

The paleontologist central to the subsequent development of Alpine Triassic 
ammonoid biostratigraphy was Edmund Mojsisovics von Mojsvár (1839–1907), 
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Fig. 7.1 Triassic timescale showing ammonoid-based definitions of stage and substage boundar-
ies (after Lucas 2013)
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whose 40-year career began in the 1860s (Rosenberg 1958; Tozer 1984). Mojsisovics 
worked as a paleontologist at the Geological Survey of Austria (Geologische 
Reichsanstalt) where he became the world authority on Triassic ammonoids. He 
collected many ammonoids, with an emphasis on the Late Triassic ammonoids of 
the Alps (e.g., Mojsisovics 1869, 1873, 1874, 1875, 1882a, b, 1893, 1902). 
Mojsisovics published detailed and lavishly illustrated monographs describing 
more than 1000 new species (about 20% of the Triassic ammonoid species so far 
described) and 111 new genera (Fig. 7.3).

The extensive work by Mojsisovics was culminated by an 1895 article co- 
authored with Carl Diener (1862–1928) and Wilhelm Heinrich Waagen (1841–
1900) (Mojsisovics et al. 1895). This paper integrated the results of research carried 
out by Mojsisovics and Diener, mostly on the Middle and Upper Triassic ammonoid 
zones of the Alps (primarily Austria, Italy and Bosnia) with Waagen and Diener’s 
work on the Lower Triassic of the Salt Range (Pakistan) and the Lower and Middle 
Triassic of the Himalayas (India). This integrated succession of ammonoid zones 
was used to define substages, stages and series for the first complete chronostrati-
graphic scale of the Triassic System (Fig. 7.4). Many of the Triassic substages and 
stages Mojsisovics et al. (1895) introduced are still used in the present version of the 
Standard Global Chronostratigraphic Scale for the Triassic (Fig.  7.1; cf. Lucas 
2010; Ogg 2012; Ogg et al. 2014).

A different subdivision of the Triassic was provided by British Museum paleon-
tologist Leonard Frank Spath (1888–1957), who emphasized the usefulness of 
ammonoids by subdividing the entire Triassic into ages, named for the most impor-
tant ammonoid families (e.g., Trachyceratan, Carnitan and Tropitan for the Carnian) 
(Spath 1934, 1951). Spath’s “ages” were not conceived as hierarchically equivalent 

Fig. 7.2 Map of Late Triassic Pangea showing the most significant locations for Upper Triassic 
ammonoids. Locations are: A Alps (Austria and Italy), B British Columbia, Canada, H Himalayas 
(India, Tibet), M Sonora, Mexico, N Nevada, USA, and S Siberia (Russia)
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to stages, but rather as equivalent to substages (Spath 1934, tables IV–V), and were 
further divided into zones. Spath’s approach was the first application of a biochro-
nologic scheme to the Triassic by means of ammonoids, but it did not find general 
use by other workers.

At the beginning of the 1960s, the North American paleontologists E. Timothy 
Tozer (1928–2010) and Norman J.  Silberling (1928–2011) advocated the North 
American ammonoid succession as the best and the most complete in the world. 
They built on the pioneering work of Alpheus Hyatt (1838–1902) and James Perrin 
Smith (1864–1931) (Hyatt and Smith 1905; Smith 1914, 1927, 1932), as well as on 
the work of Frank H.  McLearn (1885–1964) in Canada and Siemon W.  Muller 
(1900–1970, a student of Smith) in the western USA.

Tozer (1967) first described a biostratigraphic scale for the Canadian Triassic, 
consisting of 31 zones. Silberling and Tozer (1968) presented a biostratigraphic cor-
relation chart of the most important marine successions of Nevada, Idaho, California, 

Fig. 7.3 Plate 20 of 
Mojsisovics (1893) 
monograph on the 
ammonoids of the Triassic 
“Mediterraneanprovinz” is 
typical of the lavish 
illustrations he published 
of Triassic ammonoids. 
Figure 1 is “Trachyceras 
longobardicus,” and 
Figure 2 is “Trachyceras 
pseudo-Archelaus”. Each 
“a” and “b” refers to two 
views of the same fossil
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Oregon, British Columbia, Alaska and Arctic Canada. Further refinements of this 
scale (Tozer 1971, 1974, 1978, 1981b, 1984) produced the final version (Tozer 
1994) consisting of 37 zones (11 for the Lower, 12 for the Middle and 14 for the 
Upper Triassic), with 11 of them divided into a total number of 28 subzones.

During the 1970s, a new wave of research on Upper Triassic ammonoids from 
Europe was catalyzed by IGCP (International Geological Correlation Programme) 
4, “Triassic of the Tethys Realm” and by the beginning of the activities of the 
Subcommission on Triassic Stratigraphy (Tozer 1983; Zapfe 1983). In particular, 
the Austrian paleontologist Leo Krystyn restarted investigations of the Upper 
Triassic condensed facies of the Northern Alps originally studied by Mojsisovics 
(Krystyn and Schlager 1971; Krystyn et  al. 1971; Krystyn 1973, 1978, 1980). 
Krystyn’s revision of Late Triassic biostratigraphy also integrated the use of con-
odonts and ammonoids (e.g., Krystyn 1983). This type of integrated approach was 
later applied in North America (e.g., Orchard and Tozer 1997a, b).

The Lithuanian paleontologist A. S. Dagys (1933–2000) worked extensively on 
the ammonoids of Siberia. His collaboration with E. T. Tozer and W. Weitschat pro-

Fig. 7.4 The ammonoid-based Triassic chronostratigraphic timescale of Mojsisovics et al. (1895)
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duced very precise correlation charts of the ammonoid assemblages from Siberia, 
Arctic Canada and Svalbard (Dagys and Tozer 1989; Weitschat and Dagys 1989; 
Dagys and Weitschat 1993).

Recent work has described ammonoid faunas from the Anisian to the lower 
Carnian of the Southern Alps (e.g., Balini 1992a, b, 1997; Balini et al. 2000; Mietto 
et al. 2008). Relatively new publications on Upper Triassic ammonoids from Turkey 
(Lukeneder and Lukeneder 2014) and Sonora, Mexico (Lucas et  al. 2015) have 
improved knowledge of Carnian ammonoid assemblages.

7.3  Geographic Distribution

Discoveries of Triassic ammonoids in the early 1800s revealed an essentially global 
record early during their history of study (Tozer 1984). The most important records 
of Upper Triassic ammonoids have been those in: (1) British Columbia, Canada; (2) 
Nevada, USA; (3) Sonora, Mexico; (4) the western Tethys (from the Alps to Turkey); 
(5) the Himalayas (India and Tibet); and (6) Siberia (Fig. 7.2).

 1. In British Columbia, in the western Canadian Cordillera, important successions 
of Upper Triassic ammonoid assemblages are known from the Canadian Rocky 
Mountains and adjacent foothills, particularly from the Ludington and Pardonet 
formations (Tozer 1994). In some mid-paleolatitude northeastern British 
Columbia localities, many boreal and paleoequatorial Tethyan ammonoids occur 
together, thus facilitating correlation between the Arctic and the Tethys (Tozer 
1994). The well-preserved Upper Triassic ammonoid fauna of the Pardonet 
Formation contributed immensely to deciphering the correct sequence of upper 
Carnian/lower and middle Norian ammonoid zones (Tozer 1994). Indeed, the 
section of the Pardonet Formation at Black Bear Ridge is one of the GSSP can-
didates for the Carnian/Norian boundary (e.g., Orchard 2007, 2014). On the 
British Columbia coast, important assemblages of uppermost Triassic and low-
ermost Jurassic ammonoids are present on Vancouver Island and in the Queen 
Charlotte Islands (e.g., Tozer 1994; Tipper et al. 1994; Longridge et al. 2007).

 2. In the western USA in Nevada, significant Upper Triassic ammonoid assemblages 
are known from diverse localities (e.g., Smith 1927; Silberling 1956, 1959; 
Silberling and Tozer 1968; Jenks et al. 2007; Balini 2008), including an important 
record of uppermost Triassic and lowermost Jurassic ammonoids in the New York 
Canyon area in west-central Nevada (e.g., Taylor et al. 1983, 2000; Guex et al. 
2004; Lucas et al. 2007). Other well-known Upper Triassic ammonoid assem-
blages from Nevada include the lower Carnian “Trachyceras” desatoyense suc-
cession from the New Pass Range (Johnston 1941; Balini et al. 2007, 2012; Balini 
and Jenks 2007) and the upper Carnian-lower Norian Klamathites- Guembelites 
successions from West Union Canyon in the Shoshone Range (Silberling 1959; 
Balini et al. 2014). Also, in Shasta County, California, important upper Carnian 
ammonoid assemblages are known (Smith 1927; Silberling and Tozer 1968).
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 3. In Sonora, northwestern Mexico, Keller (1928) first reported on the Carnian 
ammonoid assemblages near El Antimonio. Detailed studies of these assem-
blages (Lucas and Estep 1999; Lucas et al. 2015) documented the succession of 
ammonoid zones across the Julian-Tuvalian boundary, thus confirming the suc-
cession established in British Columbia (Fig. 7.5).

 4. In what was Western Tethys (Fig.  7.2), the extensive ammonoid assemblages 
from the Alpine regions of Austria and Italy provided the basis for definition of 
most of the Middle and Upper Triassic stages and substages (see above). In the 
Alpine region, carbonate facies (both limestone and dolomite) with extensive 
reef development yield most of the Upper Triassic ammonoid assemblages, 
including the Hallstatt facies, which contains exquisitely preserved ammonoids 
but suffers from problems of condensed fossil assemblages. Particularly 

Fig. 7.5 Sirenites from Sonora, Mexico, helps to confirm the stratigraphic succession of ammo-
noid biozones across the Julian-Tuvalian boundary developed in British Columbia, Canada. (a–d) 
Sirenites nanseni Tozer, all specimens in lateral view. Scale bars = 1 cm. After Lucas et al. (2015)
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 significant ammonoid successions include those from basinal facies of Lombardy, 
the Dolomites and the Julian Alps in northern Italy (e.g., Mietto and Manfrin 
1995; Mietto et  al. 2007), and the Northern Calcareous Alps of Austria (e.g., 
Krystyn 1973, 1978, 2008).

In Italy, the GSSPs of the Ladinian and Carnian stages are defined at Bagolino 
(Lombardy) and Prati di Stuores/Stuores Wiesen (Dolomites), respectively, with 
ammonoid biochronological datums (FADs = first appearance datums) as their 
primary signals. Other important GSSP candidate sections are Pizzo Mondello 
(Sicily, Italy) and Steinbergkogel in the Northern Alps (Austria). Pizzo Mondello 
is located in western Sicily, famous for the upper Carnian-lower Norian ammo-
noid faunas illustrated by Gemmellaro (1904), and is one of two candidate sec-
tions for the definition of the GSSP of the base of the Norian (Nicora et al. 2007; 
Balini et al. 2008). Steinbergkogel, located in the world famous Hallstatt region 
(Northern Alps, Austria), until recently, is one of the two GSSP candidate sec-
tions for the base of the Rhaetian (Krystyn et al. 2007, b). From what was much 
farther east in Tethys, assemblages of Carnian ammonoids from Turkey have 
also been described recently (Lukeneder and Lukeneder 2014).

 5. Triassic ammonoid assemblages are present in the Himalayas from Kashmir to 
Spiti and were first published by Oppel (1865). Most extensive are Lower and 
Middle Triassic ammonoid assemblages, but Upper Triassic ammonoids are also 
present (Diener 1906, 1908, 1912). In India, sections in the Mud (Muth) Valley 
of Spiti have been studied for their rich upper Ladinian to lowermost Carnian 
ammonoid-bivalve-conodont record (Krystyn 1982; Balini et al. 1998, 2001). In 
Tibet, there is also an important succession of Carnian-Norian ammonoid assem-
blages (Wang and He 1976).

 6. Important Carnian, Norian and Rhaetian ammonoid successions have been docu-
mented from Siberia, from the Olenek River east to the shoreline of the Sea of 
Okhotsk (e.g., Zakharov 1997; Konstantinov and Klets 2009; Konstantinov 
2012, 2014).

7.4  Paleobiogeography

The general outline of ammonoid paleobiogeographic distribution, consisting of at 
least three paleoprovinces, has been well established for decades (e.g., Tozer 1981b; 
Dagys 1988). The main paleoprovinces are Tethyan, Boreal (Arctic Canada, 
Svalbard, Siberia) and Notal (southern hemisphere), though much of the ammonoid 
record around the Pacific margins comes from terranes that were part of Panthalassa, 
and thus may identify another paleoprovince.

Notal asssemblages of Late Triassic ammonoids are unknown. The Late Triassic 
ammonoid record is dominated by diverse Tethyan assemblages that are readily 
distinguished from much less diverse and somewhat endemic Boreal ammonoid 
assemblages. Thus, the faunal diversity ratio between low and high paleolatitudes is 
about 10:1 during both the Carnian and the Norian (Dagys 1988).
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The Boreal ammonoid assemblages from the Carnian to the middle Norian are 
mostly composed of Sirenitinae and rarer Ussuritidae, Arcestidae (Arcestes) and 
Gymnitidae (Placites). The Boreal late Norian record consists of very few Arcestes, 
Placites and Rhacophyllites (Dagys 1988; Konstantinov et al. 2003). Fortunately, 
throughout the Late Triassic there were some cosmopolitan genera, and this allows 
correlation of ammonoid assemblages between the different paleoprovinces. Thus, 
the cosmopolitan genera Sirenites and Jovites allow Carnian correlations, whereas 
the cosmopolitan genera Halorites, Himavatites and Rhabdoceras allow correlation 
during the Norian. More genera are shared between the Tethys and Pacific margins 
than with the Boreal realm. However, there are a few genera, such as Carnian 
Arctosirenites and Norian Neohimavatites, shared between the Boreal and Tethys, 
but not known in the Pacific.

The provincial differences between the Late Triassic ammonoid assemblages are 
seen as related to water temperatures. Warm Tethyan (up to 30 degrees paleolati-
tude) water temperatures are indicated by extensive biogenic carbonate accumula-
tions, whereas many fewer carbonate accumulations are taken to indicate cooler 
Boreal and Notal water temperatures (Tozer 1981b).

7.5  Biostratigraphy

7.5.1  Base Carnian GSSP

Ammonoid datums have been used to define two Triassic stage bases. The FAD 
(first appearance datum) of Eoprotrachyceras curionii (Mojsisovics) is the marker 
event for the base of the Ladinian (Brack et al. 2005), and the FAD of Daxatina 
canadensis (Whiteaves) is the marker event for the base of the Carnian (Mietto et al. 
2007, b, 2012; Gaetani 2009).

The Upper Triassic encompasses at least 17 ammonoid zones (Figs. 7.6 and 7.8). 
However, given the provincialism of Late Triassic ammonoids (see above), there is 
no single global biozonation. Instead, there are two important biozonations, from 
western North America and from the Tethys (Figs. 7.6 and 7.8).

7.5.2  Carnian Ammonoid Biostratigraphy

The Carnian is the oldest Upper Triassic stage. Most workers divide the Carnian into two 
substages, which in the Tethyan realm are referred to as Julian and Tuvalian (Fig. 7.6), 
and these should be the global substage terms (Lucas 2010, 2013). Lucas (2013) defined 
the base of the Tuvalian by the FAD of Tropites dilleri Smith (Fig. 1). The most high 
resolution Carnian ammonoid biozonations are in Canada and in Tethys (Fig. 7.6).

Most workers in southern Europe use the Carnian ammonoid zonation of Krystyn 
(1978, 1983, 2008) that recognizes seven zones (Fig. 7.6). The other well- established 
Carnian ammonoid biozonation is from British Columbia. It was most recently 
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reviewed by Tozer (1994) as consisting of seven zones that are readily correlated to 
the European zonation (Fig.  7.6). The cosmopolitanism of Tropites dilleri at the 
base of the Tuvalian is a key element in this correlation.

On the whole, the Julian is dominated by the Trachyceratinae, in particular Trachyceras 
and Austrotrachyceras, and by the Sirenitinae (Fig. 7.7). The base of the Tuvalian is 
marked by one of the major changes in the evolution of Triassic ammonoids, namely the 
near extinction of the Trachyceratinae, whose only survivor in the Upper Carnian is 
Trachysagenites, as well as the radiation of Tropitidae (e.g., Tropites and closely allied 
forms: Fig. 7.7) and to a lesser extent Arpaditinae (see below). Although much progress 

Fig. 7.6 Carnian ammonoid biostratigraphy (after Jenks et al. 2015)

Fig. 7.7 Some characteristic Carnian ammonoids (images after Smith 1927)
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has been made in Carnian ammonoid biostratigraphy during the last 20 years, existing 
schemes (Fig. 7.6) merit more study and refinement (Jenks et al. 2015).

7.5.3  Norian Ammonoid Biostratigraphy

The Norian Stage is divided into three substages, which are simply distinguished as 
lower, middle and upper in North America, whereas in the Tethys they are named 
Lacian, Alaunian and Sevatian (Fig. 7.8). These names should be used as formal 
terms. Tozer (1994), with some modification by Lucas (2013), defined the base of 
the Lacian by the FAD of Stikinoceras kerri McLearn, the beginning of the Alaunian 
by the FAD of Drepanites rutherfordi McLearn and the base of the Sevatian by the 
FAD of Gnomohalorites cordilleranus Tozer (Fig. 7.1).

As with the Carnian, the most detailed Norian ammonoid biozonations are in 
Canada and the former Tethys (Fig. 7.8). Given the great length of the Norian Stage 
(at least 16 million years: Lucas et al. 2012), Lucas (2013) argued that the Norian 
substages should be elevated to stage status, but this suggested radical change to the 
Late Triassic chronostratigraphic scale has not been adopted yet.

The base of the Norian and of the Lacian is characterized by the nearly complete 
disappearance of Tropitidae and the appearance of new members of Juvavitinae, such 
as Guembelites and Dimorphites, and of the Thisbitidae, such as Stikinoceras (Fig. 7.9).

The base of the Alaunian is marked by the appearance of new genera of 
Cyrtopleuritidae (Drepanites and Cyrtopleurites). Members of this family (e.g., 

Fig. 7.8 Norian-Rhaetian ammonoid biostratigraphy (after Jenks et al. 2015)
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Himavatites, Mesohimavatites, Neohimavatites) characterize the substage together 
with certain Haloritinae such as Halorites and Thisbitidae (e.g., Phormedites).

The base of the Sevatian is characterized by a decrease in ammonoid diversity 
and the first occurrence of Rhabdoceras, the oldest heteromorphic ammonoid 
(Fig. 7.9). Common forms are Haloritinae (Gnomohalorites and Catenohalorites) 
and Sagenitidae (Fig. 7.9).

Although much progress has been made in Norian ammonoid biostratigraphy 
during the last 20 years, existing schemes (Fig. 7.8) merit more study and refine-
ment (Jenks et al. 2015).

7.5.4  Rhaetian Ammonoid Biostratigraphy

The STS recognizes the Rhaetian as the youngest Triassic stage. The generally 
agreed-on definition of the Rhaetian (based on a conodont datum: Krystyn et al. 
2007; Krystyn 2010) essentially equates the base of the stage with the Paracochloceras 
amoenum zone (Fig. 7.8). This produces a so-called “long” Rhaetian generally com-
prised of two or three ammonoid zones. The youngest substage of the Norian, the 
Sevatian, is thereby reduced to one ammonoid zone (Fig. 7.8).

Lucas (2013) defined the base of the Rhaetian by the FAD of Paracochloceras 
suessi Mojsisovics (Fig. 7.1). However, the favored definition of the Rhaetian base 
is the FAD of the conodont Misikella posthersteini (Krystyn et al. 2007, b; Krystyn 

Fig. 7.9 Some characteristic Norian-Rhaetian ammonoids (images after Smith 1927)
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2010; Rigo et al. 2016). In terms of ammonoids, the Norian/Rhaetian boundary is 
characterized by the disappearance of Metasibirites, the appearance of Sagenites 
reticulatus Mojsisovics and of the heteromorphs Cochloceras and Paracochloceras 
(Krystyn et  al. 2007; Krystyn 2008). Low ammonoid diversity characterizes the 
Rhaetian (Tozer 1980).

The Subcommission on Jurassic Stratigraphy has chosen the LO of the ammo-
noid Psiloceras spelae Guex as the base of the Hettangian stage (= base of the 
Jurassic) (cf. Lucas et al. 2007; von Hillebrandt et al. 2007, 2013; von Hillebrandt 
and Krystyn 2009). This formally defines the top of the Triassic System.

7.6  Biotic Events

7.6.1  Major Features of Late Triassic Ammonoid Evolution

Most of the Triassic ammonoids are ceratitids with quadrilobate ceratitic suture 
lines. A few Triassic ammonoid families consist of smooth, relatively long-ranging 
forms that are informally referred to as the “leiostraca,” whereas the majority belong 
to the group “trachyostraca,” which encompasses the ornamented, fast-evolving and 
short-ranging forms. In general, the Triassic was characterized by the evolution and 
diversification of ammonoids with complex shells: involute or evolute, ribbed, 
tuberculate and/or carinate. As is clear from earlier text, the major subdivisions of 
the Late Triassic chronostratigraphic scale directly reflect the appearance and diver-
sification of several important ammonoid genera and families, as well as 
extinctions.

An important point that merits further investigation is the rates of evolution of Late 
Triassic ammonoids. If we use the duration of biozones as a proxy of rates of evolu-
tion (they certainly are a proxy to some degree of rates of evolutionary turnover), we 
find that biozone durations are very short during the Early Triassic, for example, on 
the order of 60 kyr per zone during the Smithian. By Middle Triassic time, the rates 
decrease nearly tenfold; for example, 0.43  Ma per ammonoid biozone during the 
Anisian. However, during the Late Triassic, ammonoid biozone durations are between 
2 and 3 Ma per zone. Jenks et al. (2015) suggest that this in part reflects relatively less 
study of late Triassic ammonoids than of Early and Middle Triassic ammonoids. 
However, the Canadian Late Triassic records have been studied relatively intensively 
(Tozer 1994 and literature cited therein) and, here, there are 7 biozones in the 16 Ma 
of the Carnian and 6 biozones in the 16 Ma of the Norian. This raises the real possibil-
ity that ammonoid evolutionary turnover rates slowed considerably from the Early-
Middle Triassic into the Late Triassic. More research is needed here.
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7.6.2  Late Carnian Events

The Carnian was ushered in by the late Ladinian extinction of various ammonoid 
families, the Ceratitidae, Danubitidae, Nathorsitidae, Rimkinitidae, Stuviidae and 
Thanamiidae. However, these were families of relatively low generic diversity, so 
their extinction only encompassed the loss of about 10 genera.

In general, the Julian is dominated by Trachyceratinae, in particular Trachyceras 
and Austrotrachyceras, and by Sirenitinae. Trachyceratids were generally involute, 
highly ornamented forms with a venter that had a median furrow bordered by rows 
of tubercles or continuous keels (Fig. 7.7). The end of the Julian encompassed the 
extinction of the Badiotiidae, Lobritidae, Joannitidae, Noritidae and the Sphingitidae.

The base of the Tuvalian is marked by the near extinction of the Trachyceratinae, 
whose only survivor in the Tuvalian is Trachysagenites. The diversification of the 
Tropitidae (e.g., Tropites and closely allied forms) and, to a lesser extent, Arpaditinae, 
also characterizes the Tuvalian. Arpaditines are evolute, compressed forms with 
sigmoidal ribs and tubercles and median ventral furrows. Tropitids are mainly invo-
lute, subspherical forms with ventral keels bordered by furrows (Fig. 7.7).

7.6.3  Early-Middle Norian Events

The base of the Norian (and of the Lacian) is characterized by major ammonoid 
biotic events: the complete disappearance of Tropitidae and the appearance of new 
members of Juvavitinae, such as Guembelites and Dimorphites, and of the 
Thisbitidae, such as Stikinoceras (Fig. 7.9). The thisbitids are involute, compressed 
forms with falcoid ribs on the flanks and a continuous keel on the venter. Juvavitines, 
a subfamily of haloritids, are involute, subglobose, lack keels or ventral furrows and 
thus have flank ribs that cross the venter (Fig. 7.9).

The base of the Alaunian is marked by the appearance of new genera of 
Cyrtopleuritidae (Drepanites and Cyrtopleurites). Cyrtopleuritids are involute, 
compressed with flanks that have flexuous ribs and spiral rows of tubercles and have 
a narrow, furrowed venter bordered by tubercles or keels. Members of this family 
(including Himavatites, Mesohimavatites, Neohimavatites), together with some 
Haloritinae, such as Halorites and Thisbitidae, such as Phormedites, characterize 
the Alaunian. Indeed, Late Triassic ammonoid diversity peaked during the Alaunian.

7.6.4  Late Norian Events

The base of the Sevatian is characterized by a decrease in ammonoid diversity, with 
the loss of about 14 genera. Indeed, several families became extinct at the base of 
the Sevatian: Clionitidae, Clydonitidae, Distichitidae, Episculitidae, Heraclitidae, 
Noridiscitidae and Thetiditidae. The first heteromorphic ammonoid, Rhabdoceras, 
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appeared during the Sevatian. Common Sevatian ammonoids are Haloritinae 
(Gnomohalorites and Catenohalorites) and Sagenitidae (Sagenites ex gr. S. quin-
quepunctatus) (Fig.  7.9). Sagenitids are similar to haloritids but have prominent 
spiral ornamentation and a more complex suture. The Sevatian ended with the most 
substantial extinction of Late Triassic ammonoids, discussed below.

7.6.5  Rhaetian Events

Heteromorph ammonoids are those that are uncoiled or that have helicoidal coiling. 
The oldest heteromorphs, the first experiment in ammonoid hetermorphy, are of late 
Norian age, marked by the first appearance of Rhabdoceras (Wiedmann 1973; 
Gradinaru and Sobolev 2010). The heteromorphs then underwent a modest evolu-
tionary diversification during the Rhaetian of four genera: Choristoceras, 
Cochloceras, Hannaoceras and Rhabdoceras. They became extinct during the late 
Rhaetian.

The Late Triassic heteromorphs have generally been seen as a single clade (here 
the Choristoceratidae) united by their shared, simple suture pattern (Wiedmann 
1973). The origin of the clade has been unclear to some (Tozer 1981a) or suggested 
to have been from the Thisbitidae (Kummel 1957) or from Cycloceltites (Guex 
2001). The choristoceratids are evolute, becoming uncoiled or straight in the outer 
whorls with radial ribs on the whorl flanks and a very simple suture (Fig. 7.9).

The heteromorphs were broadly distributed across Late Triassic Tethys and along 
the Panthalassan margin (Wiedmann 1973; Gradinaru and Sobolev 2010). Some 
regard them as having been vagile epibenthos, evolving from planktonic to epiben-
thic scavengers and micropredators driven by the overall Rhaetian regression 
(Wiedmann 1973; Lehmann 1975; Laws 1978, 1982). This is best exemplified by 
what Laws termed the Cochloceras association in the Nun Mine Member of the 
Gabbs Formation in Nevada. Here, very small Cochloceras and Rhabdoceras are 
87% of the invertebrate fossil assemblage and are readily seen as predators or scav-
engers in the benthic community.

The Rhaetian witnessed the extinction of the heteromorphs and of the other cera-
titid ammonoids, as is discussed below.

7.7  Conclusion: Late Triassic Extinctions

Biostratigraphic recognition (and definition) of the Triassic-Jurassic boundary has 
long been based on a clear change in the ammonoid fauna from the diverse and 
ornamented ceratites and their peculiar heteromorphs of the Late Triassic to the less 
diverse and smooth psiloceratids of the Early Jurassic. In other words, this is the 
extinction of the Ceratitida followed by the diversification of the Ammonitida (e.g., 
House 1989). All workers agree that all but one lineage of ammonites (the 
Phylloceratina) became extinct by the end of the Triassic, and the subsequent 
Jurassic diversification of ammonites evolved primarily from that lineage (Guex 
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1982, 1987, 2001, 2006; Rakús 1993). The Early Jurassic encompasses a complex 
and rapid re-diversification of the ammonoids (e.g., Rakús 1993; Dommergues et al. 
2001, 2002; Sandoval et al. 2001; Guex 2001, 2006).

As early as the work of Kummel (1957), House (1963) and Newell (1967), it was 
clear that the main extinction of Late Triassic ammonoids took place at the end of 
the Norian, not at the end of the Triassic. After that extinction, only a few ammonoid 
taxa remained--the heteromorphs, and some of the Arcestaceae and the Clydonictacea 
(Wiedmann 1973).

The Triassic ammonoid extinctions are the complete extinction of the Ceratitina 
before the end of the Rhaetian followed by the sudden appearance of the Ammonitina 
and Lytioceratina at the base of the Hettangian. However, the origin of these new 
groups had a long history. The Phylloceratida first appeared during the Early Triassic 
as generally discoidal, involute forms with gently inflated flanks and rounded ven-
ters that gave rise to all post-Rhaetian ammonoids. The details of the Late Triassic 
origin of the Ammonitina and Lytoceratina are presented by Wiedmann (1973, fig. 
6) and Wiedmann and Kullman (1996).

House (1989: 78) considered the end-Triassic ammonoid extinction “the greatest in 
the history of the Ammonoidea.” However, it has been clear for at least 40 years that 
the Late Triassic extinction of the ammonoids was a succession of diversity drops, with 
the last, most substantial drop at the end of the Norian, not at the end of the Triassic 
(Fig. 7.10) (e.g. Tanner et al. 2004). In other words, ammonoid extinction across the 
Triassic-Jurassic is best described as stepwise (Wiedmann and Kullman 1996).

Here, I use Tozer’s (1981a, b) compilation to plot the diversity of Late Triassic 
ammonoid families and genera (Fig. 7.10). At the family level, his diversity data can 
be plotted at the Late Triassic substage level, but not all the generic data are reported 
at the substage level, so they are simply plotted here at the stage level. Tozer’s (1981a, 
b) compilation is nearly 40 years old, but it is the most recent compilation of all 
Triassic ammonoid families and genera. Much work has been done on Early and 
Middle Triassic ammonoids since 1981, but much less study of Late Triassic ammo-
noids since then, and, in particular, the few new Late Triassic ammonoid taxa recog-
nized since 1981, indicate that Tozer’s compilation remains useful for examining 
compiled Late Triassic ammonoid diversity. The fact remains that Tozer’s compiled 
data only permit stage-level resolution for generic diversity, and thus suffer from the 
compiled correlation effect (Lucas 1994) by indicating that the Late Triassic ammo-
noid extinctions are concentrated at stage boundaries (Fig. 7.10). Nevertheless, the 
earlier discussion and a consideration of the best sections for documenting end-Tri-
assic ammonoid extinctions allow a more detailed understanding of the Late Triassic 
ammonoid extinctions than one based solely on the compiled diversity.

The compiled diversity numbers (Fig. 7.10) indicate that, after a Norian (moistly 
Alaunian) peak in diversity, the most substantial extinction of ammonoid families 
and genera took place across the Norian-Rhaetian boundary. The numbers based on 
Tozer (1981a, b) differ somewhat from some other compilations in the literature, but 
all show the same pattern. For example, Teichert (1988) listed more than 150 ammo-
nite genera and subgenera during the Carnian, which was reduced to 90  in the 
Norian, and reduced again to 6 or 7 during the Rhaetian. Similarly, Kennedy (1977) 
stated there are 150 or so Carnian genera, less than 100 during the Norian, and the 
number of Rhaetian genera is in single figures.
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The most completely studied and ammonoid-rich section in the world that 
crosses the TJB is in the New York Canyon area of Nevada, USA (Fig. 7.11). Taylor 
et al. (2000, 2001), Guex et al. (2002, 2003) and Lucas et al. (2007) plotted ammo-
noid distribution in this section based on decades of collecting and study; of 11 
Rhaetian species, seven extend to the upper Rhaetian, and only one is present at the 
stratigraphically highest Rhaetian ammonite level (Fig. 7.11). Taylor et al. (2000) 
presented a compelling conclusion from these data: a two-phase latest Triassic 
ammonoid extinction, one in the late Norian followed by a low diversity Rhaetian 
ammonoid fauna that became extinct by the end of the Triassic (also see Lucas and 
Tanner 2008).

Another detailed study of latest Triassic ammonoid distribution in a best section 
is in the Austrian Kössen Beds (Urlichs 1972; Mostler et al. 1978). The youngest 
Triassic zone here, the marshi zone, has three ammonoid species, two with single 
level records low in the zone, and only Choristoceras marshi is found throughout 
the zone. This, too, does not indicate a sudden end-Triassic mass extinction of 
ammonoids. However, note that Whiteside and Ward’s (2011) compiled ammonoid 

Fig. 7.10 Compiled family-level and genus-level diversity of Late Triassic ammonoids. Based on 
data in Tozer (1981a, b)
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range data across the TJB look very different from these ammonoid ranges from 
best sections in Nevada and Austria, which suggests that the compiled data are not 
accurate.

Thus, the change in ammonoids across the Triassic-Jurassic boundary is pro-
found, but both compiled data and actual stratigraphic ranges in best sections indi-
cate it took place as a series of extinction events spread across Norian and Rhaetian 
time, not as a single mass extinction at the end of the Triassic.

The evolutionary turnover of ammonoids across the Triassic-Jurassic boundary 
is an important change from diverse and morphologically complex forms (including 
various heteromorphs) to less diverse and morphologically simple forms (the psilo-
ceratids). Guex (2001, 2006) argued that this kind of morphological change occurred 
in response to environmental stress, as had occurred at several other crisis points in 
the history of the Ammonoidea. The Triassic-Jurassic transition was such a crisis in 
ammonoid history, but not a single mass extinction.
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content and clarity of this article. Larry Tanner provided needed editorial oversight. I dedicate this 
paper to the memory of the late Norman Silberling, a good friend, a fine gentleman and one of the 
great students of the Triassic Ammonoidea.

Fig. 7.11 Stratigraphic ranges of ammonoids across the Triassic-Jurassic boundary in the 
New York Canyon area of Nevada, USA (after Guex et al. 2004). Note the extinction of the low 
diversity Rhaetian ammonoid assemblage well before the end of the Rhaetian. The only Rhaetian 
ammonoid taxon to reach the base of the Jurassic is Choristoceras marshi
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Chapter 8
Late Triassic Marine Reptiles

Silvio Renesto and Fabio Marco Dalla Vecchia

Abstract During faunal recovery after the Permo-Triassic mass extinction (PTME), 
several tetrapod lineages independently evolved adaptations to marine life. Thus 
reptiles became significant elements of marine environments already at the begin-
ning of the Mesozoic Era. The emergence of a diverse assemblage of marine reptiles 
in the Triassic marked the development of ecosystem complexity comparable with 
that of modern oceans. Different lineages (ichthyopterygians, sauropterygians and 
thalattosaurs) diversified quickly throughout the Middle Triassic and their disparity 
peaked during the late Anisian-early Carnian interval. Subsequently, both diversity 
and disparity underwent a substantial decrease during the Late Triassic. The last 
‘pachypleurosaur’ and nothosauroid record is early Carnian in age; non- 
cyamodontoid placodonts were already extinct before the Carnian. Ichthyosaur 
diversity decreases from the Carnian to the Norian and reaches its minimum in the 
Rhaetian. Cyamodontoid placodonts are practically missing in the upper Carnian- 
middle Norian, to appear again in the upper Norian-Rhaetian with the single genus 
Psephoderma. The last record of the tanystropheid Tanystropheus is late Norian in 
age, and the range of the enigmatic Pachystropheus is possibly late Norian to early 
Rhaetian. Non-plesiosaurian sauropterygians, thalattosaurs, and non-parvipelvian 
ichthyosaurs were already extinct before the Triassic-Jurassic boundary. Pelagic 
forms, i.e. parvipelvian ichthyosaurs among ichthyosaurs and plesiosaurs among 
sauropterygians, which had appeared during the Late Triassic, crossed the Triassic- 
Jurassic boundary, giving rise to subsequent radiations in the Jurassic. Also, chelo-
nians obviously crossed the boundary, while the earliest Jurassic reported record of 
phytosaurs needs to be confirmed.
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Extinction
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8.1  Introduction

Reptiles did not play a major role in marine ecosystems until the Triassic Period of 
the Mesozoic Era. They began to colonize the seas during the faunal recovery sub-
sequent to the Permo-Triassic mass extinction (PTME), when some diapsid lineages 
independently evolved adaptation to marine life (Benson et al. 2012). During the 
Triassic, marine reptiles reached a great taxonomic diversity (e.g. Rieppel 2000; 
McGowan and Motani 2003; Motani 2009), and often became the top predators in 
marine environments (Kelley and Pyenson 2015).

The radiation of Triassic marine reptiles filled trophic niches that had been left 
empty after the PTME or did not exist during the Paleozoic, thus producing a mas-
sive increase of ecomorphological diversity (Benton et al. 2013; Stubbs and Benton 
2016). The first sauropterygians and ichthyopterygians are documented from the 
Lower Triassic (Maxwell and Kear 2013; Motani et al. 2015; Jiang et al. 2016); 
subsequently, both sauropterygians and ichthyopterygians, along with thalattosaurs, 
diversified in the early Middle Triassic (Anisian) and both their diversity and dispar-
ity increased rapidly during the Anisian–Ladinian interval. However, sauropteryg-
ians were fundamentally restricted to the Tethyan coastal areas, from the Western 
Europe and Northern Africa to China. Highly specialized taxa, like basal plesio-
saurs, gigantic edentulous ichthyosaurs, cyamodontoid placodonts with a few very 
large crushing teeth or toothless, semi-durophagous thalattosaurs with a peculiar 
heterodont dentition, and turtles appeared in the early Carnian (although there is 
possible ichnological evidence of older turtles; von Lilienstern 1939; Lovelace and 
Lovelace 2012); while many ichthyosaur taxa, nothosaurs and pachypleurosaurs 
were apparently extinct. During the Carnian, both diversity and disparity of marine 
reptiles went through a substantial decrease with the extinction of the last non- 
plesiosaurian eosauropterygians. During the late Norian-Rhaetian interval, there 
were the last placodonts, thalattosaurs, tanystropheids, and non-parvipelvian ich-
thyosaurs. The disappearance of those taxa from the fossil record was apparently 
not linked to a mass extinction event at the Triassic-Jurassic boundary, as those last 
occurrences are apparently diluted in an interval spanning over 5 million years. 
Some authors hypothesized that the extinctions may have been related to sea level 
fluctuations causing widespread marine regressions during the Late Triassic (Kelley 
et al. 2014; Benson and Butler 2011 and references therein). However, this is not 
supported by the geology of the Alpine realm, for instance, where shallow water 
environments were widespread during the Norian-Rhaetian interval (e.g., Brandner 
and Poleschinski 1986; Furrer 1993; Jadoul et al. 1994). The pelagic ichthyosaurs 
independent from shallow marine habitats and plesiosaurs, crossed the Triassic- 
Jurassic boundary and appear to be rather differentiated already at the base of the 
Jurassic, to radiate later in the Jurassic and finally become extinct during the Late 
Cretaceous.
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8.2  Ichthyopterygia

The Ichthyopterygia were the Mesozoic marine reptiles with the highest adaptation 
to an aquatic lifestyle. The oldest ichthyosaurs come from the Lower Triassic 
(Olenekian) of Svalbard, China, Thailand, Japan and Canada (Maxwell and Kear 
2013). They are already taxonomically diversified and show a set of unique charac-
ters (e.g., very large eyes, elongate snout, “ash-tray” deeply amphicoelous vertebral 
centra, and limbs modified into flippers) that are correlated with a fully aquatic 
lifestyle. The evidence of viviparity is first reported for ichthyopterygians from the 
uppermost Anisian. With the possible exception of Cartorhynhchus (see Motani 
et al. 2015), which however is outside the Ichthyopterygia, being a basal ichthyo-
sauriform, ichthyosaurs were in fact unable to move on land, even for reproduction, 
like cetaceans.

Major evolutionary trends in the evolution of the locomotor apparatus of the 
ichthyopterygians concern the limbs and the vertebral column (Motani 2005). The 
‘fin’ skeleton increasingly modified into a mosaic of relatively short bones, with the 
shortening of the stylopodium, carpal and tarsal bones that are virtually undistin-
guishable from proximal phalanges, polyphalangy and polydactyly. The shortening 
and stiffening of the body and the appearance of a distinct tail bend in the vertebral 
column to support the ventral lobe of a semilunate tail fin probably marked the tran-
sition from an anguilliform (in the earliest forms) or sub-carangiform swimming 
mode to a thunniform swimming mode, which probably occurred during the Late 
Triassic.

The successful adaptation of the ichthyosaurs to the marine environment is testi-
fied by their cosmopolitan distribution in open marine deposits since the Middle 
Triassic.

Ichthyopterygian diversity peaked in the Middle Triassic, with piscivorous and 
durophagous forms with heterodont dentition. Another peak of diversity was 
reached in the Liassic, and then ichthyosaurs declined. Only the genus Platypterygius 
reached the Cenomanian (Late Cretaceous); ichthyosaurs become extinct before the 
end of the Cenomanian, about 93–94 million years ago.

Many phylogenetic hypotheses on ichthyopterygians have been proposed in the 
last two decades. The first were by Motani (1999), Sander (2000) and Maisch and 
Matzke (2000), followed by Maisch (2010); the most recent ones are by Motani 
et al. (2015) and Ji et al. (2016). The latter has been taken as reference for the pres-
ent work (Fig. 8.1). According to the cladistic analyses by Sander (2000) and Ji 
et al. (2016), the Hupesuchia are the sister group of the Ichthyopterygia. According 
to Ji et al. (2016), the Ichthyopterygia comprise the basal Chaohusaurus followed 
along the spine by the Grippioidea and the more derived Ichthyosauria.

Among the Ichthyosauria, the Shastasauridae represent the sister group of all of 
the other ichthyosaurs, the Euichthyosauria. The Shastasauridae were a cosmopoli-
tan group of medium-sized to very large long-snouted ichthyosaurs that probably 
fed on fishes, cephalopods and possibly also smaller marine reptiles. They range 
from the Anisian or possibly the uppermost Lower Triassic (Massare and Callaway 
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1990) to the lower Rhaetian, but they are basically a Late Triassic clade. Also, the 
basal euichthyosaurians Californosaurus, Callawayia, the Torectonemidae and the 
basal Parvipelvia Macgowania were Late Triassic in age, as well as Hudsonelpidia 
Finally, the more derived Triassic ichthyosaur appears to be the parvipelvian 

Fig. 8.1 Phylogenetic relationships among ichthyopterygian genera (strict consensus tree) from Ji 
et al. (2016), redrawn. Late Triassic genera are shown in bold
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Leptonectes, which is reported from the upper Norian or Rhaetian of England and 
Austria.

8.2.1  Late Triassic Shastasauridae

The Shastasauridae are represented by the genera Besanosaurus, 
Guizhouichthyosaurus, ‘Callawayia’ wolongganngensis, Guanlingsaurus, 
Shastasaurus, Shonisaurus and Himalayasaurus. Only Besanosaurus is an exclu-
sively Middle Triassic taxon.

Guizhouichthyosaurus tangae Cao and Luo in Yin et al. (2000) from the lower 
Carnian Wayao Member of the Falang Formation of Guizhou, China (Zhou et al. 
2015) is a fairly large ichthyosaur over 5 m long, with a robust and long rostrum 
(Fig. 8.2a).

Guanlingsaurus liangae Yin in Yin et al. (2000) is also from the Wayao Member 
of Guizhou Formation; it is a very large shastasaurid, reaching 11  m in length 
(Fig. 8.3). It has an extremely short and edentulous snout and narrow forelimbs with 
no more than three digits. Sander et al. (2011) suggested that Guanlingsaurus may 
be a junior synonym of Shastasaurus, but the genus is considered valid by Chen 
et al. (2013) and Ji et al. (2016).

‘Callawayia’ wolonggangensis Chen et al. 2007 (Fig. 8.2b), from the Carnian 
Xiaowa Formation of Guizhou, was originally referred to Callawayia because it 
was supposed to have a parietal shelf and a straight anterior margin of the scapula, 
which occur also in Callawayia neoscapularis. More recently, Ji et  al. (2016) 
noticed that the anterior portion of the scapula of ‘C.’ wolonggangensis is not com-
plete, and the anterior striations of the same bone are radial instead of parallel to the 
margin, which is the condition observed in Guizhouichthyosaurus and Shastasaurus. 
In addition, Ji et al. (2016) stated that ‘C.’ wolonggangensis actually lacks the diag-
nostic features of C. neoscapularis listed by Chen et al. (2007), such as the parietal 
shelf and the absence of a dorsal lamina in the maxilla. Finally, the topology of the 
cladogram by Ji et al. (2016) does not support the monophyly of Callawayia, ‘C.’ 
wolonggangensis falling within the Shastasauridae.

The genus Shastasaurus was erected by Merriam, 1895 based upon a series of 
articulated vertebrae and associated ribs of a large-sized ichthyosaur from the 
Carnian of Shasta County, California. Merriam (1895, 1902) described a total of 
five Shastasaurus species from Shasta County: S pacificus S. alexandrae S. altispi-
nus, S. careyi and S. osmonti. von Huene (1925) added a sixth species, S. carinthia-
cus based on some vertebrae and ribs from the Carnian of the Austrian Alps (see 
also Callaway and Massare 1989). However, the conclusions of McGowan’s (1994) 
revision of Shastasaurus species was that most of the referred material was not 
diagnostic at the species level, only S. pacificus being valid among the Shasta 
County named species. S. carinthiacus was considered of dubious validity. 
McGowan (1994) erected also a new species, S. neoscapularis, based on a partial 
skeleton from the Norian of Williston Lake, British Columbia (Canada). This latter 
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Fig. 8.2 Skulls of ichthyopterygians from the Carnian of Guizhou Province, China, in lateral 
view. (a) Guizhouichthyosaurus tangae (after Maisch et  al. 2008, redrawn). (b) Callawayia’ 
wolonggangensis (after Ji et al. 2016, redrawn). (c) Qianichthyosaurus zhoui (after Nicholls et al. 
2003, redrawn) Abbreviations: a angular, d dentary, f frontal, j jugal, l lacrimal, m maxilla, n nasal, 
p parietal, prf prefrontal, pm premaxilla, po postorbital, pof postfrontal, q quadrate, qj quadratoju-
gal, sq squamosal, sa surangular, sp splenial, st supratemporal. Scale bars equal 10 cm
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species was later assigned to the new genus Callawayia by Maisch and Matzke 
(2000), becoming C. neoscapularis. In conclusion, the genus Shastasaurus is 
unquestionably represented only by S. pacificus and is diagnosed by a narrow 
 contact between the nasal and the postfrontal; an anteroposteriorly elongated orbit; 
narrow cheek; and presence of an anterior notch in the radiale.

Two species were named of the genus Shonisaurus: S. popularis Camp, 1976 and 
S. sikanniensis Nicholls and Manabe, 2004. Shonisaurus is known from the Carnian 
of Nevada (Camp 1980; McGowan and Motani 1999), New Caledonia (Mazin and 
Sander 1993) and possibly Mexico (Motani 1999); from the base of the upper 
Carnian of the Dolomites, Italy (Dalla Vecchia and Avanzini 2002); and from the 
Norian of British Columbia (McGowan 1997), Switzerland (Callaway and Massare 
1989) and Germany (Karl et al. 2014).

Shonisaurus popularis reached a length of 15 m. The skull may have been up to 
2 m long, with a very long rostrum and relatively large eyes. The postorbital region 
is dominated by a tall sagittal crest separating large temporal openings. Apparently, 
only juveniles bear teeth, which are low in number, large and conical and set in 
individual sockets. The rib articular facets on the dorsal vertebrae are similar to 
those of the large Jurassic Temnodontosaurus and Leptonectes. Some features of the 
appendicular skeleton such as the elongate and waisted scapula, the small T-shaped 
interclavicle, the very elongate fore- and hind fins resulting from strong hyperpha-
langy and the isometric and flattened proximal phalanges are also shared with some 
Jurassic taxa.

Shonisaurus sikanniensis from the Norian Pardonet Formation of northeastern 
British Columbia (Canada) is the largest ichthyopterygian species, possibly reach-
ing 21 m in length (Nicholls and Manabe 2004). Sander et al. (2011) referred it to 
Shastasaurus, but recent works (e. g., Ji et al. 2016) kept the species in the genus 
Shonisaurus.

Shonisaurus (Fig.  8.4) was probably not as deep-bodied as previously recon-
structed (Kosch 1990), and teeth were present only in small (supposedly juvenile) 
individuals, while larger (supposedly adult) specimens were probably edentulous 
like Guanlingsaurus (Sander et al. 2011). Some of the centra, at about the level of 
the 97th vertebra, are wedge-shaped, indicating a very slight tail bend.

Fig. 8.3 The ichthyosaur Guanlingasurus liangae from the Carnian of China. Scale bar equals 
50  cm. From Sander et  al. (2011), under CCBY2.5 http://www.plosone.org/article/
info%3Adoi%2F10.1371%2Fjournal.pone.0019480
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Himalayasaurus tibetensis Young and Dong (1972) was erected on the basis of 
jaw fragments from the Upper Triassic of Tibet and some probably associated post-
cranial material belonging to a very large ichthyosaur possibly exceeding 15 m in 
length. It was subsequently redescribed by Motani et al. (1999), who confirmed the 
shastasaurid affinity of the genus. Ji et al. (2016) do not include the genus in their 
phylogenetic analysis, although they apparently seem to consider it as a valid taxon 
(Ji et al. 2016, p.16). According to Motani et al. (1999), H. tibetensis is diagnosed 
by the presence of labiolingually flattened tooth crowns with distinct cutting-edges 
on the mesial and distal margins, a character indicating adaptation to feed on large 
preys that is shared only with the Anisian genus Thalattoarchon among Triassic 
ichthyosaurs.

8.2.2  Feeding Adaptations in the Shastasauridae

Nicholls and Manabe (2004) investigated the possible strategies of such a large and 
edentulous animal like Shonisaurus. They proposed that it may have been the eco-
logical equivalent to the extant suction-feeding odontocetes, like the beaked whales. 
After the discovery of Guanlingsaurus from China and the reexamination of shas-
tasaurid material from the western USA, Sander et al. (2011) suggested that a high 
diversity of large suction-feeding ichthyosaurs existed during the Late Triassic. 
However, Motani et  al. (2013) questioned this hypothesis, stating that it had not 
been tested quantitatively. Motani et al. (2013) searched for evidence of four osteo-
logical features that are strictly related to suction feeding (hyoid corpus ossification/
calcification, hyobranchial apparatus robustness, mandibular bluntness and man-
dibular pressure concentration index) in 18 species of Triassic and Early Jurassic 
ichthyosaurs, including the presumed suction feeders. The results of statistical com-
parisons between ichthyosaurs and extant sharks and marine mammals of known 
diets suggest that ichthyosaurs are not suction feeders because they lack features 
that occur in suction-feeders of both groups. For example, they lack an integration 
of the ossified corpus and cornua of the hyobranchial apparatus, their hyobranchial 
bones are significantly more slender than in suction feeders and the mandibles do 
not narrow rapidly to allow high suction pressure. In all these features, ichthyosaurs 
are instead comparable with ram-feeding sharks.

Fig. 8.4 Recostruction of Shonisaurus popularis. From Sanders (2000), redrawn

S. Renesto and F.M. Dalla Vecchia



271

8.2.3  Late Triassic Euichthyosauria

As anticipated above, some Euichthyosauria lived during the Late Triassic together 
with the Shastasauridae: the basal genera Californosaurus and Callawaya, the 
Torectonemidae (Toretocnemus and Qianichtyosaurus), the basal parvipelvian 
Macgowania, the more derived Hudsonelpidia and possibly also Leptonectes.

Californosaurus perrini (Merriam 1902) from the Lower Hosselkus Limestone 
(Carnian) of California, reached 2–3 m in length, was the first ichthyosaur to develop 
a distinct downward bend in the tail; the phalanges were distinctly rounded and 
widely spaced, giving a more rounded shape to the flipper. The number of presacral 
vertebrae is fairly low (45–50) but vertebral centra are more elongate than in shas-
tasaurids. Californosaurus is considered the basal most euichthyosaur in Ji et al. 
(2016) analysis.

Callawayia neoscapularis (McGowan 1994) from the Upper Triassic (Norian), 
Pardonet Formation, British Columbia, Canada is a small ichthyosaur, reaching 
about 2 m, in total length, the scapula has an elongated dorsomedial blade while 
anterior and posterior extensions are reduced, coracoids that met at a definite medial 
symphysis, clavicle very slender, humerus short, forefin is tridactyl.

Callawayia was once considered as belonging to the genus Shastasaurus (S. 
neoscapularis McGowan 1994). It was subsequently assigned to a new genus, 
Callawayia, by Maisch and Matzke (2000). It was considered as closely related 
with the Shastasauridae (e.g. Nicholls and Manabe 2001). Indeed, Callawayia 
shares a high presacral count of over 60 vertebrae with the shastasaurids and shows 
a similar forefin pattern. However, Ji et al. (2016) noticed that Callawayia has more 
derived cranial features than the Shastasauridae and its femur is more similar to that 
of Toretocnemus. In the phylogenetic analysis by Ji et al. (2016), Callawaya falls 
within the basal Euichthyosauria, between Californosaurus and the Torectonemidae 
(Fig. 8.1); this is also in accordance with its stratigraphic occurrence.

The poorly known genus Toretocnemus Merriam, 1902 is represented by a single 
species, Toretocnemus californicus Merriam, 1902 from the Carnian-Norian of the 
U.S.A and Mexico (Lucas 2002). It has tridactyl forefins and hind fins, and its pubis 
and ischium meet medially at a well-defined symphysis. Qianichthyosaurus Li 
1999 is (Fig. 8.2c) is represented by two species, Q. zhoui Li 1999 and Q. xingyien-
sis Ji et al. (in Yang et al. 2013), from the Carnian Wayao Member of the Falang 
Formation of Guizhou, China. Qianichthyosaurus has a femur with a greatly 
expanded distal end, tridactyl forefins with one accessory digit, tetradactyl hind fins, 
and notching on both leading and trailing edges of the flippers (Nicholls et al. 2002).

Macgowania janiceps (McGowan 1996) from the Norian of British Columbia is 
the basalmost Parvipelvia (Fig.  8.1). It was initially described as a species of 
Ichthyosaurus (I. janiceps; McGowan 1996) and the oldest record of this genus, 
which is common in the Lower Jurassic of England. However, Motani (1999) 
noticed that although the constriction of its humerus is unremarkable as in 
Ichthyosaurus, the manus lacks digital bifurcations or accessory digits. Motani 
(1999) transferred I. janiceps to the new genus Macgowania because it shares no 
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apomorphies with Ichthyosaurus and it does not fall in the same clade as the other 
Ichthyosaurus species in his phylogenetic hypothesis, making Ichthyosaurus 
paraphyletic.

Another non-thunnosaurian parvipelvian is Hudsonelpidia brevirostris McGowan 
1995, which has phylogenetic relationships with the other parvipelvians that are not 
resolved in Ji et al. (2016) analysis (Fig. 8.1). It is a small ichthyosaur from the 
Norian of British Columbia, with a short rostrum, high and narrow dorsal neural 
spines and several peculiar features in the pelvic elements and limb bone 
proportions.

The genus Leptonectes is a temnodontosauroid parvipelvian that ranges from the 
upper Rhaetian to the Pliensbachian of England, France, and Switzerland, accord-
ing to Ji et al. (2016). It is represented by three species: the ‘Rhaetian’-Sinemurian 
L. tenuirostris (Conybeare 1822), the Sinemurian L. solei (McGowan 1993) and the 
Pliensbachian L. moorei (McGowan and Milner 1999). The inclusion of L. tenuiros-
tris in the Triassic is just a matter of establishing whether the Pre-planonbis beds of 
the Blue Lias of Street and nearby localities (Somerset, UK) are latest Triassic or 
earliest Jurassic in age. According to Benson et al. (2012), they are earliest Jurassic, 
while Ji et al. (2016) apparently consider them to be latest Triassic in age. Those 
beds contain derived ichthyosaurs of ‘Jurassic-type’ as well as plesiosaurs of 
‘Jurassic-type’, but unfortunately they do not contain ammonoids. The Tr-J bound-
ary is formally marked by the first appearance of the ammonite Psiloceras spelae 
tirolicum in the Kuhjoch Pass section of Austria (Hillebrandt et al. 2013); Psiloceras 
spelae tirolicum is supposed to appear before P. planorbis (Hillebrandt et al. 2013), 
so the Pre-planorbis beds of England could formally be Jurassic in age. An earliest 
Jurassic age of the Pre-planorbis beds is supported also by carbon and oxygen iso-
tope stratigraphy (Korte et al. 2009; Lucas et al. 2011). However, a single Leptonectes 
humerus from the ‘Rhaetian’ (more probably Norian) Westbury Formation of 
Chipping Sodbury, Gloucestershire, England, was reported by Storrs (1999). 
Furthermore, a vertebral centrum from the upper Norian portion of the Kössen Beds 
near Vienna (Austria) was referred as Leptopterygius (= Leptonectes) sp. by Zapfe 
(1976), and two centra from the same formation of the Achental, Austria were 
described as similar to those of Ichthyosaurus tenuirostris (= Leptonectes tenuros-
tris) by von Meyer (1856). If these referrals are correct, the genus occurs anyway in 
the Upper Triassic.

According to Ji et al. (2016), the basal thunnosaurian Ichthyosaurus also has an 
Upper Triassic record. However, the ‘Triassic’ specimens are also from the Blue 
Lias of Street and are most probably earliest Jurassic in age.

McGowan (1991) reported an isolated forelimb from the middle Norian of 
Williston Lake (British Columbia), that shows a typical ‘Jurassic’ structure in hav-
ing a relatively elongate and wedged humerus, metacarpals and phalanges that are 
polygonal instead of discoidal and four main digits. On the basis of these features, 
McGowan (1991, p. 1559) concluded that the Williston Lake “forefin” was more 
similar to those of the Jurassic Ichthyosaurus communis, Leptonectes tenuirostris 
and Stenopterygius quadriscissus than to those of any Triassic taxa. This supports 
the hypothesis that the forelimbs had evolved to a more advanced structure, typical 
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of Jurassic taxa, already in the middle Norian, so the transition toward the ‘Jurassic 
bauplan’ may have occurred well before the end of the Triassic.

8.2.4  Problematical or Invalid Ichthyosaurian Taxa 
from the Upper Triassic

Yin et al. (2000), Li and You (2002) and Chen and Cheng (2003) erected several 
ichthyosaur genera and species based on specimens from the upper Carnian Wayao 
Member of the Falang Formation, Guanling, China, whose validity has subsequently 
been questioned. Some of these taxa were considered as junior synonyms of already 
named taxa. Li and You (2002) described two isolated skulls as a new species of 
Cymbospondylus, C. asiaticus, which would be the only Late Triassic species of 
Cymbospondylus, a genus that is otherwise known only from the Middle Triassic of 
Europe and North America (Merriam 1908; Sander 1989; Maisch and Matzke 2004, 
see also Balini and Renesto 2012). Yu (in Yin et al. 2000) erected Typicusichthyosaurus 
tsaihuae on the basis of a rather complete, but not very well-preserved, skeleton. 
Chen and Cheng (2003) described Panjiangsaurus epicharis based on a complete 
skeleton and a skull with an associated forefin.

However, Ji et al. (2016) stated that the skull material attributed to Cymbospondylus 
asiaticus shows none of the diagnostic characters of the genus Cymbospondylus, 
while it closely resembles Guizhouichthyosaurus tangae. They also noticed that the 
shape of the flippers of Typicusichthyosaurus, which supposedly distinguishes this 
genus from Guizhouichthyosaurus and Guanlingsaurus, is affected by preparation, 
thus it is not a valid diagnostic feature. In addition, the small head and the very high 
presacral vertebral count suggest that the specimen on which Typicusichthyosaurus 
is based actually belongs to Guanlingsaurus or to a closely related taxon. Ji et al. 
(2016) also suggested that Pangjiangsaurus epicharis is a junior synonym of 
Guizhouichthyosaurus tangae.

8.3  Sauropterygia

Sauropterygia is the most diverse clade of Mesozoic marine reptiles. Sauropterygians 
appeared during the Early Triassic and became extinct at the end of the Late 
Cretaceous. The Sauropterygia were divided into the Placodontia and the 
Eosauropterygia by Rieppel (1994, 2000). Eosauropterygia included the 
Pachypleurosauria and the Eusauropterygia, which in turn were divided into the 
Nothosauroidea and the Pistosauroidea (these latter including the Plesiosauria) 
(Rieppel 1994, 2000; Liu et al. 2011). However, some recent phylogenetic analyses 
(e.g. Wu et  al. 2011; Ma et  al. 2015), did not find support for the clade 
Pachypleurosauria. The inclusion of several new taxa from the Triassic of China 
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caused the collapse of this clade, and the taxa previously included in the 
Pachypleurosauria were found to be scattered in the pectinate basal part of the 
eosauropterygian tree (Fig. 8.5). According to Wu et al. (2011) and Ma et al. (2015), 
Sauropterygia includes the Placodontia and the Eosauropterygia, the latter contain-
ing the “pachypleurosaur-grade” taxa, the Nothosauroidea and the Pistosauroidea. 

Fig. 8.5 Phylogenetic relationships among Sauropterygians (strict consensus tree), from Ma et al. 
(2015), redrawn. Late Triassic genera are shown in bold
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Other recent phylogenetic hypotheses including partly or all of the sauropterygian 
taxa and obtaining discordant results have been published by Lee (2013),  and 
Neenan et al. (2013). In this chapter, we follow the phylogenetic hypothesis by Ma 
et  al. (2015), where Sauropterygia is retained (unlike Lee 2013), but 
“Pachypleurosauria” is considered to be a grade rather than a clade (Fig. 8.5).

Many different ecomorphological adaptations evolved within the Sauropterygia.  
“Placodonts were durophagous reptiles, with a stout skull and large, plate-like teeth 
(Fig. 8.6). The paraphyletic ‘placodontoids’ had a superficial similarity with the liv-
ing marine iguana, while the armoured cyamodontoids were turtle-like and not 
adapted to efficient rapid swimming in open waters”.

The ‘Pachypleurosauria’ were characterized by a lizard-like appearance 
(Fig. 8.7), with a moderately elongate neck, a relatively reduced size (maximum 
length was about 1.5 m) and a proportionally smaller skull with respect to the eusau-
ropterygians (Rieppel 2000). They mainly employed lateral undulation for propul-
sion, were confined to coastal environments and probably fed upon small prey, 
possibly performing suction feeding (Rieppel 2002a). They are mainly known from 
the Middle Triassic intraplatform basins and shallow epicontinental seas of Europe 
and China. The oldest basal eosauropterygians come from the Lower Triassic of 
China (Jiang et al. 2014).

The nothosauroids have a dorsally flattened skull with a postorbital region that is 
longer than the preorbital one, anteroposteriorly elongate temporal fenestrae and, in 
most cases, also strongly procumbent premaxillary and dentary teeth suggesting a 
mainly piscivorous diet. The robust forelimbs (with enlarged and flattened ulna, at 
least in Lariosaurus) suggest that they may have played a major propulsive role 
replacing lateral undulation in larger taxa. However, their manus and pes do not 
show any particular adaptation to swimming. In some nothosauroid taxa, neural 
spines were very high, and additional articulations (zygosphene-zyganthrum) were 
present, stiffening the trunk. The lifestyle of those sauropterygians may have been 
similar to that of extant seals or sea lions. Some reached very large sizes (Nothosaurus 
giganteus and Nothosaurus zhangi reached over 4.5 m in length). The nothosau-
roids are mostly known from the Middle Triassic of Europe, North Africa, Israel, 
Saudi Arabia and China; Corosaurus comes from the Lower Triassic (Olenekian) of 
Wyoming, USA and Simosaurus and Nothosaurus are reported from the lower 
Carnian.

During the Middle to Late Triassic, the morphological features that allowed par-
axial locomotion, a pelagic life style and a cosmopolitan distribution of the plesio-
saurs later in the Jurassic, evolved within the pistosauroids. In the Plesiosauria, the 
trunk was stiffened, the tail was reduced, the fore and hind-flippers were robust and 
morphologically nearly identical, and the girdles were broad and plate-like. These 
improvements allowed a more efficient and continuous paraxial swimming. Together 
with a possibly higher metabolic rate (Lécuyer et al. 2010; Krahl et al. 2013), these 
features allowed them to colonize the open sea.

Late Triassic sauropterygians are known from several localities in Europe (e.g., 
Benton and Spencer 1995; Rieppel 2000; Albers and Rieppel 2003), a few in the 
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Middle East and North Africa (Rieppel 1997; Rieppel et  al. 1997), China (e.g., 
Holmes et al. 2008; Liu et al. 2011), and a couple in the USA (Storrs 1991; Sander 
et al. 1997). Early Carnian sauropterygians are represented by cyamodontoid plac-
odonts, the last ‘pachypleurosaurs’, the last nothosauroids and the first plesiosaurs, 
which are the most derived Pistosauroidea. Bobosaurus forojuliensis from the lower 

Fig. 8.6 Placodont skulls in palatal view. (a) ?Cyamodus from Fusea (MFSN 26830). (b) 
Placochelys placodonta. (c) Protenodontosaurus italicus; holotype (MFSN 1819). (d) 
Psephoderma. From Dalla Vecchia (1994), modified
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Carnian of Italy is the oldest and most primitive plesiosaur, according to Fabbri 
et al. (2014), Liu et al. (2015) and Ma et al. (2015), while it is the sister taxon of the 
Plesiosauria for Benson et al. (2012). A wide gap exists in the eosauropterygian fos-
sil record, spanning the upper Carnian and most of the Norian (an interval of over 
20 million years). The only exception is the purported elasmosaurid plesiosaur 
Alexeyisaurus karnoushenkoi from the lower-middle Norian of Russia (Sennikov 
and Arkhangelsky 2010). Placodonts appear again in the uppermost middle Norian- 
Rhaetian of the Alpine Region and Western Europe. Scattered remains from the 
‘Rhaetian’ of England, France and Germany are referred to plesiosaurs. Plesiosaur 
are well-preserved, relatively abundant and diversified in the Pre-planorbis beds of 
Street and nearby localities of England, which, however, are most probably of earli-
est Jurassic age (as reported above in the section about the ichthyosaurs). They radi-
ated rapidly during the Early Jurassic and became cosmopolitan later in the Jurassic 
and Cretaceous, with a great diversity.

8.3.1  Placodontia

The oldest placodonts are reported from the lower Anisian (Middle Triassic; about 
245 million years ago). The group diversified significantly during the Middle 
Triassic (Peyer 1931; Pinna 1990a; Pinna and Mazin 1993; Rieppel 2000). The last 
record is represented by isolated remains of Psephoderma alpinum from the Fissure 
Infillings at the Holwell locality near Bristol, UK, which Whiteside et al. (2016) 
tentatively dated to the Rhaetian (however, the traditional ‘Rhaetian’ of UK workers 
probably does not correspond exactly with the Alpine Rhaetian and the formal defi-
nition of this Stage).

The main feature of the placodonts, from which the clade got its name, is the 
highly specialised crushing dentition, which is composed of broad, plate-like teeth 
located on the jaw margins and on the enlarged palatine bones as well (Mazin and 

Fig. 8.7 The ‘pachypleurosaur’ Keichousaurus, from the Anisian of China. Length about 20 cm
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Pinna 1993; Rieppel 2001; Fig.  8.6). Placodont skull morphologies range from 
 box- shaped and stout, bearing anterior chisel-like grasping teeth to wide and flat-
tened with elongate narrow rostra (Mazin and Pinna 1993; Rieppel and Zanon 1997; 
Rieppel 2000). Most placodonts had a durophagous diet, a singular exception being 
the highly derived Henodus, which may have been either a filter feeder (sieving 
food with baleen-like structures) and/or a grazer (Rieppel 2002a).

Following the recent phylogenetic analysis by Neenan et al. (2015; Fig. 8.8), the 
Placodontia include Paraplacodus and Placodus (the armourless taxa, which were 
grouped in the Suborder Placodontoidea by Rieppel 2000) and the more derived 
Cyamodontoidea. The latter include the Cyamodontidae (Cyamodus + Sinocyamodus) 
as the basal clade, followed along the spine by Protenodontosaurus and the 
Placochelyidae, the latter comprising Placochelys, Glyphoderma, Henodus, 
Macroplacus, Psephoderma and Psephochelys. However, that analysis does not 
include all the Chinese taxa.

Fig. 8.8 Phylogenetic relationships among Placodonts (strict consensus tree), from Neenan et al. 
(2015), redrawn. Late Triassic genera are shown in bold

S. Renesto and F.M. Dalla Vecchia
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‘Placodontoids’ were rather slow, tail-propelled and undulatory swimmers. The 
Cyamodontoidea is a monophyletic group (but not in Ma et al. 2015 analysis) that 
is characterized by the possession of a dorsal armour protecting the trunk, which 
was formed by the fusion of small osteoderms during growth (Westphal 1975, 1976; 
Rieppel 2002b; Scheyer 2007). The dorsal armour usually consists of a dorsal thora-
cal shield; some taxa also have a smaller shield covering the base of the tail (Pinna 
1980; Pinna and Nosotti 1989) or, according to Scheyer (2010), the pelvic area. 
Cyamodontoideans are also characterized by a dorsoventrally flattened skull with a 
premaxillary rostrum. The latter bears a few blunt teeth in basal taxa, while it is nar-
rower, more elongate and edentulous in more derived taxa (with the exception of 
Henodus, which has a short and widely squared snout). The number of maxillary 
and palatine teeth for each side vary from five to one and from three to two, respec-
tively. The upper temporal fenestrae are large to house the powerful jaw adductor 
muscles. The lower jaw shows a very high coronoid process, providing an extensive 
area for jaw adductor muscles; the mandibular symphysis is elongate, matching the 
premaxillary rostrum. Despite the superficial similarity with that of turtles, the plac-
odont carapace is structurally different and it is not fused to the endoskeleton 
(Gregory 1946), just leaning on the vertebrae that have long transverse processes.

Placodonts were believed to have been restricted to the coasts of the western 
Paleotethys, i. e. to the epicontinental seas of Central Europe and Alpine domains 
(Brotzen 1956; Haas 1969; Pinna 1990a; Rieppel and Hagdorn 1997). In the last 
two decades, discoveries of placodonts from China extended their distribution to the 
eastern Tethyan faunal province, with four new species: Sinocyamodus xinpuensis 
(see Li 2000); Psephochelys polyosteoderma (see Li and Rieppel 2002); Placodus 
inexpectatus (see Jiang et al. 2008), and Glyphoderma kangi (see Zhao et al. 2008).

It has been suggested that placodonts initially evolved in the eastern Paleotethys 
and then moved westwards (Rieppel and Hagdorn 1997; Rieppel 1999a); however, 
Neenan et al. (2013) have recently proposed a western (European) origin.

8.3.1.1  Late Triassic Placodonts

All Late Triassic placodonts belong to the Cyamodontoidea. Rieppel and Nosotti 
(2002) ascribed to Cyamodus (a genus otherwise reported from the Middle Triassic) 
a skull (Fig. 8.6a) from the uppermost Ladinian or basal Carnian (Dalla Vecchia and 
Carnevale 2011) of Fusea (Friuli, northeastern Italy) that had previously been 
assigned to Placochelys placodonta (see Pinna and Zucchi Stolfa 1979). The poor 
preservation, however, prevented the erection of a new species. Abundant armour 
remains and a few postcranial elements from the same site and horizon and plausi-
bly from the same species, have been reported by Rieppel and Dalla Vecchia (2001) 
and Dalla Vecchia (2008a).

Sinocyamodus xinpuensis Li 2000 is the first placodont discovered in China 
(Fig.  8.9). It was collected in the lower Carnian Wayao Member of the Falang 
Formation of Xinpu, Guizhou Province. It is a relatively small placodont, with elon-
gate orbits, a short rostrum and the premaxilla bearing three bulbous teeth. The 
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dorsal armour has a subcircular outline and is made of quite large osteoderms. 
According to Li (2000), pectoral and pelvic girdles are not covered by the armour; 
isolated osteoderms occur on the limbs, and there is also a dorsal row of osteoderms 
along most of the tail.

Protenodontosaurus italicus Pinna 1990a, b is known by two skulls from the 
lower Carnian of Dogna, Friuli, northeastern Italy (Fig. 8.6c). Also, armour frag-
ments and isolated teeth from the same horizon (Rio del Lago Formation) and area 
probably belong to this taxon (Pinna 1990b; Dalla Vecchia 2008a). This taxon is 
characterized by the possession of a single posterior maxillary tooth, which is sepa-
rated by a wide diastema from the premaxillary tooth; maxilla as high as it is long 
due to the presence of a wide ascending process; prefrontal not extending far down 
along the anterior margin of the orbit; orbital margin of frontal rather straight; post-
orbital not extending beyond the midpoint of the upper temporal fenestra along its 
lateral margins; and vomers much enlarged and reaching far anteriorly into the ros-
trum (Rieppel 2000).

Placochelys placodonta Jaekel 1902 is known from two skulls, one associated 
with remains of the postcranial skeleton, from the Carnian (probably lower Carnian) 
of the Bakony Hills, Hungary (Jaekel 1907; Rieppel 2001). Part of the postcranial 
remains was lost during World War II (Westphal 1975; Rieppel 2001). Placochelys 
has a flattened skull (Fig. 10.6b) with a triangular outline in dorsoventral view and 
a short, narrow snout with edentulous premaxillae. It shows diagnostic features in 
the skull bones, but some are shared with other cyamodontoids (Rieppel 2001). The 
upper dentition consists of three maxillary teeth and two teeth of different size on 
the palatine. The carapace is incompletely known; it was made of small, scale-like 
osteoderms with longitudinal rows of much larger, conical and low osteoderms.

Macroplacus rhaeticus Schubert-Klempnauer 1975 is represented by a nearly 
complete skull from an unknown level within the Kössen Formation (upper 

Fig. 8.9 The placodont Sinocyamodus xinpuensis from the lower Carnian of China. Total length 
is about 50  cm. Author: Bruce McAdam; CCBY-SA2.0 https://en.wikipedia.org/wiki/
Sinocyamodus#/media/File:Armoured_reptile.jpg

S. Renesto and F.M. Dalla Vecchia
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 Norian- Rhaetian p.p.) of the Bavarian Alps (Germany). It is diagnosed by the pres-
ence of hypertrophied posterior palatine teeth, posterior processes of the premaxil-
lae that are enlarged and extend backwards reaching the frontals, thus separating the 
nasals from each other (convergent in Psephoderma) and greatly reduced posttem-
poral fossae. Pinna (1990a) considered Macroplacus as a junior synonym of 
Psephoderma and proposed to rename it as Psephoderma rhaeticus. However, 
Rieppel (2000) supported the validity of the genus on the basis of the presence of 
diagnostic characters and the results of his cladistic analysis; the topology of the 
tree by Neenan et al. (2015; Fig. 8.8) also supports this result.

Psephoderma alpinum von Meyer 1858 (Fig. 8.6d) has a flattened skull with a 
triangular outline in dorsoventral view and a very narrow, elongate and edentulous 
rostrum, presumably used for probing soft sediments for shelled mollusks and other 
prey items (Mazin and Pinna 1993; Rieppel 2002a). It is mostly reported from the 
uppermost middle Norian-lower Rhaetian of the Alpine region (e.g., Rieppel 2000, 
2001; Neenan and Scheyer 2014); fragments of placodont armour and isolated teeth 
from the ‘Rhaetian’ Fissure infillings of United Kingdom have been referred to 
Psephoderma (Psephoderma anglicum; von Meyer 1867; Whiteside et al. 2016). It 
is diagnosed by squamosals projecting far posteriorly; upper temporal fenestra rela-
tively narrow; nasal process of the premaxilla reaching the frontals; frontal reaching 
the anterior margin of the pineal foramen; and palatine tooth plates that are elongate 
in adults. Thanks to the finding of complete and articulated specimens from the 
middle-upper Norian of northern Italy, Psephoderma is one of the best known plac-
odonts. Its osteology has been described in detail by Pinna (1976, 1978) and Pinna 
and Nosotti (1989). Studies on its armour were published by Westphal (1976), and 
its palaeoecology has been discussed by Mazin and Pinna (1993). Psephoderma 
alpinum is a fairly large placodont, the longest complete specimen being 1.8 m in 
total length (Renesto and Tintori 1995), but isolated teeth suggest that it may have 
reached even larger sizes. The rostrum is more elongate than in Placochelys and the 
maxillae are well-developed, forming part of the anterior margin of the nasal open-
ings. Two flat crushing teeth are present on both maxilla and palatine; the posterior 
palatine teeth are enormously developed. The postcranial skeleton consists of 5 cer-
vical, 15 dorsal, 3 sacral and up to 30 caudal vertebrae. The hind limb is oar-shaped, 
with rounded terminal phalanges that were presumably clawless. The dorsal armor 
consists of a flattened, rounded carapace and of a smaller posterior plate, both bear-
ing three longitudinal ridges formed by keeled osteoderms; the tail also bears a 
median row of osteoderms. Psephoderma is usually reconstructed with a rather dor-
soventrally flattened body, giving it a ray-like appearance. Renesto and Tintori 
(1995) noticed a strong positive allometry in the hind limbs during growth 
(Fig.  8.10), suggesting that they may have played a major role in aquatic 
locomotion.

The study of the complete specimens of Psephoderma allowed also recognition 
that several placodont species erected on the basis of isolated skulls or other frag-
mentary remains from the upper Norian-Rhaetian (Placochelyanus stoppanii, 
Placochelys malanchinii, Placochelys stoppanii, Placodus zittelii, Placochelys 
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alpis-sordidae and Psephoderma anglicum) represent junior synonyms of 
Psephoderma alpinum (Pinna 1976, 1978; Rieppel 2000).

Psephochelys (with the only species P. polyosteoderma Li and Rieppel 2002) is 
the sister taxon of Psephoderma in the phylogenetic hypothesis by Neenan et al. 
(2015; Fig.  8.8). It occurs in the lower Carnian Wayao Member of the Falang 
Formation, of Guizhou, like Sinocyamodus xinpuensis. It is unique among cyamo-
dontoid placodonts by the apparent entry of the postfrontal into the anteromedial 
margin of the upper temporal fossa. It shares with Placochelys and Psephoderma 
the spatulate and edentulous premaxillary rostrum. It shares with Psephoderma the 
presence of two maxillary teeth; upper temporal fenestrae relatively long and nar-
row; squamosals projecting far posteriorly; and tubercle-like osteoderms fused to 
the squamosals at their posterior extremity only.

Henodus chelyops von Huene 1936 is represented by only one complete and 
articulated specimen from the uppermost Gipskeuper (Estherienschichten, lower 
Carnian) of Lustnau, near Tübingen, southern Germany (Fig. 8.11). Henodus falls 
within the Placochelyidae in Neenan et al.’s (2015) phylogenetic analysis, but they 
(Neenan et al. 2015, p. 426) consider this to be “an artifact of a convergent morphol-
ogy with some members of the Placochelyidae”. Henodus shows many peculiari-
ties. Its skull is completely different from that of other placodonts, being anteriorly 
truncated and with laterally wide premaxillae. Nostrils and orbits are located very 
close to the tip of the snout, and the latter is curved ventrally, so that the nostrils and 
orbits are cranially facing. Furthermore, the upper temporal fenestrae are second-
arily closed. The dentition is strongly reduced: the margins of the premaxillae form 
a cutting edge bearing just a single row of tiny teeth. The maxillae are toothless, 
bearing a deep groove that may have housed baleen-like structures. The palatines 
have a single tooth plate each. Dentaries also bear a longitudinal groove and a single 
small flattened tooth at their posterior end. The coronoid is small, forming a small 
coronoid process. The posterior border of the skull bears some sub-pyramidal tuber-
cles. The carapace is proportionally wider than that of other cyamodontoid plac-
odonts. Its borders are bent downward, forming a lateral wall linking the carapace 
to the plastron, fully enclosing the body within the shell. Reconstruction of jaw 
musculature (Rieppel 2002a) suggests that Henodus may have been able to perform 

Fig. 8.10 The placodont Psephoderma alpinum specimen V527 and ST2883 from the Norian of 
Italy drawn at the same size to show differences in limb proportions, from Renesto and Tintori 
(1995), modified. Scale bars equal 20 cm
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rapid jaw opening; the presence of large and ossified hyoid elements indicates that 
it could expand the throat for suction feeding, perhaps filtering small organisms 
with baleen-like structures. Also, it may have used the premaxillary flange and den-
ticles for grazing rocks, feeding on algae or other kinds of aquatic vegetation.

8.3.1.2  Palaeoecology of Late Triassic Placodonts

Placodonts, with the exception of the highly derived Henodus, had a durophagous 
diet. The claim that Placodus and Cyamodus were macroalgae feeders (Diedrich 
2010, 2011a, b) was refuted on the basis of osteological, biomechanical and tapho-
nomic evidence (Scheyer et al. 2012) and it is no longer tenable. The feeding behav-
iour of Late Triassic cyamodontoids like Psephoderma alpinum was parallel to that 
of the durophagous batoids (Rajiformes and Myliobatiformes; Mazin and Pinna 
1993; Pinna and Nosotti 1989). Like these fishes, cyamodontoid placodonts have a 
rather dorsoventrally flattened body and may have been bottom walkers that probed 
the sediments with their rostra, searching for food. They do not have adaptations for 
efficient locomotion in water, so they may have been relatively slow swimmers, 
propelled by alternate strokes of the robust hind limbs (Renesto and Tintori 1995).

Fig. 8.11 The placodont 
Henodus chelyops from the 
lower Carnian of Germany. 
The specimen is 1 m long. 
Author: Ghedoghedo; CC 
BY-SA 3.0. https://en.
wikipedia.org/wiki/
Henodus#/media/
File:Henodus_chelyops_1.
JPG
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8.3.2  ‘Pachypleurosauria’

Fragmentary remains referred to ‘pachypleurosaurians’ are reported in the lower 
Carnian of Germany (Anatina-Bank, Upper Gipskeuper; Hagdorn and Rieppel 
1999) and northeastern Italy (Rio del Lago Formation; Dalla Vecchia 2008a). As 
they are identified only on the basis of their small size, the possibility exists that 
they are juvenile individuals of other eosauropterygians (Dalla Vecchia 2008a).

8.3.3  Nothosauroidea

According to Rieppel (2000), Nothosauroidea is a clade composed of Simosaurus 
and the Nothosauria. The latter is formed by Germanosaurus and the Nothosauridae 
(Nothosaurus + Lariosaurus). According to Ma et al. (2015; Fig. 8.5), it is com-
posed by the Cymatosauridae (Cymatosaurus  +  Corosaurus), which were basal 
Pistosauroidea in Rieppel (2000), Simosaurus and the Nothosauria (as defined by 
Rieppel 2000). Nothosauroidea is not found by Neenan et al. (2015), whose strict 
consensus tree shows a large politomy involving the Nothosauroidea and the 
Pistosauroidea taxa of Ma et al. (2015); this is probably a consequence of the fact 
that their analysis was focused on the placodonts. Nothosauroidea is a prevailing 
Middle Triassic group. Middle Triassic remains are reported from localities in 
Europe, Tunisia, Israel, Saudi Arabia and China. Corosaurus comes from the Lower 
Triassic of the USA (Lin and Rieppel 1998; Rich et al. 1999; Rieppel 1999a, b, 
2000; Rieppel et  al. 1997). Only a few remains of Nothosaurus and Simosaurus 
(Fig. 8.12) are reported from the lower Carnian. Nothosauroids are characterized by 
great size variability, with very large taxa, like Nothosaurus giganteus (Rieppel and 
Wild 1996; Rieppel 2000 and references therein) and N. zhangi (see Liu et al. 2014), 
which reached up to 4.5 m in length.

Fig. 8.12 Reconstruction of the skeleton of the nothosauroid Simosaurus gaillardoti. (Photo FM 
Dalla Vecchia)

S. Renesto and F.M. Dalla Vecchia
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8.3.3.1  Late Triassic Nothosauroidea

Nothosaurus edingerae comes from the Upper Gipskeuper (Acrodus-bank and 
Anatina-Bank; basal lower Carnian) of southern Germany (Rieppel and Wild 1996; 
Rieppel 2000). The Anatina-Bank yielded also the pachyostotic ribs of a mid to 
large-sized eusauropterygian (Hagdorn and Rieppel 1999) that could be Simosaurus 
or Bobosaurus.

Skull and lower jaw bones, teeth and postcranial elements of a large nothosaur 
(Fig. 8.13) were reported from Fusea, Friuli, northeastern Italy (Dalla Vecchia 1994, 
2008a; Rieppel and Dalla Vecchia 2001), which is latest Ladinian or earliest Carnian 
in age (Dalla Vecchia and Carnevale 2011). They were referred to Nothosaurus cf. 
giganteus by Rieppel and Dalla Vecchia (2001) because of their large size and the 
low neural spine of the vertebrae.

Dalla Vecchia (2008b) described postcranial remains of Simosaurus from the 
lower Carnian Rio del Lago Formation near Dogna, Friuli, northeastern Italy, con-
firming the presence of the genus in the Carnian. The taxon is reported also from the 
lowermost Gipskeuper of Germany (Rieppel 1994) that is latest Ladinian in age 
according to Hagdorn and Rieppel (1999). Dorsal vertebrae of Simosaurus 
(Fig. 8.14) are characterized by ‘infraprezygapophyses’ and ‘infrapostzygapophy-
ses’ in addition to the ‘normal’ zygapophyseal articular facets (i.e., wedge-shaped 
prezygapophyses with both dorsal and ventral articular surfaces) in the neural arches 
(see Dalla Vecchia 2008b). Rieppel and Dalla Vecchia (2001) refer to Nothosaurus 
sp. a neural arch with a low neural spine from the same area and horizon.

Fig. 8.13 Dorsal vertebra of the nothosauroid Nothosaurus cf. giganteus (MFSN 16851) from the 
basal Carnian or top Ladinian of Fusea, Italy. (a) anterior; (b) posterior view. From Rieppel and 
Dalla Vecchia (2001) redrawn
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Associated postcranial remains of a relatively large eusauropterygian are reported 
also from the upper part of the lower Carnian (San Cassiano Formation) of Stuores 
Wald in the Dolomites, northern Italy (Bizarrini et al. 2003). It could be a nothosau-
roid, but also a pistosauroid cannot be excluded as the specimen was never described 
in detail. It appears to be the youngest eusauropterygian before the ‘Rhaetian’ ple-
siosaurs from Western Europe.

8.3.4  Pistosauroidea

According to Ma et  al. (2015), Pistosauroidea is a clade composed of the basal 
Wangosaurus, followed along the pectinate tree by Yunguisaurus, the Pistosauridae 
(sensu Rieppel 2000) and the Plesiosauria (see Fig. 8.5). Two purported pistosau-
roids from China are Chinchenia and Kwangsisaurus (Rieppel 1999b). They are all 
Middle Triassic in age, excluded the Plesiosauria that are all Late Triassic and post- 
Triassic in age. Pistosauroids are fairly rare in the Triassic, named taxa being repre-
sented by only a few specimens from Europe, China and USA (see Ma et al. 2015 

Fig. 8.14 Dorsal vertebra of the nothosauroid Simosaurus gaillardoti (SMNS 14733). (Photo FM 
Dalla Vecchia): (a) anterior(cranial) view; (b) posterior (caudal) view
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and references therein). Derived pistosauroids, the plesiosaurs, had a great evolu-
tionary success and spread worldwide in the Jurassic and Cretaceous.

8.3.4.1  Late Triassic Pistosauroids

As anticipated above, Bobosaurus forojuliensis Dalla Vecchia 2006 from the lower 
Carnian Rio del Lago Formation of Dogna, Italy, is the oldest and most basal ple-
siosaur according to Fabbri et al. (2014), Liu et al. (2015) and Ma et al. (2015), 
while it is the sister group of Plesiosauria for Benson et al. (2012). It represents an 
early diverging branch in the evolution of the plesiosaurian body plan from the 
ancestral pistosaurian grade (Fabbri et al. 2014). The holotype (Fig. 8.15) is a partial 
but mostly articulated skeleton consisting of the tip of the rostrum with some teeth, 
part of the cervical vertebral column, the dorsal and sacral segments of the vertebral 
column, most of the caudal segment, some gastralia, a humerus, the pelvic girdle 
and some elements of the hind limbs; an isolated neural arch from the same locality, 
was also referred to this species (Dalla Vecchia 2006). Bobosaurus was a relatively 
large eusauropterygian reaching a length of over 3 m. It has at least five autapomor-
phies in the vertebral column, including a vertebral zygapophyseal articulation that 
is the opposite with respect to that of Simosaurus (Dalla Vecchia 2006). Teeth, ver-
tebrae and the pubis of Bobosaurus show affinities with plesiosaurian grade saurop-
terygians in their morphology, while other skeletal features are shared with less 
derived eusauropterygians or were previously considered apomorphic of distinct 
taxa (i.e., very tall neural spines and uncinate processes of the dorsal ribs). Dalla 
Vecchia (2006) considered Bobosaurus as a pistosaurid or, alternatively, a member 
of a clade closer to Liassic plesiosaurians than to pistosaurids. The cladistic analysis 
performed by Fabbri et al. (2014), found Bobosaurus to be closer to plesiosaurians 
than to the paraphyletic “pistosaurids” Pistosaurus and Augustasaurus. Fabbri et al. 
(2014) underlined that this result is congruent with the chronostratigraphic positions 
of these taxa (Pistosaurus and Augustasaurus are from the upper Anisian, and 
Yunguisaurus from the upper Ladinian, while Bobosaurus is from the lower 
Carnian). Its position as the oldest and basal plesiosaurian is in agreement with the 
hypothesis by Benson et  al. (2012) that the earliest plesiosaurian diversification 
already occurred in the Late Triassic (see below). Bobosaurus lived 30 millon years 
y before the Rhaetic specimen that Wintrich (2015) considers as the most basal 
plesiosaur (as detailed further), therefore it is supposed to be more primitive. As 
Fabbri et al. (2014) pointed out, the inclusion or not of Bobosaurus in the Plesiosauria 
depends upon the way Plesiosauria is formally defined. Bobosaurus was possibly a 
surface swimmer with a stiff trunk that mainly used its forelimbs, and perhaps hind 
limbs, in swimming.

Alexeyisaurus karnoushenkoi Sennikov and Arkhangelsky 2010 from the lower- 
middle Norian Wilczek Formation, Wilczek Land of Franz-Josef Land, Russia is 
represented by an incomplete skeleton consisting of portions of the dorsal and cau-
dal regions of the vertebral column, some ribs, and a few incomplete girdles and 
limbs bones. It has been considered as a peculiar plesiosaur belonging to the 
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Fig. 8.15 (a) drawing of the holotype of the basal plesiosaur Bobosaurus forojuliensis (MFSN 
27285) redrawn from Dalla Vecchia (2006). (b) silhouette with the preserved parts of the skeleton; 
drawing by Marco Auditore. Scale bars equal 50 cm
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Elasmosauridae (Sennikov and Arkhangelsky 2010), an advanced clade otherwise 
exclusively Cretaceous in age (Ketchum and Benson 2010; Druckenmiller et  al. 
2008; Otero et al. 2014; Sato et al. 2006). However, this taxon does not show any 
unambiguous synapomorphies of the Elasmosauridae. Only the outline of the cora-
coid has some resemblance with that of the elasmosaurids, which could be a case of 
morphological convergence. In addition, the humerus and femur differ from those 
of all other sauropterygians. Finally, its phylogenetic affinity was not tested by a 
cladistic analysis. For these reasons, we consider as dubious its attribution to the 
Elasmosauridae, while it may well represent a peculiar sauropterygian of uncertain 
affinity. Wintrich (2015) reports the discovery of a nearly complete and largely 
articulated skeleton of a subadult (1.6  m long) plesiosaur from the Rhaetian of 
Westphalia (Germany). This specimen would have V-shaped neurocentral suture of 
the cervical vertebrae, humerus with a straight shaft and femur and zeugopodials 
that are only slightly longer than wide, which are considered plesiosaur features. 
However, to date (may 2017) the description of this specimen has not been pub-
lished yet.

Fragmentary plesiosaur remains (mainly vertebrae, teeth, partial humeri and 
phalanges) are reported from the ‘Rhaetian’ Westbury Formation of England (Storrs 
1994, 1999; Mears et al. 2016). Owen (1840) described many isolated plesiosaur 
vertebrae from the ‘Rhaetian’ of SW England, erecting several taxa that are nomina 
dubia today. Possible plesiosaur material (vertebrae and teeth) is reported from the 
‘Rhaetian’ of Provenchères-sur-Meuse, Haute Marne, France (Cuny 1995) and pos-
sibly Germany (Wintrich 2015). We report ‘Rhaetian’ within brackets because it is 
unclear whether the Rhaetian of western Europe corresponds totally or just partly 
with the Alpine Rhaetian, which is the world reference for this Stage; probably it 
includes also part of the upper Norian, i.e., the Sevatian.

Taylor and Cruickshank (1993) report a plesiosaurian vertebral string and a tooth 
from an erratic block at Linksfield, Scotland, which could be late Rhaetian or early 
Jurassic in age.

The oldest good plesiosaur record comes from the Pre-planorbis beds of the Blue 
Lias cropping out near Street and nearby localities (Somerset, UK) (Storrs and 
Taylor 1996; Benson et al. 2012). We have already discussed the problem of the age 
of those beds in the ichthyosaur section. They contain several plesiosaur species 
based on wonderful material: Thalassiodracon hawkinsii (Owen 1840) (see Storrs 
and Taylor 1996 and Benson et al. 2011); Eurycleidus arcuatus (Owen 1840) (see 
Cruickshank 1994); Atychodracon (Rhomaleosaurus) megacephalus (Stutchbury 
1846) (see Smith 2015); ‘Plesiosaurus’ cliduchus (Seeley 1865); Stratesaurus tay-
lori Benson, Evans and Druckenmiller 2012; Avalonnectes arturi Benson, Evans 
and Druckenmiller 2012; and Eoplesiosaurus antiquior Benson, Evans and 
Druckenmiller 2012.

As suggested by Benson et al. (2012) on the basis of their stratigraphically cali-
brated cladogram, at least a dozen distinct plesiosaurian lineages are represented in 
the Pre-planorbis beds of England, implying that plesiosaurs diversified during the 
Late Triassic despite the rarity of their Triassic remains.
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8.4  Thalattosauria

The Thalattosauria are a monophyletic clade of marine reptiles from the Middle to 
Upper Triassic of North America, Europe and China (Merriam 1905; Peyer 1936a, 
b; Kuhn-Schnyder 1952; Renesto 1992; Nicholls and Brinkman 1993; Nicholls 
1999, Rieppel et al. 2000; Liu et al. 2013 and references therein). They were fairly 
large aquatic reptiles, ranging from 1 m up to 4 m in length. Thalattosaurs are char-
acterized by a skull with an elongated and tapering premaxillary rostrum; retracted 
nares; contact of the premaxilla with the frontal; reduced and slit-like upper tempo-
ral fossa; deeply concave occiput with the occipital condyle located well in front of 
the mandibular articulations; and an incomplete lower temporal arch (Rieppel 1987; 
Nicholls 1999). The trunk is elongate, and the tail is very long and laterally com-
pressed and deep, due to the presence of relatively high neural spines and long 
chevrons. In most taxa the limbs are very short relative to the body. These animals 
swum by lateral undulations of the tail and body axis. Thalattosauria are divided 
into two major groups, the Askeptosauroidea and the Thalattosauroidea by most 
authors (see Liu and Rieppel 2005; Cheng et  al. 2011; Liu et  al. 2013). The 
Askeptosauroidea differ from the Thalattosauroidea in the presence of a longer, 
pointed rostrum and a longer neck (more than 10 cervical vertebrae). Also, the 
Thalattosauroidea have a downturned tip of the premaxillae. However, Nicholls 
(1999) excluded Endennasaurus and Askeptosaurus from the Thalattosauria and 
proposed the clade Thalattosauriformes to comprise these two taxa, restricting the 
use of Thalattosauria to the other known thalattosaurs. The Thalattosauriformes 
were retained by Müller (2004, 2005), but recent phylogenetic analyses, such as 
those by Wu et al. (2009), Cheng et al. (2011) and Liu et al. (2013), maintained the 
subdivision of the Thalattosauria into Askeptosauroidea and Thalattosauroidea, the 
first including Endennasaurus and Askeptosaurus. In this chapter, we follow the 
phylogenetic hypothesis by Liu et al. (2013) (Fig. 8.16).

Until the last decade, Late Triassic thalattosaurians were represented by a few 
genera, namely Nectosaurus and Thalattosaurus from the Carnian of California, 
and Endennasaurus form the Norian of Lombardy, northwestern Italy (Rieppel 
et al. 2000; Liu and Rieppel 2001; Liu et al. 2013). Subsequent discoveries of excel-
lently preserved specimens from the lower Carnian of Guanling in China have 
added substantial knowledge of thalattosaur diversity and witnessed their cosmo-
politan distribution, raising an increased interest in their palaeobiogeography. As 
Liu et al. (2013) pointed out, the thalattosaur fauna from the Xiaowa Formation is 
the best preserved and most diverse known so far. Four further genera have been 
erected: Anshunsaurus Liu 1999; Xinpusaurus Yin 2000 (in Yin et  al. 2000); 
Miodentosaurus Cheng Wu and Sato 2007b; and Concavispina Zhao, Liu, Li and 
He 2013.

The affinities of the thalattosaurs have been discussed by different authors, but 
are still debated. According to Müller (2004, 2005), they may be either the sister 
group of Sauria or of the Ichthyosauria. In the analysis by Motani et al. (2015), they 
are the sister group of Ichthyopterygia +Sauropterygia, while they are the sister 
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group of a clade including Eusarosphargis, Helveticosaurus, Ichthyopterygia, 
Sinosarosphargis and Sauropterygia in the analysis by Neenan et al. (2015).

Thalattosaurs reveal a great morphological diversity mostly linked to different 
feeding adaptations, from toothless forms with elongate beak-like rostra, such as 
Endennasaurus (see Müller et  al. 2005), to taxa with a well-developed semi- 
durophagous or durophagous dentition and a downturned or shortened rostrum 
(Rieppel et al. 2005), such as Anshunsaurus and Miodentosaurus.

8.4.1  Late Triassic Thalattosaurs

Thalattosaurus alexandrae Merriam 1904 from the Carnian Hosselkus Limestone 
of California, USA is a large thalattosaur that reached 2–3 m in length. It was char-
acterized by an edentulous premaxilla bearing a “pseudodont” dentition made by 
bony projections. Small teeth with button-like crowns occur on the maxilla, vomer 

Fig. 8.16 Phylogenetic relationships among the thalattosaurs (strict consensus tree), from Liu 
et al. (2013), redrawn. Late Triassic genera are shown in bold
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and posterior portion of the dentary, whereas the anterior portion of the dentary 
bears procumbent conical teeth (Fig. 8.17).

Nectosaurus halius Merriam 1905, also from the Carnian Hosselkus Limestone 
of California, is a relatively small thalattosaur known mostly from fragmentary 
skull and vertebral material (Nicholls 1999). It was characterized by teeth with a 
thecodont implantation and conical, pointed and heavily striated crowns. N. halius 
may have reached 1 m in length, but other Nectosaurus material suggests the pres-
ence of much larger individuals. Consequently, either the specimens ascribed to N. 
halius were juveniles or the larger specimens belong to another species; Nicholls 
(1999) tentatively supported the second hypothesis and referred the larger specimen 
to Nectosaurus sp.

Endennasaurus acutirostris Renesto 1984 (Fig. 8.18) is from the Norian Calcare 
di Zorzino of Lombardy, northwestern Italy. It is 1 m in length and has the following 
features: a long, sharp and straight rostrum; edentulous jaws and palate; relatively 
massive shoulder girdle; strong basket of gastralia with overlapping articulations 
between consecutive rows of elements; limbs that are comparatively long with 
respect to those of other thalattosaurs; and well-ossified manus and pes (Renesto 

Fig. 8.17 Drawing of the skull of Thalattosaurus alexandrae based on the reconstruction by 
Nicholls (1999). Abbreviations: a angular, d dentary, f frontal, j jugal, m maxilla, n nasal, p parietal, 
prf prefrontal, pm premaxilla, pof postfrontal, q quadrate, sq squamosal, sa surangular, st supra-
temporal, v vomer

Fig. 8.18 Reconstruction of the thalattosaur Endennasaurus acutirostris. Scale bar equals 10 cm
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1992). Müller et al. (2005) revised the anatomy and relationships of Endennasaurus, 
placing it within the Askeptosauridae, possibly as a most basal member of the group. 
According to Liu and Rieppel (2005), Endennasaurus is instead the sister taxon of 
the Askeptosauridae (comprising Askeptosaurus  +  Anshunsaurus), with the 
Askeptosauridae + Endennasaurus forming the Askeptosauroidea. The long and 
toothless rostrum suggests that Endennasaurus occupied a specialized niche, feed-
ing upon soft-shelled invertebrates, small fishes and/or crustaceans that did not 
require teeth for either capture, holding or crushing. The long and relatively deep 
tail, together with the rigid basket of gastralia, suggest that it was primarily adapted 
to an aquatic lifestyle, swimming mainly by lateral undulation of the tail. However, 
the presence of robust limbs that are proportionally larger than in other known thal-
attosaurs, indicates that it could also move on land (possibly for reproduction).

Anshunsaurus huangguoshuensis Liu 1999 from the lower Carnian Wayao 
Member of the Falang Formation of Guizhou, China was originally described by 
Liu (1999) as a sauropterygian on the basis of a skull that is exposed in dorsal view. 
The specimen was later correctly referred to the Thalattosauria by Rieppel et al. 
(2000). The skull and the postcranial skeleton were subsequently studied by Liu and 
Rieppel (2005), while Maisch (2015) described an excellently preserved juvenile 
individual. A second and a third species of Anshunsaurus, A. wushaensis Rieppel 
and Liu 2006 (see also Liu 2007) and A. huangnihensis Cheng, Chen and Wang 
2007a, were described. In the phylogenetic analysis by Cheng et  al. (2011), this 
genus belongs to the Askeptosauridae as the sister taxon of Askeptosaurus. 
Anshunsaurus was a fairly large marine reptile very similar to Askeptosaurus, with 
an elongate and pointed skull, a long neck, trunk and a very long and laterally com-
pressed tail. The limbs were proportionally very small. Anshunsaurus is character-
ized by the maxilla forming part of the anteroventral orbital margin; fusion of the 
postorbital and postfrontal; the posterolateral process of the frontal extending pos-
teriorly far beyond the anterior margin of lower temporal fossa; a long and slender 
ventral process of the squamosal extending to the lower margin of the cheek; a jugal 
with an elongate posterior process; a well developed deltopectoral crest on the 
humerus, and a large fibula.

Xinpusaurus is represented by at least three species: X. suni Yin et  al. 2000, X. 
bamaolinensis Cheng 2003 and X. kohi (Jiang et al., 2004), which are all from the Wayao 
Member of the Falang Formation of Guizhou. It is characterized by a highly derived 
rostral structure: the premaxilla is downturned and nearly vertically placed; the maxilla 
is short with an anteriorly truncated (vertical) margin; the ascending process of maxilla 
is narrow but high; and the medial flange of maxilla is dorsally curved and articulated 
with the ventrally deflected vomer (Liu and Rieppel 2001; Luo and Yu 2002).

Miodentosaurus is represented by only one species, M. brevis Cheng et al. 2007a, 
b, which is also from the Wayao Member of the Falang Formation. It differs from 
Askeptosaurus and Endennasaurus in having a much shorter rostrum and fewer teeth.

Concavispina is also represented by a single species, C. biseridens Zhao, Liu, Li 
and He 2013, that is characterized by a long skull (measuring approximately half 
the length of presacral portion of the vertebral column); two rows of blunt teeth on 
the anterior part of the maxilla; neural spines with convex anterior or posterior mar-
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gins; and V-shaped notches in the dorsal margin of the neural spines. Concavispina 
differs from all other thalattosaurs, except Xinpusaurus, in having a dorsally curved 
anterior end of the maxilla. There are less than five cervical vertebrae, and the proxi-
mal end of the humerus is wider than the distal end. Like ichthyosaurs, and different 
from most thalattosaurus, Concavispina has a very short neck. The tail is very deep 
laterally due to the presence of relatively high neural spines and long chevrons. Its 
limbs are short respect to the body size, with short and wide epipodials and a poorly 
ossified carpus and tarsus. Concavispina probably relied on lateral undulations of 
the body axis for propulsion.

A partial thalattosaur skeleton belonging to an indeterminate taxon close to 
Nectosaurus or Xinpusaurus was reported by Müller (2007) from the upper Norian- 
lower Rhaetian Kössen Formation near Salzburg, Austria. A tail fragment from the 
lower Carnian (Calcare del Predil) Riofreddo locality near Tarvisio, northeastern 
Italy has been tentatively referred to a thalattosaur by Dalla Vecchia (1994) because 
of the tall neural spines and long chevrons. More recently a partial skeleton of a 
large thalattosaur has been reported from the Norian Hound Islands Volcanics of 
Alaska (Druckenmiller 2015).

8.5  Chelonia

Li et al. (2008) described the turtle Odontochelys semitestacea (Fig. 8.19) from the 
lower Carnian and marine Wayao Member of the Falang Formation of Guanling, 
China. Apart for the possible older ichnological evidence already mentioned (von 

Fig. 8.19 The basal turtle Odontochelys semitestacea (IVPP V 13240, paratype) from the ower 
Carnian of China. Author: Ghedoghedo; CC BY-SA 4.0. https://it.wikipedia.org/wiki/
Odontochelys_semitestacea#/media/File:Odontochelys_semitestacea_433.jpg
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Lilienstern 1939; Lovelace and Lovelace 2012) Odontochleys is the oldest turtle so 
far known with a well developed plastron. It is over 15 million years older than the 
Norian terrestrial/freshwater genera Proganochelys Baur 1887 from Germany 
(Gaffney 1990) and Thailand (de Broin 1984) Proterochersis Fraas 1913 again from 
the Norian of Germany, and Chinlechelys Joyce et al. 2009, from the Norian of the 
USA. The Middle Triassic stem turtle Pappochelys (Schoch and Sues 2015) lacks in 
fact a true plastron showing only a peculiar arrangement of gastralia and 
Eunothosaurus-like expansion of the ribs. Odontochelys represents an intermediate 
step in the evolution of the turtle shell and associated structures Li et  al (2008), 
while Proganochelys already had complete armour offering no clue to its origin. 
The ventral plastron of Odontochelys is fully developed, while the dorsal carapace 
consists of neural plates only. The dorsal ribs are expanded and osteoderms are 
absent. The new species shows that the plastron evolved before the carapace and 
that the first step of carapace formation is the ossification of the neural plates cou-
pled with a broadening of the dorsal ribs. This corresponds to the early embryonic 
stages of carapace formation in extant turtles and shows that the turtle shell did not 
originate from the fusion of osteoderms. According to the phylogenetic analysis by 
Li et al. (2008), the new species is the basalmost turtle. The completeness and per-
fect articulation of specimens and depositionary environment of the Wayao Member 
indicates that Odontochelys lived in shallow waters in a coastal setting (Li et al. 
2008), Joyce (2015) on anatomical basis, suggested instead that it may have lived in 
freshwater ponds.

8.6  Phytosauria

Phytosaurs are crocodile-like Triassic archosauriforms (outside the Archosauria 
according to Nesbitt 2011, inside according to Ezcurra 2016) that are represented by 
numerous finds from Europe, the southwestern and eastern USA, Greenland, 
Madagascar, North Africa, Turkey, Thailand, India and Brazil (Stocker and Butler 
2013). Phytosaurs mainly lived in fluvio-lacustrine environments, but they are reported 
also from Upper Triassic marine deposits of the Alpine Region (Austria and Italy).

Austrian finds comprise relatively abundant remains from the Rhaetian 
Dachsteinkalk of the Totes Gebirge in Styria (Buffetaut 1993); they had been 
referred to Mystriosuchus planirostris (a species that was found also in continental 
settings, Fig. 8.20), but they were never described in detail. Italian specimen include 
a 4.5 m long, almost complete and articulated skeleton, a complete skull and some 
articulated vertebrae from the uppermost part of the Norian Calcare di Zorzino and 
lowermost part of the Argillite di Riva di Solto of Lombardy, Italy (Renesto and 
Paganoni 1998; Renesto and Lombardo 1999; Gozzi and Renesto 2003; Renesto 
2008). They are all referred to Mystriosuchus planirostris.

Maisch and Kapitzke (2010) also reported a fragment of a phytosaur lower jaw 
from the Pre-planorbis beds of the Blue Lias of Somerset, England, which are most 
probably earliest Jurassic in age, as we have already seen; Lucas and Tanner (2015) 
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also consider this as a Jurassic phytosaur record. However, according to Stocker and 
Butler (2013), the hypothesis that phytosaurs passed through the Tr-J boundary 
requires to be supported by further findings.

It is worth noting that the postcranium of the complete Mystriosuchus specimen 
from the Zorzino Limestone shows adaptations to an aquatic lifestyle that are more 
marked than in other phytosaurs. Its overall body proportions, with reduced limbs 
and long tail, are more reminiscent of the thalattosuchian crocodyliforms, than to 
other phytosaurs. In addition, some features of the caudal vertebrae, such as the 
inverted T-shaped haemal spines of the terminal portion of the tail (Renesto and 
Lombardo 1999) and the reduction of dermal covering are also reminiscent of that 
of the thalattosuchians. M. planirostris, which undoubtedly lived also in continental 
settings of Central Europe, could have colonized shallow marine habitats thanks to 
its adaptations to swimming (Gozzi and Renesto 2003).

8.7  Tanystropheidae

The Tanystropheidae are a clade of bizarre archosauromorph diapsids that are char-
acterized mainly by a long and rather stiff neck made up by 8–13 elongate cervical 
vertebrae (depending on the taxon), with low neural spines and long filiform ribs 
that run parallel to the ventral margin of the neck. Tanystropheids were firstly 
included in the Prolacertiformes, then in the Protorosauria, but these clades are both 
paraphyletic according to recent phylogenetic hypotheses (Pritchard et  al. 2015; 
Ezcurra 2016). According to Pritchard et al. (2015), the Tanystropheidae comprise 
Macrocnemus, Tanystropheus, Amotosaurus, Langobardisaurus and Tanytrachelos. 
The tanystropheids that are supposed to be terrestrial dwellers were of rather small 
size. The Middle Triassic Macrocnemus may have been up to 1 m long (Rieppel 
1989), and the Norian Langobardisaurus was less than half a meter in length; both 
were probably facultative bipedal runners (Rieppel 1989; Renesto et  al. 2002). 
Supposedly semi-aquatic or fully aquatic Tanystropheidae ranged in size from the 
very small freshwater Tanytrachelos ahynis Olsen 1979 (about 20 cm long) to the 
very large coastal/littoral dweller Tanystropheus longobardicus (Bassani 1886) that 
may have reached 5 m in length (Wild 1973).

Fig. 8.20 Skull of the phytosaur Mystriosuchus planirostris from the continental Norian of 
Germany. Author: Ghedoghedo; CCBY-SA3.0. https://en.wikipedia.org/wiki/Mystriosuchus#/
media/File:Mystriosuchus_planirostris_skull.JPG, modified
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8.7.1  Late Triassic Tanystropheids

Tanystropheus remains have been mostly found in marine deposits and these ani-
mals probably lived on the sea shore or in shallow waters, preying on fishes and 
invertebrates with the aid of the extremely long and rather stiff neck. Tanystropheus 
is mostly known from the Middle Triassic of northern Italy, southern Switzerland 
and Central Europe (Wild 1973; Nosotti 2007), but also from China (Li 2007; 
Rieppel et al. 2010) and North America (Sues and Olsen 2015) as well. Along with 
Macrocnemus (reported from China by Jiang et al. 2011), it testifies to the success 
and widespread distribution of these archosauromorphs, suggesting that there was a 
common vertebrate fauna along the northern coastline of the Paleotethys since the 
Middle Triassic.

A nearly complete skeleton without skull, which was referred to Tanystropheus 
cf. T. longobardicus, has been found in the Xingy Lagerstätte in the Zhuangpo 
Member of the Falang Formation of Guizhou, China. It was originally considered as 
possibly early Carnian in age; however, recent revision of the stratigraphy of the 
locality demonstrated that it’s age is late Ladinian (Zhou et al. 2015). Anyway, a few 
finds testify that the genus occurs also in the Upper Triassic. A typical cervical ver-
tebra of Tanystropheus (Fig.  8.21) from the basal Carnian or latest Ladinian of 
Fusea, Friuli, northeastern Italy was reported by Dalla Vecchia (2000) associated 
with placodont, nothosauroid and fish remains (Dalla Vecchia and Carnevale 2011). 
A series of articulated cervical vertebrae with associated ribs from the upper Norian 
and marine Argillite di Riva di Solto Formation of Lombardy, northwestern Italy 
has been assigned to a new small species of Tanystropheus, T. fossai Wild 1980. If 
actually a Tanystropheus specimen and not a distinct tanystropheid genus, it would 
be the youngest evidence of this genus.

Fig. 8.21 Cervical vertebra of the tanystropheid Tanystropheus (MFSN 25760) from the basal 
Carnian or top Ladinian of Fusea, Italy. From Dalla Vecchia (2000). Abbreviations: PS processus 
spinosus, PZ potzygapophysis
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8.8  Choristodera

Choristodera is a clade of aquatic or semi-aquatic diapsid reptiles of uncertain affin-
ities. Choristoderans are characterized by a dorsoventrally flattened skull with elon-
gate rostrum and wide temporal fenestrae. Their temporal range spans from the 
Middle Jurassic to the early Miocene, their best record being from the Cretaceous 
and the Palaeogene (Evans and Hecht 1993; Matsumoto and Evans 2010). However, 
one putative choristodere—Pachystropheus—has been reported also from the Upper 
Triassic.

Pachystropheus rhaeticus von Huene 1935 is represented by abundant disarticu-
lated and scattered bones from the ‘Rhaetian’ (i.e., the Westbury Formation) of 
England and Wales (Storrs and Gower 1993; Storrs 1994; Allard et al. 2015) and 
also from the ‘Rhaetian’ of Germany (Storrs and Gower 1993). Pachystropheus was 
ascribed to the Choristodera both by von Huene (1935) and in the revision by Storrs 
and Gower (1993). If Pachystropheus is a choristodere, it would extend back by 45 
million years the fossil record of the group. However, its attribution to the 
Choristodera is debated, being based on vertebral and girdle characters that could be 
more indicative of adaptation to an aquatic lifestyle than of phylogenetic relation-
ships. In fact, most diagnostic features of choristoderes are in the skull, which is 
practically unknown in Pachystropheus. Renesto (2005) found similarities between 
the postcranial skeleton of Pachystropheus and the thalattosaur Endennasaurus, 
suggesting that Pachystropheus may rather have been a thalattosaur; however, con-
vergence in the postcranial skeleton due to adaptation to an aquatic lifestyle, again 
hinders any firm attribution. Pachystropheus specimens are from shallow marine 
deposits (Storrs and Taylor 1996), while younger choristoderans come from fresh-
water, often fluvial, deposits.

8.9  Is a Triassic-Jurassic Boundary Extinction of Marine 
Reptile Clades Supported?

Many groups of marine reptiles that were abundant and diverse in the Triassic did 
not reach the Jurassic: non-parvipelvian ichthyosaurs, placodonts, all non- 
plesiosaurian eosauropterygians, thalattosaurs and tanystropheids disappeared 
before the Jurassic. Only dubious evidence exists of the survival of phytosaurs into 
the earliest Jurassic.

According to Bardet (1994), major extinctions among Triassic marine reptiles 
occurred at the Middle-Late Triassic transition (Ladinian-Carnian boundary), rather 
than during the Late Triassic, in coincidence with an important regressive phase, 
and affected essentially coastal taxa. However, the Italian sites of Fusea, Dogna and 
Raibl/Cave del Predil, which yielded placodonts and eosauropterygians (nothosau-
roids and possibly ‘pachypleurosaurs’) are above the evidence of the emersion event 

S. Renesto and F.M. Dalla Vecchia



299

related to the regression that occurred close to the Ladinan-Carnian boundary (Dalla 
Vecchia 2008a). Placodonts were still relatively diverse during the early Carnian 
(Protenodontosaurus, Placochelys, Henodus, Sinocyamodus and possibly 
Cyamodus) and Simosaurus and Nothosaurus occur in the lower Carnian of north-
eastern Italy in levels corresponding to the aonoides Subzone of ammonoid biostra-
tigraphy (Preto et al. 2005) that is the third of the five subzones of the Julian (De 
Zanche et al. 1993).

Other authors (e. g. Benson et al. 2010; Benson and Butler 2011; Thorne et al. 
2011) observed that there was a great reduction of species diversity during the Late 
Triassic, with the disappearance of entire clades and several morphotypes, thus 
marine reptile extinctions may have occurred throughout the Late Triassic rather 
than at the Triassic-Jurassic boundary.

According to Kelley et al. (2014), shallow-marine reptiles, especially duropha-
gous taxa, were most affected by marine regressions, while pelagic forms were less 
sensible to sea level fluctuations. According to Hallam and Wignall (1997 and refer-
ences therein), most of the significant extinction events in the marine biota seem to 
coincide with marked sea level falls, strengthening Newell’s (1952) hypothesis that 
marine extinctions are related to the loss of shelf habitat during severe regressions. 
According to Kelley et al. (2014), the relationship between loss of diversity and sea 
level fluctuations may explain the evolutionary trend observed in different marine 
reptiles groups (Thorne et al. 2011), highlighting how sea-level changes influenced 
the ecological structure of marine ecosystems during the early Mesozoic. However, 
there is no evidence of a dramatic reduction of shallow seas in the Alpine realm dur-
ing the Rhaetian, as can be easily verified by looking at the local geology (e.g., 
Plöchinger 1980; Brandner and Poleschinski 1986; Kovacs et al. 1989; Furrer 1993; 
Jadoul et al. 1994; Carulli et al. 2000).

What is reported in this paper shows clearly that extinctions of marine reptile 
taxa occurred throughout the Late Triassic rather than being concentrated at the 
Triassic-Jurassic boundary. The whole record of marine reptiles is quite rare in the 
Rhaetian (spanning from 205.7 to 201.3 million years ago; Maron et al. 2015), more 
so if the fossil-bearing ‘Rhaetian’ of western Europe is actually to refer partially or 
totally to the upper Norian (Sevatian) of modern global chronostratigraphy. The 
position of the Norian-Rhaetian boundary and Rhaetian extent have been long 
debated (see Muttoni et al. 2010; Maron et al. 2015 and references therein) and cor-
relations between the Tethyan and western European Upper Triassic are difficult. 
Authors have never accurately correlated the traditional English ‘Rhaetian’ with the 
Tethyan Rhaetian, which is the standard for the boundaries, chronostratigraphy and 
biostratigraphy of this Stage (e.g., Krystyn et al. 2007a, b; Krystyn 2010; Maron 
et al. 2015), they just accepted the English traditional ‘Rhaetian’ as an equivalent of 
the Rhaetian Stage of chronostratigraphy (see, for example, Mears et  al. 2016; 
Slater et al. 2016).

8 Late Triassic Marine Reptiles



300

8.10  Conclusion

Ichthyosaurs diversified in the Carnian (eight genera) and also in the Norian (five 
genera), but are dramatically rare in the Rhaetian and with apparently no diversity 
(no genus reported in Ji et  al. 2016, fig. 6; actually, it is possible that at least 
Leptonectes is represented in this Stage, as said above), to appear again at the base 
of the Jurassic with a relatively good record and three genera (Fig. 8.22). The evo-
lutionary bottleneck seems to have occurred at the Norian-Rhaetian rather than at 
the Tr-J boundary. Placodonts apparently disappeared between the early and late 

Fig. 8.22 Stratigraphic 
distribution of the 
ichthyosaurian genera in 
the Triassic and Jurassic, 
after Ji et al. (2016), 
modified and redrawn
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Carnian to reappear at the end of the middle Norian after a gap of at least 20 million 
years. They possibly occur in the lower Rhaetian, although they are undoubtedly 
much rarer than in the Middle Triassic or lower Carnian, but their presence in the 
upper Rhaetian (Choristoceras marshi Zone of ammonoid biostratigraphy) must be 
demonstrated. ‘Pachypleurosaurians’ probably disappeared at the end of the Middle 
Triassic and surely they do not occur in the upper Carnian (Tuvalian), as it is also 
the case of the nothosauroids (Fig. 8.23). As far as we know, the only pistosaurians 
documented in the upper Norian-lower Rhaetian interval are the plesiosaurs 
(Fig. 8.23); their presence in the upper Rhaetian is to be demonstrated, but they 
surely existed during the late Rhaetian given their diversification at the very begin-
ning of the Jurassic. The record of other marine reptiles is quite scanty in the Upper 
Triassic. Thalattosaurs are relatively common in the Carnian and Norian, but appar-
ently they are not recorded from the Rhaetian (Fig. 8.23). Turtles obviously crossed 
the Tr-J boundary, although we have no record of them from the Rhaetian. Phytosaurs 
possibly crossed the Tr-J boundary, but even if they did it, they did not go further 
than the base of the Jurassic. The last tanystropheids are late Norian in age 
(Fig.  8.23). The presence of Pachystropheus—essentially a late Norian or early 

Fig. 8.23 Last and first 
appearances of some 
clades of marine reptiles in 
the Upper Triassic. 
Legend: 1 first plesiosaur 
(Bobosaurus), 2 last 
‘pachypleurosaurs’, 3 last 
nothosauroids, 4 last 
Tanystropheus, 5 
Pachystropheus range, first 
UK plesiosaurs and last 
placodonts (UK Fissure 
Fillings and bone beds), 6 
Pre-planorbis beds, and 7 
possibly last phytosaur 
record
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Rhaetian taxon—from the upper Rhaetian is unclear. It is instead clear that there is 
a strong taphonomic bias regarding marine reptiles in the Rhaetian, preventing 
understanding of whether significant extinctions of marine reptiles at the Tr-J 
boundary actually occurred or not. While a gradualistic, or stepwise pattern of 
extinction is exhibited by well-sampled marine invertebrate clades, including 
bivalves, and ammonoids, which show intervals of concentrated extinction prior to 
the end of the Triassic, most notably at the end of the Norian and throughout the 
Rhaetian (see, Hallam and Wignall 1997; Tanner et al. 2004; McRoberts et al. 1995; 
Tackett and Bottjer 2012). The marine vertebrates apparently do not show a peak of 
extinctions at the end of the Triassic. On the other hand, the absence of Rhaetian 
vertebrate-bearing Konservat Lagerstätten and the rarity of the Norian ones render 
the fossil record too scanty, thus it is difficult to make a reliable picture of the real 
pattern of marine reptile extinctions at the end of the Triassic.
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Chapter 9
The Zorzino Limestone Actinopterygian 
Fauna from the Late Triassic (Norian) 
of the Southern Alps

Andrea Tintori and Cristina Lombardo

Abstract The ichthyofauna of the Zorzino Limestone represents an important step 
in the biodiversity of the bony fishes. With its richness and variety at the highest 
point of the Triassic, this fauna also testifies to the beginning of the faunal transition 
that will be realized during the Jurassic. Thousands of specimens and extraordinary 
preservation of the fossils yielded by these levels have allowed the monitoring of 
such a crucial moment in the evolution of vertebrates. These favourable conditions 
allowed also the reconstruction of the mode of life and the trophic adaptations per-
formed by the different fish groups that dwelled in those depositional basins sur-
rounded by the largest carbonate platform ever, now known as the Dolomia 
Principale (or Haupt Dolomite of German-speaking geologists). As further proof of 
this peculiar evolutionary period, the large predators occupying the highest trophic 
levels were still represented by ‘primitive’ basal actinopterygians; on the contrary, 
the most derived neopterygians developed a specialization in durophagy, a trophic 
niche formerly unexploited by actinopterygians. Within the main trophic categories, 
we can find different morphological specializations, which probably allowed the 
fishes to exploit most of the available trophic resources. The blooming of the stem-
group Teleostei, the Pholidophoriformes, is also recorded, with several genera 
occurring together in the best represented localities.
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9.1  Introduction: Historical Background

The studies of fossil fishes from the Upper Triassic in the Alps have a long history. 
Agassiz (1833–1843) had already described a few taxa from organic–rich Norian 
shales around Seefeld, near Innsbruck (Austria). The specimens were rather frag-
mentary and unfortunately nobody has ever carried out detailed field research in the 
area. In the following decades, a few taxa from the Early Carnian of Raibl (now 
Cave del Predil, Italy, see Tintori et  al. 1985) and from Seefeld, were added by 
Bronn (1858, 1859) and Kner (1866a, b, 1867, 1868a, b). Later on, Bassani (1892, 
1895) resumed and amended the work formerly made by Costa (1862) on the Norian 
fishes from Giffoni (Salerno, southern Italy), proving their similarity with those 
from Seefeld.

Except for the monograph that Gorjanovic-Kramberger (1905)  wrote on the 
Norian fishes from Hallein (Salzburg, Austria), these assemblages were then almost 
totally neglected until the end of the last Century, when new Norian localities were 
discovered in northern Italy, mainly in the surroundings of Bergamo and Udine 
(Fig.  9.1). Unfortunately, we have very few marine vertebrate faunas during the 
Late Triassic, while in the Early–Middle Triassic many assemblages characterize 
the sequence. In fact, the stratigraphic distribution of the marine vertebrate Fossil 
Lagerstätten is certainly sparser in the Late Triassic (35 Ma in total) than in the 
Early–Middle Triassic (15 Ma in total) (Tintori et al. 2014a). The Zorzino Limestone 
is inferred to have been deposited in marine basins associated with early Mesozoic 
rifting (Jadoul et al. 1994), like the coeval lithostratigraphic units yielding these fish 
assemblages in Friuli, Campania, Sicily and Austria. These basins opened within an 
extremely wide and stable carbonate platform, that extended over all the western 
margin of Tethys; the result is the Dolomia Principale Formation, the thickness of 
which is usually around 1000 m. Today, after the tectonic movements occurred dur-
ing the Alpine orogenesis, several similar basins are present for 350 km from the 
Lugano Lake to the West, up to the Tolmezzo area (Udine) to the East, and for 
1200 km from Salzburg (Austria) southwards to the Egadi Islands in Sicily. These 
deeper basinal paleoenvironments are missing in the Dolomia Principale of the 
Dolomites.

The connections of these wide basins with the open sea were probably scarce and 
represented only by very long tidal channels (Renesto and Tintori 1995). On the 
other hand, this relative isolation promoted the differentiation of a largely endemic 
vertebrate fauna, composed by marine taxa as well as by terrestrial reptiles; these 
latter lived on small, temporary islands across the carbonate platform. This could 
explain the predominance of terrestrial reptile taxa, with very few marine ones and 
none strictly acquatic, such as ichthyosaurs, in the Zorzino Fauna. Shallow waters 
were well oxygenated, allowing nekton to thrive, and bottom conditions were 
favourable to life also at the margins of the basin (Blake et al. 2000; Tintori 1995).

After years of scattered finds, following the construction of several mountain 
roads in the 1960s, a few crustaceans and fishes were recorded from the uppermost 
part of the Zorzino Limestone in Valvestino, a remote valley NE of Brescia (Zambelli 
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1980a). At that time the find was not given the proper importance and since then no 
more collecting has been done, although the fossiliferous outcrops are easy to reach 
and to exploit (A.T. pers. obs. 2015).

It was only at the beginning of the 1970s, when an overnight landslide in a quarry 
near Cene (Bergamo, Italy) cleared a large bed surface in the upper part of the 
Zorzino Limestone that the ‘fossil hunt’ started (Fig. 9.2a). The level exposed by the 
landslide consisted of a thin (6–7 cm thick) layer. It yielded large amounts of beauti-
fully preserved fishes, crustaceans and also a few reptiles. From a seemingly single 
lucky find, the quarry actually proved to be the first of many Triassic sites that were 
discovered in Lombardy and in Friuli during the following years, although in some-
what different lithologies (limestone, marly–limestone, dolostone) and preservation 
conditions. Another major fossil–bearing horizon has been excavated in a few sites 

Fig. 9.1 Map indicating (red dots/light gray dots) the position of the Norian Localities yielding 
the Zorzino Fauna composed of complete and well preserved specimens. The ‘Rhaetian’ Bone 
Beds, yielding only very fragmentary elements or just isolated teeth, are shown in brown/dark gray 
dots
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Fig. 9.2 The first Zorzino Limestone sites that have been exploited for fossils were both related to 
landslides. (a) The Cene quarry in 1976: the bed surface is the thin fossiliferous level uncovered 
by the landslide that removed the corresponding layers seen on the left. (b) The Endenna-Zogno 
(Bergamo) site in 1980. A superficial landslide removed the tree along the slope and uncovered the 
fossiliferous level (about 1.5 m thick) at the boundary between Zorzino Limestone and Riva di 
Solto Shale allowing a large-scale excavation
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in Lombardy by the authors. This level represents the transition from the Zorzino 
Limestone to the overlying Riva di Solto Shale (Figs. 9.2b and 9.3): it was consid-
ered the base of the latter formation by Casati (1964). The fossil assemblage is 
called the ‘Zorzino Fauna’, even when it has been found in a unit bearing a different 
name. One of these cases is the Forni Dolostone, in Friuli, northeastern Italy. Here 
specimens are never found in great concentrations: paleontological collections were 
almost totally assembled from scattered blocks on the mountain slopes (Dalla 
Vecchia, pers. comm.). Given that the Forni Dolostone is usually several hundred 
meters thick (Dalla Vecchia 2008; Jadoul 1986; Jadoul et al. 1992), like the Zorzino 
Limestone, its fossil fauna (mostly stored in the Museo Friulano di Storia Naturale 
in Udine) could represent a fairly wide time interval. On the other hand, the ‘Zorzino’ 
fishes generally lie at the boundary between the Zorzino Limestone and the Riva di 
Solto Shales (Zogno–Endenna and Zogno2 sites) in the Lombardian Prealps, but 
they are also certainly present a few dozen meters below (Cene quarry) or above 
(Ponte Giurino site) this boundary. Actually, given the very high sedimentary rate, 
the difference in age should not exceed a few tens of thousands of years (Rigo et al. 
2009). Following Tintori et  al. (2014a), this Norian Fauna best represents the 
Triassic Late Fish Fauna (TLFF), although it is not clear where the boundary 
between the Triassic Middle Fish Fauna (TMFF) and the TLFF should be set. For 
instance, groups believed to be typical of the TLFF were very recently recorded in 
the Late Ladinian (Tintori et al. 2012, 2015) of southern China. Still, as far as we 
know, the general composition of the Norian fish fauna is definitely different from 
that of late Ladinian or early Carnian, at least in the ratio between neopterygians and 
basal actinopterygians. The Norian assemblages are absolutely dominated by neop-
terygians, both in taxa and specimen numbers. 

We should know what happened in the previous few million years to better com-
prehend the evolutionary meaning of the Zorzino ichthyofauna and how fast was the 
Norian fish radiation. We know that not far north of Brescia a fish assemblage is 
probably of Early Norian age (Tintori et al. 2014a), but unfortunately it has never 
been studied by the local Museum, which is in charge of the research; the next 
younger one known approximately dates back to the base of the Carnian, thus about 
15–20 My earlier.

Regarding the Early Carnian Raibl faunas, after the mid-nineteenth century 
 fieldwork, largely related to the presence of rich ore deposits, only sporadic exploi-
tations have been carried out in the last 30 years, yielding small collections. Luckily, 
the bulk of the nineteenth century unpublished collection, believed lost during 
World War II, came recently back to light and it is now stored in the Natural History 
Museum in Vienna (Raibl was part of the Austrian Empire in the nineteenth cen-
tury). Most specimens have not been yet described or prepared, but at least they are 
now easily accessible. At a first survey (A.T. pers. obs.) it appears that this collec-
tion comprises a lower number of species, if compared to the younger faunas. 
Actually, it is possible that researchers in the nineteenth century focused their stud-
ies on the levels around the mines, thus on just one fossiliferous horizon. More 
recent surveys have expanded to the whole lower Carnian series around Raibl. We 
guess possibly more than one fish assemblage is present in those sites, but scientific 
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Fig. 9.3 The Zogno2 site (Poscante, Zogno, Bergamo). (a) A.Tintori and GF Pesenti in 1982 at the 
beginning of the excavation. (b) The site in 1990. (c) detail of the fossiliferous level
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fieldwork is difficult due to the very rough mountain topography. The finds from the 
Lower Carnian of the Predil Limestone (Raibler Schichten Authorum) enable us to 
draw a picture of the fish assemblage at the end of a period, the Middle Triassic, that 
saw an intense radiation in both neopterygians and subholosteans (Tintori et  al. 
2014a). A similar assemblage was described from Polzberg, near Lunz (Austria), by 
Griffith (1977). Its precise stratigraphic position is not clear at present, although an 
Upper Julian (Early Carnian) age is generally assumed (Griffith 1977; Forchielli 
and Perveler 2013). We suspect that the Polzberg fish fauna comes from more than 
a single horizon, as previously stated, because the holotype of Saurichthys calcara-
tus Griffith 1977 is preserved with fresh–water dwellers such as conchostracan crus-
taceans (I.  Kogan, pers. comm.), while the other taxa often lie with ammonoids 
(A.T. pers. obs.).

At the other end of the Tethys, now southern China, there is another marine ver-
tebrate assemblage dated to earliest Carnian, the Guanling Fauna; the fish compo-
nents are scarce and largely consist of genera known also from the Alps (Tintori 
et al. 2014a).

Finally, the time gap between the Carnian fauna and the Norian Zorzino Fauna is 
as long as the whole Early/Middle Triassic, a time interval which yields a consider-
able series of Fossil Lagerstätten. Today we usually deal with precisely dated fish 
assemblages, so a better time resolution is certainly needed for the early Carnian 
fauna, as well as the discovery of new assemblages to bridge the gap with the 
Zorzino Fauna.

9.2  The Zorzino Fish Fauna

In the last 45 years the Zorzino Limestone has yielded an extraordinarily rich ich-
thyofauna: at least 25 genera have been already described or are under study, but 
probably more than 50 are represented (Tintori 1981, 1983, 1990, 1996; Tintori and 
Renesto 1983; Tintori and Sassi 1987, 1992; Tintori and Lombardo 1996; Lombardo 
and Brambillasca 2005; Lombardo and Tintori 2008; Zambelli 1975, 1978, 1980a, 
b, c, 1986, 1990; Arratia 2013). A few species, belonging to pholidophorids, count 
hundreds or even thousands of specimens; other genera, like Saurichthys or 
Paralepidotus, are represented only by the dozen; most taxa are just known by a few 
or even a single specimen.

This fauna is fundamental in order to understand and monitor the extraordinary 
diversification that the bony fishes achieved during the Late Triassic, after the first 
radiation of the Middle Triassic, a few millions years after the largest ever biological 
crisis: the P/Tr mass mortality event (Tintori et al. 2014a). Actually, this first post- 
Palaeozoic radiation occurred in subholosteans and basal neopterygians, while in 
the Norian we record the passage from still ‘primitive’ assemblages (i.e. dominated 
by paleopterygians) to a more advanced one, thus dominated by neopterygians. We 
can see a preview of the Jurassic/Cretaceous faunas: after a new, major radiation the 
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neopterygians overtook the paleopterygians in number of species and specimens 
(Tintori 1998; Lombardo and Tintori 2005).

Thus, the importance of this fauna lies in the radiation of specialized neopteryg-
ians (among them pycnodonts, semionotids, macrosemiids) and in the blooming of 
pholidophorids (stem group Teleostei) when paleopterygians were still at the top of 
the trophic hierarchy, with Saurichthys, Birgeria and Gabanellia (Tintori 1990, 
1998; Tintori and Lombardo 1996). At the same time, we record the comparison of 
a very specialized way of life in the ‘flying’ fish Thoracopterus (Tintori and Sassi 
1987, 1992).

The largest predator fishes, Saurichthys and Birgeria (Figs. 9.4 and 9.5), could 
both exceed 1.5 m in length and are considered to have occupied the highest trophic 
levels. So far, only the phytosaur Mystriosuchus (Gozzi and Renesto 2003) seems to 
have the characteristics of a top–predator, being more than 3 m long. Both genera 
are found almost everywhere throughout the Triassic, evidencing an extremely suc-

Fig. 9.4 Saurichthys spp. From Endenna-Zogno in the exhibit of the Museo della Valle in Zogno

Fig. 9.5 Birgeria acuminata from Cene (Bergamo). The specimen has been recovered by an ama-
teur and it is unfortunately fragmentary
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cessful adaptation which had begun just after the P/Tr event (Kogan and Romano 
2016). Starting from the Middle Triassic, these fish genera are usually overtaken 
only by some marine reptiles (Tintori 2013). Despite the fact that Saurichthys and 
Birgeria share the reduction in scale covering, aimed at a body lightening, they are 
very different in morphology. Saurichthys is long and narrow, with an elongated 
snout (pike–like predator in Kogan et al. 2015), while Birgeria is more massive, 
with a stout but strongly kinetic skull. Accordingly, their mode of preying on the 
other fishes was very different, making them able to share the same paleonviron-
ment. Most species of Saurichthys used to catch prey with quick and sudden darts 
(Kogan et al. 2015), taking advantage of the strong forward push provided by their 
median fins. On the contrary, Birgeria was probably a slow swimmer; its large 
mouth and very mobile skull (Fig. 9.5) allowed this fish to quickly expand the oral 
cavity, sucking prey into it, just as many extant groupers do. The dentition of both 
taxa consists of large, striated, conical teeth alternating with medium and small 
ones, typically adapted to hold prey. Similar teeth are very commonly found iso-
lated in the sediments, especially in the so called ‘Rhaetian Bone Beds’ of England 
and central Europe. They have been usually referred to as ‘Saurichthys–type’ and 
‘Birgeria–type’. Actually, a comparative study by Gozzi (2006) shows it is impos-
sible to distinguish between them when found isolated. On the other hand, 
Saurichthys is always much more common than Birgeria in all the well known 
Triassic fossil fish assemblages (Stensio 1921 and pers. obs.). Indeed, the present 
Barracudas, whose way of life is perfectly comparable to that of several Saurichthys 
species, mostly live in very large schools, whereas groupers prefer to gather in much 
smaller ones.

Saurichthys is represented by three/four species in the Zorzino Fauna (Tintori 
1990), but only S. deperditus (Costa 1862) = S. krambergeri Schlosser 1918 = S. sp. 
A in Tintori (1990) and S. seefeldensis Strand 1928 have been described (Gozzi 
2006; Tintori 2013). The latter species could be somewhat older than the typical 
Zorzino Fauna, while the other three are coeval: S. deperditus and S. sp. B are found 
in the same layers in Lombardy, and S. sp. C comes from the Forni Dolostone. 
Every Triassic site ordinarily yields more than one Saurichthys species (Rieppel 
1985, 1992; Mutter et al. 2008; Wu et al. 2009, 2011; Maxwell et al. 2015; Tintori 
2013). Birgeria was a much more stable taxon: always a single species, in fact, is 
found in each fossiliferous horizon (Nielsen 1949; Gozzi 2006; Romano and 
Brinkmann 2009). As far as we know, the Zorzino Fauna is the youngest Triassic 
fish assemblage and still Saurichthys has higly differentiated species. Romano et al. 
(2012) supposed a strong decrease in the diversity of this fish in the Late Triassic, 
disregarding the rarity of fish assemblages in those last 35 My we discussed above. 
On the contrary, we believe Saurichthys maintained a high intrageneric diversity up 
to the end of the Triassic: in Late Carnian, Norian and Rhaetian probably only pres-
ervational bias prevented this genus from having a good paleontological record, 
although usually at least two species are present in the same bed as in the case of the 
Zorzino Limestone in Lombardy.

The most remarkable differences among the Norian species are found in the 
postcranial skeleton, especially in the stucture of the dorsal (neural) elements of the 
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vertebral column (Tintori 1990), in the scale rows arrangement and in the segmenta-
tion of the rays of the median fins (Tintori 2013). The peculiar neural elements in S. 
deperditus and S. sp. B, form a ‘grid structure’ with the praezygapophyses, which 
are as long as the neural spines, spanning up to six neural arches. When described 
for the first time (Tintori 1990), the grid structure was interpreted as a kind of a 
response to a change in presumed prey: pholidophorids become very common 
replacing the small subholosteans, as well as other less advanced neopterygians that 
had thrived during the Middle Triassic and Early Carnian. A similar vertebral col-
umn was recently described in the lower Ladinian S. grignae Tintori 2013 (more 
than 20 My younger than S. deperditus), belonging to a typical TMFF with plenty 
of miniature peltopleuriforms and neopterygians (Tintori 2013). This is clear evi-
dence of the inconsistence of the above cited theory proposed by Tintori (1990). 
Since S. deperditus and S. grignae are very large species (both well over 130 m in 
total length), this peculiar structure of the vertebrate column is thought to be instead 
related to the adult size. S. sp. B is somewhat smaller and its neural spines and 
praezygapophyses are much thinner, though as long as in S. deperditus (Tintori 
1990). Other postcranial differences distinguish the two species of the Zorzino 
Limestone, suggesting that pointing out any morphologic trend of Saurichthys 
throughout the Triassic, as tentatively postulated by Rieppel (1992), is a hopeless 
challenge. In both species the number of scale rows is much reduced: they just show 
the mid dorsal and the mid ventral rows, even though a single specimen of S. deper-
ditus bears traces of a lateral line row (Gozzi 2006). Although the general trend 
points to a reduction in scale covering, nonetheless two median scale rows have 
been described in the Spathian (Early Triassic) S. majiashanensis (Tintori et  al. 
2014b) and in S. grignae (Tintori 2013). Regarding the segmentation of the median 
fin rays, in S. deperditus they are all clearly segmented, while in S. sp. B. they are 
almost unsegmented: though living together, the two taxa express opposite charac-
ters for this feature, once more denying the supposed trend from highly segmented 
to unsegmented rays (Rieppel 1992). S. deperditus shows an interesting wide geo-
graphical distribution compared to that of other species, which are mostly restricted 
to small areas, endemic and/or lasted for a very short time. S. deperditus ranges 
from Hallein, near Salzburg, Austria (I. Kogan, pers. comm. Kogan and Romano 
2016), to Giffoni (Salerno, southern Italy), today about 800 km distant, spread in 
several sites representing basins with different paleoenvironmental conditions. Is 
this related to its large size? As far as we know, only S. (Costasaurichthys) costa-
squamosus has been described from different basins (Tintori 2013) in the early 
Ladinian, even if the total distance between the single basins is much less than for 
S. deperditus, just about 50 km: however, this species is also very large, some speci-
mens measuring over 130 cm in extimated total length (Tintori 2013).

Only one species of Birgeria has been recognized in the Norian–Rhaetian, but 
recently Storrs (1994) questioned the generic attribution on the grounds of isolated 
teeth and very fragmentary remains found in the English Rhaetian Bone Beds. The 
few complete specimens found in the Zorzino Fauna show all the main generic 
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characters that Nielsen (1949) also indicated: naked body, except for a scaly field on 
the body lobe of the tail, extremely kinetic skull owing to multiple suborbitals and 
to a subopercular organized like fans, and vertebral column with median neural 
spines immediately behind the dorsal fin. For this reason, we have no doubts about 
the attribution to Birgeria. Already Boni (1937, unfortunately the paper was written 
in Italian) ascribed the specimens of this Fauna to B. acuminata and established a 
neotype on Italian material. As mentioned above, the English fossils consist of iso-
lated teeth and jaw fragments. Therefore, we cannot accept the erection of a new 
genus (Severnichthys) by Storrs (1994), never considering the Alpine specimens. 
The age of the two sites can be surely discussed: the Alpine one is around the Norian 
Middle/Upper boundary, the English level is ‘Rhaetian’. But a Bone Bed is defined 
as a secondary sedimentay deposit, consisting of reworked specimens that have pos-
sibly undergone deposition, erosion, transport, selection, to an extent impossible to 
determine in terms of time and space. If thence the comparison between the two 
associations cannot rely on their biodiversity, it certainly can be based on the pres-
ence of common significant and hardly misdiagnosed species like Sargodon tomicus 
Plieninger 1847 and Pseudodalatias barnstonensis (Sykes 1974). They both have 
been re–described on specimens belonging to the Zorzino Fauna (Tintori 1980, 
1983) and their teeth are also frequently found in the Rhaetian Bone Beds.

It must be pointed out that large Saurichthys also usually preyed on small fishes, 
as can be seen in some Norian specimens where pholidophorids and juveniles of 
Paralepidotus are preserved inside Saurichthys (A.T. pers. obs.). Nothing is known 
about the size of the prey of B. acuminata, even if the the large mouth and the pos-
sibility of sucking prey (Gozzi 2006) could make it able to engulf at least medium 
size prey, compared to the predator size. So far, only a specimen from the Lower 
Triassic of Madagascar has been described with prey content, even if the two prey, 
belonging to two different genera, were interpreted as Birgeria embryos by Beltan 
(1980). Birgeria is much less common than Saurichthys: only a few specimens of B. 
acuminata have been found and described (Gozzi 2006): another aspect apparently 
unvaried throughout the Triassic! Even if we must remember that articulaled 
Rhaetian specimens are not known, it is really peculiar to these genera that they 
maintained a fairly stable maximum size throughout the Triassic and just as con-
stant is the ratio between the number of Saurichthys and Birgeria specimens in 
almost each Triassic fish assemblage. But, in the meantime Saurichthys went 
through multiple variations of the same general morphology (Bauplan), wheareas 
Birgeria shows few and small modifications in the same period of time (about 10 
species, 5 of which are controversial as mainly based on scanty material).

Conical teeth, arranged in several rows, are also visible in an underscribed neop-
terygian genus from the Bergamo area, belonging to a halecomorph. This fish rep-
resents quite an exception, among the Norian advanced actinopterygians, as it shows 
three series of conical and striated marginal teeth, regularly arranged on both upper 
and lower jaws, and minute palatal ones, surely not suited for crushing hard exo-
skeletons. However, the real shape of these teeth is quite different from that of those 
of the cited paleopterygians, being more blunt, so probably less efficient in piercing 
the body of the prey. Actually, these teeth could well belong to some generalized 
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subholostean perleidiform (i.e. Colobodus, Perleidus, etc.), thus, in some way, an 
‘advanced’ neopterygian simply was ‘copying’ more primitive (phylogenetically) 
subholosteans, probably without reaching their high degree of specialization. If 
compared with the other piscivorous predators previously seen, it’s worth stressing 
how this neopterygian actually appears less specialized, not only in the teeth shape: 
teeth borne by maxillary and dentary are not much differentiated in size; the  massive 
body, covered with heavy ganoid scales and the hemiheterocercal caudal fin, owing 
to its asymmetry, were not particularly efficient for fast swimming or quick move-
ments. Therefore, we can consider this fish as a small generalist predator, which 
could use its teeth to catch prey such as small, slow swimming fishes or 
crustaceans.

9.2.1  Subholosteans

By the Late Triassic, the Palaeonisciforms were very rare. They are represented by 
only a few undescribed, small specimens and by even less common Gyrolepis 
alberti Agassiz, 1835. Indeed, this species needs a re–description because the origi-
nal material consists only of isolated scales from the Rhaetian Bone Beds: signifi-
cant or complete specimens have never been published. The same species has also 
been recorded in the German Muschelkalk, 20 My older than the Zorzino Limestone; 
scale ornamentation is the unique distinguishing character, but, unfortunately, this 
kind is fairly common among the paleonisciforms, potentially leading to mistakes. 
At any rate, because the Zorzino Fauna and the Rhaetian Bone Beds have a compa-
rable age and there is a correspondence in the scales of some specimens, we are 
quite certain about the attribution to Gyrolepis alberti for our rare specimens.

The most varied and numerous group inside the non–neopterygian actinopteryg-
ians is that of ‘subholosteans’, characterized by an almost vertical preopercle, still 
fixed to the maxilla, and by a peculiar caudal fin, called hemiheterocercal, which has 
epaxial rays that are inserted dorsal to the vertebral column, making the tail exter-
nally almost symmetrical. The subholosteans appear in the earliest Triassic with 
Australosomus (Piveteau 1930); their most common and diverse representatives are 
Perleidiformes and Peltopleuriformes, appearing between the Spathian (Early 
Triassic) and the Anisian (Middle Triassic). The Pholidopleuriformes, comprising 
Australosomus, are generally represented by just one single species in each marine 
fish assemblage. Pholidopleurus has been described from the Alpine Middle Triassic 
as well from the Alpine and Chinese Lower Carnian (Bronn 1858; Bürgin 1992; Liu 
et  al. 2006). In a few sites of Lombardy (Cene, Zogno–Endenna), the Zorzino 
Limestone yielded many specimens of Pholidopleurus representing a new species. 
Pholidopleurus sp. n. is characterized by an almost symmetrical tail showing a huge 
number of rays (70 at least) equally subdivided between ventral and dorsal lobes, 
and the vertebral column ending straight. Complete chordacentra surround the 
unconstricted notochord all along the vertebral column. The squamation is limited 
to the abdominal region, where scales are very thin and much deeper than long, as 
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in most subholosteans. Noteworthily, the Early Carnian type species, Pholidopleurus 
typus Bronn 1858, has a complete scale covering; the scale pattern of the possibly 
coeval P. xiaowaensis Liu et  al. 2006, belonging to the Guanling Fauna, closely 
resembles that of the Norian species despite a remarkable difference in the dimen-
sion: up to 25 cm instead of the 6–7 cm of the Norian fishes.

Among Perleidiformes, apparently only Gabanellia agilis Tintori and Lombardo 
1996 and Endennia licia Lombardo and Brambillasca 2005 lived during the Norian. 
This group, in fact, had the highest diversity in the Middle Triassic, when they gave 
rise to specializations both in body shape and trophism. Among the Ladinian acti-
nopterygians of the western Tethys, only Felberia and Stoppania are deep–bodied. 
As often happens, this shape is associated with a high specialization in the dentition 
and hence in trophism (Lombardo and Tintori 2005; Lombardo et al. 2008). Actually, 
many Middle Triassic perleidiforms show more or less specialized dentitions: some 
species of Perleidus have stout, peg–like teeth (Lombardo 2001; Lombardo et al. 
2011) while Ctenognatichthys (Bürgin 1992) has thin, anterior rake–like teeth. The 
Upper Triassic genus Endennia probably evolved this trend of catching prey pro-
vided with shells, but possibly a thin or non–calcareous exoskeleton. The dentition 
of Endennia consists of long, cylindrical marginal teeth with a flattened apex and 
differentiated, palatal crushing teeth. This morphology could have allowed the fish 
to be almost entirely durophagous, but with some differences with respect to the 
neopterygians (see below). Given the limited possibility of the ethmoidal region to 
be protruded, the projecting marginal teeth, together with the inner crushing set, 
could have improved the feeding skills of Endennia, both in catching and process-
ing prey. Its fusiform body was completely covered with thick, ganoid scales that 
have joints that were probably loose enough to provide this fish a sufficient mobility 
to pursue just slow swimming prey. Hence, we hypothesize that Endennia was able 
to seize small swimming organisms such as crustaceans with its anterior teeth and 
to crush them using the grinding teeth. On the other hand, we cannot rule out the 
possibility of this fish feeding upon other invertebrates with harder mineralized 
parts, for example molluscs or echinoderms, commonly found in the Zorzino 
Limestone.

Many taxa of the Zorzino Fauna are considered demersal, living near the bottom 
of the basins, where they most likely fed on crustaceans and/or small fish or on 
encrusting and hard shelled organisms. The majority of marine Triassic fishes were 
covered with ganoid scales, which are thicker than those borne by teleosts, and cer-
tainly not easy to be pierced by medium–sized predators. Gabanellia seems to be 
the opposite of this model: it was a fast swimmer, and its dentition was perfect for 
biting fishes. Its markedly fusiform body, 20–30 cm long, covered with thin scales 
and ending in a large, forked tail, suggest Gabanellia was able to pursue its prey 
over long distances, occupying a completely different ecologic niche with respect to 
the large predators like Saurichthys and Birgeria. Gabanellia is up until now the 
only medium–sized perleidid fish specialized as an active predator on nektonic 
organisms. This evolution testifies to a fair vitality of perleidids, also in the last 
period of their stratigraphic distribution. Actually, we ignore the precise time of the 
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Late Triassic when they became extinct, but certainly nobody has ever recorded any 
perleidid in the Jurassic units.

Among the most interesting peltopleuriforms, are Thoracopterus (Tintori and 
Sassi 1992), with the species T. magnificus Tintori and Sassi 1987 from Lombardy 
(Zorzino Limestone and Riva di Solto Shale) and Campania (Giffoni, Salerno) and 
T. martinisi Tintori and Sassi 1992, found in Friuli (Forni Dolostone). Both species 
have a totally naked body, but they differ in the ratio of paired fin length to standard 
length. Thoracopterus shows specialized features in body and fin morphology that 
are fully comparable to those of the extant Exocoetidae flying fish. Like in 
Thoracopterus, representatives of Exocoetidae have long pectoral and pelvic fins, 
and the ventral lobe of the caudal fin is longer than the dorsal one. Other similarities 
are in the caudal region of the vertebral column, where neural spines are modified 
for the attachment of the muscles moving the tail during taxi (Tintori and Sassi 
1992). Actually, Triassic flying fishes were gliders due to the opening of their 
‘wings’ (the paired fins) without flapping. The tooth–row pattern on both jaws of 
Thoracopterus suggests this fish used to catch its prey while swimming upward, 
allowing the maximum possible gape (Tintori and Sassi 1992). Hence this fish most 
likely preyed on small fishes swimming at high speed, also necessary to take flight. 
Three other species of Thoracopterus are known, two from the Lower Carnian of 
Raibl and Lunz (Tintori and Sassi 1992) and one from from the Upper Ladinian 
Upper Vertebrate assemblage of the Xingyi Fauna, southern China (Tintori et al. 
2012). Like most peltopleurids and some perleidids, Thoracopterus shows a marked 
sexual dimorphism (Bürgin 1992; Tintori and Lombardo 1996; Lombardo 2001; 
Tintori et al. 2012), especially in the modification of the anal fin in specimens inter-
preted as males. This modification appears unfit for an internal fertilization: the anal 
fins are too much expanded to make a true gonopodium, which usually is a narrow, 
elongate structure. Some modern teleosts, in fact, perform an internal fertilization 
by means of narrow fins bearing very long rays (Rosen and Gordon 1953).

Some other peltopleuriforms are very rarely found in the Zorzino Fauna. Among 
these few specimens only Peltopleurus humilis Kner 1867 from Seefeld (Austria), 
has been described. Despite the thousands of fossil fishes collected, this taxon is still 
missing in Lombardy Norian sites. On the whole, the share of the subholosteans 
during the Norian (and therefore the TLFF) is lower than earlier in the Triassic 
(TMFF). Nonethess, some of these taxa are highly specialized such as the flying fish 
Thoracopterus and the fast predator Gabanellia among the subholosteans.

9.2.2  The Durophagous

The appearance of several taxa highly specialized in durophagy is probably the 
most relevant aspect of the Zorzino fish fauna outside of phylogenesis. For the first 
time actinopterygians were able to catch calcareous hard–shelled prey, crushing 
them with tooth batteries borne on their lower jaw and vomers and/or parasphenoid. 
Among actinopterygians, only Bobasatrania had formerly developed a 
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durophagous behaviour; its pharyngeal tooth plates performed a grinding action on 
the prey, which was sucked into the mouth, with no other teeth present (Tintori et al. 
2014a).

The term ‘durophagy’ has never been formally defined. With this term we gener-
ally mean the strategy of feeding on hard–shelled prey: too hard to be pierced, these 
are crushed or ground, and the soft tissues inside are swallowed, often together with 
shell fragments (Cate and Evans 1994; Tintori 1995). Mollusks with carbonate 
shells are largely the most preyed upon. The majority of the modern durophagous 
teleosts, like the sparids, feed on mollusks besides crustaceans, sea urchins and 
other organisms. A mandatory requirement for a durophagous fish is obviously to 
bear proper crushing teeth supported by robust bone elements. Omitting the pharyn-
geal tooth plates—borne by several modern teleosts such as the Scaridae (Grassé 
1958) and by the Permo/Triassic Bobasatrania (Tintori et  al. 2014a) among the 
basal actinopterygians—a true crushing dentition certainly characterizes several 
actinopterigyan groups since the Triassic. During the Paleozoic this trophic niche 
was occupied only by chondrichthyans, presently still counting some durophagous 
groups such as the Myliobatidae rays. Their totally different body morphology sug-
gests chondrichthyans are not in competition with actinopterygians: rays are dorso–
ventrally flattened and they show a wide ventral mouth, whereas durophagous 
actinopterigyans are generally laterally compressed and deep–bodied, with a termi-
nal mouth.

Nonetheless, a field of stout, low–crowned teeth more or less regularly arranged 
is not enough to determine a durophagous behaviour of actinopterygians. Teeth 
must be properly large and stout. Opposite to the pharyngeal tooth plates, the teeth 
of these batteries are rarely replaced and also rarely worn, because they never get in 
touch with each other, just like the levers of a nutcraker. Another characteristic fea-
ture of a durophagous fish is a small mouth gape, because prey either are fixed or 
move very slowly. The need of catching, ripping and scraping prey before process-
ing them is met by anteriorly amassed prehensile teeth. The most representative 
modern group of grazing durophagous fishes are the sea breams (Sparidae), thriving 
in most tropical and temperate seas with more than 150 species (Bray and Gomon 
2017; http://www.fishbase.org/summary/FamilySummary.php?ID=330. Almost all 
these fishes live in shallow waters, feeding mainly on mollusks, sea urchins and 
crustaceans. Despite a highly specialized dentition, they also eat a variety of other 
organisms such as small fish and algae (A.T. pers. obs. on Diplodus sargus kept in 
a fish tank and on gut contents of commercial specimens).

During the Norian, for the first time in actinopterygian history, taxa bearing all 
the features that characterize modern durophagous fishes appear in different groups: 
small mouth, anterior prehensile teeth, molariform tooth batteries, more or less deep 
and laterally compressed body. As pointed out by Tintori (1998) and by Lombardo 
and Tintori (2005), the Norian was a crucial period for the origin and stabilization 
of the important durophagy trophic niche. Actually, already in the Middle Triassic a 
few taxa among suboholosteans (among them Colobodus and Perleidus), as well as 
the halecomorph Asialepidotus (A.T. pers. obs.), had showed adaptations concern-
ing the treatment of prey with hard exoskeleton: for example, palatal bones com-
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pletely covered with small, low–crowned teeth. These fishes should not be 
considered strictly durophagous, because their gape is very wide, and the marginal 
teeth, not yet modified, are arranged all along the oral margin. In addition, teeth 
borne by the palatal bones are small to very small, and the bones themselves (ptery-
goids), are thin and were probably flexible. Both Felberia and Stoppania (Lombardo 
and Tintori 2004; Lombardo et al. 2008) were better adapted: small mouth, large 
anterior prehensile teeth, stout inner teeth and very deep body. Their size could 
reach 30–40 cm. Large dimensions are decisive to produce the power required to 
effectively crush shells or scrape corals (Tintori 1996; Lokrantz et  al. 2008). 
However, these two genera are rarely found in the Alpine Middle—early Late 
Triassic sites, in many cases only one or just a few specimens. On the contrary, dur-
ing the Norian true durophagous fishes can be relatively common (pycnodonts or 
Sargodon tomicus) or even very common (Paralepidotus), making up a significant 
share of the Zorzino assemblage both in specimens and in taxa.

The first blooming of pycnodonts (Gorjanovic-Kramberger 1905; Tintori 1981) 
is one of the most relevant events witnessed by the Zorzino Fauna. This important 
group will be almost cosmopolitan later on, and the fossil fish fauna from Bolca 
(Italy) testifies that the extinction occured only as recently as the Eocene. Actually, 
the first appearance of pycnodonts is a little older than the Zorzino Fauna s.s.. Rare 
specimens in fact have been recorded in lower/middle Norian levels north of Brescia 
(northern Italy) but they are unfortunately not yet available because they have been 
under study for the last 15 years by the local natural history museum. The Zorzino 
Fauna contains three pycnodont species: Eomesodon hoeferi Gorjanovic- 
Kramberger 1905 (this species is also present in the northernmost site, Hallein near 
Salzburg), Brembodus ridens Tintori 1981 from the Bergamo area (Fig. 9.6) and 
Gibbodon cenensis Tintori 1981 from the Bergamo and Friuli areas. The latter two 
species are apparently endemic to the southern Alps.

While later in the Mesozoic the size of pycnodonts is large (up to over one 
meter), in the Norian it is medium (like in Brembodus, 10–20 cm) to very small, just 
around 5  cm (E. hoeferi and Gibbodon). The recently renewed interest in this 
extremely specialized group (see Poyato-Ariza 2015 for an updated bibliography) 
reveals its great importance. The phylogenetic relationships with the other advanced 
actinopterygians have been debated, as well as the ingroup relationships, but the 
results are so far highly controversial (Nursall 1996a, 2010; Poyato-Ariza 2015). 
Pycnodonts have certainly been a very successful group for as long as 170 My: their 
appearance in the Norian is one of the bases on which the TLFF has been defined by 
Tintori et al. (2014a). To the above mentioned three genera of the Zorzino Fauna, 
one/two will be likely added when specimens stored in the Brescia Museum are 
described. Such numbers suggest how this group rapidly occupied a formerly 
uncrowded trophic niche. Pycnodonts are considered ‘grazing’ durophages, adapted 
to the rich communities evolving in the vicinity of shallow, tropical reefs of algal, 
sponge, rudist and scleractinian origin’ (Nursall 1996b). However, Nursall (1996b: 
121) reports a few medium–sized specimens with gut that contained shell and echi-
noderm fragments, implying that rather than grazing, these fishes actually grabbed 
and crushed their prey (mollusks, echinoderms, corals?) just as modern sparids do. 
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Fig. 9.6 Brembodus ridens from Endenna-Zogno site. Specimens from the Museo Brembano in 
S. Pellegrino (Bergamo). (a) A complete adult specimen. (b) Detail of the lower jaw dentition, left 
jaw in medial view, right one in lateral view
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Well developed in the Late Paleozoic, the tropical reefs were dramatically affected 
by the huge P/T crisis. Their subsequent recovery was so slow that only in the low-
ermost Carnian relatively complex reef environments are found again in the San 
Cassiano Formation in the Dolomites area (Fürsich and Wendt 1977). The San 
Cassiano fauna is famous for the spongal/coral reefs but also for an incredibly rich 
and well preserved assemblage of mollusks, echinoids and brachiopods, suggesting 
a shallow water environment where benthic life flourished. Durophagous fishes are, 
however, still missing; only scattered remains of Felberia (Lombardo and Tintori 
2004) and Paleobates, a hybodont shark (A.T. pers. obs.), have been collected. The 
Norian Zorzino Limestone was deposited at the margin of the Dolomia Principale 
carbonate platform, where life was far poorer than on the San Cassiano platform. 
Mostly serpulids and microbials (stromatolites) and rare corals (Berra and Jadoul 
1996) made up the bioconstruction while other invertebrates are represented by 
almost mono–specific bivalve associations (Tintori 1995; Tackett and Bottjer 2012). 
Surprisingly, pycnodonts and the other deep body taxa appear in this poor environ-
ment and perform a fairly quick development. Only their dimensions were rather 
smaller than in the Jurassic and Cretaceous (except Sargodon, see below). As 
Nursall (1996b) pointed out, the ability of pycnodonts to thrive in basins surrounded 
by different kinds of bioconstruction throughout a time span of 175 million years is 
evidence of the sensational success of this group. The reef was prevalently built by 
sponges in the Jurassic, by rudists in the Cretaceous, and by scleractinians in the 
Cenozoic. Pycnodonts are replaced by teleosts, probably sparids, only starting from 
the Eocene. The appearance of the first durophagous teleosts in fact is recorded in 
the Bolca fish fauna, although forms bearing chisel–like prehensile teeth like those 
of pycnodonts (and Sargodon) are not known until the Oligocene (A.T. pers. obs. on 
Castelgomberto Calcarenite, near Vicenza).

The miniature fishes Gibbodon and Eomesodon are really rarely found: only two/
three specimens per taxon, considering all the sites. If this rarity in some localities 
could be explained by the lack of systematic excavations (for example at Giffoni 
and Seefeld), in other sites it certainly could not. In the sites around Bergamo tens 
of thousands of specimens have been collected, mostly representing small–sized 
taxa, with a large predominance of Pholidphoridae, suggesting that these two gen-
era were already uncommon in the original assemblage. The small size could repre-
sent a primitive character of the group because all specimens coming from lower–middle 
Norian sites are likewise small (A.T. pers. obs.).

Gibbodon has been differently interpreted by Nursall (1996a) and Poyato-Ariza 
(2015): the former believes it is the most basal form, while the latter confirms it is 
inside the more advanced Brembodontidae together with Brembodus, according to 
the original description by Tintori (1981). A heavy scale covering on the whole 
body characterizes this fish; the scales and dermal bones of the skull are very 
strongly ornamented. Its anterior teeth are tiny and elongate, with a spatulate and 
bifurcate crown, a peculiarity of Gibbodon among all the other pycnodonts. Due to 
the very small size and the tiny dentition, it was likely able to graze on only soft 
organisms, but the coexistence of a crushing dentition necessarily implies that also 
some hard parts were processed.
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Eomesodon hoeferi shows more advanced characters; in particular, the caudal 
region lacks scales, the loricate type according to Nursall (1996b). It also bears 
anterior chisel–like teeth, that are considered by Nursall (1996a) more advanced 
than styliform prehensile teeth. Actually, these latter are present on the marginal jaw 
bones of a few specimens found in the surroundings of Brescia (A.T. pers. obs.), 
which are older than Gibbodon and Eomesodon. Thus, being the oldest known 
pycnodonts, these undescribed specimens take on even greater importance.

Though not a pycnodont, the quite rare, small and deep–bodied Dandya ovalis 
(Gorjanovic-Kramberger 1905), seems to have a similar behaviour but it deserves a 
redescription based on better specimens, after Tintori (1983) described those com-
ing from the mountains surrounding Bergamo. This taxon was originally described 
from Hallein, signifying that its geographic distribution is wide, spreading from the 
Northern Calcareous Alps to the Southern Calcareous Alps. Both anterior and inner 
teeth are pencil–like. Small size combined with anterior specialized teeth suggest 
this fish possibly grazed on soft material from a hard substrate, like Eomesodon 
hoeferi and Gibbodon.

This kind of small, deep–bodied grazing fish has never been found in the Jurassic 
and Cretaceous reef–related assemblages, where pycnodonts were at least the size 
of Brembodus, and is apparently also missing from the modern ones (Konow et al. 
2008). On the other hand the cranial anatomy of Dandya and pycnodonts is fairly 
different from that of the modern teleost ecomorphological equivalent. This could 
also account for the remarkable difference in biodiversity between the modern tele-
osts and the Norian fish fauna (Konow et al. 2008): at that time only a few species 
shared the same substrate grazing/scraping trophic niche. Nonetheless, some of 
their distinctive features have disappeared in the meantime, for example the small 
size.

Brembodus is the most common genus among the Norian pycnodonts. Its size, 
12–15 cm in standard length, is comparable to that of the widespread Jurassic and 
Cretaceous species. It has anterior chisel–like teeth and well-developed crushing 
batteries, as did most of the younger pycnodonts. The fragments contained in the 
gut of several Jurassic and Cretaceous specimens (Nursall 1996b) suggest that 
Brembodus not only grazed on hard substrates, but it also was able to crush shells. 
Scales, entirely covering its body, grow thinner in the posterior part, giving rise to 
the trend which later on will lead to the progressive demise of scales in the caudal 
region (loricate, peltate and clathrate pattern in Nursall 1996b). Another feature that 
appeared for the first time in Brembodus is an anterior bar (Nursall 1996b) on almost 
all scales, including those of the caudal anterior region. In the forms with highest 
specialization, this will be the only remaining part of the scales, even in the caudal 
anterior region. Interestingly, the imbricate (Gibbodon) and loricate (Eomesodon) 
patterns coexist with an intermediate form (Brembodus). This evolution of the scale 
covering in the caudal region is not exclusive to pycnodonts: several of the deep–
bodied fishes show it as well, for example the Norian Sargodon (Tintori 1983) and 
Hemicalypetrus (Schaeffer 1967), appearing in the new, hyper–specialized Norian 
neopterygians. The deep–bodied middle Triassic neopterygians—such as 
Luoxiongichthys and Kyphosichthys from southern China (Wen et al. 2012; Xu and 
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Wu 2012)—and subholosteans—such as Felberia and Stoppania (Lombardo and 
Tintori 2004; Lombardo et al. 2008)—show no traces of this evolutionary trend. 
Their scale ornamentation can be different in the anterior and caudal regions, but 
they never show a thinning in the posterior region (Garbelli and Tintori 2015).

Some Norian deep–bodied fishes kept a homogeneous covering of ganoid scales. 
One of these is Dapedium; after the first occurrence with the species D. noricum 
Tintori 1983, the genus greatly expands during the Early Jurassic (Thies and 
Waschkewitz 2016). Despite its robust dentition (Thies and Hauff 2011) Dapedium 
is not as specialized as Sargodon or pycnodonts; the anterior prehensile teeth are 
missing, so it probably was not a demersal fish. Like pycnodonts and the more 
advanced semionotiforms, this genus will survive the new dramatic biological crisis 
of the T/J boundary (Van De Schootbrugge and Wignall 2016).

A behavior comparable to that of pycnodonts can be found in Sargodon tomicus 
(Fig. 9.7). Compared to the Triassic pycnodonts, however, with its maximum size 
over one meter, it was much larger and nearer to the largest Jurassic (up to 
1.5 m—F. Poyato-Ariza, pers. com. Poyato-Ariza 2015) and Cretaceous pycnodonts. 
Sargodon was described in the middle nineteenth century on the basis of anterior 
chisel teeth. The first complete specimens were found in the Zorzino Fauna (Tintori 
1983; Muscio 1988). Besides a peculiar histology that makes the identification easy 
and reliable (Orvig 1978), teeth of Sargodon have large size and a peculiar chisel–
like to swallow–tailed morphology (Fig. 9.7). Concerning general morphology, the 
rhomboidal body is extremely laterally compressed, enabling good maneuverability 
in the fairly simple reefal habitat surrounding the Norian basins. Sargodon’s teeth 
are also frequently found in the Rhaetian Bone Beds, confirming the very wide 
geographic distribution of this genus, from southern Italy to Hallein (Austria) up to 
England. The stratigraphic distribution ranges at least from middle/upper Norian to 
Rhaetian: some isolated teeth have been found also in the Rhaetian Zu Limestone in 
Lombardy (A.T. pers. obs.). In general, we can define Sargodon as a greatly suc-
cessful genus, even though no descendants took its place when it became extinct at 
the end of the Triassic. Furthermore, the only ecological equivalents are the upper-
most Jurassic large pycnodonts Gyrodus and Arduafrons.

While in the TMFF deep–bodied demersal fishes are present only one genus at a 
time, in the Norian there are three very small taxa (two pycnodonts plus Dandya), 
one middle–sized pycnodont and the large Sargodon. This expresses a first step on 
the way of diversification, obviously not comparable to the diversity observed in 
Late Jurassic assemblages, where several more, middle to large species of 
pycnodonts are known.

One more similar taxon has been detected in the Forni Dolostone in Friuli, but so 
far only two specimens have been collected and are at present under study by the 
authors (Fig. 9.8). The new taxon, not a pycnodont, has a size close to Brembodus, 
the body outline being somewhat more elongate. The scale covering follows the 
general deep-bodied pattern (reduction or vanishing in the caudal region), but the 
scales are only in the abdominal region, thus being more specialized than Brembodus 
itself. Prehensile teeth are bifurcate and at least six on each premaxilla and five on 
each dentary.
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Another group of demersal durophagous fishes is represented by semionotids 
like Paralepidotus (Fig. 9.9a, b). This fish is commonly found in most Norian sites, 
from Hallein to Giffoni. As an adult, Paralepidotus had a deep fusiform body 
(Tintori and Olivetti 1988; Tintori 1996), provided with a powerful crushing denti-
tion made up of hemispheric teeth. As a juvenile, its body was much more slender 
and its teeth were higher and somewhat pointed (Tintori 1996), implying that in this 
period of life it was less strictly tied to the bottom environment and its diet was dif-
ferent. A small Paralepidotus in fact has been preyed by a Saurichthys (A.T. pers. obs.):  

Fig. 9.7 Sargodon tomicus. (a) Cast of the specimen from Riva di Solto Shale around Berbenno 
(Bergamo): the specimen is only the imprint of the actual specimen that has not been recovered. 
Original in Museo di Scienze Naturali ‘E.Caffi’, Bergamo. (b) Skull of a juvenile from Zogno2 
site. Paleontological Collection UNIMI. (c) Prehensil dentition of a fully adult specimen from 
Zogno-Endenna at Museo Brembano (S. Pellegrino, Bergamo)
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Fig. 9.8 Gen. n sp. n. (under description by the authors) from the Forni Dolostone in the Tolmezzo 
(Udine) area. Museo Friulano di Storia Naturale in Udine. (a) Complete specimen. (b) Detail of 
the dentition. Scale bar equals 5 mm
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Fig. 9.9 (a, b) Paralepidotus ornatus from Bed 11 in Zogno2 site. (a) Young adults. Most skull 
dermal bones and fin rays as well as scales are missing possibly due to after death floating. This 
kind of preservation is recorded only in specimens of such a size. (b) partial axial skeleton of a 
larger specimen. (c) Semiolepis brembanus, the holotype from Bed 6 in Zogno2 site. Paleontological 
collection UNIMI. Scale bars equal 10 mm
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it likely lived in the water column, feeding on the small crustaceans, which are com-
monly found in the same fossil–bearing levels. When it grew over 20 cm, the body 
of Paralepidotus increased in depth and teeth became lower and more domed. At 
this ontogenetic phase it probably approached the sea bottom and started to feed on 
bivalves, as is demonstrated by very abundant coprolites made up of bivalve shell 
fragments (Tintori 1995). These mollusks were epibenthic, presumably fixed into 
the mud by bissum filaments, like the modern Modiolus. The somewhat elongate 
prehensile anterior teeth of Paralepidotus are clearly less specialized than those 
borne by Sargodon and pycnodonts. The kind of prey and the body shape of 
Paralepidotus suggest it lived near the uppermost slope connecting the deepest, 
anoxic part of the lagoon to the carbonate platform. Such an oxic soft sandy/muddy 
bottom allowed a rather poor diversity of a thriving benthic fauna consisting of 
echinoderms, corals, crustaceans and, most of all, mollusks (Pinna 1974; Basso and 
Tintori 1994). These latter likely lived in huge banks, given the resedimented shell 
beds occasionally interbedded in the anoxic sediments of the Calcare di Zorzino and 
overlying units (Tintori 1995; Tackett and Bottjer 2012). Paralepidotus introduces 
something new in the relationships with bottom sediments and with benthic 
 organisms, being the first very common durophagous fish. With its large size (easily 
over 50 cm) and great abundance, often present in mass mortality surfaces (like beds 
11–12 at Zogno2, or at Hallein), in fact it contributes to sediment accumulation: 
nowadays, up to 50 g per month of broken Mytilus shells have been recorded from 
a small Diplodus in a lab tank (A.T. pers. obs.). This relationship between fishes and 
benthic fauna will have an extraordinary development with teleosts, especially spa-
rids, during the Cenozoic (Cadée 1968, A.T. pers. obs. from Diplodus in lab tank).

For a final comment on the comparison between Mesozoic and Cenozoic duro-
phagous fishes, it is worth pointing out the remarkable differences in the jaw 
mechanics. Pycnodonts and semionotiforms in fact bear a single tooth battery on the 
superior jaw. This battery is immobile, being supported by vomers, which are 
securely fixed to the ethmoidal region and to the parasphenoid (Nursall 1996a). 
Teleosts, on the contrary, bear batteries of crushing teeth on the mobile premaxillar-
ies. Consequently, during the processing of prey (crushing), pycnodonts and semi-
onotiforms move only the lower jaw, whereas in the sparids the movement involves 
two pairs of tooth batteries, each element being mobile.

Other neopterygian taxa in the Zorzino Fauna, although specialized, are not 
strictly durophagous: in particular Semiolepis brembanus Lombardo and Tintori 
2008 and Legnonotus krambergeri Bartram 1977. Semiolepis (Fig. 9.9c) is related 
to semionotids and close to Paralepidotus (Lòpez-Arbarello 2012; Gibson 2013). 
It was included in the Callipurbeckiidae family (Lòpez-Arbarello 2012), despite a 
wide time gap separating Paralepidotus and Semiolepis from the other genera, 
Late Jurassic in age. Compared to Paralepidotus, Semiolepis is smaller (within 
25 cm in total length), and its dentition is less adapted to crushing hard exoskele-
tons; its body has a shape comparable to that of adult Paralepidotus, suggesting its 
habitat, though not inside the actual reef, was close to the bottom. Legnonotus 
krambergeri (Fig. 9.10), slenderer and even smaller (less than 10 cm), may have 
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Fig. 9.10 Legnonotus krambergeri from Zogno-Endenna, with details of the dorsal fin area and 
the skull. Paleontological collection UNIMI
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shared the same environment with Semiolepis: a smooth, sandy/muddy bottom, 
rich in invertebrates endowed with rather soft endoskeletons. Some other unde-
scribed specimens of the Zorzino Fauna show other specialized dentitions, with 
elongate anterior teeth developed as prehensile teeth (see for instance Lombardo 
and Tintori 2005, pl. 2 Fig. B). The new taxa further increase the variety of trophic 
specializations developed by this fauna, corroborating the idea that Norian neop-
terygians represent an important radiation event, reaching a biodiversity level 
never achieved again throughout most of the Mesozoic Era.

9.2.3  The Stem Teleostei, The Pholidophoriformes

Systematic fieldwork on the Zorzino Fauna in Lombardy has yielded huge amounts 
of specimens, mainly represented by small–sized (less than 10 cm) pholidophorids. 
On the contrary, at Hallein, a private excavation (I. Kogan, pers. comm.) apparently 
shows a preponderance of Paralepidotus, due to almost monospecific mass mortal-
ity surfaces; complete scientific results are not yet available. Regarding other locali-
ties, pholidophorid findings are common but not as overwhelmingly as in Lombardy. 
We must keep in mind that random fossil collections mostly consist of large speci-
mens (or fragments): small fishes, in fact, are easily overlooked, and also rapidly 
destroyed once exposed to weathering. Therefore, the hundreds of well–preserved 
specimens found in the 1970s in the new sites of Lombardy have aroused new inter-
est in small fishes. Zambelli—at the time director of the Museo di Storia Naturale 
‘Caffi’ di Bergamo—published a first sequence of descriptive papers (Zambelli 
1975, 1978, 1980a, b, c, 1986, 1990): he described Parapholidophorus, 
Pholidorhynchodon, Pholidoctenus, Eopholidophorus, and ascribed a new species 
to the type genus Pholidophorus. Unfortunately, being written in Italian, these 
works never reached the international scientific community.

The genus Pholidophorus was erected by Agassiz (1832) to include Pholidophorus 
latiusculus (the type species) and P. pusillus, from the Norian of Seefeld (Austria). 
Since then, many other species have been ascribed to this taxon, soon becoming a 
‘basket genus’, as it gathered diverse Triassic and Jurassic small fishes with a fusi-
form body covered with ganoid scales.

Woodward (1890) erected the family Pholidophoridae and Berg (1937) the order 
Pholidophoriformes (see Arratia 2013 for a detailed history of the group). Only in 
1966, Nybelin resumed the studies on this group; following the modern guidelines, 
he gave a more limited interpretation to the order. Only recently, Arratia (2013) 
almost completely revised the Late Triassic (mostly Norian) taxa, previously gener-
ally neglected to the advantage of the Jurassic taxa. In this monograph, Arratia 
(2013) gives a comprehensive redescription of all the Late Triassic Pholidophoridae, 
adding a couple of new genera from the Zorzino Fauna: Annaichthys and 
Zambellichthys. At present, the total number of genera coming from the various 
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Norian localities is seven: most are found only in the Italian sites. Actually, the hun-
dreds of specimens considered by Arratia (2013) were ultimately found in just two 
sites in the surroundings of Bergamo: Cene (upper Zorzino Limestone) and Ponte 
Giurino (lower Riva di Solto Shale). A huge amount of other fossils (hundreds of 
specimens) yielded by other sites still have to be studied. Most of them mainly 
belong to known taxa, but every site shows a slightly different assemblage, from 
both the quantitative and qualitative point of view (A. T. pers. obs.), so that in the 
future it will likely be necessary to erect new taxa. Actually, Arratia (2017) erected 
a new Pholidoctenus species on specimens from a small Riva di Solto Shale outcrop 
in the vicinity of San Pellegrino (Bergamo) and also ascribed the species Ph. gerva-
suttii Zambelli, 1980 to the new genus Lombardichthys. Recently Taverne and 
Capasso (2015) erected a new genus on a single, poorly preserved specimen pur-
chased in the last century and said to have been found at Cene. We believe this taxon 
is not valid for two reasons: very bad preservation prevents the observation of most 
fundamental features and the only specimen (thus the holotype) is stored in a private 
collection, which is not at present available to other researchers (Arratia 2017). In 
our opinion, it is probably a Pholidorhynchon specimen, quite common in the Cene 
assemblage.

We underline once more the impressive diversification of several fish groups in 
this otherwise scarcely varied marine paleoenvironment. In a blooming group such 
as that of Norian pholidophorids (Fig. 9.11), even a short time gap or a slight differ-
ence in the habitat could have greatly affected the diversification. The first appear-
ance of the group occurred in the late Ladinian of southwestern China (Tintori et al. 
2015) where Malingichthys is quite common, to proceed then in the Carnian, with 
certainly less rich and well preserved fossil material (Arratia 2013). In the middle–
late Norian Pholidoriphormes (sensu Arratia 2013) had their maximum 
 diversification. Eventually, given the huge number of well–preserved specimens, 
the pholidophorid fauna of the Zorzino Limestone represents a favorable opportu-
nity to study the intraspecific variability, as well as the reasons of such a high diver-
sification in a habitat where life in general was not thriving nor greatly varied 
(isolated, relatively small lagoons). While several studies on both the mutual rela-
tionships and on the origin of teleosts often produce divergent results (Arratia 1999, 
2000, 2013, 2017; Taverne 2011), it is unquestionable that in the Zorzino Fauna 
pholidiphorids replace subholosteans at the base of the vertebrate trophic chain, 
deeply contributing to an almost totally new fish assemblage. Peltopleurus and 
Pholidopleurus in fact made up the basal bulk still in the early Carnian (Griffith 
1977), even though some pholidophorids, Knerichthys and Pholidophoretes, were 
already present (Arratia 2013). As discussed above, though still ecologically impor-
tant, subholosteans in the Norian numerically represented only a small part of the 
total fauna. This is the major difference from the TLFF, but we cannot precisely 
determine when this substitution occurred (Tintori et al. 2014a).
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Fig. 9.11 Pholidophoridae specimens from Zogno-Endenna site. (a–c) complete, totally articu-
lated, specimens. (d) endocranium plus a complete vertebral column. Paleontological collection 
UNIMI. Scale bars equal 10 mm
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9.3  Conclusions

The discovery of the Zorzino Fauna in the early 1970s, with the resulting early stud-
ies, represent one of the crucial events in the paleontological landscape of the twen-
tieth century. The most important one is probably the description of the oldest flying 
reptiles (Wild 1978), that has allowed to date the appearance of pterosaurs to 30 Ma 
earlier than previously stated. This fauna had been neglected for a long time after 
Agassiz had described some specimens from Seefeld, in the first half of the nine-
teenth century: the reason could be that neither the Zorzino Limestone nor the other 
coeval rocks—spread from northern Austria to southern Italy—were exploited for 
economical purposes. On the contrary, large quarries and mines were opened in the 
Besano Formation on Monte San Giorgio (Middle Triassic), in the Toarcian rocks at 
Holzmaden and in the upper Jurassic units at Solnhofen/Eichstätt; in all these sites 
fossils were abundantly found by quarrymen, seeking extra–salary earnings. Only 
about 50 years ago the landslide in the Cene quarry (Bergamo) allowed the discov-
ery of a fossil–bearing level, rich enough to deserve systematic field work. In sev-
eral localities of northern Italy, during the following 20  years, excavations and 
fieldwork have concerned various fossiliferous horizons, stratigraphically situated 
around the Middle–Upper Norian boundary. Thousands of fish remains have been 
collected, beside reptiles and invertebrates such as arthropods, echinoderms, mol-
lusks, corals and a few insects. Many fishes are still awaiting preparation.

In the light of the foregoing, the difference in biodiversity among sites of north-
ern Italy, Austria and southern Italy could be deceptive: some localities (northern 
Italy, Hallein) yielded hundreds of fossils, while others (Seefeld, Giffoni) just a few 
scattered specimens. This applies mainly to pholidophorids, but also to the different 
faunas in their entirety. Nonetheless, the general structure of each faunal assem-
blage is always similar: top predator paleopterigyans + small pholidophorids + 
durophagous neopterygians. A comparison of the different assemblages would be 
important also because the present latitudinal distance among the sedimentary 
basins (spread from Sicily to northern Austria) could correspond to a climatic dif-
ferentiation during the Triassic. Unfortunately, only Hallein seems to be useful for 
this at the moment, owing to number of species recorded, even if large amounts of 
specimens come mainly from almost monospecific mass mortality surfaces 
(Hornung, T., Salzburg, written comm. 2016).

Just as in the TEFF and TMFF, Saurichthys and Birgeria shared the top position 
in the trophic web of the Zorzino Fauna, at least throughout the whole Triassic, 
being the only two genera among actinopterygians to have such a long range; the 
first record of Saurichthys dates back to Late Permian (Tintori 2013). The general 
morphology of their body—shape and size, especially those of Birgeria—remained 
almost unvaried for about 50 My. Nonetheless, in Saurichthys other features change 
after the oldest species. Tintori (1990) proposed that the Zorzino species show the 
most advanced characters in the structure of the vertebral column. On the contrary, 
Rieppel (1992) hypothesized a variety of evolutionary trends, especially in body 
scale covering and median fin patterns. More recently, Tintori (2013) and Tintori 
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et  al. (2014b) proved that specializations in Saurichthys do not follow a regular 
trend: the two most common Norian species (S. deperditus and S. sp. b.) show the 
coexistence of ‘primitive’ and ‘specialized’ characters. Furthermore, the most ‘spe-
cialized’ characters had been already achieved by species of the TMFF and remained 
unchanged in the Norian, even if most part of the ichthyofauna became totally 
different.

For the first time teleosts—with the most primitive taxa, such as pholido-
phorids—play a strategically important role in the marine ecosystem: a preview of 
the radiation that will begin during the Late Jurassic, without reaching immediately 
a high diversification. Primitive teleosts, in fact, become the base of the vertebrate 
trophic chain, replacing both the subholostean and basal neopterigyan miniature 
taxa that had occupied the same position in the TMFF. Following recent studies, 
there is evidence that even if the Pholidophoridae had a rather long history before 
the Norian, their blooming probably occurred around the Middle/Late Norian 
boundary in areas now corresponding to the Southern Calcareous Alps. Early 
Jurassic marine fish assemblages are rather different from those of the Zorzino 
Fauna, the former seemingly containing less abundant primitive teleosts (lepto-
lepids) and non–teleostean neopterygians—such as pycnodonts and semionoti-
forms. Actually, this difference could also be attributable to the respective 
preservation environments. In the Jurassic basins of Lyme Regis or Holzmaden—
commonly yielding ichthyosaurs, plesiosaurs and pseudo–planktonic crinoids—the 
paleoenvironment was much more pelagic than in the Middle–Late Triassic intra–
platform lagoons. Due to the scantiness of preservation windows, the following 
Jurassic marine Fossil–Lagerstätten are too sporadic to obtain a sequence of evolu-
tionary events for fishes, as accurate as the one of Early–Middle Triassic. Only in 
the Late Jurassic Kimmeridgian/Tithonian time the ‘Solnhofen Archipelago’ will 
provide a series of Fossil–Lagerstätten whose frequency and biodiversity are com-
parable to—or even higher than– those of the Late Triassic. Nonetheless, the  number 
of durophagous taxa is low and limited to pycnodonts (Bellwood and Hoey 2004), 
a few semionotiforms and macrosemiids (Lòpez-Arbarello and Sferco 2011; Lòpez-
Arbarello 2012), without significant changes. The paleoenvironment in the topmost 
Jurassic consisted, as in the Triassic, of lagoons surrounded by carbonate platforms 
with marginal reefs basically built by sponges; on the bottom of these basins condi-
tions were finally favorable again to preservation (Arratia et al. 2015).

The appearance or radiation of groups with durophagy–specialized trophism 
(pycnodonts and Semionotiformes s.l.) is seemingly not related to reef differentia-
tion: in the southern alpine Middle Norian, in fact, where the variety of specialized 
fishes is at a maximum, bioconstructions are very poor (Berra and Jadoul 1996) and 
benthic organisms (mostly bivalves) are often oligo– or even mono–specific (Tintori 
1995). Later on, during the Late Norian/Rhaetian, while benthic invertebrates 
become more varied (Tackett and Bottjer 2012), fish taxa remain pretty stable 
despite conditions for preservation that are no longer optimal (A.T. pers. obs., 
mainly on scattered remains from shell beds in Riva di Solto Shale and Zu Limestone 
Authorum). Therefore, what triggered the differentiation is still unknown.
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On the basis of the above considerations, Norian ichthyofaunas (TLFF) represent 
the apex of the Triassic recovery/revolution that has seen completely different 
assemblages following one another (TEFF and TMFF) for 30 My since the P/T, up 
to the advent of the TLFF. The latter contains elements inherited from the TMFF 
(e.g. subholosteans and Saurichthys), as well as new groups such as the 
Pycnodontiformes and the more advanced Semionotiformes (Macrosemiidae and 
Callipurbeckiidae), and also the blooming primitive teleosteans. Thus, rather than a 
substitution by more specialized forms, we hypothesize the actual appearance of 
new trophic and ecologic niches.

Finally, we underline the still remarkable presence of some highly specialized 
subholosteans: the gliding fish Thoracopterus, for example, spans for at least 30 
My, starting from Late Ladinian (Tintori and Sassi 1992; Tintori et al. 2012). Due to 
the scarcity of Fossil–Lagerstaetten recorded in the Late Norian/Rhaetian, it is 
impossible to say whether the disappearance of both subholosteans and many other 
non–neopterigyan actinopterygians coincides with the T/J crisis. Certainly, the 
Sinemurian ichthyofauna of Lyme Regis, the first in the Jurassic, as well as the 
somewhat younger Holzmaden one, prove to be ultimately different from that of the 
Zorzino Fauna in both systematics and trophic/swimming structure. However, we 
must point out that these two fish assemblages reflect also a different paleoenviron-
ment, a more open sea, instead of the coastal lagoons mostly surrounded by carbon-
ate platform. Similarities to the Late Triassic fish assemblage paleoenvironment is 
seen again in the Late Jurassic, with what it is now called ‘Solnhofen archipelago’ 
faunas. Small basins surrounded by shallow water carbonatic banks and reef yield 
rich ichthyofaunas made mainly by the neoptergian groups that have originated in 
the Late Triassic, as subholosteans and most other paleopterygians are missing.
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Chapter 10
Late Triassic Terrestrial Tetrapods: 
Biostratigraphy, Biochronology  
and Biotic Events

Spencer G. Lucas

Abstract The fossil record of Late Triassic tetrapods can be organized biostrati-
graphically and biochronologically into five, temporally successive land-vertebrate 
faunachrons (LVFs) that encompass Late Triassic time (in ascending order): 
Berdyankian, Otischalkian, Adamanian, Revueltian and Apachean. An up-to-date 
review of the age constraints on Late Triassic tetrapod fossil assemblages and cor-
relation within the framework of the LVFs is presented. This makes possible a much 
more accurate evaluation of the timing of biotic events of Late Triassic tetrapod 
evolution, including: (1) Otischalkian, HO (highest occurrence) of almasaurids and 
chroniosuchians?, LOs (lowest occurrences) of crocodylomorphs and dinosaurs; (2) 
Adamanian, HO of mastodonsaurids and trematosaurids, LO of mammals; (3) 
Revueltian, HOs of capitosaurids, rhynchosaurs and dicynodonts; and (4) Apachean, 
HOs of metoposaurids, plagiosaurids and aetosaurs. The LO of turtles is Early 
Triassic or older, and the HO of phytosaurs is an Early Jurassic record. There is no 
compelling evidence of tetrapod mass extinctions at either the Carnian-Norian or 
the Triassic-Jurassic boundaries.

Keywords Late Triassic • Tetrapods • Berdyankian • Otischalkian • Adamanian • 
Revueltian • Apachean • Dinosaurs • Extinctions

10.1  Introduction

The Late Triassic was a major juncture in the evolution of terrestrial tetrapods 
(amphibians and reptiles) marked by many evolutionary events, including the oldest 
records of crocodylomorphs, pterosaurs, dinosaurs and mammals. It was also an 
interval of extinctions of some important tetrapod taxa, notably most of the 
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temnospondyl amphibians and all of the crurotarsan archosaurs (“thecodonts” of 
older terminology). Much of the recent literature on Late Triassic terrestrial tetra-
pods takes a phylogenetic and taxonomic approach, which means it focuses on the 
origin, phylogenetic relationships and evolution of a particular taxon or taxa. Such 
an approach takes place within the context of phylogenetic (cladistic) analysis that 
dominates the discussion of the evolution of Late Triassic terrestrial tetrapods.

My approach here focuses on establishing the timing of biotic events in the evo-
lution of Late Triassic terrestrial tetrapods. First, I review the temporal succession 
of Late Triassic terrestrial tetrapod assemblages to provide the most precise global 
correlation and temporal ordering possible. Within that framework, I then discuss 
key biotic (origination and extinction) events in the Late Triassic history of terres-
trial tetrapods.

10.2  Temporal Framework

I organize the Late Triassic fossil record of terrestrial tetrapods within the temporal 
framework of land-vertebrate faunachrons (LVFs) developed by Lucas and Hunt 
(1993a), Lucas (1998, 2010) and Lucas et al. (2007a). This framework identifies 
five LVFs that encompass Late Triassic time (ascending order): Berdyankian, 
Otischalkian, Adamanian, Revueltian and Apachean (Fig. 10.1). All Late Triassic 
terrestrial tetrapod assemblages can be assigned to a LVF based on the genus-level 
taxa present in each assemblage, so the LVFs provided a means of ordering and cor-
relating Late Triassic tetrapod assemblages that is independent of the standard 
global chronostratigraphic scale (SGCS, also sometimes called the “marine times-
cale”). Nevertheless, the cross correlation of the LVFs to the SGCS is important 
because it allows the tetrapod record to be correlated to physical events well con-
strained by marine biostratigraphy. However, that cross correlation is complicated, 
in places debatable, and at several points imprecise (Lucas and Heckert 2000; Lucas 
2010).

The base of the Upper Triassic Series (base of the Carnian Stage) is defined by 
its GSSP (global stratotype section and point) at Prati di Stuori/Stuores Wiesen in 
northern Italy, with the primary signal the FAD (first appearance datum) of the 
ammonoid Daxatina canadensis (Mietto et  al. 2012). Radioisotopic ages from 
Ladinian-age rocks indicate that the base of the Carnian is ~237 Ma (Mundil et al. 
2010; Ogg 2012; Ogg et al. 2014; Lucas 2017b). However, direct correlation of the 
base of the Carnian to the LVFs is only possible in the Germanic basin, where the 
Carnian base is located in the middle Keuper (Gipskeuper) at about the base of the 
upper Grabfeld Formation (Bachmann and Kozur 2004; Kozur and Bachmann 
2005, 2008). The Berdyankian tetrapod assemblage from the lower Keuper 
(Lettenkohle = Erfurt Formation) and the oldest Otischalkian tetrapod assemblage 
in the Schilfsandstein (Stuttgart Formation), which is “middle” Carnian in age, indi-
cate the base of the Carnian correlates to a point in Berdyankian time. However, no 
tetrapod assemblage is known from the upper part of the Gipskeuper, so the tetrapod 
succession across the Ladinian-Carnian boundary is not clear in the Germanic basin.
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The age of the base of the Otischalkian is well constrained as being during 
Carnian time, co-eval with the mid-Carnian wet episode, which is late Julian, and 
close in age to 231 Ma (e.g., Ruffell et al. 2016). Thus, the base of the Otischalkian 
in the Germanic basin is in the mid-Carnian Schilfsandstein, and that is the oldest 
possible age of the Otischalkian type assemblage from the basal Chinle Group in the 
western USA.

There is no agreed on GSSP for the base of the Norian, but that base will likely 
be defined using conodont biostratigraphy in western Canada or Sicily. The expecta-
tion is that the definition will be close to the longstanding working definition, which 
equates the base of the Norian to the base of the North American Stikinoceras kerri 
ammonoid zone (Orchard 2010, 2014). I have long advocated the equivalence or 
near equivalence of the base of the Norian and the beginning of the Revueltian LVF 
(Lucas 1998, 2010, 2015; Lucas et al. 2012). However, the “long Norian” of Muttoni 
et al. (2004, 2010), based on a magnetostratigraphic correlation, makes the base of 
the Norian much older (about 227–228 Ma) and places it within the Adamanian 
LVF. Lucas et al. (2012) provided a lengthy refutation of the “long Norian,” placing 

Fig. 10.1 Late Triassic 
land-vertebrate 
faunachrons (LVFs) and 
their correlation to the 
Standard Global 
Chronostratigraphic Scale 
(SGCS). After Lucas and 
Tanner (2015). See Lucas 
(2017b) for further details, 
especially of the numerical 
calibration shown here
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the base of the Norian close to 220  Ma, and that correlation is followed here 
(Fig. 10.1). However, numerical ages that constrain the age of the base of the Norian 
are mostly from detrital zircons and are fraught with inconsistencies and contradic-
tions discussed at length by Lucas et al. (2012) and Lucas (2017b). Recent work by 
Kohút et al. (2017) provides detrital zircon ages from Central Europe that indicate 
the base of the Norian is close to 221 Ma, but more data are needed to resolve fully 
the numerical age of the Carnian-Norian boundary.

Like the Norian, the Rhaetian base has no agreed on GSSP, though it will be 
defined based on the FAD (first appearance datum) of the conodont Misikella posth-
ernsteini. Currently, there are two candidate GSSP sections, at Steinbergkogel in 
Austria, and in the Lagonegro basin of southern Italy (Krystyn et al. 2007a, b; Rigo 
et al. 2016; Bertinelli et  al. 2016). The Apachean LVF encompasses the Norian- 
Rhaetian boundary, based on conchostracan biostratigraphy, magnetostratigraphic 
correlations and the presence of the aetosaur Aetosaurus in Apachean strata (Lucas 
2010; Weems and Lucas 2015). Thus, Lucas (2010) regarded the Apachean as late 
Norian-Rhaetian.

Magnetostratigraphy, palynostratigraphy, conchostracan biostratigraphy and 
vertebrate biostratigraphy indicate the beginning of the Wassonian LVF is very 
close to the base of the Hettangian (Kozur and Weems 2005, 2007, 2010; Lucas and 
Tanner 2007b; Cirilli et al. 2009). Thus, I regard the Apachean-Wassonian boundary 
as a good approximation of the Triassic-Jurassic boundary (Fig. 10.1).

10.3  Biofacies and Biases

During the Early and Middle Triassic, terrestrial tetrapod assemblages can be 
divided into amphibian dominated and dicynodont dominated (Lucas and Hunt 
1993b). These two kinds of assemblages likely are biofacies that represent aquatic 
(including shallow marine), amphibian-dominated communities and terrestrial, 
dicynodont-dominated communities. This dichotomy mostly ends in Berdyankian 
time, when the dicynodont dominated assemblages largely disappear, though they 
do persist into the Adamanian in South America (see below). The different composi-
tion of the tetrapod assemblages of each biofacies makes difficult direct compari-
sons and correlation of assemblages of the two different biofacies.

Late Triassic terrestrial tetrapod assemblages have been collected and studied for 
nearly 200 years, going back to the earliest studies in the Germanic basin during the 
early 1800s. Nevertheless, it is clear that the temporal coverage of Late Triassic time 
provided by terrestrial tetrapod assemblages is patchy at best. Lucas (1997) advo-
cated using the Chinle Group tetrapod assemblages from the western USA as the 
standard succession of Late Triassic tetrapod assemblages. Indeed, the Otischalkian, 
Adamanian, Revueltian and Apachean LVFs are based primarily on Chinle Group 
assemblages (Lucas and Hunt 1993a; Lucas 1998, 2010; Lucas et al. 2007a). But, 
the Chinle Group is a succession of fluvial strata no more than 600 m thick that 
encompasses most of Late Triassic time, 30 million years or more. Therefore, a 

S.G. Lucas



355

priori, the Chinle succession must be riddled with hiatuses ranging from paracon-
formities to substantial unconformities (Lucas 1993; Lucas and Spielmann 2013). 
This means the succession of Chinle Group tetrapod assemblages provides “snap-
shots” of the Late Triassic record, not a continuous and complete succession of 
assemblages.

Indeed, numerical calibration of the Late Triassic LVFs indicates that they are 
about 2–10 million years long (Fig. 10.1). Thus, at the level of LVF, the temporal 
resolution is poor. Subdivision of the Adamanian and Revueltian LVFs has been 
proposed in the Chinle Group section (Hunt 1991; Hunt et al. 2005), but these sub-
divisions cannot readily be correlated to other non-Chinle assemblages. This means 
that plotting vectors of tetrapod evolution within each LVF is difficult to impossible, 
so the comparisons are between LVFs, not within them.

10.4  Late Triassic Terrestrial Tetrapod Record

Terrestrial tetrapod fossil assemblages have a broad paleogeographic distribution 
over what was Late Triassic Pangea (Fig. 10.2). Here, I review the composition and 
correlation (Figs. 10.3 and 10.4) of these assemblages.

10.4.1  Berdyankian Tetrapod Assemblages

Berdyankian-age tetrapod assemblages are known from Russia (the assemblage 
characteristic of the LVF), Germany, Argentina, Brazil and Namibia (Figs. 10.2 and 
10.3). The characteristic assemblage from the Bukobay Formation in the Russian 
Ural foreland basin includes an anthracosaur, the amphibians Mastodonsaurus, 
Bukobaja, Cyclotosaurus?, Plagioscutum and Plagiosternum, an erythrosuchid, a 
rauisuchid, and the dicynodonts “Elephantosaurus jachimovitschi” Vyushkov (a 
Stahleckeria-like form) and a generically indeterminate kannemeyeriid (e.g., 
Shishkin et al. 1995, 2000a, b; Ivakhhnenko et al. 1997; Gower and Sennikov 2000).

The Lettenkohle (Lettenkeuper, Lower Keuper, Erfurt Formation) in Germany 
and the Chanarian LVF localities in Argentina and Brazil are the principal correla-
tives of the Berdyankian type assemblage. The Lettenkohle record is important 
because it establishes the Ladinian age of at least part of the Berdyankian (see 
above). The Lettenkohle fossils are from the Grenze bonebed, the laterally equiva-
lent/overlying Vitriolschiefer and the Kupferzell locality, so they are above the 
unconformity that separates the Keuper from the underlying Muschelkalk. 
Lettenkohle tetrapods include a chroniosuchian, the amphibians Mastodonsaurus 
giganteus, Callistomordax, Plagiosternum, Plagiosuchus and Kupferzella, the 
rauisuchian Batrachotomus, the prolacertiform Tanystropheus and small cynodonts 
(e.g., Wild 1978, 1980; Schoch 1997, 2000; Lucas 1999; Schoch and Werneburg 
1999; Damiani et al. 2009; Gower and Schoch 2009).
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The Chañares local fauna from the Ischichuca (formerly Chañares) Formation of 
the Ischigualasto-Villa Unión basin of northwestern Argentina includes various 
archosaurs such as Lagerpeton, Marasuchus and Chanaresuchus, the dicynodont 
Dinodontosaurus, the traversodontid Massetognathus, the chiniquodontid 
Chiniquodon and the probainognathid Probainognathus (Bonaparte 1970, 1997; 
Romer 1973; Sereno and Arcucci 1993, 1994; Lucas and Harris 1996; Arcucci and 
Marsicano 1998; Hsiou et al. 2002; Mancuso et al. 2014). Bonaparte (1966, 1967, 
1982) based the Chanarian “provincial age” on this assemblage.

Marsicano et al. (2016) reported U-Pb ages on detrital zircons of ~236–234 Ma 
for the Chanarian tetrapod assemblage, which, on face value indicate that they are 
early Carnian. However, as they noted, the “samples contain complex age invento-
ries” (Marsicano et al. 2016: 511), so the reliability of the reported ages are open to 
question. However, if accurate, these ages indicate that the Chanarian tetrapod 
assemblage is likely of early Carnian age.

The lower part of the Santa Maria Formation in the Paraná basin of Rio Grande 
do Sul, Brazil, yields vertebrate fossil assemblages from Candelaria and Chiniquá 
considered by Barberena (1977) and Barberena et al. (1985) to be two different local 
faunas of different ages. Lucas (2002, 2010) regarded them as a single biostrati-
graphic assemblage that includes a procolophonid, archosaurs, including Tarjadia 
(=Archaeopelta Desojo et  al. 2011; Lucas et  al. 2013), the dicynodonts 
Dinodontosaurus and Stahleckeria, chiniquodontids, and the traversodontids 
Massetognathus, Belesodon, Traversodon, Exaeretodon, Santacruzodo, Protuberum 
and Probelesodon (e.g., Abdala and Ribeiro 2003; Cisneros et al. 2004; Langer et al. 
2007; Reichel et al. 2009). This assemblage and the Chanarian type assemblage in 

Fig. 10.2 Map of Late Triassic Pangea showing locations of principal tetrapod assemblages dis-
cussed in the text. Localities are: A = Argentina, B = Brazil, C = Chinle basin, western USA, 
G = Greenland, Ge = Germanic basin, I = Northern Italy, In = India, K = Karoo basin, South Africa, 
M = Madagascar, N = Namibia, Ne = Newark Supergroup, eastern North America, R = Russian 
Urals, U = United Kingdom
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Argentina are assigned a Berdyankian age based largely on their dicynodonts and 
traversodontids and their stratigraphic position, which places them between tetrapod 
assemblages of Nonesian and Adamanian age.

The upper part of the Omingonde Formation in Namibia produces a tetrapod 
assemblage that includes an eryopoid temnospondyl, the dicynodonts Kannemeyeria, 
Dolichuranus, and Rhopalorhinus, a bauriamorph, and cynodonts (Keyser 1973a, b, 
1978; Pickford 1995; Smith and Swartt 2002) that was long considered Perovkan in 
age (e.g., Lucas 2010). However, recent work has identified the cynodont 
Chiniquodon and the dicynodont Stahleckeria in the upper part of the Omingonde 
Formation (e.g., Abdala and Smith 2009; Abdala et al. 2013). This supports correla-
tion to Berdyankian assemblages in South America, as detailed by Abdala et  al. 
(2013).

Global correlation of tetrapod assemblages within the Berdyankian (Fig. 10.3) is 
problematic in part because of the biofacies problems outlined above. Thus, the 
Argentinian and Brazilian tetrapod assemblages are dicynodont-cynodont domi-
nated and readily correlated to each other. The German and Russian assemblages are 
amphibian dominated and also readily correlated to each other. But, correlation of 
the tetrapod assemblages from the two biofacies to each other is less certain, though 
all of these assemblage do fall into a time interval between Perovkan and Otischalkian.

Fig. 10.3 Correlation chart of Berdyankian-Adamanian tetrapod assemblages

Fig. 10.4 Correlation chart of Revueltian-Apachean tetrapod assemblages
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10.4.2  Otischalkian Tetrapod Assemblages

Otischalkian tetrapod assemblages are broadly distributed: in western and eastern 
North America, Germany, India, Morocco and possibly Kyrgyzstan (Figs. 10.2 and 
10.3). The characteristic tetrapod assemblage of the Otischalkian is the assemblage 
of vertebrate fossils from just north of the defunct town of Otis Chalk in Howard 
County, Texas (Fig. 10.3). Lucas et al. (1993) and Long and Murry (1995) reviewed 
the fauna, which is from the Colorado City Formation of the Chinle Group. The fol-
lowing taxa are present: the amphibians Latiscopus, Buettneria and Apachesaurus, 
a procolophonid, the rhynchosaur Otischalkia, the archosaurs Doswellia, 
Trilophosaurus (=Malerisaurus) and Poposaurus, the aetosaurs Longosuchus 
(=Lucasuchus) and Coahomasuchus, the phytosaurs Parasuchus and Angistorhinus 
and the dinosaur Lepidus (Lucas et al. 1993; Long and Murry 1995; Heckert and 
Lucas 1999; Spielmann et al. 2006c; Nesbitt and Ezcurra 2015).

Otischalkian tetrapod assemblages are found across a broad geographic range of 
Chinle Group outcrops in Wyoming, New Mexico and Texas. The most well-known 
principal correlative of the type Otischalkian fauna in the Chinle Group is the 
vertebrate- fossil assemblage from the Popo Agie Formation of Wyoming (Branson 
and Mehl 1928; Mehl 1928; Colbert 1957; Lucas 1994; Lucas et  al. 2002) that 
includes the metoposaurid Koskinonodon, the phytosaurs Parasuchus and 
Angistorhinus, the aetosaur Desmatosuchus, the archosaurs Poposaurus and 
Heptasuchus, the rhynchosaur Hyperodapedon, and the dicynodont Placerias. A 
less well-known principal correlative is the small assemblage from the Salitral 
Formation in Rio Arriba County, New Mexico, that consists of a metoposaur, 
Longosuchus, a phytosaur, and an indeterminate dinosaur (Lucas and Hunt 1992). 
Heckert (2004) provided some microvertebrate basis for recognition of the 
Otischalkian in Chinle Group strata, such as the LO of the “dinosaur” Protecovasaurus 
and the archosaur Trilophosaurus buettneri (also see Spielmann et al. 2008). Outside 
of the Chinle Group, Otischalkian assemblages are also known from the Newark 
Supergroup in eastern North America, the Germanic basin, Morocco, India and, 
possibly, Kyrgyzstan.

In the Newark Supergroup of eastern North America, the stratigraphically lower 
formations of the Deep River, Gettysburg, Newark and Fundy basins contain two 
distinct vertebrate fossil assemblages. The older of these was used by Huber et al. 
(1993b) as the basis of the Sanfordian LVF, after the characteristic assemblage from 
the Passaic (“Sanford”) Formation in the Sanford sub-basin of the Deep River basin 
complex (see Weems et  al. 2016 for a revised lithostratigraphy of the Newark 
Supergroup used throughout this article). An age-equivalent assemblage from the 
Passaic Formation (Fundy basin) is also assigned to this LVF. The collective Newark 
tetrapod fauna of the Sanfordian LVF includes a metoposaurid, the trematosauroid 
Calamops, procolophonids, the traversodontids Arctotraversodon and 
Plinthogomphodon, the dicynodont Placerias, the rhynchosaur Hyperodapedon, the 
archosaur Doswellia, the aetosaurs Desmatosuchus and Longosuchus, indetermi-
nate rauisuchians (“Zamotus”), the rauisuchian Postosuchus, the “sphenosuchian” 
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Dromicosuchus, indeterminate phytosaur fragments and fragmentary dinosaur 
remains (e.g., Cope 1871; Olsen et al. 1989; Hunt and Lucas 1990; Huber et al. 
1993a; Hunt 1993; Sues et al. 1994, 1999, 2003; Langer et al. 2000; Lucas et al. 
2002; Peyer et  al. 2008; Dilkes and Sues 2009; Sues and Schoch 2013). The 
Sanfordian correlates with the Chinle Group Otischalkian LVF based on the shared 
presence of Koskinonodon, Hyperodapedon, Desmatosuchus, Longosuchus, 
Doswellia, and Placerias.

In Germany, the Schilfsandstein (Stuttgart Formation) produces Metoposaurus 
and Parasuchus but lacks Stagonolepis, so it can be assigned an Otischalkian age 
(Hunt and Lucas 1991; Lucas 1999; Schoch and Werneburg 1999; Hungerbühler 
2001; Kimmig and Arp 2010). Note that the Schilfsandstein is the age of the Carnian 
wet episode, which is “middle” Carnian (late Julian) in age (e. g., Hornung et al. 
2007; Ruffell et al. 2016).

The 500-m-thick Irohalene Member of the Timesgadiouine Formation (interval 
T-5 of Dutuit 1966; Tixeront 1971) has produced most of the Late Triassic verte-
brate fauna from Morocco. It contains the majority of vertebrate fossil localities 
described by Dutuit (1972, 1976, 1977, 1988, 1989a, b). Most of these occur in the 
lower part of the member, and they have produced a moderately diverse assemblage 
that includes the amphibians Almasaurus and Dutuitosaurus, the phytosaur 
Parasuchus, the aetosaur Longosuchus, the dicynodont Placerias (=Moghreberia, 
=Azarifeneria: Cox 1991; Lucas and Wild 1995) and the archosauromorph 
Azendohsaurus (Gauffre 1993; Lucas 1998; Jalil 1999; Flynn et al. 2010). Several 
of Dutuit’s (1976) localities are in the upper part of the Irohalene Member, which is 
a distinct faunal horizon that includes the amphibian Arganasaurus, the phytosaur 
Angistorhinus, and the dicynodont Placerias. The presence of Parasuchus, 
Angistorhinus, Longosuchus and Placerias supports assigning the Irohalene 
Member tetrapod assemblage(s) an Otischalkian age.

In the Pranhita-Godavari Valley of India, the basal Maleri Formation produces a 
tetrapod assemblage that includes the amphibian Metoposaurus, the rhynchosaur 
Paradapedon, the phytosaur Parasuchus, the archosaur “Malerisaurus,” an aet-
osaur, the theropod dinosaur Alwalkeria, a prosauropod (“cf. Massospondylus” of 
Kutty and Sengupta 1989), a large dicynodont, and the cynodont Exeraetodon (e.g., 
von Huene 1940; Jain et  al. 1964; Roychowdhury 1965; Chatterjee 1967, 1974, 
1978, 1980, 1982, 1987; Chatterjee and Roychowdhury 1974; Jain and 
Roychowdhury 1987; Bandyopadyhay and Sengupta 2006; Spielmann et al. 2006c; 
Kammerer et  al. 2016). This is the only well-described Upper Triassic tetrapod 
assemblage from the Pranhita-Godavari Valley. It includes Parasuchus and 
Metoposaurus, taxa indicative of an Otischalkian age.

Northeast of the Pranhita-Godavari valley, in the Rewa basin of India, the Tiki 
Formation yields an Otischalkian tetrapod assemblage. This includes Metoposaurus, 
Parasuchus, the rhynchosaur Hyperodapedon, the supposed agamid lizard 
Tikiguana, the cynodont Rewacodon and the supposed mammals Tikitherium and 
Gondwanodon (e.g., Datta and Das 1996; Datta 2005; Mukherjee et al. 2012).

In the Fergana basin of Kyrgyzstan, the upper part of the Madygen Formation 
yields a tetrapod assemblage usually assigned a Ladinian-Carnian age based on the 
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associated paleoflora (e.g., Dobruskina 1995a). Voigt et al. (2017) recently reported 
a U-Pb age of 237 ± 2 Ma on six concordant zircons from a pyroclastic bed strati-
graphically below the tetrapod assemblage, which suggests the tetrapods may be of 
Carnian age. However, the entire tetrapod assemblage from the Madygen Formation 
is endemic and of no value to biostratigraphy. It consists of the amphibian Triassurus, 
the reptiliomorph Madygenerpeton, the unusual diapsids Sharovipteryx, 
Kyrgyzsaurus and Longisquama and the cynodont Madygenia (Sharov 1970, 1971; 
Ivakhnenko 1978; Tatarinov 2005; Unwin et al. 2000; Schoch et al. 2010; Alifanov 
and Kurochkin 2011). The assemblage may be of Otischalkian age, but more pre-
cise data are needed to confirm this.

10.4.3  Adamanian Tetrapod Assemblages

The characteristic tetrapod assemblage of the Adamanian is the assemblage of ver-
tebrate fossils found in the Blue Mesa Member of the Petrified Forest Formation in 
the Petrified Forest National Park, near the defunct railroad siding of Adamana, 
Arizona (Fig. 10.3). Recent faunal lists have been provided by Murry and Long 
(1989), Long and Murry (1995), Heckert et al. (2005) and Parker et al. (2006). The 
fauna includes the following tetrapods: the amphibians Apachesaurus and 
Koskinonodon, the aetosaurs Desmatosuchus (=Acaenasuchus), Stagonolepis, 
Adamanasuchus and Paratypothorax, Rutiodon-grade phytosaurs (including 
Leptosuchus and Smilosuchus), the rauisuchian Postosuchus, the archosaurs 
Hesperosuchus, Acallosuchus, Parrishea and Vancleavea, and the dicynodont 
Placerias, as well as many microvertebrate taxa.

Besides the Chinle Group correlatives, major Adamanian faunas are those of the 
Conewagian interval of the Newark Supergroup basins of eastern North America; 
Lossiemouth Sandstone Formation, Scotland; Lehrberg Schichten-Obere Bunte 
Mergel interval of the German Keuper; the Krasiejów locality in Poland; 
Ischigualasto Formation, Argentina; and upper Santa Maria Formation and Caturitta 
Formation, Brazil (Fig. 10.3).

In the Chinle Group, Adamanian vertebrates are widespread and include the 
vertebrate fossil assemblages of the Placerias and Downs’ quarries, Bluewater 
Creek Formation, Arizona (Camp and Welles 1956; Kaye and Padian 1994; Long 
and Murry 1995; Lucas et  al. 1997; Heckert 2004; Heckert et  al. 2005); the 
Bluewater Creek Formation and Blue Mesa Member of the Petrified Forest 
Formation in the Blue Hills, Arizona; the Bluewater Creek Formation and Blue 
Mesa Member of the Petrified Forest Formation, McKinley and Cibola counties, 
New Mexico (Heckert 1997); the Los Esteros and Tres Lagunas members, Santa 
Rosa Formation, and the Garita Creek Formation in the vicinity of Lamy, Santa Fe 
County, New Mexico (Hunt et al. 2005; Lucas et al. 2010); Garita Creek Formation, 
Santa Rosa and vicinity, Guadalupe County, New Mexico (Hunt and Lucas 1993a); 
and Tecovas Formation, West Texas (Murry 1986, 1989; Long and Murry 1995; 
Lucas et al. 2016).
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The fauna at the Placerias and Downs’ quarries has been discussed by Kaye and 
Padian (1994), Long and Murry (1995), Lucas et al. (1997) and Heckert (2004). It 
includes the amphibians Koskinonodon and Apachesaurus, the prolacertiform 
Gwyneddosaurus (=Tanytrachelos), the phytosaurs Parasuchus and 
Rutiodon/Leptosuchus, the aetosaurs Stagonolepis and Desmatosuchus 
(=Acaenasuchus), the rauisuchid Postosuchus, the archosaurs Trilophosaurus, 
Acallosaurus, Poposaurus, Chatterjeea, Hesperosuchus, Tecovasaurus and cf. 
Uatchitodon, an indeterminate ceratosaur and the dicynodont Placerias.

A U-Pb age recently reported from Chinle Group strata at the Placerias/Downs’ 
quarries by Ramezani et al. (2014) is not consistent with earlier published ages. This 
is an age of 219.39 ± 0.16 Ma from near the base of the Chinle Group at the Placerias 
fossil locality in Arizona. Stratigraphic position puts this age well below a series of 
ages in the 220–227 Ma range reported by Ramezani et al. (2011) and Atchley et al. 
(2013). To explain this contradiction, Ramezani et al. (2014) claim massive lateral 
facies changes in the lower Chinle lithosome, and even conclude that “geochrono-
logical correlation independent of conventional stratigraphic methods [lithostratig-
raphy, biostratigraphy] is the only viable means for deciphering the depositional 
history of rock similar to the Chinle Formation” (p. 995). I prefer instead to rely on 
a century of geologic mapping, detailed lithostratigraphic analysis and the biostra-
tigraphy of palynomorphs, conchostracans and vertebrates (e.g., Heckert and Lucas 
2002 and references cited therein) that demonstrates that the Placerias quarry 
numerical age of Ramezani et  al. (2014) is stratigraphically below many older 
numerical ages. Thus, the Placerias quarry age published by Ramezani et al. (2014) 
is anomalously young, likely due to postcrystallization lead loss, and should be 
ignored.

The following tetrapod taxa are known from the Los Esteros Member, Santa 
Rosa Formation, near Lamy, New Mexico: the amphibian Apachesaurus, the phyto-
saurs Rutiodon and Angistorhinus, the aetosaurs Desmatosuchus, Tecovasuchus and 
Stagonolepis and the dicynodont cf. Ischigualastia (Hunt and Lucas 1993a, 1994; 
Hunt et al. 2005; Heckert et al. 2007). The overlying Garita Creek Formation con-
tains the following taxa: the amphibian Koskinonodon, phytosaurs, rauisuchians, 
and the aetosaurs Desmatosuchus, Stagonolepis and Paratypothorax (Hunt et  al. 
2005; Lucas et al. 2010).

The Tecovas Formation of West Texas yields the following tetrapod taxa: the 
amphibians Koskinonodon and Apachesaurus, the probable tetrapod Colognathus, 
the archosauromorphs Trilophosaurus, Spinosuchus, Parrishea, Tecovasaurus, and 
Crosbysaurus, the phytosaurs Rutiodon, Leptosuchus and Smilosuchus, the aet-
osaurs Desmatosuchus and Stagonolepis, the rauisuchian Postosuchus, and the old-
est known mammal, Adelobasileus (Lucas and Luo 1993; Lucas et al. 1994, 2016; 
Long and Murry 1995; Spielmann et al. 2008, 2013).

In the Deep River basin of North Carolina, an assemblage of the Conewagian 
LVF from the Cumnock Member of the Lockatong Formation (cf. Weems et al., 
2016) is superposed on the characteristic Sanfordian assemblage. Conewagian 
assemblages are characterized by the tetrapod assemblage in the basal Lockatong 
(=“Gettysburg”) Formation (Kozur and Weems 2010) along Little Conewago Creek 
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in south-central Pennsylvania (Gettysburg basin: Huber et al. 1993b; Sullivan et al. 
1995; Lucas and Sullivan 1997) and also are known from the Lockatong (=“Cow 
Branch”) Formation (Dan River basin), and upper Stockton and Lockatong forma-
tions (Newark basin). The most widespread and characteristic Conewagian tetrapod 
is the phytosaur Rutiodon, which co-occurs with the amphibian Koskinonodon, 
archosaurs of uncertain affinity, the problematic reptile Colognathus, an aetosaur 
(Desmatosuchus), one or more “ornithischian dinosaurs” (e.g., Pekinosaurus, 
Crosbysaurus, Revueltosaurus and Galtonia), the archosaurs Uatchitodon and 
Gwyneddosaurus (=Tanytrachelos), lepidosaurs, including the single record of the 
gliding lepidosauromorph Icarosaurus and cynodonts, including aff. 
Boreogomphodon and Microconodon (e.g., Emmons 1856; Olsen 1980, 1988; 
Olsen et al. 1989; Sues 1992; Huber et al. 1993a; Hunt 1993; Hunt and Lucas 1994; 
Doyle and Sues 1995; Lucas and Huber 2003; Heckert et al. 2012). Conewagian 
assemblages correlate with the Adamanian LVF of the Chinle Group, based on the 
shared presence of Koskinonodon, Colognathus, Uatchitodon, Rutiodon and other 
Rutiodon-grade phytosaurs (Smilosuchus of Long and Murry 1995), Desmatosuchus 
and broadly similar “ornithischian dinosaurs” (e.g., Murry and Long 1989; Lucas 
et  al. 1992, 1997, 2016; Huber et  al. 1993b; Hunt 1993; Hunt and Lucas 1994; 
Heckert 2004; Heckert et al. 2012).

The tetrapod assemblage of the Lossiemouth Sandstone Formation of Grampian 
(Elgin) Scotland comes from small quarries and the coastal section at Lossiemouth. 
Benton and Spencer (1995; also see Fraser 2006) provided a detailed summary that 
indicates that all sites come from a narrow stratigraphic interval, so they are a single 
biostratigraphic assemblage. It includes the procolophonid Leptopleuron, the sphen-
odontid Brachyrhinodon, the rhynchosaur Hyperodapedon, the aetosaur 
Stagonolepis, the ornithosuchid Ornithosuchus, the crocodylomorph Erpetosuchus, 
the probable ornithodiran Scleromochlus and the “dinosaur” Saltopus. The presence 
of Hyperodapedon and Stagonolepis supports assigning this assemblage an 
Adamanian age.

In Germany, strata in the interval between the Schilfsandstein and the 
Stubensandstein (Lehrberg Schichten, Blasensandstein and Kieselsandandstein) 
produce Stagonolepis, Parasuchus and Metoposaurus (e.g., Lucas 1999), and are 
assigned an Adamanian age (Kozur and Weems 2005).

Kear et  al. (2016) recently identified a temnospondyl skull fragment as 
Cyclotosaurus from the DeGeerdalen Formation in Svalbard. These are marine 
strata assigned a middle-late Carnian age based on ammonoids. Thus, if correctly 
identified, this would be the oldest record of Cyclotosaurus, which is otherwise 
known from Revueltian (Norian) strata.

The Polish fossil record of Late Triassic tetrapods advanced greatly during the 
1990s, when scientific study of the extensive bonebed in the Krasiejów clay pity 
near Ople began, and much has been published since (see especially the reviews by 
Dzik and Sulej 2007; Szulc et  al. 2015). The Krasiejów tetrapod assemblage 
includes the amphibians Cyclotosaurus and Metoposaurus, the phytosaur 
Parasuchus, the aetosaur Stagonolepis, the rauisuchian Teratosaurus and the dino-
sauriform Silesaurus (Dzik 2001, 2003; Sulej 2002, 2005, 2007, 2010; Sulej and 
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Majer 2005; Dzik and Sulej 2007; Lucas et  al. 2007b; Szulc et  al. 2015; Lucas 
2015). This assemblage is from strata ~80  m above the Reed Sandstone (a 
Schilfsandstein equivalent) that are homotaxial to the German Lehrberg Schichten 
and is of Adamanian age (Lucas 2015).

In Argentina, the Ischigualasto Formation is 500–900 m thick and consists of 
drab mudstones, tuffs and sandstones that produce an extensive tetrapod assem-
blage, including: the amphibian Promastodonsaurus, the archosaurs Saurosuchus, 
Sillosuchus, and Proterochampsa, the ornithosuchid Venaticosuchus, the aetosaur 
Stagonolepis (=Aetosauroides), the rhynchosaur Hyperodapedon, the dinosaurs 
Herrerasaurus (=Ischisaurus? =Frenguellisaurus), Eoraptor and Pisanosaurus, the 
chiniquodontid cynodont Chiniquodon, the gomphodont cynodonts Exeraetodon, 
Proexaraetodon, and Ischignathus and the dicynodont Ischigualastia (e.g., Cabrera 
1944; Reig 1959, 1961, 1963; Casamiquela 1960, 1962; Cox 1965; Bonaparte 1976, 
1997; Rogers et al. 1993; Sereno et al. 1993; Alcober and Parrish 1997; Heckert and 
Lucas 2002; Baczko and Ezcurra 2013). This assemblage was the basis of the 
Ischigualastian land-vertebrate “age” of Bonaparte (1966, 1967, 1982).

Martínez et al. (2013) reviewed the stratigraphic distribution of the tetrapod fos-
sils in the Ischigualasto Formation to show that most are from the lower 300 m of 
the formation. They also reviewed the radioisotopic ages associated with the 
Ischigualasto Formation tetrapods (e. g., Valencio et al. 1975; Rogers et al. 1993; 
Currie et al. 2009) to assign them an age range of ~226–231 Ma. This suggests a late 
Carnian (Tuvalian) age, which fits well with the conclusion that the Ischigualasto 
tetrapods are of Adamanian age (Lucas 2010; Lucas et al. 2012).

In northwestern Argentina, the Puesto Viejo Group contains a tetrapod assem-
blage that includes Kannemeyeria and Cynognathus and has long been considered 
to be of Nonesian (late Olenekian) age (e. g., Lucas 2010). However, Ottone et al. 
(2014) reported a SHRIMP 238 U/206Pb age of 235.8 ± 2.0 Ma from a rhyolitic tuff 
in the approximate middle of the Puesto Viejo succession. They accepted this 
numerical age as evidence of the Carnian age of the Puesto Viejo tetrapod assem-
blage. Instead, it is much more likely that the age reported by Ottone et al. (2014) is 
simply incorrect (too young) and does not indicate that Nonesian tetrapods (includ-
ing the classic Cynognathus Assemblage Zone of the South African Karoo) are of 
Late Triassic age.

In Brazil, the principal Upper Triassic vertebrate assemblage from the Santa 
Maria Formation is from the vicinity of Santa Maria City. This is the Rhynchocephalia 
assemblage zone of Barberena (1977) or the Scaphonyx assemblage of Barberena 
et al. (1985), from the upper part of the Santa Maria Formation. The assemblage 
consists of abundant fossils of the rhynchosaur Hyperodapedon and the aetosaur 
Stagonolepis (=Aetosauroides); traversodontids, proterochampsids; the archetypal 
rauisuchian Rauisuchus and the primitive dinosaur Staurikosaurus (Barberena et al. 
1985; Lucas 2002; Lucas and Heckert 2001; Abdala et al. 2001; Langer et al. 2007; 
Raugust et  al. 2013; Melo et  al. 2015). Clearly, the presence of Scaphonyx and 
Stagonolepis supports correlation with the vertebrates of the Ischigualasto Formation 
in Argentina, and therefore an Adamanian (=Ischigualastian) age (Lucas and 
Heckert 2001; Heckert and Lucas 2002; Lucas 2002, 2010).
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Abdala et  al. (2001) identified a “traversodontid biozone” (later termed the 
Santacruzodon Assemblage Zone) intermediate between the Dinodontosaurus and 
Hyperodapedon assemblages of the Santa Maria Formation. This biozone yielded 
the cynodont Menadon, also found in the Isalo II strata of Madagascar (Melo et al. 
2015). Abdala et  al. (2001) and Melo et  al. (2015) consider the Santacruzodon 
Assemblage Zone to be of Ladinian or early Carnian age. However, correlation to 
Isalo II suggests an age of Adamanian, which is late Carnian. Furthermore, there is 
no lithostratigraphic basis for placing the so-called Santacruzodon Assemblage 
Zone between the Dinodontosaurus and Hyperodapedon assemblages (cf. Langer 
et al. 2007). In effect, the Santacruzodon Assemblage Zone is a hypothetical bio-
stratigraphic construct based on a single locality that is the same age as the 
Hyperodapedon assemblage of the Santa Maria Formation. The Santacruzodon 
Assemblage Zone should be abandoned.

The tetrapod assemblage of the Caturrita Formation, which overlies the Santa 
Maria Formation, includes a mastodonsauroid amphibian, the procolophonid 
Soturnia, the sphenodont Clevosaurus, the lepidosaur Cargninia, the rhynchosaur 
Hyperodapedon, the proterochampsid Proterochampsa, the supposed pterosaur 
Faxinalipterus (but see Dalla Vecchia 2013), the dinosaurs Unaysaurus and 
Guaibisaurus, the dinosauriform Saccasaurus, a phytosaur, the cynodonts 
Exaeretodon and Riograndia, the dicynodont Ischigualastia (=Jachaleria) and 
diverse cynodonts (Araújo and Gonzaga 1980; Barberena et  al. 1985; Dornelles 
1990; Bonaparte et  al. 1999, 2001, 2007, 2010a, b; Cisneros and Schultz 2003; 
Kischlat and Lucas 2003; Leal et al. 2003; Ferigolo and Langer 2006; Bonaparte 
and Sues 2006; Langer et al. 2007; Dias-da-Silva et al. 2009; Soares et al. 2011).

Philipp et al. (2013), in an extended abstract, reported U-Pb ages on 13 zircons 
from an ash bed (though Schultz et al. 2016 referred to these as “detrital zircons”) 
that form an isochron of 236 ± 3.5 Ma. This ash bed is approximately at the strati-
graphic level of the “Santacruzodon assemblage,” so it suggests an age close to the 
Ladinian-Carnian boundary between the Berdyankian and Adamanian tetrapod 
assemblages of the Santa Maria Formation. Further publication of the analytical 
data associated with these ages is needed to assess their accuracy.

Most South American workers (e.g., Bonaparte 1982; Barberena et al. 1985; 
Langer 2005a, b; Rubert and Schultz 2004; Dias-da-Silva et  al. 2007; Langer 
et  al. 2007; Soares et  al. 2011) advocate dividing the Brazilian Upper Triassic 
tetrapod succession into two biostratigraphically distinct assemblages largely 
based on their judgment that the dicynodonts Jachaleria and Ischigualastia are 
not the same taxon. They, therefore, correlate the Brazilian Caturrita Formation to 
the Argentinian Los Colorados Formation. Langer (2005b) also claimed that the 
Ischigualastian = Otischalkian + Adamanian, largely based on not recognizing the 
temporal range of Hyperodapedon as longer than the temporal range of the 
Ischigualastian. I do not accept either evaluation of the Brazilian Upper Triassic 
tetrapod biostratigraphy (Lucas 2002, 2010). Thus, I regard the Caturitta 
Formation as a correlative of the Ischigualasto Formation, so it is Adamanian, of 
late Carnian age.
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In the Pranhita-Godavari Valley of India, the upper vertebrate fossil assemblage 
from the Maleri Formation is stratigraphically above the lower assemblage, but its 
stratigraphic range is not clear. This upper assemblage includes an aetosaur, prosau-
ropods and a large dicynodont. Chigutisaurid amphibians (Compsocerops and 
Kuttycephalus: Sengupta 1995) and a “Rutiodon-like” phytosaur are also present 
(Bandyopadyhay and Sengupta 2006). Therefore, this assemblage may be 
Adamanian, but needs further documentation.

In western Madagascar, the Isalo group (“Groupe d l’Isalo” of Besarie 1930; also 
see Besarie and Collignon 1960, 1971) has long been divided into Isalo I, Isalo II 
and Isalo III based on perceived geologic age. The Isalo II strata yield Late Triassic 
tetrapods, including metoposaurs, sphenodontids, phytosaurs, dinosaurs, the rhyn-
chosaur Hyperodapedon, the aetosaur Desmatosuchus, the archosaur Azendohsaurus, 
various cynodonts (including the traversodontids Dadadon and Menadon) and a 
dicynodont (Guth 1963; Westphal 1970; Dutuit 1978; Buffetaut 1983; Flynn et al. 
1999, 2000, 2008; Lucas et al. 2002; Flynn and Wyss 2003; Burmeister et al. 2006; 
Kammerer et al. 2010; Ranovharimanana et al. 2011). The stratigraphic range of the 
Isalo II tetrapods is about 1200 m, but the rhynchosaur Hyperodapedon is one of the 
stratigraphically lowest taxa in the assemblage. This means the Isalo II assemblage 
is no older than Otischalkian and, based on the Desmatosuchus record, likely to be 
Adamanian. Flynn and collaborators (e.g., Flynn and Wyss 2003) advocate an older 
age, perhaps as old as Ladinian, for the Isalo II assemblage, but no data support that 
conclusion.

10.4.4  Revueltian Tetrapod Assemblages

The characteristic tetrapod assemblage of the Revueltian is that of the Bull Canyon 
Formation in east-central New Mexico (Fig. 10.4), and the following taxa are pres-
ent: the amphibian Apachesaurus, the turtle Chinlechelys, the phytosaur 
Pseudopalatus and other Pseudopalatus-grade phytosaurs, the aetosaurs 
Rioarribasuchus, Paratypothorax, Typothorax coccinarum and Aetosaurus, the 
suchian Revueltosaurus, the “dinosaur” Lucianosaurus, the rauisuchian Postosuchus, 
the chatterjeeids Shuvosaurus (=Effigia) and Chatterjeea, the sphenosuchian 
Hesperosuchus and the cynodont Pseudotriconodon (e.g., Hunt 1994, 2001; Lucas 
et al. 2001; Joyce et al. 2009).

In the Chama basin of north-central New Mexico, the Petrified Forest Formation 
of the Chinle Group also yields Revueltian tetrapods, especially from the Snyder, 
Hayden and Canjilon phytosaur-dominated bonebeds (Sullivan and Lucas 1999; 
Zeigler et al. 2003; Heckert et al. 2005; Ezcurra 2006; Nesbitt and Stocker 2008). In 
northern Arizona, two Chinle Group units, the Painted Desert Member of the 
Petrified Forest Formation and the overlying Owl Rock Formation, have produced 
numerous Revueltian fossils, especially from the Petrified Forest National Park and 
from localities on Ward’s Terrace north of Flagstaff (e.g., Kirby 1989, 1991, 1993; 
Heckert et al. 2005; Spielmann et al. 2007).

10 Late Triassic Terrestrial Tetrapods: Biostratigraphy, Biochronology and Biotic Events



366

Outside of the Chinle Group, Revueltian tetrapod assemblages are known from 
the Newark Supergroup in eastern North America, Greenland, the Germanic basin, 
(including eastern Poland), northern Italy, India, Argentina and South Africa 
(Fig. 10.4). In eastern North America, the provincial Neshanician LVF is based on 
a limited fossil assemblage typified by the aetosaur Aetosaurus arcuatus (Lucas 
et al. 1998; Lucas and Huber 2003). This taxon is present in the Passaic Formation 
in the Durham sub-basin of the Deep River basin, the Newark Basin (range zone: 
Warford through Neshanic members of the lower Passaic Formation), and the mid-
dle Sugarlof Member of the Passaic Formation of central Connecticut. Other verte-
brates from the Neshanician LVF include indeterminate metoposaurid and phytosaur 
teeth, skull and scute fragments (e.g. “Belodon validus”), a rauisuchian, a crocody-
lomorph, a traversodontid and a sphenodontid. The dominance of the primitive 
neopterygian Semionotus sp. over other fish taxa is a trend also apparent in age- 
equivalent strata of the Chinle Group and German Keuper (Huber et  al. 1993c; 
Lucas and Huber 2003).

The Cliftonian LVF is based on a low-diversity assemblage defined by the distri-
bution of the procolophonid Hypsognathus fenneri. This taxon is common in the 
type area, from the middle (?Mettlars Member) to the upper (?Member TT) Passaic 
Formation of the northern Newark basin (e.g., Baird 1986). It is also known from 
the upper Passaic Formation of the Hartford basin, central Connecticut, and the 
basal Blomidon Formation in the Fundy basin, Nova Scotia (Sues et al. 1997). The 
Fundy basin specimen of Hypsognathus was obtained from pebble conglomerate at 
the base of the Blomidon Formation, which unconformably overlies the Wolfville 
Formation. The only other vertebrates that occur in the interval of Cliftonian age are 
indeterminate phytosaur remains (including the holotype of “Clepsysaurus pennsyl-
vanicus” Lea 1851) from the Ukrainian Member of the Passaic Formation in the 
Newark basin, moderately diverse tetrapod footprint assemblages at many horizons 
in the Passaic Formation (e.g., Szajna and Silvestri 1996; Lucas and Sullivan 2006), 
and an indeterminate sphenodontid from the upper Passaic Formation (Olsen 1980; 
Sues and Baird 1993; Lucas and Huber 2003).

The Malmros Klint and overlying Ørsted Dal members of the Fleming Fjord 
Formation in eastern Greenland yield tetrapod fossils of Revueltian age (Jenkins 
et al. 1994, 1997, 2001, 2008; Clemmensen et al. 2016). The Malmros Klint Member 
has produced fragmentary fossils of plagiosaurid amphibians, the amphibian 
Cyclotosaurus, phytosaur bones and the prosauropod dinosaur Plateosaurus. The 
Ørsted Dal Member assemblage is much more diverse: the amphibians Gerrothorax 
and Cyclotosaurus, the turtle cf. Proganochelys, unidentified sphenodontians, the 
aetosaurs Aetosaurus and Paratypothorax, the pterosaur Eudimorphodon, the pro-
sauropod dinosaur “Plateosaurus,” a theropod dinosaur, theropod dinosaur foot-
prints (Grallator), and the mammals Kuehneotherium, cf. Brachyzostrodon? and 
Haramiyavia. As Jenkins et al. (1994) argued, this assemblage shares many taxa 
with the German Stubensandstein. More specifically, other than Plateosaurus, most 
taxa from the Ørsted Dal Member are known in the Lower Stubensandstein, to 
which I correlate the Greenland assemblage (Fig. 10.4).
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In Germany, the best known and most diverse Keuper tetrapod assemblage is that 
of the Lower Stubensandstein (Löwenstein Formation). This assemblage includes 
the amphibians Cyclotosaurus and Gerrothorax, the turtles Proganochelys and 
Proterochersis, Pseudopalatus-grade phytosaurs (Nicrosaurus), the aetosaurs 
Aetosaurus and Paratypothorax, rauisuchians (Teratosaurus), theropod dinosaurs, 
and the prosauropod dinosaurs Sellosaurus and Thecodontosaurus (e.g., Benton 
1993; Hungerbühler 1998; Lucas 1999; Schoch and Werneburg 1999; Schoch 2007; 
Kimmig and Arp 2010). The phytosaurs, aetosaurs, and rauisuchians provide a 
strong basis for assigning a Revueltian age to the Lower Stubensandstein (Lucas 
and Hunt 1993a; Hunt 1994; Lucas 1999). The younger, Middle and Upper 
Stubensandstein, produce a similar, but less diverse assemblage, so I also assign 
them a Revueltian age (Lucas 1999). Whether or not the lowest occurrence of 
Mystriosuchus in the Middle Stubensandstein is of biochronologic significance is 
not clear.

The tetrapod assemblages of the Upper Stubensandstein and Knollenmergel 
(Trossingen Formation) are almost entirely dinosaurian—95% or more of the fos-
sils are of dinosaurs (Benton 1986, 1991). This contrasts sharply with the Lower and 
Middle Stubensandstein assemblages, in which dinosaurs are a much smaller per-
centage of the fossils collected. However, I regard this change to dinosaur domina-
tion as largely a local facies/taphonomic effect, not a biochronologically significant 
event (Hunt 1991). It seems likely but not certain that the Knollenmergel assem-
blage is of Apachean age (see below).

In eastern Poland, Dzik et  al. (2008) announced the discovery of an Upper 
Triassic bonebed at the Lipie Slaski clay pit near Lubliniec. This bonebed yields an 
assemblage dominated by dicynodonts and archosaurs. There are three other cor-
relative fossil vertebrate localities in Silesia. Another bonebed in the Woźniki clay 
pit yield vertebrates similar to those from Lipie (Sulej et al. 2011). Sulej et al. (2011) 
correlated the Woźniki assemblage with the Krasiejów locality, but Szulc et  al. 
(2015) argue convincingly that the Woźniki assemblage and the Lipie assemblage 
are stratigraphically equivalent and subsume it under what they call the Lisowice 
level. Bones from Poręba were discovered in 2008 and include amphibians, turtles, 
and aetosaurs, among others, and have in part been described (Sulej et al. 2012; 
Niedźwiedzki et al. 2014). This locality, and very recently discovered bones from 
another locality at Zawiercie, are stratigraphically equated to Lipie (Szulc et  al. 
2015). Thus, the Lisowice level comprises the fossil vertebrate localities at Lipie, 
Woźniki, Poręba and Zawiercie.

Biochronologically significant tetrapod taxa reported and/or documented from 
the Lisowice level include the amphibians Cyclotosaurus and Gerrothorax, the tur-
tle cf. Proterochersis, an aetosaur I judge to be Paratypothorax (Lucas 2015) and a 
large dicynodont (Dzik et  al. 2008; Sulej et  al. 2012; Niedźwiedzki et  al. 2012, 
2014; Świło et al. 2014). Szulc et al. (2015) represents the first explicit correlation 
of the Lipie bonebed to the Triassic LVFs, assigning it a Revueltian age.

In the Lombardian Alps of northern Italy, after the regional progradation of plat-
form carbonates during the early-middle Norian (Dolomia Principale), extensional 
tectonism produced intraplatform depressions occupied by patch reefs, turbiditic 
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debris flows and lagoonal to freshwater facies (Jadoul 1985; Jadoul et al. 1994). 
Tetrapods from these intraplatform strata, the Zorzino Limestone at the Cene and 
Endenna quarries in Lombardy, are the diapsids Endennasaurus and Vallesaurus, 
the prolacertiform Longobardisaurus, the rhynchocephalian Diphydontosaurus, the 
drepanosaurids Drepanosaurus and Megalancosaurus, the phytosaur Mystriosuchus, 
the aetosaur Aetosaurus, the pterosaurs Eudimorphodon and Peteinosaurus and the 
placodont Psephoderma (e.g., Wild 1989; Pinna 1993; Renesto 2006; Renesto et al. 
2010). In Germany, Mystriosuchus is well known from the Middle Stubensandstein 
(Hungerbühler 2002) and Aetosaurus from the Lower-Middle Stubensandstein, so a 
Revueltian age of the Zorzino Limestone is certain. The Calcare di Zorzino also 
crops out in Austria, where it yields specimens of Langobardisaurus and the ptero-
saur Austriadactylus (Dalla Vecchia 2009, 2013). Also, in Austria, unpublished 
specimens of Mystriosuchus are known from Totes Gebirge (possibly Dachstein) 
(Buffetaut 1993).

The other Italian Late Triassic tetrapod sites are in the Forni Dolomite (Dolomia 
di Forni) in the Veneto Prealps of northeastern Italy. They yield the drepanosaurids 
Drepanosaurus and Megalancosaurus, the pterosaurs Eudimorphodon and 
Preondactylus (Dalla Vecchia 1995, 2003, 2006) and a specimen of Langobardisaurus. 
The presence of Eudimorphodon supports a Revueltian age assignment.

Upper Triassic tetrapod assemblages from the Indian Subcontinent come from 
the Pranhita-Godavari Valley of south-central India. Several summaries (Jain et al. 
1964; Kutty 1969; Kutty and Roychowdhury 1970; Sengupta 1970; Jain and 
Roychowdhury 1987; Yadagiri and Rao 1987; Kutty et al. 1988; Kutty and Sengupta 
1989; Bandyopadhyay and Roychowdhury 1996; Bandyopadyhay and Sengupta 
2006; Kammerer et al. 2016) have been published, but other than the lower Maleri 
assemblage (see above), relatively few of the fossils have been adequately docu-
mented in print, forcing me to rely largely on unsubstantiated genus-level identifica-
tions to evaluate the ages of the tetrapod assemblages. A case in point is the 
Dharmaram Formation, which yields two stratigraphically discrete vertebrate fossil 
assemblages (lower and upper). The stratigraphic range of the lower assemblage has 
not been published, and it includes a phytosaur that Kutty and Sengupta (1989: table 
2) list as Nicrosaurus, aetosaurs, including a so-called “Paratypothorax-like” form, 
and prosauropod dinosaurs. Based primarily on the supposed Nicrosaurus record, I 
consider the lower assemblage of the Dharmaram Formation a possible Revueltian 
correlative.

I formerly and tentatively regarded the Coloradan LVF of Argentina and the tet-
rapod assemblage of the Lower Elliot Formation in South Africa as of Apachean 
age. In Argentina, the Los Colorados Formation consists of siliciclastic red beds 
approximately 800 m thick. Near its base, a single tetrapod fossil—a dicynodont 
skull, the holotype of “Jachaleria” colorata Bonaparte 1970—was collected. I 
regard Jachaleria as a synonym of Ischigualastia, so it is likely the lower part of the 
Los Colorados Formation is of Adamanian age.

The remainder of the tetrapod fossils from the Los Colorados Formation are 
from its middle and upper parts but have not been stratigraphically organized. 
The assemblage includes the turtle Palaeochersis, the ornithosuchid Riojasuchus, 
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the aetosaur “Neoaetosauroides” (see below), the rauisuchid Fasolasuchus, the 
crocodylomorphs Hemiprotosuchus and Pseudhesperosuchus, the prosauropod 
dinosaurs Riojasaurus and Coloradisaurus, the theropod dinosaur Zupaysaurus 
and the tritheledontid cynodont Chaliminia (e.g., Bonaparte 1970, 1971, 1978, 
1980, 1997; Lucas and Hunt 1994; Rougier et al. 1995; Arcucci et al. 2004). The 
correlative Quebrada del Barro and El Tranquilo formations also produce prosau-
ropods (e.g., Riojasaurus, “Mussaurus”) (Bonaparte and Vince 1979; Casamiquela 
1980; Bonaparte and Pumares 1995). The Los Colorados assemblage clearly is of 
Late Triassic age (Arcucci et al. 2004) and must be post-Ischigualastian. However, 
its endemism makes it difficult to correlate precisely. I tentatively considered it an 
Apachean correlative based primarily on its abundant prosauropods. However, 
the possibility that it is Revueltian needs to be considered, especially given the 
similarity of Neoaetosauroides to Aetosaurus.

Indeed, having now had the opportunity to study the type material of 
Neoaetosauroides engaeus firsthand, it is abundantly clear that Neoaetosauroides is 
a junior synonym of Aetosaurus. Thus, the armor plates of Neoaetosauroides 
(Fig.  10.5) display all of the diagnostic features of the armor of Aetosaurus (cf. 
Fraas 1877; Heckert and Lucas 2000; Schoch 2007). To wit, the dorsal paramedian 
plates are moderately wide (width/length = 2.4–3.1) and possess a radial pattern of 
elongate ridges and pits and a low dorsal boss near the posterior margin of the plate 
(Fig. 10.5). The work of Desojo and Baéz (2007: text-fig. 5) makes it clear that the 
skulls of Neoaetosauroides and Aetosaurus have virtually identical suture patterns 
and proportions. This synonymy will be documented in greater detail elsewhere. 
But, I draw attention to it here because Aetosaurus is an index taxon of the Revuletian 
LVF. Thus, its presence in the middle-upper Los Colorados Formation indicates a 
Revueltian age.

Kent et  al. (2014) presented a magnetostratigraphy of the Los Colorados 
Formation based on limited sampling of only 52 geomagnetic sites with a strati-
graphic spacing of 10 m or more. The 15 polarity intervals identified were pattern 
matched to the E8-E15 interval of the Newark section, which, if correctly corre-
lated, means the Los Colorados Formation crosses the Carnian-Norian boundary (is 
of Adamanian-Revueltian age). This is consistent with my interpretation that the 
Los Colorados is of Adamanian-Revueltian age. Nevertheless, I have little confi-
dence in the pattern matching to the Newark magnetostratigraphy of so few and 
such widely spaced samples from the Los Colorados Formation.

The age of the tetrapod assemblage from the Lower Elliott Formation in South 
Africa has long been considered Late Triassic. Lucas and Hancox (2001) reviewed 
the age of this assemblage, which is dominated by sauropodomorph dinosaurs, but 
also has rare amphibians (a large chigutisaurid), a possible rauisuchian (Basutodon), 
the ornithischian dinosaur Eocursor, a traversodontid (Scalenodontoides) and the 
characteristic Late Triassic footprint ichnogenus Brachychirotherium (Kitching and 
Raath 1984; Lucas and Hancox 2001; Butler et al. 2007). This is the “Euskelosaurus 
range zone” of Kitching and Raath (1984), the youngest Triassic tetrapod assem-
blage in the Karoo basin. Yates (2003) re-evaluated the prosauropods of the Lower 
Elliott Formation and concluded that most are indeterminate sauropodomorphs or 
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basal sauropods. He noted similarities of indeterminate prosauropods from the 
Lower Elliott Formation to Riojasaurus from the Los Colorados Formation of 
Argentina, and similarities between the basal sauropod Antetonitrus from South 
Africa and Lessemsaurus from Argentina (Yates and Kitching 2003). These conclu-
sions suggest a Lower Elliott-Los Colorados correlation, and thus a tentative 
Revueltian age assignment.

10.4.5  Apachean Tetrapod Assemblages

The characteristic tetrapod assemblage of the Apachean LVF is from the Redonda 
Formation of the Chinle Group in Guadalupe and Quay Counties, New Mexico, 
USA. The following taxa are present: the amphibian Apachesaurus, a sphenodontid, 
a procolophonid, the phytosaur Redondasaurus, the aetosaurs Redondasuchus and 
Apachesuchus, the rauisuchian Redondavenator, the archosauriform Vancleavea, 
theropod dinosaurs and the cynodont Redondagnathus (e.g., Hunt 1994; Hunt and 

Fig. 10.5 Part of the holotype of Aetosaurus (“Neoaetosauroides”) engaeus, Instituto Miguel 
Lillo, Tucuman, Argentina, PVL 3525. On left is a dorsal view of the dorsal armor, and on the right 
is a detail of part of the armor showing paramedian and lateral plates of the posterior dorsal to 
sacral region

S.G. Lucas



371

Lucas 1993b, 1997; Heckert et al. 2001; Hunt et al. 2005; Spielmann et al. 2006a, 
b; Spielmann and Lucas 2012).

Principal correlatives of the type Apachean assemblage are the Whitaker quarry 
in the Rock Point Formation of the Chinle Group at Ghost Ranch, New Mexico, the 
Cliftonian LVF assemblages (in part) of the Newark Supergroup, the Knollenmergel 
(Trossingen Formation), time-equivalent upper Arnstadt Formation and the 
“Rhaetian Bonebed” (Exter Formation) of the Germanic Basin (Fig. 10.4). Some of 
the fissure-fill assemblages in the uppermost Mercia Mudstone Group and/or lower-
most Penarth Group of the United Kingdom (Fraser 1994; Benton and Spencer 
1995; Whiteside and Marshall 2008) may be Apachean correlatives. Some of the 
so-called Rhaetian vertebrate sites in France, such as Saint-Nicolas-de-Port, may be 
Apachean correlatives as well (Lucas and Huber 2003).

At Ghost Ranch in New Mexico, the Whitaker quarry bone bed is dominated by 
skeletons of the theropod dinosaur Coelophysis bauri (Colbert 1989; Rinehart et al. 
2009). Nevertheless, it also includes the sphenodont Whitakersaurus, at least one 
drepanosaur, a rauisuchian skeleton (cf. Postosuchus), the sphenosuchians 
Hesperosuchus and Vancleavea, the chatterjeeid Shuvosaurus (=Effigia), the phyto-
saur Redondasaurus and the theropod dinosaur Daemonosaurus (e.g., Hunt and 
Lucas 1993b; Clark et al. 2000; Harris and Downs 2002; Hungerbühler 2002; Hunt 
et al. 2002; Lucas et al. 2003; Nesbitt 2007; Lucas et al. 2005; Heckert et al. 2008; 
Renesto et al. 2009; Rinehart et al. 2009; Sues et al. 2011).

A recently discovered bonebed (the “Saints and Sinners Lagerstätte”) in the 
Wingate Sandstone (which is the lower part of the “Nugget Sandstone” of Sprinkle 
et al., 2011) of northeastern Utah includes fossils of sphenodonts, sphenosuchians, 
drepanosaurs, theropod dinosaurs and a pterosaur, yet to be described (Britt et al. 
2016: table 1). Given its stratigraphic position, this bonebed is likely of Apachean 
age.

The uppermost Triassic strata of the Newark Supergroup in eastern North 
America yield a low diversity tetrapod assemblage of mostly fragmentary material 
that defies precise identification. The tetrapods present include the procolophonid 
Hypsognathus, sphenodontids, indeterminate phytosaurs and the synapsid 
Oligokyphus (e.g., Gilmore 1928; Baird 1986; Huber et  al. 1993b; Fedak et  al. 
2015). These are the tetrapods of the Cliftonian LVF of Huber et al. (1993b) and at 
least some are of likely Apachean age.

In the United Kingdom, fissure fills such as Durdham Down in Clifton yield fos-
sils that include phytosaurs, aetosaurs, dinosauriforms and dinosaurs (e.g., Fraser 
1994, 2006; Fraser et  al. 2002; Galton 2005, 2007a, b; Whiteside and Marshall 
2008). Unfortunately, other than a tentative record of Aetosaurus based on a single 
osteoderm (Lucas et al. 1999), the fissure fill tetrapods are mostly endemic taxa of 
no biochronological significance or cosmopolitan taxa with long age ranges, such as 
the sphenodontian Clevosaurus.

Whiteside and Marshall (2008), based primarily on the palynoflora, assigned the 
Tytherington fissure fill a Rhaetian age, and extrapolated this age to the other fissures. 
If this Rhaetian age is correct, then the fissure fill tetrapods are of Apachean age. 
However, as Lucas and Hunt (1994: 340) noted, “a single age should not necessarily 
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be assigned to the fossils from one fissure and…individual fossils from the fissures 
may range in age from middle Carnian to Sinemurian.” Therefore, I continue to 
regard as problematic the precise age of the Triassic tetrapod assemblages from the 
British fissure fills.

10.4.6  Wassonian LVF

Lucas and Huber (2003) introduced the Wassonian LVF, and Lucas and Tanner 
(2007a) defined is as the time interval between the FAD of the crocodylomorph 
Protosuchus, and the beginning of the Dawan LVF, which is defined by the FAD of 
the theropod dinosaur Megapnosaurus (Lucas 2008). The FAD of Protosuchus in 
Arizona, Nova Scotia and South Africa appears to be lowermost Jurassic, so I take 
the beginning of the Wassonian LVF to approximate the Triassic-Jurassic boundary 
(Fig.  10.1). Most Early Jurassic tetrapod assemblages, however, are younger, of 
Dawan (~Sinemurian) age (Lucas 2008).

10.5  Late Triassic Tetrapod Footprints and Bromalites

The Upper Triassic record of tetrapod footprints was reviewed by Klein and Lucas 
(2010a) and is also reviewed by Hunt et al. (2017), so I do not review it here. It only 
resolves into one or two biochronological units, and is thus of much less signifi-
cance to Late Triassic tetrapod biochronology than is the body-fossil record (e.g., 
Lucas 2007; Hunt and Lucas 2007; Klein and Lucas 2010a). Similarly, the Late 
Triassic bromalite (principally coprolite) record has some biochronological utility, 
but, like the footprint record, it resolves Late Triassic time rather poorly (see Hunt 
et al. 2017).

Brachychirotherium (sensu stricto), the footprint of aetosaurs (Fig. 10.6; Lucas 
and Heckert 2011), appears at the beginning of the Otischalkian. It is a characteris-
tic ichnotaxon of the Late Triassic, together with Atreipus-Grallator (quadrupedal 
to bipedal trackways), Grallator and Eubrontes (bipedal trackways), the latter all 
attributed to theropods, except for Atreipus, which may also have had an ornithis-
chian trackmaker. The stratigraphic upper limit of Brachychirotherium is the 
Triassic-Jurassic boundary (end of the Apachean); there is no evidence of 
Brachychirotherium in post-Triassic strata (Rainforth 2003; Lucas and Tanner 
2007a, b, 2015).

Late Triassic tetrapod footprint assemblages are characteristically archosaur- 
dominated, particularly by chirothere and theropod tracks, but also feature the  oldest 
records of sauropodomorph tracks. They thus mirror the overall pattern of the body 
fossil record but provide much less detailed insight into Late Triassic tetrapod dis-
tribution and evolution.
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10.6  Biotic Events

10.6.1  Introduction

The Late Triassic has long been recognized as a critical juncture in the evolution 
of terrestrial tetrapods because it was an interval of both important originations 

Fig. 10.6 The skeleton of the aetosaur Typothorax coccinarum as the trackmaker of 
Brachychirotherium, in lateral (a, b), anterior (c), posterior (d), dorsal (e) and ventral (f) views. 
After Lucas and Heckert (2011)
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and extinctions (e.g., Fraser 2006; Sues and Fraser 2010). Here, I discuss the 
nature and timing of some of these events (Figs. 10.7, 10.8, 10.9, 10.10, 10.11, 
10.12, and 10.13). 

10.6.2  Archosaurs Rise to Dominance

The Berdyankian is the time of most of the youngest, dicynodont-dominated tetra-
pod assemblages. These assemblages are primarily from Argentina and Brazil and 
are dominated by fossils of dicynodonts (mostly the genus Dinodontosaurus), rhyn-
chosaurs and traversodontid cynodonts. Fossils of amphibians and archosaurs are 
much less common constituents of these assemblages.

In contrast, the amphibian biofacies of Berdyankian time is dominated by mast-
odonsaurids and plagiosaurs, with much lesser numbers of prolacertiforms, archo-
saurs and small cynodonts. These assemblages are best known from the Germanic 
basin and from Russia. An acme in plagiosaur diversity and abundance in these 
assemblages characterizes Berdyankian time. No procolophonids are known from 
Berdyankian strata, but this must be due to a lack of discovery, not a real absence, 
as both pre- and post-Berdyankian procolophonids are known.

Otischalkian tetrapod assemblages are different from Berdyankian assemblages 
in being dominated by archosaur fossils, particularly of phytosaurs and aetosaurs. 
Indeed, it is during Otischalkian time, about 15 million years after the end-Permian 
extinctions that archosaur-dominated tetrapod fossil assemblages first appear. Thus, 
the old idea (e.g., Benton 1991; McGhee et al. 2004) that the Permo-Triassic extinc-
tions were characterized by the takeover of many terrestrial tetrapod niches by 
archosauromorphs is erroneous (also see Lucas 2017a).

A new group of temnospondyls, the metoposaurs, is also abundant during 
Otischalkian time. It is striking how uniform in overall composition the Otischalkian 
tetrapod assemblages are, from North America, Western Europe, Morocco and 
India. This implies a degree of cosmopolitanism and no major biofacies 
differences.

The beginning of the Otischalkian essentially corresponds or overlaps the onset 
of the Carnian humid episode (e. g., Ruffell et al. 2016). Two groups of dominantly 
amphibious/aquatic tetrapods are abundant at this time, the metoposaurs and the 
phytosaurs. This may be a real acme as a response to wetter climates, but that con-
clusion may be confounded by taphonomy—preferential preservation of aquatic 
tetrapods by widespread river systems of the Carnian “pluvial.” That caveat aside, 
metoposaurs and phytosaurs are the dominant components of almost all Otischalkian 
and younger Late Triassic tetrapod assemblages.

The overall character of many Adamanian tetrapod assemblages is very similar to 
Otischalkian assemblages—domination by fossils of metoposaurs, phytosaurs and 
aetosaurs. However, Adamanian tetrapod assemblages from Argentina and Brazil are 
dominated by dicynodonts, cynodonts and rhynchosaurs, with few to no phytosaurs 
and metoposaurs. Nevertheless, aetosaurs are common in these assemblages.
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Fig. 10.7 Restoration of the Late Triassic metoposaurid amphibian Koskinonodon (artwork by 
Matt Celeskey)

Fig. 10.8 Restorations of the female (above) and male (below) heads of the phytosaur 
Pseudopalatus, showing the cranial sexual dimorphism evident in population samples of this phy-
tosaur (artwork by Matt Celeskey)
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Revueltian and Apachean tetrapod assemblages are also dominated mostly by 
archosaurs and metoposaurs. In some assemblages, dinosaurs are very abundant, 
and it is clear that the diversification of the dinosaurs had already begun by 
Revueltian time (Hunt 1991).

10.6.3  Temnospondyl Diminishment and Extinctions

The Late Triassic was the last interval of any substantial temnospondyl diversity 
(Milner 1990, 1993; Schoch and Milner 2000; Schoch 2008, 2014) (Fig. 10.7). It is 
also clear that this diversity collapsed stepwise throughout the Late Triassic, so that 
by Jurassic time few temnospondyl clades remained (Fig. 10.13). The lissamphibian 
radiation had begun in the Early Triassic (e.g., Rage and Roček 1989), though no 
definite lissamphibian fossils are known from the Upper Triassic, with the possible 
exception of Triassurus from Madygen (Ivakhnenko 1978).

The Late Triassic temnospondyl families are the Brachyopidae, Capitosauridae, 
Chigutisauridae, Almasauridae, Mastodonsauridae, Metoposauridae, Plagiosauridae 
and Trematosauridae. All are families of low diversity following much greater tem-
nospondyl diversity earlier in the Permian and Triassic (Milner 1990; Ruta and 
Benton 2008). The record of almasaurids ends in the Otischalkian, and that of mast-
odonsaurids and trematosaurids ends in the Adamanian. Capitosaurid records are no 
younger than Revueltian, and metoposaurids and plagiosaurids have records that 
end in the Apachean. Brachyopids continued into the Jurassic, whereas chigutisau-
rids continued to the Cretaceous. Chroniosuchians have their last record at Madygen 

Fig. 10.9 The Late Triassic dinosauromorph Silesaurus has a foot structure that would make 
tracks like those of early theropod dinosaurs (artwork by Matt Celeskey)
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during the Otischalkian(?). Clearly, old ideas of a major extinction of temnospon-
dyls at the end of the Triassic can be abandoned (Lucas and Tanner 2015).

10.6.4  Turtle Origins

The oldest turtles were long considered to be Revueltian in age. Best known is 
Proganochelys from Germany (Gaffney 1990), and Revueltian or younger turtle 
records are also known from Poland, Thailand, Greenland, the USA and South 
America (e.g., Lucas et al. 2000; Joyce et al. 2009; Joyce 2017). Recently added to 
this record is Odontochelys from marine lower Carnian strata in China (Li et al. 
2008) and a supposed Ladinian turtle, Pappochelys from Germany (Schoch and 

Fig. 10.10 One of the last dicynodonts, Adamanian Placerias, attacked by a phytosaur (artwork 
by Matt Celeskey)
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Sues 2015). Furthermore, the middle Permian Eunotosaurus, with expanded ribs, 
originally proposed as a close turtle relative by Watson (1914), is now being placed 
back into that position (Lyson et al. 2010, 2012, 2013, 2016).

Fig. 10.11 Restoration of the oldest mammal, Adelobasileus (artwork by Matt Celeskey)

Fig. 10.12 The drepanosaur Hypuronector (artwork by Matt Celeskey)
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Much overlooked in the discussion of turtle origins is their footprint record, 
which begins in the late Early Triassic (Spathian) (Rühle v. Lilienstern 1939; 
Haubold 1971; Lovelace and Lovelace 2012; Thomson and Lovelace 2014; Lichtig 
et al. 2017). Thus, recent claims that Odontochelys or Pappochelys are the oldest 
turtles are incorrect—the oldest turtle fossils (footprints) are of Early Triassic 
(Nonesian) age. They thus predate the oldest body fossils of turtles (and I do not 
consider Pappochelys to be a turtle; it is a placodont) by at least 10 million years. 
The origin of turtles thus is not, as long thought, a Late Triassic event, but took place 
much earlier (Fig. 10.13).

10.6.5  Rhynchosaurs

Rhynchosaurs are a Triassic group of herbivorous archosauromorphs that were most 
diverse during the Middle Triassic. Indeed, Romer (1966) long argued that together 
with gomphodont cynodonts they were dominant elements of Middle Triassic 

Fig. 10.13 Timing of the records of some important biotic events in the Late Triassic evolution of 
terrestrial tetrapods
.
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tetrapod assemblages. However, rhynchosaurs were of low diversity during the Late 
Triassic, known from only a few genera. Most interesting is the very cosmopolitan 
Hyperodapedon found in Otischalkian-Adamanian assemblages in North America, 
western Europe, India, South America, Africa and Madagascar (Lucas et al. 2002).

The rhynchosaur genus Otischalkia is known from Otischalkian-Revueltian 
strata of the Chinle Group in the western USA (Hunt and Lucas 1991; Long and 
Murry 1995; Spielmann et al. 2013; Lucas et al. 2016). The Revueltian record of 
Otischalkia is the only bona fide Norian record of a rhynchosaur, and demonstrates 
that they did not go extinct at the Carnian-Norian boundary, as long thought (e.g., 
Benton 1991).

Schultz et al. (2016: fig. 10) recently presented what I regard as an erroneous 
time calibration of Late Triassic rhynchosaurs. Thus, they show “Isalorhynchus” (a 
synonym of Hyperodapedon) predating Hyperodapedon during the Carnian. They 
show Teyumbatia (a cladotaxon named and described by Montefeltro et al. 2010, 
2013, likely synonymous with Hyperodapedon; cf. Azevedo and Schultz 1987) as 
Norian, though the fossil is from the Adamanian Caturitta Formation and therefore 
of Carnian age (see above). Schultz et al. (2016) also uniquely claim that Otischalkia 
is not diagnostically a rhynchosaur. Clearly, my view of Late Triassic rhynchosaur 
distribution differs markedly from that of Schultz et al. (2016), though all agree that 
rhynchosaur diversity was low during the Late Triassic.

10.6.6  Phytosaurs and Aetosaurs

Recent analysis identifies Middle Triassic Diandongosuchus as the oldest phytosaur 
and cladotaxonomically splits many long-recognized phytosaur genera into multi-
ple genera (e. g., Stocker 2012; Stocker and Butler 2013; Butler et al. 2014; Stocker 
et al. 2017). This work ignores important factors of biological variation in phyto-
saurs (e.g., Fig. 10.8; Kimmig and Spielmann 2011) and will need substantial revi-
sion. The peak of phytosaur diversity was during the Adamanian-Revueltian, with 
perhaps no more than one genus surviving into Apachean time. A phytosaur snout 
fragment from the Lower Jurassic of the UK is the stratigraphically highest phyto-
saur fossil not clearly reworked, so it suggests phytosaur survival across the Triassic- 
Jurassic boundary (Maisch and Kapitzke 2010) (Fig. 10.13).

Aetosaur taxonomy is similarly being overspilt by cladotaxonomy (Desojo et al. 
2013) and will need revision. The oldest aetosaur records are Otischalkian, with an 
acme during the Adamanian-Revueltian. Most of the evidence of Apachean aet-
osaurs is based on the footprint ichnogenus Brachychirotherium (see above).

Assemblages dominated by metoposaurs, phytosaurs and/or aetosaurs character-
ize much of the Late Triassic tetrapod record. Clearly, a taphonomic overprint is at 
least in part responsible for this. Metoposaurs and phytosaurs were amphibious tet-
rapods that would have been preferentially preserved/fossilized in the fluvial sedi-
ments from which comes most of the Late Triassic tetrapod fossil record. 
Nevertheless, before the Otischalkian no such metoposaur/phytosaur/aetosaur 
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assemblages are known, though these groups likely had a Middle Triassic ancestry. 
The abundance and ubiquity of metoposaurs and phytosaurs is a Late Triassic phe-
nomenon across Pangea, with the exception of South America.

10.6.7  Crocodylomorphs

The oldest crocodylomorphs are sphenosuchans, with a record that begins in the 
Otischalkian (Lucas et al. 1998). Among them are taxa well-known from compre-
hensive cranial and postcranial material such as Hesperosuchus, Sphenosuchus, 
Saltoposuchus, Dibothrosuchus and Protosuchus (e. g., Colbert and Mook 1951; 
Colbert 1952; Crush 1984; Parrish 1991; Sereno and Wild 1992; Wu and Chatterjee 
1993; Lucas et al. 1998; Clark et al. 2004). These early crocodiles have long been 
interpreted as lightly built cursorial and fully terrestrial forms.

No substantial change takes place in the Sphenosuchia across the Triassic- 
Jurassic boundary (Klein and Lucas 2015). What does occur much later, definitely 
in the Late Jurassic, perhaps as early as the Middle Jurassic, is the appearance of 
aquatic/amphibious crocodylians. The body fossil and footprint records document 
this (e.g., Lockley et al. 2010; Klein and Lucas 2010b, 2015). Clearly, the aquatic 
predator niches now associated with crocodylians were not occupied by crocodylo-
morphs during the Late Triassic-Early Jurassic. Phytosaurs occupied at least some 
of those niches during the Late Triassic (Hunt 1989).

10.6.8  Pterosaur Origins

Pterosaurs appear suddenly and completely adapted to flight during the Late 
Triassic. The lack of antecedents has made the origin and precise phylogenetic 
placement of pterosaurs somewhat unclear. Certainly pterosaurs are archosaurs, and 
most (but not all) analyses place them close to dinosaurs (see Hone and Benton 
2008; Dalla Vecchia 2013 for reviews). Scleromochlus from the Adamanian of 
Scotland has been considered to be related to the ancestry of pterosaurs by some 
(e.g., Padian 1984), but others have dismissed that idea (e.g., Sereno 1991).

The oldest complete and reliable skeletal records of pterosaurs are Revueltian, 
from Italy, but isolated teeth and bones of Adamanian age have also been identified 
(with less certainty) as pterosaur (see Barrett et  al. 2008; Dalla Vecchia 2013). 
Faxinalipterus from the Adamanian of Brazil, a supposed pterosaur (Bonaparte 
et al. 2010b), is not demonstrably a pterosaur according to Dalla Vecchia (2013). 
Given the phylogenetic analysis and their temporal distribution it seems that, as 
with dinosaur origins (see below), pterosaur origins was likely a Middle Triassic 
event for which we need a fossil record. However, on face value, the pterosaur first 
appearance is a sudden one during the Revuletian of forms very similar to the long- 
tailed, non-pterodactyloid pterosaurs of the Jurassic.
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10.6.9  Dinosaur Origins

Understanding dinosaur origins has been beset by three problems: (1) semantic, 
namely what is and what is not a dinosaur; (2) cladistic—disagreements over the 
phylogeny of dinosaur origins, confounded by an inability to sort out convergence; 
and (3) biochronologic—disagreements over the actual age of the “oldest dinosaur.” 
Despite these problems, all agree that the oldest dinosaur body fossils are Carnian 
(e.g. Langer et  al. 2009; Lucas 2010; Benton 2012; Nesbitt and Ezcurra 2015). 
More precisely, they are Otischalkian, from the Chinle Group in the western USA 
(Lepidus) and the Maleri Formation of India (Alwalkeria). Otischalkian or 
Adamanian records of “dinosaurs” (Azendohsaurus) from Morocco and Madagascar 
have been discounted as not being based on dinosaurs (see Langer 2014 for discus-
sion). Records from South America are Adamanian, so they are not the oldest 
records of dinosaur body fossils (contra Langer et al. 2009; Langer 2014).

The footprint record of the earliest dinosaurs also does not demonstrate dino-
saurs older than Carnian. This, despite diverse claims (one of the most recent being 
by Marsicano et  al. 2007) that tridactyl, apparently mesaxonic footprints from 
Middle Triassic strata are dinosaurian. Most of these are tridactyl remnants of chi-
rothere tracks (see review by Klein and Lucas 2010a). Also, some could be the 
tracks of dinosauromorphs (Fig. 10.9) or of ornithodirans close to dinosaur origins, 
as discussed by Marsicano et al. (2007).

Particularly misleading, however, was the claim of dinosauromorph tracks in the 
Lower Triassic of Poland (Brusatte et al. 2011). This claim was based on the ichno-
genus Protorodactylus, which is barely, if at all distinguishable from 
Rhynchosauroides (Klein and Niedzwiedźki 2012). The so-called “dinosauro-
morph” tracks of Brusatte et  al. (2011) thus are most likely the tracks of 
lepidosauromorphs.

To conclude, the oldest dinosaur fossils are Carnian, more specifically of 
Otischalkian age. Importantly, they are not from South America, as many have erro-
neously claimed, though, clearly, much more remains to be discovered of dinosaur 
origins.

10.6.10  Dicynodont Diminishment and Extinction

The dinocephalian extinction event near the end of the middle Permian opened up 
the tetrapod herbivore niches to dicynodonts (Lucas 2017a). During the late Permian 
and Early Triassic, successive tetrapod assemblages were dominated by a single 
dicynodont genus, most famously Lystrosaurus of the earliest Triassic. However, 
other than in South America, by Berdyankian time dicynodont domination of the 
tetrapod herbivore niches had diminished (Fig. 10.10). Dicynodont diversity was 
low in the Late Triassic, with only one-two genera per LVF, and dicynodonts are 
only abundant in some South American assemblages. Late Triassic dicynodonts are 
also known from mass death assemblages in Arizona, Morocco and Poland.
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The tetrapod herbivore niches occupied by dicynodonts may have been taken 
over by herbivorous aetosaurs, rhynchosaurs, prosauropod dinosaurs and cynodonts. 
However, the feeding mechanism of these herbivores are very different than those 
of dicynodonts, so replacement seems unlikely.

The HO (highest occurrence) of dicynodonts was long thought to be Adamanian. 
However, there is a putative Cretaceous record from Australia (Thulborn and Turner 
2003), though it seems extremely doubtful. Dzik et al. (2008) recently reported a 
Triassic dicynodont from Poland in strata they deemed Rhaetian based on paleo-
botany, but that are Revueltian (Lucas 2015). These are the youngest known dicyn-
odonts (Fig. 10.13).

10.6.11  Cynodont Evolution and Mammal Origins

The first cynodonts appear at about the end of the middle Permian and gradually 
increased in generic diversity through the Permo-Triassic boundary, the prelude to 
a much greater diversification during the Middle-Late Triassic (e. g., Abdala and 
Ribeiro 2010; Smith et al. 2012; Ruta et al. 2013; Abdala and Gaetano 2017). Late 
Triassic cynodont families are primarily the Traversodontidae, Trithelodontidae and 
Tritylodontidae. Traversodontids were most diverse (~ 17 genera), mostly of 
Adamanian age and mostly known from Gondwana (Liu and Abdala 2014). The 
only well-documented, post-Adamanian traversodontid is Scalenodontoides from 
the Revueltian Lower Elliott Formation of South Africa.

Tritylodontids were very mammal-like, especially in their postcranial anatomy. 
Their first appearance is during the Revueltian. However, most of their diversity is 
Early Jurassic. Trithelodontids (including the “dromatheres”) were also not very 
diverse during the Late Triassic, but they most likely include the ancestors of 
mammals.

For decades, the oldest mammals were considered to be of Late Triassic age, 
notably Morganucodon from the British fissure fills. Cladistic analysis of the earli-
est mammals by Rowe (1988), however, changed that by redefining Mammalia as a 
crown clade consisting of the common ancestor of living monotremes and 
therians.

Cladistic analysis also “made” mammals monophyletic, even though such 
authorities as Olson and Simpson had entertained the possibility of a polyphyletic 
Mammalia. Questions of mammal origins had long been deeply emeshed in 
functional- adaptive analyses of the biology of the transition, particularly changes in 
the auditory and masticatory apparatuses. In the abiological world of numerical 
cladistics, these questions were trivialized as “essentialist” and not of scientific 
interest (Rowe and Gauthier, 1992; DeQuieroz 1994).

Miao (1991) provided a pointed discussion of these issues, rejecting cladistic 
redefinition of the Mammalia (also see Lucas 1992). Following Lucas and Luo 
(1993), I define Mammalia as the monophyletic group that includes Adelobasileus 
(Fig. 10.11), Sinoconodon and Morganucodon in the Mammalia.
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Thus, I recognize a monophyletic Mammalia defined primarily by the biologi-
cally significant novelty of a petrosal promontorium, likely with a coiled cochlea. 
The oldest mammal thus is Adelobasileus from the Adamanian of Texas, USA 
(Lucas and Luo 1993). Potentially older mammals may be known from teeth from 
the Tiki Formation of India (Datta and Das 1996; Datta 2005). Mammal origins 
from a trithelodontid cynodont seem likely, and this was a Late Triassic event.

During the Revueltian-Apachean there was a diversification of morganucodon-
tids, haramiyids and “symmetrodonts,” particularly in Europe (Kielan-Jaworowska 
et  al. 2004; Luo 2011; Debuysschere et  al. 2015). Moganucodonts achieved a 
Pangean distribution and were small (less than 100 g estimated body weight) insec-
tivores represented by 16 genera. All of the well known morganucodontid genera 
cross the Triassic-Jurassic boundary.

10.6.12  Oddities

There are a variety of highly specialized, ergo bizarre, Late Triassic diapsids. These 
include drepanosaurs (Fig. 10.12), trilophosaurs and the possible gliders Icarosaurus, 
Sharovipteryx and Longisquama. Most or all of these taxa defy precise classifica-
tion and lack antecedents that would connect them morphologically to more gener-
alized ancestors. They demonstrate just how incomplete our knowledge is of the 
Late Triassic tetrapod record. In effect, they are end members of clades that have 
been little sampled.

10.6.13  Provinciality

There have been at least two views of tetrapod paleobiogeography across Late 
Triassic Pangea. The traditional view is one of cosmopolitanism, and whatever pro-
vinciality existed was the difference between Laurussian archosaur-dominated 
assemblages and Gondwanan therapsid-dominated assemblages (e. g., Romer 1966; 
Cox 1973). More recent studies argue for a distinction between Laurussian and 
Gondwanan tetrapod assemblages largely predicated on floral differences or for 
provinciality driven by paleloatitude (zonal climate belts) (Ezcurra 2010; Whiteside 
et al. 2011).

Shubin and Sues (1991) inferred tetrapod cosmopolitanism during the Middle 
Triassic followed by latitudinal variation that correlated to long-recognized paleo-
floral differences (e.g., Dobruskina 1995b; Artabe et al. 2003). However, their cor-
relation of tetrapod assemblages (see especially Shubin and Sues 1991: fig. 3) is 
fraught with inaccuracies. Furthermore, their analysis identifies India and 
Madagascar as having affinities with the tetrapod assemblages of Europe and North 
America, even though the floras of India and Madagascar are Gondwanan 
(Dicroidium dominated).
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Whiteside et al. (2011) claimed latitudinal differences between tetrapod faunas 
as due to the differences between areas in which sedimentation was driven by ~10 
kyr cycles (cynodont-dominated) and those driven by ~20 kyr cycles (procolophonid- 
dominated). Their analysis was based on the tetrapod record of the Newark 
Supergroup in which there is essentially no temporal overlap between older, 
cynodont- dominated assemblages and younger procolophonid-dominated assem-
blages. Clearly, the differences between these assemblages could be due to their 
different geological ages, not to paleolatituidinal differences.

Ezcurra (2010) analyzed the paleobiogeography of Triassic tetrapods for three 
time slices: Middle Triassic, “Ischigualastian” and “Coloradan.” Like Shubin and 
Sues (1991), his analysis identified Middle Triassic cosmopolitanism. Interestingly, 
his analysis of the “Ischigualastian” linked India and Europe but not North America, 
despite the great similarity between North American and European tetrapod assem-
blages. In general, his analysis employs too coarse of temporal resolution to identify 
meaningful paleobiogeographic differences.

The correlations advocated here indicate that the strikingly distinct Late Triassic 
tetrapod assemblages are those from the Berdyankian-Adamanian of South America. 
Whether or not these assemblages, dominated by dicynodonts, represent a distinct 
province or a distinct facies, however, is difficult to determine. Given the inland 
nature of deposition in the South American basins that produce these assemblages, 
the possibility that they are just representatives of the dicynodont-dominated biofa-
cies seen earlier in the Triassic (see discussion above) needs to be entertained. 
Otherwise, the Late Triassic tetrapod record seems to demonstrate much 
cosmopolitanism.

10.7  Conclusion: Late Triassic Extinctions

Colbert (1958) long ago drew attention to the striking differences between Late 
Triassic and Early Jurassic tetrapod faunas. Late Triassic tetrapod faunas are popu-
lated by many “thecodonts,” notably phytosaurs, aetosaurs and rauisuchians. 
Dinosaurs were not major components of most Late Triassic tetrapod faunas, and 
metoposaurs dominated the amphibians. In strong contrast, Early Jurassic tetrapod 
faunas are dinosaur dominated, with various crocodylomorphs, and totally lack 
“thecodonts” and metoposaurs, taxa that suffered extinction across the Triassic- 
Jurassic boundary. The question has been when and how did these extinctions take 
place.

Lucas and Tanner (2015) recently analyzed the Late Triassic tetrapod extinctions 
to conclude that they were not a single extinction at the Triassic-Jurassic boundary. 
There is also no evidence of a tetrapod extinction across the Carnian-Norian bound-
ary (e.g. Lucas 1994; Sues and Fraser 2010).

Using the best temporal resolution, the Late Triassic looks like a prolonged 
interval of stepwise tetrapod extinctions and low origination rates. However, 
none of these is a mass extinction, and no reliable data support continued claims 
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of a tetrapod extinction just before or at the end of the Triassic (contra Kent et al. 
2017). With new and more detailed stratigraphic data, the perceived Triassic-
Jurassic boundary tetrapod extinction is mostly an artifact of coarse temporal 
resolution, the compiled correlation effect. The amphibian, archosaur and synap-
sid extinctions of the Late Triassic were not concentrated at the Triassic-Jurassic 
boundary, but instead occurred stepwise, beginning in the Norian and extending 
into the Hettangian (Fig. 10.13; Lucas and Tanner 2015).
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Chapter 11
The Late Triassic Record of Cynodonts: Time 
of Innovations in the Mammalian Lineage

Fernando Abdala and Leandro C. Gaetano

Abstract The Triassic period witnessed a great diversification of lineages, recover-
ing from one of the worst extinction events known in Earth’s history. Therapsids, the 
lineage that includes mammals as the only living members, enjoyed remarkable 
success during the Triassic. This clade includes the Late Permian to Early Cretaceous 
non-mammaliaform cynodonts, represented by a paraphyletic array of taxa succes-
sively more closely related to mammaliaforms (considered as basal mammals by 
several palaeontologists). In the Middle Triassic, cynodonts are represented by 
numerous taxa that thrived mostly in Gondwana, whereas only one taxon, 
Nanogomphodon, has been registered in Laurasia. Cynodont diversity during this 
time interval is mainly composed of gomphodonts, featuring bucco-lingually 
expanded postcanines, whereas the members of their sister-group, the mostly 
sectorial- toothed probainognathians, are very scarce. On the contrary, Early Jurassic 
non-mammaliaform cynodonts are most abundant in Laurasia (although also present 
in Gondwana) and only represented by probainognathians, particularly the sectorial- 
toothed tritheledontids and the ubiquitous herbivorous tritylodontids. The Late 
Triassic thus constitutes a pivotal time lapse, marked by an expansion of the geo-
graphical distribution and diversification of cynodonts. During this time, cynodont 
assemblages include representatives of old and new lineages and the first mamma-
liaforms are documented. This contribution presents a review of the diversity and 
geographic distribution of Late Triassic to Early Jurassic cynodonts, and summa-
rizes the main morphologies represented in the lineage, including Mammaliaformes, 
a key group in our understanding of the early evolution of mammals.
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11.1  Introduction

Several changes took place in the ancient world of the early Mesozoic, transforming 
the climate and, with that, the faunal composition of the ecosystems. The Triassic 
for a start was a time of key changes in faunas (Sues and Fraser 2010) after the 
colossal extinction event at the end of the Permian that wiped out a massive propor-
tion of the life forms from the Earth (Erwin 1994; Joachimski et al. 2012). For the 
tetrapod communities, the end of the Permian represented the demise of two main 
therapsid lineages, biarmosuchians and gorgonopsians, and the extreme decline of 
therocephalians and dicynodonts, the latter being indeed one of the most diverse and 
abundant Permian lineages (Rubidge and Sidor 2001; Kemp 2005; Fröbisch 2008). 
The extinction process also affected the large herbivorous pareiasaurian parareptiles 
that were key components of Middle and Late Permian faunas. The Triassic wit-
nessed the diversification of cynodonts, a second pulse of diversification of dicyn-
odonts, the continuity and last days of therocephalians, and the diversification of the 
small procolophonian parareptiles (Kemp 2005; Fröbisch 2008; Abdala and Ribeiro 
2010; Huttenlocker and Sidor 2016; Cisneros 2008). Indeed, the Triassic was an 
important time for amniote evolution, as exemplified by the origin of dinosaurs and 
of turtles (Rougier et al. 1995; Li et al. 2008; Barrett et al. 2009; Langer et al. 2010; 
Schoch and Sues 2015; Marsicano et al. 2016).

The Triassic is also the major period during which the evolutionary development 
of essential mammalian features in the non-mammalian cynodonts, extinct prede-
cessors of living mammals, took place. These characters include differentiation of 
postcanine morphology, two occipital condyles for articulation with the vertebral 
column, development of an osseous secondary palate, mandibular masseteric fossa, 
and basicranial promontorium, among others (Kielan-Jaworowska et  al. 2004; 
Kemp 2005). Here we present an account of cynodont diversification at the end of 
the Triassic and the last pulse of the non-mammaliaform cynodonts, which pro-
duced important morphological novelties. This diversification is represented by the 
radiation of the herbivorous traversodontid cynodonts, the origin of small-sized 
insectivorous-carnivorous forms with sectorial postcanines, and the evolution of 
one of the first rodent-like experiments in the synapsid lineage.

Institutional abbreviations: BP, Evolutionary Studies Institute (formerly Bernard 
Price Institute for Palaeontological Research), University of the Witwatersrand, 
Johannesburg, South Africa; MCZ, Museum of Comparative Zoology, Harvard 
University, Cambridge, United States; NHMUK, The Natural History Museum, 
London, United Kingdom; PVL, Colección Paleontología de Vertebrados Lillo, 
Universidad Nacional de Tucumán, Argentina; USNM, National Museum of Natural 
History, Smithsonian Institution,Washington DC, United States.
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11.2  Cynodont Diversity

Cynodontia is the last therapsid lineage to appear in the fossil record. Two species 
are known from the early Late Permian Tropidostoma Assemblage Zone (AZ) and 
at least five species are represented in faunal associations closer to the end of the 
Permian in South Africa (Botha et  al. 2007; Botha-Brink and Abdala 2008; 
Kammerer 2016). By the beginning of the Triassic the number of species remained 
nearly the same, however, there are no common species between the Permian and 
Triassic (Abdala and Ribeiro 2010). The Middle Triassic records perhaps the high-
est peak in diversity in the history of Triassic cynodonts. This epoch, represented in 
South Africa by the Cynognathus AZ (here we consider this AZ as Middle Triassic, 
but see Ottone et al. 2014 who supports a Carnian age for Cynognathus AZ corre-
lated faunas from Argentina), is when Triassic cynodonts reached their largest body 
sizes and experimented with profound transformations in their dentition, with forms 
bearing occluding bucco-lingually expanded (gomphodont) postcanines (Abdala 
and Ribeiro 2010). These two novelties among basal cynodonts (large size and 
expanded occluding postcanines) are suggestive of a change in the food resources 
represented in the Middle Triassic terrestrial ecosystems.

Presently, there are ~150 cynodont genera recognized in the fossil record from 
the Late Permian to the Early Jurassic, 75 of which (50% of the total) are repre-
sented in the 36 million year (Ma) extent of the Late Triassic and 42 (28%) in the 
27.2 Ma span of the Early Jurassic (Table 11.1). In the Late Triassic-Early Jurassic 
transition, eucynodonts are represented by traversodontids, members of the mono-
phyletic Cynognathia, and by several taxa of the clade Probainognathia, including 
prozostrodontids, tritheledontids, tritylodontids, and mammaliaforms (Fig. 11.1).

11.2.1  Traversodontid Supremacy

It is mainly among gomphodonts that non-mammaliaform cynodonts explored the 
development of bucco-lingually expanded postcanine crowns, which allowed for an 
elementary dental occlusion. The first record of gomphodonts is from the end of the 
Olenekian. Basal gomphodonts, represented by diademodontids and  trirachodontids, 
had expanded postcanines lacking an occlusal basin. Diademodontids, in particular, 
presented an extremely heterogeneous postcanine series with simple anteriormost 
teeth, expanded mid-row elements, and sectorial posterior teeth (Hopson 1971; 
Grine 1977). These two families are mostly represented at the end of the Early 
Triassic and in the Middle Triassic, although there is an unusually late record of a 
form tentatively identified as a diademodontid and originally attributed to levels of 
the Late Triassic Lower Elliot Formation (Abdala et al. 2007). The horizon of this 
record was recently reassigned to the Lower Jurassic Upper Elliot Formation (Bordy 
et al. 2017). Besides diademodontids and trirachodontids, a derived gomphodont 
clade named Traversodontidae (sensu Liu and Abdala 2014) was well represented in 

11 The Late Triassic Record of Cynodonts: Time of Innovations in the Mammalian…



410

Table 11.1 Late Triassic-Early Jurassic cynodont taxa

Genus Lineage Country

Carnian (9 Ma) 237–228 My
1 Titanogomphodon Diademodontidae Namibia
2 Aleodon cromptoni Probainognathia Namibia, Brazil
3 Massetognathus pascuali Traversodontidae Argentina
4 Chiniquodon theotonicus Probainognathia Argentina, Brazil
5 Chiniquodon kalanoro Probainognathia Madagascar
6 Chiniquodon sp. Probainognathia Namibia
7 Probainognathus Probainognathia Argentina
8 Exaeretodon argentinus Traversodontidae Argentina
9 Ischignathus Traversodontidae Argentina
10 Ecteninion Probainognathia Argentina
11 Diegocanis Probainognathia Argentina
12 Exaeretodon riograndensis Traversodontidae Brazil
13 Luangwa sudamericana Traversodontidae Brazil
14 Luangwa sp. Traversodontidae Namibia
15 Traversodon Traversodontidae Brazil
16 Protuberum Traversodontidae Brazil
17 Scalenodon ribeiroae Traversodontidae Brazil
18 Bonacynodon Probainognathia Brazil
19 Protheriodon Probainognathia Brazil
20 Charruodon Probainognathia Brazil
21 Prozostrodon Probainognathia Brazil
22 Therioherpeton Probainognathia Brazil
23 Gomphodontosuchus Traversodontidae Brazil
24 Santacruzodon Traversodontidae Brazil
25 Candelariodon Probainognathia Brazil
26 Santacruzgnathus Probainognathia Brazil
27 Alemoatherium Probainognathia Brazil
28 Massetognathus ochagaviae Traversodontidae Brazil
29 Deccanodon ? India
30 Ruberodon Traversodontidae India
31 Rewaconodon Dromatheridae India, United States
32 Dadadon Traversodontidae Madagascar
33 Menadon Traversodontidae Madagascar, Brazil
34 Boreogomphodon Traversodontidae United States
35 Gondwanadon Morganucodontidae India
36 Tikitherium Docodonta India
37 Adelobasileus Stem Mammaliaformes United States
Norian (14 Ma) 227–213
38 Chaliminia Tritheledontidae Argentina
39 Riograndia Tritheledontidae Brazil
40 Brasilodon Prozostrodontia Brazil
41 Irajatherium Tritheledontidae Brazil

(continued)

F. Abdala and L.C. Gaetano



411

Table 11.1 (continued)

Genus Lineage Country

42 Minicynodon Prozostrodontia Brazil
43 Botucaraitherium Prozostrodontia Brazil
44 Arctotraversodon Traversodontidae Canada
45 Scalenodontoides Traversodontidae South Africa, Lesotho
46 Elliotherium Tritheledontidae South Africa
47 Microconodon Dromatheridae United States
48 Dromatherium Dromatheridae United States
49 Thomasia hahni Haramiyidae Germany
Late Norian-Rhaetian (19 Ma) 201–220
50 Microscalenodon ?Traversodontidae Belgium
51 Meurthodon Dromatheridae France
52 Hahnia Probainognathia Belgium
53 Gaumia Probainognathia Belgium, Luxemburg
54 Lepagia Probainognathia Belgium
55 Maubeugia ?Traversodontidae France
56 Rosieria ?Traversodontidae France
57 Oligokyphus triserialis Tritylodontidae Germany
58 Oligokyphus sp. Tritylodontidae Canada
59 Tricuspes Dromatheridae Germany, 

Luxembourg, France 
and Belgium

60 Mitredon ? Greenland
61 Pseudotriconodon Dromatheridae Luxemburg, Belgium, 

France, United States
62 Mojo Multituberculata Belgium
63 Theroteinus Haramiyidae France
64 Brachyzostrodon Morganucodontidae France
65 Woutersia Docodonta France
66 Delsatia Docodonta France
67 Megazostrodon chenali Morganucodontidae France
68 Paceyodon Morganucodontidae France
69 Paikasigudodon cf. 

yadagirii
Morganucodontidae France

70 Rosierodon Morganucodontidae France
71 Kuehneotherium Symmetrodonta France; Luxemburg; 

United Kingdom; 
Greenland

72 Fluctuodon Symmetrodonta France
73 Thomasia Haramiyidae Germany; France; 

Belgium; Luxemburg; 
Switzerland; United 
Kingdom

74 Haramiyavia Haramiyidae Greenland
75 Helvetiodon Morganucodontidae Switzerland

(continued)
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Table 11.1 (continued)

Genus Lineage Country

76 Morganucodon peyeri Morganucodontidae Switzerland, France
77 Hallautherium schalchi Morganucodontidae Switzerland; Poland
78 Eozostrodon Morganucodontidae United Kingdom
Hettangian-Toarcian (27 Ma) 201–174
79 Bienotherium magnum Tritylodontidae China
80 Bienotherium yunnanense Tritylodontidae China
81 Lufengia Tritylodontidae China
82 Dianzhongia Tritylodontidae China
83 Yunnanodon Tritylodontidae China
84 Oligokyphus lufengensis Tritylodontidae China
85 Kunminia ? China
86 Bocatherium Tritylodontidae Mexico
87 Tritheledon Tritheledontidae South Africa
88 Diarthrognathus Tritheledontidae South Africa
89 Tritylodontoideus Tritylodontidae South Africa
90 Pachygenelus Tritheledontidae South Africa, Canada
91 Tritylodon Tritylodontidae South Africa, Lesotho
92 Oligokyphus major Tritylodontidae United Kingdom; 

United States
93 Dinnebitodon Tritylodontidae United States
94 Kayentatherium Tritylodontidae United States
95 Argentoconodon Triconodontidae Argentina
96 Condorodon Triconodontidae Argentina
97 Asfaltomylos Australosphenida Argentina
98 Henosferus Australosphenida Argentina
99 Sinoconodon Stem Mammaliaformes China
100 Hadrocodium basal mammaliaform (more 

derived than Docodonta but less 
than Triconodontidae)

China

101 Erythrotherium Morganucodontidae Lesotho
102 Bocaconodon Morganucodontidae Mexico
103 Victoriaconodon Triconodontidae Mexico
104 Huasteconodon Triconodontidae Mexico
105 Megazostrodon Morganucodontidae South Africa; Lesotho
106 Kuehneotherium Symmetrodonta United Kingdom
107 Pantotherid indet Symmetrodonta United Kingdom
108 Bridetherium Morganucodontidae United Kingdom
109 Paceyodon Morganucodontidae United Kingdom
110 Thomasia cf. moorei Haramiyidae United Kingdom
111 Dinnetherium Morganucodontidae United States
112 Morganucodon Morganucodontidae United States, United 

Kingdom, China

(continued)

F. Abdala and L.C. Gaetano



413

the Middle and Upper Triassic (Fig. 11.2). Twenty-three of the 96 cynodont genera 
(24%) from the Middle–Late Triassic are traversodontids. This group was already 
widely distributed through East Africa, South America, and Europe by the Anisian-
Ladinian (Kemp 1980; Hopson and Sues 2006; Abdala et al. 2009). Traversodontids 
are predominantly from Gondwana and a major component of the Late Triassic 
cynodont faunas from South America (Fig. 11.3). They are dominant in the Carnian 
fauna of the Chañares Formation in Argentina, represented by Massetognathus 
(Abdala and Giannini 2000; Mancuso et al. 2014). The Dinodontosaurus AZ (Santa 
Maria Formation) in southern Brazil shows a strong faunal correlation with the 
Chañares Formation. Traversodontids in this Brazilian association are represented 
by Massetognathus, Traversodon, Protuberum, and the recently discovered 
Scalenodon (Melo et al. 2017), but none of them dominate the faunal assemblage. 
The Santa Cruz do Sul AZ of the Santa Maria Formation is the only Brazilian fauna 
in which traversodontids are diverse (including Santacruzodon, Menadon, and a 
third as-yet unnamed taxon) and also dominant (Abdala et  al. 2001; Melo et  al. 
2015). The Santa Cruz do Sul fauna correlates biostratigraphically with the fossil 

Table 11.1 (continued)

Genus Lineage Country

113 Indozostrodon (Kota Fm.) Morganucodontidae India
114 Indotherium (Kota Fm.) Morganucodontidae India
115 Dyskritodon ?Triconodontidae India
116 Paikasigudodon (Kota Fm.) Morganucodontidae India
117 Trishulotherium (Kota Fm.) Symmetrodonta India
118 Nakunodon (Kota Fm.) Symmetrodonta India
119 Kotatherium (Kota Fm.) Symmetrodonta India
120 Indobaatar (Kota Fm.) Multituberculata India

Fig. 11.1 Phylogenetic relationships of eucynodonts, plotted against the time scale. Abbreviations: 
CYNO Cynognathia, PROBAINO Probainognathia. Phylogeny after Liu and Olsen (2010)
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assemblage of the Makay Formation of Madagascar through the shared occurrence 
of the traversodontid Menadon (Melo et al. 2015). In this latter formation, traverso-
dontids are represented by Menadon, only known by a couple of specimens, and 
Dadadon, documented by several specimens representing different ontogenetic 
stages (Flynn et al. 2000; Kammerer et al. 2012). At the end of the Carnian and the 
beginning of the Norian, traversodontids are known from the Ischigualasto 

Fig. 11.2 Phylogenetic 
relationships of 
traversodontids plotted 
against the time scale. 
Phylogeny after Liu and 
Abdala (2014) and Ray 
(2015). Colours indicate 
monophyletic groups: light 
blue, 
Gomphodontosuchinae

Fig. 11.3 Paleogeographic reconstruction depicting traversodontid distribution during the Carnian 
(taxa in red) and Norian (taxa in green). Map modified from Ron Blakey

F. Abdala and L.C. Gaetano



415

Formation through Exaeretodon and Ischignathus (Bonaparte 1962, 1963). The first 
is represented by several skeletons whereas only one specimen of the latter has been 
found. Exaeretodon is also well represented in the Hyperodapedon AZ from south-
ern Brazil (Abdala et al. 2002; Liparini et al. 2013), along with Gomphodontosuchus, 
which is known only from one specimen (von Huene 1928; Hopson 1985). Detailed 
prospection in the Ischigualasto Formation makes clear that Exaeretodon is out-
numbered by rhynchosaurs at the base of this unit and becomes a dominant taxon 
towards the upper levels (Martinez et al. 2011). A similar condition has been sug-
gested for the distribution and abundance of Exaeretodon in different levels of the 
Hyperodapedon AZ in the Santa Maria Formation (Liparini et  al. 2013). 
Traversodontids have also been recorded in Carnian formations in India. Fragments 
of two Exaeretodon specimens of estimated skull length of 200 mm were found in 
the Maleri Formation (Chatterjee 1982) and, more recently, at least seven lower 
jaws of the traversodontid Ruberodon were described from the Tiki Formation (Ray 
2015). The youngest record of traversodontid from Gondwana is represented by the 
large and bizarre Scalenodontoides (Fig.  11.4a) from the Norian Lower Elliot 
Formation of South Africa (Crompton and Ellenberger 1957; Gow and Hancox 
1993; Battail 2005) and by a small fragmentary specimen only preliminary reported 
(Ribeiro et  al. 2011; Martinelli and Soares 2016) from the ?late Norian- ?Early 
Jurassic Riograndia AZ of Brazil (Abdala and Ribeiro 2010; Barboni and Dutra 
2013; Rohn et al. 2014).

Fig. 11.4 Traversodontidae. (a) Scalenodontoides macrodontes (BP/1/5395), Lower Elliot 
Formation, Karoo Basin, South Africa, palatal view of the skull. Scale bar  =  40  mm. (b) 
Boreogomphodon jeffersoni (USNM 437636), Vinita Formation, Virginia, United States, palatal 
view of the snout. Scale bar = 5 mm. These species nearly represent the total range of size in tra-
versodontid cynodonts. Photography of Boreogomphodon by Christophe Hendrickx, copyright 
Smithsonian Institution
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The known history of traversodontids is less extensive in Laurasia. They are 
restricted to the east side of North America and to only one undisputed record in 
Europe. Of the four species registered in Laurasia, only the small-sized 
Boreogomphodon from the Carnian Vinita Formation in Virginia, United States, is 
represented by numerous specimens (Sues and Hopson 2010; Fig. 11.4b). Specimens 
recovered from the Carnian Pekin Formation and the type and only specimen of 
Plinthogomphodon from the Norian (Sues et al. 1999), both from North Carolina, 
United States, were also tentatively assigned to Boreogomphodon by Liu and Sues 
(2010). In Europe there is one confirmed record of Nanogomphodon represented by 
an isolated lower tooth from the Ladinian of Germany (Hopson and Sues 2006). 
Four species from the Norian and Rhaetian of France and Belgium represented by 
tiny expanded isolated crowns have been assigned to traversodontids (Hahn et al. 
1988; Godefroit and Battail 1997; Godefroit 1999); however, their attribution to this 
group has been questioned and needs stronger validating evidence (Hopson and 
Sues 2006; Liu and Abdala 2014).

In summary, the traversodontid history is mostly a Gondwanan one (17 taxa 
versus three from Laurasia) and covers approximately 30 Ma, with the peak of rep-
resentation clearly in the Late Triassic. There is a trend toward increased morpho-
logical complexity of the postcanines (Martinelli and Soares 2016) in the younger 
representatives of the family as well as to increase the body size. The larger traver-
sodontids are represented in the Carnian-Norian of Argentina (i.e., Exaeretodon, 
Ischignathus; Bonaparte 1962, 1963; Abdala et  al. 2002), South Africa (i.e., 
Scalenodontoides; Crompton and Ellenberger 1957; Hopson 1984; Gow and 
Hancox 1993; Battail 2005), and Canada (i.e., Arctotraversodon; Hopson 1984; 
Sues et al. 1992; Sues and Olsen 2015).

11.2.2  Proliferation of the Small Probainognathians

Probainognathians are well represented in the Upper Triassic (Fig. 11.5), although 
less diverse and clearly not as abundant as traversodontids. The oldest representa-
tives of this group are Aleodon and Cromptodon from the Middle Triassic of Africa 
and South America, respectively (Crompton 1955; Bonaparte 1972a), which also 
have expanded postcanine crowns, although to a lesser degree than gomphodont 
cynodonts. Aleodon was also recently reported from the Carnian Dinodontosaurus 
AZ of southern Brazil (Martinelli et al. 2017b). Other basal probainognathians pre-
sented typical sectorial postcanines with different degrees of complexity. 
Chiniquodon, a medium-to-large-sized probainognathian is characterized by the 
presence of a long osseous secondary palate and posterior sectorial postcanines fea-
turing the main cusp strongly curved backwards (Fig. 11.6a). This genus is repre-
sented in faunas ranging from the Carnian to the Norian in South America and 
Africa (Martinez and Forster 1996; Abdala and Giannini 2002; Abdala and Smith 
2009; Kammerer et  al. 2010). The uppermost faunal assemblage from the upper 
Omingonde Formation in Namibia has been considered of possible Ladinian age 

F. Abdala and L.C. Gaetano



417

(Abdala and Smith 2009; Abdala et al. 2013), however, the early Carnian geochro-
nologic age recently presented for the Chañares Formation from Argentina 
(Marsicano et al. 2016) points to the possibility that this Namibian association, cor-
related with the Chañares and Dinodontosaurus AZ faunas from South America, 
could be of the same age. Other basal probainognathians are represented by the 
medium-sized Trucidocynodon and the tiny Alemoatherium from the Carnian 
Hyperodapedon AZ of Brazil (Oliveira et al. 2010; Martinelli et al. 2017a) and the 
closely related small sized Ecteninion (Fig. 11.6b) and Diegocanis from the coeval 
Ischigualastian fauna (Martinez et al. 1996, 2013). Younger records of probainog-
nathians are globally represented by tiny to small animals that are particularly 
diverse (Bonaparte and Barberena 2001; Bonaparte et  al. 2006; Martinelli et  al. 
2016), and abundant (for example Riograndia) in the ?late Norian - ?early Jurassic 
Riograndia AZ (Bonaparte et al. 2003, 2005; Soares et al. 2011). Probainognathians 
are represented in this Brazilian assemblage zone by five named taxa (following Liu 
and Olsen 2010 in that Brasilodon and Brasilitherium likely represent the same 
taxon), representing the most diverse putative Late Triassic faunal assemblage with 
prozostrodontians (Fig. 11.7) (Bonaparte et al. 2001, 2003, 2005; Martinelli et al. 
2016, 2017a; Pacheco et al. 2017). The record of small probainognathians is also 
diverse in South Africa where Elliotherium is represented in the Norian Lower 
Elliot Formation (Sidor and Hancox 2006), and three species, the rare Tritheledon 

Fig. 11.5 Phylogenetic 
relationships of 
probainognathians plotted 
against the time scale. 
Abbreviations: PRO 
Prozostrodontia, TRITHE 
Tritheledontidae. 
Phylogeny after Martinelli 
et al. (2016)
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and Diarthrognathus from the Lower Jurassic Upper Elliot and the more common 
Pachygenelus from the same unit and also from the Clarens Formation (Gow 1980; 
Bordy et al. 2017). Dromatheriids also encompass small cynodonts with sectorial 
postcanines represented by fragmentary specimens (Sues 2001). They are docu-
mented mostly in Laurasia, although they were recently described in the Late 
Triassic of India (Datta et  al. 2004). Their phylogenetic placement among non- 
mammaliaform cynodonts has never been properly tested. Some scholars consider 
that the morphological evidence only indicates that dromatheriids are eucynodonts 
(Sues 2001). Other researchers suggest they are the sister taxon to the Brazilian 
Therioherpeton, forming a group that is closely related to tritheledontids (Battail 
1991) and finally Hahn et al. (1994) considered dromatheriids to be the sister group 

Fig. 11.6 Basal probainognathian (a) Chiniquodon theotonicus (PVL 4674), Chañares Formation, 
Ischigualasto-Villa Union Basin, Argentina, palatal view of the skull. Scale bar  =  30  mm; (b) 
Ecteninion lunensis (PVSJ 422) lateral view of the skull. Scale bar = 10 mm
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Fig. 11.7 Paleogeographic reconstructions depicting probainognathian distribution, including 
tritylodontids (in black) during the Carnian, Norian-Rhaetian and Early Jurassic. Maps modified 
from Blakey
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of mammaliaforms. By the Late Triassic and Early Jurassic, mammaliaform and 
tritylodontid probainognathians develop complex expanded postcanines capable of 
dental occlusion (Kielan-Jaworowska et al. 2004).

11.2.3  Twilight of the Non-mammaliaform Cynodonts: 
The Tritylodontids

The last vestige of non-mammaliaform cynodonts is characterized by the appear-
ance, diversification, and extinction of tritylodontids, a lineage that features promi-
nently in discussions on mammaliaform ancestry. Most of the scholars consider this 
group in the probainognathian lineage, representing the sister-taxon of 
Mammaliaformes or of Tritheledontidae + Mammaliaformes (Kemp 1983; Rowe 
1988, 1993; Wible 1991; Luo 1994; Abdala 2007; Liu and Olsen 2010; Ruta et al. 
2013; Martinelli et al. 2016) (Fig. 11.1), whereas others interpret tritylodontids as 
member of the cynognathian lineage (Sues 1985a, b; Sues and Jenkins 2006), 
closely related to a paraphyletic Traversodontidae (Hopson and Kitching 2001; 
Sidor and Hopson in press), removing them from the ancestry of mammals.

Tritylodontids have a marked size variation with larger forms such as 
Kayentatherium reaching skull total length of 260  mm and Oligokyphus being 
~90  mm (Gaetano et  al. 2017; Fig.  11.8a, b). They have a feeding system with 
strong propalinal jaw movements, mimicked by that of rodents (Crompton 1972). 
The dental pattern is quite conservative in the group: at least one large incisor, no 
canines, and labiolingually expanded molariforms with longitudinal cusp rows sep-
arated by furrows into which opposing cusps occlude (Clark and Hopson 1985; 
Sues 1985b) (Fig. 11.8a, c). The dental conservatism (Hu et al. 2009) contrasts with 
a disparate variation in skull morphology (see, for example, variation of the snout 
and palate in Clark and Hopson 1985: figure 3). At the end of the Triassic and begin-
ning of the Jurassic, tritylodontids and haramiyid mammaliaforms shared the pres-
ence of expanded postcanines with occluding longitudinal cusp rows for the second 
time in the cynodont lineage. This pattern was achieved before in non- mammaliaform 
cynodonts from the Lower Triassic of South Africa, currently only known by iso-
lated teeth (Gaetano et al. 2012).

Tritylodontids are basically a Jurassic group with isolated older records in the 
Rhaetian of Germany and Canada (Fedak et al. 2015; Fig. 11.9), and the last repre-
sentatives known from the Early Cretaceous of Russia and Japan (Tatarinov and 
Matchenko 1999; Matsuoka et al. 2016). The group is almost exclusively Laurasian, 
with the only Gondwanan record restricted to the Lower Jurassic of South Africa 
(Fig. 11.7). A putative record from the Norian of Argentina (Bonaparte 1972b) was 
recently dismissed by Gaetano et  al. (2017). Tritylodontids are represented by 
approximately 23 taxa, including several species from the Lower Jurassic of the 
United States and China. This group can be envisaged as an Early Jurassic ecologi-
cal replacement of the traversodontids, a lineage that was particularly prolific in the 
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Fig. 11.8 Tritylodontidae (a) Kayentatherium wellesi (MCZ 8812), Kayenta Formation, Glen 
Canyon Group, United States, lateral view of the skull. Scale bar = 40 mm. (b) Oligokyphus major 
(NHMUK R7119), fissure fill limestone “Mendip 14”, Windsor Hill Quarry, United Kingdom, 
lateral view of the partial right lower jaw. Scale bar = 10 mm. (c) Tritylodon longaevus (BP/1/4778), 
upper Elliot Formation, Karoo Basin, South Africa, upper palatal view of the skull. Scale 
bar = 20 mm

Fig. 11.9 Phylogenetic relationships of tritylodontids plotted against the time scale. Abbreviations: 
JUR-CRET Trit tritylodontids from the Middle Jurassic of the United Kingdom and from the Early 
Cretaceous of Russia and Japan
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Middle and Late Triassic. During the Late Triassic, 18 taxa of traversodontids 
thrived during an interval of 35.7 million years, whereas 14 species of tritylodontids 
are known from the Lower Jurassic, spanning a period of 27.2 Ma. In both groups 
there are several species that are abundant and sometimes even dominant in their 
respective faunal assemblages (Luo and Wu 1994; Smith and Kitching 1997; Sues 
and Hopson 2010; Mancuso et al. 2014). Tritylodontids are in need of an extensive 
phylogenetic analysis. The most recent and one of the few cladistic analyses pub-
lished is that by Watabe et  al. (2007), who considered only five cranial and six 
dental features. Following the hypotheses presented by Watabe et al. (2007), the 
basal-most tritylodontids are represented by the Rhaetian to Sinemurian Oligokyphus 
from Laurasia (Fig. 11.9), and the Hettangian-Sinemurian Tritylodon from southern 
Africa, two taxa with a prominent long snout (Clark and Hopson 1985). These basal 
forms are followed in a pectinate fashion by Hettangian to Sinemurian species from 
China and North America (Fig. 11.9). The final diversification of this group com-
prises several species of Bienotheroides from the Middle and Late Jurassic of China 
and the Early Cretaceous of Mongolia, Bocatherium from the Pliensbachian of 
Mexico, Stereognathus from the Middle Jurassic of the United Kingdom, and the 
geologically youngest representatives from the Early Cretaceous of Russia and 
Japan. The most profuse record of this group is indeed in China, where it is repre-
sented by 10 named taxa (nearly half of the named tritylodontid species) in a tem-
poral sequence that starts in the Hettangian with Bienotherium and ends in the Late 
Jurassic with Bienotheroides.

11.2.4  Enter Mammaliaforms

It is among basal mammaliaforms that cynodonts progressively become morpho-
logically closer to what we imagine as the first representatives of living mammals. 
The evolution of this clade during the Mesozoic has been envisaged as successive 
diversification events of relatively short-lived clades (Luo 2007).

Known from the Carnian Tecovas Formation of Texas (Lucas and Hunt 1990), 
Adelobasileus is only represented by the posterior portion of a skull that shares 
several features with mammaliaforms, but also retains a set of primitive characters. 
Phylogenetic studies argued that Adelobasileus is a basal mammaliaform (see 
Kielan-Jaworowska et  al. 2004), but it has been suggested that it may well be a 
dromatheriid (Lucas and Luo 1993; Kielan-Jaworowska et al. 2004).

Mammaliaforms (in the sense of Kielan-Jaworowska et al. 2004) make their appear-
ance in the fossil record with only two records from a single Late Triassic (Carnian) 
formation (Fig. 11.10). Gondwanadon and Tikitherium, each of them represented by a 
single isolated tooth (Fig. 11.11), are known from the Tiki Formation, Madhya Pradesh, 
India (Datta and Das 1996; Datta 2005). These early  representatives already conspicu-
ously differ in their dental anatomy (Kielan-Jaworowska et al. 2004; Kermack et al. 
1973; Gill et al. 2014; Luo et al. 2015). Gondwanadon (Fig. 11.11a) has been tenta-
tively included in Morganucodonta (Kielan-Jaworowska et  al. 2004; Debuysschere 
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Fig. 11.10 Paleogeographic reconstructions depicting mammaliaform distribution during the 
Carnian, Norian–Rhaetian, and Early Jurassic. Maps modified from Ron Blakey. Taxon colors 
represent the purported phylogenetic placement after the hypothesis presented in Fig. 11.12
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et al. 2015). The relationships of most morganucodontans have not been tested phylo-
genetically. Additionally, there are different opinions regarding the interrelationships 
of the few morganucodontans that have been cladistically analysed (e.g., Kielan-
Jaworowska et al. 2004; Gaetano and Rougier 2012). Morganucodontans are the most 
abundant and diverse mammaliaforms during the Triassic, particularly the Rhaetian, 
and they continue to be well represented during the Early and Middle Jurassic.

Originally listed as a morganucodontan, Tikitherium (Fig. 11.11b) is now con-
sidered closely related to the docodontan clade (Datta 2005; Luo and Martin 
2007). Unlike the labiolingually compressed cheek teeth of morganucodontans 
with mesiodistally aligned main cusps, Tikitherium and docodontans present more 
complex postcanines with labiolingually expanded crowns and a triangular place-
ment of the cusps (Datta 2005; Luo and Martin 2007). Delsatia and Woutersia 
from the Rhaetian of France have been interpreted to be basal to Tikitherium, but 
still closely related to docodontans (Luo and Martin 2007). However, it has been 
proposed that Woutersia (including two species) and Delsatia (monospecific) 
might, in fact, represent different teeth of the same taxon due to morphological 

Fig. 11.11 Mammaliaformes (a) Tikitherium copei; SEM photographs of upper left molariform in 
labial and occlusal views. Scale bars = 200 μm. (b) Gondwanadon tapani line drawing of lower 
right molariform in lingual and labial views. Scale bars = 1 mm. (a) from Datta (2005) and (b) 
from Datta and Dass (1996)
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Fig. 11.12 Phylogenetic relationships of mammaliaforms, plotted against the time scale. The 
topology is the result of manually assembling different cladistics analysis as well as including 
several taxa that were never analysed phylogenetically. Taxa from the Kota Formation (India) have 
not been included due to their probably Early Cretaceous age (see text). Question marks followed 
by superscript numbers are employed to represent the alternative positions of certain taxa. Taxa not 
included in cladistics analysis are marked with an asterisk
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similarities and co-occurrence (Kielan-Jaworowska et  al. 2004). This Triassic 
radiation of stem-docodontans would precede the radiation and initial diversifica-
tion of the docodont clade in the Middle Jurassic, when some representatives of 
this group developed morphological adaptations for swimming (Martin and 
Nowotny 2000; Martin 2005, 2006; Ji et al. 2006).

The single record of Thomasia hahni from the Rhaetian of Halberstadt, Germany 
(Hahn 1973; Butler and Macintyre 1994) is the oldest member of the contested 
Haramiyida. Four additional taxa including morganucodontans, haramiyidans, and 
the oldest “symmetrodont” (identified as Kuehneotherium sp.; see below) come 
from Norian to Rhaetian Laurasian units (Jenkins et al. 1997; Swilo et al. 2014; 
Clemmensen et al. 2015) (Fig. 11.10).

By the Rhaetian, the number of mammaliaform taxa increased greatly, with 15 gen-
era and at least 20 species identified. This time is clearly dominated by the abundant 
and diverse morganucodontans (9 genera) whereas haramiyidans, docodontans and 
related taxa, “symmetrodontans”, and tentatively multituberculates, are minor compo-
nents of the fossil assemblages (Figs. 11.10 and 11.12). Haramiyidans are represented 
in the Rhaetian by two genera and at least five species. These taxa are the earliest 
known mammaliaforms with complex quadrangular postcanines with multiple rows of 
aligned cusps (Fig. 11.13a), a morphology independently acquired in some non-mam-
maliaform cynodonts. This condition is interpreted as an adaptation to omnivory or 
herbivory, and contrasts with that of other basal mammaliaforms which have labiolin-
gually compressed molariforms and mesiodistally aligned cusps, or a triangular cusp 
pattern, suggestive of a more insectivorous or carnivorous diet (Luo et al. 2015). The 
phylogenetic placement of haramiyidans is currently under debate. Some authors pro-
posed that haramiyidans represent the basal stock of taxa that gave rise to multituber-
culates, as part of the clade Allotheria and nested within the mammalian crown-group 
(Zheng et al. 2013; Bi et al. 2014). Other researchers hypothesized instead that haramiy-
idans are basal mammaliaforms, outside crown-Mammalia, whereas multituberculates 
are members of the mammalian clade (Zhou et al. 2013; Luo et al. 2015) (Fig. 11.12).

Multituberculates are rodent-like forms that constitute an important component of 
mammaliaform assemblages from the Middle Jurassic and the remainder of the 
Mesozoic (Kielan-Jaworowska et al. 2004). It has been proposed that the Rhaetian wit-
nessed the first appearance of this successful clade (Hahn et al. 1987) that survived the 
K-T extinction, becoming extinct only in the Eocene (Kielan-Jaworowska et al. 2004). 
This early record consists of a partial isolated tooth of Mojo usuratus (Hahn et al. 1987). 
The fragmentary nature of the specimen, together with the large temporal gap between 
this record and that of the first undisputed multituberculate in the Middle Jurassic, make 
the presence of this lineage in the Rhaetian uncertain (Kielan-Jaworowska et al. 2004). 
Another putative early record of a  multituberculate, Indobaatar zofiae, was described 
from the problematic Kota Formation of India (Parmar et al. 2013).

A wide array of poorly known taxa with a reversed-triangle molar pattern is infor-
mally known as “symmetrodontans” (Fig. 11.13b). Their molariforms have been inter-
preted as precursors that led to the evolution of the tribosphenic pattern; however, both 
the “symmetrodontan” and the tribosphenic molariform structure have proven to be 
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Fig. 11.13 Mammaliaformes. (a) Haramiyidan Haramiyavia. Composite reconstruction of the 
right lower jaw in medial view (dark red: original bone with intact periosteal surface; brown: bro-
ken surface of preserved bone or remnant of bone; light blue: morphologies preserved in mold 
outlines or clear impression). Scale bar = 5 mm. Scanning electron microscophy photographs of 
left lower molariform (m3) in lingual, labial, and occlusal views. Scale bar  =  1  mm. (b) 
“Symmetrodontan” Kuehneotherium. Computed tomography scans of a right lower molariform in 
lingual, labial, and occlusal views. Scale bar = 1 mm. (a) From Luo et al. (2015), (b) from Conith 
et al. (2016)
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homoplasic throughout mammaliaform phylogeny (Kielan- Jaworowska et al. 2004; 
Luo 2007; Davis 2011). Kuehneotherium is the oldest “symmetrodontan”, known 
from the late Norian—early Rhaetian of Greenland (Jenkins et al. 1994; Clemmensen 
et al. 2015). This taxon is also represented by at least two species recorded in Rhaetian 
formations from France, Luxemburg, and the United Kingdom (Fraser et al. 1985; 
Sigogneau-Russell and Hahn 1994; Godefroit and Sigogneau-Russell 1995, 1999; 
Whiteside et al. 2016). Additionally, Kuehneotherium has been discovered in different 
quarries of Early Jurassic (Hettangian) fissure-filling deposits in the United Kingdom 
(Kermack et  al. 1968, 1973; Säilä 2005; Gill et  al. 2014; Whiteside et  al. 2016). 
Kuehneotherium is regarded as a basal mammaliaform, phylogenetically nested among 
morganucodontans by some authors (Kielan-Jaworowska et al. 2004) but considered 
closely related to cladotherians by others (Rougier et al. 2007).

The passage from the Triassic to the Early Jurassic is accompanied by a relative 
decline in haramiyidan diversity, whereas there is an increase in the diversity of 
“symmetrodontans” and the first occurrence of derived “triconodonts” (“amphiles-
tids” and eutriconodontans, sensu Gaetano and Rougier 2011), and australosphe-
nidans (Fig. 11.14). Sinoconodon, regarded as the basalmost mammaliaform, has 
also been found in Early Jurassic rocks (Crompton and Sun 1985; Crompton and 
Luo 1993). Thomasia is the only recognized haramiyidan in Early Jurassic out-
crops. Haramiyidans are known from the Norian to the Middle˗Late Jurassic 
(Zheng et al. 2013; Zhou et al. 2013; Bi et al. 2014). Morganucodontans, mainly 
represented in Europe during the Triassic (except for the Indian Gondwanadon), 
are also well represented in Gondwana during the Early Jurassic. With 10 identi-
fied genera, morganucodontans are still major components in Early Jurassic 
assemblages from China, the United Kingdom, the United States, South Africa, 
Lesotho, and India. During the Early Jurassic, “symmetrodontans” are for the first 
time recognized in Gondwana, represented by six different genera; a remarkable 
difference when compared to the single known genus from the Triassic. However, 
it is important to bear in mind that Delsatia and Woutersia from the Rhaetian of 
France, interpreted as stem- docodontans, could also be considered as “symmetro-
dontans” on a morphological basis (Butler 1997; Sigogneau-Russell and Godefroit 
1997; Kielan-Jaworowska et  al. 2004; Luo and Martin 2007). Derived “tricon-
odonts” were recorded in Early Jurassic outcrops from South and North America 
and India. This distribution suggests that the diversification of these forms was 
already ongoing by the end of the Early Jurassic, and should have started before 
the Pliensbachian. The simple plesiomorphic morphology of derived “tricon-
odont” molariforms (labiolingually compressed tooth and mesiodistally aligned 
main cusps), hampers comparisons with other taxa bearing more specialized denti-
tion. Despite a comparable basic structure of molariforms, derived “triconodonts” 
(Fig. 11.14a) are not nested among the  morganucodontans, but in a more derived 
clade than docodontans, with some authors including them in the crown-group 
Mammalia (Luo et  al. 2002, 2007; Meng et  al. 2006; Luo 2007; Gaetano and 
Rougier 2011, 2012). Two closely related taxa that come from a single locality in 
Argentina are the oldest representatives of Australosphenida (Fig. 11.14b). There 
has been some controversy on the phylogenetic relationships of Mesozoic austra-
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Fig. 11.14 Mammaliaformes. (a) “Triconodont” Argentoconodon fariasorum, upper left molari-
form (M2) of the holotype in labial and lingual views. Scale bar = 1 mm. Reconstruction of the 
lower jaw and upper and lower dentition in medial view (teeth in grey are not presently known). 
Scale bar = 5 mm. (b) Australosphenidan Henosferus molus, right lower molariform (m1) of the 
holotype in lingual and occlusal views. Scale bar = 1 mm; right lower jaw of the holotype in medial 
view. Scale bar = 5 mm. (a) from Gaetano and Rougier (2011) and (b) from Rougier et al. (2007)
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losphenidans, which have been alternatively allied with monotremes or therians 
(Rougier et al. 2007). Although considered not functionally tribosphenic (Davis 
2011), australosphenidans represent a Gondwanan radiation of tribosphenic-like 
forms (Rougier et al. 2007; Luo 2007). Their temporal and geographic distribution 
contradicts the traditional view that tribosphenic mammals had a single origin on 
the northern continents, and then moving to southern landmasses (Luo et al. 2001; 
Luo 2007). Moreover, the age of the oldest australosphenidans places the origin of 
the crown-group Mammalia (if related to monotremes) and the therian clade as 
early as the Early Jurassic, just a few million years after the occurrence of the first 
mammaliaforms.

Considering that mammaliaform ancestry has been inferred to be among South 
American brasilodontids (Liu and Olsen 2010; Ruta et al. 2013; Martinelli et al. 2016, 
2017a) and that one of the places where the oldest known mammaliaforms (Carnian) 
were found is in India, it is possible that the history of the lineage that ultimately led to 
mammals began in Gondwana. In this scenario, Adelobasileus could represent a radiation 
into Laurasia of forms very closely related to mammaliaforms. On the other hand, what 
we know about the Triassic history of this clade is almost entirely a Laurasian tale. During 
the Norian and Rhaetian, the diversification of mammaliaforms occurred in Europe, 
where 16 genera and a number of additional putative different taxa have been identified 
in 18 localities (Table 11.1). This record is mostly represented by isolated teeth, except 
for a few more complete but still fragmentary discoveries (Kielan-Jaworowska et  al. 
2004). The fact that cynodonts are mostly found in Gondwana from Lopingian to Norian 
times, contrasts with their exclusive Laurasian (particularly European) record during the 
latest Norian and Rhaetian. In the Early Jurassic, cynodonts have a more widespread 
distribution. In Laurasia, they are represented in China, Europe, and North America. 
Additionally, the Gondwanan faunal assemblages from Africa, India, and South America 
have also provided cynodont remains. It is interesting to note that non-mammaliaform 
cynodonts and mammaliaforms have been discovered in Early Jurassic localities from 
Africa (South Africa and Lesotho) (Crompton 1964; Gow 1981; 1986), whereas in the 
remaining Gondwanan landmasses only mammaliaforms are represented.

The Early Jurassic mammaliaform faunas discussed above include a relatively rich 
assemblage that has been found in the Kota Formation from the Paikasigudem locality 
in India (Datta 1981; Yadagiri 1984, 1985; Prasad and Manhas 1997, 2002; Vijaya and 
Prasad 2001; Parmar et al. 2013). However, the age of this unit has been a matter of 
controversy. Some authors have proposed an Early Jurassic age on the basis of its fos-
sil fish (King 1881; Robinson 1967; Jain 1973, 1980) and a pterosaur (Jain 1974). 
Others suggested an early Middle Jurassic age on the basis of the presence of the 
ostracod Darwinula (Govindan 1975; Misra and Satsangi 1979). More recently, com-
parisons of the Kota Formation faunal assemblage with that of coeval horizons and of 
the underlying Dharmaram Formation led to the conclusion that its age ranged from 
the Early Jurassic (Sinemurian) to the Middle Jurassic (?Aalenian) (Bandyopadhyay 
and Roychowdhury 1996; Bandyopadhyay and Sengupta 2006). On the other hand, 
the palynological analysis of the Upper Member of the Kota Formation showed that 
this was a transgressive lithological unit, deposited during the late Middle Jurassic to 
Early Cretaceous (Vijaya and Prasad 2001). The mammaliaform- bearing levels 
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(Paikasigudem locality) are interpreted as Early Cretaceous (late Hauterivian—early 
Barremian). According to Vijaya and Prasad (2001), this is the only locality of the 
Kota Formation from which a diverse microvertebrate assemblage has been recovered, 
including semionotid and elasmobranch fishes, sphenodontids, lizards, ornithischian 
and theropod dinosaurs, and mammaliaforms. This vertebrate diversity includes forms 
closely associated with taxa recorded in Late Jurassic or Cretaceous units (Vijaya and 
Prasad 2001). In this scenario, Vijaya and Prasad (2001) suggest that an Early 
Cretaceous age for the Paikasigudem locality levels of the Kota Formation would be 
more in line with the present knowledge than an Early Jurassic age.

11.3  Cynodonts and Biostratigraphy

Cynodonts have an important value as biostratigraphic markers, as similar taxa are 
represented in different faunas from the same or different landmasses (Abdala and 
Ribeiro 2010). Concerning the Late Triassic of Gondwana, forms such as the her-
bivorous Massetognathus (Fig. 11.15) and the carnivorous Chiniquodon are repre-
sented in the early Carnian Chañares fauna from Argentina and Dinodontosaurus 
AZ of the Santa Maria Formation in Brazil (Langer et al. 2007). Chiniquodon was 
more recently documented in faunas from Madagascar and Namibia (Abdala and 
Smith 2009; Kammerer et al. 2010), and an undescribed chiniquodontid with a sim-
ilar dentition is also known in the Santacruzodon AZ of southern Brazil (Abdala 
et  al. 2001). Chiniquodon is even known from the late Carnian-early Norian 
Ischigualasto fauna from Argentina (Bonaparte 1966; Martinez and Forster 1996; 
Abdala and Giannini 2002) and is thus one of the longest-lived cynodonts (Abdala 
and Ribeiro 2010). Recent publications reported the presence of Aleodon and 
Scalenodon in the Dinodontosaurus AZ fauna from Brazil (Martinelli et al. 2017b; 
Melo et al. 2017). The probainognathian Aleodon was previously documented in 
Tanzania and Namibia (Crompton 1955; Abdala and Smith 2009), whereas the tra-
versodontid Scalenodon was known from Tanzania (Crompton 1955). The traverso-
dontid Menadon, first reported from the Makay Formation of Madagascar, was also 
described for the Santacruzodon AZ (Flynn et al. 2000; Melo et al. 2015). This AZ 
was recently dated to 236.1 Ma (Philipp et al. 2013), whereas the lower levels of the 
Chañares Formation, with concentrations of fossils in concretions (Mancuso et al. 
2014), were dated to 236.3 Ma. The non-fossiliferous top levels of this unit date to 
233.7 Ma (Marsicano et al. 2016). These absolute dates point to a temporal correla-
tion of the Santa Cruz do Sul and Chañares faunas. The traversodontid Exaeretodon 
(Fig. 11.16a) is known from the late Carnian-early Norian Ischigualasto Formation 
from Argentina, the Brazilian Hyperodapedon AZ, and the lower Maleri fauna of 
India (Bonaparte 1962; Chatterjee 1982; Abdala et al. 2002). Norian and Rhaetian 
taxa are also shared by geographically close faunas from Europe. Thus, teeth of the 
haramiyid Thomasia have been recovered from formations in Germany, France, 
Belgium, Luxemburg, Switzerland, and the United Kingdom (Kielan-Jaworowska 
et al. 2004). Sectorial toothed non-mammaliaform cynodonts are also represented in 
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different European countries. Gaumia is known from Luxemburg and Belgium; 
Tricuspes is documented in those countries as well as in Germany and France, and 
Pseudotriconodon from Luxemburg, Belgium, France, and perhaps the United 
States (Sigogneau-Russell and Hahn 1994; Godefroit and Battail 1997; Sues 2001). 
Taxa only represented by postcanines with a simple pattern (i.e., a single large cusp 
aligned with anterior and posterior accessory cusps and without a cingulum) such as 
Tricuspes and Pseudotriconodon, should be considered with caution until better 
specimens come to light. The tritylodontid Oligokyphus has been reported in the 
uppermost Triassic of Germany and eastern Canada, and the Lower Jurassic of the 
United Kingdom, China, and western United States (Kühne 1956; Sues 1985b; Luo 
and Sun 1994; Fedak et al. 2015). In the Norian, the same mammaliaform genera 
appear in different faunas. The iconic fossil Morganucodon (Fig. 11.16c) is repre-
sented by isolated teeth from the Upper Triassic of France as well as the Lower 
Jurassic of the United Kingdom, the United States, and China (Debuysschere et al. 
2015). The best representation of this form is indeed in the United Kingdom, where 
hundreds of fragmentary specimens allowed for a detailed description of the taxon 
(Kermack et al. 1973, 1981; Jenkins and Parrington 1976). From China, a couple of 
nearly-complete skulls of Morganucodon are known (Kermack et  al. 1981; Luo 
et al. 1995). Another Laurasian shared form is Paceyodon known from the Rhaetian 

Fig. 11.15 Chañares landscape in the Carnian. The traversodontid cynodont Massetognathus at 
the front and the proterochampsid Chanaresuchus behind. Art by Jorge Herrmann
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Fig. 11.16 Cynodonts and biostratigraphy. (a) Dorsal view of Exaeretodon skull (MCP 1522 PV). 
Scale  =  30  mm. (b) Lateral view of Pachygenelus skull (BP/1/5691). Scale bar  =  10  mm. (c) 
Lateral view of Morganucodon skull (CUP 2320) (scale bar = 10 mm) and computed tomography 
scans of a right lower molariform (m4) of Morganucodon in lingual, labial, and occlusal views 
(scale bar = 1 mm). Photography of skull of Morganucodon by Zhe-Xi Luo; Morganucodon tooth 
from Conith et al. (2016)
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of France and the Early Jurassic of the United Kingdom (Debuysschere et al. 2015). 
The Laurasia-Gondwana connections are provided by the tritheledontid 
Pachygenelus (Fig. 11.16b), which is known from Early Jurassic localities in South 
Africa and Canada (Shubin et al. 1991, Sues and Olsen 2015). The mammaliaform 
Paikasigudodon is represented in the Rhaetian of France and in the questionably 
Lower Jurassic Kota Formation from India, and Megazostrodon has been reported 
in the Rhaetian of France and the Lower Jurassic of southern Africa (Debuysschere 
et al. 2015).

11.4  Late Triassic Pulses of Cynodont Diversity

In contrast with the approximately 20 taxa represented in the Anisian, mostly from 
southern and eastern Africa, and the one isolated record from the Ladinian of 
Germany, there are 68 cynodonts represented in ~35 localities in the Late Triassic, 
highlighting the notable gap in the Ladinian record of this group. The fauna from the 
Chañares Formation in Argentina and the Dinodontosaurus AZ from Brazil were 
traditionally considered Ladinian in age, but recent dating of the beds from the 
Chañares Formation shows they are early Carnian (Marsicano et al. 2016). In the 
early Carnian there are nine cynodonts recorded in faunas from Argentina and Brazil. 
Also in the early Carnian Santacuzodon AZ from Brazil and the Makay Formation 
from Madagascar, there are five taxa. In the late Carnian to early Norian the number 
of taxa increases to 17, and the diversity decreases to 12 in the late Norian. The cyn-
odont record in the Carnian is mostly represented in Gondwana with a few exceptions 
such as the traversodontid Boreogomphodon and the mammaliaform Adelobasileus 
(Figs. 11.3, 11.7, and 11.10). A great diversification of cynodonts occurs in the Norian 
and Rhaetian, with 25 genera documented. The geography of cynodont Norian record 
shows some interesting changes, with a poor representation of traversodontids (with 
only two records in Gondwana and one in Laurasia; Fig. 11.3), whereas probainog-
nathians are well represented in both subcontinents (Fig. 11.7) but mammaliaforms 
are only known from Laurasia at this age (Fig. 11.10). In the Early Jurassic there are 
35 taxa represented (not including the record of the Kota Formation of India). The 
taxonomic diversity of Laurasia duplicates that of Gondwana, with non-mammalia-
form cynodonts (tritylodontids and tritheledontids) only represented in southern 
Africa in the latter paleocontinent, and tritheledontid in the ?late  Norian-?Early 
Jurassic Riograndia AZ from Brazil. The Late Triassic-Early Jurassic transition is 
thus represented by a temporal and geographic trend in cynodont distribution: in the 
Carnian, they are mostly represented in Gondwana (although the terrestrial Carnian 
record of Laurasia is scarce), in the Norian-Rhaetian cynodonts are distributed almost 
equally in Laurasia and Gondwana and by the Early Jurassic the record is clearly best 
represented in Laurasia (Figs. 11.3, 11.7, and 11.10).
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11.5  Taxonomic Diversity of Cynodonts 
and Dinosauromorphs in the Late Triassic/Early 
Jurassic Transition

Two lineages can be highlighted as key at the end of the Triassic for different rea-
sons. On one hand, cynodonts represent the climax of the non-mammaliaform his-
tory of the synapsid lineage, with several groups represented and, in addition, the 
first members of the Mammaliaformes, whose basal representatives features some 
characteristic that are main landmarks in mammalian descendants (Kielan- 
Jaworowska et  al. 2004). On the other hand, a major revolution develops in the 
archosaur branch of the Tree of Life, with the first records followed by a reasonably 
rapid diversification of the major lineages of dinosaurs (Barrett et al. 2009; Langer 
et al. 2010). During the Late Triassic derived cynodonts (Eucynodontia) are exem-
plified by the diverse and successful traversodontids, basal probainognathians, a 
good diversity of small tritheledontids, including the closely related brasilodontids, 
the first record of tritylodontids, and a moderate initial diversity of mammaliaforms. 
By the Early Jurassic, tritylodontid diversification is a major novelty, accompanied 
by the last tritheledontids and the increasing diversity of mammaliaform groups 
(Fig. 11.17). On the archosaur line, the Late Triassic saw the diversification and 
extinction of basal dinosauriforms, and the first records of the three major lineages 
of dinosaurs: Sauropodomorpha, Theropoda, and Ornithischia (Langer et al. 2010; 
Brusatte et al. 2010), with considerable diversity of the first group especially in the 
Norian and Early Jurassic. A comparison of taxonomic diversity of cynodonts and 

Fig. 11.17 Compared abundance of different cynodont clades during the Carnian, Norian- 
Rhaetian, and Early Jurassic
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dinosauromorphs during the Late Triassic-Early Jurassic transition show very close 
values for these groups. Cynodonts were represented by 74 taxa and dinosauro-
morphs by 60  in the Late Triassic, whereas the values come closer in the Early 
Jurassic where cynodonts are known by 41 taxa and dinosaurs by 45. Even when 
this quite similar taxonomic diversity, the ecological representation for each group 
was quite different as the major diversity at the Norian and Early Jurassic was rep-
resented by medium to large Sauropodomorpha (Barrett et al. 2009; Langer et al. 
2010), whereas cynodont diversity was mostly characterized by tiny probainog-
nathians (including mammaliaforms) and only a few medium-sized tritylodontids 
having a maximum skull length of ~26 cm, with a body size definitively smaller 
than most sauropodomorphs documented at that time.

11.6  Conclusions

The Upper Triassic was a pivotal time in the evolution of the mammalian lineage. 
Eucynodonts underwent a remarkable diversification, first with a good representa-
tion of herbivorous traversodontids that were particularly prosperous in Gondwana, 
and towards the end of the Triassic with small carnivorous members of the probain-
ognathians. In the Early Jurassic the only non-mammaliaform cynodonts that 
remained diverse and abundant in some faunas were the rodent-like tritylodontids, 
a nearly Laurasian group that replaced the Triassic traversodontids. Mammaliaforms, 
first documented in the Carnian, had an unprecedented heterogeneity of morpholo-
gies at the beginning of the Jurassic, with at least nine groups showing disparate 
variability in dental morphology. This was indeed the time in which “mammalness” 
started to manifest strongly in therapsids. In the Late Triassic-Early Jurassic, the 
therapsid-to-archosaur transition took place, in which non-mammaliaform cyn-
odonts started to fade away and dinosaurs started the road to their dominion for the 
rest of the Mesozoic.
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Chapter 12
Late Triassic Nonmarine Vertebrate and 
Invertebrate Trace Fossils and the Pattern  
of the Phanerozoic Record of Vertebrate  
Trace Fossils

Adrian P. Hunt, Spencer G. Lucas, and Hendrik Klein

Abstract The diverse ichnofaunas of the Late Triassic have been studied for almost 
200 years. During the Late Triassic, facies favorable for the preservation of trace 
fossils were the result of low sea levels, monsoonal climates and the development of 
extensive depositional basins as Pangea began to fragment. The most abundant ver-
tebrate trace fossils in the Late Triassic are tetrapod tracks, including 
Brachychirotherium, Chirotherium, “Parachirotherium,” Synaptichnium, Atreipus, 
Grallator, Eubrontes, Banisterobates, Trisauropodiscus, Evazoum, Tetrasauropus, 
Pseudotetrasauropus, Eosauropus, Apatopus, Batrachopus, Rhynchosauroides, 
Gwyneddichnium, Procolophonichnium, Chelonipus, Brasilichnium and 
Dicynodontipus. There are five tetrapod footprint biochrons of Triassic age that can 
be identified across the Pangaean footprint record. Coprolites are the second most 
abundant vertebrate trace fossils in the Late Triassic and include Heteropolacopros, 
Alococoprus, Dicynodontocopros, Liassocoprus, Saurocoprus, Strabelocoprus, 
Malericoprus, Falcatocoprus and Revueltobromus. Coprolites are useful in bio-
chronology in the Late Triassic. Consumulites, dentalites (new term for bite marks), 
and burrows are moderately common in the Late Triassic. Nests and gastroliths are 
rare. All groups of vertebrate trace fossils demonstrate different diversity and abun-
dance patterns through the Phanerozoic. Most vertebrate trace fossils have their 
earliest occurrences in the Devonian. The early Permian is an acme for both tracks 
and coprolites. The Late Triassic yields abundant tracks and coprolites, and tracks 
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are also common in the Early Jurassic. The Jurassic and Cretaceous represent the 
times with the greatest diversity of vertebrate traces (tracks, coprolites, consumu-
lites, dentalites, nests and gastroliths). The Quaternary also represents a time of 
vertebrate ichnological diversity (tracks, coprolites, regurgitalites, nests and 
burrows).

Keywords Late Triassic • Nonmarine trace fossils • Tracks • Coprolites • Bromalites 
• Ichnofacies • Biostratigraphy • Ichnotaxonomy

12.1  Introduction

Buckland (1829) first mentioned vertebrate trace fossils from the Late Triassic, and, 
subsequently this time period became recognized for its rich ichnofaunas, notably 
of tetrapod tracks. The primary purpose of this paper is to review the fossil record 
of vertebrate trace fossils from the Late Triassic. We believe that there is value in a 
holistic approach to the study of vertebrate trace fossils to provide context for the 
study of the evolution and ecology of Late Triassic faunas (cf. Hasiotis et al. 2007; 
Hunt and Lucas 2007b, 2016d). We also believe that there is importance in under-
standing the pattern of the Phanerozoic record of vertebrate trace fossils and its 
biases. Thus, we provide a preliminary discussion of that dataset that we hope will 
stimulate other workers to analyze further this important aspect of the fossil record.

12.2  Triassic World

Today, rocks of Triassic age (about 201–252 million years ago) are recognized on 
all of the continents (e. g., Sherlock 1948; Kummel 1979). These are mostly sedi-
mentary rocks consisting dominantly of shallow-water carbonates of marine origin 
and siliciclastic red beds of nonmarine origin. These rocks represent a record of 
sedimentation on and around the vast Pangean supercontinent and tell the tale of its 
final union and the initiation of its subsequent fragmentation. The Triassic was a 
time of great continental emergence due to a combination of widespread epeiro-
genic uplift and relatively low sea-level (Embry 1988, 1997).

At the onset of the Triassic, the world’s continents were assembled into a single 
supercontinent called Pangea. The rest of the globe comprised a single vast ocean 
called Panthalassa, with a westward-extending arm named Tethys. The superconti-
nent drifted northward and rotated clockwise throughout the Triassic, so there was 
considerable latitudinal spread to the landmass, which was nearly symmetrical 
about the equator. However, no sooner had the supercontinent been assembled than 
significant fragmentation began. Thus, Gondwana and Laurussia began to separate 
in Late Triassic time with the onset of rifting in the Gulf of Mexico basin (Lucas 
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2000). Most Triassic sedimentation took place in one of three types of basins: fore-
land, fore-arc, or extensional (Lucas and Orchard 2013). Most of the Pangean mar-
ginal basins were part of an array of arc-trench systems that surrounded much of the 
supercontinent. A good example is the complex Cordilleran basin of western North 
America, in which deposition took place between an offshore island arc and the 
continental margin. In the western United States portion of this basin, 1.2 km of 
siliciclastic red beds were shed to the northwest and interfinger with marine carbon-
ates deposited in the arc-trench system (Lucas 2000). Of the (mostly Late Triassic) 
extensional basins, perhaps the best studied is the Newark basin in the eastern 
United States. This was a dip–slip-dominated half graben in which about 7 km of 
fluvial and lacustrine Upper Triassic–Lower Jurassic sediments accumulated. There 
were also other types of Triassic extensional basins more complex than the Newark 
half grabens, such as those of the Germanic basin system of northwestern Europe.

Early Mesozoic plate reorganization was apparently associated with the develop-
ment of new seafloor-spreading axes, which caused a general reduction of ocean 
basin volume during the Triassic. Pangea was very emergent and, because of its 
high freeboard, the Triassic was a time of relatively low sea-level, which may be 
termed a first-order Pangean global lowstand (Embry 1988, 1997).

Triassic climates marked the transition from the late Paleozoic icehouse to the 
mid-late Mesozoic greenhouse (Tanner 2017). During the Triassic, there were no 
glacial ages, and there is no evidence of pack ice in the boreal or austral realms. The 
Triassic was thus a time of increased warmth with relatively wide subtropical dry 
(desert) belts at 10°–30° latitude, as attested to by the broad latitudinal distribution 
of Triassic evaporites. There was also strong east–west climatic asymmetry across 
Pangea, with eastern Pangea (at least between latitudes 40°S and 40°N) being rela-
tively warmer and wetter because of the presence of Tethys and the absence of an 
Atlantic Ocean to facilitate oceanic heat exchange. With the Pangean landmass cen-
tered near the equator during the Triassic, and a prominent Tethyan bight, climate 
models suggest that seasonality was monsoonal. Hence, there were only two sea-
sons, wet and dry. The abundant rainfall was concentrated in the summer months, 
and there was little annual temperature fluctuation.

The terrestrial trace fossil record of the Late Triassic is extensive. Low sea levels, 
monsoonal climates and the development of extensive depositional basins as 
Pangaea began to fragment during the Late Triassic all created facies in which ter-
restrial trace fossil preservation was favored.

12.3  Tetrapod Footprints

An extensive record of tetrapod footprints is known from many Late Triassic locali-
ties on all of the continents except Antarctica (Fig. 12.1). Here, we begin with a 
brief review of what we regard as the valid ichnogenera of Late Triassic tetrapod 
footprints. We follow with a review of the Late Triassic footprint assemblages and 
then put these into their biostratigraphic and ichnofacies contexts.
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12.3.1  Ichnotaxonomy

12.3.1.1  Archosaur Footprints

Brachychirotherium Beurlen 1950
Type ichnospecies: Brachychirotherium hassfurtense Beurlen 1950.
Additional ichnospecies: B. eyermani, B. thuringiacum.
Distribution: Upper Triassic Germany, Italy, Morocco, Greenland, USA (Chinle 

Group, Newark Supergroup), Argentina.
Description: Brachychirotherium are pentadactyl, broad pes imprints with short, 

clumsy digits and thin, short claws (Figs. 12.2a and 12.3a–d). Digit proportions of 
the anterior digit group are III > II > IV > I. Digit V is preserved only as an oval 
basal pad posterolateral to the anterior digit group, without the phalangeal part, and 
laterally spread in the type ichnospecies, but, on the axis of digit IV in stratigraphi-
cally younger forms such as Brachychirotherium parvum (compare Fig. 12.3a with 
Fig. 12.3c, d). Creases between rounded phalangeal and metatarsophalangeal pads 
are indistinct. The manus is much smaller and of similar shape. Digits I and V in the 
imprints can be missing. Remarkable is the occurrence of tridactyl versions due to 
different substrate conditions. Rare trackways from the Chinle Group of North 
America show a narrow pattern with pes imprints that are slightly rotated outward 
(Fig. 12.4a).

Fig. 12.1 Distribution of principal Late Triassic tracksites on Pangea (from Lucas 2007, updated). 
Locations are: (1) Sydney Basin, Australia; (2) Karoo Basin, South Africa; (3) Argana Basin, 
Morocco; (4) western Europe, (5) Italy; (6) Chinle Basin, western United States; (7) Newark 
Basin, New Jersey-Pennsylvania; (8) Argentina; (9) Brazil; (10) East Greenland; (11) China. Base 
map after Wing and Sues (1992)
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Fig. 12.2 Late Triassic tetrapod footprint ichnotaxa. (a) Brachychirotherium hassfurtense, pes 
imprint, lectotype of Karl and Haubold (1998), from the Hassberge Formation (Carnian) of Germany. 
(b) Parachirotherium cf. P. postchirotherioides, pes manus-set from the Timezgadiouine Formation 
(T5, Carnian) of the Argana Basin, Morocco. (c) Atreipus isp. Pes-manus set from the Hassberge 
Formation (Carnian) of Germany. (d) Grallator cursorious, Redonda Formation (Norian-Rhaetian), 
east-central New Mexico. (e) Evazoum sirigui, artificial cast of holotype; original from Montemarcello 
Formation of La Spezia, Italy. (f) Apatopus lineatus, set from holotype trackway, Passaic Formation 
(Newark Supergroup, Norian) of New Jersey. (g) Rhynchosauroides isp. from Redonda Formation 
(Norian-Rhaetian) of east-central New Mexico. (h) Dicynodontipus isp. (“Callibarichnus ajesta-
rani”) from Vera Formation (Carnian) of Argentina. (i) Gwyneddichnium majore from Passaic 
Formation (Newark Supergroup, Norian) of New Jersey. I from Lucas et al. (2014)
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Fig. 12.3 Late Triassic tetrapod footprint ichnotaxa as sketches. (a) Brachychirotherium hassfur-
tense, lectotype from Hassberge Formation (Carnian) of Germany. (b) B. thuringiacum, holotype 
from Hassberge Formation (Carnian) of Germany. (c) B. parvum, from Passaic Formation (Norian) 
of New Jersey. (d) B. eyermani, holotype from Passaic Formation (Norian), New Jersey. 

A.P. Hunt et al.



453

Fig. 12.4 Trackways of 
archosaurs from the 
Redonda Formation 
(Chinle Group, Norian- 
Rhaetian) of east-central 
New Mexico as sketches. 
(a) Brachychirotherium 
parvum. (b) Evazoum 
sirigui. From Lucas et al. 
(2010b)

Fig. 12.3 (continued) (e) Chirotherium lulli, holotype trackway from Passaic Formation (Norian) 
of New Jersey. (f) Chirotherium wondrai, holotype from Steigerwald Formation (Carnian) of 
Germany. (g) Parachirotherium cf. P. postchirotherioides from Timezgadiouine Formation (T5, 
Carnian) of the Argana Basin, Morocco. (h) Atreipus milfordensis, composite, from Passaic 
Formation (Norian) of New Jersey. (i) Grallator isp. from Rock Point Formation of Colorado. (j) 
Tetrasauropus unguiferus, pes-manus set of holotype trackway from Lower Eliott Formation 
(Norian-Rhaetian) of Lesotho, southern Africa. (k) Banisterobates boisseaui, holotype from Dry 
Fork Formation (Carnian) of Virginia. (l) Trisauropodiscus aviforma, from Lower Eliott Formation 
(Norian- Rhaetian) of Lesotho, southern Africa. (m) Evazoum sirigui, holotype, pes imprint from 
Montemarcello Formation (Carnian) of La Spezia, Italy. (n) Eosauropus cimarronensis, from 
Sloan Canyon Formation of New Mexico. (o) Pseudotetrasauropus bipedoida, holotype, from 
Lower Eliott Formation (Norian-Rhaetian) of Lesotho, southern Africa. (p) Pentasauropus incredi-
bilis, from Lower Eliott Formation (Norian-Rhaetian) of Lesotho, southern Africa. (q) Apatopus 
lineatus, trackway reconstruction by Baird (1957) from Passaic Formation (Norian-Rhaetian) of 
New Jersey. (r) Apatopus lineatus, holotype set from Passaic Formation (Norian-Rhaetian) of New 
Jersey. (s) ?Batrachopus, from Passaic Formation (Norian-Rhaetian), New Jersey. After Haubold 
(1971b), Karl and Haubold (1998), Gaston et al. (2003), Nicosia and Loi (2003), D’Orazi-Porchetti 
and Nicosia (2007), Klein and Lucas (2010a), Lagnaoui et al. (2012)
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Remarks: The ichnogenus Brachychirotherium was introduced by Beurlen in 
1950 based on material from the Coburger Sandstein of the Hassberge Formation 
(Upper Triassic, Carnian) in Germany. Subsequently, the name was used informally 
by Baird (1957) and Haubold (1967, 1971a) in their classifications of chirotheriids 
by the term “Brachychirotherian Group” for forms with a broad sole surface and 
short, clumsy digits. Haubold (1971b) confirmed the validity of the ichnogenus and 
added small footprints of similar shape from the Lower-Upper Triassic. From the 
Upper Triassic he proposed the new combinations B. parvum, B. eyermani and B. 
thuringiacum. Karl and Haubold (1998), in their revision of the type material from 
the German Upper Triassic, recognized problems when applying the diagnosis of 
Brachychirotherium to Lower-Middle Triassic forms.

Klein and Haubold (2004) demonstrated extensive extramorphological variation 
of footprints of the ichnogenus Synaptichnium from Middle Triassic deposits of 
Germany, showing a transition to a very brachychirothere-like shape. They con-
cluded that the ichnogenus should be restricted to the Upper Triassic material and 
that “Brachychirotherium” from stratigraphically older strata might represent other 
ichnogenera, including Synaptichnium. Hunt and Lucas (2007a) referred all 
Brachychirotherium material from the Upper Triassic to the ichnospecies B. par-
vum. Ichnospecies presently considered as valid by us are B. hassfurtense (type 
ichnospecies) and B. thuringiacum from the Carnian-Norian of Germany as well as 
B. parvum from the Newark Supergroup and Chinle Group (Carnian-Norian) of 
North America.

Trackmaker: Brachychirotherium has been attributed to crocodylian stem and 
crocodylomorph archosaurs. In particular, aetosaurs such as Typothorax coccina-
rum (Lucas and Heckert 2011), but also rauisuchians such as Postosuchus and even 
sphenosuchids have been discussed (Karl and Haubold 1998; Klein et  al. 2006; 
Avanzini et al. 2010b; Lucas and Heckert 2011; Lucas et al. 2010b). The narrow 
trackway pattern of Brachychirotherium, one of the most plausible arguments 
against an aetosaur interpretation, has been partly refuted by demonstrating a pos-
sible narrow gauge of Typothorax derived from skeletal anatomy (Heckert et  al. 
2010; Lucas and Heckert 2011).

Chirotherium Kaup 1835
Chirotherium lulli Baird 1957
Distribution: Passaic Formation of Newark Supergroup, North America.
Description: Trackways with pentadactyl pes (length 4.4  cm) and manus 

imprints of chirotheriid shape (Fig. 12.3e). The stride length is 23.2 cm, and the 
pace angulation 150°. Pes and manus imprints are turned outward by 29° relative to 
the midline. Pes imprints long and slender. The anterior digit group shows the digit 
proportions III > IV > II > I and an oblique cross axis angle of 68° (Baird 1957). 
Digit V is positioned posterolaterally. It has an oval basal pad and a restricted pha-
langeal portion, which is curved backward. Acuminate claws are visible on digits 
I–IV. The overall shape of the pes imprint is long and slender. Phalangeal and meta-
tarsophalangeal pads are distinct. The rounded manus, which is positioned anterior 
to the pes, is indistinct, but digit III seems to be the longest.
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Remarks: Chirotherium lulli was introduced by Baird (1957) based on foot-
prints from the Passaic Formation of the Newark Supergroup at Milford, New 
Jersey. The assignment of the ichnospecies to Chirotherium was followed by 
Haubold (1971a, b). However, this is presently being re-evaluated by some of the 
authors.

The functionally tetradactyl anterior digit group, with a robust digit I, the oblique 
cross axis and the strongly outward rotated orientation in the trackway, are different 
from all other ichnospecies of Chirotherium. There is a slight similarity to conserva-
tive forms from the Lower-Middle Triassic such as Synaptichnium diabloense, and 
it cannot be excluded that some Synaptichnium-like forms range into the Upper 
Triassic. This is indicated also by some isolated material from the Upper Triassic 
Timezgadiouine Formation of Morocco (Lagnaoui et al. 2012).

Chirotherium wondrai Heller 1952
Distribution: Ansbacher Sandstein, Steigerwald Formation (Upper Triassic, 

Carnian), Germany.
Description: These are pentadactyl pes (up to 20  cm in length) and manus 

imprints of typical chirotheriid shape (Fig. 12.3f). In the pes, digit III is longest, 
followed by II, IV and I. Digit V has a massive oval basal pad that is extended into 
a broad posterior end of the track, and a thinner, slightly recurved phalangeal por-
tion. Anterior digits I–IV are robust, with rounded pads and elongate, triangular 
claws. The posterior margin of the digit group I–IV is sharp and straight. The manus 
is rounded, showing short digits with tapering distal ends. Digit III is longest. No 
trackways are known thus far.

Remarks: Chirotherium wondrai was described by Heller (1952) from the 
Ansbacher Sandstein of the Steigerwald Formation (Upper Triassic, Carnian) of 
Germany. It is the only occurrence known. Following this author, Haubold (1971a, 
b) also assigned these footprints to Chirotherium. However, an ongoing review of 
the ichnogenus indicates a determination as chirotheriids incertae sedis. This is 
based on the functionally tetradactyl anterior portion of the pes with a robust digit I, 
whereas in Chirotherium the anterior pes is functionally tridactyl, and digit I is thin-
ner than the other digits.

“Parachirotherium” cf. “P.” postchirotherioides (Rehnelt 1950)
Distribution: Benk Formation (Keuper, Middle Triassic, Ladinian) of northern 

Bavaria, Germany; Timezgadiouine Formation (T5, Upper Triassic, ?Carnian) of 
the Argana Basin, Morocco.

Description: Small to medium-sized (10–20 cm length) pentadactyl pes imprints 
with a pronounced, nearly symmetrical digit group II–IV in which digit III is longest 
and IV is slightly longer than II (Figs. 12.2b and 12.3g). Digit I is short, thin and 
strongly shifted posteriorly, and digit V is posterolaterally positioned and strongly 
reduced to an elongate oval or slightly outward-curved impression. Claws on digits 
I–IV are elongate triangular and sharp. The manus is small, if completely preserved, 
pentadactyl, with digit III longest, IV and V strongly reduced and laterally spread, 
and I short and thin, with small acuminate claws. Trackways have a stride length of 
66 cm and a pace angulation of 170°. Manus imprints are more strongly turned out-
ward compared with the pes imprints and relative to the midline.
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Remarks: The ichnospecies was erected based on material from the Middle 
Triassic Benk Formation (Ladinian) of Germany by Rehnelt (1950) and described 
as Dinosaurichnium postchirotherioides. Kuhn (1958a) referred it to his new ichno-
genus Parachirotherium. Haubold and Klein (2000, 2002) considered 
Parachirotherium as valid, however, they demonstrated that in complete trackways, 
these imprints show variation between pentadactyl and tridactyl (grallatorid) mor-
phology as well as an occasional lack of the manus impression, indicating faculta-
tive bipedality of the trackmaker.

The general morphology of the pes and manus imprints match the diagnosis of 
the ichnogenus Chirotherium in the pronounced pedal digit group II–IV, with digit 
III being longest, and the strongly reduced and thinner digit I.  Especially in C. 
barthii there are other congruent features such as the backward shift of pedal digit I 
and the short and laterally spread digits IV and V in the manus. Morphologically, a 
transition from C. barthii to Sphingopus and Parachirotherium morphotype 
imprints, sometimes being indistinguishable, has been documented from Middle 
Triassic deposits of Germany and Italy (Haubold and Klein 2002; Avanzini and 
Wachtler 2012). The only Late Triassic record of this ichnotaxon is from Morocco 
(Lagnaoui et al. 2012, 2016).

Synaptichnium Nopcsa 1923
Type ichnospecies: Synaptichnium pseudosuchoides 1923.
Distribution: Lower-Middle Triassic of Europe (Buntsandstein-Muschelkalk 

and coeval strata in Germany, France, Great Britain, The Netherlands, Spain, Italy 
and Poland) and North America (Moenkopi Group); Upper Triassic of Morocco.

Description: Relatively small (up to 10 cm pes length) ectaxonic pes imprints 
with digits increasing in length from I–IV, and digit IV being longest or subequal in 
length with digit III. Digit V antero-laterally directed, straight, or slightly backward 
curved. Manus smaller, but relatively large for chirotheriids, with digit III being lon-
gest. Sharp claws are present on digits I–IV. The single Upper Triassic specimen from 
Morocco is a very small, ectaxonic left pes impression, preserved with the anterior 
digit group I–IV (0.9 cm in length), in which digit IV is subequal in length to digit III, 
and there are small claw traces. Digit V and the manus imprint are missing.

Remarks: Lagnaoui et al. (2012) described an isolated occurrence as the first 
Late Triassic record of Synaptichnium from the Timezgadiouine Formation (T5, 
Carnian) of the Argana Basin, Morocco. The specimen is distinguished from mor-
phologically similar Batrachopus by the digit proportions. In Batrachopus, digit III 
is longest (see below).

Trackmaker: Archosauriformes, either crocodylian-stem members or archo-
saurs more basal to the crown group.

Atreipus Olsen and Baird 1986
Type ichnospecies: Atreipus milfordensis (Bock 1952)
Distribution: Lockatong and Passaic formations of the Newark Supergroup 

(lithostratigraphy of Weems et al. 2016), in the Newark, Gettysburg, Dan River and 
Fundy basins of eastern North America; Rock Point Formation, Chinle Group of 
the western USA (Lucas et  al. 2006a); Steigerwald and Hassberge formations 
(Keuper, Carnian-Norian) of Germany (Haubold and Klein 2002); Carnian of 
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Ardèche region, France (Courel and Demathieu 2000); Travenanzes Formation 
(Carnian) of northern Italy (D’Orazi-Porchetti et  al. 2008); Timezgadiouine 
Formation (T5-T6, Upper Triassic, Carnian) of the Argana Basin, Morocco 
(Lagnaoui et al. 2012, 2016). Depending on the different evaluation of the ichno-
taxonomy, some researchers identify Atreipus-Grallator plexus footprints as early 
as the Middle Triassic (Anisian-Ladinian) in different formations of Germany and 
France (Haubold and Klein 2002).

Description: Trackway of a quadruped with a relatively small (12–17 cm long), 
tridactyl, tulip-shaped pes in which digit III is longest and the digits are thick, with 
oval metatarsophalangeal pads (Figs. 12.2c and 12.3h). The manus impression is 
small, tridactyl or tetradactyl-pentadactyl and digitigrade.

Remarks: Without the manus impression, the pes impression of Atreipus would 
readily be assigned to Grallator. However, the manus is of chirothere morphology. 
Haubold and Klein (2000, 2002) described footprints from the Middle Triassic 
(Ladinian) Benk Formation, formerly assigned to “Coelurosaurichnus,” as Atreipus 
and proposed the plexus Atreipus-Grallator for trackways of facultative bipeds 
from this unit. The ichnogenus has a broad geographic distribution in North America 
in strata of Carnian-Norian age (Olsen and Baird 1986; Lucas et al. 2006a).

Trackmaker: Olsen and Baird (1986) provided a lengthy discussion of the 
trackmaker of Atreipus to conclude that it was most likely made by an early ornith-
ischian dinosaur, a conclusion also advocated by Szajna and Hartline (2003). 
However, tracks of Atreipus have been attributed to a theropod dinosaur (e.g., 
Thulborn 1990), and Haubold and Klein (2000) attributed them to a dinosauro-
morph foot form that is a precursor to the theropod foot form of Grallator. Another 
possibility, mentioned by Lucas and Sullivan (2006), is that a dinosauriform such as 
Silesaurus (see Dzik 2003) may have been the Atreipus trackmaker. Probably, a 
dinosaur or a tetrapod close to a dinosaur (dinosauriform or dinosauromorph) made 
the track called Atreipus, even if stem-crocodylian archosaurs such as Poposaurus 
were able to produce tridactyl pes imprints similar to Atreipus (Farlow et al. 2014). 
However, Poposaurus was a biped and left no manus impression. Indeed, it is pos-
sible that both dinosauromorphs and dinosaurs made these tracks.

Given the absence of dinosauromorphs as body fossils after the Carnian, and the 
arguments of Olsen and Baird (1986), it cannot be excluded that the Atreipus track-
maker in the Norian of Pennsylvania documented by Lucas and Sullivan (2006) was 
an ornithischian dinosaur. If this is correct, then ornithischians were locally abun-
dant during Norian time in what is now the Newark basin, refuting the suggestion of 
Parker et al. (2005) and Nesbitt et al. (2007), based on a reappraisal of the bone 
record, that there were no Triassic ornithischians in North America.

Grallator E. Hitchcock, 1858
Type ichnospecies: Grallator cursorius E. Hitchcock, 1858
Distribution: Grallator is almost ubiquitous in Late Triassic tracksites of the 

Chinle Group in the western USA, of the Newark Supergroup in eastern North 
America and in western Europe (e.g., Conrad et al. 1987; Lockley and Hunt 1993, 
1995, 1999; Lockley et al. 1993, 1996; Gand et al. 2000, 2005; Haubold and Klein 
2000; Szajna and Hartline 2003; Gaston et al. 2003; Lockley and Eisenberg 2006; 
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Lucas et  al. 2006b). Further occurrences  are in Greenland (Milàn and Bromley 
2006; Milàn et al. 2004, 2006; Gatesy et al. 1999), South America (Brazil) (Silva 
et al. 2008c), southern Africa (Ellenberger 1972) and China (Xing et al. 2013).

Description: Trackway of a biped with small to medium-sized (4–15 cm long) 
tridactyl pes impressions with slender digits and tapering claws (Figs. 12.2d and 
12.3i). Digit III significantly longer than digits II and IV, which are of subequal 
length, thus differing from the pattern in tridactyl versions of the chirotheroid type. 
Phalangeal pads are often well preserved. Trackway pattern with high pace angula-
tion (up to 175°) and stride lengths up to 117 cm in specimens of 8–9 cm pes length.

Remarks: Grallator is a common tetrapod footprint at most Late Triassic foot-
print localities.

Trackmaker: Grallator is widely regarded as the footprint of a relatively small 
theropod dinosaur such as Coelophysis (Olsen et al. 1998).

Eubrontes E. Hitchcock, 1845
Type ichnospecies: Eubrontes giganteus E. Hitchcock, 1845.
Description: Trackway of a biped of relatively large size (pes >25 cm long). The 

pes impression is broad and tridactyl with a relatively short digit III, and a hallux 
that is rarely, if ever, impressed. Divarication of outer digits averages 25°–40°.

Distribution: Eubrontes tracks are well known from Lower Jurassic strata, espe-
cially in southern Africa, Western Europe, eastern North America and the American 
Southwest, and some have advocated that the lowest occurrence (LO) of Eubrontes 
corresponds to the Triassic-Jurassic boundary. However, there are well documented 
Late Triassic records of Eubrontes in Australia, southern Africa, western Europe, 
Greenland and North America (Lucas et al. 2006a). Indeed, the LO of Eubrontes in 
the Newark Supergroup of eastern North America, long considered to be equivalent 
to the base of the Jurassic, is demonstrably of Late Triassic age (Lucas and Tanner 
2007a, b, 2015).

Remarks: Several authors have argued (most recently Rainforth 2005) that 
Eubrontes and the smaller Grallator should be the same ichnogenus, as they are 
only reliably distinguished on the basis of size. While we agree with this in general, 
we still use Eubrontes here because of the biostratigraphic significance that has 
been attached to this ichnogenus, understood as a Grallator-like pes imprint larger 
than 25 cm long. Eubrontes as used here, also encompasses other large grallatorid 
ichnotaxa from the Triassic-Lower Jurassic, such as Kayentapus, Dilophosauripus 
and Gigandipus, considered by some authors as distinct from Eubrontes, as well as 
several forms described under separate names from the Elliot Formation of South 
Africa (Ellenberger 1970, 1972, 1974). Full agreement on the synonymy of these 
ichnogenera has not been reached.

Trackmaker: There is virtually universal agreement that the Eubrontes track-
maker was a relatively large, early Mesozoic theropod dinosaur, such as the cerato-
saur Dilophosaurus. Weems (2003) argued that a Plateosaurus-like prosauropod was 
the Eubrontes trackmaker, but the disparity between prosauropod foot structure and 
Eubrontes tracks is so great that we dismiss Weems’s contention, as have others.

Banisterobates Fraser and Olsen 1996
Type ichnospecies: Banisterobates boisseaui Fraser and Olsen 1996 monotypic.
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Distribution: Dry Fork Member of Stockton Formation (Upper Triassic, 
Carnian) of Dan River Group, Virginia, USA (Fraser and Olsen 1996).

Description: The single known specimen is a trackway with three successive 
tetradactyl pes imprints and associated manus imprints of a very small individual 
(pes length 1.8–2.5 cm) (Fig. 12.3k). The stride length is 12.2 cm, and the pace 
angulation 146°. Imprints are moderately rotated outward relative to the midline. In 
the mesaxonic pes, digit I is strongly reduced, and digit III is longest. The manus is 
poorly preserved, showing three short digit impressions (Fraser and Olsen 1996).

Remarks: The combination of a grallatorid pes with a manus impression resem-
bles the ichnogenus Atreipus (see above), however, the latter lacks a digit I impres-
sion. The presence of a distinct hallux trace justifies maintaining Banisterobates as 
a valid ichnogenus, even if a relationship of morphological peculiarities to the very 
small size and ontogenetic growth of the trackmaker cannot be excluded.

Trackmaker: A small dinosauromorph, either a juvenile individual or represen-
tative of a small adult species can be considered as the most probable trackmaker.

Trisauropodiscus Ellenberger 1972
Type ichnospecies: Trisauropodiscus aviforma.
Distribution: Lower Elliot Formation (Upper Triassic) Lesotho, southern Africa.
Description: Trisauropodiscus are small (4–5 cm length), tridactyl-tetradactyl 

pes imprints of bird-like shape (Fig.  12.3l). Digit I (hallux) is partly posteriorly 
oriented. Digits are slender with sharp distal ends.

Remarks: Ellenberger (1972) introduced the ichnogenus based on trackways 
and numerous isolated imprints from the Lower Elliot Formation of Lesotho, south-
ern Africa.

Trackmaker: The avian affinity is doubtful. The Upper Triassic age suggests a 
non-avian theropod with very bird-like feet.

Evazoum Nicosia and Loi 2003
Type ichnospecies: Evazoum sirigui Nicosia and Loi 2003.
Distribution: Montemarcello Formation (Carnian) of La Spezia (Italy) (Nicosia 

and Loi 2003); Chinle Group (Norian-Rhaetian) of North America (Lockley and 
Lucas 2013; Lockley et  al. 2006b; Lucas et  al. 2010b); Hassberge Formation 
(Kieselsandstein, Carnian) of southern Germany (Haderer 2015); Fleming Fjord 
Formation (Norian-Rhaetian) of East Greenland (Lallensack et al. 2017).

Description: Trackways with small to medium-sized tri- and tetradactyl pes 
imprints (functionally tridactyl) with digit III being longest, II and IV being shorter 
and subequal in length or IV slightly longer than II but relatively longer relative to 
digit III compared with Grallator (Figs. 12.2e and 12.3m). Sharp claw marks are 
present on all digits. Digits II–IV are straight, and digit I is often curved inward. All 
digits show variably developed phalangeal pads. A distinct metatarso-phalangeal 
pad is present behind digits II and IV. Trackways have relatively large pace angula-
tions, ranging between 140° and 170° (Fig. 12.4b).

Remarks: Nicosia and Loi (2003) described the ichnogenus Evazoum based on 
material from the Upper Triassic (Carnian) of La Lerici, Italy. These are tetradactyl 
imprints of a biped or facultative biped. Lockley et al. (2006b) re-assigned tri- to 
pentadactyl imprints and trackways of a biped from the Redonda Formation of the 
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Chinle Group in east-central New Mexico to this ichnogenus. The footprints from 
New Mexico were formerly assigned to Pseudotetrasauropus (see Lockley et al. 
2001, 2006b; Lucas et al. 2010b), an ichnogenus known from the Upper Triassic of 
southern Africa (Ellenberger 1970, 1972; D’Orazi-Porchetti and Nicosia 2007). 
Pseudotetrasauropus are tetra-pentadactyl large imprints of chirothere-like shape. 
Trackways lack manus imprints. The trackmaker was therefore generally consid-
ered to be a biped. In contrast with these interpretations, Klein et al. (2006) consid-
ered the tracks assigned to Evazoum from the Redonda Formation as 
extramorphological variations of Brachychirotherium, because in some cases a tran-
sition from typical Brachychirotherium to Evazoum can be observed. For discussion 
of ichnotaxonomic problems resulting from these footprints and a justification of 
the validity of Evazoum see Lucas et al. (2010b).

Trackmaker: Evazoum is generally considered to be the footprint of a prosauro-
pod dinosaur such as Plateosaurus (Lockley et al. 2006b; Lucas et al. 2010b), but 
see D’Orazi-Porchetti et al. (2008) for alternative interpretations.

Eosauropus Lockley et al. 2006
Type ichnospecies: Eosauropus cimarronensis Lockley et al. 2006.
Distribution: Chinle Group (Norian-Rhaetian), North America; Upper Triassic 

Fleming  Fjord Formation (Norian-Rhaetian), Greenland; Xujiahe Formation 
(Norian-Rhaetian), China.

Description: Eosauropus are relatively narrow trackways of a large quadruped 
(Fig. 12.3n). Characteristic features are strong heteropody and short steps and stride. 
The pes imprint has a “sauropod-like” shape. It is tetradactyl to pentadactyl, elon-
gate, oval and shows marked claws that are strongly rotated outward. The manus is 
transversely elongate with four to five outwardly-rotated digit traces and with a 
concave posterior margin (Lockley et al. 2006a).

Remarks: The ichnogenus was introduced by Lockley et al. (2006a) based on 
material from the Chinle Group of New Mexico. Similar trackways were reported 
from China (Xing et  al. 2014b). Recently, “sauropod-like” trackways described 
from the Upper Triassic of Greenland as Tetrasauropus (Jenkins et al. 1994; Lockley 
and Meyer 2000) were re-assigned to Eosauropus (Lallensack et al. 2017).

Trackmakers: Eosauropus is considered to be the footprint of sauropodo-
morphs, possibly basal sauropods.

Tetrasauropus Ellenberger 1972
Type ichnospecies: Tetrasauropus unguiferus Ellenberger 1972.
Distribution: Lower Elliot Formation (Upper Triassic) Lesotho, southern Africa.
Description: Tetrasauropus are large (40–50  cm pes length) pes and manus 

imprints (Fig. 12.3j). These are plantigrade and tetradactyl, with strong entaxony. 
Trackways show the long axis of the pes nearly parallel to the midline. Prominent, 
strongly inward bent claws are present. The manus is smaller and has four digits. Its 
position is anterolateral to the pes imprint.

Remarks: The ichnogenus was erected by Ellenberger (1972) based on material 
from the Lower Elliot Formation of Lesotho, southern Africa. It was confirmed by 
D’Orazi-Porchetti and Nicosia (2007), who also re-evaluated morphologically simi-
lar tetradactyl footprints that have been described from this region under various 
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ichnogenus names (Ellenberger 1972; see below). Subsequently, Tetrasauropus was 
partly identified also from Upper Triassic (Norian-Rhaetian) strata of Switzerland 
and Greenland (Furrer 1993; Jenkins et al. 1994; Lockley and Meyer 2000; Meyer 
et  al. 2013; Sulej et  al. 2014). Their correct assignment, however, is doubtful. 
Tetrasauropus from Greenland was recently re-assigned to Eosauropus (Lallensack 
et al. 2017; see also Clemmensen et al. 2016).

Trackmaker: Sauropodomorpha have been considered as the trackmakers by 
most researchers (Lockley and Meyer 2000; D’Orazi-Porchetti and Nicosia 2007).

Pseudotetrasauropus Ellenberger 1972
Type ichnospecies: Pseudotetrasauropus bipedoida Ellenberger 1972.
Distribution: Lower Elliot Formation (Upper Triassic), Lesotho, southern 

Africa; ?Upper Triassic, southwestern France.
Description: Large tetradactyl-pentadactyl footprints of a biped showing 

straight, anteriorly oriented digits with rounded distal ends (Fig. 12.3o). Digit V, if 
present, preserved with a basal pad only, and positioned in line with digit 
IV. Trackways with pes imprints being rotated inward or outward.

Remarks: Ellenberger (1972) originally described Pseudotetrasauropus from 
the Lower Elliot Formation of Lesotho (southern Africa). The ichnogenus was also 
identified from the Chinle Group (Late Triassic) of New Mexico (see Lucas et al. 
2010b for ichnotaxonomic overview), however, specimens from this latter region 
were later referred to Evazoum (see above). Other possible occurrences are in the 
Upper Triassic of southwestern France (Ellenberger 1965; Ellenberger et al. 1970; 
Gand et al. 2000). Olsen and Galton (1984) considered Pseudotetrasauropus as a 
bipedal Brachychirotherium. The similarity of pes imprints with Brachychirotherium 
based on the digit proportions is remarkable, however, Brachychirotherium is 
clearly the footprint of a quadruped. D’Orazi-Porchetti and Nicosia (2007) con-
firmed Pseudotetetrasauropus as a valid ichnogenus.

Trackmaker: Pseudotetrasauropus is mostly interpreted as a sauropodomorph 
footprint.

Pentasauropus Ellenberger 1972
Type ichnospecies: Pentasauropus incredibilis Ellenberger 1972.
Distribution: Lower Elliot Formation (Upper Triassic), Lesotho, southern 

Africa.
Description: Trackways of large tetrapods showing low heteropody (Fig. 12.3p). 

Pentadactyl pes and manus imprints preserved only as rounded distal ends of digits 
that are arranged in an arc-like pattern. Sometimes, a rounded sole can be observed. 
Trackways relatively broad with reduced pace angulation and pes and manus orien-
tation being forward or inward.

Remarks: Ellenberger (1972) introduced Pentasauropus together with numer-
ous new ichnotaxa from the Lower Elliot Formation of Lesotho, southern Africa. A 
re-examination by D’Orazi-Porchetti and Nicosia (2007) confirmed Pentasauropus 
as a valid ichnogenus.

Trackmaker: Considered were, for example, sauropodomorphs and therapsids 
(Lockley and Meyer 2000; D’Orazi-Porchetti and Nicosia 2007).

Apatopus Baird 1957
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Type ichnospecies: Apatopus lineatus (Bock 1952), monotypic.
Distribution: Passaic, Stockton and Lockatong formations (Newark Supergroup, 

Carnian-Norian), Chinle Group (North America); Hassberge Formation (Coburger 
Sst., Carnian), southern Germany; Carnian of Northern Italy and Poland; 
Timezgadiouine Formation (T5, Upper Triassic, Carnian) of the Argana Basin, and 
unnamed Carnian unit of the Ourika Basin, Morocco; Norian of Thailand.

Description: Small to medium-sized pentadactyl pes and manus imprints, mostly 
showing faintly impressed, indistinct phalangeal pads (Figs.  12.2f and 12.3q, r). 
Digits with sharp claws, often distally extended into scratches and furrows, indicat-
ing a transition to swim tracks. A few specimens with skin texture are known (Klein 
and Lucas 2013). Pes imprints are elongate and slender, plantigrade to semiplanti-
grade. In the pes imprint, digits increase in length from I–IV, and digit IV is longest 
or subequal in length with III. Digit IV is often faintly impressed or even missing. 
Digit V is straight and antero-laterally extended, posteriorly often running into a 
“heel.” Digits with well-developed articular swellings and sharp claws. Manus pen-
tadactyl, semiplantigrade, short, rounded and symmetrical around digit III, which is 
longest; position in the trackway anterior or slightly medial to the pes. Trackways 
show pes imprints more strongly rotated outward than the manus and a relatively 
low pace angulation (108°–120°) (Klein and Lucas 2013).

Remarks: The ichnogenus Apatopus was introduced by Baird (1957), with the 
type ichnospecies A. lineatus. The material from the Passaic Formation of New 
Jersey was originally described by Bock (1952) as Otozoum lineatum. Baird (1957) 
recognized the distinctive morphology, with the pes showing digits that increase in 
length from I to IV and with a long, straight and anterolaterally directed digit V. He 
also noticed the crocodylian-like overall shape of the imprints and webbing between 
digits. The webbing, however, could not be confirmed during the re-examination of 
the type material and the revision of the ichnogenus (Klein and Lucas 2013). Similar 
structures appeared to be extramorphological due to substrate conditions rather than 
anatomically based features.

Klein and Lucas (2013) also stressed the crocodylian-like overall-shape, recog-
nizing a relationship with the semi-aquatic lifestyle of the trackmaker, which prob-
ably were phytosaurs. A distinct similarity with the shape of some chirotherian 
footprints (Synaptichnium) from the Lower-Middle Triassic was documented by 
these authors, who concluded that evolutionary developments reflecting a change in 
adaptation from terrestrial to semi-aquatic lifestyle within Phytosauria, similar to 
those in crocodylians, is indicated by Apatopus. Thus far Apatopus lineatus has been 
described from North America (New Jersey, Pennsylvania, Utah) (Baird 1957, 1986; 
Olsen and Huber 1998; Olsen and Rainforth 2001; Foster et al. 2000, 2003), Europe 
(Germany, Poland, Italy) (Dalla Vecchia 1996; Avanzini et  al. 2007; Sulej et  al. 
2011; Klein and Lucas 2013), North Africa (Argana and Ourika basins, Morocco) 
(Biron and Dutuit 1981; Lagnaoui et al. 2012, 2016) and Southeast Asia (Thailand) 
(Le Loeuff et al. 2009). See also Klein and Lucas (2013) for an overview.

Trackmaker: Apatopus footprints most probably were produced by phytosaurs. 
This has been convincingly demonstrated by Padian et al. (2010). See also Klein and 
Lucas (2013). Phytosaurs, similar to modern crocodylians, had a semi-aquatic lifestyle. 
This explains also the rare occurence of Apatopus in the Triassic tetrapod footprint 

A.P. Hunt et al.



463

record, which is obviously due to the minor preservation potential of tetrapod foot-
prints in subaqueous environments.

Batrachopus Hitchcock 1845
Type ichnospecies: Batrachopus deweyi (Hitchcock 1843).
Distribution: Upper Triassic-Lower Jurassic of Newark Supergroup, Upper 

Triassic Chinle Group and Moenave Formation, North America; ?Lower Cretaceous 
of southeast Asia (Thailand) (Olsen and Padian 1986; Klein and Lucas 2010b; Le 
Loeuff et al. 2009).

Description: Batrachopus are trackways of a quadruped with relatively low pace 
angulation (Fig. 12.3s). Pes imprints are functionally tetradactyl and digitigrade, 
with moderately spread digits. Digit III is longest, and digit I shortest. Digit V is 
reduced to an oval pad posterior to and nearly in line with digit III. The manus is 
pentadactyl and shows a wide digit divarication. It is strongly rotated outward rela-
tive to the pes, with digit V pointing backward.

Remarks: The overall morphology of Batrachopus is similar to that of chiroth-
eres in the relatively compact anterior digit group I–IV in the pes. Contrary to chi-
rotheres, however, pedal digit V is mostly absent or strongly reduced. Furthermore, 
the manus shows a larger outward rotation. Thus far, the Triassic record of this 
ichnogenus is restricted to specimens from the Newark Supergroup of North 
America (Olsen and Padian 1986). Purported occurrences in the Middle-Upper 
Triassic of Europe and South America have been referred to Brachychirotherium or 
have been re-dated to a younger stratigraphic age (Klein and Lucas 2010b).

Trackmaker: For Triassic Batrachopus, small terrestrial sphenosuchian croco-
dylomorphs, similar to Terrestrisuchus and Hesperosuchus, their skeletons known 
from Upper Triassic deposits of Europe and North America, have to be considered 
(Klein and Lucas 2010b).

12.3.1.2  Non-archosaur Footprints

Rhynchosauroides Maidwell 1911
Type ichnospecies: Rhynchosauroides rectipes Maidwell 1911.
Distribution: Upper Permian, Lower-Upper Triassic, Upper Jurassic, Europe, 

North America, South America (Argentina, Brazil), North Africa (Morocco).
Description: Relatively broad trackways of a small quadruped with low pace angu-

lation (70°–130°). In most cases, the pes oversteps the manus laterally, however, posi-
tion of the manus anterior to the pes is also known from some trackways (Figs. 12.2g 
and 12.5a). This variability of the trackway pattern is obviously controlled by the 
velocity of movement. The pentadactyl pes imprints are digitigrade. They show long 
and very slender digits that increase in length from I–IV, with digit IV being the lon-
gest. Digits are often curved inward. Tiny, sharp claws are present on all digits. Digit 
V, if preserved, is positioned posterolateral to the other digits and short. The manus is 
similar in shape, but shorter and rather semi-plantigrade or plantigrade. Well-preserved 
specimens show rounded pads and impressions of the scales. Occasionally, tail drag 
marks are preserved (Haubold 1966, 1971a, b; Klein and Niedźwiedzki 2012).
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Fig. 12.5 Late Triassic tetrapod footprint ichnotaxa as sketches. (a) Rhynchosauroides hyperbates 
from Passaic Formation (Norian) of New Jersey. (b) Gwyneddichnium majore from Passaic 
Formation (Norian) of New Jersey. (c) Procolophonichnium lockleyi, holotype trackway from 
Hassberge Formation (Carnian) of Germany. (d) Procolophonichnium isp. from Passaic Formation 
(Norian) of New Jersey. (e) Chelonipus torquatus from Stuttgart Formation (Carnian) of Germany. 
(f) Brasilichnium isp. from Rock Point Formation (Chinle Group) of Colorado. (g) Dicynodontipus 
isp. (“Gallegosichnus garridoi”) from Vera Formation (Carnian) of Argentina. From Haubold 
(1971b), Lockley et al. (2004), Klein and Lucas (2010a), Klein et al. (2015a, b)
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Remarks: Rhynchosauroides footprints often occur on trampled surfaces in 
mass accumulations, together with scratch marks of the same trackmaker. They 
were originally described and named by Maidwell (1911), based on material from 
the Middle Triassic of Great Britain. Up to the present they have been documented 
from the majority of Triassic footprint assemblages in the global record, often 
 associated with archosaur footprints such as chirotheres or grallatorids. In some 
marginal marine associations, for example, in the Middle Triassic tidal flat deposits 
of the Muschelkalk (Anisian-Ladinian) of the Germanic Basin, they are the domi-
nant tetrapod footprints (Demathieu and Oosterink 1983; Diedrich 2008). However, 
in the Late Triassic they are less abundant, only occasionally being frequent, for 
example, at some Chinle Group localities.

Trackmaker: Contrary to the name given by Maidwell (1911), Rhynchosauroides 
cannot be attributed to rhynchosaurs, instead being the footprints of lepidosauro-
morph and/or archosauromorph trackmakers (Avanzini and Renesto 2002). Their 
long stratigraphic range, with the oldest record known from the late Permian of 
northern Italy (Conti et al. 1977), and the youngest from the Late Jurassic of Spain 
(Avanzini et  al. 2010a), suggests different trackmakers with similar foot 
morphologies.

Gwyneddichnium Bock, 1952
Type ichnospecies: Gwyneddichnium majore Bock, 1952
Distribution: Middle Triassic of Germany; Upper Triassic strata of the Newark 

Supergroup in the eastern USA (Pennsylvania and New Jersey); and the Upper 
Triassic Chinle Group in the western USA (New Mexico, Colorado and Utah).

Description: Footprints of a quadruped in which the manus and pes are penta-
dactyl and mesaxonic, the pes is substantially larger than the manus, digits are thin, 
long, straight to slightly curved, have nodular phalangeal pad impressions and ter-
minate in claws (Figs. 12.2i and 12.5b). Differs from the most similar, lacertoid 
ichnogenus Rhynchosauroides in the digit proportions, with digits III > II ≥ IV > I 
in Gwyneddichnium, whereas in Rhynchosauroides the proportions are 
IV >  III >  II >  I. Also, the digits in Rhynchosauroides are thicker and display a 
greater curvature, whereas the digits of Gwyneddichnium are nearly straight or only 
slightly curved. Digit V in Rhynchosauroides is strongly recurved laterally, whereas 
in Gwyneddichnium digit V is often nearly parallel to digit IV.

Remarks: The distinctiveness of Gwyneddichnium as an ichnogenus has never 
been questioned. The most similar, co-eval ichnogenus, Rhynchosauroides, is ectax-
onic rather than mesaxonic, and differs in several features, as noted above. A pecu-
liarity of Gwyneddichnium appears to be the nodular shape of the phalangeal pads 
in a relatively widely separated arrangement with thin interpad spaces.

Lucas et al. (2014) revised Gwyneddichnium, recognizing one ichnospecies (G. 
majore) as valid. Lockley et al. (1991) drew a distinction between what they consid-
ered to be walking and swimming traces of Gwyneddichnium. This is the distinction 
between trackways indicating quadrupedal progression, with separated digits and 
bipedal (pes only) tracks with interdigital webbing. Lockley (2006: 172) claimed 
that this webbing is “suggestive of an aquatic track maker.” Certainly, it suggests an 
aquatic or amphibious habitus for the trackmaker, but it is possible to question 
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whether the tracks were made while swimming and should be called “swim tracks.” 
The imprint of interdigital webbing could also be left by pressing on the substrate 
while walking or reflect an incomplete trackway, as only the pes impressions appear 
to be preserved.

The ichnogenus Gwyneddichnium is mostly confined to Upper Triassic strata of 
the Newark Supergroup (eastern USA) and the Chinle Group (American Southwest). 
It is widely recognized as a characteristic ichnotaxon of Late Triassic tetrapod foot-
print ichnoassemblages (e.g., Lucas 2007). A single occurrence in the Germanic 
Basin of Germany extends its temporal range back to the Middle Triassic (Lucas 
et al. 2014). This is in congruence with the occurrence of tanystropheids, a candi-
date trackmaker known from body fossils from Middle and Upper Triassic deposits 
(see below).

Trackmaker: Originally, Bock (1952: 418) inferred that Gwyneddichnium was 
likely made by a trackmaker that was “probably close to the small pseudosuchians.” 
Haubold (1986) adopted a similar, rather generalized position, inferring that the 
trackmaker was an undifferentiated pseudosuchian or ornithosuchian. Description 
of “Tanytrachelos” (a synonym of Gwyneddosaurus) from the Newark Supergroup 
by Olsen (1979) based on extensive and articulated material, provided a plausible 
trackmaker for Gwyneddichnium. As Olsen and Flynn (1989) argued, the morphol-
ogy of the feet of “Tanytrachelos” is an excellent match for the footprints assigned 
to Gwyneddichnium.

Lockley (2006) noted that Colbert and Olsen (2001) had implied that drepano-
saurs could be possible trackmakers of Gwyneddichnium because the body fossils 
of this group are more common than those of “Tanytrachelos.” However, given an 
extensive review of drepanosaur anatomy by Renesto et al. (2010), this suggestion 
now seems unlikely.

Procolophonichnium Nopcsa 1923
Type ichnospecies: Procolophonichnium nopcsai Kuhn 1963.
Distribution: Late Permian, Early Triassic–Late Triassic of South Africa, North 

Africa, France, Germany, The Netherlands, northern Italy and Poland. In the Upper 
Triassic, in particular, in the Hassberge Formation (Carnian) of Germany and in the 
Passaic Formation (Norian) of New Jersey.

Description: Procolophonichnium are small (1.5–3.5 cm pes length), pentadac-
tyl, semi-plantigrade to plantigrade footprints of small quadrupedal tetrapods 
(Fig. 12.5c, d). In both pes and manus, digits increase in length from I–IV, with digit 
IV being subequal in length with digit III, and digit V subequal in length with digit 
II. The manus is slightly smaller than the pes and positioned anterior to the latter. 
Sometimes, the manus is overprinted by the pes at the posterior end. Trackways of 
Late Triassic forms (3.0 cm pes length) have a pace angulation of 91°–110° and 
strides of 15–20 cm. In these, both pes and manus imprints are rotated inward rela-
tive to the midline, and digits are subparallel, with robust rounded pads and tiny 
claws. An elongate heel is a particular feature of Procolophonichnium lockleyi.

Remarks: The ichnogenus was originally described based on material from 
?Lower Triassic deposits of South Africa (von Nopcsa 1923; Kuhn 1963; Klein 
et al. 2015a, b). Middle Triassic representatives from the Germanic Basin have been 
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described from abundant material (Demathieu and Oosterink 1983; Klein et  al. 
2015a, b). Upper Triassic Procolophonichnium isp. was described by Baird (1986) 
from the Passaic Formation (Newark Supergroup) of New Jersey. Klein et  al. 
(2015a, b) introduced a new ichnospecies, Procolophonichnium lockleyi, based on 
longer trackways from the Hassberge Formation (Carnian) of southern Germany.

Trackmaker: Procolophonids or therapsids (Klein et al. 2015a, b).
Chelonipus Rühle von Lilienstern 1939
Type ichnospecies: Chelonipus torquatus Rühle von Lilienstern, 1939
Distribution: Known from the Early Triassic of Wyoming and Utah (USA), 

from the Middle and Late Triassic of Germany and possibly the Late Triassic of 
Spain (Lichtig et al. 2017).

Description: Tracks of a quadruped that are always nearly in parallel rows, with 
the manus and pes tracks of one side of the body forming nearly straight lines, one 
following the other in an understep ranging from an extreme, full understep by 
which the fore foot is overstepped by the hind foot of the next cycle of steps, to a 
more standard understep walk in which the hind foot is placed just behind the fore 
foot of the same series of steps. The broad, arched manus has the longest digit being 
digit III or IV, and the pes often has a rounded plantar surface and relatively longer 
digits compared to the manus (Fig. 12.5e).

Remarks: The extreme understep walk of turtles is likely the basis for the varia-
tion in turtle tracks given the name Chelonipus plieningeri (Haubold 1971a). As 
such, C. plieningeri is best considered a synonym of C. torquatus based on extra-
morphological/gait variation (Lichtig et al. 2017).

In Chelonipus, the correct identification of pes and manus imprints has been 
debated. While Rühle von Lilienstern (1939), in his first description of C. torquatus, 
considered the anterior imprint of a set as the pes overstepping the manus, this was 
questioned and re-interpreted by Haubold (1971a, b) as a reverse arrangement, with 
the manus being continuously positioned anterior to the pes. In contrast, Avanzini 
et  al. (2005) followed Rühle von Lilienstern (1939) based on experiments with 
recent forms, and Lichtig et al. (2017) endorse the conclusion that the C. torquatus 
type trackway shows the pes overstepping the manus.

Lichtig et al. (2017) have recently revised and reviewed Chelonipus. The only 
Late Triassic records are the type of C. plieningeri, based on a trackway from the 
Upper Triassic Middle Keuper (Stuttgart Formation) of Feuerbacher Heide near 
Stuttgart in southwestern Germany. Originally described by Plieninger (1838) and 
Meyer and Plieninger (1844), it was incorrectly attributed to a coelurosaurian dino-
saur by von Huene (1932). A further Late Triassic record comes from the Keuper 
(Upper Triassic) of Spain (Márquez-Aliaga et al. 1999). This is a single track and of 
uncertain origin, but Avanzini et al. (2005) and Lichtig et al. (2017) suggest that a 
turtle was the most likely trackmaker.

Trackmaker: A Proganochelys-like turtle (Lichtig et al. 2017).
Brasilichnium Leonardi 1981
Type ichnospecies: Brasilichnium elusivum Leonardi 1981.
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Distribution: Upper Triassic-Lower Jurassic of North America (Chinle Group, 
Wingate, Moenave and Navajo formations) and ?Upper Triassic of southern Africa 
(Elliot Formation, Stormberg Group) Jurassic-Cretaceous (Botucatu Formation) of 
Brazil.

Description: Small footprints of a quadrupedal tetrapod that show a distinctive 
size difference between the smaller manus and the larger pes impressions 
(Fig. 12.5f). Imprints are tetradactyl. The pes is semiplantigrade, wider than long 
and ectaxonic. Digits are short and rounded, digit V of the pes being laterally sepa-
rated from the other digits.

Remarks: The ichnogenus Brasilichnium was originally described from the 
Jurassic-Cretaceous Botucatu Formation of the Paraná Basin, Brazil, by Leonardi 
(1981) and has more recently been revised by Fernandes and Carvalho (2008). From 
the Upper Triassic, trackways are known from the Redonda Formation (Chinle 
Group) and from the lower Wingate Formation of New Mexico and Colorado, 
respectively (Klein et  al. 2006; Lockley et  al. 2004; Lucas et  al. 2010b). Other 
Brasilichnium records may be partly hidden in the material of Ellenberger (1972, 
1974, 1975) from the Stormberg Group of southern Africa.

Trackmaker: Non-mammalian and/or basal mammalian synapsids.
Dicynodontipus Rühle v. Lilienstern 1944
Type ichnospecies: Dicynodontipus geinitzi (Hornstein 1876).
Distribution: Upper Permian of northern Italy, Lower-Middle Triassic of 

Germany, Poland, Italy, Upper Triassic (Carnian) of Argentina (Conti et al. 1977; 
Haubold 1971a; Marsicano and Barredo 2004; Melchor and De Valais 2006; Klein 
and Niedźwiedzki 2012).

Description: The best-preserved specimens from the Vera Formation (Carnian) 
of Argentina are small pentadactyl pes and manus imprints of similar shape, 3.6–
5.5 cm in length and 3.5–4.3 cm in width, and some are smaller (Melchor and De 
Valais (2006). They show short digit impressions and a large subcircular to subtri-
angular sole (Figs. 12.2h and 12.5g). The manus is slightly smaller than the pes. 
Claws are often absent or indistinctly preserved. The sole is separated from the 
digits by a distinct crease. Trackways have a pace angulation of 95°–150° (Melchor 
and De Valais 2006).

Remarks: Different names have been introduced for this footprint morphology, 
especially for the material from Argentina: Gallegosichnus, Calibarichnus, 
Palaciosichnus, and Stipanicichnus (Casamiquela 1964, 1975). These ichnogenera 
were synonymized with Dicynodontipus by Melchor and De Valais (2006). 
Domnanovich and Marsicano (2006) list the names of Casamiquela (1964, 1975) in 
quotation marks, whereas Domnanovich et al. (2008) describe these as valid ichno-
taxa. Presently, strong similarities with Dicynodontipus lead us to follow Melchor 
and De Valais (2006). The presence of different ichnotaxa cannot be excluded com-
pletely, however, but presently their distinction is based on weak evidence, and the 
supposed distinctive features are probably extramorphological, not anatomical.

Trackmaker: Dicynodontipus are generally considered as the footprints of the-
rapsid synapsids (Haubold 1971a, b).
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12.3.2  Footprint Ichnoassemblages

12.3.2.1  North America

In western North America, Late Triassic tetrapod footprint assemblages are widely 
distributed in deposits of the Chinle Group, in particular in the Rock Point, Sloan 
Canyon and Redonda formations, and in the lower Wingate Formation (Wingate 
Sandstone) of the southwestern United States in Colorado, Utah, Arizona and New 
Mexico (e.g., Lucas et al. 2006a). On the northern Colorado Plateau, the Rock Point 
Formation near Dinosaur National Monument yielded Brachychirotherium parvum, 
Apatopus lineatus, Eosauropus cimarronensis, Evazoum sirigui, Grallator isp., 
Rhynchosauroides isp., Gwyneddichnium majore and small, mammal-like tracks 
(Lockley et  al. 1992; Lockley and Hunt 1995; Lucas et  al. 2014). The Rock Point 
Formation and partly the lower Wingate Formation (Wingate Sandstone) above the 
Chinle Group near Gateway, Colorado, have provided archosaur footprints, including 
the theropod ichnogenus Grallator, as well as Brachychirotherium parvum, Eosauropus 
cimarronensis and Evazoum gatewayensis, the latter being attributed to sauropodo-
morphs. Non-archosaur footprints are known by small lacertoid Rhynchosauroides and 
by Brasilichnium, which are considered to have been made by lepidosauromorphs/
archosauromorphs and mammal-like forms, respectively (Gaston et al. 2003; Lockley 
et al. 2004; Lockley and Lucas 2013; Lucas et al. 2006a, b).

Other assemblages come from the Rock Point Formation in the Glen Canyon 
area in southern Utah, with Atreipus isp. (Lockley et  al. 1998); from the Sloan 
Canyon Formation at Peacock Canyon and Sloan Canyon in northern and northeast-
ern New Mexico, including the type of Eosauropus cimarronensis (Lockley and 
Hunt 1993, 1995; Lockley et al. 2001; Hunt and Lucas 2003); and from the Redonda 
Formation in east-central New Mexico (Hunt et  al. 1989a, 1993a, 2000, 2001; 
Lockley et al. 2000, 2006a, b; Hunt and Lucas 2007a, b; Klein et al. 2006; Lucas 
et al. 2001, 2010b). The Redonda Formation has yielded a rich tetrapod ichnofauna 
(Fig.  12.6a–e). Most abundant are Brachychirotherium parvum, Evazoum sirigui 
and Grallator cursorius. Less frequent are Rhynchosauroides isp., Gwyneddichnium 
majore and Brasilichnium elusivum. There are numerous other Late Triassic track-
sites in Wyoming, Colorado, southern and eastern Utah, Arizona, New Mexico, 
Oklahoma and Texas (e.g., Foster et al. 2000, 2003; Hunt and Lucas 2001, 2006b, 
2007c; Lockley and Eisenberg 2006; Lockley and Milner 2006; see also Lockley 
and Hunt 1995 and Hunt and Lucas 2007a for overviews). In western North America, 
the oldest Late Triassic record comes from the Garita Creek Formation of New 
Mexico and is late Carnian in age (Hunt and Lucas 2001).

In the eastern part of North America, the great rift basins with deposits of the 
Newark Supergroup (Triassic-Jurassic) have yielded rich Late Triassic tetrapod ich-
nofaunas, especially from the Stockton, Lockatong and Passaic formations in the 
Newark Basin of New York, New Jersey and Pennsylvania, the Stockton Formation 
of the Deep River Basin of North Carolina, the Dan River Basin of Virginia and North 
Carolina, and the Wolfville Formation in the Fundy Basin of Nova Scotia, Canada 
(the Newark Supergroup lithostratigraphy used here follows Weems et  al. 2016). 
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Fig. 12.6 Characteristic Late Triassic tetrapod footprint assemblages. (a–e) Redonda Formation 
(Norian-Rhaetian) of Mesa Redonda and Apache Canyon, east central New Mexico. (f, g) Passaic 
Formation (Newark Supergroup, Norian-Rhaetian) of eastern North America. (h–j). Hassberge 
Formation (Carnian) of Germany. (a) Brachychirotherium parvum pes-manus set (right), Evazoum 
sirigui (left). (b) Grallator cursorius. (c). Evazoum sirigui artificial cast with trackways. (d) 
Rhynchosauroides isp. (e) Brasilichnium elusivum artificial cast. (f) Brachychirotherium parvum. 
(g) Apatopus lineatus. (h) Brachychirotherium thuringiacum. (i) Atreipus-Grallator isp. (j) 
Apatopus lineatus. From Klein et al. (2006), Lucas et al. (2010b), Klein and Lucas (2013)
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From the Passaic Formation, the classical assemblages of Bock (1952) and Baird 
(1954, 1957) are well known with Brachychirotherium parvum, B. eyermani, 
Chirotherium lulli, Apatopus lineatus, Atreipus milfordensis, Grallator isp., 
Gwyneddichnium majore and Rhynchosauroides isp. (Fig. 12.6f, g). Other reports 
from these units with similar assemblages were given by Olsen (1980), Olsen and 
Baird (1986), Olsen and Flynn (1989), Fraser and Olsen (1996), Szajna and Silvestri 
(1996), Szajna and Hartline (2003), Lucas and Sullivan (2006), Sues and Olsen 
(2015) and, in a comprehensive revision of the ichnogenus Gwyneddichnium, by 
Lucas et al. (2014). The oldest Late Triassic (Carnian) tetrapod ichnofauna in North 
America comes from the Stockton Formation of the Deep River Basin in North 
Carolina (Olsen and Huber, 1998). The assemblage is composed of tridactyl to pen-
tadactyl footprints that are similar to the ichnogenus Parachirotherium, characteristic 
of Middle-Upper Triassic (Ladinian-Carnian) ichnofaunas from Germany and 
Morocco (Haubold and Klein 2000; Lagnaoui et al. 2012; Klein and Kneidl 2015).

12.3.2.2  South America

From the Los Colorados Formation (Norian) of northwestern Argentina, small pes 
and manus imprints of Brachychirotherium were described (Leonardi and De 
Oliveira 1990; Leonardi 1994; Arcucci et al. 2004; Melchor and De Valais 2006). 
Therapsid footprints similar to Dicynodontipus, as well as chirotheriid, grallatorid 
and Tetrasauropus- or Eosauropus-like footprints and trackways are documented 
from the Portezuelo Formation (Carnian) of the Cuyana Basin in San Juan Province 
of western Argentina (Marsicano and Barredo 2004). A unique assemblage domi-
nated by the footprints of therapsids comes from the Vera Formation (Carnian) of 
Los Menucos of Río Negro Province, Argentina. It includes trackways that were 
assigned to different new ichnotaxa by Casamiquela (1964, 1975) but referred to 
Dicynodontipus by Melchor and De Valais (2006) (but see Domnanovich and 
Marsicano 2006; Domnanovich et al. 2008).

Brazil also has a few Late Triassic footprint sites. Silva et al. (2008a, b) described 
lacertoid Rhynchosauroides footprints from the Santa Maria Formation of southern 
Brazil, introducing a new ichnospecies. From the same unit, Silva et al. (2008b) doc-
umented imprints of theromorphoid or Procolophonichnium-like shape, which they 
assigned to Dicynodontipus and another new ichnospecies. The Santa Maria 
Formation also yielded theropod footprints that can be assigned to the ichnogenus 
Grallator (Silva et  al. 2008c). Extramorphological variation and influence of the 
substrate, not the anatomy of the trackmaker, is obviously responsible for many fea-
tures observed in these footprints. Eubrontes isp. with large footprints (up to 43 cm 
length) come from the Caturrita Formation of Rio Grande do Sul (Silva et al. 2012). 
After Lucas (2010), the Late Triassic age of the Caturrita Formation is well estab-
lished by its tetrapod body fossils, so this could be another Late Triassic record of 
Eubrontes (cf. Lucas et al. 2006a). Recently the age of the Caturrita Formation was 
debated and a Lower Jurassic age cannot be completely excluded (Silva et al. 2012). 
Paleofloristic studies (Barboni and Dutra 2013) support a Lower Jurassic age at least 
for the top of the Caturrita Formation.
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12.3.2.3  Europe

In Europe, the Germanic Basin has a large number of important Late Triassic locali-
ties in Germany. From the Hassberge Formation of southern Germany the type 
material of Brachychirotherium has been described, with the ichnospecies B. hass-
furtense (type ichnospecies) and B. thuringiacum (Rühle von Lilienstern 1938; 
Beurlen 1950; Karl and Haubold 1998). From the same unit, Atreipus-Grallator, 
Apatopus lineatus, Rhynchosauroides isp. and Procolophonichnium lockleyi are 
known (Haubold and Klein 2002; Klein and Lucas 2013; Klein et  al. 2015a, b) 
(Fig.  12.6h–j). The Grabfeld, Stuttgart, Steigerwald and Löwenstein formations 
(Carnian-Norian) of the German Keuper contain the ichnotaxa Brachychirotherium 
thuringiacum, Chirotherium wondrai, cf. Parachirotherium postchirotherioides, 
Atreipus-Grallator, Evazoum isp., Apatopus lineatus, Rhynchosauroides isp. and 
Chelonipus torquatus (Heller 1952; Kuhn 1956, 1958b; Haubold 1971a; Haubold 
and Klein 2002; Haderer 1990, 1996, 2012, 2015; Hofbauer and Klein 2013; Klein 
and Lucas 2013; Klein and Kneidl 2015; Lichtig et al. 2017).

In the Tatra Mountains of Poland and Slovakia, tridactyl theropod footprints 
assigned to Grallator-Eubrontes have been found in the Rhaetian Tomanóva 
Formation (Niedźwiedzki 2011). Footprints of similar type and age are known from 
the Rhaetian Höganäs Formation of southern Sweden (Gierlinski and Ahlberg 
1994).

Great Britain, along the coast of Wales, yielded footprints from deposits of the 
Mercia Mudstone Group that can be assigned to the Grallator-Eubrontes plexus. 
Other footprints from this unit are similar to the ichnogenera Evazoum, Eosauropus 
and Pseudotetrasauropus (Lockley et al. 1996; Lockley and Meyer 2000).

Contrary to the abundant localities with Middle Triassic footprint assemblages, 
France has few Late Triassic sites. One is in the Peyzac (Ardeche) region and prob-
ably Carnian in age. Ichnotaxa from this locality can be assigned to Atreipus- 
Grallator. They have been described by Courel and Demathieu (2000) and Gand 
et al. (2005). Tetradactyl footprints similar to Pseudotetrasauropus from southern 
Africa (Ellenberger 1970, 1972) were discovered, together with tridactyl imprints 
of the Grallator-Eubrontes-plexus, in Norian sediments near the city of La Grand- 
Combe in southern France (Gand et al. 2000). Similar tracks from Norian-Rhaetian 
(Keuper) deposits come from surfaces close to the city of Anduze (Ellenberger 
1965; Ellenberger et  al. 1970). Unfortunately, these tracks were destroyed some 
years ago by river flooding (Ellenberger, pers. com.). Spain has very few Late 
Triassic sites.

In Switzerland, Late Triassic assemblages occur in the Swiss Alps in the canton 
of Graubünden, in deposits belonging to the Hauptdolomit Group and the Kössen 
Formation (Norian-Rhaetian). The largest surface is in the Diavel Formation of the 
Hauptdolomit Group and is exposed in the Swiss National Park. It shows 13 track-
ways similar to Eubrontes with large (up to 30 cm length) tridactyl pes imprints. 
Associated are very large tetradactyl footprints (60  cm pes length) and a longer 
trackway with short steps. These have been compared to Tetrasauropus, and similar 
footprints considered to have been made by sauropodomorphs (Furrer 1993; 
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Lockley and Meyer 2000). The trackways lack traces of the manus. Similar track-
ways, but partly with a preserved manus impression, have been documented from 
the same units, together with tridactyl grallatorids, at adjacent localities in the Swiss 
National Park and in the Parc Ela (Furrer and Lozza 2008; Meyer et al. 2013).

Brachychirotherium from Jaén and tridactyl footprints of the Grallator-Eubrontes 
plexus from Soria have been described (Pérez-López 1993; Pascual Arribas and 
Latorre Macarrón 2000; Díaz-Martínez et  al. 2015). In particular, the age of the 
former site is uncertain, tentatively Carnian-Rhaetian, but also a Middle Triassic age 
cannot be excluded. The latter locality is probably Rhaetian in age.

In Italy, an assemblage from Tuscany was described by von Huene (1941), with 
several new ichnotaxa that all can be considered as synonyms of existing forms. 
Among them is “Coelurosaurichnus,” which is a synonym of Grallator. The ichno-
fauna consists of poorly preserved chirotheres, grallatorids and small lacertoid foot-
prints. Brachychirotherium was described from the lower-middle Carnian Val 
Sabbia Sandstone of Brescia (Petti et al. 2009). Other Late Triassic footprints come 
from the Friuli region. From the Dolomia Principale (Norian), tridactyl footprints of 
the Grallator-Eubrontes plexus were described, together with tri-pentadactyl 
imprints and trackways of quadrupeds of uncertain affinities (Dalla Vecchia and 
Mietto 1998; Marzola and Dalla Vecchia 2014). Upper Carnian deposits in Friuli 
yielded Apatopus lineatus (Dalla Vecchia 1996; Avanzini et  al. 2007; Klein and 
Lucas 2013). Carnian strata of the Montemarcello Formation along the coast of La 
Spezia provided the type material of Evazoum sirigui, as well as Brachychirotherium 
isp., indeterminate chirotheriids and grallatorid tridactyl footprints (Nicosia and Loi 
2003). Further discoveries of footprints have been documented from the Dolomia 
Principale unit (Norian) of the Monte Pasubio region of northeastern Italy. These are 
small and large tridactyl theropod imprints of the Grallator-Eubrontes plexus, as 
well as large tetradactyl imprints and others showing an associated manus, all of 
uncertain affinity (Belvedere et al. 2008). From the Travenanzes Formation (Carnian) 
in the Southern Alps, southwest of the city of Bolzano, large tridactyl theropod foot-
prints (Eubrontes) have been described (Bernardi et al. 2013). From the same unit, 
Atreipus and Evazoum have been reported (D’Orazi-Porchetti et al. 2008).

12.3.2.4  North Africa

The Timezgadiouine Formation of the Argana Basin of Morocco, in particular the 
Irohalene Member (T5), in addition to fossils of vertebrate skeletons, has a rich ichno-
fauna. Biron and Dutuit (1981) described numerous footprints from Irohalene, assign-
ing them to several new ichnotaxa. These are tridactyl-pentadactyl imprints of small 
to large size. Lagnaoui et al. (2012, 2016) re-located the sites of Biron and Dutuit 
(1981) and found abundant new material, which was well preserved. Furthermore, 
while prospecting Irohalene Member outcrops in the Argana Basin, they discovered 
new tracksites with a similar ichnofauna. Lagnaoui et al. (2012, 2016) gave the fol-
lowing list of ichnotaxa: Atreipus-Grallator, Eubrontes isp., Parachirotherium cf. P. 
postchirotherioides, Parachirotherium isp., Brachychirotherium isp., Synaptichnium 
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isp., Apatopus lineatus, Rhynchosauroides ispp. and Atreipus-Grallator. Apatopus lin-
eatus and Atreipus-Grallator were also listed for the overlying Tadart Ouadou Member 
(T5) (Lagnaoui et al. 2012). Biron and Dutuit (1981) also described a tetrapod ichno-
fauna from the Ourika Basin, Morocco, illustrating Apatopus lineatus as well as chi-
rotheriid imprints and small lacertoid tracks. These authors proposed several new 
ichnotaxa, but their validity is doubtful, so this ichnofauna is in need of revision.

12.3.2.5  Southern Africa

In southern Africa, Norian-?Rhaetian ichnofaunas of the Lower Elliot Formation 
(Stormberg Group) are some of the most important Late Triassic assemblages in the 
global record. Ellenberger (1970, 1972) documented extensive material with track-
ways and isolated footprints from Lesotho. A large number of new ichnotaxa was 
introduced by this author, many of these being nomina dubia or synonyms of others 
known from North America and Europe. Ichnogenera that found general acceptance 
are Pseudotetrasauropus, Tetrasauropus and Pentasauropus. They have subsequently 
been identified from localities elsewhere, but many of these records were later 
referred to Evazoum and Eosauropus. D’Orazi-Porchetti and Nicosia (2007) further-
more considered Paratetrasauropus and Sauropodopus as valid ichnogenera, while 
others were re-assigned to Brachychirotherium. Large and small tridactyl theropod 
footprints from Lesotho that were given numerous names (Ellenberger 1970, 1972) 
can be re-assigned to the Grallator-Eubrontes plexus. Other footprints, possibly pres-
ent on the surfaces of Lesotho, are lacertoid (?Rhynchosauroides) tracks and some 
mammaloid Brasilichnium-like tracks described and differently named by Ellenberger 
(1972), but this evaluation is tentative and based only on illustrations in his paper.

12.3.2.6  Greenland

The Ørsted Dal Member of the Fleming Fjord Formation (Norian) in East Greenland 
has recently yielded surfaces trampled by hundreds of small tetradactyl pes 
(4–4.5 cm length) and manus imprints assigned to cf. Brachychirotherium (Klein 
et al. 2015b). Digit V is missing, possibly due to the very small size (ontogenetic 
feature). The track-bearing unit has also provided tracks of the Grallator-Eubrontes 
plexus (Milàn and Bromley 2006; Milàn et al. 2004, 2006; Gatesy et al. 1999) and 
trackways with large pes and manus imprints that formerly were assigned to 
Tetrasauropus (Jenkins et al. 1994; Lockley and Meyer 2000). The re-examination 
of these footprints, together with new material, by Lallensack et  al. (2017) has 
shown that they can be referred to Eosauropus. Other footprints found at the same 
locality are Evazoum isp. (Lallensack et  al. 2017). For an overview also see 
Clemmensen et al. (2016).

The Fleming Fjord Formation is also well known for tetrapod skeletons. Thus 
far, temnospondyls, possible sphenodonts, lepidosaurs, turtles, phytosaurs, ?rauisu-
chians, aetosaurs, pterosaurs, prosauropods, theropods, and mammals are known 
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(Jenkins et al. 1994; Mateus et al. 2014; Sulej et al. 2014). If Brachychirotherium is 
truly an aetosaur track, this would correspond to the osteological record of these 
archosaurs (Heckert et al. 2010; Lucas and Heckert 2011).

12.3.2.7  Other Regions

Late Triassic (probably Carnian) tetrapod footprints have been described from the 
Sydney Basin in eastern Australia. They occur in the Blackstone Formation of the 
Ipswich Coal Measures in southeastern Queensland. These are very large (43 cm 
long) tridactyl pes imprints similar to Eubrontes that are part of a trackway with 2 m 
stride length (Staines and Woods 1964; Bartholomai 1966; Lucas et  al. 2006a). 
Small theropod tracks that can be assigned to Grallator have been reported from the 
same unit (Thulborn 1998).

In China, the Baoding Formation (Norian-Rhaetian) of Sichuan Province in the 
southwestern part of the country shows a surface with very large chirotheriid pes 
imprints (up to 43.5 cm pes length), including a partial trackway (Xing et al. 2014a). 
A manus imprint is missing. They have been assigned to cf. Chirotherium, based on 
the digit proportions, with digit III longest. In contrast to the typical Late Triassic 
Brachychirotherium they show an elongated digit V with phalangeal pads. 
Associated with these tracks is an isolated, large (27 cm length), possible theropod 
track resembling the ichnogenus Eubrontes. Other Late Triassic (Norian-Rhaetian) 
records from China come from the Sichuan Basin with small and large grallatorids, 
mammal-like footprints and an indeterminate archosaur trackway similar to 
Eosauropus, all from the Xujiahe Formation (Xing et al. 2013, 2014b).

12.3.3  Biostratigraphy and Biochronology

Lucas (2007) reviewed the Phanerozoic record of tetrapod tracks (Devonian- 
Neogene) and noted that three principal factors limit their use in biostratigraphy and 
biochronology (palichnostratigraphy): (1) invalid ichnotaxa based on extramorpho-
logical variants; (2) slow apparent evolutionary turnover rates; and (3) facies restric-
tions. The ichnotaxonomy of tetrapod footprints has generally been oversplit, 
largely due to a failure to appreciate extramorphological variation. Thus, many tet-
rapod footprint ichnogenera, and most ichnospecies, are useless “phantom” taxa 
that confound biostratigraphic correlation and biochronological subdivision. Tracks 
rarely allow identification of a genus or species known from the body fossil record. 
Indeed, almost all tetrapod footprint ichnogenera are equivalent to a body-fossil- 
based family or a higher taxon (order, superorder, etc.). This means that ichnogen-
era necessarily have much longer temporal ranges and therefore slower apparent 
evolutionary turnover rates than do body fossil genera. Because of this, footprints 
cannot provide as refined a subdivision of geological time as do body fossils. The 
tetrapod footprint record is also much more facies controlled than the tetrapod body 
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fossil record. The relatively narrow facies window for track preservation, and the 
fact that tracks are almost never transported, redeposited or reworked, limits the 
facies that can be correlated with any track-based biostratigraphy (Lucas 2007).

There is much literature on Triassic tetrapod footprint biostratigraphy, especially 
based on the European and North American records. The most comprehensive ear-
lier publications are those of Demathieu (e.g., Demathieu 1977, 1982, 1984, 1994; 
Demathieu and Haubold 1972, 1974), who established the presence of three differ-
ent Triassic footprint assemblages in Europe that Lucas (2007) validated. These are 
the chirothere assemblage of Olenekian-early Anisian age (early-Middle Triassic), 
the dinosauromorph assemblage of late Anisian-Ladinian age (late Middle Triassic) 
and the dinosaur assemblage of Carnian-Rhaetian age (Late Triassic). Lucas (2007) 
suggested that a fourth footprint assemblage, based on earliest Triassic dicynodont 
footprints from Gondwana, may also be discernable.

The composition and distribution of Triassic tetrapod footprint assemblages 
reflect ecological/taphonomic peculiarities as well as different directions and stages 
in the evolutionary development of the locomotor apparatus of some tetrapod 
groups. In particular, some archosaur footprints show a limited vertical (strati-
graphic) range. Their occurrences are restricted to distinct time intervals, thus 
demarcating distinct biochronological units (Lucas 2003, 2007; Hunt and Lucas 
2007b; Klein and Haubold 2007).

Between the late Olenekian/Anisian and the Norian the development of the tri-
dactyl mesaxonic foot and bipedal gait of dinosaurs is reflected by the footprint 
record and can be followed in a functional evolutionary succession: Chirotherium–
Sphingopus–Parachirotherium–Atreipus–Grallator (Haubold and Klein 2000, 
2002). This has been used for biostratigraphy and biochronology by Klein and 
Haubold (2007). Thus, Chirotherium spans the Olenekian–Anisian, Sphingopus the 
Anisian–Ladinian, Parachirotherium the Ladinian, Atreipus the Carnian–Norian 
and Grallator the Norian–Rhaetian interval.

Klein and Haubold (2007) discriminated six biochrons (I–VI) by the range of 
archosaur footprint assemblages. The beginning of each is marked by the first 
appearance datum (FAD) of a characteristic index ichnotaxon (in bold): I. 
Protochirotherium, Late Induan–Olenekian; II. Chirotherium, Rotodactylus, 
Isochirotherium, Synaptichnium (“Brachychirotherium”), Late Olenekian–Anisian; 
III. Sphingopus–Atreipus–Grallator, Rotodactylus, Isochirotherium, Synaptichnium 
(“Brachychirotherium”), Late Anisian–Ladinian; IV. Parachirotherium–Atreipus–
Grallator, Synaptichnium (“Brachychirotherium”), Late Ladinian; V. Atreipus–
Grallator, Brachychirotherium, Carnian–Norian and VI. Grallator–Eubrontes, 
Brachychirotherium, Norian–Rhaetian.

Lucas (2003, 2007) recognized five Triassic footprint assemblages: (1) 
Dicynodont tracks, earliest Triassic; (2) Chirothere, Olenekian–Anisian; (3) 
Procolophonichnium–Rhynchosauroides, Anisian–Ladinian; (4) Dinosauromorph, 
Ladinian–Carnian; and (5) Dinosaur, Carnian–Rhaetian. In this scheme, (2) corre-
sponds to II and III, (3) to III, (4) to IV, and (5) to V and VI of Klein and Haubold 
(2007). Hunt and Lucas (2007b) proposed five assemblages: (1) Dicynodont tracks, 
earliest Triassic; (2) Chirothere, Olenekian–early Anisian; (3) Dinosauromorph, late 
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Anisian–Ladinian; (4) Tridactyl dinosaur, Carnian–early Norian; and (5) 
Sauropodomorph, late Norian–Rhaetian.

In addition to Lucas (2003, 2007), Hunt and Lucas (2007b) recognize a sau-
ropodomorph track assemblage in the Late Norian–Rhaetian based on the taxa 
Evazoum and Eosauropus (see above), purportedly first appearing in the late Norian. 
This is contrary to Klein et al. (2006) and Klein and Haubold (2007), who consid-
ered the footprints of Evazoum to be extramorphological variants of 
Brachychirotherium, a crurotarsan track characteristic of the entire Late Triassic. 
Furthermore, Evazoum was first described from the Carnian of Italy by Nicosia and 
Loi (2003), thus indicating an earlier appearance.

Independent of further subdivisions proposed by various authors, we follow 
Klein and Lucas (2010a) and recognize five tetrapod footprint biochrons of Triassic 
age that can be identified across the Pangaean footprint record (Fig. 12.7):

 1. Earliest Triassic dicynodont footprints. These tracks are from strata of the 
Lystrosaurus assemblage zone and thus are of Lootsbergian (= latest 
Changshingian- Induan) age (Lucas 1998). However, there are only a few records 
of this assemblage and they are restricted to Gondwana, so it needs further docu-
mentation before its Pangaea-wide significance can be established.

 2. Protochirotherium is characteristic of strata of Nonesian age (=Olenekian). 
Morphologically, and based on its temporal distribution, it can be considered as 
the hypothetical “root” of later locomotory developments in archosaurs. 
Associated forms are Rhynchosauroides, Procolophonichnium and footprints of 
temnospondyls.

 3. The appearance of Chirotherium barthii and C. sickleri, Rotodactylus, 
Isochirotherium and Synaptichnium (“Brachychirotherium”) roughly demar-
cates the Nonesian-Perovkan (late Olenekian-Anisian) transition. Chirotherium 
barthii and C. sickleri disappear during the Anisian. The range of the other ich-
notaxa spans most of the Middle Triassic (Perovkan-Berdyankian  =  Anisian-
Ladinian) together with Rhynchosauroides, Procolophonichnium, dicynodont 
and temnospondyl footprints that continue from the Nonesian. Rotodactylus and 
Isochirotherium disappear before the end of the Berdyankian (Ladinian).

 4. The appearance of tridactyl footprints and quadrupedal to bipedal trackways of 
the Atreipus-Grallator type (“Coelurosaurichnus”) demarcates the late Perovkan- 
Berdyankian (= late Anisian-Ladinian) as do pentadactyl footprints of Sphingopus 
and Parachirotherium. Other ichnotaxa continue from the Nonesian (see above).

 5. Brachychirotherium (sensu stricto) appears at the beginning of the Otischalkian 
(= early Carnian). It is a characteristic ichnotaxon of the Late Triassic, together 
with Atreipus-Grallator (quadrupedal to bipedal trackways), Grallator and 
Eubrontes (bipedal trackways). The stratigraphic upper limit of 
Brachychirotherium is the Triassic-Jurassic boundary (end of the Apachean); 
there is no evidence of Brachychirotherium in post-Triassic strata (Lucas and 
Tanner 2007a, b; Lucas et al. 2012c). The same is true for other chirotheres, and 
for Apatopus, Procolophonichnium and Gwyneddichnium. The range of 
Rhynchosauroides continues into the Jurassic (Avanzini et al. 2010a), and the 
same is true of Batrachopus and the mammal-like forms, as might be expected.
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Rhynchosauroides and Procolophonichnium, as well as some dicynodont and 
temnospondyl footprints, have a long stratigraphic range. They span the complete 
Triassic Period, with early roots in the late Permian, therefore, they are of less utility 
for biostratigraphy as long as their taxonomy is unclear, as is the case presently. 
Their dominance in some assemblages (see above) is extremely facies-controlled 
and biased by ecological and taphonomic effects. Rhynchosauroides and 
Procolophonichnium trackmakers obviously frequented some Anisian–Ladinian 
carbonate tidal flats (assemblage 3 of Lucas 2003, 2007; Demathieu and Oosterink 
1983, 1988; Diedrich 2008), an environment that archosaurs (chirothere trackmak-
ers) mostly avoided. However, a few chirotheres are present as well (Demathieu and 
Oosterink 1983, 1988) and, on the other hand, Rhynchosauroides is common at least 
on some fluvial-lacustrine surfaces of the Early through Late Triassic (Demathieu 
1966; Haubold 1971a, b).

Evolutionary, rather than facies-controlled, signals from footprints are suitable to 
demarcate distinct time intervals in the Triassic and to outline a coarse biostratigra-
phy and biochronology of the Triassic. This footprint biochronology identifies five 
intervals of Triassic time, which is less resolution than the eight land-vertebrate 
faunachrons of Triassic age based on tetrapod body fossils.

12.3.4  Ichnofacies and Ichnocoenoses

12.3.4.1  Introduction

Hunt and Lucas (2007d, 2016a) provided a discussion of terminology relevant to the 
study of tetrapod footprint ichnofacies. An ichnocoenosis can be defined as a trace 
fossil assemblage produced by a biological community that can be characterized by 
morphological criteria (independent of depositional environment or biological 
affinities) (e.g., Bromley 1996; McIlroy 2004; Hunt and Lucas 2007d). Seilacher 
(1964: 303) introduced the term ichnofacies for “general trace associations, or types 
of ichnocoenoses, representing certain facies with a long geologic range.” 
Subsequently, Hunt and Lucas (2007d) defined five archetypal tetrapod footprint 
ichnofacies for nonmarine environments: Chelichnus, Grallator, Brontopodus, 
Batrachichnus and Characichnos ichnofacies (Table 12.1). The following review is 
principally based on Hunt and Lucas (2006b, 2007d, e, 2016a).

12.3.4.2  Batrachichnus Ichnofacies

Hunt and Lucas (2007d) proposed the Batrachichnus ichnofacies for ichnofaunas in 
which the majority of tracks are of quadrupedal carnivores with a moderate-high 
diversity (four to eight ichnogenera). This ichnofacies represents tidal flat-fluvial 
plain environments from the Devonian to the Cretaceous. Hunt and Lucas (2006b, 
2007d) recognized two ichnocoenoses of this ichnofacies in the Triassic (Table 12.1). 
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Hunt and Lucas (2007d) named the Chirotherium ichnocoenosis for the well- studied 
Early-Middle Triassic ichnofaunas of Europe and North America that are domi-
nated by Chirotherium tracks (e.g., Peabody 1948; Haubold 1971a; Lucas et  al. 
2003). Other common ichnotaxa are Rotodactylus, Rhynchosauroides, 
Isochirotherium and Synaptichnium. Hunt and Lucas (2006b) recognized a distinc-
tive and pervasive ichnocoenosis throughout much of the Upper Triassic portion of 
the Newark Supergroup in eastern North America assigned to the Apatopus ichno-
coenosis. Ichnofaunas of this ichnocoenosis lack Evazoum and Eosauropus, contain 
less than 50% Brachychirotherium and Grallator and are characterized by ichno-
taxa that are rare or absent elsewhere, including Apatopus and Gwyneddichnium.

Table 12.1 Archetypal vertebrate ichnofacies and representative ichnocoenoses of the Triassic

Archetypal 
Vertebrate 
Ichnofacies Main ichnotaxa Triassic ichnocoenoses Environment

Chelichnus Low diversity ichnofaunas 
(typically less than 4 
ichnogenera) with most 
tetrapod tracks that have 
sub-equant shape with 
manual and pedal 
impressions of subequal 
size and with short digit 
impressions

Brasilichnium (Late 
Triassic-Early Jurassic)

Eolian 
(crossbedded dune 
facies)

Batrachichnus Majority of tracks are 
quadrupedal carnivores 
with medium-high 
diversity (4–8 
ichnogenera)

Chirotherium (Early-
Middle Triassic)
Apatopus (Late Triassic)

Tidal flat-alluvial 
plain

Brontopodus Tracks are principally 
terrestrial herbivore with 
small percentage 
(generally >10%) of 
terrestrial carnivore tracks 
with medium- high 
diversity (4–8 
ichnogenera)

Dicynodontipus (Early 
Triassic)
Therapsipus (Middle 
Triassic)
Procolophonichnium 
(Middle Triassic)
Brachychirotherium (Late 
Triassic)
Evazoum (Late Triassic)

Coastal plain 
(clastic or 
carbonate marine 
shoreline)

Grallator Medium-high diversity 
(typically 5–8 
ichnogenera) with tracks 
(usually dominant) of 
tridactyl avian or 
non-avian theropods

Grallator (Late Triassic) Lacustrine margin

Characichnus Swimming traces 
including parallel scratch 
marks and fish swimming 
trails (Undichna)

Unnamed (Early-Late 
Triassic)

Shallow aquatic

From Hunt and Lucas (2007e)
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12.3.4.3  Brontopodus Ichnofacies

Hunt and Lucas (2007d) proposed the Brontopodus ichnofacies for medium diver-
sity ichnofaunas in which the majority of tracks are of terrestrial herbivores with a 
small quantity (generally >10%) of terrestrial carnivore tracks. This ichnofacies 
includes coastal plain-marine shoreline environments and some lacustrine shore-
lines, and it ranges from late Permian to Recent in age. Hunt and Lucas (2006b, 
2007d, e) recognized five ichnocoenoses within this ichnofacies in the Triassic 
(Table 12.1). The oldest ichnocoenosis within the Brontopodus ichnofacies occurs 
in the earliest Triassic (possibly restricted to the Induan) and is characterized by 
dicynodont footprints in southern Africa, Antarctica and Australia (Watson 1960; 
MacDonald et al. 1991; Retallack 1996). Hunt and Lucas (2006b) termed this the 
Dicynodontipus ichnocoenosis.

The majority of Early Triassic to early Middle Triassic ichnofaunas represent the 
Chirotherium ichnocoenosis of the Batrachichnus ichnofacies. However, a small 
number of localities are dominated by therapsid tracks. Hunt and Lucas (2006b) 
termed this the Therapsipus ichnocoenosis for the therapsid ichnotaxon from the 
Moenkopi Group of Arizona (Hunt et al. 1993b). Herein, we recognize a new ich-
nocoenosis in the Anisian carbonate tidal flats of Germany and the Netherlands. 
This Procolophonichnium ichnocoenosis represents a temporal equivalent of the 
red-bed Chirotherium ichnocoenosis (Lucas 2007). This ichnocoenosis is domi-
nated by tracks of Procolophonichnium and Rhynchosauroides with only rare chi-
rothere tracks (Demathieu and Oosterink 1983, 1988; Diedrich 1998, 2000, 2002a, 
b; Lucas 2007).

12.3.4.4  Grallator Ichnofacies

Hunt and Lucas (2007d) proposed the Grallator ichnofacies for medium to high 
diversity ichnofaunas (five to eight ichnogenera) dominated by tracks of tridactyl 
avian and non-avian theropods (usually dominant) or of other habitual bipeds. 
Tracks of bipedal and quadrupedal ornithischians, sauropods and herbivorous mam-
mals are also locally common in this ichnofacies. This ichnofacies extends from the 
Late Triassic to the Recent and often characterizes lacustrine margin environments.

Hunt and Lucas (2007d) recognized a Grallator ichnocoenosis in the Late Triassic. 
There are many Late Triassic ichnofaunas in which the most abundant (>50%) ichno-
genus is Grallator. Notable ichnofaunas occur at the very top of the Chinle Group or 
in the overlying Wingate Sandstone in Colorado (Gaston et  al. 2003; Lucas et  al. 
2006b); other prominent examples are in Wales, France, Germany, Italy, Switzerland 
and Greenland (Lockley and Meyer 2000: Figs. 4.4, 4.10, and 4.14). Hunt and Lucas 
(2006b) noted that there is potential to subdivide the Grallator ichnocenosis. For 
example, on the Colorado Plateau, the upper and lower Wingate Sandstone have dif-
ferent sub-ichnocoenoses: a lower Eosauropus subichnocoenosis includes 
Brasilichnium, Brachychirotherium, and Eosauropus, and an upper Otozoum sub-ich-
nocoenosis includes Eubrontes, Batrachopus and Otozoum (Lucas et al. 2006a, c, d).
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12.3.4.5  Chelichnus Ichnofacies

Hunt and Lucas (2007d) proposed the Chelichnus ichnofacies for ichnofaunas that 
have a low diversity (fewer than five ichnogenera) of tetrapod tracks in which manus 
and pes tracks are equant in shape, of subequal size and have short digit impres-
sions. This ichnofacies is recurrent on dune faces in eolian environments, and it 
extends from the early Permian to the Early Jurassic. Hunt and Lucas (2007d) rede-
fined the Brasilichnium ichnofacies of Lockley et al. (1994) as an ichnocoenosis of 
this ichnofacies (Table 12.1). Brasilichnium is abundant in the Early Jurassic Navajo 
Sandstone and coeval Aztec Sandstone in western North America (Utah, California, 
Colorado). The Brasilichnium ichnocoenosis is also locally present in the lower 
Wingate Sandstone in western Colorado (Schultz-Pittman et  al. 1996; Hunt and 
Lucas 2006b).

12.3.4.6  Characichnos Ichnofacies

Hunt and Lucas (2007d) proposed the Characichnos ichnofacies for medium diver-
sity ichnofaunas in which the majority of tracks are tetrapod swimming traces (par-
allel scratch marks) and fish swimming trails (Undichna). This ichnofacies 
represents shallow lacustrine (and tidal) environments. Swimming traces are nota-
ble in various Triassic units in the western United States, including the Moenkopi 
Group (Lower-Middle Triassic) and equivalent strata in Arizona, Utah, Wyoming 
and New Mexico (e.g., Peabody 1948; Boyd and Loope 1984; McAllister and Kirby 
1998; Schultz et  al. 1994; Lucas et  al. 2003; Mickleson et  al. 2006a, b) and the 
Chinle Group (Upper Triassic) in Arizona and New Mexico (e.g., Hunt et al. 1993a; 
Hunt and Lucas 2006b). There is no named ichnocoenosis of this ichnofacies in the 
Triassic.

12.3.4.7  Late Triassic Ichnocoenoses

There are thus five ichnocoenoses present in the Late Triassic: Evazoum, 
Brachychirotherium (Brontopodus ichnofacies), Grallator (Grallator ichnofacies), 
Apatopus (Batrachichnus ichnofacies) and Brasilichnium (Chelichnus ichnofacies). 
The Apatopus ichnocoenosis is geographically restricted to eastern North America 
(although Apatopus occurs at one locality in Utah: Foster et al. 2003) and probably 
environmentally controlled by the distribution of large rift lakes.

The Evazoum ichnocoenosis is principally restricted to western North America, 
where it is replaced in the uppermost Chinle, Wingate and Sheep Pen formations 
(latest Triassic) by the Grallator ichnocoenosis. The Shay Canyon tracksite in Utah 
pertains to the Brachychirotherium ichnocoenosis and is stratigraphically low in the 
upper Chinle. It may represent a lateral equivalent of the Evazoum ichnoceonosis or 
it may be stratigraphically lower, which would suggest a temporal progression of 
ichnocoenoses from Brachychirotherium to Evazoum to Grallator (Hunt and Lucas 
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2006b). The ichnofaunas of the lower Chinle are poorly known but include 
Brachychirotherium, lack Evazoum, and several include Barrancapus (Hunt and 
Lucas 2006a). These ichnofaunas may represent the Brachychirotherium ichnocoe-
nosis (possibly a Barrancapus sub-ichnocoenosis). Barrancapus appears to be a 
potential index ichnotaxon of the Barrancan sub-lvf (land-vertebrate faunachron) of 
the Revueltian lvf. Eosauropus and Evazoum are index ichnotaxa of the Apachean 
lvf (Hunt and Lucas 2006b, 2007c).

12.4  Vertebrate Coprolites

Like tetrapod footprints, vertebrate coprolites are broadly distributed in Upper 
Triassic strata on all of the continents except Australia and Antarctica (Fig. 12.8). 
Here, we begin with a brief review of their ichnotaxonomy, followed by discussion 
of the use of vertebrate coprolites in Late Triassic biostratigraphy/biochronology 
and in the recognition of ichnofacies. In the ichnotaxonomy we have provided infor-
mation on the entire temporal ranges of ichnotaxa even if they extend beyond the 
Late Triassic.

12.4.1  Ichnotaxonomy

12.4.1.1  Fish

Heteropolacopros Hunt et al. 1998
Type ichnospecies: Heteropolacopros texaniensis Hunt et al. 1998
Distribution: Late Mississippian: Beeman Formation (late Missourian), New 

Mexico, USA; Conemaugh Group (Formation), West Virginia, USA; Early Permian: 
Cutler Group, New Mexico, USA; Abo Formation, New Mexico, USA: Late 
Permian: “Magnesian Limestone,” France: Middle Triassic: Anton Chico Formation 
of the Moenkopi Group (Anisian), New Mexico, USA; (Perovkan and Berdyankian), 
Russia; (Perovkan) Mollo-Khara-Bala-Kantemir locality, Kazakhstan: Late Triassic: 
Irohalene Member of the Timezgadiouine Formation (Otischalkian), Argana Basin, 
Morocco; Colorado City Formation (Otischalkian: Carnian), Texas, USA; Blue 
Mesa Member of the Petrified Forest Formation (Adamanian), Arizona, USA; 
Bluewater Creek Formation (Adamanian), Arizona, USA; Bluewater Creek 
Formation (Adamanian), New Mexico, USA; Tecovas Formation (Adamanian: 
Carnian), Texas, USA; Huai Hin Lat Formation (Carnian-Norian), Huai Nam Aun, 
Chaiyaphum Province, Thailand; Cobert Canyon Sandstone Bed of the Baldy Hill 
Formation (Revueltian), Colorado, USA; Bull Canyon Formation (Revueltian), 
New Mexico, USA; Redonda Formation (Apachean), New Mexico, USA.

Description: A microspiral heteropolar coprolite that is small (usually less than 
4 cm long) with 3–4 coils forming less than 50% of the length. The posterior spire 
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is wider than the first coil (always less than one third of the total length) and 
 gradually decreases in diameter both up and down the long axis (the tip comes to a 
rounded point), and the posterior spire gradually tapers to a rounded tip (Fig. 12.9).

Discussion: This ichnospecies is very long ranging and somewhat variable in 
morphology and is in need of a taxonomic revision.

Tracemaker: Heterospiral coprolites are produced by valvular intestines. The 
phylogenetic distribution of valvular intestines is not totally understood. McAllister 
(1987) presented evidence that that some or all agnathans, placoderms, dipnoans, 
actinistians and chondrichthyans have valvular intestines. Only two fossil actinop-
terygians have evidence of this structure, and McAllister (1987) hypothesized that 
this group progressively reduced the valvular intestine, and teleosts do not exhibit 
this kind of structure. Dipnoans probably produced amphipolar coprolites (Hunt 
and Lucas 2012b), and Late Triassic heteropolar coprolites represent 
chondrichthyans.

Liassocopros Hunt et al. 2007
Type ichnospecies: Liassocopros hawkinsi Hunt et al. 2007
Distribution: Late Mississippian: Beeman Fomation (late Missourian), New 

Mexico, USA; Early Permian: Oklahoma, USA; Rotliegend, France: Middle 
Triassic: Potrerillos, Cacheuta and Río Blanco formations (Berdyankian?), Cuyana 
Basin, Argentina: Late Triassic: Lower Maleri Formation (upper Carnian), Maleri, 
India; Huai Hin Lat Formation at Huai Nam Aun (Carnian), Chaiyaphum Province, 
Thailand; Westbury Formation (Penarth Group), England (Rhaetian): Lower 
Liassic: (Hettangian-Lower Pliensbachian) of Lyme Regis, England.

Fig. 12.8 Distribution of principal Late Triassic coprolite localities: (1) Western North America; 
(2) Eastern North America; (3) Greenland; (4) Western and central Europe; (5) Morocco; (6) 
Thailand; (7) Argentina; (8) South Africa; (9) Madagascar; (10) India. Base map after Wing and 
Sues (1992). Modified after Hunt et al. (2013a, b)
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Description: A microspiral heteropolar coprolite that tends to be large (>5 cm 
long) with a small number (<3) of wide coils.

Discussion: This is a very long ranging ichnospecies that may be in need of taxo-
nomic revision.

Tracemaker: This heteropolar coprolite was produced by a chondrichthyan.
Saurocopros Hunt et al. 2007
Type ichnospecies: Saurocopros bucklandi Hunt et al. 2007
Distribution: Late Triassic: ?Lower Maleri Formation (upper Carnian) near 

Maleri, India; Carnian-Norian Huai Hin Lat Formation at Huai Nam Aun in 
Chaiyaphum Province, Thailand; Rhaetian Westbury Formation (Penarth Group) of 
England; Lower Liassic (Hettangian-Lower Pliensbachian) of Lyme Regis, England.

Description: Microspiral heteropolar coprolite that differs from Malericopros in 
being tapered below the spiral demarcation and from Heteropolacopros in having a 
small number of wide spirals (typically 3) at the anterior end (Fig. 12.10).

Discussion: Hunt et al. (2007) named this coprolite in recognition that Buckland 
(1835: 227, pl. 28, Figs. 6, 7, 9) termed this morphology “Sauro-coprolites,” and 
they noted that it does not pertain to a reptile.

Fig. 12.9 Typical Late Triassic coprolite genera. Alococopros (Hunt et  al. 2013a: fig. 5L–O). 
Dicynodontocopros (Hunt et  al. 2013a: fig. 7N–P). Heteropolacopros (Hunt et  al. 2013a: fig. 
6R–S). Revueltobromus (Hunt et al. 2013a: fig. 8N–P)
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Tracemaker: Saurocopros is a chondrichthyan coprolite.
Strabelocoprus Hunt et al. 2012a
Type ichnospecies: Strabelocoprus pollardi Hunt et al. 2012a
Distribution: Late Triassic: Penarth Group (Rhaetian), England: Early Jurassic: 

Lower Liassic (Hettangian-Lower Pliensbachian), Lyme Regis, England.
Description: Heteropolar, microspiral coprolite with a small number of coils 

(<3) in lateral view, exhibiting very wide spirals in posterior view. It has a width that 
exceeds half of its length (Fig. 12.10).

Discussion: This distinctive ichospecies seems to be a good indicator of the 
Rhaetian-Pliensbachian.

Tracemaker: This form of coprolite was produced by a chondrichthyan.
Malericopros Hunt et al. 2007
Type ichnospecies: Malericopros matleyi Hunt et al. 2007
Distribution: Late Permian: “Magnesian Limestone,” France. Late Triassic: 

?Lower Maleri Formation (upper Carnian) near Maleri, India.
Description: Microspiral heteropolar coprolite with a maximum diameter that is 

posterior to the anterior coil (Fig. 12.10).
Discussion: This ichnospecies was originally described from the Upper Triassic 

of India.
Tracemaker: Malericoprus was produced by a chondrichthyan.

12.4.1.2  Tetrapods

Alococopros Hunt et al. 2007
Type ichnospecies: Alococopros triassicus Hunt et al. 2007
Distribution: Early Triassic: Arcadia Formation (Lootsbergian), Queensland, 

Australia; Middle Triassic: (Perovkan and Berdyankian), Russia; (Perovkan) Mollo- 
Khara- Bala-Kantemir locality, Kazakhstan; Late Triassic: Colorado City Formation 
(Otischalkian: Carnian); Tecovas Formation (Adamanian: Carnian); Bluewater 
Creek Formation (Adamanian: Carnian), New Mexico, USA; Cobert Canyon 
Sandstone Bed of the Baldy Hill Formation (Revueltian: Norian), Colorado; Bull 
Canyon Formation (Revueltian: Norian), New Mexico, USA; Redonda Formation 
(Apachean: Norian), New Mexico, USA; Late Cretaceous: Kirtland Formation 
(Campanian), New Mexico, USA; Naashoibito Member of the Ojo Alamo Formation 
(Maastrichtian), New Mexico, USA: Paleocene: Nacimiento Formation (Puercan), 
New Mexico, USA; Late Eocene: Aksyir svita, Zaysan Basin, Kazakhstan.

Description: Complete specimens are arcuate in lateral view and sub-rounded in 
cross-section with regularly spaced, thin, longitudinal grooves. It is common for 
specimens to be conjoined (Fig. 12.9).

Discussion: This ichnospecies is currently only known from the Triassic to the 
Eocene. The specimens referred to this ichnospecies from the Early Permian of New 
Mexico have widely spaced, coarse grooves (Cantrell et al. 2012: fig. 2C–J) and 
represent a different ichnotaxon. Later Mesozoic and Early Tertiary occurrences 
appear to represent this ichnospecies (e.g., Lucas et al. 2012a; Suazo et al. 2012).

A.P. Hunt et al.



487

Tracemaker: Northwood (2005) noted that longitudinal intestinal rugae, which 
would produce striated feces, occur in both amphibians and reptiles, but argued that 
Alococopros triassicus (her “longitudinally striated coprolites”) represent archosau-
romorphs, because: (1) this ichnotaxon first occurs in the Early Triassic; (2) some 
extant reptiles have longitudinal rugae; and (3) they resemble extant crocodile feces 
(Young 1964). This is a reasonable hypothesis with Late Triassic forms produced by 
crocodylomorphs and later examples by crocodylians.

Revueltobromus Hunt and Lucas 2016d
Type ichnospecies: Revueltobromus complexus Hunt and Lucas 2016d
Distribution: Bull Canyon Formation (Norian: Revueltian) of eastern New 

Mexico, USA.
Diagnosis: Bromalite that differs from others in being composed of small, stri-

ated and lunate pellets within a thin cylindrical sheath (Fig. 12.9).
Description: Revueltobromus complexus is a complex specimen that consists of 

small Alococopros-like specimens (lunate, striated) encased in an apatitic sheath 
that covers one end (Hunt et  al. 2013a: fig. 8N–Q). The holotype (NMMNH 
P-16204) is 35 mm long and ovoid in cross section (20 by 17 mm). The 1.9 mm- 
thick outer layer surrounds the lunate pellets.

Fig. 12.10 Typical Late Triassic coprolite genera. Strabelocoprus (Hunt et al. 2012a: fig. 4A–C). 
Malericoprus (Hunt et  al. 2012b: fig. 1T–U). Saurocoprus (Hunt et  al. 2012c: fig. 1H). 
Falcatocoprus (Hunt et al. 2012f: fig. 1K). Eucoprus (Hunt et al. 2013a: fig. 2E–H)
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Discussion: Because this ichnotaxon apparently comprises multiple coprolite- 
like pellets (Alococoprus triassicus) within a structure, it cannot represent an evacu-
ated bromalite. Thus, this ichnotaxon probably represents an evisceralite or a section 
of the gastrointestinal tract preserved outside the body cavity (sensu Hunt and Lucas 
2012a). Conjoined specimens of Alococopros (usually twice the size of the compo-
nents of Revueltobromus) occur at other localities (e.g., Suazo et  al. 2012: figs. 
7A–G).

Tracemaker: Given the similarity to Alococoprus, it is likely that Revueltobromus 
was produced by a crocodylomorph.

Dicynodontocopros Hunt et al. 1998
Type ichnospecies: Dicynodontocopros maximus Hunt et al. 1998
Distribution: Middle Triassic: (Perovkan and Berdyankian), Russia; Middle 

Triassic (Perovkan) Mollo-Khara-Bala-Kantemir locality, Kazakhstan; Potrerillos, 
Cacheuta and Río Blanco formations (Berdyankian?), Cuyana Basin, Argentina: 
Late Triassic: Colorado City Formation (Otischalkian: Carnian), Texas, USA; 
Tecovas Formation (Adamanian: Carnian), Texas, USA; Bluewater Creek Formation 
(Adamanian: Carnian), Arizona, USA; Blue Mesa Member of the Petrified Forest 
Formation (Adamanian: Carnian), Arizona, USA; Bluewater Creek Formation 
(Adamanian: Carnian), New Mexico, USA.

Description: Large vertebrate coprolites (up to 10 cm long), often dark gray in 
color, preserving up to four loose coils, often containing large (up to 4 mm in diam-
eter) blebs of carbonaceous plant debris, having a slightly arcuate long axis with one 
end broadly rounded and the other coming to an acute tip, with a maximum width- 
to- length ratio of about 45–50% (Fig. 12.9).

Discussion: This ichnotaxon is most abundant at the Placerias quarry in north-
eastern Arizona, USA (Hunt et al. 1998, 2013a).

Tracemaker: Dicynodontocopros maximus is the coprolite of a dicynodont 
(principally Placerias during the Late Triassic) (Hunt et al. 1998). It is a proxy for 
several localities where dicynodont bones are lacking (e.g., western New Mexico).

Falcatocopros Hunt et al. 2007
Type ichnospecies: Falcatocopros oxfordensis Hunt et al. 2007
Distribution: Late Triassic: Blue Mesa Member of Petrified Forest Formation 

(Chinle Group) (Late Triassic: Adamanian: Carnian), Arizona, USA; Rhaetian 
Westbury Formation (Penarth Group), England; Late Jurassic: Oxford Clay 
(Oxfordian), England.

Description: Differs from other coprolite ichnogenera in being long, narrow and 
arcuate in lateral view, rounded to sub-rounded in cross section with a width that 
gradually decreases from one end to the other (Fig. 12.10).

Discussion: This ichnospecies ranges from the Late Triassic to Late Jurassic. It 
is uncommon, and probably, at least in part, the result of a taphonomic artifact 
related to its slender morphology that would render it susceptible to mechanical 
breakage.

Tracemaker: This ichnotaxon is presumed to be have been produced by an 
unidentified tetrapod.

Eucoprus Hunt and Lucas 2012b
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Type ichnospecies: Eucoprus cylindratus Hunt and Lucas 2012b
Distribution: Early Triassic: Arcadia Formation (Lootsbergian), Queensland, 

Australia; Tecovas Formation (Adamanian), Texas, USA; Bull Canyon Formation 
(Revueltian: Norian), New Mexico, USA; Redonda Formation (Apachean: late 
Norian) of New Mexico, USA; Late Cretaceous: Kirtland Formation (Campanian), 
New Mexico, USA; Naashoibito Member of the Ojo Alamo Formation 
(Maastrichtian), New Mexico, USA: Paleocene: Nacimiento Formation (Puercan 
and Torrejonian), New Mexico, USA: Eocene: San Jose Formation (Wasatchian), 
New Mexico, USA; lower part of the Aksyir svita (late Eocene), Zaysan Basin of 
northeastern Kazakstan.

Description: Coprolite that is cylindrical in shape, with rounded ends and con-
tains no osseous inclusions (Fig. 12.10).

Discussion: This ichnospecies is probably much more widespread than has been 
currently documented.

Tracemaker: Eucoprus was produced by a wide variety of carnivorous tetrapods 
based on its long stratigraphic range.

12.4.2  Coprolite Ichnoassemblages

12.4.2.1  Western United States

Vertebrate coprolites are common and locally abundant in strata of the Upper 
Triassic Chinle Group in the western United States (Hunt and Lucas 1989, 1993a, 
c; Murry 1989; Murry and Long 1989; Hunt et al. 1998; Heckert et al. 2005). The 
oldest, Otischalkian, specimens are restricted to West Texas and Wyoming. 
Adamanian samples are the most abundant, followed by Revueltian. Apachean cop-
rolites are only abundant in eastern New Mexico.

Vertebrate coprolites are common in Adamanian localities in northeastern 
Arizona. Heckert et al. (2002) described coprolites from the Shinarump Formation 
or lowermost Cameron Formation near Cameron. Coprolites, including multiple 
specimens of Dicynodontocopros maximus, are abundant in the Bluewater Creek 
Formation at the Placerias quarry near St. Johns (e.g., Camp and Welles 1956; Kaye 
and Padian 1994; Hunt et al. 1998). Coprolites, including Dicynodontocopros maxi-
mus, occur in the Blue Mesa Member of the Petrified Forest in the Blue Hills, also 
near St. Johns (e.g., Norman et al. 2009; Hunt et al. 2013a: fig. 7N–Q).

Adamanian coprolites are common at Petrified Forest National Park in the Blue 
Mesa Member of the Petrified Forest Formation (Murry and Long 1989; Hunt and 
Santucci 1994; Hunt et al. 1998, 2012d; Wahl et al. 1998; Heckert 2001, 2004). A 
notable locality is the “Dying Grounds,” which is a fossiliferous horizon high in the 
Blue Mesa Member near Blue Mesa (e.g., Murry and Long 1989; Heckert 2001, 
2004). Hunt et  al. (1998) noted that Heteropolacopros texaniensis occurs in the 
Blue Mesa Member at the Park. Hunt et al. (2012f: fig. 2A) described Falcatocopros 
oxfordensis from an unknown Blue Mesa locality.
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The USNM collection includes Heteropolacopros and indeterminate coprolites 
from a sample collected near Petrified Forest National Park, presumably from the 
Blue Mesa Member (Hunt et al. 2012b).

Significant accumulations of coprolites occur in the lower part of the Revueltian 
Painted Desert Member at Petrified Forest National Park at localities that include 
Dinosaur Hill (Hunt and Lucas 1993c). Coprolites are also common in the Revueltian 
Owl Rock Formation at Ward Terrace (Kirby 1989). Lipman and McLees (1940) 
described a new species of fossil bacteria from a coprolite from an unknown locality 
in Arizona.

Ash (1978) described a large number of coprolites from a lacustrine mudstone unit 
in the Adamanian Bluewater Creek Formation of western New Mexico (Hunt et al. 
2013a). The sample includes Dicynodontocopros maximus, Heteropolacopros texani-
ensis and Alococopros triassicus (Hunt et al. 2013a). Weber and Lawler (1978) ana-
lyzed the lipid content of a sample of these coprolites. Other localities in the Bluewater 
Creek Formation yield abundant coprolites, including specimens of Dicynodontocopros 
maximus (Heckert and Lucas 2003; Hunt et al. 2013a: figs. 8D–M).

Adamanian coprolites occur in several other stratigraphic units in New Mexico, 
including the Los Esteros Member of the Santa Rosa Formation, Garita Creek 
Formation, lower Petrified Forest Formation and Salitral Formation (Hunt and 
Lucas 1988, 1990, 1993b; Hunt et al. 1989b). The Revueltian Bull Canyon Formation 
of east-central New Mexico yields large coprofaunas (Lucas et al. 1985; Hunt 1994, 
2001; Hunt et al. 2013a: figs. 8N–T, 10A–H). Lucas et al. (1985) described three 
morphologies of coprolites: (1) longitudinally furrowed specimens that represent 
Alococopros triassicus (Lucas et al. 1985: fig. 7M–R); (2) small specimens with a 
rod-like to oval morphology (>90% of sample) (Lucas et al. 1985: fig. 7A–L); and 
(3) large, irregularly shaped forms with numerous inclusions (fish scales, bone frag-
ments) (Lucas et al. 1985: fig. 7S–U).

The most extensive coprolite locality is in Revuelto Creek (NMMNH locality 1) 
and yields Eucoprus cylindratus, Alococopros trassicus, a heteropolar form similar 
to Heteropolacopros, coiled coprolites and comma-shaped specimens (Hunt et al. 
2013a). Coprolites are also present at other Revueltian localities in New Mexico, 
including the upper Petrified Forest Formation in the San Ysidro area (Hunt and 
Lucas 1990) and Chama Basin (Hunt and Lucas 1993b), and the Trujillo Formation 
(Hunt 1991a) and Correo Sandstone Member of the Petrified Forest Formation at 
Mesa Gigante and in the Hagan Basin (Hunt and Lucas 1993b). The Apachean 
Redonda Formation of east-central New Mexico yields numerous coprolites. The 
largest concentration is at the Gregory quarry (NMMNH locality 485) in Apache 
Canyon (Hunt et al. 2013a: figs. 8U–KK, 11). This large sample includes the holo-
type and other specimens of Eucoprus cylindratus (Hunt and Lucas 2012b: fig. 4), 
Alococopros sp. as well as Heteropolacopros texaniensis and other heteropolar 
forms. Coprolites occur associated with skeletons of Coelophysis in the Apachean 
Rock Point Formation at Ghost Ranch (Rinehart et al. 2005a, b, 2009).

Vertebrate coprolites are common in the Upper Triassic strata of West Texas. 
Otischalkian coprolites occur in the Colorado City Formation near Midland (Elder 
1978, 1987; Hunt et al. 2013a, b: Figs. 2AA-GG, LL-MM, 5A–I) and are particu-
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larly abundant at Otis Chalk quarries 1 and 2. These samples include Heteropolacopros 
texaniensis (Elder 1978: pl. 14, fig. 1a; Hunt et al. 2013a: Figs. 2AA-GG, LL-MM), 
Alococopros triassicus (Elder 1978: pl. 14, fig. 1b; Hunt et al. 2013a: fig. 5H–I) and 
Dicynodontocopros maximus (Hunt et al. 2013a).

Case (1922) recognized three coprolite forms from the Adamanian Tecovas 
Formation of West Texas that include the holotype and referred specimens of 
Heteropolacopros texaniensis (Case 1922: fig. 33A–B; Hunt et al. 1998: fig. 2C–L). 
Other specimens from the Tecovas include the holotype of Dicynodontocopros max-
imus (Hunt et al. 1998: fig. 2A–B) and specimens of Alococopros triassicus Case 
(1922: fig. 33C–D; Hunt et al. 2007, 2013a). Localities in the badlands north of 
Amarillo include the extremely fossiliferous Rotten Hill bonebed (Lucas et  al. 
2016). This locality is in the Tecovas Formation and has yielded a large sample of 
coprolites (Hunt et  al. 2013a; Lucas et  al. 2016: fig. 10). Like most Adamanian 
coprolite faunas in the Chinle Group, this collection includes Heteropolacopros and 
Alococopros as well as Eucoprus (Hunt et al. 2013a; Lucas et al. 2016).

Specimens of Heteropolacopros and Alococopros triassicus from the Purgatoire 
River Valley of Colorado probably derive from the Revueltian Cobert Canyon 
Sandstone Bed of the Baldy Hill Formation (Hunt et al. 2012b). The largest broken 
specimen is 89  mm long and is the largest known nonmarine Triassic coprolite 
(Hunt et al. 2012b: fig. 2A). Coprolites also occur in fish beds of the Apachean Rock 
Point Formation in the southwestern part of the state.

Parrish (1999) reported abundant coprolites from the Adamanian Monitor Butte 
Formation in southern Utah. DeBlieux et al. (2006: figs. 9A–C) illustrated numer-
ous coprolites from the Petrified Forest Formation of Zion National Park in southern 
Utah that may be either Adamanian or Revueltian in age. Coprolites are common in 
a laterally extensive interval in the upper Apachean Bell Springs Formation at 
Dinosaur National Monument (Hunt et  al. 1993c). Coprolites occur on the main 
track bed at the Shay Canyon tracksite (Rock Point Formation) in southeastern Utah 
(Lockley 1986; Lockley and Hunt 1995: fig. 3.8).

Coprolites are locally common in the Popo Agie Formation of Wyoming (e.g., 
High et al. 1969; Hunt et al. 1998, 2013a: fig. 5Q–T).

12.4.2.2  Eastern United States

The Newark Supergroup ranges in age from Middle Triassic to Early Jurassic. However, 
there are very few references to Newark coprolites, though it seems that they are most 
common in the Carnian and Jurassic strata (e.g., Olsen 1988; Olsen et al. 1989, 2003, 
2005a, b; Olsen and Flynn 1989; Olsen and Huber 1997, 1998; Olsen and Rainforth 
2001; Gilfillian and Olsen 2000; Hunt et al. 2007). Gilfillian and Olsen (2000) noted 
that coprolites are the most common trace fossils in the fish- bearing lacustrine units of 
the Newark and that large specimens probably derive from coelacanths.

Olsen (1988) noted abundant Carnian coprolites in the Lockatong Formation 
from several localities (see also Olsen et al. 1989; Olsen and Flynn 1989; Olsen and 
Rainforth 2001; Jenkins in Häntzschel et al. 1968). Other Carnian localities include 
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the Stockton Formation in North Carolina (Olsen and Huber 1998: table 1) and the 
Doswell Formation of Virginia (Weems 1980).

12.4.2.3  Greenland

Milàn et  al. (2012) provided a preliminary description of an extensive coprolite 
ichnofauna from the basal Rhaetian part of the Kap Stewart Formation of Jameson 
Land. Subsequently, Hansen et al. (2015) described over 300 coprolites from this 
locality, representing a variety of morphotypes.

12.4.2.4  South America

Hollocher et al. (2005) described the chemistry and mineralogy of a small sample 
of coprolites from the Ischigualasto Formation of Argentina (see also Contreras 
1995). Mancuso et  al. (2013) described four morphotypes from the Triassic 
Potrerillos, Cacheuta and Río Blanco formations of the Cuyana Basin that may be 
Carnian in their upper part based on pollen (see also Hunt et al. 2007).

The oldest known latrinites (sensu Hunt and Lucas 2012a) occur in the Chañares 
Formation in Argentina, which may range up into the early Carnian (Fiorelli et al. 
2013). The latrinites are attributed to kannemeyeriiform dicynodonts and indicate 
communal latrines and probably gregarious behavior. Langer (2005) noted that cop-
rolites were collected from the lower Caturrita Formation (Adamanian) of Brazil.

12.4.2.5  Europe

Coprolites are very common in the bone beds of the Westbury Formation in south-
western England, and many specimens are preserved in museum collections (e.g., 
Buckland 1835; Duffin 1979; Storrs 1994; Martill 1999; Swift and Duffin 1999; 
Gallois 2007; Hunt et al. 2012a, b: Fig. 12.12). There are more than half a dozen 
morphotypes in the Westbury coprofaunas, including both spiral (amphipolar and 
heteropolar) and nonspiral forms, Liassocopros hawkinsi, Saurocopros bucklandi 
and Strabelocoprus pollardi (Duffin 1979; Swift and Duffin 1999; Hunt et al. 2007, 
2012a, b, c, 2013b: fig. 12). Klompmaker et al. (2010) noted coprolites in Rhaetian 
shale in the Netherlands.

Zatoń et al. (2015) described the composition of a small sample of four morpho-
types of coprolites from the Zbąszynek beds (Woźniki Formation) of Norian age in 
Poland. These specimens were produced by carnivores but include inclusions of 
plant material.

Upper Norian (Revueltian) sediments of the Lipie Śląskie clay-pit near Lubliniec 
yield abundant large coprolites (Bajdek et al. 2014). These coprolites include plant 
debris and are attributed to a dicynodont that is common at this locality (Bajdek 
et al. 2014).
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Qvarnström et al. (2017) studied two coprolites from the upper Carnian locality 
of Krasiejów using synchrotron microtomography. One preserved beetle remains, 
and the other a partly articulated fish and fragments of bivalves. Qvarnström et al. 
(2016: fig. 3J) illustrated fibrous elements in association with bone inclusions in 
a carnivorous vertebrate coprolite from the Late Triassic of Poland.

Coprolites are common in the Rhaetic bone beds of Switzerland (e.g., Fluckiger 
1858). Fraas (1891) reported common spiral coprolites from the German “Keuper,” 
which he attributed to sharks. The Stuttgart Formation (middle Carnian) includes 
coprolites (Schoch 2002).

12.4.2.6  Africa

Anderson et al. (1998) noted that coprolites are very rare in the Molteno Formation 
of South Africa.

12.4.2.7  Asia

The Carnian-Norian Huai Hin Lat Formation at Huai Nam Aun in Chaiyaphum 
Province, Thailand, has yielded abundant coprolites (Laojumpon et  al. 2012). 
Laojumpon et  al. (2012) recognize seven different morphotypes, including 
Liassocopros hawkinsi and Saurocopros bucklandi.

Coprolites were recognized in the Otischalkian-Adamanian Maleri Formation in 
India more than 150 years ago and are locally common (Oldham 1859; King 1881; 
Aiyengar 1937; Matley 1939; Sohn and Chatterjee 1979; Jain 1983; Vijaya et al. 
2009). Most fossils, including coprolites, derive from the Otischalkian portion of 
the Maleri Formation (Hunt et al. 2007). Coprolites include Malericopros matleyi, 
Heteropolacopros texaniensis, Liassocopros hawkinsi and probably Saurocopros 
bucklandi, as well as amphipolar forms (Matley 1939; Jain 1983; Hunt et al. 2007; 
Vijaya et al. 2009).

12.4.3  Biostratigraphy and Biochronology

Vertebrate coprolites are of biochronological utility (e.g., Hunt 1992; Hunt et al. 
1998, 2005a, 2007, 2013a, b). However, as noted above, vertebrate ichnotaxa almost 
always correspond to higher level taxonomic groups of body fossils. Thus, footprint 
ichnogenera are commonly only equivalent to the “family” level of body fossils 
(Lucas 2007). Coprolites probably represent, in most cases, even higher level taxo-
nomic levels (“order” or above) (Hunt et al. 2007, 2013a). However, coprolite ich-
notaxa do have defined stratigraphic ranges that parallel the stratigraphic ranges of 
the producing animals, so the coprolites have some utility in biostratigraphy and 
biochronology (Hunt and Lucas 2005; Hunt et al. 2007, 2013a, b).
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Hunt et  al. (1998) first applied binomial nomenclature to Triassic coprolites. 
Subsequently, we, and co-authors have named several other ichnotaxa that have 
been utilized by a number of workers (e.g., Duffin 2010; Laojumpon et al. 2012). 
However, others have been reluctant to apply a binomial nomenclatural scheme to 
coprolites based on the misconception that feces are not distinguishable, even 
though wildlife biologists routinely track the distribution of extant taxa based on the 
distinct morphologies of their feces (e.g., Stuart and Stuart 2000; Chame 2003; 
Angom et al. 2012). Some of the most biochronologically important ichnotaxa for 
the Triassic are (Fig. 12.11):

 1. Hyronocopros amphipola is common in the Permian and apparently has its last 
occurrence in the Middle Triassic (Hunt et al. 2013a).

 2. Alococopros triassicus is abundant and characteristic of the Triassic, although 
there are reported occurrences from the Permian to the Cretaceous (Cantrell 
et al. 2012; Suazo et al. 2012). Permian occurrences may represent a different 
ichnotaxon with wider spaced grooves.

 3. Dicynodontocopros maximus ranges from the Middle to the Late Triassic (upper 
Carnian) and it occurs in some faunas as the only evidence of the presence of 
dicynodonts (e.g., Chinle Group of West Texas and western New Mexico).

 4. Heteropolacopros texaniensis first occurs in the Pennsylvanian, and it is abun-
dant in the Carnian but rare in the Norian and absent in the Rhaetian.

 5. The first occurrence of Strabelocoprus pollardi is in the Rhaetian, and the cop-
rolite faunas of this age lack Heteropolacopros texaniensis.

The base of the Late Triassic is marked by the last occurrence of Hyronocopros 
and the first appearance of Saurocopros (Fig. 12.11). The end of the Carnian coin-
cides with the last occurrence of Dicynodontocopros and Malericopros and a 
marked decrease in the abundance of Heteropolacopros and Alococopros. The start 
of the Rhaetian coincides with the last occurrence of Heteropolacopros and the first 
occurrence of Strabelocoprus. There is no apparent change in coprolites across the 
Triassic/Jurassic boundary (Fig. 12.11).

12.4.4  Ichnofacies

Coprolites are trace fossils and thus facies fossils. Hunt and co-workers (Hunt et al. 
1994a, 1998, 2007, 2013a; Hunt and Lucas 2007d) recognized four Late Triassic 
coprolite ichnocoenoses, and there is also a long-ranging association of heterospiral 
coprolites that encompasses this time interval (Hunt et al. 2013a, 2015b).

There are three possible approaches to describing coprolite ichnofacies. First, 
there is a sophisticated scheme of archetypal (Seilacherian) ichnofacies that princi-
pally incorporate invertebrate ichnotaxa (see recent reviews in Buatois and Mángano 
2011 and MacEachern et al. 2012). The pervasive association of heteropolar copro-
lites in shallow marine environments could be considered an archetypal ichnofacies. 
Second, Hunt and Lucas (2007d, 2016a) defined a set of vertebrate archetypal ich-
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nofacies that are based on tracks. The principal difference from the Seilacherian 
ichnofacies is that the vertebrate ichnofacies includes the identity of the tracemaker 
as well as its behavior in their definition. Third, we could propose a parallel ichnofa-
cies system just for coprolites. A challenge to this approach is that it is only in the 
last 20 years that there has been application of binomial nomenclature to coprolites 
and an increased volume of literature, so there are relatively few potential name 
bearers (Hunt et al. 1998, 2012d).

We have decided to take a conservative approach and name two ichnofacies 
within the Seilacherian scheme. The first recognizes the widespread occurrence of 
large accumulations of spiral coprolites, principally in shallow marine environ-
ments, and the second that coprolites are a substrate for other kinds of trace fossils. 
Subsequently, the former could be incorporated in the vertebrate ichnofacies model 
by recognizing that spiral coprolites are principally produced by chondrichthyans.

12.4.4.1  Crassocoprus Ichnofacies

Definition: Buckland (1829, 1835) largely based his definition of coprolites on the 
recognition that heteropolar “bezoar stones” from the Early Jurassic of Lyme Regis 
in southwestern England represented fossil feces. Heteropolar coprolites occur in 
large numbers in shallow marine strata from the Mississippian to the Eocene (e.g., 
Hunt et al. 2015b).

We formally define the Crassocoprus ichnofacies to include marine trace fossil 
ichnocoenoses dominated by heteropolar coprolites and that include coprolites of 
low to moderate ichnodiversity. Shale substrates typify the Crassocoprus ichnofa-
cies. The name is for Crassocoprus, a macrospiral heteropolar coprolite from the 
Pennsylvanian that is attributed to a chondrichthyan (Hunt et al. 2012g).

Discussion: Heteropolar coprolites date back to the Devonian and become abun-
dant during the Pennsylvanian (Hunt and Lucas 2016b). Principal large samples of 
heteropolar coprolites (shallow marine setting unless indicated otherwise) occur in 
the:

 1. Middle-Late Mississippian
Wardie, Midlothian, Scotland (Middle Mississippian: Viséan) (Buckland 

1835; Sumner 1991)
Anstruther, Fife, Scotland (Middle Mississippian: Viséan) (Sumner 1991).
Bearsden, East Dunbartonshire, Scotland (Late Mississippian: Serpukhovian) 

(Clark 1989)
 2. Late Pennsylvanian

Park and Chaffee Counties, Colorado, USA (Johnson 1934).
Bassam Park, Colorado, USA (Houck et al. 2004)
Morgantown, West Virginia, USA (Price 1927)
Sacramento Mountains, New Mexico, USA (Hunt et al. 2012g)

 3. Early Permian
Manhattan, Kansas, USA (Williams 1972; McAllister 1985)
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 4. Middle/Late Permian
Southern Brazil – lacustrine (Dentzien-Dias et al. 2012a)

 5. Late Permian/Early Triassic
European Russia – nonmarine (Niedźwiedzki et al. 2016b)

 6. Early Jurassic
Lyme Regis, England (Buckland 1835; Hunt et al. 2012a)

 7. Late Cretaceous
Southern England, Western Europe (Hunt et al. 2015b)

 8. Middle-Late Eocene
Northern Germany (Diedrich and Felker 2012)
Alabama, USA (Stringer and King 2012)

Fig. 12.11 Vertebrate coprolite biostratigraphy and biochronology of the Triassic

A.P. Hunt et al.



497

12.4.4.2  Gaspeichnus Ichnofacies

Definition: Feces provide a source of food for some insects and vertebrates. 
Coprolites also undergo bioerosion and are the subject of accidental contact by ver-
tebrates. Therefore, coprolites preserve a variety of traces reflecting vertebrate den-
talites, vertebrate footprints and invertebrate borings. We formally define the 
Gaspeichnus ichnofacies to include marine and nonmarine trace fossil ichnocoeno-
ses of low diversity dominated by macroscopic borings and vertebrate dentalites 
and footprints that utilize coprolites as a substrate. The name is for Gaspeichnus, a 
sinuous coprolite boring from the Devonian (see the Appendix).

Discussion: Tapanila et al. (2004: fig. 3C–E) described flask-shaped borings in 
both bone and coprolites from the Cretaceous-Eocene of Mali. The coprolite bor-
ings have more narrow openings and typically exhibit sculpturing in the basal walls 
that consist of chevron-shaped grooves arranged in concentric to spiraled whorls, 
and Tapanila et al. (2004: fig. 3D–F) assigned them to Gastrochaenolites ornatus 
Kelly and Bromley, 1984. These are putative bivalve borings and individual copro-
lites have multiple examples (Tapanila et al. 2004: fig. 3C).

Dentzien-Dias et al. (2012a: fig. 11c) described an amphipolar coprolite with an 
invertebrate boring from the Rio do Rasto Formation (Middle/Upper Permian) in 
southern Brazil. The boring has smooth margins and a cylindrical shape and is inter-
preted as an indeterminate invertebrate boring.

Wahl et al. (1998) suggested that small holes in Late Triassic coprolites from 
Arizona, USA were produced by insects, such as dipteran larvae. There are several 
putative examples of coprophagy traces of dung beetles in the Cretaceous and early 
Tertiary of the USA (Bradley 1946; Chin and Gill 1996).

Antunes et  al. (2006) described Miocene mammalian footprints preserved in 
coprolites from Portugal. Three coprolites from different stratigraphic horizons 
yielded: (1) a tridactyl footprint that can be ascribed to a right foot of the rhinoceros 
Hispanotherium matritensis; (2) a tridactyl, left foot impression of a perissodactyl, 
possibly an Anchitherium-like equid; and (3) a didactyl track from a small-sized 
ruminant, most probably a cervid, genus Procervulus. The tridactyl coprolites may 
have been produced by the animals that stepped on them.

Two coprolites from the Miocene Chesapeake Group of the Calvert Cliffs, 
Maryland, USA preserve dentalites of sharks (Godfrey and Smith 2010). The shark 
impressions are of partial dental arcades and could result from: (1) aborted coproph-
agy, (2) benthic or nektonic exploration, or (3) predation.

Godfrey and Palmer (2015) described a coprolite bitten by a gar from South 
Carolina, USA. The coprolite derives from a thick lag deposit that includes a mix-
ture of Late Cretaceous, early Paleocene, and Plio-Pleistocene taxa.

Recent studies have also highlighted that coprolites contain diverse body fossils 
of delicate and rare organisms (Dentzien-Dias et al. 2013, 2017; Qvarnström et al. 
2016, 2017). These include vertebrate soft tissues (e.g. muscle tissue and hairs) and 
parasites (Qvarnström et al. 2017).

12 Late Triassic Nonmarine Vertebrate and Invertebrate Trace Fossils and the Pattern…



498

12.5  Other Vertebrate Trace Fossils

12.5.1  Consumulites

The majority of tetrapod consumulites described from the Late Triassic pertain to 
phytosaurs or theropods in the United States and India. Two phytosaur skeletons of 
Pseudopalatus pristinus from the Revueltian (Norian) Bull Canyon Formation of 
eastern New Mexico, USA, preserve consumulites (Hunt 1991b, 1994, 2001; Hunt 
and Lucas 2016d). NMMNH P-20852 is a skull and skeleton of a dolichorostral 
(sensu Hunt 1989) (female) phytosaur with preserved consumulites consisting of a 
proximal pubis of a smaller phytosaur and a series of centra of the sphenosuchian 
Vancleavea campi. NMMNH P-4979 is an altirostral (male) phytosaur skeleton that 
includes as an evident consumulite a small series of dorsal centra of the metoposau-
rid amphibian Apachesaurus gregorii.

Chatterjee (1978) described two associated skeletons of the phytosaur Parasuchus 
from the lower Maleri Formation (Carnian) of India. Each specimen contains a 
small bipedal archosaur in the stomach, the bones of which are more or less 
 articulated and well preserved, except for the caudal region. The left specimen “…
shows a few skull bones of a rhynchosaur in its stomach” (Chatterjee 1978: 111). 
Subsequently, Chatterjee (1980) described the small reptile as Malerisaurus robin-
soni, which may be a synonym of Trilophosaurus buettneri (Spielmann et al. 2006).

Three kinds of bromalites are associated with skeletons of the theropod dinosaur 
Coelophysis bauri in the Apachean Rock Point Formation at Ghost Ranch in north-
ern New Mexico, USA (Rinehart et al. 2005a, b, 2009; Nesbitt et al. 2006; Hunt and 
Lucas 2016d). Bromalite material was found in area of the mouth of NMMNH 
P-44551, a skull and incomplete neck, which is presumed to belong to the postcra-
nial skeleton NMMNH P-44552 (Rinehart et al. 2009: fig. 119E, F). This specimen 
contains numerous bone fragments, in a dark reddish brown matrix that is less gran-
ular than that of coprolites associated with the Coelophysis and darker in color than 
the surrounding siltstone (Rinehart et al. 2009). The exact location relative to the 
skull is unclear (Rinehart et al. 2009: fig. 119E, F), and it could be within the oral 
cavity and thus an oralite (sensu Hunt and Lucas 2012a) or an expelled regurgitalite. 
Whatever its location, the presence of matrix suggests that the bromalite represents 
regurgitated material. This specimen includes small premaxillary and other teeth of 
Coelophysis (Rinehart et al. 2009: fig. 119F).

Three specimens of Coelophysis bauri from NMMNH block C-8-82 have bro-
malitic material directly associated with articulated skeletal material (Rinehart et al. 
2005a, b, 2009). These specimens have indistinct structure and a granular matrix. 
Some specimens occur between the ischia and the proximal caudal vertebrae and 
apparently represent incorporeal pelletites (pelletized bromalites preserved within 
the gastrointestinal tract: Hunt and Lucas 2012a), whereas others are coprolites 
(excorporeal pelletites: Hunt and Lucas 2012a) that are posteroventral to the proxi-
mal caudal vertebrae (Rinehart et al. 2009). These specimens include apparent fish 
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scale debris and bones of juvenile Coelophysis (Rinehart et al. 2009). Two skeletons 
in the AMNH collection preserve putative demalites (skeletal material preserved 
within the body cavity of a vertebrate sensu Hunt and Lucas 2012a) (Colbert 1989, 
1995; Nesbitt et al. 2006).

The neotype of Coelophysis bauri (AMNH FR 7224) consists of a nearly com-
plete, mediolaterally crushed skeleton and the abdominal cavity that apparently 
contains disarticulated skeletal remains concentrated in the posterodorsal region 
and articulated remains in the anteroventral region, of which only the latter are 
demalites (Nesbitt et al. 2006). These specimens apparently represent a gastrolite 
consisting of specimens of Hesperosuchus (Nesbitt et al. 2006). Putative demalites 
associated with a second skeleton (AMNH FR 7223) are probably actually lying 
underneath the skeleton (Nesbitt et al. 2006). Colbert (1989, 1995) originally inter-
preted putative demalites as specimens of Coelophysis, but only one is actually a 
cololite, and it contains elements of Hesperosuchus (Nesbitt et al. 2006).

However, Rinehart et  al. (2009) found specimens in a coprolite that included 
carpal and manual bones indistinguishable from those of a small juvenile Coelophysis 
and a regurgitalite that contains two laterally compressed finely serrated teeth in a 
jaw fragment and a premaxilla fragment with one complete, premaxillary tooth. The 
teeth are morphologically identical (including the denticle count) to those of a small 
Coelophysis (Rinehart et al. 2009). Thus, the most parsimonious interpretation of 
the small, apparent Coelophysis teeth, manual, and carpal elements in the coprolite 
and regurgitalite is that cannibalism occurred in this species (Rinehart et al. 2009).

An undescribed skeleton of a new paracrocodylomorph from the Upper Triassic 
(Neshanician: Norian) of North Carolina, USA, preserves diverse bones as a gastro-
lite (Lucas et al. 1998; Sues et al. 2003). These elements, some bearing tooth marks, 
include osteoderms of a small stagonolepidid archosaur (Aetosaurus sp.), a snout, 
left coracoid and humerus of a traversodont cynodont (Plinthogomphodon herpe-
tairus), two articulated phalanges of a large dicynodont, and a fragment of an 
unidentified ?temnospondyl bone (Sues et al. 2003).

Jurassic ichthyosaur skeletons commonly preserve consumulites (e.g., Pollard 
1968; Hunt et  al. 2012a), but there are few reports from the Early (Buchy et  al. 
2004), Middle (Rieber 1970; Brinkmann 2004) or Late Triassic (Camp 1980; Cheng 
and Chen 2007; Druckenmiller et al. 2014). The three Late Triassic occurrences are 
distinctive in that the stomach contents consist of a mix of vertebrate and mollusk 
shell fragments (Guizhouichthyosaurus tangae: Cheng and Chen 2007; Shonisaurus 
popularis: Camp 1980; indeterminate shonosaurian: Druckenmiller et al. 2014). In 
contrast, gastrolites reported from other Triassic ichthyosaurs consist of cephalopod 
hooklets (Rieber 1970; Brinkmann 2004; Buchy et  al. 2004), more typical of 
Jurassic and later ichthyosaurs (Druckenmiller et al. 2014). Late Triassic ichthyo-
saurs show substantial variation in dentition and body size and may have occupied 
a wider range of predatory guilds than their Jurassic and Cretaceous counterparts 
(Callaway and Massare 1990; Druckenmiller et al. 2014).
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12.5.2  Dentalites (Bite Marks)

One hindrance to the growth of vertebrate ichnology continues to be the continued 
use in the technical literature of imprecise, undefined, vernacular terms such as 
tracks, dung, bite mark and burrow (Hunt et al. 2013b; Hunt and Lucas 2016d). To 
this end we propose the term dentalite (from the Latin dentes, for teeth and Greek 
lithos, for rock) to encompass all traces produced on a substrate (normally bone, but 
could be vegetation or even coprolite: Antunes et al. 2006; Lucas 2016) by the teeth 
or oral cavity of a vertebrate. This term could also be applied to marks left by the 
jaw apparatus of invertebrates (e.g., echinoid dentalites on crinoids: Baumiller et al. 
2010; Gorzelak et al. 2012).

There are relatively few published records of dentalites from the Late Triassic. The 
most common taxa with dentalites are dicynodonts from South and North America 
and Europe, and paracrocodylomorphs with several records from North America.

A femur of a dicynodont similar to Ischigualastia (Lucas and Hunt 1993), from the 
upper part of the Los Esteros Member (Adamanian: Carnian) of the Santa Rosa 
Formation in north-central New Mexico, USA, has multiple tooth marks (Rinehart 
et al. 2006; Hunt and Lucas 2016d: fig. 17C, D; Fig. 12.12c, d). There are 11 tooth 
marks on the anterior surface of the distal end and approximately 15 smaller, poorly- 
preserved tooth marks on the corresponding posterior surface of the femur. Hunt and 
Lucas (2016d) assigned these traces to Heterodontichnites hunti (Rinehart et al. 2006).

Budziszewska-Karwowska et al. (2010) described bite marks on a dicynodont 
tibia from the Norian Woźniki Limestone of Zawiercie, Kraków-Częstochowa 
Upland, Southern Poland. The bone has longitudinal dentalites on the anterior side 
of its shaft, as well as a row of small oval pits that are interpreted to represent the 
scavenging of more than one carnivore.

Norian strata of the Lipie Śląskie clay pit in southern Poland yield six small 
dicynodont bones with dentalites (Dzik et al. 2008; Niedźwiedzki et al. 2010). These 
traces are assigned to Linichnus serratus, Knethichnus parallelum and Nihilichnus 
nihilicus and attributed to theropod dinosaurs (Niedźwiedzki et al. 2010). Dentalites 
also occur on ribs of the dicynodont Jachaleria candelariensis from the Carnian 
Caturrita Formation of Brazil (Braunn et al. 2001; Vega-Dias et al. 2004).

Drumheller et al. (2014) described two partial femora of paracrocodylomorphs 
(“rauisuchia”) from northern New Mexico, USA, with dentalites interpreted to be 
from phytosaurs. One specimen is the proximal three fifths of a femur from an 
unknown locality near Ghost Ranch in Rio Arriba County but presumed to be from 
the Revueltian (Norian) Petrified Forest Formation. It includes an embedded tooth 
and healed and unhealed tooth marks. The other specimen is a proximal femur from 
the Adamanian (Carnian) lower Chinle Group (Bluewater Creek Formation or Blue 
Mesa Member of Petrified Forest Formation) that preserves an embedded tooth and 
unhealed dentalites (Heckert and Lucas 2002; Drumheller et al. 2014).

The holotype skeleton of the crocodylomorph archosaur Dromicosuchus gralla-
tor from the Upper Triassic (Neshanician: Norian) of North Carolina, USA, pre-
serves apparent dentalites to the head and neck (Lucas et al. 1998; Sues et al. 2003). 
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The left third to fifth cervical osteoderms of the sphenosuchian are largely destroyed, 
leaving a gap in the cervical armor, and the posterior region of the otherwise well 
preserved left mandibular ramus appears to have been crushed. These bites are 
attributed to a paracrocodylomorph whose skeleton was found immediately above 
the Dromicosuchus skeleton, and it is inferred that the two animals died and were 
buried together during the act of predation (Sues et al. 2003).

The topotype skeleton of Revueltosaurus callenderi from the Revueltian (Norian) 
Bull Canyon Formation of eastern New Mexico, USA, preserves evidence of having 
been bitten (Hunt 1994; Hunt et al. 2005b: figs. 1A–B, 5A; Hunt and Lucas 2016d: 
fig. 17E–F; Fig. 12.12e). There are three indications of the biting: (1) two posterior 
dorsal vertebrae have truncated neural spines; (2) the centrum of the most posterior 

Fig. 12.12 Dentalites (bite marks) from the Late Triassic of New Mexico, USA. (a, b) NMMNH 
P-18111 from the Lamy amphibian quarry, 12  cm-long Koskinodon perfecta clavicle fragment 
with holotype bite marks of Heterodontichnites hunti. (a) Interior surface. (b) Sketch showing the 
tooth mark numbers and rows (after Rinehart et al. 2006: fig. 1C). (c, d) NMMNH P-13001 from 
locality L-1410, a left dicynodont femur of Ischigualastia sp. with bite marks of Heterodontichnites 
hunti. (c) Tooth marks on the anterior distal surface. (d) Sketch showing the toothmark numbers 
and spiral fractures (after Rinehart et al. 2006: fig. 2C). sf spiral fracture. (e) NMMNH P-16932, 
topotype skeleton of Revueltosaurus callenderi from the Bull Canyon Formation (NMMNH 
L-467), dorsal vertebral column in lateral view. Note on left the truncation of the last two neural 
spines, bite marks on last centrum and isolated carnivore tooth (marked by arrow). From Hunt and 
Lucas (2016: fig. 17)
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is heavily pitted as though it has received multiple bites; and (3) a laterally com-
pressed and serrated tooth, oriented medioposteriorly, is affixed to the posteriormost 
neural arch (Hunt and Lucas 2016d).

The only record of dentalites on a Late Triassic amphibian is a clavicle fragment 
of Koskinonodon perfecta from the Lamy Amphibian Quarry of north-central New 
Mexico that preserves seven tooth marks on its medial surface (Rinehart et al. 2006; 
Hunt and Lucas 2016d: fig. 17A–B; Fig.  12.12a, b). This specimen is from the 
Garita Creek Formation (Adamanian: Carnian). The tooth marks are arranged in 
two rows and were made by blade-like and rounded teeth that are interpreted to have 
been made by a phytosaur. Rinehart et  al. (2006) named these dentalites 
Heterodontichnites hunti.

12.5.3  Nests

Hasiotis and Martin (1999; also see Hasiotis 2002; Hasiotis et al. 2004) described 
pits in the Upper Agate Bridge Bed of the Sonsela Member of the Petrified Forest 
Formation, Chinle Group (Adamanian: Carnian) at Petrified Forest National Park in 
northeastern Arizona (Fig.  12.13). They interpreted them as nests, and, subse-
quently, Hasiotis (2002: 123, figs. A, B) attributed the smaller pits to turtles and the 
larger pits to phytosaurs. However, all these putative nests are demonstrably weath-
ering pits, not of biogenic origin (Lucas and Hunt 2006).

Large depressions with raised rims occur in the Monticello Formation (Tuvalian: 
late Carnian) of northeastern Italy and Avanzini et al. (2007) interpreted them as 
vertebrate nests.

These are syndepositional features, and vertebrate tracks occur in superjacent 
strata. However, there is no compelling reason to believe that these depressions 
represent nests or even that they are biogenic in origin.

Mussaurus patagonicus is a prosauropod from the late Norian Laguna Colorada 
Formation (El Tranquilo Group) of Patagonia, Argentina (Bonaparte and Vince 
1979). The holotype and subsequent specimens are extremely young individuals and 
were found in close association with two complete eggs and eggshell fragments 
(Bonaparte and Vince 1979; Pol and Powell 2007). Eggshell fragments in close asso-
ciation with skeletons of hatchlings provide strong circumstantial evidence of a nest, 
even though there is no actual nest structure or arrangement of the preserved eggs.

12.5.4  Burrows

Fossil vertebrate burrows are relatively uncommon in the Late Triassic. Casts of 
lungfish burrows occur locally in the Upper Triassic Redonda Formation (Apachean) 
at Mesa Redonda, Quay County, New Mexico, USA (Gobetz et  al. 2006; Lucas 
et al. 2010b; Hunt and Lucas 2016d; Fig. 12.14a, b). About 20 casts are densely 
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concentrated over an area of about 5 m2. They vary in morphology from cylindrical 
in cross section with helical structure to flask-shaped to very shallow excavations 
that widen upward. Lucas et al. (2010b) named these Redondarefugium abercrom-
bieorum and interpreted them as lungfish estivation burrows.

Other reported lungfish burrows occur in the lower Chinle Group (Adamanian: 
Carnian) of southeastern Utah and southwestern Colorado, USA (Hasiotis and 
Hannigan 1991) and western New Mexico (Dubiel et al. 1987). McAllister (1989) 
disputed the identification of the burrows from near Fort Wingate, New Mexico 
described by Dubiel et al. (1987), based on dissimilarities to known lungfish bur-
rows. Tanner and Lucas (2007) presented compelling arguments that these struc-
tures are rhizoliths.

Hasiotis et al. (2004) reported complex burrows from the Owl Rock Formation of 
the Chinle Group (Revueltian: Norian) in southeastern Utah. These burrows are 
characterized by short, interconnected horizontal tunnels, vertical shafts, spiral 
shafts, and chambers that form a complex network. (Hasiotis et al. 2004: figs. 4A–D). 
Burrow diameter ranges from 4 to 15 cm. Hasiotis et al. (2004) postulated that the 
architecture and surficial burrow morphologies indicate that the tracemaker was a 
vertebrate similar in anatomy and behavior to mammal-like reptiles and mammals.

Two morphotypes of large vertebrate burrows occur in the Cancha de Bochas 
Member of the Ischigualasto Formation and Los Colorados Formation of north-
western Argentina (Colombi et al. 2012). The morphotypes are characterized by a 
network of tunnels and shafts. Morphotype 1 from the Ischigualasto Formation is 
interpreted as being produced by small cynodonts (e.g., Probelesodon, cf. 
Probainognathus or Ecteninion). The larger morphotype 2 burrows from the Los 

Fig. 12.13 Putative reptile “nest” at Petrified Forest National Park, Arizona, USA (NMMNH 
locality 6756). Trapezoidal pit undergoing mechanical weathering below varnished surface (Lucas 
and Hunt 2006: fig. 4C)
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Colorados Formation are too large to be produced by cynodonts and may represent 
burrows of sub-adult archosaurs (Colombi et al. 2012).

Tałanda et  al. (2011) described a vertebrate burrow system in Upper Triassic 
(Norian) fluvial strata of the Holy Cross Mountains in central Poland. This is inter-
preted as burrows of cynodonts.

12.5.5  Gastroliths

Gastroliths are rare in ichthyosaurs, but the holotype skeleton of Panjiangsaurus 
epicharis from the lower Carnian Xiaowa Formation of China contains more than 
150 specimens in two clusters (Cheng et al. 2006). Other specimens of Panjiangsaurus 
epicharis do not preserve gastroliths, which Cheng et al. (2006) suggest is a tapho-
nomic artifact.

Weems et  al. (2007) described four occurrences of exoliths (“gastrolith-like 
stones”) from the Norian Passaic Formation of northern Virginia, USA. They are 
not associated with skeletal remains, yet Weems et al. (2007) consider that it is most 
parsimonious to interpret them as gastroliths based on: (1) “typical” gastrolith 
microscopic surface texture; (2) evidence of pervasive surface wear that has second-
arily removed variable amounts of thick weathering rinds typically found on these 

Fig. 12.14 Holotype 
burrow of 
Redondarefugium 
abercrombieorum, 
NMMNH P-50409 (Lucas 
et al. 2010b: fig. 17A–B)
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stones; and (3) a width/length-ratio modal peak that is more strongly developed than 
in any population of fluvial or fanglomerate clasts found in this region. Furthermore, 
they interpret these stones as gastroliths of prosauropods whose bones are absent 
from the Late Triassic of North America (Weems et al. 2007). Nevertheless, we are 
skeptical that these specimens represent gastroliths.

12.6  Terrestrial Invertebrate Trace Fossils

A diverse literature documents various Upper Triassic ichnoassemblages of nonma-
rine invertebrate traces, many of them listed by Lucas et al. (2010b: table 7). Most of 
these ichnoassemblages belong to the Scoyenia ichnofacies, notable examples being 
from the Chinle Group in the western USA (e. g., Gillette et al. 2003; Lucas et al. 
2010b), the Newark Supergroup in the eastern USA (e.g., Metz 1995, 1996, 2000), 
from Greenland (e.g., Bromley and Asgaard 1979), from the Keuper strata of Western 
Europe (e.g., Schlirf et  al. 2001) and from Argentina (e.g., Melchor et  al. 2001). 
Nonmarine Upper Triassic red beds of river floodplains or clastic lake margins appear 
to have invertebrate ichnoassemblages typical of the Scoyenia ichnofacies that only 
vary somewhat in diversity and overall composition. These ichnoassemblages are 
dominated by shallow grazing traces and burrows (such as Cochlichnus, Gordia, 
Helminthopsis, Helminthoidichnites, Palaeophycus, Planolites, Scoyenia, Skolithos, 
Taenidium and Treptichnus) and by arthropod walking traces (such as Diplichnites).

Lake margin ichnoassemblages of the Late Triassic appear to be more variable 
and include Lockeia-dominated ichnoassemblages, such as that from lake-margin 
facies of the Redonda Formation in New Mexico, USA (Lucas et al. 2010b). These 
contrast with other Late Triassic lake margin ichnoassemblages, which are much 
more diverse and either lack Lockeia or have it as an uncommon constituent (e. g., 
Metz 2000; Schlirf et al. 2001; Melchor 2004). Some of these lake-margin paleoen-
vironments, such as lacustrine delta deposits in Argentina, yield ichnofossils of the 
Mermia ichnofacies, though notably from relatively distal portions of the lake mar-
gin (Melchor 2004). The abundance of Lockeia in some Late Triassic ichnoassem-
blages probably indicates particular types of lake conditions that differed in one or 
more factors from the other lakes thus far documented in the trace fossil record of 
Upper Triassic lake margins.

Late Triassic trace fossils in woody substrates are archetypal of the Paleoscolytus 
ichnofacies of Lucas (2016), as they include the type material of Paleoscolytus from 
the Upper Triassic of Arizona (Walker 1938) (Fig. 12.15). The hypothesized bee’s 
nests in Late Triassic wood in Arizona are actually arthropod borings in the fungal 
rot Polyporites (Lucas et  al. 2010a), and pertain to the ichnogenus Xylokrypta 
(Tapanila and Roberts 2012). The oldest osteophagic evidence is in the Middle and 
Late Triassic of Argentina (Paes Neto et al. 2016), and geologically younger exam-
ples occur in that country (e.g., Pirrone et al. 2014; Pirrone and Buatois 2016). Late 
Triassic records of arthropod borings in bone (cf. Britt et al. 2008: table 1) represent 
the Cubiculum ichnofacies of Lucas (2016). Nevertheless, substrate-based inverte-
brate traces of the Late Triassic remain greatly understudied.
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An important point is that Late Triassic nonmarine invertebrate ichnoassem-
blages appear very similar in composition and ichnofacies to Permian, Early-Middle 
Triassic and to Jurassic ichnoassemblages. This suggests a continuity of the trace- 
making invertebrate communities through Late Triassic time. The traces thus iden-
tify no important evolutionary or ecological breakthroughs in the terrestrial 
invertebrate communities during the Late Triassic.

12.7  Phanerozoic Record of Vertebrate Trace Fossils

12.7.1  Tracks

The majority of vertebrate trace fossils are tracks. Lucas (2007) provided a useful 
recent review of the vertebrate track record. Lockley and Hunt (1995: fig. 1.2) pro-
vided an overview of the stratigraphic age of tracksites in the western United States, 
which has the most studied and arguably the richest record of fossil tracks. In gen-
eral, tracks are first common in the Pennsylvanian. They are notably abundant in the 
early Permian, Late Triassic-Early Jurassic, Early-Late Cretaceous and to a lesser 
extent in the Pleistocene.

Hunt et al. (2005c) presented a model of the preservation of tracks based on four 
premises: (1) tracks will only be common when terrestrial tetrapods are abundant; 
(2) increasingly complex vegetation, increased terrestrial ground cover and increased 
sediment binding took place through the Phanerozoic; (3) tetrapod tracks will be 
more common when ground cover is less extensive; and (4) the preservation poten-
tial of tetrapod tracks increases with body size—larger tracks have higher 
 preservational potential. Thus, Hunt et al. (2005c) identified four temporal phases in 

Fig. 12.15 Holotype of 
Paleoscolytus divergens 
Walker 1938 (USNM 
95872) from the Blue 
Mesa Member of the 
Petrified Forest Formation 
(Adamanian: late Carnian), 
Petrified Forest National 
Park, Arizona, USA
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the taphonomy of tetrapod tracks: (1) Devonian—few tracks, because terrestrial 
tetrapods are rare and the relative lack of plant ground cover resulted in frequent 
reworking of terrestrial surfaces; (2) Carboniferous-Triassic—many tracks because 
terrestrial tetrapods are common and increased ground cover reduced the reworking 
of terrestrial surfaces; (3) Jurassic-Cretaceous—tracks are numerous and preserved 
in more diverse sedimentary environments because many terrestrial animals are 
very large, even though ground cover is increased; and (4) Cenozoic—increased 
ground cover, especially after the diversification of grasses, resulted in less unveg-
etated areas where tracks can be preserved with a few notable exceptions such as 
lacustrine margins. This model provides a useful framework, but clearly other fac-
tors influence the track record. In addition, the larger size of Quaternary mammals 
would suggest a fifth acme of tracks.

There are apparently three principal acme zones for track preservation: (1) Early 
Permian; (2) Late Triassic-Early Jurassic; and (3) Cretaceous. Tracks are facies fos-
sils, and certain environments are more conducive to preservation than others. The 
Early Permian and Late Triassic-Jurassic both exhibit semi-arid fluvial (and to a 
lesser extent lacustrine) redbeds, and it is probable that intermittent moisture may 
be considered an important factor in track preservation. At a fundamental level, 
track preservation requires a wet substrate that then dries (and is buried), and this is 
best accomplished in a semi-arid environment or on a shoreline (i.e., intermittently 
wet settings). Semi-arid conditions also result in low vegetation density, which 
would provide larger areas for potential track preservation and episodic sedimenta-
tion to preserve prints. Tectonically, the early Permian and Late Triassic-Early 
Jurassic represent periods of relative tectonic quiescence, with the stasis of Pangea 
and, subsequently, its initial break up. The Late Triassic-Early Jurassic formation of 
rift valleys floored by lakes is also important in the preservation of tracks, notably 
on the western margin of the Atlantic.

The Cretaceous track acme occurs in a very different context of enhanced tectonic 
activity and wetter climates. During the early Permian and Late Triassic-Early 
Jurassic, small tracks about 1 cm in length are common, and there is a wide size range 
of preserved tracks. In general, Cretaceous tracks represent dinosaurs, and are mostly 
of large size (>10 cm long). In this acme it may be absolute size rather than optimum 
environmental conditions that it is more important in the large volume of preserved 
tracks. However, if size alone resulted in abundant tracks, the record for the Jurassic 
should be much more extensive. We are not naïve enough to believe that semi-arid 
conditions alone produced the earlier acme zone, and large animals the second, but it 
is clear that there are patterns in the track record that require further analysis.

12.7.2  Coprolites

Hunt et  al. (2012d) provided an overview of the fossil record of coprolites. The 
earliest vertebrate coprolites are Late Ordovician in age (Aldridge et al. 2006). The 
few Silurian coprolites include argillaceous scroll coprolites and non-spiral forms 
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comprised of macerated fish debris, with minimal interstitial groundmass (Gilmore 
1992; Hunt and Lucas 2016b). Groundmass-rich cylindrical coprolites, some spiral 
in morphology, become common in the Devonian (Hunt and Lucas 2016b). 
Mississippian and Pennsylvanian coprofaunas represent the first widespread occur-
rence of vertebrate coprolites in the northern continents. A more global vertebrate 
coprolite record from the Permian includes records from the Gondwana continents 
(Hunt and Lucas 2013). The early Permian and Late Triassic are acme zones for 
coprolites in redbeds (Hunt and Lucas 2005; Hunt et al. 2013a). Niedźwiedzki et al. 
(2016b) noted changes in the coprolite ichnofaunas across the Permian/Triassic 
boundary. Jurassic coprolites are locally common, but few have been described, 
with the notable exception of those from the Lias of England (Hunt and Lucas 
2014). Cretaceous and Tertiary coprolites are common, but have been relatively 
poorly studied (Hunt and Lucas 2016c). Pleistocene coprolites are locally common, 
particularly in cave faunas (Hunt et al. 2007, 2012d).

The coprolites of carnivorous animals dominate the fossil record in both aquatic 
and terrestrial ichnofaunas (Hunt et al. 1994a). This is because carnivore digestion 
results in excrement that is both unattractive to other organisms and is also chemi-
cally predisposed for rapid lithification (e.g., Hunt et al. 1994a, b; Hollocher and 
Hollocher 2012). Such biases must be taken into account when utilizing coprolites 
for broad ecological analyses (e.g., Niedźwiedzki et al. 2016a, b).

The first herbivore coprolites occur in the Middle Triassic of South America 
(Fiorelli et al. 2013; Hunt et al. 2013a). Three are several records of Late Triassic 
dicynodont coprolites (Hunt et al. 1998, 2013a; Bajdek et al. 2014), but other pre- 
Pleistocene occurrences of herbivore coprolites are uncommon (e.g., Chin 2007), 
and some are probably misidentified (Chin and Kirkland 1998; Hunt and Lucas 
2014). Herbivore coprolites are abundant in the Pleistocene of the arid western 
United States (see review in Hunt and Lucas 2007b).

There are significant taxonomic biases in the coprolite record. Hunt et al. (2015b) 
noted that heterospiral coprolites of chondrichthyans are especially abundant in 
marine environments from the Mississippian to at least the Eocene (e.g., Hunt et al. 
2012g; Diedrich and Felker 2012). Late Cretaceous-Paleogene phosphorene’s yield 
coprolites over a wide area from northwest Africa to the Middle East (Hunt and 
Lucas 2016c).

Hunt and Lucas (2016c) noted that there is limited change in coprolite morphot-
ype across the Cretaceous/Tertiary boundary in nonmarine environments (cf. Suazo 
et al. 2012). Thus, for example, Alococopros and Eucoprus extend across the bound-
ary, and there is no significant change in the overall median size of coprolites (except 
for the loss of the rare putative tyrannosaurid coprolites). This suggests that ornith-
ischian and non-avian theropod coprolites are not commonly preserved in the 
Cretaceous and that most small carnivore coprolites in nonmarine environments in 
the late Mesozoic and early Tertiary probably represent crocodylomorphs, which do 
not demonstrate significant changes across the boundary (Markwick 1998; Sullivan 
1987; Vasse and Hua 1998).

Later in the Tertiary, coprolites in nonmarine environments are more diverse and 
are principally attributable to carnivorous mammals. In the late Pliocene and 
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Pleistocene, Hyaenacoprus bucklandi in particular, and hyaena coprolites in gen-
eral, are particularly common in the Old World from Europe to China (e.g., Diedrich 
2012b; Hunt et al. 2012a, d; and references therein).

12.7.3  Regurgitalites

Hunt (1992) coined the term regurgitalite to encompass all trace fossils that result 
from manipulated or digested/partially digested food material egested via the oral 
cavity. Subsequently, Hunt and Lucas (2012a) introduced the terms ejectalite for 
regurgitalites that have been manipulated in the mouth or undergone partial diges-
tion (e.g., deriving from the oral cavity or gastrointestinal tract anterior to the stom-
ach) and ekrhexalite for regurgitalites that derive from the stomach. They also 
defined ornithoregurgitalites for regurgitalites produced by birds and more specifi-
cally strigilite for fossil owl pellets. Hunt and Lucas (2012a) also introduced terms 
to cover accumulations of regurgitalites, with the umbrella name purgolite. These 
include accretionary purgolite for an accumulation that results from accumulation 
due to physical, rather than biological processes (e.g., hydrodynamic) and ethologi-
cal purgolite for those that result from the behavior of an organism (e.g., strigilites 
accumulated under a perch).

Vertebrate regurgitalites are rarely identified in the fossil record. One reason is 
that regurgitation is only common in a few discrete taxonomic groups (e.g., fish—
Sims et al. 2000; Brunnschweiler et al. 2005; birds—Andrews 1990). More impor-
tant has been a lack of investigation and recognition. Regurgitalites can be identified 
by: (1) discrete accumulation of hard parts and other indigestible components such 
as fur; (2) paucity of groundmass; (3) corrosion of skeletal elements; (4) breakage 
of elements; (5) skeletal representation comparable to Recent regurgitalites; and (6) 
bite marks (Hunt 1992; Hunt and Lucas 2012a). Almost all of the identified regur-
gitalites occur in four sedimentary environments: (1) shallow marine; (2) lacustrine; 
(3) fluvial; and (4) caves (Hunt et al. 2015a).

The majority of reported regurgitalites are from shallow marine environments, 
and most were produced by fish (Hunt et al. 2015a). Salamon et al. (2014: figs. 6, 7) 
report a regurgitalite from the Devonian and nine from the Mississippian composed 
of shell fragments. Angular shell fragment debris may indicate the presence of duro-
phagous fish and thus the distribution of such material should likely parallel that of 
shell-rich regurgitalites (Oji et al. 2003; Salamon et al. 2014). This seems to be the 
case in the Devonian to the Mississippian (Salamon et al. 2014: fig. 7). Thus, based 
on the work of Oji et al. (2003) we could predict a rise in such regurgitalites in the 
Paleogene and a major increase in the Neogene.

Regurgitalites are notable in several Carboniferous units of the USA including: 
(1) Desmoinesian Carbondale Formation, Indiana—Zangerl and Richardson (1963), 
Elder (1985); (2) Chesterian Tyler Formation, Montana—Hunt et al. (2012e); and 
(3) the Missourian Atrasado Formation at the Kinney Brick Quarry and Tinajas 
Lagerstätten—Hunt et  al. (2012h, i). Named regurgitalites from these units are 
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Ostracobromus snowyensis and Conchobromus kinneyensis (Hunt et al. 2012e, h, i), 
which contain abundant oconchostracans and ostracodes respectively.

Salamon et  al. (2012) described a number of putative regurgitalites from the 
Middle Triassic Gogolin Formation in southern Poland. These are composed of 
angular bivalve fragments and broken crinoid ossicles. Other putative occurrences 
of regurgitalites are in the Late Cretaceous of Kansas (Everhart 2005), the Early 
Jurassic-Early Cretaceous of Europe (Vallon 2012) and the Pleistocene of Canada 
(Hunt and Lucas 2007b).

Lacustrine regurgitalites occur in shallow facies of multiple Eocene units of the 
western USA and British Columbia, Canada (e.g., Green River, Coldwater, 
Florissant formations). Wilson (1987) speculated that the regurgitalites from Canada 
may pertain to birds, not fish. Buskirk et al. (2015) described a variety of bromalites 
from Florissant, including probable regurgitalites.

There are no convincing regurgitalites described from fluvial environments 
before the Tertiary. Owl strigilites occur in several localities in the Tertiary of the 
USA, including the Zia Sandstone of New Mexico (Gawne 1975), the Chadron 
Formation of South Dakota (Hunt and Lucas 2007b) and the White River Formation 
of Wyoming (Lucas et al. 2012b), the latter within a purgolite. There are very few 
convincing examples of Tertiary paleontological microvertebrate accumulations 
that comprise bones derived from raptor regurgitations (Lucas et al. 2012b; but see 
Czaplewski 2011). Many Pleistocene cave deposits and some archeological sites 
yield bone accumulations derived from raptor, notably owl, regurgitations (e.g., 
Andrews 1990; Hunt and Lucas 2007b).

In summary, most identified vertebrate regurgitalites were produced by fish or 
birds and are preserved in limited environmental settings. Thus, the fossil record of 
regurgilatiltes is strongly controlled both by taxonomic and taphonomic factors. 
Regurgitalites have diverse utility, including providing evidence of the evolution of 
predation and digestion, data for the analysis of taphonomy and sedimentary envi-
ronments and acting as proxies for the presence of biotaxa.

12.7.4  Consumulites

Hunt and Lucas (2012a) coined the term consumulite to encompass all fossilized 
ingested food material preserved within the body cavity. They also redefined existing 
terms and introduced new ones to provide a refined terminology for all consumulites 
including oralite (food material preserved wholly or partially within the oral cavity), 
esophogalite (digested food material preserved in the gastrointestinal tract anterior to 
the stomach), gastrolite (wholly or partially digested food material preserved in the 
stomach), cololite (digested food material preserved in the gastrointestinal tract poste-
rior to the stomach), intestinelite (cololite preserved in the intestines), evisceralite (colo-
lite that is a preserved segment of infilled fossilized intestines preserved independently 
of (exterior to) a carcass), enterospira (cololite preserved in a spiral valve) and incorpo-
real pelletite (pelletite preserved within the body cavity) (Hunt and Lucas 2012a).
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There are a number of studies of individual consumulites that are unusual or 
provide refined information about diet (e.g., Pollard 1968; Sato and Tanabe 1998; 
Cavin 1999; Molnar and Clifford 2001; Richter and Baszio 2001; Varricchio 2001; 
Kear et al. 2003; Kriwet et al. 2008; O’Keefe et al. 2009; Diedrich 2012a), but the 
vast majority of specimens are undoubtedly undescribed. Obviously, a consumulite 
cannot be recognized, with the rare exception of evisceralites (e.g., Seilacher et al. 
2001), unless a complete or partially articulated skeleton is preserved.

Consumulites are principally recorded from fish, marine reptiles and large ter-
restrial tetrapods (notably dinosaurs). The vast majority of all complete articulated 
fossil skeletons are fish, so it is unsurprising that most consumulites occur in fish. 
Many fish skeletons occur in Lagerstätten or are concentrated in specific environ-
mental settings (notably lagoons or lakes—Mississippian Bear Gulch Limestone, 
Eocene Green River Formation, USA, etc.). There is a similar situation with marine 
reptiles, notably ichthyosaurs of all ages, but particularly in the Early Jurassic (e.g., 
Lyme Regis, England, Holzmaden, Germany). Consumulites in terrestrial tetrapods 
appear to be most common, or at least more reported, in larger-bodied taxa such as 
dinosaurs. This may in part reflect interest in dinosaurs or the fact that consumulites 
may be more prominent and recognizable in larger carcasses.

12.7.5  Dentalites (Bite Marks)

The study of tooth marks on fossil bone goes back to the work of Buckland (1822, 
1824) on hyena damage to bones of the Pleistocene fauna of Kirkdale Cave. Lucas 
(2016) briefly reviewed the fossil record of bite marks. Some of the oldest tetrapod 
bones, of Late Devonian age, bear apparent tooth marks (Shubin et al. 2004). Well- 
documented Permian (Reisz and Tsuji 2006) and Triassic tooth marks have been 
published, the latter the basis of two ichnotaxa, i.e., Mandaodonites and 
Heterodontichnites (Cruickshank 1986; Rinehart et  al. 2006). There is a diverse 
literature on dentalites in Jurassic-Cretaceous dinosaur bones reviewed by Fiorillo 
(1991), Hunt et al. (1994b), Chin (1997), Jacobsen (1998), Tanke and Currie (1998), 
and Tanke and Rothschild (2002).

Dentalites on Mesozoic aquatic vertebrate bone (fishes, marine reptiles) have a 
diverse literature (e.g., Zammit and Kear 2011, and references cited therein). 
Cenozoic dentalites are less studied, but have been the basis of the ichnogenera 
Machichnus, Linichnus, and Knethichnus (Mikuláš et  al. 2006; Jacobsen and 
Bromley 2009). Dentalites are important archives of various kinds of behavior, 
including predation, scavenging, intraspecific (agonistic) interactions, and bone uti-
lization for other purposes, including mineral extraction and tooth sharpening (e.g., 
Schwimmer et al. 1997; Everhart 2004). Crocodiles have long been known to mod-
ify bone (von Nopcsa 1902; Weigelt 1927). The actualistic database for understand-
ing dentalites in modern bone is quite extensive, especially for crocodilian damage 
to bone, and there is a diverse literature on fossil bite marks on bone attributed to 
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crocodilians (e.g., Carpenter and Lindsey 1980; Webb and Manolis 1983; Buffetaut 
1983; Erickson 1984; Schwimmer 2002; Forrest 2003; Avilla et al. 2004; Njau and 
Blumenschine 2006; Westaway et al. 2011).

Bromley and Jacobsen (2008) have recently outlined research designed to pro-
duce an ichnotaxonomy of dentalites. They favor naming dentalites based on the 
damage of a single tooth and regard multiple tooth marks as compound trace fossils. 
However, this suggestion fails to recognize the significance of heterodonty and the 
variation in single dental configurations (arcades) (Lucas 2016). Thus, the ideal 
ichnotaxobase is the tooth marks of an entire dental arcade, and anything less than 
that should be regarded as extramorphological variants (Lucas 2016). What is now 
needed is a dentalite ichnology beginning with diverse documentation of the fossil 
record, compilation, and synthesis of the entire record, rigorous ichnotaxonomy and 
determination of analytical criteria for establishing inferences about the diverse 
behaviors archived by tooth mark ichnofossils (Lucas 2016). Lucas (2016) recently 
named the Cubiculum ichnofacies for modifications to bone, including dentalites.

Hunt (1984, 1987) first predicted that dentalites should be relatively uncommon 
prior to the Cenozoic. Less derived, non-mammalian vertebrates lack the dental 
occlusion necessary for fine manipulation of prey or bone crushing. Thus, non- 
mammalian tooth-to-bone contact is essentially always accidental and was pre-
dicted to be less common in the Mesozoic than in the Cenozoic, when mammalian 
carnivores came to dominate terrestrial faunas (Hunt 1984, 1987). Fiorillo (1991) 
tested this hypothesis and concluded that bite marks are uncommon in the Mesozoic. 
Although there is only a small data set, it seems that dentalites are relatively less 
common in the Paleozoic than the Mesozoic. This may be caused by several factors, 
including: (1) the evolution of laterally compressed teeth in terrestrial predators, 
which would penetrate through soft tissue to bone more effectively; (2) the develop-
ment of a more upright gait among predators that would provide for more three 
dimensional predation—more opportunity for biting of the dorsal as well as lateral 
regions; and (3) increased body size of prey that would invite more extensive scav-
enging of carcasses than is feasible with small-bodied prey. Dentalites are underre-
ported in the Tertiary but abundant in the Quaternary (e.g., Binford 1981; Brain 
1981). Tertiary dentalites include records from the Paleocene of the USA (Secord 
et al. 2002), Eocene of England (Vasileiadou et al. 2007) and Antarctica (Hospitaleche 
2016), and Oligocene of France (Laudet and Fosse 2001) and the USA (LaGarry 
1997, 2004).

12.7.6  Nests

Lucas and Hunt (2006) defined a nest as the structure made by, or the place chosen 
by, an animal for spawning, breeding and/or laying eggs and sheltering young. The 
nests of extant birds are most familiar and are usually constructed from organic 
material, so they have little chance of being preserved in the rock/fossil record (cf. 
Zasadil and Mikuláš 2004). However, some birds such as ostriches do build nests 
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that involve the modification of sediment by scraping, building mounds or burrow-
ing (Coombs 1989), and these are nests that can be preserved in the geological 
record. Some other extant egg-laying tetrapods also construct nests by sediment 
modification, including some turtles, crocodiles and lizards (e.g., Coombs 1989; 
Brannen and Bishop 1993; Carpenter 1999; Mazzotti 2003; Jessop et al. 2004). The 
fossil record of bona fide tetrapod nests is mostly that of dinosaurs and extends back 
to the Late Triassic (Carpenter and Alf 1994; Moratalla and Powell 1994; Carpenter 
1999). Other kinds of tetrapod nests in the literature are mostly those of turtles (e.g., 
Buckman 1859; Bishop et al. 1997; Carpenter 1999).

Dinosaur nests dominate the literature on fossil tetrapod nests, which date back 
to the Late Triassic of Argentina (Bonaparte and Vince, 1979). Jurassic dinosaur 
nests are few in number (Hirsch et al. 1979; Kitching 1979; Mateus et al. 1997; 
Carpenter 1999), and most known dinosaur nests are of Cretaceous age (Carpenter 
and Alf 1994). Dinosaur nests are sometimes recognized by the preservation of a 
nest structure, such as bowl-shaped patches of green mudstone (Horner and Makela 
1979) or a raised rim of sediment that is preferentially cemented (Varricchio et al. 
1999). Regularly arranged eggs, usually in circular or spiral clutches, are also gen-
erally taken as compelling evidence of a nest, as are aggregations of eggshell frag-
ments or the bones/skeletons of hatchling dinosaurs (Lucas and Hunt 2006).

Lucas and Hunt (2006) contended that in the absence of egg or hatchling associa-
tion, that it is impossible to be certain that any preserved structure is a tetrapod nest. 
Indeed, even an aggregation of eggshell fragments (e.g., Hirsch et al. 1979: fig. 6) 
may not be compelling evidence of a nest because sedimentary transport and accu-
mulation may be what caused such an aggregation (Lucas and Hunt 2006). Structures 
with raised rims concentrated in small areas can be of inorganic origin, so we argue 
that identification of a structure as a fossil tetrapod nest is speculative at best if there 
is no clear association of eggs, eggshells or hatchling bones/skeletons with the 
structure (Lucas and Hunt 2006).

Late Pleistocene nests, notably of rodents such as those of pack rats, are abun-
dant in North America and other areas (e.g., Hunt et al. 2012f; Tweet et al. 2012). 
The nests of large ratites are also locally common in areas such as New Zealand.

Overall, the acme for nest preservation is in the Mesozoic, which is a result of 
taxonomic and taphonomic factors. Nesting behavior evolved in the Dinosauria, and 
the large size of many of their genera resulted in nest structures of large size, which 
had an elevated chance of survival into the fossil record.

12.7.7  Burrows

There is limited evidence of vertebrate burrowing from the Devonian through the 
Permian (Hasiotis et al. 2007). The ichnofossil record of vertebrate burrows extends 
as far back as the Early Devonian. The earliest vertebrate ichnofossils are inter-
preted as lungfish burrows (Allen and Williams 1981). Upper Devonian burrows 
occur at several localities worldwide (O’Sullivan et  al. 1986; Benton 1988; 
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McAllister 1992; Hasiotis 2002). These flask-shaped burrows are attributed to the 
estivation behavior of lungfish and are interpreted as a response to seasonal droughts 
(Romer and Olson 1954; Hasiotis 2002). Similar Carboniferous-age burrows have 
also been attributed to lungfishes (Carroll 1965; Benton 1988). Lungfish burrows 
are also common in the early Permian (e.g., Romer and Olson 1954; Berman 1976, 
1979, 1993; Lucas et al. 2013).

A second morphology of Devonian burrow is Cornulatichnus, a near vertical 
conical burrow that is attributed to the open shelter burrow of an eel-like fish (Carroll 
and Trewin 1995). The oldest tetrapod burrow is from the Mississippian (Visean) 
Hometown Member of the Mauch Chunk Formation of Pennsylvania, USA 
(Fillmore et al. 2012).

The Permian record includes more diverse and complex burrow systems (Olson 
and Bolles 1975; Smith 1987; Hembree et al. 2004, 2005; Fillmore et al. 2012). For 
example, the Permian of Kansas has yielded nearly vertical, downward tapering 
burrows (Torridorefugium eskridgensis) interpreted as estivation burrows of lysoro-
phid amphibians (Hembree et al. 2004, 2005). Helical burrows, containing skeletal 
remains of therapsids, occur in the Permian interval of the South African Beaufort 
Group (Smith 1987). Other large tetrapod burrows occur in the Middle Triassic of 
Argentina (Krapovickas et al. 2013).

At the beginning of the Mesozoic, the diversity and complexity of burrowing 
increases as tetrapods diversified and mammals rapidly evolved (e.g., Groenewald 
et al. 2001; Damiani et al. 2003; Miller et al. 2001; Hasiotis et al. 2004, 2007; Loope 
2006; Lucas et al. 2006b; Dentzien-Dias et al. 2007, 2008, 2012b; Tanner and Lucas 
2009).

There is a fairly sparse record of North American Cenozoic vertebrate (mostly 
rodent) burrows of Oligocene-Pleistocene age (Voorhies 1975). The best known are 
Daimonelix, which are the helical burrows of a primitive beaver from the lower 
Miocene of Nebraska, Wyoming and South Dakota, USA (Barbour 1892; O’Harra 
1920; Schultz 1942; Martin and Bennett 1977). Gobetz (2006; Gobetz and Martin 
2006), described Miocene mylagaulid and geomyid rodent burrows (Alezichnos) 
from Colorado and Nebraska, USA. Morgan and Lucas (2000: fig. 3G–H) described 
two complete and four partial likely rodent burrows from near the top of the Pliocene 
(Blancan) Loma Barbon Member of the Arroyo Ojito Formation, New Mexico, 
USA, and others have been found subsequently.

There are several records of Cenozoic burrows from South America. Large 
meniscate burrows (Nagtuichnus meuleni) occurring in late Miocene and Holocene 
eolian deposits from Argentina were probably produced by pink fairy armadillos or 
pichiciegos (Chlamyphorus truncatus) (Melchor et al. 2012). Frank et al. (2012 and 
references cited therein) described the largest vertebrate burrows, some greater than 
2 m in diameter. These enormous burrows occur in the four southeastern states of 
Brazil and were probably produced by ground sloths or giant armadillos (Frank 
et al. 2012).

Clearly, the record of burrows has a strong taxonomic influence. The distribution 
and evolution of groups such as nonmarine lungfish, mammal-like reptiles and 
rodents strongly effects the distribution and abundance of burrows. However, the 

A.P. Hunt et al.



515

pattern of burrowing behavior may have other influences. For example, the global 
early Mesozoic appearance of tetrapod burrows has been hypothesized as a behav-
ioral adaptation evolved by terrestrial vertebrates as protection against extreme cli-
matic conditions created during the tectonic assembly of, and by the paleolatitudinal 
setting of, the supercontinent Pangea (e.g., Colombi et al. 2012; Krapovickas et al. 
2013). Low to mid-latitude Pangean climates are interpreted as having been highly 
seasonal in nature and characterized by long dry periods and a short wet season.

12.7.8  Gastroliths

Wieland (1906) first utilized the term “gastrolith” to apply to swallowed stones in 
fossil and Recent vertebrates (Wings 2007). Wings (2007: 2) broadened the concept 
to be “a hard object of no calorific value (e.g., a stone, natural or pathological con-
cretion) which is, or was, retained in the digestive tract of an animal.” He proposed 
two categories of vertebrate gastroliths: (1) patho-gastroliths, for pathological 
stones formed in the stomach; and (2) geo-gastroliths, for swallowed sediment par-
ticles. Geo-gastroliths, hereafter called gastroliths, function in different taxa either 
to assist in mechanical diminution of food or for ballast in aquatic vertebrates 
(Wings 2004, 2007; Currie 1981; Taylor 1993).

The fossil record of gastroliths is very taxonomically dependent. The principal 
taxa that preserve gastroliths include elasmosaurid plesiosaurs, pinnipeds (seals and 
sea lions), crocodilians, several clades of dinosaurs (e.g., non-avian theropods, pro-
sauropods, sauropods, psittacosaurs, ankylosaurs, stegosaurs, iguanodonts, hadro-
saurs), and many taxa of birds, including ratites, song birds and 20 other orders 
(Baker 1956; Whittle and Everhart 2000; Wings 2004). In addition, as noted above, 
fossil skeletons of other taxa such as ichthyosaurs, amphibians and protorosaurian 
reptiles occasionally contain gastroliths (Warren and Hutchinson 1987; Munk and 
Sues 1993; Cheng et al. 2006).

Skeletons of late Permian nonmarine (e.g., Protorosaurus: Munk and Sues 1993) 
and marine (Hovasaurus: Currie 1981) tetrapods contain gastroliths. There are older 
sparse records from fish (e.g., Devonian: Trewin 1986). Triassic gastroliths occur in 
a variety of taxa, including a rhytidosteid amphibian and the ichthyosaur 
Panjiangsaurus (Warren and Hutchinson 1987; Cheng et al. 2006). The Mesozoic is 
the acme for described gastroliths, with multiple reports from plesiosaurs (e.g., 
Brown 1904; Darby and Ojakangas 1980; Everhart 2000) and dinosaurs (e.g. 
 sauropodomorphs—Christiansen 1996; psittacosaurids—Xu 1997; Kobayashi and 
Lü 2003; Caudipteryx zoui—Ji et al. 1998). There are also reports from other taxa 
(e.g., chondrichthyans—Moodie 1912). The apparent abundance of Mesozoic gas-
troliths is clearly in part taxonomic but it may also be partially an artifact as there is 
a relationship between the size of the host and the size of a gastrolith—large, easily 
identifiable gastroliths only occur in large animals. The only Tertiary mammals with 
gastroliths are pinnipeds (e.g., Pandeli et al. 1998). Tertiary (and Mesozoic) croco-
diles contain gastroliths (e.g., Langston and Rose 1978).
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12.7.9  Discussion

The fossil record of vertebrate traces fossils has distinct acme zones (Fig. 12.16). 
Most vertebrate trace fossils have their earliest occurrences in the Devonian. The 
exceptions are coprolites, whose earliest record is in the Late Ordovician, and nests, 
which are not recorded before the Late Triassic. The Missisissipian-Pennsylvanian 
has increased numbers of trace fossils (notably tracks, coprolites, dentalites and 
burrows). The Early Permian is an acme for both tracks and coprolites. The Late 
Triassic yields abundant tracks and coprolites, and tracks are also common in the 
Early Jurassic. The Jurassic and Cretaceous represent the time periods with the 
greatest apparent diversity of traces (tracks, coprolites, consumulites, dentalites, 

Fig. 12.16 Stratigraphic distribution of vertebrate trace fossils through the Phanerozoic
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nests and gastroliths). The Quaternary also represents a time of ichnological abun-
dance (tracks, coprolites, regurgitalites, nests and burrows).

In the early-mid Paleozoic, there were generally high sea levels, low tetrapod 
diversity, wet greenhouse climates and thus relatively few vertebrate traces. The late 
Paleozoic and Quaternary acmes for trace fossils were during times of generally low 
sea level and seasonal climates. The Jurassic-Cretaceous acme does not fit this 
model, and we believe that large body size (increased recognition) and a dispropor-
tionate amount of study of the dinosaur fossil record biases the trace fossil record. 
The latter we attribute to the Taxophile Effect—a term we introduce to recognize bias 
introduced by a disproportionate volume of research on a popular taxonomic group. 
Thus, many dinosaur dentalites warrant individual papers, whereas most Tertiary 
dentalite records are merely noted within the text of taxonomic descriptions.

Other factors that influence the pattern of the fossil record of vertebrate traces 
fossils include: (1) taxonomy—regurgitalites, gastroliths and burrows are notably 
restricted to a small number of taxonomic groups, which control the stratigraphic 
range of these traces; (2) functional morphology—e.g., the more efficient dental 
occlusion of mammals resulted in increased dentalites as this Class diversified; and 
(3) ethology—burrows, nests and regurgitalites reflect specific behaviors.
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 Appendix

Systematic Ichnotaxonomy
Gaspeichnus, ichnogen. nov.

Type ichnospecies: Gaspeichnus complexus.
Included ichnospecies: Known only from the type ichnospecies.
Etymology: From the Gaspé Peninsula and the Greek ichnos (trace).
Distribution: Late Devonian to Early Triassic.
Diagnosis: Elongate and irregularly sinuous borings of small size (diameter 0.1–

0.2 mm) with irregular width in a coprolite substrate.
Discussion: This is possibly the oldest example of coprophagy and is certainly the 

oldest example of coprolite modification by another organism.

Brachaniec et al. (2015: fig. 6A–B) reported sinuous surface borings of Early 
Triassic coprolites from Poland that we refer to Gaspeichnus. They noted that 
Gaspeichnus occurs in 57% of the coprolites that contain fossils.

The size and sinuosity are similar to the morphology of nematode trails, although 
Gaspeichnus is more irregular in its undulations (Moussa 1970; Baliński et al. 2013; 
Brachaniec et al. 2015). We tentatively interpret Gaspeichnus as being produced by 
a nematode. The coprolite substrate alone differentatiates it from other sinuous trace 
fossils.
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Gaspeichnus complexus, ichnosp. nov. (Fig. 12.17)

Holotype: RSM 2002. 59.166, coprolite with borings.
Etymology: From Latin complexus in allusion to the complicated structure of the 

borings.
Type locality: Escuminac Bay, Gaspé Peninsula, Quebec, Canada.
Type horizon: Escuminac Formation (Upper Devonian).
Distribution: As for ichnogenus.
Referred specimens: None.
Diagnosis: As for ichnogenus.
Description: RSM 2002. 59.166 is a vertebrate coprolite of approximately cylindri-

cal shape with an irregular margin. It is 22 mm long and 6 mm wide. It contains 
two elongate and sinuous borings that do not overlap. The borings vary in width 
from 0.1 to 0.2 mm in width and from 8 to 12 mm in length. The sinuosity is 
irregular.

Discussion: The Escuminac Formation yields a diverse bromalite ichnofauna that 
has been described by McAllister (1996).
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Chapter 13
Flora of the Late Triassic

Evelyn Kustatscher, Sidney R. Ash, Eugeny Karasev, Christian Pott, 
Vivi Vajda, Jianxin Yu, and Stephen McLoughlin

Abstract The Triassic was a time of diversification of the global floras following the 
mass-extinction event at the close of the Permian, with floras of low-diversity and 
somewhat uniform aspect in the Early Triassic developing into complex vegetation 
by the Late Triassic. The Earth experienced generally hothouse conditions with low 
equator-to-pole temperature gradients through the Late Triassic. This was also the 
time of peak amalgamation of the continents to form Pangea. Consequently, many 
plant families and genera were widely distributed in the Late Triassic. Nevertheless, 
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two major floristic provinces are recognizable during this interval—one in the 
Southern Hemisphere (Gondwana) and another in the Northern Hemisphere 
(Laurussia); these being largely separated by the Tethys Ocean and a palaeotropical 
arid belt. Regional variations in topography, climate and light regime imposed further 
constraints on the distribution of plant groups in the Late Triassic such that two flo-
ristic sub-provinces are recognizable within Gondwana, and nine within Laurussia 
based on the plant macrofossil and dispersed spore-pollen records. In a broad sense, 
the Late Triassic saw the diversification of several plant groups that would become 
important components of younger Mesozoic floras (e.g., Bennettitales, 
Czekanowskiales, Gnetales and several modern fern and conifer families). The rep-
resentation of these groups varied not only geographically, but waxed and waned 
through time in response to climatic pulses, such as the Carnian Pluvial Event. 
Significant turnovers are apparent in both macrofossil- and palyno-floras across the 
Triassic–Jurassic boundary, especially in the North Atlantic and Gondwanan regions. 
The geographic and temporal variations in the floras have necessitated the establish-
ment of numerous regional palynozonation schemes that are tentatively correlated in 
this study. Major plant macrofossil assemblages of the Late Triassic world are also 
placed in a stratigraphic context for the first time. The Late Triassic floras also record 
the re-diversification of insect faunas based on a broad array of damage types pre-
served on leaves and wood. By the Late Triassic, all modern terrestrial arthropod 
functional feeding groups were established, and several very specialized feeding 
traits and egg-laying strategies had developed. Although age constraints on various 
fossil assemblages need to be improved, this study provides the first global overview 
of the temporal and geographic distributions of Late Triassic floras, and establishes a 
basis for future targeted research on Triassic phytogeography and phytostratigraphy.

Keywords Non-marine ecosystems • Palaeoclimate • Plant fossils • Palynomorphs 
• Palaeo-provinces • Mass-extinction • Plant-animal interactions

13.1  Introduction

The Triassic, spanning the interval from 252 to 201 million years (Myr) ago, was a 
crucial period in the evolution of non-marine ecosystems. It witnessed the recovery 
of terrestrial ecosystems following the end-Permian mass extinction and saw a pro-
liferation of new fern and gymnosperm families and genera that peaked in the Late 
Triassic before another global biotic crisis at the end of the period (Anderson et al. 
1999; Willis and McElwain 2002; Vajda and Bercovici 2014). The continents 
reached their maximum phase of amalgamation, forming the supercontinent 
Pangaea (Fig. 13.1), which began to break up towards the end of the Triassic when 
rifting started in the North Atlantic region. The continued northward drift of the 
Cimmerian continental blocks progressively closed the Palaeotethys Ocean and 
opened the Neotethys Ocean at this time. The most significant Late Triassic conver-
gent event, the Indosinian orogeny, occurred as a result of the consolidation of the 
South China and North China blocks, and the opening of the so-called 
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Mongol- Okhotsk Ocean (Golonka 2007). The climate was warm with no polar ice-
caps, although the variation in photoperiod regime imposed some latitudinal con-
straints on the composition of vegetation belts, and the equable conditions were 
interrupted by several global and regional climate perturbations (Preto et al. 2010 
and references therein). Moreover, the Triassic in general was a period of excep-
tional sea- level lowstand in comparison with the Palaeozoic.

The Triassic is delineated by two of the five major mass extinctions in Earth his-
tory, the end-Permian Event (EPE) and the end-Triassic Event (ETE), owing to 
which the Triassic flora differs markedly from preceding and succeeding floras. 
Thus, it was a time of transition and of great changes in the composition of the 
global flora although our understanding of this transformation of plant communities 
is challenged by the scattered palaeontological record.

Past phytogeographic studies of the Triassic have used a diverse range of terms to 
denote floristic regions. In this chapter, we aim to rationalize the nomenclature 
applied to these regions and better define the relationships between areas based on 
shared taxa. We apply the term ‘assemblage’ to a suite of fossils derived from a par-
ticular bed. Thus, several assemblages constitute a local ‘flora’, multiple floras from 
related areas comprise a floristic ‘subprovince’, and two or more subprovinces make 
up a floristic ‘province’, the last of these categories being of continental or panconti-
nental scale. Available space constrains us from documenting the finer details of 
every studied Triassic flora. Nevertheless, we provide the first summary of the suc-
cession of Late Triassic plant assemblages globally (Tables 13.1 and 13.2) in order to 
elucidate phytostratigraphic patterns that might be related to variations in palaeocli-
mate and/or evolutionary processes. Although this contribution focuses on the mac-
rofloral record, brief details on the complementary dispersed spore-pollen successions 
are also included because palynology provides the basis for the biostratigraphical 
framework of many of the continental successions. Pollen and spores also provide 
insights into the vegetation and climatic signals owing to their abundant presence in 
near-shore marine successions. This review is a first step towards a better understand-
ing of the composition and distribution of the Late Triassic floras through time. 

13.2  Late Triassic Floras of North America

Late Triassic plant fossils occur in five widely separated parts of North America: in a 
string of narrow rift basins along the eastern seaboard of the United States, adjacent 
parts of Canada, the desert southwest of the United States and on some of the Arctic 
islands of Canada and in northwestern and northeastern Mexico (Figs. 13.1 and 13.2, 
Table 13.1). The known floras are restricted to the Carnian and early Norian stages, 
whereas Rhaetian floral assemblages are unknown in North America. Since the Late 
Triassic flora of Greenland is more closely related palaeogeographically to the Late 
Triassic floras of northern Europe, it is discussed within the European section of this 
chapter, whereas the floras of the Canadian Arctic are discussed here. The nomencla-
ture of the Upper Triassic strata in eastern North America that is used here follows that 
recently proposed by Weems, et al., 2016 and approved by the U.S. Geological Survey.
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13.2.1  Carnian Floras of North America

The Carnian floras of North America occur in the basal coal-bearing Doswell 
Formation of the Newark Supergroup in the Richmond rift basin in Virginia, in a clay 
quarry excavated into the Stockton Formation in the Chatham Basin of North 
Carolina and in the Gettysburg Basin in Pennsylvania (Wanner and Fontaine, in Ward 
1900). The plant fossils associated with the coal deposits in the Doswell Formation 
soon began to attract attention after they were first reported by William MacClure 
(1817). However, the fossils were not systematically investigated until William 
Fontaine began his work on them in the early 1880s. Subsequently, he (Fontaine 
1883) described 18 genera in the Doswell flora including several ferns (Acrostichides, 
Lonchopteris [Cynepteris], Mertensides), conifers (Cheirolepis), bennettitaleans 
(Ctenophyllum, Pterophyllum, Sphenozamites) and ginkgophytes (Baiera).

Fig. 13.2 Areas with major Upper Triassic plant assemblages in Arctic Canada, the US and north-
ern Mexico
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Plate 13.1 Upper Triassic plants from North America. (a) Cynepteris lasiophora, Petrified Forest 
National Park, Arizona, Norian. (b) Samaropsis sp., Fort Wingate, New Mexico, Norian. (c) 
Sanmiguelia lewisii, Petrified Forest National Park, Arizona, Norian. (d) Palodurophyton quana-
hensis, Palo Duro Canyon, Texas, Norian. (e) Pagiophyllum sp., Fort Wingate, New Mexico, 
Norian. (f) Fraxinopsis patharrisiae, Palo Duro Canyon, Texas, Norian. (g) Neocalamites sp., 
Petrified Forest National Park, Arizona, Norian. (h) Ginkgoites watsoniae, Petrified Forest National 
Park, Arizona, Norian. (i) Clathropteris walkerii, Petrified Forest National Park, Arizona, Norian. 
(j) Dechellyia gormanii, Canyon de Chelly, Arizona, Norian. (k) Dinophyton spinosus, Petrified 
Forest National Park, Arizona, Norian. Scale bar = 10 mm in each image
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In contrast to the plant assemblage preserved in the underlying Doswell Formation, 
the Stockton flora is not associated with coal deposits although cuticles are preserved 
on some specimens. The flora that occurs in the Stockton Formation was discovered 
in the Gettysburg Basin, Pennsylvania in the late nineteenth century and first described 
by Wanner and Fontaine (in Ward 1900). Much later additional Carnian-age plant 
assemblages were collected from the same rift basin by several workers including 
Wilhelm Bock (1969), Bruce Cornet (1977b) and Brian Axsmith (1989). Most of the 
taxa these workers found commonly occur in the Newark Supergroup at other locali-
ties and included the conifers Cheirolepis, Glyptolepis, Pagiophyllum, Palissya and 
Podozamites, the cycads/bennettitaleans Cycadospadix, Eoginkgoites, Nilssonia and 
Zamites, and the enigmatic gymnosperm Dinophyton (Plate 13.1k). A new era in the 
study of the Carnian flora really began when a report on the plant fossils in the 
Stockton Formation in the Chatham Basin was published by Hope and Patterson in 
1969. Other workers who soon joined Hope in the study of this flora were Ted 
Delevoryas (Delevoryas and Hope 1971, 1975, 1981, 1987), Brian Axsmith and Tom 
Taylor (see Axsmith et  al. 1995 for more details). An unpublished review of the 
Stockton flora from the Chatham Basin (Mickle et al. 2000) lists 25 taxa. Since then, 
two additional genera have been described (Axsmith et al. 2001; Pott and Axsmith 
2015) so that the known diversity of the assemblage now includes 27 genera, eight of 
which seem to be restricted to that deposit (e.g., Leptocycas, Metridiostrobus, 
Pekinopteris), the rest are relatively common in other Upper Triassic floras.

It is currently uncertain exactly how many genera are present in the Carnian suc-
cessions of the Richmond, Chatham and Gettysburg basins, since Fontaine’s and 
Wanner’s identifications have never been critically re-evaluated. However, a quick 
comparison between the fossil lists in each plant assemblage suggests that nearly all 
of the genera in the Doswell Formation also occur in the overlying Stockton 
Formation, so it is probable that the Carnian flora of the Newark Supergroup con-
sists of about 30 genera. Sphenophytes (Equisetites, Neocalamites) and ferns 
(Clathropteris, Danaeopsis, Lonchopteris [= Cynepteris], Mertensides, Pekinopteris, 
Phlebopteris) are particularly well represented in the flora, whereas the cycads/ben-
nettitaleans (Cycadospadix, Leptocycas, Otozamites, Williamsonia, Zamites) and 
conifers (Compsostrobus, Metridiostrobus, Pagiophyllum, Voltzia) are abundant. 
Collectively, the Carnian flora of North America appears to closely resemble the 
succeeding Norian flora of that continent.

The age of the plant fossils found in the Santa Clara Formation in Sonora (north-
western Mexico) is somewhat uncertain, ranging as it does from ?Carnian to Norian 
(see Weber 1995, 1996, 1999). Most of the fossil plants are typical Late Triassic 
sphenophytes (Equisetites, Neocalamites), ferns (Asterotheca), cycads/bennettital-
eans (Laurozamites, Pterophyllum, Ctenophyllum), ginkgophytes and conifers. 
Some additional plants in this flora are of uncertain relationship, such as Marcouia, 
or putative angiosperm precursors, such as Scoresbya and Sonoraphyllum.

The palynoflora in the Carnian succession in the Chatham Basin in the eastern 
United States is rich and well preserved (e.g., Schultz and Hope 1973; Cornet 
1977a; Dunay and Fisher, 1979; Fisher and Dunay 1984; Cornet and Olsen 1985; 
Traverse 1986; Litwin et al. 1991; Litwin and Ash 1993) and has been subdivided in 
two palynozones: the Chatham-Taylorsville palynofloral Zone and the overlying 
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New Oxford-Lockatong palynofloral Zone (Cornet 1977a; Cornet and Olsen 1985); 
in the Chinle Formation to the informal palynomorph zones I and II sensu Litwin 
et al. (1991). Patinasporites densus and Vallasporites ignacii dominate the Carnian 
palynofloras. The informal palynomorph zone I sensu Litwin et al. (1991) is charac-
terized by abundant taeniate bisaccate taxa (Litwin et  al. 1991). The Chatham- 
Taylorsville palynofloral Zone is characterized by the overlapping ranges of 
Patinasporites densus, Striatoabieites aytugii, Triadispora verrucata, 
Protodiploxypinus doubingeri, Plicatisaccus badius and Lagenella martinii. The 
informal palynomorph zone II includes the more diverse and abundant palynologi-
cal assemblages, and is characterized by the FOs (first occurrences) of Camerosporites 
rudis, Enzonalasporites vigens, Heliosaccus dimorphus, Ovalipollis ovalis, 
Pseudoenzonalasporites summus and other taxa (e.g., Alisporites spp., Cycadopites 
stonei, Guthoerlisporites cancellosus). The coeval New Oxford-Lockatong palyno-
flora Zone is dominated by Patinasporites densus, Vallisporites ignacii, Alisporites 
parvus and Triadispora spp. Most of the palynomorphs correlate with taxa in 
Carnian assemblages in Western Europe and Australia (Litwin et al. 1991).

13.2.2  Norian Floras of North America

Plant macrofossils of Norian age occur in the lower part of the Newark Supergroup 
in both the Chatham and Danville rift basins along the eastern seaboard of the 
United States as well as in the lower part of the Chinle-Dockum beds in the desert 
southwest of the United States. They were first described from what is now called 
the Passaic Formation in the Chatham rift basin by Ebenezer Emmons (1856, 1857) 
who reported that they came from coal prospects “…many hundreds of feet…” 
above the coal-bearing strata in the Carnian Doswell Formation from which Fontaine 
was to later (1883) make his collections. Eventually, Fontaine (in Ward 1900) re- 
described Emmons’ collection and reported that the Passaic flora includes 24 genera 
including sphenophytes (Equisetites), ferns (Laccopteris [=Phlebopteris], 
Lonchopteris [=Cynepteris], Pseudodaneosis, Sphenopteris), conifers (Abietites, 
Cephalotaxopsis, Pagiophyllum; Plate 13.1e), cycads/bennettitaleans 
(Anomozamites, Ctenophyllum, Otozamites) and ginkgophytes (Baiera).

Starting in the late 1970s, important collections of Norian plant fossils, insects and 
fish remains were described by Fraser et al. (1996) and Axsmith et al. (1997, 2013) 
from the Lockatong Formation in the Solite clay quarry in the Danville rift basin on 
the border between North Carolina and Virginia. A floral list published by Fraser et al. 
(1996) indicated that the Lockatong flora included about 30 genera (including at least 
10 new taxa), such as sphenophytes (Neocalamites, Plate 13.1g), ferns (Cynepteris, 
Dictyophyllum, Wingatea), ginkgophytes (Sphenobaiera, Plate 13.1h, Metreophyllum), 
cycads/bennettitaleans (Otozamites, Pterophyllum, Zamiostrobus, Zamites), together 
with many conifers (Cheirolepis, Palissya, Podozamites) and several enigmatic forms 
(Brunswickia, Dinophyton, Edenia, Fraxinopsis Plate 13.1f, Pannaulika). Several 
(Edenia, Pannaulika) seem to occur only at this locality.
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The Norian plant fossils that occur in the desert southwest of the United States 
occur principally in the lower one-third of the Chinle Formation  (Shinarump and 
Blue Mesa Members) and the Dockum Group (Garita Creek and Trujillo formations: 
Chinle Group of some authors), although it is noted that the basal units of both the 
Chinle and Dockum are considered Carnian if the ‘short’ Norian time scale is 
accepted (cf. Lucas et  al. 2012). The fossil assemblages, here referred to as the 
Chinle-Dockum flora, were not documented until 1941 when Lyman Daugherty 
(Daugherty 1941) described more than 40 genera based on compressed leaves, stems, 
and reproductive structures of lycophytes, sphenophytes, ferns, conifers and cycads/
bennettitaleans that mostly came from the Chinle Formation in Petrified Forest 
National Park, Arizona. Since then elements of the Chinle-Dockum flora have been 
found at several dozen localities in northern Arizona, southern Utah, northern New 
Mexico and west Texas. Probably the most well-known of all these localities are still 
those in Petrified Forest National Park where literally hundreds, if not thousands of 
highly coloured silicified conifer (pycnoxylic) logs (up to 40 m in length and 2 m in 
diameter) are exposed on the surface of the desert (Ash 2005; Sadler et al. 2015). In 
addition, amber, charcoal, and burned logs have been found in the park, together with 
a rich palynoflora (Litwin and Ash 1991; Reichgelt et al. 2013).

Most genera in the Chinle-Dockum flora are represented by a single species; only 
the common form genera, such as Cladophlebis and Pagiophyllum (Plate 13.1e), seem 
to be represented by more than one species (Ash 1989). The components of this flora 
represent all major groups of vascular land plants except the angiosperms. Given the 
abundance of petrified conifer (pycnoxylic) logs found in the Chinle-Dockum beds, it 
is not especially surprising that about one-third of the compressed flora is coniferous 
(Agathoxylon, Elatocladus, Pagiophyllum, Pelourdea). The cycads/bennettitaleans 
are next in order of abundance with about 13 genera (Nilssonia, Nilssoniopteris, 
Williamsonia, Weltrichia, Zamites) followed by the ferns with about eight genera 
(Clathropteris Plate 13.1i, Cynepteris Plate 13.1a, Phlebopteris, Todites; Ash 1969, 
1975; Ash et al. 1982). Although there are only five sphenophyte genera (Neocalamites, 
Equisetites, Schizoneura) in the flora, their remains, especially stem casts, are very 
common and more widely distributed than most other taxa in the flora suggesting 
generalist ecological niches in a wide range of habitats. Other plant groups, such as 
the ginkgophytes and gnetopsids are represented only by two to three genera each 
(Ginkgoites and Dechellyia; Plate 13.1j) and several seed plants were represented by 
dispersed seeds (Plate 13.1b) and cones (Plate 13.1d) of uncertain relationships.

Some of the plant macrofossils are so unusual and/or incomplete that they are 
difficult to classify with any assurance. One of the most contentious of these is 
Sanmiguelia (Plate 13.1c), a monopodial plant that was a little less than a metre tall 
and bore large, palm-like, pleated leaves on its non-woody stem. Apparently, it grew 
extensively along the shores of rivers and lakes throughout the desert southwest dur-
ing the Norian and Rhaetian ages of the Late Triassic and during the Hettangian age 
of the Early Jurassic in southwestern Utah (Ash and Hasiotis 2013). Another genus 
that is difficult to classify is Dechellyia. It consists of a leafy shoot bearing long, 
narrow, opposite, decussate leaves and winged seeds with a narrowly elliptical wing 
that are borne in pairs at the ends of short stalks attached to the base of the main 
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rachis of the leaf. The opposite-decussate leaves and the characters of the associated 
pollen are shared with all extant Gnetales, whereas winged seeds are present only in 
Welwitschia (Crane 1985). Until more material is found, it will be impossible to 
determine the systematic relationships of these enigmatic plants. At present, the 
Chinle-Dockum plant assemblage includes approximately 60 well-defined genera 
incorporating about 70 species based on plant megafossils, i.e., compressed leaves, 
leafy shoots, and reproductive structures and permineralized axes (Ash 1989, and 
personal observations).

The Chinle-Dockum (Carnian-Norian) and the Newark (Carnian–Norian) floras 
share many genera and species. However, each flora also contains a few distinctive 
genera, such as Dechellyia and Sanmiguelia that occur only in the Chinle-Dockum 
flora, and Edenia and Leptocycas that are restricted to the Newark flora (Axsmith 
et al. 2013; Delevoryas and Hope 1971). The presence of Fraxinopsis in both the 
Chinle-Dockum and the Newark floras (Axsmith et  al. 1997; Ash 2011) and 
Schizoneura in the Chinle-Dockum floras (Ash 1986) suggest that there was some 
floral interchange between North America, Europe and Gondwana during the Late 
Triassic or earlier. It appears that the Newark flora generally grew in a more humid 
climate than the Chinle flora, since minable coal deposits occur in the Carnian and 
the lower part of the Norian beds of the Newark Supergroup but not in the Chinle- 
Dockum beds. Furthermore, many of the leaves in the Newark Supergroup are much 
larger than those of the same genera in the Chinle-Dockum flora. This is particularly 
true for the ferns (e.g., Clathropteris, Phleboteris) and some of the bennettitaleans 
(e.g., Sphenozamites). Consequently, it appears that the climate was much more 
humid along what is now the eastern seaboard of North America. Although the cli-
matic changes along the eastern seaboard of North America were due to continental 
drift, the changes in the desert southwest were probably caused by orogeny and 
elevation changes in eastern California (Nordt et al. 2015).

The Norian portion of the Newark Supergroup found in the rift basins along the 
eastern seaboard of North America contains a moderately diverse palynoflora 
(Cornet 1977a; Cornet and Olsen 1985; Litwin et al. 1991). The Norian is divided 
into two main palynozones, separated from the Carnian palynofloras by a  transitional 
zone (Cornet 1977a; Weems et al. 2016), i.e., the Lower Passaic-Heidlersburg Zone 
and the Manassas-Upper Passaic Zone (Cornet and Olsen 1985). The former zone is 
distinguished by the presence of Camerosporites verrucosus together with abundant 
large and varied pollen grains including Alisporites opii, Patinasporites densus, 
Vallasporites ignacii and Triadispora spp. The Manassas-Upper Passai Zone is 
characterized by the first occurrence of Corollina torosus and Granuloperculatispollis 
rudis in combination with the ongoing presence of the previously appeared pollen 
(Cornet and Olsen 1985).

The Norian (and Rhaetian?) corresponds in the Chinle Formation to parts of the 
informal palynomorph zones II and III, divided by a transitional zone. The informal 
palynomorph zone III has lately been divided into two subzones, IIIa and IIIb 
(Reichgelt et al. 2013). The palynoflora of the Norian is generally rich and diverse 
with more than 100 species (Dunay and Traverse 1971; Fisher and Dunay 1984; 
Litwin et al. 1991; Lucas et al. 2012). Zone II has a high diversity but low spore 
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abundance, high dominance of bisaccates and with Cordaitina minor, 
Protodiploxypinus spp. and Angustisaccus reniformis as characteristic elements 
(Reichgelt et al. 2013). In zone IIIa palynofloral diversity drops significantly and 
several pollen types disappear from the record. The spores increase in abundance 
and diversity (Osmundacidites, Todisporites, Dictyophyllidites, Froelichsporites). 
Characteristic elements of this zone are Klausipollenites gouldii, Pretricolpipollenites 
bharadwajii, Araucariacites sp., Todisporites major and Dictyophyllidites harrisii. 
The abundance  of Klausipollenites gouldii remains high also in the zone IIIb 
(>50%), the general pollen diversity increases again (Klausipollenites, 
Patinasporites, Colpectopollis, Cordaitina, Protodiploxypinus) and the spore abun-
dance drops. Patinasporites densus also becomes abundant. Additional characteris-
tic elements of this zone are Froelichsporites traverse and Colpectopollis ellipsoideus 
(Litwin et al. 1991; Reichgelt et al. 2013). Thus, these two Norian palynofloras not 
surprisingly reflect the change in climate that occurred in the desert southwest of 
North America as a consequence of strong orogenic activity in eastern California 
(Nordt et al. 2015).

The late Norian flora of the Sverdrup Basin (eastern Canadian Arctic Archipelago) 
reflects a high-latitude vegetation that lived close to the border with Europe and 
Siberia and contains elements of both regions. The flora includes 25 genera of plant 
macrofossils from 11 localities. The diversity at most of the localities is relatively 
low (only a few species). In total, the flora is characterized by abundant spheno-
phytes (Equisetites, Neocalamites) and ferns (Camptopteris, Cladophlebis, 
Clathropteris, Marattiopsis, Phlebopteris, Todites) and less abundant bennettitale-
ans (Anomozamites, Pterophyllum, Ptilophyllum), ginkgophytes (Ginkgo, 
Sphenobaiera), Czekanowskiales (Czekanowskia) and conifers (Pelourdea, 
Podozamites, Stachyotaxus, Swedenborgia), together with tree trunks 
(Araucarioxylon, Mesembrioxylon). The floral composition (large horsetails, gink-
gophytes, Camptopteris and Clathropteris) and the presence of coal beds indicate 
that the plants grew in a relatively warm climate with abundant rainfall and well- 
developed seasons (well-developed growth rings; Ash and Basinger 1991). Also 
from Canada is the Norian flora of east-central Axel Heiberg Island. This flora is 
dominated by bennettitalean leaves (Anomozamites, Pterophyllum, Vardekloeftia) 
and conifer shoots (Podozamites) with only a few sphenophyte (Neocalamites), fern 
(Dictyophyllum, Todites), seed fern (Lepidopteris), Czekanowskiales (Czekanowskia) 
and ginkgophyte (Ginkgoites) remains, suggesting a drier climate and/or palaeoen-
vironment than proposed on studies of the Norian floras of Axel Heiberg and 
Ellesmere islands (Vavrek et al. 2007). Alternatively, a Rhaetian age might be con-
sidered for this flora.

13.3  Late Triassic Floras of Europe and Greenland

Late Triassic floras are widely distributed in Europe and Greenland (these two land-
masses being juxtaposed as part of northern Pangea at that time) and they have been 
grouped historically into three sectors, the Central European Basin (known also as 
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the Germanic Basin) and the northern Alpine belt, the Southern Alps and the higher 
latitude Scandinavia-Greenland area (Figs. 13.1 and 13.3, Table 13.1). These sec-
tors host floras with subtly different compositions. This area also includes the type 
section for the Triassic–Jurassic boundary, at the Kuhjoch Section in the Karwendel 
Mountains (Northern Calcareous Alps, Austria; e.g., Ogg et al. 2008). The Triassic–
Jurassic boundary is dated radiometrically to 201.3 ± 0.2 Ma, and is defined on the 
First Appearance Datum (FAD) of the ammonite Psiloceras spelae tirolicum. In the 
continental realm, this coincides with the FAD of the gymnosperm pollen-taxon 
Cerebropollenites thiergarthii (Kürschner et  al. 2007; Ogg et  al. 2008; Von 
Hillebrandt et al. 2008).

The most famous floras of the Central European Basin (mostly Germany) are the 
Schilfsandstein flora and the Germanic Basin ‘Rhaeto-Liassic’ flora (e.g., Schenk 
1867; Gothan 1914; Frentzen 1922; Weber 1968; Kirchner 1992; Kelber and Hansch 
1995; Kelber 1998, 2000; Pott et al. 2016a). The Alpine floras host plant assem-
blages of all stages of the Late Triassic (e.g., Schenk 1866–1867; Stur 1868, 1885; 
Leuthardt 1903; Kräusel and Leschik 1955; Kräusel and Schaarschmidt 1966; 
Dobruskina 1993, 1994; Pott 2007; Pott et al. 2007d, 2008a; Pott and Krings 2010; 

Fig. 13.3 Areas with major Upper Triassic plant assemblages in Europe, Svalbard and Greenland
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Kustatscher et al. 2011; Petti et al. 2013; Dalla Vecchia 2000) including historically 
famous plant suites, such as the Lunz, Neuewelt and Raibl plant assemblages. 
Additional Carnian floras occur in Slovenia (Dobruskina 2001) and Poland (Pacyna 
2014), Norian floras in Poland (Barbacka et  al. 2012; Pacyna 2014) and the 
Apennines (Dalla Vecchia 2000), and Rhaetian floras in France (Lozere: de Saporta 

Plate 13.2 Upper Triassic plants from Europe. (a) Equisetites arenaceus, Lunz, Austria, Carnian. 
(b) Asterotheca merianii, Lunz, Austria, Carnian. (c) Pterophyllum filicoides, Lunz, Austria, 
Carnian. (d, e) Ginkgoites sp., Edgeøya, Svalbard, Carnian. (f) Voltzia sp., Seefeld, Austria, Norian. 
(g) Elatocladus sp., Rögla, Sweden, Rhaetian. (h) Nilssonia pterophylloides, Bjuv, Sweden, 
Rhaetian. (i) Voltzia coburgensis, Ziegelanger, Germany, Rhaetian. (j) Dictyophyllum exile, Rögla, 
Sweden, Rhaetian. (k) Thaumatopteris schenkii, Stabbarp, Sweden, Hettangian. (l) Wielandiella 
angustifolia, Jameson Land, Greenland, Rhaetian. (m) Wielandiella angustifolia, Jameson Land, 
Greenland, Rhaetian. Scale bar = 10 mm in each image
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1873–1891; Depape and Doubinger 1963), England (Worchstershire and Bristol: 
Harris 1938, 1957) and Poland (Schmidt 1928). The Late Triassic floras of the 
Scandinavia–Greenland sector are documented from relatively few areas but host 
rich and highly diverse plant assemblages, that reflect extensive wetland systems 
developed in narrow basins that opened up during initial rifting across the North 
Atlantic region (e.g., Svalbard, southern Sweden, Greenland; Harris 1931a, 1932a, 
b, 1935, 1937; Pott and McLoughlin 2009, 2011; Pott 2014a, b).

13.3.1  Carnian Floras of Europe

The Carnian floras of Europe (Lunz, Neuewelt, Monte Pora, Raibl, several localities 
in Germany, Svalbard) are diverse and reflect generally humid conditions and 
swampy fluvial to deltaic depositional environments (e.g., Dobruskina 1994; Kelber 
and Hansch 1995; Pott et al. 2008b). The Carnian flora of Lunz is one of the most 
diverse Late Triassic floras currently known from the Northern Hemisphere (Pott 
and Krings 2010). The swampy depositional environment is reflected by coals and 
carbonaceous shales hosting abundant plant fossils referable to a great diversity of 
species belonging to numerous plant groups. Ferns (including Matoniaceae, 
Gleicheniaceae, Marattiaceae; Plate 13.2b), cycads/bennettitaleans (Nilssonia, 
Nilssoniopteris, Pseudoctenis, Pterophyllum; Plate 13.2c) are very abundant, 
whereas sphenophytes (Equisetites, Neocalamites; Plate 13.2a), conifers 
(Elatocladus) and putative ginkgophytes (Arberophyllum, Ginkgoites) are less com-
mon (e.g., Dobruskina 1994, 1998; Pott et al. 2007a, b, c, d, 2008a, b, c, in press; 
Pott and Krings 2010 and references therein). The Lunz flora is especially well 
known for its abundant and diverse bennettitaleans that are among the earliest rep-
resentatives of that group. The material includes excellently preserved reproductive 
structures that play a key role in understanding the phylogeny of the group (Pott 
2016; Pott et al. 2017).

The flora of Neuewelt in Basel (Switzerland; Kräusel and Leschik 1955; Kräusel 
and Schaarschmidt 1966) is slightly less diverse but incorporates abundant spheno-
phytes, ferns and bennettitaleans, whereas conifers are scarce. The Schilfsandstein 
flora (Germany) is dominated by sphenophytes (Equisetites, Neocalamites) and ferns 
(Asterotheca, Cladophlebis); conifers (Swedenborgia, Voltzia) and bennettitaleans 
(Pterophyllum) are rare. The succession hosting this flora incorporates multiple pal-
aeosol layers with successive generations of horsetail (Equisetites) shoots and roots; 
the roots of one generation cut through the plant remains of the previous (underlying) 
generation (Kelber and Hansch 1995). The plant assemblages from Lunz and the 
Germanic Basin are considered autochthonous or parautochthonous based on the pres-
ence of abundant large, randomly oriented and well-preserved leaves, the presence of 
extensive, monotypic accumulations of ferns, and the occurrence of in situ spheno-
phyte rhizomes (Kelber and Hansch 1995; Pott et al. 2008a, b). Monotypic associa-
tions of ferns and sphenophytes, together with palynological signatures, suggest that 
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these floras grew in a humid environment (e.g., Pott et al. 2008a, b; Mueller et al. 
2016a).

Some other Alpine floras differ noticeably in composition from the Lunz assem-
blages suggesting important local to regional environmental influences on the com-
position of the fossil assemblages. These include plant assemblages of the Italian 
Mount Pora (Bergamasc Alps), Dogna and Raibl (Julian Prealps), which are not as 
diverse as the better known coeval floras of the northern Alps and the Central 
European Basin and are dominated by gymnosperms (Pterophyllum, Ptilozamites, 
Sagenopteris, Voltzia; Plate 13.2f), although various sphenophytes (Equisetites) and 
ferns (Chiropteris, Danaeopsis) are also preserved, together with enigmatic plant 
remains, such as Phylladelphia (Schenk 1866–1867; Stur 1868, 1885; Dobruskina 
2001; Kustatscher and Van Konijnenburg-van Cittert 2008). The Raibl and Dogna 
floras are dominated by conifers but, in the former, they belong to the voltzialeans 
(Voltzia, Bronn 1858; Stur 1885; Dobruskina 2001), whereas in the latter they are 
attributable to the cheirolepidiaceans (Roghi et  al. 2006a). Brachyphyllum and 
Pelourdea are the most abundant taxa in the Monte Pora plant assemblages. This 
might reflect a palaeovegetation adapted to less humid environments and/or a tapho-
nomic bias owing to longer transport distances before deposition of the plant 
remains. A small Carnian plant assemblage from the Karavanke Mountains 
(Slovenia) has yielded a few conifer remains (Desmiophyllum, Voltzia; Dobruskina 
2001). The fossil flora of the Carnian Prealps is dominated by Brachyphyllum, 
Pagiophyllum and Pelourdea (Dalla Vecchia 2000, 2012), and that of the Bergamasc 
Alps by unidentified conifer shoots (Andrea Tintori, pers. comm. 2016). The plant 
assemblages from the famous Carnian Krasiejów fossiliferous locality (southwest-
ern Poland) are generally poor in species and consist mainly of poorly studied 
leaves, leafy shoots, seeds and cone scales of conifers (Desmiophyllum, Glyptolepis, 
Pachylepis, Pseudohirmerella, Voltzia) and rare remains of ferns (Sphenopteris) and 
bennettitaleans (Pterophyllum; Dzik and Sulej 2007; Pacyna 2014).

Carnian strata of Europe have also yielded important amber discoveries. These 
derive mostly from the Heiligkreuz Formation in the eastern Dolomites and from 
the Rio del Lago Formation in the Julian Alps (Koken 1913; Zardini 1973; Wendt 
and Fürsich 1980; Gianolla et al. 1998; Roghi et al. 2005, 2006b) but amber has 
been found also in the Schilfsandstein of Switzerland and Germany (Soom 1984; 
Kelber 1990; Schönborn et al. 1999), the Raibler Schichten and the Lunz flora of 
Austria (Pichler 1868; Sigmund 1937; Vávra 1984) and the Sándorhegy Formation 
of Hungary (Budai et al. 1999). This unusually high abundance of amber in the fos-
sil record has been linked to the environmental stresses imposed on the plants by the 
Carnian Pluvial Event (Gianolla et al. 1998; Roghi et al. 2006b).

The Carnian palynological record in Europe expresses a major floristic change 
characterised by a significant increase in the Circumpolles-group. Circumpolles is 
an interesting group that increased in abundance and diversity around the Ladinian–
Carnian boundary and includes taxa such as Duplicisporites, Paracirculina and 
Camerosporites, all having supposed cheirolepidiaceous affinities (Zavialova and 
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Roghi 2005). The group is of great interest to evolutionary palaeontologists as it 
seems to have diversified through the Late Triassic to produce pollen grains of var-
ied morphologies, and especially so during the Carnian. Its radiation coincides with 
an arid phase during the early Carnian. The early Carnian palynological assem-
blages are dominated by xeromorphic elements including taeniate bisaccate pollen 
and Triadispora (Kürschner and Herngreen 2010). The FADs of several character-
istic sporomorphs, including Camerosporites secatus, Enzonalasporites vigens, 
Triadispora verrucata and Vallasporites ignacii are recorded during this period. The 
palynoflora registers a maximum in diversity and a dominance of spores 
(Leschikisporis, Calamospora, Deltoidospora, Dictyophyllidites) during the middle 
Carnian, in correspondence with the Carnian Pluvial Event (e.g., Simms and Ruffel 
1989, 1990; Olsen and Kent 2000; Hochuli and Frank 2000; Roghi 2004; Breda 
et al. 2009; Kozur and Bachmann 2010; Preto et al. 2010; Arche and Lopez-Gomez 
2014; Dal Corso et al. 2015; Mueller et al. 2016b). During the late Carnian, diver-
sity began to decline and cheirolepidiacean pollen experienced further diversifica-
tion. The entire Carnian was assigned to the Camerosporites secatus Zone by 
Herngreen (2005) and Kürschner and Herngreen (2010); this biozone is defined by 
the FADs of Camerosporites secatus, Enzonalasporites vigens, Triadispora verru-
cata and Vallasporites ignacii and the first common occurrence of Ovalipollis pseu-
doalatus. The lower part of this zone is assigned to the Triadispora verrucata 
Subzone, which corresponds to zones 12 and 13 of Heunisch (1999), the 
Porcellispora longdonensis Zone of Orłowska-Zwolińska (1984) and the 
Concentricisporites bianulatus assemblage of Roghi (2004). The middle part of the 
Camerosporites secatus Zone is named Aulisporites astigmosus Subzone; it corre-
lates to zone 14 of Heunisch (1999), the Aulisporites astigmosus Zone of Orłowska- 
Zwolińska (1984), the Aulisporites astigmosus assemblage and the Lagenella 
martinii Assemblage of Roghi et al. (2010). The upper Carnian, is represented by 
zone 15 of Heunisch (1999), the lower part of the Corollina meyeriana Zone of 
Orłowska-Zwolińska (1984) and the Granuloperculatipollis rudis Assemblage of 
Roghi et al. (2010). This interval was not assigned to any subzone by Herngreen 
(2005) and Kürschner and Herngreen (2010).

Carnian floras of the Scandinavia-Greenland region are known from Svalbard 
and the Barents Sea (Figs. 13.1 and 13.3, Table 13.1). Svalbard comprises an archi-
pelago of nine main islands with extensive exposures of Upper Triassic successions, 
including fossiliferous sandstones, siltstones and shales (Vajda and Wigforss-Lange 
2009; Vigran et al. 2014). The most extensive Upper Triassic successions hosting 
plant remains are attributed to the Carnian De Geerdalen Formation and are repre-
sented by non-marine delta plain deposits (Klausen and Mørk 2014). Detailed paly-
nological studies through the Upper Triassic successions have revealed variations in 
the miospore/dinoflagellate cyst ratios that were responses to variations in climate 
and sea-level. The assemblages document increased marine influences during the 
Late Triassic in this region (Hochuli and Vigran 2010; Vigran et  al. 2014). The 
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Svalbard flora is dominated by ferns (Asterotheca, Cladophlebis, Clathropteris, 
Danaeopsis, Dictyophyllum, Phlebopteris, Sphenopteris), bennettitaleans 
(Nilssoniopteris, Pterophyllum) and seed ferns (Paratatarina, Ptilozamites, 
Sagenopteris) but sphenophytes (Equisetites, Neocalamites) and ginkgophytes are 
also well represented. Pott and Launis (2015), McLoughlin and Strullu-Derrien 
(2016), Pott (2016) and Pott et al. (2016b) identified 26 species in the late Carnian 
(to possibly early Norian) flora of Svalbard, Vassilevskaja (1972) reported a similar 
flora from Franz Josef Land. Common genera include the sphenophyte Neocalamites, 
the osmundaceous fern Asterotheca, possible peltasperms Paratatarina and 
Glossophyllum, ginkgophytes Arberophyllum, Ginkgoites (Plate 13.2d, e) and 
Sphenobaiera, and several species of the bennettitalean foliage Pterophyllum. 
Dipteridaceae occur only in the uppermost fossiliferous beds. Gothan (1910) 
reported woods with indistinct growth rings from the Svalbard flora, suggesting 
only weakly seasonal growth conditions.

Vassilevskaja (1972) argued that there were strong similarities between the 
Svalbard Carnian flora and assemblages of the Alpine region but notable differences 
from the coeval floras of central Europe and the slightly younger floras of Sweden 
and Greenland. Recent studies of the Late Triassic floras of the Svalbard Archipelago 
have partially supported these interpretations, with several taxa shared between the 
Svalbard, Lunz and Neuewelt floras (Launis et al. 2014; Pott 2014b). Pott (2014b) 
argued that the distinctive floristic North Atlantic Subprovince hypothesized for 
Rhaetian floras (Pott and McLoughlin 2009, 2011) within Dobruskina’s (1994) 
Siberian and European-Sinean palaeofloral areas, was already established by the 
Carnian.

Extensive palynostratigraphic studies both onshore and, in recent years, from 
subsurface strata of the Barents Sea have established four Upper Triassic palynoas-
semblage zones that document the existence of a succession of four distinct, high- 
diversity palynofloras in this region (Vigran et  al. 2014; Paterson and Mangerud 
2015). Svalbard Carnian assemblages are represented by the Aulisporites astigmo-
sus Composite Assemblage Zone of early to mid-Carnian age (Table  13.2). 
Assemblages attributable to this zone are typified by the high relative abundance of 
the trilete spores Aulisporites astigmosus and Deltoidospora toralis and the acme of 
monolete spores including Leschikisporis aduncus. The zone is further defined on 
the FADs of Ricciisporites tuberculatus and Camarozonosporites rudis (Vigran 
et al. 2014). The succeeding Rhaetogonyaulax spp. Composite Assemblage Zone 
(Table  13.2) has been dated to late Carnian–early Norian. This zone is defined 
within nearshore marine deposits and is characterized by a high relative abundance 
of the dinoflagellate cyst Rhaetogonyaulax rhaetica, together with abundant spores 
and bisaccate pollen, such as Protodiploxypinus and Ovalipollis pseudoalatus. Taxa 
defining the zone include a combination of dinoflagellate cysts and pollen, with key 
FADs of the dinoflagellates R. rhaetica and R. arctica and last occurrence datums 
(LADs) of several bisaccate pollen taxa, such as Protodiploxypinus gracilis and 
Staurosaccites quadrifidus.
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13.3.2  Norian Floras of Europe

Exposures of Norian strata yielding plant fossils are known from the Alps 
(Bergamasc Prealps, Carnian Prealps; Northern Calcareous Alps), Apennines (Italy) 
and Silesia (Poland) (Figs. 13.1 and 13.3, Table 13.1). Norian floras in Europe gen-
erally have low taxonomic diversity and are dominated by conifers (reaching 
80–90% of the assemblages: Dobruskina 1993, 1994; Dalla Vecchia 2000; Dalla 
Vecchia and Selden 2013; Pacyna 2014; Kustatscher et al. 2017), whereas cycads/
bennettitaleans, lycophytes, sphenophytes and seed ferns are rare (Dobruskina 
1993). The Seefeld flora is dominated by conifers of both voltzialean and cheiro-
lepidiacean affinity (Plate 13.2e), in association with probable cycads (Taeniopteris) 
and lycophytes (e.g., Lepacyclotes; Dobruskina 1993, 1994; Kustatscher et  al. 
2017). The two small plant assemblages from the Appenines, i.e., Giffoni (Salerno) 
and Filettino (Frosinone), have yielded bennettitaleans (Pterophyllum) and conifers 
(Araucarites, Brachyphyllum, Podozamites, Voltzia; Dalla Vecchia 2000). The 
Upper Silesian flora (Poland) is dominated by conifers (Brachyphyllum) associated 
with sparse horsetails (Equisetites), ferns (Cladophlebis, Clathropteris), bennettita-
leans (Pterophyllum) and Czekanowskiales (Pacyna 2014). In some localities, 
Pachylepis-type seed scales, matching the cuticles of the Brachyphyllum shoots, and 
putative fragments of Czekanowskia and ginkgophyte leaves are also preserved. 
Even a liverwort, Palaeohepatica, was described but never figured from this flora 
(Pacyna 2014).

The fragmentary nature of most of the Norian plant remains and the preservation 
of the cuticles in the Seefeld flora suggest that, in most cases, the plant remains were 
subjected to extensive transport. The thick cuticle and the sunken stomata protected 
by papillae suggest that the plants grew in stressed environments, such as small 
carbonate islands with thin soils and low groundwater levels and/or under arid con-
ditions (Kustatscher et  al. 2017). This may be true for most of the Norian plant 
assemblages of Europe with the exception of the Polish flora, which incorporates 
various ferns and a putative bryophyte, both considered hygrophytic plant groups. 
This suggests that the Polish flora grew under moister environmental conditions 
favoured by Poland’s higher palaeolatitude, and/or the Polish assemblages were 
subjected to shorter transport before deposition.

During the Norian, the Circumpolles-producers became progressively more 
prominent in the vegetation, which is reflected in their high abundance. Generally, 
the palynofloral diversity decreases by about 50% between the early Carnian and 
the Norian (Kürschner and Herngreen 2010). Carnian hold-overs (Duplicisporites 
spp., Enzonalasporites spp. and Camerozonosporites spp.) remain common in lower 
Norian successions (Cirilli 2010). Difficulties assessing the Norian palynological 
record include the absence of continental deposits that can be readily correlated 
with marine successions and also the fact that Norian and lower Rhaetian assem-
blages are generally rather homogeneous. Owing to the incomplete Norian palyno-
logical record, considerable uncertainty exists about the ranges of so-called ̒ typicalʼ 
Rhaetian sporomorphs (e.g., Cornutisporites spp., Limbosporites lundbladii, 
Perinosporites thuringiacus, Rhaetipollis germanicus, Semiretisporis spp., 
Triancoraesporites spp. and Zebrasporites spp.), for which a late Norian appear-
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ance cannot be excluded (Kürschner and Herngreen 2010). The Norian successions 
are attributed by Herngreen (2005) to the Granuloperculatipollis rudis Zone, based 
on the FAD of the marker species and the abundance of Classopollis meyeriana and 
C. zwolinskae. This zone corresponds to zones 16–17 of Heunisch (1999), the mid-
dle–upper part of the Corollina meyeriana Zone of Orłowska-Zwolińska (1984) and 
the upper part of the Granuloperculatipollis rudis assemblage of Roghi et al. (2010).

In Svalbard, the Norian Flatsalen Formation incorporates predominantly shallow 
marine deposits and, consequently, does not preserve abundant plant macrofossils. 
However, well-preserved Norian palynological assemblages from this unit are 
assigned to the Limbosporites lundbladii Composite Assemblage Zone (Vigran 
et  al. 2014; Table  13.2), which is typified by a dominance of spores (especially 
spikes of Annulispora spp. and Deltoidospora spp.), together with diverse represen-
tatives of the fern spore Kyrtomisporis. This zone is defined by the FADs of 
Limbosporites lundbladii and Rogalskaisporites barentzii, and the regular occur-
rence of Ricciisporites umbonatus, Cingulizonates rhaeticus, Granuloperculatipollis 
rudis and Quadraeculina anellaeformis. Owing to the nearshore marine deposi-
tional setting of the Flatsalen Formation, the palynoassemblages include dinoflagel-
lates, mainly Heibergella spp., H. asymmetrica and Rhaetogonyaulax rhaetica, 
which aid regional correlation. Palynostratigraphic studies have also noted the 
inception of cheirolepidiacean conifers (commonly an indicator of drier and/or 
saline influences) and a relative increase in the abundance of gymnosperms produc-
ing bisaccate pollen in this interval (Paterson and Mangerud 2015).

Strata of this age in southern Sweden are assigned to the Kågeröd Formation and 
occur mostly in the subsurface as red-beds devoid of plant material. Similarly, the 
Norian–lower Rhaetian Ørsted Dal Member (Fleming Fjord Formation) of East 
Greenland consists of fluvial and lacustrine red, marly mudstones, grey sandstones 
and carbonates that lack plant fossils (Surlyk 2003). In the Alpine area, the Norian 
succession is characterized by dolomitic strata that are also poor in palynomorphs.

13.3.3  Rhaetian Floras of Europe and Greenland

Several of the most important latest Triassic assemblages (Fig. 13.3, Table 13.1) 
were assigned historically to ‘Rhaeto-Liassic’ floras because, in early studies, the 
distinctions between the Rhaetian and Early Jurassic successions were difficult to 
resolve. A more detailed stratigraphic resolution of the Triassic–Jurassic transition 
in continental successions of Europe and Greenland has been achieved in recent 
years utilizing palynofloral (e.g., Lindström and Erlström 2006; Larsson 2009; 
Vajda et  al. 2013; Vigran et  al. 2014; Lindström et  al. 2017), macrofloral (e.g., 
McElwain et al. 2009; Pott and McLoughlin 2009, 2011; Pott et al. 2016b), stable 
isotope (e.g., Hesselbo et al. 2002) and magnetostratigraphic data (e.g., Lord et al. 
2014), and this has facilitated a better understanding of the significant changes in 
the vegetation across this boundary.
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The Bayreuth flora (Oberfranken, Germany) includes one of the most famous 
‘Rhaeto-Liassic’ floras (Weber 1968). The richest Rhaetian plant assemblage 
restudied recently is that from Wüstenwelsberg (e.g., Kelber and Van Konijnenburg- 
van Cittert 1997; Bonis et al. 2010; Zavialova and Van Konijnenburg-van Cittert 
2011; Van Konijnenburg-van Cittert et al. 2014, 2016; Pott et al. 2016a). The sand-
stone quarry at Wüstenwelsberg is well known for its rich and diverse flora, includ-
ing lycophytes (Selaginellites), sphenophytes (Equisetites), ferns (e.g., Cladophlebis, 
Clathropteris, Dictyophyllum, Marattia, Phlebopteris, Todites, Thaumatopteris), 
seed ferns (Ctenozamites, Lepidopteris, Pachypteris, Ptilozamites, Rhapidopteris), 
cycads/bennettitaleans (Anomozamites, Ctenis, Nilssonia, Nilssoniopteris, 
Pseudoctenis, Pterophyllum), ginkgophytes (Ginkgoites, Schmeissneria) and coni-
fers (Desmiophyllum, Elatocladus, Palissya, Stachytaxus, Schizolepis, Voltzia; Plate 
13.2i). Cycads/bennettitaleans are very abundant but Voltzia is apparently absent; so 
too is Hirmerella, one of the most prominent taxa of the ‘Rhaeto-Liassic flora of 
Bayreuth’ (Gothan 1914; Kirchner 1992; Bonis et al. 2010). The Rhaetian Seinstedt 
plant assemblage is also a diverse and hygrophytic flora (Barth et al. 2014).

The Polish Rhaetian flora of Upper Silesia and the Tatra Mountains is of low 
diversity and consists mostly of fragments of sphenophytes (Neocalamites), ferns 
(Cladophlebis, Clathropteris), seed ferns (Lepidopteris, Peltaspermum), cycads/
bennettitaleans (Pterophyllum, Taeniopteris), Czekanowskiales (Czekanowskia), 
ginkgophytes (Ginkgoites) and conifers (Brachyphyllum, Pagiophyllum, Palissya, 
Widdringtonites, Cheirolepidiaceae) (Barbacka 1991; Reymanówna and Barbacka 
1981; Wawrzyniak and Ziaja 2009; Pacyna 2014).

Rhaetian and Early Jurassic floras in Skåne (southern Sweden) derive from the 
coal-rich Bjuv Member (upper Rhaetian) and Helsingborg Member (Hettangian) of 
the Höganäs Formation, but a few plants have also been recovered from the underly-
ing Vallåkra Member (lower Rhaetian). The plant remains are abundant and excep-
tionally well preserved. A wealth of fossils has been collected and curated over the 
past century in association with bituminous coal mining (more than 28,000 speci-
mens are curated in the collections of the Swedish Museum of Natural History 
alone). Rhaetian–Hettangian plant assemblages of southern Sweden, similarly to 
the Rhaeto-Liassic floras of the Central European Basin, were treated as a single 
flora in many early taxonomic studies because the uppermost Triassic and lower-
most Jurassic successions were difficult to distinguish lithologically, problematic to 
trace laterally, and the depositional environment was represented by relatively con-
sistent floodplain settings across the boundary interval. A consistent lithostrati-
graphic framework did not develop for the region until the mid-twentieth century 
(Troedsson 1943, 1950, 1951). The floras are preserved in deltaic and coastal plain 
deposits that locally also host fossils of fishes, amphibians and dinosaur trackways 
(Nilsson 1946; Troedsson 1951; Vajda et al. 2013). This wealth of fossil plant mate-
rial has been the subject of numerous taxonomic studies over the past two centuries 
(Nilsson 1820; Nathorst 1876a, b, 1878a, b, c, 1879, 1880, 1886, 1888, 1902, 1909a, 
b, 1913; Halle 1908; Johansson 1922; Lundblad 1949, 1950, 1959a, b; Pott and 
McLoughlin 2009, 2011; Pott 2014a).
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Although around 445 taxa have been recorded from the Rhaetian–Early Jurassic 
floras of Skåne, accurate measures of diversity are difficult to obtain without whole-
sale revision of the historical fossil collections because various authors have adopted 
different approaches to the delimitation of taxa. For example, Lundblad (1959a) 
re-assessed the taxonomy of several Ginkgo taxa described by Nathorst (1878c, 
1886), synonymizing some forms, and emphasized that morphological characteris-
tics for taxonomical delinations of Ginkgo species need to be combined with cuticu-
lar analyses. Further, Pott and McLoughlin (2009), in an analysis of bennettitalean 
foliage from the various Scanian localities, reduced the around 50 taxa of this group 
reported previously to just 10 clearly demarcated species attributable to Pterophyllum 
and Anomozamites, of which only five were recorded with confidence from Rhaetian 
strata. Overall, the Skåne Rhaetian floras include a diverse array of plant groups 
including bryophytes, lycophytes, sphenophytes (Equisetites, Neocalamites), ferns 
(Camptopteris, Dictyophyllum Plate 13.2j, Phlebopteris, Thaumatopteris Plate 
13.2k, Todites), bennettitaleans (Anomozamites, Pterophyllum), cycads (Nilssonia; 
Plate 13.2h), seed ferns (Lepidopteris, Ptilozamites, Sagenopteris), ginkgophytes 
(Baiera, Ginkgo, Ginkgoites, Sphenobaiera) and conifers (Cyparissidium, 
Elatocladus Plate 13.2g, Stachyotaxus, Palissya). Quantitatively, sphenophyte 
stems and foliage of ferns, conifers and bennettitaleans tend to dominate the 
Rhaetian assemblages of Skåne (Pott and McLoughlin 2009, 2011). The overall 
composition of the flora suggests a multi-storey vegetation with ferns, sphenophytes 
and lycophytes dominating the under-storey, conifers and ginkgoaleans the upper- 
storey, and a range of bennettitaleans, cycads and seed-ferns constituting plants of 
intermediate stature.

Many of the genera and species in the Skåne deposits are shared with the Rhaetian 
flora of Jameson Land (East Greenland), and Lundblad (1950, 1959a) noted a disjunc-
tion in Skåne between the composition of latest Triassic assemblages (assigned to the 
Lepidopteris Zone) of the Bjuv Member and the succeeding earliest Jurassic assem-
blages of the Helsingborg Member (assigned to the Thaumatopteris Zone) that is 
matched in the Greenland succession. The first appearances of several fern and gym-
nosperm species, notably Thaumatopteris schenkii (Plate 13.2k), Pterophyllum sub-
equale, Anomozamites gracilis, Dictyophyllum nilssonii, Sagenopteris nilssoniana, 
Ginkgoites marginatus, Baiera taeniata, Czekanowskia rigida, Podozamites distans, 
and Palissya braunii characterize basal Jurassic strata in Skåne and signify an impor-
tant change in the flora. Further, a stratigraphic interval of a few metres in the upper-
most Rhaetian strata is typified by great abundances of the enigmatic gymnosperm 
pollen Ricciisporites tuberculatus. This taxon ranges from the Norian to the Sinemurian 
but has a pronounced acme in the upper Rhaetian of Northwest Europe (Kürschner 
et al. 2014; Peterffy et al. 2016). The acme provides a useful biostratigraphic marker 
for the end-Triassic biotic crisis interval in both the East Greenland and Skåne succes-
sions (Pedersen and Lund 1980; Mander et  al. 2013; Vajda et  al. 2013). The 
Ricciisporites-rich zone is succeeded by a short interval dominated by fern (mainly 
Deltoidospora) spores. In Skåne, as in East Greenland, this stratigraphic package is 
identified as a transitional interval (Larsson 2009; Vajda et  al. 2013) that possibly 
incorporates fossils of the recovery vegetation following the end-Triassic crisis.
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Fossiliferous strata in Jameson Land and nearby Traill Island (East Greenland) 
were first mentioned by William Scoresby Jnr. The coal layers were first considered 
to be Carboniferous (Jameson 1823), later Cenozoic (Heer 1868) and finally 
Rhaetian in age (Hartz 1896). Harris (1926, 1931a, 1932a, b, 1935, 1937, 1946) 
undertook the most intensive studies of the Primulaelv Formation floras (Kap 
Stewart Group) from the Hurry Inlet and Klitdal areas (Pedersen 1976; Surlyk 2003; 
McElwain et al. 2007). Harris described around 200 species of fossil plants, many 
of them represented by specimens with excellent preservation yielding cuticular 
details (Plate 13.2l, m). As in Skåne, Harris (1937) recognized two stratigraphically 
distinct floras in this region, a lower Lepidopteris flora, and an upper Thaumatopteris 
flora. Only a few species are common to both floras but there are great similarities 
at family level (McElwain et  al. 2009). Bennettitales, cycads, ginkgophytes and 
conifers dominate both floras. The transition from the Rhaetian to the Lower Jurassic 
is marked by the inception of several fern and gymnosperm taxa, especially 
Thaumatopteris schenkii, Pterophyllum subequale, Anomozamites gracilis, 
Dictyophyllum nilssonii, Sagenopteris nilssoniana, Ginkgoites marginatus, Baiera 
taeniata, Czekanowskia rigida, Podozamites distans and Palissya braunii.

Harris (1937) assigned the Lepidopteris Zone to the Rhaetian and Thaumatopteris 
Zone to the Early Jurassic based on correlations with the fossil floras of southern 
Sweden and southern Germany (e.g., the Grenzschichten flora). These ages were 
later confirmed by palynostratigraphy and stable isotope signatures (Pedersen and 
Lund 1980; Hesselbo et al. 2002). These palynological studies have provided more 
detailed insights into the floristic transition in East Greenland; the most important 
of these being the study by Pedersen and Lund (1980) who identified well-preserved 
and rich miospore assemblages dominated by gymnosperm pollen in the Rhaetian 
and Hettangian siliciclastic successions exposed along Hurry Inlet. In general terms, 
these assemblages matched the composition of the macrofloras documented by 
Harris in the 1930s. Pedersen and Lund (1980) grouped the assemblages into two 
‘microflora zones’ (Microflora Zone 1 and Zone 2), which essentially are equivalent 
to the Lepidopteris (Rhaetian) and Thaumatopteris (Hettangian) macrofloral zones 
of Harris (1937), respectively. Zone 1 is characterized by abundant Ricciisporites 
tuberculatus, and the presence of Limbosporites lundbladii, Rhaetipollis germani-
cus, Heliosporites altmarkensis, Ovalipollis ovalis and Apiculatisporis parvispino-
sus. It is correlated to the northwest European Rhaetipollis-Limbosporites Zone of 
early Rhaetian age (Lund 1977), the Rhaetipollis germanicus Zone of Herngreen 
(2005), zones 18–20 of Heunisch (1999) and the Ricciisporites tuberculatus 
Composite Assemblage Zone of Vigran et  al. (2014) and Orłowska-Zwolińska 
(1984) (Table 13.2). The latter is defined mainly on the high relative abundance of 
L. lundbladii and Cingulizonates rhaeticus, together with Chasmatosporites spp. 
and R. tuberculatus. Several of these taxa, e.g., L. lundbladii and R. tuberculatus, 
together with the dinoflagellate cysts Rhaetogonyaulax rhaetica, Suessia swabiana 
and S. mutabilis, also have their LADs within this zone.

Pedersen and Lund (1980) subdivided Microfloral Zone 1 into three sub-zones 
(Lower, Middle and Upper). ‘Zone 1 Lower’ is distinguished from the succeeding 
subzones mainly by the presence of ‘Vesicaspora’ fuscus and more common 
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Ovalipollis ovalis. ‘Zone 1 Middle’ is defined by the acme of Limbosporiteslundbladii, 
includes the dominance of Deltoidospora toralis and Uvaesporites reissingeri, and 
the presence of Polypodiisporites polymicroforatus, Araucariacites spp. and a spike 
of R. tuberculatus in the upper part of this sub-zone. The coevalR. tuberculatus 
Composite Assemblage Zone in Svalbard (Fig. 13.4) is also characterized by a high 
abundance of the nominal taxon. ‘Zone 1 Upper’ is distinguished from the preced-
ing sub-zones based on the occurrence of Vesicaspora fuscus and the common pres-
ence of Ovalipollis ovalis. This sub-zone is also characterized by a highly diverse 
miospore assemblage with high relative abundances of Deltoidospora toralis, 
Baculatisporites comaumensis, Vitreisporites bjuvensis, Araucariacites spp., 
Classopollis spp. and Ricciisporites tuberculatus. At the Triassic–Jurassic transi-
tion, palynofloral diversity declines by about 20%, mainly as a result of a decrease 
in the number of spore species (Kürschner and Herngreen 2010). The Hettangian 
Miospore Zone 2 palynomorph species richness is similar to that prior to the 
Rhaetian. Zone 2 is characterized by the absence (or rarity) of some taxa diagnostic 

Fig. 13.4 Areas with major Upper Triassic plant assemblages in easternmost Europe and Asia 
(except India)
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of Zone 1, and the appearance of various gymnosperm pollen, and fern and lyco-
phyte spores, such as Cerebropollenites thiergartii, Heliosporitesaltmarkensis, 
Trachysporites asper, Lycodopiumsporites semimuris, Deltoidospora crassexina, 
Iraquispora laevigata and Schismatosporites ovalis.

The end-Triassic biotic crisis has an ambiguous palynofloral signal in Europe 
and Greenland. Some studies indicate only minor changes in the palynoflora (Lund 
1977; Achilles 1981; Batten and Koppelhus 1996; Bonis et al. 2009a, b; Kürschner 
and Herngreen 2010; Götz et al. 2011). Others (Pedersen and Lund 1980; Lindström 
and Erlström 2006; Van de Schootbrugge et al. 2007; Larsson 2009; Vajda et al. 
2013; Lindström 2016) have indicated a significant floral turnover and a spike in the 
pollen Ricciisporites tuberculatus across the Triassic–Jurassic transition. Although 
some floristic modifications and δ13C isotope excursions might be related to facies 
changes around the boundary (Brenner 1986; Heunisch 1999), the significant turn-
over in palynomorph taxa in correspondence with changes in the plant macrofossil 
assemblages (Harris 1937; Lundblad 1959b; McElwain et al. 2009) and a spike in 
R. tuberculatus, matching equivalent surges in disaster taxa during other Earth 
 crises (Visscher et al. 1996; Vajda et al. 2001; Vajda and McLoughlin 2004, 2007; 
Vajda and Bercovici 2014), suggests a marked disruption to the vegetation, at least 
in the North Atlantic sector. High-resolution palynological studies in widely sepa-
rated basins will be necessary to obtain a clear picture of the regional patterns of 
floristic turnover across this boundary.

Silicified and sideritized fossil wood is preserved in both the East Greenland and 
the Skåne floras (Clemmensen 1976; S. McLoughlin pers. obs.). Despite the appar-
ently wide distribution of fossil woods in the region, few palaeoxylological studies 
have been undertaken. One exception is a silicified (permineralized) peat block 
recovered from the island of Hopen (Svalbard Archipelago), which has yielded a 
remarkable array of three-dimensionally preserved autochthonous roots and stems 
of lycophytes and bennettitaleans, and parautochthonous sporangia, spores, pollen 
and leaves from various pteridophytes and gymnosperms (Selling 1944, 1945; 
Strullu-Derrien et al. 2012; McLoughlin and Strullu-Derrien 2016). Future studies 
on fossil woods from the Late Triassic of these regions offer considerable 
 opportunities for analysis of biotic interactions (arthropod borers and fungal dam-
age) and palaeoclimates (via growth-ring analysis) that can be compared and con-
trasted with equivalent parameters from the Early Jurassic of the same areas (Vajda 
et al. 2016; McLoughlin and Bomfleur 2016).

13.4  Late Triassic Floras of Easternmost Europe and Asia 
(Except China and Eastern Asia)

The major regions hosting Upper Triassic fossiliferous strata in easternmost Europe 
and Asia lie in the territory of the former Soviet Union (Figs.  13.1 and 13.4, 
Table 13.1), attributed by Dobruskina (1994) to the Middle Asian and East Asian 
sectors (Middle Asian and East Asian floristic subprovinces). The East  Asian 
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Subprovince includes the Donets Basin, Fore-Caucasus, Kazakhstan and Southern 
Fergana, Southern Urals and Caspian Depression, whereas the Middle  Asian 
Subprovince comprises the Pechora Basin, eastern Urals, and eastern and northern 
Siberia (Fig. 13.6). Floras of the Middle Asian floristic Subprovince are character-
ized by a dominance of peltasperms, the presence of marattiacean ferns, rare 
cycadocarpidiacean conifers and a lack of Dipteridaceae. The East Asian 
Subprovince (Primorye included) is characterized by numerous dipteridacean ferns 
and cycadocarpidiacean conifers whereas marattiacean ferns and peltasperms are 
virtually absent.

Palynological studies of Upper Triassic deposits in the territory of the former 
Soviet Union are scattered and no synthetic palynozonation scheme has been estab-
lished. The best-studied miospore assemblages derive from the European part of 
Russia, Donetsk Basin, Western Caucasus and Siberia. No palynological studies 
have been carried out on the Upper Trassic strata of Primorye.

13.4.1  Carnian Floras of Easternmost Europe and Asia 
(Except China and Eastern Asia)

Carnian floras are well represented across easternmost Europe and north and central 
Asia (Figs. 13.1 and 13.3, Table 13.1). The richest and best-studied Carnian floras 
from this region derive from the lower part of the Protopivskaya Formation of the 
Donets Basin (Stanislavsky 1965, 1971, 1973, 1976), Kalachevskaya Formation of 
the Pechora Basin (Kirichkova 2011; Kirichkova and Esenina 2014), eastern Urals 
(Vladimirovich 1959, 1965, 1967; Kirichkova 1990), southern Fergana and 
Kazakhstan (Turutanova-Ketova 1931; Brick 1941; Sixtel 1960; Dobruskina 1995) 
and southern Primorye (Kryshtofovich 1912; Srebrodolskaya 1960; Shorokhova 
1975a; Shorokhova and Srebrodolskaya 1979; Volynets and Shorokhova 2007; 
Volynets et al. 2008).

Peltasperms (e.g., Lepidopteris, Peltaspermum, Scytophyllum; Plate 13.3h) reach 
their maximum abundance and diversity in the Middle Asian Subprovince during 
this interval, especially in assemblages close to the Urals. The floras of the Donbass, 
Urals and Central Asia are composed of up to 30% peltasperm remains. Apart from 
various spore-producing plants (Plate 13.3b), the Madygen flora also contains seed 
ferns (Peltaspermum, Ptilozamites, Scytophyllum, Vittaephyllum; Plate 13.3c) 
among its most common elements (Dobruskina 1995; Moisan et al. 2011; Moisan 
and Voigt 2013). The Carnian assemblages of the western and eastern part of the 
Urals contain Scytophyllum-type leaves suggesting that the Ural Mountains were 
not an impassable barrier for peltasperms during the Late Triassic (Dobruskina 
1994), whereas the floras of the East Asian Subprovince lack peltasperms. 
Glossophyllum-type leaves are the common element in the Carnian floras of the 
Central European and Middle Asian subprovinces. Dobruskina (1994) referred her 
lanceolate leaves of Glossophyllum to the ginkgophytes, but at least some of them 
may alternatively belong to pteridosperms. Czekanowskiales are restricted to north-
ern latitudes. They may have radiated from the mountains of the Ural-Tien Shan 
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region to Primorye, Japan and Mongolia during the Carnian and to the eastern side 
of the Urals during the Norian (Dobruskina 1994; Volynets and Shorokhova 2007).

Marattiacean ferns (e.g., Danaeopsis, Marattiopsis, Rhinipteris) were important 
during the Carnian in the Urals, Caucasus and Central Asia, but were absent from 
the eastern Urals, Taimyr and Primorye. Dobruskina (1994) related this distribution 
to the migration of families from the west of Eurasia, up to the geographic barrier 
posed by the Ural Mountains. Dipteridaceae spread at lower latitudes of the East 
Asian Subprovince, being represented in such deposits as the Sad-Gorod Formation 
of the Primorye (Volynets and Shorokhova 2007), whereas they are rare or absent in 
the continental interior. The fact that one of the oldest Northern Hemisphere records 
comes from the Ladinian deposits of Japan (Dictyophyllum; Plate 13.3a) might indi-
cate that the family originated in and spread from the East Asian sector. Sphenophytes 
are numerous but taxonomically monotonous; they are represented by three genera 
only (Neocalamites, Annulariopsis, Schizoneura) and occupy a subordinate posi-
tion in relation to other plant groups in the southern latitudes of the Central European 
and Middle Asian Subprovince. However, they constitute a significant component 
of several assemblages in the northern part of the Chelyabinsk Basin and the 
Southern Urals (Kirichkova 1969) and in the Bukobay Formation of the Ilek River 
Basin (Brick 1952). Bryophytes (Muscites, Ricciopsis) and lycophytes (Annalepis, 
Ferganodendron, Isoetites, Mesenteriophyllum, Pleuromeiopsis) are rare, although 
Moisan et al. (2012b) and Moisan and Voigt (2013) described a few new taxa from 
the Madygen locality of South Fergana. The peculiar composition of this flora has 
been attributed to its special palaeoenvironmental setting; the plants grew in rather 
humid environments of alluvial plains, delta plains and shallow lacustrine environ-
ments near the northern limits of the Tethys Ocean during the Carnian (Kochnev 
1934; Brick 1936; Sixtel 1961, 1962; Dobruskina 1995; Moisan et al. 2011).

Conifers constitute a subordinate component of most northern and central Asian 
Carnian floras, and only at Nikolaevka (Donets Basin) do they reach more than 30% 
of all plant remains (Stanislavsky 1976). Primitive voltzialean conifers were gradu-
ally replaced by more advanced groups (e.g., Pachylepis, Schizolepis, Stachyotaxus; 
Dobruskina 1994). Conifers (Cycadocarpidium, Podozamites; Plate 13.3f) were 
widely distributed in the southern latitudes of the East Asian sector. The dominance 
of coniferous genera changes from west to east and is probably linked to the 
 provincialism of the Carnian floras (Dobruskina 1994). The relative abundance of 
cycads/bennettitaleans increased towards the south; they are the most abundant 
group in the Carnian flora of Primorye (up to 50%; Volynets and Shorokhova 2007). 
This is mainly a consequence of the great abundance of Taeniopteris remains, 
whereas Otozamites and Pseudoctenis leaves (Plate 13.3d) are rare. Moisan et al. 
(2011) noted the first occurrence of Pseudoctenis and Pterophyllum (Plate 13.3e) 
from central Asia (Madygen flora).

A rich and well-preserved palynological assemblage was first described by 
Yaroshenko (1978) from marine deposits of Western Ciscaucasia containing 
bivalves, ammonoids and brachiopods of Carnian age. The assemblage is character-
ized by a high relative abundance of Camerosporites secatus, Alisporites australis 
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and Dictyophyllidites spp., and the FAD of Auritulinasporites scanicus and 
Granosaccus tkhachensis. Ilyina and Egorov (2016) noted that the continental strata 
of the transitional continental-marine deposits of northern Middle Siberia were 
characterized by a significant representation of Ovalipollis, Ricciisporites and 
Minutosaccus pollen grains, and Kyrtomisporis, Tigrisporites and Limbosporites 

Plate 13.3 Upper Triassic plants from Asia. (a) Dictyophyllum kryshtofovichii, Razdol’naya 
River basin, Primorye, Russia, Norian. (b) Cladophlebis sp., Madygen, Kyrgyzstan, Carnian. (c) 
Vittaephyllum hirsutum, Madygen, Kyrgyzstan, Carnian. (d) Pseudoctenis mongugaica, Filipovka 
River basin, Primorye, Russia, Carnian. (e) Pterophyllum sp., Madygen, Kyrgyzstan, Carnian. (f) 
Podozamites sp., Madygen, Kyrgyzstan, Carnian. (g) Gleichenites sp., Dharbid Khun, Iran, 
Rhaetian. (h) Lepidopteris ottonis, Apuntal, Iran, Rhaetian. (i) Baiera muensteriana, Dharbid 
Khun, Iran, Rhaetian. (j) Anomozamites polymorpha, Aghusbin, Iran, Rhaetian. (k) Pterophyllum 
nathorstii, Apuntal, Iran, Rhaetian. Scale bar = 10 mm in each image
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spores (Romanovskaya and Vasilieva 1990). Carnian pollen assemblages differ sig-
nificantly from those of the western and eastern slopes of the Ural Mountains of the 
Middle Asian Subprovince. The pollen assemblages from the Protopivskaya 
Formation of the Donetsk Basin are characterized by Tigrisporites, Limbosporites, 
Aratrisporites, Minutosaccus, Ovalipollis and Ricciisporites (Semenova 1970, 
1973; Gluzbar 1973). It is noteworthy that the Carnian assemblage of the Donetsk 
Basin is poorly correlated with coeval assemblages of the eastern part of the Pechora 
Basin (Chalyshev and Variukhina 1966; Variukhina 1971), West Siberia (Malyavkina 
1964), Franz-Josef Land (Fefilova 2005) and Kazakhstan (Sakulina 1973) but are 
similar to the Middle Keuper assemblages of Western Europe (Gluzbar 1973). A 
review of the palynological assemblages from the territory of former Soviet Union 
identified the Ovalipollis-Dictyophyllidites-Enzonalasporites-Porcellispora long-
donensis assemblage as characteristic for the Carnian of the East European platform 
and Southern Kazakhstan (Romanovskaya and Vasilieva 1990). Romanovskaya and 
Vasilieva (1990) also proposed several regional assemblages (Table  13.2): the 
Aratrisporites-Disaccites-Dictyophyllidites-Ovalipollis association for the Pechora 
Basin, the Disaccites-Osmundacidites-Aratrisporites-Dictyophyllidites-
Punctatosporites walkomi-Striatites association for the Chelyabinsk Basin, the 
Duplexisporites-Lycopodiacidites kuepperi-Cingulizonates delicatus- 
Chasmatosporites association for eastern Taymir and the Dictyophyllidites- 
Osmundacidites- Chasmatosporites-Cingulizonates delicatus-Neoraistrickia 
taylorii association for the Arctic regions.

13.4.2  Norian–Rhaetian Floras of Asia (Except China 
and Eastern Asia)

Norian and Rhaetian floras of easternmost Europe and northern and central Asia 
(Figs. 13.1 and 13.4, Table 13.1) are discussed together, because, in most cases, the 
continental deposits of these ages are difficult to correlate with well-dated marine 
sequences (Dobruskina 1980; Markevich and Zakharov 2004). Norian continental 
deposits are common in many regions of easternmost Europe and northern and cen-
tral Asia, especially from Primorye (Shorokhova 1975b; Shorokhova and 
Srebrodolskaya 1979; Volynets and Shorokhova 2007). They are preserved in the 
upper part of the Protopivskaya Formation of the Donets Basin (Stanislavsky 1976), 
the upper part of the Nemtsov Formation of central Siberia, the Kozyrevskaya 
Formation of the eastern Urals and the Amba Formation of Primorye (Kirichkova 
1962, 1969, 2011; Volynets and Shorokhova 2007). Rhaetian continental facies with 
plant remains are completely absent from some areas. Rhaetian plant assemblages 
are interpreted to be present in the Novorayskaya Formation of the Donets Basin 
(Stanislavsky 1971) and the Aktash and Tashkutan formations of central Asia 
(Genkina 1964; Gomolitzky 1993; Sixtel 1960).
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The Norian–Rhaetian was a time of optimum development of cycads and bennet-
titaleans. Cycad/bennettitalean remains typically constitute 35–50% of specimens 
in leaf-dominated assemblages of this sector and are particularly rich in the Rhaetian 
Novorayskaya Formation of the Donbass region. Volynets et al. (2008) also noted 
that the Imalinovo plant assemblage (early Norian) of Primorye is rich in Otozamites, 
Pseudoctenis and many remains of Ctenis, Drepanozamites, Nilssonia and 
Pterophyllum. An especially large number of cycads/bennettitaleans is known from 
the Rhaetian Novorayskaya Formation of Donbass.

There are almost no ferns of Palaeozoic aspect in the Norian–Rhaetian floras. 
However, Mesophytic marattialean fern families, Osmundaceae (Todites), 
Matoniaceae (Phlebopteris) and Dipteridaceae (e.g., Camptopteris, Clathropteris, 
Dictyophyllum) are widely distributed in the Novorayskaya Formation of Donbass 
(Stanislavsky 1971), in the Eastern Caucasus (Vakhrameev et  al. 1977) and in 
Central Asia (Issyk-Kul and Kavak-Tau) (Turutanova-Ketova 1931). Primorye is 
known for its unusual occurrences of endemic fern species attributable to 
Acrostichopteris (Shorokhova 1975a).

Ginkgoales and Czekanowskiales are geographically widespread in central and 
northern Asia during this time. Ginkgoales are represented by Allicospermum, 
Baiera, Ginkgoites, Sphenobaiera and leaves of Umaltolepidiaceae (Pseudotorellia), 
which are also typical of the Early Jurassic assemblages. New conifer genera (e.g., 
Fraxinopsis, Palaeotaxus, Palissya, Storgaardia) appeared in the Rhaetian and 
coexisted with forms that appeared earlier in the Norian. Peltasperms decrease in 
abundance, and in Central Asia are they virtually absent. Only Ctenozamites, 
Ptilozamites and Lepidopteris are found on the eastern slope of the Polar Urals 
(Dobruskina 1994). Leaves of Thinnfeldia and the endemic pteridosperms Imania 
and Tudovakia were described from Primorye (Volynets et al. 2008; Krassilov and 
Shorokhova 1970). The species diversity and relative abundance of sphenophytes 
decreases in the Norian–Rhaetian floras of central and northern Asia.

Rhaetian plant assemblages are also known from localities in central Pamir and 
Afghanistan (Prynada 1934; Sixtel 1960; Vakhrameev et al. 1978). These consist 
mainly of cycads and bennettitaleans (Anomozamites, Nilssonia, Otozamites, 
Pterophyllum, Taeniopteris), conifers (Pelourdea) and ferns (Clathropteris, 
Dictyophyllum, Thaumatopteris). The Nayband Formation of Central-East Iran has 
also yielded 19 genera (31 species) of sphenophytes (Equisetites), ferns 
(Cladophlebis, Clathropteris, Dictyophyllum, Gleichenites Plate 13.3g, 
Phlebopteris, Todites), seed ferns (Scytophyllum, Lepidopteris; Plate 13.3h), cycads/
bennettitaleans (Androstrobus, Dictyozamites, Nilssonia, Nilssoniopteris, 
Pterophyllum Plate 13.3k, Anomozamites Plate 13.3j, Weltrichia, Williamsonia), 
ginkgophytes (Ginkgoites, Baiera; Plate 13.3i) and conifers (Elatocladus, Krasser 
1891; Kilpper 1964, 1971; Fakhr 1977; Schweitzer 1977, 1978; Schweitzer and 
Kirchner 1995, 1996, 1998, 2003; Schweitzer et al. 1997, 2000, 2009; Vaez-Javadi 
2012, 2013a, b). The Norian–Rhaetian flora from Aghdarband (northeast Iran) is 
dominated by cycads/bennettitaleans (Pterophyllum, Taeniopteris) and conifers 
(Pagiophyllum, Podozamites, Stachytaxus) with a few horsetails (Neocalamites), 
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ferns (Cladophlebis) and ginkgophytes (Sphenobaiera) (Boersma and Van 
Konijnenburg–van Cittert 1991).

Extensive palynostratigraphic studies of Norian and Rhaetian marine deposits 
have been undertaken in Western Caucasia. Yaroshenko (2007) noted strong simi-
larities between the Rhaetian palynofloras of this region and the Rhaetipollis 
germanicus- Ricciisporites tuberculatus Zone of Western Europe, particularly in the 
abundance of Ricciisporites tuberculatus (87%) with abundant Rhaetipollis ger-
manicus. The palynoflora from the Salgir Formation of the Crimean Peninsula 
(Bolotov et  al. 2004) closely resembles that of western and eastern Ciscaucasia 
(Yaroshenko 2007). The Triassic deposits of southern Kazakhstan have yielded 
Deltoidospora spp., Dictyophyllidites spp., Kyrtomisporites speciosus, 
Chasmatosporites among others (Table 13.2) but lack the characteristic Rhaetian 
taxa Riccisporites tuberculatus and Rhaetipollis germanicus (Vinogradova and 
Tsaturova 2005).

The Thuringiatriletes Assemblage Zone (Table 13.2) typifies the Norian deposits 
of the Siberian Platform. This assemblage is characterized by the high abundance of 
Thuringiatriletes microverrucatus and Zebrasporites laevigatus and its co- 
occurrence with Cingulatisporites bulbifera and Camptotriletes echinatus 
(Odintsova 1977). The Rhaetian strata of the Donets Basin are characterized by 
Cornutisporites seebergensis, Triancoraesporites ancorae, T. reticulatus, 
Zebrasporites laevigatus, Z. interscriptus, Cingulatizonates insignis, Ricciisporites 
tuberculatus and Limbosporites spp. (Semenova 1970, 1973). The most typical 
forms in the Norian and Rhaetian assemblages of Siberia are representatives of typi-
cal European genera, such as Cingulatizonates, Chasmatosporites, 
Lycopodiumsporites, Ovalipollis, Tigrisporites, Zebrasporites, Aratrisporites, and 
Triancoraesporites ancorae, along with numerous saccate pollen grains of gymno-
sperms (Odintsova 1977; Yaroshenko 2007).

Romanovskaya and Vasilieva (1990) proposed two miospore associations for the 
European sector of Russia (Table 13.2). The lower miospore assemblage includes 
Circulina spp., Punctatosporites walkomii, Dictyophyllidites spp., Cingulizonates 
spp., Camarozonotriletes rudis, whereas the upper assemblage includes 
Dictyophyllidites spp., Ricciisporites tuberculatus, Chasmatosporites spp. and 
Triancoraesporites.

13.5  Late Triassic Floras of China and Eastern Asia

The first studies of Late Triassic floras from this region were carried out by European 
scholars, such as Schenk (1883, 1884) and von Richthofen (1882), working on the 
Upper Triassic Xujiahe (=Hsuchiaho) Formation in Guangyuan (northern Sichuan 
Basin). In the early to mid-twentieth century, Sze (1933) and Sze and Lee (1952) 
published on the fossil flora of the Sichuan Basin, followed later by Yang (1978) and 
Hsü et al. (1979).

The Late Triassic floras of China (Figs. 13.1 and 13.4, Table 13.1) can be segre-
gated into Southern-type floras (=Southern East Asia Subprovince; i.e., 
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Dictyophyllum-Clathropteris flora) and Northern-type floras (=Northern East Asia 
Subprovince; i.e., Danaeopsis-Bernouillia [=Symopteris] flora), which correspond 
to the southern and northern China tectonic regions, respectively. Floras of the 
Southern East Asia Subprovince are widely distributed in South China, extending 
south to Indonesia and north to a small area of eastern northeast China. This sub-
province is mainly represented by the Xujiahe (Hsuchiaho) flora (Li 1964; Ye and 
Liu 1986) and Baoding flora of Sichuan (Hsü et  al. 1979), the Shaqiao flora of 
Hunan (Zhou 1989) and the Tianqiaoling flora of Jilin (Sun 1993). The Southern 
East Asia Subprovince can be divided into three suites based on their distinctive 
floristic characters (see below) with age constraints provided by associated marine 
fossil faunas. The Northern East Asia Subprovince is widely distributed in North 
China, southern Northeast China and northern Northwest China. The floras are rep-
resented by the Yenchang (Yanchang) flora of northern Shaanxi (P’an 1936; Sze 
1956a; Huang et al. 1980) and the Xiaohekou flora of Hunjiang (Jilin: Mi 1977), 
among others (Table 13.1). Unfortunately, it has so far been impossible to assign 
these floras to different stages with confidence. The boundary between the two flo-
ristic subprovinces follows a rough line from Kuqa in Xinjiang to Nanzhang in 
Hubei (Li et al. 1991). Mixed assemblages characterized by elements of both the 
Southern East Asia Subprovince and Northern East Asia Subprovince exist close to 
this line.

High-resolution stratigraphical schemes are presently lacking for the Chinese 
terrestrial successions. This is mainly due to the enormous thicknesses of strata, 
making detailed palynostratigraphy an expensive and time-consuming task. 
However, pollen and spore assemblages have been employed for broad-scale strati-
graphic and palaeoenvironmental reconstructions. A general feature of the Carnian 
and Norian assemblages is the abundant occurrence of Dictyophyllidites harrisii, 
Alisporites spp., Cyclogranisporites spp. and in places Aratrisporites spp. (Peng 
et al. 2017b).

No reliably dated Late Triassic plants have yet been found in southern Tibet, 
although some poor coal layers are present in the Norian Langjixue Group of 
Xiukang, south of the Yarlung Zangbo River (Sun 1993). However, Peng et  al. 
(2017a) recovered Upper Triassic palynoassemblages from mostly marine strata at 
Tulong, Nyalam County, southern Xizang (Tibet), that are referable to three Middle 
to Late Triassic zones more characteristic of the Gondwanan Onslow Subprovince: 
viz., the Staurosaccites quadrifidus Assemblage Zone (late Anisian to early Norian), 
the Dictyophyllidites harrisii Assemblage Zone (early Norian), and the 
Craterisporites rotundus Assemblage Zone (middle to late Norian). This region of 
southern Tibet was part of Gondwana during the Late Triassic. The local palyno-
flora reveals a marked rise of Classopollis (Cheirolepidiace) pollen in the Rhaetian 
that might reflect a more xeric vegetation under a torrid and arid (or subarid) climate 
in this region compared with other parts of China. Adjacent regions of southern 
Tibet (Lhasa Block) and central Tibet (Qiangtang Block) belong to the Cimmerian 
terranes but have not yet yielded productive Late Triassic palynofloras. Further 
studies will be required to assess whether their phytogeographic affinities lie more 
closely with Gondwana or with the Southern East Asian terranes.
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Also of Late Triassic age, although not more precisely dated, are some remains of 
Leptostrobus from the Amisan Formation and wood remains (Agathoxylon, 
Cedroxylon, Phyllocladoxylon, Xenoxylon) from the Nampo Group of Korea. The 
Daedong flora of Korea includes rich assemblages of sphenophytes (Neocalamites), 
ferns (Clathropteris, Dictyophyllum, Hausmannia, Todites), seed ferns (Ctenozamites), 
cycads/bennettitaleans (Anomozamites, Ctenis, Nilssonia, Otozamites, Pseudoctenis, 
Pterophyllum, Taeniopteris), ginkgophytes (Baiera, Sphenobaiera), Czekanowskiales 
(Czekanowskia) and conifers (Cycadocarpidium, Elatocladus, Podozamites) (Yabe 
1905; Kawasaki 1925, 1926, 1939; Kimura and Kim 1984, 1988, 1989; Kim and 
Kimura 1988; Kim 1989, 1993; Kim et al. 2002, 2005).

Plate 13.4 Upper Triassic plants from China. (a) Clathropteris platyphylla, Zigui, Hubei, China, 
Carnian. (b) Gleichenites sp. cf. G. nitida, Nanzhang, Hubei, China, Carnian. (c) Anthrophyopsis 
sp., Guangyuan, Sichuan, China, Norian. (d) Symopteris (Bernoullia) zeilleri, Jimusaer, Xinjiang, 
China, Carnian. (e) Clathropteris meniscioides, Hechuan, Chongqing, China, Norian. (f) 
Dictyophyllum sp. cf. D. nathorstii, Lufeng, Yunnan, China, Norian. (g) Symopteris (Bernoullia) 
sp., Jimusaer, Xinjiang, China, Carnian. (h) Danaeopsis fecunda, Jimusaer, Xinjiang, China, 
Carnian. Scale bar = 10 mm in each image
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13.5.1  Carnian Floras of China and Eastern Asia

Carnian deposits of the Southern East Asia Subprovince (Figs.  13.4 and 13.6, 
Table 13.1) host plant assemblages attributed to the Abropteris-Pterophyllum longi-
folium Flora (‘Assemblage’). This flora incorporates plant assemblages from the 
Daqiaodi Formation of Yongren, Yunnan and Yunnan-Sichuan border area, the 
Jiuligang Formation of Nanzhang, Hubei, and the Jiapeila Formation of Tibet (Zhou 
and Zhou 1983; Meng 1983, 1990). The flora includes the sphenophyte Equisetites, 
the ferns Abropteris, Yungjenophyllum, Asterotheca, Miscopteris, Stenopteris, 
Angiopteris Clathropteris (Plate 13.4a) and Danaeopsis (Plate 13.4h), the seed 
ferns Sagenopteris, Thinnfeldia and Ctenozamites, and the cycads/bennettitaleans 
Pterophyllum and Paradrepanozamites. The assemblage bears some resemblance to 
the Carnian Schilfsandstein flora of Western Europe (Zhou and Zhou 1983).

The Indonesian Carnian flora is dominated by sphenophytes (Kon’no 1972; 
Vakhrameev et  al. 1978; Annulariopsis, Neocalamites, Neocalamostachys), ferns 
(Clathropteris, Dictyophyllum, Cladophlebis, Todites) and cycads/bennettitaleans 
(Dictyozamites, Otozamites). Carnian floras are also known from Japan; i.e., the 
Yamaguti plant assemblages from the Momonoki and Aso formations of the Mine 
Group (Ôishi 1932a, b, 1940; Ôishi and Takahashi 1936; Takahashi 1951). The 
ferns (Cladophlebis, Clathropteris, Todites), conifers (Podozamites) and cycads/
bennettitaleans (Cycadocarpidium, Nilssonia, Taeniopteris) are the most abundant 
groups, whereas sphenophytes (Neocalamites, Equisetites, Equisetostachys) are 
rare (Volynets and Shorokhova 2007).

13.5.2  Norian Floras of China and Eastern Asia

Norian deposits of the East Asia Subprovince (Figs. 13.1, 13.4, and 13.6, Table 13.1) 
host the Dictyophyllum-Drepanozamites flora (‘Assemblage’) or the Dictyophyllum- 
Cycadocarpidium flora (‘Assemblage’) (Sun 1987). These floras are represented 
mainly by the fossil assemblages of the Hsuchiaho (Xujiahe) Formation of Sichuan, 
the Daqing Formation of the Sichuan-Yunnan border area, the Anyuan Formation of 
Hunan and Jiangxi, the Badong Formation of eastern Tibet, the Dakeng Formation 
of Fujian and the Malugou Formation of Tianqiaoiin (Jilin) (Sun 1987). The main 
elements of the flora are ferns (e.g., Clathropteris Plate 13.4e, Dictyophyllum Plate 
13.4f, Hausmannia, Reteophlebis, Gleichenites Plate 13.4b), cycads/bennettitaleans 
(e.g., Anomozamites, Cycadocarpidium, Doratophyllum, Drepanozamites, 
Pterophyllum) and conifers (e.g., Podozamites). The bennettitaleans are particularly 
diverse and, among the ferns, Dipteridaceae is especially abundant. Sphenophytes 
are also abundant but of low diversity. Conifers are rare and represented mainly by 
large-leafed taxa (e.g., Ferganiella and Podozamites). Ginkgophytes are represented 
by some species of Glossophyllum and the Czekanowskiales by Czekanowskia 
(Wang et al. 2010).
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These Norian floras closely resemble the Nariwa flora of Japan and some coeval 
floras of Eurasia (Zhou and Zhou 1983; Volynets and Shorokhova 2007). The 
Nariwa flora includes abundant ferns (Cladophlebis, Goeppertella, Marattiopsis, 
Thaumatopteris) and cycads/bennettitaleans (Nilssonia, Otozamites, Pterophyllum, 
Taeniopteris); sphenophytes (Annulariopsis, Neocalamites), ginkgophytes (Baiera, 
Ginkgoites, Sphenobaiera), seed ferns (Ptilozamites, Sagenopteris), conifers 
(Pityophyllum, Elatocladus, Pityophyllum, Podozamites) and Czekanowskiales 
(Ixostrobus) are rare (Ôishi 1932a; Ôishi and Takahashi 1936; Volynets and 
Shorokhova 2007).

13.5.3  Rhaetian Floras of China and Eastern Asia

Rhaetian successions of eastern Asia are typified by the Ptilozamites-Anthrophyopsis 
flora (‘Assemblage’) from the Yangbaichong Formation of Shaqiao (Hunan; Zhou 
1989), which contains mainly Clathropteris, Cycadocarpidium, Nilssoniopteris, 
Pterophyllum, Ptilozamites, Podozamites, Stalagma and Todites (Figs. 13.1, 13.4, 
and 13.6, Table 13.1). This flora resembles closely that of the Lepidopteris Zone of 
eastern Greenland and Germany. The Sanqiutian Formation flora of the Anyuan 
Group (Jiangxi) and the Wenbinshan flora of Fujian also have similar content (Zhou 
1978). Recently, some plants were found from the Dongfeng area (Jilin) in which 
Anthrophyopsis (Plate 13.4c) occurs associated with Neocalamites and 
Cycadocarpidium; these fossils may represent a Rhaetian assemblage. Floras of the 
Northern East Asia Subprovince cannot be attributed confidently to any stage. They 
contain more than 100 species belonging to about 50 genera whose main represen-
tatives are the sphenophyte Equisetites, the ferns Danaeopsis, Bernouillia 
(=Symopteris) and Todites, the seed fern Thinnfeldia, the ginkgophytes 
Glossophyllum, Ginkgoidium and Ginkgoites and the cycads/bennettitaleans 
Sinozamites and Sphenozamites (Zhou and Zhou 1983).

Rich Rhaetian floras with abundant sphenophytes (Annulariopsis, Equisetites, 
Neocalamites), ferns (Cladophlebis, Clathropteris, Dictyophyllum, Marattiopsis, 
Sphenopteris, Todites), seed ferns (Sagenopteris), cycads/bennettitaleans (Ctenis, 
Nilssonia, Pterophyllum, Taeniopteris), ginkgophytes (Baiera) and conifers 
(Cycadocarpidium, Elatocladus, Podozamites) were also described from Tonkin, 
Vietnam (Zeiller 1903; Akagi 1954) and Japan (Ôishi 1930, 1931, 1932a, b; Ôishi 
and Takahashi 1936). The cycads/bennettitaleans and conifers in these assemblages 
closely resemble those of the middle Norian flora of the Primorye region (Volynets 
and Shorokhova 2007).

Based on palynology of the Junggar Basin, Northwestern China (Sha et al. 2011, 
2015), the Triassic–Jurassic boundary is placed at the last appearance datum of the 
pollen taxon Lunatisporites rhaeticus. The transition is characterized by a turnover 
from a vegetation dominated by lycophytes (Aratrisporites-producers) and seed 
ferns (Alisporites-producers) to an Early Jurassic flora dominated by 
Lycopodiumsporites-producers, Taxodiaceae (Perinopollenites) and Pinaceae 
(Pinuspollenites).

13 Flora of the Late Triassic



582

13.6  Late Triassic Floras of the Southern Hemisphere

The Late Triassic floras of those southern landmasses (Figs. 13.1, 13.5, and 13.6, 
Table 13.1) that were formerly united into the supercontinent Gondwana are char-
acterized by broad compositional similarities at generic and, in some cases, specific 
level (Retallack 1987; Srivastava and Manik 1991; Anderson et al. 1999; Hill et al. 
1999; Artabe et  al. 2003; Escapa et  al. 2011; and references therein). The Late 
Triassic saw the climax of the Dicroidium-dominated flora of Gondwana—a floris-
tic association that had essentially supplanted the Glossopteris flora in diversity and 
geographic extent across the middle and high latitudes of the Southern Hemisphere 
after the end-Permian mass extinction (McLoughlin 2001, 2011). Despite the wide 
distribution and richness of austral Late Triassic floras (Figs.  13.1 and 13.6, 
Table 13.1), most data comes from a few well-studied assemblages that are widely 
separated within the former supercontinent. Moreover, the scarcity of marine strata 
and radiometrically dated ash beds intercalated with the plant-bearing intervals in 
Gondwana has greatly hindered precise dating of many Late Triassic plant assem-
blages in that region. This overview of the Gondwanan Late Triassic floras outlines 
the general representation of plant groups and broad-scale geographic and temporal 
variations in the palaeovegetation. Foremost among the sources of data for this 
overview is the series of monographs dealing with the Molteno Formation flora of 
South Africa produced by Anderson and Anderson (1983, 1985, 1989, 2003, 2008), 
which also incorporates data from other southern continents.

13.6.1  Carnian Floras of the Southern Hemisphere

Carnian floras are well represented across Gondwana, although in some areas they 
have been inadequately studied. By far the richest and best-studied Gondwanan 
Carnian flora is that of the Molteno Formation of the Karoo Basin, South Africa, 
from which some 30,000 catalogued rock slabs have been recovered from around 
100 assemblages. From this vast collection, Anderson and Anderson (1983, 1985, 
1989, 2003, 2008, in press) have documented over 200 species of vegetative organs. 
Based on a generalized inverse Gaussian-Poison distribution of fossil records, they 
estimated that the identified fossil diversity equates to an original vegetation con-
taining over 2000 species of plants. Foremost among the constituents of the Molteno 
Formation flora are the remains of Umkomasiales (=Corystospermales), particu-
larly the foliage attributed to various species of Dicroidium (Plate 13.5c–e). Of the 
21 species of Dicroidium recognized throughout the Triassic of Gondwana, at least 
seven occur in the Carnian of the Karoo Basin. Remains of these species typically 
constitute more than 90% of specimens in leaf-dominated assemblages. Moreover, 
leaves attributed to several other taxa across Gondwana (viz., Johnstonia, 
Dicroidiopsis, Diplasiophyllum, Zuberia, Xylopteris, Tetraptilon and Hoegia) 
undoubtedly belong in Dicroidium on the basis of consistency in leaf architecture, 
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Plate 13.5 Upper Triassic plants from Gondwana. (a) Rissikia media, Mount Bumstead, Antarctica, 
Late Triassic. (b) Heidiphyllum elongatum, leaf with arthropod piercing-and-sucking damage 
(arrowed), Transantarctic Mountains, Antarctica, Late Triassic. (c) Dicroidium dutoitii, Allan 
Nunatak, Australia, Late Triassic. (d) Dicroidium odontopteroides, Dinmore, Ipswich Basin, 
Australia Carnian–Norian. (e) Dicroidium elongatum, Birds River, Karoo Basin, South Africa, 
Carnian. (f) Scytophyllum neuburgianum, Argentina, El Tranquilo Group, Carnian. (g) Rochipteris 
etheridgei, Leigh Creek Coal Measures, Telford Basin, Australia,?Carnian. (h) Equisetites sp., Birds 
River, Karoo Basin, South Africa, Carnian. (i) Dictyophyllum rugosum, Ipswich Basin, Australia, 
Carnian–Norian. (j) Lepidopteris stormbergensis Birds River, Karoo Basin, South Africa, Carnian. 
(k) Thalloid liverwort (Hepaticopsida); Barbers Mine, Fingal, Tasmania, Late Triassic. (l) 
Sphenobaiera schenkii, Birds River, Karoo Basin, South Africa, Carnian. (m) Linguifolium tenison-
woodsi, Dinmore, Ipswich Basin, Australia, Carnian–Norian. (n) Taeniopteris lentriculiformis, 
Dinmore, Ipswich Basin, Australia, Carnian–Norian. (o) Seed of Fanerotheca papilioformis, Birds 
River, Karoo Basin, South Africa, Carnian. (p) Umkomasia simmondsii, Dinmore, Ipswich Basin, 
Australia, Carnian–Norian. (q) Pteruchus minor Slacks Creek, Ipswich Basin, Australia, Carnian–
Norian. (r) Single cupule of Hamshawvia longipedunculata, Denmark Hill, Ipswich Basin, Australia, 
Carnian–Norian. (s) Fredlindia moretonensis, Denmark Hill, Ipswich Basin, Australia, Carnian–
Norian. (t) Asterotheca sp., Dinmore, Ipswich Basin, Australia, Carnian–Norian. (u) Antevsia maze-
nodensis, Dinmore, Ipswich Basin, Australia, Carnian–Norian. Scale bar = 10 mm in each image
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venation style, cuticular micromorphology and examples of hybridism (Anderson 
and Anderson 1983). Such examples of taxonomic inflation may account for rela-
tively high apparent generic diversity in some Late Triassic Gondwanan assem-
blages (Colombi and Parrish 2008; Pattemore 2016a, b).

Among other gymnosperms that co-dominate or are important components of 
the Molteno Formation flora in terms of relative abundance are Peltaspermales 
(Lepidopteris: Plate 13.5j), Ginkgoales/Hamshawviales (Ginkgo, Sphenobaiera: 
Plate 13.5l), voltzialean and pinalean conifers (Heidiphyllum and associated genera: 
Plate 13.5b), and Matatiellales (Dejerseya and possibly Linguifolium: Plate 13.5m). 
Various other enigmatic seed fern families (e.g., Petriellales Plate 13.5g, Alexiales, 
Hlatimbiales), putative podocarp and pinalean conifers (e.g., Pagiophyllum, 
Rissikia: Plate 13.5a), Bennettitales (Halleyoctenis), Pentoxylales (Taeniopteris: 
Plate 13.5n), Gnetopsida (Gontriglossa, Yabeiella and related taxa) and Cycadales 
(Pseudoctenis, Jeanjacquesia) represent subordinate gymnospermous components 
of the Carnian flora. Extensive and detailed documentation of physical attachments 
and organ associations has enabled confident linkages between the various dis-
persed sterile and fertile parts (Plate 13.5o–u) belonging to many of the plant groups 
represented in this flora (Anderson and Anderson 1989, 2003). Sphenophytes are 
represented by eight genera and 23 species of fertile and sterile organs (mostly 
schizoneurid and equisetacean genera; Plate 13.5h) in the Molteno Formation flora. 
They are locally abundant, especially in lake-margin and floodplain wetland facies. 
Ferns are represented by around 16 genera and 37 species in this flora (dominantly 
members of Osmundaceae and Dipteridaceae; Plate 13.5i, t) and represent rare to 
moderately common elements of the Carnian understorey vegetation. Bryophytes 

Fig. 13.5 Areas with major Upper Triassic plant assemblages in the Southern Hemisphere and 
India (Gondwana)
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(Plate 13.5k) and lycophytes are rare components of this fossil flora, although this 
may be an artefact of poor preservational potential owing to their diminutive size 
and soft tissues.

Elsewhere in Gondwana, Carnian plant assemblages show strong similarities to 
the Molteno Formation flora in terms of taxonomic representation (at least at generic 
level) and relative group abundance. Any deviations appear to be linked mostly to 
differences in depositional environment and less intense sampling. In Argentina, 
Spalletti et al. (1999) assigned the bulk of Carnian-age plant assemblages to their 
Yabeiella brackebuschiana-Scytophyllum neuburgianum-Rhexoxylon piatnitzkyi 
(BNP) Biozone. This biozone differed little in generic representation and relative 
abundance from the preceding (Middle Triassic) flora, but its inception was marked 
by the turnover in key species of Scytophyllum (Peltaspermales; Plate 13.5f) and 
Yabeiella (?Gnetales) (Morel et al. 2003). Key Gondwanan floras of this age outside 
South Africa include those of the Blackstone Formation and Red Cliff Coal 
Measures in Australia (Walkom 1917; Jones and de Jersey 1947; Flint and Gould 
1975) and Brady Formation and New Town Coal Measures in Tasmania (Johnston 
1886, 1887, 1894, 1896). In Argentina, Carnian floras are known from the Barreal 
and Cortaderita formations in the Barreal Basin (Bonetti 1963), the Ischigualasto 
Formation in the Ischigualasto Basin (Archangelsky 1968), the Potrerillos Formation 
in the Cuyo Basin (Jain and Delevoryas 1967; Spalletti et  al. 2005) and the El 
Tranquilo Group in southern Argentina (Jalfin and Herbst 1995; Crisafulli and 
Herbst 2011). Additional Carnian floras in South America come from the Quilacoya 
Member in Chile (Nielsen 2005) and the Santa Maria Formation (Paraná Basin) in 
Brazil (Barboni and Dutra 2015; Barboni et  al. 2016). In Antarctica, the Lashly, 
Falla and Section Peak formations all possibly extend from the Carnian to the 
Norian or Rhaetian (Bomfleur et al. 2011b, 2012, 2013a, b, 2014a, b; Escapa et al. 
2011).

Palynology is the main tool for dating the Upper Triassic continental successions 
and half a century of intensive palynological investigations related mainly to hydro-
carbon prospecting have resulted in the development of detailed palynostratigraphi-
cal schemes particularly for Australia (De Jersey 1975; Helby et  al. 1987; Price 
1997). As a consequence of the initiation of Pangean break-up and more latitudi-
nally differentiated climate regimes, floristic provincialism became more pro-
nounced in the Late Triassic resulting in two Gondwanan palynofloral provinces 
and a zone of intermediate or transitional assemblages (Table 13.2). The so-called 
Ipswich ‘Microflora’ represents the Late Triassic southern polar vegetation; these 
temperate floras spanning present-day eastern Australia, New Zealand and most of 
Antarctica (de Jersey and Raine 1990; Farabee et al. 1990; Zhang and Grant-Mackie 
2001). The warm temperate Carnian floras belong to the Onslow ‘Microflora’ rep-
resented and extending across northern Australia (including Timor), along the west-
ern Tethys coasts, to westernmost Gondwana. The Onslow Microflora is 
distinguished by its higher diversity and a greater number of species shared with the 
Tethyan region. Consequently, different palynostratigraphical zonation schemes 
exist for these subprovinces (Table  13.2). Importantly, some Australian Carnian 
successions incorporate shallow marine strata allowing correlation with dinoflagel-
late, conodont and ammonite zones (Helby et al. 1987).
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The Carnian successions in Western Australia are represented by the 
Samaropollenites speciosus Oppel Zone (Helby et al. 1987; Fig. 13.4) and domi-
nated by the Falcisporites pollen complex, probably produced by Dicroidium 
(Umkomasiales [=Corystospermales]) plants. This zone is correlated with the 
Craterisporites rotundus Zone (Table  13.2) in deposits of eastern and southern 
Australia, New Zealand and parts of India and China. The latter zone is defined on 
the FAD of the nominal taxon and characterised by the high relative abundances of 
the bisaccate pollen Falcisporites australis and the fern spore taxon Striatella 
seebergensis.

Argentinean Carnian continental deposits are world renowned for hosting impor-
tant vertebrate fossils and a need for accurate dating has spurred interest in 
 palynological studies of these successions. The Paso Flores and Comallo formations 
in northern Patagonia host assemblages of late Carnian–early Norian age, which are 
coeval with those of the Craterisporites rotundus Oppel Zone of eastern Australia 
(Zavattieri et al. 1994; Zavattieri and Mego 2008). These assemblages are character-
ized by the absence of typical Tethyan taxa otherwise present in the Onslow 
Microflora. However, in the light of new results from the Ischigualasto Formation, 
this might be re-evaluated by future high-resolution studies. The Ischigualasto 
Formation is one of the few South American continental Triassic units constrained 
by reliable radioisotopic dating. Dated beds from near the base and top of the unit 
yield ages of ~231.4 and ~225.9 Ma, respectively (Rogers et  al. 1993; Martínez 
et al. 2011), placing the formation in the upper Carnian to lower Norian (Fig. 13.3). 
New palynological results from the Ischigualasto Formation (Césari and Colombi 
2016) reveal the presence of typical Tethyan taxa showing that spore-pollen suites 
from westernmost Gondwana belong to the warm temperate Onslow palynoflora 
and not to the Ipswich palynoflora (Césari and Colombi 2013). This assignment is 
evidenced by the presence of pollen and spores previously found only outside 
Argentina, such as Cadargasporites granulatus, Cycadopites stonei, 
Enzonalasporites vigens, Ovalipollis pseudoalatus, O. ovalis, Patinasporites den-
sus, Quadraeculina anellaeformis, Samaropollenites speciosus and Staurosaccites 
quadrifidus.

13.6.2  Norian Floras of the Southern Hemisphere

Although the Norian spans more than 18 million years on the current international 
chronostratigraphic chart (Cohen et al. 2013), surprisingly few macrofloras of this 
age have been documented from Gondwana (Table 13.1). In part, this may be a con-
sequence of poor age constraints on many of the assemblages, such that any newly 
discovered macroflora having broad similarities to that of the Molteno Formation is 
automatically assigned to the Carnian. Exceptions to this are the macrofloras of the 
Cacheuta Formation in Argentina (Cuyo Basin: Frenguelli 1948, Morel et al. 2011), 
the Tiki Formation in India (Maheshwari et al. 1978, Srivastava and Pal 1983; Pal 
1984), and the Flagstone Bench Formation in East Antarctica (Cantrill et al. 1995; 
McLoughlin and Drinnan 1997; McLoughlin et al. 1997). It is possible that part of 
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the well-studied Blackstone Formation of the Ipswich Basin, eastern Australia, also 
extends to the Norian based on palynostratigraphic data (de Jersey 1975; Helby et al. 
1987). However, Pattemore (2016b) has argued that one of the key assemblages from 
the Ipswich Basin (the Dinmore assemblage) traditionally assigned to the Blackstone 
Formation may instead derive from the underlying Tivoli Formation (Carnian). 
Other plant-rich units across Gondwana may also be of Norian age, based on paly-
nostratigraphic dating, but their macrofossil floras have not yet been investigated in 
detail. Examples of these include portions of the Leigh Creek Coal Measures pre-
served within the Copley and Telford basins of central South Australia (Barone-
Nugent et  al. 2003), the upper part of the Tarong Coal Measures of southern 
Queensland (Jell 2013; Pattemore 2016a), and the lower part of the Callide Coal 
Measures of central Queensland (Australia: Jell and McKellar 2013).

Norian macrofossil floras from Gondwana, like those of the Carnian, are domi-
nated by the remains of Umkomasiales and voltzialean conifers. A broad range of 
accessary gymnosperms, ferns and sphenophytes are also present in these floras. 
Clubmosses remain scarce as macrofossils, but diverse assemblages of megaspores 
in strata of this age attest to a rich but cryptic representation of herbaceous hetero-
sporous lycophytes (Dettmann 1961; Cantrill and Drinnan 1994) that, as a group, 
persisted into the Jurassic as subsidiary elements of the vegetation (McLoughlin 
et  al. 2014). In Argentina, the Dicroidium odontopteroides-D. lancifolium (OL) 
Biozone of Spalletti et al. (1999) probably equates to the Norian. The nominal spe-
cies reach their acme in this biozone, whereas other Umkomasiales, and most other 
seed-plants, become subordinate, with the exception of Yabeiella, which persisted 
with equivalent abundance from the preceding biozone (Morel et al. 2003).

The most studied Norian palynological assemblages in Gondwana are those of 
Australia. There, detailed and well-dated spore-pollen zonation schemes have been 
tied to dinoflagellate zonations. In eastern Australia, Norian palynofloras are repre-
sented by the ‘Aratrisporites Assemblage’ which includes the Polycingulatisporites 
crenulatus Zone in its upper part, the same zone that represents this interval in New 
Zealand (Table 13.2). The base of the P. crenulatus Oppel Zone is characterized by 
the FAD of P. crenulatus and a decline in abundance of the previously dominant 
bisaccate Falcisporites, together with a significant increase in Classopollis species. 
In Western Australia, the Norian warm temperate Onslow flora is represented by the 
Minutosaccus crenulatus Oppel Zone (Table 13.2) characterized by a decline in typi-
cal Tethyan taxa, such as Enzonalasporites vigens and Samaropollenites speciosus.

13.6.3  Rhaetian Floras of the Southern Hemisphere

Rhaetian floras are poorly documented from the Gondwanan continents (Table 13.1). 
Spalletti et al. (1999) attributed latest Triassic floras (Los Colorados Formation and 
equivalents) of Argentina to their Dictyophyllum tenuiserratum-Linguifolium 
arctum- Protocircoporoxylon marianaensis (DLM) Biozone. They noted the impor-
tance of Linguifolium and voltzialean conifers associated with the last occurrences 
of Dicroidium in this zone. They also reported initial sporadic occurrences of 
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cheirolepid conifers, together with osmundacean and dipteridacean ferns of Jurassic 
aspect in this interval. Other plant fossil assemblages possibly of Rhaetian age occur 
in Chile (La Ternera and El Puquen floras: Solms-Laubach 1899; Brüggen 1918; 
Herbst and Troncoso 2000), India (Parsora Formation: Bose 1974; Pal 1985; Ghosh 
et al. 2016), and eastern Australia (Raceview Formation and Aberdare Conglomerate: 
Jell 2013; Jell et al. 2013), but precise age constraints are scarce. In general, these 
floras are consistent with the Argentine assemblages in hosting the last representa-
tion of Dicroidium and Linguifolium before an influx of cheirolepid conifers and 
bennettitaleans at the Triassic–Jurassic transition. The upper part of the Callide Coal 
Measures in eastern Australia apparently hosts a rich Rhaetian flora but, to date, 
only a few species (e.g., Dicroidium feistmantelii, Taeniopteris taeniopteroides) 
have been documented (Pattemore 2016b).

Some regions, such as New Zealand and New Caledonia, possibly host Rhaetian 
floras that are potentially important for understanding the structure of the maritime- 
influenced vegetation along the Panthalassan margin at the end of the Triassic. 
However, these floras remain poorly studied and dated. The few Triassic plant 
remains recorded from New Caledonia are mostly represented by coniferous/pteri-
dospermous fossil woods from the Moindou and Baie de St. Vincent regions 
(Loubiere 1936; Lanteaume 1950; Boureau 1954, 1955, 1957; Salard 1968; 
Vozenin-Serra and Salard-Cheboldaeff 1992). The ages of these fossil woods are 
poorly constrained, although some from the Moindou region are probably Carnian–
Norian rather than Rhaetian in age. Others, previously considered Triassic, may be 
as old as Permian (Vozenin-Serra and Salard-Cheboldaeff 1992). Retallack (1985) 
described Smithian to Rhaetian floras of the Murihiku Supergroup from the 
Southland Syncline (Southland) and the Kawhia Syncline (North Island). These 
constitute mostly fragmentary foliage impressions preserved in marine sediments, 
but are otherwise similar to coeval assemblages from eastern Australia. A total of 54 
plant macrofossil taxa have been identified from the New Zealand Triassic and, as 
in other Gondwanan regions, the makeup of individual assemblages appears to be 
strongly influenced by local sedimentary facies and the environmental setting of the 
parent flora within regional-scale depositional tracts (Retallack 1987).

This dearth of studies on Gondwanan Rhaetian floras is unfortunate given their 
importance in assessing floristic changes across the Triassic–Jurassic boundary. 
Palynological data provide the best insights into changes in the vegetation at the 
close of the Triassic.

Australian and New Zealand Rhaetian palynofloral successions are dominated 
by Falcisporites species and Densoisporites psilatus together with a range of ornate 
trilete spores (Zhang and Grant-Mackie 2001; Akikuni et al. 2010). The appearance 
of Classopollis in the lower part of the local New Zealand stage Otapirian has, tra-
ditionally, been used to correlate this stage to the Rhaetian (Marwick 1953). This 
feature is consistent with the increase in relative abundance in the Circumpolles 
Group, and specifically Classopollis, in the Northern Hemisphere, while many of 
the characteristic Triassic palynotaxa declined dramatically across the T–J bound-
ary in the New Zealand succession (de Jersey and Raine 1990) as they do globally. 
The Triassic–Jurassic transition in both Australia and in New Zealand is character-
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ized by a marked increase in the proportion of Classopollis and Perinopollenites 
pollen and a great decline of Falcisporites suggesting that Umkomasiaceae were 
replaced by Cheirolepidiaceae and Cupressaceae as the dominant arborescent com-
ponents of the vegetation (Helby et  al. 1987; Burger 1994; de Jersey and Raine 
1990; Akikuni et al. 2010; de Jersey and McKellar 2013). There were also signifi-
cant changes in the understorey components of the vegetation evidenced by the loss 
of several key Triassic fern/bryophyte spore taxa and the replacement among the 
lycophytes of Densoisporites by Retitriletes (de Jersey and Raine 1990; Zhang and 
Grant-Mackie 2001; Akikuni et  al. 2010). The regional Rhaetian palynological 
zonations differ in that the Western Australian zonation scheme includes the transi-
tional Triassic–Jurassic boundary Ashmoripollis reducta Oppel Zone (extending 
through the basal Hettangian; Table 13.2) characterized by the consistent presence 
of the very distinctive nominal taxon and the FAD of Zebrasporites interscriptus. In 
eastern Australia, the equivalent interval is represented by the upper part of the 
Polycingulatisporites crenulatus Zone and in New Zealand by the Foveosporites 
moretonensis Zone (Table  13.2), representing the local Otapirian stage, and fol-
lowed by the Hettangian Retitriletes austroclavatidites Zone. In both Australian 
provinces, most of the Hettangian is represented by the Classopollis torosus Zone 
and the differences between New Zealand and Australia are probably due mainly to 
alternative taxonomic approaches by the palynologists working on the respective 
floras because the palynofloras from the Hettangian onwards are very similar in 
Australia and New Zealand and consistently include both Classopollis and 
Retitriletes species (Vivi Vajda pers. obs.).

As yet, no study has undertaken a detailed assessment of the contemporaneous 
plant macrofossil turnover at the T–J transition in Gondwana but, on a broad scale, 
the dominant elements of the Late Triassic flora (viz., Dicroidium, Lepidopteris, 
Heidiphyllum, Linguifolium, Dejerseya, Yabeiella) are entirely absent from the 
Early Jurassic floras (Hill et al. 1999; Anderson et al. 1999). They are replaced in 
the Early Jurassic by floras dominated by scale-leafed cheirolepid and araucarian 
conifers, Bennettitales, Caytoniales and Pentoxylales (Gould 1975; Tidwell et al. 
1987; McLoughlin and Hill 1996; Bromfield et  al. 2007; McLoughlin and Pott 
2009; Bomfleur et  al. 2011a; Pattemore 2016b). This change attests to a major 
extinction and reorganization of plant communities around the Triassic–Jurassic 
boundary, a change also apparent in the palynofloras (Helby et al. 1987). From this 
time onwards until the rapid fragmentation of Gondwana in the Cretaceous, a world 
emerges with a more homogenous (cosmopolitan) flora.

13.7  Discussion

13.7.1  Climate Considerations

The climate of the Triassic in a general sense was warm with dry continental interi-
ors and no polar icecaps. The aggregation of the Pangaean supercontinent (Figs. 13.1 
and 13.6), which was completed during the Triassic, gave rise to a strong global 
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monsoon regime (e.g., Robinson 1973; Mutti and Weissert 1995; Loope et al. 2004; 
Wang 2009). This generated three broad climatic regions with ill-defined latitudinal 
distributions. The tropical belt spanning the western margin of the Tethys Ocean 
and the central part of Pangaea, together with the horse latitudes (those atmospheric 
zones typified by subtropical highs) were characterized by a broad arid belt with dry 
conditions persisting throughout the entire year (Preto et al. 2010). The coasts of 
eastern Laurussia, Gondwana and the western coasts of Pangaea would have been 
subjected to seasonally wet and dry periods (Parrish and Peterson 1988; Dubiel 
et al. 1991; Mutti and Weissert 1995) and the more polar areas by warm and wet 
climates (evidenced by palaeosols and fossil floras up to 85°N and S; Robinson 
1973; Taylor 1989; Retallack 1999; Kidder and Worsley 2004). However, other 
authors have suggested a more pronounced zonal climatic pattern with a narrow 
equatorial humid zone, an arid belt extending up to 30° and, beyond that, north-
wards and southwards humid temperate climates (e.g., Kent and Olsen 2000; Olsen 
and Kent 2000).

Climatic oscillations were superimposed on the general climate belts during the 
50 million years of the Triassic. Humid episodes were experienced throughout the 
Triassic with the most pronounced documented during the Carnian. The increase in 
rainfall during the ‘Carnian Pluvial Event’ (CPE), documented worldwide, consti-
tutes the most distinctive climate change within the Triassic (Gianolla et al. 1998; 
Hochuli and Frank 2000; Preto and Hinnov 2003; Hornung and Brandner 2005; 
Hochuli and Vigran 2010). This contributed to a suite of environmental changes and 
biotic turnover (Simms and Ruffel 1989, 1990; Simms et  al. 1995) including an 
increase in deposition of coarse siliciclastics in the western Tethys (e.g., 
Schilfsandstein) and the development of coal seams (e.g., Lunz, Svalbard, Skåne, 
Australia, South Africa; e.g., Köppen and Wegener 1924). The different hypotheses 
providing a causal mechanism for this event include changes in atmospheric or 
oceanic circulation driven by plate tectonics (Hornung and Brandner 2005), a peak 
of the global monsoon due to maximum continental aggregation (Parrish 1993; 
Colombi and Parrish 2008) or triggering by the eruption of a large igneous province 
(e.g., Furin et al. 2006; Greene et al. 2009a, b; Preto et al. 2010 and ref. therein). The 
remainder of the Late Triassic seems to have been climatically stable. The trend 
from humid to arid observed, for example, in the Newark Basin, has been attributed 
to the northwards drift of the North American continent (Smoot and Olsen 1988; 
Kent and Olsen 2000; Olsen and Kent 2000). In contrast, the abrupt change from a 
humid climate to an arid climate in the desert southwest of the United States during 
the lower Norian Stage is thought by some to be the result of orogeny and elevation 
changes brought about by the uplift of the Cordilleran magmatic arc in eastern 
California (Nordt et  al. in). However, some other indications exist for minor or 
regional climatic changes. This includes the shift from red-beds rich in gypsum or 
other aridity indices to plant-rich and coal-bearing paralic sediments in the early to 
mid-Rhaetian (Hallam 1985) as well as small late Carnian (Mazza et  al. 2010; 
Tanner and Lucas 2007) and late Norian climate changes (Berra et al. 2010; Haas 
et al. 2012). The end-Triassic biotic crisis appears to have occurred at a time of rela-
tively high humidity, especially in the northern Tethyan realm (Preto et al. 2010), in 
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northern Europe (Vajda and Wigforss-Lange 2009) and in southern Gondwana 
based on the distribution of fluvial and paludal strata (Turner et al. 2009).

13.7.2  Floristic Provincialism

The Permian world initiating at the peak of the Late Palaeozoic Ice Age and termi-
nating with marked global warming (Fielding et  al. 2008) was characterized by 
strong floristic provincialism (Meyen 1987). That provincialism apparently became 
less pronounced after the end-Permian mass extinction. Essentially two floral prov-
inces remained (Fig. 13.6), the Gondwana Province encompassing all regions in the 
Southern Hemisphere (together with at least part of the Cimmerian rifted terranes), 
and the Laurussian Province spanning the continental masses of the Northern 
Hemisphere, e.g. North America, Europe and Asia including China (Dobruskina 
1994; Vakhrameev et al. 1970, 1978). An equatorial belt encompassing the northern 
regions of Gondwana (i.e., northern South America, North Africa and Arabia; 
Fig. 13.6) has yielded very little data with respect to Late Triassic plant macrofos-
sils. This region provides considerable scope for future palaeobotanical research 
that will have a strong bearing on our understanding of the degree of taxonomic 
mixing between the two major floristic provinces of the Late Triassic.

The Late Triassic floras of the southern landmasses are rather uniform (see 
above), whereas the vegetation in the Northern Hemisphere was less homogeneous. 
Consequently, several floristic subprovinces are apparent in the latter region 
(Fig. 13.6), although linked by broad areas hosting mixed or ‘transitional’ floras. A 
North Atlantic sub-province was proposed for the coastal plains of southern Sweden 
(Skåne), eastern Greenland (Jameson Land) and northern central Europe (Poland: 
Reymanówna 1963; Harris 1926, 1931b; Pott and McLoughlin 2009; Pott 2014a). 
This subprovince was originally recognized based on Rhaetian floras, but was prob-
ably already established during the Carnian (Pott 2014b).

Vakhrameev et al. (1970, 1978) and Krassilov and Shorokhova (1975) divided 
Eurasia into two palaeolatitudinally distinct Late Triassic floristic regions that 
became more distinct during the Norian–Rhaetian. The northern area (Siberian pal-
aeoprovince or Arctotriassic geoflora = Siberian Subprovince herein) was character-
ized by an extra-tropical, temperate climate and dominated by Phoenicopsis. The 
more southern, subtropical areas (historically referred to the European-Sinian pal-
aeoprovince or Mediotriassic geoflora) were dominated by Lepidopteris and 
Goeppertella. Dobruskina (1994) proposed dividing these two floristic subprov-
inces into three zones or sectors delimited by longitude: (i) European (=North 
Atlantic/Central European Subprovince), (ii) Middle Asian (=Middle Asian 
Subprovince) and (iii) East Asian (=East Asian Subprovince) sectors. She consid-
ered these sectors to be centres of dominance or emergence and spread of the most 
important Late Triassic plant groups. The Middle-Asian Subprovince includes the 
Donets Basin, Fore-Caucasus, Kazakhstan and Southern Fergana, Southern Urals 
and Caspian Depression (Fig. 13.6) and is characterized by the dominance of pelta-
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sperms, presence of marattiacean ferns and Cycadocarpidiaceae and a lack of 
Dipteridaceae. The Siberian Subprovince (Fig. 13.6) comprises the Pechora Basin, 
Eastern Urals, and Eastern and Northern Siberia (Dobruskina 1994). The Northern 
and Southern East Asian subprovinces (Primorye included; Fig.  13.6) are 
 characterized by numerous dipteridacean ferns and cycadocarpidiacean conifers 
during the Carnian; marattiacean ferns and peltaspermalean seed ferns are virtually 
absent from the East Asian sector. The North American continent is divided into the 
Chinle/Dockum Subprovince, the Arctic Canada Subprovince (with some shared 
characters with the Siberian floras), and the floras of the Newark Supergroup 
Subprovince (Fig.  13.6), which have characteristics shared with both the North 
Atlantic/Central European Subprovince and the Chinle/Dockum Subprovince.

Sun (1987, 1993) divided China into three Late Triassic floristic subprovinces 
based on the taxonomic composition and palaeogeographic position of the various 
floras. The Northern Floristic Region (=Northern East Asia Subprovince) corre-
sponds to vegetation (Danaeopsis-Bernouillia [=Symopteris] flora) occupying the 
subtropical–temperate zone or the coastal temperate zone with a warm and humid 
climate. It comprises floras from more than 20 localities in northern China, includ-
ing Yanchang of Shaanxi, Tianzhu of Gansu (Sze 1960), Muriof Qinghai (He 1980), 
Xiaoquangou (Hu and Gu 1987), Manas and Haojiagou of Xinjiang (Sze 1956b; 
Deng et al. 2001), and Xiaohekou of Jilin. Typical Northern East Asia Subprovince 
plants are Glossophyllum, Danaeopsis, Bernouillia (=Symopteris Plate 13.4d, g) 
and Sphenobaiera. The boundary with the Southern East Asia Subprovince lies 
roughly along the line of the South Tianshan Qinling-Dabie Mountains (Fig. 13.6). 
The Southern East Asia Subprovince covers almost the entirety of southern China 
(except for southern Tibet) and southern Northwest China. More than 30 localities 
have yielded floras of this type in southern China, including Baoding and Xujiahe 
in Sichuan, Yipinglang in Yunnan (Li et al. 1976), Baqen-Amdo in eastern Tibet 
(Wu and Pu 1982), Shazhengxi in Hubei (Wu et al. 1980), Shaqiao in Hunan (Zhou 
1989), Dakeng-Wenbinshan in Fujian (Zhou 1978), Jieza in Yushu (Qinghai: He 
1980) and the Tianqiaoling flora of Jilin (Sun 1979, 1981, 1993). The Tianqiaoling 
flora closely resembles the Nariwa and Yamaguchi floras of Japan (Norian or 
Carnian–Norian), and the Mongugai flora of Primorye, Russia (Carnian–Norian). 
This may be related to the fact that it was palaeogeographically close to the Japanese 
localities during the Triassic (Wang et al. 1986; Zhang 1990; Shao et al. 1992; Yin 
and Ling 1986; Sun 1979, 1981, 1987, 1990, 1993) but later became separated and 
drifted northwards. The plant remains of the Southern East Asia Subprovince 
(Dictyophyllum-Clathropteris flora) reflect a rich tropical–subtropical vegetation 
(more than 80 genera and 160 species), although there are some differences in the 
composition of assemblages between the eastern and western parts of the region. 
This flora is dominated by cycads/bennettitaleans (Anomozamites, Anthrophyopsis, 
Ctenis, Ctenozamites, Cycadocarpidium, Drepanozamites, Doratophyllum, 
Nilssonia, Nilssoniopteris, Otozamites, Pseudoctenis, Pterophyllum) and dipteri-
dacean ferns (Abropteris, Clathropteris, Dictyophyllum, Goeppertella, 
Thaumatopteris, Yungjenophyllum). Seed ferns (e.g., Ptilozamites) are rare.
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The Yarlung-Zangbo-River Subprovince (Fig.  13.6) is represented by plant 
assemblages from the coal-beds of the Norian Lanjixue Group of Xiukang near 
Lhasa, south of the Yarlung Zangbo River (Sun 1993). Palaeogeographically, this 
area belonged to the Gondwanan Province during the Late Triassic (24.3°S), and the 
plant remains are affiliated with Gondwanan assemblages dominated by 
Pagiophyllum, Elatocladus and Dicroidium (Sukh-Dev 1987). In the transition zone 
between the Northern East Asia Subprovince and Southern East Asia Subprovince 
there is also a belt of mixed floras, such as the Xiaoquangou flora of Xinjiang, the 
Xujiahe, Baoding and Wolunggang floras and the Nanzhang flora of western Hubei 
(Hu 1986; Hu and Gu 1987). These floras contain a mixture of ‘Northern-type’ ele-
ments, such as Asterotheca, Bernouillia (= Symopteris), Danaeopsis, Glossophyllum, 
Neocalamites, Thinnfeldia and Todites, and ‘Southern-type’ elements, such as 
Dictyophyllum and Hausmannia (Meng 1983, 1992; Chen et al. 1979a, b, c, 1985). 
The existence of these mixed floras suggests that northern China was probably con-
nected with southern China from the early Late Triassic onwards. The Tethys Ocean 
probably remained only to the south of the western Qinling Mountains, and 
regressed by the end of Late Triassic, giving origin to huge tracts of exposed land 
facilitating the migration and mixing of plants from the Northern and Southern East 
Asia subprovinces.

Two Late Triassic palynofloral provinces have been defined for China; the North 
and South China provinces, first defined by Qu et  al. (1983) and subsequently 
described by many authors (see Peng et al. 2017b and references therein). The South 
China province is characterized by the presence of key taxa, such as Ovalipollis, 
Rhaetipollis and Camerosporites. The North China Province is typified by Late 
Triassic cosmopolitan taxa, such as Apiculatisporis and Striatella seebergensis 
along with Ovalipollis and Kyrtomisporites (Peng et al. 2017b). The presence of 
Ricciisporites has been claimed for both Provinces but, so far, no illustrations have 
been presented.

During the Late Triassic, Pangea began its initial fragmentation segregating the 
Northern and Southern Hemisphere landmasses divided by the broad Tethys Ocean. 
In addition, the broad latitudinal spread of the landmasses by the Carnian, imposed 
significant floral provincialism (Buratti and Cirilli 2007). The Gondwana Province 
is generally divided in two subprovinces (Fig. 13.6), based mostly on differences in 
palynomorph assemblages. This Late Triassic provincialism has necessitated the 
establishment of separate palynological zonation schemes in Western and eastern 
Australia (Table  13.2): the southeastern Australian ‘Ipswich-type’ (=Ipswich 
Subprovince) and northwestern Australian ‘Onslow-type’ (=Onslow Subprovince) 
floras (Dolby and Balme 1976) with a few intervening ‘mixed’ or ‘intermediate’ 
palynofloras (Foster et al. 1994). The Onslow Subprovince generally has a slightly 
higher diversity and includes a greater proportion of equatorial (European) taxa. 
The lower-diversity Ipswich Subprovince is dominated by Falcisporites 
(Umkomasiales) species. These two subprovinces can be traced across Gondwana 
and appear to have been constrained by palaeolatitude (Dolby and Balme 1976; 
Césari and Colombi 2013). The Ipswich Subprovince is distributed from about 90° 
to 40°S palaeolatitude, whereas the Onslow Subprovince flanked the Tethyan mar-
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gin of Gondwana, extending to central South America at palaeolatitudes of around 
45° to 20°S (Fig. 13.6). The contrasting compositions of the palynofloristic sub-
provinces probably reflect the Onslow Subprovince’s proximity to the Laurussian 
Province (facilitating floristic interchange) and warmer climates supporting higher 
plant diversity. The Ipswich Subprovince appears to have hosted cooler and perhaps 
more humid climates supporting umkomasialean-dominated deciduous-forest 
biomes. Although this latitudinally defined provincialism is marked in the palyno-
floras, no such distinct variations have yet been recognized in the plant macrofossil 
floras.

However, it is possible that the contrasting opinions concerning the age of some 
Gondwanan fossil floras, e.g., that of the Parsora Formation of central India treated 
as Early Jurassic by Mukherjee et al. (2012) but Norian–Rhaetian by Ghosh et al. 
(2015, 2016), relate to equatorial influences endowing the composition of the flora 
with an apparently younger aspect than its true age. Within the Triassic Gondwanan 
Province, local palaeoenvironmental changes also imposed significant influences on 
the vegetation structure and, together with taphonomic sorting, played an important 
role in determining the composition of individual plant fossil assemblages (Retallack 
1977; Cairncross et al. 1995; Anderson et al. 1998; Spalletti et al. 2005). Retallack 
(1977) noted several contrasting plant-community associations in the Triassic of 
eastern Australia that potentially obscure straightforward biostratigraphic signals 
based on taxon ranges in the plant fossil assemblages. Moreover, Spalletti et  al. 
(2005) recognized 16 macrofloral taphocenoses representing diverse combinations 
of gymnosperm and pteridophyte taxa with various taphonomic influences within 
the continental Upper Triassic Potrerillos Formation of Argentina. In a similar man-
ner, Cairncross et al. (1995) linked fossil faunal and floral associations with sedi-
mentological data to interpret palaeoenvironmental settings that were eventually 
developed into seven habitat (mostly plant community) reconstructions for the 
Molteno Formation (South African) biotas (Anderson et al. 1998). These habitats 
ranged from riparian forests and sandbar meadows to floodplain woodlands and 
marsh communities. Given the taxonomic similarities evident in plant macrofossil 
assemblages across the Southern Hemisphere, equivalent discrete palaeocommuni-
ties to those of the Molteno Formation biotas were probably represented throughout 
Gondwana during the Late Triassic.

13.7.3  Animal-Plant Interactions

The study of arthropod-plant-fungal interactions has become a burgeoning field of 
research in recent years. Consequently, many more examples of biotic linkages in 
Triassic continental fossil assemblages are likely to be forthcoming in the near 
future. Prior to the 1980s there were few reports of feeding damage or oviposition 
scars on Triassic plants from Gondwana. Subsequent reports, have come from all 
major regions of the supercontinent (Wappler et  al. 2015). By the Late Triassic, 
insect faunas appear to have recovered from the end-Permian mass extinction, with 
a major expansion of herbivory in Gondwana. Preliminary results indicate that the 
Late Triassic radiation of arthropod herbivores targeted a broad range of plants 
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including ferns, seed ferns, cycads/bennettitaleans, ginkgophytes, gnetaleans and 
conifers and was essential in the trophic modernization of terrestrial plant-animal 
interactions especially in external foliage feeding, piercing-and-sucking, galling, 
leaf mining and seed predation (Labandeira 2006). For terrestrial ecosystems, most 
of the functional feeding groups (FFG) had been established by the Pennsylvanian 
but all were clearly present in the early Late Triassic, when the herbivores of land 
plants became trophically modern (Labandeira 2006). Key evidence of interactions 
has come from the Molteno Formation (Carnian, South Africa), where 79 damage 
types were identified on around 220 plant taxa including liverworts, lycophytes, 
sphenophytes, ferns, peltasperms, umkomasialeans, hamshawvialeans, ginkgo-
phytes, cycads, bennettitaleans, voltzialean conifers and gnetaleans (Anderson and 
Anderson 1983, 1985, 2003; Scott et  al. 2004; Labandeira and Anderson 2005). 
Other fossil floras have provided evidence of specialized feeding traits or egg-laying 
strategies. For example, galls and oviposition damage have been reported on a range 
of ferns, conifers, Umkomasiales and cycads/bennettitaleans from the Blackstone 
Formation (Carnian) of Australia (Tillyard 1922; Webb 1982), La Ternera and Las 
Breas formations (probable Rhaetian) of Chile (Gallego et  al. 2003, 2004; 
Gnaedinger et al. 2007, 2008, 2014) and the Parsora Formation (Rhaetian) of India 
(Ghosh et al. 2015). Adami-Rodrigues et al. (2008) reported various complex her-
bivory patterns of fossil leaves from the Laguna Colorado Formation (Norian) of 
Argentina. Rozefelds and Sobbe (1987) and McLoughlin (2013) illustrated early 
mining traces on Heidiphyllum (conifer) and Ginkgoites leaves from the Blackstone 
or Tivoli Formation of Australia. Archangelsky and Brett (1961) identified putative 
arthropod boring traces and frass within Rhexoxylon (Umkomasiales) wood from 
the Ischigualasto Formation of Argentina. Finally, we illustrate (Plate 13.5b) an 
additional form of probable piercing-and-sucking damage on Heidiphyllum (coni-
fer) leaves from an unspecified Upper Triassic deposit in the Transantarctic 
Mountains, Antarctica. Many of these same feeding and egg-laying strategies per-
sisted beyond the end-Triassic mass extinction into the Jurassic of the Southern 
Hemisphere, albeit associated with new plant groups in many cases (McLoughlin 
et  al. 2015). In addition, various forms of interactions between seed-plants and 
fungi have been detected in Middle to Late Triassic woods and leaves from 
Antarctica (Stubblefield and Taylor 1986; Bomfleur et al. 2013a; Harper et al. 2016).

Evidence of Late Triassic plant-animal interactions are not restricted to the 
Southern Hemisphere, although they are less well described from Northern 
Hemisphere assemblages. In North America, only a few plant fossil assemblages of 
the Chinle Formation (Norian) in the desert southwest of the United States have 
yielded plant-insect interactions. This evidence consists of empty and frass-filled 
tunnels and chambers in petrified wood (Walker 1938; Ash 2000; Creber and Ash 
2004; Lucas et al. 2010) and several types of leaf damage, including marginal and 
non-marginal feeding traces and leaf galls (Ash 1997, 1999, 2000, 2001, 2014; Ash 
and Savidge 2004). Several more irregular patterns of degradation in these woods 
were generated by fungal degradation (Tanner and Lucas 2013).

Few Late Triassic plant assemblages of Europe have been analysed for plant- 
animal interactions. One of these few examples is the deposition of insect (probable 

E. Kustatscher et al.



597

odonatan) eggs and ovipositional damage on bennettitalean leaves from the Carnian 
flora of Lunz, accompanied by mining-structures, and marginal and non-marginal 
feeding traces on Nilssoniopteris leaves (Pott et  al. 2008c; Meller et  al. 2011; 
Wappler et al. 2015). Borings in Dadoxylon woods and possible oviposition scars 
on Equisetites have been mentioned from the Carnian of Germany (Linck 1949; 
Roselt 1954; Grauvogel-Stamm and Kelber 1996; Wappler et  al. 2015). Possible 
oviposition scars on Podozamites were also indicated from the Rhaetian of Sweden 
(Nathorst 1876a, 1878b; Wappler et al. 2015). A very special type of plant-animal 
interaction is represented by the arthropods (nematoceran fly and mites) and 
 microorganisms that were discovered in the Carnian amber of the Dolomites (Roghi 
et al. 2005; Schmidt et al. 2006, 2012) and of Germany (Schönborn et al. 1999).

Few studies have been carried out on arthropod-plant-fungal interactions in the 
Late Triassic fossil biotas of the North Atlantic sector (Greenland, Sweden and 
Svalbard). Pott and McLoughlin (2009) reported indentations in the adaxial cuticle 
of Anomozamites angustifolium leaves from the Rhaetian of Skåne that might rep-
resent wound callouses of piercing-and-sucking insects. Steinthorsdottir et  al. 
(2015) documented putative odonatan endophytic oviposition scars referable to the 
ichnogenus Paleoovoidus on ginkgoalean (Ginkgoites, Sphenobaiera, Baiera) 
leaves across the Triassic–Jurassic transition in East Greenland. They noted that 
examples of such leaf damage are more abundant below than above the Triassic–
Jurassic transition, possibly reflecting a turnover in insect faunas at the close of the 
Triassic. McLoughlin and Strullu-Derrien (2016) documented interactions of chy-
trid fungi and bacteria infecting some parenchymatous bennettitalean root cells in a 
silicified peat from Hopen, Svalbard. Various other fungi and fungi-like remains are 
scattered through the detrital matrix of this peat. Cavities excavated through some 
roots (especially cortical cells) and through patches of compacted plant detritus 
contain abundant coprolites that were probably produced by sapro-xylophagous 
oribatid mites (Strullu-Derrien et al. 2012). A few larger coprolites containing leaf 
fragments attest to the presence of unidentified invertebrate folivores in the Carnian 
ecosystem of Hopen (McLoughlin and Strullu-Derrien 2016).

Vasilenko (2009) reported an assemblage of damaged leaves and stems from the 
Madygen flora of southern Fergana. The assemblage includes leaf mines, traces of 
feeding on leaf tissues (margin feeding), and traces of damage of ambiguous nature 
(some of them may be insect-eggs). The author considered the diversity of damage 
types at Madygen similar to known associations of damage traces from the Triassic 
of Germany and South Africa (Vasilenko 2009). Moisan et al. (2012a) identified and 
illustrated odonatan (dragonfly) oviposition scars on leaves of two lycopsid species 
of Isoetites from Madygen. Plant-animal interactions in the Late Triassic floras of 
China are rare but crescentic bite marks on Mixopteris and intense skeletonization 
of Dictyophyllum fronds were described from the Late Triassic strata of Yunnan 
Province (Hsü et al. 1974; Feng et al. 2014). The plant-animal interactions docu-
mented so far indicate that the diversity in damage types was vastly greater than had 
been described in the twentieth century, and was probably higher than that recog-
nized for the Permian and Early Jurassic (Vasilenko 2009; Wappler et al. 2015).
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13.8  Concluding Remarks

The transition from palaeophytic plant assemblages (Korvunchana/Pleuromeia 
flora) to mesophytic ones (Scytophyllum, Lepidopteris and Thaumatopteris floras) 
occurred during the Ladinian and Carnian in many areas (Kryshtofovich 1957; 
Meyen 1970; Dobruskina 1988). Indeed, several Palaeozoic bauplans, such as the 
arborescent sphenophytes (Equisetites) and the winged seeds (Fraxinopsis, 
Samaropsis) are still represented in the Late Triassic plant assemblages. Key plant 
groups, such as the Bennettitales, Gnetales and modern fern and conifer (Pinaceae, 
Taxodiaceae, Araucariaceae, Cheirolepidiaceae) families, originated during this 
span of time. Further, some enigmatic plants putatively related to angiosperms (e.g., 
Furcula, Imania, Marcouia, Phylladelphia, Sanmiguelia) developed during the Late 
Triassic although superficially angiosperm-like pollen grains have been described 
from strata as old as the Middle Triassic (Hochuli and Feist-Burkhardt 2013; 
Herendeen et al. 2017).

Although the Late Triassic saw important evolutionary innovations and plant 
diversification, our understanding of floristic change is constrained by the geo-
graphically and stratigraphically irregular distribution of fossil assemblages. Norian 
floras, for example, are rare and relatively uniform in Europe but floras of this age 
are the best-represented of the Late Triassic floras in North America. Rhaetian 
floras, on the other hand, are apparently absent from North America but are wide-
spread and host diverse taxa in Europe and Greenland. In several areas, such as 
Russia and Gondwana, it is difficult to distinguish between Norian and Rhaetian 
floras with confidence. Our understanding of the change in diversity and composi-
tion of the plant communities through the Late Triassic, thus, remains at an early 
stage of development and great opportunities exist for future researchers to docu-
ment additional fossil assemblages from poorly sampled regions and stratigraphic 
intervals, and to integrate the available data into regional syntheses of plant evolu-
tion, phytogeography and palaeoclimatology. The composition of the various fossil 
assemblages show that the Triassic floras are indeed much more homogeneous than 
those of the Permian on a global scale. Although several floristic provinces and 
subprovinces have been recognized by various authors, our global analysis identi-
fies just two major provinces: Gondwana and Laurussia (Fig. 13.6). Within these 
provinces, variations in taxonomic representation and group abundance were mainly 
imposed by climatic and regional environmental conditions, and these define sev-
eral floristic subprovinces (Fig. 13.6, Table 13.1), typically with diffuse boundaries. 
Similar regional variations are evident in the palynofloras (Table 13.2) and, together 
with diachronous inceptions of some key taxa, this has necessitated the establish-
ment of numerous regional palynostratigraphic schemes (Table 13.2).

Finally, we note that many plant families and genera were widely distributed in 
the Late Triassic, at least in the respective hemispheres. The fact that it is still dif-
ficult to distinguish between Norian and Rhaetian floras (e.g., within Asia and 
Gondwana) based on family- or genus-level floral composition, that the Chinle- 
Dockum (Carnian) flora and the Newark (Carnian–Norian) flora share many taxa, 

E. Kustatscher et al.



599

and that the Primorye flora is very similar to the floras of Tonkin, Japan and the 
German Keuper shows how closely related the regions are at higher taxonomic lev-
els. A clearer picture of phytogeographic relationships and levels of endemism will 
likely emerge with improved systematic appraisal of the floras and when area rela-
tionships are analysed at species-level.
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Chapter 14
Expansion of Arthropod Herbivory in Late 
Triassic South Africa: The Molteno Biota, 
Aasvoëlberg 411 Site and Developmental 
Biology of a Gall

Conrad C. Labandeira, John M. Anderson, and Heidi M. Anderson

Abstract The Carnian Aasvoëlberg 411 (Aas411) site of the Molteno Formation in 
South Africa provides exceptional data for understanding how plants, their arthro-
pod herbivores and interactions responded to the P-Tr ecological crisis approxi-
mately 18 million years earlier. Our study lists six consequences stemming from the 
P-Tr event. First, Aas411 was one of the most herbivorized of Molteno’s 106 sites, 
consisting of 20,358 plant specimens represented by 111 plant form-taxa that 
includes 14 whole-plant taxa (WPT); the insect damage consists of 11 functional 
feeding groups (FFGs), 44 damage types (DTs) and 1127 herbivorized specimens 
for an herbivory value of 5.54%. Second, the seven most herbivorized hosts, in 
decreasing importance, were the  conifer Heidiphyllum elongatum; corystosperm 
Dicroidium crassinervis; ginkgophyte Sphenobaiera schenckii, peltasperms 
Lepidopteris stormbergensis and L. africana and horsetail Zonulamites viridensis. 
Third, generalized feeding damage and 11 host-specialized associations were pres-
ent that targeted 39 of 111 plant taxa. Fourth, the Heidiphyllum elongatum WPT 
was most herbivorized, harboring an extensive herbivore component community 
containing 81.8% of FFGs, 63.6% of DT categories, 40.9% of DT occurrences, 
and 36.4% of specialized interactions at the site. Fifth, eriophyioid gall DT70 was 
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host- specialized on Dicroidium crassinervis, where it constitutes 70.1% of all 
Molteno DT70 occurrences and revealing a distinctive developmental ontogeny. 
Sixth, herbivory levels significantly surpassed those of the Late Permian.

Keywords Carnian • Component community • Damage Type • Dicroidium crassi-
nervis • End-Permian extinction • Gondwana • Heidiphyllum elongatum • Karoo 
Basin • Mite gall • Plant–insect interactions

14.1  Introduction

The most consequential event for the Phanerozoic history of life was the end- 
Permian ecological crisis (P-Tr event) that extinguished numerous, indeed an over-
whelming majority, of lineages in the marine and terrestrial realms (Erwin 2006). 
For the terrestrial realm, most subordinate lineages and many major lineages of 
plant and arthropod clades experienced a major extinction (Labandeira 2005; 
Hochuli et  al. 2010), although some fungal clades may have had an opposite 
response (Visscher et  al. 1996). This event undoubtedly resulted in permanent 
removal or degradation of many antagonistic interactions, mutualistic associations 
and other varied and diffuse relationships (Krassilov and Karasev 2008; Labandeira 
et al. 2016; Feng et al. 2017). As important as the ravages of the taxonomic extinc-
tions were, the devastation of more ecologically specialist interactions likely was 
greater (Shcherbakov 2000; Wang et  al. 2009; Feng et  al. 2017). The demise of 
particular specialized interactions resulted in a shift from an intricate, developing 
nexus of inter-organismic relationships present in the Late Permian to the virtual 
absence of such interactions during the Early Triassic. Terrestrial lineages that sur-
vived into the Early Triassic represented a small subset of the previously existing 
diversity of life and their relationships occurring in the Late Permian (Lopingian) 
(Labandeira 2006a). Nevertheless, it was these surviving, taxonomically depauper-
ate lineages and their few trophic inter-relationships that sowed the seeds of a recov-
ery. After the 10 million-year-long recovery interval of the Early Triassic (Induan 
and Olenekian stages) and first part of the Middle Triassic (Anisian Stage), there 
was by contrast a spectacular flourishing of plant, insect and even fungal lineages 
and their ecological networks (Labandeira et  al. 2016). Many interactions that 
appeared during the later Triassic were the same types of associations that were 
extinguished during the Late Permian (Roopnarine and Angielczyk 2015; Labandeira 
et al. 2016; Feng et al. 2017). The difference was that the Triassic plant, insect and 
fungal participants originated from different, unrelated clades than those of the 
Permian (Béthoux et al. 2005; Labandeira 2005; Hochuli et al. 2010; Ponomarenko 
2016; Yang et al. 2012), attributable to an ecological sorting process during the P-Tr 
event (Sidor et al. 2013; Prinzing et al. 2017).

One approach toward understanding this major transformation in the relation-
ships between plants and insects before and after the P-Tr crisis is documentation of 
insect-induced damage diversity and intensity on Late Permian floras and  post- event 
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successor floras throughout the Triassic (e.g., Prevec et al. 2009; Labandeira et al. 
2016). Such an encompassing study would document (i), the Late Permian baseline 
of ecological interactions; (ii), an ecological decline resulting in depauperate inter-
actions immediately following the P-Tr crisis and into the earlier Triassic; and (iii), 
the subsequent, post-crisis pattern of ecological recovery and clade diversification 
during the later Triassic (Roopnarine and Angielczyk 2015; Labandeira et al. 2016). 
Comparisons between these three intervals—Late Permian, earlier Triassic, and 
later Triassic—could yield considerably more finer-grained insights than previous, 
coarser-grained approaches (Labandeira 2006b, 2013a), especially regarding how 
insect herbivores were finely partitioning host-plant tissues and to what extent insect 
herbivore guild structure was changed before, soon after, and later in the Triassic 
after the P-Tr event. There are several levels at which such a comparative analysis 
can be investigated. At the histological level, one productive method is detailed, 
qualitative recording of plant tissue types that were being consumed by insects, as 
revealed by damage on organs such as foliage, stems, seeds and fructifications 
before and after the event (Labandeira 2013a; Schachat et al. 2014). A second ave-
nue is to assess functional feeding group (FFG) or damage-type (DT) diversity and 
frequency as well as herbivory level on bulk floras before and after the event, such 
as the analogous Paleocene–Eocene Thermal Maximum event (Wilf and Labandeira 
1999; Wilf et al. 2001, 2006). A third type of examination is to determine the extent 
of damage diversity of the insect herbivore component community on the most 
intensely herbivorized host-plant species in a flora before and after the event 
(Labandeira et al. 2016). An herbivore component community consists of all of the 
insect herbivore species consuming tissues of a single source plant (Root 1973). 
Such component communities can reveal varying and differential patterns of her-
bivory in space and time that accrue from both historical incumbency (Prinzing 
et al. 2017), as well as the ecological processes favoring partitioning of host-plant 
tissue types by particular feeding guilds of insect herbivores (Lawton 1982; Futuyma 
and Mitter 1996).

The current project is part of ongoing documentation of a 35 million-year-long 
interval from the middle Permian (Guadalupian) to Late Triassic (Carnian) interval 
designed to evaluate the effect of the P-Tr event for plant–insect interactions in the 
Karoo Basin of South Africa. To date, one late Permian (Lopingian) site, Clouston 
Farm, has been assessed (Prevec et al. 2009), although two other Permian localities 
(Gastaldo et al. 2005) currently are being evaluated. In this contribution, we exam-
ine plant–insect interactions for the most specimen-abundant site of all Karoo Basin 
localities, the Late Triassic Aasvoëlberg 411 (Aas411) site, which is one of a series 
of Carnian-age localities from the Molteno Formation, in the Karoo Basin of South 
Africa. The consequences of the P-Tr event will be evident from a comparison of 
plant–insect interactions of the Aas411 site to equivalent, earlier interactions from 
Middle Triassic and Late Permian localities (Prevec et al. 2009; Wappler et al. 2015; 
Labandeira et  al. 2016). (Early Triassic localities with sufficient, well preserved 
plant fossils to study are virtually absent.) Empirical analyses of richly preserved 
plant–insect interactions across this time interval can provide ecologically robust 
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data for interpreting the response of the P-Tr event for variously herbivorized 
 plant- host lineages and for diverse feeding guilds of arthropod herbivores in a 
variety of habitats.

14.2  Early to Late Triassic Plant–Insect Interactions

14.2.1  Overview

During the Permian, the diversity and frequency of plant–insect interactions appar-
ently reached a plateau, based on data from about a dozen time slices during the 
Cisuralian and Lopingian that represent a variety of habitats in Gondwana and 
Euramerica (Adami-Rodrigues et al. 2004; Prevec et al. 2009; Schachat et al. 2014; 
Schachat and Labandeira 2015; Labandeira et al. 2016). This trend was disrupted by 
the end-Permian (P-Tr) ecological crisis (Ponomarenko 2016), resulting in a reset of 
the associational clock at the beginning of the Triassic. Previous studies (Shcherbakov 
2008b) providing documentation of plant–insect associational diversity indicates 
that the recovery period was prolonged.

14.2.2  Olenekian and Induan Interactions

After the P-Tr crisis, the Early Triassic was a time of exceedingly diminished diver-
sity on land, as determined by the empirical record (Labandeira 2006a; Chen and 
Benton 2012) and by ecological model results (Roopnarine and Angielczyk 2007, 
2015). Unfortunately, very few deposits provide fossil data that are appropriate for 
evaluating insect diversity during the Induan and Olenekian stages of the Early 
Triassic. Exceptions probably include the Solling Formation of the Lower 
Buntsandstein sequence that contains the Bremke and Fürstenberg floodplain floras 
in Germany (Kustatscher et  al. 2014), and the Newport Formation at Turrimetta 
Head, in the Sydney Basin of New South Wales in Australia (McLoughlin 2011). 
The Solling Formation material provides the more insightful glimpse regarding rare 
herbivory of the two deposits; this deposit records eight, distinctive, DT occurrences 
from an Early Triassic flora that included some apparently specialized associations. 
One notable plant host was the fern Tongchuanophyllum that exhibits multiple DTs 
of external foliage feeding, a midveinal gall, and lenticular to ovoidal oviposition 
scars (Wappler et al. 2015).

Other sporadic examples of insect herbivory have been documented for the Early 
Triassic. A probable Olenekian-age gall occurs on the pinnae and rachis of the 
corystosperm Dicroidium odontopteroides (McLoughlin 2011), a species that also 
occurs in the Molteno Formation, is notable for its distinctive physiognomy. This 
plant host represents one of the few host-specialized associations known from the 
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Early Triassic. In earlier Induan-age deposits immediately above the P-Tr boundary, 
the earliest known Triassic herbivory has been described (Lozovsky et al. 2016), 
which notably includes the earliest known leaf mine (Krassilov and Karasev 2008).

14.2.3  Anisian Interactions

Several lower Middle Triassic localities of Anisian age have been explored world-
wide for plant–arthropod interactions. These studies indicate the gradual accumula-
tion of plant–insect interactional diversity within the first 5–10 million years after 
the P-Tr ecological crisis. One of the most prominent of these associations is the 
Upper Buntsandstein sequence from the Grès à Voltzia deposits in the northern 
Voltzia Mountains of northeastern France. Grès à Voltzia associations include exo-
phytic and endophytic oviposition on horsetails, external foliage feeding on the seed 
plant Neuropteridium, and a distinctive host-specialized gall present on the herba-
ceous conifer Aethophyllum stipulare (Grauvogel-Stamm and Kelber 1996). Also 
found in this deposit were the wings of a tettigoniid orthopteran that mimicked the 
venation and other surface foliar features of a seed plant (Papier et al. 1997).

Several other examples of insect herbivore associations are known from Anisian 
deposits. One site is the Dhauari Hill bed of the Parsora Formation, in the South 
Rewa area of the Gondwana Basin in central India (Ghosh et  al. 2015). At this 
deposit, the Triassic corystosperm Dicroidium hughesii—a taxon also recorded in 
the Anisian Burgersdorp Formation hosted a distinctively spheroidal and heavily 
walled gall on the host’s pinnules. Another significant occurrence is the early 
Anisian Fremouw Formation of the central Transantarctic Mountains along the 
Palmer Peninsula in Antarctica (Hermsen et al. 2006). Although this material exhib-
its rare root detritivory by oribatid mites (Kellogg and Taylor 2004), a cycad speci-
men of Antarcticyas schopfi shows tunneling in thickened cataphyll tissue that may 
indicate pollination by an unknown beetle (Hermsen et al. 2006; also see Klavins 
et al. 2005). In the penecontemporaneous Burgersdorp Formation of South Africa, 
Labandeira (2006a) mentioned a sparse record of herbivory, although these plant–
insect interactions await formal description.

14.2.4  Ladinian Interactions

During the Ladinian there was a significant qualitative and quantitative increase in 
insect herbivory from the earlier level documented in Anisian floras. This expansion 
of herbivory is best demonstrated by four major occurrences, particularly from 
Western Europe. The Lower Keuper and Lettenkohle formations of Franconia, 
Germany, and adjacent Alsace in France and in Switzerland were first mentioned by 
Heer (1877), who noted likely oviposition scars on the horsetail Equisetites. 
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Oviposition lesions later were documented on the horsetail Neocalamites (Roselt 
1954). Subsequent studies indicated borings in Agathoxylon-type wood (Linck 
1949), and particularly several types of margin and hole feeding on Taeniopteris 
angustifolia and Schizoneura paradoxa (Geyer and Kelber 1987; Kelber and Geyer 
1989). Grauvogel-Stamm and Kelber (1996) documented examples of clustered, 
endophytic, ellipsoidal to ovoidal oviposition marks on Equisetites arenaceus and 
linear, end-to-end arrays of oviposition on T. angustifolia.

A quantitative and intensive study documented a wealth of interactions for the 
Monte Agnello Site from the Dolomites Region of the Southern Alps in Northern 
Italy (Wappler et al. 2015; Labandeira et al. 2016). A wide variety of herbivore dam-
age was represented by 20, distinctive DTs that were scored for host plants such as 
horsetails, ferns including Neuropteridium, Phlebopteris, Cladophlebis and 
Thaumatopteris, the seed-fern Scytophyllum, the cycadophytes Bjuvia and Nilssonia, 
and the voltzialean conifer Voltzia. The repertoire of damage included external foli-
age feeding, piercing and sucking, leaf mining, and galling, all of which display 
partitioning of a variety tissue types (see Labandeira 2013a). Of particular note was 
the component community structure of the seed-fern Scytophyllum bergeri, which 
harbored 11 distinctive DTs within the functional feeding groups (FFGs) of external 
foliage feeding, piercing and sucking, oviposition, galling and leaf mining, mostly 
indicating host specialization, and contributing to the most diverse component com-
munity known from any Ladinian deposit. The component community of 
Scytophyllum bergeri was compared to that of the Late Permian (Wuchiapingian) 
conifer Pseudovoltzia liebeana from a nearby site, the latter of which harbored a 
mere four DTs, only one of which, a foliar gall, was a host specialist (Labandeira 
et al. 2016). This Lopingian to Ladinian contrast in component-community struc-
ture provides additional evidence for the demise of the ecological web of herbivore 
interactions based on single host-plant species resulting from the P-Tr ecological 
crisis.

Another site with Ladinian plant–insect interactions is the Xinigua Flora of the 
Santa Maria Formation, from Rio Grande do Sul in southeastern Brazil, which dis-
plays borings in Agathoxylon-type wood (Minello 1994). Other Ladinian localities 
represent single occurrences of particular plant–insect associations, but neverthe-
less provide supplemental evidence documenting the subtle but sustained increase 
in herbivory throughout this interval. However, it was during the Carnian that a 
dramatic increase in herbivory has been recorded, particularly in the Karoo Basin of 
South Africa.

14.2.5  Carnian Interactions

There are five major deposits with diverse floras that have recorded the considerable 
expansion of plant–insect associations during the Carnian. In addition to the 
Molteno Formation discussed later in this report, the Lunz Formation of Lunz-am- 
See in the Northern Calcareous Alps of eastern Austria is characterized by 
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frequently exquisitely preserved material that is recorded mostly on cycads and ben-
nettitaleans. One notable feature of insect damage at Lunz-am-See are oviposition 
lesions that retain altered histological features of foliar epidermis and cuticle of the 
bennettitalean host Nilssoniopteris haidingeri, as well as damage that reveals details 
of egg chlorion and other microstructural features of eggs oviposited endophyti-
cally, probably by a dragonfly of the Odonatoptera (Pott et al. 2008). A variety of 
marginal and nonmarginal feeding also has been recorded on other bennettitalean 
foliage, but principally on Nilssoniopteris (Wappler et al. 2015). Other interaction 
features of the Lunz-am-See deposit are a probable leaf mine on a frond pinnule of 
the cycad Nilssonia (Meller et al. 2011), and presence of structural defenses in the 
foliage of the possible ginkgophyte Glossophyllum florini (Pott et al. 2007).

From the Blackstone Formation of the Sydney Basin of New South Wales, in 
Australia, several distinct types of herbivory reveal that stereotyped and host- 
specific plant–insect associations were present across a broader swath of Gondwanan 
floras  other than just the Molteno Biome. These include distinctive leaf mines 
(DT71) on the voltzialean broadleaved conifer Heidiphyllum elongatum (Tillyard 
1922; Rozefelds and Sobbe 1987) and on the ginkgophyte Ginkgoites (Wappler 
et al. 2015). Other interactions likely are endophytic oviposition scars and epiphytic 
deposition of eggs on the fern Dictyophyllum (Webb 1982), interaction types that 
also occur in the Molteno Biome. In a different environment, Strullu-Derrien et al. 
(2012) reported interactions that are very rarely described from plants, specifically 
a community of arthropod detritivores, including oribatid mites that consumed cor-
tical tissues of probable bennettitalean roots. Notably, the permineralized peat of 
this site—Hopen Island from Svalbard Archipelago of Norway—also preserves root 
galls, some of which may have been interacting with live tissues of larger root 
branches. These below-ground interactions compliment the above-ground associa-
tions described in other Carnian floras, indicating that the component community of 
arthropods on bennettitaleans included detritivores and herbivores consuming 
almost all organs and tissues of their plant hosts.

14.2.6  Norian Interactions

The primary site for Norian plant–insect interactions is the Chinle Formation of 
Petrified Forest National Park, in northeastern Arizona, USA.  The Chinle floras 
containing these interactions have been radiometrically dated to 220.6–209.9 mil-
lion years (Ramezani et al. 2014; Sadler et al. 2015), and thus are early Norian in 
age (Walker et al. 2013) and perhaps the only Late Triassic flora that has been radio-
metrically dated (Ash, pers. comm.). Multiple stratigraphic members of the Chinle 
Formation have been examined for virtually all major types of insect herbivory. 
With the exception of leaf mining and seed predation, all of the major modes of 
insect herbivore feeding have been found on Chinle plant hosts. These include a 
variety of external foliage feeding on ferns and seed plants, principally Cynepteris, 
Sphenopteris, Zamites, Nilssoniopteris, Macrotaeniopteris, Marcouia and 
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Dechellyia, the latter of which also features a distinctive, polymorphic, foliar gall 
(Ash 1997, 1999, 2000, 2009, 2014). Oviposition has been recorded for the seed 
plant Dechellyia and the horsetail Equisetites. Wood borings, attributed to beetles, 
have been described for multiple woods such as Itopsidema and Schilderia but espe-
cially Agathoxylon (Walker 1938; Ash and Savidge 2004; Creber and Ash 2004; 
Tapanila and Roberts 2012). Although foliar herbivory from Chinle strata have not 
been systematically sampled qualitatively and quantitatively, these preliminary 
inventories of plant hosts and their herbivore damage strongly indicate a continua-
tion of interaction diversity largely established earlier during the Carnian.

Two other Norian localities house significant plant–insect interactional data. 
Evidence was established for one of the earliest examples of skeletonization from 
the fossil record, on the fern Dictyophyllum nathorstii, in a second site from the 
Yipinglang flora of Yunnan, in southern China (Feng et al. 2014). Earlier, lunate- 
shaped bite marks were documented from a species of Mixopteris from the same 
flora (Hsü et  al. 1974). From the Laguna Colorada Formation of Santa Cruz, 
Argentina, a spectrum of herbivory representing many DTs and several major FFGs 
were documented from this diverse flora (Adami-Rodrigues et al. 2004).

14.2.7  Rhaetian Interactions

Compared to previous plant–insect interaction data, few Rhaetian data are available. 
One of the best known studies is the likely oviposition scars on the voltzialean coni-
fer Podozamites from the Pälsjo site in Scania, Sweden (Nathorst 1876, 1878). The 
paucity of investigations of Rhaetian plant–insect interactions may be attributable to 
an absence of studies or could represent the prelude of depressed diversity prior to 
the terrestrial Triassic–Jurassic extinction event (McElwain et al. 2009). However, 
additional Gondwanan interactions have been described from younger deposits 
from the La Ternera Formation of Quebrada la Cachivarita and from the Las Breas 
Formation near Vicuña, both in Chile. The age of these deposits range from Upper 
Triassic to Lower Jurassic (Moreno and Gibbons 2007). These deposits reveal, 
respectively, distinctive oviposition damage on the cycad Pseudoctenis harringtoni-
ana and on the probable bennettitalean Taeniopteris sp. B (Gnaedinger et al. 2014), 
both of which resemble damage on their congeneric Molteno hosts.

14.2.8  General Patterns

Although additional global analyses of Triassic plant–insect interactions are sorely 
needed, there are a few tentative inferences about insect herbivory that can be 
established. First, virtually nothing is known about plant–insect interactions of the 

C.C. Labandeira et al.



631

Early Triassic. This absence may represent either considerable taphonomic loss or 
the intrinsic lack of insect interactions with plants. Second, interactions for the 
Anisian, recorded in Western Europe and informally observed in the Karoo Basin, 
likely represent a very modest increase of generalized associations but minimal 
specialized associations, except for rare galls and possibly some patterned oviposi-
tion marks. Third, there is a significant increase in the diversity and frequency of 
plant–insect interactions during Ladinian times, including a demonstrable uptick in 
specialized damage patterns. This is particularly true for sites in Western Europe 
and eastern Australia. Fourth, there appears to be an overwhelming increase in asso-
ciational diversity and herbivory levels during the Carnian that is evident in several 
regions worldwide. And last, based principally on data from the Chinle Formation, 
it appears that the diversity of interactions equilibrates or perhaps decreases some-
what during the Norian and Rhaetian. However, these conclusions should be tem-
pered by problems in correlation of Triassic strata.

14.3  Methods

14.3.1  Obtaining Associational Data from Aasvoëlberg 411 
Specimens

All adequately preserved plant specimens greater than 0.25 cm2, including foliage, 
stems, roots and reproductive structures such as cones and seeds were exhaustively 
examined at the Aasvoëlberg 411 (Aas411) site. When present, fungal damage on 
plants and the presence of insect body fossils was recorded. Fossil intactness from 
the Aas411 site ranged from robust to delicate, and specimens often were preserved 
as single occurrences with considerable intervening matrix, to more dense accumu-
lations with minimal matrix evident, to rare leaf mats of superimposed foliage. 
Whereas preservation of plant and insect material typically was good, occasionally 
specimens were exceptionally well preserved and revealed considerable plant ana-
tomical detail as well as specific features of plant response to insect damage. 
Specimens very infrequently were abraded along their margins, and they almost 
always significantly exceeded the threshold for detection of arthropod-mediated 
damage.

The process for the examination of specimens is summarized as follows. An 
initial, overall evaluation was made of whether plant specimens from the fossil 
assemblage were sufficiently well preserved for analyses. Because of exceptionally 
good preservation, virtually all plant material from Aas411, including practically 
every recognizable leaf, stem, reproductive organ, and rare root mass was selected 
for data-set inclusion. Pollen organs were not included in the analyses because as a 
class of organs, they uniformly lacked evidence for herbivory throughout the 
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Molteno Biome. The principle plant material examined was foliage. The term, foli-
age, was operationally defined as any photosynthetic organ, including true leaves, 
scale leaves, pinnules, cataphylls, short shoots, horsetail stems or analogous struc-
tures (Schachat et al. 2014). After initial assessment, the specimen number of each 
fossiliferous slab, beginning with the prefix PRE/F/ was recorded. For each slab, 
specific plant specimens were assigned a specimen number, separated by a hyphen 
from the slab number, beginning with a “1” for the first specimen, and continuing 
until all plant specimens for that slab were numbered. (For example, one particular 
Aas411 slab that had three plant specimens was designated PRE/F/22051. The third 
arbitrarily numbered specimen on this slab is PRE/F/22051-3, which is part of a 
Dicroidium odontopteroides leaf that is designated on the ExCel database but not 
marked on the slab. Importantly, care was taken to recognize parts and counterparts 
so as to not count plant specimens twice.

Each plant specimen was taxonomically identified to the lowest rank possible. In 
most cases identification was to the level of species, such as the Linnaean binomial 
of Heidiphyllum elongatum or Pseudoctenis sanipassiensis. In other cases, a genus- 
level designation was used, such as Sphenobaiera scale leaf or Yabeiella sp. Less 
commonly, unidentifiable or isolated plant organs were designated as “seed indet. 
C”, “unidentifiable woody axis”, “unidentifiable foliage” or an analogous name. 
Seeds were an important contribution to the plant inventory and most were pre-
served as dispersed specimens. However, if seeds were encountered dispersed sin-
gly, the species name was placed in parentheses, as in Peltaspermum (turbinatum); 
however, if the seed was attached to a reproductive structure, its name was left out-
side of parentheses, as in Avatia bifurcata. Major Molteno plant groups were identi-
fied by the use of several monographic sources. For formal descriptions and 
classifications of horsetails, Anderson and Anderson (2017) was used; for ferns, the 
source was Anderson and Anderson (2008); for Dicroidium seed plants, it was 
Anderson and Anderson (1983, 2003); for seed plants excluding Dicroidium, 
Anderson and Anderson (1989, 2003) was employed; and for seed-plant female and 
male reproductive material, Anderson and Anderson (2003) and unpublished recent 
updates were consulted.

Linnaean binomials were used for those Molteno taxa that have been formally 
monographed taxonomically. However, some groups have not been taxonomically 
monographed, principally mosses, liverworts, lycopods, specimens of uncertain 
taxonomic position, several provisional species of seed-plant foliage whose encom-
passing genera already have been formally established, and approximately 75 addi-
tional seed, scale and ovulate morphotypes, the vast majority of which originate 
from the Aas411 site. As for use of DTs connected with Aas411 described plant taxa 
and undescribed plant morphotypes, the identification of insect damage was based 
on the FFG and DT system, informally referred to Damage Guide (Labandeira et al. 
2007), used in previous studies (Wilf and Labandeira 1999; Wilf et  al. 2006; 
Schachat et al. 2014; Ding et al. 2015). Although most of the DTs at Aas411 were 
described previously (Labandeira et al. 2007), newly encountered DTs were added 
to the data base and will be updated in forthcoming version 4 of the Damage Guide.
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Procedurally, each Aas411 plant specimen was entered as a row into an ExCel 
database and associated data were expressed in six column fields. The columns 
were: (i), fossil site designation; (ii), specimen number; (iii), plant-host morphot-
ype; (iv), DT assignments, if any; (v), macrophotography–microphotography log; 
and (vi), comments. The raw data are presented in Figs. 14.1, 14.2, 14.3, 14.4, 14.5, 
14.6, 14.7, 14.8, 14.9, 14.10, 14.11, 14.12, 14.13 and Tables 14.1, 14.2, 14.3. Further 
analyses of the Aas411 site will await a more integrative meta-analysis of the plant–
insect interactions across all 106 localities within the Molteno Biome.

Fig. 14.1 The outcrop belt of the Molteno Formation in the Karoo Basin of South Africa, showing 
localities numbered in Table 14.1. The Aasvoëlberg 411 (Aas411) site is indicated at the red star 
in the lower-left corner, adjacent the Cycle 1 to Cycle 2 boundary
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Fig. 14.2 Frequency distribution of external feeding damage types (DTs) by functional feeding 
group (FFG) and damage type (DT) at the Aasvoëlberg 411 (Aas111) site in the Karoo Basin of 
South Africa. Note that the only host-specialized association is DT8 slot feeding, a type of hole 
feeding. The hachured pattern in DT8 indicates the proportion of occurrences present on the host 
Heidiphyllum elongatum. (Also see Table 14.3)
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Fig. 14.3 Frequency distribution of internal feeding damage types (DTs) by functional feeding 
group (FFG) and damage type (DT) at the Aasvoëlberg 411 (Aas411) site in the Karoo Basin of 
South Africa. Note the abundance of nine host-specialized associations. Such host specializations 
include three types of oviposition (DT72 on Zonulamites viridensis, DT76 on Heidiphyllum elon-
gatum, DT108 on Z. viridensis), one leaf mining (DT71 on H. elongatum), two types of galling 
(DT70 on Dicroidium crassinervis, DT122 on Sphenobaiera schenckii) and two types of seed 
predation (DT73 on Avatia bifurcata and DT74 on Fanerotheca papilioformis). One additional 
host-specialized association, DT124 seed predation on Dordrechtites elongatus, is not shown for 
spatial considerations. Vertical columns with hachured pattern indicates the proportion of occur-
rences for the specialized association indicated for a given DT present on a particular plant host. 
(Also see Table 14.3.)
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Fig. 14.4 Raw plant–insect interaction data for the Aasvoëlberg 411 site, ordinated by functional 
feeding group (colors) and constituent DTs at bottom and plant taxa at left with herbivorized hosts 
in bold font. Fifteen whole-plant taxa are indicated at left but exclude relevant pollen-organ form 
taxa. Presence/absence data in grid indicate the number of plant specimens with one or more 
occurrences of the specified DT on a particular plant host. Cells with thick black outlines indicate 
the 11 host-specialist associations indicated in Table 14.3 and in text. Fungal damage DT58 is not 
shown. Associational data of seven of the most intensely herbivorized of the 14 whole plant taxa 
(WPT) are provided in Tables 14.2 and 14.3. These data are continued on the folowing page
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14.3.2  Herbivory and its Differentiation from Detritivory

The distinctive types of insect-mediated DTs serves as the basis for categorizing and 
analyzing herbivory in compressed fossil floras. However, damage on fossil plant 
specimens initially must be categorized as to whether it is due to detritivory (feeding 
on dead plant tissues) or attributable to herbivory (feeding on live plant tissues). 
This separation is accomplished by using five features that occur on live plant tis-
sues and define a particular mode of diagnostic damage (Labandeira 2006a). First, 
herbivory is indicated for those DTs that have certain distinctive features of size, 
shape, pervasiveness, and position on the host plant. Second, herbivore damage 
typically consists of an iterative pattern of stereotyped insect damage that is repeated 
on a particular host-plant tissue, organ or species. Third are the structural features 
induced by the plant response to herbivory that typically involve production of tera-
tological tissue, such as callus that involves hypertrophy (increase in cell size) and 
hyperplasia (increase in cell number). A fourth indicator is the presence of dead 
tissue occurring along the affected area, including necroses that often are a response 
of secondary infection by pathogens (Labandeira and Prevec 2014). Last, the occur-
rence of small, specific, insect-produced features such as small cuspate chew marks 
along leaf edges or stylet crater marks on surfaces, also are distinctive indicators of 
herbivory (Johnson and Lyon 1991; Labandeira et al. 2007).

Fig. 14.4 (continued)
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Fig. 14.5 Margin feeding, hole feeding, surface feeding, piercing and sucking and oviposition at 
the Aasvoëlberg 411 site, from the Late Triassic Molteno Formation of South Africa. (a) Cuspate 
DT12 margin feeding (blue arrow) on the conifer Heidiphyllum elongatum; PRE/F/12863-6. (b) 
Continuous DT143 margin feeding (blue arrow) on the ginkgophyte Ginkgoites matatiensis; PRE/
F/21065-1. (c) Enlargement of DT143 outlined in (b). (d) Cuspate DT12 margin feeding (blue 
arrow) on H. elongatum; PRE/F/21443a-16. (e) Pinnule-tip DT13 margin feeding (blue arrow) on 
the cycad Pseudoctenis sp.; PRE/F/20636-1. (f) Ovoidal DT128 scale impression mark (blue arrow) 
on H. elongatum; PRE/F/21912-1. (g) Extensive DT76 oviposition on H. elongatum; PRE/F/12905-2. 
(h) Extensive DT1 hole feeding on the corystosperm Dicroidium odontopteroides; PRE/F/12229-4. 
Blue arrows indicate insect damage; scale bars for all figures: white, 1 cm; black, 1 mm
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Fig. 14.6 Mining, oviposition and galling at the Aasvoëlberg 411 site, from the Late Triassic 
Molteno Formation of South Africa. (a) A linear leaf mine with the serpentine frass trail of DT71 
(blue arrow), on Heidiphyllum elongatum; PRE/F/21921-2. (b) Another distinctive DT71 leaf 
mine (blue arrow) on H. elongatum; PRE/F/20710a-1. (c) A cluster of deep-seated DT72 oviposi-
tion marks on the stem of the horsetail Zonulamites viridensis; PRE/F/12047-6. (d) The gall 
DT122 showing distortions in the foliage of the ginkgophyte Sphenobaiera schenckii; PRE/
F/12857a-23. (e) An enlargement of a galled area outlined in (d); microscope image. (f) Foliage of 
Dicroidium crassinervis with extensive DT122 gall damage; PRE/F/12238b. Blue arrows indicate 
insect damage; scale bars: white, 1 cm; black, 1 mm
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Fig. 14.7 Two mines and a gall on foliage of the dominant plant hosts of the Aasvoëlberg 411 site, 
as they may have appeared in life during the Carnian. Colorized versions of inked camera-lucida 
drawings. (a) Mine DT139 on Sphenobaiera schenckii; PRE/F/12472-1; all scale bars, mm. (b) 
Mine DT71 on Heidiphyllum elongatum; PRE/F/1902a, but from sister site of Aas311 (Aasvoëlberg 
311); left and right scale bars, mm. (c) Gall DT122 on Dicroidium crassinervis; PRE/F/21912-2; 
scale bars: lower left, cm; center-right, mm
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Fig. 14.8 Galling at the Aasvoëlberg 411 site, from the Late Triassic Molteno Formation of South 
Africa. (a) Bulbous DT122 galls on the foliage of the ginkgophyte Sphenobaiera schenckii; PRE/
F/12103a-1. (b) Enlargement of galls (blue arrow) from template in (a). (c) Incipient DT122 galls 
(blue arrow) on the foliage of S. schenckii; PRE/F/12254-7. (d) An early-stage (immature) expres-
sion of the DT70 mite gall on the corystosperm Dicroidium crassinervis; PRE/F/12351-1. (e) 
Enlargement of galled pinnule at (d), showing surface structure of the galled pinnule. (f) An imma-
ture, early phase of the DT70 gall on D. crassinervis; PRE/F/21923-1. (g) An early phase of DT122 
galls on its S. schenckii host; PRE/F/12396a-2. (h) Multiple, DT122 galls on pinnules of D. crassi-
nervis; PRE/F/12242-1. Blue arrows indicate insect damage; scale bars: white, 1 cm; black, 1 mm
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Fig. 14.9 DT70 galls on Dicroidium crassinervis at the Aasvoëlberg 411 site, from the Late 
Triassic Molteno Formation of South Africa. (a) Holotype of a mature, pustulose, DT70 gall, 
showing engulfment of the entire deltoid-shaped leaf and preservation of relict fasciculate venation 
of pinnule; PRE/F/12392-1. (b) Enlargement holotype DT70 gall at template at (a); microscope 
image. (c) Mature DT70 gall showing later stage, coarser pustulation on pinnular surface, and 
galled tissue connecting adjacent pinnules along the rachis; PRE/F/21416-1. (d) Approximately 
nine separate galls on a rachis showing various stages of maturity, ranging from establishment at 
pinnular tips (grey arrow) to an entire pinnule enveloped by gall tissue at the polygonal template 
(black arrow); PRE/F/12389b-1. (e) Enlargement of gall outlined in (d), showing relict pinnular 
venation and extensive pustulose surface. (f) Four mature (black arrow) or mostly mature galls 
occurring on one side of a rachis; PRE/F/12387a-1. (g) A long frond displaying approximately 11 
galls ranging from small patches of galled tissue at pinnular tips (top grey arrow), to pinnules hav-
ing a greater extent of galled tissue (bottom grey arrow) to near engulfment by galled tissue (center 
grey arrow); PRE/F/20880b. Black arrows, mature galls; grey arrows, immature damage; scale 
bars: white, 1 cm; black, 1 mm
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Fig. 14.10 DT70 galls on Dicroidium crassinervis at the Aasvoëlberg 411 site, from the Late 
Triassic Molteno Formation of South Africa. (a) Frond consisting of very mature galls, displaying 
breached pustules that expose inner cavities (black arrow); PRE/F/12387b-1, the enlarged counter-
part of Fig. 14.8f. (b) Gall showing relict pinnular vein structure at black arrow; PRE/F/12394-1. 
(c) Portion of frond with five galled pinnules and distinctive teratological bend of the rachis at red 
arrow; PRE/F/12396a-1. (d) Another rachis segment with two pinnules, one indicated by a black 
arrow and revealing mature galls, and rachis bend at red arrow, representing the counterpart to (c); 
PRE/F/12396b-1. (e) Frond segment showing three, half mature galls, the left one (black arrow), 
showing upraised galled tissue; PRE/F/21908a-1. (f) Long frond branch with distinctive gall- 
induced crook at red arrow and immature galls (lower grey arrow) and more mature galls (upper 
grey arrow); PRE/F/21908-1. Black arrows, mature galls; grey arrows, immature galls; red arrows, 
rachis bends; scale bars: white, 1 cm; black, 1 mm
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Fig. 14.11 DT70 mite galls on Dicroidium crassinervis at the Aasvoëlberg 411 site, from the Late 
Triassic Molteno Formation of South Africa. (a) A long frond segment with 12 galls that vary in 
the amount of pinnular coverage with galled tissue (grey arrows); PRE/F/20880a-1. (b) A frond 
with several incipiently galled pinnules and a highly galled pinnule (black arrow) that may have 
supplied colonizing mites for adjacent pinnules; PRE/F/2144a-1. (c) A gall (black arrow) with 
pustules occurring along the primary fasciculate venation of the pinnule; PRE/F/21920b-1. (d) A 
massive spheroidal gall that has obliterated pinnular structures such as veins and margin; PRE/
F/21909-1. (e) Enlargement of gall surface detail in (d). (f) Frond segment bearing several galls, 
one of which is a mature gall (bottom grey arrow), and another immature gall showing the initial 
colonization of gall mites along pinnular primary veins (top grey arrow); PRE/F/21920b-1. Black 
arrows, mature galls; grey arrows, immature galls; scale bars: white, 1 cm; black, 1 mm

C.C. Labandeira et al.
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Fig. 14.12 Two galls on foliage of the two dominant plant hosts of the Aasvoëlberg 411 site, as 
they may have appeared in life during the Carnian. Colorized versions of inked camera-lucida 
drawings. (a) Gall DT70 on Dicroidium crassinervis; PRE/F/20883-3; scale bar, mm. (b) Gall 
DT70 on D. crassinervis; PRE/F/21144a-7; all scale bars, mm. (c) Gall DT122 on Heidiphyllum 
elongatum; PRE/F/12684a-10; all scale bars, mm. (d), Gall DT70 on D. crassinervis; PRE/
F/21050-2; scale bars, mm

14 Expansion of Arthropod Herbivory in Late Triassic South Africa…
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Fig. 14.13 The component herbivore community of the Heidiphyllum elongatum–Heidiphyllum 
short shoot–Telemachus elongatus–Odyssianthus crenulatus whole-plant taxon, from the 
Aasvoëlberg 411 (Aas411) site. DT numbers refer to damage types occurring on H. elongatum in 
Fig. 14.4. Only 14 of the 28 documented interactions (50%) of the H. elongatum herbivore com-
ponent community are shown. Circular insets with thin ring enclosures are generalized interactions 
while those of thick ring enclosures are host-specialized associations, and match the same conven-
tion in Fig. 14.4. The basis of reconstruction is taken from Anderson and Anderson (2003) and 
Bomfleur et al. (2013)

C.C. Labandeira et al.



647

Ta
bl

e 
14

.1
 

Pa
tte

rn
s 

of
 h

er
bi

vo
ry

 th
ro

ug
ho

ut
 th

e 
M

ol
te

no
 F

or
m

at
io

n 
lo

ca
lit

ie
s 

in
 th

e 
K

ar
oo

 B
as

in
 o

f 
So

ut
h 

A
fr

ic
a

Si
te

 n
am

e 
(a

bb
re

vi
at

io
n)

St
ra

tig
ra

ph
ic

 
po

si
tio

na
H

ab
ita

ta

W
ho

le
 

pl
an

t 
ta

xa
b

D
om

in
an

t 
fu

nc
tio

na
l 

fe
ed

in
g 

gr
ou

pc

To
ta

l D
T

 
oc

cu
rr

en
ce

s
To

ta
l p

la
nt

 
sp

ec
im

en
s

In
te

r 
ac

tio
n 

in
de

xd

To
ta

l 
ki

nd
s 

of
 D

T
s

Pl
an

t 
m

or
ph

ot
yp

es

K
en

eg
ap

oo
rt

 1
11

 
(K

en
11

1)
10

6
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
0

M
ar

gi
n 

fe
ed

in
g

6
16

2
0.

03
7

6
6

N
av

ar
 1

11
A

 (
N

av
11

1B
)

10
5

H
or

se
ta

il 
M

ar
sh

0
[n

on
e]

0
31

0
0

1
N

av
ar

 1
11

B
 (

N
av

11
1B

)
10

4
H

or
se

ta
il 

M
ar

sh
0

M
ar

gi
n 

fe
ed

in
g

5
21

2
0.

02
35

2
7

C
al

a 
R

oa
d 

21
1 

(C
al

21
1)

10
3

H
or

se
ta

il 
M

ar
sh

0
M

ar
gi

n 
fe

ed
in

g,
 

pi
er

ci
ng

 &
 

su
ck

in
g

6
17

8
0.

02
15

5
3

C
al

a 
R

oa
d 

11
1A

 
(C

al
11

1A
)

10
2

H
or

se
ta

il 
M

ar
sh

1
M

ar
gi

n 
fe

ed
in

g
18

51
7

0.
14

51
6

9

C
al

a 
R

oa
d 

11
1B

 
(C

al
11

1B
)

10
1

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

1
G

al
lin

g
39

99
0

0.
02

83
6

12

B
ir

ds
 R

iv
er

 2
11

 (
B

ir
21

1)
10

0
Sp

he
no

ba
ie

ra
 C

lo
se

d 
W

oo
dl

an
d

1
M

ar
gi

n 
fe

ed
in

g
13

35
8

0.
03

63
7

15

B
ir

ds
 R

iv
er

 3
11

 (
B

ir
31

1)
99

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
4

Pi
er

ci
ng

 &
 

su
ck

in
g

7
24

5
0.

02
88

5
20

B
ir

ds
 R

iv
er

 1
11

 (
B

ir
11

1)
98

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
9

Se
ed

 p
re

da
tio

n
25

01
15

,5
03

0.
15

98
41

72

D
or

dr
ec

ht
 1

11
 (

D
or

11
1)

97
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

0
M

ar
gi

n 
fe

ed
in

g
5

14
4

0.
03

47
4

6
G

re
en

va
le

 1
21

 (
G

re
12

1)
96

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
2

H
ol

e 
fe

ed
in

g
10

4
29

66
0.

03
5

12
12

G
re

en
va

le
 1

11
A

 
(G

re
11

1A
)

95
Sp

he
no

ba
ie

ra
 C

lo
se

d 
W

oo
dl

an
d

1
Su

rf
ac

e 
fe

ed
in

g
5

28
1

0.
01

77
3

15

G
re

en
va

le
 1

11
B

 
(G

re
11

1B
)

94
H

or
se

ta
il 

M
ar

sh
4

O
vi

po
si

tio
n

14
63

4
0.

02
20

3
22

(c
on

tin
ue

d)

14 Expansion of Arthropod Herbivory in Late Triassic South Africa…



648

Ta
bl

e 
14

.1
 

(c
on

tin
ue

d)

Si
te

 n
am

e 
(a

bb
re

vi
at

io
n)

St
ra

tig
ra

ph
ic

 
po

si
tio

na
H

ab
ita

ta

W
ho

le
 

pl
an

t 
ta

xa
b

D
om

in
an

t 
fu

nc
tio

na
l 

fe
ed

in
g 

gr
ou

pc

To
ta

l D
T

 
oc

cu
rr

en
ce

s
To

ta
l p

la
nt

 
sp

ec
im

en
s

In
te

r 
ac

tio
n 

in
de

xd

To
ta

l 
ki

nd
s 

of
 D

T
s

Pl
an

t 
m

or
ph

ot
yp

es

B
oe

sm
an

sh
ko

ek
 1

11
A

 
(B

oe
11

1A
)

93
[i

nd
et

er
m

in
at

e]
2

M
ar

gi
n 

fe
ed

in
g

11
36

9
0.

02
98

3
13

B
oe

sm
an

sh
ko

ek
 1

11
B

 
(B

oe
11

1B
)

92
H

or
se

ta
il 

M
ar

sh
2

O
vi

po
si

tio
n

1
14

8
0.

00
68

1
9

B
oe

sm
an

sh
ko

ek
 1

11
C

 
(B

oe
11

1C
)

91
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
1

M
ar

gi
n 

fe
ed

in
g

22
70

0
0.

03
14

6
13

B
oe

sm
an

sh
ko

ek
 1

12
 

(B
oe

11
2)

90
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
3

M
ar

gi
n 

fe
ed

in
g

6
11

97
0.

00
5

2
18

C
yp

he
rg

at
 1

11
A

 
(C

yp
11

1C
)

89
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
3

Se
ed

 p
re

da
tio

n
16

8
63

77
0.

02
63

27
32

C
yp

he
rg

at
 1

11
B

 
(C

yp
11

1B
)

88
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

0
Su

rf
ac

e 
fe

ed
in

g
1

18
0

0.
00

55
1

2

M
ol

te
no

 2
11

 (
M

ol
21

1)
87

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
1

O
vi

po
si

tio
n

6
57

0.
10

52
4

10

M
ol

te
no

 3
11

 (
M

ol
31

1)
86

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
0

M
ar

gi
n 

fe
ed

in
g

7
11

2
0.

06
25

6
5

M
ol

te
no

 1
11

 (
M

ol
11

1)
85

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
0

[n
o 

da
m

ag
e]

0
27

0
0

6

K
an

na
sk

op
 1

12
 (

K
an

11
2)

84
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

3
Pi

er
ci

ng
 &

 
su

ck
in

g
44

15
38

0.
02

86
9

29

K
an

na
sk

op
 1

11
 (

K
an

11
1)

83
Fe

rn
- K

an
na

sk
op

pi
fo

li
a 

M
ea

do
w

4
M

ar
gi

n 
fe

ed
in

g
42

23
87

0.
01

76
11

15

Te
le

m
ac

hu
s 

Sp
ru

it
 1

11
 

(T
el

11
1)

82
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

3
M

ar
gi

n 
fe

ed
in

g
99

66
81

0.
01

5
14

38

K
om

m
an

da
nt

sk
op

 
11

1(
K

om
11

1)
81

Fe
rn

- K
an

na
sk

op
pi

fo
li

a 
M

ea
do

w
3

H
ol

e 
fe

ed
in

g
23

12
13

0.
01

9
10

20

C.C. Labandeira et al.



649
Si

te
 n

am
e 

(a
bb

re
vi

at
io

n)
St

ra
tig

ra
ph

ic
 

po
si

tio
na

H
ab

ita
ta

W
ho

le
 

pl
an

t 
ta

xa
b

D
om

in
an

t 
fu

nc
tio

na
l 

fe
ed

in
g 

gr
ou

pc

To
ta

l D
T

 
oc

cu
rr

en
ce

s
To

ta
l p

la
nt

 
sp

ec
im

en
s

In
te

r 
ac

tio
n 

in
de

xd

To
ta

l 
ki

nd
s 

of
 D

T
s

Pl
an

t 
m

or
ph

ot
yp

es

V
in

ey
ar

d 
11

1 
(V

in
11

1)
80

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

1
M

ar
gi

n 
fe

ed
in

g
63

22
17

0.
02

8
10

14

E
la

nd
sp

ru
it

 1
11

 (
E

la
11

1)
79

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

3
M

ar
gi

n 
fe

ed
in

g
55

11
54

0.
04

77
10

22

K
ra

ai
 R

iv
er

 3
11

 (
K

ra
31

1)
78

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

0
G

al
lin

g
43

13
87

0.
03

1
6

8

K
ra

ai
 R

iv
er

 2
11

 (
K

ra
21

1)
77

H
ei

di
ph

yl
lu

m
 M

ar
sh

1
O

vi
po

si
tio

n
2

40
1

0.
00

5
1

2
K

ra
ai

 R
iv

er
 2

22
 (

K
ra

22
2)

76
H

ei
di

ph
yl

lu
m

 M
ar

sh
0

[n
o 

da
m

ag
e]

0
50

0
0

1
K

ra
ai

 R
iv

er
 2

21
 (

K
ra

22
1)

75
[i

nd
et

er
m

in
at

e]
1

[n
o 

da
m

ag
e]

0
38

0
0

5
K

ra
ai

 R
iv

er
 1

11
 (

K
ra

11
1)

74
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
2

M
ar

gi
n 

fe
ed

in
g

22
20

06
0.

01
1

9
21

L
ut

he
rs

ko
p 

11
1 

(L
ut

11
1)

73
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

1
M

ar
gi

n 
fe

ed
in

g
9

47
2

0.
01

91
4

5
L

ut
he

rs
ko

p 
51

1 
(L

ut
51

1)
72

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
1

Su
rf

ac
e 

fe
ed

in
g

28
63

4
0.

04
42

11
6

L
ut

he
rs

ko
p 

41
12

 
(L

ut
41

12
)

71
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

1
O

vi
po

si
tio

n,
 

m
in

in
g,

 g
al

lin
g

13
74

4
0.

01
64

6
12

L
ut

he
rs

ko
p 

41
11

 
(L

ut
41

11
)

70
H

or
se

ta
il 

M
ar

sh
0

Su
rf

ac
e 

fe
ed

in
g,

 
ov

ip
os

iti
on

2
18

4
0.

01
09

2
2

L
ut

he
rs

ko
p 

31
1 

(L
ut

31
1)

69
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

6
M

in
in

g
20

6
57

84
0.

03
4

23
39

L
ut

he
rs

ko
p 

23
1 

(L
ut

22
1)

68
H

or
se

ta
il 

M
ar

sh
0

[n
o 

da
m

ag
e]

0
46

0
0

3
L

ut
he

rs
ko

p 
21

1 
(L

ut
21

1)
67

H
or

se
ta

il 
M

ar
sh

1
M

ar
gi

n 
fe

ed
in

g
7

63
0.

11
11

4
10

T
in

a 
B

ri
dg

e 
12

1 
(T

in
12

1)
66

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
2

[n
o 

da
m

ag
e]

0
80

0
0

13

T
in

a 
B

ri
dg

e 
11

1 
(T

in
11

1)
65

H
or

se
ta

il 
M

ar
sh

2
Pi

er
ci

ng
 &

 
su

ck
in

g
3

49
7

0.
00

24
1

9

T
in

a 
B

ri
dg

e 
11

1 
(T

in
13

1)
64

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
0

M
ar

gi
n 

fe
ed

in
g,

 
m

in
in

g
7

14
8

0.
04

05
4

8

W
al

de
ck

 1
11

 (
W

al
11

1)
63

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
1

M
ar

gi
n 

fe
ed

in
g

97
16

95
0.

05
72

12
22

(c
on

tin
ue

d)

14 Expansion of Arthropod Herbivory in Late Triassic South Africa…



650

Ta
bl

e 
14

.1
 

(c
on

tin
ue

d)

Si
te

 n
am

e 
(a

bb
re

vi
at

io
n)

St
ra

tig
ra

ph
ic

 
po

si
tio

na
H

ab
ita

ta

W
ho

le
 

pl
an

t 
ta

xa
b

D
om

in
an

t 
fu

nc
tio

na
l 

fe
ed

in
g 

gr
ou

pc

To
ta

l D
T

 
oc

cu
rr

en
ce

s
To

ta
l p

la
nt

 
sp

ec
im

en
s

In
te

r 
ac

tio
n 

in
de

xd

To
ta

l 
ki

nd
s 

of
 D

T
s

Pl
an

t 
m

or
ph

ot
yp

es

K
on

in
gs

 K
ro

on
 2

23
 

(K
on

22
3)

62
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
4

M
ar

gi
n 

fe
ed

in
g

5
51

7
0.

00
1

4
26

K
on

in
gs

 K
ro

on
 2

22
 

(K
on

22
2)

61
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
6

M
ar

gi
n 

fe
ed

in
g

31
29

73
0.

01
05

13
35

K
on

in
gs

 K
ro

on
 2

11
A

 &
 

22
1 

(K
on

21
1A

 &
 K

on
22

1)
60

Fe
rn

- K
an

na
sk

op
pi

fo
li

a 
M

ea
do

w
2

M
ar

gi
n 

fe
ed

in
g

36
77

4
0.

04
66

10
33

K
on

in
gs

 K
ro

on
 2

11
B

 
(K

on
21

1B
)

59
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

0
H

ol
e 

fe
ed

in
g

1
16

8
0.

00
6

1
5

K
on

in
gs

 K
ro

on
 1

11
A

 
(K

on
11

1A
)

58
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
3

M
ar

gi
n 

fe
ed

in
g

19
11

90
0.

01
6

5
29

K
on

in
gs

 K
ro

on
 1

11
B

 
(K

on
11

1B
)

57
H

or
se

ta
il 

M
ar

sh
0

[n
o 

da
m

ag
e]

0
35

0
0

4

K
on

in
gs

 K
ro

on
 1

11
C

 
(K

on
11

1C
)

56
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

2
M

ar
gi

n 
fe

ed
in

g
30

57
3

0.
05

26
11

14

P
en

in
su

la
 1

11
 (

Pe
n1

11
)

55
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
0

M
ar

gi
n 

fe
ed

in
g

4
73

0.
05

48
2

6

P
en

in
su

la
 3

21
 (

Pe
n3

21
)

54
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
4

M
ar

gi
n 

fe
ed

in
g

37
23

15
0.

01
35

9
28

P
en

in
su

la
 2

11
 (

Pe
n2

11
)

53
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
1

M
ar

gi
n 

fe
ed

in
g

3
30

7
0.

00
98

2
13

P
en

in
su

la
 2

22
, 2

21
 

(P
en

22
1 

&
 P

en
22

1)
52

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

0
M

ar
gi

n 
fe

ed
in

g
7

34
2

0.
02

05
3

13

P
en

in
su

la
 5

11
 (

Pe
n5

11
)

51
H

or
se

ta
il 

M
ar

sh
1

O
vi

po
si

tio
n

10
28

6
0.

03
47

7
5

P
en

in
su

la
 4

21
 (

Pe
n4

21
)

50
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
2

M
ar

gi
n 

fe
ed

in
g

22
87

0
0.

02
56

13
18

C.C. Labandeira et al.



651
Si

te
 n

am
e 

(a
bb

re
vi

at
io

n)
St

ra
tig

ra
ph

ic
 

po
si

tio
na

H
ab

ita
ta

W
ho

le
 

pl
an

t 
ta

xa
b

D
om

in
an

t 
fu

nc
tio

na
l 

fe
ed

in
g 

gr
ou

pc

To
ta

l D
T

 
oc

cu
rr

en
ce

s
To

ta
l p

la
nt

 
sp

ec
im

en
s

In
te

r 
ac

tio
n 

in
de

xd

To
ta

l 
ki

nd
s 

of
 D

T
s

Pl
an

t 
m

or
ph

ot
yp

es

P
en

in
su

la
 4

31
 (

Pe
n4

31
)

49
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
0

M
ar

gi
n 

fe
ed

in
g

7
24

1
0.

02
92

3
11

P
en

in
su

la
 3

11
 (

Pe
n3

11
)

48
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

1
M

ar
gi

n 
fe

ed
in

g
36

17
85

0.
01

78
11

20
P

en
in

su
la

 4
11

 (
Pe

n4
11

)
47

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
2

O
vi

po
si

tio
n

23
4

68
07

0.
03

35
18

18
K

le
in

 H
oe

k 
11

1A
 

(K
le

11
1A

)
46

H
or

se
ta

il 
M

ar
sh

1
Pi

er
ci

ng
 &

 
su

ck
in

g,
 

ov
ip

os
iti

on

1
11

5
0.

00
87

1
7

K
le

in
 H

oe
k 

11
1B

 
(K

le
11

1B
)

45
[i

nd
et

er
m

in
at

e]
3

M
ar

gi
n 

fe
ed

in
g,

 
su

rf
ac

e 
fe

ed
in

g
39

12
67

0.
03

08
9

21

K
le

in
 H

oe
k 

11
1C

 
(K

le
11

1C
)

44
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

3
O

vi
po

si
tio

n
14

1
29

30
0.

04
78

17
15

K
le

in
 H

oe
k 

21
1 

(K
le

21
1)

43
Sp

he
no

ba
ie

ra
 O

pe
n 

W
oo

dl
an

d
0

[n
o 

da
m

ag
e]

0
34

0
0

1

K
ul

lf
on

te
in

 1
11

 (
K

ul
11

1)
42

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
0

[n
o 

da
m

ag
e]

0
5

0
0

4

K
ap

po
kr

aa
l 1

11
 (

K
ap

11
1)

41
D

ic
ro

id
iu

m
 R

ip
ar

ia
n 

Fo
re

st
 (

Im
m

at
ur

e)
7

M
ar

gi
n 

fe
ed

in
g

55
4

19
65

0.
28

19
27

39

V
in

ey
ar

d 
21

1 
(V

in
21

1)
40

H
or

se
ta

il 
M

ar
sh

0
O

vi
po

si
tio

n
4

28
7

0.
01

34
2

1
E

la
nd

sp
ru

it
 1

12
A

 
(E

la
11

2A
)

39
H

or
se

ta
il 

M
ar

sh
3

Se
ed

 p
re

da
tio

n
78

12
95

0.
05

93
7

19

E
la

nd
sp

ru
it

 1
12

B
 

(E
la

11
2B

)
38

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
0

M
ar

gi
n 

fe
ed

in
g

12
54

6
0.

02
20

5
5

N
uw

ej
aa

rs
pr

ui
t 

11
1A

 
(N

uw
11

1A
)

37
H

or
se

ta
il 

M
ar

sh
2

O
vi

po
si

tio
n

45
70

9
0.

06
34

6
11

N
uw

ej
aa

rs
pr

ui
t 

11
1B

36
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
3

M
ar

gi
n 

fe
ed

in
g

76
21

88
0.

03
47

20
24

N
uw

ej
aa

rs
pr

ui
t 

21
1 

(N
uw

21
1)

35
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
1

Pi
er

ci
ng

 &
 

su
ck

in
g

89
76

3
0.

11
53

13
13

(c
on

tin
ue

d)

14 Expansion of Arthropod Herbivory in Late Triassic South Africa…



652

Ta
bl

e 
14

.1
 

(c
on

tin
ue

d)

Si
te

 n
am

e 
(a

bb
re

vi
at

io
n)

St
ra

tig
ra

ph
ic

 
po

si
tio

na
H

ab
ita

ta

W
ho

le
 

pl
an

t 
ta

xa
b

D
om

in
an

t 
fu

nc
tio

na
l 

fe
ed

in
g 

gr
ou

pc

To
ta

l D
T

 
oc

cu
rr

en
ce

s
To

ta
l p

la
nt

 
sp

ec
im

en
s

In
te

r 
ac

tio
n 

in
de

xd

To
ta

l 
ki

nd
s 

of
 D

T
s

Pl
an

t 
m

or
ph

ot
yp

es

W
in

na
ar

sp
ru

it
 1

11
 

(W
in

11
1)

34
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

0
M

ar
gi

n 
fe

ed
in

g
80

16
79

0.
04

78
17

16

M
or

ij
a 

11
1-

A
 (

M
or

11
1A

)
33

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

2
M

ar
gi

n 
fe

ed
in

g
39

53
9

0.
07

24
3

3

M
or

ij
a 

11
1-

B
 (

M
or

11
1B

)
32

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

2
M

ar
gi

n 
fe

ed
in

g
59

16
28

0.
03

62
7

14

Q
ua

la
si

 H
ill

 1
11

 (
Q

ua
11

1)
31

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

2
M

ar
gi

n 
fe

ed
in

g
1

23
5

0.
00

43
1

11

M
ak

oa
ne

ng
 1

11
 (

M
ak

11
1)

30
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
2

M
ar

gi
n 

fe
ed

in
g

22
13

08
0.

01
68

7
14

M
az

en
od

 1
11

 (
M

az
11

1)
29

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
Im

m
at

ur
e)

2
M

ar
gi

n 
fe

ed
in

g
73

10
41

0.
07

01
11

22

M
az

en
od

 2
11

 (
M

az
21

1)
28

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
Im

m
at

ur
e)

7
M

ar
gi

n 
fe

ed
in

g
25

4
22

79
0.

11
32

34

M
oo

i R
iv

er
 1

11
 (

M
oo

11
1)

27
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
1

M
ar

gi
n 

fe
ed

in
g,

 
ov

ip
os

iti
on

2
18

6
0.

01
08

2
9

M
oo

i R
iv

er
 1

21
 (

M
oo

12
1)

26
Sp

he
no

ba
ie

ra
 C

lo
se

d 
W

oo
dl

an
d

0
[n

o 
da

m
ag

e]
0

44
0

0
5

H
la

ti
m

be
 V

al
le

y 
11

1 
(H

la
11

1)
25

H
or

se
ta

il 
M

ar
sh

0
[n

o 
da

m
ag

e]
0

28
7

0
0

2

H
la

ti
m

be
 V

al
le

y 
11

1 
(H

la
11

1)
24

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
Im

m
at

ur
e)

3
M

ar
gi

n 
fe

ed
in

g
11

51
5

0.
03

7
8

25

H
la

ti
m

be
 V

al
le

y 
21

2 
(H

la
21

2)
23

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
Im

m
at

ur
e)

4
M

ar
gi

n 
fe

ed
in

g
21

72
3

0.
03

4
10

29

H
la

ti
m

be
 V

al
le

y 
21

3 
(H

la
21

3)
22

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
Im

m
at

ur
e)

7
M

ar
gi

n 
fe

ed
in

g
95

19
43

0.
04

74
19

59

C.C. Labandeira et al.



653
Si

te
 n

am
e 

(a
bb

re
vi

at
io

n)
St

ra
tig

ra
ph

ic
 

po
si

tio
na

H
ab

ita
ta

W
ho

le
 

pl
an

t 
ta

xa
b

D
om

in
an

t 
fu

nc
tio

na
l 

fe
ed

in
g 

gr
ou

pc

To
ta

l D
T

 
oc

cu
rr

en
ce

s
To

ta
l p

la
nt

 
sp

ec
im

en
s

In
te

r 
ac

tio
n 

in
de

xd

To
ta

l 
ki

nd
s 

of
 D

T
s

Pl
an

t 
m

or
ph

ot
yp

es

H
la

ti
m

be
 V

al
le

y 
31

1 
(H

la
31

1)
21

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
Im

m
at

ur
e)

0
[n

o 
da

m
ag

e]
0

10
0

0
5

U
m

ko
m

aa
s 

11
1 

(U
m

k1
11

)
20

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
M

at
ur

e)
12

M
ar

gi
n 

fe
ed

in
g

63
9

12
,7

88
0.

04
81

38
10

9

C
ha

m
pa

gn
e 

C
as

tl
e 

11
1 

(C
ha

11
1)

19
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
0

[n
o 

da
m

ag
e]

0
17

0
0

1

C
ha

m
pa

gn
e 

C
as

tl
e 

21
1 

(C
ha

21
1)

18
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
0

[n
o 

da
m

ag
e]

0
10

0
0

2

In
ja

su
ti

 V
al

le
y 

11
1 

(I
nj

11
1)

17
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
1

M
ar

gi
n 

fe
ed

in
g

2
22

0.
09

1
1

4

In
ja

su
ti

 V
al

le
y 

21
1 

(I
nj

21
1)

16
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
0

[n
o 

da
m

ag
e]

0
55

0
0

5

Sa
ni

 P
as

s 
11

1 
(S

an
11

1)
15

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
Im

m
at

ur
e)

4
M

ar
gi

n 
fe

ed
in

g
34

13
40

0.
02

54
10

33

M
ng

en
i V

al
le

y 
11

1 
(M

ng
11

1)
14

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

2
M

ar
gi

n 
fe

ed
in

g
6

39
8

0.
05

1
1

14

Q
ac

ha
sn

ek
 1

11
 (

Q
ac

11
1)

13
H

ei
di

ph
yl

lu
m

 T
hi

ck
et

2
H

ol
e 

fe
ed

in
g

15
21

30
0.

00
7

7
11

M
at

at
ie

le
 1

11
 (

M
at

11
1)

12
D

ic
ro

id
iu

m
 R

ip
ar

ia
n 

Fo
re

st
 (

Im
m

at
ur

e)
6

M
ar

gi
n 

fe
ed

in
g

23
7

63
43

0.
03

65
22

55

G
ol

de
n 

G
at

e 
11

1 
(G

ol
11

1)
11

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

 (
Im

m
at

ur
e)

2
M

ar
gi

n 
fe

ed
in

g
11

9
13

26
0.

09
17

13

L
it

tl
e 

Sw
it

ze
rl

an
d 

11
1 

(L
it1

11
)

10
D

ic
ro

id
iu

m
 R

ip
ar

ia
n 

Fo
re

st
 (

M
at

ur
e)

6
M

ar
gi

n 
fe

ed
in

g
66

3
99

12
0.

06
69

31
64

A
as

vo
ël

be
rg

 6
11

 (
A

as
61

1)
9

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
1

H
ol

e 
fe

ed
in

g,
 

m
ar

gi
n 

fe
ed

in
g,

 
ga

lli
ng

6
22

9
0.

02
78

4
7

A
as

vo
ël

be
rg

 1
11

 (
A

as
11

1)
8

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
1

M
ar

gi
n 

fe
ed

in
g

35
33

08
0.

01
03

12
24

A
as

vo
ël

be
rg

 2
11

 (
A

as
21

1)
7

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
1

M
ar

gi
n 

fe
ed

in
g

10
3

20
61

0.
05

12
16

(c
on

tin
ue

d)

14 Expansion of Arthropod Herbivory in Late Triassic South Africa…



654

Si
te

 n
am

e 
(a

bb
re

vi
at

io
n)

St
ra

tig
ra

ph
ic

 
po

si
tio

na
H

ab
ita

ta

W
ho

le
 

pl
an

t 
ta

xa
b

D
om

in
an

t 
fu

nc
tio

na
l 

fe
ed

in
g 

gr
ou

pc

To
ta

l D
T

 
oc

cu
rr

en
ce

s
To

ta
l p

la
nt

 
sp

ec
im

en
s

In
te

r 
ac

tio
n 

in
de

xd

To
ta

l 
ki

nd
s 

of
 D

T
s

Pl
an

t 
m

or
ph

ot
yp

es

A
as

vo
ël

be
rg

 3
11

 (
A

as
31

1)
6

H
ei

di
ph

yl
lu

m
 T

hi
ck

et
1

M
in

in
g

12
09

11
,6

77
0.

13
13

18
18

A
as

vo
ël

be
rg

 4
11

 (
A

as
41

1)
5

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
15

M
ar

gi
n 

fe
ed

in
g

11
27

20
,3

58
0.

05
54

44
11

2

A
as

vo
ël

be
rg

 5
11

 (
A

as
51

1)
4

D
ic

ro
id

iu
m

 O
pe

n 
W

oo
dl

an
d

0
Su

rf
ac

e 
fe

ed
in

g
5

85
0.

05
88

3
11

A
as

vo
ël

be
rg

 7
11

 (
A

as
71

1)
3

Sp
he

no
ba

ie
ra

 C
lo

se
d 

W
oo

dl
an

d
1

G
al

lin
g

3
47

0.
06

38
2

5

A
sk

ea
to

n 
11

1 
(A

sk
11

1)
2

H
or

se
ta

il 
M

ar
sh

2
M

ar
gi

n 
fe

ed
in

g
45

10
61

0.
04

24
8

21
B

am
bo

es
be

rg
 1

11
 

(B
am

11
1)

1
D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d
0

M
ar

gi
n 

fe
ed

in
g

6
28

4
0.

02
11

4
7

a I
n 

st
ra

tig
ra

ph
ic

 o
rd

er
: t

he
 y

ou
ng

es
t s

ite
 is

 K
en

eg
ap

oo
rt

 1
11

 a
t t

op
 (

si
te

 1
06

) 
an

d 
th

e 
ol

de
st

 s
ite

 is
 B

am
bo

es
be

rg
 (

si
te

 1
) 

at
 b

ot
to

m
b T

he
 s

ev
en

 p
ri

m
ar

y 
ha

bi
ta

ts
 o

f 
th

e 
M

ol
te

no
 B

io
m

e 
ar

e 
ill

us
tr

at
ed

 a
nd

 d
efi

ne
d 

by
 A

nd
er

so
n 

an
d 

A
nd

er
so

n 
(2

00
3)

 a
nd

 M
ac

R
ae

 (
19

99
)

c B
as

ed
 o

n 
th

e 
gr

ea
te

st
 n

um
be

r 
of

 d
am

ag
e-

ty
pe

 (
D

T
) 

oc
cu

rr
en

ce
s 

of
 a

 f
un

ct
io

na
l f

ee
di

ng
 g

ro
up

 (
FF

) 
fo

r 
ea

ch
 s

ite
d T

he
 in

te
ra

ct
io

n 
in

de
x 

is
 c

al
cu

la
te

d 
as

 th
e 

to
ta

l n
um

be
r o

f D
T

 o
cc

ur
re

nc
es

 d
iv

id
ed

 b
y 

th
e 

nu
m

be
r o

f p
la

nt
 s

pe
ci

m
en

s 
ex

am
in

ed
, p

ro
vi

di
ng

 a
 n

um
be

r e
xp

re
ss

in
g 

th
e 

de
ns

ity
 o

f 
in

te
ra

ct
io

ns
 f

or
 e

ac
h 

si
te

Ta
bl

e 
14

.1
 

(c
on

tin
ue

d)

C.C. Labandeira et al.



655

Ta
bl

e 
14

.2
 

H
er

bi
vo

ry
 m

et
ri

cs
 o

f 
th

e 
se

ve
n 

m
os

t h
er

bi
vo

ri
ze

d 
w

ho
le

-p
la

nt
-t

ax
a 

of
 th

e 
L

at
e 

T
ri

as
si

c 
A

as
vo

ël
be

rg
 4

11
 s

ite
, K

ar
oo

 B
as

in
 o

f 
So

ut
h 

A
fr

ic
a

W
ho

le
-p

la
nt

 ta
xo

n 
(W

PT
)1  a

nd
 h

os
t a

ffi
lia

tio
n

Fu
nc

tio
na

l 
fe

ed
in

g 
gr

ou
ps

N
um

be
r 

of
 D

T
s

D
T

 
oc

cu
rr

en
ce

s
Sp

ec
ia

liz
ed

 
as

so
ci

at
io

ns
Im

po
rt

an
ce

 r
an

k

H
ei

di
ph

yl
lu

m
 e

lo
ng

at
um

―
Te

le
m

ac
hu

s 
ac

ut
is

qu
am

us
―

O
dy

ss
an

th
us

 
cr

en
ul

at
a 

(c
on

if
er

) 
[W

PT
: M

]
9

28
47

2
4

1

D
ic

ro
id

iu
m

 c
ra

ss
in

er
vi

s―
Fa

ne
ro

th
ec

a 
pa

pi
li

of
or

m
is
―

?P
et

ru
ch

us
 

m
at

at
im

aj
or

 (
co

ry
st

os
pe

rm
) 

[W
PT

: I
]

7
20

26
5

2
2

Sp
he

no
ba

ie
ra

 s
ch

en
ck

ii
―

Sp
he

no
ba

ie
ra

-s
ho

rt
 s

ho
ot
―

H
am

sh
aw

vi
a 

lo
ng

ip
ed

un
cu

- l
at

a―
St

ac
hy

op
it

ys
 g

yp
si

an
th

us
 (

gi
nk

go
ph

yt
e)

 [
W

PT
: H

]
7

11
65

1
3

G
in

kg
oi

te
s 

m
at

at
ie

ns
is
―

A
va

ti
a 

bi
fu

rc
at

a―
E

os
te

ri
a 

eo
st

er
an

th
us

 
(g

in
kg

op
hy

te
) 

[W
PT

: F
]

5
11

88
1

4

L
ep

id
op

te
ri

s 
af

ri
ca

na
―

Pe
lt

as
pe

rm
um

 tu
rb

in
at

um
―

A
nt

ev
si

a 
sp

. 
(p

el
ta

sp
er

m
) 

[W
PT

: D
]

5
10

30
0

5

L
ep

id
op

te
ri

s 
st

or
m

be
rg

en
si

s―
Pe

lt
as

pe
rm

um
 m

on
od

is
cu

m
―

A
nt

ev
si

a 
sp

. 
(p

el
ta

sp
er

m
) 

[W
PG

: C
]

5
8

31
0

6

Z
on

ul
am

it
es

 v
ir

id
en

si
s―

no
da

l d
ia

ph
ra

gm
 A

–V
ir

id
is

ta
ch

ys
 g

yp
se

ns
is
―

Pa
ra

sc
hi

zo
-n

eu
ra

 fr
ed

en
si

s 
(h

or
se

ta
il)

 [
W

PT
: B

]
1

3
60

2
7

1 P
la

nt
 o

rg
an

s 
fo

rm
in

g 
ea

ch
 w

ho
le

 p
la

nt
 ta

xo
n,

 le
tte

re
d 

in
 F

ig
. 1

4.
4,

 a
re

 in
di

ca
te

d 
by

 th
e 

W
PT

 d
es

ig
na

tio
n

14 Expansion of Arthropod Herbivory in Late Triassic South Africa…



656

Ta
bl

e 
14

.3
 

Sp
ec

ia
liz

ed
 a

ss
oc

ia
tio

ns
 o

f 
th

e 
fiv

e 
m

os
t 

he
rb

iv
or

iz
ed

 w
ho

le
-p

la
nt

-t
ax

a 
of

 t
he

 L
at

e 
T

ri
as

si
c 

A
as

vo
ël

be
rg

 4
11

 s
ite

, 
co

m
pa

re
d 

to
 o

th
er

 r
el

ev
an

t 
M

ol
te

no
 lo

ca
lit

ie
s,

 K
ar

oo
 B

as
in

 o
f 

So
ut

h 
A

fr
ic

a

W
ho

le
-p

la
nt

 ta
xo

n 
(W

PT
)a  a

nd
 h

os
t 

af
fil

ia
tio

n

Sp
ec

ia
liz

ed
 A

ss
oc

ia
tio

ns

Fu
nc

tio
na

l 
Fe

ed
in

g 
gr

ou
p

H
os

t 
sp

ec
ia

liz
ed

 
D

T
A

as
41

1 
D

T
 

oc
cu

rr
en

ce
s

To
ta

l M
ol

te
no

 
lo

ca
lit

ie
s 

w
ith

 
th

e 
D

T

To
ta

l  
M

ol
te

no
 D

T
 

oc
cu

rr
en

ce
s

Pr
op

or
tio

n 
of

 F
FG

 D
T

s 
at

 A
as

41
1

D
om

in
an

t 
M

ol
te

no
 

ha
bi

ta
tb

H
ei

di
ph

yl
lu

m
 e

lo
ng

at
um

―
Te

le
m

ac
hu

s 
ac

ut
is

qu
am

us
―

O
dy

ss
an

th
us

 c
re

nu
la

ta
 

(c
on

if
er

) 
[W

PT
: M

]

H
ol

e 
F

ee
di

ng
D

T
8

1
21

78
1.

3%
H

T
P

ie
rc

in
g 

an
d 

Su
ck

in
g

D
T

12
8

2
4

40
5.

05
H

T

O
vi

po
si

ti
on

D
T

76
99

30
47

2
21

.0
%

H
T

M
in

in
g

D
T

71
14

7
23

12
71

11
.8

%
H

T
D

ic
ro

id
iu

m
 c

ra
ss

in
er

vi
s―

Fa
ne

ro
th

ec
a 

pa
pi

li
of

or
m

is
―

Pe
tr

uc
hu

s 
m

at
at

im
aj

or
 

(c
or

ys
to

sp
er

m
) 

[W
PT

: I
]

G
al

lin
g

D
T

70
11

7
12

16
7

70
.1

%
D

O
W

Se
ed

 P
re

da
ti

on
D

T
74

35
10

70
0

5.
0%

D
O

W

Sp
he

no
ba

ie
ra

 s
ch

en
ck

ii
―

Sp
he

no
ba

ie
ra

-
sh

or
t s

ho
ot
―

H
am

sh
aw

vi
a 

lo
ng

ip
ed

un
cu

- l
at

a―
St

ac
hy

op
it

ys
 

gy
ps

ia
nt

hu
s 

(g
in

kg
op

hy
te

) 
[W

PT
: H

]

G
al

lin
g

D
T

12
2

35
5

49
71

.4
%

SC
W

G
in

kg
oi

te
s 

m
at

at
ie

ns
is
―

A
va

ti
a 

bi
fu

rc
at

a―
E

os
te

ri
a 

eo
st

er
an

th
us

 
(g

in
kg

op
hy

te
) 

[W
PT

: F
]

Se
ed

 P
re

da
ti

on
D

T
73

63
7

11
30

5.
6%

SC
W

Z
on

ul
am

it
es

 v
ir

id
en

si
s―

no
da

l d
ia

ph
ra

gm
 

A
–V

ir
id

is
ta

ch
ys

 g
yp

se
ns

is
―

Pa
ra

sc
hi

zo
-

ne
ur

a 
fr

ed
en

si
s 

(h
or

se
ta

il)
 [

W
PT

: B
]

O
vi

po
si

ti
on

D
T

72
14

9
38

36
.8

%
H

M
O

vi
po

si
ti

on
D

T
10

8
39

2
40

97
.5

%
H

M
,S

C
W

D
or

dr
ec

ht
it

es
 e

lo
ng

at
us

/D
. m

az
oc

ir
ru

s 
(c

on
if

er
)

Se
ed

 P
re

da
ti

on
D

T
12

4
2

2
13

15
.4

%
SC

W
,D

R
F-

I

a W
ho

le
 p

la
nt

 ta
xa

 (
W

PT
) 

ar
e 

in
di

ca
te

d 
in

 F
ig

. 1
4.

4,
 w

ith
 th

ei
r 

he
rb

iv
or

e 
da

m
ag

e 
ty

pe
s 

(D
T

s)
 a

nd
 f

un
ct

io
na

l f
ee

di
ng

 g
ro

up
s 

(F
FG

s)
b H

ab
ita

t 
ab

br
ev

ia
tio

ns
: 

D
O

W
 D

ic
ro

id
iu

m
 O

pe
n 

W
oo

dl
an

d,
 H

M
 H

or
se

ta
il 

M
ar

sh
, 

H
T

 H
ei

di
ph

yl
lu

m
 T

ic
ke

t, 
SC

W
 S

ph
en

ob
ai

er
a 

C
lo

se
d 

W
oo

dl
an

d,
 D

R
F

-I
 

D
ic

ro
id

iu
m

 R
ip

ar
ia

n 
Fo

re
st

, i
m

m
at

ur
e 

ph
as

e 
(A

nd
er

so
n 

an
d 

A
nd

er
so

n 
20

03
)

C.C. Labandeira et al.



657

Although the consumption of live plant tissue is quite different from the con-
sumption of dead plant tissue (Brues 1924; Mitter et al. 1988), both types of biologi-
cal interactions are quite different from physical destruction of plants by the 
environment, such as leaf damage attributable to wind, water or the impact of grav-
ity (Wilson 1980; Vincent 1990; Vogel 2012). For detritivory, the five classes of 
evidence listed immediately above typically are absent. For example, detritivory 
does not produce callus and other teratological plant-response tissues that typically 
result when insect-induced herbivory targets live plant tissues. Importantly, detri-
tivory almost always lacks the delicate microstructural features of damage, such as 
veinal stringers and necrotic tissue flaps that occur along the margins or surfaces of 
herbivorized plant organs.

14.3.3  Functional Feeding Groups, Damage Types 
and Component Communities

The arthropod damage present at Aas411 was categorized based on the FFG–DT 
system of Labandeira et al. (2007), consisting of data (Tables 14.2, 14.3; Figs. 14.2, 
14.3, 14.4) and illustrations of damage (Figs. 14.5, 14.6, 14.7, 14.8, 14.9, 14.10, 
14.11, 14.12, 14.13). A functional feeding group (FFG) is a major mode of insect 
feeding defined by the way an insect consumes its food and is associated with 
particular insect mouthpart structure, feeding mode and plant damage pattern 
(Labandeira 1997, 2002b). A FFG is subdivided into multiple damage types (DTs), 
each of which is a distinctive, defined pattern of damage that represents the 
most restrictive level of diagnosis and constitutes the fundamental unit of analysis 
in this and other such studies (Wilf and Labandeira 1999; Schachat et al. 2014; 
Ding et al. 2015).

There are, however, a few complexities to this system of insect-damage analysis. 
Oviposition also is considered a FFG, even though it represents the insertion of eggs 
into plant tissues by a sword-like abdominal feature, the ovipositor, and technically 
is not a type of plant consumption. However, oviposition has an abundant and rich 
fossil record of insect-mediated plant damage and is represented by a wide variety 
of DTs (Sarzetti et al. 2009; McLoughlin 2011; Gnaedinger et al. 2014), and has 
been treated as a FFG in this and previous studies. In addition, some DTs are com-
bined into a damage-type suite that has two or more associated DTs that are linked 
organically to the same insect maker. For example, the base of deciduous gall 
DT186 has attachments to leaves that exactly match the holes of DT148 that occur 
on the same host plant of the same deposit, indicating a match that represents a 
deciduous gall and the dehisced leaf scar from which it originated (Labandeira et al. 
2007). Another example of a damage-type suite is the leaf mine DT280 that likely 
originated from oviposition lesion DT101 on the same leaf taxon, and whose adult 
feeding damage likely is DT103, also occurring the same host-plant organ (Ding 
et al. 2014).
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Herbivore component communities were established for the major plant hosts at 
Aas411. A component community consists of all species that trophically are depen-
dent on a single, live, host-plant species (Root 1973). Some Molteno vascular-plant 
species are a host to herbivores that consist of a single organ, whereas others are 
designated as a host consisting of a whole plant taxon (WPT) that consists of mul-
tiple affiliated plant organs. The component community of each plant host includes 
all dependent herbivores and their derivative consumers, including predators and 
parasitoids, as well as saprobes that are trophically linked to that source-plant spe-
cies through the same food web. Many arthropod herbivores and predators are 
known for the Molteno Biome in general and Aas411  in particular, as discussed 
below. In modern component communities, the source plant constitutes approxi-
mately 90% of the total component community biomass; insect herbivores account 
for about 10%; and generally 1% is attributable to consumers of the herbivores 
(Schmitz 2008). A relevant consideration here is that insect parasites and parasitoids 
are a feeding guild that did not appear until the Early Jurassic (Labandeira 2002a), 
and thus are excluded from the component community structure of Molteno plant 
species, which was characterized by top-to-down regulation by insect and ultimately 
vertebrate predators.

14.4  The Molteno Formation

14.4.1  Geological Backdrop

The Late Triassic (Carnian) Molteno Formation is a thick, wedge-shaped sequence 
of conglomerate, sandstone, shale and coal that occupies the eastern limb of the 
Karoo Basin in South Africa. (Hancox 2000). The Molteno sedimentary package 
consists of a well exposed, approximately quadrangular outcrop pattern that extends 
approximately 200  km in an east–west and 450  km in south–north directions 
(Fig.  14.1). This sedimentary package thickens to 650–600  m from the south 
(Hancox 2000), adjacent the Triassic sediment source of the then substantial moun-
tains of the Cape Fold Belt, and thins to the north where it is unconformably under-
lain by the older Middle Triassic (Anisian) Burgersdorp Formation, the uppermost 
unit of the Beaufort Group. The Molteno Formation conformably intergrades later-
ally and distally into a red-bed facies of the Lower Elliot Formation (Anderson et al. 
1998). The portion of the Karoo Basin housing the Molteno Formation consists of a 
foreland basin established by tensional tectonism from the break-up of Gondwana. 
This tectonic separation of landmasses formed a rift between northern Antarctica 
and South American toward the south from southern Africa, while Gondwana 
drifted northward during the Triassic.

C.C. Labandeira et al.
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14.4.2  Lithostratigraphy

Although the lower contact of the Molteno Formation with the Burgersdorp 
Formation is unconformable, generally the lowermost strata of the Molteno 
Formation is considered as the first appearance of conglomeratic and coarse-grained 
sandstone strata, typical of the transition from an earlier phase of suspension-load 
flow to a later phase of bed-load flow. This switch parallels a distinct change in 
outcrop color from red and purple to grey and buff hues (Cairncross et al. 1995; 
Anderson et al. 1998). This marked sedimentologic and color break coincides with 
a change in the depositional environment from a floodplain of ephemeral streams to 
a braided-stream system, and is marked by an unconformity that probably is regional 
in scope. It is likely that this changeover was caused by initiation of an offshore, 
tensional tectonic regime, occasioned by the rifting of Antarctica and South America 
from southern Africa. Deposits of the Molteno Formation consist of buff-colored 
to grey, often yellowish brown and pale bluish to light grey sandstones that 
interdigitate with grey to olive-grey and reddish brown siltstones and mudstones 
(Cairncross et  al. 1995; Anderson et  al. 1998). These strata occasionally contain 
sedimentary ichnofossils (Turner 1978). Carbonaceous mudstones often are pres-
ent, but coals are rare, with thermal rank intensity decreasing in a westerly direction 
(Hancox 2000). After deposition of the Molteno sediments, there was another colo-
rimetric shift in the Lower Elliot Formation, from buff-colored hues and grays to 
reds and purples, as well as a distinctive change to finer-grained strata that represent 
a stepwise increase in flooding events (Cairncross et al. 1995; Anderson et al. 1998).

14.4.3  Depositional Environment and Cycles

During the interval of Molteno sedimentation, as the Cape Fold Belt Mountains to 
the south were eroded to a remnant of their former size, there was a sedimentary 
wedge of strata that fanned out toward the north and formed a variety of deposi-
tional environments (Hancox 2000). These environments consisted of braided and 
subordinate meandering fluvial systems that consisted of three primary facies. 
These facies were: (i), channel-fill deposits of coarse grained and upward-fining 
sequences; (ii), upward-coarsening crevasse splays and sheet-flood strata; and (iii), 
interspersed laminated lake and waterlogged shales indicating lacustrine or palus-
trine conditions. The beginning of Molteno sedimentation was characterized by a 
braided-stream style of fluvial deposition, and small inter-channel bodies of water. 
By contrast, toward the end of Molteno deposition there was a shift toward 
meandering- river systems and the establishment of more extensive lakes (Anderson 
et al. 1998).

The Molteno Formation is subdivided into six, distinctive, sedimentary cycles 
(Fig.  14.1). Each cycle repeats a fining-upward sequence of sedimentation that 
resulted from a pulse of mostly fault-controlled uplift (Turner 1975). The uplifts 
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that produced the sedimentary cycles originated from the south in cycles 1 and 2, 
and from the southeast for cycles 3 through 6 (Anderson et al. 1998). Each of the six 
sedimentary cycles in the Molteno Formation typically produced a coarse-grained 
sandstone to fine-grained sandstone to a siltstone–shale–coal succession that dis-
played more resistant strata at the base and less resistant strata at the top of each 
sequence. The sedimentary cycles begin with the Bamboesberg Member represent-
ing cycle 1, and end with the Loskop Member of cycle 6. The physical environment 
and habitat type of a Molteno site are contingent on where in the sedimentary cycle 
landscape that it occurs. More stable, proximal localities closer to the source area 
tend to favor mature forests bordering lakes, whereas more distal localities occur 
along distributary channels that prefer ephemeral vegetation in disturbed 
environments.

14.4.4  Molteno Localities and the Broader Context

For this and following studies of Molteno plant–insect interactions, the total 
data- set consists of 106 localities containing 177,297 separately examined plant 
specimens from which 10,165 interactions have been recorded (Table 14.1). The 
number of localities for each habitat type, detailed below, are: two localities of 
Mature Dicroidium Riparian Forest, nine localities of Immature Dicroidium 
Riparian Forest, 33 of Dicroidium Open Woodland, 15 of Sphenobaiera Closed 
Woodland, 23 of Heidiphyllum Thicket, 18 of Horsetail Marsh, three of Fern–
Kannaskoppia Meadow, and three of indeterminate habitat. These Molteno data rep-
resent the most extensive database of plant–insect interactions in the fossil record 
and will be included with eight Anisian localities and approximately ten Guadalupian 
and Lopingian Permian localities, all from the Karoo Basin, in future analyses. This 
broader study will examine the effects on Molteno plant–insect interactions that 
were inflicted by the P-Tr ecological crisis approximately 35 million-years earlier.

14.4.5  The Aasvoëlberg 411 Site

Of the 106 plant assemblages collected from the Molteno Formation, the Aas411 
site is the second most intensively sampled in terms of human labor. Specimens 
were excavated from Aas411 on 11 separate field trips, covering 40 days and include 
a total of 512 person-hours splitting slabs on site or back in the lab by John and 
Heidi Anderson and colleagues. A total of 2535 catalogued slabs originate from 
Aas411, of which 242 were part/counterpart slabs, that consist of 20,358 examined 
individual plant specimens averaging to about eight plant specimens per slab. The 
Aas411 site has the most numerically abundant specimens from the Molteno 
Formation; the Bir111 (Birds River 111) site is second at 15,503 specimens. All 
fossil plants from the Molteno Formation currently is housed at the Evolutionary 

C.C. Labandeira et al.



661

Studies Institute (ESI) at the University of the Witwatersrand, in Johannesburg, 
South Africa, under the curation of Dr. Marion Bamford.

Geographically the Aas411 site occurs in the far southwestern corner of the 
Molteno Formation outcrop belt, in the north-central part of the Eastern Cape 
Province, approximately 50 km southwest of the town of Molteno, after which the 
formation is named. Strata of the Aas411 site crop out within the Bamboesberg 
Member, the stratigraphically lowest of six defined members (cycles) in the forma-
tion. Of the 106 sampled plant assemblages, Aas411 is the fourth lowest in the 
Molteno sequence. Of the seven primary habitats recognized as characterizing the 
Molteno Biome, Aas411 represents Sphenobaiera Closed Woodland, a habitat 
which typically occurs along floodplains surrounding lakes.

The fossiliferous stratum yielding the Aas411 material consists of about a two 
m-thick bed of rhythmically alternating, thinly laminated, yellowish-grey shale to 
slate with very good cleavage. The strata are significantly altered thermally, resulting 
from the heating effect of nearby dolerite sills and dikes. Preservation is exclusively 
in the form of impressions, though with excellent clarity of detail. The local bed 
from which the specimens originate is exposed intermittently along a grassy hill-
slope for some 140 m, but its full extent is uncertain, as is its uniformity of thickness 
and lithology.

The preserved Aas411 flora consists of 30 vegetative species, of which 22 are 
gymnosperms and eight are non-gymnosperms. The Aas411 flora is dominated by 
several species each of the corystosperm Dicroidium (60%) and the ginkgophyte 
Sphenobaiera (30%), which, together with non-dominant plants, probably represent 
distinct woodland communities within the Sphenobaiera Closed Woodland habitat 
that bordered floodplain lakes. Generally, the constituents and preservation of the 
flora, considering the foliage, cones, scales and seeds, suggest quiescent conditions 
occurring adjacent to a sizable water body. The insect fauna is composed of a high- 
diversity cockroaches, beetles and dragonflies which form an association repre-
sented by 129 individuals. These informal insect taxa provisionally have been 
assigned to 30 genera and 43 species across a wide spectrum of 13 orders. The 
numerical dominance of cockroaches, consisting of 54 individuals, hints at the sur-
rounding woodland having a dense cover with mostly a closed canopy and well- 
developed leaf litter layer.

14.4.6  Habitats

There are seven distinctive, primary habitats that characterize the floodplain envi-
ronments of the Molteno Biome (Cairncross et  al. 1995; Anderson et  al. 1998). 
These habitats were determined by physiognomic features of the plants, such as 
abundance patterns, plant growth form, leaf architecture, and recurring plant asso-
ciations. In addition, features of the environment are relevant for determination of 
the habitat, such as sedimentologic features of the deposit, indications of climate- 
based aridity, and inferred water saturation levels in soils (Anderson and Anderson 
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2003). These seven habitats occupy particular, confined settings on the regional 
landscape that consist of particular plant associations or monodominant communi-
ties that have been determined for 103 of the 106 floras of the Molteno Formation. 
Floras from three of the Molteno localities have not been assigned to any of the 
seven habitats.

The climax, or mature, phase of Dicroidium Riparian Forest consists of a multi-
story, close-canopied, high diversity forest of plant taxa and morphotypes occurring 
adjacent to active and abandoned and meandering water channels that are 
 superimposed on an earlier Triassic erosional surface. By contrast, the pre-climax, 
or immature, phase of Dicroidium Riparian Forest is characterized by single story, 
mostly closed canopy, medium diversity forest adjacent various floodplains. These 
channels are mostly braided and occur on alluvial flood plains. Dicroidium Open 
Woodland consists of a low to medium diverse woodland with a considerable inter-
vening open spaces occurring along floodplains bordering water courses that are 
subject to intermittent sheet flooding. Sphenobaiera Closed Woodland, such as the 
Aas411 site, is comprised of a moderately diverse woodland with a minimally inter-
rupted canopy that borders lakes and is present on floodplains. Heidiphyllum 
Thicket represents almost monodominant, dense stands of shrubby coniferous 
plants and associated lianas rooted in soils with an elevated water table along flood-
plains or on mid-stream sandbars. Horsetail Marsh consists of highly monodomi-
nant stands of horsetails along sandbars in channels, floodplain marshes, and poorly 
drained wetland soils that surround lakes. Fern–Kannaskoppifolia Meadow is a rare 
habitat of a low-diversity, mostly herbaceous in form that occupies median channel 
bars or braided-river sandbars, often in ruderal environments.

Each habitat type has a characteristic spectrum of plant species whose rank-order 
of abundance is distinctive at the genus level (see Sect. 14.5.14). Preliminary obser-
vations indicate that 43 localities and most habitats have produced insect fossils that 
express different combinations of and dominance of particular insect taxa. Insects 
of the Molteno Biome are Ephemeroptera (mayflies), Odonatoptera (dragonflies 
and related forms), Plecoptera (stoneflies), Blattodea (cockroaches), Orthoptera 
(forms related to grasshoppers and crickets), Hemiptera (cicada-like forms and 
bugs), Coleoptera (beetles), Neuroptera (lacewings), Hymenoptera (sawflies) and 
Mecoptera (scorpionflies) (MacRae 1999; Anderson and Anderson 2003). About 
half of these groups are overwhelmingly are herbivorous or have significant herbi-
vore lineages, and undoubtedly assumed a major role in the plant–insect interac-
tions in the Molteno Biome (Scott et al. 2004; Labandeira 2006a, 2012, 2016).

14.5  Molteno Plant Hosts

14.5.1  Overview

A broad variety of plants characterize the Molteno Flora, collectively representing 
the most diverse assemblage worldwide of plants from the Late Triassic. The 
Molteno Flora from the Karoo Basin of South Africa and Lesotho is a Late Triassic 
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Gondwanan assemblage that is floristically consistent with all of the major groups 
of cryptogams, ferns, and seed plants that typically occur in other floras of the 
supercontinent at the genus and frequently the species level. The Molteno Flora 
represents a rich assemblage of bryophytes (mosses, unpublished data), hepato-
phytes (liverworts, unpublished data) and lycopods (clubmosses, unpublished data), 
horsetails (Anderson and Anderson 2017), ferns (Anderson and Anderson 2008) 
and seed plants (Anderson and Anderson 1983, 1989, 2003). The seed plants repre-
sent the majority of the plant lineages present, and include virtually all major Late 
Triassic taxa of cycads, conifers, peltasperms, diverse ginkgophytes, corystosperms, 
bennettitaleans and probably gnetaleans. Additional unaffiliated taxa also occur. 
Based on an assessment of success following five criteria established by Anderson 
and Anderson (2003), the five most prominent foliage genera, in order of promi-
nence, are the corystosperm Dicroidium, the conifer Heidiphyllum, the ginkgophyte 
Sphenobaiera, the bennettitopsid Taeniopteris, and the ginkgophyte 
Kannaskoppifolia.

14.5.2  Bryophytes

Most Molteno bryophytes currently are undescribed, although a preliminary tally of 
these rare to uncommon herbaceous taxa indicates that they bore a thallus represent-
ing a broad variety of morphologies among mosses, liverworts and an indeterminate 
taxon. Bryophytes collectively occur in about a fourth of the 106 Molteno localities. 
Mosses are represented by a single species of undescribed Muscites and 12 unde-
scribed species of Thallites that are present in 18 localities and predominantly 
inhabited the immature and mature phases of Dicroidium Open Woodland. 
Liverworts are equally speciose, comprised of 13 undescribed species of 
Marchantites foliage from 19 localities that occurred on soils principally in 
Heidiphyllum Thicket and subordinately in the immature and mature phases of 
Dicroidium Riparian Forest, Dicroidium Open Woodland and Sphenobaiera Closed 
Woodland. The species of moss foliage primarily inhabited five localities, domi-
nantly in Heidiphyllum Thicket and both developmental phases of Dicroidium 
Riparian Forest. One undescribed, monospecific genus was present in two localities 
of Sphenobaiera Closed Woodland, including Aas411. Although modestly diverse, 
the above four bryophyte genera were present at low frequencies and were an insig-
nificant part of the flora, occurring on or within a few centimeters of the soil 
surface.

14.5.3  Lycopods

Largely undescribed, herbaceous or small single-stemmed, arborescent lycopods 
consisted of five undescribed genera and 13 species of stems, foliage and cones 
informally assigned to a new, undescribed lycopodialean family and the extinct 
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isoëtalean Pleuromeiaceae. Lycopods occurred in about a tenth of the Molteno 
localities, are present at significantly lower frequencies than bryophytes, and are 
represented by six genera and 13 species that formally have not been described. A 
single undescribed genus of lycopod cone was present at one site of Sphenobaiera 
Closed Woodland. By contrast, another undescribed genus of lycopod cone is rep-
resented by five species that occurred in five localities across a landscape of varied 
habitats. Lycopod megaspores have been found in two localities, including Aas411. 
Three genera of lycopod foliage are present at three localities, principally in 
Sphenobaiera Closed Woodland, all three of which occur at Aas411. A genus of 
lycopod stems is represented at one site whereas another morphotype of lycopod 
stems occurs in five localities, including a species at Aas411, amid a broad spectrum 
of habitats. Like bryophytes, lycopods were present in those localities with the most 
diverse biotas, especially at Aas411, Umk111 and Bir111. Molteno lycopods repre-
sent several new, higher-level taxa not known elsewhere from the Late Triassic and 
many had distinctive stem morphologies.

14.5.4  Horsetails

Horsetails, or sphenopsids, are one of the plant groups that persistently are present 
throughout the Molteno Biome, whose stems, foliage and cones were present in 77 
of the 106 localities (73%) and occasionally occur in some localities as monodomi-
nant or nearly monodominant stands in a variety of habitats (Anderson and Anderson 
2017). Molteno horsetails consist of two orders, three families, 13 genera and 37 
species representing fertile and sterile taxa. These taxa were present predominantly 
in the three habitat types of Horsetail Marsh, Heidiphyllum Thicket and Dicroidium 
Open Woodland. In addition, horsetails form a significant floral component in Fern- 
Kannaskoppia Meadow, present in all three localities of this distinctive community 
type, and also are documented in all 11 localities of the immature and mature phases 
of Dicroidium Riparian Forest. Horsetails are considerably less abundant in the six 
localities of Sphenobaiera Closed Woodland but are present in all three localities of 
indeterminate habitat type. Within the mostly wetlands-inhabiting horsetails, there 
was a considerable diversity of stem architecture, foliage types, reproductive struc-
tures and apparently a division between smaller, shorter statured herbaceous forms 
versus considerably taller, reed-like to arborescent forms.

Horsetails consist of two ordinal-level ranks, Echinostachyales, represented by 
fertile and sterile material, and Equisetales, affiliated with vegetative material. The 
Echinostachyales is comprised of the Echinostachyaceae and a second family of 
uncertain taxonomic status. The Echinostachyaceae consists of the cone genus of 
Echinostachys, represented by one species, and the foliage genera of Schizoneura 
(two species) and Paraschizoneura (four species), all of which occur in seven locali-
ties. The second family, an extinct, family-level lineage of uncertain position, con-
sists of Cetistachys, Moltenomites and Balenosetum, that uniquely is present only at 
the Umk111 site. The Equisetales are represented by vegetative and sterile material 
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and consist of the single extant family, Equisetaceae, but represent extinct taxa 
housing the six genera of Kraaiostachys with one species, Anisetum (one species), 
Viridistachys (two species), Zonulamites (four species), Townroviamites (three spe-
cies), Equisetostachys (nine species), and Equisetites (six species), collectively 
present in 12 localities that include all seven localities containing members of the 
Echinostachyaceae. For the horsetails of the Molteno Biome, the most speciose 
horsetail taxa are the vegetative organs of Zonulamites and Equisetostachys 
(Anderson and Anderson 2017).

14.5.5  Ferns

The moderately diverse ferns are represented in 50 of the 106 localities (47%) and 
are the third most abundant vascular plant group, after horsetails and seed plants. 
Molteno ferns are divided into four major lineages (Anderson and Anderson 2008), 
the first three of which are extant, although the evolutionary relationship of the 
fourth, unaffiliated group remains unknown. The first group consists of the euspo-
rangiate Marattiaceae, represented by two species of Drepanozamites, and 
Asterothecaceae consisting of three species of Asterotheca. These eusporangiate 
ferns collectively inhabit six localities, and occur predominantly amid the arbores-
cent vegetation of Dicroidium Riparian Forest and to a lesser extent in Sphenobaiera 
Closed Forest and Dicroidium Open Woodland. The second major group is affili-
ated with leptosporangiate Osmundaceae, also representing fertile material, and 
consists of 12 species of Osmundopsis, Rooitodites, Birtodites and Elantodites. The 
osmundaceous taxa are found in 22 localities, predominantly in Heidiphyllum 
Thicket and Dicroidium Open Woodland, and subordinately in the remaining five 
habitats.

A third group of ferns is assigned to the Dipteridaceae and an unaffiliated family. 
The Dipteridaceae is represented by the three species of Dictyophyllum that occur 
in eight localities, preferring Heidiphyllum Thicket and subordinately the immature 
and mature phases of Dicroidium Riparian Forest, Sphenobaiera Closed Woodland 
and Dicroidium Open Woodland. The unassigned family is represented by three 
species across a broad swath of localities and habitats. The fourth group consists of 
vegetative material of uncertain taxonomic position that lack spore or sporangial 
features that would provide an affiliation to a known lineage. The unaffiliated ferns 
of sterile foliage from the fourth group are Cladophlebis, Sphenophyllum, Birmoltia, 
Nymbopteron, Parsorophyllum, Stormbergia, Nymboidiantum, Displinites and 
Molteniella that occur in 47 localities. Habitats colonized by Dipteridaceae ferns are 
dominantly Dicroidium Open Woodland and Heidiphyllum Thicket, somewhat less 
so for Dicroidium Riparian Forest, and minor elements in the remaining habitats.

Molteno ferns constitute three or four families, 16 genera and 49 species, inclu-
sive of fertile and vegetative taxa. This spectrum of fern lineages is the product of 
three ancient fern radiations, consisting of older, late Paleozoic eusporangiate lin-
eages of the Marattiaceae and Asterothecaceae; the basal leptosporangiate lineages 
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of the Osmundaceae originating during osmundalean radiation of the late Paleozoic 
to earliest Mesozoic; and an early lineage of the younger still Dipteridaceae that 
likely originated during the earliest Mesozoic polypodialean radiation (Anderson 
and Anderson 2008; also see Pryer et al. 2004). Ecologically, all fern groups were 
distributed in the seven habitats described for the Molteno (MacRae 1999), although 
they did not prefer overwhelmingly any particular habitat, except perhaps 
Heidiphyllum Thicket, which appears particularly well populated by fern taxa.

14.5.6  Cycads

Cycad foliage is well represented in the Molteno flora (Anderson and Anderson 
1989), although the only known fructification, Androstrobus, is indeed rare and rep-
resented by two specimens that occur at the Kra311 (Kraai River 311) and Pen321 
(Peninsula 321) localities (Anderson and Anderson 2003). Molteno cycad foliage is 
probably affiliated with Cycadaceae, an extant major lineage of cycads that are 
basal within the modern clade (Condamine et  al. 2015), but extend to the early 
Mesozoic and possibly late Paleozoic (Anderson et  al. 2007). The most diverse 
Molteno genus is Pseudoctenis, a pinnate frond of medium to large size represented 
by 10 species that occur in 23 of the 106 localities (22%). The habitats in which 
Pseudoctenis resided are Dicroidium Open Woodland and the immature and mature 
phases of Dicroidium Riparian Forest; although it also is found subordinately in 
Sphenobaiera Closed Woodland and Fern–Kannaskoppia Meadow. Three, other, 
less commonly occurring foliage genera are Jeanjacquesia, with four species inhab-
iting four localities; Ctenis, consisting of two species found in two localities; and 
Moltenia that consists of four species confined to five localities of Dicroidium 
Riparian Forest. Localities with the greatest number of cycad species are Hla212 
(Hlatimbe 212), Kon211A + Kon221 (Konigs Kroon 211A and 221 combined), and 
Kon221 (Konigs Kroon 221). Molteno cycads were generally small and had a 
pachycaul plant form similar to modern cycads, and occurred in all habitats except 
Horsetail Marsh and Heidiphyllum Thicket.

14.5.7  Conifers

Conifers are richly represented in the Molteno flora and consist of three, perhaps 
four, family-level groupings (Anderson and Anderson 1989, 2003). Most commonly 
present is Voltziaceae, a lineage that consists of ubiquitous Heidiphyllum elongatum 
foliage, the affiliated ovulate organ Telemachus, and affiliated pollen organ 
Odyssianthus. Vegetative and reproductive material of Voltziaceae occur in 76 of the 
106 floras (72%), attributable to the overwhelmingly dominance of H. elongatum 
and associated conspecific reproductive taxa. Heidiphyllum elongatum occurs in 
every Molteno habitat, but especially is prominent in Heidiphyllum Thicket and 
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Dicroidium Open Woodland; much less so in Sphenobaiera Closed Woodland, the 
immature and mature phases of Dicroidium Riparian Forest and Horsetail Marsh; 
and rarely in Fern–Kannaskoppifolia Meadow. Telemachus consists of ten distinc-
tive species occurring in 28 localities and occurs in approximately in the same pro-
portions and habitats as H. elongatum. By contrast, one specimen of Odyssianthus 
was found at Telemachus Spruit (Tel111), a site rich in associated Telemachus ovu-
late material and H. elongatum foliage. A probably related, unnamed ovulate fructi-
fication has been found only at the Aas411 site. The possibly related, monospecific 
foliage of Clariphyllum clarifolium was found at three localities of the immature 
and mature phases of Dicroidium Riparian Forest. Heidiphyllum and Clariphyllum 
are considered as woody, small to medium-size shrubs with a bamboo like habit 
(Anderson and Anderson 2003; Barboni and Dutra 2015).

A second group of vegetative and reproductive conifer material, tentatively 
assigned to Podocarpaceae, consists of the leaf genus Rissikia, with two species that 
occur in 25 localities. Associated with Rissikia is the ovulate cone, Rissikistrobus, 
comprised of four species occurring in eight localities, and the pollen cone, 
Rissikianthus, with four species that are found in five localities. The Rissikia–
Rissikistrobus–Rissikianthus affiliation forms a whole-plant taxon that was a minor 
member at Aas411, and was present sporadically throughout the Molteno Biome, 
preferentially inhabiting Dicroidium Riparian Forest. A third conifer group, the 
Dordrechtitaceae, consists of the ovulate cone Dordrechtites with four species and 
the monospecific male cone Gypsistrobus that collectively occur in 28 localities—a 
lineage exhibiting a habitat preference for Heidiphyllum Ticket, Dicroidium Open 
Woodland and Dicroidium Riparian Forest, and to a lesser extent Sphenobaiera 
Closed Woodland, occurring rarely in other habitats. The last group, monospecific 
Pagiophyllum, is another conifer foliage genus also occurring at Aas411; however, 
this enigmatic taxon has an uncertain taxonomic position. The reconstruction of the 
Rissikia–Rissikistrobus–Rissikianthus source plant is that of a large tree that 
occurred in wetlands and riparian border habitats (Anderson and Anderson 2003). 
The parent plant of the Dordrechtitaceae remains unknown, whereas Pagiophyllum 
is reconstructed as a small tree.

14.5.8  Peltasperms

Peltasperms are a major seed-plant group of the Permian to mid Mesozoic whose 
Mesozoic representatives are characterized by Lepidopteris foliage and associated, 
distinctive Peltaspermum ovulate organs and Antevsia pollen organs (Anderson and 
Anderson 1989, 2003). Molteno peltasperms are typified by the common Gondwanan 
foliage genus Lepidopteris, consisting of two species, both of which occur at 
Aas411. The two species of Lepidopteris are found in 37 of the 106 Molteno locali-
ties (35%), and are dominant in Dicroidium Open Woodland, less so in the imma-
ture and mature phases of Dicroidium Riparian Forest and Sphenobaiera Closed 
Woodland, and becoming uncommon to insignificant in Heidiphyllum Thicket, 
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Horsetail Marsh and Fern–Kannaskoppia Meadow. The affiliate ovulate organ, 
Peltaspermum, has been assigned to five species that occur in 30 localities, and is 
dominant in Dicroidium Open Woodland, less so in the immature and mature phases 
of Dicroidium Riparian Forest and Heidiphyllum Thicket, and is rare in the remain-
ing localities. All but 8 of the 30 localities that have Peltaspermum fructifications 
also have Lepidopteris foliage, thereby indicating conspecificity in association 
(Anderson and Anderson 2003). The monospecific pollen organ, Antevsia, is repre-
sented in five localities that are dominated by the immature and mature phases of 
the Dicroidium Riparian Forest habitat, frequently in association with Lepidopteris 
and Peltaspermum. For the Molteno Biome, the Lepidopteris–Peltaspermum–
Antevsia whole-plant taxon is reconstructed as a medium sized shrub occupying 
riverine forest (Retallack and Dilcher 1988; Anderson and Anderson 2003).

14.5.9  Corystosperms

Of any Late Triassic plant lineage, it is the Umkomasiales, commonly called corys-
tosperms, which have been the most iconic representative of Late Triassic vegeta-
tion throughout Gondwana. The family Umkomasiaceae was the most ubiquitous 
plant group present in the Molteno Biome (Anderson and Anderson 1983), whose 
foliage of Dicroidium is conspicuously represented in 92 of the 106 localities (87%), 
the most for any Molteno plant group (Anderson and Anderson 2003). Dicroidium 
consists of species that occur mostly in Dicroidium Open Woodland habitat (36%), 
less so in Heidiphyllum Thicket, and subordinately in Sphenobaiera Closed 
Woodland, Horsetail Marsh and the immature and mature phases of Dicroidium 
Riparian Forest. Dicroidium also occurs in all three localities of Fern–Kannaskoppia 
Meadow. The rarity or absence of Dicroidium is most pronounced in Horsetail 
Marsh and Heidiphyllum Thicket habitats.

Of the nine species of Dicroidium foliage in the Molteno Biome, five occur at 
Aas411. The affiliations between species of Dicroidium foliage and seeds that are 
either dispersed or part of ovulate fructifications are complex, although certain 
species- level whole-plant taxa can be established in particular localities. Major 
corystosperm ovulate organs or seeds potentially affiliated with Dicroidium foliage 
are common. They are (i) Umkomasia seeds; (ii), the very common Fanerotheca 
(attached ovules)—Feruglioa (dispersed seed) complex; (iii), three species of a rare, 
undescribed seed genus; and (iv), a very rare, additional undescribed seed genus. 
These four, major seed morphologies probably are affiliated with particular species 
of Dicroidium and the pollen organ Petruchus in the same site, but species affilia-
tions remain unknown. Umkomasia and Fanerotheca–Feruglioa seeds are repre-
sented in 53 and 58 of the Molteno localities, respectively, and preferentially occur 
in Dicroidium Open Woodland, subordinately in the immature and mature phases of 
Dicroidium Riparian Forest, Sphenobaiera Closed Woodland and Heidiphyllum 
Thicket; they are much less present in Fern–Kannaskoppia Meadow and Horsetail 
Marsh. The three species of the less common, undescribed seed is found at 12 local-
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ities, and preferentially occurs in both the immature and mature phases of Dicroidium 
Riparian Forest. Other corystosperm material consists of single site occurrences of 
foliage and seeds that remain undescribed. The pollen organ affiliated with 
Dicroidium foliage, Petruchus, consists of four species that occur in eight localities 
and preferentially is represented in Dicroidium Riparian Forest and Dicroidium 
Open Woodland habitats. The whole plant taxon with Dicroidium foliage generally 
is reconstructed as a shrub to large tree; depending on the species, that occupied 
forest to woodland landscapes (Retallack and Dilcher 1988; Anderson and Anderson 
2003).

14.5.10  Ginkgophytes

Ginkgophytes were the most diverse group of plants in the Molteno Biome. The 
group consists of four or five major lineages or groupings of plants for which foli-
age and reproductive material are affiliated to various degrees (Anderson and 
Anderson 1989, 2003). In addition, there are certain genera that likely are ginkgo-
phytes but remain unplaced within the broader ginkgophyte alliance.

The Hamshawviaceae consists of Sphenobaiera foliage, Hamshawvia ovulate 
fructifications and Stachyopitys pollen organs. Sphenobaiera is considered as one of 
the several most prominent foliage types throughout Gondwana in general and the 
Molteno Biome in particular, consisting of nine species, excluding short shoot and 
scale leaf morphotypes, and has been recorded in 56 of 106 localities (53%). This 
distinctive, mostly lobate leaf with deep incisions ecologically predominates in 
Dicroidium Open Woodland habitat, but occurs at lesser frequencies in other habi-
tats with mostly woody plant taxa such as Sphenobaiera Closed Woodland, the 
immature and mature phases of Dicroidium Riparian Forest and in Heidiphyllum 
Thicket. It is represented sparingly in Horsetail Marsh and Fern–Kannaskoppia 
Meadow. The ovulate organ, Hamshawvia, is considerably rarer and consists of five 
species from six localities. Stachyopitys, the pollen organ, consists of six species 
occurring in eight localities that has a predilection for woodland and forested habi-
tats. Sphenobaiera is reconstructed as a shrub or a tree of medium size that inhab-
ited lake margins, as attested to its presence in Sphenobaiera Closed Woodland 
along the lakeshore plant communities of Aas411 and Bir111.

The second, major ginkgophyte group is Matatiellaceae, which consists of 
Kurtziana foliage and affiliated Matatiella ovulate fructifications. The pollen organ 
remains unknown. The uncommon to rare leaf genus Kurtziana consists of 14 unde-
scribed species occurring in 17 of 106 Molteno localities (16%), and exhibits a 
preference for occupying the immature and mature phases of Dicroidium Riparian 
Forest and Heidiphyllum Thicket habitats. Matatiella which comprises seven spe-
cies and is present in 10 localities, exhibits a similar broad range of habitat occupa-
tion as the foliage. The Kurtziana plant has been reconstructed as a small tree that 
occupied principally floodplain woodland (Anderson and Anderson 2003).
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A third major ginkgophyte group, Avatiaceae, is represented by Ginkgoites foli-
age, Avatia ovulate fructifications and seeds, and Eosteria pollen organs (Anderson 
and Anderson 2003). Ginkgoites foliage consists of seven Molteno species present 
in 21 of the 106 localities (20%), and displays a habitat preference for the shrubby 
to arborescent habitats of Dicroidium Open Woodland, Sphenobaiera Closed 
Woodland and the immature and mature phases of Dicroidium Riparian Forest, but 
is rare to absent in other habitats. The affiliated and occasionally very common 
Avatia is monospecific, occurs in 20 localities, and has a preference for Heidiphyllum 
Thicket, with a much lesser presence in other habitats. The pollen organ, Eosteria, 
consists of two species that occupy only Sphenobaiera Closed Woodland and 
Heidiphyllum Thicket. The Ginkgoites–Avatia–Eosteria whole-plant taxon is 
reconstructed as a shrub to a tall tree inhabiting floodplain woodland habitats. The 
very rare foliage of Paraginkgo, a second related lineage, occurs only in the two 
localities of San111 (Sani Pass 111) and Lit111 of Dicroidium Riparian Forest. 
Paraginkgo lacks known, affiliated reproductive organs.

The fourth, major ginkgophyte group, Kannaskoppiaceae, combines 
Kannaskoppifolia foliage with Kannaskoppia ovulate fructifications and 
Kannaskoppianthus, pollen organs (Anderson and Anderson 2003). Kannaskoppifolia 
foliage consists of 12 undescribed species occupying 34 of the 106 Molteno locali-
ties (32%), and ecologically is best represented in Heidiphyllum Thicket, somewhat 
less so in Dicroidium Riparian Forest and Dicroidium Open Woodland, and is least 
present in other habitats. Kannaskoppia ovulate fructifications consist of three spe-
cies occurring in six localities and inhabit a broad swath of habitat types. 
Kannaskoppianthus pollen organs are divided into four species, are present in eight 
localities, and occur in almost all habitats, but with a strong preference for 
Heidiphyllum Thicket. The growth form of the Kannaskoppifolia–Kannaskoppia–
Kannaskoppianthus plant is said to be an herbaceous, ruderal pioneer in a variety of 
habitats (Anderson and Anderson 2003). An herbaceous habit is a very rare occur-
rence among gymnosperms.

Within ginkgophytes, the highly polymorphic foliage of Dejerseya remains taxo-
nomically unplaced. Dejerseya lunensis, the only recognized Molteno species, 
bears polymorphic foliage that range from very long, linear leaves with entire mar-
gins to much shorter, lobate forms to deeply sinuate, lobed foliage. The female 
reproductive organ affiliated with Dejerseya is unclear, and could be a Matatiella- 
like structure or an extremely rare undescribed taxon, Seed sp. A, which occurs in 
at the Aas411 site. Such an attribution, however, is inconclusive. A more likely 
affiliation is a species of the rare pollen organ, Switzianthus that is found in four 
localities amid a variety of habitats. Considerably more abundant is monospecific 
Dejerseya foliage, which is found in ten localities and is best represented in habitats 
of Heidiphyllum Thicket and the immature and mature phases of Dicroidium 
Riparian Forest. The Dejerseya plant is considered a shrub to small tree occupying 
woodland to forest habitats (Anderson and Anderson 2003).
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14.5.11  Bennettitopsids

Although bennettitopsids became one of the most prominent seed-plant groups dur-
ing the Jurassic and Early Cretaceous, their earliest occurrences were during the 
Middle and Late Triassic (Pedersen et  al. 1989; Anderson et  al. 2007). By Late 
Triassic time, there are early lineages present in a several geographically disparate 
deposits. For the Molteno Biome, the elongate, entire-margined foliage genus 
Taeniopteris, assigned to the Lindthecaceae (Anderson and Anderson 1989, 2003), 
was present with nine species. Taeniopteris has been found in 45 of the 106 Molteno 
localities (42.5%), and ecologically was best represented in Dicroidium Open 
Woodland, much less so in Dicroidium Riparian Forest, Heidiphyllum Thicket 
and Sphenobaiera Closed Woodland, and is sparse in the remaining habitats. 
The affiliate ovulate organ of Taeniopteris foliage is the monospecific Lindtheca, 
found only at the Aas411 site in Sphenobaiera Closed Woodland. A second, unde-
scribed, ovulate fructification was found only at the Kra111 (Kraai River 111) site, 
and perhaps is affiliated with T. anavolans at this site. The pollen organ affiliated 
with Taeniopteris is unknown. The Taeniopteris–Lindtheca plant is reconstructed as 
a shrub to small tree that commonly occurred in forested and woodland habitats 
(Anderson and Anderson 2003).

A second lineage of bennettitopsids, attributed to the Fredlindiaceae, is repre-
sented by Halleyoctenis foliage, affiliated with a Fredlindia ovulate fructification 
and a Weltrichia pollen organ, whose dispersed, deciduous, bracts are known sepa-
rately as Cycadolepis. Halleyoctenis, a long pinnate frond with oppositely inserted 
pinnules, is represented by three species that occur in 11 of the 106 Molteno locali-
ties (10%) but preferentially are present in Dicroidium Open Woodland, and to a 
lesser extent in Sphenobaiera Closed Woodland. The affiliated female organ, mono-
specific Fredlindia, is a rather massive, strobilus-like structure that occurs at six 
localities, principally in Sphenobaiera Closed Woodland and Dicroidium Open 
Woodland. The male organ, Weltrichia, presumably associated with detached 
Cycadolepis bracts found at other localities, consists of two very rare species that 
occur individually only at the Kon222 (Konigs Kroon 222) and Lit111 localities. 
The Cycadolepis-like bract that bears a pollen sac, Seed sp. B, occurs at Aas411 and 
also may have originated from a Weltrichia pollen organ. Other probable bennetti-
talean affiliate pollen organs, Seed sp. E and Seed sp. F, also occur at the Aas411 
site. The Halleyoctenis–Fredlindia–Weltrichia plant is considered a cycad-like, 
pachycaulous shrub to small tree occupying forest and woodland habitats (Anderson 
and Anderson 2003).
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14.5.12  Gnetophytes

There are three major lineages of the Molteno Biome that are assigned to gneto-
phytes. These gnetophyte taxa are sparse to very rare and are among the earliest 
occurrences of this major lineage in the fossil record (Cornet 1996; Anderson et al. 
2007). Gnetophytes became prominent during the Late Jurassic to Early Cretaceous, 
but subsequently declined to their current relictual status. Molteno gnetophyte lin-
eages consist of five foliage genera, two of which have affiliated ovulate fructifica-
tions, although pollen organs have not been identified that are attributable to this 
group.

The Fraxinopsiaceae is the most prominent of the Molteno gnetophyte lineages, 
and is comprised of two foliage genera. The foliage is comprised of Taeniopteris, 
resembling Yabeiella but bearing the affiliated seed Fraxinopsis; and the cycad-like 
Jungites, which lacks affiliated reproductive material. Yabeiella is the most promi-
nent gnetophyte foliage in the Molteno Biome, occurring in 35 of the106 localities 
(33%), and has an ecological preference for Dicroidium Open Woodland. Yabeiella 
also occurs in significant numbers in Dicroidium Riparian Forest, Heidiphyllum 
Thicket and Sphenobaiera Closed Woodland, and is present, albeit rarely, in 
Horsetail Marsh and Fern–Kannaskoppia Meadow. Fraxinopsis consists of three 
species occurring in 20 localities, three-fourths of which also are Yabeiella contain-
ing localities. The ecological distribution of this Fraxinopsis favored Sphenobaiera 
Closed Woodland and Dicroidium Riparian Forest habitats. The Yabeiella–
Fraxinopsis whole-plant reconstruction is a large tree that occurs sparsely in river-
ine forest (Anderson and Anderson 2003). By contrast, the very rare Jungites is an 
obscure foliage type consisting of one species occurring only at the Umk111 site 
within mature Dicroidium Riparian Forest.

The Nataligmaceae consists of Gontriglossa foliage and Nataligma ovulate 
organs. Gontriglossa is a medium-size, Glossopteris-resembling leaf consisting of 
a single species, occurring in eight localities, and displaying an ecological prefer-
ence for the immature and mature phases of Dicroidium Riparian Forest. The affili-
ated ovulate fructification, the monospecific Nataligma, is found only at the Umk111 
site. The Gontriglossa–Nataligma whole-plant reconstruction is a sparsely occur-
ring, ruderal plant, presumably herbaceous in growth form, and inhabiting water- 
margin habitats.

A third gnetophyte lineage, of indeterminate familial affiliation, consists of the 
foliage genera Cetiglossa and Graciliglossa, both of which lack affiliated repro-
ductive organs. Cetiglossa and Graciliglossa each consist of one species that have 
been found only in the Umk111 site, where they inhabited mature Dicroidium 
Riparian Forest. The extremely rare Cetiglossa is inferred to have been herbaceous 
undergrowth in riverine forest, whereas the very rare Graciliglossa presumably 
was a slender liana and also was established in riverine forest (Anderson and 
Anderson 2003).
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14.5.13  Taxa of Uncertain Relationships

The Molteno Biome houses numerous taxa of uncertain relationships, principally 
seed- taxa, but also several other  foliage types. The approximately 38 genera of 
known unaffiliated seeds likely is an under-representation of the true seed diversity, 
and these will be described and discussed in a subsequent contribution. Other, 
mostly foliage-based taxa of uncertain relationships, are the possible ginkgophyte 
Dejeryseya–Seed sp. A and Cetifructus–Seed sp. H whole-plant taxa; seed taxa 
belonging to a third, undescribed, possible bennettitalean lineage; and families of 
uncertain class affiliation: Hlatimbiaceae, Alexaceae and a third, undescribed fam-
ily. These taxa, representing foliage and female and male reproductive material that 
currently are difficult to place taxonomically, await additional collected specimens 
before progress can be made on their taxonomic placement.

14.5.14  General Patterns

Although there are many ways of evaluating the prominence of Molteno plants 
(Anderson and Anderson 2003), there are three approaches employed below for 
assessing the omnipresence of Molteno plant taxa at the genus level. The first 
method simply provides a measure of abundance. In the first method, the abundance 
of the most commonly occurring genera at the 106 localities is a most commonly 
used metric. A second method is an overall assessment of success, as used by the 
FUDAL rating system, as outlined by Anderson and Anderson (2003). A third 
method is to provide a sense of habitat dominance. For the Molteno flora, the five 
most abundant taxa, followed by their percentage representation in the 106 floras, 
are: (i), the most abundant is the voltzialean conifer Heidiphyllum (95%); then (ii), 
the umkomasialean corystosperm Dicroidium (90%); (iii), the hamshawvialean 
ginkgophyte Sphenobaiera (30%); (v), the matatiellalean ginkgophyte Dejerseya 
(11%); and (vi) the cycad of indeterminate affinities Pseudoctenis (3%). All other 
Molteno taxa are at abundance levels of 2% or less.

The second mode of evaluation is the FUDAL system was established by 
Anderson and Anderson in 1989 to provide a measure of success for specified 
Molteno plant genera. The FUDAL concept was revised by Anderson and Anderson 
(2003) to provide a more accurate rating system for the prominence of Molteno 
plant genera. The acronym is an abbreviation for the first letters of frequency, ubiq-
uity, diversity, abundance and longevity for Molteno plant genera. Frequency is the 
repetitiveness of occurrences of a Molteno genus, as measured directly from the 
specific distribution of a particular genus in the 85 localities across five Gondwanan 
continents. Ubiquity is a measure of the general range of specimen occurrence, 
expressed as the number of the five continental regions across Gondwana in which 
the genus in question has been recorded. Diversity is a measure of speciation, radia-
tion and variability, as expressed by the number of species of the genus established 
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for the Gondwanan Triassic. Abundance is a measure of quantity, as determined by 
the abundance of a particular plant genus in Molteno floras. Longevity is a measure 
of the duration of the lineage in the 35 internationally recognized biozones in which 
the genus occurs. Based on these FUDAL criteria, the scores and ranks of the five 
most prominent Molteno genera are: the corystosperm Dicroidium (score of 188, 
rank of 5), the conifer Heidiphyllum (147, 4), the ginkgophyte Sphenobaiera (99, 
4), the bennettitalean Taeniopteris (69, 3), and the ginkgophyte Kannaskoppia (62, 
3). The first five plant genera in the Molteno ranking approximately parallel the 
ranking of major plant genera in floras across the Gondwanan Triassic (Anderson 
and Anderson 2003). This suggests there are supercontinent-wide floristic similari-
ties in the dominance of the same genera.

A habitat-based measure of importance expresses the rank order of the three 
most abundant Molteno genera in each of the seven habitats (Anderson and Anderson 
2003). For the (i), mature phase of Dicroidium Riparian Forest the dominant genera 
are, in decreasing order of abundance, Dicroidium, Heidiphyllum and Sphenobaiera. 
For the (ii), immature, or pre-climax, phase of Dicroidium Riparian Forest the anal-
ogous ranked taxa are Dicroidium, Heidiphyllum and horsetails. For (iii), Dicroidium 
Open Woodland, the respectively ranked taxa are Dicroidium, Heidiphyllum and 
Sphenobaiera, although the species of Dicroidium and Sphenobaiera are different 
than those of the mature phase of Dicroidium Riparian Forest. For (iv), Sphenobaiera 
Closed Woodland the respective ranked taxa are Sphenobaiera, Dicroidium and 
Heidiphyllum. For (v), Heidiphyllum Thicket the respective ranked taxa are 
Heidiphyllum, Dicroidium and horsetails. For (vi), Fern–Kannaskoppia Meadow 
the respective ranked taxa are ferns, Sphenobaiera and Dicroidium. And last, for 
(vii), Horsetail Marsh the respective ranked taxa are horsetails, Dicroidium and 
ferns. All three evaluative methods indicate that it is the same limited number of 
plant groups that exhibit prominence in the Molteno Biome, albeit under various 
combinations and based on different methods of measurement.

14.6  Molteno and Gondwanan Late Triassic Insect 
Herbivores

14.6.1  Overview

In this section an overview is provided for the major herbivorous mite and insect 
groups that had interactions with plants or are inferred to have been present during 
the Carnian Stage in the Karoo Region of South Africa. Because of the regional 
uniqueness of the Gondwanan biota, the body-fossil record of insects are reviewed 
for the Karoo Basin of South Africa in particular as well as penecontemporaneous 
insect faunas from other Gondwanan localities in general (Schlüter 1990; Anderson 
et al. 1998), principally those of Australia and South America. While the discussion 
below is not exhaustive, the known, major suspected herbivore mite and insect 
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groups are covered, many of which had major lineages that experienced ancient 
evolutionary radiations (Krantz and Lindquist 1979; Whitfield and Kjer 2008). 
Simultaneously, these taxa provide inferences regarding the ecological structure to 
Late Triassic plant–insect interactions that now are documented in the Molteno 
Biota (Scott et al. 2004; Labandeira 2006a). Approximately 3000 insect specimens 
are known from 43 localities of the Molteno Formation (Schlüter 2003). This mate-
rial currently is being examined and documented by Torsten Wappler of the 
Senckenberg Institute in Frankfurt, Germany, and by Olivier Béthoux of the National 
Museum of Natural History in Paris, France.

14.6.2  Mites

The broader group, Arachnida, to which plant-interacting mites are a member, is 
virtually absent in Gondwanan deposits. The only formally described occurrence is 
the predatory araneomorph spider Triassaraneus andersonorum, which was 
described from the Umk111 and Tel111 (Telemachus Spruit 111) localities of the 
Molteno Formation (Selden et al. 1999, 2009). Triassaraneus is a member of the 
Arachnopulmonata, but no members of another arachnid group, Acariformes, 
have been found at any Molteno site, an absence attributable to the diminutive size 
and inconspicuousness of mites, the overwhelmingly dominant phytophagous 
members of this group. However, oribatid mites are known from their distinctive 
wood borings, found in the Middle Triassic Fremouw Formation of the Palmer 
Peninsula of Antarctica (Kellogg and Taylor 2004). More exceptional is the pres-
ence of three distinctive genera of plant-feeding mites anatomically preserved in 
Triassic amber from the late Carnian Heiligkreuz Formation in the Dolomite Alps 
of northeastern Italy (Sidorchuk et al. 2015). These mites belong to a new superfa-
milial lineage, Triasacaroidea, associated with amber of the extinct conifer lineage, 
Cheirolepidiaceae (Sidorchuk et  al. 2015). Their occurrence is consistent with 
earlier estimates of the Eriophyoidea appearing phylogenetically during the late 
Paleozoic (Krantz and Lindquist 1979).

14.6.3  Odonatopterans

Odonatopterans are dragonflies, damselflies and related archaic Paleozoic and early 
Mesozoic lineages that are obligately predatory in the adult and subadult stages. 
However, most odonatopteran females insert eggs by a piercing structure, the ovi-
positor, which is used to slice into stems and other plant tissues of live vascular 
plants that typically occur as emergent or slightly submergent positions along bod-
ies of water in terrestrial environments (Wesenberg-Lund 1913; Moisan et al. 2012). 
The resulting lenticular to ellipsoidal lesions were likely produced by a variety of 
Molteno odonatopterans, including Triassoneura andersoni and two other 
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congeneric species, of uncertain family assignment (Riek 1976a; Labandeira 2005), 
as well as the meganisopterid Triassologus biseriatus (Riek 1976a), representing a 
Paleozoic lineage that survived the P-Tr ecological crisis.

Triassic Odonatoptera occur in other Gondwanan continents. A damselfly nymph 
of Zygoptera, attributable to the form genus, Samarura, was recovered from the 
Late Triassic Aberdare Conglomerate of Queensland, Australia (Rozefelds 1985). 
From the Late Triassic Ipswich beds, of similar age, the taxon Triassolestes epio-
phlebioides was described by Tillyard and Dunstan (1916); additional conspecific 
material was illustrated by Rozefelds (1985). Later, Tillyard (1918a, b, 1922, 1923) 
described three additional genera of Odonatoptera from The Ipswich Beds in 
Queensland. From South America, Carpenter (1960) erected Triassothemis 
 mendozensis, a taxonomically unaffiliated wing, from Cerro Cachueta of Mendoza, 
Argentina, of Late Triassic age (Gallego and Martins-Neto 1999).

14.6.4  Cockroaches

The presence of various cockroach specimens have been mentioned in several Late 
Triassic deposits. Besides the Molteno Formation (Riek 1974, 1976a), Late Triassic 
deposits that bore cockroaches include Australia (Tillyard 1919b, 1937) and South 
America (Pinto and de Ornellas 1974; Gallego 1997; Gallego and Martins-Neto 
1999). Several early to mid-Mesozoic cockroach lineages that possessed long exter-
nal ovipositors, such as the Mesoblattinidae (Vishniakova 1968; Grimaldi and Engel 
2005), likely were responsible for some of the ovipositional damage in Late Triassic 
plants, particularly those with smaller, circular cross-sectional areas (Meng et al. 
2017). These cockroaches were replaced by oothecate forms originating during the 
Late Jurassic to Early Cretaceous from very modified and reduced ovipositor mor-
phologies (Gao et al. 2017).

14.6.5  Orthopteroids

The most speciose, documented group of herbivorous insects in Late Triassic 
Gondwana probably were Orthopteroidea (Zherikhin 2002). For the Molteno 
Formation, approximately 23 species of Orthoptera have been described by Riek 
(1974, 1976a) and Wappler (1999, 2000a, b). Six species of Haglidae, the relict 
hump-winged crickets, are known, including: Hagla contorta, two undescribed spe-
cies of Hagla, Zeunerophlebia margueritae, and two undescribed species of another 
genus of Haglidae (Wappler 2001). Eight species of the second family of Orthoptera, 
the extinct Proparagryllacrididae described by Riek (1976a) and Wappler (1999), 
likely were herbivorous as were Dordrechtia robusta, D. aasvoelbergensis, 
Dordrechtia sp., Gryllacrimima johnski, Gryllacrimima sp., and Proparagryllacrididae 
gen. et sp. indet 1, gen. et sp. indet 2 and gen et sp. 3 (Wappler 1999). The extinct 
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Xenopteridae is a third family of probable herbivorous Orthoptera that included 
only Lutheria dewetii (Wappler 1999).

The Grylloblattida were another group of orthopteroids that encompassed the 
extant, relict ice crawlers, that presently have detritivorous feeding habits in cool, 
north temperate habitats, but during the earlier Mesozoic, this group was consider-
ably more diverse and possibly included herbivorous forms. Molteno Grylloblattida 
consisted of seven or eight species that were represented primarily by Geinitziidae, 
consisting of four species of Fletchitzia, two undescribed species an undescribed 
genus of Geinitziidae, and two undescribed species from an indeterminate family of 
Grylloblattida (Riek 1976a; Wappler 1999). Haughton (1924) earlier described 
Protogryllus stormbergensis as a member of the Gryllidae, which most likely was 
detritivorous in habits. All Molteno orthopteroid taxa that are suspected herbivores 
currently are either extinct or relict, and likely were replaced later in the Mesozoic 
by herbivorous forms that persist to the present day or are ancestors of currently 
relict lineages.

In other parts of Gondwana, such as Australia and South America, the docu-
mented diversity of orthopteroids was considerably less than that of the Karoo 
Basin. The Late Triassic Blackstone Formation of the Ipswich Basin in southeastern 
Queensland contains the grasshopper-like Locustopseidae indicated by 
Triassolocusta leptoptera (Tillyard 1922, 1923). The spectacularly large Mesotitan 
scullyi, a member of the Mesotitanidae and assigned to the orthopteroid order 
Titanoptera occurs in earlier, Middle Triassic deposits at Deewhy in New South 
Wales, Australia (Tillyard 1925). Recent interpretation of this distinctive group of 
huge, geochronologically short-lived insects, however, indicate that they likely were 
insectivorous rather than herbivorous (Zherikhin 2002). In South America, two 
deposits of late Middle Triassic to Late Triassic age, the Potrellos Formation of 
Mendoza Province and the Los Rastros Formation of La Rioja Province, preserves 
several taxa of Orthoptera, including Hagla sp. (Haglidae), Elcana sp. (Elcanidae), 
Nothopamphagopsis (no family affiliation), and perhaps Eolocustopsis sp. 
(Locustopseidae) (Gallego 1997; Gallego and Martins-Neto 1999). Assuming that 
the herbivore assignments of these taxa are correct, the varied geographic distribu-
tion of orthopteroid taxa across Gondwana, such as those from the Santa Juana 
Formation in Chile (Gallego et al. 2005), indicates a well-established orthopteroid 
herbivore insect fauna by Late Triassic times.

14.6.6  Hemipteroids

Piercing-and-sucking hemipteroids currently are a major group of insect herbivores 
on plants (Pollard 1973). Given their elevated diversity relative to other Late Triassic 
herbivores, such as mandibulate feeding orthopteroids, hemipteroids likely were a 
major force in Molteno herbivory. Late Triassic hemipteroids consisted of two 
major groups: Thysanoptera (thrips) (Childers 1997; Retana-Salazar and Nishida 
2007), for which Molteno fossils are lacking, and Hemiptera (other 
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piercing-and- sucking groups) (Weber 1930; Cobben 1978), which have been rather 
abundant from the Permian to the present day (Zherikhin 2002). Hemiptera princi-
pally consists of six major lineages. They are: (i) Psylloidea, or plant lice; (ii) 
Aleyrodoidea, or white flies; (iii) Aphidoidea, or aphids; and (iv) Coccoidea, or 
scale insects and mealy bugs, these four of which collectively constitute the 
Sternorrhyncha; (v) Auchenorrhyncha, comprising cicadas, plant hoppers and tree 
hoppers; and (vi) Heteroptera, or true bugs. The Molteno Biome hosted some of 
these groups, including the sternorrhynchan lineage Protopsyllidiidae, known from 
a protopsyllidid nymph (Riek 1974, 1976a). The most abundant group within the 
Molteno Biome were Auchenorrhyncha, represented by Cicadoprosbolidae, con-
sisting of Prosobolomorpha clara and Leptoprosbole lepida; Scytinopteridae, rep-
resented by Scytinoptera distorta; Mesogereonidae, with Triassogereon distinctum; 
Dysmorphoptilidae, exemplified by the cicada-like Tennentsia protuberans; and 
Dunstaniidae, an early group of large, hirsute, cicada-like forms exemplified by 
Dunstania petrophila and Fletcheriana magna (Riek 1974, 1976a; Labandeira 
2005). To date, no Heteroptera have been described from the Molteno Biome. 
Nevertheless, these eight species of Hemiptera define a broad variety of sizes, 
shapes, body plans and mouthpart stylet and ovipositor types that likely resulted in 
partitioning host-plant tissues in intricate ways and employing the same ways as 
modern hemipterans (Funkhouser 1917; Hori 1971).

For Gondwanan Late Triassic herbivores, the Hemiptera of Australia exhibits the 
greatest known diversity of any Late Triassic herbivore group, consisting minimally 
of 33 species that are recorded principally from the Ipswich Basin of southwestern 
Queensland. The suborder Auchenorrhyncha consisted of the five families of 
Mesogereonidae that was comprised of five species of Mesogereon; the leafhopper- 
like Cicadellidae with Mesojassus ipsviciensis, Eurymelidium australe and 
Triassojassus proavitus; Scytinopteridae, occurring as two species of Mesoscytina, 
Triassoscarta subcostalis, Apheloscyta mesocampta, Chiliocycla scolopoides, 
Polycytella triassica and three species of Mesodiphthera; the distinctive, fulgoro-
morph Cixiidae, exemplified by Mesocixius triassicus, Triassocixius australi-
cus  and three species of Mesocixiodes; Dunstaniidae, represented by Dunstania 
pulcra, Dunstaniopsis triassica and Paradunstania affinis; and Ipsviciidae, with 
Ipsvicia jonesi, I. maculata and I. acutipennis (Tillyard 1918c, 1920, 1921, 1922, 
1923; Evans 1971). Late Triassic Auchenorrhyncha were a distinctive group per-
haps related to modern Cercopidae, commonly known as froghoppers and spittle-
bugs. The Heteroptera, or true bugs, have been described as three or four species of 
Triassocoris, members of the Triassocoridae (Tillyard 1923). Collectively, this 
Australian, Late Triassic assemblage of Hemiptera included xylem, phloem and 
mesophyll feeders, and probably were engaged in the same or very similar type of 
feeding as their relatives do today (Hori 1971; Günthart and Günthart 1983; Golden 
et al. 2006).

There have been considerably fewer occurrences of Hemiptera from strata of 
similar age in South America. From the Santa Maria Formation at Passo das Tropas 
in Rio Grande do Sul, Brazil, a wing, Sanctipaulus mendesi, was assigned to the 
fulgoromorph Auchenorrhyncha, and affiliated with the Derbidae (Pinto 1956). In a 
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somewhat older deposit of the Potreillos Formation of Mendoza Province in 
Argentina, Gallego (1997) assigned Mesocixiella sp. to the Cixiidae, representing 
another member of the Auchenorrhyncha. At the nearby site of Cerro Cachueta, of 
younger Triassic age, Tillyard (1926) described Wielandia rhaetica and assigned it 
to the Scytinopteridae. In a review of the Mesozoic insect fauna of Argentina, 
Gallego and Martins-Neto (1999) mentioned the auchenorrhynchans 
Dysmorphoptiloides acostai of the Dysmorphoptilidae, and Argentinocicada 
magna, A. minima and Potrerillia nervosa of the Scytinopteridae from Late Triassic 
sites of west-central Argentina. While these taxa are assigned to lineages that also 
are found in South Africa, Australia, and South America, they apparently also 
 indicate regional taxonomic differentiation across Gondwana, at least for some 
insects at the genus level.

14.6.7  Beetles

Permian beetles have been described from the Karoo Basin (Geertsema and Van den 
Heever 1996; Geertsema et al. 2002), but their affinities lie either with a primitive, 
paraphyletic lineage to Coleoptera (McKenna et  al. 2015), or alternatively as an 
archaic member of Archostemata, the most basal extant major lineage (Grimaldi 
and Engel 2005). However, virtually nothing can be said of the finer-grained taxo-
nomic affinities of these or any other Permian beetle lineages, with one exception 
from north-central China occurring lodged in a complex gallery–tunnel network in 
a Lopingian conifer host (Feng et al. 2017). Similarly, Early and Middle Triassic 
beetles, with few exceptions (Grimaldi and Engel 2005; Ponomarenko 2016), also 
are taxonomically enigmatic, although there are exceptions (Fraser et  al. 1996). 
These Late Triassic exceptions include several identifiable lineages of beetles that 
are known with some confidence, including Cupedidae (reticulated beetles) of the 
suborder Archostemata, extinct Trachypachidae of the suborder Adephaga, and 
Hydrophilidae (water scavenger beetles), Staphylinidae (rove beetles), 
Artematopodidae (soft-bodied plant beetles), Scirtidae (marsh beetles) and 
Elateridae (click beetles) of the suborder Polyphaga. Polyphaga are the most diverse, 
extant major clade, currently representing 85% of all beetle species, and likely were 
the beetles contributing at least some of the co-associations and herbivory found in 
the Molteno Biome (Anderson et al. 1999). Independent evidence from plant–insect 
interaction data suggest, from a process of elimination of potential culprit taxa, that 
some Late Triassic beetle lineages contributed to a variety of plant damage, includ-
ing leaf mining (Rozefelds and Sobbe 1987; Labandeira 2006a), wood boring 
(Walker 1938; Linck 1949; Tapanila and Roberts 2012), and possibly margin and 
surface feeding (Ponomarenko 2016). Phylogenetic evidence indicates, curiously, 
that many of the beetle lineages, which would have been responsible for Late 
Triassic endophytic damage such as leaf mining and wood boring, had not evolved 
(McKenna et al. 2015). By contrast, several basal polyphagan lineages already were 
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present, such as the Artematopodidae and Scirtidae that are good herbivore candi-
dates for a variety of external foliage feeding.

For the Late Triassic Molteno Biome, nine beetle taxa have been described, some 
of which are based on anatomy other than elytra. Molteno beetles include three spe-
cies of Ademosyne in the Permosynidae; Moltenocupes townrowi in the Cupedidae; 
undetermined Ommatinae of the Ommatidae; Umkomaasia depressa, possible 
Carabidae; two species of Pseudosilphites that are possible Silphidae (carrion bee-
tles); and an undetermined family (Zeuner 1961; Riek 1974, 1976a; Anderson et al. 
1998). Considerably more beetle taxa, approximately 62 species, have been 
described from the Late Triassic of Australia (Tillyard 1918b, 1923; Tillyard and 
Dunstan 1923), although these taxonomic assignments remain uncertain and need 
to be confirmed. From the Middle Triassic Los Rastros Formation of La Rioja 
Province in Argentina, several taxa have been established, including Argentinocupes 
sp. in Permocupedidae; two species of Ademosyne in Ademosynidae; Tillyardiopsis 
sp., possible Curculionidae (weevils); and Mesostigmodera frenguelli, possible 
Buprestidae (metallic wood-boring beetles) from the Middle Triassic Los Rastros 
Formation of La Rioja Province (Gallego 1997; Gallego and Martins-Neto 1999). 
As with the Australian beetle material, the South American occurrences need 
confirmation.

14.6.8  Sawflies

The fossil record of the Symphyta, a group of approximately 14, overwhelmingly 
plant-associated, basalmost lineages within Hymenoptera are characterized by a 
diverse repertoire of exophytic and endophytic herbivory, including xylophagy. 
(The most derived lineage, the parasitoid Orussidae, is the sole nonherbivorous 
group.) This group collectively is termed sawflies, and their consumption of live 
plant tissues takes a variety of forms that notably includes external foliage feeding, 
leaf mining, galling, pith tunneling, seed predation, pollen feeding and wood boring 
(Blank et al. 2006). The adults are adept in ovipositing eggs in plant tissues and 
some are implicated in pollination (Burdick 1961). Almost all of the earliest known 
fossils of Symphyta originate from the Middle Triassic of Central Asia (Rasnitsyn 
1969), although two taxa of wings are known from the Late Triassic of Gondwana: 
one from the Mt. Crosby Formation of southern Queensland, in Australia (Riek 
1955), and the other from the Molteno Formation in South Africa (Schlüter 2000). 
The Molteno specimen is Moltenia rieki, found at the Bir111 site, and is identified 
as a probable member of the Xyelidae (Schlüter 2000). The larval stages provide the 
overwhelming bulk of plant consumption in sawflies, and their diet probably has the 
broadest range of functional feeding groups of any larval clade.
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14.6.9  Scorpionflies

One of the most taxonomically enigmatic insects of the fossil record is Mesoses 
optata, a broad, incomplete forewing from the Molteno Formation (Riek 1976a). It 
once was assigned to the “Paratrichoptera” (Shields 1988), a polyphyletic assem-
blage of antliophoran and amphiesmenopteran stem-group lineages that recently 
have been reassigned to other insect orders (Schlüter 1997), including Mecoptera 
(scorpionflies), Diptera (flies), Trichoptera (caddisflies) and Lepidoptera (moths and 
butterflies). Mesoses now is considered an early member of Mesopsychidae, a basal 
lineage of the Mecoptera that is confined to the early Mesozoic. Notably, Mesoses 
precedes evolutionarily the origin of the long-proboscid condition in successor 
mesopsychid taxa, such as Mesopsyche, Lichnomesopsyche and Vitimopsyche 
from the Eurasian Middle Jurassic to Early Cretaceous (Lin et al. 2016). Given the 
relationship between these long-proboscid scorpionfly taxa and deep-throated 
gymnosperm fructifications such as the bennettitalean Weltrichia, it is highly likely 
that Mesoses, though lacking a long proboscis, was a pollinator feeding on the pol-
lination drops of contemporaneous Molteno fructifications (Anderson and Anderson 
1993; Labandeira 2010).

14.6.10  General Patterns

In this survey of described arthropod fossils from the Molteno Biome, eight major 
mite and insect groups of herbivores have been identified. These herbivore groups 
were available potentially to produce the 10 major types of arthropod damage on 
Molteno plants of margin feeding, hole feeding, skeletonization and surface feed-
ing, collectively known as external foliage feeding, as well as internal feeding dam-
age resulting from piercing and sucking, oviposition, mining, galling, seed predation 
and wood boring. Based on the diversity of body-fossil taxa in each group discussed 
above, three general patterns emerge. First, the most diverse group, beetles, have an 
uncertain role in Molteno herbivory due to poor taxonomic assignments and the 
absence of any dietary and feeding data to make reasoned inferences about what 
subgroups inflicted particular types of damage. Second, the next, two, equally rep-
resented groups, orthopteroids and hemipteroids, would have produced the known 
damage spectra of external foliage feeding and piercing and sucking, respectively. 
Third, the remaining groups are either very nondiverse, consisting of very few 
known taxa, particularly odonatopterans, sawflies, and scorpionflies, or there is the 
absence of relevant taxa in the Molteno Biome, such as mites, to indicate a reliance 
of relevant fossils elsewhere in Triassic Gondwanan that would be responsible for a 
particular type of Molteno herbivory. Certain Late Triassic taxa such as mayflies 
(Riek 1976b) and lacewings and relatives (Tillyard 1917, 1919a, b) likely lacked 
interactions with plants. Nevertheless, for the eight plant-interacting groups, such as 
hemipteroids, there is considerable more diversity of documented insect body-fossil 

14 Expansion of Arthropod Herbivory in Late Triassic South Africa…



682

taxa elsewhere in Gondwana, particularly Australia, than there is in the Karoo 
Basin. This imbalance suggests the absence of adequate preservation, under- 
collection of fossils, or more likely a delays in the formal descriptions of fossils in 
South Africa.

14.7  Plant–Insect Interactions of the Molteno Biota

14.7.1  Overview

Examination of the plant–insect interactions of the 106 localities from the Molteno 
Biota is part of a broader assessment of the effects of the P-Tr ecological crisis on 
plants and their insect herbivores. The results of the current study of herbivory at the 
Aas411 site is part of an ongoing, more detailed, quantitative analyses of existing 
data which will ferret out generalized and specialized patterns of plant–insect inter-
actions based on host plants, functional feeding groups, damage types, habitats, 
regional geography, stratigraphic position and other environmental and biotal fea-
tures of all relevant localities. The broader analysis of the Molteno Biota will be 
integrated along a 35 million-year-long interval that includes additional earlier 
Triassic and later Permian deposits. The current, detailed analysis of the most plant- 
specimen- rich site, the Aas411 site, focuses principally on patterns of host use, host 
specialization, component community formation, the role of habitat on associa-
tional richness, and in particular the biology of gall DT70. Detailed study on the 
development and other aspects of the biology of gall DT70 will be followed in other 
contributions from examinations of prominent interactions throughout the Molteno 
Formation and other Karoo Basin deposits from the Permian to Triassic studied 
interval.

14.7.2  Molteno Plant–Insect Interactions

The total Molteno data set of 106 stratigraphically ordinated localities that consists 
of 383 total plant form-species (Table 14.1). Of the total species in the Molteno flora 
there are 27 bryophytes, 17 lycophytes, 37 sphenophytes, 37 ferns, 22 cycads, 10 
peltasperms, 35 corystosperms, 69 ginkgoopsids, 20 bennettitaleans, 13 gneto-
phytes, 33 coniferophytes and 63 plants of uncertain position that includes foliage 
and mostly seeds based on published sources (Anderson and Anderson, 1983, 1989, 
2003, 2008, 2017) and unpublished updates (J.M. Anderson, H.M. Anderson and 
C.C. Labandeira, pers. observ.). For all major plant groups except bryophytes, affili-
ated form-taxa occurring in the same site were associated with 52 separate, whole 
plant species for the Molteno Biome. These whole-plant taxa consist of multiple, 
affiliated plant parts such as foliage, female and male reproductive material, and 
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other plant parts, and were evaluated using a confidence scale of 1–5, with 5 being 
a direct association such as an attachment or the housing of a seed in an encompass-
ing female fructification. For example, whole-plant taxon suite 13, the Sphenobaiera 
schenckii whole plant taxon, consisted of the S. schenckii leaf, Sphenobaiera sp. 
scale leaf, Sphenobaiera sp. short shoot, Hamshawvia longipedunculata ovulate 
organ and Stachyopitys sp. pollinate organ with a confidence value of 4.5 (Anderson 
and Anderson 2003; also see Barboni and Dutra 2015). The Sphenobaiera schenckii 
whole-plant taxon occurs at the Kan111 (Kannaskop 111), Nuw111B (Nuwejaarspruit 
111B), Gol111 (Golden Gate 111) and Aas411 localities. These unaffiliated plant 
taxa occur in various and distinct proportions among the seven habitats within the 
Molteno Biome. The most well represented habitat is Dicroidium Open Woodland, 
consisting of 33 localities; by contrast, Heidiphyllum Thicket has 23 localities; 
Horsetail Marsh consists of 18 localities, Sphenobaiera Closed Woodland includes 
15 localities, Immature Dicroidium Riparian Forest is attributed to nine localities, 
Fern-Kannaskoppia Meadow has three localities, Mature Dicroidium Riparian 
Forest, only has two localities. Three localities that could not be assigned to a par-
ticular habitat.

The Molteno database consists 177,297 examined specimens that contain 10,165 
separate DT occurrences of herbivory. This ratio corresponds to 5.73% of the speci-
mens that have one or more DTs, a significant level of plant–insect interaction 
diversity for the early Mesozoic (Labandeira 2006b, 2013b, 2016). Molteno plant–
insect interactions consist of two basic groups of FFGs. Some are exophytic in 
nature, typified by external feeding or consumption from without, represented by 
hole feeding (13 DTs), margin feeding (6 DTs), skeletonization (2 DTs) and surface 
feeding (9 DTs). The other major assemblage of functional feeding groups are 
endophytic in nature, and are characterized by internal feeding or consumption from 
within, consisting of piercing and sucking (8 DTs), oviposition (10 DTs), mining (7 
DTs), galling (15 DTs), seed predation (4 DTs) and borings (2 DTs). Generalized 
fungal damage was scored as DT58, but was not subdivided into more discrete DTs. 
This spectrum of 10 functional feeding groups that encompass 76 DTs, of which 
external feeding is represented by 30 DTs and internal feeding is represented by 46 
DTs, is the single highest number of DTs detected in any pre-angiosperm  fossil 
biome examined to date. One site, Aasvoëlberg 311 (Aas311), is the only early 
Mesozoic site of a possible insect outbreak, specifically insect leaf mining (DT71) 
on the broadleaved conifer host Heidiphyllum elongatum (Labandeira 2012). A 
comprehensive analysis is being prepared that will assess the effects of the P-Tr 
ecological crisis on insect herbivory from late Guadalupian and Lopingian floras of, 
respectively the Middleton Formation and Balfour Formation, to the post-event 
Anisian Burgersdorp Formation and Carnian Molteno Formation.

A preliminary survey of the plant–insect interactions of the Molteno Biome 
(Table 14.1) provides basic data regarding the basic ecological context relevant for 
the plant–insect interactions at each site. Table 14.1 provides a record of site strati-
graphic position; habitat; number of whole-plant taxa, if any; dominant functional 
feeding group; and other data involving the types of and numbers of plant morpho-
types/species, DTs and the interaction index. The interaction index is the total num-
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ber of DT occurrences divided by the number of plant specimens for each examined 
site, and serves as a comparative measure of herbivory intensity across all Molteno 
localities. For these five latter types of data, the localities display a wide range of 
values that can approach or exceed four orders of magnitude. This wide range of 
values are: total DT occurrences, ranging from 0 for several localities to 2501 for 
Bir111; total plant specimens, ranging from 5 for Kullfontein 111 (Kul111) to 
20,358 for Aas411; interaction index, ranging from 0 for several localities to 0.2819 
for Kappokraal 111(Kap111); total kinds of DTs, ranging from 0 for several locali-
ties to 44 for Aas411; and total number of plant species and morphotypes, with as 
few as 1 for Navar 111 (Nav111), Kraai River 222 (Kra222), Klein Hoek 111A 
(Kle111A), Vineyard 111 (Vin111) and Champagne Castle (Cha111) to 111 for 
Aas411. The interaction index is an important measure, and expresses, through the 
use of presence–absence data, the considerable difference in the incidence of attack 
on plant specimens from zero to the exceptionally high 28.19% in the case of 
Kap111. Most Molteno values were in the range of 2.0–6.0%, in accord with typical 
levels of herbivory in the fossil record of plant–insect interactions (Q.  Xu, 
C. Labandeira and H. Jin, unpublished data).

14.8  Plant–Insect Interactions of the Molteno Aasvoëlberg 
411 Site

14.8.1  Overview

The preserved biological diversity of the Molteno Biome has been statistically 
extrapolated from extant biodiversity from similar environments, indicating a sig-
nificantly elevated level compared to other, equivalent, Triassic biotas (Anderson 
et al. 1996). Although not specifically addressed in the Anderson et al. study (1996), 
plant–insect interactions are an excellent indicator of ecological diversity in terres-
trial habitats, and can serve as a measure of biodiversity when expressed as FFGs 
and DTs (Labandeira 2002b; Carvalho et al. 2014). Each FFG results from insects 
that bear distinctive mouthpart morphologies engaged in particular modes of feed-
ing (Labandeira 1997). Exophytic interactions representing external feeding are 
defined by the consumption of plant tissues wherein the insect is positioned outside 
of the tissue being consumed. Such interactions are synonymous with external foli-
age feeding that is subdivided into hole feeding, margin feeding, skeletonization 
and surface feeding FFGs. The frequency distribution of these four external feeding 
FFGs and their 20 constituent DTs, including the presence of one specialized asso-
ciation, are given in Fig. 14.2 for the Aas411 site.

By contrast, endophytic interactions are defined by the consumption of internal 
tissues in which feeding occurs, with the entire body or at least the mouthparts 
embedded within the plant-host tissue. There are two categories of endophytic inter-
actions. One category consists of those interactions in which the body of the con-
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sumer lies mostly outside of the tissue, on the plant surface, such as the piercing and 
sucking and oviposition FFGs. The second type of endophytic interaction is when 
the consumer is embedded with the plant tissue, which is comprised of the galling, 
leaf mining, seed predation and borer FFGs. Modern examples of these FFGs, dis-
cussed below, are taken from the plant–insect interactional literature, and empha-
size vascular plant hosts other than angiosperms that are more anatomically and 
phylogenetically related to those present during the Carnian. Lastly, host  specialized 
interactions are defined by the presence of a particular damage type that occurs on 
the same host-plant species or closely-related group of species throughout multiple 
habitats across the Molteno Biome. The frequency distribution of the five internal 
feeding FFGs and their 21 constituent DTs, including the distribution of eight spe-
cialized associations, are given in Fig. 14.3 for the Aas411 site. The complete host-
plant–DT matrix showing the distribution of all FFGs, including the three 
interactions of a wood boring, an undefined association and fungal damage, is pro-
vided in Fig. 14.4.

14.8.2  Exophytic Interactions

Four, major, exophytic FFGs characterize the Molteno Biome. These are the four 
standard categories of plant–insect interactions that occur in virtually all modern 
and fossil floras, given sufficient sampling intensity. They are hole feeding (Alford 
1991)), margin feeding (Gangwere 1966), skeletonization (Carvalho et  al. 2014) 
and surface feeding (Johnson and Lyon 1991). Typically margin feeding is the most 
abundant and skeletonization is the least frequent of exophytic FFGs in modern and 
fossil floras. This pattern of exophytic interactions is repeated for most Molteno 
localities, and in particular applies for external feeding documented from the 
Aas411 site (Fig. 14.2).

Hole Feeding: For modern insect herbivores, hole feeding is one of the most 
ubiquitous and most conspicuous types of feeding (Alford 1991; Johnson and Lyon 
1991). At Aas411 there were eight hole-feeding DTs, responsible for 71 occur-
rences on plant specimens. The most frequently occurring hole feeding is DT1, 
characterized by small perforations less than 1 mm in maximum diameter, consist-
ing of DT occurrences on 27 plant specimens, and representing 32.4% of all hole- 
feeding damage. A typical example is DT1 on Dicroidium odontopteroides 
(Fig. 14.5h). Given the variety of hole-feeding that emphasizes the smaller sized 
holes of DT1, DT2 and DT3 (Labandeira et al. 2007), it is likely that the responsible 
insect herbivores were small orthopteroids and beetles. These generalized interac-
tions contrast with the presence of stereotypical slot feeding, DT8, on H. elonga-
tum, which more likely is attributable to beetle feeding, akin to leaf beetles on the 
modern fern Pteris (Patra and Bera 2007). Distinctive slot feeding occurs in other 
Molteno localities with abundant H. elongatum, and indicates a specialized associa-
tion. This association occurs in 21 other Molteno localities, predominantly in 
Heidiphyllum Thicket habitats, and rarely is present at high frequencies, although 
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the 16 occurrences in Gre-121 is an exception. Consistent with the observation that 
H. elongatum is overwhelmingly the most intensely herbivorized host at Aas411, 
57.7% of all damage by hole feeders targeted this host.

Margin Feeding: Margin feeding is the most abundant functional feeding group 
at Aas411. Margin feeding consists of five DTs that are responsible for 273 occur-
rences on particular plant specimens, and amounts to 24.6% of all Aas411 associa-
tions. The most frequently occurring margin-feeding is DT12, accounting for DTs 
on 221 plant specimens and representing 81% of all margin feeding. DT12 is char-
acterized by cuspate excisions on foliar margins that do not extend to primary veins 
or leaf tips. The dominance of margin feeding in general and DT12 in particular is 
a common pattern seen in many late Paleozoic and early Mesozoic floras, including 
those of the Molteno Biome. The likely insect culprits of DT12 and other types of 
margin feeding are medium to large sized orthopteroids, and possibly equally large 
beetles. Molteno external foliage feeding damage is analogous to damage caused by 
the nymphs and adults of stick insects and grasshoppers (Floyd 1993; Gangwere 
1966), and larvae of owlet and looper moths and common sawflies (Comstock 1939; 
Welke 1959; Weintraub et al. 1994) on ferns. None of the margin feeding at Aas411 
represents a specialized association. The most intensively attacked hosts by margin 
feeders are H. elongatum (Fig. 14.5a,d) and D. crassinervis for DT12, representing 
34.1% and 29.7% of occurrences, respectively, and subordinately Lepidopteris 
stormbergensis and L. africana, representing 16.5% of total margin-feeding DTs. 
Continuous margin feeding of DT143 is present on Ginkgoites matatiensis 
(Fig. 14.5b,c), and DT13 occurs as the snipped pinnule margins of Pseudoctenis sp. 
(Fig. 14.5e).

Skeletonization: Skeletonization is represented by one occurrence of DT16 on 
H. elongatum. Skeletonization is absent to very rare in Middle Pennsylvanian to 
Late Triassic floras of Gondwana and Laurasia (Beck and Labandeira 1998; Prevec 
et al. 2009; Feng et al. 2014) and does not become particularly abundant until the 
Cenozoic (Wilf and Labandeira 1999).

Surface Feeding: Of the seven surface-feeding DTs at Aas411, the most fre-
quently occurring is DT30, consisting of 25 occurrences on foliage, and represent-
ing 32.9% of all surface feeding. The dominance of surface-feeding herbivory, 
particularly DT29, DT30 and DT103, occurs principally on H. elongatum and cor-
responds to 70% of the total surface-feeding occurrences. DT103, the consumption 
of surface tissues in the interveinal area between two adjacent, mostly parallel veins, 
is similar to that of the modern leaf beetle Aulacoscelis on the cycad host Zamia 
(Windsor et al. 1999), and other leaf-beetle species on the fern Pteris (Patra and 
Bera 2007). The concentration of these three damage types on H. elongatum con-
trasts with more scattered and fewer occurrences of other surface feeding DTs on 
other seed-plant taxa at Aas411. The likely culprits for surface feeding on H. elon-
gatum are beetles, and perhaps certain orthopteroid clades. However, such surface- 
feeding lineages would require modified chewing mouthparts for accessing and 
delaminating surface tissue layers.
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14.8.3  Endophytic Interactions

There are six major endophytic interactions that characterize the Molteno Biome in 
general and Aas411  in particular. These interactions are given in Fig.  14.3, and 
includes eight specialized associations mapped on some of these endophytic DTs, 
with the exclusion of borings. The Aas411 site has all six FFGs of piercing and 
sucking (Weber 1930; Cobben 1978), oviposition (Wesenberg-Lund 1943; Childers 
1997), mining (Needham et al. 1928; Hering 1951), galling (Felt 1917; Meyer 1987; 
Rohfritsch 1992), seed predation (Shepard 1947; Janzen 1971), and borings 
(Solomon 1995). Collectively, these interactions exhibit a robust partitioning of 
internal tissues.

Piercing and Sucking: The piercing-and-sucking FFG consists of four DTs that 
have resulted in damage to 38 plant specimens at Aas411. The most abundant is 
DT46, consisting of 27 instances on plant specimens and representing 71.1% of all 
piercing-and-sucking occurrences. DT46 is a generalized interaction consisting of 
small, isolated puncture marks typically with a surrounding, crater-like rim, analo-
gous to modern punctures produced by thysanopterans (Childers 1997) and hemip-
terans (Günthart and Günthart 1983). Although stereotypical Molteno 
piercing-and-sucking damage of scale impression marks by sternorrhynchan hemip-
terans, such as DT77 or DT158, are absent at Aas411, there are two occurrences of 
DT128 on H. elongatum present at the site. DT128, is a specialized interaction 
always on H. elongatum hosts that also is present at Maz211 (Mazenod 211) with 
36 examples, and at the Lut311 (Lutherskop 311) and Win111 (Winnarspruit 111) 
localities. DT128 is a very distinctive, broadly elliptical scale impression mark 
characterized by a roughened inner surface, a distinctive bordering rim and an ante-
rior notch (Fig. 14.5f), and closely resembles modern black pineleaf scale, a diaspi-
did scale insect, on red pine (Johnson and Lyon 1991; also see Maskell 1887). An 
intermediate specialized association is DT138, which targets particular vascular tis-
sues, whose linear rows of punctures occur along major veins of H. elongatum and 
D. crassinervis indicative of feeding on xylem or phloem tissue. The linear tracking 
of vascular tissue by piercing-and-sucking hemipterans is common in modern 
plants, and the same DT138 feeding pattern has been recorded on modern pine 
needles by a typhlocybine leaf hopper (Günthart and Günthart 1983).

Oviposition: Ovipositional damage at Aas411 typically consists of lenticular and 
less commonly ellipsoidal to circular lesions on the foliage and stems of plants. 
Endophytic oviposition is characterized by inner disturbed tissue, rarely with evi-
dence for a lodged egg (Labandeira and Currano 2013), and a prominent, surround-
ing border of callus or other scar tissue. There are four DTs of oviposition, which 
have left damage on 188 plant specimens. The most frequently occurring is DT76, 
consisting of 125 DT occurrences on specimens and representing 66.5% of the all 
oviposition occurrences. The DT76 specialized association accounts for 99 DT 
examples (52.7%) of damage occurrences that frequently occur on H. elongatum 
(Fig.  14.5g). DT76 lesions are very similar to the modern odonatan Calopteryx 
ovipositing in the stems of emergent semiaquatic plants (Corbet 1999). Analogous 
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examples of modern DT76 damage include Ceresa tree hoppers, terrestrial hemip-
terans that insert eggs into twigs that result in lenticular oviposition lesions sur-
rounded by scar tissue (Funkhouser 1917), and also by the aquatic water scorpion, 
Ranatra, a hemipteran that oviposits on submerged hydrophyte stems (Wesenberg- 
Lund 1943).

The specialized interaction, DT72, consists of 14 examples (7.4%) of lenticular 
lesions whose long axis is oriented parallel to the vasculature of Zonulamites 
 viridensis horsetail stems (Fig. 14.6c). The third association is DT108 which occurs 
again on the horsetail Zonulamites viridensis, and is responsible for 39 examples 
(20.7%) of the damage and closely resembles modern Stictocephala tree hopper 
damage to the tissues of small twigs (Funkhouser 1917; Yothers 1934). A consider-
able amount of the oviposition damage, particularly DT72 and DT108, overwhelm-
ingly targeted horsetails, particularly Zonulamites viridensis (Anderson and 
Anderson 2017). Although the likely culprit for most ovipositional damage are early 
lineages of odonatopteran dragonflies, other groups, principally orthopteroids and 
sawflies, may have been responsible for damage as well. These non-odonatan exam-
ples could have inflicted DT100 (e.g. Wesenberg-Lund 1913) and DT101 (e.g. 
Jurzitza 1974).

Mining: There are 154 mining occurrences at Aas411 that are allocated to three 
DTs: They are: DT41 (not illustrated), the very  rare threadlike and delicate leaf 
mine with two occurrences (1.3%); the vastly more abundant and robust DT71 
(Fig. 14.6a,b), represented by150 occurrences (97.4%); and the very rare DT139 
with two occurrences (1.3%). DT41 is a common leaf mine type that is quite abun-
dant in Late Cretaceous and Paleogene biotas where it is generally affiliated with a 
lepidopteran culprit (Doorenweerd et al. 2015). However, the presence of DT41 in 
the Late Triassic could be attributed to another major lineage of insects, such as a 
nematoceran fly (Swezey 1915). By contrast, DT71 is one of the most conspicuous, 
persistent and abundant of the host-specialized associations throughout the Molteno 
Biome, of which 1247 DT occurrences are recorded on its host plant, H. elongatum. 
The DT71 interaction is present at 23 Molteno localities, half of which are 
Heidiphyllum Thicket habitats.

At Aasvoëlberg 311 (Aas311), a sister-site of Aas411, there are 740 occurrences 
of DT71 on host H. elongatum, representing 59.3% of all DT71 Molteno leaf min-
ing occurrences (Fig. 14.7b), and providing some of the best evidence for a pest 
outbreak in the fossil record (Labandeira 2012). DT71 mines are distinctive, full- 
depth mines that have a loosely sinusoidal frass trail in early instars that becomes 
more tightly sinusoidal later instars, but always are characterized by particulate 
fecal pellets whose size changes with instar molt shifts (Fig.  14.6a,b). The leaf 
mines occupy the intercostal areas between the major veins of the monocot-like, 
parallel-veined Heidiphyllum leaf; apparently, the smaller veinules embedded in 
mesophyll were consumed by the mine occupant. Miner emergence frequently 
occurred at the leaf edge, where an enlargement of the mine may represent a pupa-
tion chamber. The DT71 mine closely resembles the mine of extant Charixena iri-
doxa, a plutellid moth from New Zealand that mines the structurally very similar, 
parallel-veined foliage of the liliaceous monocot Astelia montana.
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DT139 is a short, serpentine, full depth mine with a large, expansive and rounded 
terminal chamber that typically has an irregular course between major veins of host 
Sphenobaiera schenckii (Fig. 14.7a). This mine also occurs on other unrelated hosts 
such as Paraginkgo antarctica at Lit111, H. elongatum at Win111, Pseudoctenis 
fissa at Kap111 (Kappokraal 111), and Kannaskoppifolia lacerata at Kan112 
(Kannaskop 112), indicating that occurrences on S. schenckii at Aas411 are not host 
specific. The DT139 mine is similar to a metallic wood-boring beetle mine of 
 modern Pachyschelus coeruleipennis (Buprestidae) on the euphorbiaceous angio-
sperm, Croton floribundus (Queiroz 2002; Ding et al. 2014), as well as the leafminer 
moth mine of modern Parectopa zorionella (Gracillariidae) on the rubiaceous 
angiosperm Coprosma grandifolia (Watt 1920). Most likely, however, the DT71 and 
DT139 leaf-mining associations are likely attributable to an early-derived polypha-
gan beetle, possibly a buprestoid (metallic wood-boring beetles and relatives) or an 
elateroid (click beetles and relatives) that resemble other leaf mines in broadleaved 
conifers from the more recent fossil record (Ding et al. 2014; Donovan et al. 2016).

Galling: Unlike mining, which presents the three types of damage of DT41, 
DT71 and DT139, the 182 galls at Aas411 are distributed across eight DTs and 
represent a wide variety of galling strategies. Insect galls are present on the intercos-
tal areas between leaf veins (DT32), on primary leaf veins (DT33), on leaf petioles 
(DT55), and on small, woody twigs (DT87). Modern DT32 is a common type of 
gall, made by a variety of modern insect gallers, including the mite “Eriophyes” 
nalepai on the polypodialean fern Nephrolepis biserrata (Gieshagen 1919). DT33 
also is a common gall, made by a cecidomyiid midge on the foliar midrib of the 
gnetalean, Gnetum neglectum (Docters van Leeuwen-Reijnvaan and Docters van 
Leeuwen 1926). The petiole gall DT55 ranges in shape from a modest petiolar 
expansion to a considerably more bulbous, broadly ellipsoidal to spheroidal struc-
ture (Labandeira et al. 2007), for which the gall of the gall midge Lasioptera ephe-
drae on the gnetalean Ephedra trifurca is a structural analog (Felt 1917). Another 
modern twig gall, very similar to DT55, is produced by a gelechiid moth on the 
polypodialean fern Microgramma squamulosa (Kraus et al. 1993), which is promi-
nently and centrally positioned on the twig axis and has a symmetrical bulbous 
expansion. As for DT87, a modern example is a gall by a gall midge, also on the 
epiphytic polypodialean fern M. squamulosa, but one that rather results in a project-
ing bulbous prominence broadly attached along one surface of a twig (Maia and 
Santos 2011). Each of these gall types are characterized by different micromor-
phologies of hardened wall tissues, an inner nutritive tissue layer surrounding the 
larval chamber, and co-optation of host-plant vascular tissue to supply nutrients to 
gall tissues.

Different, more specialized strategies are represented by galls such as DT123, 
DT161 and DT122. DT123 is a distinctive gall caused by small insects such as 
mites, aphids and thrips that display collapse of individual plant cells and unusual 
foliar thickenings, causing abnormal cupping and enrollment of foliage. Such foliar 
distortions are analogous to the gall of the phlaeothripid thrips Jersonithrips galli-
genus on the polypodialean fern Elaphoglossum morani (Retana-Salazar and 
Nishida 2007), or to various eriophyid mites in which pinnular cupping is estab-
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lished by early stages of mite feeding (Boughton and Pemberton 2011), resulting 
from styletal modification of epidermal cells into nutritive tissue for nymphal gall- 
mite feeding (Freeman et al. 2005). DT161, by contrast, is a roughened, circular 
blister gall with pustulose centers and lineations that radiate to the outer periphery 
of the gall wall, similar to an eriophyid blister gall on the foliage of a Carya (hick-
ory) species (Johnson and Lyon 1991). The two host-specialized galls are DT70 and 
DT122. The specialized mite gall, DT70 (Figs.  14.8d–f, h, 14.9, 14.10, 14.11, 
14.12a,b,d), occurs almost exclusively on D. crassinervis and is represented by 167 
occurrences in 12 localities throughout the Molteno Biome that represent a broad 
variety of habitats. At Aas411, DT70, discussed in detail below, consists of 120 
occurrences.

The host-specialized gall other than DT70 is DT122. DT122 is a medium sized, 
bulbous, ellipsoidal gall that is oriented parallel to the venation of the ginkgophyte, 
Sphenobaiera schenckii (Figs.  14.6d,e, 14.7c, 14.8a–c,g). This gall represents a 
recurring association found in several other localities in the Molteno Biome and 
occasionally on other hosts, such as D. crassinervis (Fig. 14.6f) and H. elongatum 
(Fig. 14.12c), where there evidently is not a host-specialist association. The culprit 
for this gall remains unknown, but it shares a superficial resemblance to certain galls 
of the same size, shape and outer surface texture as the pteromalid wasp Aditrochus 
sp. on coigüe, Nothofagus nitida (Nothofagaceae), in the southern Andes of South 
America (Quintero et al. 2014).

Seed Predation: For a function feeding group with few DTs, seed predation has 
a considerable number of specialized associations. From 121 seed-predation DTs at 
Aas411, 100, or 82.6%, are associated with the three specialized DTs of DT73, 
DT74 and DT124. The first damage type, DT73, consists of 63 occurrences (52.1%) 
of all seed predation at Aas411, and is a lenticular to narrowly ellipsoidal perfora-
tion into the central body of Avatia bifurcata dispersed seeds. Each DT73 occur-
rence on a predated seed can have from one to several perforations through the seed 
central body (Anderson and Anderson 2003; Labandeira 2006a, 2016). Avatia bifur-
cata is affiliated with Ginkgoites matatiensis foliage and Eosteria eosteranthus pol-
len organs, the three of which constitute a ginkgoopsid whole-plant taxon. The 
likely culprit was a heteropteran hemipteroid with a laterally compressed stylet 
bundle and sheath found in some extant seed-feeding heteropterans (Weber 1930; 
Cobben 1978) such as Lygaeidae (seed bugs) or Miridae (capsid bugs) that match 
the cross-sectional aspect ratios of damage to modern flowering plants (Hori 1971; 
Burdfield-Steel and Shuker 2014).

The second damage type, DT74, is represented by 35 occurrences (28.9%) of the 
seed predation damage at Aas411. DT74 consists of circular to occasionally slightly 
and laterally compressed subcircular perforations into the central body of 
Fanerotheca papilioformis dispersed seeds, equivalent to Feruglioa samaroides 
seeds when attached to an ovulate organ. The corystosperm whole-plant taxon con-
sists of Dicroidium crassinervis foliage, Fanerotheca papilioformis (Feruglioa 
samaroides) seeds and possibly Pteruchus sp. pollen organs. The likely culprit of 
DT74 damage was a hemipteroid different than the fabricator of DT73, also a het-
eropteran, but with a smaller, circular cross-sectional styletal apparatus common in 
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some modern taxa (Handley and Pollard 1993) and with a distinctive mode of 
inflicting damage (Golden et al. 2006).

The third damage type, very rare DT124, is a minor element of seed predation at 
Aas411. DT124 consists of the major removal of nutritive and embryonic tissues 
from a Dordrechtites cone scale. The affiliation of Dordrechtites cone scales, how-
ever, remains enigmatic. The seed likely originates from the cone of a coniferalean 
plant that is known but lacks attribution to foliage; such a source plant has not been 
identified in the Molteno Biome (Anderson and Anderson 2003). Nevertheless, the 
culprit of DT124 is very different than those of DT73 and DT74, and shows damage 
evidence indicating a mandibulate larval insect similar to modern larval sawfly 
(Bird 1926) or bruchid or other beetle damage on gymnosperm (Bedard 1968) or 
angiosperm (Shepard 1947) seeds.

Borings: Borings are an extremely rare plant–insect interaction in the Molteno 
Biome and are represented at Aas411 by one occurrence of DT160. By comparison 
there are only three other occurrences of borings at Molteno—two instances of 
DT160 at Bir111 and a single example of DT174 at Lit111. The Aas411 boring 
consists of a tunnel circular to ellipsoidal in cross section, approximately 5.0 mm in 
maximum diameter, and oriented parallel to the xylary grain in petioles or twigs.

Other Interactions: There are four instances of damage at Aas411 that are not 
assigned to any functional feeding group. DT106 probably represents thermal stress 
or nutrient deficiencies to the leaf margin of H. elongatum (Labandeira and Prevec 
2014). Also occurring on H. elongatum is fungal damage, all of which is allocated 
to DT58, likely representing primary fungal colonization of the leaf surface. Fungal 
damage at Aas411 resembles much of the damage found on plants such as the asco-
mycete Cephalosporium that forms necrotic blotches on the polypodialean fern 
Pteris (Schneider 1966).

14.8.4  Herbivory Patterns

From the distribution of the above interaction data on the plant hosts at Aas411 
(Fig.  14.4), there are six major patterns that are present. These patterns involve 
comparisons of plant host, DT, host specialization, component community and 
other categories within the Aas411 site, and also observations comparing the Aas411 
site to other such Molteno localities.

Number of DT Occurrences: There are 1127 DT occurrences on specific plant 
specimens, based on presence–absence data at Aas411. This value is the sum of all 
recorded occurrences for each DT that is present on a single, inventoried plant spec-
imen. As these occurrences represent presence–absence data, for a DT occurrence 
to be recorded on a plant specimen, it must occur at least once, although (unre-
corded) multiple occurrences may be present. The FFG abundance data, in decreas-
ing rank, for the number of DTs per FFG is: margin feeding, 286 occurrences; 
oviposition, 188; galling, 182; leaf mining, 154; seed predation, 121; surface feed-
ing, 76; hole feeding, 66; unidentified DTs, 4; fungi, 3; and skeletonization, 1. The 
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abundance of margin feeding and virtual absence of skeletonization is expected, as 
margin feeding typically has the most elevated occurrences of any FFG and skele-
tonization is very rarely represented in the Paleozoic and Mesozoic. However, it is 
notable that there is a greater abundance of the endophytic FFGs of piercing and 
sucking, oviposition, leaf mining, galling, and seed predation, representing 681 DT 
presence–absence occurrences, over the exophytic FFGs of hole feeding, margin 
feeding, skeletonization and surface feeding that represent 429 DT presence–
absence occurrences. This latter comparison, where endophytic DTs exceed exo-
phytic DTs by a factor of almost 1.6, represents a condition rarely seen in other 
Molteno localities.

Number of DT Categories: The pattern of DT diversity per FFG is different than 
that of individual DT occurrences on plant specimens per FFG measured above. For 
exophytic FFGs, hole feeding is represented by seven DTs, margin feeding by five 
DTs, skeletonization by one DT and surface feeding by seven DTs for a total of 20 
DTs. For endophytic FFGs, piercing and sucking is represented by four DTs, ovipo-
sition by four DTs, mining by three DTs, galling by eight DTs, seed predation by 
three DTs and borings by one DT for a total of 23 DTs. The exophytic to endophytic 
DT ratio is 1.15 or approaching equivalence and is significantly different than that 
of the individual DT occurrences. This indicates that modes of feeding on tissues is 
approximately equivalent under exophytic or endophytic feeding regimes, but the 
intensity, as measured by individual feeding events that target plant specimens, is 
substantially greater under endophytic feeding. This also is indicated by the galling 
FFG having the greatest number of eight DTs at Aas411.

Plant Hosts: Of the 111 plant form-taxa, 35 are combined into 14 separate 
whole-plant taxa. Of these 14 whole-plant taxa, seven are the principal plant species 
that are the most herbivorized at Aas411 (Table 14.2). Often multiple organs are 
herbivorized within a whole-plant taxon, such as foliage, stems and seeds. The rank-
ing of herbivory intensity is provided from evidence of four attributes for each 
whole-plant taxon. The attributes are: (i), the numbers of functional feeding groups; 
(ii), the number of DT categories; (iii), the number of individual DT occurrences; 
and (iv), the number of specialized associations for each whole-plant taxon. The 
most herbivorized plant host by far (Fig.  14.4; Table  14.3), is the Heidiphyllum 
elongatum–Telemachus acutisquamus–Odyssanthus crenulata whole-plant taxon 
(Anderson and Anderson 2003; Bomfleur et  al. 2013), representing the affiliated 
foliage, ovulate organ and pollen organ of a prominent voltzialean conifer. (This 
convention of sequential characterization of whole-plant taxa by their foliage, 
female organ and male organ taxa will be used for all seed-plant taxa.) The second 
ranked, most herbivorized taxon is the Dicroidium crassinervis–Fanerotheca papil-
ioformis–?Pteruchus matatimajor whole plant taxon (Retallack and Dilcher 1988; 
Anderson and Anderson 2003), an umkomasialean corystosperm. The third most 
herbivorized whole-plant taxon is the Sphenobaiera schenckii–Sphenobaiera short 
shoot–Hamshawvia longipeduncula–Stachyopitys gypsianthus whole-plant taxon, a 
ginkgophyte (Anderson and Anderson 2003; Barboni and Dutra 2015). These three 
plant-host taxa at Aas411 also are the three most prominent taxa that parallel in the 
same rank order the Molteno Biome as a whole (Anderson and Anderson 2003).
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Other than the three major herbivorized plant hosts, those whole-plant taxa with 
significant but less herbivory are three seed plants and a horsetail. The fourth most 
herbivorized taxon is another ginkgophyte, the Ginkgoites matatiensis–Avatia bifur-
cata–Eosteria eosteranthus whole-plant-taxon (Anderson and Anderson 2003). The 
fifth most herbivorized taxon, the peltasperm Lepidopteris africana–Peltaspermum 
turbinatum–Antevsia mazenodensis whole-plant-taxon and the sixth most herbiv-
orized taxon, the congeneric peltasperm Lepidopteris stormbergensis– Peltaspermum 
monodiscum–Antevsia sp. whole-plant-taxon, which likely occupied similar habi-
tats (Anderson and Anderson 2003). The seventh most herbivorized taxon is the 
only plant host with elevated damage that is not a seed plant, and unlike the other 
six whole-plant taxa, the Zonulamites viridensis–nodal diaphragm A–Viridistachys 
gypsensis–Paraschizoneura fredensis whole-plant taxon is a horsetail that has insect 
damage only as oviposition. These four, less dominant, whole-plant taxa do not fol-
low the same rank order of prominence throughout the entire Molteno Biome, as do 
the Heidiphyllum, Dicroidium and Sphenobaiera host sequence. Rather, fourth 
ranked Aas411 Ginkgoites occurs as seventh position in the Molteno Biome as a 
whole, fifth and sixth ranked Aas411 Lepidopteris occurs collectively as the eighth 
Molteno position, and seventh-ranked Aas411 Zonulamites is unranked within 
Molteno Biome (Anderson and Anderson 2003).

Persistent Specialized Associations: One of the features determining the most 
herbivorized whole-plant taxa at the Aas411 site is the number of specialized asso-
ciations. Host-specialized interactions are defined by the presence of the same 
recurring, stereotypical damage type that is present on the same host-plant species 
or closely-related group of species throughout multiple localities across the Molteno 
Biome. In addition, host specificity can be assessed by the extent to which the her-
bivore modifies the tissues of its plant host, which in the case of gallers implies an 
intimate association that results from the gall extending the limits of its phenotype 
to include galled host tissues (Stone and Schönrogge 2003). The Heidiphyllum elon-
gatum whole-plant-taxon houses the greatest number and most diverse repertoire of 
host-specialized associations of any Aas411 host plant, or for that matter, of any 
plant host from a Molteno site (Tables 14.2, 14.3; Figs. 14.2, 14.3, 14.13). These 
recurring host-specialized associations include DT8 of hole feeding (not figured), 
DT128 of piercing and sucking (Fig. 14.5f), DT76 of oviposition (Fig. 14.5g), and 
DT71 of mining (Fig. 14.6a,b). These four, pervasive associations of the H. elonga-
tum whole-plant taxon are present at other Molteno localities; in the case of distinc-
tive DT76 oviposition, 30 other Molteno localities have this interaction. For the 
distinctive, highly host specific leaf mine of DT71, 98.4% occur on the H. elonga-
tum whole-plant taxon across Molteno localities. This association has 147 occur-
rences at Aas411, but is matched by 1124 other occurrences in 22 other localities 
within the Molteno Biome (Table 14.3).

Four, other, highly stereotyped associations on hosts other than H. elongatum are 
noteworthy (Tables 14.2, 14.3; Figs.  14.2, 14.3, 14.13). One notable, persistent 
association of specialized damage is the highly stereotyped mite gall DT70,  
found almost exclusively on the foliage of D. crassinervis (Tables 14.2, 14.3; 
Figs. 14.8d–f, h, 14.9, 14.10, 14.11, 14.12a,b,d). At Aas411 there are 117 occurrences 
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of DT70 on D. crassinervis, but 50 other occurrences are found on the same host at 
11 other Molteno localities. A second example are distinctive DT73 seed-predation 
lesions on Avatia bifurcata, the affiliated platysperm seed of Ginkgoites matatiensis 
foliage (Labandeira 2016). Seed damage of DT73 is found on 63 specimens at 
Aas411, but this DT has 1067 occurrences at six other Molteno localities, of which 
1045 A. bifurcata seeds show this damage at the Bir111 site. A third example is the 
characteristic DT72 oviposition lesions in the stems of the horsetail Zonulamites 
viridensis whole-plant taxon (Fig. 14.6c), of which 14 occurrences are present at 
Aas411, and 30 other occurrences are found in nine other localities across the 
Molteno Biome on Z. viridensis at Gre111B (Greenville 111B), Bir111 and two, 
other, closely related species of D. annumensis from Lit111, Nuwejaarspruit 111A 
(Nuw111A) and Peninsula 511 (Pen511); and D. elandensis at Elandspruit 111 
(Ela111), Lutherskop 4111 (Lut4111), Boesmanshkoek 111B, (Boe111B) and Cala 
Road 111A (Cal111A). Last is the excavation of megagametophytic tissues of 
DT124 seed predation on Dordrechtites elongatus, an unaffiliated pinopsid cone 
(Anderson and Anderson 2003). This distinctive ovulate reproductive structure has 
both of its two occurrences at Aas411 that exhibit damage, but also has 11 occur-
rences with damage in the closely related D. mazocirrus at the Maz211 site.

Component Community Structure: The Heidiphyllum elongatum whole-plant 
taxon has the most diverse and balanced component community at Aas411 of any 
plant host (Tables 14.2, 14.3; Figs. 14.3, 14.13). However, pending additional analy-
ses, the H. elongatum whole-plant taxon likely is the most diverse and thoroughly 
herbivorized plant throughout the Molteno Biome, as it occurs in 78 of the 106 
Molteno localities. This whole-plant taxon is represented by nine of the ten FFGs at 
Aas411, including the unknown FFG of DT106, and displays 28 DTs (Tables 14.2 
and 14.3; Fig. 14.13). The only missing FFGs for H. elongatum are wood boring 
and seed predation. As for seed predation, no affiliate seed or female ovulate organ 
has been assigned to H. elongatum at Aas411, assuming that the present Dordrechtites 
elongatus is not the affiliate ovulate organ and neither is the possible affiliate ovu-
late organ Telemachus, which interestingly is absent at Aas411. (See the discussion 
on page 62 of Anderson and Anderson [2003] for a full discussion of this enigma.) 
If Dordrechtites elongatus is the ovulate organ of H. elongatum, as may be sus-
pected, then the highly stereotyped seed-predation association of DT124 would 
almost complete the tally of ten functional feeding groups contained in the H. elon-
gatum whole-plant taxon, five of which would include the host-specialized associa-
tions of DT8 hole feeding, DT128 piercing and sucking, DT76 oviposition, DT71 
leaf mining and DT124 seed predation. Much of the component community struc-
ture of the Heidiphyllum elongatum whole-plant taxon is illustrated in Fig. 14.13.

There is considerable structure in the component communities of the remaining 
whole-plant taxa as well. The Dicroidium crassinervis whole-plant taxon is the sec-
ond most diverse component community at Aas411, housing seven FFGs and 20 
DTs that includes hole feeding, margin feeding, piercing and sucking, oviposition, 
galling and seed predation. The Sphenobaiera schenckii whole-plant taxon houses 
the third most complete component community, containing all the FFGs occurring 
in Dicroidium crassinervis, except for the presence of leaf mining, the absence of 
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seed predation, and about half of the number of DTs. The Ginkgoites matatiensis, 
Lepidopteris africana and L. stormbergensis whole-plant taxa have two less, or five 
FFGs, and 8–11 DTs each. By contrast, the horsetail Zonulamites viridensis compo-
nent community has a very limited component herbivore community, consisting 
only of one FFG and three DTs of oviposition. This paucity of diverse damage in 
horsetails is attributable to herbivory that largely is limited to stem tissues  embedded 
with silica deposits and also to the presence of foliage resistant to arthropod con-
sumption (Law and Exley 2011).

Role of Habitat: The dominant habitat for the specialized associations of five of 
the most herbivorized associations at Aas411 also match the stated site habitat of 
their plant hosts at other localities across the Molteno Biome. Perhaps not surpris-
ingly, the habitat of the four host-specialized associations representing the distinct 
FFGs of DT8 hole feeding, DT128 piercing and sucking, DT76 oviposition and 
DT71 mining of the H. elongatum whole-plant-taxon is Heidiphyllum Thicket. 
Similarly, for the two host-specialized associations of DT70 and DT74, represent-
ing two FFGs of the D. crassinervis whole-plant taxon, is Dicroidium Open 
Woodland. The single host-specialized associations of DT122 galling for the  
S. schenckii and DT73 seed predation for the G. matatiensis whole-plant-taxa is 
Sphenobaiera Closed Woodland. Last, the two host-specialized associations of 
DT72 and DT108 oviposition for Z. viridensis is Horsetail Marsh. It appears that 
because of the host-plant ecological preferences for certain habitats, that their more 
intimate interactions with insect herbivores also are closely tied to a specific habitat 
within the Molteno Biome.

14.9  Early Gall History and Gall DT70 on Dicroidium 
crassinervis

14.9.1  Early Arthropod Gall History

Terrestrial fossil galls have their earliest occurrence in a liverwort host from the 
Middle Devonian of New  York state, attributed to an unknown small arthropod 
(Labandeira et  al. 2014). The gall record increases substantially during the 
Pennsylvanian Period, particularly in Euramerica, in which galls overwhelmingly 
are hosted on plant axial tissues of the rachises of Psaronius tree ferns (Labandeira 
and Phillips 1996) and the terminal strobili of calamitalean horsetails (van Amerom 
1973; Kelber 1988). During the early Permian (Cisuralian), a variety of gall mor-
phologies, representing approximately ten DTs, colonized the foliage of seed plants, 
particularly in southwestern (Schachat et al. 2014; Schachat and Labandeira 2015) 
and central-south (Labandeira et al. 2016) Euramerica. This shift toward and expan-
sion of galling on foliage rather than axes such as stems continued in Gondwana 
until the Lopingian, where almost all occurrences are on glossopterid hosts (Adami- 
Rodrigues et  al. 2004; Prevec et  al. 2009; McLoughlin 2011). These plant–gall 
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interactions largely were eliminated globally at the P-Tr ecological crisis (Labandeira 
2006a), as there is minimal evidence from depauperate Early Triassic deposits to 
suggest the survival of recognizable Permian gall interactions on particular hosts 
later into the Triassic. An exception includes a midveinal gall on the probable seed 
fern Tongchuanophyllum of the Olenekian Solling Formation in southern Germany 
(Kustatscher and van Konijnenburg-Van Cittert 2013; Kustatscher et  al. 2014). 
Additionally, a distinctive, circular to broadly ovoidal gall with thick enveloping 
walls on Dicroidium odontopteroides, probably of Olenekian age, have been 
described from the Newport Formation of the Sydney Basin in Australia 
(McLoughlin 2011).

Well documented insect damage on Anisian, Ladinian and Carnian Triassic floras 
throughout Pangaea indicate the re-evolution of the galling habit by several insect 
lineages on multiple plant hosts. In stark contrast to the Permian, Middle Triassic 
galling interactions occur on very different plant hosts in Euramerica and Gondwana 
(Anderson and Anderson 1985, 1989, 2003, 2008, 2017; Visscher et  al. 1996; 
Anderson et al. 2007; Krassilov and Karasev 2009). Similarly, the evolution of new 
insect groups with potentially newly evolved galler lineages during the Middle 
Triassic to early Late Triassic is indicated by their body-fossil record (Tillyard 
1923; Riek 1974; Gallego 1997; Béthoux et al. 2005; Labandeira 2005). The insect 
body-fossil record was supplemented by newly appearing lineages of mites 
(Sidorchuk et al. 2015), sternorrhynchans (Evans 1971; Shcherbakov 2000), thrips 
(Fraser et al. 1996), beetles (Ponomarenko 2016; also see McKenna et al. 2015), 
sawflies (Rasnitsyn 1969; Schlüter 2000), and flies (Krzeminski 1992; Shcherbakov 
et al. 1995). Consequently, the insect body-fossil record indicates that many major 
insect lineages were present during the Anisian, Ladinian and early Carnian that 
would have supplied taxa engaged in the galling habit on a broad repertoire of avail-
able, newly emerging plant hosts (Larew 1992). The fossil mite record, particularly 
for those taxa engaged in gall associations with fern and especially conifer hosts, is 
ancient, based examinations of the fossil record (Sidorchuk et al. 2015), phyloge-
netic studies (Boczek and Shevchenko 1996; Fenton et al. 2000) and biogeographi-
cal inference (Gerson 1996; Oldfield 1996; Lewandowski and Kozak 2008).

During this time interval, evidence for Anisian galling associations comes from 
the Dont Formation of the Dolomites Region in northeastern Italy, especially DT32 
and DT80 galls on cycadophytes, such as Bjuvia dolomitica. In the penecontem-
poraneous Valle San Lucano Flora of the Agordo Formation, also in the Dolomites 
Region, DT11 galls (erroneously reported as surface feeding) occur on the cycado-
phyte Taeniopteris sp. and DT32 galls have been found on a second cycadophyte, 
Nilssonia neuberi (Labandeira et al. 2016). From the upper Grès à Voltzia, or upper 
Buntsandstein, beds of the Röt Formation in Alsatian France, there is a distinctive 
gall on the voltzialean conifer Aethophyllum stipulare (Larew 1992; Grauvogel- 
Stamm and Kelber 1996), presumably of herbaceous habit. This gall is notable for 
its considerable expansion of anomalous tissue in the peduncular base of the male 
conifer cone. A second gall affects another conifer at the same site, an undetermined 
species of Voltzia, which resembles a witch’s broom deformity, characterized by the 
bending of shoot axes and extensive proliferation of derivative foliage, similar to a 
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DT121 aldelgid gall (Grauvogel-Stamm and Kelber 1996; also see Labandeira and 
Allen 2007, for a Permian example). Notably, no galls have been observed on any 
plant host among the 1386 plant specimens from the Anisian Burgersdorp Formation 
of South Africa (Labandeira et al., unpubl. observ.).

Plant material displaying Ladinian galls overwhelmingly originated from the 
same regions in Western Europe as Anisian galls. Some Ladinian gall associations 
may have been described as oviposition scars by Grauvogel-Stamm and Kelber 
(1996). However, the best evidence for Ladinian galls comes from several sites of 
the Dolomites Region of northeastern Italy (Wappler et al. 2015; Labandeira et al. 
2016). One such site contains the Monte Agnello Flora, from the Vulcanites 
Formation, revealed a DT121 bud gall on the conifer Voltzia sp. 1 (Wappler et al. 
2015), very similar to the gall on an undetermined species of Voltzia from the pene-
contemporaneous Grès à Voltzia material in Alsatian France mentioned above 
(Grauvogel-Stamm and Kelber 1996). The diverse gall component of plant–insect 
interactions from the Monte Agnello Flora also includes the small, nondescript, 
hemispheroidal, DT80 galls on the fern Phlebopteris fiemmensis, cycadophyte 
Bjuvia cf. dolomitica, and seed fern Scytophyllum bergeri (Wappler et  al. 2015; 
Labandeira et al. 2016). A different species of Phlebopteris at Monte Agnello exhib-
its a DT106 gall likely caused by a mite (Labandeira et al. 2007, 2016). Two other 
Ladinian floras from the Dolomites Region, the St. Veit–Innerkohlbach and Forcela 
da Cians floras, contain the seed fern Ptilozamites sandbergeri that display general-
ized, indistinct galls of DT32 and DT80 (Labandeira et  al. 2016). Anisian and 
Ladinian data indicate that gall morphologies, with the exception of the conifer- 
borne galls, were generalized, hemispherical, well protected and probably single 
chambered.

During the Carnian, particularly in the early part of the stage, galling insects 
increased their geographic range and entered into new associations with plant hosts 
that produced novel gall morphologies. These new gall types were present at differ-
ent regions, occupied different habitats, and colonized new plant hosts when com-
pared to those of the Middle Triassic. One such gall is a pustulose, compound gall 
on the net-veined fern Dictyophyllum bremerense from the Blackstone Formation of 
the Sydney Basin in Australia (Webb 1982). A second occurrence comes from the 
De Geerdalen Formation of Svalbard, Norway, which is a permineralized peat 
deposit bearing anatomically preserved bennettitalean roots that contain cortex- 
embedded, single chambered, spheroidal galls with walls having an inner ragged 
surface and a smooth outer surface (Strullu-Derrien et al. 2012). The broad affinities 
of the arthropod galler forming this distinctive gall remains unknown. From depos-
its of about the same age, there are 15 distinctive gall DTs described from the 
Molteno Formation, about half of which are present at the Aas411 site. These and 
other Molteno galls indicate a variety of galling strategies, in particular the blister 
gall DT11; the generalized gall DT34 occurring on secondary veins; small, undis-
tinguished hemispherical galls of DT80; elliptical midveinal expansions of DT85; 
pustulose, surficial galls of DT107; and the large, bulbous and ellipsoidal galls of 
DT127. Later during the Triassic, a distinctive, irregularly bulbous gall deformed 
the pinnules of the probable gnetalean host, Delchellyia gormani, from the early 
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Norian Chinle Formation of the Petrified Forest National Park, in northeastern 
Arizona (Ash 1972, 1997). The culprit of this gall most likely is a tenthredinoid 
sawfly, based on details of modern sawfly galls (Bird 1926; Meyer 1987; Zinovjev 
2006). These Carnian occurrences of new, distinctive, gall morphotypes collectively 
suggest a major diversification of the galler FFG that expanded the plant hosts and 
life habits of mites and insects.

14.9.2  Systematics and Biology of Gall DT70

Ichnogenus Pustuleon Krassilov, 2008

Etymology: From the Latin, pustula -ae, meaning a blister or pimple 
(feminine).

Type species: Pustuleon gregarium Krassilov 2008 (in Krassilov et al. 2008).
Diagnosis: “Dense aggregates of minute distinct ostiolate pustules on or near the 

stronger veins” (Krassilov et al. 2008, p. 81).
Remarks: Krassilov (2008, p. 81) also states: “Aggregates of minute pustules are 

induced and then used for egg emplacement by eriophyid mites.” (Krassilov et al. 
2008, p. 84). Additional comments are: “In extant eriophyid mites, a sting by funda-
trix may induce a similar cluster of numerous pustules. Vein twisting by the gall is 
also typical of cecidogenous eriophyid effects. Occasional black fusiform bodies 
among the pustules … may represent an adult mite (compare fig. 2c in Westphal 
1977). However, it must be admitted that interpretation of the interior structures 
remains ambiguous because of insufficient preservation of the scanned material.”

Ichnospecies Pustuleon parvicubiculites C.C.  Labandeira, J.M.  Anderson and 
H.M. Anderson

Etymology: From the Latin, parvus -a -um, meaning little or small (neuter); and 
from cubiculum –i, diminutive form meaning a (small) bedchamber or bedroom, 
often taken to mean any small chamber The gender is masculine.

Holotype: PRE/F/12392-1; this report: Fig. 14.8a,b; Labandeira 2006a, figs. 36, 
38.

Description: A variously shaped foliar epidermal gall distributed in small 
patches, enlarging to a more robust structure that is well developed along pinnular 
veins and consisting of a pustulose to ragged surface texture; gall edge irregularly 
confluent with pinnule margin and often with expanded pinnular base; surface pock-
marked with miniscule spheroidal chambers typically 0.1–0.3 mm diameter, occa-
sionally breached, exposing inner cavities and significant, embedded hypertrophic 
and hyperplasic epidermal tissue appearing as a roughened and abraded surface. 
Gall ontogeny starts as small patches of small pustules often on tips of pinnules that 
represent immature galls, later growing to larger areas extending to major portions 
of pinnules, eventually engulfing an entire pinnule, at which time pustules are visi-
bly larger and occasionally marked by extension of galled tissue along the adjacent 
rachis and colonization of nearby pinnules.
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Measurements: Holotype gall 6.7 mm long measured medially from near the 
base of the pinnule to pinnule tip, and 5.5 mm across the widest portion of the gall 
near the pinnule tip; pustules ca 0.1–0.2 mm in longest dimension (Fig. 14.8a,b).

Occurrence: Bamboesberg Member (Cycle 1) of the Molteno Formation, 
assigned to a Late Triassic age (Anderson and Anderson 2003). Although a search 
for volcanic strata with zircons is ongoing, short of any absolute dates, the precise 
age of the Molteno Formation and its duration, remains uncertain. Based on global 
biostratigraphic correlations (Anderson et al. 2007), a generic age of Late Carnian 
has been established for the Molteno Formation.

There are 167 occurrences of the DT70 gall on Dicroidium crassinervis in 12 
Molteno localities. The overwhelmingly majority of specimens with DT70 galls 
exhibit multiple galls per frond or frond fragment. Frequently, galled fronds exhibit 
multiple galled pinnules that occasionally are connected along an intervening galled 
rachis. DT70 galls are found in the following Molteno localities, from oldest to 
youngest: Aas411, with 117 occurrences discussed in this report; Umk111, with 
four occurrences; Mazenod 211 (Maz211), with one occurrence; Elandspruit 112B 
(Ela112B), with one occurrence; Kap111, with two occurrences; Klein Hoek 111C 
(Kle111C), with six occurrences; Klein Hoek 111B (Kle111B), with five occur-
rences; Peninsula 421 (Pen421), with three occurrences; Cyphergat 111A 
(Cyp111A), with three occurrences; and Cala Road 111B (Cal111B), with 23 occur-
rences (see Table 14.1 for site data). DT70 galls have not been documented at fossil 
localities other than those of the Molteno Formation, although other, structurally 
different mite galls co-occurring in the Molteno Formation resemble modern erio-
phyioid galls. There is no preference of the DT70 gall by habitat, as this gall occurs 
in five of the seven habitats in the Molteno Biome—Sphenobaiera Closed Woodland, 
Mature Dicroidium Riparian Forest, Immature Dicroidium Riparian Forest, 
Heidiphyllum Thicket, and Dicroidium Open Woodland—as well as present in one 
site whose habitat was indeterminate. These habitats are characterized by the pres-
ence of Dicroidium, especially D. crassinervis and D. odontopteroides, as the domi-
nant or subdominant taxon.

Assigned Functional Feeding Group and Damage Type: Galling; DT70 
(Labandeira 2006b; Labandeira et al. 2007).

Host Plant: Dicroidium crassinervis (Geinitz 1876) Anderson and Anderson 
1982, comb. nov. (Umkomasiales: Umkomasiaceae), a corystosperm seed fern. The 
distribution of DT70 is greatest at Aas411, with 117 occurrences, 70.1% of the total 
for the entire Molteno Biota. DT70 is present at nine other localities representing 
48 additional occurrences. The presence of DT70 at sites other than Aas411 range 
from one to six occurrences per site, with the exception of Cal111B, where it is 
represented by 23 occurrences, or about half of the total for the non Aas411 associa-
tions in the Molteno Biota.

Host-Plant Specificity: Throughout the Molteno Flora DT70 is found almost 
always on the single host-plant, Dicroidium crassinervis, and is given a value of 3, 
indicating monospecificity, following the host-specialization categories in 
Labandeira et  al. (2007). The monospecific relationship of the DT70 gall on D. 
crassinervis involves an attack rate of 3.82% (3064/117) for the DT70 gall on D. 
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crassinervis at the Aas411 site. Typically, eriophyoid mites are “highly host spe-
cific” according to Oldfield (2005, p. 35).

Inferred Culprit: The damage is most consistent with an eriophyoid mite (Acari: 
Eriophyoidea). Eriophyoid mites have been documented from penecontemporane-
ous Triassic amber of northeastern Italy (Sidorchuk et al. 2015). Also see remarks 
below.

Figured Material: DT70 is figured in this report as follows: Fig. 14.8d,e: PRE/
F/12351-1; Fig. 14.8f: PRE/F/21923-1; Fig. 14.9a,b: PRE/F/12392-1; Fig. 14.9c: 
PRE/F/21416-1; Fig. 14.9d,e: PRE/F/12389b; Fig. 14.9f: PRE/12387a-1; Fig. 14.9g: 
PRE/F/20880a-1; Fig.  14.10a: PRE/F/12387a-1 (different illumination than 
Fig. 14.9f); Fig. 14.10b: PRE/F/12394-1; Fig. 14.10c: PRE/F/12396a-1; Fig. 14.10d: 
PRE/F/12396b (counterpart to Fig.  14.10c); Fig.  14.10e: PRE/F/21908a-4; 
Fig.  14.10f: PRE/F/21908-1; Fig.  14.11a: PRE/F/20880a-1; Fig.  14.11b: PRE/
F/21144a-7 (gall detail figured in Fig.  14.12b); Fig.  14.11c: PRE/F/21920b-1; 
Fig.  14.11d,e: PRE/F/21909-1; Fig.  14.11f: PRE/F/12389a-1; Fig.  14.12a: PRE/
F/20883-2; Fig. 14.12b: PRE/F/21144a-7 (photo in Fig. 14.11b); and Fig. 14.12d: 
PRE/F/21050-2. Previous illustrations: Scott et  al. 2004, fig. 2h, erroneously 
referred to as an “irregular blotch mine”; and Labandeira 2006a, figs. 36 and 38.

Other Material: The DT70 gall occurs in 12 localities within the Molteno Biome, 
represented by a total of 167 specimens, all of which are found on its host, D. crassi-
nervis. The Aas411 site accounts of 117, or 70.1%, of all Molteno DT70 occur-
rences. With the exception of the Cal111B site which has 23 specimens of DT70, 
the remaining 10 localities have on average three specimens each. The most com-
monly occurring habitat supporting DT70 on D. crassinervis is Dicroidium Open 
Woodland. To our knowledge DT70 has not been described from any other 
Gondwanan site of similar age nor from any other site in the fossil record.

Repository: Palaeobotanical Collections (“Molteno Room”); Evolutionary 
Studies Institute of the University of the Witwatersrand; Johannesburg, South 
Africa.

Remarks: The DT70 gall is a histioid gall that results in cellular modification 
such that an existing, affected organ is histologically changed to produce a new 
structure of abnormal tissue, typically a gall (Meyer 1987). Histioid galls are 
classified into cataplasmas or prosoplasmas. Cataplasmic galls have a relatively 
organized appearance through growth and shape changes, but do not form specific, 
differentiated tissues (Dreger-Jauffret and Shorthouse 1992). By contrast, cataplasmic 
galls are less organized than prososplasmic galls, and form anomalous structures 
from existing tissues by an increase in the number (hyperplasia) and size (hypertrophy) 
of cells, and often forming one or more layers of parenchymatous cells (Dreger-
Jauffret and Shorthouse 1992; Rohfritsch 1992). Accordingly, DT70 is a histioid, 
cataplasmic gall that did not form an organized, three-dimensional, symmetrical 
structure, but rather had a disorganized, more two-dimensional configuration of 
embedded nutritive cells exhibiting a pustulose surface that resulted from mouthpart 
puncturing of individual cells by arthropods. The arthropod culprits undoubtedly 
had specialized, piercing and sucking mouthparts consisting of an armature of pro-
tractible stylets (Vacante 2016). These punctured cells evidently were transformed 

C.C. Labandeira et al.



701

into enlarged, bulbous, nutritive cells by salivary secretions of eriophyoid mites that 
transformed normal tissues of epidermal and parenchymatous cells into abnormal, 
galled tissues (De Lillo and Monfreda 2004).

With the exception of galls produced by certain gall midge larvae with special-
ized mouthparts that puncture individual cells (Rohfritsch 1992), there only are 
three other piercing-and-sucking arthropod groups capable of producing similar 
cataplasmic, histioid galls: thrips, sternorrhynchan hemipterans, and mites 
(Rohfritsch 1992). Galls of thrips are open and not sealed structures, but more typi-
cally result in leaf folding or curling along the leaf margin, or otherwise have irregu-
lar leaf folding with unsightly teratologic forms, including the production of massive 
peapod-like structures up to 20 cm long (Meyer 1987; Ananthakrishnan and Raman 
1989). Sternorrhynchan hemipterans, such as aphids, scale insects, whiteflies and 
psyllids, also produce cataplasmic histioid galls, but because their stylate mouth-
parts differ from thrips and mites, they do not pierce shallowly positioned individual 
cells of the epidermis that result in eventual tissue necrosis. Rather, sternorrhynchan 
hemipterans have an intercellular stylet trajectory and target deeper seated vascular 
tissue, principally phloem, for nutrition rather than consuming large nutritive cells 
at the surface. Sternorrhynchan hemipterans deposit distinctive, mucilaginous sali-
vary sheaths surrounding the puncture marks. Enlarged, bulbous nutritive cells, 
whose protoplasts are rich in nutrients, form around the punctures on the epidermal 
surface, but are not teratologically transformed as are thrips-punctured epidermal 
cells (Westphal 1992). Eriophyoid mites, in contrast to thrips and sternorrhynchan 
hemipterans, are ca. 10 times smaller and thus target individual epidermal cells dur-
ing feeding. The piercing-and-sucking feeding style of mites result in abundant 
nutritive tissue, occurring as excrescences on surface tissue that consist of individ-
ual, bloated nutritive cells or enlarged trichomes. Hyperplasia is common and cel-
lular necroses typically ensue after feeding has terminated (Westphal 1977; Larew 
1981). Of these three groups of potential culprits—thrips, sternorrhynchans, and 
eriophyoid mites—the DT70 gall is consistent with a mite galler. Gall midges of the 
Cecidomyiidae are a remote possibility, but do not extend to the Late Triassic (Nel 
and Prokop 2006). As well, thrips and sternorrhynchan hemipterans produce con-
siderably larger and differently structured galls that are reflected in the very differ-
ent feeding habits than those of eriophyoid mites.

In addition to classification as a histioid cataplasmic gall, DT70 also is consid-
ered a cover gall. Cover galls form by an inducer, in this case a mite with piercing 
mouthparts, which provokes a response from its host D. crassinervis by producing 
of hyperplasic and hypertrophic tissue. This tissue proliferation gradually surrounds 
and covers the gall mites. This is done by the formation of minute chambers, often 
with limited access to the outside such as through an ostiole (Meyer 1987). It is 
strongly suspected that the particular type of cover gall DT70 represents is an 
erineum gall. Erineum galls are provided with enlarged but small nutritive cells, 
sometimes in the form of expanded trichomes, but whose contents are activated 
from stylet punctures of individual cells by mites (Larew 1981). Typical live erineum 
galls appear reddish to pinkish from mites that attack foliage and are characterized 
by unsightly bulging of tissues and distortions that can spread to other contiguous 
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plant organs (Westphal and Manson 1996). A variety of erineum galls occur on 
ferns, gymnosperms and angiosperms (Castagnoli 1996), some of which are eco-
nomically important. Common examples include the fern mite Hemitarsonemus 
tepidariorum on the fern, Pteris sp., in California (Pritchard 1951); the pear leaf- 
blister mite Eriophyes pyri on pear, Pyrus communis, in Lebanon (Talhouk 1969); 
and Aceria dactylonyx, on hīnau, Elaeocarpus dentatus, in New Zealand (Lamb 
1953). In particular, foliose mite galls, including erinea, that are morphologically 
very similar to DT70, prominently include Eriophyes tetratrichus on basswood, 
Tilia platyphyllos (Tiliaceae). This mite gall has macroscopic similarities to DT70, 
exhibiting foliar thickening and puffiness along the leaf margin that apparently 
migrates inwardly to the leaf median axis as the gall matures (von Schlechtendal 
1916; Jeppson et al. 1975).

There are several additional defining features of DT70 on D. crassinervis, beyond 
the description above, and including additional figures (Figs. 14.8d–f, 14.9, 14.10, 
14.11, 14.12a,b,d), and unfigured material from Aas411. The DT70 gall occasion-
ally is interrupted by larger, bulbous and spheroidal to ellipsoidal features that often 
are breached to reveal an inner cavity similar to those mentioned by Larew (1981) 
and illustrated in his plate 4, figure 6. These structures also are similar to the erio-
phyoid gall on the dryopteridaceous fern Nephrolepis sp. (Nalepa 1909). The larger 
bulbous structures are interpreted as chambers inhabited by mites, whereas the 
smaller-sized pustules considerably less than 0.1 mm in longest dimension are inter-
preted as engorged nutritive cells. These features resemble the meristematic sur-
faces of some eriophyid pouch galls (Arnold 1965). Another major condition of the 
gall are upraised surfaces aligned between major pinnular veins. In some instances 
it appears that the incompletely galled pinnular margins exhibit curling. There is no 
evidence for enlarged pinnular trichomes containing nutritive protoplasts that many 
modern mite galls have, possibly attributable to the failure of trichome preservation 
in all examples of galled D. crassinervis. A major defining aspect of the gall is the 
ontogeny of DT70 that involves gall development progressing through four phases. 
Early galls are (i), small patches on pinnules (Fig. 14.8g, grey arrows); that later 
enlarge to (ii), broader pinnular patches (Fig. 14.9f, grey arrows); to (iii), a condi-
tion where the entire pinnule is engulfed by a gall (Figs. 14.8a–f, 14.9a, 14.10c, 
black arrows); and finally (iv), adjacent rachis tissue and nearby pinnules are 
invaded by the gall (Fig.  14.10a, black arrow; Fig.  14.12a), that occasionally 
undergo rachial bending (Figs. 14.9c,d,f, red arrows).

14.10  Discussion

During the late Permian (Lopingian), plant–insect interactions of the earlier 
Wuchiapingian Stage in Gondwana and Euramerica were moderately diverse, indi-
cated by the Clouston Farm flora in KwaZulu-Natal in South Africa (Prevec et al. 
2009) and by the Bletterbach flora in northeastern Italy (Labandeira et al. 2016). For 
the Clouston Farm site, 9772 plant specimens were assessed, consisting of 23 plant 
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morphotypes, 22 DTs and resulting in a 1.40% level of herbivory, of which 62.5% 
was generalized and 37.5% specialized (Prevec et  al. 2009). The most common 
insect herbivorized plant was glossopterid morphotype C2a and most pervasive type 
of insect damage was DT12. For the Bletterbach site, 1531 plant specimens were 
examined, consisting of 23 plant morphotypes, 16 DTs and resulting in a 1.95% 
level of herbivory, of which 68.7% was generalized and 31.3% specialized 
(Labandeira et al. 2016). At Bletterbach, the most common insect herbivorized plant 
was Taeniopteris sp. A, and DT12 was the most prevalent insect damage. The South 
African and Italian Wuchiapingian floras harbored interactions dominated by the 
exophytic interactions of hole feeding, margin feeding and surface feeding and 
much lesser occurrences of the endophytic interactions of piercing and sucking, 
oviposition and galling. A broad summary for both floras can be expressed as: (i), 
levels of herbivory were approximately 1.7%; (ii), two-thirds of the interactions 
were generalized and one-third were specialized; and (iii), the dominant herbiv-
orized plant was a seed plant that had a plurality of DT12 damage (Prevec et al. 
2009; Labandeira et al. 2016). The Clouston Farm site, in addition, is notable for a 
significant amount of oviposition (Prevec et al. 2009), which may express a broader 
pattern across Gondwanan floras (McLoughlin 2011; Cariglino and Gutiérrez 2011; 
Labandeira and Currano 2013), that is not present in Euramerican floras.

The Wuchiapingian floras collectively established a baseline level of herbivory 
that apparently did not change during the Changhsingian Stage of the later Lopingian 
(Labandeira et  al., unpubl. observ.). A sparse, depauperate flora of uppermost 
Lopingian age, described from the Sokovka site in the Volga Basin of European 
Russia (Lozovsky et  al. 2016), has yielded specimens of the peltasperm 
Vjaznikopteris rigida (Krassilov and Karasev 2008, 2009). At this site specimens of 
V. rigida house a histioid mite gall and a robust, serpentine leaf mine (Krassilov and 
Karasev 2008), attributable to a beetle and indicating significant endophytic pene-
tration of plant internal tissues immediately prior to the P-Tr ecological crisis. After 
this Changhsingian prelude was upstaged by the P-Tr event, all available evidence 
indicates that terrestrial ecosystems were devastated during the ecological crisis 
(Erwin 2006). This event particularly wreaked havoc on plants (Visscher et al. 1996; 
Gastaldo et al. 2005), devastated insect lineages (Labandeira 2005; Ponomarenko 
2016), and significantly diminished the manifold interactions between these most 
diverse elements of terrestrial ecosystems (Labandeira and Currano 2013).

In the aftermath of the P-Tr global crisis, former Changhsingian terrestrial eco-
systems that were drastically degraded show little evidence of recovery or regenera-
tion during the Induan and Olenekian stages of the Early Triassic. Most plant–insect 
interactions succumbed to substantial ecological deterioration or otherwise were 
eliminated. Specialized relationships were especially impacted. Such a conclusion 
is based on limited, empirical, body-fossil data on Early Triassic plants (Retallack 
1995) and insects (Shcherbakov 2000, 2008a; Ponomarenko 2016), but also but-
tressed by Karoo Basin food-web reconstructions that use trophic network models 
emphasizing diminished vertebrate ecological response to the P-Tr event that 
favored generalists (Sidor et  al. 2013; Roopnarine and Angielczyk 2007, 2015). 
This pattern also is consistent with the observation that several major insect lineages 
experienced extinction at or close to the P-Tr boundary, such as many paleodicty-
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opteroid, odonatopteran and orthopteroid lineages. By contrast, uncommon and 
inconspicuous lineages such as hemipterans (aphids, psyllids, whiteflies and related 
forms), coleopterans (beetles) and dipterans (true flies) survived and diversified 
considerably during the subsequent Triassic (Krzeminski 1992; Shcherbakov 2000, 
2008a, b; Béthoux et  al. 2005). Significantly, minimal plant–insect associational 
evidence is available from the Early Triassic Induan and Olenekian stages. The few 
reports available represent questionable assignment to the Olenekian Stage or 
describe only a few notable interactions (McLoughlin 2011; Kustatscher et  al. 
2014). These reports indicate that interactions were more negatively affected than 
the primary plant and insect extinctions at the P-Tr event. Severe reductions of taxa 
and improperly functioning ecosystems essentially produced a terrestrial dead zone 
approximately lasting a 5 million-year-long Early Triassic interval during a very 
inclement greenhouse world characterized by highly elevated CO2 levels and tem-
peratures that were excessive in continental interiors (Tong et al. 2007; Krassilov 
and Karasev 2009; Sun et al. 2012).

During the Middle Triassic there is increasing evidence for a major transforma-
tion in the relationships between plant hosts and their insect herbivores. This change 
began during the Anisian Stage and became more pronounced in the Ladinian Stage. 
During Anisian times there is an uptick in the number and quality of preservation of 
vascular plant floras, insect faunas and plant–insect interactions in several regions 
worldwide, particularly Western Europe. In Western Europe, a major regional flora 
of Anisian age was the Grès à Voltzia flora from upper Buntsandstein strata of the 
Röt Formation, located in the Vosges Mountains of northeastern France, with lateral 
equivalents in western Germany (Grauvogel-Stamm and Kelber 1996). Also in 
Western Europe, several geographically proximal floras of Anisian age occur in the 
Dont, Richthofen and Agordo formations from the Dolomites Region of northeast-
ern Italy. Collectively these floras document additional plant communities in 
Western Europe that harbored a variety of plant–insect interactions prior to the 
buildup of the Alpine Cordillera (Labandeira et al. 2016). Plant–insect associations 
from the Italian floras indicate a degree of plant–insect interaction heterogeneity 
that rival those of Lopingian floras.

It was during the Ladinian Stage that several floras worldwide apparently 
exceeded the diversity of plant–insect interactions that had occurred during the pre-
vious Anisian Stage. This seemingly small but discrete increase in the level of 
plant–insect interaction activity is evident especially in Western Europe, particu-
larly for Ladinian floras from the Lettenkohle Formation in the Alsace Region of 
northeastern France, and in the Lower Keuper Formation of Franconia, in south- 
central Germany. The relevant, plant-yielding beds of the German deposits with 
insect interactions are somewhat older that those found in France, but both deposits 
house evidence for some of the same interactions, principally margin feeding, ovi-
position and galling (Grauvogel-Stamm and Kelber 1996). A similar increase in 
herbivory also is detected in Ladinian-age floras from the Aquatona, Vulcanites, 
Fernazza and Wengen formations in the Dolomites Region of Northeastern Italy 
(Wappler et al. 2015; Labandeira et al. 2016). Compared to nearby Anisian floras of 
the Dolomites, these pooled Ladinian floras from both regions in Western Europe 
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show elevated percentages of foliage that were herbivorized and a greater propor-
tion of specialized DTs than earlier Anisian floras. Also, some of the earliest exam-
ples of leaf mining are absent from the French and German localities, but present in 
the Italian localities. This presence of leaf-mining DTs in Ladinian northeastern 
Italy presages expansion of the leaf-mining FFG during the Carnian of Gondwana, 
as exemplified by Molteno localities such as Aas411.

It was during the Carnian Stage of the Late Triassic that the full recovery and 
subsequent development of the plant–insect associations apparently becomes evi-
dent for the early Mesozoic in the wake of the P-Tr ecological crisis. The prolonged 
expansion of this plant–insect associational diversity is dramatically manifest in the 
Molteno Formation of South Africa. In particular, the earliest major deposit of the 
Molteno sedimentary sequence, the Aas411 site with 20,358 examined specimens, 
111 plant form-genera, 14 whole-plant taxa, and representing 10 FFGs, 44 DTs and 
11 host-specific associations, displays a qualitative and quantitative quantum 
increase in associational diversity. In addition, highly diverse, plant–insect compo-
nent communities were developed, such as the one on H. elongatum (Fig. 
14.13). Future, additional examination of all 106 plant assemblages in the Molteno 
Formation as well as earlier Karoo deposits extending to the mid Permian will 
reveal not only the patterns of insect herbivory within the Molteno Formation based 
on variables such as site, time, habitat, plant host, FFG, DT, and specialized associa-
tions, but also the particularities of response of insect herbivores to the P-Tr ecologi-
cal crisis approximately 18 million years earlier.

14.11  Summary and Conclusions

This study represents one installment of a continuing study that will examine the 
consequences of the end-Permian (P-Tr) ecological crisis in the Karoo Basin of 
South Africa. To partially address this issue, the Aasvoëlberg 411 (Aas411) site of 
the Late Triassic Molteno Formation was selected in this report to determine the 
extent and intensity of insect herbivory on all plant material collected toward the 
beginning of the Molteno depositional sequence. Although preliminary comparisons 
are made to other, unstudied Molteno localities, the principal focus of this study is to 
understand how plant hosts, their arthropod herbivores and particularly their shared 
interactions responded to the ecologically catastrophic events of the P-Tr event 
approximately 18 million years earlier. Seven general points summarize this study.

1. Response of plant–insect interactions to the end-Permian extinction. 
Tentative data indicates that by 18 million years after the P-Tr event, herbivory lev-
els were equivalent to or surpassed those of the Late Permian. During the early 
Carnian Stage of the Late Triassic, insect herbivory had surpassed the level that was 
established during the Late Permian of southeastern Gondwana and southern 
Euramerica. This conclusion is based on an evaluation of plant–insect interactions 
at the Aas411 site from the Molteno Formation, Karoo Basin of South Africa.
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2. The spectrum of arthropod herbivory at the Aasvoëlberg 411 (Aas411) 
site. The Aas411 site has a diverse spectrum and moderately elevated levels of her-
bivory within the Molteno Biome. At the Aas411 site, 20,358 plant specimens, 
including foliage, stems and reproductive material was examined representing 111 
plant form-genera that includes 14 whole-plant taxa, 11 functional feeding groups 
(FFGs), and 44 arthropod herbivore damage type (DT) categories and 1127 indi-
vidual DT feeding occurrences on specimens that were assessed using version 3 of 
the Guide to Insect (and Other) Damage Types on Compressed Plant Fossils 
(Labandeira et al. 2007). The Aas411 site is one of the more intensely herbivorized 
localities in the Molteno Biome.

3. The most herbivorized plant hosts at Aas411. The seven most herbivorized 
hosts at Aas411 are a broad representation of the vascular-plant taxa present at 
Aas411. Although 39 taxa showed DT evidence of arthropod herbivory on some 
plant tissue, the seven most herbivorized taxa, in decreasing rank order were the 
conifer Heidiphyllum elongatum; the corystosperm Dicroidium crassinervis; the 
ginkgophyte Sphenobaiera schenckii, the peltasperms Lepidopteris stormbergensis 
and L. africana and the horsetail Zonulamites viridensis. The spectrum of herbivory 
on these targeted and other less herbivorized plants at Aas411 includes generalized 
and specialized damage.

4. Specialized insect-herbivore interactions on whole-plant taxon hosts at 
Aas411. A broad spectrum of generalized feeding damage as well as 11 host- 
specialized associations were present at Aas411 that targeted 39 of the 111 plant 
species or morphotype taxa at the site. Host-specialized associations were particular 
damage types (DTs) of hole feeding, piercing and sucking, oviposition, mining, 
galling and seed predation that variously targeted whole-plant taxa. The most her-
bivorized whole-plant taxa with specialized herbivores are: (i), the Heidiphyllum 
elongatum–Telemachus acutisquamus–Odyssanthus crenulata conifer; (ii), the 
Dicroidium crassinervis–Fanerotheca papilioformis–?Pteruchus matatimajor 
corystosperm; (iii), the Sphenobaiera schenckii–Sphenobaiera short shoot–Ham-
shawvia longipeduncula–Stachyopitys gypsianthus ginkgophyte; (iv) the Ginkgoites 
matatiensis–Avatia bifurcata– Eosteria eosteranthus ginkgophyte; and (v) the 
Zonulamites viridensis–nodal diaphragm A–Viridistachys gypsensis–Paraschizo-
neura fredensis horsetail.

5. The Heidiphyllum elongatum component community at Aas411. The 
Heidiphyllum elongatum whole-plant-taxon is the most herbivorized plant at 
Aas411. The component herbivore component community is extensive compared 
with other highly herbivorized whole-plant taxa at the site and is trophically well 
balanced across FFGs with arthropod herbivores. This Aas411 plant host contains 
81.8% (9/11) of all FFGs (including fungal damage), 63.6% (28/44) of all DT feed-
ing categories, 40.9% (461/1127) of all individual DT occurrences, and 36.4% 
(4/11) of all specialized interactions.

6. Biology of the mite gall DT70. The gall DT70 has a host-specialized associa-
tion with Dicroidium crassinervis at Aas411. At Aas411, DT70 constitutes 70.1% of 
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all feeding occurrences in the 11 other localities throughout the Molteno Biome 
where this host-specialist association occurs. The 117 occurrences of DT70 at 
Aas411 provides sufficient material that allows determination of the plant-host 
association, anatomical structure, and developmental ontogeny of this distinctive 
mite gall. This gall is consistent with an assignment to an eriophyioid gall 
mite culprit.

7. Future work on plant–insect interactions of the Molteno Biome. Future 
work will evaluate the relationships that the variables of time, habitat, host-plant 
abundance, insect herbivore abundance, FFG occurrence, DT occurrence and host- 
specialist associations. Such an assessment will span an interval from the mid 
Permian to the early Late Permian, including the Molteno Formation. These works 
will allow better understanding of the evolutionary and ecological dynamics of 
plant–insect interactions in the wake of the P-Tr event.
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Chapter 15
The Missing Mass Extinction at the Triassic- 
Jurassic Boundary 

Spencer G. Lucas and Lawrence H. Tanner

Abstract The Late Triassic was a prolonged episode characterized by high rates of 
biotic turnover and discrete extinction events due to elevated extinction rates for 
some biotic groups and low origination rates for many. An end-Triassic mass extinc-
tion continues to be cited as one of the “big five” mass extinctions of the Phanerozoic. 
However, a detailed examination of the fossil record, especially by best-sections 
analysis, indicates that many of the groups usually claimed to have suffered cata-
strophic extinction at the end of the Triassic, such as ammonoids, marine bivalves, 
conodonts and tetrapod vertebrates, experienced multiple extinctions throughout 
the Late Triassic, not a single mass extinction at the end of the Period. Many other 
groups were relatively unaffected, whereas some other groups, such as reef com-
munities, were subject to only regional effects. Indeed, the lack of evidence of a 
collapse of trophic networks in the sea and on land makes the case for an end- 
Triassic mass extinction untenable. Still, marked evolutionary turnover of radiolar-
ians and ammonoids did occur across the Triassic-Jurassic boundary. The end of the 
Triassic encompassed temporary disruptions of the marine and terrestrial ecosys-
tems, driven by the environmental effects of the eruption of the flood basalts of the 
Circum-Atlantic Magmatic Province (CAMP), through outgassing in particular, but 
these disruptions did not produce a global mass extinction.
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15.1  Introduction

The biodiversity crisis at the end of the Triassic (Triassic-Jurassic boundary: TJB) 
has long been identified as one of the “big five” mass extinctions of the Phanerozoic 
(Fig. 15.1). Attribution of this level of suddenness and severity to the TJB extinction 
began during the 1960s, based on literature compilations of families of marine 
invertebrates. Sepkoski (1982) well-summarized early thinking on the TJB 
extinction(s) by designating the TJB extinction as one of four mass extinctions 
events of intermediate magnitude (Late Ordovician, Late Devonian, end-Triassic, 
end-Cretaceous), less severe than the largest Phanerozoic extinction, which was at 
the end of the Permian (Fig. 15.1). This identification of a severe and sudden biotic 
decline at the TJB remained unquestioned for about two decades. Then, Hallam 
(2002), Tanner et al. (2004) and Lucas and Tanner (2004, 2008, 2015) re-evaluated 
the stratigraphic and paleontologic data used to indicate a TJB mass extinction, 
concluding that no single mass extinction took place at the end of the Triassic. 
However, ignoring this literature and the science behind it, many workers continue 
to identify a global mass extinction at the TJB, ostensibly as the raison d’être for 
continued research near or across that time boundary.

Here, we review the magnitude and timing of the extinctions that took place 
across the TJB. No reliable data document global TJB mass extinction(s) of many 
significant biotic groups, including foraminiferans, ostracods, brachiopods, 

Fig. 15.1 The number of skeletonized families of marine invertebrate compiled from the literature 
through Phanerozoic time (modified from Sepkoski 1982). Five principal extinction events are 
marked by vertical arrows, each indicated by a significant drop in diversity. These came to be 
called the “big five extinctions” of current usage
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 gastropods, arthropods, freshwater and marine fishes and marine reptiles (Hallam 
2002; Tanner et al. 2004; Lucas and Tanner 2008; Kelley et al. 2014; Renesto and 
Dalla Vecchia 2017). Therefore, we focus our discussion on those groups that have 
been perceived by many as part of a TJB mass extinction, namely radiolarians, con-
odonts, marine bivalves, reef-building organisms, ammonoids, land plants and ter-
restrial tetrapods (amphibians and reptiles).

15.2  Chronology

We use the Late Triassic timescale presented by Lucas (2017c), which is very simi-
lar to that of Ogg (2012a, b) and Ogg et al. (2014) (Fig. 15.2). The Upper Triassic 
chronostratigraphic scale consists of one Series, the Upper Triassic, divided into 
three stages—Carnian, Norian and Rhaetian. Substages of the Carnian and Norian 
provide much more detailed subdivisions of Late Triassic time than do the relatively 
long Carnian and Norian stages, and are used here as needed.

Numerical chronology of the Late Triassic is based on very few radioisotopic 
ages from volcanic ash beds directly related to marine biostratigraphy. The numeri-
cal calibration of the Late Triassic favored here is Carnian ~221–237 Ma, Norian 
~205–221  Ma and Rhaetian ~201–205  Ma (Fig.  15.1; see Lucas 2017c). The 
numerical age of the Norian base has been particularly controversial, with many 
authors using the “long Norian” option and placing that base close to 228 Ma. Lucas 
et al. (2012) argued for a Norian base close to 220 Ma, and this base has found fur-
ther support from radioisotopic ages published by Kohút et al. (2017).

Correlation of nonmarine and marine biochronology in the Late Triassic remains 
imprecise. The correlations used here are those of Lucas and Tanner (2007a), Lucas 
(2010a), Lucas et al. (2012) and Lucas (2017c). An important point is that for nearly 
40 years, placement of the base of the Jurassic in the terrestrial section relied heav-
ily on wholly unsubstantiated palynostratigraphic correlations in the Newark 
Supergroup strata of eastern North America (see review by Lucas and Tanner 
2007b). Correcting this mis-correlation substantially improved understranding of 
the timing of nonmarine events across the TJB (Lucas and Tanner 2015).

15.3  Methods

Two methods have been used to analyze mass extinctions: (1) the compilation of 
global diversity from the published literature; and (2) the study of diversity changes 
based on the actual distribution of fossils in specific stratigraphic sections. These 
two methods are not totally disjunct, because the global compilations are based on 
the actual stratigraphic distributions of the fossils in all sections. However, the 
global compilations contain a serious flaw—their stratigraphic (temporal) 
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imprecision (Teichert 1988), which Lucas (1994) termed the compiled correlation 
effect (CCE). We believe that this imprecision is largely responsible for the concept 
of a single TJB mass extinction (Lucas and Tanner 2008).

The CCE refers to the fact that the temporal ranges of taxa in literature compila-
tions are only as precise as the correlations, or relative ages, of the taxa compiled. 
Because most published correlations are at the stage/age level, the temporal resolu-
tion of extinction events within these stages/ages cannot be resolved. The result is 
the artificial concentration of extinctions at stage/age boundaries. Thus, a complex 

Fig. 15.2 Triassic-Jurassic boundary timescale (after Lucas 2017c)
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extinction of significant temporal duration during a stage/age can be made to appear 
as a mass extinction at the end of the stage/age.

Much of the literature on the TJB extinction has failed to consider the CCE. Thus, 
for example, the supposedly profound extinction of ammonoids across the TJB 
reflects a lack of detailed stratigraphic analysis. Literature compilations assume that 
any ammonoid taxon found in Rhaetian strata has a stratigraphic range throughout 
the entire Rhaetian (e.g., House 1989). This gives the appearance of a dramatic 
ammonoid extinction at the end of the Rhaetian, when in fact, ammonoid taxa expe-
rienced extinction their most profound extinction earlier, at the end of the Rhaetian 
(see below).

A relatively recent analysis heavily influenced by the CCE is that of Kiessling 
et  al. (2007), who used the Paleobiology Database (PBDB) to evaluate the TJB 
extinction. They thus compared one Rhaetian diversity point to one Hettangian 
point and concluded there was a “true mass extinction” (Kiessling et al. 2007: 220) 
at the TJB. Indeed, the PBDB continues to be a basis for analyzing changing diver-
sity and extinction (e. g., Alroy 2010; Vazquez and Clapham 2017), though close 
examination of any part of it reveals it is riddled with taxonomic errors and incorrect 
reporting of temporal ranges (e.g., Prothero 2015).

Rather than attempt to compile global diversity from the published literature, an 
alternative approach is to analyze mass extinctions by the “best sections” method 
(Lucas 2017a, b). Abundantly fossiliferous, well studied, stratigraphically dense 
and temporally extensive records from a single depositional basin or geographically 
restricted outcrop area are the “best sections” with which to identify extinctions 
(Fig. 15.3). These criteria may be somewhat subjective, but within a time interval 
we think the “best sections” are readily identified as those that have the most con-
tinuous and extensive fossil record that encompasses the extinction being studied, as 
well as the capability of providing geochemical and other geological data relevant 
to evaluating an extinction. Typically, within a given time interval, a limited number 
of stratigraphic sections (outcrop areas) will meet these criteria that identify a best 
section. This is particularly true of nonmarine sections. As an example, consider 
that most of what we know about dinosaur extinction at the end of the Cretaceous is 
based on a single, very best section in eastern Montana, USA (e. g. Archibald and 
MacLeod 2013). That section elucidates many of the accepted details of the extinc-
tion of dinosaurs. Other, less complete sections provide data consistent with the best 
section, which suggests that the pattern documented by the best section is a much 
broader, and in this case, likely a global pattern.

For the Late Triassic extinctions, marine sections in western Europe (especially 
Austria) and in the New World (British Columbia, Nevada, Peru) are the very best 
sections to study marine extinction events across the Triassic-Jurassic boundary (e. 
g. Lucas et al. 2007a; Hillebrandt et al. 2013) (Fig. 15.4). For the nomarine TJB, the 
Newark Supergroup sections in New Jersey and Nova Scotia, and the Glen Canyon 
Group section on the southern Colorado Plateau are the very best sections for exam-
ining the tetrapod record across the TJB (Lucas and Tanner 2007a, 2015) (Fig. 15.3).

A strength of the best sections method is that it allows the extinctions identified 
to be compared directly to changes in facies and other factors recorded in the best 
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section. Nevertheless, the best sections method has an inherent problem because it 
may only identify a local or regional extirpation, not a global extinction. Whether a 
best section captures a global pattern (the microcosm reflects the macrocosm) may 
be questioned. A good example of such a problem is the claim of a mass extinction 
of land plants across the TJB based on the section in East Greenland (McElwain 
et al. 1999 and see below). If less complete, temporally overlapping sections appear 
to reflect the patterns seen in the best section, this should increase confidence that 
these are broad patterns. The fact that no other sections reflect the inferred plant 
extinction at the TJB in East Greenland (see below) indicates that the event is at 
most of local significance. Indeed, the hypothesis of a widespread extinction based 
on an extinction seen in a best section can be tested by its presence or absence in 
temporally equivalent sections. Conversely, if a global mass extinction is posited, 
and the best section does not capture it, then the identification of that event should 
be questioned.

Indeed, best sections analysis has already been the source of some problems in 
analyzing the TJB extinctions. This stems from comparing local events in actual 
stratigraphic sections to broader global patterns. For example, one of the most stud-
ied marine TJB sections is at St. Audrie’s Bay in southern England (e.g. Hesselbo 
et  al. 2002, 2004; Hounslow et  al. 2004). In this section, there is a major facies 
change that reflects a substantial marine regression followed by a transgression that 
began very close to the beginning of the Jurassic. Yet, many studies (e.g., Barras and 

Fig. 15.3 Triassic world map with some of the best sections for studying the Triassic-Jurassic 
boundary extinctions. Marine sections are: BC Sections at Kennecott Point and nearby localities in 
the Queen Charlotte Islands, British Columbia, Canada, K Kuhjoch and other sections in western 
Austria, L Lagonegro basin and other sections in northern Italy, Ne New York Canyon, Nevada, 
USA, S St Audrie’s Bay, UK, U Utcabamba Valley, Peru. Nonmarine sections are: CP Southern 
Colorado Plateau, Arizona-Utah-Colorado, USA, F Fissure fills in the United Kingdom, N Newark 
Supergroup sections, especially in the Newark basin, New Jersey, USA, and Fundy basin, Nova 
Scotia, Canada, SA Karoo basin, South Africa

S.G. Lucas and L.H. Tanner



727

Twitchett 2007; van de Schootbrugge et  al. 2007; Ibarra et  al. 2016) have docu-
mented biotic changes in the St Audrie’s Bay section and inferred that they reflect 
global events, when in fact they may more simply be explained by profound local 
facies changes. Indeed, the first question that should be asked of any section cross-
ing the TJB is, are the biotic changes in that section due to the facies changes and 
not reflective of broader patterns of change? Indeed, many workers have not asked 
that question (for example, see McRoberts et  al. 2012 discussed below) or have 
concluded there are no significant facies changes in sections where there obviously 
are (see Hallam et al. 2000). They thus extrapolate what are evidently local, facies 
driven biotic changes as indicative of broader biotic changes, thus confounding 
understanding of biotic events across the TJB.

“Best sections” may be new terminology, but the method is the oldest method of 
identifying mass extinctions. Thus, the first serious scientific advocacy of mass 
extinction by Georges Cuvier in the 1820s was based heavily on his studies (with 
Alexandre Brongniart) of the Eocene and younger Cenozoic strata and fossil suc-
cession of the environs of Paris (cf. Newell 1963; Rudwick 1997). This was the first 
“best sections” analysis of mass extinctions. It supported Cuvier’s identification of 
various global extinctions (“catastrophes”) of plants and animals in the Cenozoic 

Fig. 15.4 The Triassic-Jurassic boundary section at Ferguson Hill near New  York Canyon, 
Nevada, USA, is the best section for studying ammonoid extinctions across the TJB. The lowest 
occurrence of Psiloceras spelae, and therefore the Jurassic base, is about 8 m below the top of the 
Muller Canyon Member (see Fig. 15.7)
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strata, though subsequent work revealed these to be only local or regional events. It 
thus provides a cautionary tale to those who would use a “best section” to posit a 
global extinction.

Of course, the actual stratigraphic ranges of fossils aggregated in genera or spe-
cies are not perfect data with which to analyze changing diversity. Incompletely 
known stratigraphic ranges, taxonomic problems, taphonomic and facies biases, 
and issues of sampling all undermine our ability to read diversity directly from the 
fossil record. These problems are faced by those who use the best sections method 
to analyze changing diversity, and they also affect diversity compilations, which are, 
of course, ultimately rooted in the stratigraphic range data aggregated from all rel-
evant sections. Nevertheless, “best sections” analysis has long been an important 
method by which to analyze changing diversity and extinctions. It should be recog-
nized as an important approach to the study of mass extinctions, and a method that 
does not face all of the caveats associated with compilations of global diversity from 
the published literature.

In the context of best sections analysis, we note that the Signor-Lipps effect 
(Signor and Lipps 1982) has been used by some to discount the reliability of actual 
stratigraphic ranges. This hypothesis suggests that some actual stratigraphic ranges 
in the fossil record are artificially truncated by incomplete sampling, and statistical 
methods exist to “complete” these supposedly truncated stratigraphic ranges. 
However, we regard use of these methods as little more than assumptions that invent 
data, and prefer to rely on the actual stratigraphic ranges of fossils in well-studied 
sections. Indeed, the statistical analyses of Ward et al. (2005) and Marshall (2005), 
which used the same dataset of taxon ranges relevant to the end-Permian extinctions 
to support different conclusions based on different assumptions, provide a caution 
to those who would use statistical methods of stratigraphic range estimation to ana-
lyze extinctions.

On the other side of this issue, global data sometimes show no extinction of a 
biotic group across the TJB, whereas well-analyzed local (regional) data show oth-
erwise. Tomašových and Siblík (2007) present an example of this with their excel-
lent documentation of major changes in the brachiopod communities across the TJB 
in the Northern Calcareous Alps (Austria), whereas global data suggest no substan-
tial extinction of brachiopods at this boundary (Hallam 2002; Tanner et al. 2004). 
One explanation of this may be that the profound facies change across the TJB that 
occurs in the Northern Calcareous Alps is correlated to (underlies) the brachiopod 
changes, but the possibility that this well-analyzed record is a more sensitive deter-
minant of a global change needs to be considered and further evaluated.

15.4  Some History

The development of ideas about end-Triassic extinctions began almost 70 years ago 
(also see Deng et al. 2005), and we review key aspects of that development here. 
The first identification of substantial extinctions at the end of the Triassic are found 
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in publications by Colbert (1949, 1958) and Newell (1956, 1962, 1963). Initially, 
Newell (1952) presented analyses of diversity changes in marine invertebrates at the 
generic level that did not identify an end-Triassic extinction (also see Newell 1956). 
A parallel analysis of changing vertebrate diversity by Simpson (1952) also did not 
identify an end-Triassic extinction.

However, Newell (1962: 598) later stated that the “second great crisis in animal 
history occurred at the end of the Triassic Period” (the first was at the end of the 
Permian). He thus identified major extinctions of amphibians, “primitive reptiles,” a 
100% extinction of ammonite families and extinctions of some other (unspecified) 
genera and families of marine animals at the TJB. Newell (1963: 79) went on to 
state that “the mass extinction on land and sea at the close of the Triassic Period was 
almost equally significant [as the end Permian extinction].”

Newell (1962, 1963) took his conclusions about tetrapod extinctions on land 
from earlier publications by Colbert (1949, 1958), who drew attention to the extinc-
tion of “labyrinthodont” amphibians and “thecodont” reptiles at the end of the 
Triassic. Furthermore, Newell identified dinosaurs as replacing the “thecodonts” 
across the Triassic-Jurassic boundary.

In a more detailed analysis, Newell (1967, fig. 2) drew attention to the ammonite 
extinction at the end of the Triassic. However, his diagram, based on House (1963), 
actually showed the major collapse of ammonoid diversity taking place at the 
Norian-Rhaetian boundary, not at the end of the Triassic. Newell (1967) also identi-
fied a substantial extinction of brachiopods at the end of the Triassic. He stated that 
an analysis of family level diversity indicated 35% extinction of families at the end 
of the Triassic, compared to 50% extinction at the end of the Permian and 26% 
extinction at the end of the Cretaceous. Also, although Newell (1967) discussed 
various possible causes of mass extinctions, including climate changes and changes 
in the distribution of land and sea, he posited no specific cause(s) of the end-Triassic 
extinctions.

Tappan (1968) endorsed Newell’s (1967) identification of a mass extinction at 
the end of the Triassic. Bakker (1977) analyzed terrestrial tetrapod mass extinctions 
and identified an extinction of large herbivores (rhynchosaurs, aetosaurs and dicyn-
odonts) during the Late Triassic, which is the boundary between his “dynasties” IV 
and V. He also concluded that there was a co-eval extinction of aquatic marine tet-
rapods during the Late Triassic. Bakker (1977) argued that this and the other tetra-
pod extinctions were caused by major marine regressions correlated with a global 
decrease in orogenic activity (the “Haug effect” of Johnson 1971).

Hallam (1981) identified a major extinction of marine bivalves across the 
TJB. He subsequently (e.g., Hallam 1990, 1995) argued for a mass extinction at the 
TJB of various groups, including bivalves, ammonoids, conodonts, reef organisms, 
tetrapods and land plants. However, in a remarkable volte-face, Hallam (2002) 
questioned a TJB mass extinction of most of these groups.

Sepkoski (e.g., 1982, 1996) analyzed the diversity of families of marine inverte-
brates based on global compilations of the published literature. He identified a Late 
Triassic (Norian) extinction of ~20% of 300 marine families. According to Sepkoski 
(1982), this was the loss of 31 families of cephalopods, 7 families of marine reptiles, 
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6 families of gastropods, 6 of bivalves, 5 of articulate brachiopods and the total 
extinction of conodonts. Sepkoski (1982) believed that the extinction of marine 
tetrapods identified by Bakker (1977) predated the marine invertebrate extinctions 
by several million years.

Olson (1982) identified a drop in reptilian family diversity and an almost total 
extinction of amphibians across the TJB that he saw as a mass extinction. He based 
his analysis on Romer’s (1966) compilation of vertebrate taxa. However, Benton 
(1985, 1987, 1988, 1989) identified two tetrapod extinctions during the Late 
Triassic, one at the Carnian-Norian boundary and a smaller one at the Norian- 
Rhaetian boundary. A sudden mass extinction of terrestrial tetrapods at the TJB was 
advocated by Olsen et al. (1987, 1990, 2002a, b). However, Weems (1992), Benton 
(1994), Lucas (1994), Tanner et  al. (2004) and Lucas and Tanner (2004, 2007b, 
2008, 2015) rejected this conclusion.

At present, the majority of workers still advocate a mass extinction in both the 
marine and nonmarine realms at the TJB.  This is well reflected by many of the 
articles cited below, which have the phrase “end-Triassic mass extinction” or some-
thing similar in their titles. Indeed, the supposed end-Triassic mass extinction 
underpins much research being reported on latest Triassic and earliest Jurassic pale-
ontology and geochemistry. Much of that research encompasses local studies that 
supposedly lend support to or are at least consistent with an end-Triassic mass 
extinction. Here, we demonstrate that at best this research is misleading because it 
identifies or is predicated on a mass extinction at the TJB that never took place.

15.5  Marine Organisms

In the marine realm, only a few large clades have been associated with a supposed 
TJB mass extinction, namely the radiolarians, conodonts, bivalves and ammonoids, 
as well as the reef community. Other groups show no evident mass exinction, despite 
a few claims to the contrary.

Thus, for example, Nudds and Sepkoski (1993) drew attention to the extinction 
of conulariids at the end of the Triassic. But, as Lucas (2012) demonstrated, in a 
detailed review of the Triassic conulariid record, its lacks the stratigraphic density 
with which to evaluate the detailed structure of their final extinction and in no way 
identifies a sudden mass extinction of the Conularia at the TJB.

15.5.1  Radiolarians

A major turnover in radiolarians took place across the TJB and has been identified 
by many as an important component of a marine mass extinction. Understanding the 
nature of the timing and severity of radiolarian extinction at the TJB was long ham-
pered by slow identification of suitable and correlatable sections on a global scale. 
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Blome (1986), for example, found that Tethyan and North American assemblages 
differed significantly at the species level, preventing direct correlation. Hence, the 
uppermost Triassic (Rhaetian) was characterized by the Globotaxtorum tozeri Zone 
in North America, the Livarella densiporata Zone in Europe, the Canoptum trias-
sicum Zone in Siberia, and the Betraccium deweveri Zone in Japan (reviewed in 
Blome et al. 1995). The most recent comprehensive review of the global record of 
Late Triassic radiolarians (O’Dogherty et  al. 2010) continues to show no single 
global zonation, but instead provincial zonations for North America (Carter 1993), 
Europe (Kozur 2003), Japan (Sugiyama 1997) and the Russian Far East (Bragin 
2000).

We argued previously (Tanner et al. 2004) that the data on the radiolarian extinc-
tion failed to demonstrate that it was a global event. Thus, at the family level, radio-
larians were considered to show no serious decline at the TJB (Hart and Williams 
1993), although a significant species turnover was indicated. Hori (1992), from the 
study of bedded cherts in central Japan, advocated a gradual end-Triassic radiolar-
ian turnover, a conclusion shared by Vishnevskaya (1997), who demonstrated that 
about 40% of the latest Triassic radiolarian genera survived the TJB. Indeed, a sec-
ond very large radiolarian extinction occurred later, during the Early Jurassic (early 
Toarcian) (Racki 2003). Furthermore, occurrences of bedded cherts show no 
decrease from the Late Triassic to the Early Jurassic, suggesting that there was no 
significant decline in silica production, and therefore, likely no great radiolarian 
decline (Kidder and Erwin 2001).

However, a rapidly growing global database ably summarized by Carter (2007) 
supports the idea of a drastic and rapid evolutionary turnover of radiolarians across 
the TJB. Indeed, it has been just within the last two decades that sections with suf-
ficiently global distribution have been studied to allow more definitive species cor-
relation among these regions, and permit clearer interpretation of the radiolarian 
record across the TJB.

The best-studied and most complete radiolarian record across the TJB is in the 
Queen Charlotte Islands in western Canada (Fig. 15.5); this is the “best section” 
with which to analyze the TJB radiolarian extinction. A drastic extinction of radio-
larians at the TJB is indicated by the data from this locality (Tipper et al. 1994; 
Carter 1994; Ward et al. 2001; Longridge et al. 2007; O’Dogherty et al. 2010). The 
Rhaetian radiolarian fauna here includes over 160 species (Carter 1993, 1994), 
many of which have now been identified in sections from such diverse localities as 
Baja California Sur (Mexico), the Philippines, China, Tibet, Russia, the southern 
Apennines (Italy), Turkey, and Hungary (Carter 2007). Carter (1993, 1994) estab-
lished the Proparvicingula moniliformis Zone and the Globolaxtorum tozeri Zone 
to encompass the lower and upper Rhaetian radiolarian assemblages, respectively, 
in the Queen Charlotte Islands (Fig. 15.5). Over half of the species present at the 
base of the P. moniliformis Zone disappear by the top of this zone, but most of the 
70-plus species present at the base of the G. tozeri Zone continue to the system 
boundary. Carter (1994) documented the loss of 45 radiolarian species in the top 
1.5 m of the Globolaxtorum tozeri zone (topmost Rhaetian) on Kunga Island in the 
Queen Charlotte Islands and concluded that five families, 25 genera, and most spe-
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Fig. 15.5 Measured stratigraphic section at Kennecott Point in British Columbia, Canada, show-
ing some key macrofossils and the radiolarian biozonation across the Triassic-Jurassic boundary 
(based on Ward et al. 2001, fig. 1).
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cies of the G. tozeri Zone disappear within just a few meters of section (Carter 
1994). This was updated by Longridge et al. (2007) to identify the disappearance of 
nine families, at least 27 genera and nearly all Rhaetian species at the system 
 boundary. A similar pattern is now interpreted from Japan, where 20 genera and 130 
Rhaetian species disappear across the TJB (Carter and Hori 2005).

The extinction is marked by the loss of the most architecturally complex forms 
of spumellarians, nassellarians, and enactiniids. The succeeding fauna is a low 
diversity Hettangian assemblage of morphologically conservative forms in which 
nassellarians are rare. In particular, the Hettangian radiolarians are mostly small 
spumellarians and much less common mutlicystid nasselarians with few chambers. 
This fits the idea of O’Dogherty and Guex (2002) that spumellarians are much more 
extinction resistant than are other radiolarians. O’Dogherty et  al. (2010) also 
endorsed Guex’s (2001) idea that ecological stress drives simplification and reduces 
the size of protists as well (also see Carter and Guex 1999). Guex (2016) has referred 
to this as retrograde evolution.

Carter and Hori (2005) drew attention to how this parallels the ammonoid turn-
over at the TJB (complex to simple, high diversity to low diversity; see below) and 
argued that a short and severe environmental stress caused the radiolarian extinction 
across the TJB. Longridge et al. (2007) explored this point further and note that the 
temporary persistence of some Rhaetian forms suggests that the extinction, while 
rapid, was not instantaneous. Further, they noted that the abundance of some oppor-
tunists, such as Archaeocenosphaera laseekensis, demonstrates rapid restoration of 
marine productivity. Thus, there was a significant evolutionary turnover of radiolar-
ians at or very close to the TJB, and this appears to have been a global event.

Ward et al. (2001) called this a sudden collapse of marine productivity, but this is 
not the case. Given the non-uniformitarian nature of the radiolarian record (Racki 
and Cordey 2000) it is difficult to know how significant radiolarians were in the TJB 
planktonic communities. However, the best data suggest they were not the major 
component of the TJB micrplankton, nor a major food source (e.g. Martin 2001). 
Furthermore, there is no evidence of a substantial extinction of the other micro-
plankton across the TJB. In fact, quite the opposite, following the first appearance 
of coccoliths during the latest Norian they and nannoliths appear to increase in 
abundance and diversity through the TJB (Gardin et al. 2012).

There is no chert gap across the TJB as there is across the Permo-Triassic bound-
ary (e. g., Racki and Cordey 2000). The Late Triassic plankton were mostly acri-
tarchs, radiolarians and conodonts, whereas cooclithophores and dinoflagellates 
were less abundant (e.g., Tappan and Loeblich 1973; Martin 2001). There is thus no 
evidence of a major collapse of the marine plankton across the TJB, other than 
among the radiolarians.
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15.5.2  Bivalves

Hallam (1981) initially identified a single mass extinction (92% extinction of spe-
cies) of marine bivalves at the end of the Triassic. He based this estimate on combin-
ing all Norian (including Rhaetian) marine bivalve taxa into one number, thereby 
encompassing a stratigraphic interval with a minimum duration of 20 million years 
(Fig. 15.1). He then compared this to a single number of Hettangian marine bivalve 
diversity, thus providing a strikingly clear example of the CCE.

Not surprisingly, Johnson and Simms (1989) demonstrated that much better 
stratigraphic resolution could be achieved on the local scale; in the Kössen beds 
(Northern Calcareous Alps, Austria), for example, Hallam considered all of the 
marine bivalve taxa to range through the entire Rhaetian, even though published 
data (e.g., Morbey 1975) showed highest occurrences at varied stratigraphic levels 
throughout the Rhaetian section. Furthermore, Skelton and Benton’s (1993) global 
compilation of marine bivalve family ranges showed a TJB extinction of 5 families, 
with 52 families passing through the boundary unscathed, certainly suggesting that 
there was not a mass extinction of bivalve families across the TJB.

Hallam and Wignall (1997) re-examined the marine bivalve record for the TJB in 
northwestern Europe and the Northern Calcareous Alps in considerable detail. They 
found extinction of only 4 out of 27 genera in northwest Europe and 9 of 29 genera 
in the Northern Calcareous Alps, again, indicating no mass extinction. Although 
Hallam (2002) continued to argue for a substantial TJB marine bivalve extinction, 
he conceded that the data to demonstrate this are not conclusive.

More recent analysis of bivalve diversity across the TJB is based on a generic 
compilation at the stage level by Ros (2009) in an unpublished dissertation that is 
the basis of subsequent publications (Ros and Echevarría 2011; Ros et  al. 2011, 
2012). According to this analysis, marine bivalve generic diversity of the Triassic 
peaked during the Norian and was followed by a sharp drop in diversity into the 
Rhaetian and Hettangian. Extinction rates were thus high during the Rhaetian, and 
origination rates were low. Ros and collaborators claim their data identify a mass 
extinction of bivalves at the TJB but note that bivalve community ecology across the 
TJB changed little and that the recovery of bivalves during the Early Jurassic was 
very rapid.

We view the analyses of Ros and colleagues as another example of how the CCE 
creates the appearance of a mass extinction that vanishes at higher stratigraphic 
resolution. Ros (2009) compiled marine bivalve generic diversity as one data point 
per stage, thus comparing one diversity number for the ~15 million-year-long 
Norian with one diversity number for the ~4 million year long Rhaetian. Indeed, the 
estimate by Ros and colleagues of the magnitude of the Rhaetian generic extinction 
of bivalves (42% of genera) is close to Hallam’s (1981) estimate of a 50% extinc-
tion, showing how the CCE continues, after decades, to confound an understanding 
of extinction dynamics.

Detailed studies of Late Triassic marine bivalve stratigraphic distributions (e.g., 
Allasinaz 1992; McRoberts 1994; McRoberts and Newton 1995; McRoberts et al. 
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1995; Wignall et al. 2007) instead identify multiple and selective bivalve extinction 
events within the Norian and Rhaetian Stages and across the TJB, with a particu-
larly significant extinction at the Norian-Rhaetian boundary, not a single mass 
extinction at the TJB. Indeed, a review of the Late Triassic marine bivalve record 
suggests that extinctions were episodic throughout this interval rather than concen-
trated at the TJB. A significant extinction of bivalves, including the virtual disap-
pearance (two dwarf Rhaetian species are now known: McRoberts 2007; Krystyn 
et al. 2007) of the cosmopolitan and abundant pectinacean Monotis, is well docu-
mented for the end Norian (Dagys and Dagys 1994; Hallam and Wignall 1997). 
McRoberts’ (2007, 2010) summary of the Late Triassic diversity dynamics of “flat 
clams” (halobiids and monotids) indicates they suffered their largest extinction at 
the Norian-Rhaetian boundary. The end-Norian extinction of megalodontid bivalves 
was also noted by Allasinaz (1992), who concluded that the end-Norian marine 
bivalve extinction was larger than the end-Rhaetian (TJB) extinction.

Notably, in many sections, particularly in Europe, changes in bivalve diversity 
and composition correlate to facies changes, and this compromises interpretation of 
the broader significance of these changes (Allasinaz 1992). McRoberts et al. (2012), 
for example, analyzed bivalve assemblages across the TJB in the Kössen basin in 
the Northern Calcareous Alps of Austria. They documented high levels of taxo-
nomic and ecological richness of the bivalve assemblages up to the base of the 
Rhaetian-Hettangian Tiefengraben Member, followed by low diversity episodic 
shell beds that they interpreted as dominated by eurytopic, opportunistic bivalve 
species. Treating the Kössen section as a “best section,” McRoberts et al. (2012) 
concluded that this pattern best matches an ocean acidification event due to CAMP 
volcanism. However, the changes in the bivalve assemblages documented by 
McRoberts et al. (2012) take place across a marked facies change from the carbonate- 
dominated Eiberg Member to the overlying Tiefengraben Member, which is mostly 
laminated mudstone. Thus, these changes in the bivalves are readily interpreted as 
driven by local facies changes in bathymetry and geochemistry and by themselves 
do not demonstrate any global pattern.

15.5.3  Ammonoids

Biostratigraphic recognition (and definition) of the TJB has long been based on a 
substantial change in the ammonoid fauna from the diverse and ornamented cerat-
ites and their peculiar heteromorphs of the Late Triassic to the less diverse and 
smooth psiloceratids of the Early Jurassic. This is the extinction of the Ceratitida 
followed by the diversification of the Ammonitida (e.g., House 1989). All but one 
lineage of ammonoids (the Phylloceratina) became extinct by the end of the Triassic, 
and the subsequent Jurassic diversification of ammonoids evolved primarily from 
that lineage (Guex 1982, 1987, 2001, 2006; Rakús 1993). The Early Jurassic encom-
passes a complex and rapid re-diversification of the ammonoids (e.g., Rakús 1993; 
Dommergues et al. 2001, 2002; Sandoval et al. 2001; Guex 2001, 2006).
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As early as the work of Kummel (1957), House (1963) and Newell (1967), it was 
clear that the main extinction of Late Triassic ammonoids took place at the end of 
the Norian, not at the end of the Triassic (Fig. 15.6). After that extinction, only a few 
taxa remained, the heteromorphs, and some of the Arcestaceae and the Clydonictacea 
(Wiedmann 1973).

The Triassic ammonoid extinctions are the complete extinction of the Ceratitina 
before the end of the Rhaetian followed by the sudden apperance of the Ammonitina 
and Lytoceratina at the base of the Hettangian. However, the origin of these new 
groups had a long history. The details of the Late Triassic origin of the Ammonitina 
and Lytoceratina are presented by Wiedmann (1973, fig. 6) and Wiedmann and 
Kullman (1996).

House (1989: 78) considered the end-Triassic ammonoid extinction “the greatest 
in the history of the Ammonoidea.” However, it has been clear for at least 40 years 
that the Late Triassic extinction of the ammonoids was a succession of diversity 
drops, with the last, most substantial drop at the end of the Norian, not at the end of 
the Triassic (Fig. 15.6). In other words, ammonoid extinction across the TJB is best 
described as stepwise (Wiedmann and Kullman 1996).

Here, we follow Lucas (2017d) and use Tozer’s (1981a, b) compilation to plot 
the diversity of Late Triassic ammonoid families and genera (Fig. 15.6). At the fam-
ily level, his diversity data can be plotted at the Late Triassic substage level, but not 
all the generic data are reported at the substage level, so they are simply plotted here 
at the stage level. Tozer’s (1981a, b) compilation is nearly 40 years old, but it is the 
most recent compilation of all Triassic ammonoid families and genera. Much work 
has been done on Early and Middle Triassic ammonoids since 1981, but much less 
study of Late Triassic ammonoids since then, and, in particular, the few new Late 
Triassic ammonoid taxa recognized since 1981, indicate that Tozer’s compilation 
remains useful for examining compiled Late Triassic ammonoid diversity. The fact 
remains that Tozer’s compiled data only permit stage-level resolution for generic 
diversity, and thus suffer from the CCE (Lucas 1994) by indicating that the Late 
Triassic ammonoid extinctions are concentrated at stage boundaries (Fig. 15.6).

The compiled diversity numbers indicate that, after a Norian (mostly Alaunian) 
peak in diversity, the most substantial extinction of ammonoid families and genera 
took place across the Norian-Rhaetian boundary. The numbers based on Tozer 
(1981a, b) differ somewhat from some other compilations in the literature but all 
show the same pattern. For example, Teichert (1988) listed more than 150 ammonite 
genera and subgenera during the Carnian, which was reduced to 90 in the Norian, 
and reduced again to 6 or 7 during the Rhaetian. Similarly, Kennedy (1977) stated 
there are 150 or so Carnian genera, less than 100 during the Norian, and the number 
of Rhaetian genera is in single figures.

Nevertheless, the earlier discussion and a consideration of the best sections for 
documenting end-Triassic ammonoid extinctions allow a more detailed understand-
ing of the Late Triassic ammonoid extinctions than one based solely on the com-
piled diversity. Thus, the most completely studied and ammonoid-rich section in the 
world that crosses the TJB is in the New  York Canyon area of Nevada, USA 
(Figs. 15.4 and 15.7). Taylor et al. (2000, 2001), Guex et al. (2002, 2003) and Lucas 
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et al. (2007a) plotted ammonoid distribution in this section based on decades of col-
lecting and study. Of 11 Rhaetian species, 7 extend to the upper Rhaetian, and only 
1 is present at the stratigraphically highest Rhaetian ammonite level (Fig. 15.7). 
Taylor et al. (2000) presented a compelling conclusion from these data: a two-phase 
latest Triassic ammonoid extinction, one in the late Norian followed by a low diver-
sity Rhaetian ammonoid fauna that became extinct by the end of the Triassic (also 
see Lucas and Tanner 2008; Whiteside and Ward 2011).

Another detailed study of latest Triassic ammonoid distribution in a best section 
is in the Austrian Kössen Beds (Urlichs 1972; Mostler et al. 1978). The youngest 
Triassic zone here, the marshi zone, has three ammonoid species, two with single 
level records low in the zone, and only Choristoceras marshi is found throughout 
the zone. This, too, does not indicate a sudden end-Triassic mass extinction of 
ammonoids. Thus, the change in ammonoids across the TJB is profound, but both 
compiled data and actual stratigraphic ranges in best sections indicate it took place 
as a series of extinction events spread across Norian and Rhaetian time, not as a 
single mass extinction at the end of the Triassic.

Fig. 15.6 Compiled family-level and genus-level diversity of Late Triassic ammonoids. Based on 
data in Tozer (1981a, b).
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Fig. 15.7 The actual stratigraphic ranges of all known taxa (including ammonoids and bivalves) 
across the Triassic-Jurassic boundary in the Ferguson Hill section near New York Canyon, Nevada 
(modified from Lucas et al. 2007a). The TJB is placed here at the lowest occurrence of Psiloceras 
spelae
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The evolutionary turnover of ammonoids across the Triassic-Jurassic boundary 
is an important change from diverse and morphologically complex forms (including 
various heteromorphs) to less diverse and morphologically simple forms (the psilo-
ceratids). Guex (2001, 2006) argued that this kind of morphological change occurred 
in response to environmental stress, as had occurred at several other crisis points in 
the history of the Ammonoidea. The Triassic-Jurassic transition was such a crisis in 
ammonoid history, but not a single mass extinction.

15.5.4  Coral Reefs

The scleractinian corals, important reef builders during the Triassic, suffered a 
marked decline at the end of the Triassic that was followed by a “reef gap” (which 
is being filled, see below) during part of the Early Jurassic (Hettangian-early 
Sinemurian), after which corals re-diversified to become the dominant reef builders 
(Stanley 1988; Flügel and Flügel-Kahler 1992; Flügel 2002; Leinfelder et al. 2002; 

Fig. 15.8 Temporal distribution of major Triassic reef types as characterized by the principal reef- 
building groups (after Flugel and Senowbari-Daryan 2001)
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Flugel and Kiessling 2002; Lathuiliere and Marchal 2009)  (Fig. 15.8). Stanley 
(2001: 26) viewed this as a “rapid collapse” of reefs at the TJB, concluded it was 
“the result of a first-order mass extinction” and claimed that “Jurassic recovery was 
slow.” These are overstatements.

The extinctions in the reef community at the end of the Triassic are best docu-
mented in Tethys, where the reef ecosystem collapsed at the end of the Triassic, 
carbonate sedimentation nearly ceased, and earliest Jurassic reefal facies are rare 
(Fig. 15.9). Earliest Jurassic reefs include carbonate mounds produced by spongio-
morphs and algae (e.g., Flügel 1975; Delecat and Reitnwer 2005). Indeed, sponge 
reefs dominated by hexactinellids and non-lithistid deminsponges were not affected 
by any events across the TJB, and the hexactinellids actually diversified across the 
boundary (Mostler 1990; Delecat and Reitnwer 2005).

Coral Lazarus taxa have been discovered in Early Jurassic suspect terranes of 
western North America, indicating the persistence of at least some corals in 
Panthalassan refugia (on oceanic islands) during the earliest Jurassic reef gap 
(Beauvais 1984; Stanley and Beauvais 1994). A coral reef from the early Hettangian 
of France that includes numerous holdover genera and species from the Late Triassic 
(Kiessling et al. 2009; Gretz et al. 2015) further undermines the concept of a global 
mass extinction of corals at the TJB, as do recent discoveries of Early Jurassic corals 
from Scotland, the western USA and Tajikistan (Melnikova and Roniewicz 2012; 
Gretz et al. 2013; Hodges and Stanley 2015).

Fig. 15.9 The upper Rhaetian Steinplatte “reef” in Austria (see Stanton and Flügel 1989, 1995). 
On the left side of the photograph, the reef facies is interfingering with the bedded facies of the 
Kössen Formation. Photograph courtesy of Karl Krainer
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In some places, it has been proposed that microbial mats (Peterffy et al. 2016) or 
“Lithiotis” bivalves (Fraser et al. 2004) filled the niche of reef builders during the 
Hettangian, before the reassertion of scleractinian corals as the dominant reef build-
ers. However, the claim of a microbial carbonate response to a TJB mass extinction 
based on data from the section at St. Audrie’s Bay (Ibarra et al. 2016) is misleading 
because the microbialites in that section are stratigraphically well below the base of 
the Jurassic (the microbialites are in the Cotham Member, erroneously placed at the 
TJB by Mander et al. 2008, but of Rhaetian age; cf. Hounslow et al. 2004; Lucas 
et al. 2011).

Hallam and Goodfellow (1990) argued that sea-level change caused the collapse 
of the reef community, with significant extinctions of calcisponges and scleractinian 
corals at the TJB. They discounted the possibility of a major drop in productivity as 
an explanation for the facies change from platform carbonates to cherty carbonates. 
Indeed, a distinct lithofacies change occurs at or near the TJB in many sections, 
particularly in the Tethyan realm, where facies changes suggest an interval of regres-
sion followed by rapid transgression (Hallam and Wignall 1999; Leinfelder et al. 
2002; Ciarapica 2007). At the TJB section in western Austria, for example, a 
shallowing- upward trend from subtidal carbonates to red mudstones, the latter inter-
preted as marginal marine or mudflat deposits, is succeeded by deeper water thin-
bedded marl and dark limestone (McRoberts et al. 1997). The boundary in parts of 
the Austrian Alps displays karstification, suggesting a brief interval of emergence. 
In the Lombardian Alps the TJB is placed (palynologically) in the uppermost Zu 
Limestone at a flooding surface that marks the transition from mixed siliclastic- 
carbonate sedimentation to subtidal micrite deposition (Cirilli et al. 2003). Thus, a 
change in bathymetry likely resulted in the extirpation of reefs in Tethys, which in 
large part at least locally caused the cessation of carbonate sedimentation (Flügel 
2002; Leinfelder et al. 2002; Lathuiliere and Marchal 2009). However, there is no 
evidence that this was a global event, and it can be viewed at most as a regional 
(circum-Tethyan) extinction driven by sea level changes (Tanner et al. 2004; Lucas 
and Tanner 2008).

Kiessling et al.’s (1999) and Kiessling’s (2001) global compilation indicates that 
the decline of reefs actually began during the Carnian and that the TJB corresponds 
to the loss of reefs concentrated around 30°N latitude. Nevertheless, this article has 
been cited as documenting a TJB mass extinction of reef organisms (e.g., Pálfy 
2003). However, the timescale used in Kiessling’s compilations is very coarse (it is 
only divided into Ladinian-Norian-Pliensbachian) and shows a steady decline in 
diversity throughout this time interval to reach a diversity low in the Middle Jurassic 
(Bajocian/Bathonian). Nonetheless, this did not deter Kiessling et al. (1999) from 
identifying a major extinction of reefs at the TJB. Similarly, CCE-influenced analy-
ses show a mass extinction of reefs across the TJB (e.g., Flugel and Kiessling 2002; 
Shepherd 2013).

Flügel and Senowbari-Daryan (2001) drew a broader picture of Triassic reef evo-
lution (also see Flügel 2002) (Fig. 15.8). Thus, after the end-Permian mass extinc-
tion, there was a “reef gap” during the Early Triassic. In the Middle Triassic 
(Anisian), scleractinian corals first appeared and reef building rersumed. The pri-
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mary Middle Triassic reef builders, however, were stromatoporoids, calcisponges 
and encrusting algae. This continued into the early Carnian, when there was a major 
evolutionary turnover in reefs that led to the scleractinian dominance of reefs by 
Norian time.

Indeed, Flügel and Senowbari-Daryan (2001) referred to Norian-Rhaetian reefs 
as the “dawn of modern reefs” because they were characterized by adundant, highly 
calcified, sessile, gregarious and high-growing corals, as are modern reefs (also see 
Flügel and Stanley 1984) (Fig.  15.9). However, Flügel and Senowbari-Daryan 
(2001) drew attention to a dramatic extinction of coral species at the TJB, with their 
analysis indicating that only 4% of Triassic coral species (14 of 321) and 8.6% of 
sphinctozoid coralline sponge genera (5 of 58) survived the end of the Triassic 
(though note that Kiessling et al. 2009 present different, lower numbers). They also 
noted that the most successful of the Late Triassic corals, the distichophyllids, 
became totally extinct at the end of the Triassic (also see Roniewicz and Morycova 
1989).

Coral reefs are extremely rare in the Hettangian-early Sinemurian, but by 
Pliensbachian time the reef ecosystem was well on its way to recovery. The Jurassic 
reefs continued to be dominated by scleractinian corals, so the disruption of the reef 
ecosystem was not permanent. Indeed, as just noted, recent discoveries are filling 
this “gap.”

In conclusion, a sudden extinction of reef organisms at the TJB is well docu-
mented in Tethys and reflects a regional change in bathymetry, but not a global mass 
extinction of reef organisms. Claims that oceanic acidification caused the global 
extinction of reefs at the TJB (Kiessling and Simpson 2011; Greene et al. 2012) 
assume the reef extinction was a global event, but this has not been substantiated. 
Instead, the “reef extinction” across the TJB was a facies driven event in western 
Tethys, not a global mass extinction.

15.5.5  Conodonts

The Conodonta is often identified as one of the most important groups to have suf-
fered complete extinction at the end of the Triassic. However, this is quite mislead-
ing. Detailed reviews of conodont extinctions have long emphasized that conodonts 
suffered high rates of extinction and low rates of origination throughout the Triassic 
(e.g., Clark 1980, 1981, 1983; Sweet 1988; Kozur and Mock 1991; Aldridge and 
Smith 1993; De Renzi et  al. 1996). During the Triassic, conodont diversity was 
highest during the Ladinian, and the ensuing Late Triassic saw a stepwise decline in 
this diversity as extinction rates were relatively high and origination rates were low. 
The single largest Late Triassic extinction of conodonts took place during the 
Carnian (at the Julian-Tuvalian boundary), when nearly all platform conodonts dis-
appeared (Kozur and Mock 1991). Diversity recovered somewhat through the 
Norian to decline again into the Rhaetian. Within the Rhaetian, nearly all conodont 
taxa disappeared before the TJB, with only one or two taxa found in the youngest 
Rhaetian conodont assemblages (Mostler et  al. 1978; Kozur and Mock 1991; 
Orchard 2003, 2010; Orchard et al. 2007; Bertinelli et al. 2016; Rigo et al. 2016).
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Furthermore, Pálfy et al. (2007) reported the youngest Conodonta from Lower 
Jurassic strata (as had Kozur 1993, much earlier). Thus, from the Csövár section in 
Hungary, they reported the conodont “Neohindeodella” detrei from a horizon strati-
graphically above an indeterminate psiloceratid ammonoid that they took to indi-
cate an Early Jurassic age. According to M. Orchard (written commun., 2015), who 
processed and studied the conodonts from the Csövár section, only two conodonts 
elements were found in the Jurassic part of the section but “they were delicate rami-
form specimens of the kind that would simply not survive reworking.” Thus, the 
Csövár record appears to document Early Jurassic conodonts, eliminating the final 
extinction of conodonts as an end-Triassic event.

15.5.6  Mesozoic Marine Revolution

One of the most significant paleoecological events of the Mesozoic has long been 
claimed to be the Mesozoic marine revolution. This “revolution” is perceived of as 
the origin of durophagous predators (such as shell-boring gastropods) and an inten-
sification of grazing that resulted in a substantial increase in the sturdiness of bivalve 
shells, and the turnover from marine benthic communities dominated by epifaunal 
(surface-dwelling) or semi-infaunal animals to a more infaunal benthos (e.g., 
Vermeij 1977, 1983; Harper and Skelton 1993). Some aspects of the Mesozoic 
marine revolution began in the Triassic (e.g., Fürsich and Jablonski 1984; Tintori 
1995; Harper et al. 1998; Hautmann 2004a; Salamon et al. 2012; Tackett and Bottjer 
2012; Buatois et  al. 2016) but did not accelerate until well into the Jurassic 
(Pliensbachian-Toarcian) and took until the end of the Cretaceous to be completed 
(Hautmann 2004a).

Thus, the so-called Mesozoic marine revolution was a very lengthy process that 
began during the Late Triassic and did not culminate until the Late Cretaceous, so it 
took about 150 million years. This is clearly not a revolution on any timescale, so 
the term “Mesozoic marine revolution” should be abandoned. Furthermore, the 
Mesozoic marine revolution has no clear relationship to any of the Late Triassic 
extinctions.

15.6  Nonmarine Organisms

15.6.1  Land Plants

15.6.1.1  Plant Macrofossils

As reviewed by Lucas and Tanner (2015), a diverse paleobotanical literature does 
not identify a major extinction of land plants at the TJB (e.g., Orbell 1973; 
Schuurman 1979; Pedersen and Lund 1980; Fisher and Dunay 1981; Brugman 
1983; Niklas et  al. 1983; Knoll 1984; Ash 1986; Traverse 1988; Edwards 1993; 
Cleal 1993a, b; Kelber 1998, 2003; Hallam 2002; Tanner et al. 2004; Lucas and 
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Tanner 2004, 2007b, 2008; Burgoyne et al. 2005; Galli et al. 2005; Ruckwied et al. 
2008; Kuerschner et  al. 2007; McElwain and Punyasena 2007; Cascales-Miñana 
and Cleal 2011; Barbacka et al. 2017; Kustatscher et al. 2017). At most, only the 
extinction of peltasperms, a clade of seed ferns, took place at the TJB.

Global diversity compilations at the species and family levels do not indicate a 
substantial plant extinction at the TJB (Niklas et  al. 1983; Knoll 1984; Edwards 
1993; Cleal 1993a, b). Cascales-Miñana and Cleal (2011: 76–77) concluded that 
“the changes observed in the plant fossil record in the Late Triassic Series are 
mainly reflecting an ecological reorganization of the terrestrial habitats weeding-out 
some of the families of less adaptable plants that had filled the newly available 
niches during Triassic times, rather than a global ecological crisis on the scale of 
that seen at the end of Permian times.”

Some data do reveal local turnover of paleofloras across the TJB. For example, a 
study of Swedish benettitaleans documented restriction of two species to the 
Rhaetian followed by five species restricted to the Hettangian. However, its authors, 
Pott and McLoughlin (2009: 117), do not consider this as anything more than a 
“moderate taxonomic turnover.” Barbacka et al. (2017) recently presented a detailed 
analysis of floral change across the TJB, focused on the Polish record, and compar-
ing it to other European records. They concluded that based on the European fossil- 
plant record “there were no significant changes in terrestrial plant composition at 
the TJB” (Barbacka et al. 2017: 80).

Nevertheless, McElwain and collaborators (McElwain et al. 1999, 2007, 2009; 
McElwain and Punyasena 2007; Belcher et  al. 2010; Mander et  al. 2010, 2012; 
Bacon et al. 2013) claim significant changes in the megaflora at the TJB in East 
Greenland of global significance. According to these workers, these represent a sud-
den change from high diversity Late Triassic plant communities to lower diversity 
and less taxonomically even Early Jurassic communities. This is the only location 
where a case has been made for a major turnover in the megaflora at the TJB, but, 
as analyzed in detail by Lucas and Tanner (2015), the data may support recognition 
of a megafloral crisis in East Greenland of no more than local significance that pre-
cedes the TJB.

The Astartekløft section of the Primulaev Formation of the Kap Stewart Group in 
Jameson Land, East Greenland (Fig.  15.10) records the transition from the 
Lepidopteris floral zone to the Thaumatopteris floral zone, with few species shared 
by both zones (Harris 1937). The former is characterized by the presence of palyno-
morphs, including Rhaetipollis, while the latter contains Heliosporites (Pedersen 
and Lund 1980), and although extinction of some species across the transition 
between the two zones is evident, many species occur in both zones. Thus, Harris 
(1937: 76) emphasized that “real mixing” of the two floral zones occurs over a 10 m 
interval (Fig. 15.10), and “this is real mixing….the two sets of plants will be seen 
on the same bedding plane and they continue to be found together from top to bot-
tom, of one of these beds….” Therefore, the data and analyses of Harris (1937) and 
Pedersen and Lund (1980) did not identify an abrupt change in the land plants 
across the TJB in Jameson Land. Furthermore, what species turnover looks abrupt 
in this section was attributed by Harris (1937) and Pedersen and Lund (1980) to 
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Fig. 15.10 Measured section of Triassic-Jurassic boundary interval of Kap Stewart Group in East 
Greenland showing distribution of megafossil plants and published carbon-isotope curve. The 
lithologic column is modified from McElwain et al. (2007) and shows megafossil plant beds using 
their scheme (1, 1.5, 2, etc.) followed by the scheme used by Harris (1937) in parentheses 
(Equisetites, A, B, etc.). The carbon isotope curve is from Hesselbo et al. (2002)
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species range truncations at a depositional hiatus, an unconformity also recognized 
in the Astartekløft section by Dam and Surlyk (1993) and Hesselbo et al. (2002) 
(Fig. 15.10).

In contrast, in this section McElwain and collaborators claim: (1) a sudden, 85% 
drop in species diversity at the TJB (based on megafossil plants but not reflected in 
the palynomorph record); (2) a decrease in the relative abundance of common plant 
species at the TJB; (3) a change in leaf physiognomy to larger and rounder leaves; 
(4) an increase in charcoal indicative of wildfire at the TJB; and (5) an increase in 
chemical damage to sporomorphs at the TJB. They see all but possibly the last of 
these as indicative of a “super greenhouse” caused by CAMP eruptions.

We question, though, the validity of the correlation of the TJB in the Astartekløft 
section. McElwain and collaborators place it at about the 47 m level of this section, 
basing that placement on the carbon isotope record published by Hesselbo et al. 
(2002) (Fig. 15.10). This record shows an apparent, but modest (~2‰), negative 
excursion beginning at about the 45 m level. We note that this “excursion” coincides 
with an unconformity of unknown duration. Hence, the relationship of the isotopic 
trend above this hiatus to the missing, underlying strata is a mystery. More recently 
published carbon isotope data (Williford et al. 2014, fig. 1) are very noisy and also 
fail to identify the TJB in the Astartekløft section.

Nevertheless, Hesselbo et al. (2002) assumed that the base of the excursion rep-
resents the “initial isotope excursion” and that the remainder records the “main 
isotope excursion” seen in marine sections that cross the TJB (e.g., Ruhl et al. 2010). 
Therefore, the intervening section with a more positive isotopic trend (spanning 4 m 
at St. Audrie’s Bay in England) is conveniently missing. Hence, we regard Hesselbo 
et  al.’s (2002) correlation as tenuous at best. Furthermore, if the initial negative 
excursion at the ~45 m level in the Astartekløft section is the well documented (in 
marine sections) negative excursion in carbon then it is not the TJB, but instead a 
point in the Rhaetian (e.g., Lucas et al. 2007b; Ruhl et al. 2010; Hillebrandt et al. 
2013). Thus, all the events McElwain and collaborators associate with the TJB actu-
ally preceded it.

The chemostratigraphic correlation proposed by Hesselbo et al. (2002) relies on 
the presence of an unconformity at 45  m in the Astartekløft section. Questions 
should be raised about the nature of this unconformity and the temporal magnitude 
of the hiatus it represents, as well as the associated substantial change in lithofacies 
(Fig. 15.10). Indeed, we note that most of the megafossil plant assemblages below 
that level are from mudrock-dominated intervals, whereas those above that level are 
from sandstone (Fig. 15.10). According to McElwain et al. (2007: 551), the mudrock 
likely represents floodplain deposits of mainly autochthonous plants, whereas the 
sandstones represent channel and splay deposits that also include allochthonous 
plants. However, in evident contradiction to parts of their text and measured strati-
graphic section, McElwain et al. (2007, table 1) identify all the plant localities up 
through their bed 5 as coming from “sheet splay” deposits, the plants from bed 6 as 
from a coal swamp (though no coal is present in the section at Astartekløft) and their 
plant beds 7 and 8 as coming from abandoned channels. In the absence of more data 
(e.g., detailed lithologic descriptions of the plant-bearing strata) and an actual sedi-
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mentological analysis of the plant-bearing beds, we are not able to resolve these 
evident contradictions in McElwain et al. (2007).

Instead, it seems evident that the section at Astartekløft embodies a major litho-
facies change at an unconformity, from a mudstone-dominated depositional system 
to a channel-sandstone dominated system (Fig. 15.10). It preserves two taphofloras 
in different lithofacies, and this raises the possibility that much of the apparent floral 
change inferred by McElwain and collaborators is due to the change in the deposi-
tional system (lithofacies). Assuming the TJB is present in this section near the 
47  m level, the megafossil plant assemblages across the TJB are not “isotapho-
nomic” (as claimed by McElwain et al. 2007), so they are not strictly comparable to 
each other in terms of composition, diversity and relative abundance.

According to McElwain and collaborators, a substantial perturbation of plant 
ecology and diversity is preserved at the TJB in East Greenland. Instead, we con-
clude that the data they present are indicative instead of a local change in the paleo-
flora largely driven by lithofacies changes resulting in changing taphonomic filters. 
No catastrophic land plant extinction is documented and, at most, the floral turnover 
in East Greenland is nothing more than a local event, as no similar, coeval event is 
documented elsewhere (Hallam and Wignall 1997; Tanner et al. 2004; Lucas and 
Tanner 2008; Barbacka et al. 2017). Furthermore, whatever happened to the mega-
flora in East Greenland occurred prior to the TJB.

In conclusion, no case has been made for a global mass extinction of land plants 
at the TJB. Some local changes are evident, and the local section in East Greenland, 
if we treat it as a “best section,” only documents local changes not seen elsewhere 
in Europe (e.g., Barbacka et al. 2017). Steinthorsdottir et al.’s (2015) recent claim 
that trace fossils on plant substrates (Paleoscolytus ichnofacies of Lucas 2016) in 
East Greenland indicate substantial changes in terrestrial invertebrates across the 
TJB also can be seen as a local effect not seen outside of East Greenland.

15.6.1.2  Plant Microfossils

Like the megafossil plant record, the palynological record provides no evidence for 
a mass extinction of land plants at the TJB (Bonis and Kurschner 2012). Indeed, 
given that the plant microfossils are derived from the plant megafossils, it seems 
logical that no mass extinction of the megafossil plants at the TJB should be paral-
leled by no mass extinction evident from the plant microfossils.

Many years ago, Fisher and Dunay (1981) demonstrated that a significant pro-
portion of the Rhaetipollis germanicus assemblage that defines the Rhaetian in 
Europe (e. g., Orbell 1973; Schuurman 1979) persists in lowermost Jurassic strata, 
and this has since been verified by more recent studies (e.g., Bonis et  al. 2009; 
Cirilli 2010; Kürschner and Herngreen 2010; Bonis and Kurschner 2012). Brugman 
(1983) and Traverse (1988) thus concluded that floral turnover across the TJB was 
gradual, not abrupt. Kelber (1998, 2003) described the megaflora and palynoflora 
for Central Europe in a single unit he termed “Rhaeto-Liassic,” and concluded there 
was no serious disruption or decline in plant diversity across the TJB. More recently, 
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Bonis et al. (2009) and Kuerschner et al. (2007) documented the transitional nature 
of the change in palynomorphs across the TJB in the Northern Calcareous Alps of 
Austria (also see Hillebrandt et  al. 2013), and the palynomorph record in East 
Greenland also does not document an abrupt TJB extinction (Mander et al. 2010). 
Indeed, a recent review of palynological changes across the TJB by Lindström 
(2016) identifies different changes at different times in different places, much of it 
evidently facies driven.

Nevertheless, profound palynomorph extinction at the TJB was long identified in 
the Newark Supergroup record in eastern North America by Olsen and collaborators 
(Cornet 1977; Cornet and Olsen 1985; Olsen and Sues 1986; Olsen et  al. 1990, 
2002a, b; Fowell and Olsen 1993). Their work identified the TJB in the Newark sec-
tion by a decrease in diversity of the plant microfossil assemblage, defined by the 
loss of palynomorphs considered typical of the Late Triassic, followed by domi-
nance of the palynoflora by several species of the genus “Corollina” (= Classopollis), 
especially C. meyeriana (Cornet and Olsen 1985; Olsen et  al. 1990; Fowell and 
Olsen 1993; Fowell et al. 1994; Fowell and Traverse 1995). They thus placed the 
TJB in the Newark section at the base of the Classopollis meyeriana palynofloral 
zone.

This palynofloral change has been referred to as the “T-J palynofloral turnover” 
(Whiteside et  al. 2007) or the “Passaic palynofloral event” (Lucas and Tanner 
2007b). But, as Kozur and Weems (2005: 33) well observed, “there are no age- 
diagnostic sporomorphs or other fossils to prove that this extinction event occurred 
at the Triassic-Jurassic boundary.” Indeed, Kuerschner et al. (2007) concluded that 
the Passaic palynolofloral event most likely represents an older, potentially early 
Rhaetian event, a conclusion shared by Kozur and Weems (2005, 2007, 2010) and 
by Lucas and Tanner (2007b). Thus, the palynological turnover in the Newark pre-
ceded the TJB and was a regional event, not a global mass extinction.

Bonis and Kurschner (2012) provided a comprehensive review of TJB palyno-
logical records to conclude that they indicate vegetation changes that are non- 
uniform (different changes in different places), not synchronous and not indicative 
of a mass extinction of land plants. They attributed these changes to climate change 
driven by CAMP volcanism that produced a warmer climate and stronger mon-
soonal flow across Pangea, which developed drier interiors and wetter coastal 
regions. As they well put it, “…instead of a major and globally consistent palyno-
floral extinction event, the Tr/J boundary is characterized by climate-induced quan-
titative changes in the sporomorph assemblages that vary regionally in magnitude 
and composition” (Bonis and Kurschner 2012: 256). In sum, there is no evidence of 
a global mass extinction of land plants at the TJB.

15.6.2  Terrestrial Tetrapods

Colbert (1958) concluded that the temnospondyl amphibians, a significant compo-
nent of many late Paleozoic and Early-Middle Triassic tetrapod assemblages, under-
went complete extinction at the TJB.  However, these temnospondyls are only a 
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minor component of Late Triassic tetrapod assemblages, being of low diversity and 
relatively small numbers in most stratigraphic units (e.g., Hunt 1993; Long and 
Murry 1995; Schoch and Milner 2000). Moreover, current data demonstrate the 
disappearance of most of the temnospondyls—almasaurids, mastodonsaurids, capi-
tosaurids, and trematosaurids—at or before the Norian-Rhaetian boundary, and 
only two families extinct at the end of the Triassic (metoposaurids and plagiosau-
rids) (Milner 1993, 1994; Schoch and Milner 2000; also see Lucas 2008, 2017e). 
Late Triassic temnospondyl extinctions thus largely preceded the TJB.

To Colbert (1958), the bulk of the TJB tetrapod extinction was in the disappear-
ance of the “thecodonts.” These “thecodonts” were more recently referred to as the 
crurotarsans (phytosaurs, aetosaurs [Fig. 15.11] and rauisuchians), although that 
name is no longer advocated by the latest cladistic analysis (Nesbitt 2011). 
Phytosaurs, aetosaurs and rauisuchians are the only members of Colbert’s “thec-
odonts” to have a substantial Norian or younger fossil record based on current data. 
Other groups of thecodonts that have been portrayed by some as going extinct at the 
TJB either lack Rhaetian records (for example, the Ornithosuchidae: von Baczko 
and Ezcurra 2013) or have so-called Rhaetian records of problematic age, such as 
records from British fissure-fill deposits (e.g., Fraser 1994).

A non-“thecodont” group that did go extinct during the Rhaetian is the 
Procolophonidae. However, procolophonids were a group of low diversity by Norian 
time, and many of their so-called Rhaetian records are from British fissure fills (e.g., 
Fraser 1994). The tetrapod taxa from these fissure fills are mostly endemic taxa of 
no biochronological significance or cosmopolitan taxa with long stratigraphic 
ranges. As Lucas and Hunt (1994: 340) noted, “a single age should not necessarily 

Fig. 15.11 The Late Triassic (Revueltian = Norian) aetosaur Rioarribasuchus, representative of 
the “thecodont” reptiles long thought to have suffered a mass extinction at the TJB. Artwork by 
Matt Celeskey
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be assigned to the fossils from one fissure and…individual fossils from the fissures 
may range in age from middle Carnian to Sinemurian.” We thus regard as  problematic 
the precise age of many of the Triassic tetrapod fossils from the British fissure fills.

Phytosaur fossils are known from Rhaetian-age strata in the Newark basin, the 
Glen Canyon Group in the western USA and the Germanic basin (e.g., Olsen et al. 
2002a, b; Lucas and Tanner 2007a; Stocker and Butler 2013). A Lower Jurassic 
phytosaur record has been documented by Maisch and Kapitzke (2010). This is an 
unabraded snout fragment found in the lowermost Jurassic pre-planorbis beds 
(Neophyllites zone) at Watchet in England (Fig. 15.12). Stocker and Butler (2013) 
expressed skepticism about the stratigraphic provenance of this record, and it may 
be a reworked fossil, a possibility, that while unlikely (given the preservation of the 
fossil), is difficult to test. Instead, we accept that it documents phytosaur persistence 
into the earliest Jurassic, contradicting the longstanding assumption of their extinc-
tion at the TJB.

There are no demonstrable aetosaur or rauisuchian body fossils in Rhaetian strata 
(Lucas, 2010b; Desojo et al. 2013; Nesbitt et al. 2013), although Nesbitt et al. (2013) 
mentioned a possible Early Jurassic rauisuchian from southern Africa, based on a 

Fig. 15.12 Phytosaur lower jaw fragment from the pre-planorbis beds at Watchet, Somerset, 
England, in ventral (a), lateral (b) and dorsal (c) views. This fossil, in the collection of the 
Staatliches Museum für Naturkunde, Stuttgart, Germany (catalogued as SMNS 55194), if not 
reworked, is evidence that phytosaurs persisted beyond the TJB (see Maisch and Kapitzke 2010). 
Photographs courtesy of Michael Maisch
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single snout fragment that they stated may also be of a large crocodylomorph. 
Aetosaur and rauisuchian body fossil records primarily suggest their extinction 
before Rhaetian time.

Nevertheless, the footprint ichnogenus Brachychirotherium is known from 
Rhaetian strata, and Lucas and Heckert (2011) argued that an aetosaur was the 
trackmaker. We note that Smith et al. (2009) reported what they identified as chi-
rothere tracks from the Lower Jurassic Elliot Formation of Lesotho in southern 
Africa, but as Klein and Lucas (2010) noted, the described tracks differ from chi-
rothere footprints in significant ways and are more likely large crocodylomorph 
tracks.The available stratigraphic data thus suggest a three step extinction of the 
“crurotarsans”—first, rauisuchians by the end of the Norian, second, aetosaurs 
(based on the footprint ichnogenus Brachychirotherium) by the end of the Rhaetian 
and third, phytosaurs in the early Hettangian.

Synapsids of the Late Triassic are dicynodonts and cynodonts (e. g., Lucas and 
Hunt 1994; Lucas and Wild 1995; Abdala and Ribeiro 2010; Abdala and Gaetano 
2017). Most Late Triassic dicynodont records are Carnian, with rare post-Carnian 
records as young as late Norian (Lucas and Wild 1995; Dzik et  al. 2008; Lucas 
2015). The Late Triassic cynodont record is more extensive, especially in Gondwana. 
Traversodontids have a relatively diverse record in the Carnian-Norian and a single 
Rhaetian record (we note that the Gondwana cynodont-bearing strata assigned a 
Rhaetian age by Abdala and Ribeiro (2010) are actually Norian: Lucas 2010b). 
Trithelodontids and tritylodontids cross the TJB, and a problematic group of tooth- 
based taxa, the “dromatheriids,” disappears in the Rhaetian (Lucas and Hunt 1994). 
Note, though, that the origin and diversification of “mammaliaforms,” which likely 
include the “dromatheriids,” began in the Late Triassic (e.g., Newham et al. 2014). 
On present evidence, a TJB synapsid extinction is thus of a handful of taxa, with 
most taxa already extinct by Rhaetian time.

15.6.3  Newark Supergroup Record

The recent case for a mass extinction of tetrapods at the TJB has relied heavily on 
the Newark Supergroup record of tetrapod fossils (e.g., Olsen and Sues 1986; 
Silvestri and Szajna 1993; Szajna and Silvestri 1996; Olsen et al. 1987, 1990, 2002a, 
b; Sues and Olsen 2015). However, a close examination of all Triassic tetrapod taxa 
known from the Newark Supergroup identifies only three body-fossil taxa (indeter-
minate phytosaurs, the procolophonid Hypsognathus and sphenodontians) in the 
youngest Triassic strata, which are strata of Rhaetian age (Huber et al. 1993; Lucas 
and Huber 2003; Kozur and Weems 2010; Weems et al. 2016) (Fig. 15.13). Recent 
collecting has not changed that, and only a few fragmentary tetrapod fossils are 
known from the Newark extrusive zone and are not age diagnostic (Lucas and Huber 
2003; Lucas and Tanner 2007b).

The McCoy Brook Formation, which overlies the only CAMP basalt of the 
Fundy basin in Nova Scotia, yields a tetrapod assemblage generally considered 
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Early Jurassic in age by vertebrate paleontologists (Olsen et al. 1987; Shubin et al. 
1994; Lucas 1998; Lucas and Huber 2003; Lucas and Tanner 2007a, b) However, 
this assemblage could straddle the marine-defined TJB given that Cirilli et al. (2009) 
demonstrated that at least the lowermost McCoy Brook strata are Rhaetian.

The Newark body fossil record of tetrapods thus is sparse across the TJB and 
inadequate to evaluate a possible tetrapod extinction, so the tetrapod footprint record 
in the Newark Supergroup has been used as a proxy (e.g., Olsen and Sues 1986; 
Szajna and Silvestri 1996; Olsen et al. 2002a, b). However, detailed stratigraphic 
study of the Newark footprint record indicates nothing more than moderate turnover 
in the footprint assemblage at a within-Rhaetian stratigraphic level below the lowest 
CAMP basalt sheet (Fig. 15.13). Similar changes in tetrapod footprint assemblages 
are also known from the Chinle Group-Glen Canyon Group section of the American 
Southwest and from the Germanic Basin (e. g., Lucas et al. 2006; Lucas 2007).

The footprint turnover in the Newark section (Fig. 15.13) is supposedly the dis-
appearance of four ichnogenera in the uppermost Passaic Formation, and the appear-
ance of three ichnogenera at that datum (Olsen et al. 2002a, b). The ichnogenera that 
disappear represent phytosaurs (Apatopus: Klein and Lucas 2013), aetosaurs 
(Brachychirotherium: Lucas and Heckert 2011) and tanystropheids 
(Gwynnedichnium: Lucas et  al. 2014). There are single Newark records of 
Procolophonichnium (procolophonid: Baird 1986; Klein et al. 2015) just below the 
turnover level and a single record of Ameghinichnus (mammaliaform: de Valais 
2009) above that level.

According to Olsen et al. (2002a, b), the ornithischian dinosaur footprint ichno-
genus Anomoepus first appears at this level, but a later detailed review of the ichno-

Fig. 15.13 Stratigraphic ranges of tetrapod footprint ichnogenera and body fossil taxa across the 
Late Triassic (Rhaetian) Passaic palynofloral event in the Newark section. Modified and updated 
after Olsen et al. (2002a) and Lucas and Tanner (2015)
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genus by Olsen and Rainforth (2003) indicated that the lowest stratigraphic record 
of Anomoepus is stratigraphically higher, in the Newark extrusive zone (Fig. 15.13). 
The crocodylomorph footprint ichnogenus Batrachopus appears at this level, but 
there are older Triassic body fossil records of crocodylomorphs (Klein and Lucas 
2010). Olsen et al. (2002a, b) showed the prosauropod-dinosaur-footprint ichnoge-
nus Otozoum appearing in the upper Passaic Formation, but a later revision of the 
ichnogenus by Rainforth (2003) established its stratigraphically lowest record as 
Jurassic, in the Newark extrusive zone (Fig. 15.13). The lacertoid footprint ichnoge-
nus Rhynchosauroides has its last Newark record in the upper Passaic Formation, 
but this ichnogenus has Jurassic records elsewhere (Avanzini et al. 2010).

Thus, what the Newark tetrapod footprint and body-fossil record shows is the 
local extinction of phytosaurs (they have a younger record elsewhere), aetosaurs, 
tanystropheids and procolophonids (this may be the level of their global extinction). 
That is the extent of the turnover in tetrapod taxa it documents, and the turnover 
level in the Newark is at a Rhaetian horizon, not at the TJB (Fig. 15.13).

Part of the footprint turnover in the Newark section is the local lowest occurrence 
of the theropod footprint ichnogenus Eubrontes (as defined by Olsen et al. 1998, 
i.e., tridactyl theropod pes tracks longer than 28 cm). For decades, much was made 
of this record of Eubrontes. Thus, Olsen and Galton (1984) concluded that the low-
est occurrence of Eubrontes is the base of the Jurassic, and Olsen et al. (2002a, b) 
later argued that the sudden appearance of Eubrontes in the “earliest Jurassic” strata 
of the Newark Supergroup indicates a dramatic size increase in theropod dinosaurs 
at the TJB. They interpreted this as the result of a rapid (thousands of years) evolu-
tionary response by the theropod survivors of a mass extinction and referred to it as 
“ecological release” (Olsen et al. 2002a: 1307). They admitted that this can be inval-
idated by the description of Dilophosaurus-sized theropods or diagnostic Eubrontes 
tracks in verifiably Triassic-age strata.

Indeed, tracks of large theropod dinosaurs assigned to Eubrontes (or its possible 
synonym Kayentapus) are known from the Triassic of Australia, Africa (Lesotho), 
Europe (Great Britain, France, Italy, Germany, Poland-Slovakia, Scania) and east-
ern Greenland, invalidating the “ecological release” hypothesis (Lucas et al. 2006; 
Niedźwiedzki 2011; Bernardi et al. 2013). A detailed review of these records indi-
cates Carnian, Norian and Rhaetian occurrences of tracks that meet the definition of 
Eubrontes established by Olsen et al. (1998). Also, theropods large enough to have 
made at least some Eubrontes-size tracks have long been known from the Late 
Triassic body-fossil record (e.g., Langer et al. 2009). Thus, the sudden abundance of 
these tracks in the Newark Supergroup cannot be explained simply by the rapid 
evolution of small theropods to large size following a mass extinction. The concept 
of a sudden appearance of Eubrontes tracks due to “ecological release” at the TJB 
proposed by Olsen et al. (2002a, b) thus can be abandoned, though some workers 
(e.g., Barras and Twitchett 2016) continue to endorse it.
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15.7  Ecology of the Extinctions

15.7.1  Severity of the Extinctions

McGhee et  al. (2004, 2013) made the valuable point that not only should mass 
extinctions be evaluated in terms of biodiversity crises, but also in terms of their 
ecological severity. In their scheme of ecological severity, they evaluated the marine 
TJB extinction as category IIa and the continental TJB extinction as category I or 
IIa. Category I means that ecosystems before the extinction were replaced by new 
ecosystems post-extinction, whereas category IIa means that the extinctions caused 
permanent loss of major ecosystem components.

McGhee et  al. (2004: 291) rated the TJB marine extinction as category IIa 
because of the “virtual elimination of the global reef component of marine ecosys-
tems.” However, as discussed above, this disruption was not demonstrably global 
and it was demonstrably temporary. Therefore, we downgrade the TJB marine 
extinction to category IIb in their classification, which means that the disruption was 
temporary; i.e., the reef ecosystem re-established itself after a hiatus.

McGhee et al. (2004: 293) regarded characterizing the ecological severity of the 
nonmarine TJB extinction as “more problematic” than their characterization of the 
marine TJB extinction. Despite this, they concluded that the TJB transition involved 
a rapid ecological replacement of Triassic mammal-like reptiles and rhynchosaurs 
by dinosaurs. However, rhynchosaurs are now known from the early Norian 
(Spielmann et  al. 2013), and dicynodonts are now known from the late Norian 
(Lucas 2015), unless a putative Cretaceous record (with problematic provenance) 
from Australia is verified (Thulborn and Turner 2003). The other principal group of 
Late Triassic mammal-like reptiles, the cynodonts, were of low diversity after the 
Carnian (Lucas and Hunt 1994; Abdala and Gaetano 2017). Dinosaurs appeared as 
body fossils in the Carnian and began to diversify substantially in some parts of 
Pangea by the late Norian (e.g., Hunt 1991; Langer et al. 2009). Thus, the ecological 
severity of the end-Triassic tetrapod extinction is relatively low (Category IIb on the 
McGhee et  al. 2004 classification), and the plant extinctions also do not appear 
ecologically severe (see above). Clearly, there was some disruption of the terrestrial 
ecosystem across the TJB, but it was not severe.

15.7.2  Structure of the Extinctions

The above makes it clear that there is no single mass extinction of any element of 
the global biota at the TJB. The closest to such an event is the turnover of radiolar-
ians. Bivalve and ammonoid extinctions were stepwise during the Late Triassic, 
with the most severe extinction at or very close to the Norian-Rhaetian boundary. 
The same is true of tetrapods, with most of the tetrapod taxa envisioned as part of a 
mass extincton at the TJB gone at or before the Norian-Rhaetian boundary. 
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Furthermore, much of the turnover in the terrestrial tetrapod biota is older than the 
marine extinction events (Lucas et al. 2011).

Clearly, the end of the Triassic did not see the collapse of trophic systems on land 
or in the sea. The lack of a mass extinction of land plants makes it difficult to envi-
sion a collapse of the metazoan trophic structure that relied on plants as the primary 
sources of food. Similarly, there was no mass extinction of the oceanic plankton, so 
there also was no collapse of marine food chains.

15.8  Mechanisms of Extinction

The fossil record of Late Triassic extinctions demonstrates the combined effects of 
a protracted interval of decreased origination rates, punctuated by several brief, but 
more intense intervals of elevated extinction, the last of these occurring near the end 
of the Rhaetian. The protracted interval of decreased origination implies gradualis-
tic mechanisms of environmental change that operated over millions to tens of mil-
lions of years; i.e., long-term ecological changes of the sort that might result from 
sea-level fluctuation or climate change. Both of these were well-reviewed by Tanner 
et al. (2004) and remain viable hypothesese to explain the Late Triassic extended 
background of increased extinction and decreased rates of species origination.

15.8.1  Gradual Changes

Falling sea-level, with consequent reduction in the available shallow marine habitat, 
has long been advocated as an extinction-forcing mechanism (Newell 1967; Hallam 
1989, 1992, 1998, 2001; Hallam and Wignall 1997, 1999, 2000), although 
McRoberts et al. (1997) suggested that sea-level change may result in a decline in 
diversity through changes in: (1) sediment substrate, (2) water temperature, and (3) 
salinity, rather than through the loss of habitat area. Significant facies changes that 
suggest regression followed by transgression at the end of the Triassic can be 
observed in many of the classic marine boundary sections in Europe, implying that 
sea-level change may have been involved in the end-Triassic extinctions. However, 
Hallam (1990, 2001) and Hallam et al. (2000) suggested that regression with conse-
quent habitat loss in Western Europe was only a regional effect, a consequence of 
the thermal uplift of the region surrounding the Atlantic rift prior to the initiation of 
magmatism. Tanner et al. (2004), in their review found no evidence that this was a 
global event, although some boundary sections outside of Europe do display facies 
changes at the TJB that may reflect sea-level change on a broader scale (e.g. Hönig 
et al. 2017).

Gradual climate change also was invoked to explain Late Triassic tetrapod turn-
over, initially by Colbert (1958) and later by Tucker and Benton (1982). Most 
reconstructions of the Pangean climate for the Late Triassic suggest a largely azonal 
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pattern of climate with mainly dry equatorial and continental interior regions and 
humid belts at higher latitudes and around the Tethyan margin (Parrish and Peterson 
1988; Crowley et  al. 1989; Kutzbach and Gallimore 1989; Dubiel et  al. 1991; 
Parrish 1993; Fawcett et al. 1994; Tanner 2017). Precipitation across Pangea appar-
ently was strongly seasonal, powered by a strong monsoonal effect (Kutzbach and 
Gallimore 1989; Parrish 1993) that was enhanced during the Late Triassic by the 
location of the Pangean supercontinent neatly bisected by the equator (Parrish 
1993). Simms and Ruffell (1990) specifically attributed the cessation of humid cli-
mate conditions at the end of the Carnian as the cause of a significant biotic turnover 
at the Carnian-Norian boundary. This interpretation is consistent with reports of 
increasing aridity during the Late Triassic from formations deposited at low paleo-
latitudes and in the interior regions of Pangea (see Tanner 2017, this volume, for 
additional details).

15.8.2  Bolide Impact

Beginning in the 1980s, the hypothesis was advanced that the end-Triassic extinc-
tions were associated with a single catastrophic cause, specifically, the Manicouagan 
bolide impact that left the ca. 70 km remnant crater in southern Quebec, Canada 
(Olsen et al. 1987). Despite radioisotopic dating that indicated an age of ca. 214 Ma 
for the crater, substantially older than the TJB (Hodych and Dunning 1992), Olsen 
et al. (2002a, b) continued to advance this hypothesis. They cited as evidence for a 
correlation between the impact and the extinctions the occurrence of elevated Ir 
levels, at hundreds of pg/g (= parts per trillion), in strata just below the zone of 
maximum palynological turnover in the Newark basin (the Passaic palynofloral 
event below the oldest CAMP volcanics in this basin; Fig. 15.13). However, this 
hypothesis has been disproved firmly by more recent radioisotopic dating of the 
Manicouagan structure at 215.5 Ma and identification of an ejecta layer with a sub-
stantial Ir anomaly dating to the late middle Norian (Ramezani et al. 2005; Onoue 
et al. 2012, 2016; Sato et al. 2016).

Notably, the Manicouagan structure is not the only Upper Triassic impact crater. 
The Rochechuoart impact structure has been dated to 201 ± 2 Ma, encompassing the 
system boundary (Schmieder et  al. 2010), but the limited size of the structure, 
15–20 km, indicates that it could not have had a substantial role in end-Triassic 
biotic decline (Jourdan 2013). Nevertheless, the Rochchouart impact could have 
been the source of the shocked quartz grains reported by Bice et al. (1992) in the 
Calcare à Rhaetivicula below the system boundary marl at a section near Corfino in 
Tuscany. However, it is unlikely to have been the origin of the Ir concentrated near 
the boundary, as the Rochechouart impactor is considered likely to have been non-
magmatic iron, not chondritic (Tagle et al. 2009). The Ir enrichment detected ini-
tially by Olsen et al. (2002a, b) has been found in a similar stratigraphic position 
below the CAMP volcanics in the Fundy basin by Tanner and Kyte (2005) and 
Tanner et al. (2008), who posited that the Ir was associated with the volcanism of 
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CAMP, potentially via outgassing (also see Weems et  al. 2016). More recently, 
Tanner et al. (2016) identified a similar enrichment in marine strata of the Eiberg 
basin (at the base Hettangian GSSP section at Kuhjoch, Austria) at a stratigraphic 
level above that described from the Newark and Fundy basins and posited that the 
CAMP volcanics also may have been the source. No impact debris is associated 
with any of the Ir anomalies bracketing the system boundary, thus an impact origin 
for the Ir is unlikely.

15.8.3  CAMP Volcanism

15.8.3.1  Size and Age of CAMP

The attention in the study of the end-Triassic extinctions in recent years has focused 
primarily on the environmental effects of the eruption of the flood basalts of the 
Central Atlantic Magmatic Province (CAMP) (Fig. 15.14). Once assumed to post- 
date the TJB (Whiteside et  al. 2007), it is now well-established that the CAMP 
eruptions span the system boundary (Kozur and Weems 2005, 2007, 2010; Lucas 
and Tanner 2007b; Cirilli et al. 2009). Within the basins of the Newark Supergroup, 
the eruptions proceeded in three main episodes, separated by eruptive hiatuses dur-
ing which sediments accumulated, with the majority of the total lava volume ejected 
during the initial eruptive episode (Marzoli et al. 2011).

The size of the igneous province was initially estimated by McHone and Puffer 
(1996) at ca. 2.3 × 106 km2. Subsequently, Deckart et al. (1997) and Marzoli et al. 
(1999) expanded the size of the province to include all regions proximal to the rift 
margin that contain mafic intrusions of approximately correlative age. This method 
outlined an area of around 11 × 106 km2 and allowed a maximum estimate of the 
erupted lava volume of ca. 2 × 106 km3, coincidentally similar to the volume calcu-
lated for the Deccan Traps. As noted by Huber (1997) and Tanner et  al. (2004), 
however, this calculation assumes that the entire area outlined by these mafic flows 
and intrusions was covered by lava to an average depth of several hundred meters. 
This assumption is somewhat difficult to defend given that even in basins where the 
entire erupted thickness is preserved, such as the Newark basin, the total thickness 
of the flows varies widely, from >1 km to as little as tens of meters. Moreover, only 
in the rift basins are the flows well-preserved. Hence, there is no way of measuring 
directly the thickness of the flows in the much larger area of the province outside of 
the basins.

In the Newark basins of eastern North America, the CAMP eruptions are repre-
sented by up to three distinct eruptive units, each typically consisting of multiple 
flow units, but radioisotopic dates consistently indicate that the peak eruptive activ-
ity occupied a narrow interval of time (see Marzoli et al. 2017). Olsen et al. (1996) 
correlated between basins, using cyclostratigraphy, and, based on their inferred 
astrochronology, calculated a duration of volcanic activity of no more than ca. 600 
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Ka. Further, they suggested that CAMP eruptions in the Argana basin of Morocco 
were synchronous with those of the Newark basins.

Strict synchroneity of the CAMP eruptions across the entire province as mapped 
is a point of contention. Thus, 40Ar/39Ar dates for the South American basalts pub-
lished by Marzoli et al. (1999) display a wide range of ages (from 190.5 ± 1.6 to 
198.5 ± 0.8 Ma) as do dikes from the same regions (191.5 ± 0.9–202.0 ± 2 Ma). 
Although the synchroneity proposed for the eruptions in the Newark basins (within 
600 Ka) is not transferrable to the South American data, there remains broad sup-
port for assuming that most of the volume of lava was erupted over a period substan-
tially less than 1 million years (Marzoli et al. 2017). Most recently, Thibodeau et al. 
(2017) documented the presence of elevated Hg levels in the section at Muller 
Canyon, New York Canyon area (Nevada) that crosses the TJB. The elevated con-
centration begins in the interval of late Rhaetian extinction and extends upward 
above the first appearance of psiloceratid ammonoids, continuing through the 
depauperate interval above the boundary. Isotopic ratios of the Hg confirm a volca-
nic origin, leading the authors to conclude that CAMP activity is linked to the 
extinctions, and that continuation of the activity for hundreds of thousands of years 
hampered biotic recovery.

Fig. 15.14 The North Mountain Basalt (Talcott Formation of Weems et al. 2016) from the north 
shore of the Minas basin in Nova Scotia, Canada is a characteristic CAMP basalt. This is the only 
CAMP extrusive basalt sheet in the Fundy basin

S.G. Lucas and L.H. Tanner



759

15.8.3.2  Carbon Isotope Record

Notable in the investigations of the end-Triassic extinctions and a potential link to 
the CAMP eruptions was the identification in TJB sections of a negative carbon 
isotope excursion (CIE) in the δ13C record (typically ca. −3.5‰) in both marine 
carbonate and organic carbon. A significant negative CIE has been identified in a 
number of marine sections in close proximity to the Rhaetian-Hettangian boundary. 
For example, the sections at St Audrie’s Bay, southwest England (Hesselbo et al. 
2002, 2004), Csövár, Hungary (Pálfy et  al. 2001), and several sections in the 
Northern Calcareous Alps of Austria (Kuerschner et al. 2007; Ruhl et al. 2009) dis-
play a negative δ13Corg excursion of approximately 2.0–4.0‰ from a baseline that 
generally varies from −26 to −29‰. Typically, these excursions begin below the 
highest occurrence of conodonts and Triassic ammonites (e.g. choristocerids), sup-
porting their correlatability, and also consistently below the lowest occurrence of 
Jurassic (psiloceratid) ammonites, which demonstrates unequivocally that the per-
turbation of the carbon cycle that caused the CIE occurred before the biostrati-
graphic system boundary, as presently defined (the FAD of Psiloceras spelae). 
Characteristically, the excursion continues upward into basal Hettangian strata and 
is succeeded by a strong positive excursion, as at Ferguson Hill, Nevada, USA 
(Guex et al. 2004; Ward et al. 2007), St. Audrie’s Bay, UK (Hesselbo et al. 2002, 
2004) and Kennecott Point, Queen Charlotte Islands, Canada (Ward et  al. 2001, 
2004). A similar negative excursion of δ13Ccarb has been demonstrated in the upper-
most Rhaetian in several other sections (e.g., Pálfy et al. 2001; Galli et al. 2005, 
2007). However, these data generally are of somewhat lower resolution than the 
δ13Corg data because lithologic considerations and/or diagenesis limit the sampling 
density.

A negative CIE recorded by δ13Corg in terrestrial environments has been claimed 
as correlative with that in the marine realm (McElwain et al. 1999; Hesselbo et al. 
2002). Implicit in this correlation is the assumption that both marine and δ13Corg ter-
restrial CIEs resulted from a dramatic alteration of the δ13C of the global ocean/
atmosphere carbon reservoir that was recorded similarly by vascular plants. The 
earlier data underlying this hypothesis were critiqued by Lucas and Tanner (2015), 
who found them unconvincing. Indeed, the isotopic data from plant macrofossils for 
sections in Scania spanning the system boundary do not display a distinct CIE, and 
although the δ13C data from Greenland (McElwain et al. 1999; Hesselbo et al. 2002; 
Williford et al. 2014) display an apparent trend that appears to correlate with the 
marine data, this trend is based on very few samples and lacks the consistency that 
is displayed in the marine record. Furthermore, identification of the position of the 
system boundary in terrestrial sections is not nearly as straightforward as it is in the 
marine realm (Lucas and Tanner 2015). Hence, precise correlation of the isotopic 
curves between the marine and terrestrial realms can only be speculative.

Earlier studies of the change in δ13 in terrestrial organic matter (e.g., McElwain 
et  al. 1999) were conducted on bulk organic matter, thus failing to account for 
potential changes caused by changes in plant assemblage across the TJB. Bacon 
et al. (2011) attempted to rectify this by conducting taxon-specific analyses. Their 
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analyses of wood (from Gingkoales and Bennettitales) found a decrease in δ13 of 
−2.5 at the base of the Thaumatopteris zone in East Greenland. More recently, 
Williford et al. (2014) have presented new data using compound-specific δ13C and 
δ2H analyses of organic remains from a nonmarine boundary section in East 
Greenland that supports the hypothesis of strong environmental change at or near 
the system boundary, although the isotopic trends are still not as clear cut as in many 
marine sections.

15.8.3.3  CAMP Outgassing

Most authors now attribute both the end-Triassic extinctions and the closely associ-
ated CIE to outgassing during the CAMP eruptions. For example, McElwain et al. 
(1999) suggested a major role of CAMP degassing of isotopically light CO2 in pro-
ducing the isotopic shift and blamed the extinctions exclusively on subsequent 
greenhouse warmng. In support of their hypothesis, they presented stomatal indices 
data collected from plant cuticle fossils in the East Greenland boundary section that 
they interpreted as demonstrating a roughly four-fold increase in pCO2 across the 
boundary. Beerling and Berner (2002) used mass balance equations to determine 
that volcanic outgassing of 8–9 × 103 Gt C as CO2 from CAMP was required to 
produce the pCO2 increase interpreted by McElwain et al. (1999). Steinthorsdottir 
et al. (2011) refined the pCO2 calculation based on the use of taxon-specific stoma-
tal indices, finding a sharp decrease in the indices for gingkos, bennettitales and 
others at the presumed system boundary in East Greenland. These data led them to 
interpret a pCO2 rise from 1000 ppm to 2000–2500 ppm, followed by a recovery to 
pre-boundary levels. Subsequent authors (e.g. Pálfy et al. 2001) have critiqued this 
hypothesis and found that large volumes of mantle-derived CO2, which typically has 
δ13C = −5 to −6‰, are unlikely to have produced an isotopic shift of the observed 
magnitude and invoke the release of biogenic CH4, which typically is much lighter 
(δ13C = −60‰) to explain the isotopic shift. Beerling and Berner (2002), for exam-
ple, suggested that the warming initially forced by CAMP outgassing of CO2 trig-
gered the release of 5 × 103 Gt of CH4 from sea-floor deposits (clathrates). At this 
time, it remains unresolved to what extent, if any, the release of CH4 played in the 
events at the end of the Triassic.

Evaluating the environmental effects of outgassed CO2 demands estimating in 
realistic terms the volume of CO2 released by the eruptions, and the rate at which it 
was released. Given the speculative nature of the estimates of the volume of CAMP 
erupted lava, all estimates of outgassed volatiles similarly should be regarded as 
speculative. Tanner et al. (2004) used an eruptive volume of 2.3 × 106 km3 of CAMP 
basalt with a mean CO2 content of 0.066 wt% (from rock analyses by Gottfried et al. 
1991) of which 80% was released by outgassing (from Thordarson et al. 1996) to 
calculate a potential release of 8.2 × 1016 mol of CO2 (equivalent to ca. 1 × 103 Gt 
C). This is just slightly lower than McHone’s (2003) calculation of 1.2 × 1017 mol 
(1.4 × 103 Gt C) based on measurement of a higher magmatic CO2 content (from 
Grossman et  al. 1991). Notably, Hartley et  al. (2014) critiqued the work of 
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Thordarson et al. (1996), concluding that the earlier work overestimated the propor-
tion of CO2 released by flood basalts, perhaps by as much as 15%. Hence, the total 
mass of CO2 outgassed during the entirety of the CAMP eruptions could be signifi-
cantly less than calculated using the assumptions above.

As noted by Tanner et al. (2004, 2007), early attempts at the reconstruction of 
atmospheric change due to CAMP outgassing gave no consideration of the effects 
of SO2 outgassing during the eruptions. Tanner et al. (2007) further demonstrated 
that high atmospheric SO2 loading also can force changes in plant stomatal fre-
quency, an effect initially denied but eventually noticed by other workers. We note 
that Bonis et al. (2010) estimated the pCO2 from stomatal indices data (collected 
from Gingko and Lepidopteris) to reconstruct an increase in pCO2 across the TJB 
from 1650  ppm to 2750  ppm, in contrast to the conclusions of McElwain et  al. 
(1999), who projected a nearly four-fold increase (from 600  ppm to 2100–
2400 ppm), but the authors acknowledged the potential influence of SO2 on stomatal 
indices, meaning that this estimate could be somewhat inflated. Importantly, Bacon 
et al. (2013) noted that changes in leaf morphology at the TJB suggest the influence 
of greatly increased SO2 levels.

The environmental effects of large sulfur emissions during prolonged flood 
basalt eruptions are not entirely clear, but the formation of H2SO4 aerosols, which in 
addition to causing acidic precipitation, are known to increase atmospheric opacity 
and result in reduced short-wave radiant heating, causing global cooling (Sigurdsson 
1990). Unfortunately, the behavior of volcanic sulfur and the consequent aerosols is 
less predictable than that of CO2, so the effects are even more difficult to quantify. 
Sulfur emitted as SO2 during the CAMP eruptions may have been injected into the 
stratosphere, driven upward convectively by the heat of the eruptions (Woods 1993; 
Parfitt and Wilson 2000), but the effects of such long-term sulfur emissions are not 
clear. The conversion of SO2 to H2SO4 aerosols in the stratosphere is considered an 
important mechanism of global cooling because of the increased atmospheric opac-
ity from the aerosol droplets and the consequent reduction in radiant heating 
(Sigurdsson 1990). These aerosols typically have short residence times in the tropo-
sphere, only weeks, because they are washed out quickly. In contrast, they may 
reside much longer, for periods of several years, in the stratosphere, so the effects of 
continuing eruptions may be cumulative. Most recently, Schmidt et al. (2016) mod-
eled that LIP eruptions at the scale of CAMP and Deccan may release 2.4 Gt SO2 
a−1 for decades at a time, the conversion of which to aerosols may force a net radia-
tive decrease of −16.2 W m−2, resulting in a potential 4.5° cooling over decadal 
intervals. The SO2 to H2SO4 conversion reaction is self-limiting, however, controlled 
by the availability of atmospheric oxidants in the upper atmosphere; therefore, the 
climatic response to an increased supply of SO2 is predicted to be nonlinear at larger 
scales or over longer time intervals. Nonetheless, short-term cooling coinciding 
with effusive eruptive episodes is a predicted consequence of pulsed CAMP 
activity.

The potential for severe short-term cooling from outgassed SO2 has implications 
for the estimation of pCO2 from a different proxy, the isotopic composition of 
 pedogenic carbonate. Schaller et al. (2011) analyzed the isotopic composition of 
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pedogenic calcite in the sediments interbedded with the CAMP volcanics, and, 
using the diffusion model of Cerling (1992), calculated that atmospheric pCO2 rose 
from 2000 ppm to 4400 ppm after the extrusion of each flow unit, following which 
pCO2 decreased over time, perhaps 300 years, to pre-eruption levels. They accounted 
for the proposed increase in pCO2 by an initial pulse of outgassed CO2 equivalent to 
1.12 × 1019 g (equivalent to 3.05 × 103 Gt C), a mass greater than the calculated total 
CO2 release from all CAMP eruptions, as presented above. Subsequently, Schaller 
et al. (2012) refined and presented this analysis in greater detail, thus permitting a 
more thorough critique of the work. Importantly, in calculating the pCO2 using the 
diffusion model (Cerling 1992), they assumed a constant temperature and constant 
S(z) (rate of soil CO2 production) during all soil carbonate formation. However, this 
simplifying assumption, made for the convenience of the calculations, is unjustifi-
able. Temperature following each major eruptive episode would be expected to 
decrease sharply due to the cooling effects of sulfate aerosols from the outgassed 
SO2, followed by CO2-forced warming as the aerosols were removed from the atmo-
sphere. Accompanying the temperature changes would have been sharp changes in 
precipitation, specifically drying during the cooling episodes, followed by moist 
conditions during the warming events. Thus, calcrete formation in decades immedi-
ately following major eruptive episodes likely occurred during drier conditions, for 
which the soil productivity was lower, e.g., S(z) = 1500. Use of an inflated value for 
S(z) would result in an inflated estimate of pCO2. Consequently, Schaller et al.’s 
calculation of total CAMP outgassing of 3.36 × 1019 g CO2, essentially identical to 
the estimate of Beerling and Berner (2002), must be regarded as greatly overesti-
mated, perhaps by a factor of six or more.

Early attempts to reconstruct the rise in pCO2 across the TJB, while grossly over- 
estimating the potential increase (e.g., Yapp and Poths 1996; McElwain et al. 1999), 
focused on catastrophic CO2-forced greenhouse warming as the primary extinction 
mechanism. Later studies have largely tempered the estimated pCO2 increase, but 
maintain that the atmospheric change was a strongly contributing environmental 
disturbance. For example, Steinthorsdottir et  al. (2011) projected an increase of 
1000–1500 ppm from pre-CAMP levels, and associated this with a mean global 
temperature increase of at least 2.5  °C (after Berner and Kothavala 2001). The 
occurrence of abundant charcoal near the boundary in some terrestrial boundary 
sections has been cited as evidence of catastrophic climate change (Belcher et al. 
2010; Petersen and Lindström 2012), but these interpretations fail to present suffi-
cient stratigraphic context to demonstrate clearly that these charcoal abundances 
represent anomalous concentrations. Tanner and Lucas (2016), for example, pre-
sented data that showed wildfire was common regionally through much of the Late 
Triassic, which they attribute to long-term climate trends, specifically, increased 
aridity. Additionally, Pálfy and Kocsis (2014) noted that increased fire frequency is 
more likely to promote floral diversity, rather than suppress it, as is apparently the 
case in the East Greenland and Danish sections (Belcher et al. 2010; Petersen and 
Lindström 2012). Stronger evidence for warming at the boundary is provided by the 
long-noted change in clay mineralogy in which the proportion of kaolinite increases 
sharply (van de Schootbrugge et  al. 2009; Pieńkowski et  al. 2012; Zajzon et  al. 
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2012). Ostensibly, this increase resulted from strongly tropical weathering condi-
tions under the enhanced greenhouse climate following the eruptions. However, 
Pálfy and Kocsis (2014) also remarked that weathering on land would be similarly 
enhanced by the acidification of the surface environment by SO2 released by the 
CAMP eruptions. Hence, there remains no conclusive estimate of the extent of CO2- 
forced warming at the TJB.

15.8.3.4  Environmental Consequences

Regardless of the uncertainties in the magnitude of the atmospheric change, an envi-
ronmental perturbation was certainly triggered by CO2 and SO2 outgassing during 
the CAMP eruptions. Increased atmospheric opacity from the formation of reflec-
tive H2SO4 aerosols caused short-lived, but intense cooling, accompanied by acid 
fallout that had deleterious effects on vegetation and enhanced chemical weathering 
on land. The longer-lasting CO2 loading of the atmosphere contributed to enhanced 
radiative forcing and the consequent warming, suggested as contributing to increased 
chemical weathering, and acidification of ocean waters. This last effect has been 
cited by numerous authors as creating a “calcification crisis” that produced the oft- 
cited “carbonate hiatus” seen at the TJB in many marine sections (Hautmann 2004b; 
Kiessling et al. 2007; van de Schootbrugge et al. 2007, 2008, 2009, 2013; Schaltegger 
et al. 2008; Ruhl et al. 2010, 2011; Martindale et al. 2012; McRoberts et al. 2012; 
Pieńkowski et al. 2012; Pálfy and Zajzon 2012; Richoz et al. 2012).

The immediate effect of acidic fallout from CAMP outgassing would have been 
negligible in the marine environment (Schmidt et al. 2016), but the long residence 
time of CO2 in the atmosphere would allow a long-term build-up that theoretically 
could result in decreased CaCO3 saturation of the ocean waters. Whether this would 
have been sufficient to affect the whole ocean is somewhat problematic. Ikeda et al. 
(2015) have suggested that this was indeed the case, as they interpret the loss of 
authigenic hematite in deep-sea cherts (in Japan) at the level of the end-Triassic 
extinctions as due to deep-ocean acidification. But, in modeling the presumed 
CaCO3 undersaturation of the entire ocean, Berner and Beerling (2007) estimated a 
requirement for the release of 21 × 103 Gt C (as CO2) and 57 × 103 Gt S (as SO2), 
and acknowledged that production of these masses by CAMP outgassing is largely 
unlikely. Greene et al. (2012) projected that an increase in pCO2 from 2000 ppm to 
3000 ppm at the boundary, a change more consistent with the proxies, could cause 
some degree of undersaturation, but only if the dissolved inorganic carbon concen-
tration of the ocean was already low. Most recently, Bachan and Payne (2016) ran a 
carbon cycle box model run and concluded that the negative CIE and presumed 
ocean acidification are best explained by a very short-duration (<20 ka) emission of 
3.5 × 1017 mol of CO2 rapidly followed by carbon burial, which caused the subse-
quent positive excursion. According to this model pCO2 would rise from 2000 
ppmV to 3700 ppmV and return to equilibrium in 200 ka. However, we note here 
that the mass of CO2 they calculated is nearly three times the total release of CO2 by 
CAMP outgassing calculated by McHone (1996, 2003). Moreover, assuming a 
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magmatic origin of CO2 with δ13C = −5.5‰ results in a seawater δ13 change only 
from +2.0 to +1.2‰, clearly inadequate to explain the observed negative 
CIE. Consequently, Bachan and Payne (2016) modeled that a much more depleted 
carbon isotope composition of δC13 = −70‰ (typical of biogenic CH4) is required 
to produce a far more significant change in seawater composition, from +2‰ to 
−5.5‰.

Importantly, the hiatus in carbonate sedimentation posited above was demonstra-
bly not global. For example, the well-known deep marine section in the Utcubamba 
Valley of northern Peru lacks appreciable changes in carbonate content across the 
TJB (Schaltegger et  al. 2008). Similarly, the shallow marine section on the 
Musandam Peninsula (UAE and Oman) described by Hönig et al. (2017), located 
nearly on the equator on the southern Tethyan margin at the start of the Jurassic, 
displays a record of continuous carbonate sedimentation across the TJB. There are 
facies changes present, but these are accounted for by varying water depths consis-
tent with the late Rhaetian regression projected for many locations. Kiessling and 
Simpson (2011) specifically described oean acidification as a likely factor contrib-
uting to the disappearance of carbonate reefs in the late Rhaetian, but considered the 
interpretation of general ocean undersaturation with respect to carbonate as greatly 
exaggerated. Indeed, the authors cited the work of Berner and Beerling (2007), who 
modeled the amount of degassing necessary to produce an undersaturated ocean and 
found that their calculations indicated that unreasonable masses of CO2 would have 
been required, roughly four times the mass released as calculated by McHone 
(2003).

In the terrestrial realm, the most dramatic impact of the CAMP eruptions was 
likely damage to flora from the acidic fallout. In addition to H2SO4 precipitation, 
fluorine and chlorine emissions also would have contributed to the acidification of 
terrestrial environments (Guex et al. 2004; Lucas and Tanner 2008). McHone (2003) 
calculated that in addition to a total emission of 2.31 × 103 Gt SO2, the CAMP erup-
tions released 1.58 × 103 Gt Cl and 1.11 × 103 Gt F. van de Schootbrugge et al. 
(2009) attributed the common peak abundance of trilete spores (the so-called fern 
spike) in some (but by no means all) boundary sections to the spread of pterido-
phytes in response to intense floral mortality in response to outgassed SO2 and the 
tolerance of ferns to nutrient-depleted soils. Schmidt et al. (2016), in fact, specu-
lated that most of the damage to vegetation from flood basalts results from direct 
contact with acid mists and fogs. They also pointed out, however, that the effects of 
acidification in terrestrial environments were likely to be limited spatially, a point 
previously made in regard to floral extinction at the TJB by Tanner et al. (2004) and 
Lucas and Tanner (2008, 2015). Hence, as presented above, floral extinction across 
the TJB was strictly regional, not global.

In summary, a temporary loss of marine productivity in marine surface waters 
was the most likely consequence of the CAMP eruptions. Directly affecting phyto-
plankton, there were subsequent “trickle-up” effects of outgassing through the 
marine trophic system, with or without significant climate change. Primary 
 producers would have been most affected by the changes in water chemistry, par-
ticularly lowered pH, but consumers at all levels would have come under ecological 
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pressure, although to varying degrees. The effects of climate change—rapid, short-
term cooling forced by H2SO4 aerosols and slower, longer-term warming driven by 
CO2—would have compounded the environmental stresses on the ecosystems. 
Thus, floral and faunal turnover at the end of the Triassic was likely the consequence 
of the environmental perturbations (cooling, warming, acidification) driven by 
CAMP outgassing. The effects on the marine realm appear to have been more or 
less global, although with greatly varying severity at different levels within the tro-
phic system, while changes in the nonmarine biota appear to have been more local-
ized paleogeographically, and more transient.

15.9  Other Late Triassic Extinctions

The Late Triassic was a time of elevated extinction rates and low origination rates in 
many biotic groups (e.g., Bambach et al. 2004; Kiessling et al. 2007). Thus, as noted 
by many workers, the Late Triassic was a time interval marked by a series of dis-
crete extinction events (Fig.  15.15). One of the most dramatic was the “Carnian 
crisis” at about the early-middle Carnian boundary, which included major extinc-
tions of crinoids (especially the Encrinidae), echinoids, some bivalves (scallops), 
bryozoans, ammonoids, conodonts and a major change in the reef ecosystem (see 
above) in the seas (e.g., Schäfer and Fois 1987; Johnson and Simms 1989; Hallam 
1995; Flügel 2002; Hornung et al. 2007). On land, plant and vertebrate extinctions 
seem less dramatic within the Carnian. As described by Tanner (this volume), the 
middle Carnian experienced a brief interval of significantly increased warmth and 
humidity, with some high-resolution records, particularly those from the Tethyan 
region indicating that the event occurred as multiple pulses. Paleoclimatic records 
from the boreal region, Panthalassa and southern Pangea suggest that this humid 
event was global in scale. Although large-scale volcanism, such as the eruption of 
the Wrangellian basalt province, has been suggested as the triggering cause, the 
evidence linking the eruptions to this humid interval is as yet inconclusive (e.g., 
Simms and Ruffell 1989, 1990; Rigo et al. 2007; Hornung et al. 2007), though this 
has been disputed by some (e.g., Visscher et al. 1994).

There is also a Carnian-Norian boundary extinction event in the terrestrial tetra-
pod record, with some evolutionary turnover across the Carnian-Norian boundary 
(Benton 1986, 1991; Lucas 1994). However, the case for an extinction of marine 
reptiles at this boundary (Benton 1986) is not confirmed by more detailed analyses 
of Triassic marine reptile diversity (Bardet 1995; Kelley et al. 2014). Nevertheless, 
in the sea, there is an extinction of conodonts, ammonoids and some bivalves (espe-
cially pectinids) at the Carnian-Norian boundary (Johnson and Simms 1989).

Within the Norian, there were other extinction events. In particular, Onoue et al. 
(2012, 2016) have recently identified an impact ejecta layer in deep marine sedi-
ments associated with a radiolarian and conodont extinction horizon near the top of 
the Mid-Norian (Alaunian). The authors regard the extinctions as the palaeoecologi-
cal response to the Manicouagan impact event (ca. 214–215.5  Ma; Hodych and 
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Dunning 1992; Ramezani et  al. 2005). The end of the Norian is marked by an 
extinction that had a particularly profound affect on marine bivalves and ammo-
noids (see above). Further significant extinctions in these groups (and of conodonts) 
took place within the Rhaetian.

15.10  Conclusion

This review of the TJB extinctions reveals them to have been very selective and not 
as sudden, severe or global as generally claimed in literature (Fig. 15.15). Best sec-
tions analysis indicates an important evolutionary turnover of radiolarians across 
the TJB. This is largely a change towards morphological simplification that can be 

Fig. 15.15 Some major biotic events across theTriassic-Jurassic boundary
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seen as due to stress created by CAMP volcanism. There is no “productivity col-
lapse,” however, in the World’s oceans at the TJB, so there is no collapse of the 
marine food chain. This is why few marine organisms (including ostracods, gastro-
pods, brachiopods, and bivalves) appear to have suffered unusually high rates of 
extinction. The extinction of many of the ammonoids had already taken place by the 
Rhaetian, and what happened across the TJB is analogous to what happened to the 
radiolarians—a drop in diversity and a trend towards morphological simplification 
that indicates environmental stress, again likely due to CAMP volcanism.

In the terrestrial realm there is no mass extinction of land plants at the TJB, hence 
there is no collapse of terrestrial food chains. There is thus no evidence of a mass 
extinction of terrestrial arthropods at the TJB, and tetrapod extinctions are seen as 
prolonged across the TJB, not a single mass extinction. Indeed, without the collapse 
of food chains in the sea or on the land, how could a mass extinction have taken 
place in either realm? There is no evidence of a major impact at the TJB (Tanner 
et  al. 2004; Racki 2012) or other cataclysm capable of forcing a sudden mass 
extinction.

Given the above, we question why so many continue to publish articles identify-
ing and/or supporting an end-Triassic mass extinction  (cf. Suarez et  al. 2017). 
Certainly, some do not accept the analysis presented here and continue to advocate 
a mass extinction at the TJB. However, many others are simply “riding the extinc-
tion bandwagon,” which gives their work more visibility (and potentially funding) 
because it apparently applies to one of the “big five” mass extinctions. Some, how-
ever, simply misinterpret data that demonstrates nothing more than biotic change 
due to local events, be they facies changes or actual changes in local ecology, but are 
in no way relevant to identifying a global extincton event. And, others continue to 
compile published literature data to show an extinction, not realizing that the com-
piled correlation effect essentially negates the validity of their analyses.

Two hundred years of fossil collecting has failed to document a global mass 
extinction at the TJB. Nevertheless, about 50 years of literature compilation and the 
compiled correlation effect has. The belief that there was a single mass extinction at 
the TJB has led to a search for the “smoking gun” and drawn attention away from a 
stratigraphic record that actually demonstrates a series of extinctions that took place 
throughout the Late Triassic (Fig. 15.15). Research should now focus on these mul-
tiple extinctions and their causes, not on a single, mythical mass extinction event. 
Perhaps the most interesting question not yet addressed by most researchers is why 
this prolonged (at least 20 million years) interval of elevated extinction rates 
occurred during the Late Triassic.
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See also Late Triassic Ammonoidea
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Carbon isotope excursions (CIEs), 77, 78, 112
Carbon-isotope stratigraphy, 113
Carnian floras
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of Easternmost Europe and Asia (except 

China and Eastern Asia)
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palaeoenvironmental setting, 573
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pollen assemblages, 575
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Assemblage Zone, 564
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circumpolles, 562
coeval floras, 562
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Scandinavia-Greenland region, 563
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sporomorphs, 563
Svalbard flora, 564

of North America
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Dinophyton spinosus, 553, 554
Doswell flora, 552, 554
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palynoflora, 554
plant fossils age, 554
Stockton flora, 554

of Southern Hemisphere
Argentinean Carnian continental 

deposits, 587
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bryophytes, 583, 584
Craterisporites rotundus Zone, 587
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Ischigualasto Formation, 587
lycophytes, 586
Molteno Formation, 582

Onslow Microflora, 586
palynology, 586
peltaspermales, 583, 584
Samaropollenites speciosus Oppel 

Zone, 587
sphenophytes, 584

Carnian/Norian boundary and Norian stage
Alaunian/Sevatian boundary and Sevatian 

substage
Misikella hernsteini Interval Zone, 220
Mockina bidentata Interval Zone, 

217–218
Parvigondolella andrusovi Interval 

Zone, 218–220
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Mockina postera Interval Zone, 215
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Mockina slovakensis Interval Zone, 

216–217
Mockina spiculata Interval Zone, 

214–215
Lacian conodont biozonation, 208–213

Carnian-Norian boundary extinction, 765–766
Carnian Pluvial Episode, 44
Carnian Pluvial Event (CPE), 74–77
Carolina group, 108–111
Cathodoluminescence (CL), 142
CCE, see Compiled correlation effect (CCE)
Central Atlantic magmatic province  

(CAMP), 134
age of, 99–102
classical mantle-plume models, 94
definition, 94–95
ETE, 112–115
LIPs, 92
magmas, origin of

CAMP basalts, mantle source of, 
110–112

crustal assimilation, 110
fractional crystallization, 109–110

mantle melting, 94
outcrops and surface area and volume, 

95–97
Phanerozoic flood basalt provinces, 39
rock compositions

main magma types and intra-and 
inter-continental correlations, 
107–109

major and trace element composition 
and volcano-stratigraphic 
correlations, 102–106

Sr-Nd-Pb-Os isotopic compositions, 
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schematic map of, 93
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Central Atlantic (cont.)
volcanism

carbon isotope record, 759–760
environmental consequences, 763–765
flows and intrusions of, 39
outgassing, 760–763
size and age, 757–759

volcanologic aspects, 97–99
Central European Permian rift system, 38
Cetifructus, 673
Cetiglossa, 672
Cetistachys, 664
Chañares landscape, 356, 413, 432
Chatham-Taylorsville palynofloral Zone, 554
Chemical abrasion technique, 100
Chemostratigraphy, 17–18
Chinle-Dockum flora, 553, 556–557
Chinle Group, 11, 12, 69–71
Chondrichthyans, 329
Choristoceras marshi, 254
Choristodera, 298
CIEs, see Carbon isotope excursions (CIEs)
Clariphyllum clarifolium, 657
Clathropteris walkerii, 553, 556
Climates, Late Triassic

aridification, 61
Bigoudine formation, 60
Carnian-age Ischigualasto Formation, 61
Elliot Formation, 61
end-Triassic event

CAMP eruptions, 77
explosive volcanism, 79
fossil leaf stomatal indices, 78
greenhouse warming, 80
illite/muscovite dominated  

assemblage, 80
leaf morphology, 80
negative CIE, 77, 78
palynological data, 79
radiative forcing, 79
stomatal data, 79

Huangshanjie Formation, 62
humidity, 61
hygrophytic elements, 62
megamonsoon, 60
mid-Carnian event

causal mechanism, 76–77
CPE, isotopic record of, 76
humidity, 74–75

models of, 62–64
Molteno Formation, 61
paleogeographic reconstruction, 61
paleo-pCO2 estimation

fossil plant remains, 64

geochemical modelling, 64
pedogenic carbonate, isotopic 

composition of, 65–66
stomatal indices, 66–67

paleosols, 60–62
palynology, 62
reefs and carbonate platforms, 60
regional trends

continental record, 69–73
marine record, 68–69

rift basins, 60
Sichuan Basin, 62
Timezgadiwine formation, 60
warm-climate paleosols and floras, 60
Xujiahe Formation, 62

Clouston Farm, 625, 702
Coeval floras, 562
Colorado Plateau, 69–72
Compiled correlation effect (CCE),  

724–725
Component community

herbivore component community,  
625, 646, 658, 706, 707

Scytophyllum bergeri, 628
Composite Assemblage Zone

Aulisporites astigmosus, 564
Limbosporites lundbladii, 566
Rhaetogonyaulax spp., 564
Ricciisporites tuberculatus, 569, 570

Compound pahoehoe flows, 97, 99
Concavispina, 293–294
Conodont biostratigraphy, 165, 166, 190
Conodonts, 742–743. See also Upper Triassic 

conodont biozonation
Continental Flood Basalt (CFB), 99
Continental rifts, 40, 41, 45
Coral reefs, TJB mass extinctions

carbonate mounds, 740
Coral Lazarus taxa, 740
Kiessling’s compilations, 741
microbial mats, 741
sea-level change, 741
Triassic reef evolution, 741, 742
upper Rhaetian Steinplatte reef, 740

CPE, see Carnian Pluvial Event (CPE)
Cretaceous- Paleogene boundary (K-Pg),  

146, 147
Crustal assimilation process, 110
Cycadocarpidium, 573, 579
Cycadolepis, 671
Cyclostratigraphy, 15–17
Cynepteris lasiophora, 553, 556
Cynodontia, Late Triassic

and biostratigraphy, 431–434
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diversity
Late Triassic-Early Jurassic cynodont 

taxa, 410–413
mammaliaforms, 422–431
non-mammaliaform cynodonts, 420–422
probainognathians, 416–420
therapsid lineage, 409
traversodontid supremacy, 409, 413–416

evolutionary development, 408
extinction process, 408
Late Triassic Pulses of, 434
taxonomic diversity and dinosauromorphs, 

435–436
Cyrtopleuritidae, 7

D
Daedong flora, 579
Damage Guide, 632
Damage types (DTs), 625, 634

external feeding, 634, 683, 684
internal feeding, 633, 673, 685

Dandya ovalis, 333
Dapedium, 334
Dechellyia gormanii, 553, 556
Dejerseya lunensis, 670
Depositional process, 149
Detrital zircon ages, 10–12
Diagenetic process, 147
Dicroidium, 632, 649, 654, 660, 661

D. crassinervis, 686, 687, 690, 706
at Aasvoëlberg 411 site, 695, 699, 700
arthropod culprits, 700
cataplasmic galls, 700, 701
Dicroidium Open Woodland, 700
engorged nutritive cells, 702
features, 702
histioid gall, 700
host plant, 699
host-plant specificity, 699–700
hyperplasic and hypertrophic tissue, 701
mite gall DT70, 706–707
Molteno localities, 699
ontogeny, 702
piercing-and-sucking arthropod  

groups, 701
prososplasmic galls, 700

D. hughesii, 627
D. odontopteroides, 626, 632, 685, 696

Dictyophyllum, 573, 576, 629, 665
D. bremerense, 697
D. nathorstii, 630

Dicynodontocopros maximus, 494
Dinophyton spinosus, 553, 554

Dipteridaceae, 665
Distal evidence

Europe (Wickwar, Southwestern Britain), 
154–156

North America (Bay of Fundy, Eastern 
Canada)

Blomidon Formation, 156–163
coseismicity, 160
fluvio-eolian siliciclastic grain, 

photomicrographs of, 162
generalized stratigraphy and age 

relationships of, 158
intra-Norian meter-scale evaporite 

dissolution process, 157
macroscale sedimentary  

deformation, 160
MFZ, 156
microfracture patterns, 164
Quaco Formation, 163–165
sedimentary microstructures, 160

preliminary decision tree process chart, 
144, 145

Distal impact signatures
additional tectono-sedimentological 

evidence, 151
associated (syn-to post-) sedimentary 

deformation, 149–150
ejecta layer characteristics, 142–144
geochemical anomalies, 146–149
impact spherule evidence, 146
Late Triassic shocked quartz occurrences, 

144–146
Dogna flora, 562
Dolomia Principale, 41
Dolomites, 41, 68, 73, 75, 76, 198, 202
Dordrechtites elongatus, 694
Doswell flora, 552, 554
Drepanozamites, 665
DT70 galls

Cecidomyiidae, 701
Dicroidium crassinervis

at Aasvoëlberg 411 site, 695, 699, 700
arthropod culprits, 700
cataplasmic galls, 700, 701
Dicroidium Open Woodland, 700
engorged nutritive cells, 702
features, 702
histioid gall, 700
host plant, 699
host-plant specificity, 699–700
hyperplasic and hypertrophic  

tissue, 701
Molteno localities, 699
ontogeny, 702
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DT70 galls (cont.)
piercing-and-sucking arthropod  

groups, 701
prososplasmic galls, 700

erineum galls, 701
eriophyoid mite, 700, 701
figured material, 700
Pustuleon

P. gregarium, 698
P. parvicubiculites, 698–699

repository, 700
sternorrhynchan hemipterans, 701
two galls on foliage, 701, 706

E
Early Triassic

biozone duration, 250
Buntsandstein, 150, 163
diversity of life, 624
footprint record, 379
Indosinian orogeny, 37
insect herbivory, 626
lissamphibian radiation, 376
metamorphic event, 34
Phylloceratida, 253
Sauropterygians, 253
terrestrial lineages, 624
tetrapod assemblages, 382

Earth Impact Database (EID), 128, 129
EARTHTIME initiative, 100
East Coast Magnetic Anomaly (ECMA), 96
Echinostachyaceae, 664
Elantodites, 665
Elaphoglossum morani, 689
Endennasaurus acutirostris, 292–293
End-Permian ecological crisis

depauperate interactions, 625
FFG, 625
herbivory level, 625
insect-induced damage diversity, 624
intensely herbivorized host-plant  

species, 625
marine and terrestrial realms, 624

End-Permian Event (EPE), 548
End-Triassic Event (ETE), 548
End-Triassic mass extinction (ETE), 131, 224

CAMP, 112–115
conodonts, 224
Rhaetian Stage, 144

Eomesodon hoeferi, 332–333
Eosteria, 670
Equisetites arenaceus, 560, 561, 628
Equisetostachys, 665
Eucynodonts, phylogenetic relationships of, 414

Euichthyosauria
Californosaurus perrini, 271
Callawayia neoscapularis, 271
Hudsonelpidia brevirostris, 272
Leptonectes, 272
Macgowania janiceps, 271
Toretocnemus, 271

Extinction-related multiple impact  
hypothesis, 167

F
Fanerotheca papilioformis,690
Fault-slip trigger mechanisms, 150
Fern–Kannaskoppifolia Meadow, 662, 666, 668
Feruglioa, 668
FFG, see Functional feeding group (FFG)
First appearance datum (FAD), 8, 191, 559
Fleming Fjord Formation, 63, 170, 474, 566
Fletchitzia, 677
Floating astrochronology, 15, 17
Floras

animal-plant interactions, 595–597
of China and Eastern Asia

Carnian Floras, 579, 580
Craterisporites rotundus Assemblage 

Zone, 578
Daedong flora, 579
Dictyophyllidites harrisii Assemblage 

Zone, 578
Norian Floras, 579–581
Northern East Asia subprovince, 578
northern-type floras, 578
palynostratigraphy, 578
Rhaetian Floras, 579, 581
Southern East Asia subprovince, 578
southern-type floras, 577–578
Staurosaccites quadrifidus Assemblage 

Zone, 578
climate considerations, 590–592
of Easternmost Europe and Asia (except 

China and Eastern Asia)
Carnian floras, 571–575
Middle Asian floristic Subprovince, 571
Norian–Rhaetian Floras, 575–577
plant assemblages, 571, 572

EPE, 548
ETE, 548
of Europe and Greenland

Alpine floras, 559
Carnian floras, 561–564
Central European Basin, 559
FAD, 559
higher latitude Scandinavia-Greenland 

area, 559
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Norian floras, 565–566
northern Alpine belt, 559
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approach, 352
Revueltian tetrapod assemblages

Bull Canyon Formation, 365
Calcare di Zorzino, 368
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Sauropterygia, 265
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Upper Triassic, 301
Matatiella, 669
Mean annual precipitation (MAP), 70, 71
Mercia Mudstone Group, 154–156, 472
Mesogereonidae, 678
Mesoses optata, 681
Mesotitan scullyi, 677
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