Lecture 5: Intermediate macroeconomics, autumn 2014 Lars Calmfors

Literature: Krugman–Obstfeld–Melitz, chapters 16 and 17.

Topics

- Absolute and relative purchasing power parity (PPP)
- The Balassa-Samuelson effect
- The monetary approach to the exchange rate
- The Fisher effect
- The real exchange rate
- The relationship between the real exchange rate and the current account
- The Marshall-Lerner condition and the J-curve
- Short-run equilibrium in a small open economy with a flexible exchange rate (the AA-DD model)
- Stabilisation policy in the AA-DD model

Purchasing Power parity (PPP)

- Theory of long-run exchange rate determination
- Focus on the importance of goods markets (as opposed to asset markets)
- Developed by Swedish economist Gustaf Cassel (1866-1945) in 1920

Law of one price for a single good *i*:

$$P_{US}^{i} = E_{\$/\$} \times P_{E}^{i}$$
$$E_{\$/\$} = P_{US}^{i} / P_{E}^{i}$$

Absolute PPP:

$$E_{\text{S/}} = P_{US} / P_{E}$$

Relative PPP:

$$(E_{\text{S/G},t} - E_{\text{S/G},t-1}) / E_{\text{S/G},t-1} = \pi_{US,t} - \pi_{E,t}$$
$$\pi_t = (P_t - P_{t-1}) / P_{t-1}$$

Fig. 16-2: The Yen/Dollar Exchange Rate and Relative Japan-U.S. Price Levels, 1980–2009

Figure 1.24 EEAG report 2014

(PPP) is given at a quarterly frequency. The PPP upper bound represents the 75th percentile of the euro countryspecific PPP estimates vis-à-vis the US dollar; the lower bound the 25th percentile. The US dollar-euro PPP rate is calculated as the GDP-weighted average of the euro country-specific PPP estimates vis-à-vis the US dollar. Source: OECD Economic Outlook 93, June 2013, European Central Bank, last accessed on 3 January 2014.

Fig. 16-3: Price Levels and Real Incomes, 2010

Price level relative to U.S. (U.S. = 100)

Causes of deviations from PPP

- 1. Transport costs and trade barriers
- 2. Differences in consumption baskets
- 3. Imperfect competition price discrimination pricing to market

Different types of goods and services

- Tradables or traded goods
- Non-tradables or non-traded goods (primarily services and building)

The Balassa-Samuelson effect

The price level is higher in countries with high per capita income, because prices of non-tradables are higher.

(1)	$P_T = EP_T^*$	(international goods arbitrage)
(2)	$W_T = P_T \cdot MPL_T$	(profit maximisation in tradables sector)
(3)	$W_N = W_T$	(homogenous labour market)
(4)	$P_N = W_N / MPL_N$	(price = marginal cost for non-tradables)
(5)	$P_C = P_T^{\alpha} P_N^{1-\alpha}$	(consumer price index)

<u>The Balassa-Samuelson effect implies a higher relative price for</u> <u>non-tradables in rich than in poor countries:</u> Substitutions from the above equations imply:

$$\frac{P_N}{P_T} = \frac{1}{P_T} \cdot \frac{W_N}{MPL_N} = \frac{1}{P_T} \cdot \frac{W_T}{MPL_N} = \frac{P_T \cdot MPL_T}{P_T \cdot MPL_N} = \frac{MPL_T}{MPL_N}$$
$$\frac{MPL_T}{MPL_N} \uparrow \implies \frac{P_N}{P_T} \uparrow$$

The Balassa-Samuelson effect cont.

- Compare countries with the same currency (for example countries in the euro area)
- P_T is the same everywhere because of goods arbitrage
- *MPL_T* is higher in rich than in poor countries (more real and human capital gives higher productivity).
- Higher MPL_T implies higher $W_T = P_T \cdot MPL_T$.
- A homogenous labour market implies $W_N = W_T$
- Differences in *MPL_N* (the marginal product of labour in the non-tradables sector) between countries are small (a hair cut takes more or less the same time everywhere)
- Because $P_N = W_N / MPL_N$, the price level for non-tradables must be higher in rich than in poor countries
- Hence P_C (CPI) must be higher.

The monetary approach to the exchange rate

$$E = P_{US} / P_E$$
$$P_{US} = M_{US}^S / L (R_{\$}, Y_{US})$$
$$P_E = M_E^S / L (R_{\clubsuit}, Y_E)$$

The fundamental exchange rate equation

$$E = P_{US}/P_E = (M_{US}^S/M_E^S) \times [L(R_{\boldsymbol{\epsilon}}, Y_E)/L(R_{\boldsymbol{\$}}, Y_{US})]$$

An increase in money supply in the US relative to Europe $(M_{US}^S / M_E^S \uparrow)$ causes a nominal depreciation of the dollar $(E\uparrow)$.

The Fisher effect

(1)
$$R_{\$} = R_{€} + (E^e - E) / E$$
 Interest rate

(2)
$$\frac{E^e-E}{E} = \pi^e_{US} - \pi^e_E$$

Relative PPP

Substitution of (2) in (1):

$$R_{\$} - R_{€} = \pi_{US}^e - \pi_E^e$$

<u>The Fisher effect</u>: a 1 percentage point rise in inflation in one country causes a 1 percentage point increase in the nominal interest rate.

parity

Figure 5-3: Inflation and nominal interest rates over time

Figure 5-4: Inflation and nominal interest rates across countries

Definition of real exchange rate: $q = EP_E / P_{US}$

Expected real exchange rate change:

$$(q^{e} - q) / q = (E^{e} - E) / E + \pi_{E}^{e} - \pi_{US}^{e}$$

Interest rate parity: $(E^e - E) / E = R_{s} - R_{\epsilon}$

Substitution implies:

$$(q^{e} - q) / q = R_{s} - R_{\epsilon} + \pi_{E}^{e} - \pi_{US}^{e}$$
$$R_{s} - R_{\epsilon} = \pi_{US}^{e} - \pi_{E}^{e} + (q^{e} - q) / q$$

Nominal interest rate differential = inflation differential + real depreciation

$$(R_{\$} - \pi_{US}^{e}) - (R_{\$} - \pi_{E}^{e}) = (q^{e} - q) / q$$
$$r_{US}^{e} - r_{E}^{e} = (q^{e} - q) / q$$

r = real interest rate

Real interest rate differential = real depreciation (this is called real interest rate parity)

<u>A short-run general equilibrium model for an open economy</u> with a flexible exchange rate

Aggregate demand for domestically produced goods

D = C + G + I + CA

C = C(Y-T)	Consumption function
$G = \overline{G}$	Exogenous government expenditure
$T = \overline{T}$	Exogenous lump-sum tax
$I = \overline{I}$	Exogenous investment

$$CA = EX - IM = EX - qIM^*$$

 $q = \frac{EP^*}{P}$ = the real exchange rate

The current account (net exports) should be measured in terms of the same numéraire (here domestic goods). So *IM* is imports measured in terms of domestic goods. *IM** is imports measured in terms of foreign goods.

$$EX = EX(q, Y^*)$$

$$IM^* = IM^*(q, Y - T)$$

$$CA = EX(q, Y^*) - qIM^*(q, Y - T) = CA(q, Y^*, Y - T)$$

A real depreciation $(q\uparrow)$ need not improve the current account $(CA\uparrow)$. <u>Volume effects</u> on exports and imports work in this direction, but the <u>value effect</u> on imports works in the reverse direction.

Marshall-Lerner condition

A real depreciation will increase net exports if the Marshall-

Lerner condition holds.

The price elasticity of exports + the price elasticity of imports > 1

Then the volume effects dominate the value effect for imports.

All elasticities are defined to be positive.

Mathematical derivation of Marshall-Lerner condition

 $CA(q, Y^*, Y-T) = EX(q, Y^*) - qIM^*(q, Y-T)$

Wanted: a condition for when $\frac{dCA}{dq} > 0$

Recall the rule of differentiation for a product

$$\frac{d\left[v(x)u(x)\right]}{dx} = v_x(x)u(x) + u_x(x)v(x)$$

This implies that $d \frac{\left\{qIM^*(q, Y-T)\right\}}{dq} = IM^*(q, Y-T) + qIM_q^*(q, Y-T)$

Hence:
$$\frac{dCA}{dq} = EX_q - IM^* - qIM_q^*$$

Multiply the equation by *q/EX*.

$$\frac{q}{EX} \times \frac{dCA}{dq} = \frac{qEX_q}{EX} - \frac{q^2IM_q^*}{EX} - \frac{qIM^*}{EX}$$

Assume that CA = 0 initially, so that $EX = qIM^*=IM$. Then:

$$\frac{q}{EX} \times \frac{dCA}{dq} = \frac{qEX_q}{EX} - \frac{qIM_q^*}{IM^*} - 1$$

$$\frac{dCA}{dq} > 0 \iff \frac{qEX_q}{EX} - \frac{qIM_q^*}{IM^*} > 1$$

 $\frac{qEX_q}{EX} = \frac{q}{EX} \times \frac{\partial EX}{\partial q} = \eta = \text{price elasticity of exports}$

 $-\frac{qIM_q^*}{IM^*} = -\frac{q}{IM^*} \times \frac{\partial IM^*}{\partial q} = \eta^* = \text{price elasticity of imports}$ All price elasticities have been defined so that they are positive. $\therefore \eta + \eta^* > 1 \Leftrightarrow dCA/dq > 0.$

Table 17A2-1: Estimated Price Elasticities for International Trade inManufactured Goods

TABLE 17A2-1	Estimated Price Elasticities for International Trade in Manufactured Goods							
	η			η*				
Country	Impact	Short-run	Long-run	Impact	Short-run	Long-run		
Austria	0.39	0.71	1.37	0.03	0.36	0.80		
Belgium	0.18	0.59	1.55	_		0.70		
Britain			0.31	0.60	0.75	0.75		
Canada	0.08	0.40	0.71	0.72	0.72	0.72		
Denmark	0.82	1.13	1.13	0.55	0.93	1.14		
France	0.20	0.48	1.25		0.49	0.60		
Germany		—	1.41	0.57	0.77	0.77		
Italy		0.56	0.64	0.94	0.94	0.94		
Japan	0.59	1.01	1.61	0.16	0.72	0.97		
Netherlands	0.24	0.49	0.89	0.71	1.22	1.22		
Norway	0.40	0.74	1.49	_	0.01	0.71		
Sweden	0.27	0.73	1.59		—	0.94		
Switzerland	0.28	0.42	0.73	0.25	0.25	0.25		
United States	0.18	0.48	1.67	—	1.06	1.06		

Source: Estimates are taken from Jacques R. Artus and Malcolm D. Knight, *Issues in the Assessment of the Exchange Rates of Industrial Countries*. Occasional Paper 29. Washington, D.C.: International Monetary Fund, July 1984, table 4. Unavailable estimates are indicated by dashes.

Aggregate demand is given by:

$$D = C(Y-T) + G + I + CA\left(\frac{EP^*}{P}, Y^*, Y-T\right) \Rightarrow$$

This implies:

$$D = D\left(\frac{EP^*}{P}, Y-T, G, I, Y^*\right)$$

$$\frac{EP^{*}}{P} \uparrow \Rightarrow D \uparrow$$

$$Y - T \uparrow \Rightarrow D \uparrow$$

$$G \uparrow \Rightarrow D \uparrow$$

$$I \uparrow \Rightarrow D \uparrow$$

$$Y^{*} \uparrow \Rightarrow D \uparrow$$

Fig. 17-1: Aggregate Demand as a Function of Output

Output (real income), Y

Fig. 17-2: The Determination of Output in the Short Run

Fig. 17-3: Output Effect of a Currency Depreciation with Fixed Output Prices

Fig. 17-5: Government Demand and the Position of the *DD* Schedule

Changes shifting the DD-curve to the right

- **1.** An increase in government expenditure $(G\uparrow)$
- **2.** A reduction in the tax $(T\downarrow)$
- **3.** An increase in investment (I^{\uparrow})
- 4. A reduction in the domestic price level $(P\downarrow)$
- 5. An increase in the foreign price level $(P^*\uparrow)$
- 6. An increase in foreign income $(Y^*\uparrow)$
- **7.** A reduction in the savings rate $(s\downarrow)$
- 8. A shift in expenditure from foreign to domestic goods (increased relative demand for domestic goods)

Equilibrium in asset markets

1. Foreign currency market (interest rate parity) $R = R^* + (E^e - E)/E$

2. Money market

 $M^{s}/P = L(R, Y)$

Fig. 17-6: Output and the Exchange Rate in Asset Market Equilibrium

Factors shifting the AA-curve upwards

- **1.** An increase in money supply $(M^{s}\uparrow)$
- **2.** A reduction in the price level $(P \downarrow)$
- **3.** An expected future depreciation $(E^{e}\uparrow)$
- **4.** A higher foreign interest rate $(R^*\downarrow)$
- 5. A reduction in domestic money demand

AN INCREASE IN MONEY SUPPLY, A REDUCTION OF THE PRICE LEVEL

AN EXPECTED DEPRECIATION, AN INCREASE IN THE FOREIGN INTEREST RATE

Fig. 17-9: How the Economy Reaches Its Short-Run Equilibrium

A temporary change in the money supply

Time

Fig. 17-10: Effects of a Temporary Increase in the Money Supply

Fig. 17-12: Maintaining Full Employment After a Temporary Fall in World Demand for Domestic Products

Problems with stabilisation policy

- Policies can easily become too expansionary on average ("inflation bias")
- It is difficult *ex ante* to identify disturbances and how strong they are
- An expansionary fiscal policy can contribute to permanent budget deficits: US and the euro zone in the recent recession
- Policy lags
 - It takes time to change policy and before it affects the economy

Figure 1.17 EEAG report 2014

Central bank interest rates

Percent

<u>Repo rate in Sweden</u>

Percent

<u>General government net lending and cyclically adjusted general</u> <u>government net lending</u>

Percentage of GDP and potential GDP, respectively

<u>GDP gap and fiscal policy</u> Percentage of potential GDP

