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3 Well-orderings

Definition 3.1. A binary relation r on a set A is a subset of A × A. We also
define

dom(r) = {x | ∃y.(x, y) ∈ r },
rng(r) = { y | ∃x.(x, y) ∈ r }, and

fld(r) = dom(r) ∪ rng(r).

Definition 3.2. A binary relation r is a strict partial order iff

• ∀x.(x, x) 6∈ r, and

• ∀xyz. if (x, y) ∈ r and (y, z) ∈ r then (x, z) ∈ r,

that is, if r is irreflexive and transitive. Moreover, iff for all x and y in fld(r),
either (x, y) ∈ r or (y, x) ∈ r or x = y, we say r is a strict linear order.

Definition 3.3. A strict linear order r is a well-ordering iff every non-empty
z ⊆ fld(r) has an r-least member.

Remark. For example, the natural numbers N are well-ordered under the normal
< relation. However, Z, Q, and Q+ are not.

However, we want to be able to talk about well-orderings longer than ω. For
example,

0, 2, 4, . . . , 1, 3, 5, . . .

is an alternative well-ordering of the natural numbers which is longer than ω.

Definition 3.4. f : X → X is order-preserving iff for all y, z ∈ X, y < z
implies that f(y) < f(z).

Theorem 3.5. If 〈X, <〉 is a well-ordering and f is order-preserving, then for
every y ∈ X, y ≤ f(y).

Proof. Suppose otherwise, namely, that there exists some z ∈ X for which
f(z) < z. Let z0 be the least such z. Since f is order preserving, we we also
have that f(f(z0)) < f(z0); but this contradicts the minimality of z0. SDG

Remark. One formulation of the Axiom of Choice states that for every set x,
there exists some binary relation r such that 〈x, r〉 is a well-ordering.

Theorem 3.6. If < well-orders x, then the only automorphism of 〈x,<〉 is the
identity. Such a structure is called rigid.
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Proof. Let f be an automorphism (that is, an order-preserving, onto map) of
〈x, <〉. (Note that if f is order-preserving, it must be 1-1 as well.) We first
note that f−1 is also order-preserving: if y < z but f−1(y) ≥ f−1(z), we could
apply f to both sides to derive a contradiction. Therefore, by Theorem 3.5, for
any y ∈ x, we have f(y) ≥ y and f−1(y) ≥ y. Applying f to both sides of the
latter inequality, we obtain y ≥ f(y); hence y = f(y) and f is necessarily the
identity. SDG

Corollary 3.7. If 〈x,<〉 and 〈y,<′〉 are isomorphic well-orderings, there is a
unique isomorphism between them. Otherwise, we could derive a non-trivial
automorphism by composing one isomorphism with the inverse of another.

Definition 3.8. Given 〈x,<〉 and y ∈ x, we can define the initial segment of x
determined by y,

Init(x, y, <) = { z ∈ x | z < y }.
Theorem 3.9. If 〈x,<〉 is a well-ordering, there is no z ∈ x for which 〈x,<〉
is isomorphic to Init(x, z, <).

Remark. This is certainly not true for non-well-orderings. For example, 〈Q, <〉 ∼=
Init(Q, z, <) for every z ∈ Q!

Proof. Suppose z ∈ x such that 〈x,<〉 ∼= Init(x, z, <). This is an order-
preserving map that sends z to something less than itself; this contradicts The-
orem 3.5. SDG

Theorem 3.10. For every pair of well-orderings w = 〈x,<〉 and w′ = 〈y,<′〉,
either

• w ∼= w′,

• w ∼= Init(w′, z, <′) for some z ∈ y, or

• w′ ∼= Init(w, z,<) for some z ∈ x.

Proof. Consider the set

f = { (z, z′) | z ∈ x, z′ ∈ y, Init(x, z, <) ∼= Init(y, z′, <′) }.

We first show that f is a function. If we had (z, z′) and (z, z′′) both elements
of f , with z′ 6= z′′, then we would have Init(y, z′) ∼= Init(x, z) ∼= Init(y, z′′).
However, one of Init(y, z′) and Init(y, z′′) is an initial segment of the other, so
this contradicts Theorem 3.9.

A similar argument shows that f is 1-1.
Note that dom(f) is an initial segment of 〈x,<〉, and rng(f) is an initial

segment of 〈y, <′〉. Also note that either dom(f) = x or rng(f) = y, since
otherwise f could be extended. The three cases stated in the theorem correspond
precisely to when both the domain and range of f are full, when the domain is
full, and when the range is full. SDG
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