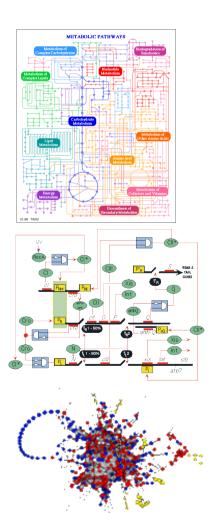
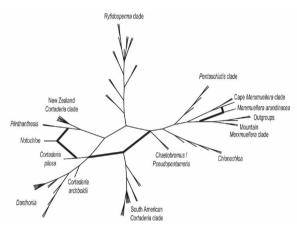
General overview of networks (graphs) in biology & associated algorithms

The key abstract idea to retain is: Interactions!

And so networks / graphs, as models or as tools

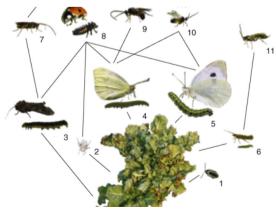
Biochemical networks ... but also

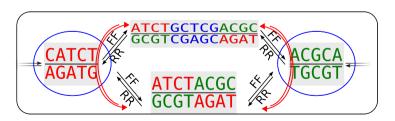




Evolutionary network

"Symbiotic" network

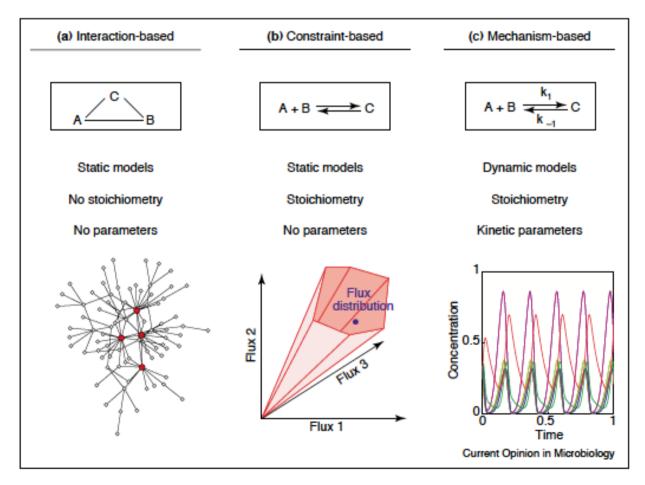




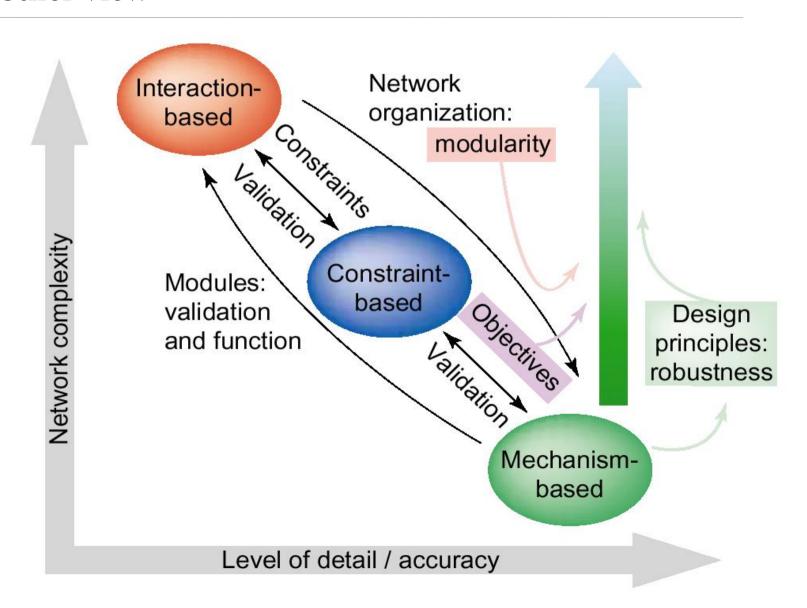
Graphs as "tools" De Bruijn graphs for NGS data

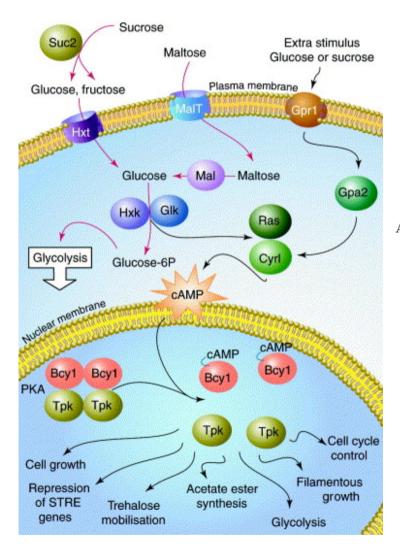
This overview will be biased towards a "graph-view" of networks (... and even then, very far from being exhaustive!)

Case of biochemical networks, more precisely of metabolism Modelling of the biochemical reaction: $A + B \longleftrightarrow C$



Another view





```
egin{array}{ll} \max & v_{r^o} \ \mathrm{s.t.} & Sv = 0 \ & v_j = 0 \; orall j \in F \ & \sum_j v_j \leq 1 \ & v_j \geq 0 \; orall j 
otin F \cup r^o. \end{array}
```

```
Algorithm RC (Reaction Cut)
    input:
        a stoichiometric matrix S, a weight function w, a reaction r^o to be cut;
    phase 1
        F = \emptyset;
        while F is not a reaction cut of r^o
        do begin
            let C be the set of reactions defining an elementary mode in S_F that includes r^o
            let \bar{w} = \min_{r \in C} w(r)
             for each reaction r in C
             do begin
                 w(r) = w(r) - \bar{w}
                 if w(r) = 0 then F = F \cup \{r\}
             end
        end
    phase 2
        let r_1, r_2, \ldots, r_k be the reaction in F
        for j = 1 to k do
            if F - r_i is a reaction cut of r^o then F = F - r_i
    output: F
```

Taken from "The role of Modeling in Systems Biology", Douglas Kell and Joshua Knowles

Chapter of "System Modeling in Cellular Biology: From Concepts to Nuts and Bolts", eds. Zoltan Szallasi, Jorg Stelling, Vipul Periwal, MIT Press 2006

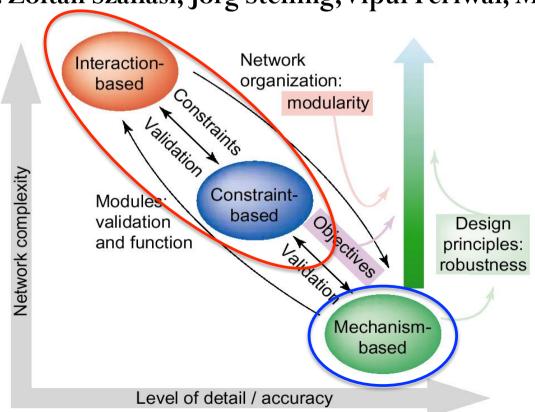
Dimension or Feature	Possible choices	Comments
Stochastic or determin- istic	Stochastic: Monte Carlo methods or statistical distributions Deterministic: equations such as ODEs	Phenomena are not of themselves either stochastic or deterministic; large-scale, linear systems can be modeled deter- ministically, while a stochastic model is often more appropriate when nonlin- earity is present.
Discrete ver- sus continu- ous (in time)	Discrete: Discrete event simula- tion, for example, Markov chains, cellular automata, Boolean net- works. Continuous: Rate equations.	Discrete time is favored when variables only change when specific events occur (modeling queues). Continuous time is favored when variables are in constant flux.

Dimension or Feature	Possible choices	Comments
Macroscopic versus mi- croscopic	Microscopic: Model individual particles in a system and compute averaged effects as necessary. Macroscopic: Model averaged ef- fects themselves, for example, con- centrations, temperatures, etc.	Are the individual particles or subsys- tems important to the evolution of the system, or is it enough to approximate them by statistical moments or ensem- ble averages?
Hierarchical versus multi-level	Hierarchical: Fully modular networks. Multi-level: Loosely connected components.	Can some processes/variables in the system be hidden inside modules or objects that interact with other modules, or do all the variables interact, potentially? This relates to reductionism versus holism.
Fully quantitative versus partially quantitative versus qualitative	Qualitative: Direction of change modeled only, or on/off states (Boolean network). Partially quantitative: Fuzzy mod- els. Fully quantitative: ODEs, PDEs, microscopic particle models.	Reducing the quantitative accuracy of the model can reduce complexity greatly and many phenomena may still be modeled adequately.

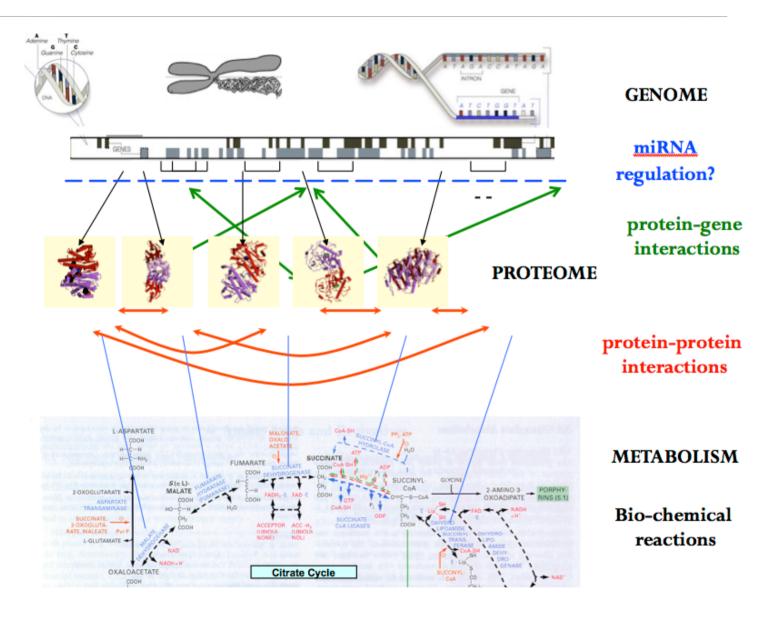
Dimension or Feature	Possible choices	Comments
Predictive versus exploratory/ex planatory	Predictive: Specify every variable that could affect outcome. Exploratory: Only consider some variables of interest.	If a model is being used for precise pre- diction or forecasting of a future event, all variables need to be considered. The exploratory approach can be less pre- cise but should be more flexible, for ex- ample, allowing different control poli- cies to be tested.
Estimating rare events versus typi- cal behavior	Rare events: Use importance sampling. Typical behavior: Importance sampling not needed.	Estimation of rare events, such as apoptosis times in cells is time-consuming if standard Monte Carlo simulation is used. Importance sampling can be used to speed up the simulation.
Lumped or spatially segregated	Lumped: Treat cells or other components/compartments as spatially homogeneous. Spatially segregated: Treat the components as differentiated or spatially heterogeneous.	If heterogeneous it may be necessary to use the computationally intensive par- tial differential equation, though other solutions are possible (Mendes and Kell, 2001)

"The role of Modeling in Systems Biology", Douglas Kell and Joshua Knowles

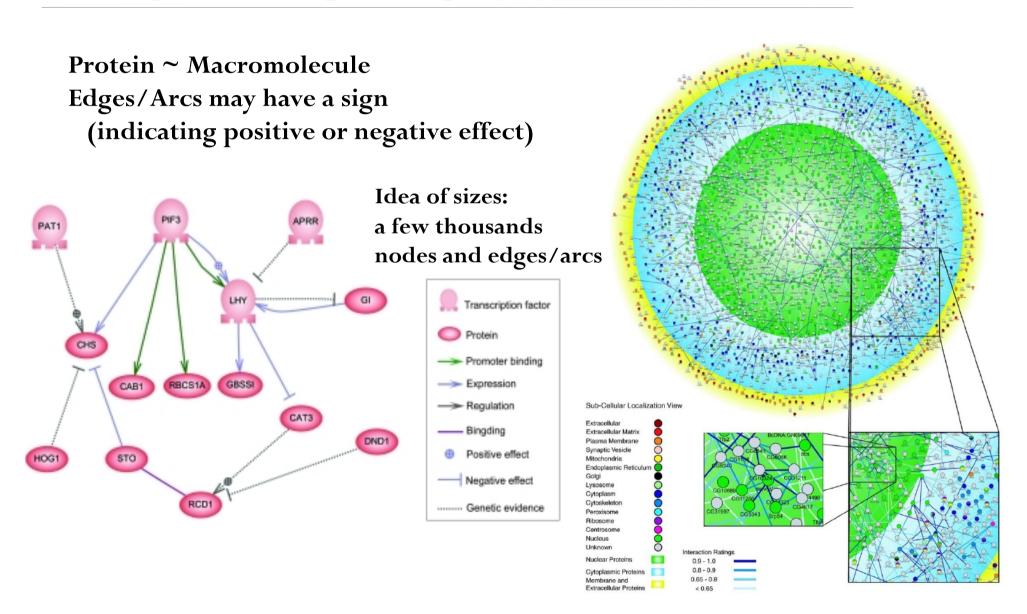
Chapter of "System Modeling in Cellular Biology: From Concepts to Nuts and Bolts", eds. Zoltan Szallasi, Jorg Stelling, Vipul Periwal, MIT Press 2006



Biochemical networks An overview



Gene-protein and protein-protein networks



Metabolic networks

You'll have more details later in the course, but for now already, the basic information on such networks

As I mentioned, three main types of representations:

Graph representation: Connectivity of reactions/metabolites, structure of the metabolic network

Stoichiometric (reaction equation) representation: capabilities of the network, flow analysis, steady-state analyses

Kinetic models: dynamic behaviour under changing conditions

The representations that will be used

You'll have more details later in the course, but for now already, the basic information on such networks

As I mentioned, three main types of representations:

Graph representation: Connectivity of reactions/metabolites, structure of the metabolic network

Stoichiometric (reaction equation) representation: capabilities of the network, flow analysis, steady-state analyses

Kinetic models: dynamic behaviour under changing conditions

Graph representation, or directed hypergraph

reaction

compound / metabolite

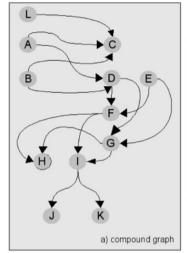
R1: A + B -> C + D

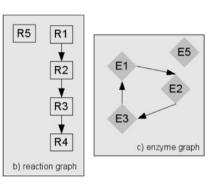
R2: D + E -> F + G

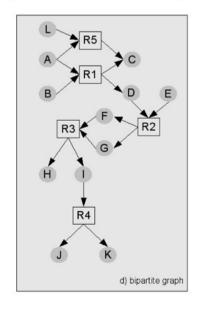
R3: F + G -> H + I

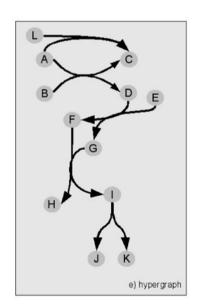
R4: I -> J + K

R5: $A + L \rightarrow C$









Valued directed (hyper)graphs

reaction metabolite

R1: 1A + 2B -> 2C + 3D

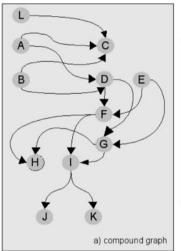
R2: 3D + 1E -> 2F + 2G

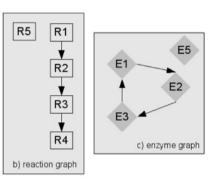
R3: 2F + 1G -> 2H + 1I

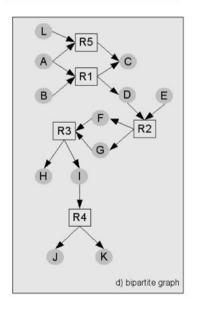
R4: 3I -> 1J + 2K

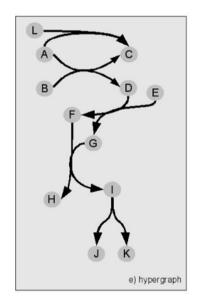
R5: 1A + 3L -> 2C

Valued directed (hyper)graphs









Stoichiometric matrix

reaction

compound / metabolite

R1: 1A + 2B -> 2C + 3D

R2: 3D + 1E -> 2F + 2G

R3: 2F + 1G -> 2H + 1I

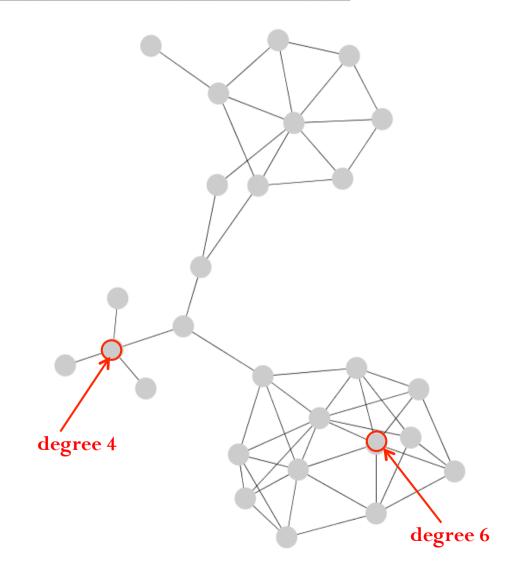
R4: 3I -> 1J + 2K

R5: 1A + 3L -> 2C

	R1	R2	R3	R4	R5
A	-1	0	0	0	-1
В	-2	0	0	0	0
C	+2	0	0	0	+2
D	+3	-3	0	0	0
E	0	-1	0	0	0
F	0	+2	-2	0	0
G	0	+2	-1	0	0
Н	0	0	+2	0	0
I	0	0	+1	-3	0
J	0	0	0	+1	0
K	0	0	0	+2	0
L	0	0	0	0	-3

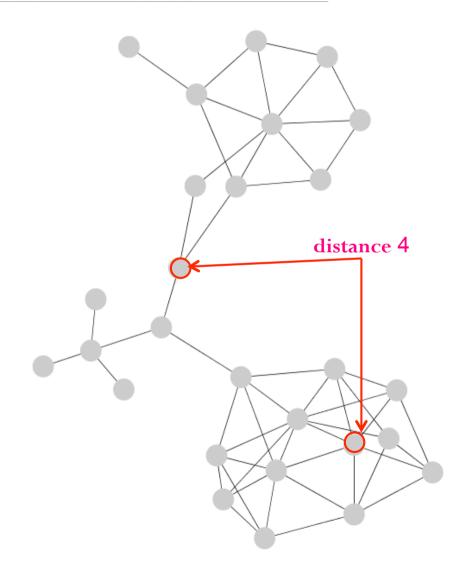
What has been done in the literature Computing indices

Degree distribution



Degree distribution

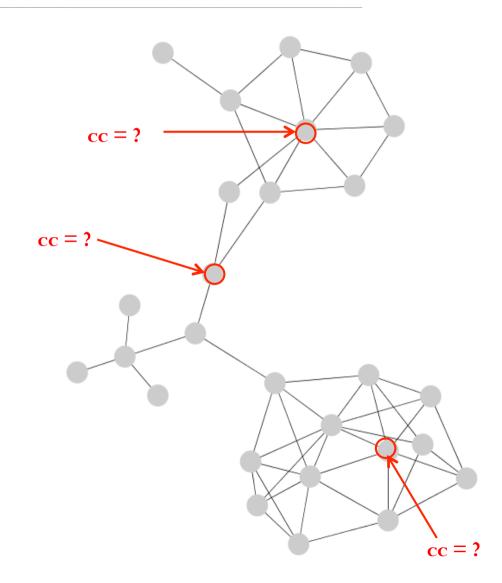
Distance distribution & diameter



Degree distribution

Distance distribution & diameter

Clustering coefficient

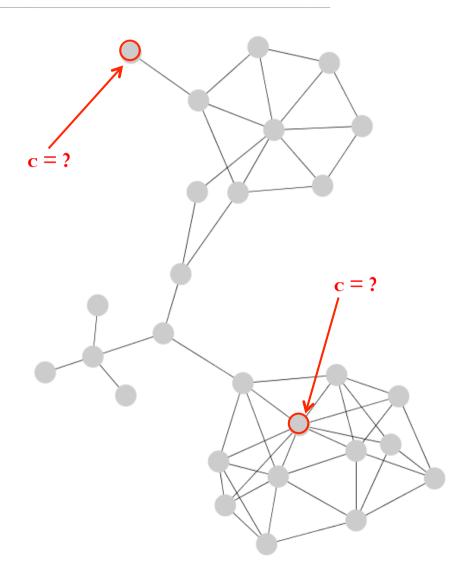


Degree distribution

Distance distribution & diameter

Clustering coefficient

Closeness centrality

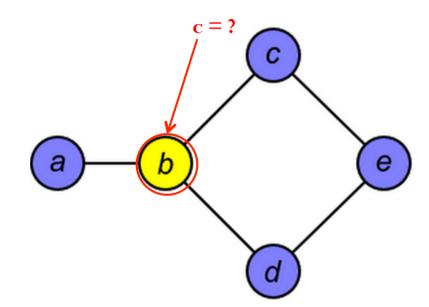


Degree distribution

Distance distribution & diameter

Clustering coefficient

Closeness centrality



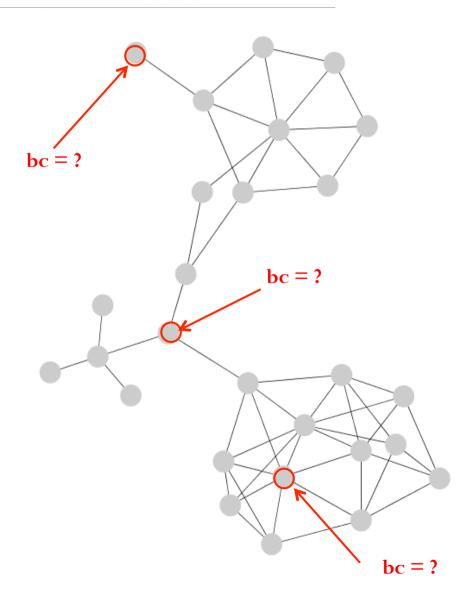
Degree distribution

Distance distribution & diameter

Clustering coefficient

Closeness centrality

Betweenness centrality



Degree distribution

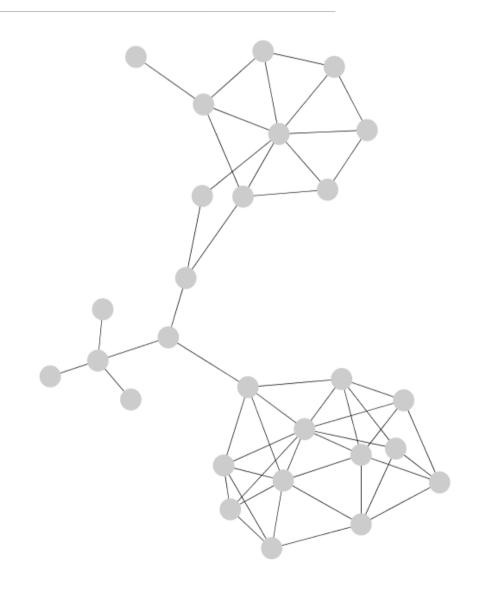
Distance distribution & diameter

Clustering coefficient

Closeness centrality

Betweenness centrality

And there are many others...



Complexity of computing indices?

Exercise

Some controversies...
But first a definition:
Scale-free property

Scale-free network (graph): invariant to changes in scale

Any part of a scale-free network is stochastically similar to the whole network, and parameters are assumed to be independent of the system size (sometimes called the "self-similarity property")

Consider for instance the connectivity of a network: A network is defined as being scale-free in terms of its connectivity if a randomly picked node has k connections with other nodes with a probability that follows a power-law $P(k) \sim k^{-\gamma}$, where γ power-law exponent

Actually, literature a bit fuzzy on definition of "scale-free"

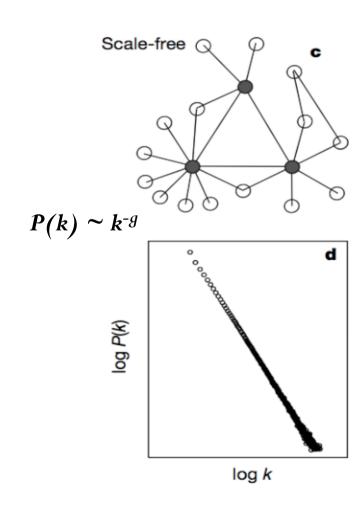
Khanin et al., J. Comp. Biol., 2006 Li et al., Internet Math., 2(4):431-523, 2006 Bollobás & Riordan, Internet Math., 1(1):1-35, 2003 / Combinatorica, 24(1):5-34, 2004

Some controversies

Scale-freeness of biological networks, at least asymptotically

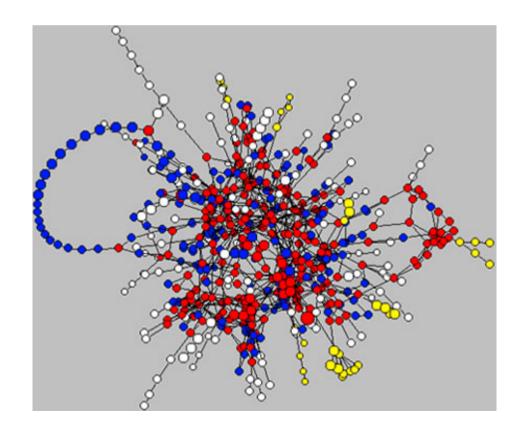
...according to Barabási and colleagues

Albert et al., Nature, 1999 Barabási et al., Science, 1999 Jeong et al., Nature, 2000 Jeong et al., Nature, 2001 etc.



Some controversies

According to them also Hubs are correlated with essential (critical for survival) genes ("centrality principle")



Jeong et al., Nature, 2001

Centrality principle contradicted

For instance, in the case of protein-protein interaction (PPI) networks, correcting for bias in data shows no correlation between essentiality of a gene and:

- its degree in PPI network
- the average degree of its neighbours
- its clustering coefficient

Main type of bias: data collected from literature, but essential genes are the objects of more papers than non-essential ones

Coulomb et al., Proc. Royal Society, 2006 Ito and Xenarios data

Scale-freeness contradicted also in terms of statistical analysis

Fitting of power-law to the data using maximum-likelihood method and goodness-of-fit test on various biological datasets:

6 PPI (Uetz, Schwikowski, Ito, Li, Rain, Giot); 1 gene interaction (Lee); 1 metabolic network (Ma); 2 synthetic lethal interaction data (Tong and Guelzim)

showed that ALL those networks DIFFER SIGNIFICANTLY from the powerlaw distribution, and from truncated power-law except sometimes for very small ranges, this based on a chi-squared goodness-of-fit test

Other reported characteristics appear (more) robust

There is a short path from any node to another... BUT... see later

There are many nodes with few connections and a few nodes with very many connections, which is what is actually observed in biological networks

However, many other distributions apart from power-law have similar properties (generalised Pareto law, stretched exponential, geometric distribution, geometric random graph...)

Self-similarity

What those other distributions have NOT is the self-similarity property

Self-similarity property:

any part of a scale-free network is stochastically similar to the whole network

A story not without some deep consequences

"Often, the underlying principles and assumptions of evolutionary models are adjusted so that they yield the scale-free topology of the network"

A story not without some deep consequences

Preferential attachment

Preferential attachment (PA) is a mechanism that is proposed to generate many networks occurring in nature.

- Start with a small number n_0 of nodes and no edges.
- Iterate the following:
 - insert a new node v_j ,
 - draw $m \le n_0$ edges from v_i existing nodes v_i with probability $p \sim \frac{k_i+1}{\sum_j (k_j+1)}$

When drawing new edges, nodes with many edges already are preferred over nodes with few or no edges.

Barabási et al., Science, 1999

A story not without some deep consequences

"Often, the underlying principles and assumptions of evolutionary models are adjusted so that they yield the scale-free topology of the network"

Khanin et al., J. Comp. Biol., 2006

"Many attributed a deep significance to this fact (scale-freeness) inferring a universal architecture of complex systems. Closer examination, however challenges the assumptions"

Keller, BioEssays, 27(10):1060-1068, 2005

Another controversy

Small-world graphs

Graphs fulfilling the following two criteria are called small-world graphs

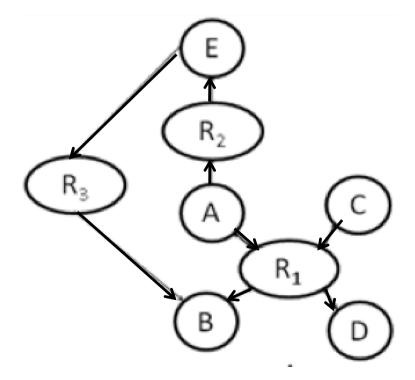
- Small average shortest path length between two nodes, the same level as ER graphs, lower than many regular graphs: shortcuts accross the graphs go via hubs
- High clustering coefficient compared to ER graph: the neighbors of nodes are more often linked than in ER graphs.

Graphs generated with preferential attachment are small-world graphs. However, small-world graphs can be generated with other mechanisms as well.

Shortest paths in reaction or compound graphs May not be biologically relevant

Example in metabolic network represented as bipartite graph

What is the shortest distance between A and B?



The first is that even without considering the problem of noise in the data (see later), it's important to remember to do "good" mathematics/statistics/computation (algorithmics)

The first is that even without considering the problem of noise in the data (see later), it's important to remember to do "good" mathematics/statistics/computation (algorithmics)

Even when this has been done, and even if the data was not noisy, one must be careful with biological interpretation:

It may be wrong for various reasons

It may be not informative even when it is correct

The first is that even without considering the problem of noise in the data (see later), it's important to remember to do "good" mathematics/statistics/computation (algorithmics)

Even when this has been done, and even if the data was not noisy, one must be careful with biological interpretation:

It may be wrong for various reasons

It may be not informative even when it is correct

These indices intervene also in another, difficult context: the one of obtaining "good" random models against which to compare biological networks in order to then draw some reliable biological conclusions

The first is that even without considering the problem of noise in the data (see later), it's important to remember to do "good" mathematics/statistics/computation (algorithmics)

Even when this has been done, and even if the data was not noisy, one must be careful with biological interpretation:

It may be wrong for various reasons

It may be not informative even when it is correct

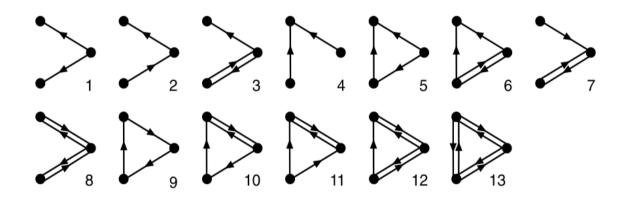
These indices intervene also in another, difficult context: the one of obtaining "good" random models against which to compare biological networks in order to then draw some reliable biological conclusions

Besides the literature, you may be interested in reading some more informal comments such as those, possibly controversial, presented here:

https://liorpachter.wordpress.com/

Another topic that has been covered in the literature Enumerating motifs

Different definitions have been used in the literature, depending also in whether gene-protein interaction, protein-protein interaction or metabolic networks where considered



Motifs as induced or non induced subgraphs

So-called coloured motifs

Motif:

Enumerating motifs

More on enumeration

And on motifs with Arnaud Mary

But recalling some main messages to retain

The first is that even without considering the problem of noise in the data (see later), it's important to remember to do "good" mathematics/statistics/computation (algorithmics)

But recalling some main messages to retain

The first is that even without considering the problem of noise in the data (see later), it's important to remember to do "good" mathematics/statistics/computation (algorithmics)

Even when this has been done, and even if the data was not noisy, one must be careful with biological interpretation:

It may be wrong for various reasons

It may be not informative even when it is correct

But recalling some main messages to retain

The first is that even without considering the problem of noise in the data (see later), it's important to remember to do "good" mathematics/statistics/computation (algorithmics)

Even when this has been done, and even if the data was not noisy, one must be careful with biological interpretation:

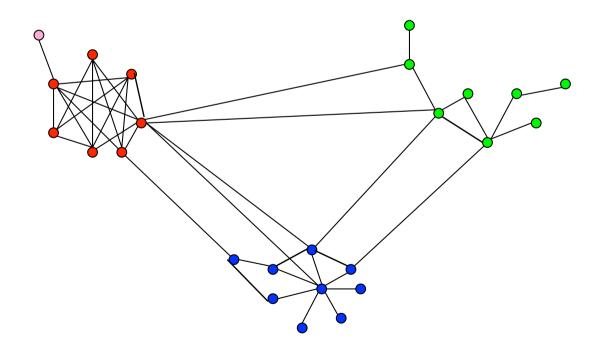
It may be wrong for various reasons

It may be not informative even when it is correct

These indices intervene also in another, difficult context: the one of obtaining "good" random models against which to compare biological networks in order to then draw some reliable biological conclusions

Somewhat related but different from motifs: Enumerating "modules" (notice the "inverted commas")

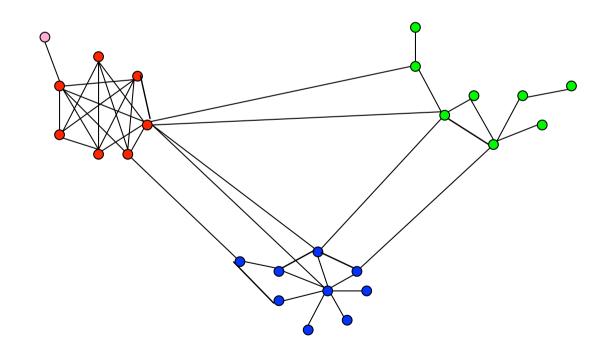
One example of definition: Subgraph S is a module if M(S)=ind(S)/outd(S) > 1



Somewhat related but different from motifs: Enumerating "modules" (notice the "inverted commas")

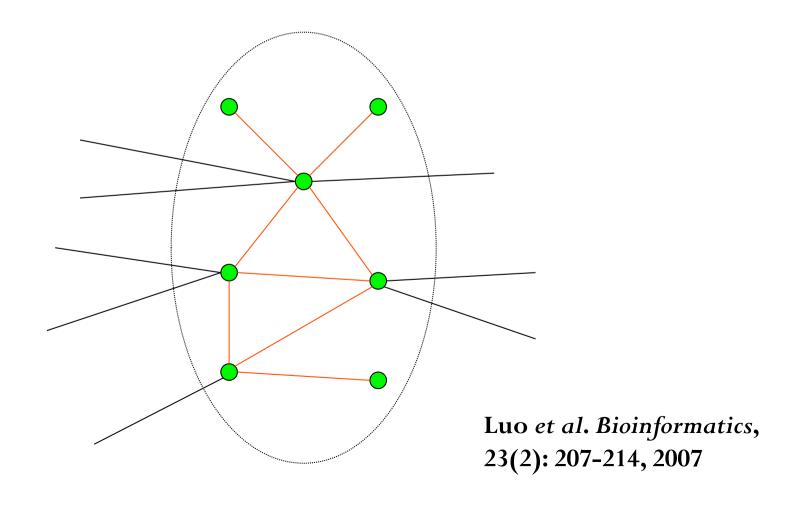
One example of definition:

Subgraph S is a strong module if M(S)=ind(S)/outd(S) > 1 and the same is true for every node in S



Somewhat related but different from motifs: Enumerating "modules"

Is this module strong?



There are (many) other definitions of modules that have been used Here is an interesting one based on fluxes

fixed flux

This is for metabolic networks
Informally: set of reactions that behave together like one reaction with a

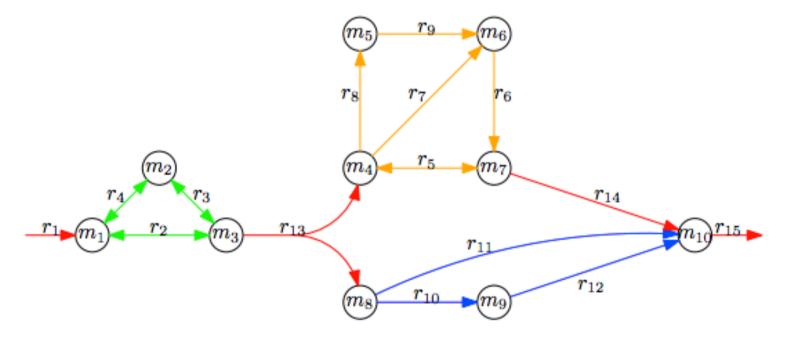


Figure 1: All stoichiometric coefficients in this example are 1. Assume flux through reaction r_1 is fixed to 1. Then flux through reactions $(r_1, r_{13}, r_{14}, r_{15})$ is fixed and we get the three modules (r_2, r_3, r_4) , $(r_5, r_6, r_7, r_8, r_9)$, and (r_{10}, r_{11}, r_{12}) .

Somewhat related again to subgraph identification

This is for metabolic networks

Informally: set of reactions that behave together like one reaction with a fixed flux

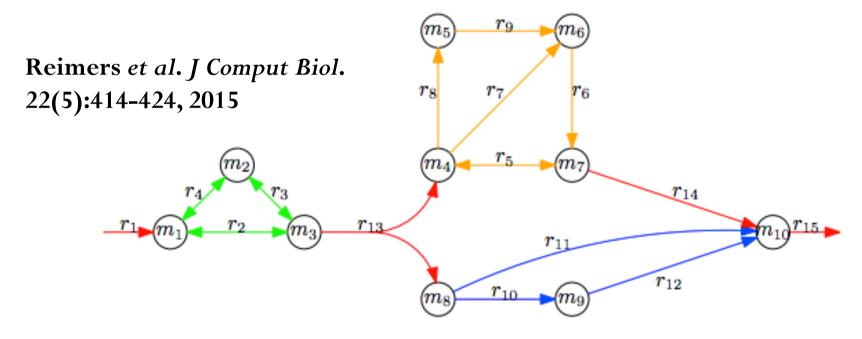
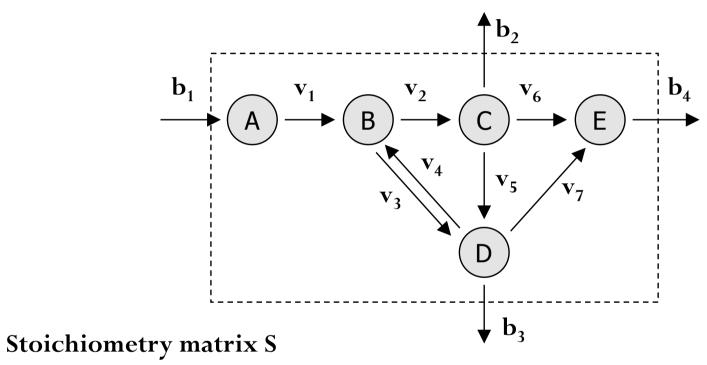


Figure 1: All stoichiometric coefficients in this example are 1. Assume flux through reaction r_1 is fixed to 1. Then flux through reactions $(r_1, r_{13}, r_{14}, r_{15})$ is fixed and we get the three modules (r_2, r_3, r_4) , $(r_5, r_6, r_7, r_8, r_9)$, and (r_{10}, r_{11}, r_{12}) .

Flux modes

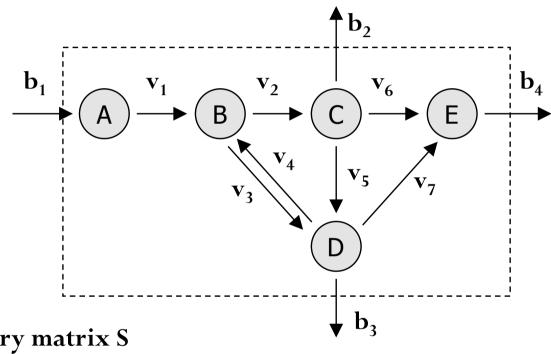


	\mathbf{v}_1	\mathbf{v}_2	$\mathbf{v_3}$	$\mathbf{v_4}$	\mathbf{v}_{5}	\mathbf{v}_6	\mathbf{v}_7	b ₁	b ₂	\mathbf{b}_3	\mathbf{b}_4
A	-1	0	0	0	0	0	0	-1	0	0	0
В	1	-1	-1	1	0	0	0	0	0	0	0
С	0	1	0	0	-1	-1	0	0	-1	0	0
D	0	0	1	-1	1	0	-1	0	0	-1	0
E	0	0	0	0	0	1	1	0	0	0	-1

$$S.v = 0$$

 $v_i \ge 0$ for all $i \in \{irrev\}$

Elementary flux modes



Stoichiometry matrix S

	\mathbf{v}_1	\mathbf{v}_2	\mathbf{v}_3	\mathbf{v}_4	\mathbf{v}_{5}	\mathbf{v}_6	\mathbf{v}_7	b ₁	\mathbf{b}_2	\mathbf{b}_3	\mathbf{b}_4
A	-1	0	0	0	0	0	0	-1	0	0	0
В	1	-1	-1	1	0	0	0	0	0	0	0
С	0	1	0	0	-1	-1	0	0	-1	0	0
D	0	0	1	-1	1	0	-1	0	0	-1	0
Е	0	0	0	0	0	1	1	0	0	0	-1

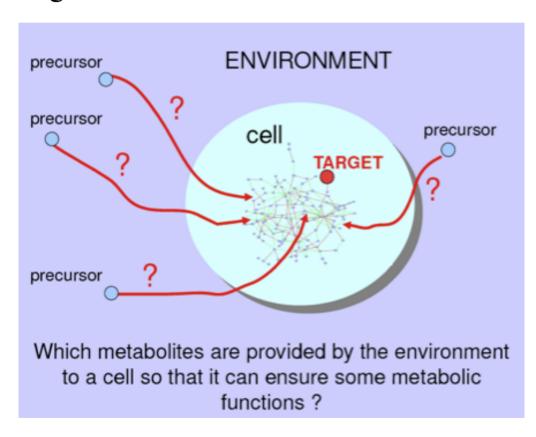
$$S.v = 0$$

 $v_i \ge 0$ for all $i \in \{irrev\}$

no vector w such that: $support(w) \subset support(v)$

Minimal precursor sets

Biological motivation

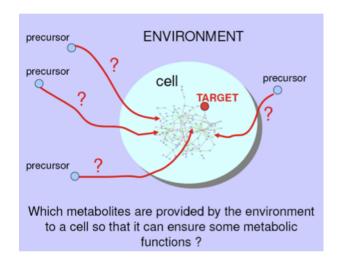


X precursor set of T with Z iff: $Scope_Z(X) \subseteq Z \cup T$ (plus stoichiometry)

May lead to another type of biological networks...

Minimal precursor sets

More on precursor sets



And on some other related topics with me later in the year

Environment may be other species Species interactions, including "symbiosis"

Main "symbiotic" relations

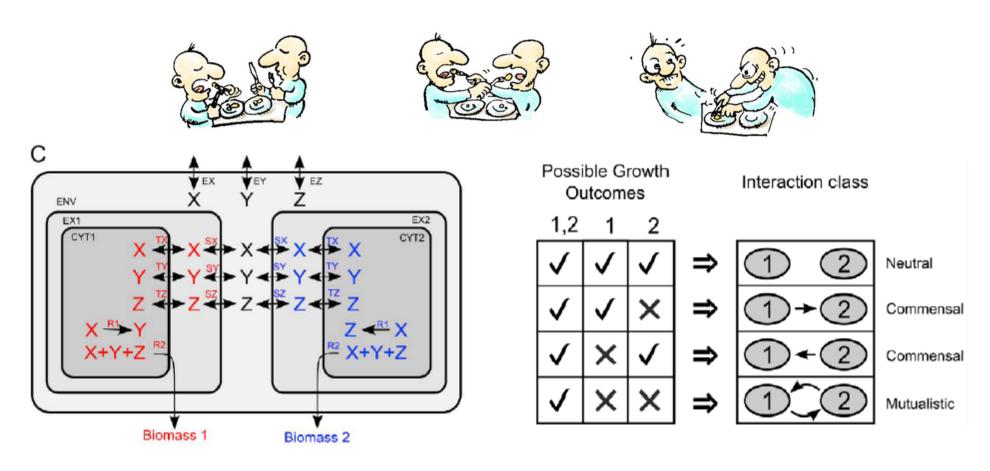
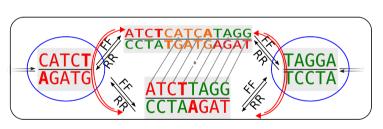


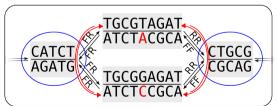
Figure: Klitgord, Segrè, PLOS, 2010

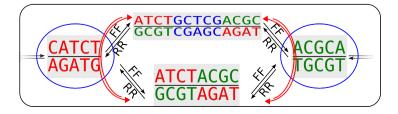
Another aspect of symbiosis Example of graphs as tools

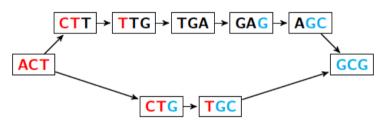
Next Generation Sequencing (NGS), especially in the context of no reference genome

Vertex-disjoint st-paths in de Bruijn (di)graphs









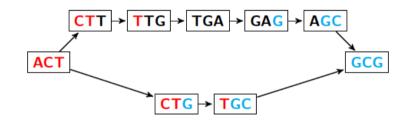
Repeats: 1 path of length at most 2k-2, the two paths align

Single Nucleotide Polymorphism (SNP): 2 paths of length 2k-1

Alternative Splicing (AS): 1 path of length <= 2k-2

Graphs as tools – NGS data analysis

Vertex-disjoint st-paths in de Bruijn (di)graphs



And other related topics with Blerina Sinaimeri

Another type of approach of "species interactions" Game theory

$$A + X \rightarrow bio_1$$

 $C + X \rightarrow bio_1 + D$

$$\begin{array}{l} \mathsf{B} \, + \, \mathsf{Y} \, \rightarrow \, \mathit{bio}_2 \, + \, \mathit{E} \\ \mathsf{D} \, + \, \mathsf{Y} \, \rightarrow \, \mathit{bio}_2 \, + \, \mathit{C} \end{array}$$

$$A + X \rightarrow bio_3 + D$$

 $E \rightarrow bio_3$

Change of available sources

$$A + X \rightarrow bio_1$$

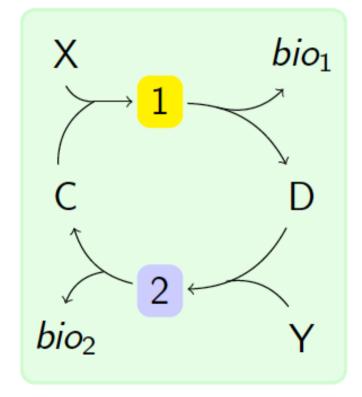
 $C + X \rightarrow bio_1 + D$

$$B + Y \rightarrow bio_2 + E$$

 $D + Y \rightarrow bio_2 + C$

$$X \longrightarrow 1 \longrightarrow bio_1$$

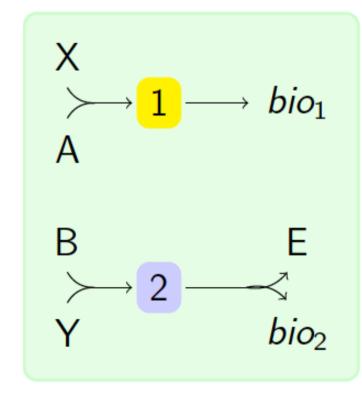
$$A \longrightarrow E \longrightarrow 2 \longrightarrow bio_2$$

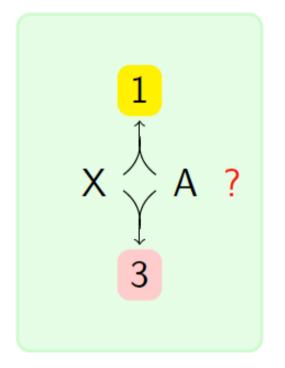


Change of player composition

$$A + X \rightarrow bio_3 + D$$

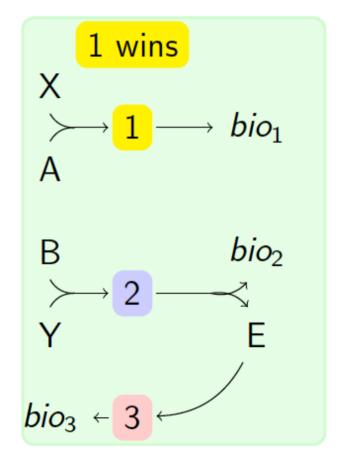
 $E \rightarrow bio_3$

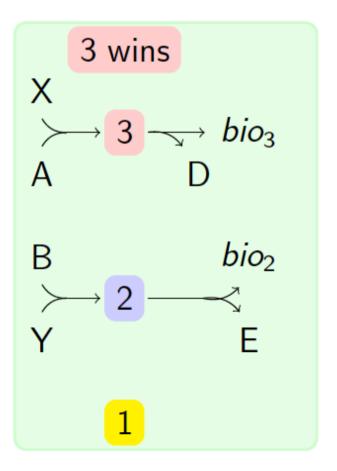




Change of player composition

$$\begin{array}{c} \mathsf{A} + \mathsf{X} \to bio_1 \\ \mathsf{C} + \mathsf{X} \to bio_1 + D \end{array} \begin{array}{c} \mathsf{B} + \mathsf{Y} \to bio_2 + E \\ \mathsf{D} + \mathsf{Y} \to bio_2 + C \end{array} \begin{array}{c} \mathsf{A} + \mathsf{X} \to bio_3 + D \\ \mathsf{E} \to bio_3 \end{array}$$

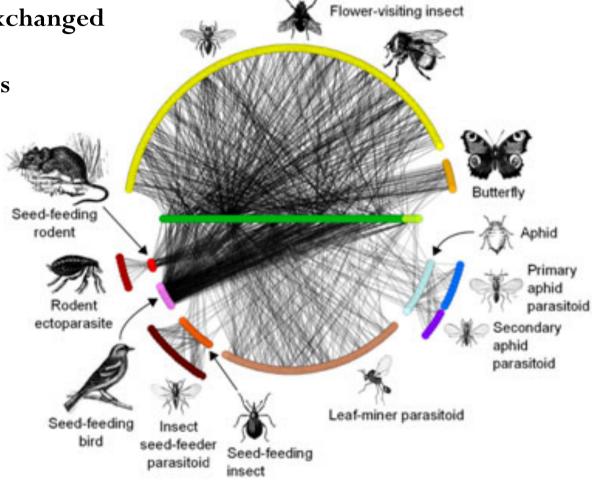




Molecular ecological networks

Not only metabolites exchanged but also possibly other (macro)molecules

play a role in the interaction

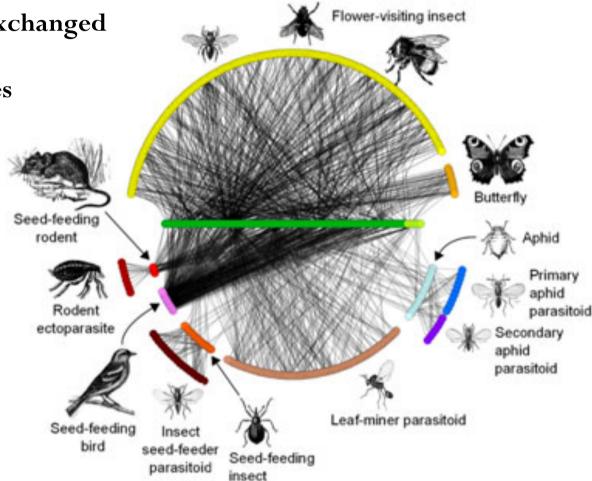


Molecular ecological networks

Not only metabolites exchanged but also possibly other (macro)molecules

play a role in the

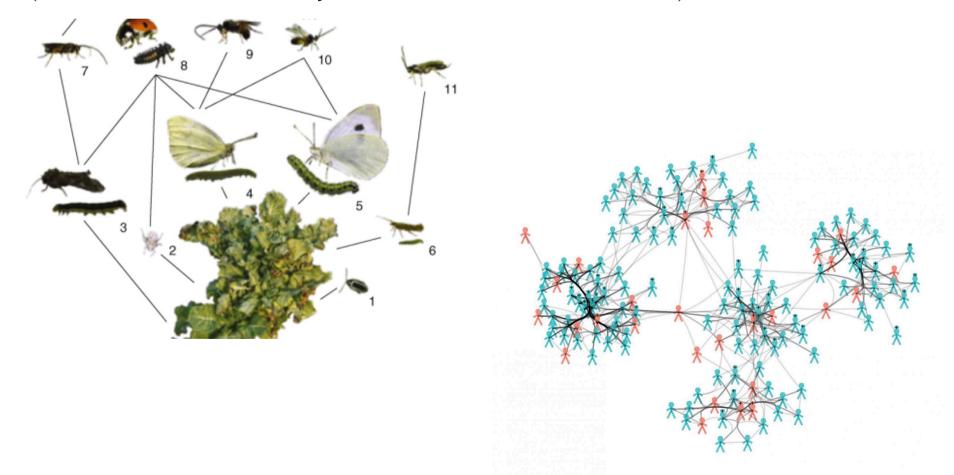
interaction



Plus environment

Leads to more general ecological networks as well as to "infection" networks

The dynamic aspect of such networks is important (but not same kind of "dynamics" as mentioned earlier!)



Dynamic graph algorithms

Some typical updates:

insert

delete

change weight

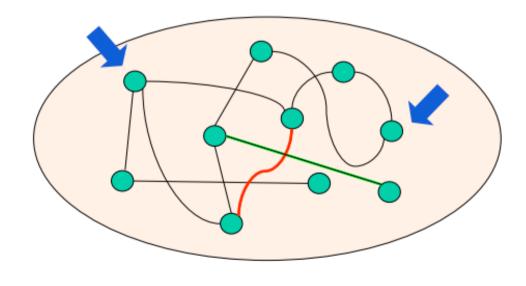
But there are many others which might be relevant!

Initialize

Insert

Delete

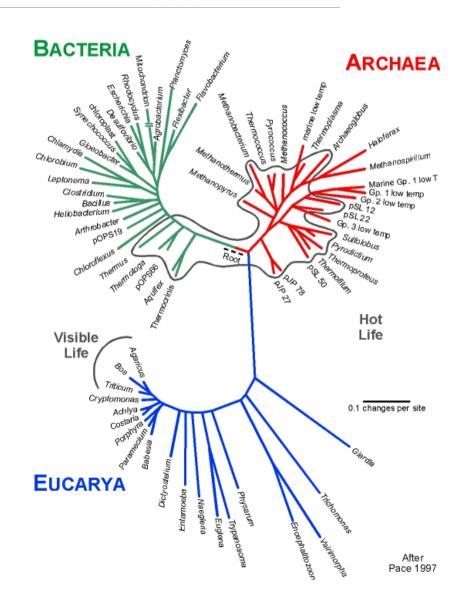
Query



A graph

This was "fast dynamics" Things can however change much more slowly leading to Evolutionary networks

Phylogenetic trees as a way to study evolution



From phylogenetic trees to networks

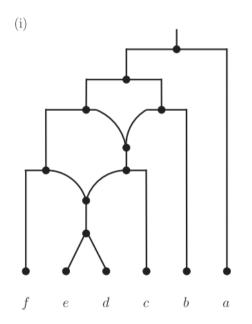
Two main reasons:

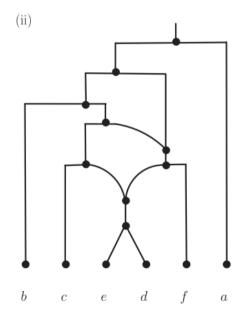
Contradictory relationships

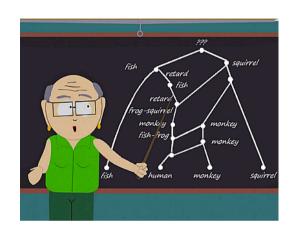
Reticulation

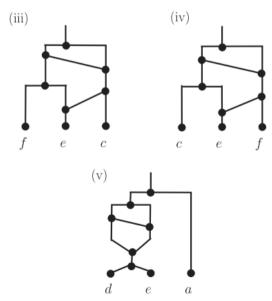
Hybridisation

Recombination



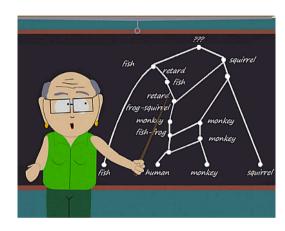




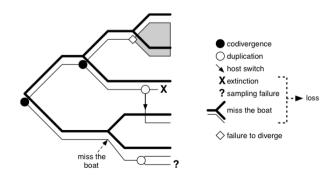


Phylogenetic networks

More on phylogenetic networks

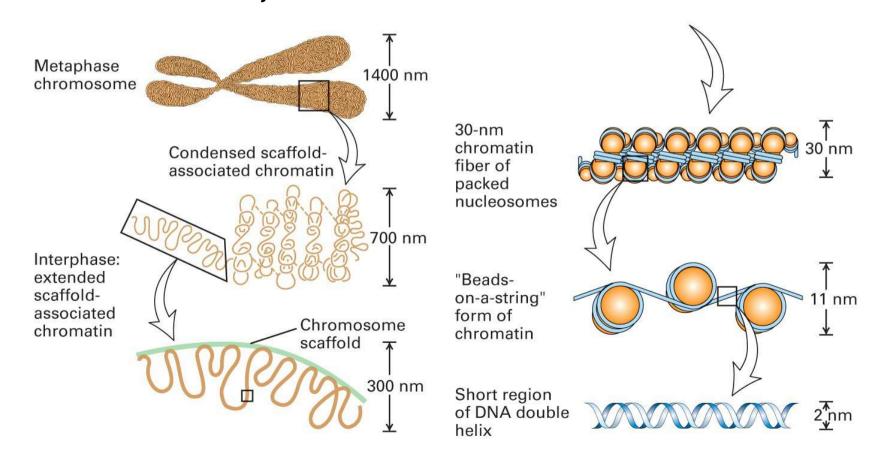


And on co-phylogeny with Blerina Sinaimeri

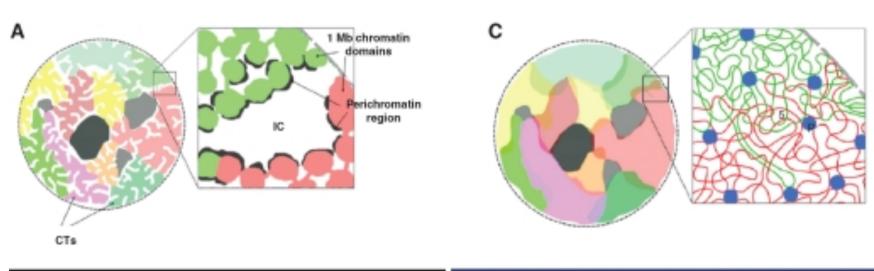


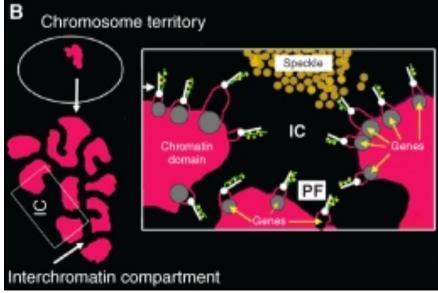
Finally, remember the conclusion of my (brief) biological introduction: Chromosomes are not spaghetti!

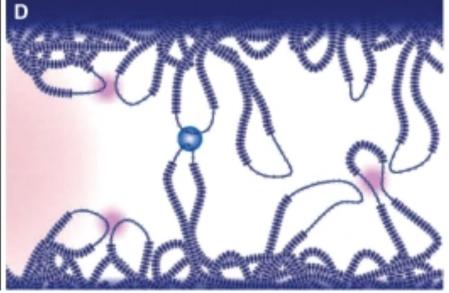
DNA in a living cell is in a highly compacted and structured Transcription is dependent on such structural state – SEQUENCE alone does not tell the whole story!



The big question here is how to infer the network from some (noisy) interaction data







A few references for those curious to know more

Systems biology: Property of reconstructed networks, Bernhard Palsson

Systems biology: Simulation of dynamic network states, Bernhard Palsson

An introduction to systems biology:De`sign principles of biological circuits, Uri Alon

Algebraic statistics for molecular biology, Lior Pachter and Bernd Sturmfels

Hypergraphs and cellular networks, Steffen Klamt

Papers by Jörg Stelling

And many, many more If interested in having more references, contact us!