General overview of networks (graphs) in biology
& associated algorithms




The key abstract idea to retain is:
Interactions!
And so networks / graphs, as models or as tools

Biochemical networks ... butalso

Rytidospenma clade

Pentaschisfis clade

Cape Merxmuellera clade
Menmuellera arundinacea
Outgroups

New Zealand
Cortaderia clade

Plinthanthesis

Mountain
Menmuellera clade

Notochloe

Cortaderia
pilosa

Chagtobromus !

f Chionochloa
Pseudopentameris

Cortaderia
archboldii

Danthonia

South American
Cortaderia clade

Evolutionary network

ATCTGCTCGACGC
GCGTCGAGCAGAT

B
1 80

Graphs as “tools”

De Bruijn graphs for NGS data

Ecoldgical network



This overview will be biased
towards a “graph—view” of networks
(--- and even then, very far from being exhaustive!)

Case of biochemical networks, more precisely of metabolism
Modelling of the biochemical reaction: A+ B «—> C

(a) Interaction-based (b) Constraint-based (c) Mechanism-based
C Ky
/ \ A+B==—=C A+B =—=C
A B K_,
Static models Static models Dynamic models
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Another view

Network
organization:

modularity

Modules:
validation
and function

Network complexity

Level of detail / accuracy
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Modelling
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Algorithm RC (Reaction Cut)
input:
a stoichiometric matrix S, a weight function w, a reaction r° to be cut;
phase 1
F=;
while F' is not a reaction cut of r°
do begin
let C be the set of reactions defining an elementary mode in Sr that includes r°
let @ = min,cc w(r)
for each reaction r in C'
& do begin
e y G, P w(r)=w(r) —o
N ’ e SN if w(r) =0 then F = FJ{r}
R /-——-—'—'/ Y AT end
Wi R ‘ end
Cell growth / N | phase
Filamentous let r1,79,...,7% be the reaction in F'

Acetate ester ;
S o ; ~ growth for j=1to k do
MST;:E N 'Tml ilisati Synimas IR if ' —r; is a reaction cut of r° then F = F —r;
‘ gen ‘ ; - Glycolysis 2 output: F



Modelling

Taken from “The role of Modeling in Systems Biology”, Douglas Kell and

Joshua Knowles
Chapter of “System Modeling in Cellular Biology: From Concepts to Nuts
and Bolts”, eds. Zoltan Szallasi, Jorg Stelling, Vipul Periwal, MIT Press 2006

Dimension | Possible choices Comments

or Feature

Stochastic Stochastic: Monte Carlo methods | Phenomena are not of themselves either
or determin- | or statistical distributions stochastic or deterministic; large-scale,
istic Deterministic: equations such as | linear systems can be modeled deter-

ODEs

ministically, while a stochastic model
is often more appropriate when nonlin-
earity i1s present.

Discrete ver-
sus continu-
ous (in time)

Discrete: Discrete event simula-
tion, for example, Markov chains,
cellular automata, Boolean net-
works.

Continuous: Rate equations.

Discrete time is favored when variables
only change when specific events occur
(modeling queues). Continuous time is
favored when variables are in constant
flux.




Modelling

Dimension
or Feature

Possible choices

Comments

Macroscopic | Microscopic: Model individual | Are the individual particles or subsys-
versus mi- | particles in a system and compute | tems important to the evolution of the
croscopic averaged effects as necessary. system, or is it enough to approximate
Macroscopic: Model averaged ef- | them by statistical moments or ensem-
fects themselves, for example, con- | ble averages?
centrations, temperatures, etc.
Hierarchical Hierarchical: Fully modular net- | Can some processes/variables in the
versus works. system be hidden inside modules or ob-
multi-level Multi-level: Loosely connected | jects that interact with other modules,
components. or do all the variables interact, poten-
tially? This relates to reductionism ver-
sus holism.
Fully quan- | Qualitative: Direction of change | Reducing the quantitative accuracy
titative ver- | modeled only, or on/off states | of the model can reduce complexity
sus partially | (Boolean network). greatly and many phenomena may still
quantita- Partially quantitative: Fuzzy mod- | be modeled adequately.
tive wversus | els.
qualitative Fully quantitative: ODEs, PDEs,

microscopic particle models.




Modelling

Dimension
or Feature

Possible choices

Comments

Predictive
versus
exploratory /e3
planatory

Predictive: Specify every variable
that could affect outcome.

- Exploratory: Only consider some
variables of interest.

If a model is being used for precise pre-
diction or forecasting of a future event,
all variables need to be considered. The
exploratory approach can be less pre-
cise but should be more flexible, for ex-
ample, allowing different control poli-
cies to be tested.

Estimating
rare events
versus typi-
cal behavior

Rare events: Use importance sam-

pling.
Typical behavior:

sampling not needed.

Importance

Estimation of rare events, such as apop-
tosis times in cells is time-consuming
if standard Monte Carlo simulation is
used. Importance sampling can be used
to speed up the simulation.

Lumped or
spatially
segregated

Lumped: Treat cells or other com-
ponents/compartments as spa-
tially homogeneous.

Spatially segregated: Treat the
components as differentiated or
spatially heterogeneous.

If heterogeneous it may be necessary to
use the computationally intensive par-
tial differential equation, though other
solutions are possible (Mendes and

Kell, 2001)




Modelling

“The role of Modeling in Systems Biology”, Douglas Kell and Joshua

Knowles
Chapter of “System Modeling in Cellular Biology: From Concepts to Nuts
and Bolts”, eds. Zoltan Szallasi, Jorg Stelling, Vipul Periwal, MIT Press 2006
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Biochemical networks

An overview
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Gene—protein and protein—protein networks

Protein ~ Macromolecule
Edges /Arcs may have a sign
(indicating positive or negative effect)

Idea of sizes: s
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Metabolic networks

You’ll have more details later in the course, but for now already, the basic
information on such networks

As I mentioned, three main types of representations:

Graph representation: Connectivity of reactions/metabolites, structure
of the metabolic network

Stoichiometric (reaction equation) representation: capabilities of the
network, flow analysis, steady-state analyses

Kinetic models: dynamic behaviour under changing conditions



The representations that will be used

You’ll have more details later in the course, but for now already, the basic
information on such networks

As I mentioned, three main types of representations:

Graph representation: Connectivity of reactions/metabolites, structure
of the metabolic network

Stoichiometric (reaction equation) representation: capabilities of the
network, flow analysis, steady-state analyses



Graph representation, or directed hypergraph
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Valued directed (hyper)graphs

reaction

!

R1:
R2:
R3:
R4:
R5:

compound /
metabolite

1A + 2B ->2C + 3D
3D + 1E -> 2F + 2G
2F + 1G -> 2H + 11
31-> 1] + 2K
1A + 3L ->2C

Valued directed (hyper)graphs
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Stoichiometric matrix

reaction

!

R1:
R2:
R3:
R4:
R5:

compound /
metabolite

1A + 2B ->2C + 3D
3D + 1E-> 2F + 2G
2F + 1G -> 2H + 11
31-> 1] + 2K
1A + 3L ->2C

R1 R2 | R3 | R4 | RS
A -1 0 0 0 -1
B 2 0 0 0 0
C +2 0 0 0 +2
D +3 3 0 0 0
E 0 -1 0 0 0
F 0 +2 2 0 0
G 0 +2 -1 0 0
H 0 0 +2 0 0
I 0 0 +1 3 0
] 0 0 0 +1 0
K 0 0 0 +2 0
L 0 0 0 0 3




What has been done in the literature
Computing indices

Degree distribution

degree 6



Computing indices

Degree distribution

Distance distribution & diameter
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Computing indices

Degree distribution

Distance distribution & diameter
Clustering coefficient

Closeness centrality

Betweenness Centrality




Computing indices

Degree distribution \ /
\ / \\,

Distance distribution & diameter

Clustering coefficient /

Closeness centrality

Betweenness centrality 1.'

And there are many others...




Complexity of computing indices?

Exercise



Some controversies...
But first a definition:
Scale-free property

Scale-free network (graph): invariant to changes in scale

Any part of a scale-free network is stochastically similar to the whole
network, and parameters are assumed to be independent of the system size
(sometimes called the “self-similarity property”)

Consider for instance the connectivity of a network: A network is defined
as being scale-free in terms of its connectivity if a randomly picked node
has k connections with other nodes with a probability that follows a power-
law P(k) ~k™", where y power-law exponent

Actually, literature a bit fuzzy on definition of “scale-free”

Khanin et al., J. Comp. Biol., 2006

Li et al., Internet Math., 2(4):431-523, 2006
Bollobas & Riordan, Internet Math., 1(1):1-35,
2003 / Combinatorica, 24(1):5-34, 2004



Some controversies

Scale-freeness of biological networks,
at least asymptotically

. .according to Barabasi and colleagues

Albert et al., Nature, 1999
Barabasi et al., Science, 1999
Jeong et al., Nature, 2000
Jeong et al., Nature, 2001 etc.

Scale-free

P(k) ~ k¥

log P(k)

log k




Some controversies

According to them also
Hubs are correlated with essential (critical for survival) genes (“centrality
principle”)

Jeong et al., Nature, 2001




Centrality principle contradicted

For instance, in the case of protein-protein interaction (PPI) networks,
Correcting for bias in data shows no correlation between essentiality of a
gene and:

° its degree in PPI network
* the average degree of its neighbours
°*its clustering coefficient

Main type of bias: data collected from literature, but essential genes are the

objects of more papers than non-essential ones

Coulomb et al., Proc. Royal Society, 2006
Ito and Xenarios data



Scale-freeness contradicted also in terms of
statistical analysis

Fitting of power-law to the data using maximum-likelihood method and
goodness—of—fit test on various biological datasets:

6 PPI (Uetz, Schwikowski, Ito, Li, Rain, Giot); 1 gene interaction (Lee); 1
metabolic network (Ma); 2 synthetic lethal interaction data (Tong and
Guelzim)

showed that ALL those networks DIFFER SIGNIFICANTLY from the power-
law distribution, and from truncated power-law except sometimes for very
small ranges, this based on a chi-squared goodness-of-fit test

Khanin et al., J. Comp. Biol., 2006



Other reported characteristics appear (more) robust

There is a short path from any node to another... BUT... see later

There are many nodes with few connections and a few nodes with very
many connections, which is what is actually observed in biological
networks

However, many other distributions apart from power-law have similar

properties (generalised Pareto law, stretched exponential, geometric
distribution, geometric random graph...)

Khanin et al., J. Comp. Biol., 2006



Self—similarity

What those other distributions have NOT is the self-similarity property
Self-similarity property:

any part of a scale-free network 1is stochastically similar to the whole
network

Khanin et al., J. Comp. Biol., 2006



A story not without some deep consequences

“Often, the underlying principles and assumptions of evolutionary models
are adjusted so that they yield the scale-free topology of the network”

Khanin et al., J. Comp. Biol., 2006



A story not without some deep consequences

Preferential attachment

Preferential attachment (PA) is a mechanism that is proposed to generate many

networks occurring in nature.
e Start with a small number ny of nodes and no edges.
e lterate the following:

— 1nsert a new node v s

Ly

- i . " . aqgn k 'l
draw m < ng edges from v; existing nodes v; with probability p ~ ijﬁll-j oy

When drawing new edges, nodes with many edges already are preferred over nodes

with few or no edges.

Barabasi et al., Science, 1999



A story not without some deep consequences

“Often, the underlying principles and assumptions of evolutionary models
are adjusted so that they yield the scale-free topology of the network”

Khanin et al., J. Comp. Biol., 2006

“Many attributed a deep significance to this fact (scale-freeness) inferring a
universal architecture of complex systems. Closer examination, however
Challenges the assumptions”

Keller, BioEssays, 27(10):1060-1068, 2005



Another controversy

Small-world graphs I

Graphs fulfilling the following two criteria are called small-world graphs

e Small average shortest path length between two nodes, the same level as ER
graphs, lower than many regular graphs: shortcuts accross the graphs go via
hubs

e High clustering coefficient compared to ER graph: the neighbors of nodes are

more often linked than in ER graphs.

Graphs generated with preferential attachment are small-world graphs. However,
small-world graphs can be generated with other mechanisms as well.



Shortest paths 1n reaction or compound graphs
May not be biologically relevant

Example in metabolic network represented as bipartite graph

What is the shortest distance between A and B?




The main messages to retain

The first is that even without considering the problem of noise in the data
(see later), it’s important to remember to do “good” mathematics/statistics/
computation (algorithmics)
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It may be not informative even when it is correct
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obtaining “good” random models against which to compare biological
networks in order to then draw some reliable biological conclusions



The main messages to retain

The first is that even without considering the problem of noise in the data
(see later), it’s important to remember to do “good” mathematics/statistics/
computation (algorithmics)

Even when this has been done, and even if the data was not noisy, one must
be careful with biological interpretation:

It may be wrong for various reasons

It may be not informative even when it is correct

These indices intervene also in another, difficult context: the one of
obtaining “good” random models against which to compare biological
networks in order to then draw some reliable biological conclusions

Besides the literature, you may be interested in reading some more informal
comments such as those, possibly controversial, presented here:
https://liorpachter.wordpress.com/



Another topic that has been covered in the literature

Enumerating motifs

Different definitions have been used in the literature, depending also in
whether gene-protein interaction, protein-protein interaction or metabolic

networks where considered

:>1. :>2‘ >3 1\4 > ° >7 Motifs as induced or
> I> > > > D non induced subgraphs
8 9 10 11 12 13

Motif: T [ ] [ [

So-called coloured motifs ioi :j - i:i :



Enumerating motifs

More on enumeration

And on motifs with Arnaud Mary




But recalling some main messages to retain
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But recalling some main messages to retain

The first is that even without considering the problem of noise in the data
(see later), it’s important to remember to do “good” mathematics/statistics/
computation (algorithmics)

Even when this has been done, and even if the data was not noisy, one must
be careful with biological interpretation:

It may be wrong for various reasons

It may be not informative even when it is correct

These indices intervene also in another, difficult context: the one of
obtaining “good” random models against which to compare biological
networks in order to then draw some reliable biological conclusions



Somewhat related but different from motifs:

Enumerating “modules” (notice the “inverted commas” )

One example of definition:

Subgraph S1is a module if M(S) :ind(S) /outd(S) > 1




Somewhat related but different from motifs:

Enumerating “modules” (notice the “inverted commas” )

One example of definition:

Subgraph S1is a strong module if M(S) :ind(S) / outd(S) > 1 and the same 1is
true for every node in §




Somewhat related but different from motifs:
Enumerating “modules”

Is this module strong?

Luo et al. Bioinformatics,

S 23(2): 207-214, 2007



There are (many) other definitions of modules
that have been used
Here is an interesting one based on fluxes

This 1s for metabolic networks

Informally: set of reactions that behave together like one reaction with a
fixed flux

Figure 1: All stoichiometric coefficients in this example are 1. Assume flux through reaction r; is
fixed to 1. Then flux through reactions (r;,r3,714,75) 1s fixed and we get the three modules (»2,73,73),
(rs,re,r7,rs,r9), and (rio,r11,712).



Somewhat related again to subgraph identification

This 1s for metabolic networks
Informally: set of reactions that behave together like one reaction with a

fixed flux

Reimers et al. ] Comput Biol.
22(5):414-424, 2015 rs 7 6

Figure 1: All stoichiometric coefficients in this example are 1. Assume flux through reaction r; is
fixed to 1. Then flux through reactions (r;,r3,714,75) 1s fixed and we get the three modules (»2,73,73),
(rs,re,r7,r8,r9), and (r10,r11,712).



Flux modes

Stoichiometry matrix S

v.20foralli € {irrev}

Ssv=0




Elementary flux modes

______________________________________________
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Minimal precursor sets

Biological motivation

precursor ENVIRONMENT

precursor
cell precursor

TARGET >
® ? X precursor set of T with Z iff:

Scope,(X) czUr
(plus stoichiometry)

?

precursor 7
O

Which metabolites are provided by the environment
to a cell so that it can ensure some metabolic
functions ?

May lead to another type of biological networks...



Minimal precursor sets

More on precursor sets

precursor ENVIRONMENT
?
precursor :
cell precursor
x} TéRGET o

?

precursor

Which metabolites are provided by the environment
to a cell so that it can ensure some metabolic
functions ?

And on some other related topics with me later in the year



Environment may be other species
Species interactions, including “symbiosis”

Main “symbiotic” relations

A A 4 :
YEX  yEY  yEz A Posg'tile Growth Interaction class
e X Y Z uicomes
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Figure: Klitgord, Segre, PLOS, 2010



Another aspect of symbiosis
Example of graphs as tools

Next Generation Sequencing (NGS), especially in the context of no
reference genome

Vertex-disjoint st-paths in de Bruijn (di)graphs

|CTTl|TTG| TGA || GAG |5 AGC]

ATCTCATCATA [CTG |—>|TGC/
CCTAT,
) 1/ 2 6\% Repeats: 1 path (.)f length at most 2k-2,
PN e % the two paths align

_»TGCGTAGAT
%@ ATCTACGCA{ Single Nucleotide Polymorphism (SNP):
5 TOCOOACAT 2 paths of'length 2k-1

ATCTGCTCGACGC
GCGTCGAGCAGAT

Alternative Splicing (AS): 1 path of
length <= 2k-2

'7’,?

3 HEHSS ¢




Graphs as tools — NGS data analysis

Vertex-disjoint st-paths in de Bruijn [cTTl[TTG|>[TGA]>[cAc|>[AcC]

(di)graphs ACT \ccc

[CTG |—»|ch/

And other related topics with Blerina Sinaimeri




Another type of approach of “species Interactions”

Game theory

@(é
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A——X—)biol
C——X—)bi01+D

B+Y — bioob + E
D+ Y — bio, + C

A+ X — biog+ D
E—)bi03



Change of available sources

A + X — bioy B+Y — bio, + E

C + X — bioy +D D+Y — biop + C

X bioq

>—>]_—>bi01

; 7 K
A, B x

[ — g X

Y bio, bio,



Change of player composition

A + X — bioy B+Y — bioob+E A+ X — biog+D
C+ X —= biog+D D +Y — bioob+C E — bios

X
>—> ] — biOl
A

B E
— <
Y bioy



Change of player composition

A + X — bio; B+Y — bioo+E A+ X — biog+D
C+ X—=biog+D D+ Y — bioob+C E — bios

1 wins 3 wins
X X
>'_’ 1] — biOl >'—’ 3 <~ bi03
A A D
B bioy B bio,
— =< — =<
Y E Y E

bi03+3/ 1



Molecular ecological networks

Not only metabolites exchanged

Flower-visiting insect

»
/.
gy

but also possibly

other (macro)molecules
play arole in the
interaction

Seed-feeding .,;“c.
bird seed-feeder
parasitoid



Molecular ecological networks

Not only metabolites exchanged

Flower-visiting insect

»
/.
gy

but also possibly

other (macro)molecules
play arole in the
interaction

Plus environment

Seed-feeding .,;“c.
bird seed-feeder
parasitoid



Leads to more general ecological networks
as well as to “infection” networks

The dynamic aspect of such networks is important
(but not same kind of “dynamics” as mentioned earlier!)

o By I




Dynamic graph algorithms

Some typical updates:
Insert
delete
change weight

But there are many others which might be relevant!

Initialize
Insert
Delete

Query

A graph




This was “fast dynamics”

Things can however change much more slowly leading to

Evolutionary networks

Phylogenetic trees as a way
to study evolution
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From phylogenetic trees to networks

Two main reasons:
Contradictory relationships
Reticulation

Hybridisation
Recombination

(1) (i)

a

(iv)



Phylogenetic networks

More on phylogenetic networks

And on co—phylogeny with Blerina Sinaimeri

@ codivergence

O duplication

4, host switch
X extinction

? sampling failure i_> loss

—( miss the boat &
N =

O failure to diverge




Finally, remember the conclusion of my (brief)

biological introduction:

Chromosomes are not spaghetti!

DNA in a living cell is in a highly compacted and structured
Transcription is dependent on such structural state — SEQUENCE alone does

not tell the whole story!

Metaphase L« b
chromosome @z

0
1
pon!

Condensed scaffold-
associated chromatin

700 nm

Interphase:
extended
scaffold-
associated Chromosome
X :
chromatin /scaffold T

& 300 nm

30-nm
chromatin
fiber of
packed
nucleosomes

"Beads-
on-a-string"
form of
chromatin

Short region
of DNA double
helix
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The big question here is how to infer the network
from some (noisy) interaction data
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A few references for those curious to know more

Systems biology: Property of reconstructed networks, Bernhard Palsson
Systems biology: Simulation of dynamic network states, Bernhard Palsson

An introduction to systems biology:De‘sign principles of biological
circuits, Uri Alon

Algebraic statistics for molecular biology, Lior Pachter and Bernd Sturmfels
Hypergraphs and cellular networks, Steffen Klamt
Papers by Jorg Stelling

And many, many more

If interested in having more references, contact us!



