3 Well-orderings

Definition 3.1. A binary relation r on a set A is a subset of $A \times A$. We also define

$$dom(r) = \{ x \mid \exists y.(x, y) \in r \},$$

$$rng(r) = \{ y \mid \exists x.(x, y) \in r \}, and$$

$$fld(r) = dom(r) \cup rng(r).$$

Definition 3.2. A binary relation r is a *strict partial order* iff

- $\forall x.(x,x) \notin r$, and
- $\forall xyz$. if $(x, y) \in r$ and $(y, z) \in r$ then $(x, z) \in r$,

that is, if r is irreflexive and transitive. Moreover, iff for all x and y in fld(r), either $(x, y) \in r$ or $(y, x) \in r$ or x = y, we say r is a strict linear order.

Definition 3.3. A strict linear order r is a *well-ordering* iff every non-empty $z \subseteq \operatorname{fld}(r)$ has an r-least member.

Remark. For example, the natural numbers \mathbb{N} are well-ordered under the normal < relation. However, \mathbb{Z} , \mathbb{Q} , and \mathbb{Q}^+ are not.

However, we want to be able to talk about well-orderings longer than ω . For example,

$$0, 2, 4, \ldots, 1, 3, 5, \ldots$$

is an alternative well-ordering of the natural numbers which is longer than ω .

Definition 3.4. $f : X \to X$ is order-preserving iff for all $y, z \in X, y < z$ implies that f(y) < f(z).

Theorem 3.5. If $\langle X, \langle \rangle$ is a well-ordering and f is order-preserving, then for every $y \in X$, $y \leq f(y)$.

Proof. Suppose otherwise, namely, that there exists some $z \in X$ for which f(z) < z. Let z_0 be the least such z. Since f is order preserving, we we also have that $f(f(z_0)) < f(z_0)$; but this contradicts the minimality of z_0 .

Remark. One formulation of the Axiom of Choice states that for every set x, there exists some binary relation r such that $\langle x, r \rangle$ is a well-ordering.

Theorem 3.6. If < well-orders x, then the only automorphism of $\langle x, < \rangle$ is the identity. Such a structure is called rigid.

Proof. Let f be an automorphism (that is, an order-preserving, onto map) of $\langle x, < \rangle$. (Note that if f is order-preserving, it must be 1-1 as well.) We first note that f^{-1} is also order-preserving: if y < z but $f^{-1}(y) \ge f^{-1}(z)$, we could apply f to both sides to derive a contradiction. Therefore, by Theorem 3.5, for any $y \in x$, we have $f(y) \ge y$ and $f^{-1}(y) \ge y$. Applying f to both sides of the latter inequality, we obtain $y \ge f(y)$; hence y = f(y) and f is necessarily the identity.

Corollary 3.7. If $\langle x, \langle \rangle$ and $\langle y, \langle' \rangle$ are isomorphic well-orderings, there is a unique isomorphism between them. Otherwise, we could derive a non-trivial automorphism by composing one isomorphism with the inverse of another.

Definition 3.8. Given $\langle x, \langle \rangle$ and $y \in x$, we can define the *initial segment of* x determined by y,

$$Init(x, y, <) = \{ z \in x \mid z < y \}.$$

Theorem 3.9. If $\langle x, < \rangle$ is a well-ordering, there is no $z \in x$ for which $\langle x, < \rangle$ is isomorphic to Init(x, z, <).

Remark. This is certainly *not* true for non-well-orderings. For example, $\langle \mathbb{Q}, \langle \rangle \cong$ Init (\mathbb{Q}, z, \langle) for every $z \in \mathbb{Q}$!

Proof. Suppose $z \in x$ such that $\langle x, \langle \rangle \cong \text{Init}(x, z, \langle)$. This is an orderpreserving map that sends z to something less than itself; this contradicts Theorem 3.5.

Theorem 3.10. For every pair of well-orderings $w = \langle x, \langle \rangle$ and $w' = \langle y, \langle' \rangle$, either

- $w \cong w'$,
- $w \cong \operatorname{Init}(w', z, <')$ for some $z \in y$, or
- $w' \cong \text{Init}(w, z, <)$ for some $z \in x$.

Proof. Consider the set

$$f = \{ (z, z') \mid z \in x, z' \in y, \operatorname{Init}(x, z, <) \cong \operatorname{Init}(y, z', <') \}.$$

We first show that f is a function. If we had (z, z') and (z, z'') both elements of f, with $z' \neq z''$, then we would have $\operatorname{Init}(y, z') \cong \operatorname{Init}(x, z) \cong \operatorname{Init}(y, z'')$. However, one of $\operatorname{Init}(y, z')$ and $\operatorname{Init}(y, z'')$ is an initial segment of the other, so this contradicts Theorem 3.9.

A similar argument shows that f is 1-1.

Note that $\operatorname{dom}(f)$ is an initial segment of $\langle x, \langle \rangle$, and $\operatorname{rng}(f)$ is an initial segment of $\langle y, \langle' \rangle$. Also note that either $\operatorname{dom}(f) = x$ or $\operatorname{rng}(f) = y$, since otherwise f could be extended. The three cases stated in the theorem correspond precisely to when both the domain and range of f are full, when the domain is full, and when the range is full.