Lecture 2: Well-orderings

January 21, 2009

3 Well-orderings

Definition 3.1. A binary relation r on a set A is a subset of $A \times A$. We also define

$$
\begin{gathered}
\operatorname{dom}(r)=\{x \mid \exists y \cdot(x, y) \in r\} \\
\operatorname{rng}(r)=\{y \mid \exists x \cdot(x, y) \in r\}, \text { and } \\
\operatorname{fld}(r)=\operatorname{dom}(r) \cup \operatorname{rng}(r)
\end{gathered}
$$

Definition 3.2. A binary relation r is a strict partial order iff

- $\forall x .(x, x) \notin r$, and
- $\forall x y z$. if $(x, y) \in r$ and $(y, z) \in r$ then $(x, z) \in r$,
that is, if r is irreflexive and transitive. Moreover, iff for all x and y in $\operatorname{fld}(r)$, either $(x, y) \in r$ or $(y, x) \in r$ or $x=y$, we say r is a strict linear order.

Definition 3.3. A strict linear order r is a well-ordering iff every non-empty $z \subseteq \operatorname{fld}(r)$ has an r-least member.

Remark. For example, the natural numbers \mathbb{N} are well-ordered under the normal $<$ relation. However, \mathbb{Z}, \mathbb{Q}, and \mathbb{Q}^{+}are not.

However, we want to be able to talk about well-orderings longer than ω. For example,

$$
0,2,4, \ldots, 1,3,5, \ldots
$$

is an alternative well-ordering of the natural numbers which is longer than ω.
Definition 3.4. $f: X \rightarrow X$ is order-preserving iff for all $y, z \in X, y<z$ implies that $f(y)<f(z)$.

Theorem 3.5. If $\langle X,<\rangle$ is a well-ordering and f is order-preserving, then for every $y \in X, y \leq f(y)$.

Proof. Suppose otherwise, namely, that there exists some $z \in X$ for which $f(z)<z$. Let z_{0} be the least such z. Since f is order preserving, we we also have that $f\left(f\left(z_{0}\right)\right)<f\left(z_{0}\right)$; but this contradicts the minimality of z_{0}.

Remark. One formulation of the Axiom of Choice states that for every set x, there exists some binary relation r such that $\langle x, r\rangle$ is a well-ordering.

Theorem 3.6. If $<$ well-orders x, then the only automorphism of $\langle x,<\rangle$ is the identity. Such a structure is called rigid.

Proof. Let f be an automorphism (that is, an order-preserving, onto map) of $\langle x,<\rangle$. (Note that if f is order-preserving, it must be 1-1 as well.) We first note that f^{-1} is also order-preserving: if $y<z$ but $f^{-1}(y) \geq f^{-1}(z)$, we could apply f to both sides to derive a contradiction. Therefore, by Theorem 3.5, for any $y \in x$, we have $f(y) \geq y$ and $f^{-1}(y) \geq y$. Applying f to both sides of the latter inequality, we obtain $y \geq f(y)$; hence $y=f(y)$ and f is necessarily the identity.

Corollary 3.7. If $\langle x,<\rangle$ and $\left\langle y,<^{\prime}\right\rangle$ are isomorphic well-orderings, there is a unique isomorphism between them. Otherwise, we could derive a non-trivial automorphism by composing one isomorphism with the inverse of another.

Definition 3.8. Given $\langle x,<\rangle$ and $y \in x$, we can define the initial segment of x determined by y,

$$
\operatorname{Init}(x, y,<)=\{z \in x \mid z<y\}
$$

Theorem 3.9. If $\langle x,<\rangle$ is a well-ordering, there is no $z \in x$ for which $\langle x,<\rangle$ is isomorphic to $\operatorname{Init}(x, z,<)$.

Remark. This is certainly not true for non-well-orderings. For example, $\langle\mathbb{Q},<\rangle \cong$ $\operatorname{Init}(\mathbb{Q}, z,<)$ for every $z \in \mathbb{Q}$!

Proof. Suppose $z \in x$ such that $\langle x,<\rangle \cong \operatorname{Init}(x, z,<)$. This is an orderpreserving map that sends z to something less than itself; this contradicts Theorem 3.5.

Theorem 3.10. For every pair of well-orderings $w=\langle x,<\rangle$ and $w^{\prime}=\left\langle y,\left\langle^{\prime}\right\rangle\right.$, either

- $w \cong w^{\prime}$,
- $w \cong \operatorname{Init}\left(w^{\prime}, z,<^{\prime}\right)$ for some $z \in y$, or
- $w^{\prime} \cong \operatorname{Init}(w, z,<)$ for some $z \in x$.

Proof. Consider the set

$$
f=\left\{\left(z, z^{\prime}\right) \mid z \in x, z^{\prime} \in y, \operatorname{Init}(x, z,<) \cong \operatorname{Init}\left(y, z^{\prime},<^{\prime}\right)\right\}
$$

We first show that f is a function. If we had $\left(z, z^{\prime}\right)$ and $\left(z, z^{\prime \prime}\right)$ both elements of f, with $z^{\prime} \neq z^{\prime \prime}$, then we would have $\operatorname{Init}\left(y, z^{\prime}\right) \cong \operatorname{Init}(x, z) \cong \operatorname{Init}\left(y, z^{\prime \prime}\right)$. However, one of $\operatorname{Init}\left(y, z^{\prime}\right)$ and $\operatorname{Init}\left(y, z^{\prime \prime}\right)$ is an initial segment of the other, so this contradicts Theorem 3.9.

A similar argument shows that f is 1-1.
Note that $\operatorname{dom}(f)$ is an initial segment of $\langle x,<\rangle$, and $\operatorname{rng}(f)$ is an initial segment of $\left\langle y,\left\langle^{\prime}\right\rangle\right.$. Also note that either $\operatorname{dom}(f)=x$ or $\operatorname{rng}(f)=y$, since otherwise f could be extended. The three cases stated in the theorem correspond precisely to when both the domain and range of f are full, when the domain is full, and when the range is full.

