## **Plate Tectonics**

- Intro: Chemical and physical structure of Earth
- 1) The plate tectonic system
- 2) A theory is born
- 3) Early evidence for continental drift
- 4) Continental drift and paleomagnetism

Read Chapter 3!

# PLATE 2) A theory is born

### How do scientists work? The scientific method



Scientists are working to make observations (working descriptively) or test hypotheses to explain observations. The process never ends: theories can be revoked any time if they are not in accordance with new observations (similarity of scientists and detectives..).

# PLATE **2) A theory is born**

#### 1915

Alfred Wegener published hypothesis of **continental drift** ('*The origins of continents and oceans'*)

He hypothesized:

#### existence of single "super-continent"

#### Pangaea ("pan - G - uh")

 ~ 200 million years ago Pangaea broke into smaller pieces, & "drifted" to present positions



#### 200 million years ago ASIA BAR ASIA BAR ASIA BAR ASIA BAR ASIA BAR Equetor BASIA BAR ASIA BAR

# PLATE 2) A theory is born

1924

Wegeners book translated to English

& met with hostile criticism

• Main objection: no way to explain continental drift.

## 3. Early evidence for continental drift

Jigsaw puzzle of the continents

- Fossil record
- Rock types and structural similarities
- Paleoclimate

## 3. Early evidence for continental drift



### 3. Early evidence for continental drift

#### Fossil evidence

Several fossil organisms have been found in common on different continents



## 3. Early evidence for continental drift

#### 🧶 Fossil evidence



## 3. Early evidence for continental drift

#### Fossil evidence

Several fossil organisms have been found in common on different continents



#### **PLATE** TECTONICS 3. Early evidence for continental drift

#### Rock evidence

Mountain belts on one continent match up with another.

### Similar rock structure and age:

- Appalachians (eastern US)
- British Isles, Scandanavia

## 3. Early evidence for continental drift

#### Rock evidence

Mountain belts on one continent match up with another.





Compare with Fig. 3.4



- Magnetism in rocks

#### PLATE TECTONICS 4) Continental drift and paleomagnetism

#### **Rock magnetism**

-Certain minerals are magnetic (e.g., magnetite, iron)

-They loose magnetization when heated above Curie point (580°C for iron)

-When cooled below Curie pt, magnetic grain aligns w/ Earth's magnetic field



#### PLATE TECTONICS 4) Continental drift and paleomagnetism

#### **Rock magnetism**

-Certain minerals are magnetic (e.g., magnetite, iron)

-They loose magnetization when heated above Curie point (580°C for iron)

-When cooled below Curie pt, magnetic grain aligns w/ Earth's magnetic field



Fig. 3-7

# Earth's magnetic field

In the simplest terms, Earth can be thought of as a dipole (2-pole) magnet. Magnetic field lines radiate between Earth's north and south magnetic poles just as they do between the poles of a bar magnet. Charged particles become trapped on these field lines (just as the iron filings are trapped), forming the magnetosphere.

• Earth's magnetic field protects us from sun's high energy radiation (solar flares).



http://liftoff.msfc.nasa.gov/academy/space/mag\_field.html

#### PLATE 4) Continental drift and paleomagnetism TECTONICS

- Earth's magnetic field "reverses"
- recorded in lava flows

http://www.pbs.org/wgbh/nova/minutes/q\_3016.html

## And now: The Hollywood version ...

#### PLATE TECTONICS 4) Continental drift and paleomagnetism

#### **Geomagnetic reversals**

Earth's magnetic field "reverses"



#### 4) Continental drift and paleomagnetism





Towing magnetometers across the mid-ocean ridge, magnetic anomalies are recorded that form parallel bands on either side of the ridge.

#### 4) Continental drift and paleomagnetism



From dating reversals in the lava record in different continental lava flows, a magnetic time line can be established. There is a reversal about every 500,000 years (short reversal 'events' may interrupt the longer magnetic 'epochs').

See Fig. 3-13

### **Movie: Seafloor Spreading**



#### 4) Continental drift and paleomagnetism

The reconstructed magnetic time-line were used to date the magnetic anomalies on the sea-floor.

Knowing the width of a band, and the time a magnetic epoch lasted you can come up with a value of seafloor spreading (speed=distance/time)



See Fig. 3-11

#### 4) Continental drift and paleomagnetism



Age of sea-floor measured from magnetic reversals and deep sea drilling.

### **PLATE TECTONICS** 4) Continental drift and paleomagnetism

### Seafloor magnetic stripes

1963, Vine & Matthews connected seafloor spreading & continental drift, from magnetic field reversals recorded in cooling lavas of new seafloor

symmetric patterns ("stripes") on either side of spreading center (mid-ocean ridge)

changes in width of a given stripe indicate changes in spreading rate.

### **Deep Sea Drilling Vessel JOIDES Resolution**



Confirmed ocean floor age increases away from mid-ocean ridge.

See history handout:

The great synthesis: in 1965, Tuzo Wilson merged the concepts of continental drift and seafloor spreading into the theory of 'Plate Tectonics'