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Abstract

Purpose of Review Our goal is to examine the processes—
both central and peripheral—that underlie the development of
peripherally-induced neuropathic pain (pNP) and to highlight
recent evidence for mechanisms contributing to its mainte-
nance. While many pNP conditions are initiated by damage
to the peripheral nervous system (PNS), their persistence ap-
pears to rely on maladaptive processes within the central ner-
vous system (CNS). The potential existence of an autonomous
pain-generating mechanism in the CNS creates significant im-
plications for the development of new neuropathic pain treat-
ments; thus, work towards its resolution is crucial. Here, we
seek to identify evidence for PNS and CNS independently
generating neuropathic pain signals.

Recent Findings Recent preclinical studies in pNP support
and provide key details concerning the role of multiple mech-
anisms leading to fiber hyperexcitability and sustained elec-
trical discharge to the CNS. In studies regarding central mech-
anisms, new preclinical evidence includes the mapping of
novel inhibitory circuitry and identification of the molecular
basis of microglia-neuron crosstalk. Recent clinical evidence
demonstrates the essential role of peripheral mechanisms,
mostly via studies that block the initially damaged peripheral
circuitry. Clinical central mechanism studies use imaging to
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identify potentially self-sustaining infra-slow CNS oscillatory
activity that may be unique to pNP patients.

Summary While new preclinical evidence supports and ex-
pands upon the key role of central mechanisms in neuropathic
pain, clinical evidence for an autonomous central mechanism
remains relatively limited. Recent findings from both preclin-
ical and clinical studies recapitulate the critical contribution of
peripheral input to maintenance of neuropathic pain. Further
clinical investigations on the possibility of standalone central
contributions to pNP may be assisted by a reconsideration of
the agreed terms or criteria for diagnosing the presence of
central sensitization in humans.
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Introduction

Neuropathic pain is defined by the International Association
for the Study of Pain (IASP) as “pain caused by a lesion or
disease of the somatosensory nervous system” [1]. This def-
inition is broad, covering over 100 conditions [2], and it in-
volves injuries which span the entire pain neuro-axis. These
injuries are often initially painful, in which case the pain
serves to protect the damaged region until it can heal.
However, in chronic neuropathic pain, the nervous system
responds inappropriately to the damage through multiple
mechanisms involving both the nervous system and its mod-
ulators. The unfortunate result is an unbalanced sensory sys-
tem that misreads sensory inputs and can spontaneously gen-
erate painful sensations. Approximately 20 million people in
the USA suffer from chronic neuropathic pain, with some-
times devastating losses of quality of life [2]. Treatments for
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neuropathic pain are non-specific and often insufficiently ef-
fective [3]. These treatments are not innocuous, and, for pa-
tients treated with opioids, can generate life-threatening side
effects, highlighting the critical societal need for improved
and customized strategies.

Therapeutic strategies for treatment of chronic neuropathic
pain are limited by an incomplete understanding of how the
nervous system maintains spontaneous pain following resolu-
tion of the initial injury. Before clinicians can provide precise
treatment strategies for neuropathic pain patients, essential
targets in the pathway must be identified. To achieve this goal,
it is necessary to determine if maladaptive signaling in the
central parts of the somatosensory system are sufficient to
generate spontaneous pain. In this review, we focus on this
key issue, by first presenting a brief review of both peripheral
and central mechanisms in neuropathic pain and then present-
ing the preclinical and clinical evidence for each potential
framework.

Common Neuropathic Pain Syndromes
and Overview of Mechanisms

Neuropathic pain syndromes can be divided into two general
categories: those that are consequences of a peripheral lesion
or disease and those that are consequences of a central lesion
or disease. This review focuses on conditions that are consid-
ered consequences of a peripheral insult. Central neuropathic
pain conditions, such as central post-stroke pain (CPSP), are
likely to possess different underlying mechanisms and warrant
separate consideration.

Table 1 summarizes by general etiology some of the more
common (and typically irreversible) neuropathic pain syn-
dromes that originate from damage to the peripheral nervous
system (PNS). As these conditions demonstrate, there are mul-
tiple routes to peripheral nerve damage, including mechanical,
chemical, and infectious. These conditions share some general
features, including spontaneous pain that is shooting, lancinat-
ing, or burning [4, 5]. Allodynia—i.e., a painful response to

non-painful stimuli—as well as hyperalgesia, are also com-
mon features. The overlapping features of these syndromes
can lend themselves to common treatment strategies and un-
derscore the likelihood of shared pathophysiologic
mechanisms.

Peripheral Mechanisms in Neuropathic Pain

Peripheral nerve damage can result in chronic neuropathic
pain through multiple routes [6¢¢]. While the insult may be
localized, the responses that lead to chronic pain are not.
Peripheral terminals of pain-processing unmyelinated C fibers
and thinly-myelinated A fibers can spur the development of
neuropathic pain after being affected by metabolic damage,
toxins, medications, cytokines, and other inflammatory medi-
ators [7], resulting in fiber density changes and neuronal hy-
perexcitability [8, 9, 10, 11, 12¢¢]. Along the axon, injuries
such as trauma, compression, hypoxia, inflammation, over-
stimulation, and chemical damage can induce fiber degenera-
tion and alterations in channel expression and composition
[13], in turn resulting in ectopic firing and faulty signal trans-
mission [14]. In response to axonal damage and its sequelae,
satellite glia and autonomic neurons can incur pain-promoting
states though alterations in their overall numbers, distribution,
sprouting patterns, and channel expression [15-17].

In the DRG and trigeminal ganglia, primary afferent cell
bodies can be exposed to chemical, mechanical, and
excitotoxic damage, and in neuropathic pain states demon-
strate maladaptive changes in their membrane composition,
synapse properties, and synapse location(s) [18-20]. The
probability of peripheral nerve damage or its progression to
neuropathic pain can also be increased by genetic predisposi-
tions and/or hereditary conditions [21, 22]. The ultimate result
of the maladaptive mechanisms following peripheral nerve
damage is a state of inappropriate signaling from the periph-
eral neuron to its second-order targets, with multi-factorial
errors in both transduction and transmission [4, 23, 24]
(Fig. 1).

Table 1 Some common

Common syndromes

neuropathic pain syndromes Etiology

originating from damage to the

peripheral nervous system (PNS) Toxic
Traumatic

Ischemic/metabolic
Infectious/inflammatory

Invasive/compressive

Hereditary

Chemotherapy-induced peripheral neuropathy (CIPN), alcoholic neuropathy

Complex regional pain syndrome (CRPS) type II, phantom limb pain,
post-surgical/traumatic neuropathy

Diabetic painful neuropathy (DPN), vitamin B, deficiency

Post-herpetic neuralgia (PHN), human immunodeficiency virus (HIV)
painful sensory neuropathy, chronic inflammatory demyelinating
polyneuropathy (CIDP)

Cancer pain, painful radiculopathy, carpal tunnel syndrome

Charcot-Marie-Tooth disease (CMT), erythromelalgia, paroxysmal
extreme pain disorder
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Fig. 1 Overview of peripheral
and central changes contributing
to neuropathic pain
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Central Mechanisms in Neuropathic Pain

With repeated or sufficiently intense stimulation, spinal and
supraspinal nociceptive pathways can become sensitized to
subsequent stimuli. With persistent nociceptive input [25¢],
like that seen in peripheral neuropathy, this central sensitiza-
tion [26] becomes maladaptive. [ASP defines central sensiti-
zation as “increased responsiveness of nociceptive neurons in
the central nervous system to their normal or subthreshold
afferent input” [27]. At the synapse of second-order neurons,
this increased responsiveness can involve changes in calcium
permeability, receptor overexpression, and synapse location
[18, 28]. Also promoting a chronic pain state are microglia,
whose hyperactivation triggers the release of pain-promoting
mediators [29]. In supraspinal regions, the resulting misbal-
ance between descending facilitation and inhibition is another
major contributor to ongoing pain [30-32]. Maladaptive sub-
cortical and cortical plasticity also contributes to painful inter-
pretation of incoming signals [31, 32], with the ultimate result
promoting a chronic pain state (Fig. 1).

Evidence for Peripheral Mechanisms: Preclinical

Injury and/or damage to the nociceptive afferents predomi-
nantly accounts for the onset of neuropathic pain. Peripheral
mechanisms that initiate and maintain sustained excitation of
afferent nerve fibers in neuropathic pain have been

extensively studied utilizing multiple rodent models, such as
spared nerve injury (SNI), chronic constriction injury (CCI),
and spinal nerve ligation (SNL) [33]. In addition, specific
disease-related neuropathies and the associated peripheral sen-
sitization mechanisms have also been studied in rodent
models of diabetes, chemotherapy, herpes zoster, and HIV-
induced peripheral neuropathy [33]. In rodent spinal/sciatic
nerve injury or constriction models, increased ectopic electri-
cal discharge in myelinated axons (A fibers) begins generally
within several hours of the induction of injury, and subse-
quently appears in unmyelinated axons (C fibers) within sev-
eral days to weeks [12¢¢, 34]. A wide variation in the fiber
specificity, frequency, type, timeline of increased and/or
sustained ectopic discharge, and cross-sensitization among A
and C fibers at both peripheral and DRG cell body levels have
been reported, which could be linked to the type of target
nerve, injury, and the species/strain of animals studied.
Multiple sources have subsequently shown that these changes
in nerve fiber discharge lead to the development of various
reflexive alterations in rodents that are referred to as neuro-
pathic pain behaviors [12¢¢]. Looking from a cellular/
molecular aspect, distinct classes of receptors and ion chan-
nels in specific sensory neuron subtypes have been implicated
for increased/sustained ectopic discharge. Due to the hyperex-
citable nature of these neuronal injuries, voltage-gated Na*
(Nay) channels account for the primary molecular entity im-
plicated in peripheral neuropathic pain conditions. Increased
expression, trafficking, and peripheral targeting of several
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Nay channel isoforms, such as Nay 1.3 and Nay/1.6 (on mye-
linated axons) and Nay 1.7 and Nay 1.8 (on unmyelinated
axons), have been shown in multiple rodent neuropathic
models [35-37]. In addition, modifications in channel func-
tion, which lead to fast channel activation and increased cur-
rent density, account for hyperexcitation of peripheral nerve
fibers in response to neuropathy [32]. Several studies utilizing
mouse genetics and pharmacological interventions targeting
Nay channels have confirmed their involvement in peripheral
nerve fiber excitation and neuropathic pain-related behaviors
in rodent models [35-37].

Transient receptor potential (TRP) channels account for the
major class of sensory detection/transduction channels, which
upon activation by multiple pain-producing physico-chemical
stimuli, provide the generator potential that is often needed to
activate the Nay channels to elicit action potential firing (or
electrical discharge) on nerve fibers (reviewed in [38]). Under
patho-/physiological conditions, TRPA1 and TRPV4 could be
activated in part by mechanical stimuli, TRPA1 and TRPMS
are activated by cold temperatures, and TRPV 1 is activated by
hot temperatures, as well as by acidic pH. Upon nerve injury/
neuropathic conditions, TRPA1 has been shown to be directly
activated by cell damage-related mediators, such as reactive
oxygen/nitrogen species (ROS/RNS), leading to increased
nerve fiber excitation and manifestation of mechanical and
cold hypersensitivity behaviors in rodents (reviewed in
[38]). Similarly, administration of paclitaxel-based chemo-
therapeutic drugs that cause peripheral neuropathy in rodents
has been suggested to induce mechanical activation/
transduction through TRPV4 [39]. Nerve injury, including
neuroma formation, involves an inflammatory component,
both at the site of injury and at the level of cell body in
DRG, with local enrichment of (pro-)inflammatory mediators
that provide the spices for nerve fiber sensitization.
Modulation of TRPV1 channel function accounts for a major
proportion of such sensitization via inflammatory mediators.
Specifically, modulated TRPV1 gets activated by minimally
acidic pH and at body temperatures, leading to sustained gen-
erator potentials and electrical discharge (reviewed in [38]).
Both nerve damage/injury and the increased inflammatory
microenvironment have been shown to upregulate the expres-
sion of these predominant sensory TRP channels, which in
addition to functional changes lead to increases in the magni-
tude and duration of hyperexcitability of nerve fibers
[reviewed in [38]. A large number of studies utilizing geneti-
cally modified mice lacking specific functional TRP channels
and with the use pharmacological blockers of individual TRP
channels have shown their critical involvement in peripheral
nerve fiber excitation and neuropathic pain-related behaviors
in rodent models (reviewed in [38, 40]).

Contrary to Nayand TRP channels, voltage-gated K* (Kv),
leak/two-pore domain K* (K2P), and Ca®*/voltage-activated
K" (Kca) account for the vast majority of repolarizing or
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regulatory channels on sensory neurons/afferents (reviewed
in [41]). Activation of these channels lead to membrane repo-
larization, thereby resulting in the suppression of electrical
discharge/firing. Decreases in the protein expression of
Kvl.1, Kv1.2, K1.4, Kv2.1, Kv2.2, Kv4.3, Kv7.2, Kv7.3,
and Kv9.1, as well as of a number of K2P, K,, and Kir/
KATP have been shown in multiple rodent neuropathic pain
models, which lead to a decrease in K™ currents and a resultant
hyperexcitation of sensory nerves (reviewed in [41]). Except
for Kv7 channels, extensive validation of the role of altered
expression and/or function of most K™ channels utilizing phar-
macological and mouse genetic approaches remains to be ex-
plored in nerve injury/neuropathic conditions.

In addition to neuronal channels and receptors, accumu-
lation of infiltrating immune cells such as neutrophils, mac-
rophages, and mast cells at the site of nerve injury consti-
tute yet another peripheral cellular mechanism for nerve
fiber hyperexcitation and sustained electrical discharge in
majority of neuropathic conditions [42]. Continued supply
of (pro-)inflammatory mediators by these immune cells ac-
count for both nerve fiber sensitization and neuronal dam-
age, thereby exacerbating the neuropathy. In summary, nu-
merous preclinical studies collectively suggest that (1) mul-
tiple mechanisms of peripheral nerve fiber excitation and
sensitization operate in nerve injury/neuropathy conditions;
(2) these mechanisms lead to sustained electrical discharge
that feeds to the CNS and (3) which presumably accounts
for continued excitatory ascending pain signal propagation
to the brain. Pharmacological interventions aimed at reduc-
tion and/or blockage of peripheral nerve fiber excitation in
rodent neuropathic pain models by targeting several
abovementioned nociceptive ion channels/receptors have
shown significant blockade of neuropathic pain-related be-
haviors [43]. Therefore, it is reasonable to argue that
hyperexcitation and sustained electric discharge of periph-
eral nerve fibers constitute a predominant mechanism for
peripheral neuropathic pain conditions.

Evidence for Peripheral Mechanisms: Clinical

In patients with phantom limb pain, single-fiber recordings of
sensory fibers projecting into the neuroma demonstrate direct
evidence of spontaneous ectopic activity and excessive action
potential firing in [44]. Altered firing patterns in afferent neu-
rons are also present in patients with primary erythromelalgia,
for whom a mutation in the Nav1.7 channel can cause shifts in
nociceptor activation thresholds [45]. As summarized in
Table 2, in multiple types of chronic neuropathic pain, studies
that block peripheral activity with a local anesthetic have re-
sulted in significant alleviation or complete reduction of pain.
Peripheral nerve stimulation, which disrupts incoming senso-
ry signaling, has also been shown to provide significant pain
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Table 2 Peripheral nerve blockade: effects on spontaneous neuropathic pain [25¢, 46, 47, 48+, 49-52]

Results

Neuropathic pain type Block details
Post-herpetic neuralgia Topical lidocaine patch (vehicle and placebo
controlled)
CRPS type II with signs of central Lidocaine infiltration at injury site
sensitization
Peripheral nerve injury Ultrasound-guided perineural lidocaine
Diabetic polyneuropathy infiltration

Painful neuroma
Persistent post-herniorrhaphy pain

Persistent pain after breast cancer

surgery (PPBCS) (pilot study) (2nd intercostal space only)

Lidocaine injection close to the injury of
post-surgical neuroma patients [50]

Bupivacaine infiltration of tender points,
ultrasound-guided, placebo-controlled

Intercostobrachial block, ultrasound-guided

Significant pain alleviation at plasma lidocaine concentrations
too low for systemic effect

Complete pain reduction

Complete pain reduction, at lidocaine plasma concentrations
too low for systemic effect

Dose-dependent reduction in spontaneous and evoked pain
scores by more than 80%

Significantly greater analgesia and reduced evoked pain
response when compared with placebo

Significant reduction in summed pain intensity scores and
decreased areas of hypoesthesia in 4/6 patients post-block

relief in patients with neuropathic pain from post-herpetic
neuralgia (PHN), complex regional pain syndrome (CRPS)
type II, and traumatic and surgical nerve damage [53-57].
Collectively, these results suggest that peripheral input is an
essential and necessary component for spontaneous neuro-
pathic pain.

Studies have also utilized DRG blockade techniques to
demonstrate its key role in spontaneous pain generation. In
amputees with phantom limb pain, Vaso et al. demonstrated
that dilute lidocaine applied directly to the DRG in concentra-
tions sufficient to suppress DRG ectopic firing, but not trans-
mission of other sensory information, was capable of
abolishing phantom limb pain in topographically appropriate
regions [58¢]. There is also growing evidence for the effec-
tiveness of targeted DRG stimulation in the effective allevia-
tion of chronic neuropathic pain [59, 60], and this evidence
may expand as novel interfacing technologies continue to ad-
vance [61].

Evidence for Central Mechanisms: Preclinical
Changes in the Spinal Cord

Neuropathy-induced increases in spinal neuronal activity
can be partly attributed to increased synaptic efficacy in
the spinal cord dorsal horn. Activation of several pro-
tein kinases, including PKA, PKC, p38 MAPK, Src,
ERK, and CaMKII, is observed in animal models of
nerve injury. In painful neuropathy, ionotropic and me-
tabotropic glutamate receptors exhibit phosphorylation
and changes in trafficking that increase excitatory post-
synaptic potential (EPSP) frequency and amplitude
[62—64]. Increased post-synaptic activity is also
achieved by alterations in glutamate homeostasis,
resulting from increased expression of the vesicular glu-
tamate transporters Vglut2 and Vglut3 in the superficial

and deep dorsal horn, respectively [65]. This glutamate
accumulation in synaptic vesicles is thought to increase
EPSP amplitudes [66].

Spinal cord neurons also alter ion channel expression
levels to acutely modify their properties following neurop-
athy. Examples include the voltage-gated calcium channel
subunit «20-1 in the dorsal horn following induction of
CIPN [67]. The ionotropic serotonin receptor 5-HT5 in the
dorsal horn is the target of descending serotonergic facil-
itation of pain from the rostral ventromedial medulla
(RVM). Activation of spinal 5-HTj; receptors is also asso-
ciated with pro-inflammatory cytokine release and glial
cell activation, changes that appear to be crucial for the
maintenance of central sensitization [68]. Enhanced excit-
ability is also brought about by a reduction in inhibitory
tone. BDNF, in addition to its effects on microglia [69]
and GluN2B phosphorylation, also inhibits presynaptic
GABA, receptors, reducing presynaptic inhibition and
causing spontaneous activity in lamina I output neurons,
along with increased responsiveness to nociceptive input
and the relaying of innocuous mechanical input [70, 71,
72, 73]. Similar disinhibitory effects have been noted
with radial neurons (morphologically distinct excitatory in-
terneurons located in lamina II of the dorsal horn that
show diminished inhibitory post-synaptic currents follow-
ing injury [74]) and presynaptic reductions in GIRK po-
tassium channel expression [75].

The production of inflammatory mediators by injured
neurons and activated glial cells drives many of the phys-
iological CNS changes associated with neuropathic pain.
For example, dorsal horn neurons exhibit elevated expres-
sion of the chemokine SDF-1o/CXCL12 in a CIPN model
[76-78], CXCL13 in a rat SNL model [79], and CCL3
and its receptor CCRS in CCI in rats [80e, 81, 82].
Proinflammatory cytokines such as interferon-y activate
spinal microglia, a process that underlies many of the
neuropathy-induced changes in spinal neuron behavior,
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most notably the hyperresponsiveness of wide dynamic
range (WDR) neurons following CCI [83], and the activa-
tion of convergent nociceptive inputs following injury [84,
85]. Astrocyte activation is also crucial to the manifesta-
tion of neuropathic pain [86]. Resident astrocytes, as well
as CD4" T cells infiltrating the dorsal horn, secrete IL-17
following SNL. The resultant expression of IL-1{3 and IL-
6 is, along with TNF-«, important in the maintenance of
neuropathic pain [87-89]. ATP is released by injured dor-
sal horn neurons [90], whereupon microglial purinergic
receptors are activated, leading to microglial proliferation
and neuropathic pain [91-94, 95¢]. The apparent reduction
in the importance of microglial activity in the later stages
of neuropathic pain models has led to the suggestion that
microgliosis and inflammatory mediator production may
be most important in the initiation of hypersensitivity
and promoting the transition to chronic pain [96].

Changes in Brain Regions

In the ventral posterior thalamus (the major site of projection
from the spinothalamic tract), wide dynamic range and
nociceptor-specific neurons have shown hyperexcitability in
neuropathy models [97]. As in the spinal cord, the vesicular
glutamate transporter Vglut2 is increased in the thalamus,
periaqueductal gray (PAG), and amygdala following SNI
[98¢]. The anterior cingulate cortex (ACC) shows increased
expression of the astrocyte marker glial fibrillary acidic pro-
tein (GFAP) following CIPN—whether this is related to
neuropathy-induced changes in glutamate and voltage-gated
sodium channel expression in the same region remains to be
investigated [99, 100]. Expression of the voltage-gated calci-
um channel Ca,3.2 is upregulated in the ACC of rats after
chronic constriction injury (CCI)—a finding that corresponds
with enhanced T-type calcium currents in ACC neurons. In
addition, the microinjection of a T-type calcium channel in-
hibitor partially relieves mechanical and thermal hypersensi-
tivity post-CCI [101].

Microglial activation occurs in the mouse brain following
CCI in regions associated with pain transmission and affect:
the thalamus, sensory cortex, and amygdala [102].
Descending facilitation of neuropathic pain from the PAG is
promoted by such glial cell activation in a CCI model [103].
The hippocampus has been reported to exhibit impaired long-
term potentiation in SNI mice, an effect that was recently
suggested to originate from the effects of tumor necrosis
factor-alpha and microglial activation in this brain region
[104]. This glia-driven change in synaptic plasticity and resul-
tant mechanical hypersensitivity has also been reported in the
primary somatosensory cortex in a mouse SNL model [105¢].

Electrical stimulation of the thalamus causes spinal seroto-
nin (5-HT) release that relieves neuropathic pain [106], con-
sistent with the observation that intrathecal injection of
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serotonin can reverse allodynia [107]. The somatosensory cor-
tex is also involved in descending anti-nociception through
reducing “on” cell discharge in the rostral ventromedial me-
dulla (RVM) in a 5-HT, 5 receptor-dependent fashion [108].
Interestingly, the administration of lidocaine to the RVM of
SNL rats relieved allodynia in animals exhibiting pain, but
precipitated allodynia in rats that had also undergone surgery,
but did not exhibit pain-related behaviors [109], consistent
with the bi-directional influence of the RVM in descending
modulation. Projections from noradrenergic brainstem nuclei
such as the locus coeruleus (LC), and other brain regions
which project to the LC, are also regarded as mediators of
descending pain inhibition [110, 111]. SNL in rats is associat-
ed with increased glutamate concentration in the LC and spi-
nal norepinephrine release. These changes are proposed to
underlie the impairment of endogenous analgesia following
nerve injury [112] and can provide the rationale for the use
of serotonin-norepinephrine reuptake inhibitors (SNRIs) in
neuropathic pain. These combined data demonstrate a wide
range of structural and functional changes occurring within
the CNS following peripheral nerve injury. Spontaneous neu-
ronal activity following neuronal disinhibition has been dem-
onstrated in spinal cord and brainstem neurons, although
whether this activity may occur in the absence of afferent
(even trivial) input still requires further investigation.

Evidence for Central Mechanisms: Clinical

In human studies, features of central sensitization have
been evaluated through multiple approaches [113]. Two
testable parameters related to dorsal horn-level central sen-
sitization are wind-up (exaggerated response to a train of
stimuli) and secondary hyperalgesia (an increase in pain
sensitivity to regions surrounding, but not including, the
area of injury). In studies of humans with painful neurop-
athy, including CRPS type II, phantom limb, CIPN, and
PHN, both wind-up and secondary hyperalgesia responses
are significantly increased. Altered descending inhibition
can be interrogated via conditioned pain modulation
(CPM) studies, which test the endogenous ability of the
CNS to inhibit painful stimuli. Studies comparing healthy
volunteers with patients with peripheral polyneuropathy
have demonstrated significantly impaired CPM values in
painful neuropathy [114].

In patients with peripheral neuropathies, neuroimaging
studies have shown multiple changes in activity and function-
al connectivity in CNS regions involved in pain processing
and pain modulation [115, 116]. Neuroimaging of the cortical
and subcortical regions in patients with painful neuropathies
have identified alterations in activity and functional connec-
tivity that correlate with the subjects’ neuropathic pain char-
acteristics and treatment, including in patients with low back
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pain [32], PHN [117], diabetic polyneuropathy [118], neuro-
ma pain [119], phantom limb [120], and CRPS [121, 122].
Additionally, structures in the mesencephalic reticular forma-
tion (including possibly the PAG and nucleus cuneiformis)
that, in preclinical studies, have been shown to be essential
to mechanical allodynia after peripheral nerve injury, demon-
strate increased neuronal activity on functional neuroimaging
in a human capsaicin-evoked secondary hyperalgesia model
[123]. Cerebrospinal fluid cytokine levels in neuropathic pain
patients have demonstrated increased levels of pain-
promoting mediators including TNF-¢, IL-6, IL-8, and IL-
13, as well as low levels of pain-decreasing IL-10
[124-126], providing further evidence that multiple central
processes are responsible for creating a neuropathic pain state.

Recently, Alshelh et al. used resting-state fMRI in orofacial
neuropathic pain patients to identify increased infra-slow os-
cillatory activity in the ascending pain pathway, including the
spinal trigeminal nucleus, somatosensory thalamus, thalamic
reticular nucleus, and primary somatosensory cortex; this in-
creased oscillatory activity was not seen in control patients
without orofacial pain [127]. This rhythm showed increased
regional homogeneity in the spinal trigeminal nucleus region,
consistent with a local spread of neural activity by astrocytes,
and was suggestive of a self-sustaining thalamocortical dys-
rhythmia. While a variety of imaging studies provide evidence
that critical pain pathway CNS components can generate au-
tonomous signals, they provide neither evidence of causality
between these oscillations and pain nor evidence that this ac-
tivity is sustainable without afferent input.

Discussion

In contrast to the growing clinical evidence of peripheral con-
tributions to neuropathic pain maintenance, studies demon-
strating the ability of central sensitization mechanisms to in-
dependently generate neuropathic pain remain elusive. One
key challenge in generating such potential evidence is the
absence of agreed terms or criteria for diagnosing the presence
of central sensitization in humans. Despite the existing defini-
tion (increased responsiveness of nociceptive neurons in the
CNS to their normal or subthreshold afferent input), IASP
taxonomy also notes that conclusions about the presence of
central sensitization can only be made from indirect findings
such as hyperalgesia and allodynia. Additional aspects of cen-
tral sensitization, such as wind-up, long-term potentiation, and
increased receptive fields—as well as potential testable
criteria such as nociceptive flexion reflex or central sensitiza-
tion inventory [128]—are not accounted for in the current
IASP taxonomy.

Due to the above challenges, the presence of autonomic
CNS pain-generating mechanisms could be tested by confir-
mation of the following hypothesis: “There are cases in which

pain that was initiated by a peripheral nerve damage is inde-
pendently maintained by central mechanisms.” To confirm
this hypothesis, the following supporting data would be need-
ed: (1) Evidence of spontaneous activity/firing of CNS neu-
rons which does not occur under normal (non-injured) condi-
tions, (2) causative relationship between this spontaneous/
ectopic CNS firing and human pain, and (3) evidence that this
spontaneous firing and pain persist despite the removal of
afferent input. As of now, we are not aware of evidence
confirming these three criteria. Indeed, there is evidence of
spontaneous firing in the CNS neurons. The caveat is that
some spontaneous activity can occur under non-painful con-
ditions as well. Therefore, the relationship between the spon-
taneous activity and pain remains associative, and criterion (2)
has not been met. Criterion (3) has been refuted in studies
blocking peripheral input for a growing number of peripheral
neuropathic pain states. Interestingly, this last criterion may
also be unmet for central neuropathic pain states; it is yet to be
shown whether blocking the peripheral input from areas of
perceived spontaneous pain in central neuropathic pain states
affect the experience of spontaneous pain.

Conclusions

Peripheral nerve damage provides opportunity for maladapta-
tion at every point along the pain pathway. It is clear that
profound CNS changes occur following peripheral nerve in-
jury, and these changes contribute to the central sensitization.
There is also evidence of spontaneous activity in CNS neurons
after peripheral nerve damage, although this activity does not
necessarily persist without afferent input. In peripheral neuro-
pathic pain, effective blockade of afferent input seems to abol-
ish spontaneous pain, even in the presence of signs suggesting
central sensitization.

The nature of clinical studies—and the potential need for
more definitive, agreed-upon criteria for confirming the clin-
ical presence of central sensitization—has made it challenging
to demonstrate the presence of an independent generator of
neuropathic pain in the CNS. As a result, the relationship
between spontaneous burst activity in the CNS and pain ex-
perience still remains associative rather than causative. In
comparison, evidence continues to accumulate for the essen-
tial role that peripheral signaling plays in generation of neu-
ropathic pain.

All these points together suggest that although many in the
scientific community support the autonomous central pain-
generating hypothesis, direct clinical evidence supporting this
notion is yet to be generated. Therefore, our conclusion at this
point in time is that central sensitization acts rather as an am-
plifier of peripheral signals, and not an independent pain gen-
erator in peripheral neuropathic pain conditions.
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