UNIVERSITY OF UTAH

Department of Anthropology

ANTHROPOLOGICAL PAPERS

(Glen Canyon Series Number 30)

Corn, Cucurbits and Cotton from Glen Canyon

By HUGH C. CUTLER
with an addendum

A TABULAR SUMMARY OF PLANT AND ANIMAL RESOURCES OF THE GLEN CANYON AREA
by SUSAN R. CLARK
by
Hugh C. Cutler
with an addendum

A TABULAR SUMMARY OF PLANT AND ANIMAL RESOURCES OF THE GLEN CANYON AREA by
 Susan R. Clark
 Jesse D. Jennings, Editor

Upper Colorado River Basin

Corn, Cucurbits and Cotton From Glen Canyon
as a part of the Upper Colorado River Basin Salvage Program
in accordance with

Memorandum of Agreement
14-10-0333-1316
between
The National Park Service and the University of Utah
by
Hugh C. Cutler
University of Utah

PREFACE

During the Glen Canyon phase of the Upper Colorado River Archeological Salvage Project, all plant and animal remains were collected from archeological sites as routine procedure. Non-archeological plant and animal inventories were made and reported by the University of Utah Division of Biology. All Glen Canyon cultigens found in archeological context were identified by Hugh C. Cutler, Curator of Useful Plants, Missouri Botanical Garden; noncultigens and animal remains were identified by personnel of the University of Utah Division of Biology and reported in each season's site reports, but there has been no combined summary of either the animals, or domesticated and wild plants of the Glen Canyon area.

This paper and addendum remedy this lack. Together, they provide a comprehensive summary of Glen Canyon plant and animal resources.

Jesse D. Jennings

ACKNOWLEDGMENTS

When the first announcements of archeological salvage work in Glen Canyon appeared, I^{*} was enthusiastic about the possibilities of studying agriculture in this area outside the mainstream of Indian cultures. The little canyons with wind and water-sculptured rocks, the clear skies and springs and the magnificent loneliness and isolation that existed before the dam was built stimulate imagination. I knew, from many trips in the region, there were few areas for agriculture and the supplies of wild plants and game for food were limited. However, I hoped that in some hidden valley a fairly long sequence of cultivated plant materials could be found--a sequence not confused by many migrations and the activities of large numbers of people.

Although the large volume of cultivated plant materials recovered prove to have been deposited during a very short period of time and to be surprisingly uniform, they make a substantial contribution to our knowledge of the history of cultivated plants in the Southwest.

This work was aided in part by a grant from the National Science Foundation. I am grateful for the help of Marcia Eickmeier, William Eickmeier, and Michael Wynne, student assistants, who did a great deal of the sorting, measuring, and graphing of the large volume of collections.

[^0]Page
PREFACE. v
ACKNOWLEDGMENTS vi
LIST OF ILLUSTRATIONS ix
INTRODUCTION 1
CORN. 6
CORN GRAINS 7
COLORS IN GRAINS 9
ROWS OF GRAINS AND CUPULE WIDTH 11
CLASSIFICATION OF CORN 12
DENT CORN AND FREMONT CULTURE 15
SQUASHES AND PUMPKINS 19
THE BOTTLE GOURD 21
COTTON 21
GLEN CANYON AND RELATED SITES 23
Coombs Site, 42 Ga 34. 23
Sheep Horn Alcove, 42 Ga 102 23
Pantry Alcove, 42 Ga 103 23
42 Ga 284. 24
Circle Terrace, 42 Ga 286 24
Triangle Alcove, 42 Ga 288 24
42 Ga2 90. 26
42 Ga 291. 26
Alvey site, 42 Ka 172 27
Gates Roost, 42Ka178 27
Davis Kiva, 42Ka241 28
Talus Ruin, 42Ka274 28
Lizard Alcove, 42 Ka 276 28
Benchmark Cave, 42 Ka 433 29
Hermitage site, 42 Ka 443 29
The Watchtower, 42Sa323. 29
42Sa324. 30
Loper Ruin, 42Sa364 30
Husteds Well, 42Sa366 30
Oakleaf Alcove, 42Sa374 30
Fence Ruin, 42Sa377 32
42 Sa 389 32
Catfish Canyon site, 42Sa395 32
Forked Stick Alcove, 42Sa413 32
Shady Alcove, 42Sa576 33
Echo Cave, 42Sa583 33
Doll Ruin, 42Sa585 34
'Echo Cave Group, 42Sa588 34
Crumbling Kiva, 42Sa597 34
Defiance House, 42Sa598 35
Gourd House, 42Sa6 19 35
Mosquito Cave, 42Sa643 37
Ax Groove Alcove, 42Sa693. 37
Bernheimer Alcove, 42Sa736 37
DISCUSSION OF FIGURES 53
BIBLIOGRAPHY. 57
ADDENDUM 63A Tabular Summary of Plant and Animal Resources ofthe Glen Canyon Area, by Susan R. Clark

LIST OF ILLUSTRATIONS

Figures Page

1. Progression of corn in the Southwest 13
2. Kinds of corn grains. 43
3. Squash fruit stems. 43
4. Diagrams of cupule width and rows of grains 44
5. Six cobs on stick from 42 Ka 172 45
6. Cobs on sticks from 42 Ka 178 46
7. Diagrams of cupule width and rows of grains 47
8. Lot of mature corn from 42 Sa 583 48
9. Mixed lot of corn from 42Sa585 49
10. Cache of sixteen uniform ears from $42 \mathrm{Sa736}$ 50
11. Diagrams of cupule width and rows of grains 51
12. Diagrams of cupule width and rows of grains 52
Tables
13. Distribution of cobs by rows of grains 17
14. Sheep Horn Alcove and Pantry Alcove. 25
15. Corn from Triangle Alcove. 26
16. Corn from 42Sa583. 34
17. Row numbers, cobs from Defiance House 36
18. Comparison of corn from Cottonwood Cave and Bernheimer Alcove 38
19. Row number and race classification of total cobs from Fremont and Pueblo sites 39
20. Percent of cobs of each row number found in selected sites and levels 42

Glen Canyon Area.

INTRODUCTION

The remains of cultivated plants tell us a great deal about the people who grew them. Most cultivated plants are dependent upon man, and might be considered artifacts. Man usually brings seeds from some other region and then manipulates the nature of the plant by his seed selection. He also provides opportunities for the plants to cross with other cultigens and with wild and weedy plants in the new environment. It should be possible to determine where similar kinds of crops were grown and how much interchange of crops went on. This type of study is often done with pottery. It should also be possible, since there usually is an evolution of new forms as time goes on, to discover the extent and direction of change; thus elaborate a sequence useful for comparisons with other sites and for dating.

Most Indians in the Southwest grew several kinds of each food plant. Modern Indians recognize several kinds and usually keep the seed separate, grow it in separate plots, and select new seed according to a standard. The harvest is made several times; as the crop is ready, and sometimes for separate uses. At the end of the season any remaining immature fruits are gathered.

Often only the useable part of the plant is brought home. Thus, little or no refuse remains for the archeologist and only a few seeds, a forgotten or burned cache, or some pods or vines brought for a special purpose or by some accident, are present. Because mature corn cobs are sturdy and not used for food, we know more about corn in the Southwest than we do about any other cultivated plant. However, even cobs from a site do not give a true picture of the corn grown there as many things conspire to falsify the record of the corn harvests. All the corn is not brought to the site on the cob. Special kinds and seed corn are kept where they are more likely to be preserved for the archeologist, to excavate. Usually the largest cobs are used for scrapers and fuel, while the most fragile ones are broken by trampling. If each sample were large and random enough to adequately represent the range of materials used, and if we knew the collections came from definite time periods, cultures, and areas, adequate comparisons could be made.

Because Indians usually grow several strains or cultivars of each crop plant, and because some of these cultivars may be lacking at some sites, it would be ideal to make comparisons of the same cultivar from various sites. Certain kinds of corn, sweet or pop corn, for example, are rigorously selected and grown in plots which are usually isolated from other corn growing plots. Sweet corn is very different from other kinds of corn grown in an Indian Pueblo of today, yet it is similar to sweet corn grown in other Pueblos.

A study of all Indian sweet corn shows a steady gradient from South America out to the plains. South American sweet corn ears are short and broad, with more than 24 rows of long, slender, reddish or yellowish kernels, whereas on the plains it has 10 or 12 rows of nearly crescent-shaped kernels, often colored the same red as the sweet corn of South America. Indian sweet corn found further east was usually 8 or 10 rowed and yellow like the native flints, but red and blue ears occasionally were seen. Most of these cultivars can be identified precisely only in exceptionally well preserved archeological material. Usually only comparisons of the collections as a whole can be made.

Plants spread out from their center of origin at varying rates. The amount of change through selection, hybridization and other means varied in different regions. Gradients of change might be established running out from the center to the periphery of the area in which the plant was grown. The changes in crop plants over the years have enabled us to establish rough sequences for corn and some other plants in a few areas (Martin, et al., 1952, 464-71). In order to complete such sequences and gradients and to make them really useful for the study of the history of agriculture, many collections from dated sites and more precise techniques for classifying minor variants in cultivated plants are needed.

Vegetal remains give little information on crop yields, harvest techniques, and the use of the plants, even when large samples are recovered. We can make fairly good estimates of yield for a single plant, but we rarely know how many seeds were planted in a hill, how many plants survived to maturity, or how the hills were spaced. Castetter and Bell $(1942,82)$ decided that soft corn grown by the Pima Indians seldom yielded more than 10 to 12 bu. per acre. The yield of the similar variety grown in Glen Canyon probably would be lower.

Agriculture came late to the Glen Canyon region; long after it had been practiced in central and southern Arizona and adjacent New Mexico. None of the crop plants were domesticated in the Glen Canyon region and no cultivars appear to have been restricted to the area.

The greatest diversity in corn, beans and squash is found in Mexico. The majority of the wild relatives of corn (species of Manisuris, Tripsacum, and Euchlaena [teosinte]), beans, and squash (the wild and weedy species of Cucurbita), and many wild species of cotton occur there. Archeological material of all the cultivated plants of Glen Canyon are found in older sites farther south and in Mexico.

The various kinds of cultivated plants spread into the United States in waves which apparently coincide with times of major cultural changes. Accidental crossing of the various cultivars and the wild relatives, environmental and human selection of seed often associated with religious or ceremonial practices, resulted in new forms and the preservation of old and tried ones. There are many records from modern Pueblo Indians on selection of seed corn according to definite standards, careful preservation of the seed, and its planting in separate plots. Cushing (1920, 167) wrote, 'In each corn room or granary of Zuni are preserved carefully four objects: an ear of yellow corn full to the very tip of perfect kernels ...". Whiting (1939, 12) noted, "The Hopi....refuse to plant any kernels from an ear of corn which they consider to be a mixture... They are also keen to note differences in the quality, season, or other desirable characters, and seed corn is often selected with these factors in mind". White $(1945,566)$ said, "A perfect ear of corn, fully kerneled to the very tip, is known as kotona; it forms the basis of the most sacred fetish of the Keres -- the iariko'. When I collected corn from most of the Pueblos during October of 1953, several cooperative Indians told me that the best ears were filled to the tip so no cob was visible, had straight rows, and no grains of other colors or textures. These "best" ears were not always the largest or heaviest. More information on crop plants, critical collections of corn and other plant material should be gathered from living Indians before this knowledge is lost. Collections could be made by someone skilled and patient enough to do the extracting of information on planting, preservation, and use.

Among the Glen Canyon corn collections the cobs and ears impaled on sticks or found in special caches were relatively uniform. Usually they had straight rows of grains running all the way to the tip, and more rows of grains than the average for cobs of a site. These specimens were interpreted as having been selected for seed corn or for special uses. Knotted yucca loops like those illustrated in Lipe, et al. (1960, 220), are used to suspend selected ears in ladder-like form for hanging on walls in Hopi villages. Some Pueblo Indians today save selected ears by tying or braiding husks together (Lipe, et al., 1960, 212-13, ill., 53).

Some cultivated plants were grown in very limited areas. The requirements of certain cultivars for specific temperature range, day length, and length of season limited the habitats these plants could occupy so they could not spread to new regions. Other adaptable and acceptable plants were carried to distant regions and grown successfully.

Evolution of cultivated plants is greatest when the cultivated forms have opportunities to hybridize with wild and weedy relatives (Hutchinson, 1965).

In Glen Canyon no wild forms existed which could cross with corn, cotton or gourds, or the wild squash relative, C. foetidissima. This plant was so rare and the barriers to crossing so great that it is likely there was no appreciable effect. In Glen Canyon we do not have the baffling diversity of interbreeding cultivated, weedy, and wild plants which one finds in Mexico.

None of the most ancient kinds of corn which are found in some sites in southern Arizona and New Mexico up to about A. D. 1000 or 1100 were found. Only a few cobs approach the modern descendants, Chapalote and Reventador (Wellhausen, et al., 1952; Cutler and Eickmeier, 1965, 48) of the popcorn races which are still grown occasionally in northern Mexico, and by the Papago Indians in Arizona.

The only squashes are cultivars of two species, Cucurbita pepo and C. mixta (Cutler and Whitaker, 1961; Whitaker and Cutler, 1965). The bottle gourd (Lagenaria siceraria) and cotton are found mainly in the larger sites, usually in protected places to the south and at lower altitudes.

The remains of cotton are not nearly as abundant as those of corn and cucurbits. All cotton fibers and fragments from Glen Canyon resemble those from cotton grown until recently by the Hopi, Gossypium hirsutum var. punctatum (G. hopi). All New World cultivated cottons are polyhybrid species with 26 pairs of chromosomes (genomes AD), twice as many as most wild species of the New and Old Worlds. Thirteen of these chromosome pairs (the D genome) are similar to those found in New World wild species. The other thirteen (the A genome) are similar to those known only from some African and Asian species, including the common Old World cultivated cottons and the wild weedy G. herbaceum var. africanum of southwestern Africa.

There is a striking parallel between the bottle gourd (Lagenaria siceraria) and cotton. Cultivated cotton (polyploid) of the same species as Glen Canyon cotton, G. hirsutum, but probably belonging to a distinct cultivar, has been found in a site near Tehuacan, State of Pueblo, Mexico, and dated at about 5800 B. C. (Smith, 1964,675). Lagenaria is known from levels nearly as old in the same site (Cutler, Whitaker, and MacNeish, n. d.) and from older deposits in Tamaulipas (Whitaker, Cutler, and MacNeish, 1957). The earliest cotton and bottle gourd appeared in Mexico before agriculture was well developed and the plants may have been growing wild or as weeds in man-disturbed habitats.

The center for the genus Gossypium (Saunders, 1961, 52), and the greatest diversity in cultivated kinds and related wild species of the genus Lagenaria are found in Africa. Gossypium and Lagenaria have been collected from many of the same or similar localities in central and southern Africa.

Whitaker and Carter (1954, 700; 1961, 104) demonstrated that Lagenaria gourds could survive at least 347 days floating in sea water without appreciable decrease in the viability of seeds and that seeds in gourds stored under quite unfavorable conditions would still germinate six years after the experiment. This would allow ample time for movement from South Africa to the New World. Stephens $(1958,86)$ found that certain wild cotton seeds and bolls are capable of floating in sea water for at least several months and have remarkable tolerance to long immersion in sea water. The occurrence of wild forms of both genera in Africa, often in littoral habitats, the ability to float and survive salt water immersion, some tolerance of salty growing conditions, the favorable currents, and the distribution of the forms, suggest that trans-Atlantic transport could have been possible.

It is unlikely that all wild cotton species or even all cultivated forms have been discovered. Gentry, for example, published a new species from Mexico in 1956 from collections he made in 1952 along a highway in Michoacan. In 1958 Hutchinson and Lee described Gossypium longicalyx from a 1955 collection made in central Tanganyika. Relatively few specimens of cotton and cucurbits can be found in herbaria and it is likely that several undescribed relatives of the bottle gourd could be collected in Africa. Only a few collections of plant materials have been made from the coast and interior of northeastern Brazil; areas where seeds from Africa might land and grow.

CORN

The history of corn is incredibly complicated. Ancient wild grasses apparently gave rise to several species of Manisuris and Tripsacum, and to forms of maize. Later crossing of various kinds of Tripsacum with several kinds of maize produced a large number of different kinds of teosinte. Tripsacum and Manisuris still grow wild near cornfields from Bolivia to the United States and some hybridization still occurs. The greatest amount of recent hybridization involves the many kinds of teosinte which occur as weeds in and around cornfields in Guatemala and, especially, in Mexico. Teosinte and corn have the same number of chromosomes and corn is almost as receptive to teosinte pollen as it is to its own. Fortunately most of this confusion occurs south of the United States and the patterns of the limited number of cultivated plants which spread northward are less complicated.

Corn is a grass and has the basic grass pattern. The plant is composed of units called phytomers (Cutler and Cutler, 1948), each one consisting of a bud, a section of stem and a leaf. These units are modified in the various plant parts. Fragments of a tassel or an ear appear to be very different from a leaf with its sheath and associated stem section, yet these fragments and the leaf unit are homologous. Changes in a character in any part of the ear are usually accompanied by similar changes in the homologous parts of the tassel and by less obvious changes in the conservative vegetative parts, the leaves and stems. For example, pod corn (Fig. 2, f) has greatly elongated husk-like coverings, the glumes, which may completely enclose the kernel. The glumes of the tassels of a pod corn plant are also greatly elongated. Although I do not have figures, I would expect that pod corn plants would have somewhat longer leaf sheaths and leaves because these are the homologs of the glumes. Some of the less apparent homologies, such as that of tassel branching and ear shape, were described by Anderson (1944).

From the stalk fragments and larger tassel specimens found in Glen Canyon sites, supplemented by deductions supported by our studies of entire plants in modern Indian fields and in our experimental plantings, and by comparisons with materials from Mesa Verde sites, we can visualize corn plants grown in Glen Canyon. These were smaller and weaker than plants now grown by the Pueblo (including the Hopi) and Navajo Indians, and about the same size as those grown at Mesa Verde. The leaves were probably narrower than those of modern Pueblo or Pueblo III corn from Mesa Verde (Cutler and Meyer, 1965), and the plants, leaves and tassels more flexible.

One good ear was usually produced on a plant. If the plant were vigorous, a later maturing and smaller ear might be produced above and another below the first ear. The lowest ear frequently was borne so low that its base was
partially buried by the soil or sand. Even a major ear was occasionally borne at soil level or in contact with soil heaped about the plant, indicated by stains on a few outer husks.

Seeds probably were not planted as deeply as the Hopi plant their seeds in non-irrigated land, but we would need to study many more stalk and root specimens before we could determine how deep the seeds were planted and how high the plants were hilled.

A few plants produced tillers which probably bore very small ears or none. Although secondary and tiller ears contributed a substantial proportion of the runty cobs found in archeological sites, runty ears could be produced on a plant perfectly capable of bearing large ears if the plant was grown under poor conditions or crowded by weeds or other corn plants in a hill.

Practically no entire tassels and relatively few tassel fragments were recovered. Less than half of this small sample still retained pollen. There was little reason to bring tassels into a dwelling or a storage area unless they were to be used for some ceremonial or decorative purpose. The utilitarian and uncomplicated nature of the Glen Canyon sites is suggested by the absence of tassels. Numbers of them were found in some nearby large sites, like Alkali Ridge Ruin, Aztec Ruin, and Step, Long, and Mug Houses in Mesa Verde (Cutler and Meyer, 1965), usually tied in bundles which were sometimes linked by yucca strips into long chains. Practically all of these tassels had been gathered shortly before the pollen was ready to be released, so that very few of the tassel fragments had shed any pollen. The Glen Canyon sites are slightly lower, and it is possible that plants matured slightly earlier, or the time at which the tassels were used was later. However, there is a good probability that the Glen Canyon tassel fragments were brought in for bedding or other purposes, or by accident. I have not found any descriptions for the use of tassel bundles in eye witness accounts of Indian customs to date.

CORN GRAINS

Corn is usually classified in commerce by the character of the kernel. This character is important in modern Indian classification because the character of food material stored in the grain determines the use to which corn can be put. Corn is usually catalogued in six main groups:

1. Pop corn has very little soft starch and most of the kernel is filled with hard starch (Fig. 2, a). No prehistoric pop corn was found in

The Glen Canyon sites, although it is likely some pop corn grew there. The 24 grains from 42 Sa 413 were a modern variety and could only have been introduced within the last 20 years.
2. Flint corn has a layer of hard and translucent starch surrounding the soft starch center (Fig, 2,b).
3. Flour corn grains are filled with loosely packed starch grains and have no "horny" or hard starch region (Fig. 2, c).

Most of the corn from Glen Canyon is medium-hard flint. Flint differs from flour corn mainly in a single gene, flint being dominant over flour, but there are many modifiers. Because the amount of hard starch varies considerably, it is possible to find a complete series of grains ranging from flour, through flints with very thin layers of hard starch, to grains which are almost completely filled and resemble pop corn. Occasional specimens are very hard and a few have only thin layers of hard material.

Most corn grown anywhere in prehistoric times was flint. The hard surface of the grains is more resistant to insect damage. Flint corn plants are slightly more vigorous than flour and considerably more vigorous than sweet corn plants. The leaves of flint strains of Mandan corn I have grown are darker green and the plants are more vigorous than flour strains from the same lines. They are also much darker, more vigorous and less attacked by insects than the sweet corn. Mandan corn is very much like Glen Canyon corn and some of the corn grown by the Pima and Papago. However, Mandan cobs are slightly larger and harder, and the number of grains slightly less. Whiting (1939, 70) wrote of Hopi flint corn: "Once a popular type of corn. With changing economic conditions it has now practically disappeared".
4. Dent corn has a band of hard starch around the sides of the grain but none at the cap. (Fig. 2, d) When the soft starch matures, dries, and shrinks, the cap sinks to form the dent. Dent corns differ from non-dent sorts by a considerable number of genes. They have been so mixed and modified by hybridization and the exchange of modifier genes, that there exists a complete series of gradations from nondented to grotesquely dented and beaked grains. When dry, some slightly dented grains are similar to slightly immature grains. Usually true denting can be discerned by cutting the grains longitudinally as in Fig. 2. The grain in Fig. 2, j is a mixture of flint and dent, while that in Fig. 2, k is probably a mixture of flour corn and a dent. None of the kernels from Glen Canyon are extreme dents. They have the deep dent and beak found in a few of the grains from Yampa Canyon (Anderson, 1949, 92) and characteristic of such extremes
of the Mexican Pyramidal group of maize as the races Pepetillo, Conico, and Conico Norteno (Wellhausen, et al., 1952, 138, 81-6, 179).
5. Sweet corn grains are shriveled and translucent when dry. Because the sweet gene is recessive, it must receive the character from both parents. No sweet corn was found in Glen Canyon sites, but it may have been grown there. It has been grown in all the Pueblos since the early 1900's, and still may be grown by the Papago, Cocopah, and Maricopa Indians.
6. Pod corn has enlarged glumes which cover the entire grain. The grains may be any of the afore-mentioned five kinds. No pod corn was found in the Glen Canyon collections, but it is likely occasional ears appeared either as sports or introduced. The presence of pod corn in a Pueblo III site in Segi Canyon, about 30 mi 。 southeast of Glen Canyon, and the frequent occurrence of "hunch-backed flute-player" petroglyphs in which the "hump" was more deeply pecked, suggesting a carrying blanket, gave rise to the speculation (Cutler, 1944) that pod corn might have been carried to this region by traveling medicine men like the Callahuayo Indians of Bolivia. In historic times these Indians traveled over much of South America selling medicinal and magical materials in markets and fairs. One of the items they sold is pod corn, There is no indication that pod corn from the Segi Canyon site, or that found in several other sites in the Southwest, was any more important than any other kind of corn.

COLORS IN GRAINS

Color in corn kernels may be located in the outer-most layer (pericarp), beneath the pericarp in the thin outer layer (aleurone) of the storage tissue (endosperm) or in the endosperm itself. The upper part of the embryo (the scutellum) can also be colored, but this color is not usually visible when an intact corn ear is seen. The pericarp colors are the brightest and most lustrous. The pericarp may be colorless or orange, red, deep cherry-red, pink diffused, brown, variegated, blotched, or with a red spot at the point of attachment of the stigma. The colors may cover the entire grain or be restricted to the sides, leaving a colorless cap. The aleurone layer may be colorless, yellow, orange, brown, red, lilac, red-purple, deep purple or almost blue. The endosperm may be colorless (or white) or various shades of yellow to yellow-orange. Endosperm colors are usually most marked in the horny part of the endosperm and the starchy material in the center appears
white, although even this is colored slightly in some cultivars with more compact endosperm. Most colors in these tissues are largely independent of each other. Therefore, a plant breeder can pick almost any combination of colors he desires, selecting one color for the pericarp, another for the aleurone, and still another for the storage tissue. This is usually referred to as the endosperm even though the aleurone layer is the outer layer of the endosperm. The aleurone layer contains practically no starch.

The pericarp and endosperm colors are the most resistant to changes caused by aging. Most of the browning evident in old corn grains is in the aleurone layer, with very little occurring in the pericarp or storage materials. A very few years after harvesting it is impossible to distinguish between ears which had their only color in the aleurone (usually a light yellow in recent Hopi, Zuni, and Papago corn which is similar to that recovered in Glen Canyon) and ears which were white, or lacked color in the aleurone and other tissues. It probably takes around 100 years for color to begin to fade in the hard parts of the endosperm and for a slight darkening to take place. In ears which are about a thousand years old some yellow often remains. The most persistent colors are certain reds which are not water-soluble. These are the reds found in variegated (sometimes called calico or squaw corn) ears or in very shiny bright red ears. After a thousand years these colors are almost as fresh as they were after a year of drying. The diffuse pinks and wine red of dye corn is very fugitive and some Navajo and Hopi cobs which were lying in the open for only a few years have lost most of their color. Some of the Glen Canyon cobs show traces of soluble red, but it is impossible to say what proportion of the ears had this color. Soluble red can vary in intensity and distribution from scarcely discernible traces, found in the vascular strands of the cob, to the dense, almost black coloration found in all parts of the Hopi dye corn, called "kokoma'. I suspect that many Glen Canyon cobs had slight amounts of color but deeply colored cobs and grains were few. The color develops late and would not be apparent in corn gathered early for green corn. Red apparently is a primitive and ancient color for it is present in many primitive kinds of corn of South and Central America and Mexico, and is present in some sweet and pod corn.

Measuring thickness of the grains or the space they occupied on the cob, is one of the few measurements which can be made on the grain. It is most useful when grain width and length are also known, for the relations of these measurements sometimes are characteristic of definite kinds of corn. Dent corn grains are usually flat and long, while the typical light yellow, soft, floury, 12-rowed corn of the Pima-Papago corn race has kernels almost as thick and only slightly longer than they are wide. Because there was ample cob material from Glen Canyon sites, grain thickness was used only in preliminary work to check the reliability of diagrams of row number and cob size (as measured by cupule width).

Using corn grains, it is possible to calculate the number of rows of grains which were present on the ear from which they came. Since the grains on an ear represent segments of a complete ring covering 360°, angles made by the sides of the grain indicate what fraction of the ring that grain represents. Thus, when the sides of a grain fit an angle of 45°, we know it comes from an eight-rowed ear; if 36°, from a 10 -rowed ear. Grains from the tips and butts of cobs, from ears which are distorted or only partially filled, and grains which have been carbonized after they were off the cob usually yield unreliable measurements. The calculation of row number from grains makes it possible to correlate quite accurately loose grains with cob types.

When more than scattered corn grains are found, it is likely that they are parts of a cache. It is impossible to tell, in many instances, whether grains were stored as shelled grain or whether they broke off cached ears. I suspect that in Glen Canyon most caches of shelled corn were for domestic use, and that corn saved for seed or ceremonial purposes was kept on the ear as most of it is among the Hopi. A large pot filled mainly with white flour kernels, but including some colored and flint kernels found near Ismay's Yellow Jacket Trading Post, has been on loan to the museum of Mesa Verde National Park. Such a mixture probably would not be used for seed corn. The uniformity of Glen Canyon cobs, with sticks inserted in their butts, suggests that entire ears were saved for seed.

ROWS OF GRAINS AND CUPULE WIDTH

Number of rows of grains is the easiest and most useful character to measure for the study of corn. Some caution must be used, however, for when corn is grown under adverse conditions, the plant is smaller and less vigorous and there will be fewer rows of grains on the ears (Emerson and Smith, 1950, 7). Throughout most of the United States the earliest corn had about 12 or 14 rows of grains. Over the years there was a gradual reduction in the proportion of 14 -rowed ears and an increase in the number of eight-rowed ears (Table 8). Where dent corn appears, however, grain row number may increase. This is apparent in Fremont culture sites and in the Rio Grande Pueblo where dents arrived sometime after A. D. 1300 .

Gross cob measurements, made on the entire cob after grains have been removed, are very inaccurate. The glumes are frequently broken or may be so soft that a definite measurement is difficult to make. Frequently only fragmentary cobs, with the glumes broken or entirely gone, are recovered from sites. It is best to make a measurement of a single unit of the main axis of the
cob, the rachis. Such a measurement, cupule width, devised by Nickerson (1953) has often been used. A cupule is the pocket in the central axis of the cob in which a pair of spikelets, each usually producing a single grain, is borne. Width is measured across the cupule, from one margin to the other, at right angles to the longitudinal axis.

Cupule width is slightly influenced by the number of rows of grains and by numerous other factors. In general, it is smallest in the more ancient and primitive kinds of corn and larger in more recent kinds which have been selected for larger ears and greater vigor.

Cob size is a function of width of units of the cob (cupule width) and number or rows of these units. Since a pair of grains is borne in each cupule, the number of cupules visible in a cross-section is half the rows of grains.

The value of cob size in delimiting groups of corn types is demonstrated by the discontinuities in the distribution of points on diagrams of cupule width and row number (Figs. 4, 7, 11, 12). These discontinuities follow lines which are roughly equivalent to the distribution of points which indicate equal cob diameters. On several figures for Glen Canyon corn, lines have been drawn connecting points which indicate central cob (or rachis) diameters of 1.2 cm . and 1.7 cm . Such discontinuities follow the same pattern in diagrams of corn from other areas (Cutler, 1964a, 1965 ; Cutler and Eickmeier, 1965; Cutler and Meyer, 1965). These patterns are usually evident even when there is considerable overlap in kinds of corn or moderate amounts of hybridization.

CLASSIFICATION OF CORN

It is obvious that a classification of corn, based only on the character of the grains alone, would be as artificial as a system of classifying humans by hair color. There are advantages to an artificial classification. A natural one, however, based on evidence for the evolution of corn cultivars, should tell us more about the relationships of the specimens. A beginning on such a classification was made 24 years ago (Anderson and Cutler, 1942). Good descriptions of the major groups of corn of most Central and South American countries have been published by the National Academy of Sciences-National Research Council. The first, and still one of the best of these surveys, was Races of Maize in Mexico (Wellhausen, et al., 1952). In this, the concept of race is narrower than that of Anderson and Cutler (1942). At least five of the 1952 races were included in the 1942 "Mexican Pyramidal" race: Palomero Toluqueño, Conico, Zapolate Chico, Pepetillo, and Conico Norteño, all of them derived from Palomero Toluqueño. In 1942 most indigenous flour and
flint corn grown by the Pima and Papago was included in the Pima- Papago corn race--a wide, variable, but closely related group which in 1952 was divided into Harinoso de Ocho, Mais Blando de Sonora, and Onaveño.

Only rough outlines of the progression of corn in the Southwest are known. The first corn was small, hard, usually 14 -rowed and similar to the races Chapalote and Reventador described in the Races of Maize in Mexico (Wellhausen, et al., 1952). Later came an eight-rowed flour corn and series of intermediates of this flour corn with the ancient, small-cobbed kinds. This progression may be diagramed:

PUEBLOS TODAY

LATEST

GLEN CANYON

EARLIEST
GLEN CANYON

EARLIEST
SOUTHWEST

Fig. 1. Progression of corn in the Southwest.
Once the intermediate forms (hybrids) appeared, they had the advantage of hybrid vigor and the chance of improved combinations of characters, permitting them to be carried northward faster than their eight-rowed parent. Thus, the series probably reached the Southwest in the following order, which is also the order from hardest to softest, and from most-rowed to least-rowed:

1. Pre-Chapalote (Small Cob): small, hard grains on a small cob.

Although most specimens have 12 or 14 rows, they may have few rows, and it is likely the most ancient may have had eight or even four rows of grains. None of this early corn reached Glen Canyon, although some of it persisted in southern and central Arizona until about A. D. 1100 (Cutler, unpublished reports).
2. Chapalote: Slightly larger than its precursor, but with small, almost isodiametrical grains, usually brownish, on a small cob. It is unlikely that this was grown in the Canyon.
3. Reventador: Grains are slightly larger, wider, and flatter than in Chapalote and rarely smoky in color. A few cobs and yellow and red grains were found. It is likely the race was grown occasionally, but not as an important food crop.
4. Onaveño: This is the flinty section of the Pima-Papago corn race (Anderson and Cutler, 1942). Crossing of Eight-rowed Flour with Chapalote and Reventador resulted in a series of intermediates which have been separated. into Onaveño, and the flour corn sometimes called Basketmaker corn or Mais Blando. Most Onaveño has 12 to 14 rows of hard, yellow flint kernels. The Glen Canyon cobs and grains are uniformly medium-large, suggesting a stable cultivar maintained by rigorous selection. Cobs are usually white; a few are rust-colored. Although grains are usually yellow, some white, red, blue, and variegated colors are present. The few cobs and grains of deep red dye corn belong to soft forms of Onaveño and to Mais Blando. It is impossible to distinguish the vast majority of cobs of Onaveño from Mais Blando. Generally the Onaveño cobs are slightly harder, have more rows, smaller cupules, and darker and firmer glumes. The major differences, and the basis for separation of these two, is in the character of the grains. Practically all of the cobs from Grand Canyon (Cutler, 1963) and nearly all from Glen Canyon and adjacent areas (Cutler, 1964b; Cutler and Bower, 1961; Cutler, n. d.) belong to these two races.
5. Mais Blando: This, (the "Mais Blando de Sonora" by [Wellhausen, et al., 1952, 196]) was second only to Onaveño in Glen Canyon. Most cobs were white with grains usually white or yellow, but often red, blue, or variegated. Yellow and white forms are still grown by the Hopi and much of the Hopi dye corn (kokoma) (Brown, Anderson and Tuchawena, 1952) would fall within this race. Farther east, in the Rio Grande Pueblos, dye corn is more variable and can also be flinty. It would then belong to Onaveño.
6. Eight-rowed Corn: This corn, called Harinoso de Ocho (Wellhausen, et al., 1952), had a great effect on agriculture in central New Mexico and Arizona about A. D. 500-700 (Martin, et al., 1952, 466-70) and somewhat later
in areas to the north. Galinat and Gunnerson (1963) made a study of this corn, but so much new material has been collected since their paper was written, the history of Eight-rowed must be studied anew. Flint forms of Eight-rowed were more common than flour forms and are the ones which were dominant in eastern United States in prehistoric times. This does not mean there is any evidence for Carter's suggestion that some corn came into the Southwest from the East (Carter, 1945). All botanical evidence indicates a steady movement northeastward from Mexico. Color range of Glen Canyon material is the same as that for Mais Blando. Dented forms of Mais Blando and Eight-rowed are found in Fremont Culture sites and are results of mixing with dent corn.

DENT CORN AND FREMONT CULTURE

Probably all dent corn, including that in the Southwest, is derived from the same ancient race; Palomero Toluqueño, or Toluca pop, illustrated in Anderson and Cutler (1942, Pl. 11, c) and in Wellhausen, et al. (1952, 47-54). A progression can be made from the most extremely tapered $\overline{\mathrm{an}} \mathrm{d}$ small cobs, represented by dented forms of Toluca pop, running roughly: Conico, Conico Norteño, Pepetilla, Zapalate Chico, Chalqueño, Jala, and Cristalina de Chihuahua (see Wellhausen, et al., 1952 for descriptions and illustrations). The relationships are very complicated. Apparently a form of Conico Norteño spread northward, perhaps about A.D. 700 when cotton and some forms of squash first appeared in central Arizona. It had such a wide tolerance for varied day lengths, it could mature far north of the usual latitude. Anderson has suggested (1959) that the Mexican dent which moved to the Yampa River canyons was the varied-day-length-tolerant Zapalote Chico, but this could just as well have been Conico or some other variant of the many Mexican pyramidal dents. Most references to Fremont Culture corn call all of it "Mexican dent corn", while actually most of it was Onaveño and Mais Blando similar to that grown in Glen Canyon. Less than one-third was dent. References are made to Anderson's report (1948, Pl. 22) which pictures four extreme ears. These were obviously selected for seed because the two largest and two smallest are joined by sticks inserted in their butts. Anderson (1948, 92) wrote: "Whereas only two of the ears are exaggeratedly Mexican Pyramidal, the other ears bearing kernels are transitions to the same type and like them could be duplicated (aside from their discoloration) in modern Mexican fields. "

Galinat and Gunnerson (1963) think that environmental selection on PimaPapago race corn, which had hybridized with teosinte and Chapalote, resulted in the extremes found near Vernal, Utah. This is possible, but highly unlikely.

If there was severe environmental pressure, the number of eight-rowed ears would have increased. The contrary is true, for the proportion of eight-rowed cobs decreased in Fremont sites. Galinat and Gunnerson's (130) estimate of ten per cent eight-rowed cobs is not far from the figures we obtained for Fremont sites and greatly less than the usual 20 to 30% for Pueblo II and Pueblo III sites in northern Gien Canyon and the surrounding area. The ears Anderson showed in 1948 indicate that Fremont people had a definite idea regarding the kind of corn they wanted to grow--a kind distinct from others found at the site. Cobs and ears with sticks in their butts from Fremont sites $42 \mathrm{Ga} 102,103$, and 288, pictured in Fig. 28 of Fowler (1963, 83) are not as extreme as those pictured by Anderson. However, they are distinct from such special lots as those pictured by Hurst and Anderson (1949, 164 from Cottonwood Cave) and those in this report (Fig. 5, 42 Ka 172FS93, Fig. 10, 42Sa736, 16 cobs from a cache).

How did denting reach the Fremont Culture area, Glen Canyon sites or the eastern Pueblos? When the first Fremont extreme dents were seen, it appeared plausible that dents traveled up perhaps through Glen Canyon, to the Yampa River area and then southeastward to the Rio Grande Pueblos. Collections made in the last 15 years show that this is very unlikely. Dents appeared quite late in sites in central Arizona and were very scarce in Glen Canyon until quite late. There are very few of the extreme dents which would be expected if a new race of corn was spreading northward. Apparently Glen Canyon could not be a pathway for the Fremont dents.

There is a good pathway farther west and there we have some quite early dents. From Antelope Cave, a Pueblo II site in the Arizona Strip about 50 mi. south of Zion National Park, we have two good collections which contain a considerable number of dent kernels. There are fewer eight-rowed and more 14 -rowed cobs than are usually found in sites without dent influence in northern Arizona. Antelope Cave dent kernels are larger and flatter than most from northern Fremont sites and need more study.

From Zion National Park (ZNP-21) we have counts for 88 cobs made by Volney Jones (1955, 192). In his opinion, the corn is composed of the usual Glen Canyon kinds and has some Mexican dents, although none as extreme as Anderson's illustrations. The distribution of cobs by rows of grains is indicated in the following table:

Table 1. DISTRIBUTION OF COBS BY ROWS OF GRAINS

Rows of Grains

| Total No. Cobs | 8 | 10 | 12 | 14 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Per Cent of Total Cobs

Lower Escalante (Fig. 11, a)	23	9	13	65	13	
Upper Escalante (Fig. 11, b)	26	12	27	46	12	3
Sheet Gulch (Fig. 11, c)	32	13	9	41	31	6
$\begin{aligned} & \text { 42Sv5 (Snake Rock) } \\ & \text { (Fig. 11, d) } \end{aligned}$	67	3	15	54	19	9
$\begin{aligned} & 42 \operatorname{Sv5} \\ & \text { (Fig. 12, a) House D } \end{aligned}$	37	3	11	62	13	11
$\begin{aligned} & 42 \text { Un95 } \\ & \text { (Fig. } 12 \text {, b) Feature } 408 \end{aligned}$	55	11	13	53	18	5
$\begin{aligned} & 42 \text { Un9 } \\ & \text { (Fig. } 12, \text { c) } \end{aligned}$	70	3	21	64	6	6
Zion National Park (Jones, 1955, 192)	88	7	23	56	12	2

In all of these sites we have been unable to separate the dent corn from other kinds, the Pima-Papago complex. The row number figures are not graphic. We find it difficult to see a gradient, as there is in pottery, from south to north, and from the lower Escalante collections to the upper Escalante and Sheet Gulch. The best indicator of the Fremont dent is shown in the diagrams, Figs. 11 and 12. There is a decided clustering of points at 12 rows and a marked number of cobs with cupule widths of more than 0.8 cm ., outside the 1.7 cm . cob diameter mark which delimits most of the Pima- Papago complex. These 12 -rowed cobs with cupule widths of more than 8 mm . represent vigorous intermediates of dents and the older corn of this region. The extreme dents would usually fall somewhere between 0.5 and 0.7 cm . in cupule width and perhaps have 14 rows of grains as often as 12 . This observation has been checked on some collections from Mantle's Cave and other sites on the Yampa which were submitted by Herbert Dick many years ago. Until we saw the collections from the Glen Canyon Fremont sites, Snake Rock (42Sv5), and Caldwell Village (42 Un95) we could not relate the Yampa corn to other collections and make useful comparisons. It now appears there is considerable similarity in Fremont corn. It probably extends into Arizona along a pathway considerably west of Glen Canyon.

Dilution of the effect of dents on the pattern of the entire corn from a site is shown by comparing the diagram of corn from House D of 42 Sv 5 with that of corn from all other parts of the site (Figs. 11, d, 12, a), or that from FS 408 of 42 Un95 with most of the other corn from the site. In each case the sample from a restricted area shows a greater concentration of 12 -rowed cobs.

We have relatively little material from areas west of these sites or from sites in western Arizona. Therefore, it has been impossible to trace Fremont dents back to the Mexican border.

It is unlikely that dents moved southeastward from the Fremont area. There is little evidence of dents until quite late in Mesa Verde and the middle San Juan. Our studies on the upper San Juan material collected by the Navajo Dam Project are still incomplete, but apparently dents came late there, as they did in the Kayenta, eastern Arizona, or western New Mexico sites we have studied. Therefore, dents probably did not move from a western Arizona pathway across northern Arizona to the Rio Grande. This is apparent even today in the corn of the Pueblos. Examples of the most dented corn, which represent the extreme of the Pueblo corn race (Anderson and Cutler, 1942), are to be found in the eastern Pueblos. From some observations I made while collecting corn in the Pueblos in 1953, the most extreme dents are in the Keresan Pueblos and Jemez. These may have been introduced in post-Spanish times, but I have seen very few of these extremes in the more conservative of the Spanish-American villages.

Eastern dents differ from those of the Fremont area in being more vigorous, with heavier cobs, larger kernels, and a tendency towards long ears and taller plants. They suggest western Mexico cultivars or races like Jala and Cristalina (descriptions in Wellhausen, et al., 1952). It is likely the Fremont dents came through western Arizona and Utah deserts and had little influence on the mainstream of agriculture. They perhaps contributed only a little hybrid vigor through occasional interchange of plant materials with neighboring peoples.

It is time that a complete review of Southwestern crop plants be made. Carter (1945) worked out a series of observations from materials available at that time, on succession of varieties and species of cultivated plants. He divided agriculture of the Southwest into 'two distinct areal groups characterized by crops differing in species or varieties. These are the Gila-Colorado (Piman and Yuman) and the Plateau (Pueblo and neighboring peoples). This division goes far back in time." (Carter, 1945, 12). Much more reliably dated and identified plant material is available by people like Anderson, Bohrer, Cutler, Galinat, Heiser, Jones, Kaplan, Mangelsdorf, Nickerson, Smith, and Yarnell who have had experience with special groups and access to good collections. The areas Carter delimited are not as sharply marked and there are more exceptions than he thought, when only a few collections were available. His pioneering work did much to stimulate interest in plants from archeological sites in the Southwest.

SQUASHES AND PUMPKINS

Three species of Cucurbita are known from Glen Canyon. The wild squash, sometimes called wild gourd, calabacilla, or coyote melon (Cucurbita foetidissima) has been found in a few sites. However, no herbarium specimens have been collected from living plants in Glen Canyon. Floyd Sharrock collected a fruit from a plant north of Glen Canyon growing directly in front of a pueblo site (42Sa1602) located in upper Salt Creek in Canyonlands National Park. C. foetidissima has been collected near the Hopi Villages and along the upper San Juan River. It prefers disturbed soils and there are few places in the Canyon which offer an ideal habitat and at the same time would not be readily accessible to past and recent inhabitants. It is possible that continuous collecting by Indians exterminated it.

There are several reports which indicate use by modern Indians of the fruits, their seeds and many specimens of roots found in Tularosa Cave, New Mexico. Notes by Edmund Nequatwa, a Hopi Indian, on two herbarium sheets
of C. foetidissima in the Museum of Northern Arizona state: "Used as food. Cornmeal cake dropped inside blossom and baked."

The terms squash and pumpkin are of no value in discussing cultivated cucurbits, although some attempts have been made to restrict these common names to certain species. As a rule pumpkins are coarse and strongly flavored cultivars used for forage, table vegetables or pies. Squashes are finer textured, milder flavored, used immature or when mature, baked, boiled, in pies, and less commonly used for forage. Within the three most common species of Cucurbita, C_{0} pepo, C. moschata and C. maxima there are cultivars known as squash and others known as pumpkins. Most of the fruits of C. mixta are cushaws, although they may also be called squashes or pumpkins in some regions. Since we know little about the texture of fruits from Glen Canyon, we could make no useful distinction. Most of the fruits of C. pepo, however, including those eaten when young, would be similar to kinds commonly called pumpkins.
C. pepo is the oldest cultivated squash in the region and in the United States (Cutler and Whitaker, 1961; Whitaker and Cutler, 1965). There is relatively little diversity in the Glen Canyon material and apparently only two major kinds were grown. One of these was not greatly different from the common pumpkins still grown by the Pueblo Indians and variable in color from green to mottled green, and tan to orange. The other is a cultivar practically unknown outside of the Glen Canyon-lower Green River area. It has an exceptionally thick rind and apparently replaced the bottle gourd (Lagenaria siceraria) as a container in areas to the north where bottle gourds were difficult to grow. It is not known if C . pepo was used to store or carry water, but the size of the opening and its position fairly low down on the neck of the fruit suggests that pepo was mainly used for dry storage. It is possible to distinguish the rinds of bottle gourd from those of pepo by an examination of the cell structure. The thick and roughened rinds of pepo can be distinguished from the usually smooth and less thick rinds of C. mixta, but so far we have been unable to separate thin pepo rinds from rinds of C_{0} mixta。 Thus, Table 7 includes a listing of unidentified rind fragments. Mature fruit stems, or peduncles, of pepo usually have five rounded longitudinal ridges. Mixta fruit stems are usually swollen, corky and irregular in shape (Fig. 3).

Cucurbita mixta, the cushaw, is the latest of the squashes to appear in the Southwest. In Glen Canyon it approaches or reaches its farthest north limit. It was once thought (Cutler and Whitaker, 1961, 481) that mixta might be associated with Fremont Culture movements, but we have found no good evidence to support this. Good illustrations of pepo and mixta used for containers are to be found in Sharrock, et al., $(1961,264)$ and Fowler (1963, 86).

Some discussion of squashes is included later in this report under sites 42 Sa 374 and 42Sa619.

Martin and Sharrock (1964, 177) found squash pollen in five of 24 samples of human dung from Glen Canyon sites, mostly from 42Sa736 (Bernheimer Alcove [Sharrock, Day and Dibble, 1963]) in an area where considerable C. mixta was present. The larger of the two distinguishable types of pollen was more abundant. They based their identifications on a paper written in India (Amasthi, 1962) which gave no clear description of the plants, no illustrations of the plants, and no means by which the identification could be checked. Since the majority of Asiatic squashes in our herbarium have been wrongly determined, and since the species most abundant is identified as C. moschata, which does not occur in Glen Canyon materials, I suggest that the most common species is C. mixta. This is later in time than C_{0} pepo, and has a number of characters; fruit stem, neck cells of the fruit and frequently enlarged vine stems, which suggest that pollen may be similarly larger than that of C. pepo. The smaller pollen is likely to be C. pepo. It could also be the wild Coetidissima but the scarcity of this species makes this unlikely.

Mixta is frequently identified as C. moschata, although most specimens were identified as moschata until mixta was described in Russian, in 1930 . Consequently, Carter used this name and has since been followed by others. Even as late as 1952, Whitaker and I were uncertain of the limits of some species and identified some seeds from Zion National Park as C. moschata, although these would now be identified as mixta (Jones, 1955, 183, 185). As far as we know, C. moschata, although it may have been in the Southwest earlier than mixta, did not get farther north than Kayenta, Arizona.

THE BOTTLE GOURD, Lagenaria siceraria

Little more need be said about the bottle gourd. The only three sites which had more than a few specimens, still had so few they could have come from two or three fruits. Each of these sites (42 Ka 241 , [Gunnerson, 1959] 42 Ka 274 , and 42 Ka 276 [Lipe, 1960]) also had some cotton.

COTTON

It is difficult to determine whether cotton was being grown in Glen Canyon; cotton bolls might have been carried in trade (Kent, 1957, 467).

The fact that the Hopi were growing cotton makes it likely that it was grown this far north in Glen Canyon. Although a large number of sites had a few cotton fibers, the largest number of bolls were found in 42 Sa 364 (four bolls), 42 Sa 377 (three bolls) and 42Sa598 (many bolls, seeds with fibers) (Lipe, et al., 1960). A bag containing cotton seeds was found in 42 Ka 433 (Lipe, 1960).

GLEN CANYON AND RELATED SITES

Coombs Site, 42Ga34, A. D. 1075-1275
(Lister, 1959)
(Lister, Ambler and Lister, 1960)
(Lister and Lister, 1961)
Practically all of the material from this site was carbonized. In Fig. $4 \mathrm{a}, 20 \%$ has been added to cupule width measurements to compensate for the shrinkage estimated to have been caused by heating. Occupied from A. D. 1075-1275, the fullest development at this site occurred about A. D. 11001175, late PII to early PIII times. There are fewer eight-rowed cobs than usual for PIII sites and the number of 14 -rowed cobs is small. This suggests that some of the corn dates from PII (see Table 7) and that Kayenta influences were dominant at this site. There may have been some Fremont influence here, but no dent kernels could be recognized in the carbonized remains. None of the cobs had as much taper as extremes of the Fremont culture strains of Mexican Pyramidal illustrated by Anderson (1948, Pl, 22). The sample is small but probably quite reliable since the specimens were taken from scattered areas and could not have come from a single cache. They tend to support the conclusions reached through studies of architecture and ceramics; the people were from the Kayenta area, had contacts with Mesa Verde and San Juan Basin people, but lesser contacts with the Fremont area (Lister, Ambler and Lister, 1960, 5, 29).

Sheep Horn Alcove, 42Ga102, Fremont culture, A. D. 1000-1050 and
Pantry Alcove, 42Ga103, Fremont culture, A. D. 1000-1050
(Fowler, 1963)
The most interesting material was a lot of 12 well-preserved ears, tabulated in Table 2. The sticks in the butts indicate that these ears were being saved, probably for seed. Most of the grains were discolored by age, which meant exact color could not always be distinguished. Many had a slight flush of pink in the pericarp and appeared to have been white-capped. Cupules, where they could be measured without seriously injuring the ear, were from 0.7 to 0.85 cm . wide.

Nine cobs which were lacking grains, from 42Ga103, had sticks inserted into the butts. They were very similar to the entire ears mentioned above and like them were probably saved for seed. Rows of grains ranged from 10 to 18 with six cobs having 12 rows for part or all of their length. Cupule
widths ranged from 0.6 to 1.05 cm ., the mode being 0.8 cm . Some of these ears approach the least dented of the pairs of ears impaled on sticks which were found in a Fremont site, Mantle's Cave, on the Yampa River (Anderson, 1948, Pl. 22). They are almost identical to ears shown in Galinat and Gunnerson (1963, Pl. 24). Similar cobs were found at another Fremont site (42Sv5) listed in Table 7.

The neck of a Green Striped Cushaw stuffed with grass, corn cobs and organic debris, were found in 42Ga102.

In Pantry Alcove two storage vessels and fragments of one or more others were found. A small pepo fruit (illustrated in Fowler, 1963, Fig. 32, c) with two sets of zig-zag lines scratched into the outer skin had been cleaned out through an opening in the side. A small sandstone slab closed this opening.

The circular opening cut in the side of a mixta fruit (illustrated in Fowler, 1963, Fig. 32, b) was also found with a small slab to close it. Fragments of mixta and three small sandstone slabs probably came from other Cucurbita vessels.

$$
\begin{gathered}
42 \mathrm{Ga} 284 \text {, A. D. } 1000-1250 \\
\text { (Fowler, } 1963 \text {) }
\end{gathered}
$$

There is a wide range in cob types in this sample of only 22 specimens, ranging from small Pima-Papago race to large Pueblo race cobs. Cupule widths range widely, from 0.4 cm . to 0.9 cm ., with a median at 0.78 cm .

$$
\frac{\text { Circle Terrace, } 42 \mathrm{Ga} 286, \text { A. D. 1050-1250 }}{(\text { Fowler, 1963) }}
$$

All 12 cobs are large, similar to Pueblo III types from other sites in this region.

Triangle Alcove, 42Ga288, A. D. 1000-1250
(Fowler, 1963)
A number of entire ears from this site may have been saved for seed. One of these (the 14 -rowed ear in Table 3) had a stick inserted in the butt.

Table 2．SHEEP HORN ALCOVE 42Ga102 AND PANTRY ALCOVE 42Ga103

The most interesting material consisted of twelve well preserved ears tabulated below．

	42Ga102							42Ga1 03				
	2－1	2－2	3－1	3－2	4－1	4－2	5－3	157－2	104－4	123－1	137－4	137－5
Number of Rows of grains	12	14	12	16	14	12	16	10	14	16	12	14－12
Grain thickness	4.8	4.3	4.3	3.6	4.2	4	4． 2			4.	4.	4． 2
Grain width	10	8	10	8.5	9	9.5	9.			8.	8	8
Shank diameter	13×14	12×14	13×15	14×14	13×15	12×15	12×13			13×15	8×12	12×15
Endosperm	slight dent	medium dent	slight dent	slight dent	$\underset{\text { dent }}{\text { medium }}$	flint	medium dent	slight dent	slight dent	medium dent	medium flint	medium flint
Color	white？	white	white？	white	cherry pale cap	cherry on yellow	white？			blue and white	yellow？	calico on yellow

Because most of these ears had been so discolored by age，exact colors could not always be distinguished．Many had a slight flush of pink or red in the pericarp and appeared to have been white－capped．

Table 3. CORN FROM TRIANGLE ALCOVE

Rows of grains	8	12	12	12	14
Grain thickness	4.6	3.8	3.8	3.5	5
Grain width	10.5	8.5	9	7.7	9.5
Cupule width	8	7	8	7.5	9
Shank diameter	7×9	12×15	14×15	11×14	12×4
Endosperm	medium	soft	slight	soft	medium
	flint	flint	dent	flint	flint
Color	white	white	white?	yellow?	probably
	\& blue	or			blue with
		yellow			pinkpericarp

Three other ears, one 12 -rowed and two 14 -rowed, resembled the second ear above. Many of the loose grains found at this site were true dents, with a slight thickening of the hard storage tissues at the sides of the grain and with none at the cap. Most dents were from 12 -and 14 -rowed ears. Some slightly dented grains from eight-rowed ears appeared to be slightly immature flour corn or are very weak dents with little hard storage material at the sides of the grains. A Green Striped Cushaw storage vessel, with an opening cut into the side and closed by a stone slab, was found in Triangle Alcove (illustrated in Fowler, 1963, Fig. 32, d).

42Ga290, date unknown
(Fowler, 1963)
Two medium flint ears, 12- and 16 -rowed, with blue, purple and white grains were found at this site. They were similar to the entire ears found in 42 Ga 102 and 42 Ga 103 , which are only a few miles away, but show little influence of dent corn.

42Ga291, date unknown
(Suhm, 1959)
One of the two 12 -rowed cobs found in this Harris Wash site had a stick inserted in the butt.

Practically no change was found in the cultivated plant remains from the lowest level (Level I) to the upper (Level III), but the sample from Level I is too small for good comparisons. Only 31 of the 737 cobs recovered from the site came from the lowest level. Therefore, the absence of cucurbits and cotton from this level, although they are present in Levels II and III, is not surprising. It first appeared that the cobs in the lowest levels were smaller and had softer, narrower, and longer lower glumes than cobs in the middle and upper levels. Careful examination and measurements showed that this was not true. Row number, cob size, and characters of the cupules and glumes were remarkably constant throughout the site, although there is considerable diversity in the corn grown (Fig. 4, b). The number of 14 -rowed cobs suggests some influence of Fremont Culture corn.

There appeared to be no dent grains from the lowest level and more from the upper than the middle level. Most of the mature loose grains from the site were yellow flint from 10 - and 12 -rowed ears. About half the loose grains were immature.

A considerable number of cobs with sticks in their butts was found. Nearly all of these cobs had 12 or 14 rows of grains, as do most stick-impaled cobs from Glen Canyon sites (Fig. 5). However, Feature 82, Level II yielded two 8 -rowed, two 10 -rowed, and six 12 -rowed cobs with sticks in their butts.

A 6.0 cm . dia. small gourd rind probably is the yellow-flowered, cultivated, ornamental gourd, Cucurbita pepo var. ovifera, but may be the wild gourd, C. foetidissima.

Gates Roost, 42Ka178, Fremont?
(Gunnerson, 1959)
The corn from this site varied greatly in size, shape, color of the cob, number of rows of grains and characters of the spikelets. A typical lot from Feature 18 is illustrated (Fig. 6). Some cobs impaled upon sticks are shown in Gunnerson (1959, Fig. 16). Several ears with grains and a few loose grains were slightly dented and were probably originally white. The number of 14 -rowed cobs suggests that this corn is similar to that from two Fremont sites, Sheep Horn Alcove (42Ga102[Fowler, 1963]) and Pantry Alcove (42Ga103 [Fowler, 1963]). Many of the specimens from $42 \mathrm{Ka178}$ were smaller and less well developed than cobs from the two Fremont sites, but this may be an
accident of preservation. It has been suggested that Gates Roost was occupied seasonally. It is possible that all the corn was brought to the site and shelled; while at the other sites, late maturing secondary ears were shelled later in the field or some place away from the house sites.

Davis Kiva, 42 Ka 241 , Pueblo II- III (Gunnerson, 1959)

One of the four pieces of bottle gourd (Lagenaria siceraria) rind from this site apparently came from the stem end of a dipper gourd. Cotton fibers, string and cloth also were found at this site.

Talus Ruin, 42Ka274, MNA 5369, Pueblo III
(Lipe, 1960)
This site, about 59 mi , upstream from Lee's Ferry and a mile and a half below Benchrnark Cave, probably was far enough south and low enough to grow some cotton and bottle gourds. Cotton seeds,fibers and 22 bottle gourd rinds were excavated. The proportion of very thick squash rinds appeared to be about the same as in sites farther north in Glen Canyon. A single seed of the Taos cultivar of Cucurbita mixta and 42 almost entire Green Striped Cushaw were found. Almost entire Green Striped Cushaw seeds and corn grains were present in fecal material from the site. The seeds apparently were completely diry when swallowed and no burns left by roasting were apparent.

The corn cobs were similar to those from most large sites along the river. (Fig. 4, c). Twenty-two of the corn grains were flour, three flint and two slightly dented.

Lizard Alcove, 42Ka276, Pueblo III (Lipe, 1960)

Near Talus Ruin, and closely related to it, Lizard Alcove has similar corn. There are, however, slightly more eight-rowed cobs and the cobs are usually smaller (Fig. 4, d). Most of the many loose grains were yellow flint, from 8-, 10-, and 12 -rowed ears. A few grains from eight-rowed and 10 -rowed ears were somewhat broad and short, approaching the crescent shape of grains from eight-rowed flints of the eastern United States. A few dent grains were also present.

One of three pieces of bottle gourd from this site is from the neck of a dipper gourd.

Benchmark Cave, 42 Ka 433 , Pueblo II- III
(Lipe, 1960)
The lower midden deposits (Stratum IV) are reported to have lacked cultivated plant deposits, with the exception of a single squash rind (Lipe, 1960, 218). Although the number of cobs recovered is small (Table 7), they suggest an initial trend toward eight-rowed ears, probably influenced by infiltration of the Harinoso de Ocho race and environmental selection. A later trend toward many-rowed dents, effected by hybridization with many-rowed dents and the selection of large ears for seed is suggested. There were not enough grains to support these observations and most of those found were yellow flints.

Fifty-nine cotton seeds from a pouch were quite uniform and may have been preserved for seed.

Hermitage site, 42 Ka 443 , MNA 5369
(Lipe, 1960)
The corn from this site was almost iclentical with that from structure II of 42 Ka 43.3 . It appeared to support the idea that there was a swing away from eight-rowed ears in the later years that Glen Canyon was occupied. The Hermitage site apparently had a short occupation and was abandoned shortly after A. D. 1150. This was before the proportion of eight-rowed corn decreased to 17% and 23% of the latest material from Benchmark Cave, or the average material from Talus Ruin. The Hermitage corn, like that from Lizard Alcove, had it's greatest activity before A. D. 1200.

Nine fragments of the bottle gourd ranged up to 0.43 cm . in thickness-a mark of the favored growing season which apparently permitted the forms of Lagenaria with thicker rinds to mature.

The Watchtower (42Sa323) in Steer Pasture Canyon (Sharrock, 1964)

The few cobs from this site had harder lower glumes than those of 42Sa324 (a Cedar Mesa site of unknown age which may go back as far as Basketmaker times).

> 42Sa324, Unknown (Basketmaker to Pueblo II?)
> (Weller, 1959)

The high number of small and distorted eight-rowed cobs from this site suggests this is a distorted sample, perhaps due to a late season gathering of secondary and tiller ears (Fig. 4, e).

Loper Ruin, 42Sa364, MNA 3715-6, Pueblo III
(Lipe, 1960)

The corn from this Mesa Verde site was very much like that from the Kayenta site, Husted's Well (42Sa366), which is not far away. Cotton cordage, fibers, and seven fragments of bolls were found at the Loper Ruin.

> Husteds Well, 42Sa366, Pueblo II- III
> (Lipe, et al., 1960)

The corn from this site, like that from the Loper Ruin, showed a wide range in number of rows of grains, but less diversity in size of cob and glume characters than many other sites (Fig. 4, f). While there was a considerable number of eight-rowed cobs, and this number seems to have been increased both by introduction of Harinoso de Ocho and adverse environmental selection, the 12 -rowed cobs were very similar to much older 12 -rowed cobs from Basketmaker and Pueblo II sites farther south. However, there was considerable crowding of undeveloped spikelets at the tips of many cobs which is a later character, typical of dent corn. It has not been possible to discover if this came in with Fremont dents, presumably from the north and west, or from dents which produced the Pueblo race, which is most dented in the eastern Pueblos along the Rio Grande.

$$
\begin{array}{ll}
\text { Oakleaf Alcove, } & 42 \mathrm{Sa} 374 \\
\hline \text { (Sharrock, et al. }, & 1961 \text {) }
\end{array}
$$

The most remarkable plant remain from this west-facing alcove, was a complete fruit of the Green Striped Cushaw, C. mixta, which had been cleaned of all its flesh through a 9.0 cm . dia. hole in the side of the body. This fruit is shown in Fig. 7, b (Cutler and Whitaker, 1961) and in Fig. 93, a (Sharrock, et al., 1960).

The margins of this hole were rough, perhaps from the cuts of a dull metal knife or a stone tool.

Vegetal matter adhering to the body about the opening may be residue from a sealant used to seal the lid (a stone slab which still covered the hole), according to Floyd W. Sharrock (personal communication, May, 1961). The neck was bound with yucca strips which may have been part of a device for strengthening the container, to facilitate carrying, or part of an arrangement for using the fruit as a musical instrument. A crack in the base was tied with three small yucca leaf strips run through drilled holes.

The container was excavated by Sharrock from under six to 12 in . of sand, and he believed that it dated from the Pueblo period. It contained sterile sand and five seeds which Sharrock sent to a relative. Four of these supposedly germinated. While no fruits were recovered from the plants, a photograph of both surfaces of a single leaf from one of the plants resembles leaves of Cucurbita mixta cultivar Green Striped Cushaw.

I am reluctant to believe that these seeds date from Pueblo times, or even from before 1915, when some agriculture was carried on in Lake Canyon.

Although the container is like those of the Pueblo III period, with roughcut side opening, yucca repairs, and a slab lid, similar kinds of squash were grown until recently by the Hopi and cleaned out in the same way. Recent Hopis mended bottle gourds with yucca strips and it is likely they would do the same with cushaw rinds. A Ute-Navajo group on the San Juan still used some pottery vessels and basketry bottles covered with pinyon resin in 1939, and grew squash and corn in recent years. I do not know what kinds were grown but the Green Striped Cushaw is widely grown among the Pueblos and Navajos, as well as by some residents of Blanding and Bluff.

It is unlikely that seeds would remain viable more than 20 or 30 years even in the protected condition of this site. Although I have not had experience with germination of old C. mixta seeds, 10-year-old seeds of C. pepo, C. moschata and C. maxima, which had been stored in packets in a closet, did not germinate. Thomas W. Whitaker, who has had considerable experience with cucurbits, wrote in a letter of August 30, 1965 :
"We have no specific information about the longevity of Cucurbita mixta seed. I have grave doubts that it would be viable for more than 25 years $\overline{\text { under }}$ the best possible conditions. We keep our seed storage facility at about $40^{\circ} \mathrm{F}$, and 40 degrees humidity. Under these conditions which are nearly ideal for our purposes Cucumis melo will remain viable 15-20 years. '"

Floyd Sharrock wrote (letter of May 26, 1961):
"There is no possible way a prank could have been played. The seeds were never touched in the field by anyone except myself. I excavated the gourd (6 to 12 in. from the surface), took out the seeds, packaged them and mailed them from the field. Thus, no one had the opportunity to substitute seeds since we were in Lake Canyon. '

Fence Ruin, 42Sa377, Pueblo III
(Lipe, et al., 1960)
Most corn grains from this site were 10 - or 12 -rowed yellow flints. A few fragments of cotton bolls were found.

42Sa389, Pueblo II- III
(Lipe, et al., 1959 II)
In the Glen Canyon area very few eight-rowed ears were found in bundles or special cache's of some sort, or had sticks in their butts, which suggested they were being saved for seed. Two of five cobs from 42Sa389, wrapped in twigs and tied with yucca fibers, were eight-rowed, two were 10rowed and one was 14 -rowed.

Catfish Canyon site, 42 Sa 395 , MNA 5983, unknown (Lipe, 1960)

Most cobs from this site were rather large and well-developed, suggesting that this was either a selected lot, or conditions for farming here at the time of occupation were favorable. The relatively high number of eight-rowed cobs is unusual for this area and I suspect that the sample of 45 cobs may include the cache contents of an eight-rowed strain.

Forked Stick Alcove, 42Sa413, MNA 6153
(Lipe, et al., 1960)
This site is near the Loper Ruin, 42Sa364. Like the Loper Ruin, it has strong Mesa Verde affiliation and has been disturbed by visitors.

Twenty-four grains of a modern commercial "Golden" popcorn were found in Feature 12. At least one of the outfits carrying tourists down the river carried popcorn.

Three slightly dented white or pale yellow grains, two yellow flint, and one calico flour grain were found at this site.

Shady Alcove, 42Sa576, Pueblo II- III
(Lipe, et al., 1960)

Many of the sites listed in Table 7 were not excavated and the plant materials represent surface collections made during the survey. These surface collections usually are quite reliable. A comparis on a surface collection made from Shady Alcove by the Museum of Northern Arizona (Fig. 7, a), and the corn from Feature 93 excavated by the University of Utah's Glen Canyon Project (Fig. 7, b) shows how they are similar in row number and cob size.

Echo Cave, 42Sa583, Pueblo III
(Lipe, et al., 1960)
There was considerable disturbance and mixing of deposits in this site, but where there was enough corn from a feature to give an adequate sample, it was apparent the mixing was far from complete. For example, corn from Feature 38 (Figs. 7, c, 8) had more mature, large cobs, many of them tapered, and softer glumes than corn from most other features. Feature 69 corn included many runty cobs with spikelets which did not bear grains. Feature 68 had some large cobs which approached some modern Pueblo corn in size and in the hard glumes. Many cobs bore remnants of the basal tips of grains, indicating that the grains had been removed when the corn was still moist and basal grain tissues weak. This lot of corn seems to have matured late and was gathered before it had completely matured and dried in the field. The presence of a cotton boll suggests that cotton may have been grown here, and the growing season was not exceptionally short.

Most grains found here, loose or on cobs, were medium hard yellow flints.

Table 4. CORN FROM 42Sa583: PERCENT OF COBS
WITH EACH ROW NUMBER

Feature	$\frac{\text { Rows of Grains }}{}$					Total Cobs
5	8	10	12	14	16	
16		21%	65%	14%		14
18	21%	36%	34%	9%	33	
23	37%	25%	38%		8	
25	26%	26%	38%	10%		50
22	17%	11%	61%	5%	6%	18
51	20%	20%	56%	4%	25	
60	10%	32%	54%	4%	28	
57	46%	27%	27%		26	
	17%	33%	50%		12	

Doll Ruin, 42Sa585, Pueblo III (Lipe, et al., 1960)

Many of the cobs from this site were only partially developed, probably from secondary ears, but there is considerable diversity in cob sizes, shapes, character of the glumes, and in cob colors. Although there are more undeveloped cobs here than in 42 Sa 583 (Lipe, et al. , 1960), the corn is very similar (Figs. 7, d, 9).

Cotton boll fragments and string were found in this site.

Echo Cave Group, 42Sa588, Pueblo II- III (Lipe, et al., 1960)

The only corn from this site, 49 cobs gathered during the survey, was very much like that from 42 Sa 583 and 42 Sa 585 .

Crumbling Kiva, 42Sa597, MNA 6529 , Pueblo II-III (Lipe, 1960)

The corn from this site was very much like that from nearby sites of the same period. Cotton boll fragments and lint were present.

Defiance House, 42Sa598, Pueblo III
(Lipe, 1960)
About 80% of the pottery from this site showed ties with Mesa Verde, yet the corn was very much like that from Crumbling Kiva which had 80% Kayenta associated pottery. The following loose corn kernels were found:

$$
\begin{aligned}
& 52 \text { yellow flint } \\
& 7 \text { white flint } \\
& 7 \text { pink on white or yellow flint } \\
& 2 \text { cherry flint } \\
& 1 \text { white or yellowish medium dent. }
\end{aligned}
$$

When the corn from the various features of this site (and some other sites) is studied, it becomes apparent that the lots have varying amounts of several different kinds of corn.

Features 49, 56, and 95 have very few eight-rowed cobs, but many 10-, $12-$, and 14 -rowed cobs. There are no caches of a single kind of corn, as far as I can determine. Although the proportions of kinds of corn found in the features varies considerably, the figures for total corn of a site are remarkably uniform. This is probably true because the various sites grow roughly the same kinds of corn and the same proportions of each kind. No connection could be detected here, or in any other site, between the occurrence of bottle gourds, squashes, cotton and particular kinds of corn. It is possible that pepo is more often associated with older kinds of corn, mixta and cotton than with more recent kinds.

Gourd House, 42Sa619, Pueblo III and recent(?)
(Sharrock, et al., 1961)
About 17 almost whole and fragmentary shells of Cucurbita fruits were found on the surface of structure 1 . The three I examined were slightly immature fruits of a form of Cucurbita mixta cultivar Green Striped Cushaw, which was grown in this region from the A. D. 1000's to the present time by various Indian and white inhabitants. It has been suggested that these fruits were grown in recent times by cowboy or Indian users of the site. The eight corn cobs from this site did not help much in determining the age of the cucurbits. Although similar cobs occur in other prehistoric sites in this region, the same kinds (though not the dominant variety) are still grown by recent Ute and Navajo.

Table 5. ROW NUMBER AND PERCENTAGE OF TOTAL COBS FROM DEFIANCE HOUSE (42Sa598)

	Feature No.	No. Cobs	8	10	12	14	$16+$	C. SP.	PEPO		MIXTA
	4	24	4	46	25	25		2			
	8	44	18	18	50	11	2	8	1p		
	9	30	37	40	10	13					
	15	23	33	9	42	4	9		2p	1p	24 r
	47	53	18	26	45	14	2	7		4 p	
	49	23	4	43	35	17		20	1 p ?		
$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	56	35	6	34	46	11	3	10			
	62	23	26	17	39	17		5			
	65	31	19	35	26	13	7	10		1 p ?	
	69	79	16	42	28	10	4	44		2 p ?	
	83	10	40	20	20	20		26	10s	4 p	5s
	95	29	3	31	45	21		2			
	102	25	28	32	36	4		21			
	108	31	19	26	48	3		9	3p	1p	
	175	27	12	41	37	12	4	31	1p	1p	2s
	178	27	41	16	37	12					

$$
\begin{aligned}
& \text { Mosquito Cave, } 42 \text { Sa643, Pueblo II- III } \\
& \text { (Lipe, et al. , 1959) }
\end{aligned}
$$

At this site where Kayenta pottery is dominant, slightly more 16-rowed cobs were found than in most sites. This probably is the result of chance preservation of a selected lot of 16 -rowed corn rather than an indication of differences in the kinds of corn grown. Similar kinds of corn are found in nearby sites, including Mat House, 42Sa6 46 (Lipe, et al., 1960).

Ax Groove Alcove, 42Sa693, Pueblo II-III, MNA 6890 (Sharrock, et al., 1961)

A bell-shaped pit contained a C. pepo fruit with the upper part cut off and the flesh removed to make a $2 \overline{9} .0 \mathrm{~cm}$. dia. and 22.0 cm . tall storage container. The opening was about 10.0 cm . in dia., with rough and incurved edges. The incurving and the relatively thin walls (as compared to other pepo vessels in this region) indicate that the fruit was slightly immature when harvested. A design of a horizontal line with a zig-zag above it was scraped through the outer skin. This vessel is pictured in Sharrock, et al., 1961, Fig. 93, b.

Most of the corn from this site came from surface collections and part of it from collections of the Museum of Arizona. The site had been disturbed by pot hunters. The corn agrees well with that from other sites of the same period in this region (Fig. 7, e).

Bernheimer Alcove, 42Sa736, Basketmaker- Pueblo III (Sharrock, et al., 1963)

Although a cache of corn cobs within a cedar bark covering probably was hidden as whole ears, the grains were removed by rodents. There were, however, no teeth marks apparent on the cobs or grains.

A bundle of cedar bark contained 16 quite uniform cobs, one of them with a few cherry-colored flint grains (Fig, 10). . It is likely that the ears were entire when they were cached and rodents removed most of the grains. All of the ears probably had deep cherry-colored flint grains, purple cobs and resembled the purple dye corn called "koko'ma" by the Hopi (Whiting, 1939; Brown, Anderson and Tuchawena, 1952). Sharrock, Day and Dibble (1963) indicate that the bundle was similar to one described
and pictured by Hurst and Anderson (1949) which had been taken from Cottonwood Cave, a Basketmaker site in Utah. Fourteen selected ears, complete with grains, and approximately one gallon of shelled corn were found in that bundle.

Table 6. COMPARISON OF CORN FROM COTTONWOOD CAVE

AND BERNHEIMER ALCOVE

Site	Percent of Ears of Each Row Number			
	12 rows	14 rows	16 rows	18 rows
Cottonwood Cave	21%	43%	36%	
Bernheimer Alcove	38%	31%	25%	6%

The number of cobs in each bundle, the percent of each row number, and the shapes and sizes were remarkably similar. The only cob with some grains from Bernheimer Alcove had flint grains, as did all the cobs from Cottonwood Cave.

The major difference was in the color: Except for one red, the Cottonwood Cave ears were yellow, while it is likely that all the Bernheimer Alcove ears were deep red or purple. This similarity does not mean that the Bernheimer Alcove bundle must date from the same period, although this appears likely. Similar corn has been grown for a long time in the Southwest by many Indian groups. It is still grown today by most Pueblos, although the most similar found today is among the Hopi and Zuni. Most dye corn in the Rio Grande Pueblos has slightly larger cobs, harder glumes than dye corn of the Hopi, and frequently shows some signs of denting. Dye corn is widespread, from Chile to the Southwest. It is often one of the most conservative kinds of corn in the places it is grown.

Table 7. ROW NUMBER AND RACE CLASSIFICATION OF TOTAL COBS
FROM FREMONT AND PUEBLO SITES

Site	Culture or Period	No. of Cobs	8	10	$\begin{gathered} \text { Row No } \\ 12 \\ \% \text { of Total } \\ \hline \end{gathered}$	S. $\begin{gathered} 14 \\ \text { Cobs } \end{gathered}$	16+	C. SP.	$r \frac{\text { Pep }}{\text { S }}$			$\frac{\text { Iixta }}{S} p$
42 Ka 443	P II-III	24	29	29	38	4		64 r	2	2		26
42 Ka 770		7	29	14	43	14						
42 Ka 771	P II	18	22	33	39	6						
42 Ka 872	P II-III	5	40		40	20		1 r				
42 Ka 877		3		67		33						
42 Ka 878	P II-III	18	28	39	33							
42 Ka 879	P II-III	26	23	35	38		4	4 r				
42 Ka 883		7	29	29	42							
42 Ka 901	P II-III	8	25	25	50							
42 Sa 267		1		100								
42 Sa 303	P III	1			100							
42 Sa 305		7		29	57	14						
$42 \mathrm{Sa317}$		4	50		50							
42 Sa 321		3		100								
42 Sa 323	P III	14	14	29	43	7	7					
42 Sa 324		22	41	32	18	9						
42 Sa 350	P II-III	1				100						
42Sa356		4	25		75							
42Sa364	P III	73	23	34	36	4	3	16 r	1725			
42 Sa 366	P II-III	108	29	27	41	2	1	33 r	2	3		18
42Sa367	P II-III	3		33	67			1 r				
42 Sa 368	P II-III											
42Sa370		1				100						
42 Sa 373	P II-III	2			100							
42 Sa 377	P III	48	15	58	25	2		12 r	2			
42 Sa 378	P II-III	6	17	33	33	17						
42Sa380	P II-III	1	100									
42Sa389	P II-III	5	40	40		20						
$42 \mathrm{Sa3} 95$		42	45	29	19	7		4 r		3		
42Sa413	P II-III	153	33	33	31	3		25 r		8	3	
42Sa440	P II-III	8	12	25	63							
42Sa450	P II-III	10	10	10	60	20						
42Sa 509	P III	2		50	50							
42Sa528	P I	1			100							
42Sa545		19		16	53	21	10					
42Sa 555	P II-III	1			100							
42 Sa 566	P III	9	12	44	44			15 r	47			1
42Sa576	P II-III	889	18	35	39	6	2	139r	35	23		
42Sa577	P III	5	20	20	40		20					
42Sa 578	P II-III	7		43	29	14	14					
42 Sa 583	P III	897	17	30	44	7	2					
42Sa585	P III	101	17	25	49	6	3					
42Sa588	P II-III	49	20	28	40	12					10	
42 Sa 597	P II-III	62	23	27	42	6	2	26 r				
42 Sa 598	P III	856	21	31	35	11	2	606	13	12		5424
42 Sa 606	P III	2			100							
42 Sa 613		2			100							
42Sa616	P III	17		23	59	12	6					
42Sa619	P III	8	12	12	76						3	
$42 \mathrm{Sa624}$	P II-III?	3	67		33							
42Sa633	P II-III ?	7	29	29	42							
42Sa639		3		67		33						
42Sa640	P III	3			100							
42 Sa 643	P II-III	71	16	24	39	10	11	8 r		2		1
42 Sa 646	P III	81	22	28	45	5		4 r				
42Sa658	P III	5		40	40	20						
42Sa662	P II-III?	6	33	33	33							
42 Sa 663		2	50		50							
42Sa664	P II-III	5		40	60							

Site	Culture or Period	No. of Cobs	8	10	$\begin{gathered} \text { ow N } \\ 12 \end{gathered}$ Tota		$16+$	C. SP.	${ }^{\frac{\text { Pepo }}{s}_{\mathrm{s}}^{\mathrm{p}}}$	$\frac{\text { Mixta }}{r \mathrm{~s} p}$	
42Sa665	P II-III	2		50			50				
42Sa669	P III	31	18	28	44	7	3	2 r			
42 Sa 681	BM II + PIII	4		25	50	25					
42Sa685		4			100						
42Sa689	P II-III ?	1	100					1 r			
42Sa693	P II-III	101	19	30	40	8	3			1	
42Sa702		1		100							
42Sa736	P III Cache	43			38	35	25	2 r			
42 Sv 5	Fremont	37	3	13	62	11	11				
42Un79	Fremont	5			40	40	20				
42Un82	Fremont	1			100						
42Wn19	Fremont	1			100						
42 Wn 20	Fremont	1			100						
42 Wn 105	Fremont	3			67	33					

Table 8. PERCENT OF COBS OF EACH ROW NUMBER FOUND IN SELECTED SITES AND LEVELS

| | | Rows of grains | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Total Cobs | 8 | 10 | 12 | 14 | 16 |

Basketmaker II and III

MNA 7523 B, near Navajo Mountain,	697	11%	14	47	18
Arizona-Utah		222	1	23	47
Mummy Cave, Canyon de Chelly	322	9	22	46	18

Pueblo I and II
Mesa Verde sites 1676

Antelope Cave, northern Arizona 1,022
MNA 2520, Turkey Cave, Test I and 74
2, Levels 4-7

Kiet Siel
133

Pueblo I to early Pueblo III
MNA 2520, Turkey Cave, Test 1 and
126
2, Levels 1-3
Pueblo III

Mesa Verde, Step House	5,932	30	34	28	1	0
Mesa Verde, Long House	2,171	42	35	21	1	0
Mesa Verde, Mug House	3,621	46	37	15	2	0
Betatakin	83	28	38	30	4	0
Kiet Siel	349	38	39	20	3	0
rom West Central New Mexico						
O-Block Cave, New Mexico, Reserve Phase, A. D. 1000-1100	59	46	27	17	8	2
O-Block Cave, Three Circle Phase, A. D. 900-1000	136	52	29	12	6	1
Tularosa Cave, New Mexico	250	73	21	4	1	1
San Francisco Phase$\text { A.D. } 700-900$						
Tularosa Cave	119	35	19	29	13	5
Georgetown Phase A. D. 500-700						

Fig. 2 Corn grains. a-f, kinds of corn grains; g-k, grains from 42 Ka 276 ; g, flour; h, flint; i, flint; j. flint-dent; k, dent.

Fig. 3 Squash fruit stems. Left two are Cucurbita pepo, right two are Cucurbita mixta.

Fig. 4a Diagram of cupule width and rows of grains (42Ga34)
Fig. 4b Diagram of cupule width and rows of grains (42Kal72, FS6)
Fig. 4c Diagram of cupule width and rows of grains (42Ka274)
Fig. 4d Diagram of cupule width and rows of grains (42Sa276)
Fig. 4e Diagram of cupule width and rows of grains (42Sa324)
Fig. 4f Diagram of cupule width and rows of grains (42Sa366, FS39)

Fig. 5 Six cobs on sticks from 42 Kal 72 , Feature 93

ig. 6 Cobs on sticks from $42 \mathrm{Kal78}$ FS 18. The taper, many rows, and the soft glumes suggest that these were Fremont culture flour-dent corn.

Fig. 7 a Diagram of cupule width and rows of grains (42Sa576, surface)
Fig. 7 b Diagram of cupule width and rows of grains (42Sa576, FS93)
Fig. 7c Diagram of cupule width and rows of grains (42Sa583, FS38)
Fig. 7d Diagram of cupule width and rows of grains 42Sa585, FS90-91)
Fig. 7e Diagram of cupule width and rows of grains (42Sa693, surface)
Fig. 7 f Diagram of cupule width and rows of grains (42Sa736, cache)

Fig. 8. A varied lot of good mature corn from 42 Sa583. Feature 38

Fig. 9. A mixed lot of good and runty ears, mature to slightly immature, from 42Sa585, Feature 90-91

Fig. 10. A cache of 16 uniform ears probably saved for seed or special use, from 42 Sa 736

$\stackrel{\vdots}{\bullet}$
Fig. 11 a. Diagram of cupule width and rows of grains (Sheet Gulch)
Fig. 11 b . Diagram of cupule width and rows of grains (lower Escalante)

Fig. 11 c. Diagram of cupule width and rows of grains (42Sv5)

Fig. 11 d Diagram of cupule width and rows of grains (upper Escalante)

- 2 G-

Fig. 12 a. Diagram of cupule width and rows of grains (42 Un95)

Fig. 12 c. Diagram of cupule width and rows of grains (Moenkopi Pueblo).

Fig. 12 b . Diagram of cupule width and rows of grains (42Sv5)

Fig. 12 d. Diagram of cupule width and rows of grains (42Un95, FS408).

DISCUSSION OF FIGURES

Overlaps in most characters used to define cultivated forms are a result of the ease with which corn crosses--the many different kinds grown by Indians, the mixture of primary, secondary, and tiller ears gathered at different states of maturity, the harvest of ears from good and poor fields, and other factors. Although diagrams using many characters can be constructed, a simple graph of central cob diameter, measured by cupule width, and rows of grains is the most useful device I have found for demonstrating basic similarities and differences in cobs.

Clusters of points on diagrams of cob size, and rows of grains coincide with clusters formed by related or identical corn cultivars; those still in existence or verified by substantial archeological collections of ears with grains found in caches.

In the diagrams most cobs with central cob diameter less than 1.7 cm . and more than 1.2 cm . belong to the Pima-Papago corn race segregates, Onaveño, Mais Blando, and Eight-rowed. Cobs with 12 to 16 rows of grains and small cupules have large amounts of Reventador and Chapalote germplasm. Pure forms of these last two races were not found in Glen Canyon.

Most cobs above the 1.7 cm . cob diameter line approach the race called Pueblo (Anderson and Cutler, 1942) and probably have some vigor introduced by crossing with dent corn. This is especially true of cobs with 12 or more rows of grains. The large white corn from Moencopi, a Hopi Pueblo, plotted in the upper left of Fig. 11, d, is a slightly dented form of an ancient flour corn still grown by the Hopi and by the Mohave (see the scattered squares in Fig. 12, d). Large cobs with 8 or 10 rows of grains are likely to be vigorous examples of Eight-rowed corn, because denting usually is linked with more than 12 rows of grains.

No consistent differences have been seen in the corn of Mesa Verde, Kayenta, or Virgin branch sites. Slight differences in sampling or age could distort the samples. Mesa Verde sites may have a few more eight-rowed cobs, but such an increase would occur if the Mesa Verde sites were slightly later in date or occupied less favorable locations.

To make figures comparable, 20% has been added to cupule width for carbonized cobs from $42 \mathrm{Ga} 34,42 \mathrm{~Sv} 5$, and 42 Un 95 . This figure is an estimate of the shrinkage during carbonization.

Fig. 4, a. No Fremont influence is apparent. This site, 42Ga34, had fewer 8-and 14 -rowed cobs than most early Pueblo III sites.

Fig. 4, b. 42 Ka 172 had some dent kernels in the upper levels, but no Fremont culture influence could be detected in the corn.

Fig. 4, c. Cobs from 42 Ka 274 resembled those from 42 Ka 172 . They may be a bit later because there are slightly fewer rows of grains.

Fig. 4, d. These cobs from 42 Ka 276 showed a further shift to fewer rows of grains when compared to Figs. 4, b and 4, c.

Fig. 4, e. Runty cobs and many small eight-rowed cobs suggest marginal conditions or a late harvest of secondary and tiller ears. Cupule size was relatively normal and suggests that under better conditions, or as major ears, the same seed could have produced good ears. If runty, eight-rowed ears are excluded, this sample resembled most others from late BMIII to early PIII sites in this region.

Fig. 4, f. There was less diversity in this lot of corn from 42Sa366 than is usually found in this region; few cobs were large and few eight-rowed.

Fig. 5. Most cobs, which apparently were saved for seed or other special use, had more rows of grains than the average for Glen Canyon. Apparently man selected for more rows of grains while adverse conditions favored fewer rows. Other lots of corn from this site showed the usual distribution of corn types (see Table 7).

Fig. 6. All of these selected cobs, from a seasonably occupied Virgin branch site, probably were slightly dented. The central pair probably was the most dented and approached some of the extreme Fremont culture dents.

Fig. 7, a. This surface collection of cobs from 42 Sa 576 was like the following lot, but had a few more large cobs. This probably results from drifting of larger objects to the surface when the surface is disturbed.

Fig. 7, b. Cobs excavated from Feature 93 of 42 Sa 576.
Fig. 7, c. This lot of cobs from 42Sa 583 Feature 38 was larger and more mature than the average for the site, but still falls within the general pattern (Fig. 7). The averages for the 897 cobs from this site (Table 7), which had 75% Kayenta pottery and 25% Mesa Verde pottery, were very much like the averages for 900 cobs from 42 Sa 576 , which had 61% Kayenta pottery and 32% Mesa Verde pottery.

Fig. 7, d. This lot, from 42Sa585, Features 90-1, was a mixture of secondary and tiller cobs with those from main ears. There were fewer 10 -rowed cobs than usual (Fig. 9).

Fig. 7, e. Cobs from 42Sa693. Note the similarity in distribution of points on the diagrams for general collections from Glen Canyon. Such coincidence could occur only if frequent interchange of seeds and similar standards or ideals for the selection of seed existed.

Fig. 7, f. These are 16 cobs from a cache, Feature 75 of 42 Sa 736 (Fig. 10).

Fig. 8. This is a varied lot of good mature cobs (Fig. 7). Some, like the cob in the lower right, had broken glumes and fragments of grain tips left after removal of the grains when still moist. The ears shown on the left and right of the top row were shelled when completely mature and dry. They show soft, entire glumes and no traces of grain tips.

Fig. 9. This is a lot from Features 90-1 (Fig. 7, d).
Fig. 10. These 16 uniform cobs were slightly tapered and probably all had slightly flinty, deep-red kernels. The cobs, now faded, once were deepred.

Figs. 11 and 12 were discussed earlier in the text.

BIBLIOGRAPHY

Anderson, Edgar

1944 Homologies of the Ear and Tassel in Zea Mays. Annals of the Missouri Botanical Garden, Vol. 31, pp. 325-343.

1948 Racial Identity of the Corn from Castle Park (Dinosaur National Monument). University of Colorado Studies, Series in Anthropology, No. 2, pp. 91-2.

1959 Zapalote Chico: An Important Chapter in the History of Maize and Man. Actas del 33 Congrese Internacional de Americanistas, pp. 230-7. San Jose.

Anderson, Edgar and H. C. Cutler
1942 Races of Zea Mays: I. Their Recognition and Classification. Annals of the Missouri Botanical Garden, Vol. 29, pp. 69-88.

Awasthi, Priti
1962 On the Morphology of the Pollen Grains of Two Species of Cucurbita L. Pollen et Spores, Vol. 4, No. 2, pp. 263-8. Paris.

Brown, W. L., E.G. Anderson, and Roy Tuchawena, Jr.
1952 Observations on Three Varieties of Hopi Maize. The American Journal of Botany, Vol. 39, No. 8, 11. 597-609.

Carter, G. F.
1945 Plant Geography and Culture History in the American Southwest. Viking Fund Publications in Anthropology, No. 5.

Carter, G. F. and Edgar Anderson
1945 A Preliminary Survey of Maize in the Southwestern United States. Annals of the Missouri Botanical Garden, Vol. 32, pp. 297-324.

Castetter, E. F. and W. H. Bell
$1942 \quad$ Pima and Papago Indian Agriculture. University of New Mexico
Cushing, Frank H.
1920 Zuni Breadstuffs. Museum of the American Indian, Indian Notes and Monographs, Vol. 8. New York.

Cutler, Hugh C.
1944 Medicine Men and the Preservation of a Relict Gene in Maize. Journal of Heredity, Vol. 35, pp. 290-4.

1963 Plant Remains from a Grand Canyon Rock Shelter Granary. American Antiquity, Vol. 28, No. 3, p. 301. Salt Lake City.

1964a Corn from the Carter Ranch Site. Fieldiana: Anthropology, Vol. 55, pp. 227-234.

1964b Plant Materials from Four Cummings Mesa Sites. Museum of Northern Arizona Bulletin, No. 39, p. 102. Flagstaff.

1965 Vegetal Remains; Corn and Cucurbits. A Survey and Excavation of Caves in Hidalgo County, New Mexico. School of American Research Monograph, No. 25, pp. 90-4. Santa Fe.
n. d. Plant Remains from Sites near Navajo Mountain, Utah. $\frac{\text { Museum of Northern Arizona Bulletin, Glen Canyon Series, }}{\text { (in press). }}$

Cutler, Hugh C. and J. W. Bower
1961 Plant Materials from Several Glen Canyon Sites. Museum of Northern Arizona Bulletin, Glen Canyon Series No. 3,

Cutler, Hugh C. and M. C. Cutler
1948 Studies on the Structure of the Maize Plant. Annals of the Missouri Botanical Garden, Vol. 35, No. 3, pp. 301-16.

Cutler, Hugh C. and Marcia Eickmeier
1965 Corn and Other Plant Remains from Four Sites in Hidalgo County, New Mexico. In School of American Research Monograph, No. 26, pp. 48-55. Santa Fe.

Cutler, Hugh C. , and Winton Meyer
1965 Corn and Cucurbits from Wetherill Mesa in Contributions of the Wetherill Mesa Archeological Project, Osborne (Assembler). Memoirs of the Society of American Archeology, Vol. 31, No. 2, pp. 136-152. Salt Lake City.

Cutler, Hugh C. and T. W. Whitaker
1961 History and Distribution of the Cultivated Cucurbits in the Americas. American Antiquity, Vol. 26, No. 4, pp. 469-485. Salt Lake City.

Cutler, Hugh C., T. W. Whitaker, and R. S. Mac Neish
n. d. Curcurbits from the Tehuacan Caves, State of Pueblo, Mexico. (in press)

Emerson, R. A. and H. H. Smith
1950 Inheritance of Kernel Rows in Maize. Cornell University Agricultural Experiment Station Memoir, No. 296, pp. 1-30.

Fowler, Don D.
19631961 Excavations, Harris Wash, Utah. University of Utah Anthropological Papers, No. 65, Upper Colorado Series, No. 9. Salt Lake City.

Galinat, W. C. and J. H. Gunnerson
1963 Spread of Eight-rowed Maize from the Prehistoric Southwest. Botanical Museum (Harvard University) Leaflets, Vol. 20, No. 5, pp. 117-160. Cambridge.

Gentry, H. S.
1956 A New Gossypium from Michoacan, Mexico. Madrono, Vol. 13, pp. 261-5.

Gunnerson, James H.
19591957 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 43, Glen Canyon Series, No. 10. Salt Lake City.

Hurst, C. T. and Edgar Anderson
1949 A Corn Cache from Western Colorado. American Antiquity, Vol. 14, No. 3, pp. 161-7. Salt Lake City.

Hutchinson, Sir Joseph
1965 Essays on Crop Evolution. Cambridge University Press, Cambridge.

Hutchinson, J. B., and B. J. S. Lee
1958 A New Species of Gossypium from Central Tanganyika. New Bulletin, Vol. 13, pp. 221-3.

Jones, Volney H.
1955 Plant Materials from a Cave in Zion National Park, (ZNP-21). University of Utah Anthropological Papers, No. 22, pp. 183204. Salt Lake City.

Kent, Kate P.
1957 The Cultivation and Weaving of Cotton in the Prehistoric Southwestern United States. Transactions of the American Philosophical Society, Vol. 47, pp. 457-732. Philadelphia.

Lipe, William D.
19601958 Excavations, Glen Canyon. University of Utah Anthropological Papers, No. 44, Glen Canyon Series, No. 11. Salt Lake City.

Lipe, William D., et al.
19601959 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 49, Glen Canyon Series, No. 13. Salt Lake City.

Lister, Robert H.
1959 The Coombs Site. University of Utah Anthropological Papers, No. 41, Glen Canyon Series, No. 8. Salt Lake City.

Lister, Robert H., J. Richard Ambler and Florence C. Lister
1960 The Coombs Site. University of Utah Anthropological Papers, No. 41, Glen Canyon Series, No. 8, Pt. II. Salt Lake City.

Lister, Robert H. and Florence C. Lister
1961 The Coombs Site. University of Utah Anthropological Papers, No. 41, Glen Canyon Series, No. 8, Pt. III. Salt Lake City.

Martin, Paul S., J. B. Rinaldo, E. A. Bluhm, and Hugh C. Cutler
1956 Higgins Flat Pueblo, Western New Mexico. Fieldiana: Anthropology, Vol. 45, pp. 1-218.
Martin, Paul S., J. B. Rinaldo, Elaine Bluhm, Hugh C. Cutler, and Roger Grange, Jr.
1952 Mogollon Cultural Continuity and Change. The Stratigraphic Analysis of Tularosa and Cordova Caves. Fieldiana: Anthropology, Vol. 40, pp. 1-528. Chicago.

Martin, Paul S. and Floyd W. Sharrock
1964 Pollen Analysis of Prehistoric Human Feces: A. New Approach to Ethnobotany. American Antiquity, Vol. 30, No. 2, Pt. I, pp. 168-180. Salt Lake City.

Nickerson, N. H.
1953 Variation in Cob Morphology Among Certain Archaeological and Ethnological Races of Maize. Annals of the Missouri Botanical Garden, Vol. 40, pp. 79-111.

Saunders, J. H.
1961 The Wild Species of Gossypium and Their Evolutionary History. Oxford University Press, London.

Sharrock, Floyd W., et al.
19611960 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 52, Glen Canyon Series, No. 14. Salt

Sharrock, Floyd W., Kent C. Day and David S. Dibble
19631961 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 63, Glen Canyon Series, No. 18. Salt Lake City.

Sharrock, Floyd W.
19641962 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 73, Glen Canyon Series, No. 25. Salt Lake City.

Smith, C. E., Jr. and R. S. MacNeish
1964 Antiquity of American Polyploid Cotton. Science, Vol. 143, No. 3607, pp. 675-6.

Stephens, S. G.
1958 Salt Water Tolerance of Seeds of Gossypium Species as a Possible Factor in Seed Dispersal. American Naturalist, Vol. 92, No. 863, pp. 83-92.

Suhm, Dee Ann
1959 Extended Survey of the Right Bank of the Glen Canyon. In Fowler, Don D., 1959. The Glen Canyon Archeological Survey. University of Utah Anthropological Papers, No. 39, Glen Canyon Series, No. 6, Pt. I, pp. 163-284. Salt Lake City.

Taylor, Dee C.
1957 Two Fremont Sites and their position in Southwestern Prehistory. University of Utah Anthropological Papers, No. 29. Salt Lake City.

Weller, Ted
1959 San Juan Triangle Survey. In Fowler, Don D., 1959. The Glen Canyon Archeological Survey, University of Utah Anthropological Papers, No. 39, Glen Canyon Series, No. 6, Pt. II, pp. 543-675. Salt Lake City.

Wellhausen, Edwin J.: L. M. Roberts, and E. Hernandez X.
1952 Races of Maize in Mexico, Their Origin, Characteristics and Distribution. Bussey Institute, Harvard University. Jamaica Plain.

Whitaker, T. W. and G. F. Carter
1954 Oceanic Drift of Gourds-Experimental Observations. American Journal of Botany, Vol. 41, pp. 697-700.

1961 Notes on the Longevity of Seeds of Lagenaria siceraria after Floating in Water. Torrey Botanical Club Bulletin, Vol. 88, pp. 104-6.

Whitaker, T. W and Hugh C Cutler
1965 Cucurbits and Cultures in the Americas. Economic Botany, Vol. 19, pp. 344-9.

Whitaker, T. W., Hugh C. Cutler, and R. S. MacNeish
1957 Curcurbit Materials from Three Caves near Ocampo, Tamaulipas. American Antiquity, Vol. 22, No. 4, pp. 352-8. Salt Lake City.

White, L, A.
1945 Notes on the Ethnobotany of the Keres. Papers of the Michigan Academy of Science, Arts, and Letters, Vol. 30, pp. 557-568.

Whiting, Alfred F.
1939 Ethnobotany of the Hopi, Museum of Northern Arizona Bulletin, No. 15, pp. 1-120. Flagstaff.

ADDENDUM

A TABULAR SUMMARY OF PLANT AND ANIMAL RESOURCES OF THE GLEN CANYON AREA

Part 1

Ethnohistorically Reported Uses of Plants in the Glen Canyon Area

Part 2

Botanical Species of the Glen Canyon Area

Part 3

Species Other Than Floral Reported From Glen Canyon and Represented in Archeological Collections
by
Susan R. Clark

NOTE

It should be noted that the species shown in the following tabulation do not necessarily represent a complete inventory of the Glen Canyon biota. It is merely a composite list derived from the published material in the sources cited on pages 113 to 116 .

Part 1. Ethnohistorically Reported Uses of Plants in the Glen Canyon
Area, Arranged Alphabetically by Common Name

Plants Reported to Have Been Used for Food, Medicine, and/or Magic

Acanthochiton (1) $*$
Almond (1)
Apple (1)
Apricot (1)
Aster (5)
Ball Cactus (1)
Beebalm (1)
Biscuit Root (1)
Blazing Star (1)
Bladderpod (1)
Bluebell (1)
Brickellbush (1)
Buckwheat (3)
Bull Nettle (1)
Cancer Root (1)
Cane Cactus (2)
Cardinal Flower (1)
Carrot (1)
Cattail (1)
Chamaesaracha (1)
Chamaesyce (1)
Cherry (1)
Chili Pepper (1)
Clammy Weed (1)
Clematis (1)
Cloakfern (1)
Cockerell (1)
Cocklebur (1)
Colorado Rubber Plant (1)
Coneflower (1)
Coriander (1)
Corn Smut (1)
Crownbeard (1)
Cryptanthe (2)
Cucumber (1)

Cymopteris (1)
Dandelion (1)
Deer's Ears (1)
Dicoria (1)
Dock (1)
Dogwood (1)
Douglas Spruce (1)
Dove Weed (1)
Earth Star (1)
Evening Primrose (4)
Fennel (1)
Flax (2)
Fleabane (1)
Gaillardia (1)
Gaura (1)
Gilia (3)
Globe Mallow (2)
Golden Aster (1)
Golden Rod (3)
Goosefoot (4)
Ground Cherry (3)
Hedgehog Cactus (1)
Hoffmanseggia (1)
Hop (1)
Horsebush (1)
Hymenopappus (2)
Indian Rice Grass (1)
Jerusalem Artichoke (1)
Jimson Weed (1)
Joint-fir (4)
?Kallstroemia (1)
Knotweed (1)
Larkspur (1)
Lettuce (1)
Leucelene (1)

Lily (1)
Lithospermum (1)
Locoweed (3)
Lupine (1)
Lycium (1)
Machaeranthera (1)
Mesquite (1)
Mint (2)
Mule Ears (1)
Mullen (1)
Muskmelon (1)
Nuttallia (1)
Onion (3)
Onosmodium (1)
Oxytenia (1)
Parosela (2)
Peanut (1)
Pear (1)
Phorandendron (2)
Plantain (1)
Praire Clover (1)
Prickley Pear Cactus (4)
Prince's Plume (2)
Puffball (1)
Purslane (2)
Radish (1)
Reverchonia (1)

1) Rock Pine (1)

Rorripa (1)
Rush Pink (1)
Safflower (1)
Sand Verbena (1)
Sandwort (1)
Scurf-pea (1)
Seepweed (1)
*The number following the common name refers to the number of species of that genus reported to have been used.

Sericotheca (1)
Sorghum (1)
Spiderwort. (1)
Spleenwort (1)
Spurge (4)
Stickleaf (2)
Strawberry (1)

Thistle (6)
Thoroughwort (1)
Tobacco (2)
Tomato (1)
Townsendia (1)
Umbrella Wort (1)
Watermelon (1)

Water Parsnip (1)
Western Wallflower (1)
Wild Potato and Tomato (1)
Willow-weed (1)
Winter Fat (1)
Wire Lettuce (3)
Yarrow (1)
Zinnia (1)

Plants Reported To Have Been Used as Food, Medicine, Magic, Tools and/or Utensils

Agave (1)
Apache Plume (1)
Barberry (1)
Bean (5)
Beargrass (1)
Beardtongue (2)
Bee-flower (2)
Box Elder (3)
Bulrush (2)
Chokecherry (1)
Cliff Rose (1)
Coreopsis (1)
Corn (1)
Cotton (2)
Cottonwood, Aspen (5)
Creeping Buttercup (1)
Cucurbit (4)
Currant, Wild (1)
Dropseed (4)
Fetid-Marigold (2)

Four o'clock (4) Rabbitbrush (4)
Galleta Grass (1) Ragweed (1)
Giant Reed (1) Reed Cane (3)
Groundsel (2)
Hackberry (1)
Hairgrass (2)
Holly Grape (1)
Horsetail (2)
Indian Paintbrush (1)
Juniper (3)
Milkweed (3)
Mahogany (1)
Navajo Tea (3)
Oak (2)
Parryella (1)
Peach (1)
Pigweed (4)
Pinyon Pine (1)
Ponderosa Pine (1)
Psilostrophe (1)

Rhubarb, Wild (1)
Rose, Wild (2)
Rush (2)
Sagebrush (7)
Saltbush (6)
Sandgrass (1)
Serviceberry (2)
Snakeweed (4)
Squawbush, Sumac (3)
Sunflower (4)
Tansy Mustard (3)
Thelypodium (1)
Unicorn Plant (2)
White Fir (1)
Willow (3)
Winged Pigweed (1)
Wislizenia (1)
Yucca (4)

Plants Reported to Have Been Used Only as Tools, Utensils, Fuel, etc.

Alder (1)
Beardgrass (1)
Boerhaavia (1)
Clubflower (1)
Dogbane (1)

Grama Grass (3)
Greasewood (1)
Ironwood (1)
Locust (1)

Osage Orange (1)
Panic Grass (1)
Waterbirch (1)
Wedelia (1)

Part 2. Botanical Species of the Glen Canyon Area Arranged Alphabetically by Genera

FERNS

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
$\frac{\text { Adiantum capillus-veneris* }}{\text { Maidenhair fern }}$	No	No	
$\frac{\text { Adiantum pedatum* }}{\text { Maidenhair fern }}$	No	No	Paint for prayer-sticks
$\frac{\text { Asplenium }}{\text { Spleenw } \frac{\text { trichomanes }}{\text { ort }}}$	No	Yes	None
$\frac{\text { Dryopteris filix-mas }}{\text { Shield fern }}$	No	Yes	None
$\frac{\text { Filix fragilis }}{\text { Brittle fern }}$	No	Yes	Medicine
$\frac{\text { Notholaena fendleri }}{\text { Cloak fern }}$	No	No	Yes
$\frac{\text { Pellea limitanea* }}{\text { Cliff } \frac{\text { brake }}{}}$		No	

FUNGI

$\frac{\text { Geaster sp. }}{\text { Earth star }}$	No	Yes	Medicine
$\frac{\text { Lycoperdon }}{\text { Puffball }}$	No	Yes	Food
Ustilago zeae	No	Yes	Medicine

Corn smut
Fungi, in general, was reported to have been used for food, body paint, and medicine.

GRASSES

Agropyron sp.*	Yes	Yes	
Wheatgrass			
Agropyron cristatum*	No	No	
Crested wheatgrass			
Agropyron smithii*	No	Yes	None
Colorado bluestem			
Agropyron spicatum*	Yes	No	
Bunch wheatgrass			
Agropyron trachycaulum*	Yes	No	
Slender wheatgrass			
Agrostis alba*	No	No	
Bentgrass, Red top			
Agrostis palustris**	No	No	
Creeping bent			
Agrostis semiverticillata*	No	No	
Water bentgrass			
Agrostis verticillata*	No	No	
Water bentgrass			
Alopecurus aristulatus	No	Yes	None
Rush grass			
Andropogon sp.*	Yes	Yes	
Bluestem			
Andropogon barbinodis*	No	No	
Bluestem			
Andropogon gerardi*	No	No	
Big bluestem			
Andropogon hallii*	No	No	
Sand bluestem			

[^1]

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
GRASSES (cont.)			
Imperata brevifolia	No	No	
Satintail			
Lycurus pheoides*	No	Yes	None
Wolftail, Texan timothy			
Muhlenbergia aspirifolia*	Yes	No	
Scratch grass			
Muhlenbergia pungens*	No	Yes	Brushes and brooms
Muhlenbergia, Purple hair grass			
Muhlenbergia rigens	No	Yes	Plume offering, magic
Hairgrass			
Muhlenbergia trifida	No	No	
Hair grass			
Munroa squarrosa*	No	No	
False buffalo grass			
Oryzopsis hymenoides*(Mesa also)	Yes	Yes	Food (esp. in famine), name
Indian rice grass			of clan
Panicum spp.**	No	Yes	
Panic-grass			
Panicum barbipulvinatum	No	Yes	Brooms
Panic grass			
Panicum obtusum ${ }^{*}$	No	Yes	None
Panic grass, Vine-mesquite			
Panicum tennesseense	No	No	
Panic grass			
Panicumivirgatum*	No	No	
Switchgrass			
Phalaris arundinacea	Yes	No	
Reed canary grass			
Phragmites communis*	Yes	Yes	General construction, tubular
Reed cane			pipes, pipe stems, weaving
			rods, musical instruments,
			prayer-sticks, name of clan,
			myth, ceremonially assoc. with
			bow and arrow
Phragmites phragmites	No	Yes	Arrows, game sticks
Reed cane			
Poa spp.*	No	No	
Muttongrass			
Poa bigelovii*	No	No	
Bigelow bluegrass			
Poa fendleriana* (Mesa also)	No	No	
Muttongrass			
Poa longiligula*	No	No	
Long-tongued muttongrass			
Poa nevadensis*	No	No	
Nevada bluegrass			
Poa secunda*	No	No	
Sandberg bluegrass			
Polypogon lapathifolium*	No	No	
Rabbitfoot			
Polypogon monspeliensis*	No	No	
Annual beardgrass			
Puccinellia airoides*	No	No	
Nuttall alkaligrass			
Sagittaria latifolia*	No	No	
Arrowgrass			
Sitanion hystrix**	No	Yes	None
Squirrel tail			
Sorghum vulgare	No	Yes	Food
Sorghum			

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.) Agave sp. Century plant, Mescal	Yes	Yes	Beverage, hunting and war lance shafts, preparation of ceremonial equipment, tinder, name of clan, trade
$\frac{\text { Agave kaibabensis }}{\text { Mescal }}$	No	No	
Agave utahensis*	Yes	No	Food
Utah yant, Century plant Agoseris glauca* Mountain dandelion	No	No	
$\frac{\text { Allionia coccinea }}{\text { Umbrella-wort }}$	No	Yes	Possible medicine
Allionia incarnata*	No	No	
$\begin{aligned} & \text { Allionia } \\ & \text { Allionia } \frac{\text { linearis* }}{\text { Allionia }} \end{aligned}$	No	Yes	None
Allium sp.	Yes	Yes	
$\frac{\text { Allium }}{\text { Onion }} \frac{\text { cernuum }}{}$	No	Yes	Food seasoning
$\frac{\text { Allium }}{\text { Onion }} \frac{\text { geyeri }}{}$	No	Yes	Food seasoning
$\frac{\text { Allium }}{\text { Wild }} \frac{\text { macropetalum }}{\text { onion }}$ (Mesa also)) No	No	
$\frac{\text { Allium }}{\text { Neva }} \frac{\text { nevadensis* }}{\text { wild onion }}$	No	No	
$\frac{\text { Allium }}{\text { Wild }} \frac{\text { recurvatum }}{\text { onion }}$	No	Yes	Food
$\frac{\text { Amaranthus }}{\text { Amarants }} \mathrm{spp} .$	Yes	Yes	Possible food
$\frac{\text { Amaranthus }}{\text { Tumbleweed }} \frac{\text { albus* }}{}$	No	No	
$\frac{\text { Amaranthus }}{\text { Pigweed, }} \frac{\text { blitoides }}{}{ }^{*}$ Tumbleweed	No	Yes	Food
$\frac{\text { Amaranthus }}{\text { Coxcombs }}$	No	Yes	Food coloring
$\frac{\text { Amaranthus graecizans* }}{\text { Amaranth }}$	No	No	
$\frac{\text { Amaranthus }}{\text { hurple ambides }} \text { pariculates }$	No	Yes	Rouge, ceremonial decoration
$\frac{\text { Amaranthus }}{\text { Pigweed }}$ retroflexus	No	Yes	Food
$\frac{\text { Ambrosia }}{\text { Ragweed }} \frac{\text { aptera }}{}$	No	No	
$\frac{\text { Amsonia eastwoodiae }}{\text { * }}$	No	No	
$\frac{\text { Androstephium }}{\text { Funnel lily }}$ breviflorum*	No	No	
Aplopappus sp.* Aplopappus	No	Yes	
$\frac{\text { Aplopappus }}{\text { Sunflowe }} \frac{\text { armenoides }}{}$	No	Yes	None
$\frac{\text { Aplopappus }}{\text { Sunflowe }} \frac{\text { drummondii }}{} \text { * }$	No	No	
$\frac{\text { Aplopappus gracilis* }}{\text { Aplopappus }}$	No	No	
$\frac{\text { Aplopappus }}{\text { Sunflowe }} \frac{\text { heterophyllis }}{}$	No	Yes	None
$\frac{\text { Aplopappus }}{\text { Sunflower }} \frac{\text { nuttallii }}{}$	No	Yes	None
$\frac{\text { Aplopappus }}{\text { Aplopappus }} \frac{\text { scopulorum* }}{}$	No	No	

Genera and Species Ar	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Apocynum sp.	Yes	No	Cordage, basketry
Apocynum cannabinum*	Yes	No	Basketry
Dogbane, Indian hemp			
Apocynum sibericum	No	No	
Dogbane			
Aquilegia micrantha*	No	No	
Columbine			
Arabis sp.*	No	No	
Rock cress			
Arabis lignifera (Mesa only)	No	No	
Rock cress			
Arabis pendulina (Mesa only)	No	No	
Rock cress			
Arabis perennans	No	No	
Rock cress			
Arabis pulchra (Mesa only)	No	No	
Rock cress			
Arachis hypogaca	No	Yes	Rarely cultivated (food)
Peanut			
Arenaria confusa	No	No	
Sandwort			
Arenaria eastwoodia	No	Yes	Medicine
Sandwort			
Arenaria fendleri*	No	No	
Sandwort			
Argemone intermedia*	No	No	
$\frac{\text { Prickly }}{}$ poppy			
Argemone platyceras*	No	No	
Prickly poppy			
Artemisia arbuscula*	No	No	
Sage			
Artemisia forwoodii	No	Yes	Medicine
Green sage			
Artemisia ludoviciana*	No	No	
Sagebrush			
Artemisia wrightii	No	Yes	Medicine, food
Wormwood			
Asclepias spp.	Yes	Yes	Food, medicine
Milkweed			
Asclepias capricornu*(Mesa also)) No	No	
Spider milkweed, Antelope horns			
Asclepias cryptoceras*	No	No	
Milkweed			
Asclepias funastrum	Yes	No	
Climbing milkweed			
Asclepias galioides	No	Yes	Food, weaving, prayer-sticks,
Milkweed			medicine
Asclepias involucrata*	No	Yes	Gum (chewing)
Milkweed			
Asclepias latifolia*	No	No	
Milkweed			
Asclepias speciosa*	No	Yes	Food
Milkweed			
Aster abatus*	No	No	
Mohave aster			
Aster arenosus (Mesa only)	No	No	
Aster			
Aster arvinsis*	No	No	

Genera and Species Ar	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Aster brachyactis*	No	No	
Aster			
Aster			
Aster commutatus*	No	No	
Aster			
Aster frondosus*	No	No	
Aster			
Aster glaucodes*	No	No	
Aster			
Aster hesperius	No	Yes	Medicine
Aster			
Aster incanopilosus	No	Yes	Medicine-magic
Aster			
Aster leucelene*	No	Yes	Medicine
Aster			
Aster spinosus*	No	No	
Aster			
Aster tanacetifolius*	No	Yes	Medicine, beverage (stimulant)
Tansy-led aster			
Astragalus spp.*	Yes	Yes	Ceremonial emetic ingredient
Locoweed			
Astragalus amphioxys	No	No	
Milk vetch			
Astragalus arctus*	No	No	
Locoweed			
Astragalus calycosus	No	No	
Locowee d			
Astragalus ceramicus imperfectus	us No	Yes	Occasional food
Locoweed			
Astragalus cophorus	No	No	
Locoweed			
Astragalus desperatus*	No	No	
Astragalus diphysus*	No	Yes	Food
Locoweed			
Astragalus gilensis*	No	No	
Astragalus humillimus	No	No	
Astragalus kentrophyta*	No	No	
Astragalus ${ }^{\text {lentiginosus }}{ }^{*}$	No	No	
Locoweed			
Astragalus nuttallianus*	No	No	
Astragalus praelongus	No	Yes	Occasional food
Astragalus preussii*	No	No	
Locoweed			
Astragalus sabulonum*	No	No	
Astragalus seculorum	No	No	
Astragalus sesquiflorus	No	No	.
Astragalus sophoroides	No	No	
Astragalus subcinereus*	No	No	
Locowee \bar{d}			
Astragalus tephrodes*(Mesa only)) No	No	
Milk vetch			
Astragalus thompsonae*	No	No	
Locoweed			
Astragalus zionis*	No	No	
Aulospermum sp.	Yes	No	
Indian parsnip			
$\frac{\text { Bahia woodhousei }}{\text { Thistle }}$	No	Yes	Medicine
Berula erecta	No	Yes	Medicine

Genera and Species Ar	Archeologically Recovered	Ethnohistorically Reported	Use
HER BS (cont.)			
Boerhavia erecta	No	Yes	To whip flies, to catch flies on stickly leaves and stems
Brickellia arguta*	No	No	
Brickellbush, small flowered			
Brickellia californicus (Mesa also)) No	Yes	None
Brickellbush			
Brickellia grandiflora	No	Yes	None
Brickellbush			
Brickellia longifolia*(Mesa also)	No	No	
Brickellbush			
Brickellia oblongifolius linifolius	No	Yes	Medicine
Brickellbush			
Brickellia scaber*	No	Yes	None
Brickellbush			
Brickellia watsonii*	No	No	
Brickellbush			
Bromus ciliatus	No	Yes	None
Fringed brome			
Calochortus sp. * (Mesa also)	Yes	Yes	
Sego lily			
Calochortus aureus	No	Yes	Food, ceremonially assoc. with
Mariposa lilynorthwest direction, clan nam ceremonial symbol			
Calochortus flexuosus*	No	No	
Mariposa lily			
Calochortus nuttallii*	No	No	
Sego lily			
Calycoseris parryi*	No	No	
Campanula parryi*	No	Yes	Medicine
Bluebell			
Campanula petiolata	No	Yes	None
Bluebell			
Capsicum annuum	No	Yes	Food, food coloring
Chili pepper			
Carduus ochrocentrus	No	Yes	Medicine
Thistle			
Carex spp.*	Yes	Yes	None
Sedge			
Carex kelloggii*	No	No	
Kellogg sedge			
Carex lanuginosa*	No	No	
Sedge			
Carex vulpinoides*	No	No	
Sedge			
Carthamus tinctorius	No	Yes	Food coloring
Safflower, false saffron			
Castilleja chromosa*(Mesa also)	No	No	
Indian paintbrush			
Castilleja linariaefolia*	No	Yes	Medicine, ceremonial paint, dye,
Indian paintbrush			personal adornment (flower), clan name, flower is prominent in art (decoration).
Centaurea picris	No	No	
Star-thistle, knapweed No No			
Chaenactus			
Chaenactis macrantha*	No	No	
False yarrow			
Chaenactis stevioides*	No	No	

Genera and Species Ar	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.) Reported			
Coriandrum sativum	No	Yes	Food, food flavoring
Corispermum hysopifolium*	No	No	
Bugseed			
Corispermum marginale*	No	No	
Bugseed			
Corispermum nitidum*	No	No	
Tickseed, Bugseed			
Corydalis aurea**	No	No	
Crassina grandiflora	No	Yes	Medicine
Zinnia			
Cressa truxillensis*	No	No	
Alkali weed			
Croton texensis*	No	Yes	Medicine
Croton, Dove weed			
Cryptanthe spp.*	No	Yes	
Cryptanthe			
Cryptanthe crassisepala*	No	Yes	Medicine
Cryptanthe			
Cryptanthe fendleri*	No	No	
Cryptanthe			
Cryptanthe flava*(Mesa also)	No	No	
Cryptanthe			
Cryptanthe jamesii	No	Yes	Medicine
Cryptanthe			
Cryptanthe micrantha*	No	No	
Cryptanthe ${ }^{\text {nevadensis }}$ *	No	No	
Cryptanthe pterocarya $*$ (Mesa also)	o) No	No	
Cryptanthe			
Cryptanthe recurvata*	No	No	
Cuscuta sp.	No	Yes	None
$\frac{\text { Cycloloma }}{\text { Winged }} \frac{\text { atriplicifolium }}{\text { pigweed }}$ *	No	Winged pigweed	
Cymopteris sp.	Yes	Yes	
Indian parsnip			
Cymopteris fendleri* (Mesa also)	No	No	
Cymopteris			
Cymopteris globosus*	No	No	
Cymopteris			
Cymopteris newberryi*	No	Yes	Food
Cymopteris			
Cyperus sp.*	No	No	
Sedge			
Cyperus erythrorhizos*	No	No	
Flatsedge			
Datura meteloides*	Yes	Yes	Chewed to induce visions, drug,
Sacred datura, Jimson weed			medicine, magic
Daucus carota*	No	Yes	Food
Carrot			
Delphinium scaposum*	No	Yes	Medicine, ceremony, clan name,
Larkspur			assoc. with southwest direction
Descurainia sp.	Yes	Yes	Paint, trade, food
Tansy mustard			
Descurainia halictorum	No	Yes	Clan name
Tansy mustard			
Descurainia obtusa*	No	No	
Tansy mustard			
Descurainia pinnata*	No	Yes	Pottery paint, food, clan name
Tansy mustard			
Dithyrea wislizeni	No	Yes	Medicine, beverage (intoxicant)
Spectacle pod			

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.) Meport			
Dicoria spp.	No	Yes	Possible food
Seepweed			
Whitlowgrass			
Dryopetalon sp.	Yes	No	
Dyssodia			
$\frac{\text { Dyssodia pentachaeta** }}{\text { Dyssodia }}$	No	No	
$\frac{\text { Dyssodia }}{\text { False }} \frac{\text { thurberi }}{\text { dog fennel }}$	No	No	
Eleocharis acicularis*	No	No	
Spike-rush			
Spike-rush			
Eleocharis montevidensis*	No	No	
Spike-rush			
Spike-rush			
Eleocharis parishii*	No	No	
Spike-rush			
Eleocharis rostellata*	No	No	
Spike-rush			
Elymus canadensis*	No	No	
Canadian wild-rye			
Encelia frutescens**	No	No	
Encelia			
Epilobium adenocaulon*	No	Yes	Medicine
Willow-weed			
Epipactis gigantea*	No	No	
Stream orchid, Giant helleborine			
Equisetum arvense*	No	Yes	Forage
Souring rush, Horsetail			
Equisetum hyemale*	No	No	
Western horsetail			
Equisetum kansanum*	Yes	No	
Kansas horsetail			
Equisetum laevigatum*	No	Yes	Possible sacred bread
Horsetail			
Equisetum praealtum*	Yes	No	
Tall horsetail			
Eragrostis diffusa	No	Yes	None
Lovegrass			
Eremocrinum albomarginatum*	No	No	
Glen Canyon lily			
Erysimum sp.	No	Yes	Medicine, ceremonical magic
Western wallflower			
Erigeron arenarius*	No	No	
Fleabane			
Erigeron argentatus*	No	No	
Fleabane			
Erigeron bell idiastrum*	No	No	
Fleabane			
Erigeron canadensis*	No	Yes	Medicine
Fleabane			
Erigeron divergens*	No	No	
Fleabane			
Erigeron endelmanni*	No	No	
Fleabane			

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
$\frac{\text { Foeniculum officinale }}{\text { Fennel }}$	No	Yes	Substitute for tobacco
Fossumbromia foveolata*	No	No	
Frageria ovalis	No	Yes	Possible food
Strawberry Franseria sp.* Sand bur	Yes	Yes	Forage, medicine
Franseria acanthicarpa*	Yes	Yes	Forage, medicine
Bur sage, Ragweed Frasera sp.*	No	Yes	Medicine
Frasera utahensis*	No	No	
Frasera			
Funastrum cyanchoides**	No	No	
Climbing milkweed			
Funastrum heterophyllum**	No	No	
Climbing milkweed			
Gaillardia pinnatifida*	No	Yes	Medicine
Gaillardia			
Bedstraw			
Galium aparine**	No	No	
Bedstraw, Cleavers, Goosegrass			
Galium stellatum*	No	No	
Stellate bedstraw			
Galium triflorum*	No	Yes	None
Bedstraw			
Gaura coccinea	No	Yes	None
Gaura parviflora	No	Yes	Medicine
Geranium atropurpureum	No	Yes	None
Geranium			
Geum strictum	No	Yes	None
Avens			
Gilia spp.*	No	Yes	Medicine
Gilia			
Gilia aggregata*	No	Yes	Magic (hunter's petition)
Scarlet gilia, Skyrocket			
Gilia congesta*	No	No	
Gilia			
Gilia greeneana	No	Yes	None
Red gilia			
Gilia gracilis	No	No	
Gilia			
Gilia gunnisoni*	No	No	
Gunnison gilia			
Gilia leptomeria*	No	No	
Gilia			
Gilia longiflora	No	Yes	Medicine, clan name
Gilia			
Gilia multiflora	No	Yes	Medicine
Gilia			
Gilia polycladon*	No	No	
Gilia setosissima*	No	No	
Gilia shottii*	No	No	
Gilia			
Gilia sinuata* (Mesa also)	No	No	
Gilia			
Gilia subnuda	No	No	
Gilia			
Glycyrrhiza lepidota*	No	No	
Licorice			

Genera and Species Ar	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Cudweed			
Grindelia aphanactis*	No	No	
Gum weed			
Grindelia fastigiata*	No	No	
Gum weed			
Snakeweed			
$\frac{\text { Gutierrezia filifolia }}{\text { Snakeweed }}$	No	Yes	Medicine, food, ceremonial adornment (denotes officership).
Gutierrezia longifolia	No	Yes	Prayer-sticks, medicine, forage
Snakeweed			
Gutierrezia lucida*	No	Yes	Prayer-sticks, medicine
Snakeweed			
Gutierrezia microcephala*	No	No	
Matchweed, Snakeweed			
Gutierrezia sarothrae* (Mesa also)	o) No	Yes	Prayer-sticks, medicine
Matchweed, Snakeweed			
Helianthus sp.	No	Yes	General construction, dye, prepara-
Hopi sunflower			tion of ceremonial body paint, food.
Helianthus annuus*	No	Yes	Bird seed, ceremonial face powder,
Common sunflower $\quad \begin{aligned} & \text { medicine, magic, adornment of flute } \\ & \text { priests, cigarette "match". }\end{aligned}$			
Helianthus anomalus*	No	Yes	Bird seed, ceremonial face powder,
Sunflower medicine, magic, adornment of flute			
Helianthus petiolaris*	No	Yes	Bird seed, ceremonial face powder,
Sunflower medicine, magic, adornment of flute			
Helianthus tuberosus	No	Yes	Food
Jerusalem artichoke			
Heliotropium convolvulaceum*	No	No	
Heliotrope			
Heliotropium xerophilum	No	Yes	None
Cockerell			
Hoffmanseggia jamesii	No	Yes	Medicine
Hordeum jubatum*	No	No	
Foxtail barley			
Hordeum stebbinsii*	No	No	
Barley			
Humulus americanus	No	Yes	Food
Wild hop			
Hymenopappus acaulis*	No	No	
Hymenopappus			
Hymenopappus cinereus*	No	No	
Hymenopappus			
Hymenopappus eriopodus*	No	No	
Hymenopappus			
Hymenopappus filifolius	No	Yes	Medicine
Hymenopappus			
Hymenopappus lugens*	No	Yes	Medicine, decoration of warrior's
Hymenopappus bandolier			
Hymenopappus pauciflorus	No	No	
Hymenoxyz spp. *	No	Yes	
Hymenoxyz acaulis*	No	No	
Hymenoxyz			
Hymenoxyz bigelovii	No	No	
Hymenoxyz floribunda	No	Yes	Food (chewed as gum)
Colorado rubber plant			
Hymenoxyz leptoclada*	No	No	

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Linum aristatum	No	No	
Flax			
Linum australe	No	Yes	Possible beverage, possible
Yellow flax			medicine
Linum puberulum	No	Yes	Medicine
Yellow flax			
Lithospermum linearifolium	No	Yes	Medicine, magic
Lobelia cardinalis*	No	No	
Cardinal flower			
Lobelia splendens	No	Yes	Medicine
Cardinal flower			
Lomatium macdougalii	No	No	Food, medicine
Biscuitroot, Indianroot			
Lupinus sp.	Yes	Yes	
Lupine			
Lupinus aduncus	No	Yes	None
Lupine			
Lupinus caudatus*	No	No	
Lupine			
Lupinus kingii*	No	Yes	Possible medicine
Dwarf lupine			
Lupinus pusillus* (Mesa also)	No	No	
Lupine			
Lupinus rubens*	No	No	
Lupinus sparsiflorus*	No	No	
Lupine			
Lygodesmia grandiflora*	No	Yes	Food preparation, medicine
Rush pink			
Machaeranthera glabella	No	Yes	Medicine
Malacothrix californica*	No	No	
Desert dandelion			
Malacothrix fendleri**	No	No	
Desert dandelion			
Malacothrix glabrata*	No	No	
Malacothrix			
Malacothrix sonchoides*	No	No	
Malacothrix torreni*	No	No	
Mannia fragrans**	No	No	
Marchantia polymorpha*	No	No	
Martynia sp.	No	Yes	Artificial flowers for headdresses
Unicorn plant			
Martynia louisiana	No	Yes	Ceremonial implements, awls (?)
Unicorn plant, Devil's claw			magic
Melilotus sp.*	No	No	
Sweetclover			
Melilotus alba*	No	No	
White sweetclover			
Mentha canadensis	No	Yes	Food
Mint			
Mentzelia albicaulis* (Mesa also)	No	No	
Blazing star, Stickleaf			
Mentzelia laevicaulis*	No	No	
Blazing star			
Mentzelia multiflora*	No	Yes	Medicine, possible food, substitute
Blazing star for tobacco			
Mentzelia pumila*	No	Yes	Medicine, possible food, substitute
Stickleaf for tobacco, magic			
Mentzelia veatchiana*	No	No	
Stickleaf			
Mimilus eastwoodiae*	No	No	
Red monkey flower			

Genera and Species Ars	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Mirabilis multiforma Wild four o'clock	No	Yes	Magic
Mirabilis oxybaphoides	No	Yes	Possible magic
$\begin{aligned} & \text { Four o'clock } \\ & \text { Monarda mentaefolia } \\ & \text { Beebalm } \end{aligned}$	No	Yes	Pot herbs, occasionally cultivated (food), food flavoring, medicine, magic
$\frac{\text { Myriophyllum } \mathrm{sp} .}{\text { Water milfoil }}$	Yes	No	
Navarretia setosissima*	No	No	
Navarretia			
Nama demissum	No	No	
Nama hispida	No	Yes	? (data inconsistent)
$\frac{\text { Nicotiana attenuata }}{\text { Wild tobacco }}$	No	Yes	Ceremonially smoked, smoked daily, clan name, gifts, medicine
$\frac{\text { Nicotiana }}{\text { Wild to trigonophylla* }}$	No	Yes	Ceremonially smoked
Nolina sp. Beargrass	No	Yes	Valuable fiber plant, possible food
Nuttallia multiflora	No	Yes	Magic
$\frac{\text { Odostemon }}{\text { Holly grape }}$	No	Yes	Tools, medicine, arrows, spindle shafts, battens, associated with southeast direction
$\frac{\text { Odostemon }}{\text { Oregon grape }}$	No	Yes	None
Oenothera sp. Evening primrose	Yes	Yes	Ceremonial implements, magic, medicine
$\frac{\text { Oenothera }}{\text { Evening }} \frac{\text { albicaulis* }}{\text { primrose }}$	No	Yes	Ceremonial implements, magic
$\frac{\text { Oenothera }}{\text { Tufted }} \frac{\text { caespitosa }}{}$ * (Mesa also)	o) No	No	
$\frac{\text { Oenothera }}{\text { Evening }} \frac{\text { cavernae* }}{\text { primrose }}$	No	No	
$\frac{\text { Oenothera }}{\text { Evening }} \frac{\text { decoritans }}{}{ }^{*}$	No	No	
Oenothera hookeri* Yellow evening primrose	No	No	
Oenothera longissima* Evening primrose	No	No	
Oenothera multijuga* Evening primrose	No	No	
Oenothera pallida* White evening primrose	No	Yes	Ceremonially associated with northeast direction
$\frac{\text { Oenothera }}{\text { Evening }} \frac{\text { runcinata* }}{\text { primrose }}$	No	Yes	Ceremonially associated with northeast direction
Oenothera $\begin{aligned} & \text { Evening } \\ & \text { primrose }\end{aligned}$	No	No	
Oenothera strigosa* Evening primrose	No	No	
$\frac{\text { Oenothera }}{\text { Evening }} \frac{\text { triloba }}{\text { primrose }}$	No	Yes	Medicine
Onosmodium thurberi	No	Yes	Mixed with tobacco, magic, smoked medicinally
Oreocarya multicaulis	No	Yes	None
Orobanche fasciculata* Clustered broomrape	No	No	
$\frac{\text { Orobanche }}{\text { Broomr multiflora }}$ *	No	No	
Osmorhiza obt usa	No	No	

Genera and Species A	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Oxytenia spp.	Yes	Yes	Possible food
Oxytenia acerosa*	No	No	
Composite			
Locowe			
Oxytropis oreophila*	No	No	
Locoweed			
Panicularia nervata	No	Yes	None
Manna grass			
Parosela lasianthera	No	Yes	Food
Parosela terminalis	No	Yes	Possible food
Pectis angustifolia	No	Yes	Food, food coloring, dye
Fetid-marigold			
Pectis papposa	No	Yes	Medicine, food, perfume
Fetid-marigold			
Pectocarya recurvata*	No	No	
Penstemon spp.*	No	Yes	
Beardtongue			
Penstemon ambigus**	No	Yes	Personal adornment, its appearance
Beardtongue			marks the end of watermelon plant-
			ing time
Penstemon barbatus	No	Yes	None
Scarlet bugler			
Penstemon bridgesii (Mesa only)	No	No	
Beardtongue			
Penstemon caudatus	No	Yes	None
Beardtongue			
Penstemon crandallii*	No	No	
Beardtongue			
Penstemon eatoni*	No	No	
Firecracker			
Penstemon pachyphyllus*	No	No	
Beardtongue			
Penstamon palmeri*	No	No	
Beardtongue			
Penstamon torreyi	No	Yes	Magic, medicine
Beardtongue			
Penstamon utahensis*(Mesa also)) No	No	
Beardtongue			
Petalostemon candidum*	No	No	
Prairie clover			
Petalostemon flavescens*	No	No	
Prairie clover			
Petalostemon oligophyllum*	No	Yes	Medicine
Prairie clover			
Phacelia corrugata	No	No	
Phacelia			
Phacelia crenulata*	No	No	
Phacelia			
Phacelia demissa*	No	No	
Phacelia			
Phacelia integrifolia	No	Yes	None
Phacelia			
Phacelia ivesiana*	No	No	
Phacelia			
Phacelia linearis*	No	No	
Phacelia No			
Phacelia pulchella*	No	No	
Phaseolus acutifolius latifolius	No	Yes	Food
Tepary			

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Phaseolus lunatus	No	Yes	Important in Powamu Ceremony
Lima bean			
Phaseolus multiflorus	No	Yes	Occasionally raised (food)
Scarlet runner bean			
Phaseolus vulgaris**	Yes	Yes	Food, ceremonial symbol
Stringbean			
Phaseolus vulgaris**	Yes	Yes	Dye, medicine, food
Kidney bean			
Phlox austromontana (Mesa only)) No	No	
Phlox			
Phlox hoodii	No	No	
Phlox			
Phlox woodhousei (Mesa only)	No	No	
Phlox			
Phragmites communis*	Yes	Yes	Arrow mainshafts, basketry
Common reed, Reed cane			
Physalis fendleri (Mesa only)	No	Yes	Food
Ground cherry			
Physalis longifolia	No	Yes	Food
Ground cherry			
Physalis neomexicana	No	Yes	Medicine
Ground tomato, ground cherry			
Physaria didymocarpa*	No	No	
Bladder pod			
Plantago argyraea	No	No	
Plantain			
Plantago major*	No	No	
English plantain			
Plantago purshii*	Yes	Yes	Possible medicine
Plantain			
Polanisia trachysperma	No	Yes	Ceremonially whipping
Clammy weed			
Polemonium delicatum	No	No	
Jacobs ladder, Skunkleaf			
Poliominthe incana*	No	Yes	Food, food flavoring
Mint			
Polygala acanthoclada*	No	No	
Polygala			
Polygonum aquaticum*	No	No	
Water smartweed			
Polygonum lapathifolium*	No	Yes	Medicine
Knotweed, Smartweed			
Polypogon lutosus	No	Yes	None
Beardgrass			
Polypogonum aviculare	No	Yes	None
Knotweed			
Portulaca oleracea	No	Yes	Food
Purslane			
Portulaca retusa	No	Yes	Food
Primula incana*	No	No	
Primrose			
Primula specuicola*	No	No	
Primrose			
Psilostrophe sparsiflora	No	No	
Psilostrophe tagetinaė	No	Yes	Dye, paint for ceremonial masks, body paint
Psoralea juncea*	No	No	
Scurf-pea			

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Psoralea lanceolata*	No	No	
Scurf-pea			
Psoralea tenuiflora*	No	Yes	Medicine
Scurf-pea			
Ptiloria spp.*	No	Yes	
Ptiloria			
Ptiloria exigua*	No	Yes	Medicine
Wire lettuce			
Ptiloria pauciflora*	No	Yes	Medicine
Wire lettuce			
Ptiloria	No	Yes	Medicine
Wire lettuce, Flowering straw			
Puccinellia airoides*	No	No	
Nuttall alkali grass			
Quamoclidion multiflorum	No	Yes	Anchor for string of bird traps,
Four o'clock medicine to induce visions			
Ranunculus cymbalaria*	Yes	Yes	Medicine, bird snares
Trailing or creeping buttercup			
Ranunculus sceleratus*	No	No	
Cursed crowfoot			
Raphanus sativus	No	Yes	Rarely cultivated (food)
Radish			
Ratibida columnaris	No	Yes	Medicine
Coneflower			
Reboulia hemisphaeria*	No	No	
Reverchonia avenaria	No	Yes	Food preparation, medicine
Ribes inebrians	No	Yes	Food, arrows
Wild currant			
Rorippa nasturtium-aquaticum*	No	No	
Watercress			
Rorippa sinuata	No	Yes	Medicine
Rudbeckia flava	No	Yes	None
Black-eyed susan			
Rumex hymens cephalus*	No	Yes	Dye (imp. source), medicine
Wild rhubarb			
Rumex mexicanus	No	Yes	Medicine, magic
Dock			
Rumex venosus*	No	No	
Dock			
Salsola kali*	No	No	
Russian thistle			
Scirpus sp.*	Yes	Yes	
Bulrush			
Scirpus acutus*	No	No	
Tule, Bulrush			
Scirpus americanus	Yes	No	
American rush			
Scirpus lacustris	Yes	Yes	Ceremonially associated with water
Bulrush			
Scirpus paludosus**	No	No	
Bulrush			
$\underline{\text { Scirpus validus }}$	Yes	No	Basketry
Mat bulrush			
Senecio spp.*	No	Yes	
Senecio			
Senecio longilobus	No	Yes	Medicine
Groundsel			
Senecio macdougalii	No	Yes	None
Senecio multicapitatus	No	Yes	Medicine, brushes
Groundsel			

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Senecio spartiodes	No	No	
Groundsel			
Sidalcea neomexicana*	No	No	
Prairie mallow			
Silene antirrhina*	No	No	
Sleepy catchfly			
Sisymbrium altissimum*	No	No	
Tumble mustard			
Sisymbrium linifolium*	No	No	
Lava cress			
Smilacina racemosa*	No	No	
False solomon seal			
Smilacina stellata*	No	No	
False solomon seal			
Solanum elaeagnifolium	No	Yes	Medicine, food
Bull nettle			
Solanum fendleri	No	Yes	Food
Native potato			
Solanum jamesii	No	Yes	Food
Wild potato			
Solanum rostratum	No	Yes	Medicine
Solanum triflorum	No	Yes	Medicine
Wild tomato			
Solanum tuberosum	No	Yes	Occasionally cultivated (food)
Irish potato			
Solidago altissima*	No	No	
Golden rod			
Solidago canadensis	No	Yes	Medicine
Golden rod			
Solidago missouriensis	No	Yes	Possible food (not indigenous)
Golden rod			
Solidago petradoria*	No	Yes	Prayer-sticks, medicine, charm
Golden rod			remedy, preparation of corn food
Solidago sparsiflora	No	Yes	None
Golden rod			
Sonchus asper*	No	No	
Sowthistle			
Sonchus oleraceus	No	No	
Sowthistle			
Sophora stenophylla*	No	No	
Scurf-pea			
Sphaeralcea spp.	Yes	Yes	Medicine
Globe mallow			
Sphaeralcea coccinea*	No	No	
Globe mallow			
Sphaeralcea grossulariaefolia*	No	No	
Globe mallow			
Sphaeralcea leptophylla*	No	No	
Narrow-leaf globe mallow			
Sphaeralcea lobata	No	Yes	Medicine, face paint, ceremonial
Globe mallow, Niggerweed			beverage, magic
Sphaeralcea parvifolia*	No	No	
Globe mallow			
Sphaeralcea rusbyi*	No	No	
Sphaerostigma decorticans*	No	No	
Evening primrose			
Stanleya albescans	No	Yes	Food
Stanleya pinnata*	No	Yes	Food, medicine
Prince's plume			
Streptanthella longirostris	No	No	

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HER BS (cont.)			
Streptanthus cordatus*	No	No	
Streptanthus longirostris*	No	No	
Streptanthus			
Swertia utahensis*	No	No	
Elkweed			
$\frac{\text { Taraxacum }}{\text { Common }} \frac{\text { taraxacum }}{\text { dandelion }}$	No	Yes	Food, dressing for fractures, medicine
Targionia hypophylla*	No	No	
Tetraneuris scaposa	No	Yes	Medicine
Thistle			
Thalesia fasciculata	No	Yes	Medicine, ceremonial beverage
Cancer root			
Thalictrum fendleri	No	Yes	None
Meadow rue			
Thelesperma gracile	No	Yes	Beverage, basketry, dye for textiles
Thelesperma subnudum	No	Yes	Beverage, basketry, textile dye
Navajo tea			
Thelesperma trifidum	No	Yes	Beverage
Thelypodium integrifolium*	No	No	
Thelypodium			
Thelypodium wrightii	No	Yes	Pottery paint, food, magic
Thermopsis sp.	Yes	No	
Tidestromia lanuginosa	No	No	
Amaranth			
Tissa sparsiflora*	No	No	
Sandsperry			
Townsendia arizonica	No	Yes	Possible medicine
Townsendia eximia	No	Yes	None
Townsendia incana*	No	No	
Townsendia			
Tradescantia sp.	No	Yes	Possible food
Spider wort			
Tradescantia occidentalis**	No	No	
Spider wort			
Tribulus terrestris	No	Yes	None
Caltrop			
Tripterocalyx micranthus**	No	No	
Sand verbena			
Tripterocalyx pedunculatus*	No	No	
Sand four o'clock			
Tripterocalyx wootonii*	No	Yes	Medicine
Four o'clock			
Typha spp.	Yes	Yes	
Cattail			
Typha angustifolia*	No	Yes	Chewed as gum, ceremonially
Narrowleaf cattail			associated with water
Typha domingensis*	Yes	No	
Narrowleaf cattail			
Typha latifolia*	No	Yes	None
Wideleaf cattail			
Urtica sp.*	No	No	
Nettle			
Verbascum thapsus:	No	Yes	Medicinally smoked
Comman mullen			
Verbesina encelioides	No	Yes	Medicine
Crownbeard			
Veronica americana*	No	No	
Speedwell			
Vicia sp.*	No	No	-

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
HERBS (cont.)			
Villanova dissecta	No	Yes	Medicine
Thistle			
Viola canadensis	No	Yes	None
Violet			
Viola nephrophylla	No	No	
Violet			
Wedelia glabra	No	Yes	Medicine
Cockerell			
Wedelia incarnata	No	Yes	To whip flies, to catch flies
			with sticky leaves and stems
Wislizenia melilotoides	No	Yes	Food, prayer-sticks, preparation
	No	Yes	of pottery paint Medicine
Mule ears			
Xanthium commune	No	Yes	Medicine, food
Cocklebur			
Xanthium pennsylvanicum	No	No	
Cockle bur			
Xanthium saccharatum*	Yes	Yes	None
Cocklebur			
Zygadenas elegans*	No	No	
Death camus			

LICHENS

Lichens, in general, are reported to have been applied to teeth and gums to cure toothaches.

Acarospora arenacea*	No	No
Acarospora chrysops*	No	No
Acarospora strigata*	No	No
Biatorella simplex*	No	No
Caloplaca elegans**	No	No
Candelariella vitellina*	No	No
Collema furvum*	No	No
Black jelly furvum		
Collema granosum*	No	No
Dermon spp.*	No	No
Endocarpon wilmsoides*	No	No
Grimmia orbicularis*	No	No
Black rock moss		
Lecanora frustulosa*	No	No
Lecanora lentigera*	No	No
Lecanora melanapsis*	No	No
Lecanora muralis*	No	No
Lecanora utahensis*	No	No
Lecidea amylacea*	No	No
Lecidea auriculata*	No	No
Lecidea cyanea*	No	No
Lecidea lithophila*	No	No
Lecidea paupercula*	No	No
Lecidea vulgata*	No	No
Parmelia consersa*	No	No
Parmelia sorediata*	No	No
Psora crenata\%	No	No
Psora decipiens*	No	No
Psora luridella*	No	No
Toninia caeruleonigricans*	No	No

Archeologically	Ethnohistorically	
Recovered	Reported	Use

MOSSES

Mosses, in general, are reported to have been ground and applied to the lips as a remedy for cold sores and to tooth cavities to stop the pain.

Genera and Species Arc	Archeologically Recovered	Ethnohistorically Reported	Use
MOSSES (cont.)			
Platyhypnidium riparioides*	No	No	
Pottia heimii*	No	No	
Reboulia hemisphaerica*	No	No	
Liverwort			
Riccia frostii*	No	No	
Liverwort			
Targionia hypophylla*	No	No	
Liverwort			
Tortula brevipes**	No	No	
Tortula inermis*	No	No	
Tortula mucronifolia*	No	No	
Tortula ruralis*	No	No	
Weisia ligulaefolia*	No	No	
Weisia perligulata*	No	No	
SHRUBS			
Acamtopappus sphaerocephalus*	No	No	
Golden head			
Acer glabrum*	No	No	
Mountain maple			
Amelanchier alnifolia	Yes	No	
Service berry			
Amelanchier pallida	No	Yes	Bows and arrows, possible food
Shadblow			
Amelanchier utahensis*(Mesa also)) Yes	Yes	Shovel handle
Utah service berry			
Aplopappus scopularum*	No	No	
Arctostaphylos pungens (Mesa only)	y) No	No	
Manzita			
Artemisia spp.*	Yes	Yes	Food, medicine
Artemisia bigelovii (Mesa only)	No	No	
Sagebrush			
Artemisia dracunculoides*	No	Yes	Food
False tarragon, Wormwood, Aromatic sage			
Artemisia filifolia*	No	Yes	Medicine, associated with south-
Sand sagebrush, Silversage			east direction
Artemisia frigida* Mountain sagebrush	No	Yes	Ceremonial decoration, magic, prayer-stick, medicine
Artemisia ludoviciana*(Mesa also)) No	No	
Sagebrush, Western mugwort			
Artemisia spinescens*	No	No	
Bud-sage			
Big sagebrush, Rocky Mnt. sage			
Atriplex spp.	Yes	Yes	Possible food, snare sticks
Atriplex argentea	No	Yes	Preparation of corn dishes, kiva
Saltbush fuel, prayer-sticks			
Atriplex canescens*	Yes	Yes	Preparation of corn dishes, kiva
Four-winged saltbush fuel, prayer-sticks, medicine,			
Atriplex confertifolia*	Yes	Yes	Preparation of corn dishes, kiva
Shadscale			fuel, prayer-stick, medicine
Atriplex cuneata*	No	No	
Cuneate saltbush			
Atriplex garrettii*	No	No	
Garrett saltbush			
Atriplex hastata*	No	No	
Hastate saltbush			
Atriplex jonesii	No	No	

SHRUBS (cont.)
$\frac{\text { Salsola }}{\text { Russian thistle }} \frac{\text { pestifer }}{}$
$\frac{\text { Salvia }}{\text { Sage }} \frac{\text { carnosa }}{}$
$\frac{\text { Sambucus racemosa }}{\text { Elder }}$
$\frac{\text { Sarcobatus }}{\text { Greasewood }}$

No
No
No Yes
Greasewood

$\frac{\text { Yucca }}{\text { Har }} \frac{\text { harrimaniae* }}{\text { riman yucca }}$	Yes	Yes
Yucca navajoa*	No	No

Yucca
TREES

$\frac{\text { Abies concolor }}{\text { White fir, Balsam fir }}$	Yes	Yes
Acer sp.	Yes	No

Yes

Acer sp
Boxelder, Maple

Genera and Species Archer	Archeologically Recovered	Ethnohistorically Reported	Use
TREES (cont.)			
$\frac{\text { Acer }}{\text { Boxelder }}$	No	No	
$\frac{\text { Acer }}{\text { Big grandidentatum }} \text { (Mesa only) }$	ly) No	No	
$\frac{\text { Acer }}{\text { Boxterius* }} \text { * }$	Yes	No	
Acer negundo*	Yes	No	Ball (wooden)
$\begin{aligned} & \text { Wester } \\ & \frac{\text { Alnus }}{\text { Alder }} \end{aligned}$	Yes	Yes	
$\frac{\text { Alnus }}{\text { Aldenuifolia }}$	No	Yes	Dye
$\frac{\text { Betula fontinalis }}{\text { Waterbirch, Streamside birch }}$	Ych Yes	Yes	Handle (knife)
$\frac{\text { Cedrus }}{\text { Cedar }}$, Yes	No	
$\frac{\text { Celtis } s p . *}{\text { Oak }}$	Yes	Yes	
$\frac{\text { Celtis }}{\text { Haceuglasii* }}$	No	No	
$\frac{\text { Celtis }}{\text { Hacketiculata* }}$	Yes	Yes	Handles for axes and hoes, food
$\frac{\text { Cercis }}{\text { Red }} \frac{\text { canadensis* }}{\text { bud }}$	Yes	No	
$\frac{\text { Cercis }}{\text { Red }} \frac{\text { occidentalis }}{\text { bud }}$ *	No	No	
$\frac{\text { Cornus }}{\text { Dogwood }}$ stonifera riparia	No	Yes	Clan name, myth, plume offering
$\frac{\text { Fraxinus }}{\text { Single-leaf ash }} \frac{\text { anomala*(Mesa also) }}{}$) Yes	No	
$\frac{\text { Fraxinus }}{\text { Ash }} \text { coriacea }$	Yes	No	
$\frac{\text { Juniperus }}{\text { Juniper }} \text { spp. }$	Yes	Yes	Firewood, purifying and protective agent, general construction, rakes, agricultural implements, tinder, medicine, paint, preparation of corn dishes, food, personal adornment, ceremonial implements, clan and phratry names, cordage, weaving, basketry, chinking material, bed matting
$\frac{\text { Juniperus }}{\text { Juniper }} \text { monosperma } * \text { (Mesa als }$	also) No	Yes	Firewood, tinder, torches, chinks for houses, bows, ceremonial bows, medicine-magic, medicine, food, ceremonial implements and costumes
$\frac{\text { Juniperus osteosperma* }}{\text { Little Utah juniper }}$	Yes	Yes	Mats, pads (i.e., baby carrier padding)
Juniperus utahensis	Yes	No	Basketry, cordage, sandals, twining
$\frac{\text { Juniperus }}{\text { Red juniper }} \frac{\text { scopulorum* }}{}$	Yes	Yes	None
$\frac{\text { Malus sylvestris }}{\text { Apple }}$	No	Yes	Food (cultivated)
$\frac{\text { Negundo interius }}{\text { Box elder }}$	No	Yes	Pipestems
$\frac{\text { Picea sp. }}{\text { Spruce }}$	Yes	No	
$\frac{\text { Picea }}{\text { Engelmann spruce }}$	No	Yes	None
Pinus sp.	Yes	Yes	Food
Pinus brachyptera		Yes	Attached to prayer feathers

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
TREES (cont.)			
$\frac{\text { Pinus }}{\text { Pinyon pine }} \frac{\text { edulis }}{} \text { (Mesa also) }$	Yes	Yes	Food, decoration, repairing pottery and waterproofing (gum), medicine, protective and purifying agent, symbol of phratry, prep. of dyes, magic
$\frac{\text { Pinus }}{\text { White pine }}$	No	Yes	None
Pinus ponderosa Ponderosa pine	Yes	Yes	General construction, ceremonial implements, prayer-sticks
$\frac{\text { Populus spp. * (Mesa also) }}{\text { Cottonwood }}$	Yes	Yes	Construction of houses, kachina dolls, gaming cups, boxes for storage of ceremonial equipment, tinder, drums, chewing gum (berries), prayer-sticks, ceremonial implements, food, weaving implements, fire-making apparati, fire wood
Populus acuminata	No	Yes	None
Rydberg's cottonwood			
Populus angustifolia Narrow-leaf cottonwood, Mountain cottonwood	No	Yes	Preparation of offerings
$\frac{\text { Populus }}{\text { Arizo }} \frac{\text { arizonica }}{}$ noplar	No	No	
Populus aurea Rocky Mountain aspen	No	Yes	Ritually smoked, associated with northeast direction
$\frac{\text { Populus }}{\text { Fremont cottonwood }}$	Yes	Yes	Possible cist roof construction, tablets, gaming pieces, possible lap board, knife handle, shovel blade
$\frac{\text { Populus }}{\text { Aspen }}$ tremuloides	No	Yes	Medicine, clan name
$\begin{aligned} & \text { Aspen } \\ & \frac{\text { Populus }}{\text { Valley } \frac{\text { wislizeni }}{\text { cottonwood }}} \end{aligned}$	No	Yes	Many artifacts esp. cottonwood drum, prayer-sticks, clan name
$\frac{\text { Prunus } s p .}{\text { Cherry }}$	No	Yes	Food (occasionally cultivated)
$\frac{\text { Prunus }}{\text { Almomygdalus }}$	No	Yes	Food, (occasionally cultivated)
$\frac{\text { Prunus }}{\text { Apricot }}$	No	Yes	Cultivated food
$\frac{\text { Prunus }}{\text { Black }} \frac{\text { melanocarpa* }}{} \text { chokeberry }$	No	Yes	Bows, food
$\frac{\text { Prunus persica }}{\text { Peach }}$	Yes	Yes	Cultivated food, weaving batons
$\frac{\text { Pseudotsuga sp. }}{\text { Douglas fir }}$	Yes	Yes	
$\frac{\text { Pseudotsuga douglasii }}{\text { Douglas fir }}$	Yes	Yes	Ceremonial subject important in rain ritual
$\frac{\text { Pseudotsuga }}{\text { Douglas spruce }} \frac{\text { mucrata }}{}$	No	Yes	Branches used in all Tewa dances and most Hano dances, trade, myth (origin)
$\frac{\text { Pyrus }}{\text { Pear }} \frac{\text { communis }}{}$	No	Yes	Cultivated food
$\frac{\text { Quercus }}{\text { Oak }}$ sp.*	Yes (acorns)	Yes	Rabbit sticks, arrows, bows, digging sticks, weft battons, axe handles, utensils, name of clan, associated with northwest direction, food
$\frac{\text { Quercus }}{\text { Gambel oak }} \frac{\text { gam }}{}$ (Mesa also)	Yes	Yes	
$\frac{\text { Quercus }}{\text { Live }} \frac{\text { turbinella* }}{\text { oak }}$	Yes	No	

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
TREES (cont.)			
Quercus turbinella X Quercus gambelii*			
Hybrid oak	No	No	
Quercus undulata Evergreen oak, Utah oak, Wavy-leaved oak	Yes	Yes	Food, digging sticks, bows, war clubs, rabbit sticks,' embroidery stretchers, utensils, clan name
Quercus utahensis*	Yes	No	
$\frac{\text { Salix spp. }}{\text { Willow }}$	Yes	Yes	Rabbit sticks, arrows, bows, digging sticks, clubs, weft battons, axe handles, utensils, name of clan, ceremonial implements, roofing, prayer-sticks, possible cist roof construction, corn cob skewers, basketry, general construction
$\frac{\text { Salix }}{\bar{W}} \frac{\text { argophylla }}{}$	No	Yes	None
$\frac{\text { Salix cordata }}{W_{i l l} \text { illow }}$	No	Yes	None
$\frac{\text { Salix }}{\text { Sandbar willow }}$	Yes	Yes	Basketry
Salix gooddingii* Goodding willow, Western willow	black	Yes	Possible bow, knife handle
$\frac{\text { Salix irrorata }}{\text { Willow }}$	No	Yes	Body paint, food, basketry, clan name, possible bowls or cups
$\frac{\text { Salix }}{\text { Willow }}$ laevata*	No	No	
$\frac{\text { Salix lutea* }}{\text { White willow }}$	No	No	
$\frac{\text { Tamarix }}{\text { French } \frac{\text { gallica }}{\text { tamarix }}}$	No	Yes	None
Tamarix pentandra* Tamarix, Salt cedar	No	No	
VINES			
$\frac{\text { Citrullus }}{\text { Watermelon }} \frac{\text { vulg }}{\text { elo }}$	No	Yes	Food, oil
Clematis liqusticifolia* Western virgin-bower	No	Yes	None
$\frac{\text { Cucumis }}{\text { Muskmelo }} \frac{\text { melo }}{\text { elontaloupe, Me }}$	Melon ${ }^{\text {No }}$	Yes	Food, ceremonial body paint
$\frac{\text { Cucumis } \text { sativus }}{\text { Cucumber }}$	No	Yes	Occasionally raised (food)
Cucurbita spp.	Yes	Yes	Food, storage vessels, scrapers, burial (seeds)
Cucurbita foetidissima (Mesa Wild gourd, Wild squash, C	also) Yes Coyote melon	Yes	Utensils, medicine, possible food
$\frac{\text { Cucurbita }}{\text { Turban }} \frac{\text { maxima }}{\text { squash }}$	No	Yes	Food
$\frac{\text { Cucurbita }}{\text { Cushaw }}$	Yes	No	Storage vessel
$\frac{\text { Cucurbita }}{\text { Squash, }} \frac{\text { moschata }}{\text { pumpkin }}$	No	Yes	Cultivated ceremonial food, food, sounding board for musical rasps, carried container, oil
$\frac{\text { Cucurbita }}{\text { Squash }} \frac{\text { pepo }}{}$	Yes	Yes	Medicine, food, rattles, ceremonial dress, containers for precious articles
$\frac{\text { Humulus }}{\text { Hop }}$ lupilus neomexicanus	S No	Yes	None

Genera and Species	Archeologically Recovered	Ethnohistorically Reported	Use
VINES (cont.)			
Lagenaria siceraria*	Yes	No	
Bottle gourd			
Parthenocissus inserta*	No	No	
Woodbine, Ticket creeper			
Parthenocissus vitacea*	No	No	
Thicket creeper			
Vitis sp. Grapes	No	Yes	Frequent cultivation (food)

Part 3. Species Other Than Floral Reported From Glen Canyon and Represented in Archeological
Collections, Arranged Alphabetically by Genera

Name	Archeologically Recovered	Material Recovered		
Accipiter cooperii	Yes	Feathers		
Cooper's hawk				
Accipiter gentilis	No			
Goshawk				
Accipiter striatus	No			
Sharp-shinned hawk				
Actitus macularia	No			
Spotted sandpiper				
Aechmophorus occidentalis	No			
Western grebe				
Aegolius acadicus	No			
Saw-whet owl				
Aeronautes saxatalis	No			
White-throated swift				
Agelaius phoeniceus	Yes	Two skins tied together inside dog-skin bag (Magic)		
Redwinged blackbird				
Alectoris graeca	No			
Chukar				
Amblystoma tigrinum	Na			
Tiger salamander				
Amphispiza belli	No			
Sage sparrow				
Amphispiza bilineata	No			
Black-throated sparrow	No			
Anas acuta				
Pintail				
Anas carolinensis	Yes	Feathers		
Green-winged teal				
Anas cyanoptera	No			
Cinnamon teal				
Anas discors	No			
Blue-winged teal				
Anas platyrhynchus	No			
Mallard				
Anas strepera	No			
Gadwall				
Anthus spinoletta	No			
Water pipitAntilocarpa sp. ${ }^{\text {Antelope }}$				
			Ornament (toe bone), possible* moccasin sole (worked hide)	
Antilocarpa americana**	Yes	Bone		
Antelope				
Aphelocoma coerulescens	No	Hollow boe tube (worked), possibe bone		
Scrub jay				
Aquila chrysaetos	Yes	Hollow bone tube (worked), possible bone		
Golden eagle				
Archilochus alexandri	No			
Black-chinned humming-				
Ardea herodias	No			
Great blue heron				
Asio otus		No		
Long-eared owl				
* The entry "possible" r ** The entry of an asteri mesas only.	the possibility of wing a species si	ins being of that species. that species has been reported from the		

Name	Archeologically Recovered	Materials Recovered
Aythya affinus	No	
Lesser scaup		
Aythya americana	No	
Redhead		
Aythya valisineria	No	
Canvas back		
Bassariscus astutus	Yes	Bone
Ringt ail		
Bison bison	Yes	Possible bone
Bison		
Bison taylori*	Yes	Possible bone
Bison		
Bombycilla cedrorum	No	
Cedar waxwing		
Botaurus lentiginosus	No	
American bittern		
Branta canadensis	No	
Canada goose		
Bubo virginiatus	Yes	Feathers, bone
Great horned owl		
Bucephala albeola	No	
Bufflehead		
Bucephala clangula	No	
Common golden-eye		
Bufo punctatus	No	
Red spotted toad, Desert toad		
Bufo woodhousei	No	
Rocky Mountain toad		
Buteo jamaicensis	Yes	Feathers
Red-tailed hawk		
Buteo regalis	No	
Ferruginous hawk		
Buteo swainsoni	No	
Swainson's hawk		
Calypte costae	No	
Costa's hummingbird		
Canis sp.*	Yes	Bone
Gray wolf		
Canis familiaris*	Yes	Bone, possible fecal matter, possible skin
Dog		bag, pqssible hair cordage
Canis latrans	Yes	Possible fecal matter, bone
Coyote		
Capella gallinago	No	
Common snipe		
Carpodacus cassinii	No	
Cassin's finch		
Carpodacus mexicanus	No	
House finch		
Castor sp.*	Yes	Bones; punch, rubbing, flaking, or weaving
Beaver		tool
Castor canadensis	Yes	Bone
Beaver		
Cathartes aura	Yes	Feather
Turkey vulture		
Catherpes mexicanus	No	
Canon wren		
Catoptrophorus semipalmatus	No	
Willet		
Certhia familiaris	No	
Brown creeper		

Name
Archeologically Recovered

Charadrius vociferus No
Killdeer
Chen hyperborea No
Snow goose
Chlidonias niger No
Black tern
Chlorura chlorura No
Green-tailed towhee
Chondestes grammacus No
Lark sparrow
Chordeiles minor No
Common nighthawk
Chrysemys picta
No
Western painted turtle
Cinclus mexicanusNo
Dipper
$\frac{\text { circus }}{\text { Marsh hawk }}$Citellus sp.*Yes

Rock squirrel, Ground squirrel Citellus lateralis*

Golden-mantled ground squirrel
Citellus leucurus
White-tailed antelope squirrel
$\xrightarrow[\text { Citellus }]{\text { Ground squirrel }}$
Citellus variegatus Yes
Rock squirrel
Cnemidophorus sp.
Cnemidophorus sacki No
Plateau whiptail
Cnemidophorus tigris No
Northern whiptail
Coccyzus americanus No
Yellow-billed cuckoo
Colaptes cafer* Yes
Red-shafted flicker
Contopus sordidulus No
Western woodpeewee
Corvus brachyrhynchos No
Common crow
Corvus corax No
Common raven
Crotalus viridis No
Western rattlesnake
Crotaphytus collaris No
Collared lizard
Crotaphytus wislizeni Long-nosed leopard lizard
Cynomys sp. Prairie dog
Dendrocopos pubescens
Downy wo popescens
No
Dendroica auduboni Audubon's warbler
Dendroica nigrescens
Black-throated gray warbler
Dendroica petechia No Yellow warbler

Bone,possible pet (burial)
Bone
Bone, dessicated in burial
Bone
Pouch containing hide dauber and red ocher, bone
Possible bones

Wrapped and tied bundle of feathers

Bone, skin bag, possible engraver (smoothed mandible)

Dendroica townsendi Townsend's warbler Dipodomys sp.* Kangaroo rat
Dipodomys ordii Ord's kangaroo rat
Dolichonyx oryzivorus Bobolink
Dumetella carolinensis Catbird
Empidonax difficilis Western flycatcher
Empidonax oberholseri Dusky flycatcher
Empidonax trailli
Traill's flycatcher
$\frac{\text { Empidonax }}{\text { Gray fly } \frac{\text { wrightii }}{} \text { catcher }}$
Eremophila alpestris Horned lark
Erethizon sp.* Porcupine
Erethizon dorsatum Porcupine
Ereunetes mauri Western sandpiper
Erolia minutilla Least sandpiper
Euphagus cyanocephalus Brewer's blackbird
Eutamias sp.*
Chipmunk
Eutamias quadrivittatus No
Colorado chipmunk
Falco columbarius
Pigeon hawk
Falco mexicanus Prairie falcon
Falco peregrinus
Peregrine falcon
Falco sparverius Sparrow hawk
Fulica americana
Gavia immer
Common loon
Geococcyx californianus No Roadrunner
Geothlypsis trichas Yellowthroat
Guiraca caerulea
Blue grosbeak
Gymnorhinus cyanocephala Pinyon jay
Haliaeetus leucocephalus
Bald eagle
Hirundo rustica
Barn swallow
Holbrookia maculata
Speckled earless lizard

No No

No
No

No

No

Yes

Yes
No
No
No
No

No
No
Yes
No
No
No
No
Yes

No

No
Yes
No
Yes

Yes
No

Yes

Bone
In burial with feather through joint of ankle

Possible fecal matter, bone

Complete skin

Feathers

Bone

Feathers

Possible bone

Name	Archeologically Recovered	Material Recovered
$\frac{\text { Hyla }}{\text { Carenicolor }} \frac{\text { anyon tree }}{\text { frog }}$	No	
$\frac{\text { Hylocichla guttata }}{\text { Hermit }} \frac{\text { thrush }}{}$	No	
$\frac{\text { Hylocichla ustulata }}{\text { Swainson's thrush }}$	No	
Hypsiglena torquata Mesa Verde night snake	No	
$\frac{\text { Icteria }}{\text { Yellow-breasted chat }}$	No	
$\frac{\text { Icterus }}{\text { Bullock's oriole }}$	No	
$\frac{\text { Icterus }}{\text { Scott }} \frac{\text { parisorum }}{\text { 's oriole }}$	No	
$\frac{\text { Iridoprocne }}{\text { Tree swallow }}$	No	
$\frac{\text { Junco caniceps }}{\text { Gray-headed junco }}$	No	
$\frac{\text { Junco hyemalis }}{\text { Slate-colored junco }}$	No	
$\frac{\text { Junco oreganus }}{\text { Oregon junco }}$	No	
Lampropeltis getulus California king snake	No	
$\frac{\text { Lanius excubitor }}{\text { Northern shrike }}$	No	
$\frac{\text { Lanius }}{\text { Loggerhead shrike }}$	No	
$\frac{\text { Larus californicus }}{\text { California gull }}$	No	
$\frac{\text { Larus }}{\text { Ring-billed gull }}$	No	
$\frac{\text { Larus philadelphia }}{\text { Bonaparte's gull }}$	No	
$\frac{\text { Larus }}{\text { Franklin's }} \text { gull }$	No	
$\frac{\text { Lepus }}{\text { Blacalifornicus }}$	Yes	Bone
$\frac{\text { Leucophoyx thula }}{\text { Snowy egret }}$	No	
$\frac{\text { Limnodromus }}{\text { Long-billed }} \frac{\text { scolopaceus }}{\text { dowitcher }}$	No	
$\frac{\text { Lophortyx }}{\text { Gambel }} \text { gambelii }$	Yes	Bone
$\frac{\text { Lutra canadensis }}{\text { River otter }}$	No	
$\frac{\text { Lynx sp. } \%}{\text { Bobcat }}$	Yes	Bones, fecal matter, awl, smoothed scapulae
$\frac{\text { Lynx }}{\text { Boufus }}$	Yes	Bone, awl
$\frac{\text { Mareca }}{\text { American widgeon }}$	No	
$\frac{\text { Marmota }}{\text { Marmot }}$	Yes	Bones
$\frac{\text { Masticophis }}{\text { Desert striped whipsnake }}$	No	
$\frac{\text { Megaceryle }}{\text { Belted kingfisher }}$	No	
$\frac{\text { Meleagris }}{\text { Turkey }}$ gallopavo*	Yes	Bone, arrow shaft feather, feather pahos

Bone pendant, possible gaming piece or die, punch (hoof), bone, possible hide pouch, possible moccasin sole, large bag (pelt), painted unworked bone.

Skin, hide, possible moccasins, fur, bone, possible children's wrappers, possible awl, awl, piercing or punching tools, horn sickle, horn digging stick tip, horn tabular blades, horn ornament or gaming piece, fecal matter, fleshers, possible pendant, possible yucca fiber stripper, possible skin scraper, possible bark shredder, possible grass cutter, horn seed beater, possible horn scraper, possible flaker, possible punch, possible rubbing or punching tool, painted horn, gaming piece (horn), fiber scraper blunt-ended tool, bone with cordage attached, grooved bone, split bone, conical horn object, possible sinew ties, notched scapula. Bone

Name	Archeologically Recovered	Material Recovered
Perognathus intermedius	No	
Rock pocket mouse		
Perognathus longimembris	No	
Little pocket mouse		
Perognathus parvus	No	
Great Basin pocket mouse		.
Peromyscus sp.*	Yes	Bone
Mouse		
Peromyscus boylii	No	
Brush mouse		
Peromyscus crinitus	No	
Canyon mouse		
Peromyscus maniculatus	Yes	Bone
Deer mouse		
Peromyscus nasutus	No	
Rock mouse		
Peromyscus truei	No	
Pinyon mouse		
Petrochelidon pyrrhonota	No	
Cliff swallow		
Phainopepla nitens	No	
Phainopepla		
Phalacrocorax auritus	No	
Double-crested cormorant		
Phalaenoptilus nuttalli	Yes	Feathers (wrapped and tied in bundle)
Poor-will		
$\underline{\text { Pheucticus melanocephalus }}$	No	
Black-headed grosbeak		
Phrynosoma douglassi	No	
Mountain short-horned lizard		
Phrynosoma platyrhinos	No	
Southern desert horned lizard		
Pica pica*	Yes	Wing (base wrapped with yucca leaf)
Magpie		
Pipilo erythropthalmus	No	
Rufous-sided towhee		
Pipistrellus hesperus	No	
Western pipistrelle		
Piranga ludoviciana	No	
Western tanager		
Pituophis catenifer	No	
Great Basin gopher snake, Bull snake		
Plegadis chihi	No	
White-faced ibis		
Podiceps caspicus	No	
Eared grebe		
Podilymbus podiceps	No	
Pied-billed grebe		
Polioptila caerulea	No	
Blue-gray gnatcatcher		
Pooecetes gramineus	No	
Vesper sparrow		
Porzana carolina	No	
Sora		
Procyon lotor	No	
Raccoon		
Psaltriparus minimus	No	
Common bush-tit		
Rallus limicola	No	
Virginia rail		

Rana pipens No
Western leopard frog
Recurvirostra americana No
American avocet
Regulus calendula No
Ruby-crowned kinglet
Regulus satrapa No
Golden-crowned kinglet
Reithrodontomys megalotis No
Western harvest mouse
Riparia riparia
Bank swallow
Salpinctes obsoletus No
Rock wren
Salvadora hexalepis No
Mohave patch-nosed snake
Sauromalus obesus No
Western chuckwalla
Sayornis nigricans No
Black phoebe
Sayornis saya
Say's phoebe
Scaphiopus hammondi
Western spadefoot (toad)
Sceloporus graciosus
Great Basin sagebrush lizard
Sceloporus magister No
Utah spiny lizard
Sceloporus undulatus No
Northern plateau lizard
Seiurus noveboracensis
Northern waterthrush
Selasphorus platycercus No
Broad-tailed hummingbird
Selasphorus rufus
No
Rufous hummingbird
Sialia currucoides
Mountain bluebird
Sialia mexicana Yes

No
Western bluebird
Sitta canadensis No
Red-breasted nuthatch
Sitta carolinensis
White-breasted nuthatch
Spatula clypeata No
Shoveler
Speotyto cunicularia No Burrowing owl
Sphyrapicus thyroideus No
Williamson's sapsucker
$\underline{\text { Sphyrapicus varius }}$ No
Yellow-bellied sapsucker
Spilogale gracilis
Yes
Western spotted skunk
Spinus pinus
No
Pine siskin
Spinus psaltria
No
Lesser goldfinch
Spinus tristis
No
American goldfinch
$\frac{\text { Spizella }}{\text { Tree }} \frac{\text { arborea }}{\text { sparrow }}$
Spizella breweri No
Brewer's sparrow
Spizella passerina No Chipping sparrow
Steganopus tricolor No Wilson's phalarope
Stelgidopteryx ruficollis No Rough-winged swallow
Stellula calliope No Calliope hummingbird
Strix occidentalis No
Spotted owl
Sturnella neglecta No
Western meadowlark
Sturnus vulgaris No Starling
Sylvilagus sp.* Yes
Cottontail rabbit
Sylvilagus audobonii No
Desert cottontail
Tachycineta thalassina No
Violet-green swallow
Taxidea sp.
.
Badger
Taxidea taxus No
Badger
Telmatodytes palustris No
Long-billed marsh wren
Thamnophis cyrtopsis No
Western black-necked garter snake
Thamnophis elegans No
Wandering garter snake
Thomomys bottae* Yes
Pocket gopher
Thryomanes bewickii No
Bewick's wren
Totanus flavipes No
Lesser yellowlegs
Totanus melanoleucus No
Greater yellowlegs
Toxostoma bendirei No
Bendire's trasher
Tringa solitaria No
Solitary sandpiper
Troglodytes aedon No
House wren
Turdus migratorius No Robin
Tyrannus verticalis No
Western kingbird
Tyrannus vociferans No
Cassin's kingbird
Tyto alba Yes
Barn owl
Urocyon cinereoargenteus Yes
Grey fox Yes

Ursus sp.* Yes

No

Bones
Unworked hide and hair

BI BLIOGRAPHY

Adams, William Y., Alexander J. Lindsay, Jr. and Cristy G. Turner II
1961 Survey and Excavation in Lower Glen Canyon, 1952-1958. Museum of Northern Arizona Bulletin, No. 36, Glen Canyon Series, No. 3. Flagstaff.

Ambler, J. Richard, Alexander J. Lindsay, Jr. and Mary Anne Stein
1964 Survey and Excavations on Cummings Mesa, Arizona and Utah, 1960-1961. Museum of Northern Arizona Bulletin, No. 41, Glen Canyon Series, No. 7. Flagstaff.

Behle, William H.
1960 The Birds of Southeastern Utah. University of Utah Biological Series, Vol. 7, No. 1. Salt Lake City.

Coulter, John M. and Aven Nelson
1909 New Manual of Botany of the Central Rocky Mountains (Vascular Plants). American Book Company, Chicago.

Cutler, Hugh C.
1965 Plant Remains from Sites near Navajo Mountain. In Survey and Excavations North and East of Navajo Mountain, Utah, 1960 1961, Alexander J. Lindsay Jr., et.al. Unpublished MS, Museum of Northern Arizona, Flagstaff.

Cutler, Hugh C. and John W. Bower
1961 Appendix I, Survey and Excavations in Lower Glen Canyon, 1952-1958. Museum of Northern Arizona Bulletin, No. 36, Glen Canyon Series, No. 3, pp. 58-61. Flagstaff.

Fowler, Don D.
19631961 Excavations, Harris Wash, Utah. University of Utah Anthropological Papers, No. 64, Glen Canyon Series, No. 19. Salt Lake City.

Fowler, Don D. and C. Melvin Aikens
19631961 Excavations, Kaiparowits Plateau, Utah. University of Utah Anthropological Papers, No. 66, Glen Canyon Series, No. 20. Salt Lake City.

Gaines, Xerpha M.
1960 An Annotated Catalogue of Glen Canyon Plants. Museum of Northern Arizona Technical Series, No. 4. Flagstaff.

Gunnerson, James H.
19591957 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 43, Glen Canyon Series, No. 10. Salt Lake City.

Haring, Inez M.
1961 Mosses of the Glen Canyon Area. Plateau, Vol. 33, No. 4, pp. 120-122. Flagstaff.

Haskell, Horace S.
1958 Flowering Plants in Glen Canyon--Late Summer Aspect. Plateau, Vol. 31, No. 1, pp. 1-3. Flagstaff.

Kearney, Thomas H. and Robert H. Peebles
1942 Flowering Plants and Ferns of Arizona. U. S. Government Printing Office, Washington D. C.

Lindsay, Alexander J. Jr., et. al.
1965 Survey and Excavations North and East of Navajo Mountain, Utah, 1960-1961. Unpublished MS, Museum of Northern Arizona, Flagstaff.

Lipe, William D.
19601958 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 44, Glen Canyon Series, No. 11. Salt Lake City.

Lipe, William D. . et. al.
19601959 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 49, Glen Canyon Series, No. 13. Salt Lake City.

Lister, Robert H.
1959 The Coombs Site. University of Utah Anthropological Papers, No. 41, Pt. 1, Glen Canyon Series, No. 8. Salt Lake City.

Lister, Robert H. J. Richard Ambler and Florence Lister
1960 The Coombs Site. University of Utah Anthropological Papers, No. 41, Pt. 2, Glen Canyon Series, No. 8. Salt Lake City.

Lister, Robert H. and Florence C. Lister
1961 The Coombs Site. University of Utah Anthropological Papers, No. 41, Pt. 3, Glen Canyon Series, No. 8. Salt Lake City.

Martin, Paul S. and Floyd W. Sharrock
1964 Pollen Analysis of Prehistoric Human Feces: A New Approach to Ethnobotany. American Antiquity, Vol. 30, No. 2, pp. 168180. Salt Lake City.

Robbins, Wilfred William, John Peabody Harrington and Barbara Freire-Marreco
1916 Ethnobotany of the Tewa Indians. Bureau of American Ethnology Bulletin, No. 55. Washington D. C.

Sharrock, Floyd W.
19641962 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 73, Glen Canyon Series, No. 25. Salt Lake City.

Sharrock, Floyd W., Kent C. Day and David S. Dibble
19631961 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 63, Glen Canyon Series, No. 18. Salt Lake City.

Sharrock, Floyd W., et al.
19611960 Excavations, Glen Canyon Area. University of Utah Anthropological Papers, No. 52, Glen Canyon Series, No. 14. Salt Lake City.

Stevenson, Matilda Coxe
1915 Ethnobotany of the Zuni Indians. Bureau of American Ethnology, 30th Annual Report, pp. 29-102. Washington D. C.

Welsh, Stanley L. . Michael Treshow and Glen Moore
1965 Common Utah Plants. Provo.
Whiting, Alfred F.
1950 Ethnobotany of the Hopi. Museum of Northern Arizona Bulletin, No. 15. Flagstaff.

Woodbury, Angus M., et al.
1959 Ecological Studies of the Flora and Fauna in Glen Canyon. University of Utah Anthropological Papers, No. 40, Glen Canyon Series, No. 7. Salt Lake City.

1965 Notes on the Human Ecology of Glen Canyon. University of Utah Anthropological Papers, No. 74, Glen Canyon Series, No. 26, Salt Lake City.

Yarnell, Richard A.
1965 Implications of Distinctive Flora on Pueblo Ruins. American Anthropologist, Vol. 67, No. 3, pp. 662-674. Menasha.

UNIVERSITY OF UTAH ANTHROPOLOGICAL PAPERS
 Published by University of Utah Press

(Numbers 1-9 bound under one cover, \$3.25)

1. Prehistoric Exchange in Utah, by Carling Malouf (1939), pp. 1-6, 2 figs.
2. The Ancient Mexican Writing System, by Charles E. Dibble (1940), pp. 7-28, illus.
3. The Gosiute Indians, by Carling Malouf (1940), pp. 29-37, 1 fig.
4. A Brief Description of an Indian Ruin near Shonesburg, Utah, by Elmer R. Smith (1940), pp. 38-42, 2 figs.
5. The Archaeology of the Deep Creek Region, Utah, by Carling Malouf, . The Archaeology of the Deep. Creek Region, Unt 43-68, 11 figs.
6. An Indian Burial, a Barbed Bone "Projectile Point," and Accompanying Artifacts from Bear Lake, Idaho, by Elmer R. Smith (1942), pp. 69-73, 1 fig.
7. Archeology of Black Rock 3 Cave, Utah, by Walter D. Enger (1942), pp. $74-$ 94, 8 figs.
8. Archeology in the San Juan, by Samuel J. Tobin (1947), pp. 95-108.
9. An Archeological Reconnaissance in Washington County, Utah, 1949, by Jack R Rudy and Robert D. Stirland (1950), pp. 119-93, 17 figs.
10. The Archaeology of Deadman Cave: A Revision, by Elmer R. Smith (1952), 41 pp., 20 figs. OUT OF PRINT.
11. Proceedings of the Sixth Plains Archeological Conference (1948), edited by Jesse D. Jennings (1950), 169 pp., 5 figs. $\$ 1.50$.
12. Archeological Survey of Western Utah, by Jack R Rudy (1953), 190 pp., 62 figs. OUT OF PRINT.
13. In the Beginning: A Navaho Creation Myth, by Stanley A. Fishler (1953), 130 pp . OUT OF PRINT.
14. Archeological Survey of the La Sal Mountain Area, by Alice Hunt (1953), 248 pp., 89 figs., 3 tables. OUT OF PRINT.
15. A Study in Culture Contact and Culture Change: The Whiterock Utes in Transition, by Gottfried O. Lang (1953), 76 pp., 2 figs., 6 tables. OUT OF PRINT.
16. The Garrison Site, by Dee C. Taylor (1954), 66 pp., 20 figs. $\$ 1.25$.
(Numbers 17-19 bound under one cover \$1.00. Out of print.)
17. Notes on the Utah Utes by Eward A. Palmer, 1866-1877, by Robert F. Heizer (1954), 8 pp . OUT OF PRINT.
18. Pine Park Shelter, Washington County, Utah, by Jack R Rudy (1954), 28 pp., 16 figs. OUT OF PRINT.
19. Human Skeletal Material from Deadman Cave, Utah, by John BuettnerJanusch (1954), 9 pp., 4 figs. OUT OF PRINT.
20. Archeological Excavations in Beef Basin, Utah, by Jack R Rudy (1955), 109 pp., 39 figs., 12 tables. $\$ 1.50$. OUT OF PRINT.
21. Archeological Investigations in Nine Mile Canyon, Utah: a Republication, by John Gillin (1955), 45 pp., 31 figs. $\$ 1.00$. OUT OF PRINT.
22. Archeology of Zion Park, by Albert H. Schroeder (1955), 212 pp., 48 figs., 23 tables. $\$ 2.25$. OUT OF PRINT.
23. Ute Rorschach Performances with Notes on Field Methods, by Paul A. Hauck (1955), 18 pp. $\$.50$.
24. Early Man in the Columbia Intermontane Province, by Richard D. Daugherty (1956), 123 pp., 4 tables. OUT OF PRINT.
25. Archeological Excavations in Iron County, Utah, by Clement W. Meighan, et al. (1956), 134 pD., 63 figs., 20 tables. \$2.25. OUT OF PRINT.
26. Papers of the Thira Great Basin Archeological Conference, by Fay-Cooper Cole, et al. (1956), 96 pp., 17 figs. $\$ 1.50$.
27. Danger Cave, by Jesse D. Jennings (1957), 340 pp., 8 appendices, 246 figs., 31 tables. $\$ 6.00$.
28. Archeological Survey of the Fremont Area, by James H. Gunnerson (1957), 155 pp., 30 figs., 6 tables. $\$ 3.00$.
29. Two Fremont Sites and Their Position in Southwestern Prehistory, by Dee C. Taylor (1957), 196 pD., 57 figs., 15 tables. $\$ 3.50$.
30. The Glen Canyon Survey in 1957, by Robert H. Lister (1958), 57 pp., 24
figs., 2 tables. $\$ 1.25$. (Glen Canyon Series, No. 1). OUT OF PRINT.
. Preliminary Report on Biological Resources of the Glen Canyon Reservoir, by Angus M. Woodbury, et al. (1958), 226 pp., 11 figs. $\$ 2.50$. (Glen Canyon Series, No. 2)

(Numbers 32-33 bound under one cover. Out of print.)

32. Mormon Towns in the Region of the Colorado, by Leland H. Creer (1958), 26 pp., 1 fig. (Glen Canyon Series, No. 3.) OUT OF PRINT.
33. The Activities of Jacob Hamblin in the Region of the Colorado, by Leland H. Creer (1958), 40 pp., 1 fig. (Glen Canyon Series, No. 4.) OUT OF
PRINT. PRINT.
34. Archeological Notes on Stansbury Island, by Sydney J. S. Jameson (1958), 52 pp., 35 figs., 2 tables. $\$ 2.00$.
35. Excavations in Mancos Canyon, Colorado, by Erik K. Reed (1958), 224 pp., 62 figs., 2 tables. $\$ 4.00$.
36. A Survey of Vegetation in Glen Canyon Reservoir Basin, by Angus M. Woodbury, Stephen D. Durrant and Seville Flowers (1959), 59 pp., 22 figs. $\$ 1.00$. (Glen Canyon Series, No. 5)
37. An Outline of the History of the Flaming Gorge Area, by William M. Purdy (1959), 50 pp., 14 figs. Second Printing (1962), $\$ 1.00$. (Upper Colo-
rado Series, rado Series, No. 1)
38. The Havasupai Woman, by Carma Lee Smithson (1959), 178 pp., 19 figs., 2 tables. $\$ 3.00$. OUT OF PRINT.
39. The Glen Canyon Archeological Survey, by Don D. Fowler, et al. (1959) (bound separately in three parts), $\$ 6.75$. Single copies: Part I, 333 pp., 61

40. Ecological Studies of Flora and Fauna in Glen Canyon, by Angus M. Woodbury, et al. (1959), 233 pp., 57 figs. $\$ 2.50$. (Glen Canyon Series, No. 7)
41. The Coombs Site, by Robert H. Lister, J. Richard Ambler and Florence C. Lister (bound separately in three parts), $\$ 6.00$. Single copies: Part I (1959), 126 pp., 43 figs., 14 tables, $\$ 1.50$. Part II (1960), 299 pp., 85 figs., 60 tables, $\$ 3.50$. Part III $(1901), 144$ pp., 2 appendices, 15 figs., 14 tables, $\$ 2.25$. (Glen
Canyon Series, No. 8)
42. Outline History of the Glen Canyon Region 1776-1922, by C. Gregory
Crampton (1959), 155 pp., 50 figs. $\$ 2.00$. (Glen Canyon Series, No. 9) Crampton (1959), 155 pp., 50 figs. $\$ 2.00$. (Glen Canyon Series, No. 9)
OUT OF PRINT. OUT OF PRINT.
43. 1957 Excavations, Glen Canyon Area, by James H. Gunnerson (1959), 179 pp., 48 figs., 21 tables. $\$ 2.25$. (Glen Canyon Series, No. 10)
44. 1958 Excavations, Glen Canyon Area, by William D. Lipe (1960), 257 pp., 2 appendices, 70 figs., 23 tables. $\$ 3.00$. (Glen Canyon Series, No. 11)
45. A Survey of Vegetation in the Flaming Gorge Reservoir Basin, by Angus M. Woodbury, Stephen D. Durrant and Seville Flowers (1960), 128 pp ., 24 figs., 8 tables. $\$ 1.75$. (Upper Colorado Series, No. 2)
46. Historical Sites in Glen Canyon, Mouth of San Juan River to Lees Ferry, by C. Gregory Crampton (1960), 146 pp., 39 figs., $\$ 2.00$. (Glen Canyon Series, No, 12)
47. Archeology of the Death Valley Salt Pan, California, by Alice Hunt (1960), 329 pp., 87 figs., 13 tables. OUT OF PRINT.
48. Ecological Studies of the Flora and Fauna of Flaming Gorge Reservoir Basin, Utah and Wyoming, by Seville Flowers, et al. (1960), 251 pp., 14 figs., 1 table. $\$ 3.25$. (Upper Colorado Series, No. 3)
49. 1959 Excavations, Glen: Canyon Area, by William D. Lipe, et al., with an addendum by Dee Ann Suhm (1960), 273 pp., 1 appendix, 55 figs., 1 table. $\$ 3.50$. (Glen Canyon Series, No. 13)
50. The Archeological Excavations at Willow Beach, Arizona, 1950, by Albert H. Schroeder (1961), 172 pp., 1 appendix, 40 figs., 25 tables. $\$ 3.25$.
51. Survey of Vegetation in the Navajo Reservoir Basin, by Angus M. Woodbury, Stephen D. Durrant and Seville Flowers (1961), 106 pp., 12 figs., 9 tables. \$1.60. (Upper Colorado Series, No. 4)
52. 1960 Excavations, Glen Canyon Area, by Floyd W. Sharrock, et al., with an addendum by David M. Pendergast (1961), 372 pp., 2 appendices, 101 figs., 18 tables. \$4.75. (Glen Canyon Series, No. 14)
53. Prehistoric Settlement and Physical Environment in the Mesa Verde Area, by Joyce Herold (1961), 218 pp., 26 figs., 9 tables. $\$ 3.00$.
54. The Hoskaninni Papers, Mining in Glen Canyon, 1897-1902, by Robert B. Stanton, edited by C. Gregory Crampton and Dwight L. Smith (1961), 196 pp., 36 figs., $\$ 2.75$. (Glen Canyon Series, No. 15)
55. Ecological Studies of the Flora and Fauna of Navajo Reservoir Basin, Colorado and New Mexico, by Angus M. Woodbury, et al. (1961), 210 pp., 22 figs. $\$ 2.50$. (Upper Colorado Series, No. 5)
56. A Survey of Vegetation in the Curecanti Reservoir Basins, by Angus M. Woodbury, Stephen D. Durrant and Seville Flowers (1962), 106 pp., 12 figs., 9 tables. $\$ 1.50$. (Upper Colorado Series, No. 6)

Continued on back cover

(Numbers 57-58 bound under one cover, \$2.00)

57. Carnegie Museum Collection From Southeast Utah, by Floyd W. Sharrock and Edward G. Keane (1962), 77 pp., 18 figs., 1 table. (Glen Canyon Series, No. 16)
58. A Preliminary Survey of the Fontenelle Reservoir, Wyoming, by David S. Dibble and Kent C. Day (1962), 48 pp., 7 figs., 3 tables. (Upper Colorado Series, No. 7)
59. Ecological Studies of the Flora and Fauna of the Curecanti Reservoir Basins, Western Colorado, by Angus M. Woodbury, et al. (1962), 291 pp., 20 figs., 13 tables. $\$ 4.00$. (Upper Colorado Series, No. 8)
60. Miscellaneous Collected Papers 1-7, by James H. Gunnerson, David M. Pendergast and Keith M. Anderson (1962), 170 pp., 44 figs., 5 tables. $\$ 2.75$.
61. Historical Sites in Glen Canyon, Mouth of Hansen Creek to Mouth of San Juan River, by C. Gregory Crampton (1962), 128 pp., 38 figs., 5 atlas sheets, 1 table. $\$ 2.00$. (Glen Canyon Series, No. 17)
62. Civilizations in Desert Lands, edited by Richard B. Woodbury (1962), 94 pp., 3 figs. $\$ 1.50$.
63. 1961 Excauations, Glen Canyon Area, by Floyd W. Sharrock, Kent C. Day and David S. Dibble (1963), 401 pp., 4 appendices, 93 figs., 20 tables. $\$ 5.50$. (Glen Canyon Series, No. 18)

(Numbers 64, 65, 66 bound under one cover, \$4.50)

64. 1961 Excavations, Harris Wash, Utah, by Don D. Fowler (1963), 120 pp., 33 figs., 2 tables. (Glen Canyon Series, No. 19)
65. Archeological Survey of the Flaming Gorge Reservoir Area, Wyoming-Utah, by Kent C. Day and David S. Dibble, with addenda by David M. Pendergast and Kent C. Day (1963), 118 pp., 19 figs., 3 tables. (Upper Colorado Series, No. 9)
66. 1961 Excavations, Kaiparowits Plateau, Utah, by Don D. Fowler and C. Melvin Aikens (1963), 110 pp., 2 appendices, 55 figs., 2 tables. (Glen Canyon Series, Nc. 20)
67. Washo Indians of California and Nevada, Warren L. d'Azevedo, ed. (1964), 208 pp., annotated bibliography. \$2.75.
68. Havasupai Religion and Mythology, by Carma Lee Smithson and Robert C. Euler (1964), 120 pp. $\$ 2.00$.
69. Southern Paiute Ethnology, by Isabel T. Kelly (1964), 214 pp., foldout map, 7 figs., bibliography. \$2.85. (Glen Canyon Series, No. 21)
70. The San Juan Canyon Historical Sites, by C. Gregory Crampton (1964), 92 pp., 8 maps, 25 figs., bibliography. $\$ 1.75$. (Glen Canyon Series, No. 22)
71. Kaiparowits Plcteau and Glen Canyon Prehistory: An Interpretation Based on Ceramics, by Florence C. Lister (1964), 91 pp., $\$ 1.75$. (Glen Canyon Series, No. 23)
72. Historical Sites in Cataract and Narrow Canyons, and in Glen Canyon to California Bar, by C. Gregory Crampton (1964), 108 pp., 36 figs., bibliography, 9 maps. $\$ 2.00$. (Glen Canyon Series, No. 24)
73. 1962 Excavations, Glen Canyon Area, by Floyd W. Sharrock (1964), 195 pp., 59 figs., 8 tables, bibliography. $\$ 3.00$. (Glen Canyon Series, No. 25)
74. Notes on the Human Ecology of Glen Canyon, by Angus M. Woodbury (1965), 70 pp., 3 figs., 1 table, bibliography. $\$ 1.50$. (Glen Canyon Series, No. 26)
75. Miscellaneous Collected Papers 8-10, by Emma Lou Davis, Roland H. Wauer, and Albert H. Schroeder (1965), 110 pp., 30 figs. $\$ 2.00$.
76. Excavations in Southwest Utah, by C. Melvin Aikens (1965), 153 pp., 40 figs., 9 tables. \$2.20.
77. Prehistoric Occupation Patterns in Southwest Wyoming and Cultural Relationships with the Great Basin and Plains Culture Areas, by Floyd W. Sharrock (1966), 215 pp., 97 figs., 9 tables. \$4.00.
78. Southern Paiute Ethnohistory, by Robert C. Euler (1966), 173 pp., 62 figs., 2 tables. $\$ 4.00$.
79. Virgin-Kayenta Cultural Relationships, by C. Melvin Aikens (1966), 85 pp., 1 fig., $\$ 4.00$. (Glen Canyon Series, No. 29)

[^0]: * Hugh C. Cutler is Curator of Useful Plants, Missouri Botanical Garden, and Associate Professor, Washington, University.

[^1]: * An asterisk following an entry signifies that that genus and species has been reported from Glen Canyon proper. See bibliography attached.

