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AnsTRACT.—This research explored the distribution, morphological variation, and
molecular systematics of Elimia comalensis (Gastropoda: Pleuroceridae) using geometric
morphometrics (n = 565) and mitochondrial DNA sequences (n = 15). Elimia comalensis was
originally documented as endemic to Comal Springs, Comal County, Texas, but recent
collections found this species in multiple springs and drainages in Central Texas.
Morphometric analyses showed a high amount of morphological overlap with no clear
geographic patterning. Phylogenetic analysis of mt COI sequence data indicated that E.
comalensis represents a single species, with no genetic divergence among isolated populations.
We conclude that E. comalensis may be an unrecognized native exotic, a species endemic to
one area that has been spread by humans and assumed to be part of the natural fauna.

INTRODUCTION

Elimia is the largest and most widely distributed North American genus in Pleuroceridae,
a family of gill-breathing, operculate, freshwater snails (Turgeon ef al., 1998). Elimia species
occur across the eastern United States, with known limits of the Edwards Plateau in Texas to
the west, the Florida panhandle to the south and southern Canada to the north (Burch and
Tottenham, 1980). Of the 156 recognized pleurocerid species Elimia accounts for over half
(Turgeon et al., 1998). This research explored the distribution, morphological variation and
molecular systematics of one Elimia species, E. comalensis using geometric morphometrics
and mitochondrial DNA sequences.

Snails in the genus Elimia are important components of freshwater ecosystems in the
eastern United States (Newbold et al, 1983; Richardson et al, 1988). In the southeastern
U.S., where Elimia diversity is the highest (Burch, 1982; Lydeard and Mayden, 1995), Elimia
may comprise more that 90% of the total macroinvertebrate biomass (Newbold et al., 1983;
Richardson et al, 1988). In addition to representing a considerable portion of biomass,
Elimia may have a betarichness rivaling most aquatic insect genera in the same region;
(Merritt and Cummins, 1995) as well as serving a primary role in structuring communities
and nutrient flow. In spite of the important ecological impacts of Elimia, the literature
pertaining to life history characteristics is surprisingly sparse. Those papers addressing life
history features of the genus are almost exclusively limited to examinations of Mobile River
basin and Atlantic slope fauna (e.g., Dillon and Davis, 1980; Dillon, 1984a; Huryn et al,
1994). Therefore, large information gaps exist in the literature for the remainder of the
Elimia species.

This lack of understanding concerning basic biological features of Elimia is alarming
considering the genus-wide decline in species richness and distribution. Like many
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freshwater faunas globally (Lydeard et al, 2004), pleurocerid snails including Elimia are
declining due to human impacts including habitat modification, degradation, and
destruction. The impacts of this loss have been studied extensively in the Mobile River
basin, where pleurocerids historically reached their highest diversity and where the largest
number of extinctions has occurred (Neves et al., 1997). Although Elimia is highly diverse,
this genus is understudied, and the conservation status of most Elimia species remains
unknown. In addition, basic taxonomic and life history data remain scarce, though recent
studies have started illuminating the evolutionary relationships within and among these
species (e.g., Lydeard et al., 1997, 1998; Dillon and Frankis, 2004). The gathering of natural
history and evolutionary information is a necessary scientific foundation for any plans to
conserve and preserve this fauna.

The Balcones Elimia, Elimia comalensis, exemplifies the small body of knowledge typical of
most species in the genus. Elimia comalensis was described by Pilsbry (1890) from Comal
Creek, New Braunfels, Texas as the smooth form of Goniobasis (= Elimia) pleuristriata. Pilsbry
and Ferris (1906) provided a more complete description of the species and illustrated its
highly variable shell morphology, including figures of the sculptured form previously
considered G. pleuristriata. They described the distribution of the species as the system of
short rivers intercalated between the Colorado and Nueces river basins comprising the
Guadalupe and San Antonio Rivers and their tributaries along the edge of the Edwards
Plateau. Recent museum collections confirm this distribution, but expand the range (o
include springs in the Colorado, Brazos and Nueces basins, and large spring populations in
Del Rio at the southwestern corner of the plateau in the Rio Grande drainage (Fig. 1).
Elimia comalensis occurs in springs and spring—run streams associated with the Edwards
Plateau. The current distribution of E. comalensis spans from Salado Creek, Bell County, TX
to the westernmost limit of the Edwards Plateau in Del Rio, Val Verde Co, TX on the
Mexico-Texas boarder. All are fed by the Edwards Aquifer with the exception of Anson
Springs in Schleicher County, which are part of the middle Colorado-Concho River
drainage. Like many freshwater organisms in Texas, E. comalensis may be experiencing
declines due to water extraction (Contreras-Balderas and Lozano-Vilano, 1994), habitat
modification, and introduced species (Britton, 1991; Howells, 2001). Elimia comalensis is
under additional pressure because it occurs in areas used for municipal water supplies and
recreation (McCarl et al., 1993; McKinney and Watkins, 1993; McKinney and Sharp, 1995).

Literature pertaining to Elimia comalensis is limited to identification manuals (e.g.,
Cheatum and Fullington, 1971; Burch and Tottenham, 1980) species lists (Strecker, 1935;
Turgeon et al., 1998), larval trematode investigations (Lindholm and Huffman, 1979; Tolley-
Jordan and Owen, 2005) and government and agency reports (e.g., Britton, 1991). Only one
publication has directly addressed E. comalensis, demonstrating that individuals in pool and
stream regions of Comal Springs exhibit different size distributions (Cheatum and Mouzon,
1934). In terms of conservation status, £. comalensis is ranked H (possibly extirpated) on the
state, national, and global heritage rank scales (NatureServe, 2005). The species appears
restricted to the Edwards Plateau, the largest portion of the Balconian biotic province (Blair,
1951) and an area of high endemism containing many threatened taxa (Diamond el al.,
1997). A survey of plant and animal taxa with global ranks of G1 through G3 highlighted the
Balconian region as an area of importance for rare species (Diamond et al., 1997), and Neck
(1986) documented the region’s unique vegetative and vertebrate faunas.

In an effort to increase our knowledge of Elimia comalensis and of Elimia in general, we
explored the distribution, morphological variation and molecular systematics of the species
using museum collections, geometric morphometrics and mitochondrial DNA sequences,
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Fic. 1.—Map of Texas showing river drainages and localities where Elimia comalensis has been found.
Drainages: BZ, Brazos; CO, Colorado; GU, Guadalupe; NU, Nueces; RG, Rio Grande, SA, San Antonio.
Localities: C, Comal; D, Del Rio; F, Falls Creek; G, Guadalupe; L, Leakey; M, San Marcos; S, Salado, A,
Anson Springs

Based on the current understanding of speciation and distribution in pleurocerids, two
hypotheses were formulated to explain what is currently known regarding £. comalensis. The
first hypothesis stated that E. comalensis is comprised of multiple unrecognized species, each
occupying springs in single drainage basins. The drainage specificity of pleurocerids and
spring endemic gastropods lead us to believe this was the most likely scenario. Minton and
Lydeard (2003) showed that species in the pleurocerid genus Lithasia grouped by river
drainage using gene sequence data, and Thompson (2000) showed that Elimia follow similar
patterns. Spring-snails in the family Hydrobiidae are also well known for being endemic in
springs in the U.S. and Australia (Thompson, 2000; Liu et al., 2003; Perez et al., 2005). If E.
comalensis follows similar patterns, we predicted that morphological and molecular data
would divide E. comalensis into reciprocally monophyletic, exclusive groups showing
geographic structuring by spring and drainage system.

A second and competing hypothesis stated that Elimia comalensis represents a single
widespread species occupying springs in disjunct basins. In this scenario we predicted that £.
comalensis populations would show none or some degree of molecular geographic structure
although with non-exclusive populations and non-diagnostic morphological patterns of
variation. A pattern of high genetic variation without formation of exclusive lineages would
be similar to that observed in E. proxima across drainages in the Appalachians (Dillon,
1984b). The explanation of no genetic diversity is confounded by the need to explain the
distribution of populations across unconnected basins and the inability of Pilsbry and Ferris
(1906) to find it in San Felipe Springs in Del Rio, Texas in the early twentieth century.
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METHODS

A total of 565 individuals were used in the morphological analysis (Table 1). Digital
photographs of individual shells were taken with a tripod-mounted, KODAK EasyShare
CX6330 Digital Camera. Shells were leveled in clay to make the longitudinal axis of the shell
parallel to the table surface to assure accuracy in length measurements, and a ruler was
placed in each picture to provide a scale measurement. Input files for tpsDig were generated
from the digital picture filenames using tpsUtil 1.10 (Rohlf, 2003). Seven homologous
landmarks (Fig. 2) along with two scale landmarks located on the ruler were digitized using
tpsDig 1.31 (Rohlf, 2003). Although much debate exists on the topic of selection of
landmarks for gastropod shells (e.g., Johnston et al, 1991; Stone, 1998), landmarks were
chosen in this study for their repeatability among individuals. The apex of the shell was not
used as a landmark as many individuals had heavily eroded apices.

Geometric morphometrics were used to examine shape variation through principal
components analysis (PCA) and canonical variance analysis (CVA). PCA is a technique for
simplifying descriptions of variation among individuals while CVA simplifies descriptions of
differences between groups (Zelditch et al., 2004). In traditional morphometric analysis,
PCA generally suffers from the overwhelming influence of size across the newly generated
axes. However, in geometric morphometric analysis, all individuals are rescaled to be the
same size thus eliminating size as a factor, with the result that shape can be more thoroughly
examined. In PCA, no a priori assumptions are needed to group individuals, in contrast, CVA
determines the set of axes which best discriminates between groups; therefore an a fprriori of
assumption of group membership is necessary. For CVA analysis, individuals were examined
grouped by locality as well as by drainage, since pleurocerids generally tend to be unique by
drainage (Chambers, 1978, 1980, 1990; Dillon and Davis, 1980; Stiven and Kreiser, 1995;
Thompson, 2000).

All data analyses were performed using the IMP Suite (Sheets, 2003). The landmark
coordinates from tpsDig were imported into CoordGen6f. CoordGen was then used to
convert landmark coordinates into Procrustes distances using least squares Procrustes
superimposition methods. Procrustes superimposition methods are generally favored over
other superimposition methods such as Bookstein coordinates or sliding baseline
registration because landmarks are not constrained to a baseline that may transfer variance
from the baseline to other landmarks (Zeldich et al, 2004) and because generalized
Procrustes methods have been shown to produce estimates with the least error and no
pattern of bias (Rohlf, 2003). One of the suture points from the second body whorl
posteriorly and the anterior end of the aperture were used as baseline coordinates (Fig. 2).
Initial comparisons between all population combinations were performed in TwoGroupbc
to determine if there were significant shape differences assessed by Goodall’s F. The
significance level was adjusted using a Bonferroni correction for multiple pairwise
comparisons. A PCA was performed with PCAGen6g on the data with a posteriori groups
assigned by locality. A CVA was also generated using CVAGen6h with groups assigned by
locality or drainage.

Live specimens of Elimia comalensis for use in molecular studies were collected by hand
and stored in 95% ethanol. Voucher specimens are housed at the Museum of Natural
History at the University of Louisiana at Monroe. DNA extraction followed a modified
CTAB-proteinase K method (Sagahi-Maroof ¢t al., 1984) with chloroform extraction using
a small piece of tissue from the distal end of the head of the specimen. Extracted DNA was
stored at 4° C for subsequent amplification. Genomic DNA served as a template for PCR
amplification of a portion of the mitochondrial cytochrome oxidase ¢ subunit I (COI) gene
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Fic. 2—Landmarks used in morphological analyses. Landmarks indicated by stars were used as
the baseline

using the methods of Minton and Lydeard (2003). The COI PCR primers used for this study
were GASCOIH and GASCOIL (Minton and Lydeard, 2003) which amplify an approxi-
mately 1 kb gene fragment. The amplification regime included an initial denaturation
(927 C for 120 s), 30 cycles of denaturation (92° C for 40 s), annealing of the primers
(40° C for 40 s), and primer extension (72° C for 90 s), and a final extension (72° C for
120 5). After the first five cycles, the annealing temperature was raised to 50° C. COI
amplicons were purified using a Qiagen Qiaquick PCR purification kit and cycle sequenced
using ABI BigDye 3.1 chemistry. Sequences were analyzed on an ABI 3100 Genetic Analyzer.

Sequences were assembled in BioEdit 5.0.9 (Hall, 1999) and aligned by eye to existing
COI sequences from Minton and Lydeard (2003; Appendix B) along with other Elimia
sequences generated for the project. Outgroup taxa are available on Genbank: E. hydet,
F435775; E. laqueata, DQ464059; E. cf. obovata, AF435759, AF435760; E. proxima, DQB68389;
E. virginica, DQ464058; o fluvialis, AFA35776, AF 435777, AFA35778; Leptoxis erassa anthonyi,
AF4385772, AF435773, AF435774; L. fpraerosa, AF435779, AF435780, AF435781, AF435782:
Lithasia armigera, AFA35739, AF435740, AF485741, AF435742, AF435743; Li. duttoniana,
AF435744, AF¥435745; Li. geniculata geniculata, AF43575b; Li. g fuliginosa, AF435747,
AF435748, AF435749, AF435750, AF435751, AF435752, AF435753, AF435754; Li. & pinguis,
AF435763, AF435764; Li. jayana, AFA35756; Li. lima, AF435757, AFA35758; Li. salebrosa
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Fic. 3.—Polygon plot of PC2 versus PCI. Localities: C, Comal; D, Del Rio; F, Falls Creek; G,
Guadalupe; L, Leakey; M, San Marcos; S, Salado

salebrosa, AF435765; Li. s. florentiana, AF435746; Li. verrucosa, AF435766, AF435767,
AF435768, AF435769, AF435770, AF435771; Pleurocera canaliculatum, AF435783; P. prasina-
tum, AF435784; Plewrocera sp., EF116551; P. walkeri, AF435785. Specific locality information
for nonfocal taxa is contained in each Genbank record and in Minton and Lydeard (2003).
Minton and Lydeard (2003) showed no base composition bias or saturation using this
fragment in a previous, more inclusive analysis of pleurocerid species, so no modifications
were made in the analyses. The aligned data matrix was analyzed under maximum
parsimony in NONA 2.0 (Goloboff, 1998) with the following settings: keep 1000 total trees,
run 100 replicates of TBR branch swapping, hold 10 trees per replicate, followed by one
additional round of TBR branch swapping on all shortest trees (h1000;h/10;mult*100;
max*), To test the internal stability of the data, jackknife support (1000 replicates, 37%
deletion; Farris et al., 1996) and Bremer decay (Bremer, 1994) values were generated in
T.N.T. (Goloboff et al., 2001).

ResuLts

Pair-wise comparisons of all populations assessed by Goodall’s F test showed that snails
from each locality had significantly different (p < 0.01) shapes. In the PCA, the first axis
(PC1) explained 47% of the variation and the second (PC2) explained 14% of the total
variation. There was no clear separation of populations within the PCA, as all populations
overlapped with at least one other (Fig. 3). CVA of each population yielded five distinct axes
(p < 0.05) where all means were significantly different from each other, although
populations overlapped in all scatterplots (Fig. 4). When grouped by drainage, a jackknifed
classification matrix based on CVA correctly placed individuals in their corresponding
groups 75% of the time for the Guadalupe drainage, 86% for the Nueces, 75% for the Rio
Grande, 86% for the Colorado and 86% for the Brazos.
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Fic. 4.—Polygon plot of CV2 versus CV1. Localities: C, Comal; D, Del Rio; F, Falls Creek; G,
Guadalupe; L, Leakey; M, San Marcos; S, Salado

A total of 15 specimens, three from each of five populations, were sequenced. Additional
individuals and those from the remaining populations collected failed to amplify. Four
haplotypes were found across all populations, and no haplotype was unique to any single
population (Table 2). The only differences among haplotypes were third codon position
changes at two sites. Maximum parsimony analysis yielded 30 most parsimonious trees (969
steps: Cl = 0.46; Fig. 5). All specimens of Elimia comalensis formed an unresolved
monophyletic group in the strict consensus tree, sister to the single Mobile Basin
representative of the genus included in the analysis, E. hydei. Jackknife and Bremer values

TasLe 2—Geographic distribution and differences between the four COI haplotypes in Elimia
comalensis. Nucleotide positions are based on the aligned data matrix of 890 positions. Genbank
numbers for haplotypes: A = DQB868390, B = DQ868391, C = DQ927300, D = DQ927301

Haplotype

A B ( D
Comal X X X
Del Rio X X X
Leakey X X X
Salado X X X
San Marcos X X X

Haplotype Pos. 790 Pos. 855

A C T
B T T
C C G
D i & G




2007 HAYES ET AL.: EDWARDS PLATEAU GASTROPODS 105

supported the monophyly of the E. comalensis specimens and the sister group relationship to
E. hydei representing the Mobile Basin taxa.

DiscussioN

Based on distributional, morphological and molecular data, our data support the
hypothesis that Elimia comalensis is a single species with a puzzling distribution. This
distribution is restricted to Central Texas spring-run streams in six distinct drainage basins:
the Brazos, Colorado, Guadalupe, Nueces, San Antonio and Rio Grande. All are found
associated with the Balconian Physiographic province, except for the Rio Grande which
forms a separate hydrological unit. The flora and fauna of the Balconian region tend to be
endemic; therefore it was plausible to expect that E. comalensis in the Balconian drainage
basins may represent a different species than those occurring outside of it. Elimia comalensis
populations in San Felipe Springs (Del Rio) are even more interesting because of the
possibility they were not present in the early twentieth century. Pilsbry and Ferris (1906:165)
““...saw no sign of Goniobasis in the tributaries of the Rio Grande, where our collecting was
extensive enough to have found it if it existed.” Based on these observations, our initial
expectation was that E. comalensis would be comprised of multiple unrecognized species
each occupying springs in single drainage basins.

Morphometric analyses showed a high amount of overlap with no clear geographic
patterning. Although the PCA and CVA show a great deal of overlap over all localities,
however this overlap is not complete; when viewed in pairs, some drainage populations show
a moderate amount of morphological separation. Separation of the Brazos and Rio Grande
populations is particularly interesting because these populations are at the extreme eastern
and western ends of the range for Elimia comalensis. Comal and Del Rio populations
exhibited a much greater amount of variation than other populations, though this is
possibly an artifact of unequal sample sizes. Del Rio and Comal Springs populations are
better represented in museum holdings, and sample sizes from those populations are larger
than the other populations. The ability of the morphometrics to distinguish drainages
seems to be at odds with the lack of genetic variability. It is possible that the morphometric
analysis is confounded by the unequal samples sizes or small sample sizes of some
population samples. However, phenotypic plasticity in shell form is common in freshwater
mollusks (Ortmann, 1920), and especially in pleurocerids (Rosewater, 1960; Dillon, 1984a;
Stein and Stansbery, 1984), so differences between populations were not unexpected and
may reflect slight differences in shape due to unique local environments. There are some
drainage level differences in shape of shells, but this shape difference is typically not
pronounced, not found in all individuals of each population, and not confined to discrete
landmarks. This evidence, combined with the lack of fixed genetic differences, indicates
that these do not merit taxonomic subdivision.

Phylogenetic analysis of COI data indicated that Elimia comalensis represents a single
species, with no genetic divergence among widely separated populations. This outcome is
unusual given that E. comalensis is a spring endemic and has a discontinuous distribution.
This leaves the species’ puzzling distribution unexplained. Even if E. comalensis formed
a single species, we would expect to find some evidence of geographic structuring in these
isolated spring populations. A lack of genetic variation has several potential explanations:
balancing selection acting on COI1 haplotypes; vicariance due to historical connections
among drainages; natural, recent gene flow in sufficient quantity to effectively have
panmictic populations over all of central Texas; the genetic marker used is not sufficiently
variable to assess divergence; or recent human-mediated introductions. A selective sweep of




106 THE AMERICAN MIDLAND NATURALIST 158(1)

r—o lo

- - —112 Lithasia
1 L4 Leptoxis

E. proxima

— E. virginica
E. cf. obovata

1L ’ E. laqueata
[10+] Pleurocera sp.
P. prasinatum
- P. canaliculatum

Elimia hydei
- comalensis C1
comalensis D1
comalensis D2
comalensis L2
comalensis L3
comalensis M1
comalensis M2
comalensis S1
comalensis S2
comalensis C2
comalensis L1
comalensis M3
comalensis C3
comalensis D2
comalensis S3

10 changes




2007 HAYES ET AL.: EDWARDS PLATEAU (GASTROPODS 107

an advantageous CO1 haplotype across Texas seems unlikely and would assume high levels of
gene flow in the past. Vicariance has been convincingly demonstrated in other arid-land
spring snail taxa (Hershler and Sada, 2002; Perez et al., 2005), with current distributions
reflecting fragmentation of large Pleistocene lakes; however the history of the Edwards
Plateau seems to preclude a vicariance explanation. In the Cretaceous the Edwards Plateau
region was covered by an oceanic environment. In the early Cenozoic (the Tertiary) the sea
retreated, establishing the current drainage systems (draining toward the Southeast). This
seems to effectively rule out vicariance as a primary process in the observed haplotype
distributions across these springs. Natural gene flow across unconnected freshwater systems
seems highly unlikely, given that freshwater snails are poor dispersers, and many spring snails
are endemic to only a few hydrologically related springs. The genetic marker used, a portion
of COI, has shown sufficient variability to separate different populations of pleurocerids across
genera (Minton and Lydeard, 2003; Sides, 2005). Therefore, human-mediated introductions
remains as the most plausible and parsimonious explanation for the observed patterns.

One possible explanation for the widespread distribution of Elimia comalensis is that
individuals may have been accidentally introduced to new springs. Mosquitofish (Gambusia
sp.) introductions across Texas have been ongoing since the early 1900’s in an effort to
combat mosquito populations and many of the Gambusia stocks were taken from Comal
Springs (R. Howells, Texas Parks and Wildlife, pers. comm.), the type locality for E.
comalensis. Tt is possible that reproductively viable E. comalensis or their eggs were
inadvertently taken from Comal Springs during collection of Gambusia and introduced
elsewhere. This scenario explains why there was no genetic differentiation of populations as
well as why there was little to no discernible pattern of shell variation, as there has not been
sufficient time for population differentiation. Additionally, an ecologically similar snail
Melanoides tuberculata has been spread through human agency recently through many of the
same spring systems, lending further circumstantial evidence to the likelihood of recent
human spread of E. comalensis.

Since Elimia comalensis has likely been spread to springs where it did not originally occur,
it could be impacting those local ecosystems. At Comal Springs, E. comalensis reaches
densities up to roughly 250 per square meter (authors’ unpublished data), a density
considered ‘“‘high” for many pleurocerids (Houp, 1970; Stewart and Garcia, 2002).
Pleurocerids are known to have major impacts on the invertebrate and algal communities.
For example, pleurocerids in high densities can reduce productivity and biomass of grazing-
intolerant algal species (Hill et al, 1995; Rosemond et al., 2000), and can have similar
impacts on invertebrate taxa by outcompeting them for food resources or physically
displacing them from the substrate (Hawkins and Furnish, 1987; Hill, 1992). Elimia
comalensis also serves as a host for trematode species that could potentially infect native
species (Lindholm and Huffman 1979; Tolley-Jordan and Owen 2005). In these ways, E.
comalensis may act as an unrecognized native exotic, a species endemic to one area, in this
case Comal Springs, that has been spread across Texas and assumed to be part of the natural
fauna. These introductions appear to be recent; introductions into San Felipe Springs in Del

—

Fic. 5—Top: strict consensus of 30 most parsimonious trees. All Elimia comalensis formed a single,
unresolved clade sister to E. hydei. Numbers on branches are Bremer support; those with a (+) indicate
jackknife values >63%. Bottom: partial phylogram from one of the 30 trees showing the E. comalensis —
E. hydei relationship. Localities: C, Comal; D, Del Rio; L, Leakey; M, San Marcos; S, Salado
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Rio have likely occurred in the last century, and snails were first found in Anson Springs in
the last few decades (N. Strenth, Angelo State University, pers. comm.). This is particularly
troublesome at San Felipe Springs where three state-listed endangered fish species occur.
One species, Dionda diaboli, is an obligate algivore and would likely directly compete with E.
comalensis for food (Lopez-Fernandez and Winemiller, 2005). Much more information and
effort has been directed toward the invasive alien species Melanoides tuberculata, first
recorded as being in Texas in 1964 (Murray, 1964) and becoming established in some of the
same systems as E. comalensis in the following decades (Dundee, 1974; Howells, 1992). M.
tuberculata is similar to E. comalensis ecologically and many of the same threats and impacts
documented for M. tuberculata may apply to E. comalensis where it occurs as an exotic. Both
species must be treated as exotic when found outside their natural range and monitored for
their impacts on native ecosystems.

Although its range appears to be enhanced by humans, Elimia comalensis poses
a conservation and management conundrum. It remains a species that is limited in
distribution to highly human impacted isolated sites, In portions of those sites the species
appears to be non-native, and is certainly having undetermined impacts on the native flora
and fauna. E. comalensis was originally described from Comal Springs, a diverse and
endangered spring system. Comal Springs is unique because it is one of the largest spring
systems in the southwestern US and is considered one of the most diverse spring ecosystems
in the world; its diversity is largely comprised of endemic species. Comal Springs and nearby
San Marcos Springs shelter seven federally endangered species and several additional
endangered species (Votteler, 1998) are found in the Edwards aquifer, the source of the
springs. Human activities impacting springfed and lotic environments favored by E.
comalensis may put the species at risk. Water flow in Comal Springs is dependent upon water
use practices in the Edwards Aquifer, which has been the subject of lengthy, acrimonious
and litigious debate. Major human impact factors that affect Comal Springs and have been
shown to imperil and extirpate gastropods in other areas of the United States are the
following: residential, urban and industrial development (Palmer, 1986); recreational water
use (USFWS, 2002); pesticide runoff (USFWS 2000); and human modification of the river
systems through damming (USFWS, 1994; Bogan et al., 1995). All of these impact factors are
present in the local environment of E. comalensis, vet their effects on the species remain
unstudied. By studying the life history, systematics, and distribution of E. comalensis and
other spring-dependent endemic species, we are providing the baseline data necessary to
convince stakeholders, managers, and legislators of the importance of managing water
resources for habitat preservation.
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