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0. Introduction 
 

0.0. Parts of this apparatus 

 
Your instrument has been carefully packed in two boxes with an enclosed packing list. It is 

important that you check to be sure all the parts have been received and are in good 

condition. Please inform TeachSpin immediately if any parts are missing or have been 

damaged in transit. 

   

 
 Figure 0.0:  The parts of Noise Fundamentals apparatus 

 
The major components of this apparatus are shown in Fig 0.0.  Box 1 has the high level 

electronics in a wooden case, the low level electronics in a steel and aluminum case, the 

universal power supply (not shown), plastic parts boxes 1 and 2 containing various tools and 

spare parts (not shown), this instruction manual, three 36-inch BNC cables, and a a.c. power 

cable (for US – Canada). 
 

Box 2 contains the apparatus for the variable-temperature measurements. These include the 

variable-temperature sample probe, the Dewar vessel, the Dewar support, and the breakout 

box. All these are shown in Fig 0.0. Please note that TeachSpin does not supply the 

oscilloscope or the digital voltmeter. 
 

This instruction manual should contain two pages of actual data taken on your instrument. 

This data was taken at TeachSpin not only to test your unit, but also to provide you with 

benchmark data that you and your students should be able to reproduce. 



NF Rev 1.0  9/1/2011 

 

 0 - 2  

0.1. Definition, kinds, uses of noise 
 

Just as a weed is an unwanted plant, a noise, ordinarily speaking, is an unwanted sound.  In 

the fields of physics, electrical engineering, and many other places, we extend the definition 

of 'noise' beyond acoustics to the general field of information.  Since almost any signal that's 

a function of time can be translated into a voltage, we will often use the concept of a voltage 

signal.  We'll call it a 'noisy signal' if, in addition to the voltage we expect or wish to see, 

there is unwanted, typically (but not always) a randomly-fluctuating, voltage. Surprisingly, 

the noise signal is sometimes not only wanted, but is the essence of the measurement. 
 

There are several kinds of noise.  One of them is 'interference', which is the presence of an 

unwanted signal, added to the desired signal.  It's easy to imagine that your neighbor's 

electronic apparatus is polluting your TV or radio signal with some sort of interference. The 

kind of interference students are likely to encounter in these experiments probably comes 

from three sources: electrostatic coupling to the apparatus from fluorescent lights in the 

laboratory, electromagnetic coupling due to nearby transformers or motors, and vibrational 

coupling due to microphonic components within the unit. 
  
Another source of noise we will call 'technical noise' since it is the noise generated by the 

technique of the investigation, or that gets into the circuits due to faulty experimental 

techniques. For example, a student's failure to tighten the cover on the preamplifier section, 

or a poor electrical connection to the first-stage op-amp, can add extraneous noise to the 

signal path. 
 

Of greatest interest to us is 'fundamental noise', noise that is intrinsic and inevitable because 

of the physical nature of an apparatus.  We'll observe noise sources that arise from the 

Second Law of Thermodynamics, and from the quantization of electrical charge. Physicists 

and electrical engineers know these as Johnson and shot noise respectively. Noise sources 

like this display the characteristics of non-periodic, unpredictable, random waveforms, but 

nevertheless conforming, in their statistical properties, to universal laws. 
 

Fundamental noise is especially worthy of study, for at least two reasons.  The first reason is 

that fundamental noise presents us with a physics-based limit on the degree to which we can 

measure in a given experiment.  In many cases in research and technology, it often defines 

what is possible within the limits of physical law.  In particular, fundamental noise can and 

does set limits to the rate of data-transfer in a host of contexts in communication.  
 

The second reason we care about noise is that it becomes possible to use noise to measure the 

values of some fundamental constants. Boltzmann's constant kB can be determined from the 

voltage or Johnson noise of resistors; and the magnitude of the charge on the electron, e, can 

be determined from the current or shot noise of a photocurrent. 
 

But measurement of 'fundamental noise' has its experimental challenges. There is a saying 

about noise measurements:  'you're either measuring too much or too little signal'. You will 

understand this quip better after you have had some experience with these measurements. 

Our advice here is to read both the manual and some of the references and do your 

measurements carefully. But most of all, have fun! 
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0.2. Tactics for using this apparatus 
 

'Noise Fundamentals' is an unusually versatile apparatus which can be used to explore noise 

in a wide variety of ways.  It is incumbent on the instructor to devise a plan for the use of 

NF-1 that is appropriate for the level of students in the class, the time available, and the 

pedagogical goals of the program.  This manual is designed to help the instructor create this 

plan. 

 

To begin the process of creating your plan, we would like to point out some of the features of 

the unit which you should consider.  The low-level electronics (LLE) is designed so that part 

of it can be rewired and reconfigured by the user.  The basic motivation for this design is that 

no single pre-amplifier configuration can be suitable for all types of noise measurements.  

The question of who does this rewiring and reconfiguration is up to the instructor.  For 

example, you might have your students make a few simple changes in the wiring, or select 

different feedback resistors in the circuit.  If the time is available, and the skills that can be 

acquired within the goals of the lab, you might have students configure the first stage pre-

amplifier from a schematic diagram alone. 

 

The manual has electronic schematic diagrams, as well as the point-to-point wiring diagrams 

for the various configurations.  The unit has both terminal blocks and IC sockets so that 

almost all this rewiring and reconfiguration can be done without soldering.  Also, we have 

current-limited all of the power supplies so that the inevitable wiring mistakes and shorts will 

not cause permanent damage to the electronics.  Students often learn the most from their 

mistakes, so let them make them. 

 

The unit has the capability of measuring noise as a function of temperature from 77 - 400 K, 

but this requires liquid nitrogen and a fair amount of time.  Should you desire to examine 

noise in one three-hour class period, you might consider configuring the electronics yourself 

and examining Johnson noise as a function of resistance at a constant temperature and 

bandwidth. 

 

This apparatus could also be used in an electronics course to teach analog electronics.  Not 

only can students learn how to configure low-noise electronics, they can learn the uses of 

low-noise, high-gain, variable-bandwidth electronics.  This electronics is capable of 

measuring very small signals.  For example, George Herold (TeachSpin Senior Scientist and 

the principal designer of NF-1) used it in another project, to compare the reverse-bias leakage 

current of a 1N4148 diode (5 nA) and of the base-collector 'diode' of a 2N4401 NPN 

transistor (1 pA). 

 

The unit comes with a wide variety of components, all of which will be explained in this 

manual.  Some components are hard-wired into the unit, while others need to be inserted.  

We would encourage faculty and students to make noise measurements on other components 

that intrigue them.  If a particular set of measurements turns out to be very interesting, 

possibly with unexpected results, TeachSpin would love to hear about it.  We have long had a 

standing 'reward' available for students who have come up with new experiments to do with 

our equipment. 
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0.3. How to use this Manual 
 

Noise Fundamentals (NF1-A) can be used in a wide variety of modes in both the 

undergraduate and graduate educational experience.  Both the level of experiences and the 

amount of time available must be considered in designing the appropriate use of the 

equipment.  We have created some 'routes' by which an instructor might reach the different 

goals they have set for their students.  These routes have been organized in a kind of 'matrix', 

where the horizontal direction indicates student level, and the vertical direction is categorized 

by laboratory time available. 

 

Although the matrix refers to specific sections in the manual, we do not intend that these 

sections should necessarily be copied for student use.  This manual is written for the 

instructors, but you should feel free to use any part that you deem appropriate for your 

students.  Since there are so many different levels of students, and so many different 

objectives that can be achieved, instructors will have to create manuals which will fit their 

own particular needs.  Please remember, this matrix is only an approximate guide. 

 

Remember too that different users will want to follow distinct themes.  These might include 

physics explorations, electronics proficiency, and metrological calibrations.  To follow the 

theme you judge appropriate for your students, it is essential to become familiar with the 

instrument and its capabilities.  The best way we know is to read (or at the least, to browse) 

the entire Manual, and to get hands-on familiarity by doing most of the experiments.  

 

The following notes may be of help in finding a particular topic. 
 If you want to learn how to quantify noise, do Johnson noise, via Sections 1.0 - 1.5. 

 If you want to measure Boltzmann's constant kB, and are content with a single 

temperature, add Section 1.6. 

 If you want to see the temperature variation of Johnson noise, you need Sections 4.1 - 

4.2; to do temperature variation systematically, add sections 4.3 - 4.4. 

 If you want to use shot noise to measure the electronic charge 'e', you'll need Sections 1.1 

- 1.5 to learn how to quantify noise, and then Sections 3.0 - 3.3 to produce and quantify 

shot noise. 

 When you want to review how to measure noise, and noise density, see Sections 2.1 - 2.2. 

 When you want to understand details of calibrations and uncertainties in noise 

measurement, see Sections 5.0 - 5.3. 

 If you want to know what a 'Volt per root Hertz' or V/Hz is, see Section 5.4. 

 There is a special project in 'noise thermometry' found in Section 6.4. 

 If you want to learn the definitions of 'noise temperature' and 'noise figure', see the end of 

Appendix A.3. 

 If you want to learn about computer-based Fourier methods for extracting the frequency 

spectrum of noise, you'll want to use Appendix A.10. 
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Tactical Matrix 
    This matrix assumes all students have read and carried out Section 7, Getting Started 

(Instructor CE or Student CE indicates whether the Instructor or Student Configures the Electronics.) 

 

Total 

Lab 

Time 
(hours) 

 
INTRODUCTORY 

 
INTERMEDIATE 

 
ADVANCED 

3 - 4 

Instructor CE 

Johnson Noise vs. R 

with fixed T and Δf 

Do 1.0-1.4 

or 

Johnson Noise vs. Δf 

with fixed R, T 

Do 1.0-1.5 

or 

Shot Noise vs. i 

with fixed Δf 

Do 3.0-3.3 

Instructor CE 

Johnson Noise vs. R 

with fixed T and Δf 

Do 1.0-1.4 

or 

Johnson Noise vs. Δf 

with fixed R, T 

Do 1.0-1.5 

or 

Shot Noise vs. i 

with fixed Δf, T 

Do 3.0-3.3 

NOT  

APPROPRIATE 

6 - 8 

Instructor CE 

Johnson Noise vs. R, 

Δf 

with fixed T 

Do 1.0-1.6,  

Read 2.0-2.2 

or 

Shot Noise vs. i, Δf 

Do 3.0-3.3 

Read 3.6, 3.7 

Instructor CE 

Johnson Noise vs. R, Δf 

with fixed T  

 and 

Shot Noise vs. i, Δf 

Do 1.0-1.6, 2.0-2.2, 3.0-3.3  

or 

Johnson Noise vs. R, Δf and 

varying T 

Read 1.0-1.6, 2.0-2.2, 4.1-4.5 

Instructor CE 

Johnson Noise vs. R, Δf 

with fixed T  

 and 

Shot Noise vs. i, Δf 

Do 1.0-1.6, 2.0-2.2, 3.0-3.3  

or 

Johnson Noise vs. R, Δf and 

varying T 

Read 1.0-1.6, 2.0-2.2, 4.1-4.5 

12  

to 

 20 

 

NOT 

APPROPRIATE 

Student CE 

 

Johnson Noise vs. R, Δf 

with fixed T   

and 

Shot Noise vs. i, Δf 

Do 1.0-1.6, 2.0-2.2, 3.0-3.4 

or 

Drop one experiment 

and add Calibrations, 

Do 5.0-5.3 

Student CE 

Johnson Noise vs. R, Δf 

with fixed T   

and 

Shot Noise vs. i, Δf 

Read 1.0-1.6, 2.0-2.3, 3.0-3.3  

or 

Johnson Noise vs. R, Δf and T 

Read 1.0-1.6, 2.0-2.2, 4.1-4.5 

Advanced students can do 

calibrations (Ch. 5), projects 

(Ch. 6), or explore other parts 

of the manual. 
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0.4 Getting Started 
 

After reading several sections, particularly Chapters 1 and 2, you may tire of reading theory 

and want to fire up the unit.  Section 7, Practical Guide describes how to begin making 

measurements.  It will hold your hand through your first measurements of Johnson noise, and 

will demonstrate how to analyze the raw data.  Feel free to start there. 

 

Self-configured electronic instruments present unique problems to students who are new to 

electronics, and who have little or no built-in instinct for recognizing problems with a circuit 

they have built or configured.  In Newtonian Mechanics, by contrast, if a glider fails to slide 

on an air track, even the most naïve student recognizes that something is very wrong with the 

apparatus.  If a student hears a scraping sound when operating a torsional oscillator, he or she 

immediately recognizes there is a problem to be cured.  But if a beginning student dutifully 

builds a required circuit as shown in a manual, and has a lab partner check it, they will 

probably assume that the circuit will perform as expected. 

 

But that may not happen – why?  Experienced practitioners can think of many reasons: 

1.  One of the components may be defective, or far out of specifications. 

2.  There may be one or more poor connections or bad contacts. 

3.  The power supply may have problems – for example, low voltage, noisy voltage, 

oscillating voltage, limited current, etc. 

 

It is also possible, or even likely, that the student has made one or more mistakes.  For 

example, a student might have: 

1.  Put in an additional wire. 

2.  Made the wrong connection 

3.  Used the wrong components 

4.  Reversed the polarity on a component for which it matters. 

5.  Left out a part or a connection. 

6.  Left in a part or wire from a previous investigation. 

 

Clearly, students need an independent way to test a circuit set-up before it is used to take 

data.  Among other things, students need to know if they are measuring external interference, 

rather than the intended internal noise, and they also need to know if the bandwidth of their 

system is correct.  We have put a whole collection of diagnostic techniques in Appendices 

A.5 and A.6, and in Chapter 8, so that they can be used any time that students suspect there 

may be a problem, or that they wish to check out an experimental configuration. 
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0.5 Care and Maintenance of the Apparatus 
 

The front panel of the low-level electronics has different properties than you might expect.  

In order for shielding (see Appendix A.5) to be most effective, the panel must be electrically 

conductive where it touches both the screw-in modules' panels and the black steel enclosure.  

So these aluminum panels are not anodized.  Instead, their surface treatment leaves them 

conductive, but also more susceptible to scratches than anodized aluminum. 

 

If your panels get discolored, you are free to use denatured alcohol and paper wipes, along 

the direction of their brushed finish, to clean them of any oil or grease they may have 

accumulated.  This will leave their electrical conduction unimpaired. 

 

The wooden box of the high-level electronics is best maintained by occasionally wiping it 

with a damp (not wet) cloth, perhaps using a small amount of liquid dishwashing soap. 

 

If you want to put the apparatus in the 'default condition' in which it's shipped, consult 

Section 7.2 to see, in particular, how to restore the as-shipped state of the wiring inside the 

pre-amplifier of the low-level electronics. 
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1. Johnson noise at room temperature 

 
1.0 The reasons for Johnson noise, and its predicted size 
 

Every student knows V = i R, which really says that there's a potential difference V 

across any resistor R which has a current i passing through it.  This of course predicts a 

V of zero for a resistor with no current.  But for deep reasons, any actual resistor at any 

temperature above absolute zero, will display a 'noise voltage' VJ(t) across its terminals, a 

potential difference that has all the character of an internal (a.c.) emf  built into the 

resistor.  The emf which the resistor generates is called 'Johnson noise', and it arises 

because of the deep thermodynamic connection between dissipation (which any resistor 

surely has) and fluctuations (which here show up as a fluctuating emf).  The size of this 

emf is also predicted by fundamental theory, and it should not surprise you to learn that 

VJ(t) is, on average, zero.  But VJ(t) exhibits fluctuations, positive and negative, about 

that average value of zero.  To quantify these, we form the (always-positive) square of 

VJ(t), and time-average that, giving a 'mean square' voltage which we denote as <VJ
2
(t)> .  

The predicted value for <VJ
2
(t)> was first deduced by Nyquist, following Johnson's 

empirical discovery of the noise, and it's given by the expression 

 

<VJ
2
(t)> = 4 kB R T f  . 

 

Here kB is Boltzmann's constant, T is the (absolute) temperature of the resistor, and f is 

the novel factor -- it is the 'bandwidth' used in the measurement electronics. 

 

The involvement of bandwidth f is a first hint that 'noise' is quite distinct from 'signal'.  

Everyone starts with 'd.c. signals', which have nothing but a sign and a value, in Volts.  

Then there are 'a.c. signals', which have a magnitude (perhaps specified by amplitude, or 

rms value, or peak-to-peak excursion) but also a frequency, or a mixture of frequencies.  

But it is the essence of fundamental noise that it contains, or is composed of, all 

frequencies.  In fact, the amount of energy we can get out of a 'noise source' depends on 

the range of frequencies to which we arrange to be sensitive, and this is the reason for the 

inclusion of the bandwidth-factor f in the expression above. 

 

How large a Johnson-noise voltage should we expect from a typical resistor?  Let's 

calculate this mean-square voltage for a 100-k resistor at room temperature. Suppose 

that our electronics for detecting and measuring VJ(t) are fully sensitive to all frequencies 

from 0 to 100 kHz, but entirely insensitive to higher frequencies. Then: 

 

        T = 22
 o
C = 295 K 

         kB = 1.38 x 10
-23

 J/K (textbook value) 

        f  = 100 kHz  = 10
5
 Hz 

 

           <VJ
2
(t)> = 4 (1.38 x 10

-23
 J/K) (295 K) (10

5
 ) (10

5
 Hz) 

    = (1.63 x 10
-20

 J) (10
5
 V/A) (10

5
 /s) 

    = 1.63 x 10
-10

 V
2
. 
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Not everyone is familiar with the curious unit of the square-of-a-Volt, so we often take 

the square root of this mean-square noise voltage, to give a 'root-mean-square' or 'rms' 

measure of the noise voltage,  
 

VJ(rms)  <VJ
2
(t)> 

1/2
 = 1.28 x 10

-5
 V = 12.8 V. 

 

So if we have a room-temperature 100-k resistor simply hooked up to an ideal 

voltmeter, and if that voltmeter responds to all (but only) frequencies under 100 kHz, 

then the voltmeter's instantaneous reading will not be zero volts, but instead will fluctuate 

(rapidly: in this case, on a microsecond time scale) around zero, with typical excursions 

of order 10 V.  We further assert that this is an actual emf intrinsic to the resistor, and 

it will still be present, though typically unwanted, in addition to any iR-drop that the 

resistor may exhibit.  It follows that measurement of any iR-drop to microVolt precision 

in such a case would require thinking about this effect. 

 

There are many textbook derivations of Nyquist's prediction, and the best of them 

emphasize the connection to thermodynamics and to blackbody radiation.  Here's a 

'thought experiment' to help you see that some sort of Johnson noise must exist.  First 

imagine a cubic meter of iron at room temperature and another cubic meter of cold iron 

(say, at temperature T = 4 K), spaced 10 meters apart in empty space.  (If you like, think 

of them as located at the two focal points of a large evacuated ellipsoidal reflecting cavity 

which surrounds them both, and isolates them from the external universe.)  It should be 

clear to you that each iron block is giving off blackbody radiation, with a range of 

frequencies and in all directions -- but that the warm block is giving off lots more.  Since 

the blackbody radiation of each block will run into the other block, there will be a net 

flow of (radiant) energy from the warmer block to the colder one, and their temperatures 

will therefore start to equilibrate. 

 

Now imagine a 50- resistor at room temperature, connected to nothing but a lossless 

coaxial cable of 50- impedance; and imagine there's another 50- resistor, but down in 

a Dewar at T = 4 K, connected to the far end of this cable.  Even if there is no thermal 

conductivity in the cable, there is still electrical conductivity.  It's the 'Johnson emf' in 

each resistor which still acts like a black-body source, here generating travelling waves of 

(confined) radiation along the one-dimensional cable structure, and that 'radiation' is 

caught and dissipated in the far end's resistor.  This is the mechanism by which the two 

resistors will tend toward thermal equilibrium, as the hotter resistor will experience a net 

outflow, and the colder a net inflow, of electrical energy. 
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1.1 'Seeing' Johnson noise 
 

This exercise will let you see, directly on an oscilloscope, a time-dependent waveform 

which can be traced all the way back to the Johnson noise generated in a resistor.  You'll 

need to ensure that you've restored the 'default condition' of the system for this to work -- 

see Section 7.2, Getting Started.  

 

You need to plug, into your 100-to-240-V outlet, the line cord of the the universal power 

supply which supplies power to the high-level electronics (HLE).  You should see a green 

LED on the transformer unit light up.  Now connect the output of this supply to the 

receptacle on the back of the HLE.  You should see a green LED on the front panel of the 

HLE light up.  (Note there is no power switch in the HLE box; instead, it gets powered up 

as soon as you establish the power-supply connections.)  Now find the power cable 

emerging from the LLE box, and plug it into the connector on the front panel of the HLE 

box.  You should see a green LED light up on the front panel of the LLE.  Once you have 

three green LEDs lit, everything in your system is being powered. 

 

Set the switch to select a 'source resistor' of Rin = 100 k  in the pre-amplifier module 

installed in the LLE box.  This resistor is connected only to the high-impedance input of 

the first stage of amplification in the pre-amp. That first stage is wired to give a 'gain', or 

amplification factor, of 6.00, provided you set the feedback resistor, Rf, to its  

1-k setting.  (The feedback capacitance Cf is not connected in the default mode, so its 

setting is irrelevant.)  Read the graphics on the panel of the pre-amp to see that there is an 

additional amplification stage, with gain 100., following this first stage.  Now you can 

connect the pre-amp's output, by a coaxial cable, to an oscilloscope, to see if there is any 

signal present.  Use a rather sensitive vertical scale on your 'scope (of perhaps 10 

mV/division sensitivity), a sweep speed of 5 s/div on the horizontal axis, and trigger 

near zero volts. 

 

Below are the schematic, and the wiring, diagrams of the circuit you're using. 

 

+
-

R
F
 = 1 kOhm200 Ohms

R
IN

  
                          Fig 1.1a:  Johnson noise preamplifier schematic 
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The wiring diagram for this configuration is shown in Figure 1.1b.  The connections 

indicated in grey-scale printing are those you need to check, or establish.  (By contrast, 

connections shown in thin solid lines are already established for you on the printed-

circuit boards.) 
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Fig. 1.1b:  Wiring diagram of the default condition of the interior of the low-level electronics. 

 

 

The signals you've seen emerging from the pre-amp are rather small.  So next use a BNC 

cable to convey the pre-amp output to the HLE box instead, where you can filter and 

amplify the still-small noise signals. If you use the settings and the cabling shown in 

Fig.1.1c, you will be selecting a frequency band, extending from about 100 Hz to about 

100 kHz, to pass along to the main amplification stages.  The first filter shown has its 

high-pass output in use; you may think of this as passing frequencies on the high side of 

100 Hz, or equivalently as blocking frequencies below 100 Hz.  The second stage is used 

as a low-pass filter, here passing all frequencies on the low side a chosen 100 kHz.  So 

after the output of the two filters, you have Johnson noise, pre-amplified by factor 600., 

and then filtered to pass only the 0.1 - 100 kHz frequency band.  
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Fig. 1.1c:  Cabling diagram for first use of the high-level electronics. 

 (left) Filter:  selector to .1k (for 0.1 kHz), switch to AC (for a.c. coupling) 

 (right) Filter:  selector to 100k (for 100 kHz), switch to AC (for a.c. coupling) 

 Gain Fine Adjust 30, toggle x1, toggle x10 

 

Notice the figure shows more cabling, now to amplify this signal by a further factor of 

300.  You achieve this by a setting of gain x1 and x10 at two toggle-switch settings, and a 

further gain of x30 on the rotary switch setting.  (Here too you can switch to AC for a.c. 

coupling at the input.)  Finally, at the output of this main amplifier, you'll have a signal 

large enough to see easily on a 'scope.  A view of it, using a 2 V/div vertical sensitivity, 

and a 10 s/div horizontal scale, is shown in Figure 1.1d. 

 

 
 

Fig. 1.1d:  Samples of amplified Johnson noise from a 100-k resistor, using pre-amp gain 600, 

filtering to 0.1 - 100 kHz bandwidth, and main-amp gain 300.  Vertical scale 2 V/div, horizontal 

scale 10 s/div, triggering on positive-going zero-crossings. 
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To get a first, qualitative, indication that this 'noise signal' has something to do with the 

original source resistor at the front end of this pre-amp/filter/main-amp chain go back to 

the pre-amp, and change the source resistor from 100 k to 10 k.  You should see the 

size of the noise signal on your 'scope change -- it should decrease, and by a factor of 

about three.   

 

For a first rough understanding of the size of these 'scope signals, consider our claimed 

13-V (rms measure, in the 0-100 kHz band) Johnson-noise signal emerging from a  

100-k source resistor.  The pre-amp gain of 600 ought to raise this to about 8 mV (rms), 

and further main-amp gain of 300 ought to raise this to about 2.5 V (rms).  (The 

intervening filter stages enforce the limitation to the 0.1 – 100 kHz band, and they 

provide a gain very near 1.00 within that band.)  We'll see later a good way to measure 

the rms value of signals such as shown in Fig. 1.1d, but you can now see why those 

voltage excursions fall (mostly) in the 5-V range. 

 

If your signals differ dramatically from those shown here, something is amiss. (See 

Appendix A.6 for some suggestions about 'troubleshooting'.)  It's certainly possible for 

the signal you see to be smaller, say if you've made wrong connections or wrong settings.  

It's also possible for the signal to be 'too large', particularly if there are unwanted 

(interference) signals present.  (Appendix A.5 discusses interference, its possible sources, 

and cures.)  But the apparatus you're using, in the configuration you've set up, ought to be 

displaying a noise almost wholly due to nothing else than the Johnson noise of your 

source resistors.  It is the universality of Johnson noise that lets us be sure that your 

signals should match, in rms measure, those shown here, certainly to within a factor 

smaller than two! 
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1.2    Quantifying  Johnson noise 

 

If you've done section 1.1, you've seen a rapidly-fluctuating signal on an oscilloscope 

which we claim is due mostly to Johnson noise, and which you now want to quantify.  

The method we'll describe here executes quite directly, in analog electronics, the very 

operation built into the mean-square definition of noise.  You need one more cable to 

convey the filtered-and-amplified noise signal to the Multiplier module, configured as a 

'squarer' as shown in the Fig.1.2a.   Conduct the noise signal to the 'A' input, and choose 

the AxA on the toggle switch.  The multiplier circuit delivers at the MONITOR point, a 

real-time output voltage 
 

                           Vout(t) = [Vin(t)]
2
 / (10 V) , 

 

which still has dimensions Volts (due to the fixed 'scale factor' of 10 Volts in the 

denominator above).  Take a look at Vout(t) on your 'scope, and  notice that it is always 

positive, unlike your input noise signal Vin(t), which is as often negative as positive. 

 

 
Fig. 1.2a: Cabling diagram for using the multiplier as squarer. High-pass filter 0.1 kHz, a.c. 

coupling; Low-pass filter 100kHz, a.c .coupling; Gain 400, a.c. coupling ; multiplier AxA, a.c. 

coupling 

 

In fact, to persuade yourself that the squarer is working, use the XY-display capability on 

your 'scope. Convey the squarer's input Vin(t), both to the squarer and to the X-channel of 

your 'scope, and convey Vout(t) to the Y-channel, and have a look at a real-time XY-

display.  You should see a parabola emerge.  See to it that you understand the origin of 

your XY-coordinate system, and then try changing some things:  What are the right 

sensitivities to choose on the two axes?  What would happen to your parabola if you 

raised the gain in the main-amplifier module of the HLE?  Why does your data lie on a 

parabola, after all? 
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Now without the need for a further cable, the output of the squarer is already being sent 

internally to the Meter module of your HLE.  What this module does is to take the time-

average of Vout(t), averaged over a time interval you can select (by switch) to 1.0 second.  

This time average will not be zero, since Vout(t), though fluctuating, is always and only on 

the positive side of zero. (Recall that the multiplier's squaring function ensures that Vout(t) 

is proportional to the square of Vin(t).)  The meter will display that time-average, either 

on its 0-10 V or its 0-2 V scale.  We suggest the use of the 0-2 V scale, and also suggest 

you go back and change the main-amp gain until the meter reaches a value near mid-

scale, about 1 Volt on the 0-2 V scale. 

 

What can you infer from this?  Start with VJ(t), the actual instantaneous Johnson-noise 

voltage generated by the source resistor.  At the output of the pre-amp, you have a signal: 
 

                                     (6.00)(100.) 
 
VJ(t).  

 

After the filter stages, you have the 0.1-100 kHz bandwidth-selected, or filtered, part of 

this signal.  After the main amp, you have a signal 
 

                          G2  (600) 
 
VJ(t), 

 

where G2 is the main-amp gain, perhaps 300.  Then after the squarer, you have a signal 
 

                      [(300)  (600)  VJ(t)]
2
 / (10 V) . 

 

Finally, using the <...> brackets to indicate a time average, what you have displayed on 

your meter is the signal 

 

                  Vmeter = <VJ
2
(t)>  (600  300)

2
/(10 V) . 

 

From this result and the meter reading, you can work all the way backwards to find 

<VJ
2
(t)>, the mean-square voltage present (within your chosen bandwidth) across the 

source resistor. 

 

Now use a cable to carry this time-averaged positive voltage to a digital multimeter.  You 

should see a number consistent with your analog-meter indication, and you should see it 

fluctuate.  (The expected size, and speed, of the fluctuations are treated in Appendix 

A.12.)  Note that with the use of a 1-second time constant, you'll have to wait rather 

longer than one second for results to stabilize to any new value, especially if you're 

waiting for the 3rd or 4th digit of a multimeter display to settle down. Once the reading 

has settled, you'll notice the residual fluctuations, but go ahead and write down multiple 

readings from the multimeter, taking a new reading every second or so.  See if you can 

persuade yourself that the readings display fluctuations about a mean value, and compute 

that mean value.  It is connected, by a known chain of amplification and filtering, to the 

mean-square Johnson-noise voltage at the source. 
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1.3    Observing and Correcting for Amplifier Noise 

 

You've now seen how all-analog electronics can take you all the way from a Johnson-

noise source voltage VJ(t) to a time-averaged d.c. voltage which is a traceable measure of 

<VJ
2
(t)>.  This section teaches you how to  

 

a) make that measurement optimally, and 

b) correct that measurement for amplifier noise. 
 

a) The noise measurements you perform all depend on the linear operation of the 

amplifiers, and they (like all analog electronics) have only a finite range of output 

voltages over which they remain linear.  For the high level electronic amplifiers, that 

range is (-10 V, +10 V).  If you were to put a simple sinusoid through the amplifiers, you 

could use the full  10-V excursions .  But since you are amplifying noise, you have to 

ensure that even the rare large fluctuations of the noise stay within the 10-V 'span' of the 

amplifier.  In practice, a maximum average noise signal of 3 Volts (rms) is a safe choice. 

This should avoid serious distortion of the signal, called 'clipping', like that shown in 

Figure 1.3a. For an average noise signal of 3 Volts rms, an excursion beyond 10-V is so 

rare as not to spoil the accuracy of your measurement. 

 
  Figure 1.3a:  Clipped signal from HLE – notice the clipping level is near +12 Volts.  

 

Now if the rms measure of the signal at the A-input of the squarer, VA(t), is 3 V, then (by 

definition) its mean-square value is 
 

                          <VA
2
(t)> = (3 V)

2
 = 9 V

2
 , 

 

and under these circumstances, the squarer's MONITOR output will give 
 

                             Vsq(t) = [VA(t)]
2
/(10 V)  

 

so that the time-average at the OUTPUT will be 
 

              <Vsq(t)> = <VA
2
(t)>/(10 V) = (9 V

2
)/ (10 V) = 0.9 V . 

 

You could use a smaller rms size for the input VA(t), but you'd be getting an even smaller 

output from the squarer, and your readings might be affected by zero-offsets in the 

squarer's output.  (See Section 5.3 for details.) 
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So from here onwards, whenever you measure a noise voltage, you should check the 

main-amp output to see that it fits easily into the 10-V range.  If it exceeds these 

limits, reduce the gain.  And you should look at the squarer's output on the panel meter, 

to see a time-averaged output near, or a bit below, 1 Volt.  Again, if it's much larger, you 

want to reduce the gain, or if much smaller, raise the gain.  Whenever you do take a 

reading of the time-average of the squarer's output, be sure to record also the net gain 

you've used to attain that reading, since this is your ticket to tracing the meter reading 

back to the desired mean-square noise <VJ
2
(t)>. 

 

 

b) Now back to Johnson noise.  The problem you're now going to address is tracing 

noise back to a source, because here you have to consider the possibility that some of the 

noise you're seeing is not due to the Johnson noise of the of source resistor, but instead 

due to the amplifier chain which follows it.  Since this 'amplifier noise' is just as 

featureless and random as the resistor's Johnson noise, there's apparently no way to 

separate the two waveforms once they're added.  But there is a way to separate their 

effects, if we can assume that the amplifier noise does not depend on the source resistor's 

value.  Here's the demonstration: let VJ(t) be the instantaneous noise voltage from the 

source resistor, and let VN(t) be the instantaneous noise voltage apparently present at the 

input of the amplifier.  That is to say, VN(t) is a model for a noise emf which, applied to 

the input of an ideal noiseless amplifier, would match the noise actually observed at the 

output of the real amplifier, driven only by its internal noise. If the gain of the amplifier is 

G, its output will be 
 

                         Vout(t) = G [VJ(t) + VN(t)] , 
 

and the mean-square of this output will be 
 

                   <Vout
2
(t)> = G

2
 < [VJ(t) + VN(t)]

2  

 

              = G
2
{<VJ

2
(t)> + 2 <VJ(t)  VN(t)> + <VN

2
(t)>} . 

 

There's a 'cross term' in this expression, the time average of the product VJ(t)  VN(t), but 

this time average is zero.  The reason is that VJ(t) and VN(t) can be safely assumed to be 

uncorrelated, arising as they do from distinct physical mechanisms in two different 

objects.  So when VJ(t) happens to be positive, the amplifier noise VN(t) is just as likely to 

be negative as it is positive; thus the product of the two factors is also as likely to be 

negative as positive.  That's why the absence of correlation enforces a zero for the time-

average of the product.  But that fact leaves 
 

                  <Vout
2
(t)> = G

2
{<VJ

2
(t)> + 0 + <VN

2
(t)>} , 

 

which says that mean-square voltages from uncorrelated sources are simply additive.  

In particular, it gives us a way to measure the amplifier noise -- we just change 

temporarily to a configuration in which the Johnson-noise term in this sum is negligible.  

Theory says that a choice of R = 0 for source resistance would give <VJ
2
(t)> = 0, but in 

practice, it suffices to use the R = 1- or 10- settings for giving a <VJ
2
(t)> which is 

small enough that the result is a good measure of the amplifier noise, <VN
2
(t)> .  
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And once that latter value is measured, it can be assumed to be present, and unchanged, 

in any use of (the same configuration of) the amplifier.
1
 So for any source resistor Rin > 

10 , the amplifier noise contribution previously established can be subtracted off, 

leaving <VJ
2
(t)> isolated by itself. 

 

Here's a concrete illustration:  we have the values Rin = 1 , 10 , etc.  We pick the 0.1 - 

100 kHz bandwidth as before, and we pick gains to give good results at the squarer.  In a 

particular example, the time-averaged outputs of the squarer we find are the <Vsq> values 

below: 

 

Rin chosen gain G2    <Vsq> read <VJ
2
 + VN

2
> inferred  <VJ

2
 > derived 

                        (HLE) 

     1     1500     0.6353 V    7.843 x 10
-12

 V
2
 0.002 x 10

-12
 V

2
 

   10     1500     0.6372    7.867    0.026 

 100     1500     0.6516    8.044    0.203 

    1 k   1500     0.7911    9.767    1.926 

  10 k   1000     0.9801  27.225  19.384 

 

Now we expect, for the time-averaged output of the squarer, 
 

        <Vsq(t)> = <Vin
2
(t) > / (10 V) 

 

   = {(G1 G2)
2
 / (10 V)} <VJ

2
 +VN

2
> , 

 

so we can use the G1 = 600 and G2-as-listed values to compute the column with  

< VJ
2
 +VN

2
> values.  We can eyeball-extrapolate to the Rin  0 limit, and deduce a 

contribution of 7.841 x 10
-12

 V
2
 for <VN

2
> alone, the amplifier noise contribution (for this 

particular amplifier chip, at this particular bandwidth -- your number will vary!).  

Subtracting this contribution from all the entries gives the rightmost column for < VJ
2
 >, 

our estimate of the mean-square Johnson noise of the source resistor, corrected for the 

effects of amplifier noise.  Notice that the amplifier-noise corrections are large, even 

dominant, for small values of source resistance! You'll find (for the present choice of pre-

amp input stage) that Johnson noise surpasses amplifier noise only when the source 

resistance has risen to about 3 k. 

                                                 
1
 Under the assumption of negligible op-amp current noise, and no noise from external interference, both of 

which may depend on Rin. 
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1.4 Johnson noise dependence on resistance 
 

The previous sections have taught you how to configure the pre-amp/filter/main-amp 

combination, and how to select a gain for optimal use of the squarer.  The results can also 

be corrected for amplifier noise, and traced back to an inferred mean-square measure of 

Johnson noise, <VJ
2
(t)>, for any source resistor from R = 10  upwards. 

 

You should now investigate systematically the dependence of <VJ
2
(t)> upon source 

resistance R.  To do so, you can use the R = 10  through 10 M choices built into the 

pre-amp module.  (These internal source resistors have tolerances of 0.1% to 1 M, and 

1% thereafter.)  But the selector switch also gives you access to three more test positions, 

Aext, Bext, and Cext, which you are free to 'populate' with devices of your choice behind the 

pre-amp panel. 
 

Here's how to do so:  You can 'flip' the pre-amp panel, as illustrated in Figure 7.2a, to 

expose the back (component) side of the pre-amp's circuit board.  You can also find the 

pre-amp power switch (near the internal power-on red LED inside the low-level 

electronics), and turn OFF the pre-amp power before making any changes to the board.  

Now use the diagram below to find the screw-connect terminal strips, and find also the 

location of the two endpoints for the components you're putting into the A, B, and C 

positions. 
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Fig. 1.4:  Wiring diagram for adding components at the A, B, C, positions of the pre-amp's input. 

Note all input resistors have a common ground. 
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You can choose resistors of any value in the 20  to 5 M range; you can even choose 

different kinds of resistors.  (Most resistors sold nowadays are of metal-film construction, 

but ask around for some carbon-composition or wirewound resistors -- and look up what 

kinds of resistors Johnson himself used.)  You can clearly use resistors of any power 

capability you like -- their internal Johnson-noise emf is not going to overheat them!  If 

you wish, you can have a comrade hide from you the resistance values, so you'll be 

measuring some actual unknowns.  Don't forget to turn the pre-amp power back ON 

before you re-flip the front panel and close up the box. 

 

Now you can take noise data for your own resistors, as well as for the built-in source 

resistors.  Once you have values for <VJ
2
(t)>, each corrected for amplifier noise, you can 

plot those values as a function of R.  Since both axes will vary over many orders of 

magnitude, a log-log plot is appropriate.  The vertical axis has units of Volts-squared, the 

horizontal axis has units of Ohms.  Nyquist's theory predicts a first-power power-law 

dependence on resistance R, namely 
 

                         <VJ
2
(t)> = (4 kB T f) 

.
 R

1
 , 

 

and you might see this confirmed.  There will be deviations from this behavior at the 

high-R end of the plot, for reasons to be discussed in sections 1.5 and 2.2, and Appendix 

A.8. 

 

At the low-resistance end of the plot, you'll see the amplifier-noise-corrected values 

enable you to follow Johnson noise to a regime well below the apparent limit set by 

amplifier noise.  You'll be able to establish values of  <VJ
2
(t)> which are less than 1% of 

the amplifier noise <VN
2
(t)> that overlays them.  Of course, the corrected value of 

Johnson noise will be the difference between two nearly equal quantities, so the results 

will be subject to larger uncertainties than other data points.  
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1.5 Johnson noise dependence on bandwidth 
 

Thus far you've learned how to observe and quantify Johnson noise, and you've seen how 

to isolate its mean-square value from amplifier noise.  You've also seen its dependence on 

source resistance R.  But Nyquist's formula claims that <VJ
2
(t)> also depends on the 

bandwidth f; ie. on the range of frequencies to which your system is sensitive. 
2
 

 

So for now you should stay at room temperature, and stay at a fixed R-value; we suggest 

a starting value of Rin = 10 k.  The goal is to see how the choice of bandwidth matters.  

The method is to imagine a 'white noise spectrum', ie. noise power uniformly spread in 

frequency at its origin, but subsequently modified by the high-pass and low-pass filter 

sections as depicted below.
3
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Fig. 1.5a:  Representation (left) of the transmission of a high-pass filter, of corner frequency f1; 

(center) of a low-pass filter, of corner frequency f2;  (right) the combined effect of both filters. The 

graph's scales, horizontal and vertical, are all logarithmic. 

 

You have a range of choices for the 'lower corner' frequency f1 or high-pass filter setting, 

and a separate range of choices for the 'upper corner' frequency f2 or low-pass filter 

setting.  You might first think that the bandwidth f should be given by |f2 - f1|, which is a 

decent approximation, but subject to significant corrections. These so-called 'corrections' 

are discussed in great detail in Sections 2 and 5. But for now we present you with the 

generic corrections which are the result of a model calculation. The model of Section 2.2 

predicts the effective bandwidth f for each combination of f1 and f2, and gives the results 

shown in Table 1.5. 

                                                 
2
 The further prediction that Johnson noise depends on the resistor's temperature is tested in Chapter 4. 

 
3
 Section 2.0 teaches you how to get data of this form. 
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Table 1.5 Effective noise bandwidths, f, given in Hertz, computed for model filter responses 

 

 f2 = 0.33 kHz 1 kHz 3.3 kHz 10 kHz 33 kHz 100 kHz 

f1 = 10 Hz   355 1,100 3,654 11,096 36,643 111,061 

30 Hz   333 1,077 3,632 11,074 36,620 111,039 

100 Hz   258 1,000 3,554 10,996 36,543 110,961 

300 Hz   105   784 3,332 10,774 36,321 110,739 

1000 Hz       9   278 2,576  9,997 35,543 109,961 

3000 Hz       0.4    28 1,051  7,839 33,324 107,740 

 
These computed values are all subject to uncertainties of order 4%; (see Section 5.2 for details on how any 

of them can be more carefully calibrated).  They are all computed (by the methods of  Section 2.2)  for 

ideal filter responses, ignoring systematic effects.  Inclusion of those effects may raise values in the 

rightmost column by (31)%, and may raise values in the next-to-rightmost column by (11)%.  There are 

further corrections to effective noise bandwidths for large f2-values, in the case of large source resistance, 

due to capacitive effects -- see Appendix A.8. 

 

Your goal is to measure the mean-square Johnson noise of the resistor, <VJ
2
(t)>, for as 

many (f1, f2) combinations as you wish.  Recall that for each choice of filter settings, 

you'll want to adjust the gain so as to use the squarer optimally.  Recall that each mean-

square value you measure needs to be corrected for amplifier noise (measured at that 

bandwidth setting:  the amplifier-noise contribution to the mean-square depends, as does 

the Johnson-noise contribution, on the bandwidth you use.) 

 

You can plot your data for <VJ
2
(t)> in various ways: 

as a function of the f1-value used to obtain it; 

as a function of the f2-value used to obtain it; 

as a function of the difference |f2 - f1| of the f1- and f2-values used to obtain it; or 

as a function of the equivalent noise bandwidth, from the table above. 

Which plot is the most nearly linear?  Try again using log-log scales, to be able to see all 

you data points, spread as they are over many orders of magnitude. 

 

If your plot is consistent with < VJ
2
(t) >  f, then the coefficient of this proportionality 

tells you a 'noise power spectral density', as you'll see in the next Section.  Its units are 

V
2
/Hz, and it's usually denoted by S. 
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1.6 Johnson noise density, and Boltzmann's constant 
 

Previous sections have shown you how to measure noise, and have tested its dependence 

on source resistance R and on measurement bandwidth f.  This section introduces you to 

noise density, and then relates your measured values, via Nyquist's formula, to 

Boltzmann's constant. 

 

If you have shown that measured mean-square noise <VJ
2
(t)> has a linear dependence on 

the bandwidth f used, you are entitled to infer the existence of a 'noise density' that's 

uniform in frequency.  Here's an analogy to mass density that should make this clear -- 

we'll use a one-dimensional example.  Suppose you have a string, of unknown 

composition, laid out on an x-axis, and that you can make clean cuts at arbitrary locations 

x1 and x2, and then weigh the piece of string you've extracted.  If (and only if) you find 

that the observed mass M is always proportional to |x2 - x1|, you may conclude the string 

is of uniform density.  You can also see that the quotient 
 

  (mass M) / |x2 - x1| 
 

gives the value for this density, given in units of mass per unit length. 

 

Similarly, if you've shown that mean-square noise <VJ
2
(t)> is always proportional to the 

bandwidth f you used to obtain it, then you can define the 'noise power density' 
 

   <VJ
2
(t)>  / f , 

 

in this case with units of Volts-squared per Hertz, or V
2
/Hz.  [Strictly speaking, this is not 

a power density -- but if a voltage V(t) is applied across a resistance R then the quotient 

V
2
(t)/R is a power.  So the quotient above is just a factor-of-R away from being an actual 

power density, with units Watts per Hertz.] 

 

Your data for a single source resistance R = 10 k has given you a noise power density; 

you can go back to your data of Section 1.4 and convert that data to noise power density 

as well, to check the dependence-on-R of this density.  The motivation for all of this is 

that Nyquist's formula can be written as 

 

              noise density S = <VJ
2
(t)> / f = 4 kB T R . 

 

So you should plot all of your data thus far, and perhaps more data that you now take for 

various R- and f -values, to see if you can further establish the linear-in-R claim of the 

prediction above.  (In practice, you'll see deviations in the regime where R and/or f is 

large, for reasons discussed in Appendix A.8.) 

 

If you establish a regime of linear dependence on R, your plot, or fit, will give you a 

value for a slope, (4 kB T).  What units should it have? (Answer:  rise over run, so V
2
/Hz 

per Ohm -- and what unit is that?)  What value does it have?  Hardest:  what uncertainty 

can you assign to your value?  (Do so before you look up any 'book values', because the 

uncertainty intrinsic to your experiment is conceptually a matter quite separate from any 

discrepancy between your value and anyone else's.) 
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Finally, if you know you room's temperature T (and express it in absolute, ie. Kelvin, 

units), you can now conclude by finding a value (and uncertainty!) for Boltzmann's 

constant kB. 

 

What's the nature of kB?  At one level, it connects historical choices of temperature units 

to a 'common language' of energy units, via E = kB T.  At another level, kB is a 

'microscopic' version of the macroscopic gas constant R (here, not a resistance), as you 

can see by writing the ideal-gas law in two ways, 
 

                     p V = n R T and       p V = N kB T . 
 

The first form has n = (number of moles of gas), and that gives to R the units of Joules 

per (moleKelvin).  The second form has N = (number of molecules of gas), and it gives 

to kB the units of Joules per (moleculeKelvin), or just J/K.  This double form of the law 

also makes it clear how R and kB have to be related:  since (n R) and (N kB) both give 

pV/T, we have 

                       n R = N kB , or R = (N / n) kB . 
 

But (N/n) is Avogadro's number NA, the number of molecules per mole.  Hence you 

expect the numbers to obey the relation 
 

 R  8.31 J/moleK = NA  kB  (6.02 x 10
23

 /mole) (1.38 x 10
-23

 J/K) . 
 

Check that claim.  Does this mean that electrons inside a resistor are acting like 

molecules in a gas, bouncing around between the resistor's two ends?  And is the 

Johnson-noise emf akin to the pressure fluctuations which kinetic theory predicts for a 

gas?  What's the connection to Brownian motion?  See if you can find any guidance on 

these conceptual points. 

 

. 
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2.  Noise Density 
  

2.0  Setting up to see a bandwidth 
 

One of the new features of noise measurements (compared to other measurements you've 

previously made) is that the signal measured depends on the bandwidth.  You've seen in Section 

1.5 that the amount of Johnson-noise signal (in the 'mean square' sense) depends on the choices 

made for the difference between f1 and f2, the high-pass and low-pass corner frequencies chosen 

in the electronic filtering applied to the raw noise waveform.  Here are some exercises that 

temporarily set aside noise, and concentrate on the depiction of bandwidth.  These require a 

signal generator for sinusoids, capable of about 1-Volt output, covering the 1 Hz to 100 kHz 

range, to serve as a signal source, and a 2-channel digital oscilloscope.  The goal is to set up the 

filter system and drive it with sinusoids, to get and to graph data showing you the gain-vs.-

frequency profile G(f). 

 

A cabling diagram for the system is shown in Figure 2.0a.  It requires only the filter sections of 

the high-level electronics. 
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 Fig. 2.0a:  A cabling diagram for testing the action of combined filters on sinusoids. 

 

Note that the generator's output signal, with some amplitude A and frequency f, is applied both to 

the 'scope's ch. 1 input and to the input of a first filter stage.  Note that the left-hand filter section 

is used as a high-pass filter (with corner frequency set to some low frequency f1), and that the 

right-hand filter section is used as a low-pass filter (with its corner frequency set to some higher 

value f2).  For a first experiment, we suggest setting f1 = 1 kHz and f2 = 10 kHz.  Note that the 

output of the cascaded filters is sent to the 'scope's ch. 2. 

 

If possible, you should configure your 'scope to give the rms measure of the filter's input signal 

via its ch. 1, and also to give the rms measure of the filter's output via its ch. 2. 
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Finally, for any chosen value f of generator frequency, you can define the empirical measure of 

the gain of the filter assembly by 

 

 G(f) = [rms measure of output signal] / [rms measure of input signal] . 
 

In practice, for the TeachSpin filter design, you'll find the 'gain' might actually be a loss – you'll 

find G(f)-values less than or equal to one for most frequencies.  But it's the frequency 

dependence of G(f) that you want to study. 

 

Notice that for each choice of f, you need to pick a sensible time base for your 'scope – for best 

results, choose a horizontal-axis scale which permits several cycles of the sinusoid to be 

displayed.  You will also need to pick a sensible triggering option – why is triggering on ch. 1 

the better choice? 

 

Notice that for each choice of frequency and amplitude, you should pick sensible vertical 

sensitivities for your 'scope as well – for best results, choose scales such that both sinusoids you 

observe will fill more than half, but less than the whole, of the vertical-axis display range. 

 

Notice that for a generic choice of frequency, the output signal will not be in phase with the 

input.  That is to say, the times of occurrence of peaks (or of valleys, or of zero-crossings) of 

input and output need not coincide.  Any real-time filtering system will have such phase shifts of 

output relative to input.  But these phase shifts are happily not relevant to noise measurements, 

and not part of the G(f) definition above. 

 

It is also possible to measure the gain using a good digital multimeter to perform these rms 

measurements. Typically the specifications of true-rms a.c. voltmeters extend to 300 kHz, but 

you'll need to check the limits of your own meter. 

 

Exercise 1.  Measure G(f) as a function of f for filter settings of  f1 = 1 kHz and f2 = 10 kHz.  You 

will want to cover at least the range 0.1 to 100 kHz.  It is not necessary to take points at equal 

spacing in frequency, as in the list (0.1, 0.2, 0.3, . . . 99.8, 99.9, 100.0) kHz!   Instead, you want a 

coverage that'll be roughly uniform on a logarithmic scale, and you should aim for 2, 3, or 

perhaps 5 points per 'decade' in frequency space.  Whatever list of frequencies you pick, measure 

G(f) at each frequency in the list.  Now plot G(f) as a function of f, using logarithmic scales for 

both axes.  

 

For at least one frequency, try changing the amplitude of the input signal, to see if the output 

amplitude changes in proportion.  This is (one) test of the linearity property of the filter.  

 

In your plot, identify the 'low-block' or high-pass corner near f1, above which frequency, 

sinusoids are passed through the first section of the filter.  Also identify the 'high-block' or low-

pass corner near f2, below which frequency, sinusoids also pass the second section of the filter.  

Also identify the 'pass band' as the region in which the combined filter assembly gives G(f)  1.  

Compare with Fig. 1.5a. 
 

Exercise 2.   Measure the G(f) for the single band-pass output from one of the filter sections.  

The cabling diagram is shown in Figure 2.0b.  You should observe that the gain at the center 
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frequency is less than 1.0  (closer to 0.707), and that the wings of the filter response drop off 

more slowly than for the low-pass or high-pass filters.   
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Figure 2.0b Cabling diagram for a single (band-pass) filter measurement 

 

Exercise 3.  For one of your (f1, f2) choices, plot the squared function G
2
(f) as a function of f, this 

time keeping both scales linear.  You'll see the motivation in Section 2.2.  Since the 'area' under 

this G
2
(f) curve is vitally important, you'll see that to draw the curve through the data points 

you've gotten will require either more data points to 'fill it in', or else a best-fit to a model that 

can provide the equivalent interpolation of the points you have taken. 
 

All these exercises have used (only) sinusoids as test signals to be injected into your filter 

assembly, so what's their relevance to noise waveforms which are nothing like sinusoidal?  The 

answer comes from the linearity property, which you've already tested (for single-frequency 

sinusoids) in Exercise 1 above.  But systems which are linear (as your filters are, within limits) 

display another linearity property, in that: 
 

their response to a sum-of-inputs 

is equal to 

the sum of their responses to the inputs taken individually. 

 

Now it's time for you to exercise a Fourier imagination, and to think of a noise waveform as 

being made up out of (or, as analyzable back into) a whole collection of sinusoids, of all 

frequencies ranging from f  << 1 Hz to f  >> 1 MHz.  The deep part of the linearity property is 

now to understand the operation of the filter as 
 

 filter's output (when driven by noise) 

  = filter's output (when driven by a sum of sinusoids) 

  = sum-of-(filter's output when driven by individual sinusoids).
1
 

                                                 
1
 In Appendix A.11 we discuss the technique by which you can observe the filters' response to noise signals using a 

digital oscilloscope which has FFT capabilities. 
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That is to say, the filter's effect on a sum-of-inputs is the same as the sum of the (filter's effect on 

individual inputs).  And the filter's response to individual sinusoids is just what's described by 

the G(f) function you've already measured.  Now you understand better that raw noise is 

composed of all frequencies, but that filtered noise has had its frequency content well below f1, 

and frequency content well above f2, suppressed.  That is to say, filtered noised has had its 

frequency content in the range f1 < f < f2 passed along with gain about 1, but frequencies outside 

the 'pass band' suppressed. 

 

If the 'edges' of the filter's response curve were perfectly sharp-edged corners, you can see that 

your filter would have bitten out, from the entire frequency spectrum of noise, that portion lying 

in the range from f1 to f2.  In the sharp-cornered-filter limit, that would define a pass-band of 

width f2 – f1.  We'd call that a 'bandwidth' f = f2 – f1.  (Notice that a filter's pass-band width is a 

different matter than the pass-band's center location.)  In Section 2.2 you’ll see how the 

'equivalent noise bandwidth', still labeled as f, can be defined when the actual G(f)-function has 

rounded, rather than sharp, corners. 
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2.1   Summary of how to measure a noise density 
 

Recall the procedure we've found which takes us from a tiny, fluctuating, zero-on-average noise 

signal Vn(t) to a nearly-steady d.c. value which is traceably related to <Vn
2
(t)> : 

 

           we pre-amplify Vn(t) by 'gain' or amplification factor G1, to give G1 Vn(t); 
 

 we filter-in-frequency, to isolate a band of frequencies (which get gain factor 1) from 

frequencies we reject (these get gain factor 0); 

 

 we further amplify, by gain G2, to a level convenient to use in the next stage; within our 

band of frequency width f, we have amplified signal G2·1·G1·Vn(t); 

 

 then we square (with a scale factor of 10 V) to give the squarer's output 
 

 

Vsq(t) = [G2·1·G1·Vn(t)] 
2 
/ (10 V) ; 

 

 finally, we time-average, over an chosen interval of time, to give a result 

 

Vmeter = <Vsq(t)> = < Vn
2
(t)> · [G1 G2]

2 
/ (10 V) . 

 

It follows that the mean-square noise at the pre-amp's input can be recovered from known 

quantities: 
 

  <Vn
2
(t)> = (10 V)  Vmeter  / (G1 G2)

2
 , 

 

and this has the proper units of Volts-squared. 

 

We have also shown, in cases where the noise is 'white noise', ie. has a uniform distribution in 

frequency, that the quotient <Vn
2
(t)> / f gives the value for the 'power spectral density' S of the 

noise, with units of V
2
/Hz.  Here f is the bandwidth, the effective range in frequency space to 

which the noise is restricted before it's quantified. 

 

There are several fine points worthy of attention for this method to succeed. 

 

1. Clearly, it's crucial that every amplifier in the whole chain of amplification stay within its 

linear range.  This can be checked at the MONITOR and OUTPUT test points of the pre-amp, and at 

every stage of the high-level electronics as well.  Typical use of the amplifier chain will use a.c.-

coupling at each opportunity, to insure that an initially-small d.c. offset is not amplified so much 

as to drive some subsequent signal up against the 12-V 'rails' of the modules' outputs.  Even 

with the use of a.c.-coupling, clipping could still occur if too much gain is used. 

 

2.         It's also important that the squarer be used in the 'good part' of its range -- so as to 

produce a time-averaged output lying in the 0.6 - 1.2 V range.  The reasons are laid out in 

Section 1.3. 
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3. The accuracy of the inferred noise density depends on knowing the bandwidth f.  Some 

claimed values of f are listed in a Table in Section 1.5, and the method for computing those 

values is in the next Section.  The precision of the f-values is of order 5%, and can be improved 

via the calibration procedures of Section 5.2. These corrections are most important with the use 

of filter bandwidths extending to 100 kHz. 

 

4. The accuracy of noise density measurements further depends on knowing the pre- and 

main-amp gains factors G1 and G2.  These ratios are ultimately established by resistor values and 

by operational-amplifier (op-amp) performance.  All the gain-critical resistors are of 0.1% 

precision, so the overall gain can be trusted at the 1% level. At higher frequencies, the limitations 

of op-amp performance start to create larger uncertainties, which are addressed in Section 5.1. 

 

5. The noise-density measurements depend on the precision of the squarer.  The scale factor 

(of 10 V) is laser-trimmed by the manufacturer to 0.4% worst-case, 0.1% typical tolerance, and 

can be checked by the methods of Section 5.3.  That section also addresses the equally important 

issues of d.c. offsets in the squarer's input and output.  To get a hint of the existence and 

importance of these offsets, you can use the GND/AC/DC-coupling switch at the squarer's input, 

and see what output emerges when the input is forced to the 'ground' or 0-V condition. 

 

Finally, there is the implicit claim that the quotient we've called 'noise density' is the physically-

important result worthy of measurement.  This is not a priori obvious, but it is true that Johnson 

noise (in Chapter 1 and 4) and shot noise (in Chapter 3) both are described theoretically in terms 

of a noise power density, < V
 2 

> /f.  And clearly, there's no expectation that instantaneous noise 

values V(t) could be predicted; nor is there any hope of quantifying a 'maximum value' to the 

noise.  Neither is there any chance of predicting how much 'noise signal' there is right 'at' any 

given frequency, since (nearly by definition) noise is a waveform lacking any concentration or 

location in frequency space.  It is true that (thus far) the noise at its source has been assumed to 

be of uniform distribution in frequency, but this assumption can be checked, by methods 

including those of Section 2.3.  
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2.2 How the 'equivalent noise bandwidth' is defined  
 

The previous section followed noise signals Vn(t) to the squarer by way of a 'brick wall' model of 

the filtering process, in which the filter sections together gave 
 

          gain factor = 1 for f1 < f < f2  ,  but   gain = 0 elsewhere. 
 

Under this assumption, the filter bandwidth f is clearly given by f = |f2 - f1|.  But real filters do 

not have such sharp-edged characteristics.  TeachSpin filters are optimized for predictability 

of performance, rather than sharpness of edge. 

 

Let's examine what happens in case of a general filter gain function G(f).  For any Fourier 

component of a noise signal at frequency fa, the signal reaching the squarer's input will then be 
 

          V(t) = G2 G(fa) G1 Aa cos (2 fa t - a) , 
 

where Aa is the amplitude, and a is the phase, of the original noise-signal's component.  If two or 

more components are present, and if the amplifiers and filters are all linear (in the mathematical 

sense, of obeying the superposition principle), then a typical input to the squarer is 
 

V(t) = G2 G(fa) G1 Aa cos (2 fa t - a) + G2 G(fb) G1 Ab cos (2 fb t - b) + . . .  

 

The squarer will then produce an output containing two kinds of terms.  One kind is the squares 

of individual terms in the sum above, such as 
 

                       [G2 G(fa) G1 Aa]
2
 cos

2
 (2 fa t - a) , 

 

and in all such terms, the cosine-squared function will time-average to a non-zero value (of 1/2, 

in fact).  (Notice the emergence of the quantity G
2
(fa).  This squared-function will end up in the 

equivalent noise bandwidth.)  By contrast, the other sort of terms that emerge are cross terms, of 

character 

         G2
2
 G(fa) G(fb) G1

2
 Aa Ab cos (2 fa t - a) cos(2 fb t - b) . 

 

By a trigonometric identity, the product of two cosines can be replaced by a sum of two new 

cosine functions, having frequencies (fa + fb) and |fa - fb|.  But both of these cosine terms vanish 

upon taking the time average, for any fa  fb, so we can drop them from the result. 

 

Hence it is correct to assume that 'each frequency component acts independently', not only in all 

the linear stages up to the squarer, but also in the time average of the output of the squarer.  So 

we can now see that the previous result 
 

        <Vsq(t)> = < [G2 G1 Vn(t) ]
2
 > / (10 V) = <Vn

2
(t)> (G2 G1)

2
/(10 V) 

 

can be replaced, in case of a filter-function of frequency-dependent gain G(f), with 
 

        <Vsq(t)> = <Vn
2
(t)> [G(f)]

2
 (G2 G1)

2
/(10 V) 

 

for any single frequency component's contribution. 
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Now suppose that the noise is distributed by a power-spectral-density function S(f), with units 

V
2
/Hz, such that 

                            
2

1

)(
f

f
dffS  

gives the mean-square value <Vn
2
(t)> measured for frequency components lying in the range       

f1 < f < f2.  Hence S(f) df gives that part of <Vn
2
(t)> attributable to the range in frequency space  

(f, f + df).  (The absence of any time-averaged effect of the cross terms generated by the squarer 

is essential for this argument to make any sense.) 

 

But with that assumption, each such frequency interval gives a partial contribution to the 

squarer's total result, in amount 
 

                   S(f) df [G(f)]
2
 (G2 G1)

2
/(10 V) , 

 

and summing over all source frequencies gives us the total of the time-averaged output of the 

squarer: 

                       



0

2
2

12 .)()(
10

)(
dffSfG

V

GG
Vsq  

The previous cases have assumed white noise:  S(f) = a constant S, giving the uniform spectral 

density.  We'll continue to make that assumption, which allows us to write 

                         



0

2
2

12 .)(
10

)(
dffGS

V

GG
Vsq  

The previous assumption of a brick-wall filter-function made the integration trivial:  in such a 

case, G(f) = 1 only within a range of width f, so the integral gave 1
2
 · f for the noise band 

width.  But now we see that even in cases where G(f) varies continuously in frequency, the 

'equivalent noise bandwidth' is given by 

                               ,)(
0

2




 dffGENBW  

and we'll continue to denote this result as f.  (Notice that this result only is 'equivalent' if the 

noise can be assumed to be white.  Notice too that the gain G(f), and its square, are 

dimensionless, but df is not, so the integration gives the result f a value whose units are Hertz.)  

So with this definition of noise bandwidth f, and the assumption of noise that's white at its 

source, we have as time-averaged output of the squarer the result 
 

                                 <Vsq> = S f (G2 G1)
2
 /(10 V) , 

 

which of course allows us to infer the noise power spectral density S in terms of measured 

quantities, 

                                  S = (10 V) <Vsq> / [(G2 G1)
2
 f] . 

 

What's new here is that we now have a way to compute the bandwidth f as soon as we have the 

filter-transmission function G(f). 

 

It's worth tracking back through this whole argument to see why the gain, but not the phase shift, 

of any of the amplifier or filter section of the measurement system, is what matters for purposes 

of noise-density measurement. 
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Finally, we're ready to compute one example of an equivalent noise bandwidth.  Suppose we use 

only one filter section, a single low-pass filter, set to a 'corner frequency' fc.  The filters built into 

the TeachSpin modules are two-pole state-variable filters, whose low-pass response is given to a 

very good approximation by the 'Butterworth response' 
 

G(f) = [1 + (f /fc)
4
] 

-1/2
 . 

 

Insofar as this model is correct, we get by an analytic or numerical integration 
 

f = [/(22)] fc = 1.1108 fc 
 

The following figure shows this example's G
2
(f) function on a linear-in-frequency scale; the area 

under the curve shows where the contributions to the integral defining f arise.  On the same 

plot, in dotted lines, is the curve for the 'equivalent brick-wall filter', which achieves the same 

equivalent bandwidth by having its hypothetical sharp corner lying 11.08% higher in frequency 

than the rounded corner of the actual filter response. 
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Fig. 2.2a:  The square of the gain, or G

2
(f), function for an ideal Butterworth-response 2-pole low-pass filter 

(solid line), and the brick-wall filter response of the same equivalent bandwidth (dashed line). 

 

Note that the Butterworth response curve of the filter contains a long 'tail' extending far above 

the nominal corner frequency.  This can also be seen in a log-log display of the same G
2
(f) 

function (but note that such a plot mis-represents the idea of equal areas in the plot standing for 

equal contributions to the integral): 
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Fig.  2.2b:  A log-log display of G

2
(f) for the same filter. 

 

Now let's be concrete about the implications of this 'tail' for the case of a low-pass filter chosen 

with corner frequency fc = 100 kHz.  The equivalent noise bandwidth is 111.08 kHz.  This might 

create the illusion that the performance of the pre-amp and main-amplifier at (say) 200 kHz is 

irrelevant, but now that's seen to be an error.  Instead, we can do the integrals 
 

 .,,)(,)(,)(
4

2

2
2

2

0

2 etcdffGdffGdffG
c

c

c

c

c f

f

f

f

f

  

 

to learn the relative contributions: 

 

   white noise in band dc to 100 kHz gives 86.697 kHz, which is 78.06% of the total , 

   white noise in band 100 to 200 kHz gives 20.315 kHz, which is 18.29% of the total, 

   white noise in band 200 to 400 kHz gives 3.539 kHz, which is 3.19% of the total, 

   white noise in band 400 to 800 kHz gives 0.454 kHz, which is 0.41% of the total; 
 

and these together account for 99.94% of the total.  But if such a filter were to be driven by a 

pre-amp whose gain was the proper G1 all the way from dc to 400 kHz, but fell to 0 above 400 

kHz, we'd have lost 0.47% of the total that should appear after the filter.  The lesson is that with 

this sort of filter, and with the wish to achieve errors under 1% in accounting for the total noise 

power, the spectrum of the noise has to be faithfully amplified to frequencies lying up to 4, or 

better 8, times that of the highest nominal corner frequency.  Since the highest corner frequency 

selectable is 100 kHz, this is the reason that the pre-amp, main amp, and squarer have been 

designed to offer good performance all the way to 1 MHz. 
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The methods above also allow the computation of the equivalent noise bandwidth, or ENBW, of 

combinations of filters.  The state-variable filters used in the TeachSpin design, set to corner 

frequency fc, offer responses quite accurately modeled by 

 

          low-pass: GLP(f) = [1 + (f /fc)
4
 ] 

-1/2
   

          band-pass: GBP(f) = (f /fc) [1 + (f /fc)
4
 ] 

-1/2
   

          high-pass: GHP(f) = (f /fc)
2
  [1 + (f /fc)

4
 ] 

-1/2
  . 

 

So the combined use of a high-pass filter set to (smallish) frequency f1, and a low-pass filter set 

to (largish) frequency f2, give a net response close to  
 

 G(f) = { (f /f1)
2
  [1 + (f /f1)

4
] 

-1/2
 } · { [1 + (f /f2)

4
] 

-1/2
  } , 

 

and the (numerical) computation of the integral of G
2
(f) for this function, for two given  

f1, f2 values, is used to generate the entries of the Table in Section 1.5. 
 

Naturally, the same methods can be used to compute the ENBW f, for any combination of filters.  
 

Note that all of these computations have assumed ideal Butterworth high- and low-pass filters, 

with corners at f1and f2, as the only frequency-selective effects in the entire amplifier chain.  In 

practice, there are additional effects: 
 

a) The amplifier gains, modeled heretofore as constants G1 and G2, in fact will drop off with 

frequency, starting in the vicinity of 1 MHz; 
 

b) Capacitive effects at the input of the pre-amp create an additional one-pole low-pass 

effect of the form 

                              Gone-pole(f) = [1 + (f /fc)
2
 ]

-1/2
  , 

 

where fc = (2 Rin C)
-1

 .  This roll-off of response has the biggest effects for large source 

resistance Rin, and for large input capacitance.  For 'local' resistors the C-value is of order 10 pF, 

but C   100 pF for the 'remote' resistors in the Temperature Probe -- see Chapter 4.  For a source 

resistance Rin = 100 k, the product Rin C is then (10
5
 )(10

-11
 F) = 10

-6
 s, and the resulting 

corner is located near fc = 160 kHz.  This is not large enough, compared to a choice f2 = 100 kHz 

or even 33 kHz, to preserve full 1% accuracy.  See Appendix A.8 for more details on modeling 

this effect. 

 

c) Capacitance in parallel with the pre-amp's feedback resistor may also reduce the 

bandwidth.   This can be observed when measuring shot noise at low currents (when using a 

feedback resistor greater than or equal to 1 M).   

 

d) The pre-amp configuration can also change the pre-amp bandwidth.  Raising the gain of 

the preamp (perhaps by increasing the feedback resistor Rf ) will in general reduce the bandwidth 

of the pre-amp. 

 

e) The filter functions G(f) suffer from finite gain-bandwidth product of the op-amps used to 

build them, with effects (especially at the largest bandwidths) that are mentioned at Table 1.5. 
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2.3 Bandpass filters and 'spot' noise-density measurements 

 
Every result thus far has assumed that the noise source has an original spectral distribution which 

is uniform:  the noise is assumed to be white, as 'white light' would deliver equal amounts of 

power into any two frequency intervals of equal width in frequency.  (Note that actual sunlight is 

far from 'white' by this criterion!)  In the previous section we've written S(f) = a constant S, 

allowing the relevant integral to be simplified via 
 

                
 


0 0

22 .)()()( fSdffGSdffSfG  

 

There are ways of testing whether S(f) is in fact a constant.  The method of Section 1.5 is to use 

bandwidths f which are computed from f2 and f1, with f2 and f1 well separated, and then to see if 

a variety of choices of f1 and f2 entail the same value of S.  This section offers an optional route 

to a more 'localized' test of S(f). 

 

The ultimate test would be to pick some small value for f (<< f0), and to take as filter-function 

G(f) the narrow and sharp-edged function having 
 

 G(f) = 1,  for   f0 - f /2 < f < f0 + f /2 ,     but  G(f) = 0 elsewhere . 
 

This would give  G
2
(f) df = 1

2
 · f as required, and it would clearly isolate a narrow band of 

frequencies around f0, and hence it would only be sensitive to values of S(f) with f  f0.  For small 

values of f, it would give an adequate approximation to measuring the 'spot value' S(f0). 

 

An approximation to this idea of narrow-band filtering can be achieved by using the band-pass 

filters in one (or two) sections of the high-level electronics.  These offer a gain function very 

near to 

                          G(f) = (f/fc) [1 + (f/fc)
4
] 

-1/2
 , 

 

where you may think of fc as the nominal 'corner frequency' or 'center frequency' -- plot this 

function to see why that's a good name.  You'll see that G(f) is peaked near f = fc, though you'll 

also note the filter-function's peak value is not 1 but near 1/2  0.707. 

 

Note that this G(f) function defines an equivalent noise bandwidth, given by the integral 
 

    .1108.1
22)/(1

)/(
)(

0 0 4

2

2

cc

c

c ffdf
ff

ff
dffGf 


  

  
 

 

A log-log plot of the integrand G
2
(f) is traditional, and reveals the way S(f) is going to be 

'sampled' chiefly in the (rather broad) region around f  fc.  But since you can choose fc-values 

ranging from 10 Hz to 100 kHz, you can make spot-checks of S(f)'s regional values in frequency. 

 

There are two modules for filtering, and you could use either one, to get center frequencies 10 

Hz, 30 Hz, . . . 3 kHz, or to get center frequencies 330 Hz, 1 kHz, . . . 100 kHz.  Note that these 

distinct choices also give distinct f-values -- there is no pretence that you are sliding a filter of 

fixed bandwidth across the frequency spectrum.  If you use each of these band-centers to 
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measure a 'local noise density', you'll have found a good way to test, or even to falsify, the 

hypothesis that a given noise source is white. 

 

As an example of this technique, you might look at the 'amplifier noise' -- practically speaking, 

the noise which emerges from the Rin = 1- or 10- choice in Johnson noise.  In section 1.3 

you'll have seen that with so small a source resistor, the noise power (in the sense of voltage-

squared) is >99.9% attributable to the noise generated inside the pre-amplifier.  There is no 

necessary theoretical reason for this sort of noise to be 'white'.  The empirical approach is to use 

the band-pass technique above to get a whole series of 'spot checks' on S(f).  You'll find the 

measurements are easiest for the choice of large values of fc; as you go to smaller values of fc, 

you are also getting smaller values of f, so less noise comes through, and you'll need higher 

main-amp gain.   

 

Hint #1:  At bandwidths below about 1 to 3 kHz, you will find that there is not enough gain in 

the high level electronics to get your signal up to the volt level.  You can still use the squarer at 

these low levels, but you need to a bit more carful and measure the small d.c. offset voltage from, 

the squarer.  (See Section 5.3.)  Another option would be to increase the gain of the preamp.  

What would be the gain of the preamp in Figure 1.1a if the feedback resistor were changed to 10 

k?   

 

Hint #2:  When looking at center frequencies below 100 Hz you will want to use d.c.-coupling in 

the pre-amp and all the filter and amplifier sections.  (See Appendix A.2 for the methods for 

doing so.)  The reason is that a.c.-coupling is a way to kill response at d.c., but it also suppresses 

response below 'corners' at 16 Hz .  (The different modules have different a.c. coupling high-pass 

corner frequencies.  You can look at the specifications listed in Appendix A.1.)  You will 

probably want to retain a.c.-coupling at the input of the squarer; at the cost of losing some noise 

power below a 1-Hz corner, you will be free of any d.c. component of the signal getting squared 

and giving a non-zero error in your mean-square result. 

 

Hint #3:  When using the lowest values of center frequency fc, your ENBW gets very small.  In 

addition to requiring the use of higher main-amp gain to compensate, you'll see that this results 

in much larger fluctuations at the time-averaged output of your squarer.  (Appendix A.12 shows 

why.)  The cure is first to use the longest ( = 3 s) choice of averaging time, and then to take a 

series of fresh meter readings (say, every 3 or 5 s) and average those readings after-the-fact, until 

you get a mean value of adequately small statistical uncertainty. 

 

Hint #4:   (optional) For a few values of fc, you can 'stack' or cascade two band-pass filters in 

series.  Make some G(f)-plots to show that this can give you better selectivity in frequency.  

You'll need to do the necessary integrals to compute the new ENBW.  If you can create a 

narrower, as well as your original wider, version of a band-pass filter, and still get consistent 

values of S at the same center-location in frequency space, you'll have more reason to be 

confident in your methods of measurement. 
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The motivation for pursuing this check of pre-amp 'noise power spectral density' to low 

frequencies is that you can thereby enter the glamorous world of 'excess low-frequency noise' or 

'1/f noise'.  This is a physical phenomenon amazingly widespread in all sorts of time series 

emerging from a host of different phenomena, but no fundamental physical reason for its 

generality is yet known.  It is also of considerable technical interest, providing as it does a 

motivation to use lock-in or other signal-averaging techniques that evade the excess low-

frequency noise which so many systems display.  You might even subtract off the constant white 

noise contribution from your low frequency data and see if the excess noise does behave as f 
-1

.  

(See the technical data included with your instrument for some evidence of such excess low-

frequency noise.) 

 

Now back to spot checks of S(f), but for another kind of noise:  you might take the same kind of 

data for Johnson noise from a 10-k resistor.  For each filter-function chosen, you can measure 

the result of Rin = 10 k (and you already have the result for Rin = 1 ), and correct it for 

amplifier noise.  What's left is just the Johnson noise, and theory does predict that it will be flat-

in-frequency.  What do the data say?  

 

It's interesting that the ENBW for the band-pass filter is the same as for the low-pass filter with 

the same corner frequency.  You might also check this prediction.     
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3. Shot noise 
 

3.0 The reason for shot noise, and its predicted size 
 

As Johnson noise is due to thermal fluctuations, so shot noise is due to charge quantization.  It's 

quite remarkable that certain macroscopic electric currents will display noise, ie. random 

fluctuations about their average d.c. value, and that this noise is directly attributable to the 

microscopic 'graininess' of electric current.  While shot noise might be a nuisance, or a limiting 

factor in certain measurements, its existence makes possible the determination of the magnitude 

of the quantum of charge, just by measuring noise.  So shot noise provides a route to a tabletop 

measurement of the value of 'e', the fundamental charge. 
 

Here's some reasoning about why there might be fluctuations about the mean value of a current.  

Let's think about a d.c. current of average value idc, created by a flow of electrons in a wire.  In a 

time interval , the (average) amount of charge arriving is  
 

    Q = idc   , 

 

and because that charge arrives in charge packets, each of size (-)e, the number of electrons 

arriving is  

                                               n = Q/e = idc /e  . 
 

The next step in the argument depends entirely on physical characteristics of the source of the 

electron current.  If the electrons were arriving with perfect regularity, then in any time interval 

of duration , you'd expect only a 1-count uncertainty in the number n.
1
 At the opposite extreme 

from regular, periodic, and predictable arrivals, think of an electron current consisting of the 

statistically-independent arrivals of entirely uncorrelated electrons.  In such a case, the average 

number of electrons arriving in time  would be n, but the actual number on any particular trial 

would be subject to the same n  n 'counting statistics' that you'd get in radioactive decay or any 

other Poisson process. 
 

It is not obvious which limiting case you'll achieve with actual electric currents!  In fact, there 

are simple room-temperature ways to generate electric currents that show 'full shot noise', but 

there are also ways to produce currents which are well below the 'shot-noise limit'.  (In fact, if 

you deliver electrons in bursts, you can get above-shot-noise fluctuations -- think about the      

ns-long, 10
6
-electron pulses arriving at the anode of a photomultiplier tube.) 

 

Here are the consequences of those statistical fluctuations:  Suppose we have in a time  the 

arrival of n electrons on average, delivering an average charge of Q = idc .  Now there will be 

fluctuations in charge about this mean, with standard deviation 
 

                                    Q = e n = e (idc /e)
1/2

 .   
 

Since current is charge per unit time, the instantaneous current i(t) will also show statistical 

fluctuations about its mean idc , with standard deviation i = Q/ = (idc e/)
1/2

.  

 

                                                 
1
 Look up the topic 'electron turnstile', an example of state-of-the-art cryogenic electronics, to encounter a device 

that actually produces such a current. 
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Since that standard deviation is defined as < [i(t) - idc]
2
 >

1/2
, we see that the deviation from the 

average,  i(t)  i(t) - idc , has a mean-square value given by 
 

   < [i(t)]
2
 > = idc e/  ,  

 

which is, in fact, a result for the mean-square noise in the current i(t).  That we can measure!  

The only complication in this simple derivation is to relate the effective measurement time  to 

the bandwidth f of the measurement system, as previously defined.  A low-pass filter of corner 

frequency fc, and a bandwidth approximately given by f = fc - 0, defines a time-scale of (2 fc)
-1

, 

which is approximately the time scale on which statistically-independent readings can be made.  

So we might expect a result near 
 

                         <i
2
(t)>  idc e/ = idc e (2 fc)

+1
 . 

 

In fact, the correct result has exactly of this character, but with different numerical constants; 

Schottky's prediction for the mean-square noise in a current of uncorrelated electrons is 
 

                            <i
2
(t)> = idc e (2 f) = 2 e idc f , 

 

where f is the same 'equivalent noise bandwidth' defined in Section 2.2. 
 

A numerical example is worthwhile.  Suppose we have a bandwidth of 100 kHz, and think of the 

output of such a filter as providing a 'fresh answer' every 10 s.  And suppose we have a 10 A 

current, and have arranged for it to display full statistical fluctuations.  That current delivers 10
-5

 

Coulombs per second, so it delivers 10
-10

 C (on average) in each fresh 10-s time interval.  That 

amount of charge consists of a number of electrons, 
 

                           n = (10
-10

 C)/(1.6 x 10
-19

 C) = 6.3 x 10
8
 electrons.  

 

The expected statistical fluctuations in that number are given by the square root of the count, or 

2.5 x 10
4
.  Thus the fluctuations are 1 part in 25,000 of the total.  So the average current of         

10 A = 10,000 nA is subject, under the conditions of this experiment, to fluctuations of order  
 

              (10,000 nA)/25,000 = 0.4 nA  in every 10-s time interval. 
  
 In fact, Schottky's formula predicts the fluctuations will have rms measure 
 

 irms   < [i(t) - idc]
2
 > 

1/2
 = (2 e idc f)

1/2 

 

  = ( 2  1.6 x 10
-19

 C  10
-5

 A  10
5
 Hz)

1/2
 = 5.7 x 10

-10
 A = 0.57 nA. 

 

This answer depends on the value assumed for e.(!)  Turning the calculation around, we can see 

that carefully measured results for average current idc, bandwidth f, and mean-square current 

fluctuations < [i(t) - idc]
2
 > can produce a value for the fundamental quantum of charge, e. 

 

Notice in this example that the fluctuations in charge, which give the noise in the current, are 

small compared to the charge itself (rms fluctuations ±2.5 x 10
4
 e << charge 6.3 x 10

8
 e), but that 

the fluctuations are nevertheless large compared to the charge 1e.  So even though we use room-

temperature electronics lacking the ability to register the electrons' arrival on a one-by-one basis, 

we still gain the possibility of quantifying fluctuations which depend on the size of e. 
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3.1 Operating a photodiode 
 

In order to see ‘shot noise’, you need a current consisting of uncorrelated electrons, and we get 

this current from an illuminated photodiode.  This section is not yet about noise, but it will show 

you a first way for mounting and illuminating a photodiode, and for reading out the current 

which the light generates.  The successful assembly of this circuit, and the confirmation of the 

presence of an average photocurrent idc, is a pre-requisite for the subsequent measurement of shot 

noise.    If you would like more contextual orientation to photodiodes, consult Sections 3.6 and 7. 

 

A photodiode is a two-terminal device, and it has (like any other diode) connections to cathode 

and anode.  For all the experiments you do, you’ll need to identify and distinguish the leads 

connected to these electrodes of the photodiode. 
 

Lead is common

with case and marked

with a red sleeve

Lead is isolated

from the case

Photodiode PIN-3CD

Veiwed from the bottom of

the package

AnodeCathode

 
 

Fig. 3.1a:  Identifying the leads of the PIN-3CD photodiode. 

 

We'll adopt the circuit shown in Fig. 3.1b to illuminate a photodiode, and get a first look at the 

photocurrent it produces. 

 

 

+
-R

in

10k Ohms

light

bulb

Photodiode

PIN-3CD OPA 134

To next

gain stage

+

+

i
PD

+12 Volt

 
Fig. 3.1b:  Schematic diagram for the connection of a photodiode and a load resistor to a pre-amp input 

stage configured as a voltage follower. 
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Here we indicate schematically the arrival of light onto the photodiode, and show the direction of 

the conventional photocurrent which results.  (Note that the photocurrent flows oppositely to the 

'forward direction' of conventional current through the diode.)  In this circuit, the cathode is held 

at + 12 Volts and the photocurrent passes through a 10-k load resistor.  The amplifier shown 

schematically is a voltage-follower configuration of the first stage of the pre-amplifier section of 

the low-level electronics (LLE) of your apparatus.  The method for creating this circuit is shown 

in Fig. 3.2c.  Note that the load resistor is created by using the Rin switch set to the 10-k 

position, and the voltage-follower circuit by setting the Rf switch to the R1 position (which, as 

shipped, is populated by a 0- wire) or to the 10- position (since that's low enough for these 

applications). 

A CB
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R
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o
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R
 c
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Common
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AC  off  DC

etc.
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Rf Cf
R1a com

R1a

R2a

R2a

com

com

Ccm

Ccm

Ccm

C1
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x 100
header for

jumper

V
 +

V
 +

G
N

D

V
 -

V
 -

G
N

D

Monitors

Bipolar

Power

Supply

+ +

positivenegative

Output

Monitor

Lead of photodiode is

common with case and

marked with a red sleeve

light

bulb

 
  

Fig. 3.1c:  Wiring diagram for the lamp and photodiode combination, and the voltage-follower topology of 

the input stage of the pre-amp. 
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The photo in Fig. 3.1d shows how the photodiode is mounted in a black plastic block.  This holds 

it stably, and ready to be illuminated by special light sources. This arrangement also holds the 

photodiode very close to the first-stage amplifier, which is important for minimizing the effects 

of wiring capacitance.  (Be gentle with the leads on the diode, it is easy to break them.  We have 

added a drop of epoxy to the anode lead.  We have found it best to first place the photodiode in 

the holder with the holder in the air.  Then secure the photo diode leads in the terminal block, 

and finally secure the holder to the circuit board with the thumbscrew.)   
 

  
Fig 3.1d:  The black plastic block holding the light bulb (left side) and the photodiode (right side), mounted 

near the first stage of the pre-amp. 

 

Now suppose that we arrange enough illumination to create a photocurrent of 1 A – it turns out 

that this would require about 2 W of red light to reach the photodiode.  If that photodiode 

current idc = 10
-6

 A flows through the 10-k load resistor, we expect a potential drop of  

(10
-6

 A) (10
4
 ) = 10

-2
 V = 10 mV across the resistor.  You can measure this 10 mV on the 

output of the unity gain buffer at the pre-amp's MONITOR output.  At these small voltages you 

might also worry about the DC offset of the opamp.  This is typically +/-1 mV and can be 

measured when there is no light.   
 

To confirm the operation of this circuit, we suggest a first use of the tiny incandescent bulb 

supplied, which can also be installed in the black plastic block of Fig. 3.1d, to illuminate the 

photodiode. 

Caution:  Only finger-tighten, and do not over-tighten, the plastic screw holding the light bulb 

in place.  It is easy to crack the glass of the bulb and destroy it. 
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To light the bulb, you can use the positive and negative outputs of the 0 - 11 V bipolar power 

supply built into the LLE, which will give you a variable potential difference of 0 - 22 V across 

the bulb.  Wire that lamp as shown in Fig. 3.1c, and before installing it in the plastic block 

confirm that you can get it to light up, and that you can vary its brightness over a wide range.  

Now arrange for the bulb to be glowing dimly, and mount it into the black plastic block.  

Reassemble your LLE by flipping over and thumb-screwing down its front panel, and use a 

multimeter, at the MONITOR output of the pre-amp, to look for an output voltage.  Check to see if 

you get a positive voltage, which grows more positive as you dial up the voltage you're 

supplying to the incandescent bulb. 

There are other ways to illuminate the photodiode.  As alternatives to the bulb, we have provided 

some light-emitting diodes (LEDs) in the parts bin.  The LEDs are equipped with pre-soldered 

leads, and they too will fit into the black plastic block which holds the photodiode. 

 

In using the bulb, polarity of connections didn't matter, and a 0 - 22-V potential difference as a 

voltage source would drive the bulb.  By contrast, in using the LEDs, 

 polarity does matter -- attach the red lead (of either LED) to a positive polarity. 

 a current-limited source is recommended for driving the LED -- see Fig. 3.1e for one 

method of using the positive variable-voltage supply in your LLE, together with a series 

current-limiting resistor and the LED. 

 

The circuit shown also provides, at a BNC output, an iR-drop which is a surrogate for the LED's 

current.  For the series resistor, we suggest the use of R = 1 k when using the red-emitting LED, 

and R = 100  when using the infrared-emitting LED supplied. 

LED

Red Lead

V+

Series

Resistor
Monitor

Black Lead

 
 Fig. 3.1e: Schematic diagram for an LED, allowing voltage-drop monitoring of the LED current. 

 

 

The electrical properties of the three light sources are summarized in a table: 

 

Wavelength Package typical 

bias 

Absolute max. Pulsed Photo- 

current 

Mfg  part # 

 

Red LED 

  650 nm 

clear 

plastic 

20 mA 30 mA 

50 mA with 

possible damage 

100mA 0.25 mA Avago- HLMP-

EG08-Y200 
Digikey- 

516-1377-ND 

IR LED 

  930 nm 

metal 

can with 

lens 

100mA 100mA 2A for  

0.1 us 

1.2 mA Optek OP233 

Newark- 

08F2954 

Light Bulb 

 

glass 

bulb 

24 Volts 28 Volts  0.4 mA SPC Tech. –2185 

Newark –  

50N8119 
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Some notes on the light sources: 

 

1) The IR (infrared) LED can tolerate the largest drive current.   

 

2) A 100-mA current may NOT be safely passed through the 100-, 1/4-Watt resistor 

provided by the Series-Resistor switch!  To measure currents as large as this, mount a suitable 

resistor into the terminal blocks provided, and access it via the Aext or Bext position of the selector 

switch.
1
 

 

3) The red LED, and the light bulb, can both be made bright enough to create >0.2 mA of 

photocurrent in the photodiode, while the IR LED may give you >1.0 mA of photocurrent.  Any 

of these devices can be dimmed to reduce the photocurrent to 1 A or even smaller values. 

 

4) One further advantage of the LED sources is that they (unlike the light bulb) can be turned 

on and off very rapidly ( << 1 s).  This is not directly needed for shot-noise studies, but one use 

of this on-off modulation capability is illustrated in Sec. 3.4. 

 

                                                 
1
 Early units of NF-1 (serial numbers 101 to 115) were shipped using ¼-W resistors at the Series-Resistor Switch, 

and owners of those units have been sent replacement 10- and 100- resistors of 3-Watt rating to be used in the 

Aext and Bext positions.  Later units have had the 3-W resistors built in at the 10- and 100- positions of the Series-

Resistor switch.  If you look at the interior of your low-level electronics, you should be able to see the situation with 

your unit – by eyeball distinction of a resistor of 3-W rating from one of ¼-W rating. 
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3.2 First views of noise on a photocurrent 
 

The previous section has explained how to confirm that a d.c. photocurrent from an illuminated 

photodiode has been generated.  Now it's time to look for the fluctuations, ie. the noise, in such a 

photocurrent.  Those fluctuations will display 'full shot noise' if the electrons flowing to 

constitute the photocurrent are uncorrelated, statistically-independent arrivals of charge. 

 

The most persuasively independent electrons are photo-electrons, the more so if the light 

producing them is 'thermal' light.  In your first shot-noise experiment, the light involved will be 

produced by an incandescent bulb, which has negligible spatial and temporal coherence.  So it's 

appropriate to think of the bulb as shedding a rain of independent photons down onto any 

surface.  (The word 'shot' in shot-noise is meant to remind you of the sound of pellets of birdshot, 

or perhaps raindrops, falling onto a sheet-metal roof.)  When those photons fall onto a photo-

diode, it is a fair picture to think of each photon absorbed in the p-n junction as producing an 

electron-hole pair.  The internal electric field of the junction separates that pair, and drives the 

electron through an external circuit as part of an electric current.  It's easy to think of the photons 

as statistically-independent (since they're independently produced, and thereafter non-

interacting); what's not quite so obvious is that the photo-electrons thereby produced will create a 

current of still-statistically-independent electrons (given that electrons in a wire certainly can 

interact through their electric field with other electrons).   

 

Use the same circuit as in Sec. 3.1, with the use of the incandescent bulb to illuminate the 

photodiode, adjusted so as to produce 10 A (but not more, to avoid complications) of 

photocurrent.  The evidence for this will be a d.c. voltage of idc Rin = (-)(10 A)(10 k) =  

(-)10
-1

 V = (-)100 mV at the MONITOR point in the pre-amplifier of the LLE. 

 

Now here's a calculation of the expected size of the shot-noise fluctuations in that current, and 

their detectable consequences.  Recall that for idc = 10 A, and for an equivalent noise bandwidth 

of f = 100 kHz in the processing chain downstream, Schottky's formula predicts the rms 

measure of current fluctuations will be 

  

  irms    < [i(t) - idc]
2
 > 

1/2
 = (2 e idc f)

1/2 

 

  = ( 2 · 1.6 x 10
-19

 C · 10
-5

 A · 10
5
 Hz)

1/2
 = 5.7 x 10

-10
 A = 0.57 nA. 

 

So the 10 A, or 10,000 nA, photocurrent is predicted to exhibit fluctuations of only 0.57 nA 

(rms). 

 

How will these fluctuations be made visible?  The load resistor Rin = 10 k not only 'maps' idc to 

a voltage Vmon = idc Rin, it also maps a fluctuation i to a fluctuation V = i Rin.  In rms measure, 

we map 0.57 nA to (0.57 nA)(10 k) = 5.7 V.  Such voltage fluctuations are still too small to 

see directly.  But as suggested in Fig. 3.1b, this signal is sent, by a.c. coupling, to the further gain 

stage (G1 = 100) in the pre-amplifier.  So the output of the pre-amp ought to exhibit fluctuations 

of rms measure 570 V (in a 100-kHz bandwidth).  These sub-mV fluctuations might still be too 

small to be shown directly on an oscilloscope. 
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So to see if these amplified fluctuations are present, set up the high-level electronics (HLE) to 

include a 100-kHz low-pass filter, and a gain G2 of 10 x 10 x 60 = 6000.  This ought to give a 

noise signal of rms measure 3.4 Volts (in a 0-100 kHz bandwidth).  Applied in the usual way to 

the squarer, you can expect an output with non-zero d.c. average value 

 

  < Vsq > = < Vin(t)
2
 > / 10 V = (3.42 V)

2
 / 10 V = 1.17 Volts  . 

 

Your value will differ from this, because of complications and deficiencies in this circuit.  But 

you can now reduce the illumination on your photodiode, to show that part of this < Vsq >  is 

attributable to the light.  (Another part of it represents Johnson noise, and amplifier noise.)  The 

part of the ‘noise signal’ that is connected to the illumination level is connected, by a 

quantifiable series of transformations, to the value of the electron charge e. 

 

  
 

Fig. 3.2:  Cabling diagram for LLE and HLE interconnections for first studies of shot noise 

 

Postponing detailed quantitative questions until the next section, you ought here to confirm that 

you can get noise signals of this approximate size from this configuration of the system.  Next, 

turn down the supply to the incandescent bulb to its minimum value, which ought to reduce the 

photocurrent idc to zero as well.  Check a surrogate for idc at the MONITOR point on the pre-amp.  

But the noise is predicted to go to zero as well.  In practice, it will go down, but not to zero, since 

there remains noise from the pre-amplifier itself. 
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Output 
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What are the deficiencies of this circuit?  There are at least two problems: 

 

a) Changing the bulb's intensity will change the photodiode's current idc.  But you will not 

be operating the photodiode at the special case of short-circuit current.  Already at idc = 10 A, 

there is a voltage drop of 100 mV across the load resistor -- and reference to Fig. 3.1b shows that 

there is also a (forward) bias of +100 mV across the photodiode.  Because of this, the total diode 

current is not simply proportional to the illumination, because forward conduction is beginning 

to occur.  The problem gets much worse as the photocurrent is raised to 100 A or even 1 mA. 

 

b)  The photodiode, operating with zero or positive potential difference across it, exhibits 

maximal capacitance.  While this does not affect idc, it does affect the noise, because it reduces 

the bandwidth over which the pre-amp system exhibits its full gain.  Because of this reduction in 

bandwidth, the rms measure of the noise will fall short of the value predicted by the Schottky 

prediction. 

 

Both these difficulties can be dealt with by reconfiguring the 'front end' of the pre-amplifier, as is 

described in the next section. 
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3.3 Shot-noise measurement using a transimpedance amplifier 
 

The previous section showed you the existence, and approximate size, of shot-noise fluctuations 

in a photocurrent.  In this section, we describe a circuit that has been optimized for measuring 

shot noise, and thus accurately determines the electronic charge, e.  The novelty of this section is 

a method for operating an illuminated photodiode in a reverse-biased configuration, and 

converting its photocurrent to a voltage by a precisely known coefficient. 

 

The circuit we use in illustrated in Fig. 3.3a.  The cathode of the photodiode is connected to a 

point at potential +12 V.  Meanwhile, the anode is actively held at potential zero, by being 

attached to the input of a current-to-voltage converter.  (Appendix A.4 describes this among 

other op-amp topologies.) 

 

 

+
-

R
F

10k Ohms

light

bulb

PIN-3CD

OPA 134

To next

gain stage

+12 Volt
+

+

i
PD

 
 

Fig. 3.3a:  Schematic diagram for the connection of a reverse-biased photodiode to a pre-amp input stage 

configured as a current-to-voltage converter, also called a transimpedance amplifier (TIA). 

 

You will create this circuit by changing the default wiring of the pre-amp's first stage, and 

reconfiguring it to act as a current-to-voltage converter (see Fig. 3.3b, and also the photo in  

Fig. 3.3c.).  Since the non-inverting input is grounded, feedback through Rf will actively hold the 

inverting input at near-zero potential as well.  This ensures that the voltage drop across the 

photodiode always has the full value that is set on the biasing supply.  Now with all the 

connections made, turn the pre-amp power back on, and flip the low-level electronics panel back 

into its ordinary position.  Use the thumbscrews to close up the box. 

 

Notice that in this circuit the photodiode current idc passes entirely through Rf (since the inverting 

input of the op-amp draws negligible current).  This ensures that 

 

0 - idc Rf = Vout,  ie.  Vout = - Rf idc  . 

 

So the photocurrent has been mapped to an output voltage, which is measurable by a d.c.-

coupled path at the pre-amp's MONITOR output.  An a.c.-coupled path passes the a.c. components 

of this signal (including all the noise components with f   16 Hz) to the subsequent gain stages 

of the pre-amp. 
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Fig. 3.3b:  Wiring diagram for the input stage configured as an i-to-V converter. 

 

Now if the photodiode current i(t) = idc + i(t) shows the sum of a d.c. average current plus the 

current fluctuations representing shot noise, then the i-to-V converter will give an output 

 

   Vout(t) = (-1) idc Rf  + (-1) i(t) Rf . 

 

In the TeachSpin pre-amp, what follows in the a.c.-coupled path is 100-fold voltage 

amplification, so the cable connecting the pre-amp output to the high-level electronics will be 

conveying the voltage signal 

               

   Vpre(t) = 100 x (-1) Rf i(t) . 

 

Inside the high-level box, use high- and low-pass filters just as before to create some chosen 

bandwidth f, and then use the main amp to provide further gain G2 to bring the fluctuating 

signal up to the size suitable for the squarer.  The output of the squarer will thus be 
 

Vsq(t) = [- G2 100 Rf
  
i(t)]

2
 / (10 V) , 
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Fig. 3.3c:  The black plastic block holding the light bulb (left) and the photodiode (right), suitably mounted 

for use with the transimpedance amplifier (TIA).  (Notice that the plastic block has been rotated by 180, 

relative to its orientation in Fig. 3.1c.) 
 

and the familiar time-average of the squarer's output will give 
 

< Vsq(t) > = < i
2
(t) > (100 G2 Rf)

2
 / (10 V) . 

 

If Schottky's formula is correct, then this gives 
 

                         < Vsq(t) > = 2 e idc f (100 G2 Rf)
2
 / (10 V)   , 

 

which relates the quantum of charge e to quantities measurable in your experiment   
 

To confirm that the bulb-photodiode combination is working, connect a multimeter (set to d.c. 

Volts) to the MONITOR point on the panel of the pre-amp.  This will display a voltage  

Vmon = (-) idc Rf (where Rf is the value of the feedback resistor you choose).  This will be your 

way to measure the value of idc.   

 

For the first attempt at measuring the electronic charge, we recommend you use Rf  = 10 k.  

Now dial up the bulb supply until you see evidence of photocurrent, via Vmon.  For example, if 

you dial up the bulb until Vmon = (-) 1 V, you'll know 

 

                        idc = (-) (-1 V)/( 10 k) =  100 A . 
 

By this means, you can explore photocurrents from <1 A to >100 A.  

  

Now connect the rest of the cables just as was shown in Figure 3.2.  Before connecting the output 

of the pre-amp to the input of the filter, you might want to observe the small noise signal on a 

'scope, and confirm that the d.c. average value is near zero.  (Notice we're not making use of the 

leftmost filter section.)  In the adjacent filter section, use the low-pass output and set the corner 
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frequency to 100 kHz.  Set all the AC/DC toggles switches to AC, for a.c. coupling between the 

stages.  Adjust the HLE gain G2 to keep the multiplier output in its ‘good’ range (0.6 to 1.2 

Volts).  Now turn the voltage to the light bulb to its minimum value.  You should observe a 

decrease in the noise signal, and also notice, at the separate monitor point, that the d.c. current 

goes to zero. 

 

So after noting the squarer's output in the presence of, and then in the absence of, the average 

photocurrent idc, and correcting for 'amplifier noise' by subtraction, you can infer a value for the 

mean-square fluctuation of the photocurrent: 

 

  < i
2
(t) > =  [ < Vsq(t) > · 10 V ] / (100 G2 Rf)

2
  . 

 

From these quantified mean-square fluctuations in the photocurrent, you can solve for the 

electron charge e; you will of course also need to know the d.c. photocurrent idc you measured 

indirectly, and the equivalent bandwidth f you used. (Recall that the ENBW of the 100-kHz low-

pass filter is about 114 kHz.) 

 

 

There are a few fine points: 

 

1. The first stage in the pre-amp will have some small d.c. offset, in the range ± 2 mV.  

With the light bulb off, you can read and record this d.c. offset.  To get the most accurate values 

of e, you should subtract this offset in forming your d.c. current measurement, idc.  Make sure 

that you get the signs correct in your subtraction. 

 

2. You've always thought of a digital multimeter as a passive device, merely reading the 

voltage presented to it.  But some DMMs actively generate interference that's sent out from their 

input terminals.  (It’s also possible that the DMM generates no noise, but that its test leads are 

acting as antennas coupling interference into the pre-amp.)  In either case, your DMM might be 

injecting some noise into the gain-100 stage of your pre-amp.  This signal will make it all the 

way to the squarer, and add to the noise there.  So when you're using a DMM at the MONITOR 

point to measure a surrogate for idc, check the squarer's output to test if you're subject to any of 

this interference.  With the power to the light bulb set to zero, observe the noise voltage. This is a 

measure of the amplifier noise.  Now remove the DMM's test leads from the d.c. current-monitor 

point, and see if there is any change in the noise voltage.   
 

3. What we are calling the amplifier noise is now a bit more than just the voltage noise of 

the OPA134 op-amp.  In this circuit, it also includes the Johnson noise of the feedback resistor
2
.  

A 10 k resistor at room temperature has a noise of about 13 nV/Hz.  We add these two 

(uncorrelated) noise sources in quadrature to get an expected amplifier noise density of 

 

 Samp = (8 nV/Hz)
2
 + (13 nV/Hz)

2
  (15 nV/Hz)

2
 = 2.25 x 10

-16 
V

2
/Hz  .  

 

For example, we measured a (bulb-off) value of 0.755 V from the squarer using a HLE gain of 

5000.   

 

                                                 
2
 In our first measurements of Johnson noise, the gain setting resistors were chosen such that their Johnson noise 

was much smaller than the op-amp voltage noise.   
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 Smeas = [< Vsq > · 10 V] / [G1
2
 G2

2
 f]  

  = [0.755 V · 10 V] / [100
2
 · 5000

2
 · 114 kHz] = 2.65 x 10

-16
 V

2
/Hz  . 

 

The slightly larger-than-expected amplifier noise is due to 'gain peaking' in the preamp.  We will 

look at this in more detail in Section 3.4, but for the moment we note that the amplifier noise 

remains constant as the current is varied.  So record your own number for the amplifier noise, 

and use it as a quantity to be subtracted from values obtained with non-zero photocurrent present.   
 

You can now investigate shot noise systematically.   With a fixed bandwidth f, you might first 

check the dependence of current noise <i
2
(t)> on the average photocurrent idc.  As was the case 

with Johnson noise, you can see changes in the noise which are much smaller than the amplifier 

noise.  You should be able to see the noise increase slightly with only 0.1A of photocurrent.  

(That's 1 mV/10 k measured at the MONITOR on the preamp module; to see a 1-mV level here, 

you'll need to note the d.c. offset at this MONITOR point.) 

 

You will find it profitable to compute the values of mean-square current fluctuation per unit 

bandwidth, or 'current noise power density', <i
2
(t)>/f, with units of A

2
/Hz.  That's because the 

Schottky formula predicts this quotient ought to have a simple dependence on idc. 
 

Thus far we have assumed that the shot noise is 'white', ie. spectrally uniform. To test this, 

temporarily fix idc and Rf at some suitable values, and test the effect of changing the choice of 

filter bandwidth in the HLE.  As you lower the bandwidth, the amount of noise emerging should 

drop, and as usual, you'll increase the main-amplifier gain to keep the squarer in its optimum 

regime.  But you should test to see if the quotient <i
2
(t)> / f stays fixed -- this is a test of the 

claim that the shot noise is 'white'.  (Because of the effects of capacitance, this uniformity may 

fail at choices of largest bandwidth -- the spectral uniformity of the response of the electronics 

chain is hardest to maintain at the high-frequency end of the large-bandwidth coverage.) 
 

If you can confirm that the current noise power spectral density' <i
2
(t)>/f  is in fact 

independent of your bandwidth choices, but that it does depend on the average photocurrent idc, 

then you can try a log-log plot of <i
2
(t)>/f as a function of idc.  Your plot will have x-axis 

values in Amperes, and y-axis values in A
2
/Hz. If you get a linear variation, that line will have 

slope with units (rise over run) of (A
2
/Hz)/A = A/Hz = A·s = C, Coulombs.  In fact, Schottky's 

theory predicts a power-law fit, with power-law exponent 1 and coefficient (2 e), since 
 

                                      <i
2
(t)> / f = (2 e) idc

1 

 

expresses the theory.  Is your plot consistent with a power-law exponent of 1.00?  If so, you can 

read off (2 e), in Coulombs, as the coefficient of your fit to the data!  As is often the case, 

estimating the uncertainty in your value for e might be the hardest part of your experiment.  

(Remember this is not the same as the discrepancy, if any, between your value and the 'book 

value'.) 

 
 

Despite its apparent simplicity, there can be experimental and conceptual pitfalls to this 

experiment.  The most annoying is that some light bulbs, under some conditions, give unstable 

light output, despite stable voltage input.  The effect, in changing the photocurrent in the 

photodiode, looks just like excess noise, which can falsify the derived value of e.  The cause is 

(apparently) the intermittent shorting of adjacent turns of the finely-coiled tungsten wire in the 
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filament of these bulbs.  It may help to isolate the low-level electronics box from mechanical 

vibration. 
 

Another complication of the same character is the apparent presence of excess low-frequency 

fluctuations in the light output of the red LED when it is operated at its highest currents.  (By 

contrast, we have not seen these fluctuations in the even larger output of the infrared LED.)   

 

One cure for either of these effects is to change the bandwidth over which the experiment is 

sensitive.  Previously you've been using coverage from about 16 Hz all the way to 100 kHz, but 

if there is excess noise at low frequencies, a good strategy is give up the contribution of the 

lowest frequencies.  To do this, add in a previously-unused filter section as a high-pass filter (set 

to perhaps 1 or 3 kHz) at the input of the HLE.  You will need to use the Table in Section 1.5 to 

give a revised value of f for your calculations.  Now you've given up about 1 or 3% of the total 

white noise you have been detecting, but you've also blocked a disproportionately greater 

fraction of any excess low-frequency noise. 
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3.4 Diagnosing proper high-frequency behavior 
 

Up to this point you have assumed that the current-to-voltage converter of Section 3.3 exhibits a 

conversion coefficient Rf which is frequency-independent.  This is important, because while the 

d.c. or f = 0 value of this conversion coefficient relates idc to Vmon, it's the behavior of this 

coefficient at (and well beyond) frequencies of 100 kHz which applies to the various frequency 

components of the noise you're measuring.  Now we'll take up a way to check the 'gain flatness' 

of your pre-amplifier section, and to compensate for the 'gain peaking' that tends to occur in the 

neighborhood of f  2 MHz because of capacitive effects in the photodiode and the pre-amp's 

first stage (and the op-amp's finite gain-bandwidth product). 

 

3.4a Step response as a diagnostic 

 

To do these experiments, leave the input stage configured as in Section 3.3, but use the red LED 

as source of illumination.  Wire that LED as suggested here, so that you can drive it with an 

external square-wave generator. 

 

  
 

Fig. 3.4a:  Schematic diagram for wiring an illuminating LED to permit drive by an external generator. 

 

Here's the idea:  a square-wave drive can cause the LED to alternate, at any desired rate, between 

off and on states.  You could use a 1 kHz square wave, for example, to spend 500 s in the 'off' 

mode, and 500 s in the 'on' mode, in every period of 1 ms.  An oscilloscope looking at your pre-

amp's MONITOR point will show you the direct-coupled version of the photocurrent resulting 

from your modulated LED output.  Since you're about to look at high-frequency behavior at the 

MONITOR output point, we suggest the use of a 10x 'scope probe, inserted into the monitor BNC 

connector in place of a BNC cable, so as to minimize capacitive effects.  
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Use a second channel of your 'scope to display the drive waveform you're sending to the LED, 

and trigger the 'scope on this waveform.  Now you have a twin view of 'cause' and 'effect', LED 

drive and photodiode/pre-amp response. 
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Fig. 3.4b:  Wiring diagram for an LED-illuminated photodiode to study step-function response. 

 

What's the point of this exercise?  The point is to look at a close-up view of the 'effect' 

waveform, which shows the result of a sudden rise in the drive to the LED.  Zoom in on the time 

axis until you can see that the 'effect' waveform displays a notable 'ringing', as well as a delay, 

and a slower risetime, compared to the 'cause' waveform.  In fact, you are getting a direct view, 

in the time domain, of the 'step response' of the input stage.  Since you're exciting a linear 

system, that time-domain view is connected (via a Fourier transform) to the frequency-domain 

description of the response of the input stage.  That frequency-domain description would tell you 

everything about the bandwidth of the system, the very information desired.  In fact, it's not even 

necessary to perform the actual Fourier transform, since your time-domain view of the step 

response already contains all the desired information -- it's just encoded in a different way.   

 

Here's a view of the step response of the photodiode/TIA front-end circuit used in Section 3.3 to 

measure shot noise.  Results from your circuit may differ in detail, because this data depends on 

details of circuit capacitances and op-amp high-frequency response. 
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Fig. 3.4c:  Step response of the first stage of the pre-amp.  Upper trace: the drive waveform for the LED 

illuminating the photodiode; lower trace: the response measured at the monitor output of the first stage. 

 

But the important features of this step response can be read off at a glance.  The first conclusion 

is that the effect is delayed, relative to the cause, by about 0.2 s.  This is an indirect but valuable 

measure of the bandwidth of this circuit.  The second conclusion is that the circuit, in response to 

a step function, shows the excitation of damped oscillations.  The period of the visible 

oscillations is about 0.45 s.  This, in turn, is indirect evidence of 'gain peaking', at a frequency 

2.2 MHz given by the inverse of this period.  Your intuition might suggest that if the behavior 

were less damped, this gain peaking would be even greater. 

 

So the time-domain view of your front-end electronics suggests that this crucial first stage has a 

current-to-voltage coefficient which is given by Rf at low frequencies, but exhibits a larger 

response at the peaking frequency near 2 MHz, before dropping toward zero.  Fortunately, this 

localized excess gain presents little trouble for the noise measurements you've made thus far, 

even with filter bandwidths set to 100 kHz.  There are two 'lines of defense' in the circuits you 

used.  First, the low-pass filter in the high-level electronics has a 'corner frequency' of at most 

100 kHz = 0.1 MHz.  Because the frequency response of such filters is not of a brick-wall 

character, your noise measurements have some sensitivity to frequencies of 0.2, 0.4, even 0.8 

MHz.  But the methods of Section 2.1 show that contributions above 800 kHz account for only 

0.06% of the total response to white noise.  If your shot-noise measurements to date were subject 

even to a four-fold excess response to noise at the peaking frequency, that would at worst change 

the this contribution to 0.24%, still small. 

 

In fact, the actual effects of gain peaking are smaller still, because other parts of the noise-

processing chain have their gain drop off at various corner frequencies of 1.4 to 1.6 MHz.  So the 

0.24% effect computed above is an upper limit to the effects of gain peaking. 
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3.4b Eliminating gain peaking 

 

The gain peaking which you have diagnosed by step-response behavior will not always be so 

harmless.  Since the location in frequency, and the degree, of gain peaking will depend on the 

photodiode capacitance and the feedback resistor Rf, the use of other photodiodes, or other 

choices of Rf, might put the gain peaking, and the excess noise, into a place in the frequency 

spectrum where it could compromise the validity of your noise measurements.  Because of the 

general utility of the technique, we introduce here a method for curing the problem. 

 

The only new component needed is a feedback capacitor Cf, connected in parallel with the 

feedback resistor in the TIA.  In your pre-amp, Cf is selected by a front-panel switch.  Heretofore 

this switch, and its bank of capacitors, has deliberately been left disconnected in your first-stage 

op-amp circuit.  But you can now add the necessary jumper wires which will connect a switch-

selected Cf into your TIA. 
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Fig. 3.4d:  Schematic diagram for the feedback capacitor added to an i-to-V converter. 
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Fig. 3.4e:  Wiring diagram for an i-to-V converter including a feedback capacitor Cf in parallel with Rf. 
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The theory of Cf 's effect can be worked out in a model which includes the capacitance that's 

effectively in parallel with the photodiode, and the op-amp’s finite gain and bandwidth.  But the 

theory is messy, and its predictions in any case it depends on parameters that are difficult to 

measure.  So we adopt here a more empirical approach:  we'll use a desired shape of step 

response as a goal, and we'll use a now-adjustable Cf as a means to achieve it. 

 

Our photodiode/TIA circuit now involves two capacitances, and (to a fair approximation) can be 

modeled by a 'two-pole response'.  The same response has been built into the filter sections of the 

HLE, and the details of the step response of such systems are worked out in Section 6.1.  Here too 

we'd like our finished circuit to have frequency response which is as level as possible, from d.c. 

to some maximum frequency.  The two-pole response of maximal flatness-in-frequency is the 

Butterworth response.  Fortunately, Butterworth response can be easily recognized in the time 

domain -- it is characterized by less-than-critical damping, and thus shows a bit of overshoot.  

The ideal Butterworth low-pass response in fact shows a 4-5% of overshoot relative to its 

eventual asymptotic value. 

 

You can achieve this response, with its slight but detectable overshoot, by adjusting Cf in your 

TIA. 

 
 

Fig. 3.4f:  Step response of the first stage of the pre-amp, after the compensating capacitor has been 

adjusted to give only a slight overshoot. 

 

[If you'd like a finer resolution of Cf adjustment, you can replace one of the jumper wire you've 

added by a 3.3-pF or 10-pF capacitor.  Now the effective Cf will be the series combination of the 

added capacitor and the switch-selected value.] 

 

This choice of Cf  has given you Butterworth response, or (more intuitively) has damped the 

oscillations visible in Fig. 3.4c.  But in a frequency-domain vocabulary, the result is that you 

have eliminated gain peaking.  What's more, Fig. 3.4f contains additional information on the 

corner frequency of the now-modified circuit.  You know that a two-pole Butterworth system, 

driven by a step function at t = 0, will have some long-term or asymptotic value to which the 

response will level off.  By the methods of Section 6.1, you can show that the time tfirst, after 

 t = 0, at which the response first passes through this level (prior to its modest overshoot) is 

connected to the corner frequency of the system by the relationship 
 

fcorner = 0.5303 / tfirst  . 
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So from step-response data for an approximately-Butterworth system as in Fig. 3.4f, you can 

deduce a corner frequency, and thereby an approximate representation of its frequency response.  

Instead of being 'flat' for all frequencies, its response drops off according to a gain function 

 

Gpre-amp(f) = [ 1 + (f / fcorner)
4
 ] 

-1/2
  . 

 

Now if your indirectly-measured value for fcorner is vastly higher than the corner frequency you 

use in the filtering in the HLE, this 'droop' in high-frequency gain of the pre-amp is not relevant.  

But if the corner frequency of the low-pass filter you use in the HLE is as much as a quarter of the 

pre-amp's first-stage corner frequency, then there is a correction of order 1% or more to the 

equivalent noise bandwidth of your system.  Section 2.2 shows you how to compute f for the 

total system of pre-amp plus HLE filtering, and you can use the representation for  

Gpre-amp(f) above to see what effect this will have. 

 

 

3.4c Other applications of a compensated TIA 

 

Now that you've expended the effort to compensate your TIA, you've learned a technique of 

rather general applicability.  But particular to your investigation of shot noise, you now have a 

front end whose performance is more nearly ideal than before.  In Section 3.4a we argued that 

even the previous, sub-optimal, circuit would still give reliable shot-noise measurements out to 

bandwidths of 100 kHz, but now you can check that claim directly.  So you can now repeat your 

favorite protocol of Section 3.3, and get an even more trustworthy result for the electronic charge 

e. 

 

You are also now liberated to perform other checks and extensions of shot noise measurements.  

You can now change Rf, which will certainly change your d.c. sensitivity to photocurrents.  (A 

larger value of Rf will make you more sensitive in the range of very small photocurrents.)  For 

any new value of Rf, you will want to re-check the step response, to get an optimal value of Cf.  

You will find that for Rf  > 100 k, you will not need to add any Cf : stray capacitance is enough 

to compensate your first stage.  But you should still use the pulsed-LED method to investigate the 

first stage’s properties.  You will probably notice a single-pole RC roll-off, and will need to 

repeat your ENBW calculation accordingly.   

 

Alternatively, you can now try out the use of a photodiode without reverse bias.  That will 

require only that the cathode of your photodiode is moved from the "+V" point, or a  

+12-Volt potential, to a ground point.  The photodiode capacitance will now be larger, and again 

you'll need to check the step response to pick a best value of Cf.  The step response will also give 

you the corner frequency of the now-compensated circuit, which can use in your noise modeling.  

If you can take a new set of shot-noise data, and deduce from it a new but consistent value of e, 

you will have further evidence that your e-value is not an artifact of a particular circuit topology 

for using the photodiode. 
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3.5 Sub-shot-noise currents 
 

In Chapter 3 you've seen the statistical argument that shows why (certain) currents display shot 

noise, and predicts how big that shot noise should be.  You've also measured actual shot noise in 

a photocurrent, to see if the shot noise obeys Schottky's prediction.  This section has a special 

purpose: to prove empirically that it's easy to produce currents whose fluctuations are smaller, 

much smaller, than the standard shot-noise prediction. 

 

It turns out to be very easy to produce (but not so easy to explain) a sub-shot-noise current.  

Consider, for example, a simple 9-V battery as a voltage source, with a 100-k resistor across its 

terminals.  The current flowing will be idc = 9 V/(100 k) = 90 A. You'll be able to prove that 

the fluctuations in such a current are not given by the shot-noise formula, but are much smaller.  

(This empirical fact does not seem to be very generally known!)  The immediate implication of 

such an observation is that electrons in such a circuit are not moving independently and at 

random, but instead in some more nearly regular way.  The mechanism for this enhanced 

regularity seems to be the Coulombic interactions of the whole cloud of electrons that is 

collisionally diffusing through the resistor.  If electrons do interact this way, the previous 

argument of statistically-independent arrivals fails, and the 'shot-noise limit' with it.  (See the 

treatment by Landauer noted in the Bibliography.) 

 

By contrast, the photoelectrons which you've already seen displaying full shot noise are 

produced independently by photon arrivals, and then are removed (by internal electric fields) 

from the detector's depletion region in so short a time that it becomes fair to think of the 

electrons as not interacting. 

 

Turning from possibly-unsatisfying theoretical arguments to empirical tests, here's the method 

for producing and quantifying a sub-shot-noise current.  Take out the photo-diode from its 

position in the pre-amp module, but leave intact the current-to-voltage (i-to-V) converter.  Recall 

that you have a feedback resistor, Rf, which sets the i-to-V conversion constant.  Now you want 

to feed into the input point of that circuit a current derived simply from i = V/Rin.  Here V is the 

stable voltage available from the 0-11 V power supply in your low-level electronics, and Rin is an 

input resistor, selectable via the rotary switch in the pre-amp.  (These are the resistors previously 

serving as sources of Johnson noise.)   Figure 3.5 shows the schematic diagram for the input of 

the circuit. 
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Fig. 3.5:  Schematic diagram for testing V/R currents for noise level. 
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Some good choices are Rf = 100 k, and Rin = 100 k also.  Now the use of a 6-Volt setting 

from the adjustable supply delivers to the (virtually-grounded) input of the i-to-V converter a 

current of i = V/Rin = 6.0 V/(100 k) = 60 A.  And the i-to-V converter gives at its output 
 

Vout = - iin Rf = - (60 A)(100 k) = (-)6.0 V , 
 

and the MONITOR point on the pre-amp's panel will make this voltage available to a multimeter.  

Exactly as in the photocurrent case, it gives a surrogate for iin's value. 
 

After this first stage, everything is exactly as it was in the photocurrent case.  There's a d.c.-

blocking capacitor, there's a further 100-fold gain in the pre-amp, there's a cable to the high-level 

electronics, and then there's filtering in frequency, and further amplification by gain G2, and then 

squaring and time-averaging, finally to deliver a mean-square voltage output.  As shown in 

Section 3.3, the time-average of the squarer's output is given by 
 

<Vsq(t)> = <i
2
(t)> (100 G2 Rf)

2
 / (10 V) , 

 

so the noise density in the current is 
 

<i
2
(t)> /f = (10 V) <Vsq> / [ (100 G2 Rf)

2
 f ] . 

 

Since everything on the right-hand side is measurable, you can quantify the spectral density of 

current fluctuations in A
2
/Hz.  Better still, you are doing that for a current whose average value 

you also know, so you can use the shot-noise formula to compare to the current-noise density 

which would be predicted for a current displaying full shot noise. 

 

In the previous case of the photo-current's noise, it was easy to separate the effects of actual 

photocurrent noise from amplifier noise by doing two experiments: 

 the 'control group' had the lamp off, giving zero photocurrent, so the <Vsq> measured 

was wholly due to amplifier noise; 

 and the 'experimental group' had the lamp on, and gave a larger <Vsq> which was 

made of a sum of mean-square noise in the photocurrent, plus the mean-square noise 

due to the amplifier. 

(This works because uncorrelated noise sources have their mean-square values combine as a 

simple sum -- see Section 2.3 to see why there's no cross term in the squarer's time-averaged 

output.) 
 

For the new case of the iin = V/Rin current, you want to use the same two-group comparison: 

 the 'control group' with V set to near-zero; 

 and the 'experimental group' with V set to (say) = 6.0 V. 

 

Subtraction of the two <Vsq> results can isolate the <i
2
(t)> value for  the current of interest 

(freed of amplifier-noise contributions), and that value can be compared to a similarly measured 

value of <i
2
(t)> for photocurrent of equal size.  By this wholly empirical comparison, you can 

falsify, and strongly falsify, the claim that all currents display full shot noise.  There is the 

remarkable implication that 'not all 60-A currents are created equal', but that they can be 

distinguished by their noise.  There is the further amazing implication that macroscopic currents, 

of equal average value, in room-temperature electronics, can show distinctive features that are 

telling you something about the different statistical properties of the arrivals of individual 

electrons. 
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Last note:  The current iin = V/Rin that you've been studying will certainly have another kind of 

noise on it if the source voltage V is unstable, or has noise on it.  In fact, your circuit using Rin 

together with a current-to-voltage converter can alternatively be viewed as an ordinary inverting 

amplifier, driven by the power supply delivering the input voltage V.  (See Appendix A.4 on 

input-stage op-amp topologies.)  So if nothing else adds to the noise, you can re-interpret your 

results as a measurement of the voltage noise on the d.c. voltage V delivered by your 0-11 V 

power-supply.  That power supply has been built to display very low voltage noise -- under  

5 nV/Hz.  (If you get a dramatically larger result, you should look at Appendix A.7, in case 

there's been damage to the noise-suppressing regulators in your 0-11 V supply.) 
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3.6 Photodiodes and photocurrent 
 

This section introduces the empirical description of a very valuable semiconductor device, the 

photodiode.  The description applies both to the small photodiodes we use in instrumentation, 

and the large solar cells used for energy production.  Apart from these applications, the 

photodiode will also be our first choice for generating a macroscopic electric current displaying 

'full' shot noise. 
 

A photodiode is first of all a p-n junction diode, so it's a two-terminal device whose d.c. 

electrical properties can be characterized by a potential difference V applied, and a current i 

passing through.  For a photodiode in the dark, the simplest model for a diode response is 
 

i = i(V) = i0 [ exp ( V /V0) - 1 ]  . 
 

(Section 3.7 suggests why V0 should have a magnitude of about 25 mV.)  A 'reverse bias' for a 

diode is the application of a sufficiently negative V, which gives 
 

i = ireverse  - i0  . 
 

Near 'zero bias', ie. for |V | << 25 mV, a series expansion of the exponential model predicts 
 

i(small V)  i0 (V /V0) = (i0 /V0) V  , 
 

which has the form i  V.  This is Ohmic behavior, with an effective resistance of V0 / i0, which 

is typically very large.  Finally, for V >> 25 mV, the exponential term dominates the (-1) term 

in the brackets, and we get 
 

i(large positive V)  i0 exp (V /V0)  . 
 

We'd call this 'forward conduction', which is the ordinary application of power diodes.  But we'll 

see that photodiodes are typically not operated in this region. 
 

There are relatively direct ways of measuring the i = i(V) curve (laid out for your optional work 

in Sec. 3.7), but here we show results for the type of photodiode included in your Noise 

Fundamentals kit.  Fig. 3.6 shows (as its uppermost curve) the behavior described by the diode 

equation above.  There is no way that a plot using a single choice of scale on the vertical axis can 

encompass the large variation in the currents that could be measured, which range from pA to 

mA (a variation by factor 10
9
). 

 

Thus far, we have a diode model which describes a photodiode in the dark.  What happens when 

light falls onto its active surface?  The results are quite simple:  the former curve described by 

i(V, dark) is everywhere shifted vertically downward in Fig. 3.6, by an amount ilight which is 

directly proportional to the illumination level I.  The proportionality constant is called the 

responsivity r, and it has units of A/W (Amperes of photocurrent per Watt of light incident on 

the diode).  So in this new model, 
 

i = i(V, I) = - r I + i0 [exp ( V /V0) - 1 ]  , 
 

which predicts the lower curves shown in Fig. 3.6.  This displays the results from illumination 

levels of 0, I1, and 2I1, where I1 is some reference level of illumination.  Again, Sec. 3.7 

describes how you can take such data for your own photodiode, if desired. 
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Fig. 3.6:  The current passing through a photodiode as a function of potential difference across its 

terminals.  Top curve: photodiode in darkness;  middle curve: photodiode in light;  bottom curve: 

photodiode in light twice as bright. 

 

For instrumentation purposes, it is very valuable to measure the 'short-circuit current' of a 

photodiode.  This is the (photo)current which flows when an external circuit enforces V = 0 (as 

a short circuit would).  The model above predicts 
 

isc = i(V = 0, I) = - r I  , 
 

which is a current strictly proportional to the level of illumination I.  In fact, for light not too 

intense, this proportionality extends over six or more orders of magnitude, perhaps from 1 nA to 

1 mA of photocurrent for your photodiode. 
 

The responsivity r of a photodiode is not just an empirical value provided by the manufacturer, 

but a constant which can be understood quantum-mechanically.  We imagine the illumination I is 

provided by a 'rainfall' of photons, arriving in quantity N during time .  If the photons are from a 

light field of frequency f, then each one delivers energy hf, so the illumination delivered by their 

average rate of arrival is I = (hf)(N/).  Now if hf is large enough (bigger than the semi-

conductor's band gap), then the simplest assumption is that each arriving photon is absorbed in 

the semiconductor, and lifts one electron from the valence band to the conduction band.  Once in 

the conduction band, that electron is free to flow as part of the photocurrent i.  So under this 

assumption of '100% quantum efficiency', the current i will be given by (-e)(N/).  Thus we have 
 

i = -e (N/) = (-e/hf) (hf N/) = - (e/hf) I  , 
 

so the responsivity is r = e/(hf).  For illumination by red light of wavelength  = 650 nm, we 

compute frequency f = c/ = 460 THz = 4.6 x 10
14

 Hz, and predict responsivity 
 

r = e/(hf) = (1.6 x 10
-19

 C)/(6.6 x 10
-34

 Js · 4.6 x 10
14

 Hz) 

= 0.53 C/J = 0.53 (C/s)/(J/s) = 0.53 A/W  . 
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The responsivity of actual silicon photodiodes is embarrassingly close to this computed value.  

Manufacturer's graphs of the responsivity also displays (approximately) the predicted variation  

r  1/f, or r  , with respect to the wavelength of the light used.  But for   1 m, the photon 

energy is too small for silicon's band gap, and the response drops very rapidly to zero.   So the 

room-temperature thermal photons in which a photodiode is immersed do not contribute to the 

photocurrent. 

 

Now the short-circuit photocurrent isc shown in Fig. 3.6 is not the only way to use a photodiode.  

In practice, we often use a 'reverse-biased' photodiode, which has V large and negative -- at the 

far left in Fig. 3.6.  This predicts 

 

i(reverse V, I)  - r I - i0  . 

 

The disadvantage is that the (typically very tiny) reverse current i0 flows in addition to true 

photocurrent, but the advantage is that the reverse bias applied to the photodiode thickens the 

depletion layer in the p-n junction.  This lowers the device's capacitance, and speeds up its time 

response.  We've seen this effect used in Sec. 3.3 to get, from the improved time of response, the 

largest possible bandwidth for the photodiode's performance.  This enables the circuit to respond 

uniformly to current fluctuations (ie. to shot noise) out to a maximum possible frequency. 

 

Returning to Fig. 3.6, and temporarily leaving instrumentation in favor of power generation, we 

note that the maximum-power point of operation lies not at the short-circuit, V = 0, location, 

but instead at a point that falls in the fourth quadrant of our plot.  This desired operating point is 

located where the magnitude of the product i(V) · V is maximized.  Thus solar cells in 

operation need to be connected to an external circuit which imposes the correct potential-

difference V, so as to operate at such a point in the (V, i) plane. 

 

Finally, plots such as Fig. 3.6 also show the 'open-circuit voltage' Voc.  This is the V that 

would be required to enforce i = 0, or equivalently, the V that would develop across an 

illuminated, but dis-connected, photodiode.  Some open-circuit voltages can be seen as x-axis 

intercepts in Fig. 3.6.  The diode model above predicts that such points are located where 

 

0 = i(Voc, I) = - r I + i0 [ exp (V /V0) - 1]  , 

 

and if the illumination is not very dim, ie. if V >> 25 mV, this can be solved to give the 

approximate result 

 

Voc  (V0) ln [r I / i0 ]  . 

 

This approximately-logarithmic response to illumination I is sometime useful, but a photodiode 

used in this way suffers from slow response in time, and a solar cell used in this way delivers no 

useful power. 
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3.7 Photodiodes' current-voltage curves 

 
In previous sections you have used photodiodes as transducers from light to photocurrent, and 

also as sources of noise.  This section drops back from noise measurement, to offer you a way to 

confirm the current-voltage characteristics, the i-V curve, of such devices.  The results will test 

the models of Section 3.6 for your photodiode, but they apply much more generally to the 

operation of photovoltaic or solar-cell modules designed for the generation of power. 

 

We seek here to measure the photodiode current, i, as a dependent variable.  It depends on two 

independent variables.  The one which you can measure absolutely is the potential difference V 

maintained across the diode.  The other which you can measure relatively is the illumination of 

the photodiode.  This will enable you to measure a series of points along an i(V, I) curve, with 

as many points as you like along the V-axis, and repeating for some relatively-known values of 

illumination, such a I = 0, I1, and 2I1. 

 

Our suggestion for how to control the level of light falling on the photodiode is to use the red 

LED to illuminate it, while both are held in the black plastic structure illustrated in Fig. 3.1d.  

When that LED is off (and the whole assembly is in the dark, inside the closed-up low-level 

electronics box), you can assume the illumination level is adequately close to zero.  Then you 

may further assume that for moderate levels of current passing through the LED, its light output is 

a linear function of the current.  So if you can control the LED current to take on the values of 0, 

5, and 10 mA, you can assume that three light levels in proportions 0:1:2 fall on the photodiode.  

(This method will not give you the absolute levels of illumination, in W/m
2
, however.) 

 

To control the current through the LED requires the use of an additional external d.c. power 

supply.  You can attach that power supply to the LLE’s Series-Resistance BNC input, and use the 

1-k series resistor to limit the LED current.  To have 10 mA flowing through the LED will entail 

a voltage drop of (10 mA)(1  k) = 10 Volt across the resistor, and there will be another voltage 

drop of order 2 V across the LED itself.  So you’ll need a power supply variable in the 0 to +15-V 

range, and you’ll need to have the polarity of the LED arranged so that this positive supply will 

drive forward current through the LED, and light it up.  But the point is that an external current 

meter can be used to measure the actual current flowing through the LED.  By this means you can 

get LED currents in any proportions you wish, including for example the choices 0, 5, and 10 

mA. 

 

Our suggestion for how to measure the current being generated by the photodiode is to use the 

transimpedance amplifier just as in Section 3.3.  If you use a feedback resistor of Rf = 10 k, 

then the output voltage of this TIA first stage will be visible at the MONITOR output of the pre-

amp, and its size will be given by (i)(10 k).  Thus Vmon/10 k will give the absolute value of 

the photodiode current i.  But an added feature of the TIA is that its use ensures that one electrode 

of the photodiode is being held (by feedback) at ground potential.  Then the potential measured 

at the other electrode of the photodiode will be sure to give you the potential difference, V, 

across the photodiode.  Finally, we suggest the use of the adjustable bias supplies inside the LLE 

as a source of this voltage.  You will probably want to use, in turn, both positive and negative 

polarities for the bias you supply to the photodiode. 
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Fig. 3.7a:  Schematic diagram for circuits used in measuring the i-V curve of a photodiode. 
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Fig. 3.7b:  A wiring diagram for the circuit. 

 

There are conventions on polarity which are used in (some) discussions of photodiodes.  The one 

we adopt here, as in Section 3.1, starts with a photodiode in the dark.  We call positive the 

potential difference that can drive a substantial (say, 100 A) current through the photodiode.  

(By contrast, we call negative the potential difference that will drive only a tiny reverse current 

through the photodiode.) 
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Given this convention on the voltage, or V-axis, we call the substantial current that can be made 

to flow through a photodiode in the dark a positive forward current.  (For the connections you 

have made between the photodiode and the TIA, this current has produced a negative output at 

the monitor point.) 

 

Now with these conventions established, you will find that a photodiode, maintained at any 

constant level of potential difference V, will display a photocurrent which is negative by our 

convention on current.  The result is that the point in the i-V plane which represents the point of 

maximum power generation, ie. the point of maximum conversion of light into electrical energy, 

lies in the fourth quadrant of the plane. 

 

Now that you know how to control and measure your variables, and what sign convention to use, 

you can gather data which will fill in points in the i-V plane.  You can fit the data for an un-

illuminated photodiode by the model discussed in Section 3.6,  

 

i = i(V) = i0 [ exp ( V /V0) - 1 ]  . 

 

The values of i0 and V0 you obtain ought also to describe the photodiode when it is illuminated, 

when your model for the current will need to include a (negative) offset proportional to the 

illumination level. 

 

If you know enough about p-n junction diodes, you will know that the parameter V0 is not merely 

an arbitrary fitting parameter for your diode.  It is instead shorthand for a deeper understanding 

of the junction properties.  Insofar as recombination is unlikely in the p-to-n transition regions in 

the p-i-n photodiode structure, the expected form of the i-V curve is 

 

i = i(V) = i0 [ exp ( e V /(kB T)) - 1 ]  . 

 

For the combination ( e V /(kB T))  to represent  V /V0, it must be that  

 

V0 = kB T / e  , 

 

where T is the (absolute) temperature of the photodiode during your measurements.  Now you 

can see that V0 has been elevated from a mere curve-fitting parameter to an indication of some of 

the physics of the p-n junction in the photodiode. 

 

The model above will show deficiencies at larger positive currents (above 10 or 100 A) because 

it does not yet include the effect of ordinary series resistance of the photodiode structure.  You 

are free to improve the model to include this effect, at the cost of introducing another fitting 

parameter. 
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4. Noise as a function of temperature 

 
4.1 Equipment, methods, and issues 
 

This section explains the use of the 'thermal probe' and its associated Dewar vessel. 

Together they make it possible to measure Johnson noise from a source resistor as a 

function of its temperature T.  The system is designed for use with liquid nitrogen (LN2) 

as a coolant, and an electrical heater allows exploration above that base temperature.  The 

probe is suited for use in the 77 K - 400 K range.  The lower end is set by the normal 

boiling point of LN2; the upper end (which is +127 C) is set by temperature limits of 

wires and components in the probe head, and is enforced by the limited power available 

to the heater. 

 

The motivation for this temperature coverage is of course the theoretically-predicted  

(4 kBT R f) temperature dependence of the mean-square Johnson noise voltage.  Using 

the accessible temperature range, you'll be able to vary this quantity by a factor of 4 or 5.   

 

SAFETY WARNING: The Dewar supplied is made of un-silvered glass to help you see 

the liquid level inside.  Because it's made of glass, it will shatter if you drop it.  The 

disaster will be even more dangerous if the Dewar is full of LN2 when dropped.   

So: do NOT drop the Dewar, and use and store it only in the base built to hold it securely. 

 

SAFETY WARNING:  Liquid nitrogen is very cold, boiling at about -195 C.  It is 

dangerous to have it contact your skin, and even more dangerous to undergo skin contact 

with clothing soaked with LN2.  The hazard is not chemical, but physical. You can suffer 

frostbite, and permanent nerve and/or tissue damage, from the localized freezing that will 

occur. 

 

There is also a special electronics issue involved with the use of the probe.  The source 

resistors are now not built into the pre-amp module, but instead a few feet away. They are 

connected to the first stage of amplification by wires inside the low-level electronics box, 

and then by a coaxial cable over to, and down into, the probe.  We have succeeded in 

preserving the required electrical grounding and shielding of those remote resistors 

against external electrical interference; but the inevitable cost is much larger capacitance 

between the 'live wires' and the shields.  This capacitance (about 100 pF) has 

consequences on the bandwidth of the noise signals.  The Johnson noise is still spectrally 

'white' at its origin, but its spectrum is already modified by capacitive effects when it 

reaches the first amplification stage.  Some solutions to the problem will be presented. 
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4.2 Two-temperature Johnson-noise measurement 
 

This section teaches you how to prepare your system for measuring Johnson noise in 

'remote resistors'.  It pre-supposes that you've worked through Chapter 7 and Sections 

1.1-1.5 on how to measure Johnson noise in 'local resistors'.  The goal is to measure 

Johnson noise at two distinct temperatures:  ambient and liquid-nitrogen. 

 

The first thing you'll need to do is to confirm the installation of resistors into the probe.  

The unit is shipped with resistors RA = 10 , RB = 10 k, and RC = 100 k already 

installed, as you can see in the Figure 4.2a: 
 

 
Fig. 4.2a:  The interior of the temperature probe, showing the A, B, and C positions of source 

resistors. 

 

Notice that to get this view, you have to loosen four screws, and remove four more, to 

slide away the shielding sleeve on the probe.  The resistors' 'hot ends' are on the circuit 

board, and the ends near the copper flange are grounded.  Once you've confirmed the 

resistors are present, you need to close up the shielding sleeve again. 

 

 
 

Figure 4.2b The 'breakout box' 
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To facilitate checking that all the components are properly connected inside the variable 

temperature probe, we have included with the unit a 'breakout box' shown in Figure 4.2b. 

This box connects to the variable-temperature probe and has 8 test points, one for each 

wire lead from the components in the probe to the connector. Points RA, RB, RC, and GND 

can be used to test the resistors with an ohmmeter, since all three resistors have a 

common ground. (Note that the 10  resistor will likely read 12  because of the 

resistance of the leads.) 

 

The heater leads are present at H1 and H2 which measure about 75 . The diode 

thermometer should be checked with a multimeter (on the diode-testing scale). It should 

read about half a volt, if the positive lead is connecter to either D1 or D2 . Note that there 

is only one diode thermometer connected at the factory and both wires D1 and D2 are 

connected to it. 

 

Internal wiring brings three 'live wires' from the three source resistors to a junction box 

atop the probe, and then via a cable to a connector for the Temperature module of your 

low-level electronics.  Before you connect the probe to that module, open up the low-

level electronics (by the familiar flip operation) to see what connections you need to 

make between the Temperature module and the Pre-amp module.  The Figure 4.2c shows 

the necessary connections.  In particular, you need three wires connecting the RA, RB, and 

RC resistors to the Aext, Bext, and Cext positions in the pre-amp.  The 'other wire' of each of 

the three resistors is already grounded to the body of the probe, as the resistors are both 

thermally and electrically connected to the copper block through the terminal post .   
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Fig. 4.2c:  Wiring diagram of the interior of the low-level electronics, to bring the A, B, and C 

remote resistors to the Aext, Bext, and Cext positions of the Rin selector, and to connect the 

temperature transducer and heater. 

 

Also shown in the diagram are the connections you'll want to make for the temperature 

transducer, and the heater, in the probe.  You'll need those devices in future sections. 

Re-flip the low-level electronics into its enclosure, confirm its power is ON, close up the 

box, connect the probe cable to the thermal module, and install the probe as shown in the 

photo below.  Note that the Dewar is absent, and the whole probe is at ambient 

temperature. 
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Fig. 4.2d:  A mounting for the Dewar support, and temperature probe (with Dewar vessel 

removed). 

 

Now you should be able to measure (room-temperature) Johnson noise from three remote 

resistors, just by using the A, B, C, positions of the source-selector (Rin) switch on the 

pre-amp.  Other positions of this switch make available the noise from a set of 'local' 

resistors, including values of 10 , 10 k, and 100 k. 

 

For initial measurements, we suggest a bandwidth of about 10 kHz (set perhaps by using 

a 1-kHz high-pass, and a 10 kHz low-pass, filter).  As usual, you'll need to recall that the 

standard gain is G1 = 600 in the pre-amp (if that's in its default condition), and you'll need 

to use a suitable gain G2 in the main-amp to get the squarer to operate in its optimal 

regime.  As previously, here too you'll need to use the 10- source resistor as a way to 

get the amplifier-noise contribution, which needs to be subtracted from the mean-square 

noise measurements. 

 

It is important that you take data from both local and remote 10 k and 100 k source 

resistors, and also that you try some different bandwidths.  Because of the effects of 

probe capacitance, it is to be expected that the values of <VJ
2
(t)> you infer will be smaller 

for the remote, as compared to the local, resistors.  The deficiency will be larger for the 
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larger source resistance, and a broader bandwidth.  To see why this is expected, compute 

an RC time-constant for choices of R of 10 k and 100 k, now assuming C  100 pF for 

connections to the probe resistors.  Then compute a corner frequency of the undesired 

one-pole low-pass filter that results, from fc = 1 / (2 ).  See Appendix A.8 for how to 

handle the consequences. 

 

Use these (all room-temperature) results to decide on a measurement strategy that you'll 

use when the probe is not at room temperature.  When you've worked that out, it is finally 

time to cool your probe.  The photo above suggests how a (warm, and empty) Dewar can 

be slid into place, mounted into its movable base, and used to surround the probe.  You 

can lower that base and the Dewar together and pour about 1 liter of LN2 into the Dewar. 

[Go back to Section 4.1 and re-read the SAFETY WARNINGS we've posted there -- 

liquid nitrogen is a tool, or a hazard, but not a toy.]  Wait for the boiling to subside, slide 

the black foam insulating cover down onto the Dewar's mouth, and now use the clamp on 

the Dewar's base to raise the Dewar until the probe makes contact with the LN2.  Here, as 

in general, the probe's sample chamber should end up at about the mid-height in the 

Dewar, and (for purposes of this experiment, exceptionally) also to end up with its copper 

bottom plate immersed in the liquid.  (In later sections, you'll want only the brass 'cold-

finger' on the bottom of the probe to be immersed.)  The purpose is to ensure that your 

resistors really are at the temperature of your boiling LN2. 

 

When all the extra boiling has settled down, you can repeat your noise measurements, 

using both the local and the remote resistors, and using the protocol you've established.  

You may need to change the gain G2 to keep the squarer in its optimal regime. 

 

There's one more necessary measurement task.  Your 'remote resistors' are of 1% 

tolerance, but that does not guarantee that their 77-K resistance matches their nominal 

value to this accuracy.  So you'll want to check their 'cold resistance', ie. their R-values 

when they're immersed in LN2.  To get access to their electrical properties, we've 

supplied a 'breakout box', to which you can attach the cable of the probe, to get 

connections with all the items down inside it (see Appendix A.1).  For remote resistors 

immersed in freely-boiling LN2, you can not only be pretty sure of their temperature, you 

can also be quite confident that the diagnostic currents used by an ordinary ohmmeter 

will not warm the resistors significantly, as you measure their values. 

 

Here's a final note -- you might get to this point, and for the first time have a cold probe 

immersed in leftover LN2.  Here are some suggestions for what to do at the end of a day's 

experimentation. 

 

When you're done with your work, it might be a good idea to lower the Dewar's base, 

remove the Dewar, dispose of the surplus LN2 by your locally acceptable method, and lay 

the Dewar down on its side to warm up.  (Why is this better than leaving it standing 

vertically?  If you do lay it down, do NOT let it roll away to its doom.)  This removal will 

leave a cold probe in the open air, and you do NOT want to touch it -- contact with cold 

metal can lead to immediate frostbite, as well as the dreaded 'pump-handle effect'.  

Instead, leave the probe to hang in ambient air, and warm up spontaneously.  If you're in 

a hurry, or if condensation of water onto the chilly probe is a problem, leave it in open 
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air, with the heater running, perhaps set to 5 or 6 turns on the dial.  Then it will warm and 

eventually equilibrate to a safe-to-touch temperature, yet far enough above ambient 

temperature to ensure that it dries out properly. 

 

 

Historical insight:  Once you have data of the sort acquired above, here's one use you can 

make of your ambient-temperature and LN2-temperature values for <VJ
2
(t)>.  Put yourself 

back into the era of the Centigrade scale of temperature, on which ice melted at 0 C and 

water boiled at 100 C, by definition.  On such a scale, your ambient temperature might 

be 22 C, and your LN2 temperature might be -195 C (find an old reference which 

quotes you this value -- how do you suppose that it was established?).  Now plot your two 

<VJ
2
(t)> points as a function of the Centigrade temperatures at which they were 

measured.  You have only two points, so of course you can fit a line to the two points.  

The pay-off is to find the x-axis intercept of this line, as the extrapolated low-temperature 

point at which Johnson noise vanishes. 

 

What you're doing is 'locating absolute zero' according to a noise-based measurement.  It 

is a non-trivial technical, and intellectual, challenge to test whether Johnson noise 

extrapolates to zero at the same temperature at which the pressure of an ideal gas 

extrapolates to zero.  Success in such tests suggests that the Kelvin scale is not just 

absolute, but also physics-wide.  From a modern point of view, we depend on such a 

result to enable us to claim that the T-variable which appears in the Johnson-noise 

equation really is the absolute temperature, ie. the temperature measured relative to the 

absolute zero which is established by procedures such as these. 
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4.3 Temperature measurement and modeling 
 

Once you know how to measure Johnson noise at two temperatures, it's time to think 

about how to control, and measure, a variety of other temperatures, so as to let T be an 

independent variable.  Section 4.4 deals with temperature control in this apparatus; here 

we take up a method of temperature measurement. 
 

First recall that the TeachSpin probe is intended for use (only) in the 77 - 400 K range.  

The lower end of the range is set by the open-air boiling point of LN2.  The upper end of 

the range is set by temperature tolerances of the devices and wiring in the probe.  It is 

also (about) as high a temperature you can reach with the power-limited heater installed, 

even if you use the probe within a Dewar filled with nothing but air. 
 

The probe comes with a 'transdiode' or 'diode-connected transistor' as the electrical 

transducer for temperature.  The device is a pnp-type silicon transistor, electrically 

connected as shown in Figure 4.3a, 

base

collector

emitter

PNP transistor

TIP32C

Tab is connected

to collector

 
 

Fig. 4.3a:  Schematic diagram for a pnp transistor in its transdiode configuration. 

 

to create a device which very closely approximates the i-V response of an ideal two-

terminal (abrupt-junction) p-n diode.  The simplest mode of operation of such a device is 

to run a constant current (perhaps 10 A) into the transdiode's emitter, to connect its base 

and collector to ground potential, and to record the potential difference across the diode.  

This voltage turns out to be a monotonically decreasing function of temperature from 77-

400 K. 

 

 Fig. 4.3b:  The transdiode in the temperature probe. 
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The Temperature Control module of the Low-Level Electronics makes the use of the 

transdiode as simple as possible.  If your wiring matches that of Figure 4.2c, you can 

choose, by selector switch, the current with which the diode is excited, and read, using a 

digital voltmeter, an electronically buffered copy of the potential difference that results.  

(To what extent can you neglect the voltage drop that surely exists in the wires?)  For a 

diode current of 10 A, that voltage will be about 400 mV at room temperature, changing 

by about -2 mV/K with increasing temperature (ie. changing by about +2 mV/K with 

decreasing temperature).  But the transdiode requires calibration before it can be turned 

into an actual thermometer. 
 

Here's the simplest model which describes the i-V curve on which you rely for the 

calibration.  The transdiode connection simulates a p-n junction diode with an ideality 

parameter  = 1, so that to a fine approximation we can write the diode current i as a 

function of potential difference V and temperature T as 
 

i(V, T) = i0(T) [ exp (e V/(kB T) ) - 1] . 
 

(See Sconza in the Bibliography.)  It turns out that (except at the highest temperatures     

T  400 K, giving the lowest values of V  135 mV), the ratio (e V/kB T) is always 

large enough such that e
eV/kT

 >> 1, so we can drop the (-1) contribution in the result 

above.  Then we have 
 

ln i(V, T) = ln i0(T) + e V/(kB T) , 

or 

V = (kB T /e) [ln i(V, T) - ln i0(T)] . 
 

This allows us several ways to use the transducer, varying in their complexity and 

accuracy: 
 

0) Using a 'look-up' table: 

Included with the test documents in your manual is a table of transducer voltages 

expected at a series of temperatures in the 77 – 400 K range.  The table of voltages is 

particular to the transducer installed in your temperature probe, and it is derived by a 

series of steps which make it accurate, to perhaps 1 mV of potential, or about ½ K of 

temperature, over the whole range of the table.  The numbers in the table depend on 

several sources of information: 

 the temperature calibration, by Lake Shore Cryotronics, of a secondary-standard 

temperature transducer, their DT-471 sensor; 

 the use of that temperature sensor to calibrate, at TeachSpin, a standard version of 

the TIP32C transdiode; 

 the confirmation at TeachSpin that such transistors do differ among themselves, 

but by a model which is adequately linear in the temperature; 

 and finally a room-temperature measurement, ie. a single-point calibration, of the 

actual transdiode in your temperature probe. 

We've used all these steps to generate the table included with your apparatus.  Of course 

you can check this table against measurements on your sensor at two known 

temperatures:  ambient temperature, and liquid-nitrogen temperature.  (Learn your local 

altitude's effect on the boiling point of liquid nitrogen before you trust such a check.)  
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Using this table 'in reverse' to deduce indicated temperature from voltage-as-read will 

require some sort of interpolation, or fit.  You might try making a plot of the tabulated 

data, and then use a local, two-point interpolation, or alternatively use a global fit 

motivated by some of the models below. 

 

1) More 'primary' but less precise: According to the model above, we can use the 

transdiode, without any external calibration, if we compare results at two known currents.  

So if we're at some fixed but unknown temperature Tx, and we record voltage V10 for the 

use of current 10i, and also record V1 for the use of current 1i, then we can write 
 

V10 = (kB Tx /e) [ln (10 i) - ln i0(Tx)] ; V1 = (kB Tx /e) [ln i - ln i0(Tx)] , 
 

and upon subtracting, we find  
 

(V)  V10 - V1 = (kB Tx /e) [ln (10 i) - ln i] = (kB Tx /e) ln(10) . 
 

Hence in this model, we extract the result 
 

Tx = [e (V) / kB] (ln 10)
-1

 , 
 

which depends on two measured voltages and two fundamental constants (and nothing 

else, either at TeachSpin or at Lake Shore, except confidence in the diode model above!).  

Notice that the combination  e (kB ln 10)
-1

 = 5.04 K/mV is the constant which maps the 

experimentally observed difference between two voltages to an inferred absolute 

temperature.  Notice that the Temperature Control module makes it easy to make several 

i-vs.-10i comparison.  Be sure you try all the combinations, at least at room temperature, 

to see what confidence you can have in your results. 

 

In this technique, you might worry about iR-drops in the wires to the transdiode, and 

inside the transdiode itself.  You can also worry about self-heating in the diode – how 

much power is it dissipating at your highest currents? 

 

One advantage of the subtraction-of-voltages in this method is that it cancels any d.c. 

offset voltage of the buffer amplifier which copies your transdiode voltage to your 

multimeter.  Typical offsets are under 0.5 mV, but you might find a 2-mV offset.  In 

using the non-subtracting methods below, see if you can devise a way to measure the 

combined offset in your combination of buffer-amplifier plus multimeter. 
 

2) Less 'primary' but more precise: The model we'll now introduce requires a model 

for the diode parameter i0(T), which is given (see Sconza in the Bibliography) by 

.ln)
2

3(lnln

)0(

0 T
Tk

TE
Di

B

g 



  

Here Eg
(0)

 is the zero-temperature limiting value of the diode's band gap, and  is the rate 

of variation of band gap with temperature.  The parameters D and  are presumed to be 

constants.  So in this model, we have 

.ln)
2

3(ln),(ln

)0(

T
Tk
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D
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B
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
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Now we suppose that we use the transdiode at one fixed setting of current, so that (at any 

T-value) the left-hand side of this equation is a constant.  Gathering all the constants, we 

are led to 

.]ln)
2

3([]ln)
2

3([)(

)0()0(

Tconst
e

Tk

e

E
T

Tk

E
const

e

Tk
constiV Bg

B

gB 
  

This result in turn leads to two sub-models: 
 

2a) Since the function ln T changes much less rapidly than does T itself, the equation 

above can be approximated as 
 

V(i = 10 A, T)  c1 - c2 T . 
 

It turns out that c1 and c2 are positive constants in this way of modeling the transducer.  

The best feature of such a simple model is that the two unknowns in it can be found 

empirically by a simple 'two-point calibration'.  The use of two adequately-known 

temperatures, such as ambient and LN2 temperatures, gives two V readings, and these 

together fix the values of c1 and c2 .  Then the model is fully established, and of course 

can be inverted to give T from a measured value of V(i =10 A). 
 

But this model is imperfect, since the neglect of ln-T terms has been added to any other 

approximations in the model.  So though the model will reproduce (by construction) the 

right results near 77 and 295 K, it gives errors between the two calibration points, and 

also in the range above 300 K.  The temperature errors can be as large as about 5 K; still 

they do not undercut the value of V as a temperature indicator. 
 

2b) To do a better job requires more information.  The theoretical diode model above 

suggests that an equation 
 

V(i = 10 A, T)  d1 - d2 T  - d3 T ln T . 
 

ought to fit the data better than the two-parameter model above.  Of course it requires 

three items of input data to fix the values of three unknown coefficients.  Here are two 

ways to find such data: 
 

2b,i) If you have access to 'CO2 snow', easily made just from compressed CO2 gas, you 

could try to fill the Dewar with it, and then bury the probe into that 'snow'.  The solid/gas 

phase change of CO2 at one-atmosphere pressure gives a third temperature fixed point, 

neatly intermediate between the LN2 point and ambient temperatures (you'll have to look 

up its location in temperature). Using it, together with your two previous fixed points, can 

give you a three-point calibration, ie. it will enable you to solve for all three constants in 

the model above.  Experience suggests that such a temperature scale can yield a V-to-T 

mapping with temperature errors of order 1 K or less, at least in the 77 - 300 K 

temperature range. 
 

Some other temperature fixed point could do as well as this dry-ice point. But we do not 

recommend the use of the historic 'steam point' nominally at 373 K.  That's because in a 

bath of steam, water will inevitably condense on and inside the probe, and will be 

conductive enough to throw into doubt the electrical measurements.  (That's in addition to 

the safety hazards of piping live steam into the Dewar.) 
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2b,ii) Lacking access to a third fixed point, you can rely on someone else supplying you 

with extra information.  If you rely on the behavior of your particular transdiode to follow 

that of general devices of its type, and you rely on TeachSpin measurements of such 

devices against supplier-calibrated temperature transducers, then you can try a model 
 

V(i = 10 A, T)  d1 - d2 T  - d3 T ln T . 
 

Here the value d3 = 0.405 (for T in Kelvin, and V in milliVolts) is the mean result 

measured for some devices from a batch of nominally-identical transducers (from which 

batch your device was picked), and it is uncertain by about 0.001. 
  

If you take this coefficient as a given, you're again left with a two-free-parameter model, 

which you can establish using data from only two temperature fixed points.  Notice that 

in this model, d1 ought to give Eg
(0)

, a band-gap constant characteristic of the transistor 

material; similarly, d3 is expected to be a constant for devices made of a given material, 

hence for all the devices in a batch.  Relative to this sort of three-parameter fit, the 

residuals are still not zero, and still show systematic variation, but it's variation that's 

'worth' only about 1 Kelvin over the 77 - 400 K range. 
 

****** 
 

So much on electrical thermometry and calibration -- here's a separate issue.  At best, any 

of these diode models can tell you the temperature (of the p-n junction) of your 

transducer, but what you really want to know is the temperature of your Johnson-noise 

source resistors.  These devices differ in their degree of thermal anchoring to the copper 

base of the probe.  The first implication is that when the temperature is changing, it might 

change at different rates for the transducer vs. the resistors.  The second implication is 

that if there's a vertical temperature gradient inside the probe chamber, the transducer and 

the resistors might be sampling distinct temperatures.  A third worry is that the resistors, 

'anchored' in temperature by their lower-wire connection to the terminal block, might 

have an internal temperature raised above that of the block, by virtue of the heat-flow that 

is reaching them from above, via their electrical 'live wire'. 
 

What are the cures for these worries? 
 

1)   You can minimize them by design. In the TeachSpin probe, the heat flow down the 

'live wires' is arranged not to flow through the source resistors, but to bypass them.  The 

'heat current' ought mostly to flow into ceramic 'thermal anchors' near the top of the 

probe body.  Have a look at how this is done the next time you open up the probe's shield. 
  

2)   You can estimate, or bound, the size of these effects -- by noise thermometry(!).  

Suppose you've found ways to measure a noise signal, so a quantity proportional to 

<VJ
2
(t)> is being displayed on your meter.  If you use a large bandwidth and about a 1-s 

averaging time, you can certainly get better than 1% relative precision (if not accuracy) in 

this number.  Now you can put the source resistor alternately in two conditions: 

 entirely 'drowned' in LN2, and certainly at 77 K, as compared to 

 being held near 77 K, perhaps by having the probe's sample volume held above, 

and its cold finger held in, the volume of the LN2. 
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If temperature gradients in the resistors are an issue, this a:b comparison ought to be 

sensitive enough to reveal, and even to quantify, them.  The only drawback of this 

technique is that boiling LN2 inside the probe's chamber creates bubbles, and 

'microphonics' that might create excess noise. 
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4.4 Temperature control and management 

 
Section 4.3 describes an electrical way to monitor the temperature of the copper base of 

the probe, and this section will teach you how that block can be arranged to have a 

temperature held fixed somewhere other than 77 K or ambient temperature.  It's all done 

with a heater, which you can see is mounted to the copper bar across the bottom of the 

probe's body. 

 

That heater is a power resistor, of resistance 75 , whose two leads are brought all the 

way to the Temperature Control module in the Low-Level Electronics.  In that module 

there's a special low-noise power supply capable of delivering a d.c. voltage, variable 

from 0 to 25 V, controlled by a 10-turn knob.  Full power (at 10 turns clockwise) delivers 

25 V, giving a heating power V
2
/R = (25 V)

2
/75  = 8.3 W.  At 5 (rather than 10) turns 

on the dial, the voltage is halved, and the power drops to about 2.1 W.  Because of the  

V
2
-law, you get rather fine control of the power levels at the low end of the range. 

 

Here's a 'thermal circuit' showing how the heater can control the temperature. 

T
a

Thermal mass

M @ T
b

T
c

Thermal

Resistance

small-theta

Thermal

Resistance

big-Theta

P
IN

 = V2/R

ambient

temperature

coolant

temperature
 

Fig. 4.4a:  A 'thermal circuit' showing heat-flow paths from ambient temperature, to the sample 

block, and to the cold-finger. 

 

There's a heat flow from the heater (P = V
 2

/R ), into the copper fin that is under your 

direct control.  There's another heat flow from the fin, down into the LN2, which is partly 

under your control -- in particular, you can adjust the height of the Dewar so as to 

immerse, into the LN2, either 

     a) the thin part of the brass 'cold-finger', or 

     b) the thick part of the brass cold-finger, or 

     c) the whole copper fin below the probe. 

This gives you some control over the 'thermal resistance'  between the probe and the 

LN2. Meanwhile there's a much larger thermal resistance  between the probe's body and 

room temperature -- larger because of the use of a thin-wall stainless-steel tube of poor 

thermal conductivity to join the probe's body to its warm top. 
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Since thermal resistance is defined (parallel to i = V/R) via 
 

 heat flow = (temperature difference)/(thermal resistance), 
 

we can model heat flows as soon as we define three temperatures: 
 

 Ta, the ambient temperature at the top of the stainless tube; 

 Tb, the temperature of the copper block; 

 Tc, the temperature of the LN2 coolant, ie. about 77 K. 
 

Steady-state requires that we have the heat flow into the block matching the heat flow out 

of it, giving us 

.)(


cbba TTTT
heaterP







  

Solving for the block temperature, we get 

.][)/1(
2

1

R

V
TTT acb 


 


   

If we temporarily neglect any heat leaks down the stainless tube, we're making the   

approximation, and we get 

Tb  Tc +  (V
 2

/R) . 
 

To get temperatures in the 77 - 150 K range, this suggests the use of modest V and small 

 (ie., a small thermal resistance  large thermal conductance  immersing the thick 

part of the cold-finger into the LN2).  To get temperatures in the 150 - 300 K range, this 

suggests the use of larger V and large  (ie., immersing only the thin part of the cold-

finger into the LN2). 
 

To get temperatures above ambient, we suggest starting at ambient and then surrounding 

the probe by a 'dry' Dewar, empty of LN2.  Now the cold-finger is irrelevant, and the 'heat 

current' from the heater will flow up the stainless steel tube, giving a result 
 

Tb  Ta +  (V
2
/R) . 

 

All of these models have entirely neglected convective and radiative heat flow, and none 

of them can be trusted quantitatively, but still they do offer useful guidance. 

 

If heat flows do not match, then we're out of the steady-state case, and the block 

temperature will change.  A typical thermal model for the block, with temperature Tb(t), 

would have 

,
2


cbbab TTTT

R

V
P

dt

dT
M







  

where M is the 'thermal inertia' of the block, in turn the product of its actual mass and its 

specific heat.  In the TeachSpin probe, the total mass of copper (block and fin, cover, top 

plate, and screws) is about 180 g, and the specific heat of copper (at least near ambient 

temperature) is 0.34 J/g K, so we get for the thermal inertia 

 

M  (180 g) (0.34 J/g K) = 60 J/K. 
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The differential equation above predicts the steady-state case if net heat flow is zero, and 

it predicts exponential approach to a new steady state if net heat flow starts out not zero.  

In principle, the time constants of such re-equilibrations can tell you something about , 

given the above estimate for thermal inertia M.  In practice, it's easier to use this model in 

the short-term regime, where it predicts a linear behavior in Tb(t). 

 

Suppose you're done with data-taking at 77 K, after an initial cool-down by immersion, 

and you want to take data at a next temperature point near 100 K.  You might use partial 

immersion of the thick part of the brass cold-finger into the LN2.  You might monitor the 

temperature of the copper block, and then apply full power (10 full turns, 25 V, 8.3 W) 

for a few minutes.  Once you see a temperature rise, you can start to estimate a rate of 

temperature rise, and also estimate how long it'll take to reach your target 100 K at this 

rate.  Once you get close to 100 K, you can do two tests, each taking a few minutes: 
 

   a)     set V = 0, to give P = 0, and estimate the zero-power cool-down rate dTb/dt; 

   b)     set V = 25 V, to give P = 8.3 W, and estimate the full-power warm-up rate dTb/dt. 
 

Then you can interpolate between these two rates (the first negative, the second positive) 

to estimate the power level at which you'd get neither warm-up nor cool-down.  If your 

interpolation were to predict that 3 W is the necessary power level, you could say 

,)
10

(
/)25(

/

3.8

3 2

2

2 N

RV

RV

W

W
  

and solve to find N = 6, so you'd set the dial to 6 turns (out of 10) to get the power level 

you need. 
 

You'll soon learn to become a 'human servomechanism', adjusting (on about a 1-minute 

time-scale, making about 1-turn changes in the voltage) in order to stabilize at a target 

temperature.  You'll find that as LN2 evaporates away, lowering the liquid level on your 

cold-finger, that you'll either have to raise the Dewar vertically, or reduce the heater 

setting, to stay at a target temperature. 

 

Remember that with the weak T 
1
 dependence of mean-square Johnson noise on absolute 

temperature, you do not need to fixate on temperature fluctuations under a Kelvin in size, 

and you can tolerate some rate of temperature drift.  Remember too that whatever 

precision you might attain in indicated temperature, this is not the same as temperature 

accuracy.  
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5. Calibrations 
 
5.0 Specified accuracy  
 

This section follows a noise signal through the modules of the Noise Fundamentals 

apparatus, and gives estimates for those uncertainties which affect measurement of the 

noise.  The uncertainty estimates are meant to express one standard deviation.  Note 

that sections 5.1 - 5.4 offer ways to perform calibrations that can reduce these 

uncertainties, if desired. 

 

The first stage in the pre-amp has a gain set by two resistors, g = 1 + Rf /R1.  Here Rf is 

the feedback resistor, chosen by the front-panel selector switch, and R1 is a resistor wired 

into a terminal block.  As shipped, the apparatus has R1 = 200. , that is intended to be 

used with Rf = 1.00 k.  Both are 0.1%-tolerance resistors, so g = 6.00 with perhaps 

0.2% uncertainty, out to 100 kHz.  The gain drops at high frequency, reaching a '-3 dB 

point' (where the gain has dropped to 6.00/2) at about 1.05 MHz. 

 

The next stage of the pre-amp is hard-wired to give gain 100., again set by ratio of 

resistor values, themselves uncertain by 0.1% at most.  So the gain of 100 is uncertain by 

about 0.4%, at least to 100 kHz.  The gain drops at high frequency, reaching it -3 dB 

point  (where the gain has dropped to 100/2) at about 1.6 MHz. 

 

Signals are ordinarily sent on to the filter sections.  Within the pass-bands of the low- and 

high-pass filters, their gains are 1.00, to uncertainty 0.3%.  Their corner frequencies are 

uncertain by 1-2%, though the ratios of corner frequencies achieved by settings of the 

selector switches are accurate to 0.3%.  (That's because the switches change selections 

among resistors of 0.1% tolerance, whereas the fixed-value capacitors are of 1% 

tolerance.)  The filters are of Butterworth response, with damping parameter   1/(2Q) 

(see Section 5.2) fixed at the value 1/2 to uncertainty 0.2%.  The exception is the use of 

the 33- and 100-kHz corner-frequency settings of the filter.  In this case, finite-gain 

effects in the operational amplifier have the effect of lowering , or raising the 'Q', by 

more than the 0.2% uncertainty quoted above. 

 

Filtered signals encounter more gain in the main amplifier.  The gain sections (x1 or x10) 

and (x10, x15, . . . x100) each give gains correct to 0.2%, set by resistor ratios, at least to 

100 kHz.  The gains drop at higher frequencies, with a -3 dB point at 1.4 MHz (except 

that for the use of the highest gain setting (x10
4
), there is some 'gain peaking' near 1.5 

MHz). 

 

The squarer is subject to zero-offsets (see Section 5.3), but its static squaring accuracy is 

claimed by the manufacturer to be about 0.2%.  Its large-signal bandwidth extends to 

beyond 3 MHz. 
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The time-averaging section which drives the output and the panel meter is optimized for 

correct behavior at d.c., where its gain is 1.00 to 0.1% tolerance. (Separate from this is 

any d.c. offset.)  The filtering behavior is that of two one-pole filters in series (both with 

buffered outputs).  The time constants listed on the panel selector switch are accurate to 

5%. 

 

The source resistors (Rin) and feedback resistors (Rf) available at the pre-amp's front panel 

are of 0.1% tolerance (from 10- through 1-M, inclusive); other resistors available at 

these locations are of 1% tolerance.  Resistors in the 'parts box' have the tolerances listed 

in its table of contents.  The 'remote' source resistors intended for use in the Temperature 

Probe are also of 1% tolerance.  The temperature (in)dependence of resistance of these 

devices is not warranted to be within 1%, certainly not down to 77 K.  In practice, the 

source-resistance values have to be measured as functions of temperature, and are 

typically found to change by the order of a per cent over the whole range 77 - 400 K. 
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5.1 Calibrating amplifier gains 
 

Noise measurements require knowledge of the pre-amp gain G1 and the main-amp gain 

G2.  This section describes how those gains can be measured, if calibration is desired. 

 

Each of the amplifiers has 'sections'.  The pre-amp has an input stage that is factory-set to 

have a gain of 6.00 (though this gain can be changed -- see Appendix A.4).  Then follows 

another gain stage of gain 100.  The main amp can be tested modularly as well, since it 

can be arranged to have G2 = (1, or 10) x (1, or 10) x (10, or 15, or . . . 100).  What 

follows is a procedure for checking the gain of an amplifier whose nominal gain is (10 or 

below) or (100 or below).  The procedure requires a signal generator, capable of 10-V 

sine wave output, and a 2-channel 'scope.  The basic idea is to use the special 'Signal 

Attenuator' in the low-level electronics box to create a precisely-known attenuation, by 

factor either 0.1 or 0.01, and then to amplify that reduced signal back up to near-original 

strength.  The combined schematic and wiring diagram for these experiments is shown in 

Figure 5.1a. 
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Fig. 5.1a:  Schematic and wiring diagram showing the use of the Signal Attenuator for checking 

amplifier gain.  Note that the Attenuator output is carried to the device-under-test by distinct 

methods: to the pre-amp sections via wires behind the LLE panel, but to HLE modules via 

external coaxial cable. 

 

If Vgen(t) is the generator signal, that's what the 'scope's ch. 1 is arranged to see.  The 

attenuator creates an output of (say) 0.01Vgen(t), where we can trust the coefficient 0.01 

in two senses: 

 we trust its value to be accurate, because it's created by a purely passive voltage 

divider, built from resistors of 0.1% tolerance; 
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 we also trust its value to be frequency-independent to very good precision, 

because it arises from low-impedance resistive components.  Even the typical 

cable and 'scope capacitances scarcely matter given the 10- output impedance of 

the divider. 

 

Now if we have an amplifier with nominal gain 100, it's clear we'd choose the 0.01-

setting for the attenuator, and then pick a generator drive level such as 1-Volt amplitude.   

We would measure the input signal at ch.1 of the 'scope, and use the 'scope's ch. 2 to 

monitor the amplifier output.  If the ch.1 and ch.2 (output) traces matched exactly, we'd 

know G = 100 exactly.  (This assumes the two channels on the ‘scope are matched.) 

 

The value of this procedure is that it's easy to vary the generator frequency from 10 Hz to 

100 kHz or beyond, and use the 'scope to execute this procedure at any chosen frequency.  

In fact, with this method it's easy to find the '-3 dB point' of an amplifier, going up in 

frequency until the output amplitude drops to 1/2  0.707 of its expected value.  (At this 

point, one would expect a sizeable phase shift as well.)  And it is important to verify that 

each stage of amplification is 'flat in frequency' out even as far as 1 MHz. 

 

The only drawback of this procedure is that it depends on the accuracy of the 'scope 

calibration.  In practice, this is rarely guaranteed even at the 2% level, so to get 

amplifier gain measurements to better than 1% needs to take this into account.  There are 

at least two ways to deal with this: 

 

First, you could use one single channel of your 'scope, connecting it alternately to the 

filter input and output, so the 'scope calibration error is a common effect which cancels 

out in the ratio. 

 

Second, you could use a clever permutation method which can compensate for scale 

errors in a 'scope: 

 

We suppose that 'scope ch. 1 can be modeled by a scale error, V
(1)

indicated = E1 V
(1)

actual, 

where ideally E1 =1 (but actually, E might depart from one).  Similarly for ch. 2 there's a 

scale-error constant E2.  Now in the test configuration shown above, 

 

 'scope ch. 1 gets signal Vgen(t) and indicates, ie. measures, a result E1 Vgen(t); 

 'scope ch. 2 gets signal (0.01) G Vgen(t) and measures result E2 (0.01) G Vgen(t). 
 

The output/input ratio of these two (amplitude) measurements gives a datum, 
 

d
(a)

 = [E2 (0.01) G Vgen] / [E1 Vgen] = (E2/E1) (0.01 G). 
 

Now the gimmick of the permutation method is to do a 'part b' of the experiment, just by 

swapping the two connections of signals to chs. 1 and 2 of the 'scope.  In this new 

configuration, 
 

 it's 'scope ch. 2 which gets signal Vgen(t) and measures a result E2 Vgen(t); 

 and it's 'scope ch. 1 which gets a signal (0.01) G Vgen(t) and measures a result     

E1 (0.01) G Vgen(t). 
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Now the output/input ratio of the two measurements gives a new datum, 
 

d
(b)

 = [E1 (0.01) G Vgen] / [E2 Vgen] = (E1/E2) (0.01 G). 

 

So the a- and b-methods each produce a datum, and the product of these two values is 
 

d
(a)

 d
(b)

 = (E2/E1) (0.01 G)  (E1/E2) (0.01 G) = (0.01 G)
2
 . 

 

So independent of scale errors of the 'scope channels, 
 

[d
(a)

 d
(b)

]
1/2

 = 0.01 G , 
 

from which G can be found.  (Meanwhile the ratio d
(b)

/d
(a)

 gives (E1/E2)
2
, whose 

departure from 1 is a measure of 'scope calibration mismatch.) 

 

This method doubles the amount of effort required to measure any G-value, and (since 

there's no assurance that E1 and E2 are constant in frequency), it has to be repeated at each 

new frequency.  It's also important to realize that scale errors like E1 and E2 might change 

with each new range setting of a 'scope's input sensitivity; but the method above is 

typically measuring signals of similar size at ch. 1 and ch. 2, so there's no need to change 

range settings when doing the permutation. 

  

One last note: the Signal Attenuator is built to accommodate the calibration of some 

modules having a 1-k input impedance, and other modules having input impedance of  

10 k.  For its attenuation factor to be reliable to the 0.2% level, it is incumbent on you 

to know what input impedance the attenuator is 'looking at'.  (See Appendix A.1 for the 

input-impedance values.)  If you set the Zadjust switch appropriately for the device you are 

driving, you will get the attenuation level you expect, to a precision of  0.2%.  If you 

forget this issue, an error of a full 1% can result. 
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5.2 Calibrating filter gains and bandwidths 

 
Section 2.2 describes how a filter's gain profile G(f) sets the equivalent noise bandwidth 

f according to 





0

2 .)( dffGf  

This assumes that the rest of the amplification in the system is frequency-independent.  

Since the predictions for mean-square noise in the Johnson- and shot-noise cases depend 

linearly on f, it is necessary to be sure of f 's value to the target precision of the answer.  

In this section, we discuss how the frequency-dependent gain G(f) can be measured and 

modeled, to allow this sort of computation of f. 
 

We discuss first the construction of the filter sections in the high-level electronics.  We've 

chosen analog operational-amplifier active filters of the 'two-pole state-variable' design. 

Each filter uses fixed capacitors, and switch-selected resistors, to define the corner 

frequency.  (That's because it's much more feasible to get resistors of precisely-known 

ratio of values than capacitors.) 
 

A state-variable filter of this type is precisely analogous to a damped simple-harmonic-

oscillator system, driven by an input voltage Vin(t).  The three outputs of the filter (low-

pass, band-pass, and high-pass) are analogous to the position, velocity, and acceleration 

variables of the oscillator.  The 'resonant frequency' of the analogous oscillator is 

determined, in the electronic circuit, to be 
 

0
2
 = 1/(R1 R2 C1 C2) , 

 

where the R's and C's are resistor and capacitor values in the filter circuits.  From this it's 

plausible to believe that corner frequencies fc (= 0/2) will 'track' to 0.2% precision 

from range to range (since the resistors involved are of 0.1% tolerance).  But the actual 

values of the corner frequencies will depend on the actual capacitor values, and these 

components have only 1% tolerances.  That's why the nominal corner frequencies lead to 

computed bandwidths with about 2% uncertainty.  To get smaller uncertainty is feasible, 

but it requires more effort.  Because of the fixed-capacitor, switched-resistor design, it is 

probably sufficient to calibrate each of the two filter sections for only one setting of its 6-

position corner-frequency selector.  (The exception is the choice of 100-kHz corner 

frequency, where the issue of finite gain in the op-amps complicates the modeling.) 
 

We now introduce simpler, and also more complicated but more precise, ways to measure 

and model the filter responses.  The simpler methods are intended to give 'spot checks' 

which establish certain filter parameters. 
 

One spot check you can make is to find an empirical value of the 'corner frequency' fc.  

Here are two features of fc which make it detectable; both methods assume sinusoidal 

excitation of the filter: 

 the low-pass response of the filter has gain (-)1 for f << fc, but the gain drops, 

ideally to value 1/2 0.7071, when the frequency is increased to f = fc. 

 the band-pass response of the filter has an output vs. input phase shift near 90 for 

f << fc.  But the phase at  f = fc becomes 0. 
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Both these effects can be seen by using a sine-wave signal generator to drive the filter 

input and ch. 1 of a dual-trace oscilloscope, and a selected filter output to drive ch. 2 of 

the 'scope. 
 

To measure gains independent of phase shift, it's ideal to use the measurement capability 

of the 'scope, perhaps by using the rms-measure of ch.1 and ch. 2 signals.  For any 

frequency well above 10 Hz, it is also best to use a.c. coupling of the 'scope, to block any 

d.c. components.  The filters are linear systems, so in principle any amplitude of drive 

could be used to diagnose them; in practice, a drive of  1 V amplitude is suitable.  Of 

course it's best to pick an amplitude, and a 'scope sensitivity, so that the traces nearly 'fill 

the display' of the 'scope. 
 

To measure phase shift independent of gain, you can overlay ch.1 and ch. 2 traces.  Only 

when the phase shift is zero will the zero-crossings of the two signals coincide.  Or, you 

can view the same two signals in an XY-display mode.  Only when the phase shift is zero 

will the generic elliptical locus collapse to a line. 
 

For some of these methods, it may pay to choose the d.c.-coupling option at the input of 

the filter under test.  See Appendix A.2 for discussion of this matter -- you might still 

want to revert to a.c. coupling during actual noise measurements. 
 

Both of the methods above depend on the gains, and the phase shifts, of the two 'scope 

channels themselves being perfectly matched.  In general, this is not guaranteed, certainly 

not to 1% tolerance.  So the input/output alternation method, or the ch.1/ch. 2 

permutation method, of Section 5.1 can be used to cure the problem.  If you have a digital 

multimeter whose measurement precision for a.c. rms voltages can be trusted to the 

highest frequency you need, you can use this in place of a 'scope for voltage-magnitude 

measurements. 
 

Given either of these 'spot check' estimates of fc, you can make a 1-parameter model of 

the low-pass filter as a frequency-dependent gain 

.
)/(1

1
)(

4

c

LP

ff
fG


  

But there is a more general model of how the filter might behave, given by the general 

response of a two-pole system, 

.
)/2())/(1(

)(
222

cc

LP

ffff

g
fG


  

This is a 3-parameter model, still with a 'corner frequency' fc.  The new parameters are a 

'd.c. gain' or GLP(f = 0) value, given by g, and a damping parameter .  Ideally the filter 

will have g = (-)1 and  = 1/2, in which case the formula above reduces to the previous 

case.  But here are some methods to confirm the values of g and . 

 

Since g is the d.c. gain, it can be measured right at d.c.  To deal with the issue of d.c. 

offsets, you can use two d.c. values in succession at the input, and measure a Vin; and 

then look at the two resulting d.c. values in succession at the output, to measure Vout.  

(You'll certainly need to select d.c. coupling at the input of the filter to perform this 
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measurement.)  One advantage of this method is that you can measure all the voltages 

with d.c. multimeters, whose resolution and accuracy exceed what a 'scope can offer.   

 

If you know the d.c. gain g, and you found the corner frequency fc via the phase-shift 

method, there is also an easy 'spot check' of the damping parameter .  It turns out that the 

low-pass, band-pass, and high-pass outputs all have their gain take on the value g/(2) at 

the frequency f = fc.  So a 'scope-based measurement of the gain at this one frequency will 

provide a value for . 

 

If you use these spot-check methods to measure fc (and g and ), you can of course repeat 

them for each setting of the filter's corner frequency.  If you find a deviation of order 

1~2% between a nominal corner frequency on the selector switch, and the measured 

value of  fc, this is not unexpected.  But the ratios of nominal corner frequencies (as in 33 

kHz/10 kHz) and of measured corner frequencies (as in 33.23 kHz/10.07 kHz) ought to 

be equal to about 0.2%, since these ratios are controlled by resistance values of 0.1% 

tolerance. 

 

Once you've taken the trouble to set up a generator-and-meter or generator-and-'scope 

technology to measure spot values of the gain G(f), you're also in position to do a survey.  

It turns out that you can sample the G(f) function adequately if you take values of G(f) for 

several frequencies f well under fc, several more for f in the vicinity of fc, and several 

more for f well above fc.  (It is the choice of a filter design that follows a simple and 

computable model which permits you this luxury.)  Try plotting the theoretical function 

GLP(f), for several choices of g, , and fc values, preferably on a log-log scale, to see 

where these parameter choices make what difference.  Such a plot will also show you 

why covering the range 0.1fc to 10fc is probably sufficient. 

 

Given a collection of G(f) data points (taken for any of the three outputs of the filter), you 

can perform a least-squares fit of the data to the theoretically-expected forms, which are 

       

;
)/2())/(1(

)(
222

cc

LP

ffff

g
fG




;
)/2())/(1(

)/(
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222
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ffff

ffg
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  

          .
)/2())/(1(

)/(
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222

2
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c

HP

ffff

ffg
fG


  

Ideally, the values of g, , and fc in all three functions is the same -- but this would bear 

checking.  You might, by this fitting method, be able to attain 0.1% precision in each of 

the values g, , and fc.  (Assuring 0.1% accuracy is harder!).  If you measure the 33-kHz 

and 100-kHz filters carefully, you might see  drop below its intended value of 1/2; this 

is an effect attributable to the finiteness of the open-loop gain of the op-amps used in the 

filters. 
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There is a single-point calibration of the filters included on your data sheet that comes 

with your instrument.  For an ideal two-pole filter of Butterworth design, the intersection 

of all three response curves occurs at a single frequency, fc.  The gain at each of the 

outputs at this frequency is given by 1/(2), which is the Q-value of the filter.  In practice, 

the three gain curves do not intersect at one common frequency.  We have listed, as the 

nominal corner frequency, the point of intersection of the (fast-varying) low-pass and 

high-pass gain functions.  And we have listed, as the nominal Q, the (locally flat) gain of 

the band-pass filter at this particular frequency.  Numbers thus defined seem to agree, to 

better than 0.5%, with the corner frequencies and Q’s obtained from full best-fit models 

of each of the filter response functions (where separate fitting parameters for fc and  are 

used in separate models for the three filter outputs). 

 

Finally, it's worth remembering why you care about the filters' G(f) functions.  The goal 

in these calibrations is to make possible the computation of the integral of the (net) G
2
(f) 

function to get the equivalent noise bandwidth.  In general, you might be using two 

filters, perhaps a high-pass filter with corner down at f1, and another low-pass filter with a 

corner up at f2, and it's the product of the filter functions, GHP(f; f1)  GLP(f; f2), that you 

need to square and integrate to get the equivalent bandwidth.  That kind of integration is 

best done numerically.  But here's an analytic result that has the value of providing a test 

case for checking such integration routines, and also of showing you how the results will 

scale with the parameters in the model.  In terms of the three-parameter models given 

above, the integrals over all frequencies of both GLP
2
(f) and of GBP

2
(f) can be done 

exactly, and they turn out to be equal: 

.
4

)()(
0 0

222

 
 





cBPLP fgdffGdffG  

For the intended values g = 1 and  = 1/2, these reduce to the result 
 

fc 
. 
/(22)  1.1108 

. 
fc 

 

previously quoted.  But for the general case, this result will teach you that a target 

precision of 1% for the bandwidth will require achieving about ¼% precision in d.c. gain 

g, and about ½% precision in measuring the corner frequency fc and the damping 

parameter . 
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5.3 Calibrating the squarer 

 
In almost all the noise measurements described in this manual, the Multiplier module in 

the High-Level Electronics is used in its AxA mode as a 'squarer'.  The squarer is essential 

in forming the mean-square value of a signal, and you've seen it modeled by the 

expression 

Vout = (Vin)
2 
/(10 V) . 

 

In practice, you might worry that this model leaves out several effects, such as d.c. offsets 

at the input, d.c. offsets at the output, scale-factor errors, and square-law fidelity.  Here's 

how to check on such matters. 

 

The simplest model for an input-side d.c. offset would be 
 

Vout = (Vin - a)
2 
/(10 V) . 

 

In practice, the use of a.c. coupling in earlier stages of the signal chain makes this issue 

nearly irrelevant, but it'll appear soon in a more general model that you can test. 

 

The simplest model for an output-side d.c. offset would be 
 

Vout = b + (Vin)
2
/(10 V) , 

 

and this effect cannot be ignored.  That's because the typical use of the squarer is to 

deliver a signal whose d.c. average value is what you're recording to form a measure of 

the mean-square noise.  Fortunately, in this model, it's easy to find the value of b -- you 

just use the AC/GND/DC switch at the A-input, and set it temporarily to the ground 

position.  This enforces Vin = 0, and the Vout which you read at the output now tells you 

the value of b.  This offset ought thereafter to be subtracted from all the squarer's output 

values. 

 

The scale factor is the coefficient we've written via a denominator of 10-Volt value in the 

model, and errors in its value can be represented by 
 

Vout = k (Vin)
2
/(10 V) , 

 

where we expect k = 1 (but we need to correct every measured value of the mean-square 

voltage, if k  1).  Perhaps the best way to check this is to use d.c. coupling at the A-

input, and then send a variable d.c. voltage into the A-input, recording what d.c. value 

you get at the MONITOR or the final output.  The model we'd use to fit the data is 
 

Vout = b + k (Vin - a)
2
 /(10 V) , 

 

which is just a quadratic function, easily accommodated by least-squares fitting.  It is 

important to take data with Vin varying on both sides of zero, and for it to cover the full 

10-Volt range.  The coefficient of the quadratic term in the fit gives k/(10 V), according 

to the model above.  If the fit tells you that k = 1.01, then all your mean-square values are 

1% too large, due just to this scale-factor error. 
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The same data-set allows a check of the square-law variation.  Perhaps the best check is 

to plot the { (Vin, Vout) } data set, to plot atop that the best-fit parabola, and then to plot 

the 'residuals', ie. the differences between the data and the model.  If there are systematic 

departures from a power-2 or square-law dependence, this 'residuals' plot would be the 

place to see them. 

 

Finally, there are issues of speed of response, or bandwidth, of the squarer.  Thus far, all 

the calibrations have been conducted at d.c., ie. at negligible frequency.  But the squarer 

is in practice used at frequencies up to 100 kHz and beyond.  The manufacturer claims a 

bandwidth of 10 MHz for the device itself, though the drive circuitry in the NF-1 limits 

this.  Here's a way to test that high-frequency response.  You can drive the A-input with a 

sinusoid of 10-V amplitude, and variable frequency.  You can also send that drive signal 

to a 'scope's ch. 1 input, meanwhile sending the squarer's output to the ch. 2 input.  Now 

using an XY-display on the 'scope will show a parabola as the locus of Vout vs. Vin values. 

 

If you set the generator to frequency 1 Hz, you'll see a slowly-moving spot on the 'scope's 

display.  Going to 10 and then 100 Hz will seem to give a continuous parabola on the 

display.  The qualitative test of bandwidth is to change the drive frequency from (say) 

100 Hz to 100 kHz, to see if any part of the parabola changes.  If you see a forward trace 

and a return trace of the parabola which fail to overlap, you'll see a 'double line' replacing 

the previous single curve.  Even this fault would really tell you only about phase shifts.  

To persuade yourself that this test can reveal the squarer's limitations, increase the 

frequency to 1 or even 10 MHz, and see if you can detect what happens. 
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5.4. The 'noise calibrator' 
 

This section describes the 'noise calibrator', a built-in part of your high-level electronics 

box, whose output emerges at a BNC jack on the rear panel. This is a source of (pseudo-) 

noise whose frequency spectrum, and whose spectral density, can be very well known.  

The purpose of this source is to make possible various kinds of 'reality checks' on your 

noise measurements. 

 

Ordinarily it is inactive (lest it generate a stray signal that might interfere with some noise 

experiment). The noise calibrator can be activated by the toggle switch on the rear panel.  

A front-panel red LED indicator will remind you that the noise calibrator is now running. 

 

Convey the noise-calibrator's rear-panel output, via a BNC cable, to an oscilloscope.  You 

should see a signal lying in the 800 mV range, and you might first view it using 50 

s/div on your time axis.  A series of sweeps of your 'scope will show a waveform 

something like this figure: 

 

 
Fig. 5.4a:  Sample waveforms from the Noise Calibrator.  Vertical scale 200 mV/div, horizontal 

scale 50 s/div, triggering on positive-going zero-crossings. 

 

To get a better look at this waveform, you might want to set a trigger level of +500 mV, 

and slope positive.  Then you can look for what happens in the 250 s (5 divisions) 

before, and after, the occurrence of relatively rare positive-going large excursions of the 

signal. 

 

This waveform has some of the characteristics of noise -- it looks random and non-

periodic.  But it is not broadband noise; instead, it has been constructed to give a 

(simulacrum of a) white-noise spectrum in the 0 - 32 kHz range, but to have almost no 

content above 32 kHz.  This makes the waveform look quite different (less 'fuzzy') 

compared to the (unfiltered) noise waveforms you've been seeing, which have frequency 

content out to >1 MHz, and consequently have time variation on a <1 s time scale. 
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The waveform you're seeing might have a measurable d.c. average value (near zero), and 

it also has a root-mean-square deviation from zero (or from its d.c. average).  There are 

three possible ways to measure this rms value: 

1) You can use the main-amp and squarer built into the NF-1 instrument, and 

quantify the noise-calibrator output just as you have previously quantified noise 

waveforms. 

2) You can use a digital multimeter, if it is rated to compute ‘true rms’ values and 

for frequencies as high as 32 kHz. 

3) Some digital oscilloscopes will measure this 'rms value'.  To get a good 

measurement, you'll need to pick a vertical-axis setting which ensures that only 

the rarest of large excursions, if any, go beyond the measurement range of your 

'scope's display.  Also, since there are noise components out to 32 kHz (but no 

higher), you'll succeed, provided you acquire samples at a rate of 10
5
 samples per 

second (or higher).  If your 'scope gives you a choice, ask for 'full screen rms' and 

not 'cycle rms'.  The values you get will display fluctuations, which you (or the 

'scope) can average to give a converged value.  The reading R that you get can be 

written as 

< [Vcalib(t)]
2 

> 
1/2

 = R , 
 

whose units are Volts.  (It might be called 'rms Volts', but there is only one kind 

of Volt, equal to one Joule per Coulomb; what the notation means is that the rms 

measure of the waveform is being found, in units of Volts.)   

 

By any of these methods, you should find a value near R = 213 mV.  Clearly R
2
 is a 

number, in Volts-squared, which gives < Vcalib
2
(t)

 
>, the mean-square value of the output.   

 

Now since the spectrum of the noise is designed to be uniform in frequency (in the range 

0 < f < 32 kHz), but limited in coverage.  (If you have a 'scope with FFT capability, and 

know how to use it, you can view the frequency spectrum of the noise-calibrator output, 

to see how it is restricted to 32 kHz.)  Given knowledge of the whiteness of the noise 

spectrum, and its rms value, and its frequency range, you may conclude that the 'noise 

power spectral density' (within that frequency range) obeys 
 

S = < Vcalib
2
(t)

 
> / f = R 

2 
/ (32 x 10

3
 Hz) . 

 

If you measure a value R = 0.213 V, then S = 1.42 x 10
-6

 V
2
/Hz.  Most noise practitioners 

want to quote or remember not S itself but rather its square root, often called the 'voltage 

noise density', S = D = 1.19 x 10
-3

 V/Hz = 1.19 mV/Hz.  (Now you know where those 

exotic units, Volts-per-root-Hertz, come from.)  Of course, both these densities apply in 

the 0 < f < 32 kHz band, and drop to much lower values beyond this frequency range. 

 

 

What's the noise calibrator for?  It is to give you a chance to check your understanding of 

analog filtering and squaring, or of digital recording and mathematical transformation, of 

'real noise' signals.  In the same spirit, if you had devised some complicated circuit 

alleged to measure voltage, you might like to attach to it a plain old dry cell to see if a 

result such as 1.51 Volts would emerge; the dry cell would be serving as your 'voltage 

calibrator'. 
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****** 
 

Here's a first example you can try.  Take the noise calibrator output, and send it into a 

single filter section (no pre-amp required!); set it to be a low-pass filter of corner 

frequency 3.3 kHz.  Then send that output into the main gain stage, and the amplified 

signal VA(t) into the squarer.  Here's how an experienced practitioner would reason to 

predict the result:  Start with a voltage noise density D(f) equal to 1.19 mV/Hz, say, out 

to 32 kHz, and equal to 0 beyond there.  Then send it through a filter, whose gain 

function G(f) varies from 1 (below the corner) toward 0 (above the corner).  After further 

amplification by gain G2, you expect an amplifier-output signal VA(t) whose noise density 

is now given by D(f) G(f) G2.  The mean-square measure of this signal is 
 

  
 


0 0

32

0

2

2

222

2

2
.)(])()([)()(

kHz

A dfGfGDdfGfGfDdffStV  

Since the filter gain function G
2
(f) drops rapidly beyond 3.3 kHz, the upper limit of the 

integral can be extended to infinity with little error, leaving the prediction 
 

<VA
2
(t)>  = D

2
 G2

2
  G

2
(f) df . 

 

The integral that remains is given by the filter's equivalent noise bandwidth, given by 

(1.1108) (3.3 kHz) = 3665 Hz, by the methods of Section 2.2.  Notice too that what's 

emerged is D
2
, which is just S, the noise power density -- the exotic V/Hz unit has 

turned into the mundane V
2
/Hz unit.  Meanwhile, the squarer's time-averaged output is 

given by 
 

<Vsq> = <VA
2
(t)>  / (10 V) , 

 

so it should be given by 
 

                       <Vsq> = (10 V) 
-1

 (1.19 mV/Hz)
2
 G2

2
 (3665 Hz) 

                      = (10 V) 
-1

 (1.42 x 10
-6

 V
2
/Hz) G2

2
 (3665 Hz) 

                      = (519 x 10
-6

 V) G2
2
 . 

 

If you pick G2 = 40 (by using the x1, x1, and x40 settings), you should get <Vsq> = 0.830 

V.  Try this out, and test the results for some other settings of G2 as well. 
 

****** 
 

For a second example, suppose you keep using this 3.3 kHz low-pass filter, and pick     

G2 = 40 for the gain stage.  Now consider the filtered and amplified, but not squared, 

signal emerging from the main amplifier, VA(t).  It should have a spectral distribution 

given by a voltage noise density 
 

D(f) G(f) G2 = (1.19 mV/Hz) G(f) 40 = 48 mV/Hz [1 + (f /3.3 kHz)
4
] 

-1/2
 . 

 

So if you send this voltage VA(t) into a signal-acquisition system and use software to 

compute the spectral density, your answer had better come out to match this:  48 mV/Hz 

for f << 3.3 kHz, and dropping beyond the 3.3 kHz corner, before plummeting to a near-

zero value beyond 32 kHz.  When you see (in Appendix A.10) how intricate such a 

software calculation can be, you'll appreciate the value of this sort of cross-check in 

revealing errors by factors of 2, 2, , 2, 1024, and the like. 
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****** 
 

Finally, a word about the noise-calibrator waveform.  It's been optimized for stability of 

signal strength, uniformity of spectral density (in the 0 < f < 32 kHz band), and absence 

of spectral density (for f > 32 kHz).  To achieve these goals, it's actually been made to be 

a crypto-periodic waveform.  Hence if you acquire data over a long enough time, you'll 

see it repeat.  It follows that if you measure its frequency spectrum at high enough 

resolution, you'll see the apparently uniform spectral density break up into a resolved set 

of delta-functions.  These occur at integer multiples of the fundamental frequency f1, 

which is in turn the inverse of the 'repeat time' or period T of the waveform.  So this 

source is really a 'multi-sine' source, the superposition of lots of sinusoids, all equally 

spaced in frequency and (ideally) equal in amplitude.  For experiments not capable of the 

spectral resolution that's required to resolve the 'teeth in the comb' in frequency space, 

this multi-sine source acts just like 'actual', though band-limited, noise. 

 

For a parallel example, consider a crystal of atoms.  You think it has a mass density -- in 

one dimension, a number given in kilograms per meter.  But in fact, if you were to 

measure with high enough spatial resolution, you'd see the 1-d mass-density function 

(x) change from a constant value to a series of delta-functions, one at the location of 

each atom.  Yet you could still be justified in treating the mass density as a constant 

function, for purposes of solving any problem not involving spatial resolution at the 

nanometer scale. 
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5.5. What are the 'right' units for measuring noise? 

 

You've seen 'noise power density' usually denoted by S, with units of V
2
/Hz, and 

elsewhere you've seen the 'voltage noise density' given by D or S, with units of V/Hz.  

Which of these is the proper measure for noise?  The answer: it depends with what you're 

doing with the noise measure. 

 

If you have a signal, such as that from our Noise Calibrator (which gives S  1.2 

mV/Hz from d.c. to 32 kHz), and you send it through an ordinary gain-of-10 amplifier, 

then S is the sensible measure for the noise.  An amplifier which has gain of 10 for any 

sinusoid will also multiply voltage noise density by 10-fold, here from the voltage noise 

density of 1.2 mV/Hz to 12 mV/Hz.  So for 'multiplication by a constant', S in V/Hz 

is the right measure to use for noise. 

 

But if you have two independent noise signals, and you add those signals, different 

considerations apply.  The absence of correlations between the two signals V1(t) and V2(t)  

is defined by < V1(t)V2(t) > = 0, and under those conditions we get 
 

< [V1(t) + V2(t) ]
2
 > = < [V1(t)]

2
 > + 0 + < [V2(t)]

2
 > 

 

where the cross term vanishes in the time average.  This tells us that voltages-squared are 

the noise measures which are additive, and it follows that 'noise power densities' of the 

form < V
 2

(t) >/f are additive too.  So if you have Johnson noise of size DJ = SJ = 13 

nV/Hz from a resistor, and also have amplifier input noise of DA = SA = 8 nV/Hz, 

what you get is not a density of (8+13) = 21 nV/Hz.  Instead, you form the noise power 

densities 
 

        SJ = 169 x 10
-18

 V
2
/Hz, SA = 64 x 10

-18
 V

2
/Hz, and then 

 

     Snet = (169+64) x 10
-18

 V
2
/Hz = 233 x 10

-18
 V

2
/Hz,  or  Snet  15 nV/Hz. 

 

So for 'addition of two noise sources' of uncorrelated noise, S in V
2
/Hz is the right 

measure to use for noise. 
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6. Further projects 

 
The projects that follow are not in any particular order.  Each of them represents an 

extension of some technique covered in Chapters 1 - 5, and each refers back to the natural 

preparation that should be performed first. 

 

 

6.1. Time-domain characterization of the filter sections 
 

You recall from Section 2.2 that it is necessary to know a filter's gain function G(f) in 

order to compute its equivalent noise bandwidth f.  In that section, you used 'paper 

models' for the G(f) functions, and saw how integration of the G
2
(f) function over 

frequency gave the bandwidth f.  In section 5.2, you saw one way to measure G(f) 

values on a frequency-by-frequency basis, and how to fit G(f) values to a 1- or 3- 

parameter model, thereby to calibrate the bandwidth values for your actual filters.  This 

section shows you an alternative to this sort of 'frequency-domain' measurement. 

 

The new method lies in the 'time domain', and makes use of the wonderful connections 

that exist between time- and frequency-response of any linear system.  We'll describe the 

method here only for low-pass filters, and we'll assume a 2-pole state-variable response, 

but the method is actually of much greater generality.  Briefly put, we pick a low-pass 

filter, choose its corner frequency, and diagnose its properties by seeing its response to a 

drive by square-wave excitation.  We pick that square-wave frequency to lie well below 

the corner frequency, so the response we see will really display the 'step response' of the 

filter.  Then we show that modeling the step response can give all the parameters needed 

to model the filter, and thereby also predict its frequency response.  Notice that in this 

method we get all the information on the filter using only one square-wave frequency. 

 

Consider a pair of 'scope traces of a square-wave input, and a filtered-output, from a low-

pass filter set for corner frequency 10 kHz, and driven with a 1-kHz square wave, 

Figure 6.1a.  Notice that the filter output is a version of the inverted input (ie. the filter 

has a gain near -1 for low frequencies).  But notice that the output lacks what the input 

has, namely sharp edges.  That's because the filter is expressly set not to pass those high-

frequency components which the square wave must contain if it is to possess sharp edges. 
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Fig. 6.1a:  Upper trace:  part of a 1-kHz square wave input to a filter; Lower trace:  the output of a 

low-pass filter, set for corner frequency 10 kHz.  Vertical scales 1 V/div, horizontal scale 25 

s/div, triggering on rising edge of upper trace. 

 

This sort of display gives the 'step response' of the filter in the time domain.  Acquire the 

step and response waveforms on two channels of your 'scope, triggering on the drive, and 

getting a high density of sampling points on the relevant part of the response function.  

Finally, you'll need a way to get the digital values of the samples into a computer 

environment where you can model them by fitting. 

 

Once you get a step response, what can you do with it?  There are very general Fourier-

transform methods that could be applied, but here we'll use a differential-equations 

method, which is appropriate for the two-pole design of the electronics in the filter.  We 

suppose that Vin(t) -- above, taken to be a square wave -- is the 'drive term' in a second-

order differential equation, of which Vout(t) is the solution.  If we're driving the 

experimental system in its linear regime (say by keeping Vin and Vout in the 5-V range), 

we expect that differential equation describing it to be linear and to have constant 

coefficients, of the form 

.)()(
2

2

tVtVC
dt

dV
B

dt

Vd
A inout

outout   

Now defining B/A = 2  0 and C/A = 0
2
, we get 

2
2

0 02

1
2 ( ) ( ) ,out out

out in

d V dV
V t V t

dt dt A
      

which has the form of a damped and driven simple harmonic oscillator.  Such an 

oscillator has an undamped frequency 0, a damped frequency 0(1-
2
), and a 

dimensionless damping constant  (where 0 for undamped, and 1 for critical 

damping).  In this standard form, it's easy to show that a sinusoidal drive of the form 

acos(t) gives a sinusoidal response of the form Gacos(t - ), where the 'gain' obeys 

.
)2()(

/1
)(

2

0

222

0 





A
GG  

That provides a 3-parameter model (using A, 0, and ) for the frequency-domain sort of 

data you took in Section 5.2. 
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But the differential equation above can instead be solved for a drive by a unit step, say 

with Vin(t) changing, at time t=0, from value 0 to 1.  The computed response is 

.)]1(sin
1

)1([cos1)( 2

0
2

2

0
0 












ttetV
t

out  

To apply this to the low-pass filters at hand, imagine a square wave input which 'steps 

down', at t=0, from a level (+a) to (-a).  The output will 'step up', from a level of (-ga) 

toward (+ga), with a transient behaving for t>0 as 

 

.})]1(sin
1

)1([cos1{2)( 2

0
2

2

0
0 












tteagagtV
t

out  

 

This is a complicated expression , but it really depends on only three parameters: a 'gain' 

g (which is intended to be 1), a 'damping'  (which is intended to be 1/2), and a 'corner 

frequency' 0 (which is intended to be 2fc, where fc is the corner frequency you select).  

So if you acquire the 'step-response' data and fit it to an expression of this form, you will 

get out, as best-fit parameter values, good estimates for g, , and 0. 

 

And with them, you can immediately be quite confident that the frequency-domain gain 

function (of that same filter, for the same setting) will be given by 

,
)/2())/(1()2()(

)(
2222222

2

cccc

c

ffff

g

ffff

fg
fG

 



  

where fc is given by the 0-value from your fit, divided by 2.  For the intended case of  

 = 1/2 and g = 1, it's easy to show that this reduces to the ideal Butterworth response 

,
)/(1

1
)(

4

cff
fG


  

that we've used in previous paper modeling.  But whether the response matches the 

Butterworth function or not, the step-response method will have given you the parameters 

for a three-parameter model which fully characterizes the frequency response curve.  And 

from these three parameters, you can compute the filter's equivalent noise bandwidth by 

methods of Sections 2.2 and 5.2. 
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6.2 Narrow-band measurement of noise density - the 'lock-in' method 

 
You've seen in Section 2.1 how to measure a 'noise density', and in Section 2.3 how to 

measure more nearly a 'local density' by using a filter with a well-defined center 

frequency.  But in this section, you'll see a little-known method for making a very     

local-in-frequency measurement of noise density, with an equivalent noise bandwidth 

which can easily be as small as a Hertz, and which is independent of the frequency at 

which you locate it. 
 

The method is closely related to the way a lock-in amplifier works, but it does not require 

a separate lock-in.  We'll assume that you have some noise measurement in progress, and 

that you've used high-pass and low-pass filtering to isolate a broad swathe in frequency 

space, perhaps 0.1 - 100 kHz.  You've usually brought these signals to the main-amplifier 

section of the high-level electronics, and used a main-amp gain which brings the noise 

signal to a level of about 3 V (rms measure).  Now the biggest difference of this new 

method is to use the 'squarer' in a new way -- as a multiplier instead.  So you bring the 

amplified noise signal VA(t) to the A-input of the squarer as usual, but you select the AxB, 

or multiplier, function of this module. 
 

Now if you want to measure the truly local value of the spectral density of VA(t) at a 

target frequency ft, what you need is to bring a sinusoid, of frequency ft and of amplitude 

10 V, to the B-input of the multiplier.  In the language of lock-in detection, you'd call this 

the 'reference input'.  If there were actually present a signal at frequency ft buried under 

the noise of VA(t), the multiplier would now reveal it by producing an output whose time 

average included a non-zero d.c. value.  But if VA(t) is 'pure noise', the multiplier output 

will lack any such d.c. average value. 
 

In the absence of a d.c. signal, what then can you measure?  You want to quantify the 

fluctuations around zero in the multiplier's output, by taking the time-average of it with 

time-constant  (your choice, 0.01 - 3 seconds), capturing that on a 'scope, and finding the 

rms value of that 'scope signal.  Here's the analysis which shows that this rms value will 

tell you, quantitatively, the noise density in the neighborhood of ft in the A-channel 

signal. 
 

Start with a raw noise signal Vn(t), and a gain G1 from the pre-amp, and G2 from the main 

amp.  Set the gain G(f) from the filter section(s) so as to pass (with G(f) 1) the noise in 

the vicinity of the target frequency.  So the main-amp output is given by 
 

VA(t) = G2 · 1 · G1 · Vn(t) . 
 

Now we temporarily represent the noise signal Vn(t) by a Fourier series, valid over the 

(presumed long) time interval 0 < t < T: 
 

                           


N

i iin tifAtV
1 1 .)2cos()(   

 

Here T might describe the full duration of your experiment, a minute or even an hour.  In 

this series, the fundamental frequency is f1 1/T, and we note the absence of a d.c. term, 
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and the presence of all the harmonics of the fundamental.  The terms in the Fourier series 

are equally spaced in frequency by interval 
 

f  fi+1 - fi = (i+1)f1 - (i)f1 = 1 f1 = 1/T . 
 

If the noise Vn(t) is spectrally white, we can take all the amplitudes Ai to be equal, and use 

a single A-value.  The phases i are presumably random, and their values will turn out not 

to matter. 

 

Now Vn(t) has a spectral density, and we compute it on paper by the usual means:  we 

filter Vn(t) to some bandwidth f, we square that filtered signal, and then time-average to 

find the mean-square value.  In filtering our model noise signal to a bandwidth f 

(assuming for simplicity a sharp-edged filter bandwidth), we transmit only a fraction of 

all N terms that appear in the Fourier sum; the number of terms which pass through the 

filter is given by 

(filter's bandwidth) / (terms' spacing) = f / f . 
 

In computing the square of the filtered signal, the cross terms vanish upon time 

averaging, so only the squares of individual terms survive.  Using the number of 

surviving terms, we get for the sum's value  
 

< [Vn
(F)

(t)]
2
 > = A

2
 (f/f ) <cos

2
(2

.
if1.t - i)> , 

 

and as the cosine-squared terms all average to 1/2, we find spectral density of noise 
 

Sn = < [VN
(F)

(t)]
2
 >/f = A

2
 (1/f) (1/2) = A

2
/(2 f) . 

 

The result relates the observable spectral density of the noise to the parameters A and f 

of our paper noise model. 

 

That model can now be followed to, and through, the multiplier in a paper description of 

our actual measurement.  We have at the A-input of the multiplier a model for the 

(amplified) noise, 

2 1 2 1 11
( ) 1 ( ) ( ) cos(2 ) ,

N

A N ii
V t G G V t G G A if t 


        

 

and at the B-input we have our 'reference signal' at target frequency ft, 
 

.)02cos()10()(  tfVtV tB   

The multiplier produces the scaled product, 
 

.)2cos()2cos()10(/)()()( 112  
i tiBAmult tftifAGGVtVtVtV   

Here again we have a product of cosines, which can be written as a sum of two new 

cosines: 

 .]))(2cos())(2cos([
2

1
)( 1112  

i titmult tfiftfifAGGtV   

Of these terms, those at the 'sum frequencies' (i f1 + ft) will certainly not pass the final 

time-averaging stage, so we'll drop them.  Those at the 'difference frequencies' include 

terms close to zero frequency, and these are the ones that will contribute to the 
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measurable fluctuations of the output.  (We do assume that there's no term at zero 

frequency -- that would constitute lock-in detection of a signal, at target frequency ft, in 

the noise.)   
 

Now the terms of difference frequencies fi  = (i f1 - ft) pass to the final time-averaging 

filter, which is a low-pass filter of gain g(f), so the filtered multiplier output can be 

written as 

.)2cos()(
2

1
)( 12

)(




Fi iii

F

mult tffgAGGtV   

(The filtering also creates changes in the phase constants i , which we ignore.)  On a 

'scope, this signal seems to wander about; but what we'll measure is its rms value.  To 

compute that on paper, we need to square it, giving 

 

.)2cos()2cos()()()2/(])([
,

2

12

2)(

jjFji iiji

F

mult tftffgfgAGGtV    
 

 

In this result, as usual, the cross terms do not survive time averaging, so what does 

survive can be written as 

.)
2

1
)(()2/()2(cos)()2/(])([ 22

12

222

12

2)(

 


Fi iFi iii

F

mult fgAGGtffgAGGtV 

The sum over all difference-frequencies that pass the filter include terms with both 

positive and negative values of fi  = (i f1 - ft).  But in the limit of a long-T experiment, 

both form sets of closely-spaced 'combs' which equably sample the g
2
(f)-function's values 

in the sum.  So the result is the same if we double it, but take the sum only over positive 

frequencies fi  : 

.)
2

1
)((2)2/(])([

0

22

12

2)(

 


fi i

F

mult fgAGGtV  

To evaluate that sum, we notice that a related sum is the very Riemann sum which would 

go, in the fi 0 limit, to an integral: 

.)()()(
0 0

22 




fi ii dffgffg  

The spacing (fi ) in the comb of frequencies is just the original f, so we have 

,)(
1

)(
0 0

22 




fi i dffg

f
fg


 

and finally can write as the mean-square fluctuation 





0

22

21

2 .)(
1

2
2

1
)2/()( dffg

f
AGGVrms


 

In this result, we recognize the combination A
2
/(2 f) , which in our noise model gives the 

spectral density of the input noise SN, so we have 





0

22

21

2 .)(2)2/()( dffgSGGVrms  

The final-filter function for a double one-pole filter is g(f) = {1/[1+(f/fc)
2
] }

2
, with 

corner frequency given by fc = 1/(2 ), so the integral gives 

.
8

1

4])/(1[
)(

0 0 22

2







 

 

c

c

f
ff

df
dffg  
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Hence the observable output is predicted to have mean value zero, but fluctuations 

characterized by rms measure Vrms, where  

.
16

1

8

1
2

4
)(

2

2

2

1

2

2

2

12


SGGS

GG
Vrms   

Since the 'observable' which you might read off a 'scope is the rms measure of the 

fluctuations at the output, Vrms itself, we write this as 

.
4

1 2/1

21

 SGGVrms  

Sure enough, that relates the spectral density of noise at the input, S, to an observable 

quantity at the output.  In fact, the rms output value is related to the voltage noise density 

D = S.  This argument also predicts a  
-1/2

 averaging-time dependence of the 

fluctuations in a general lock-in amplifier's output, but here we care chiefly about the 

dependence on S. 
 

To be concrete,  suppose we start with a 1-M resistor as a source of Johnson noise, 

which gives a noise power density of <VJ
2
>/f = 4 kB T R = 1.63 x 10

-14
 V

2
/Hz at room 

temperature.  This is the source's S-value, and its square root, the voltage noise density D, 

is 128 nV/Hz.  After pre-amplification by gain G1 = 600, that voltage noise density is up 

to 76.6 V/Hz.  This noise can now be low-pass filtered, to restrict its bandwidth to 

(say) about 100 kHz.  Then a main-amp gain of G2 = 100 will produce a noise density of 

7.66 mV/Hz, flat out to about 100 kHz, which gives a mean-square measure of the 

output of the main amplifier of 
 

<VA
2
(t)>  (7.66 mV/Hz)

2
 x 100 kHz  6 V

2
 , 

 

which is of a size so as not to saturate the A-input of the multiplier.  (That is to say, 100 is 

about the right level of gain G2 to use in this example.) 
 

Now we’ve assumed the B-input of the multiplier gets a sine wave of 10-V amplitude (or 

20 V pk-to-pk), at any target frequency ft we choose (in the < 100 kHz range); so we are 

enabled to predict that the output of the squarer-and-averager will exhibit 
 

 mean value zero, but 

 fluctuations about the mean of zero, with rms measure of fluctuations given by 

Vrms = (1/4)(600)(100)(128 nV/Hz)  
-1/2

 . 
 

If we pick a minimal averaging time  = 0.01 s, the prediction is 
 

Vrms = 19.2 mV. 
 

This number is directly connected to the voltage noise density of the source, at the target 

frequency selected.   
 

The calculation above leaves out two important effects:  amplifier noise, and front-end 

bandwidth.  For a source resistor as large as 1 M, the Johnson-noise density of the 

resistor dominates considerably over the effective input noise of the amplifier, but you 

would still want to find a way to measure the amplifier noise, and subtract it.  Also, for a 

source resistor as large as 1 M, the effect of about 10 pF of input capacitance gives an 

RC time-constant at the input of about 10 s, or a corner frequency of about 16 kHz.  So 
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for so large a source resistance, you should expect less than the ‘full Johnson noise’ if 

you use this method to measure S at frequencies above a few kHz.  
 

The advantage of this method is that you can measure S at any target frequency ft you 

choose.  Furthermore, the method is almost perfectly 'local', in the sense that the noise is 

being sampled in a neighborhood of ft, with an equivalent bandwidth (8 )
-1

, which is 

12.5 Hz in our example.  (Note also that this bandwidth is independent of the choice of 

ft.)  The bandwidth could be reduced even farther:  for the maximal choice of  = 3 s, the 

bandwidth is down all the way to 0.04 Hz. 
 

There are real disadvantages to the use of so narrow a bandwidth.  Even if we go back to 

our  = 0.01 s choice, it's clear that an oscilloscope view of the averaged output will show 

a value that's zero on average, which wanders about zero with typical 20-mV 

excursions, and which gives an effectively 'new value' every 0.01 seconds or so.  Hence 

in 10 seconds of measurement time, you can get on the order of 10 s/0.01 s = 10
3
 

statistically independent values.  It also follows that (10
3
)
-1/2

 ~ 0.03 or 3% gives the level 

of fluctuations you expect in successive computations of Vrms, each of them based on 

such a 10-s block of data.  The time required to get a stable value of Vrms will rise, 

dramatically, if you choose a longer -value.  So there's a trade-off between the degree of 

'locality' in frequency space at which you measure the noise density, and the time 

required to get a value with good statistical reliability. 
 

In addition to the considerable time required to establish a noise-density value, the result 

you get applies at only one target frequency.  If you want a reading of S = S(f) at another 

target frequency, you need a fresh investment of as long an averaging time.  One of the 

appealing features of Fourier methods (see Appendix A.10) is that they can give spot 

values of noise density for a whole collection of frequencies all at once.  Fourier methods 

are not free from the need to perform sufficient averaging to give statistically stable 

noise-density values, but they offer the advantage of simultaneous 'parallel processing' of 

a whole range of frequencies. 
 

Finally, this method is in principle capable of making accurate values of input spectral 

density.  The issues of statistical precision are dealt with above; for issues of accuracy, 

there's the usual need to know the gain factors G1 and G2 of the amplifiers.  In place of 

needing to know a filter bandwidth f, in this lock-in method there's the need to know the 

final-filter time constant .  If the nominal (5%) value given on the panel is not good 

enough for you, perhaps this -value is best measured in the time domain.  If you drive 

the multiplier as a squarer, by a square-wave voltage alternating (say) between 0 and +10 

V, then its output will 'step' between levels of 0 and 10 Volts.  Then if you capture that 

waveform, appearing at the OUTPUT jack in the Output module of the high-level 

electronics, you should see a low-pass version of that square wave.  For this sort of filter, 

a unit step (from 0 to 1, at time t = 0) at the input should produce, at the output, a 

waveform described by 

Vout(t) = 1 - (1 + t/) exp(-t/) . 

 

So capturing the output waveform and fitting it to a function of this form can give you the 

precise results for the -values that you need in this approach. 
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6.3. Noise from pn-junction devices 

 
You've now seen currents in Section 3.3 (from an illuminated photo-diode) displaying 

full shot noise, and other currents in Section 3.5 (from a humble i = V / R) displaying 

much less noise than Schott's formula predicts.  This section is intended to show that the 

use of photons is not required to generate a current displaying shot noise.  Instead, here 

we'll get currents very similar to i = V / R, except that in three cases they'll involve a p-n 

junction, a forward-biased diode, as an element in the current-generating circuit. 

 

Here's a series of schematic diagrams of ways to produce currents; in each case the 

current is delivered to the input point of an i-to-V converter. 

+
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Fig. 6.3a:  Four ways to get a current suitable for noise testing.  a)  A photocurrent.  b)  A V/R 

current.  c)  A forward current from a p-n junction diode.  d)  The same as c), except for an added 

capacitor. 
 

Of these circuits, a) is the one with an illuminated photodiode which delivers 'full shot 

noise', and it's being driven by 'thermal photons'.  By contrast, circuits b) - d) involve no 

photons at all.  Of these, circuit b) is the one proven in Section 3.5 to be capable of 

delivering a current with much less than full shot noise.  Circuit c) can easily be arranged 

to deliver the same current as b), although to do so, the 'bias supply' Vb will need to set 

about 0.6-0.7 V more positive to make up for the 'diode drop' in potential.  Clearly, 

circuit c) does put a pn-junction in series with the current, but you can show that it does 

not restore full shot noise to the current.   
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To get back the full shot noise, you'll need circuit d), which has just one new component.  

If you think that adding a capacitor to c) would give an RC-filter that would lower the 

noise, you'd be wrong -- adding this capacitor raises(!) the noise, back up to the shot-

noise level. 

 

Let’s confirm these facts empirically.  We suggest the use of an ordinary silicon diode 

(such as a 1N4148 from the parts bin), and the choice of Rbias = 100 k, so supply 

voltage V  6.6 V would give about 0.6-V drop across the diode, and 6.0-V across the 

resistor, again ensuring that i  60 A.  Under these circumstances, the diode has V = 

0.6 V, and i = 60 A, so it displays an 'effective resistance' of V/i = 10 k.  In fact, for 

purposes of noise generation, what we need is the 'dynamic resistance' given by dV/di, 

whose value turns out (from the diode equation) to be about 50 mV/i   800 .  So from 

an a.c.-circuit point of view, the diode is acting like a 60-A current source with an 800 

 resistor in parallel with it. 

I
DC

i
N

R
d
 =

2kT/(e I
DC

)

I
DC

 
Fig. 6.3b:  An equivalent circuit for a forward-biased diode as a current source. 

 

But in circuit c), any a.c.-component of current generated by the junction is heavily 

diminished, because it flows preferentially through 800  of shunt resistance, rather than 

the 100-k path to the i-to-V converter.  By contrast, circuit d) does have a low-

impedance path for a.c. noise current to flow -- from ground, through the capacitor and 

diode, into the virtual-ground at the i-to-V converter's input. 

 

This also tells us we want the a.c. impedance of the capacitor, (2 f C)
-1

, to be smaller 

than 800 , at even the lowest frequencies we care about.  Suppose we've set our 

bandwidth (by downstream filtering) to the 1 kHz-to-100 kHz band, so that 1 kHz is that 

lowest frequency of interest.  If we set (2 f C)
-1

 = 100  at f = 1 kHz, we get C  10 F. 

 

So finally you have a circuit you can build, namely d) with choices such as R = 100 k, 

C = 10 F, Vb = 6.6 V, and single silicon diode (which has to be inserted with the right 

polarity!), and using in the i-to-V converter the choice Rf  = 100 k.  With this circuit, 

you should be able to monitor the current you achieve as before, by measuring a d.c. 

voltage at the pre-amp's MONITOR point.  And you can also test, by familiar means, to see 

if it has the 'full shot noise' predicted for a current this large.  The remarkable thing is that 

just removing the capacitor C will take you back down to a sub-shot-noise current, and 

adding it back in will increase the noise again. 
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To do this quantitatively over a wide range of diode currents reveals some new 

complications.  As the diode current rises, its dynamic impedance falls.  Eventually, the 

diode’s dynamic impedance gets as low as the feedback resistor's value.  Now, for 

purposes of op-amp input noise voltage, the input stage acts like a non-inverting 

amplifier, with gain 2.  This 'noise gain' will continue to rise as the diode current rises, 

and at some point, the amplified op-amp noise voltage will become a significant fraction 

of the total noise.  The onset of this effect becomes noticeable when the MONITOR output 

of the pre-amp's first stage reaches 100 mV in magnitude.  So to confirm the existence of 

shot noise in the p-n junction diode, you'll need to work with fairly small currents, or 

you'll have to lower the feedback resistor (as you raise the diode current) to keep the 

potential difference across the feedback resistor under 100 mV. 

 

There is also a finite-bandwidth consequence of this changing noise gain.  Suppose you 

were to use a feedback resistor of 100 k and a diode forward current of 50 A; that 

would entail a diode dynamic resistance of order 50 mV/50 A or about 1 k.  The 'noise 

gain' of the input stage is then about 100, but that noise gain cannot extend to very high 

bandwidth.  The bandwidth limit will be limited by the gain-bandwidth product of the op-

amp used (about 8 MHz for the OPA134 used) to about GBP/gain, or 8 MHz/100, or 

about 80 kHz.  So if you want quantitatively correct noise measurements, you should use 

filter sections to restrict your noise measurements to bandwidth 10 kHz or less. 

 

Given the need to restrict yourself to rather small diode currents, you will find it 

important to correct your noise readings for 'amplifier noise', by subtracting out the noise 

that occurs for zero diode current.  Similarly at zero diode current, note the d.c. offset of 

the MONITOR output, and later subtract that from you other monitor readings. 

 

But if you can achieve all of this experimentally, it'll be clear that one can get full shot 

noise from a circuit making no appeal to photons, or to boson statistics.  It's also clear 

that while a p-n junction is necessary to get full shot noise, it's not sufficient:  one also 

need the low-impedance path provided in circuit d). 

 

When you think you've understood this, go back to circuit a):  it has the necessary 

junction, but not the capacitor!  Yet it gave full shot noise -- what's going on here?  [Hint:  

circuits c) and d) have a forward-biased diode, of low dynamic impedance, while circuit 

a) has a reverse-biased diode -- what dynamic impedance does that give it?  and why does 

that matter?] 
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6.4. Johnson noise vs. temperature:  noise thermometry 

 
Here's an emerging technology which applies the measurement of Johnson noise to the 

establishment of an absolute temperature scale.  This technique is being actively pursued 

at national standards laboratories, and you're now it a position to understand it, and try 

out a simplified version of the technique. 
 

Suppose we really trust the Nyquist prediction for Johnson noise, 
 

<VJ
2
(t)> = 4 kB T R f . 

 

It's clear that if you can measure source resistance R, bandwidth f, and the mean-square 

Johnson noise voltage <VJ
2
(t)>, this equation can establish the absolute temperature 

converted to energy units, ie. the product kB T. 
 

Now the SI system of units defines the Kelvin scale of temperature by means of only one 

'fixed point', assigning T  273.16 K to the triple point of water.  If you can subject your 

source resistor to this known temperature (by putting it into a 'triple point cell'), and if 

you measure the other quantities, then you can establish the value of kB in SI units.
1
   

 

Once that's known, the source resistor can be put at any other (unknown) temperature Tx, 

and measure Tx in absolute SI units, using 
 

Tx = <VJ
2
(t)>  / (4 kB R f) . 

 

This technique has actually been used to establish absolute temperatures all the way 

down to about 20 mK (see the Spietz reference in the Bibliography), where other 

techniques of thermometry are very hard to calibrate.  Another application is to establish, 

with high accuracy, some 'ordinary temperatures' such as the triple point of nitrogen (near 

63 K) or the freezing point of zinc (near 693 K). 
 

The hard part is to make this technique work to the state-of-the-art precision in 'primary 

thermometry'.  The goal might be part-per-million precision and accuracy, and this is 

very hard to attain for several reasons: 
 

1)  Measuring <VJ
2
(t)>  is hard for statistical reasons (apart from any others).  To get 

precision 10
-6

 in measuring a fluctuating quantity takes something like 10
12

 samples, 

where one 'sample' is a fresh reading of <VJ
2
(t)> .  The inverse of the electronic 

bandwidth sets the timescale for producing a fresh reading, so a choice of f = 10 kHz 

ensures you have to wait about 10
-4

 seconds to get a fresh reading, so that you can only 

get 10
4
 independent readings per second.  For an averaging time of 1 second, you're 

getting 10
4
 samples, and thus you ought to expect part-in-10

2
, ie. 1%, statistical 

fluctuations, in your result.  To improve this to precision 10
-6

 takes truly heroic measures:  

amplifier chains with bandwidth of a full 1 GHz, and averaging times of 10
+3

 s (about 20 

minutes), would just suffice to give the 10
12

 independent readings necessary. 

 

                                                 
1
 In current practice, the best values for kB come from R/NA, where the gas constant R and Avogadro's 

number NA present their own measurement challenges. 
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2)  Even supposing that <VJ
2
(t)> can be measured to the target precision, and that it can 

be corrected for amplifier noise to the same accuracy, there's still the need to know the 

'other factors' kB, R, and f to similar precision.  Of these tasks, we suppose that some 

international consortium of standards labs has established kB (find the accepted result at 

http://physics.nist.gov/cuu/constants/index.html), and we suppose that the same sort of 

labs can measure resistance to part-per-million accuracy too.  The really hard part is in 

establishing the bandwidth f to such precision -- Section 5.2 reveals the complications 

which arise even at the 1% level. 
 

So the true genius of noise thermometry is to use the same electronics to measure, 

alternatively and using the identical bandwidth, first Johnson noise and then shot noise.  

Let's see how that trick could work, temporarily ignoring the (highly non-trivial) issue of 

amplifier noise. 
 

We have a sense resistor Rs at unknown temperature Tx, producing Johnson noise of 

mean-square value 

<VJ
2
(t)> = 4 kB Tx Rs f . 

 

Next we create a current, displaying full shot noise, and having d.c. average value idc, and 

let it enter an i-to-V converter with conversion constant Rf, giving us a shot-noise voltage 

obeying 

Vsn(t) = Rf isn(t) ,   so         <Vsn
2
(t)> = Rf

 2
 
.
 2 e idc f. 

We use identical downstream filtering in the two measurements, to ensure that the same 

f value applies to the two results. 

 

Now imagine a balancing operation: we alternate between the Johnson-noise and shot-

noise sources, varying the current idc in the latter, until mean-square shot noise balances 

mean-square Johnson noise.  Then idc has been arranged to obey 
 

          <Vsn
2
(t)> = <VJ

2
(t)> ,    so Rf

 2
 2 e idc f = 4 kB Tx Rs f  . 

 

The bandwidth f cancels out, and so do all the gain factors -- so we do not need to 

measure them; we need only be certain they're the same for both measurements.  What's 

left can be written as 
 

kB Tx /e = 2 Rf
 2

 idc /(4 Rs) = (1/2) (Rf /Rs) (idc Rf) . 
 

This makes it clear that what we're really measuring is the combination (kB T/e), which is 

the absolute temperature converted to voltage units.  (On this scale, you can check that 

room temperature maps to about 25 mV.)  On the right-hand side, you have the factors 

(1/2), the resistance ratio (Rf /Rs), and the iR-product idc Rf, which is a voltage.  That is to 

say, the measurement of an unknown temperature T has changed to the measurement of  

(kB T/e), but has turned into a problem of electrical measurements only. 
 

Now amplifier noise is not negligible; nor should you trust the necessary equality-of-

bandwidth if one side of the balance involves an i-to-V converter and the other doesn't.  

So here's a circuit in which you can conduct a noise-temperature measurement (though 

not of part-per-million precision!) because it should maintain equal amplifier noise, and 

equal bandwidth, under all conditions. 
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Fig. 6.4:  Schematic diagram, and wiring diagram, of input circuitry for noise thermometry. 

 

This circuit has the reverse-biased photodiode, and the i-to-V converter with feedback 

resistor Rf, just as in Section 3.3.  What's added is the (two) input resistors, assumed both 

to be of resistance R, but at two possibly distinct temperatures.  We'll use Ta for the 

ambient temperature, and Tx for the (assumed lower) unknown temperature of the remote 

one of the two input resistors. 
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First we analyze this circuit for d.c. current.  The reverse-biased photodiode, when 

illuminated, generates a current idc as previously.  What's new is the presence of a 

(switch-selected) input resistor Rin -- but here's why no d.c. current will flow to ground 

through it.  The op-amp's feedback sees to it that the potentials at the two op-amp input 

terminals stay the same, ie. both stay fixed at zero potential.  But that also ensures that the 

potential difference across Rin is zero; hence it conducts no current.  As a result, the 

whole of the photodiode's current idc flows through Rf as before, ensuring that a monitor 

of the op-amp's output voltage will still give 
 

Vmon = (-) idc Rf . 
 

Next we analyze this circuit for noise currents.  The photocurrent, idc, is presumed to have 

the usual shot-noise density, giving <i
2
> = 2 e idc f as before.  Both resistors also 

generate Johnson current noise of size VJ/R, or of <i
2
> = <VJ

2
>/R

2
, giving mean-square 

fluctuations 

<i
2
> = 4 kB T R f /R

2
 = 4 kB T R

-1
 f . 

 

So the usual addition of uncorrelated mean-squares gives a net mean-square noise current 
 

<i
2
> = 2 e idc f + (4 kB Ta / Rf) f + (4 kB Tx / Rin) f . 

 

This noise current appears at the output with mean-square fluctuations in Vmon given by 
 

<Vmon
2
> = Rf

2
 <i

2
> , 

 

But there is also the noise voltage of the amplifier itself to be considered.  We take some 

stated amplifier-noise density VA, but in this circuit, that voltage noise is subject to a gain 

G which happens to be G = 1 + Rf /Rin.  So the total noise at the monitor point has mean-

square value 

<Vmon
2
>  = (G VA)

2
 f  + Rf

2
 [2 e idc f + (4 kB Ta / Rf) f + (4 kB Tx / Rin) f ] . 

 

Now we balance between an 'a' and a 'b' situation: 
 

a) We use the ambient-temperature resistor Rin, so we can write Tx = Ta, but we 

turn the lamp off, so idc = 0.  This gives 
 

<Vmon
2
> |a = (G VA)

2
 f  + Rf

2
 [2 e 0 f + (4 kB Ta / Rf) f + (4 kB Ta / Rin) f ] . 

 

b) Now we switch to the colder input resistor, at some Tx below ambient, and the 

noise level drops.  But we make up for the smaller Johnson noise by turning 

the lamp back on to create some shot noise, giving 
 

<Vmon
2
> |b = (G VA)

2
 f  + Rf

2
 [2 e idc f + (4 kB Ta / Rf) f + (4 kB Tx / Rin) f ] . 

 

Note we assume that the feedback resistor stays at the ambient temperature Ta, and that 

the amplifier noise doesn't change either. 

 

If we dial up the lamp so as to get 'noise balance', then <Vmon
2
>  has the same value in 

the 'a' and 'b' situations.  So subtracting the two equations above, we get lots of 

cancellations:  first the amplifier noise cancels, and then the factor Rf
2
 cancels, and next 

the Johnson noise due to Rf cancels, and finally the bandwidth f cancels too.   
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All that's left is 
 

2 e 0 + 4 kB Ta / Rin = 2 e idc + (4 kB Tx / Rin) 
 

which can be re-arranged to give 
 

(kB/e)(Ta - Tx) = (1/2) Rin idc = (1/2) Rin (-Vmon/Rf) . 
 

Here we've used the d.c. value of the monitor voltage as a surrogate for idc.  So the result 

is a direct measurement of a difference in absolute temperatures (converted into voltage 

units by the kB/e factor), given in terms of (1/2), the resistance ratio (Rin/Rf), and a single 

measured d.c. voltage Vmon.  This is a form of noise thermometry you can actually try out! 

 

There are details, the most important of which, is to ensure that the two Rin's really do act 

alike.  The chief difficulty is that one of them will likely be a 'remote resistor' in the 

probe, while the other is a 'local resistor' in the pre-amp.  In practice, the remote resistor 

has in effect about 90 pF of capacitance in parallel with it, while the local resistor has less 

than 10 pF.  It's feasible to restore equality of bandwidth by adding, in parallel with the 

local Rin, an actual capacitor to make up the difference.  (Such a compensating capacitor 

is shown, as Ccomp and in parallel with the local resistor, in the wiring diagram in Fig. 

6.4.)  The harder task is to know when the right amount of capacitance has been added.  

There's a first test you can do when both the local and the remote resistor are at ambient 

temperature.  Another test is to achieve noise balance, with the use of (say) 10-kHz 

bandwidth in downstream filtering, and then to change to 100-kHz bandwidth.  Only if 

the capacitive matching is correct will the noise still be in balance. 
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7. Practical guide to Johnson-noise measurements 
 

7.1 Introduction 
 

As you are now keenly aware, the subject of noise and noise measurements with NF1-A 

can be complicated.  This section was written with the express intent of helping you get 

started making real noise measurements.  In this section, we are not going to explain the 

physics of your measurements.  That is done in the preceding sections.  Rather, here we 

give detailed instructions, in a step-by-step manner, on how to configure the apparatus for 

several explicit measurements.  We hope that if you follow these directions, you will be 

able to make these measurements and compare your results with the same measurements 

made with your unit at the factory.  In this section, we will put in 'genuine' values for the 

measurements you will make.  These measurements were made on a unit we keep at the 

factory.  Since the electronics cannot be identical, they will not be exactly the same as 

your results.  The measurements we report should, however, be close (within a few 

percent) to what you obtain. 

 

All of the measurements you will be making will be on Johnson noise (as in Chapter 1), 

using the pre-amplifier configuration installed at the factory before the unit was shipped.  

Shot noise (as in Chapter 3) requires rewiring of the low-level electronics, with which 

you will be more comfortable after you have had experience measuring Johnson noise. 

 

We will also do some sample calculations using the generic raw data.  These calculations 

are essential for extracting both Johnson and shot noise from the raw signals.  Again, the 

physics of these calculations is carefully explained in the other sections of the manual. 
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7.2 Test measurement of Johnson noise 
 

Let’s start by examining the 'default' configuration of the low level electronics (LLE).  

Figure 7.2a shows photographs of the unit.  The left is an outside view.  The right photo 

shows it detached and 'flipped' so that the pre-amplifier section is on the lower right side.   

 

 
Fig. 7.2a:  The ordinary (left) and the 'flipped' (right) state of the front panel of the low-level 

electronics.  Note that the LLE's power cord will emerge from the right side of the panel in both 

orientations, provided you execute the flip in a top-over-bottom manner. 

 

To 'flip' the front panel, loosen the four stainless steel thumb screws (two at the top and 

two on the bottom) that hold the thick aluminum front panel to the black-finished steel 

enclosure.  With the broad side of the black enclosure resting on a table, flip the front 

panel top-over-bottom (NOT left over right) and then set it back into the steel enclosure.  

The enclosure was designed to support the aluminum frame in a way that provides 

convenient access to all of the electronics inside the LLE.  (The power cable for the LLE 

leaves the panel from its right-hand side in both frames of Figure 7.2a.) 

 

Now, you should confirm that the LLE is indeed configured in the so-called 'default' 

configuration.  This is the configuration optimized for Johnson noise experiments.  The 

schematic diagram of the Johnson noise configuration is shown in Figure 7.2b. 

+
-

R
F
 = 1 kOhm200 Ohms

R
IN

 
                          Fig 7.2b:  Johnson noise preamplifier schematic 

 

The wiring diagram for this configuration is shown in Figure 7.2c. 
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Fig. 7.2c:  Wiring diagram of the default condition of the interior of the low-level electronics. 

 

Note that in addition to the signal wiring shown here, there is also power wiring.   

Connectors convey regulated power from a fixed power-conditioning board to the 

printed-circuit boards of the temperature-control and pre-amplifier modules.  Be sure that 

the switch on the aluminum block located in the upper right corner is in the ON position.  

This switch controls the d.c. power to the entire LLE unit. 

 

After you have checked the configuration of the LLE, flip the aluminum panel back into 

its original orientation, set it in place, and tighten the four thumb screws that attach it to 

the steel enclosure.   

 

Now, check all of the settings on the LLE. 

 

Pre-amplifier:   Rin = 10 kΩ, Rf = 1 kΩ, Cf = min (not used); 

 200-Ω resistor: hard-wired into place 

 

Temperature Module: Heater Voltage = 0.0, Current Source = any (not used),  

 Probe Cable: input covered with shielding cap 

 

Lower Half of Panel: None of these settings matter for these measurements. 
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Connect the low-level electronics to the high-level electronics.  This is done via two 

connections.  One connection is made with the power cable (permanently connected to 

the LLE) to the front connector on the lower left side of the high-level electronics (HLE) 

box.  The other connection is the signal line, which is connected with a blue BNC cable 

from the x100 Gain Output of the pre-amplifier to an appropriate input on the HLE. The 

cable diagram is shown in Figure 7.2d 

 

 
Fig 7.2d:  Cable Diagram for Johnson noise measurement at full bandwidth 

 

To get the whole unit powered up, find the ±15-Volt d.c. switching supply and connect its 

output line directly to the rear panel of the HLE.  When you use the a.c. power cord to 

connect this power supply to the a.c. line, the HLE will be powered up – there is no 

separate power switch.  The connection you have previously made between the units will 

also power up the LLE (with carefully conditioned d.c. power) from the HLE.  When the 

power is on for the entire unit, you should see the green LEDs on both the LLE and the 

HLE light up.  If both of the LEDs do not light up, check your connections, and also make 

sure the switch on the inside of the LLE is in the ON position. 

  

Before you make your first measurement, it would be advisable to make sure your 

equipment is in an environment which reduces the possibility of outside electromagnetic 

signals interfering with your measurements. Keep the LLE unit away from your 

oscilloscope, from any power supply, power transformers, or any operating electronic 

instruments. If you can, turn off any fluorescent lights. You may later want to identify the 

various sources of interference that can affect your measurements, but for now you want 

to eliminate any real or potential source of such interference.  Similarly, when it comes 

time to use the source resistors in your temperature probe, you need to be sure the probe 

has its cylindrical shield in place (covering the enclosed resistors), and you will need to 

screw its cable snugly to the previously capped-off input connector on the Temperature 

Module of the low-level electronics. 
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You are now ready to make your first measurement. The noise signal you will see is from 

an internal 10-kΩ resistor. As shown, the signal on the BNC cable from the LLE is 

connected directly to the GAIN module.   

 

Gain: Fine Adjust:  30;  Switch (top): x10;   Switch (bottom): x1;  (for Gain = 300) 

 Input Switch:  AC 

 

Multiplier: Input Switch:   AC 

 Multiplier Switch:  AxA 

 

Output: Time Constant:  1 second 

 Meter Scale:  0 – 2 V 

 

Oscilloscope: Sweep:  2 µs/div  

 Vertical:  2 V/div 

 Trigger:  Channel 1, Normal, Rising, 11 volts 

 Acquire:  Average 128  

(used to get qACF, quasi-auto-correlation function – 

see 'scope traces below, or consult Appendix A.11) 

 

Generic Data 

 

Result (internal 10 k source, full bandwidth, HLE gain 300):  output 0.7421 Volts 

 

                            Fig. 7.2e:  qACF (see Appendix A.11) -- internal 10 k resistor, full bandwidth 

 

 

Now make ONLY ONE change.  On the preamplifier board, rotate the switch marked Rin 

to 10 Ω.  Measure the output voltage. 

 

Result (internal 10  source, full bandwidth, HLE gain 300):  output 0.2123 Volts 

 

Check that the resistors mounted in the variable temperature probe are the same as those 

installed at the factory. This is done by plugging the probe cable into the Breakout Box, 

and testing the connections with an ohmmeter:  
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RA = 10 Ω;   RB = 10 kΩ;   RC = 100 kΩ  . 

 

Now connect the cable from the variable-temperature probe to the connector on the LLE.  

To connect to the 10-kΩ resistor inside this probe, rotate the switch marked Rin(Ω) to 

Bext. Repeat the measurements made above. 

 

Result (probe 10 k source, full bandwidth, HLE gain 300):  output 0.3465 Volts 

 

                 Figure 7.2f:  qACF -- probe 10 kΩ resistor, full bandwidth 

 

Now connect a 10-Ω resistor inside the variable temperature probe by rotating Rin(Ω) to 

Aext . Repeat the measurement of the output voltage.   
 

Result (probe 10  source, full bandwidth, HLE gain 300):  output 0.2168 Volts 
 

Now you will once again observe the noise signal from a 10 kΩ resistor, but this time you 

will reduce the bandwidth of the amplification by the controlled use of filtering.  First of 

all, change the cabling of the HLE to that shown in Figure 7.2g. 
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                        Figure 7.2g:  Cabling diagram for the Johnson noise of 10-kΩ resistor at reduced bandwidth. 

 

HLE  
Gain: Fine adjust: 100, Switch (top): x10,  Switch (bottom): x1, (for Gain 1,000) 

 Input switch:  AC  

Filter: Input:  AC 

 Output:  Low pass 

  Corner frequency:  100 kHz 
 

LLE 
Rotate Rin(Ω) to Bext 

All other settings on LLE the same 

 

Result (probe 10 k source, 100 kHz bandwidth, HLE gain 1000):  output 0.7950 Volts 

 

Oscilloscope:    Sweep – 10 µs/div 

                         Vertical – 2 V/div 

 

             Triggering – same   

 
 
  Fig 7.2h:  qACF -- probe 10-kΩ resistor, 100 kHz bandwidth 

 

Make only one change in the set-up.  Rotate the Rin(Ω) switch from Bext to Aext.  This 

connects a 10-Ω resistor to the preamplifier.  Measure the voltage out 

 

Result (probe 10  source, 100 kHz bandwidth, HLE gain 1000):  output 0.2465 Volts 

 

Finally, repeat the above measurements for 10-kΩ resistor that is mounted inside the pre-

amplifier.  Rotate Rin(Ω) to 10 k. All other settings on LLE, HLE, and oscilloscope remain 

the same. 

  

Result (internal 10 k source, 100 kHz bandwidth, HLE gain 1000):output 0.9260 Volts 

 

The qACF for this configuration is shown in Figure 7.2i. 
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Fig 7.2i:  qACF -- internal 10-kΩ resistor, 100 kHz bandwidth 

 

Make ONE change:  Rotate Rin(Ω) from 10 k, to 10.  That makes a 10-Ω resistor next to 

the pre-amplifier the 'signal' source. 

 

Result (internal 10  source, 100 kHz bandwidth, HLE gain 1000):  output 0.2461 Volts 

 

You have made four measurements, all of which were directed toward the Johnson noise 

of a 10-kΩ resistor, but under different conditions.  We will not try to explain why these 

measurements do not produce the same output noise signal, since they are all from the 

same resistance, and use the same pre-amplifier.  But the differences are important, and 

you may already understand them.  If not, you will understand them after reading the 

other sections on Johnson noise. 

 

Now that you have made eight measurements of an average output voltage, under 

different conditions, it will help to put them in some organized format.  Creating your 

own organization for the data you will be collecting is extremely helpful.  It is easy to 

forget the parameters used in your measurements, and thus easy to make mistakes.  In 

Table 7.2, you can see how we chose to organize the raw data. 

 

  Voltage  

(meter out) 

Source  

resistor 

Location LLE 
gain 

HLE 
Gain 

Bandwidth 

0.7421 V 10  kΩ Internal 600 300 Full 

0.2123 V 10  Ω Internal 600 300 Full 

0.3465  V 10  kΩ Probe 600 300 Full 

0.2168 V 10  Ω Probe 600 300 Full 

0.9260 V 10  kΩ Internal 600 1,000 100 kHz LP 

0.2461 V 10  Ω Internal 600 1,000 100 kHz LP 

0.7950 V 10  kΩ Probe 600 1,000 100 kHz LP 

0.2465 V 10  Ω Probe 600 1,000 100 kHz LP 
 

Table 7.2:  Tabulated measurements of raw data 
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7.3 Sample Calculation of noise density 
 

Table 7.2 has all the raw data for the measurements we made at TeachSpin.  By now you 

should have your own version of Table 7.2 of your measurements.  But the motivation for 

these measurements is to determine the Johnson noise voltage from the resistor.  That 

noise signal itself originates far back at the beginning of an amplifier – filter -- multiplier 

chain.  In order to get an accurate measurement of this noise signal, we will need to take 

into account the noise generated in this amplifier chain. 

 

Let's start with the multiplier.  The master equation for Johnson noise (Section 1.0) 

involves the square of the signal voltage.  The multiplier provides the electronic means of 

squaring the input signal voltage, but be careful!  The output of the multiplier is itself a 

voltage, and that voltage is proportional to the square of the input voltage.  To obtain the 

value of the square of the input signal (with the correct proportionality and units) one 

must multiply the multiplier output voltage by the factor [10 Volts].  Mathematically we 

can write this relationship as 

 

Vout(t) = [Vin(t)]
2
 / (10 V)  , so  < [Vin(t)]

2
 > = (measured average Vout) x [10 Volts]  . 

 
 

Read the previous paragraph again to make sure you understand it.  You may want to put 

d.c. test voltages, or a sine-wave test signal, into the just the multiplier to check your 

comprehension. 

 

Since noise density is defined as < Vn
2
 > / f, we need now to calculate an accurate 

bandwidth f .  We call this 'the equivalent noise bandwidth' or ENBW.  Unfortunately, 

this is not the same as the -3-dB points of the filter discussed in Section 2 and in great 

detail in Section 5.2.  In Section 5.2, we derived the expression for the ENBW to be   

 ,
4 2

c c

Q
ENBW f f

 


   

where fc is the corner frequency and Q is the quality factor of the filter.  For the 100-kHz 

bandwidth low-pass filter, the values we will use in this sample calculation are 

 

 738.082.98  QandkHzfc  
 

 

Thus                                 ENBW = 114.6 kHz (for the 100kHz filter) 

 

The values you should use in your calculations are given in the custom data sheet at the 

front of this manual.   These values were determined using your apparatus, and apply 

specifically to your instrument.  

 

The noise signal from the resistor is amplified in both the high level electronics (HLE) and 

the low level electronics (LLE) and those are the numbers you recorded in your version of 

Table 7.2. 
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Now we are ready to calculate the equivalent signal at the start of the chain.   We will call 

this equivalent signal 'the input'.  The noise density is given by 

                             

 

2 2

10 1
.

[( ) ( ) ]

meterV Volts
S

HLE gain LLE gain ENBW


   

 

For the 10-kΩ internal resistor at 100-kHz bandwidth, this gives 

 

16 2

2 2 3

(0.9260 )(10.0 ) 1
2.244 10 /

(1000) (600) 114.6 10

V V
S x V Hz

x Hz

    

 
 

This does not yet give the Johnson noise density of the 10-kΩ resistor, because we have 

yet to deal with the fact that the electronics also contributed to this noise signal.  But 

since we are dealing with noise power density, we can subtract off this amplifier's 

contribution from our signal.  The noise of a 10-Ω resistor adds very little to the noise of 

the amplifier in the chain, so we can (for the sake of these calculations) consider the noise 

signal from the 10-Ω resistor experiments to come entirely from the amplifiers.  Thus we 

use these 10-Ω noise density measurements to subtract the amplifier noise density from 

our 10-kΩ measurements to obtain a determination of the Johnson noise density for the 

10-kΩ resistor itself.  These data and the results of these calculations are given in Tables 

7.3a and 7.3b. 

 

Resistance 

(source) 
ENBW 

Noise density 

(Volt
2
/Hz) 

Noise density 

(amplifier noise    

subtracted) 

Voltage noise 

density 

(Volt
2
/Hz)

1/2 

10 k  

(pre-amp) 
114.6 kHz 2.244 x 10

-16
 1.648 x 10

-16
 12.8 nV/(Hz)

1/2
 

10  

(pre-amp) 
114.6 kHz 0.5965 x 10

-16
  7.72 nV/(Hz)

1/2
 

10 k  

(probe) 
114.6 kHz 1.927 x 10

-16
 1.330 x 10

-16
 11.5 nV/(Hz)

1/2
 

10  

(probe) 
114.6 kHz 0.5975 x 10

-16
  7.73 nV/(Hz)

1/2
 

 

Table 7.3a:  Data taken at 100 kHz bandwidth 
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In the last column we have listed the square root of the S-values, sometimes called the 

'voltage noise density' in its own units of 'Volts per square root of a Hertz', or V/Hz.  

This is sometimes shortened to 'Volts per root Hertz'.  This can be useful if you want to 

check the amplifier noise against the specifications of the OPA-134 op-amp used in the 

input stage of the pre-amp, which lists the noise as 8 nV/Hz (in good agreement with 

our measurements). 

 

 

 

 

Resistance 

(source) 
ENBW 

Noise density 

(Volt
2
/Hz) 

Noise density 

(amplifier noise    

subtracted) 

Voltage noise 

density 

(Volt
2
/Hz)

1/2 

10 k 

(preamp) 
1.1 MHz 2.082 x 10

-16
 1.487 x 10

-16
 12.2 nV/(Hz)

1/2
 

10  

(preamp) 
1.1 MHz 0.5956 x 10

-16
  7.72 nV/(Hz)

1/2
 

10 k 

(probe) 
1.1 MHz 0.9782 x 10

-16
 0.3699 x 10

-16
 6.08 nV/(Hz)

1/2
 

10  

(probe) 
1.1 MHz 0.6083 x 10

-16
  7.80 nV/(Hz)

1/2
 

 

Table 7.3b:  Data taken at full bandwidth.  The ENBW for this data is only an estimate.  The full 

bandwidth depends on several factors, including the pre-amplifier configuration 
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8. Practical diagnostics 
 

8.0. Introduction 
 

We all owe a debt of gratitude to the engineers and scientists who developed the modern 

operational amplifier and other linear analog integrated circuits.  These devices make it 

possible for students to execute reliable and affordable low-noise measurements without 

heroic efforts.  But even with these remarkable low-noise components, the experimenter 

must be aware of several important and sometimes subtle effects that have important 

consequences for the accuracy of noise measurements.  This section attempts to arm you 

with experimental techniques that will aid you in diagnosing the characteristics of your 

experimental set-up. 

 

 

8.1. Three experimental parameters 
 

The measurement of noise consists of determining three parameters: 1) output voltage,   2) 

amplifier gain and, 3) amplifier bandwidth.  Consider the measurement of each one. 
 

1) Output Voltage:  The NF1-A unit provides two places where one can measure the 

amplified noise voltage; before the multiplier (squarer) where it is an a.c. measurement, and 

after the multiplier at the low-pass filter output, where it is a d.c. signal.  The instrument 

was designed for the students to measure the d.c. voltage after the multiplier, which is why 

an expensive and accurate analog multiplier has been included in the HLE.  It is assumed 

that most advanced labs will already have an accurate modern digital multimeter to make 

these d.c. measurements. 
 

But you can intercept these amplified noise signals before the multiplier and measure the 

rms a.c. voltage with a digital voltmeter, a digital oscilloscope, or some computer-based 

data acquisition system.  But be aware of the limitation of accuracy of the a.c. voltage 

measurements on these instruments.  Consult their specifications.  We certainly recommend 

that the students compare rms voltage measurements made with an a.c. true-rms voltmeter, 

and with the multiplier serving as squarer. They should be in reasonable agreement. 
 

2)  Amplifier Gain:  The voltage gain of an operational-amplifier circuit is determined by 

the feedback resistors.  The NF1-A unit has 0.1% precision resistors in the various amplifier 

stages, so one might assume that the gain is accurate to 0.1%.  But this accuracy assumes 

that the op-amp itself has an open-loop gain that is very large at all of the frequencies that it 

is amplifying.  This assumption sometimes breaks down at high frequencies (> 100 kHz), 

and thus the gain at high frequencies may not be the same as it is at intermediate 

frequencies (1 kHz). 
 

At low frequencies (< 25 Hz), there is another concern.  Usually the amplifier chain is 

configured with a.c. coupling, to avoid the problem of amplifying the ever-present d.c. 

offset of the op-amps.  The a.c. coupling is, in effect, a high-pass filter, and thus the gain at 

very low frequencies (~ 1 Hz) drops off precipitously.  This ordinarily (but certainly not 

always) does not cause a problem with a noise measurement, since there is ordinarily only a 

tiny portion of the bandwidth at these extremely low frequencies.   
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For most measurements you will make on a noise signal, the gain registered on the front 

panel of the HLE will be accurate to 0.2%.  Students can always use a signal generator, a 

good calibrated attenuator, and an a.c. voltmeter or oscilloscope to check these 

specifications. 

 

3)  Amplifier Bandwidth:  This critical importance of bandwidth in the filter sections is 

discussed in great detail in Section 2.  But bandwidth limits of other amplifier sections, 

previously modeled with 'flat' gain constants G1 or G2, is also important.  Capacitance in the 

first stages of amplification is the major source of the problem, because it can cause a 

decrease in the high-frequency gain for voltage-noise experiments, or a 'gain peaking' 

(increase in gain) in current-noise experiments.  We have adopted the rather draconian 

technique of providing amplifier gain to about 1 MHz, and then limiting the effective 

bandwidth to 100 kHz or less using the filter sections.  Under these circumstances, errors 

due to the amplifier sections' bandwidths make corrections under 1% to the equivalent noise 

bandwidth of the system as a whole.  But this also reduces the noise signal, since we have 

the filters 'throw away' about 90% of the available signal.  This is an example of excluding 

(high frequency noise) data because it is subject to systematic errors, even at the price of 

raising the statistical errors in the data that remain.  Statistical error, after all, can always be 

reduced merely by taking more time to form stable averages. 

 

But the moral of this story is that your measurements of noise are no more accurate than the 

poorest accuracy in any one of these three parameters: voltage, gain, and bandwidth.  And 

of the three, bandwidth is most difficult to characterize and control. 
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8.2. The qACF and the qFFT 
 

This section describes an important technique for diagnosing the amplifier chain's 

bandwidth characteristics.  It requires a digital oscilloscope with a mathematics menu that 

includes a fast Fourier transform (FFT) capability.  This is now a common and affordable 

instrument that should be a part of any advanced laboratory test equipment.  We will refer 

to this instrument as DSO, a digital storage oscilloscope.  

  

We will be showing you various DSO images.  Figure 8.2 shows some typical images with 

boxed text identifying the important parameters.  Many times the images may appear 

similar, so you will need to pay attention to the differences in scales that are displayed at 

the top and bottom of the images. 

 

  

Fig 8.2a: DSO display parameters identified, in boxes FFT parameters identified, in boxes 

 

 

First let's examine voltage, or Johnson, noise signals with the unit configured in the so-

called 'default' setting, as it came from the factory.  We will be examining noise from both 

the internal and variable temperature probe resistors.  Figure 8.2b shows the cabling 

diagram of the set up. 
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  Fig. 8.2b  Cabling diagram  

 

 

 

Configure your apparatus as follows: 

     High Level Gain 800  Low-pass filter, 100 kHz 

     Rin is 10 kΩ internal  AC coupled on all inputs 

DSO Settings   

     Trigger:  Channel 1, Normal, edge, positive slope 

 Level ~ 9 Volts  

 Time Base 5 µs/div Persistence: 1 Second 

 Vertical Gain 2 V/div Acquire: Sample 

 

 

You should observe a signal something very similar to Figure 8.2c, seen some pages ahead.  

(This may require some adjustment of the triggering level). 

 

Now change your scope so that it averages the signals using the maximum number of 

averages (in our case, 128) and you should observe a signal like Figure 8.2d.  Change the 

time base by a factor of 10, to 50 µs/div (slower sweep), and you observe Figure 8.2e and 

8.2f, again one with persistence and the other with signal averaging.  

 

The averaged signals in d) and f) represent what we are calling the quasi Auto-Correlation 

Function (qACF), which is described in more detail in Appendix A.11.  There is important 

information in these scope traces which we will soon discuss, particularly in the signals that 

have been averaged.   

 

Now let's examine the FFT of these same signals, that is the signals that the DSO accepts for 

the trigger level we have established.  (Note that trigger level is high compared to some 

average voltage level of the noise signal, so we are only sampling waveforms triggered by a 

larger-than-average voltage excursions).  We call these qFFT.  Figure 8.2g is the qFFT of the 
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signals observed in Figure 8.2c, that is at 5 µs/div, persistence 1 second, but no signal 

averaging.  Of course, now you are looking at an FFT trace where the vertical axis is 

logarithmic, in 10-dB units, and the horizontal axis is in frequency units (250 kHz/div, and 

where the arrow at the top indicates the location of the 1-MHz point). 

 

The mathematical details of the qACF, and qFFT are discussed in Appendix A.11.  We have 

added the quasi- prefix to these names because the averaging process of the DSO makes 

these signals a bit different from the actual auto-correlation function of the time-varying 

voltage signal.  For reasons discussed in the Appendix, the half-power (or -3-dB) point of 

filter or amplifier response shows up as the -6-dB point in 'scope displays of the quasi-ACF. 

 

The math options on different DSOs have different characteristics that you will need to 

master.  We will describe the ones on our Tektronix DSO.  There are various ways to 

compute the FFT of a signal, and we have chosen the 'Hanning Window'.  One can also 

expand the frequency scale by applying the 'zoom' function, but the display will record the 

new frequency scale at the bottom so you don't compromise the calibration. 

 

All the data shown in Figures 8.2c - 8.2j comes from the same noise signal. Nothing in the 

signal has changed.  It is still all from an internal 10-kΩ resistor, 100-kHz low-pass filter, 

800 high-level gain, and all inputs are a.c. coupled, but we have adjusted the scope to 

analyze this data in different ways.  Compare c) with d), both in the time-domain, and there 

is no surprise, except that one may just be able to detect in d) a small 'undershoot' after the 

main decay signal that is certainly not obvious in c) (which is not averaged).  

 

The real surprise comes when in comparing g) with h).  Clearly Figure 8.2h shows a 

significantly faster roll off in frequency response than Figure 8.2g.  Although the noise 

signal source and amplification is the same for both figures, Figure 8.2h is the FFT of a 

time-averaged signal, which clearly is not the same as the averaged-by-eye-and-persistence 

FFT of a signal. 

 

But these two images do not give us a clear picture of what is going on at lower 

frequencies.  Since we set the 2-pole filters for 100-kHz low-pass, we should expect a flat 

response at say 1 kHz, and the response to decrease to the -6-dB point at 100 kHz.  To 

observe this low-frequency response, we need to slow down the sweep, or time base, to 50 

µs/div, which is what we did for the four figures in the lower half: e), f), i), and j). 
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Figure 8.2c: Acquire=sample, 1 sec persistence Figure 8.2g: Acquire=sample, 1 sec persistence 

  
Figure 8.2d: Acquire=average, num = 128 Figure 8.2h: Acquire=average, num = 128 

  
Figure 8.2e: Acquire=sample, 1 sec persistence Figure 8.2i: Acquire=sample, 1 sec persistence 

  
Figure 8.2f: Acquire=average, num = 128 Figure 8.2j: Acquire=average, num = 128 
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Looking at Figure 8.2e is truly unimpressive, but its averaged signal in Figure 8.2f is more 

enlightening.  We observe only one narrow sharp spike, and nothing obvious in the 

baseline.  If there were low-frequency interference signals in this experiment, they would 

show up on this baseline.  We will see some of those signals later.  If we look now at the 

FFT at this resolution, where the frequency scale is now 25 kHz/div, we can clearly 

characterize the gain profile on the averaged signal.  At low frequency (<50 KHz) the gain 

is constant, and it drops off about -6 dB at the 100 kHz (center) mark.  It also displays a 

smooth, regular, decrease in gain as the frequency increases, showing no anomalous bumps 

or dips.   

 

Now let's examine the 'main peak' of the qACF in more detail.  In Figure 8.2k, l we have 

expanded the time scale to 2.5 µs/div, but changed the trigger slope, so that k) triggers on a 

rising slope, and l) a falling slope.  Note the horizontal shift in the peaks. 

 

  
Figure 8.2k:  qACF triggered on the rising slope Figure 8.2l:  QACF triggered on the falling slope 

 

Try changing the trigger level.  If you set the level very high the scope will not trigger at 

all, since the amplifier rails are at ±12 Volts.  But if you trigger at, or very near, the zero 

crossing and signal-average, you get a display like 8.2m.  Notice the main peak is bipolar, 

which is what you might expect. When you examine the FFT of these averaged signals you 

get a display shown in Figure 8.2n.  This shows a peculiar gain vs. frequency spectrum, not 

at all like the one shown in Figure 8.2j.  The big difference is the low frequency gain, which 

drops to near zero in 8.2n.  This is not a faithful representation of the amplifier's 

configuration, and that is all due to the fact that we are triggering near zero level and 

averaging the signal before the scope calculates the FFT.  You might also observe that the 

signals display much greater fluctuation. 
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Figure 8.2m:  qACF triggered at zero volts Figure 8.2n: qFFT triggered at zero. 

       

We will now look at some other qACFs.  This is only meant to give you a taste of what other 

time- and frequency-domain spectra can look like.  Suppose we now take the filtered signal 

from the 100-kHz band-pass output filter circuit, rather than the 100-kHz low-pass.  We 

will still look at the Johnson noise of the 10-kΩ resistor internal to the LLE.  Now we will 

return to the 'correct' triggering level, ie. one that is considerably above the rms value of the 

noise signal (in this case ~ 9 Volts).  Both the qACF and its qFFT are shown in Figures 

8.2o,p.  You should note that we are now showing a qFFT that is taken at slower horizontal 

scale (sec/div) than corresponding qACF.   

 

  
Figure 8.2o: qACF from 100 kHz Band pass Figure 8.2p: qFFT,  horizontal scale =50 s/div 

       

Figures 8.2q, r show the signals taken from the 100-kHz high-pass filter.  (Note changes to 

a HLE gain (G2) of 300, and to a faster sweep rate / frequency range to best show off the 

characteristics of the amplifier chain.) 
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Figure 8.2q: qACF from high pass, G2 =300 Figure 8.2r:  qFFT from high pass, 10 s/div 

 

One might expect an 'ideal' high-pass filter to pass frequencies out to infinity.  This is of 

course not possible.  At some high frequency, the gain decreases.   The high-pass output 

thus looks similar in character to the band-pass signal, though the details are different.  
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8.3.  Full-bandwidth signals 
 

Now that you have some experience with known-bandwidth noise signals, let's consider 

studying the qACFs and qFFTs of so-called 'full bandwidth' signals, ie. signals which are not 

passed through any filter.  First, let's use the same Johnson-noise source, the 10-kΩ internal 

resistor Rin.  Figure 8.3a shows the qACF with HLE gain of 300 and a trigger level of +10V, 

and Fig 8.3b show the qFFT of that same averaged signal with a 250 kHz/div horizontal 

axis.  Recall that the arrow at the top indicates the position on the horizontal axis of the 

frequency recorded at the top right, marked Pos: 1.000 MHz, that is, 1 MHz.  Notice that the 

gain (or the noise power) is reasonably constant to about 500 kHz, but then begins to 

decrease, and it decreases by 6 dB at about 1 MHz. This -6-dB point indicates that the full 

bandwidth is 1 MHz, as specified for the apparatus.  The width of the qACF will also tell us 

the approximate bandwidth, but it is hard to estimate that from Fig. 8.3a.  But it certainly is 

reasonable to estimate that width as 1 µs, or the reciprocal of the bandwidth of 1 MHz. 

 

  
Figure 8.3a Figure 8.3b 

 

Let's examine the same Johnson noise source, a 10-kΩ resistor, but this time the resistor is 

the one mounted in the variable temperature probe.  Thus, you must connect the probe cable 

to the preamplifier box, but leave all the other cable connections the same.  Figure 8.3c is 

the qACF and Figure 8.3d is the qFFT of this signal.  Both these screens look different from 

the ones taken for the internal resistor of the same value.  What has changed? 

  
Figure 8.3c Figure 8.3d 
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There now exists an extra cable from the 10-kΩ source resistor to the input of the pre-

amplifier.  That cable adds a small resistance, a small inductance, and a small capacitance 

to our circuit.  It turns out that the so-called 'small' capacitance, about 100 pF, has a 

significant impact on the noise signal.  Consider the qACF in Figure 8.3c.  The broad feature 

at the bottom of the central peak is due to the Johnson noise signal from the 10-kΩ resistor, 

but with the bandwidth reduced by the capacitance of the probe.  The central sharp spike is 

the wide-band noise from voltage noise of the first-stage op-amp in the pre-amplifier, which 

is not reduced by the cable capacitance. 

 

To better understand the qFFT under these conditions, switch to the 100-kΩ probe resistor 

as the Johnson noise source.  (Rin switch position set at Cext).  Again we do not use any 

filter; these are full-bandwidth experiments.   Figure 8.3e and f shows the data.   

 

  
Figure 8.3e Figure 8.3f 

 

Note the change in the time base of the qACF from the previous 5 to 10 µs/div.  There is 

now a much broader feature under the spike, again due to the 100-kΩ Johnson noise at 

bandwidth reduced by capacitive effects, and there is the spike due to the op-amp voltage 

noise.  The qFFT now clearly shows a flat region of about 500 kHz, then a rising noise 

signal at lower frequencies.  Be careful in interpreting this qFFT spectrum.  The final noise 

signal, as monitored at the output of the low-pass filter applied to the multiplier output, is 

less than the total noise from the same-value resistor connection internally within the 

preamp.  That is, the final noise signal is less from the probe resistor then from the internal 

resistor.  Simply put, the probe cable capacitance has reduced the bandwidth of the noise 

signal.  But this capacitance has not only reduced the bandwidth, it has changed the 

spectrum of frequencies in the noise signal. 
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To observe the lower frequency part of this spectrum, we again change the time base for 

both the qACF and the qFFT.  Figures 8.3g and h show this data. 

 

  
Figure 8.3g  Figure 8.3h:  qFFT, 250 s/div 

 

It is hard to see any 'flat spot' or plateau in the qFFT noise spectrum, but the qFFT does show 

a decrease by 6 dB at a frequency near 16 kHz.  The noise is now being 'rolled off' by a 

single-pole RC filter.  (R = 100 k and C = 100 pF does indeed entail a 16-kHz corner.) 

 

You might want to create an intentional single-pole RC filter and send your noise signal 

through it.  Let's choose a 10-kΩ resistor and a 1-nF capacitor, which will give a time 

constant of about 10 µs and a -3-dB frequency corner at 16 kHz -- about the same as the RC 

time-constant for the 100-kΩ probe resistor plus the probe-cable capacitance.  The 

schematic and wiring diagram for this filter is shown in Figures 8.3i and 8.3j.  A note of 

caution:  if you use a very big capacitors and small resistors to get the same time constant, 

you may run into oscillations.  Op-amps are (typically) not designed to drive large 

capacitive loads.   

 

+
-

R
series

C = 1nF

10 kOhm

Series

Resistor

Monitor

Monitor

Temperature

Module

 
Figure 8.3i: An RC low pass filter using the op-amp buffer built in the LLE box. 
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Figure 8.3j:  Wiring diagram RC low-pass filter using the op-amp buffer built in the LLE 

box. 

  

 

Now examine carefully the qACF and the qFFT of the noise signal with this single-pole filter 

(Figure 8.3k and l). 

 

  
Figure 8-3k: qACF from single RC low-pass Figure 8.3 l: qFFT, 250 s/div 

 

You should compare these two signals with those in Figures 8.3g and 8.3h.  
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8.4. Observing Interference 
 

We live in a world of electromagnetic radiation.  At TeachSpin we have done our best 

(within reasonable limits on cost) to shield this equipment from these fields, but you want 

to be confident they have not somehow invaded the apparatus. 

 

To get some idea of the electric fields in your laboratory you might try the following simple 

experiment.  Cut a 15 cm (6 inch) piece of bare wire (found in your parts kit, called 'buss 

wire'), and stick it in the center conductor of the input BNC connector on your oscilloscope.  

If your scope has both 50-Ω and 1-MΩ input impedances, make sure you use the 1-MΩ 

choice.  Now adjust the 'scope gain and triggering until you see a reasonably stable signal.  

Figure 8.4a shows what we see with the fluorescent lights turned on in our lab.  Figure 8.4b 

shows the FFT of this signal. 

 

  
Figure 8.4a: Electrostatic interference in our lab Figure 8.4b: FFT of that interference 

 

You might notice that this signal increases as you move your hand towards the wire.  Does 

it get much larger?  Why?  What happens if you put one hand on the wire and the other 

hand on the outside (grounded) cylinder of the input BNC connector?  Keeping one hand on 

the wire, raise your other hand over your head and point in various directions, including 

toward fluorescent lights.  In the lab at TeachSpin, these fluorescent lights are the major 

source of 25-kHz electric fields.  Your lights might produce a different frequency of electric 

fields. 

 

With the lights off, we change to a five-fold higher sensitivity on the 'scope, and observe a 

different spectrum of electric fields shown in Figures 8.4c and d. 
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Figure 8.4c: qACF of electro-static interference 

with fluorescent lights turned off  
Figure 8.4d:  qFFT of same. 

       

What effect does an interference signal have on our noise measurements?  To study this, we 

will again measure the Johnson noise from a 10-kΩ internal resistor and pass the signal 

through a 100-kHz low-pass filter. To allow some of this external electric field into the unit, 

we remove the variable-temperature probe cable from the LLE and leave the shielding cap 

off the probe connector.   Now set up your oscilloscope to examine both the qACF and the 

qFFT.  In Figures 8.4e and f we show these measurements made in TeachSpin's lab with the 

fluorescent lights on. 

 

  
Figure 8.4e:  qACF from 10-kΩ internal resistor.  

Interference effects with probe cap removed 

Figure 8.4f  qFFT of that interference 

 

It is interesting to note that although this interference signal is so obvious on the qACF, and 

shows up as a distinct and narrow peak in the qFFT, it only contributed about a 15% change 

to the final noise signal as monitored at the output with a voltmeter.  Why is this?  Try 

changing the noise source resistor, Rin, to 100 kΩ or to 1 MΩ.  What do you observe?  Can 

you explain this? 
 

Leaving Rin = 1 MΩ, you might explore other possible leakage paths for electric fields.  

Replace the cap on the variable temperature probe connector, but now take a short buss-

wire antenna, and place it in turn into the center connector of each of the seven open BNC 

connectors on the LLE panel.  See if you can identify which ones, if any, are more likely to 
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form leakage paths into the unit.  Those connectors are good candidates for the use of a 

cover cap, of the sort provided in the spare parts boxes. 
 

You can inject a controlled amount of 'interference' into the unit by connecting a signal 

generator into the monitor output in the preamplifier.  The cabling diagram is shown in 

figure 8.4g. 

 

 
Fig. 8.4g  Cabling diagram for injecting a 'dummy' interference signal into the LLE. 

 

For these measurements we have returned to Rin = 10 kΩ, and no filtering ie. full 

bandwidth.  The signal generator is set to deliver a 10-kHz, 200-mV peak-to-peak sine 

wave.  The two qACFs are only different in the trigger levels set on the scope: Fig. 8.4h is at 

11 Volts and  Fig.8.4i is at 5.5 Volts. 

 

  
Figure 8.4 h Figure 8.4 i 

 

You can easily see that the interference signal is more easily observed in the qACF with the 

higher level trigger.  You'll find that getting a 'good' qACF is a bit of a compromise,  To be 

able to see underlying interference effects you'd like to trigger at as large a voltage as 
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possible, but the noise signal does not always reach to the top and so you have to wait a 

longer time for each new trace.   

 8.5. Magnetic-field interference 
 

It is more difficult to couple a.c. magnetic fields into the unit in any controlled way.  If you 

bring a soldering gun very near the pre-amplifier, you will likely see large 60-Hz (or 50-Hz) 

interference.  Switching power supplies can also generate large time-varying magnetic 

field, though typically at much larger frequencies. 

 

To observe time-varying magnetic-field effects, we created a large loop of wire (and 

exploited Faraday's Law of induction).  The short piece of wire that runs between the Rin 

switch wiper and the non-inverting input of the op-amp has been replaced with a 45-cm 

(18-inch) wire, formed into a large loop.  Then the switching supply for Noise 

Fundamentals has been placed face-down on top of the LLE box.  What we observe is 

shown in Figure 8.5a. 

 

 
Figure 8.5a: qACF of a contrived magnetic interference from 

NF power supply.   

 

Note that the periodicity of the qACF is about 14 s, revealing the use of a switching 

frequency of order 70 kHz inside that power-supply module. 

 

We did not observe changes in the signal as we varied Rin, but this may not be the case for 

pre-amp topologies used in measuring currents, as in the case of shot noise. 
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Appendix A.1. Technical specifications  
 

Low-level Electronics: 

 

 Pre-amplifier module: 

  First stage is user-configurable (see Appendix A.4.) 

  As shipped, first stage is 

   FET-input operational amplifier, non-inverting mode 

   gain (using Rf = 1. k) is (1 + Rf /200. ) = 6.00 

   -3 dB bandwidth > 1.0 MHz 

   input impedance > 100 M 

 

  Next stage are fixed-configuration 

   gain 100. 

   -3 dB bandwidth > 1.6 MHz 

 

 Temperature module 

  Current source 

   accuracy <1%, 10 nA to 1 mA settings 

  Transducer voltage buffer 

   gain 1.00 to <0.1% error, 2 mV d.c. offset 

  Heater power supply 

   0 - 25 V (for floating loads), 330 mA current capability 

 

 Signal Attenuator 

  input impedance:   variable, 100  to 10 k 

  output impedance:   10  (for use driving Zin = 1 k stages) 

     or 10  less 1% (for driving Zin  10 k stages) 

  -3 dB bandwidth > 10 MHz 

 

 Bipolar Power Supplies 

  output:  () 10 mV to 11 Volts 

  noise:  < 5 nV/Hz, typically < 2 nV/Hz 

  current capability:  250 mA maximum 
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High-level Electronics: 

 

 Filter sections 

  state-variable 2-pole Butterworth design 

  input impedance 10 k 
 

 Main amplifier 

  two stages, of gain x1 or x10 selectable 

one stage, gain variable from x10 to x100 

  -3 dB bandwidth > 1.4 MHz 

  slew rate  20 V/s 

  input impedance 1 k 
 

 Multiplier 

  scaling factor for output:  Vout = VA VB /(10.0 V) 

  input impedances of A and B channels:  50 k 

  d.c. offset:  under  10 mV 
 

 Output stage 

  hard-wired d.c. coupling to output of multiplier 

  two successive (buffered) stages of 1-pole, low-pass filters 
 

 (back panel) Noise Calibrator 

  output level  212  2 mV, rms measure 

  noise power is located >99% in 0 < f < 32 kHz range 

  spectral density uniform to  2 % in 0 < f < 32 kHz range 
 

 

The 'Break-out Box' for the Thermal Probe: 

 

In normal operation, the cable from the Thermal Probe into the Temperature-Control 

module connects all the devices in the probe to circuits in the module.  It does so in a 

shielded, all-grounded, low-noise environment.  But there are times when you want 

ordinary access to connections in the probe -- for example, if you want to use an 

ohmmeter to diagnose the resistance (at ambient, or at LN2, temperatures) of the resistors 

mounted in the probe.  To do that, you can disconnect the Probe's cable from the 

Temperature-Control module, and connect it instead to the plastic breakout box.  Now 

you won't have full shielding, but you will have test-probe access to wires: 

GND labels ground, ie. the shell and body of the probe, including the 

copper fin at its bottom 

RA, RB, RC label the three source resistors' live ends (each has its other end 

grounded) 

D1, D2 label the two wires from the temperature-monitoring transdiode 

(see Section 4.3); this transistor has its collector and base leads 

grounded, so the 'live wires' D1 and D2 connect to the emitter  

H1, H2 label the two ends of the 75- heater on the lower fin of the probe; 

this resistor has neither end grounded 
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Appendix A.2.  The matter of a.c. or d.c. coupling 

 
Real amplifiers are subject to 'd.c. offsets', such that a potential difference of zero at the 

input can still lead to a non-zero steady d.c. value at the output.  Because the overall gain 

of the Noise Fundamentals system can be as high as (600) x (10
4
) = 6 x 10

6
, even an 

effective 1 V offset at the pre-amplifier's input stage would lead to a full 6-Volt offset at 

the main amplifier's output.  The amplified noise voltages would be lying atop that d.c. 

offset, and this would create unacceptable errors.  So at many stages of the electronic 

signal chain, there is the option to use a.c. coupling between the stages. 

 

Every a.c.-coupled connection (including that selection at the input of test instruments) is 

actually a high-pass filter, with a corner frequency typically located at 10 Hz or so.  Thus 

the d.c. component of any signal is entirely blocked, and high-frequency a.c. signals are 

entirely passed, by the filter.  But a.c. signals of frequencies below 10 Hz can be 

considerably attenuated, as well as phase-shifted, by the filter in question.  This 

attenuation matters if the study of low-frequency noise is of interest to you. 

 

What follows is a description of the a.c. vs. d.c. coupling options, stage by stage, in the 

Noise Fundamentals signal path. 

 

The pre-amplifier's first stage is always d.c. coupled, as that's a necessity in shot-noise 

measurements.  A MONITOR output allows a view of the d.c. output level of the first 

stage; any a.c. signal or noise is lying super-imposed on that d.c. level. 
 

The gain-100 stage in the pre-amp can be a.c.- or d.c.-coupled to the first stage's output.  

As shipped, the coupling is a.c., with a high-pass corner at frequency 16 Hz.  The change 

to d.c. coupling can be made via a moveable jumper on the printed-circuit board inside 

the pre-amp. 

 

 
Fig. A.2a:  How to select a.c. vs. d.c. coupling between the input stage,  

                   and the gain-of-100 stage, of the pre-amp. 
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In the high-level electronics, the two filter sections can be a.c.- or d.c.-coupled by front-

panel switches.  In the a.c.-coupled mode, there's a high-pass corner at frequency 1.6 Hz. 

In the main-amplifier section, the input can be a.c.- or d.c.-coupled by front-panel switch.  

In the a.c.-coupled mode, there's a high-pass corner at frequency 16 Hz. 

 

The multiplier's inputs can both be grounded, or configured with a.c. or d.c. coupling.  In 

the a.c.-coupled mode, there's a high-pass corner at frequency 1.0 Hz. 

 

The output stage is internally connected, by d.c. coupling, to the multiplier's output, and 

its averaging action is optimized for accuracy all the way down to d.c. 

 

The Noise Calibrator output is d.c. coupled, to preserve the flatness of its noise spectrum 

down near zero frequency.  As a result, there may be a milliVolt-level d.c. offset in its 

average value. 

 

Finally, a word about the consequences of a d.c. offset on an a.c. noise voltage going into 

the squarer.  Recall that in typical operation, gains are chosen so that the signal reaching 

the squarer has an rms measure of about 3 Volts.  Suppose that the actual signal entering 

the squarer is 

VA(t) = D + i Ai cos (2 fi t + i) , 
 

where here D represents the d.c. offset, and the sum is a Fourier representation of all the 

component frequencies in the signal (or noise).  Since the squarer gives output  
 

Vsq(t) = [VA(t)]
2
/(10 V), 

  
 the instantaneous output of the squarer contains lots of terms: 
 

 Vsq(t) = (10 V)
-1

 { D
2
 + i Ai

2
 cos

2
 (2 fi t + i)  

+ i D Ai cos (2 fi t + i) 

    + i,j Ai Aj cos (2 fi t + i) cos (2 fj t + j) }. 
 

Upon taking the time average, the terms in the last two lines average to zero, while the 

cosine-squared terms average to 1/2.  So what you observe as the time-averaged output is 
 

<Vsq(t)> = (10 V)
-1

 { D
2
 + i Ai

2
 (1/2) + 0 + 0 }. 

 

The result is that the expected and intended output, 
 

<Vsq(t)> = < [a.c. part of VA(t)]
2
 > / (10 V) , 

 

is polluted by an error of 
 

<Vsq(t)> = D
2
 / (10 V) . 

 

So if the output of the main amplifier has an offset of even 100 mV, lying underneath the 

typically 3-Volt (rms) noise signal, and if the squarer is used in its d.c.-coupled mode at 

the A-input, this error will be (0.1 V)
2
/(10 V) = 0.001 V, relative to an output due to the 

intended noise signal of (3 V)
2
 /(10 V) = 0.9 V.  
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This offset of 1 part in 900, or 0.1%, will not be caught or corrected by switching the 

input of the squarer to the ground (GND) position, since in this position the squarer does 

not get to see the d.c. component that might be present in the main-amp's output. 

 

The moral of this story:  unless you have reason or need to study noise below about 20 

Hz, use a.c. coupling throughout.  If you do use d.c. coupling at various places in the 

system, monitor the signal (being sure to use an oscilloscope set for d.c. coupling at its 

input!) at every point in the signal chain, to ensure 

 that nowhere is the d.c. level sufficient to saturate the next stage, and 

 that the d.c. average level underlying the input to the squarer is under 100 mV or 

thereabouts. 
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Appendix A.3. Operational-amplifier circuits and noise 
 
This Section describes how the amplifier noise in operational amplifiers can be modeled, 

and goes on to discuss the implications for experimentation. 

 

We start with the open-loop model for a (bare) op-amp, with two inputs (called inverting 

and non-inverting, but labeled by - and + respectively): 

+
-

V
OUT

V
+

V
-

 
Fig. A.3a:  An operational amplifier without feedback, showing labeling of inputs. 

 

The noise-free model behavior is Vout = A (V+ - V-), where A is the (typically huge, but 

frequency-dependent) open-loop gain.  In this model, we neglect issues such as input 

offset and linearity limits. 

 

Suppose that this device is used in the voltage-follower mode, which would ordinarily 

give Vout = Vin.  Now we model the noise behavior of this amplifier.  We imagine a 

referred-to-input voltage noise density Vn as an actual broadband white-noise emf, 

functionally in series with one of the amplifier inputs; and we also imagine that the very 

real d.c. bias current emerging from both inputs has atop it a white noise current source, 

with current noise density in.  If the signal source is a resistor R, we have a circuit 

+
-

R

V
OUT

i
n

V
nV

R

 
Fig. A.3b:  An operational amplifier as voltage follower, showing model noise sources. 

 

The noise behavior of this circuit includes three terms: 

 amplifier voltage noise Vn is effectively applied to the non-inverting input, and (in 

this circuit) appears with gain (+)1 at the output. 

 the Johnson noise of the resistor VR , of noise power density 4 kB T R, is also 

applied to the non-inverting input, and also appears with gain (+)1 at the output. 



NF Rev 1.0  9/1/2011 

 

A-7 

 current noise in , which has nowhere to go but through resistor R, where it causes 

a voltage drop across R which acts just like a voltage noise signal. 
 

So the output has fluctuating voltages from three sources, presumed to be uncorrelated.  

As usual, the mean-square fluctuations of Vout simply add, to give 
 

<Vout
2
> = Vn

2
 f + 4 kB T R f + (in R)

2
 f . 

 

Thus the noise density at the output can be written as 
 

<Vout
2
> / f = Vn

2
 + 4 kB T · R + in

2
 · R

2 
. 

 

This is a quadratic function of R, and it is well imagined in a log-log plot vs. R.  For small 

source resistance R, the Vn
2
 term dominates; for large R, the in

2
 R

2 
term dominates.  These 

two terms make equal contributions when Vn
2
 = in

2
 R

2 
or at R = Vn/in.  But in addition to 

these R
0
 and R

2
 terms, there is an R

1
 contribution from Johnson noise, which can exceed 

the other two (amplifier-noise) terms in an intermediate-R region.  If you're trying to 

study Johnson noise, you'd like the 4 kB T R term to dominate both the Vn
2
 and  in

2
 R

2 

terms, at least in the neighborhood of this R-value. 
 

To be concrete, suppose that a generic (FET-input) op-amp is characterized by input 

voltage-noise density Vn = 10 nV/Hz and input current noise density in = 10 fA/Hz.  

The quotient Vn/in = 10 nV/10 fA = 10
-8

 V/10
-14

 A = 10
6
  defines the 'sweet spot' at the 

crossing of the R
0
 and R

2
 lines in the plot.  So at source resistance R = 1 M, the terms 

Vn
2
 and in

2
 R

2
 both contribute 10

-16
 V

2
/Hz to the noise power density.  That defines the 

amplifier-noise baseline, against which the Johnson noise has to compete.  For a 1 M 

source resistor, that gives a density 
 

4 kB T R ~ (1.6 x 10
-20

 J)(10
6
 ) ~ 1.6 x 10

-14
 V

2
/Hz = 160 x 10

-16
 V

2
/Hz. 

 

Sure enough, at (and around) this source impedance, Johnson noise dominates, 160-fold 

in power, over both voltage noise and current noise in the amplifier. 
 

The numbers for Vn and in picked above are typical for rather generic FET-input op-amps.  

But there are also op-amps whose front-end components are BJT-based, bipolar junction 

transistors.  Such devices can offer smaller voltage noise (eg. 3 nV/Hz), but they display 

much larger current noise (eg. 1 pA/Hz).  So a BJT-input op-amp would have its 'sweet 

spot' in the vicinity of a source resistance R = Vn/in = 3 nV/1 pA = 3 x 10
3
  = 3 k, 

where both terms contribute Vn
2
 = (in R)

2
 = 10

-17
 V

2
/Hz.  Relative to that amplifier-noise 

baseline, a 3-k source resistor generates Johnson noise of a spectral power density  

(1.6 x 10
-20

 J)(3 x 10
3
 ) = 4.8 x 10

-17
 V

2
/Hz.  Again, there's a zone in which Johnson 

noise dominates over both forms of amplifier noise, though not by so large a factor as in 

the FET-based example.  Then again, the absolute amplifier noise density is lower. 
 

These examples teach us some lessons.  If we have a voltage source, it'll have some 

characteristic source impedance.  If that impedance is low (< 10
4
 ), then a BJT-input op-

amp is better suited; if that impedance is high (>10
5
 ), then an FET-input op-amp is 

better suited.  If (as in Johnson-noise experimental investigations) the source impedance 

has to vary over a wide range, then we have to understand that amplifier voltage noise, or 

current noise, might dominate over the source's Johnson noise in some regions of R-

space. 
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There's another lesson to be learned.  It might be that source resistance near 1 M is best 

suited to the noise characteristics of a FET-input op-amp, but that does not tell us what 

bandwidth we can achieve.  Given even 10 pF of input capacitance, a 1-M source 

impedance gives 2 R C ~ 10
-4

 s, and a 'corner frequency' of about 10
4
 Hz, 10 kHz, 

beyond which point the noise will roll off badly.  So the Johnson noise of a 1-M resistor 

is indeed detectable, but an experimenter might be well advised to use only the 0-1 kHz 

bandwidth in which to detect it. 

 

There are finer points, too.  The values Vn and in provided by the manufacturer are 

typically quoted as densities near 1 kHz.  In practice, Vn tends to rise at lower frequencies 

(excess or 1/f voltage noise near d.c.).  In practice, in tends to rise, badly for FET-input op-

amps, at higher frequencies.  So in addition to the 'sweet spot' of source resistance, an 

amplifier can have a range or region in frequency space for which it offers its lowest-

noise performance.  The clever experimenter (using, for example, lock-in detection) will 

want to ensure that the signal being investigated has been arranged to lie near the optimal 

location on both the source-impedance and the signal-frequency axes. 

 

 

Defining 'noise temperature' and 'noise figure' of an amplifier 

 

The noise model above also allows us to define a figure-of-merit for an amplifier called 

the 'noise temperature' Tn.  We imagine that we have a sensing resistor R, at a temperature 

TR, and we seek to detect temperature changes in TR via Johnson-noise measurements.  

For our model amplifier, the noise at the amplifier's output will be the same as if we'd 

used an ideal (noiseless) amplifier, whose input was driven by a noise density 
 

S = <V
2
> / f = Vn

2
 + 4 kB TR · R + in

2
 · R

2 
. 

 

We've seen that the Johnson-noise term dominates the amplifier-noise terms most 

dramatically if we pick R's value at the 'sweet spot', choosing R = Vn/in.  In this case we 

get 

S = Vn
2
 + 4 kB TR · R + in

2
 · (Vn/in)

2 
= 2 Vn

2
 + 4 kB TR R . 

 

If we had the sense resistor at absolute zero (TR = 0), we'd get the first term only; it's the 

net amplifier-noise contribution.  Now we define the noise temperature of the amplifier, 

Tn, to be that resistor temperature at which the second (Johnson-noise) term would rise to 

be equal in value to the first term.  So by this definition, raising the resistor temperature 

from 0 to Tn will raise S from 2Vn
2 

to double this value.  This definition gives us 
 

2 Vn
2
 ≡ 4 kB Tn R , or Tn = (2 Vn

2
 ) / [4 kB R] = (Vn

2
 ) / [2 kB (Vn/in)] , 

 

so finally the amplifier noise temperature is given by 
 

Tn = (Vn in) / (2 kB) . 
 

To be concrete, we suppose that an FET-input op-amp will give us noise performance (at 

least in the vicinity of 1 kHz) characterized by Vn  8 nV/Hz and in  6 fA/Hz.  Then 

we get 

Vn in = (8 x 10
-9

 V/Hz) (6 x 10
-15

 A/Hz) = 48 x 10
-24

 W/Hz , 
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and we get an amplifier noise temperature of 
 

Tn = (Vn in) / (2 kB) = (48 x 10
-24

 W/Hz) / (2  1.38 x 10
-23

 J/K) = 1.7 K . 
 

This is remarkable performance for an amplifier whose physical temperature is 300 K. 

 

It does not follow that a T of 1.7 K is the smallest change in temperature that this 

resistor/amplifier combination can detect.  We've defined Tn such that (compared to a 

resistor at TR = 0), a resistor at T = Tn will double the value of measurable noise density S.  

Rather than such a 100% rise in noise density <V
 2

> / f, it is certainly possible to detect a 

10% or even a 1% increase in S.  The smallest temperature change you could detect by 

this system would ultimately depend on 

 a)  how stable your system would be against systematic variations, and 

b)  how long you were willing to wait, in averaging down the statistical 

fluctuations in the noise you observe. 

 

One example of the state-of-the-art in such T measurements comes from the microwave 

radiometry of the cosmic (blackbody) background radiation by various satellite missions.  

Those measurements of the 2.7-K blackbody radiation are conducted with microwave 

amplifiers whose noise temperatures are of order 60 K, yet they have by now resolved 

microKelvin variations in the blackbody temperature (variations with respect to angle, 

not as a function of time).  But they required about a year of averaging time to achieve 

this. 

 

Noise temperature is the preferred measure of amplifier noise performance in radio and 

microwave regions of the spectrum, because such amplifiers are optimized for source 

impedance of a fixed value (typically 50 ).  With such an R-value matching the quotient 

Vn/in, and a noise temperature given via the product of Vn and in, it's clear that an assumed 

R-value, and a quoted noise temperature Tn, fully characterize the noise performance of 

the amplifier.  In the world of operational amplifiers, there's no need to stick to a single 

source resistance, so rather than specify an amplifier by optimum source resistance and a 

noise temperature, the two parameters Vn and in are quoted instead. 

 

In regimes where impedances are assumed, and noise temperatures alone therefore 

suffice to characterize amplifiers' noise, another figure of merit often quoted is the 'noise 

figure', defied by a temperature ratio, and transformed to decibel (dB) units via 
 

NF = 10 log10 (1 + Tn/290 K) . 
 

Our op-amp example above, with Tn = 1.7 K, gives NF = 0.025 dB, which is (very 

roughly speaking) a measure of how much worse is the signal-to-noise ratio at the output 

of such an amplifier, compared to the signal-to-noise ratio at the input. 
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Appendix A.4. Front-end amplifier choices and consequences 
 
The pre-amp module in the low-level electronics part of TeachSpin's Noise Fundamentals 

has a 'front end', or first stage, which is user-configurable.  In particular, the operational-

amplifier chip for the first stage can be changed, and so can the 'topology' or choice of 

circuit.  Here's a summary of what can be changed, and why you'd want to change it. 

 

The choice of chip is basically between an FET- or BJT-input op-amp chip.  The unit is 

shipped with an FET-input op-amp in place, with performance of the sort described in 

Appendix A.3.  The voltage-noise level of the input stage is not as low as it could be 

made, but the range of source impedances for which this choice is adapted have led us to 

choose it as the default condition of the pre-amp. 

 

If you want the lowest in amplifier voltage-noise levels, and are willing to work in the 

range of source impedances under about 10 or 100 k, then it can help to use a BJT-input 

op-amp chip.  The substitution is easy to make, as we've provided a pin-compatible 

integrated circuit in the spare-parts bin.  You'll need to know how to use a 'chip puller' to 

removed the as-shipped input-stage chip from its socket, and you'll need to be able to 

recognize the pin-1 end of the 8-pin dual-inline package of the new chip to orient it 

properly in the socket.  (Any op-amp with a '741 pinout' and tolerating 12-V supplies 

may be used.)  

 
                                        Fig. A.4a:  The input-stage op-amp in the pre-amp, 

                                              with the pin-1 end of chip (and socket) indicated 

                                              by semi-circular 'dimples'. 

 

You can store the op-amp chip that's not in use in the conductive foam in the spare-parts 

box. 

 

Whether you use one chip or the other, there remains the choice of circuit topology for 

the first stage of the pre-amp.  The unit is shipped with the configuration of a non-

inverting amplifier, whose chief benefit is its very high input impedance: 
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                                  Fig. A.4b:  A non-inverting amplifier topology. 

 

This amplifier has d.c. gain g = 1 + Rf /R1, which takes on the value 1 + (1.00 k/200. ) 

= 6.00 in the as-shipped condition.  Note that Rf is selected via the front-panel selector 

switch, while R1 is a resistor attached to the terminal blocks. 

 

A second topology retains Rf, omits R1, and acts as a current-to-voltage converter: 

+
-

R
F

V
OUT

i
IN

 
                         Fig. A.4c:  A current-to-voltage converter topology. 

 

A third topology is another voltage amplifier, this one inverting in character: 

 

+
-

R
F

V
OUT

R
IN

V
IN

 
                        Fig. A.4d:  An inverting-amplifier topology. 
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Here the gain is g = -Rf /Rin , and the main disadvantage is the relatively low input 

impedance of the circuit. 

 

Beyond these textbook results, it is now necessary to consider the noise performance of 

these circuits.  We take up this topic at two levels of treatment:  first, the low-frequency 

behavior, and second, the behavior at higher frequencies (where capacitances, and op-

amp bandwidth limits, start to matter). 

 

The simpler treatment of the non-inverting voltage amplifier of Fig. A.4b is to model the 

op-amp voltage noise Vn as a series emf in (one of) the amplifier inputs, and to add 

Johnson noise as a model emf in series with each resistor.  (This model omits the op-amp 

current noise.) 

+
-

R
F

V
OUT

R
1

V
1

V
F

V
n

V
IN

 
                      Fig. A.4e:  A noise model for the non-inverting amplifier. 

 

The result is to give 

Vout = g (Vin + Vn) - Vf + V1 (Rf /R1) , 
 

where g is still the d.c. gain given by 1 + Rf /R1.  Relative to the expected output g
.
Vin, the 

actual output displays noise of mean-square size 
 

<Vout
2
> = g

2
 <Vn

2
> + 4 kB T Rf f + (Rf /R1)

2
 4 kB T R1 f . 

 

If the amplifier noise is modeled by a voltage noise density D, or noise power density S = 

D
2
, this gives output noise density 

 

<Vout
2
>/ f = g

2
 S + g · 4 kB T Rf . 

 

Typical values applicable to experiments in Section 1 are g = 6 and Rf = 1 k; the choice 

of an FET-input op-amp might give D = 8 nV/Hz or S = 64 x 10
-18

 V
2
/Hz.  Then we get 

 

        <Vout
2
>/ f    = 6

2
  (64 x 10

-18
 V

2
/Hz) + 6  (1.63 x 10

-20
 J)(10

3
 )  

 

          = (2304 + 98) x 10
-18

 V
2
/Hz , 

 

which shows that the circuit's output noise density is dominated by the op-amp's own 

voltage noise.  The Johnson noise of the two resistors adds a small, and constant, 

correction -- that's why the resistors were chosen to have small values.  The whole noise 

budget can be treated as 'amplifier noise', and subtracted by the methods of Section 1.3. 
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A similarly simple treatment of the i-to-V converter of Fig. A.4c is to consider the circuit 

with amplifier voltage noise, and resistor Johnson noise, added. 

 

+
-
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V
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V
F

V
n

i
IN

 
 

                 Fig. A.4f:  A noise model for the current-to-voltage converter. 

 

This model gives  

Vout = - iin Rf + Vn + Vf , 
 

and it gives output noise, relative to the expected d.c. value, of 
 

<Vout
2
>/ f =  < Vn

2
 >/ f + < f

2
 >/ f = S  + 4 kB T Rf  , 

 

still ignoring the op-amp current noise. For shot-noise measurements typical of Section 3, 

the feedback resistor is neither fixed nor small, so we'll consider the exemplary case of Rf 

= 10
7
 .  Then at room temperature we find 4 kB T Rf = (1.63 x 10

-20
 J)(10

7
 ) = 

1.63 x 10
-13

 V
2
/Hz = 0.163 x 10

-12
 V

2
/Hz, which dominates, by far, the op-amp voltage 

noise contribution of S = (8 nV/Hz)
2
 = 64 x 10

-18
 V

2
/Hz = 0.000 064 x 10

-12
 V

2
/Hz.  

 

Given so large a Johnson-noise contribution from the feedback resistor, it's worth 

comparing its effect with the expected shot noise of the input current.  A feedback 

resistor of 10
7
  is an appropriate choice for an input current in the vicinity of                 

idc  0.5 A, and it will give a d.c. output of (-)idc Rf = (-)5 V.  Such a d.c. current allows 

a computation of expected shot-noise current noise (2 e idc f)
1/2

, or a current noise 

density (2 e idc) = 4 x 10
-13

 A/Hz.  The i-to-V converter maps this to an output voltage 

noise density larger by the factor Rf, giving 4 x 10
-6

 V/Hz, or a noise power density of 

16 x 10
-12

 V
2
/Hz.  This exceeds, by 100-fold, the Johnson-noise contribution of the 

resistor, which in turn exceeds, by far, the voltage-noise contribution of the op-amp. 

 

That completes a 'first level' treatment of expected noise levels; at this level, resistors' 

Johnson noise and amplifier voltage noise have been included, but capacitance of 

devices, and bandwidth limits of op-amps, have not been included.  We now take up 

some examples where these effects are considered. 

 

We return first to the non-inverting topology of Fig. A.4b, but now include the effect of 

source capacitance Cin, in parallel with a source of impedance Rin. 
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                       Fig. A.4g:  The effects of input capacitance in the non-inverting amplifier. 

 

We're still ignoring any capacitance that might be in parallel with Rf or R1, because the 

input capacitance Cin is typically the effect that becomes important first.  In this circuit, 

any Johnson (or other) emf in series with Rin is RC-filtered by the Rin Cin combination, 

which puts a bandwidth 'corner' at fc = (2 Rin Cin)
-1

.  The result is that the output noise 

spectrum drops below the white-noise limit at and above fc, with consequences that are 

explored quantitatively in Appendix A.8.  The input capacitance does not reduce the 

equivalent bandwidth of the op-amp voltage noise or the Johnson noise of the resistors R1 

and Rf. 

 

A second example of the effects of capacitance is in the i-to-V converter topology of   

Fig. A.4c, now shown with an actual current source, having parallel capacitance Cin.  

Also shown is a user-selectable capacitance Cf in parallel with the feedback resistor Rf . 

+
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F
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n

 
            Fig. A.4h:  The effects of capacitance in the current-to-voltage converter. 

 

In the applications of Section 3, the current source may be a photodiode, and Rf is chosen 

to lie in the range (10
3
 - 10

7
) , depending on the light level.  Temporarily ignoring the 

presence of Cf, the novelty in this circuit is the frequency-dependent gain applicable to 

amplifier voltage noise.  At low frequencies, the op-amp acts like a voltage follower for 

noise signal Vn, and thus gives a 'noise gain' of 1.  But starting at corner frequency fc  

(2 Rf Cin)
-1

, this noise gain starts to rise with frequency.  This gives an excess gain for 
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amplifier noise which peaks near fp = (fc fm)
1/2

, where fm is the open-loop unity-gain 

frequency of the amplifier. 

 

To be concrete about this, we estimate Cin  20 pF as the combined capacitance Cin of the 

input circuitry and the reverse-biased photodiode.  If we're using an intermediate 

resistance value Rf   10
5
 , then 2 Rf Cin  10

-5
 s, and so fc  0.1 MHz.  Given an op-

amp with 'gain-bandwidth product' of fm  10 MHz, this tells us that there is excess 

voltage noise in the 0.1 ~ 10 MHz range, with about a 10-fold excess in the vicinity of 

fp  1 MHz.  

 

This sort of 'noise peaking' is certainly visible, by using a 'scope-based FFT to look at an 

amplified version of Vout, obtained even with a photodiode in the dark. 

 

Once such noise peaking is detected, the noise peak near fp is readily reduced, by user 

selection of the feedback capacitor Cf.  An approximate treatment suggests a value of Cf 

obeying 

,
f

inf

p

m

C

CC

f

f 
  

which in this example gives the numbers 
 

10 MHz / 1 MHz  1 + Cin/ Cf, or Cin/ Cf   9, or Cf  Cin/9  2 pF. 
 

In practice, a slightly larger value of Cf might be used; the use of a generic Cf will give an 

i-to-V converter whose response drops below its low-frequency limiting value of 

-Vout/iin of Rf, starting at a corner frequency near (2 Rf Cf)
-1

 . 
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Appendix A.5. Grounding, shielding and screening, and interference 

 

There are many sources of noise, some of them fundamental and some of them just a 

nuisance.  Happily, electronic noise arises in obedience to Maxwell's Equations, and this 

provides some guidance on ways to diagnose and suppress undesired forms of noise. 

 

1) Grounding 

 

There is the complicated matter of grounding, ie. in establishing the point, assigned to 

have V  0, relative to which all potentials are measured.   

 

In the Noise Fundamentals apparatus, local ground is exhibited by the front and back 

panels of the HLE, by the aluminum front panel of the LLE and the module panels 

installed onto it, and by the metal of the thermal probe (if that is being used).  The HLE 

and LLE grounds are connected by both the power supply cable, and the shield of the 

coaxial cable, that is connecting them.  Maintaining good electrical contact among all 

these objects is important for good electrostatic screening. 

 

All of these grounds are connected to the third-wire ground of the a.c. power line through 

a 10- resistor, which is in place to limit ground-loop currents that might otherwise be 

induced in low-resistance closed paths through which there exists a time-varying 

magnetic flux.  The separate ground lines in the power, and signal, cables interconnecting 

the HLE and LLE potentially form such a ground loop.  To keep such effects minimal, it is 

useful to keep these two cables close together, perhaps by loosely twisting them around 

each other. 

 

The common V = 0 level is thus present at the shells of all the front-panel BNC jacks on 

both low- and high-level electronics.  That V = 0 level is not changed by attaching any 

isolated device, such as a battery-powered multimeter, to any such BNC jack.  But issues 

can arise with the use of any line-powered instrument such as an oscilloscope, whose 

input connectors typically have their own idea about what ground is, established by their 

own connection to the line supply. 

 

Hence this advice: make the most sensitive noise measurements with multimeters 

connected to, but 'scopes disconnected from, the apparatus.  Try a measurement 

sometime with, vs. without, a 'scope connection, while monitoring the mean-square 

output with a DMM, to see if ground issues are affecting your noise measurements.  If 

they are, and if you need the 'scope connection, you can minimize this effect by plugging 

the power cords from Noise Fundamentals, and from your 'scope, into the same outlet 

fixture (and NOT using two outlets whose 'common ground' is established somewhere 

unknown or far away). 

 

2a) Shielding and screening 

 

Though these terms are not always distinguished, for this discussion we'll use shielding 

and screening as the names for methods of blocking the effects of external magnetic and 

electric fields, respectively.   
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Here's a way to see the effects of imperfect screening.  Set up a Johnson-noise or 

equivalent exercise in which low-level signals are produced in the pre-amp module and 

sent to the high-level electronics.  To favor the detection of rather low-frequency noise, 

use both filter sections as 1-kHz low-pass filters, and pass along the signal to the main 

amp.  Use a gain of about 400 there, and look at the main-amp output with a 'scope.  Set 

the 'scope to 10 ms/div, and arrange for it to trigger synchronously with your local a.c. 

power line.  You should see 'desired noise' on the 'scope; pick a vertical-axis sensitivity 

which keeps the noise within range. 

 

Now change the 'scope to the averaging mode.  The noise level should drop, by about N, 

where N is the number of averages you're taking.  What you're looking for is residual 

structure, signals of fixed phase with respect to a period of 16.7 or 20.0 ms (depending on 

whether your power is supplied at 60 or at 50 Hz).  If you don't see such interference, 

that's good news.  But to generate some (so that you can learn to recognize it), power up a 

soldering gun or other transformer-containing appliance, and now hold that appliance 

somewhere near the pre-amp.  You should now be able to view some 60- or 50-Hz 

interference on the 'scope.  Try re-orienting and re-positioning that transformer, and 

testing its effects near the high-level electronics too. 

 

Such signals as you're now seeing are due to Faraday's-Law emfs, due to rates of change 

of magnetic flux.  The magnetic fields leaking out of the transformer core are the source, 

and their fields are coupling to circuit loops inside the pre-amp.  Once you've seen that 

this can happen, you'll learn 

 to imagine all such sources, and move them away if possible, especially from 

your pre-amp.  (Remember that any line-powered instrument can be a source, 

too.)  Take advantage of the r
 -3

 drop-off of magnetic fields. 

 why the pre-amp box is made of thick aluminum, and of steel.  Good conductors 

can shield against a.c. magnetic fields by virtue of the a.c. currents induced in the 

shield material; good ferromagnetic materials can shield well against d.c. 

magnetic fields (and less well against a.c. fields.)  Shielding against low-

frequency a.c. magnetic fields is the hardest. 

 that the LLE has the greatest sensitivity to a.c. magnetic fields, and that the size of 

this sensitivity will be greater if your pre-amp circuits present a larger-area loop 

to the magnetic field.  This applies particularly to the use of the temperature 

probe, with its wire connection between the Temperature to the Pre-amp modules. 

 

2b) Screening proper 

 

Now that you've tested for B-field effects, almost always related to line frequencies, 

you're ready to think about E-field effects.  If you've never observed these, it's time for 

you to do so.  You need only a 'scope and a paper clip.  Unbend the paper clip to form a 

single stiff wire, and poke one end of the wire into the center conductor of the BNC input 

of your 'scope.  You've built a sort of antenna, which is resistively coupled into the 

'scope, but capacitively coupled to the outside world. 

 

Set your 'scope for 1-M input impedance and for automatic triggering, and look for a 

signal, without averaging.  The signal will grow, perhaps to large (> 20-mV) size, if you 
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touch the paper clip.  (While you're touching that lead, your body is one capacitor 

electrode -- where's the other?)  You will likely see, amid all the other interference, some 

sinusoidal signals somewhere in the 25-75 kHz range.  Choose the appropriate sweep 

speed on the 'scope, and try to trigger on these signals.  The typical source of such signals 

are fluorescent light fixtures, computer monitors, liquid-crystal displays (including your 

'scope's own display!), and lots of other devices using internal sweeps, scans, and 

oscillators.  If your 'scope has enough bandwidth, you might also see some signals near 

100 MHz, due to local broadcasts of FM signals.  This might also teach you to use the 

reduced-bandwidth option your 'scope may offer, so long as you're doing <1-MHz noise 

investigations. 

 

All of these signals are capacitively coupled, so they depend on E-field lines terminating 

on your antenna and inducing charges there.  Such effects are easily 'screened' by 

interposing a grounded conductor to serve as an alternative, and harmless, place for those 

E-field lines to end.  That's why coaxial cables have a grounded outer conductor, and why 

the Noise Fundamentals pre-amp and probe have grounded metal exteriors.  That's why 

the incomplete coverage of the braided outer conductor of most coaxial cables makes 

them somewhat 'leaky' – signals can leak out, and interference can leak in. 

 

To see that such things matter, here's a way to see what can 'leak through a screen'.  

Remove your paper clip from your 'scope, and devote the 'scope again to looking at the 

noise signal emerging from the main amp.  (Use a configuration like that of Section 1.1.)  

Now here's a way partially to defeat the screening of your pre-amp.  Remove one (of the 

four) screws which hold the pre-amp module into the low-level electronics.  Now build 

an 'antenna' from a few inches of plastic-insulated wire.  Strip away a cm of insulation 

from one end of that wire, and hold that bare-metal end.  Try lowering the insulated end 

of the wire, down through the now-open screw hole, so its bottom end is protruding into 

the pre-amp's internal spaces.  You should see the effect of the failure of screening, as 

fluctuating potentials on your fingers are now capacitively coupled into the pre-amp's 

circuits.  Once you've seen this effect, you'll understand that screening needs to be 

complete to be effective.  You'll understand the construction of the probe better, too. 

 

3) Interference 

 

Grounding, shielding, and screening are all defenses against interference, ie. the injection, 

into your desired noise signal path, of other kinds of signals generated elsewhere.  Once 

you've seen ways to detect and defeat such undesired noise, you should get suspicious of 

what sources can generate it. 

 

If your 'scope is at full bandwidth, you might see effects due to local FM stations, and 

then worry about nearer sources of radio-frequency noise.  If these are weak enough, their 

high frequencies puts them out-of-band for your 0-1 MHz noise investigations.  But if 

they're strong enough, then non-linearities can make their effects show up even in the 

<100kHz band.  So if you can identify and turn off such sources, do so. 

 

We've mentioned the interference in the 10 - 100 kHz band that's generated by sources 

like the solid-state ballasts in modern fluorescent lights.  Many other devices containing 

switching power supplies can also generate interference in this vicinity.  Typically this 
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interference lies at, or near, one single frequency.  The 'dimmers' sometimes used 

between the line supply and incandescent lights are another source of interference, 

typically at harmonics of the line frequency, but extending to very high frequencies.  

Your high-gain noise electronics and your 'scope are the tools for detecting such effects, 

but your environment is unique, and it'll take some creativity and imagination to identify 

all the forms of interference which might be troubling you. 

 

There's one more source of interference that you can identify, test, and avoid:  it's called 

'microphonics', and it shows up as signals generated by mechanical motions of 

conductors due to vibrations.  These motions can either cause a rate-of-change of 

magnetic flux, or a variation in position, changing a capacitance which maps a charge 

into a changing potential.  Either way, you can detect microphonics by watching a 'scope 

view of noise while tapping suspected parts of an apparatus.  When performing shot-

noise experiments with the light bulb, you'll see this effect if you tap the pre-amp near 

that black plastic block containing the bulb.  When using the temperature probe, you may 

also see microphonics during episodes of boiling of liquid nitrogen, especially when it 

fills the probe.  Clearly this effect puts a premium on building rigid circuits, and then not 

bumping them. 
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Appendix A.6. Trouble-shooting 

 
You might be familiar with trouble-shooting, which ought to be a semi-systematic 

method of following a signal through stages of electronics, trying to identify the place 

where something goes wrong.  Trouble-shooting a noise apparatus is harder -- not only 

because there's no 'signal' to track, but also because it can be hard to distinguish the noise 

you care about from extraneous noise.  So here are some suggestions to follow in case 

things seem not to be working as they should. 

 

a) Connections 

 

The first step in trouble-shooting is to review your interconnections.  Have you plugged 

all your tools into the a.c. line?  Do you have the right cable going to a 'scope input?  Are 

you using the correct output from the Low-level Electronics (LLE)?  Have you included 

all the required cables interconnecting sections of the High-Level Electronics (HLE)?  

  

Next, check the connections you have made inside the LLE, particularly in configuring the 

pre-amp's first stage to your measurement needs.  Pull gently on interconnecting wires 

and component leads to ensure they are held firmly in their terminal blocks.  There are 

also some ground connections that you must make in configuring the pre-amp.  Finally, 

have someone else look over your connections, to see if they match the wiring diagram, 

and the schematic diagram, you are trying to emulate. 

 

b) Power 

 

Start with your a.c. line cord, and look for a green LED on the cord-transformer itself.  

Then look for the green LED on the front left of the HLE, and another green LED on the 

front panel of the LLE.  All should be lit when your cord is connected.  If the LLE is 

showing an un-lit LED, suspect that you might have forgotten to turn back the internal 

toggle switch that's accessible when you open up the LLE and 'flip' the front panel.  Check 

the power supplies for the operational-amplifiers inside the pre-amp, by measuring 

(relative to ground) the potentials at the two far ends of the terminal block at the input of 

the first-stage op-amp.  Those points should show potentials of () 13-14 Volts.  As a 

further check, use a voltmeter to check that the auxiliary 11-V power supplies in the LLE 

are working -- there are monitor points on the front panel for this purpose. 

 

c) Signal integrity 

 

The modules in the HLE can be tested independently, by injecting signals from a 

waveform generator at an input, and looking for outputs with a 'scope.  If you can spot a 

signal at the input of a module, and nothing emerges from that module, you have 

identified a problem with that module. 

 

Recall that the filter sections give gain near 1 when you're 'in band', but can give gains 

<<1 when you're far outside their pass-bands.  Recall that the main amplifier can have its 

gain set in the range 10 - 10,000.  At the lower end of this range, it's easy to use a 0.5-V 
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amplitude sine wave in, to get a 5-V amplitude sine wave out.  At the high end, the gain 

is so large that any input amplitude > 1 mV will saturate the output. 

 

d) Saturation 

 

In normal operation, you have access to the noise signal at many points in the 

amplification chain:  early in the pre-amp, and again at its output; and then again at every 

interstage connection in the HLE.  You can use a 'scope, with its input set  to d.c. 

coupling, to look for three kinds of pathologies: 

 

First-stage effects:  you always have d.c.-coupled access to the output of the first-

stage op-amp in the pre-amp.  This output is connected (through a 1-k resistor) 

to the MONITOR BNC jack on the Pre-amp panel.  If this output shows a potential 

near ()12 Volts, that suggests that the first stage has „railed out‟, most likely 

because of an incorrect wiring of this first stage.  Under these conditions, the first 

stage cannot be faithfully transmitting noise to subsequent stages. 

 

d.c. offsets:  If you use d.c. coupling between stages, then a gain stage can turn  

an input of (1 V of offset, + noise) into an output of (say) 10 x (1 V of offset, + 

noise) = 10 V of offset, + 10 x noise.  Much more of this, and the d.c. offset will 

drive the noise into the 'rails', the upper and lower voltage limits, of about 12 V.  

Once a d.c. offset has caused a signal to 'rail out', any noise atop the d.c. offset is 

wiped out. 

 

The third thing to look for is any evidence of noise that's gotten too large.  

Supposing that the use of a.c. coupling between stages (see Appendix A.2) has 

dealt with d.c. offsets, yet still there remains the problem of saturation.  If a noise 

input falls in the 2-V range, a gain-of-10 amplifier ought to produce output noise 

in the 20-V range.  But in this apparatus it won't:  the largest positive and 

negative excursions will be 'clipped' at the levels near 12 Volts imposed by the 

range of linearity of the amplifiers.  That clipping not only removes part of the 

energy which should be in the noise, it also generates distortion, which puts 

energy at unpredictable locations in frequency space. 

 

e) Excess noise 

 

There will be times when you suspect that you're getting more noise than you should be.  

Here are some possible causes: 

 

First, you should monitor the squarer's time-averaged output with a digital multimeter 

(DMM) as a measure of the noise.  Then you should disconnect any and all ground-

reference test instruments (like oscilloscopes) from interacting with the apparatus.  If the 

DMM reading changes, then you can suspect some interference (typically, a ground loop) 

is contributing to what you're seeing.  See Appendix A.5 for details. 

 

If you have a 'scope attached, and have shown by this test that it's not contributing to the 

measured noise, you can now use that very 'scope to look for interference in what should 
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be a pristine noise signal.  Appendix A.5 teaches you the use of a.c. line triggering, plus 

averaging, to see the effects, if any, of all 60- (or 50-)Hz periodic effects.   

 

You may have seen, in Appendix A.5, that a dominant form of electrostatically-coupled 

interference in your lab is at 25 or 48 kHz, or some other medium-high frequency, 

generated by fluorescent light fixtures, etc.  Here's a 'scope-based way to search for 

contamination of your noise signal by interference from such a source: 

 use the 'paper clip method' of Appendix A.5 to get a view of that interference on 

ch. 1 of your 'scope, and trigger on that interference; also pick a time base giving 

several cycles' view of the interference.  Now put your noise signal into ch. 2 of 

the 'scope.  Use signal averaging.  If the noise signal is contaminated by this sort 

of interference, upon this kind of triggered signal averaging, ch. 2's signal will 

average not to zero, but to a non-zero trace revealing the interference which is 

contaminating the noise. 

 or, use the 'scope-based FFT on the paper-clip pick-up signal to establish where (in 

frequency space) the interference is located; now switch to an FFT of the noise 

signal, and look for a peak, a location of excess noise, atop the expected white-

noise background. 

 

Turning off and on all the room lights, while monitoring with a multimeter the squarer‟s 

averaged output <V
 2

>, can sometimes show that electrostatic interference is contributing 

to the total noise detected.  If you do see such an effect, suspect that you have a problem 

in some part of the LLE with imperfect screening against electrostatic effects. 

 

f) Suppressing interference 

 

If you find interference by one of these tests, you might wonder how it's getting into your 

system.  Start by suspecting an entry point in the LLE.  Check that all four thumbscrews 

(at top and bottom of the main LLE panel) are snugged down (finger-tight). Then check 

that all eight flat-head screws holding the Modules' panels to the frame are in place, and 

tightened.  If you're not using the Thermal Probe, be sure that you 'cap off' the connector 

where its cable would enter.  Use BNC 'shielding caps' as well at the two most crucial 

locations: the pre-amp's Monitor output, and the Series Resistor's Monitor position.  This 

should deal with the potential paths for capacitively-coupled interference to get into the 

pre-amplifier. 
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Appendix A.7. Test and repair of the d.c. power supplies 
 

The low-level electronics box, in addition to 'hosting' the pre-amp and temperature-

control modules, provides you with some utilities.  Among these are the two 11-Volt 

power supplies.  (Note that one range switch, and one variable knob, control one supply 

with 0 to +11-Volt output, and also control another, with 0 to -11-Volt output.)  These 

supplies have a current capability of 250 mA, yet they have been crafted to have noise 

levels under 5 nV/Hz, all the way from d.c. to >1 MHz.  Separate from these two utility 

supplies, but of very similar design, are the power supplies which run all the operational 

amplifiers in the pre-amp and temperature-control modules in the low-level electronics. 

 

Building voltage supplies as 'quiet' as this takes careful regulation, which rejects voltage 

variation at all sorts of frequencies, and therefore has to react in a time << 1 s.  The 

regulators, in turn, are protected against damage in case the power supply outputs are 

short-circuited.  But the protection cannot be instantaneous, so there are implications: 

 

1) Please wire items to these 11-V supplies only with the power switched OFF 

inside the Low-level Electronics.  When you've 'flipped' the low-level panel to work on 

its inside, there's a toggle switch visible on the power-entry box, with a red LED to 

remind you when the power is on. 

 

2) Try to try not to short-circuit these power supplies ! 

 

3) When you turn back on the power inside the LLE box, you can check that the red 

power-on LED comes back on, and you can check that two fault-mode red LEDs on the 

power-regulating printed-circuit board don't light up. 

 

 
Fig. A.7a:  Location of two red LEDs which are ordinarily not lit, but which will light up (though 

not very brightly) in case of a fault in the power-regulating circuits. 
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When you've flipped the panel back to its right-side-out configuration, you can re-check 

the proper operation of its 11-V power supplies. 

 

4) Some “insults” to the power supplies could result in the last-stage pass transistors 

failing, and failing to an open-circuit condition.  Under this mode, you'll see no 11-V 

capability, and you'll have to replace the pass transistors.  The procedure for Replacing is 

described at the end of this s ection.   

 

5) Other insults to the power supplies can cause the pass transistors to fail to a short-

circuit condition. Under this mode, they will pass d.c. current, but will fail to remove the 

high-frequency fluctuations in the voltage they supply.  So you'll still get an apparently 

useful 0 to +11-V, and/or a 0 to -11-V, output, perhaps with even a bit more voltage 

range than you got before.  But the output you get will now be much noisier, giving 

voltage noise density perhaps >200 nV/Hz instead of typically <2 nV/Hz at the 

outputs.  You'll need to measure this noise level to diagnose this problem, but you can't 

see this excess noise on a 'scope.  (That's because 200 nV/Hz of noise density, extending 

all the way from d.c. to 1 MHz, still gives a net voltage fluctuation of only 200 V, rms 

measure.) Here's a circuit that will do the noise measurement you need -- it'll pass all 

noise components above about 1 Hz to the pre-amp, which is configured just as in 

Section 1.1: 

 

+
-

R
F
 = 1 kOhmR

1
 = 200 Ohm

C =1 uF
R

IN
 = 100 kOhm

0 to +12 V

or 0 to -12 V

power supply

under test

switch

 
Fig. A.7b:  A circuit for a.c.-coupling one of the 0-11 V power supplies to the input-stage op-amp 

of the pre-amp, with input stage configured for gain 6.00.  (This gives overall pre-amp gain         

G1 = 600.)  Note that a switch setting can give you input connected to ground, rather than the 

positive or negative supply, as a 'control group' or check. 

 

You'll need to understand the gain of the pre-amp, and the main-amp, and the bandwidth 

of your filtering, to get this method to work quantitatively.  If you confirm the high-noise 

state of output, you'll need to replace the pass transistors. 
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Replacing the pass transistors 

 

Conduct this operation with the low-level electronics' power turned OFF. 

 

The transistors you might need to replace are labeled on the silk-screened printed-circuit 

board of the power-regulating part of the low-level electronics: 

 

 (for the 0 to +11-V supply) Q2 type 2N4401 

 (for the 0 to -11-V supply) Q6 type 2N4403 

 (for the op-amp + supply) Q3 type 2N4401 

 (for the op-amp - supply) Q5 type 2N4403 

 

Before you take out a suspect transistor, make a sketch of its orientation of its black 

plastic package, so that you can orient the three leads of the replacement part correctly.  

Note that the orientations of Q5 and Q6 differ from those of Q2 and Q3.  When you're 

ready, unscrew the three terminals to remove a transistor's leads; get a replacement device 

from your spare-parts bin; bend its leads to match those of the suspect device; and insert 

and screw it into the terminal block. 

 

After you've replaced one transistor, here's a two-part test to see if it is working correctly:  

restore power to the low-level electronics, and 

 use a DMM to test the d.c. level, variable or fixed, of the power supply you've 

repaired, for proper operation; 

 then re-wire the noise-level test above to see if the power supply output has now 

gotten 'quiet' -- for this test, you'll have to re-flip the low-level electronics' front 

panel and close up the box.  
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Appendix A.8. Limits to the Johnson noise spectrum 
 
We claim that Johnson noise is white, ie. that it delivers equal amounts of energy into 

frequency bins of equal width.  But the frequency axis extends from zero to infinity, so 

the total energy summed over all frequencies would seem be infinite.  Clearly the 

Johnson noise spectrum must drop to zero at some high frequency; else we'd have an 

'ultraviolet catastrophe', just as in blackbody radiation.  

 

Nyquist's derivation of Johnson noise shows that not only the disease, but also the cure, 

has the same form in both problems.  In blackbody radiation, the electromagnetic spectral 

energy density (f) (with units of Joules of energy, per cubic meter of volume, per Hertz 

of bandwidth) has a frequency dependence of the form 
 

(f)  f 
3
 [exp(hf / kBT) - 1] 

-1
 

 

which can be written as 
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The factor f 
2
 is appropriate to a 3-d calculation, and it turns into a factor f 

0
 in Nyquist's  

1-dimensional calculation of electromagnetic energy in a transmission line joining two 

resistors.  The second factor has the same origin, and the same consequences, in 

blackbody radiation and in Johnson noise.  It's a factor which goes to a constant at low 

frequencies, but drops exponentially like exp(-hf / kBT) once we have hf >> kBT.  That 

result puts quantum mechanics into our electronics problem, and it cures our ultraviolet 

catastrophe.  It also tells us that (if nothing else were to limit the spectrum) Johnson noise 

can only extend out to about fmax  kB T / h.  (What upper frequency limit does that set, for 

room-temperature experiments?  How about at T = 20 mK?)  Short of this quantum cut-

off, and certainly in the range relevant to tabletop electronics, we have hf << kBT, and 

using hf /(kBT) << 1 allows us to write the spectral energy density appropriate to one 

dimension as 
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Notice this result is linear in temperature T, and that it is also independent of frequency.  

So this is the origin of the overall f 
0 

T
1
 or 'white', but temperature-dependent, Johnson-

noise spectrum. 

 

In practice, Johnson noise nearly always drops below the book-value density at much 

smaller frequencies than the quantum limit mentioned above.  We model a real resistor, 

which displays Johnson noise, as the series combination of a Johnson-noise emf and an 

ideal (noiseless) resistor.  What we'd like to measure, with an ideal voltmeter, is the 

Johnson noise voltage VIN(t), using the circuit in Figure A.8a. 
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V
R

IN

V
IN

 
                                                                           Figure A.8a 

But in practice, there is capacitance, say between the two wires, or at the input of the 

voltmeter, so in reality the circuit we have (as shown in Fig. A.8b, in equivalent circuits) 

is formed by the source resistor's own resistance, and the stray (or voltmeter) capacitance.  

A filter like this has a 'corner frequency' given by fc = (2 Rin C) 
-1

, and this corner is of 

real concern.  If you use a source resistor of Rin = 100 k and have even 10 pF of stray 

capacitance, you have Rin C = (10
5
  )(10

-11
 F) = 10

-6
 s, so 2 Rin C  10

-5
 s, and             

fc  10
+5

 Hz.  That is to say, the Johnson noise spectrum can easily be rolling off at 100 

kHz and above. 

  

V
R

IN

V
IN

C
V

R
IN

V
IN

C

 
                                                                        Figure A.8b 

 

 

The problem is worse for larger source resistance, and much worse when the temperature 

probe of Section 4 is used -- there, the need for a coaxial cable raises C to about 100 pF.  

That's why the use of bandwidths f not extending to high frequencies is important for 

getting accurate values of mean-square Johnson noise. 

 

A model for equivalent noise bandwidth, under these circumstances, is the usual integral 

of the square of the gain function, but now with three factors in it: 

 

 a possible high-pass response at (low) frequency f1 , and 

 

 a low-pass response at (higher) frequency f2 ; both of these taken to be ideal 

Butterworth functions, but now these are supplemented by 

 

 a one-pole low-pass roll-off response at the corner frequency fc determined by 

capacitive effects. 
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So the complete gain function becomes 

.]
)/(1

1
[]

)/(1

1
[]

)/(1

)/(
[)(

24

2

4

1

2

1

cffffff

ff
fG


  

 

You'll find (by numerical integration) that if the capacitively-caused corner fc lies at 

frequency 10
.
f2 or higher, the equivalent noise bandwidth is decreased by less than 1% 

due to this effect. 

 

But there is another interesting limiting case.  Suppose that we use no high-pass filter at 

f1, and no low-pass filter at f2, but that the bandwidth is limited only by the capacitive 

roll-off at the source.  The noise is then born with a density uniform in frequency, 
 

S = <V
2
(t)> / f = 4 kB T R , 

 

so the mean-square value of the emerging signal would be 
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That would be infinite! but only because we left out the factor G
2
(f) in the integrand.  In 

the RC-filter case at hand, G(f) is the magnitude of the RC-filter's transfer function, which 

is given by 

G(f) = [1 + (f /fc)
2
] 

-1/2
 . 

 

So instead of an ultraviolet catastrophe, we get 
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Now the use of fc = (2 R C)
-1

 gives a neatly finite result, 
 

<V
2
(t)> = 4 kB T R (/2) (2 R C )

-1
 = kB T /C . 

 

If you look at the circuit we're effectively using, you'll see that V(t) is not only the voltage 

across the meter, it's also the potential difference across the capacitor C.  That capacitor 

stores energy in amount Ucap = C V
 2
/2, so, though the instantaneous value is fluctuating, 

the time-averaged value of stored energy is non-zero, and given by 
 

<Ucap> = (1/2) C <V
2
(t)> = (C/2)  kB T /C = (1/2) kB T , 

 

which is a lovely illustration of the equipartition theorem.  In fact, it shows that 

dissipation in a resistor (attached in parallel to a capacitor) comes accompanied by 

thermal fluctuations which prevent the resistor from discharging the capacitor all the way 

to zero.  Instead, those fluctuations are the very mechanism responsible for the energy 

that, on average, is present in the capacitor.   

 

The most remarkable feature of this result is that the measurable answer for < V
 2

(t)> 

depends not at all upon the value of the resistance R, yet the resistor is nevertheless the 

source of the mean-square voltage being measured.  In fact, you can measure a result 
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which depends on the resistor's temperature T, but not on its resistance R!  The reason is 

that R's value turns up in two places, and cancels in this result: doubling R would double 

the Johnson noise power density, but it would also halve the equivalent bandwidth of the 

circuit, leading to the disappearance of R's value from the result.  Perhaps you can think 

of a project, using a thermistor or a photoresistor to give a resistor of externally-

controllable R-value, which tests this remarkable prediction.  
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Appendix A.9. Gaussian noise vs. white noise 
 
You've repeatedly seen the words 'white noise', and you have perhaps also heard of 

Gaussian noise.  Both the Johnson noise, and the shot noise, that you've been studying are 

both white and Gaussian in character.  But these are two separate attributes of noise, and 

this section discusses the distinction. 
 

We'll start by assuming you have a Johnson- or shot-noise source, amplified by the pre-

amp, unfiltered but further amplified by the main amp to give a broadband noise signal of 

about 3 Volts (in rms measure). 
 

That noise is white if it delivers equal amounts of power in any two frequency bands of 

equal width.  That is to say:  if after the main amp, an ideal sharp-edged filter were to 

pass all (but only) frequencies in the band (f0 - f /2, f0 + f /2), then the mean-square 

value for the resulting filtered signal would be linear in the choice of bandwidth f, but 

independent of the choice of band-center f0.  Whiteness of noise in a frequency-domain 

stipulation, summarized by saying that spectral density S(f) is in fact frequency-

independent.  The broadband noise you'd get in the set-up mentioned above is very near 

to white in the 1-100 kHz range.  In practice, there might be excess low-frequency noise 

visible below 1 kHz, originating in the amplifiers; and there would also be some roll-off 

of noise at high frequencies, perhaps below 100 kHz or beyond 1 MHz (see Appendix 

A.8 for details). 
 

By contrast to this frequency-domain view, the Gaussian nature of noise is specified 

wholly in the time domain.  Think back to that broadband noise signal emerging from the 

main amplifier, which (in the absence of high- or low-pass filtering) has frequency 

content out to about 1 MHz.  Suppose you sample and digitize that voltage, at a collection 

of random times (or equivalently, at a collection of times separated by more than the 

autocorrelation time of the source, which is here about 1 s), and produce a long list of 

instantaneous voltage values {Vi}.  Now you can make a histogram of that list, and the 

noise is Gaussian only if that histogram matches a Gaussian distribution.  (Have you lost 

the rare outliers that the Gaussian distribution predicts?  If so, is that because your analog 

voltage signal has 'run into the rails' at some point?  If so, reduce the rms measure of the 

source noise, or the gain of the main amplifier, until even rare events will fit into your 

range.) 
 

Noise can be Gaussian as a consequence of the independent operation of many 

independent sources; in that case, Gaussian behavior is to be expected because of the 

central limit theorem.  Noise can be white as a consequence of processes of short or zero 

autocorrelation time (see Appendix A.11.)  So it's no accident that some fundamental 

kinds of noise are both white and Gaussian. 
 

But noise can be white and not Gaussian at all.  For example, if you deliver a single pulse 

of fixed amplitude and brief duration, its Fourier spectrum is white (out to a frequency 

about equal to the reciprocal of that brief duration).  Now if you have a succession of 

such pulses, all of identical polarity, amplitude, and still-brief duration, but occurring at 

random (Poisson-distributed) times, the noise this represents is still spectrally white.  But 

its voltage histogram is nothing like Gaussian -- instead, it would consist of only two 

values, corresponding to the pulse-absent and pulse-present conditions. 
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Similarly, noise can be Gaussian but not white.  The Noise Calibrator built into the high-

level electronics has a voltage histogram which is very close to Gaussian; that's due to the 

central limit theorem and the use of lots of sinusoids in its construction.  As is happens, 

the noise is also white, by design, in the 0 - 32 kHz band.  But the way such pseudo-noise 

sources are built would allow for any desired shape of S(f)-function, including 'pink 

noise' with extra energy at low frequencies. 

 

Finally, there's a connection between the voltage histogram of a time-domain signal and 

its rms measure.  If p(V) gives the probability of getting a particular value V for the 

voltage, then 

 p(V) dV =1 
 

expresses the normalization condition for probability.  Similarly 
 

 V p(V) dV 
 

would be the way to compute the d.c. average value of the signal (if any), and 
 

 V
 2

 p(V) dV 
 

would give the mean value of the square of the voltage.  The rms measure of the signal is 

the square root of this, 

Vrms  [ V
 2

 p(V) dV] 
1/2

 . 
 

Of course the rms measure is alternatively given by a calculation in the frequency 

domain.  By definition of (single-sided) spectral density, we have 





0

2 ,)()( dffStV  

so we can also write 

1/2

0
[ ( ) ] .rmsV S f df



   

 

The particular form of p(V) for a Gaussian noise signal of rms measure A is given by 
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Thus a noise signal of 3-Volt rms measure has parameter A = 3 Volts, and a Gaussian 

distribution of voltage values which has relative size 1 (at V = 0), e
-1/2

  0.607 (at V = 3 

Volts), e
-2

  0.135 (at V = 6 Volts), and e
-4.5

  0.011 (at V = 9 Volts).  You may use an 

integration on the formula above to find, for example, the proportion of all voltage 

samples which are expected to have |V| > 10 Volts. 
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Appendix A.10. Fourier methods for quantifying noise 

 
This section takes up the possibility of getting the frequency spectrum of noise by 

computational processing of an amplified noise signal, captured in the time domain.  We 

assume an ordinary noise experiment, complete with pre-amp, filter sections(s), and main 

amplifier, except that in this method, we give up the use of the squarer, and instead 

acquire the main-amp output as a voltage-vs.-time waveform. 

 

a) Via oscilloscopes 

 

You've monitored the Noise Fundamentals main-amp output on an oscilloscope on many 

occasions, but have always viewed the waveform itself -- that's the 'time-domain' VA(t) 

signal.  But many 'scopes offer an 'FFT' or fast-Fourier-transform utility, intended to show 

you a 'frequency-domain' view instead, of the spectral content of the VA(t) signal.  We'll 

see below some details on how such things are computed from a sampled and digitized 

version of VA(t).  Here, let's mention typical limitations of 'scope-based FFT presentations: 

 

1) There's nothing to enforce on the user the choice of an adequate sampling 

rate, and the wrong choice will lead to a grossly deceptive view of the frequency 

content of the signal.  (This effect involves the 'aliasing' of spectral content to 

wholly other locations in frequency space.)  The requirements for sampling rates 

which will give a display faithful to the waveform's actual spectral content are 

given in section b) below. 

 

There's also nothing to prevent the user from choosing too sensitive a vertical 

scale on the 'scope, in which case an input signal which saturates the digitization 

range of the 'scope can have its spectral content splattered about unpredictably in 

frequency. 

 

2) The horizontal scale of spectral displays is given correctly by 

oscilloscopes' FFT routines, but the vertical axis is typically left in arbitrary units.  

It's also traditionally plotted on a logarithmic or decibel (dB) scale, with 10 

dB/div meaning that every vertical division signifying a ten-fold increase in 

spectral power.  But reading the actual spectral power, in absolute V
2
/Hz units, is 

a capability reserved for special 'spectrum analyzers'.  One of the main goals of 

the sections below is to lead readers through a treatment of actual computation, by 

Fourier means, of results for noise power-density spectra, whose units and 

normalization can be understood and trusted quantitatively and in detail. 

 

b) Sampling 

 

This is possible given a digital sampling instrument, such as an oscilloscope, which can 

acquire a long series of (perhaps 10
3
 to 10

5
) voltage 'samples', all acquired at some 

uniform spacing in time.  The reciprocal of this inter-sampling spacing is called the 

'sampling rate', and it is critical that this rate be high enough. 
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How high is high enough?  This comes from Shannon's 'sampling theorem', which says 

that if a waveform contains only frequency content below a maximum frequency fmax, 

then a sampling rate  2 fmax is adequate.  In such a case, in fact, the samples alone permit 

a complete reconstruction of the signal (including its unseen portions between the 

sampling points!).  So if TeachSpin's Noise Calibrator output has frequency content 

(only) in the 0 - 32 kHz range, a sampling rate of  64 kSa/s (kilo Samples per second) 

would suffice.  In practice, we might have a 'scope arranged to acquire one sample every 

10 s, giving an adequate sampling rate of 10
5
 Sa/s = 100 kSa/s. 

 

Now generic noise signals lack such an obvious upper-frequency limit, so for faithful 

sampling, it's important to limit their spectral coverage, by using a low-pass filter before 

the sampling.  (You may have heard this called an 'anti-aliasing' filter.)  But typical filters 

do not impose a sharp upper edge to a spectrum.  You've seen in Section 2.2 that the 

TeachSpin low-pass filters pass some spectral energy out to 10fc, where fc is their 

nominal corner frequency.  So if you use a 100-kHz low-pass filter, there's enough 

energy out to 1 MHz (and a bit more beyond) that you'd want to sample at 2 MSa/s.  

Note that at this sampling rate, an array of 10
5
 samples will fill up in just 50 ms of time.  

Note also that if you use a lower corner frequency in your filter, you can afford a lower 

sampling rate. 

 

c) Scaling 

 

Suppose from a waveform V(t) you have a collection of samples, {V(tk)}, where the tk are 

the sampling instants, separated by fixed sampling interval t.  If there are N such 

samples, we could lay them out in the -T/2 < t < T/2 interval according to 
 

tk = - T/2 + (k)  t , for k = 0 to N - 1. 
 

Here T is the total duration of your sampling, and N t = T relates N, T, and t. 

 

Now if you had captured the actual continuous waveform V(t), you'd reach for Fourier 

transforms, which we'll quote here in their complex-exponential form, and in ordinary 

(not angular) frequencies.  In that notation, the Fourier-transform pair is 
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~ 22










 dfefVtVdtetVfV tfitfi   

which together form a theorem, under certain conditions.  But noise signals which go on 

indefinitely do not meet those conditions, since they're of constant power, rather than of 

finite energy.  Yet we can define a scaled version of the voltage signal which preserves 

the frequency content of V(t), via 
 

 WT(t)  (1/T) V(t) , for -T/2 < t < T/2 ;  but   0 elsewhere. 
 

This claims that WT(t) = 0 outside your sampling duration (which might be true, for all 

that you've recorded).  With this definition, we have 
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Experimental voltage signals are real-valued, so this right-hand side clearly defines  

<V 
2
(t)>, the mean-square value of the noise voltage, which we presume is finite.  Then 

the left-hand side shows that WT(t) is a square-integrable function to which Fourier's 

Integral Theorem does apply, allowing us to define its transform as 
 

.)(
1

)()(
~ 2

2/

2/

2 dtetV
T

dtetWfW tfi
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T

tfi

TT
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

 
  

The inverse transformation is given by 
 

.)(
~

)( 2






 dfefWtW tfi

TT

  

 

Because these W-functions are a Fourier-Transform pair, they satisfy Parseval's Theorem, 
 

 







 ,)(

~
)(

22
dffWdttW TT  

 

and now we can see that both sides of this equation have value <V 
2
(t)>, the mean-square 

noise voltage.  So a physicist's viewpoint on this equality is to think of a noise source of 

some mean-square strength, and then to see that this given quantity (proportional to noise 

power) can be dis-aggregated either according to its time of occurrence (on the left), or 

according to its spectral distribution (on the right). 
 

d) Frequency content 
 

The Fourier transform W
~

T(f) is defined on the whole line, - < f < , so it seems to 

contain both positive and negative frequencies.  In practice, since the original signal V(t) 

is real-valued, W
~

T(f) can be shown to obey 
 

,*)(
~

)(
~

fWfW TT   
 

where the * stands for complex conjugation.  So the information in W
~

T  for positive 

frequencies alone is sufficient to describe the whole function.  It's easy to show that 
 


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0
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2
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~

dffWtVdffW TT  

so integrals over positive frequencies alone can tell you the full mean-square measure of 

the noise. 
 

In practice, the discrete Fourier-transform methods described below are best conducted 

by keeping W
~

T(f) as a complex function, and extracting its spectral content at the end of 

the computation by adding together the 'positive and negative' frequency contributions. 
 

e) Spectral density function 
 

So given a noise waveform V(t), observed for a duration T, it's feasible to define a scaled 

function WT(t), and to compute its Fourier transform W
~

T(f).  Then we might define a 

noise power spectral density 
 

S(f) = 2 | W
~

T(f) |
2
 , 

 

which is a computable function obeying the desired normalization 

.)()(
0

2


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 tVdffS  
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Thus the mean-square value of a voltage-noise function has been dis-aggregated into its 

frequency content.  We'd call this S(f)-function the 'single-sided spectral density of noise 

power'.  It turns out to have units of V
2
/Hz, so integrating it over frequency gives Volts-

squared, the correct units for <V 
2
(t)>.  So this is the computational route from V(t) to a 

spectral density S(f). 

 

The only deficiency in this procedure is that it lacks any proper limit as T  .  If you 

have an actual recording of the waveform of a noise source, and process it for ever-wider 

-T/2 < t < T/2 windows of observation, you'll find that the S(f) functions computed by the 

above procedure gives you ever-higher spectral resolution, and shows you ever-finer 

details of apparent frequency variation of S(f).  All of this highly resolved structure is 

irreproducible, and would show up differently on a second try, for the same noise source.  

In practice, spot values of S(f) produced by this procedure aren't convergent or useful, but 

wide-band or even narrow-band integrals like 
 


2

1

)(
f

f
dffS  

 

are useful, and they do converge to well-behaved limits as T  .  We'll use this fact 

below to motivate spectral-averaging of computed S(f) values. 

 

f) Discrete Fourier transforms 

 

It should be clear that actual Fourier integrals cannot in fact be computed unless you were 

to have access to continuously-varying functions like V(t).  In practice, we have to be 

content with a finite collection of samples, such as the set {V(tk)} measured at N 

sampling points tk separated by intervals t.  But this very finiteness allows us to change 

from the integral transforms to 'discrete Fourier transform' sums instead, as follows. 

 

We give ourselves a time window of duration T, which might be the full duration of the 

experiment, so that (for all we know to the contrary), a signal V(t) might actually repeat, 

with period T, outside our window of observation.  That's a convenient assumption, since 

any complex-valued function with period T can be written as a sum of complex 

exponentials of particular frequencies.  We'll choose an indexing in which f0 = 0 is the 

'd.c.' term, f1 = 1/T is the 'fundamental' frequency, and write 
 

fn = (n) (1/T) = (n) (N t)
-1

 , for n = 0, 1, 2,  . . . 
 

Then there exists a Fourier series for the assumed-periodic V(t)-function, 
 

V(t) = n (coefficient #n) exp(-2 i fn t) . 
 

Under our convenient fiction of the periodicity of V(t), we can just as well take a time 

window 0  t < T, defining the N sampling points spaced by interval t as 
 

tk = (k) (t) ,  k = 0 to N - 1,   still with  t = T/N . 
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To achieve a perfect fit to the N sampled data-points {V(tk)}, it turns out that we require 

exactly N (complex-valued) coefficients, which we choose to write as 
 

1 12

0 0
( ) [ ( )] ( ) exp[ 2 ( ) / ] .n k

N Ni f t

k n nn n
V t V f e V f i nk N

 
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 
     

 

This sum is called the 'forward DFT', and it maps the N frequency-domain entries {V
~
(fn)} 

to the N time-domain entries {V(tk)}.  This mapping is also exactly invertible -- the 

transformation going the 'other way' is called the 'inverse DFT', and is given by 
 

1

1
( ) ( ) exp[ 2 ( ) / ] .

N

n kj
V f V t i k n N

N



   

 

These two equations form a discrete-Fourier-transform (DFT) pair, and they are of 

extreme computational interest because of the amazingly efficient Cooley-Tukey 'fast 

Fourier transform' or FFT algorithms which have been devised to evaluate them.  We've 

written the transforms with indices k, n = 0 to N - 1, and matched the notation and the 

normalization used by the open-source program Sage in its fft()and inv_fft() 

functions. 

 

So here's what we actually do to get power spectral density.  We want values of 
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which we compute by changing the integral to the Riemann sum we'd use to approximate 

it, 
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For fictionally-periodic V(t), and for a finite number of samples of it, we're content to 

know W
~

T(f) at the frequency values fn given above, yielding 
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The factor preceding the bold dot is just T, while the whole quantity appearing after the 

dot is precisely a value from an output array of N complex numbers, the result of the 

inverse DFT on the input array {V(tj)}.  The normalization needed after doing the DFT is 

just multiplication by that T factor, which gives W
~

T(fn)-values their proper units of  

V  s = V/Hz, so we have  

 

( ) _ { ( )} .T n kW f T entry n of inv fft of the V t array   
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Next, the absolute squares of these values give |W
~

T(fn)|
2
 values, with units of V

2
/Hz, 

which are very closely related to the desired spectral density S(f).  We need only to 

remember three things: 
 

1) Given an list of sampled voltage values, indexed by k = 0 to N - 1, namely 

{V(tk)}, we need only an inverse-DFT algorithm which produces the output list, {V
~
(fn)}, 

a list indexed by n running from 0 to N - 1.  The DFT algorithm needs to know the value 

of N (the length of the input and output lists), but it does not 'need to know' anything 

about the value of t or T.  And by this stage of the computation, all reference to the W 

and W
~
 functions can be dropped – the inverse DFT algorithm can be applied directly to 

the list of V(tj) values. 
 

Given our choice of indexing, the frequency values associated with the index n are fn = 

(n)1/T, so f0 is the d.c. term, f1 = 1/T is the 'fundamental frequency', f2 = 2/T, and so on.  

To get single-sided spectral densities, we need to account for the 'negative frequencies' 

too, and (since W
~

T(f) turns out to be periodic in f) these can be found in the upper half of 

the list of N values of fn.  In fact, to get the spectral density at a p-for-particular 

frequency, where integer p maps to frequency f = p1/T, we take 
 

2 2 2 2

( 1/ ) ( ) ( ) [ ( ) ( ) ] .T n p T n N p n p n N pS f p T W f W f T V f V f             

 

For a real-valued function V(t), the DFT will produce results giving equal contributions 

from the two absolute-squares shown.  (This is the discrete version of our previous result 

S(f) = 2 | W
~

T(f) |
2
 ).  The frequencies which collectively account for all of the noise 

power include p = 0 (the d.c. term), and then from p = 1 to (N/2)-1.  So the maximum 

frequency at which we get back spectral-density data is 
 

.
2/121
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Since 1/t is the sampling frequency, we see that our spectral coverage is from d.c. to 

(just below) half the sampling frequency.  (That's why digital audio uses a sampling 

frequency of 44.1 kHz, so as to cover completely the audible frequency range from d.c. to 

about 20 kHz.) 
 

2) The S(fn)-values thus computed obey a sum rule, which results from the discrete-

Fourier-transform version of Parseval's Theorem: 
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This can be manipulated to give 
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whose units match:  (1/s)V
2
/Hz on the left, and V

2
 on the right.  This equality can be 

used as a valuable check on normalizations and DFT algorithms.  It is also the finite-sum 

version of 

,)()(
0

2




 tVdffS  

 

which (under the assumption of adequately dense sampling) has the Riemann-sum 

approximation 
/2 1 2

0
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n nn
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   

 

Since fn = (n)  1/T, we see fn = 1/T, so this result agrees with that above. 

 

3) The S(f)-values thus computed will suffer from the excess spectral resolution 

previously mentioned, and will display a 100% scatter, with rms deviation equal to their 

mean.  The only cure for this scatter is averaging.  One way is to take M multiple 

successive samplings of the noise stream, each of duration T, to process each of them 

separately, and then to average together M multiple versions of S(f).  Another way is to 

lengthen the (single) observation window by some integer factor F, to get one long list of 

S(f) values with high spectral resolution, and then to give up this resolution by averaging 

together F adjacent frequency-content readings of S(f) to revert to the original spectral 

resolution. The extra observations, by factor M or F, will give M or F less scatter of 

the S(f) values that result. 

 

As an example of the latter, suppose you take N = 2
16

 = 65,536 samples of V(t).  (Powers 

of 2 are convenient, since DFT algorithms reach their highest efficiency for such array 

lengths.)  From the methods above, you'd get back S(f) values at 2
15

 distinct frequencies.  

If you want to end up with local S(f) estimates with scatter of order 10% or less, you'll 

need to average together >100 S(f) values.  So you might average together groups of 128 

high-resolution S(f) values to get S-values of lower frequency resolution.  But you'd still 

have 256 distinct S(f) averages, so your frequency span would be covered with better than 

1% spectral resolution. 

 

When you finally have a table of S(f) values, it is conventional to take the square root of 

each, converting 'power spectral density' S(f) in units of V
2
/Hz into 'voltage spectral 

density' D(f) in units of V/Hz.  If your electronic signal chain has included pre-amp gain 

G1 and main-amp gain G2, then the voltage noise density at the input of the pre-amp is 

smaller, by factor G1G2, than the result that you have computed via Fourier methods. 

 

g) Confirmation  

 

You can test the success of your computational route to spectral density by working with 

the Noise Calibrator signal (see Section 5.4.)  You can send it, unfiltered, right into the 

main amplifier, set to its minimum gain, G2 = 10.  If you sample the amplifier's output at 

100 kSa/s (so that t = 10 s), you will end up with S(f)-values in the 0 - 50 kHz range.  

How many samples you can acquire depends on the storage capabilities of your 'scope, 

but even if you take only 10
3
 samples at a time, you can make multiple 'runs' of your 
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experiment to make the M-fold averaging method above work for you.  Your sampling 

and computational route should reproduce a result close to 

 

S(f) = (1.19 mV/Hz)
2
 = 1.42 x 10

-6
 V

2
/Hz 

 

in the 0 < f < 32 kHz range, and much smaller values beyond the 32-kHz limit of the 

noise source.    



NF Rev 1.0  9/1/2011 

 

A-40 

Appendix A.11. The autocorrelation function of noise 
 

This introduces you to an alternative, and very revealing, method for viewing and 

thinking about noise signals.  It provides a real-time method for understanding the 

spectrum of noise signals, or the bandwidth of circuits.  We present it here first with an 

oscilloscope exercise you can do, and then describe its connection to the 'autocorrelation 

function' which is mathematically connected to the spectral distribution of noise power. 

 

a) Observing a 'qausi-autocorrelation function' 

 

This exercise requires only a source of noise in your Noise Fundamentals experiment, 

and a digital sampling oscilloscope.  To do this experiment does not require the squarer, 

but you should set up your noise source, the pre-amp, a low-pass filter, and the main 

amplifier.  Use a 33-kHz corner frequency for the low-pass filter, and use enough gain in 

the main amp to get its output up to 2~3 Volts (rms measure).  Bring that signal to a 

'scope, and use a vertical sensitivity that covers a 8-V range (to accommodate the range 

of the noise), and use a horizontal scale of 25 s/division. 

 

Now if you've been seeing the noise in an automatic triggering mode, it's time to switch 

to a 'normal' mode, where you choose a trigger level (try a level around +6 Volts) and a 

slope (try positive slope, ie. trigger on signals rising through the +6-V level).  You should 

see plenty of trigger events, since you're triggering on not-too-infrequent positive 

excursions of the noise.  For a first look at these events, try the 'persistence' mode on your 

'scope, and look for a picture like this: 

 
Fig. A.11a:  An example of noise waveforms.  Vertical scale 2 V/div, horizontal scale 25 s/div, 

triggering on positive-going crossings of the +6-V level. 

 

Notice that the trigger point has been centered on the horizontal axis.  Note that every 

trace has the property of passing through the trigger point, both in time and in voltage.  

But also note that after the +6-Volt excursion, the generic trace shows signs of 'reversion 

toward the mean' of zero, within some finite time. 
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To see this in detail, change from the persistence to the 'averaging' mode of your 'scope, 

asking for the average of (say) 128 or 256 traces.  You'll see the averaged view of 

reversion to the mean, with a result resembling this trace: 

 
 

Fig. A.11b:  Signal-averaged waveform in the same arrangement as above .  Vertical scale 2 

V/div, horizontal scale 25 s/div, triggering on positive-going crossings of the +6-V level. 

 

Because every individual trace passes through the trigger point, so does the average.  But 

far enough downstream (or upstream) in time, the average value of the noise signal 

becomes zero again.  What you have is a visual depiction of the 'autocorrelation time', 

which is an answer to the question 'How long does a typical positive excursion of noise 

last?' 

 

To see that this pattern has something to do with your noise signal's spectral distribution, 

here are two comparison tests you can try: 

 

i) change between 33-kHz and 10-kHz settings for the corner frequency of your 

low-pass filter.  (The smaller bandwidth will give less noise power, so you may want to 

lower the trigger-level setting.)  What you will see is a longer duration of the average 

positive excursion. 

 

ii) change between a 33-kHz low-pass filter and a 33-kHz band-pass filter.  (These 

have the same equivalent noise bandwidth, so there'll be no need to change the trigger 

point.)  What you will see in a change in the shape of the result, which is due the 

different spectral composition of the signal you're seeing. 

 

What are you seeing?  Officially, it's called the 'conditional probability distribution', 

which answers the question:  'What is the ensemble-average value of V(), given that 

V(=0) = +6 Volts?'  [Fine point:  what you're seeing is conditional on a trigger level of 

+6 Volts and a positive slope.  Change to triggering on a negative slope to see how little 

difference this makes.]  Happily, for Gaussian noise, this easy-to-see result on your 

oscilloscope is directly proportional to the autocorrelation function of the noise 

waveform. 
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b) Introducing the autocorrelation function 

 

What lies behind the value of this oscilloscope display is its connection to the 

autocorrelation function or ACF called C(), which is defined for any signal V(t).  For a 

real-valued function, we define 
 

C() = < V(t) V(t-) > 
 

where the <brackets> stand for time averaging, and where we're assuming that V(t) has 

statistical properties which are independent of time.  In this expression,  is called the 'lag 

time', and this expression measures something about how different V(t) and V(t-) can be. 

 

It's easy to see that C(0) =  < V(t) V(t-0) > = < [V(t)]
2
 > gives the mean-square measure of 

the noise; this shows that C(0) is always positive, and also shows that C()'s units are 

Volts-squared.  There are also some properties of the official autocorrelation function  

C() which are similar to those of the 'quasi-ACF' which you're viewing on the 'scope. The 

first of them (established via the Cauchy-Schwarz inequality) is that |C()|  C(0) for any 

choice of .  It's also feasible to show that C() = C(-), which shows that C() is a 

function symmetrical about =0 (where it thus has an absolute maximum). 

 

The definition of C() also makes it clear why the function drops off with time, and why 

it distinguishes the regimes of short, vs. long, compared to some autocorrelation 

timescale.  If  is short enough, V(t) and V(t-) will be similar, hence much more likely to 

be of the same (as opposed to opposite) signs.  So the product V(t) V(t-) will be more 

probably positive than negative, so its time-average will be positive.  By contrast, is  is 

long enough, the present value V(t) will be uncorrelated with its value ' ago' in the past, 

V(t-).  So at those times when V(t) is positive, V(t-) will be as likely to be negative as 

positive.  Hence the product V(t) V(t-) will also be as likely to be negative as positive, 

and so its time average will be near zero. 

 

So the shape of the function C(), like the quasi-ACF you saw on your 'scope, tells you 

about the degree to which the signal has some 'staying power' or even 'memory'.  That is 

in general not the memory (if any) in the original source of the noise, but rather due 

jointly to the noise source and the bandwidth that might have been imposed upon its 

signal by subsequent filtering.  In fact, there's an inverse relation between bandwidth and 

autocorrelation time:  a truly white-noise signal with bandwidth to f =  would have zero 

autocorrelation time, and act like a system with no memory at all.  But the smaller the 

bandwidth, the longer the autocorrelation time; by the time you get to a pure sinusoid or 

any other periodic signal, the ACF shows non-zero correlations at arbitrarily long lag 

times. 

 

And there's more than this informal connection between spectral distribution and 

autocorrelation function.  It turns out that C() on the one hand, and the power spectral 

density S(f) on the other hand, are closely related as a Fourier transform pair.  So 

knowing either function of this pair fully determines the other.  For example, if we had a 

sharp-edged spectral distribution of noise, with S(f) a constant from d.c. up to some 
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maximum frequency fm (but zero beyond that point), then taking the Fourier transform of 

S(f) allows us to predict 

 

C()  sin(2 fm ) / (2 fm ) , 

 

which has the sinc-function 'wiggles', and displays its first zero-crossings at lags  

 = 1/(2 fm).  The 'wiggles' disappear for spectral distributions lacking as sharp a cutoff 

as in this example, but the width (which was 1/fm , between innermost zeroes, for this 

sharp-edged distribution) will continue to be inversely proportional to the bandwidth of 

the spectral distribution. 

 

It also follows that two sources with distinct spectral distributions (such as the low-pass, 

vs. the band-pass, filtered versions of white noise) must have distinguishable C() 

functions.  It also follows that careful measurement of C()'s values can provide a 

quantitatively reliable way to compute S(f).  The place to pursue this connection is a 

presentation of the Wiener-Khinchin theorem in signal processing. 

 

c) Best use of a 'scope's FFT-capability 

 

If you have used the FFT utility of your 'scope to view the frequency spectrum of a noise 

signal, you may have been horrified at the fluctuations of the spectrum.  A white-noise 

spectrum should give an S(f)-function which is a flat line, but in practice you've seen a 

host of jagged spikes and dips downward from the level you've expected.  Appendix A.10 

deals with some of the cures to this problem that you can impose if you compute your 

own FFTs off-line, but here's a capability which you can execute on your 'scope directly. 

 

Ideally, you could ask for the FFT, and then the 'averaging' mode.  What you'd want is an 

average of many successive spectral distributions.  But what you'll get is the Fourier 

transform of (a bunch of noise waveforms all averaged together).  That doesn't work right  

-- averaging the noise together (first) tends to wash away its strength, so your signal and 

the consequent FFT disappears. 

 

So here's what to do instead.  You set a trigger level as above, and average the time 

waveforms that appear at this trigger level, to get what we've called the quasi-ACF.  Now 

you are using the averaging mode of your 'scope in a way which does not average the 

time-domain signal away toward zero; instead, you're getting a version of the auto-

correlation function C().  Then you ask for the FFT, and you'll get the FFT of C(), and 

what you'll get from the computation is closely related to S(f) -- by the Wiener-Khinchin 

theorem.  What will be displayed may be | S(f) |
2
, so it's hard to use this display with 

quantitative certainty about the scale of its vertical axis.  (The half-power points might be 

depicted at -6-dB down, for example.)  But you will get a display of spectral content with 

markedly smaller scatter, vertically, than you'd get in the direct FFT of the input 

waveform. 
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d) Using the quasi-ACF for analysis 

 

For present purposes, here's another result which is easy to prove about C(), and also 

easy to observe using the quasi-ACF method on your 'scope.  Suppose that a signal V(t) is 

really the superposition of signals from two distinct sources, 

 

V(t) = Va(t) + Vb(t) . 

 

You could call one of these signal, and the other noise; or it might be that one is the 

desired noise, while the other is undesired noise.  Here's the C() you get in this case: 

 

 C()  = <V(t) V(t-)> 

  = < [Va(t) + Vb(t)] [Va(t-) + Vb(t-)] > 

  = < Va(t) Va(t-) > + two cross terms + < Vb(t) Vb(t-) > . 

 

The cross terms include < Va(t) Vb(t-) >, which is zero for any and all -values, provided 

only that 'a' and 'b' stand for physically separate, ie. uncorrelated, sources of noise.  So in 

this case, 

 

C() = Ca() + Cb() , 

 

which shows that the ACF you'd observe is simply the sum of the ACFs you'd observe 

from the two sources separately. 

 

You can get a great view of this process with your 'scope-based quasi-ACF.  Try 

grounding the input of your low-pass filter section, set it to a 33-kHz corner frequency, 

and send its output to the main amp, set for maximum gain of 10
4
.  Observe the raw noise 

signal at the output of the main amp, and you'll see on a 'scope an entirely uninformative 

noise waveform, with no hint that it's composed of two kinds of noise.  There's noise 

generated in the filter (with spectrum rolling off at around 33 kHz), and there's noise 

generated in the main amp itself (whose bandwidth extends to 1.5 MHz).  Use your 

view of the net noise to choose the right vertical sensitivity, and to choose a good trigger 

level, and averaging, to produce a quasi-ACF.  Now use sweep speed about 5 s/div and 

look at the result, which should resemble this: 
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Fig. A.11c:  The 'quasi-autocorrelation function' revealing the presence of two kinds of noise in 

the filter-plus-main-amp combination discussed above. 

 

You can view this with a variety of timescale settings on your scope, to get a good view 

of both the narrow peak, and the broad hill atop which it's standing.  You can even see 

some structure in that narrow peak -- look for some little valleys on either side of the 

narrow tall peak.  The value of this exercise is the mental separation it permits.  The 

narrow peak is the part of C() due to a signal of short autocorrelation time, which must 

be of large bandwidth -- we identify that as main-amplifier noise.  The full width at the 

base of the sharp peak is about 0.6 s, which corresponds to a noise spectrum extending 

up to fm  1.7 MHz.  The broad hill underlying the peak is the part of C() due to a signal 

of long autocorrelation time; that must be of small bandwidth, and we claim it's due to 

noise born in the filter section.  In fact the width of the broad hill is of order 20 s, which 

is consistent with a frequency spectrum extending to about 50 kHz.  And in agreement 

with the bit of theory above, we can now understand why these two pieces of the 

autocorrelation function simply add up to give the shape observed. 

 

To test these claims further, you can change the bandwidth chosen on the filter -- what 

effect should that have?  Or, you can send some white noise into the filter's input, which 

does not change the amount of noise that's actually generated within the main amp -- how 

will this show up?  Or, you could imagine some interference (see Appendix A.5) from 

fluorescent-light ballasts, of frequency perhaps 25 or 48 kHz and approximately 

sinusoidal in character, is underlying your noise -- can you compute what third 

contribution to C() that would create?  As a practitioner, you can gain some instinctive 

knowledge from the easily-acquired, real-time quasi-ACF display on your 'scope, and use 

it as a key to diagnosing many kinds of experimental pathologies. 
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Appendix A.12. Fluctuations in measured noise: The Dicke limit 

 
Noise signals are random, and as a result, measurements of 'noise power' display 

statistical fluctuations.  This Appendix explains some nomenclature for these 

fluctuations, and describes and justifies the expected size of the fluctuations. 

 

Let's imagine Johnson noise, or shot noise, measured by a now-familiar arrangements.  

We have an original noise voltage Vn(t), characterized by zero mean but a non-zero 

mean-square.  We pre-amplify it (by gain G1), we filter it to bandwidth f (using filter 

gain function G(f)), we further amplify it (with gain G2), and thus form a filtered and 

amplified noise voltage Vin(t) as input to a squaring circuit.  The mean of Vin(t) is still 

zero. 

 

When we square Vin(t) to get Vout(t) = [ Vin(t) ] 
2 
/ (10 V), we finally get a signal whose 

mean is not zero.  So when we average it over averaging time τ, we get a non-zero 

average 

 

Vmeter = < Vout(t) >  < [Vn(t) ]
2
 >  , 

 

and we can call that concrete meter reading a 'measure of the noise power'.  But we can 

also easily see the visible fluctuations in the meter position, which we can call 

'fluctuations in the measured noise power'.  (They are sometimes called the 'noise in the 

noise', or 'second noise'.) 

 

How big do we expect those fluctuations to be?  This question was first addressed by 

Dicke, in an appendix to the paper [Rev. Sci. Instrum. 17, 268 (1946)] which introduced 

lock-in detection, and which used it to measure room-temperature blackbody radiation in 

the microwave region of the spectrum.  The result is therefore called the 'Dicke 

radiometer limit', usually expressed as a characteristic fluctuation T observed in an 

instrument whose output gives T, a radiometrically-measured source temperature.  

Dicke's result can be written in terms of the bandwidth f  and the averaging time τ as 

 

T / T  (f  τ) 
-1/2

  . 

 

This result applies more generally than just to temperature measurement by radiometry, 

and it also applies to noise-power measurements as conducted in Noise Fundamentals.  If 

Vmeter(t) is the instantaneous voltage applied to the meter, which is traceably connected to 

the mean-square noise signal < Vn
2
 > at the source, then fluctuations in the meter output 

are also given by 

 

Vmeter / < Vmeter > = const · (f  τ) 
-1/2

  . 

 

Here Vmeter can be taken to be the standard deviation of a sample of (independent) 

readings of the meter.  The equivalent noise bandwidth used in the filtering chain 

provides the factor f, and the averaging time used between the squarer and the meter 

provides the factor τ.  Finally, the constant is of order 1; its numerical value depends on 
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just what kind of time-averaging is used.  (The TeachSpin equipment uses two successive 

one-pole filters, each of time constant τ, and the predicted value of the constant is about 

one-half.) 

 

So if we measure noise using coverage limited by a low-pass filter of corner frequency 

100 kHz, we have f   114 kHz.  If we choose a τ = 0.1-s averaging time at the meter, 

we get 

 

 Vmeter / < Vmeter > = const · (114 x 10
3
 /s · 0.1 s) 

-1/2
 = const · 0.009 , 

 

so we expect fluctuations of order 0.9% in the meter reading.  Of course we'd have to 

make Vmeter(t) readings at a time spacing of  τ, or at least 0.1 s apart in time, for them to 

represent statistically-independent readings, in computing the fluctuation level. Vmeter as 

a standard deviation. 

 

The dependence of this Dicke limit on f and τ is easily visible.  Keeping τ fixed at 0.1 s, 

to give a set of readings with which the analog meter can 'keep up', you can try out he 

effect of changing from 100 kHz, to 10 kHz, to 1 kHz for the corner frequency of the 

low-pass filter in the high-level electronics.  (Of course, when you reduce the bandwidth, 

you'll want to raise the gain G2 to keep the average meter reading near 1 Volt.)  What you 

should see is visibly larger fluctuations in the meter's position, since the Dicke equation 

predicts fluctuations, about the 1-Volt average, of order 0.9%, growing to 3% and then 

9% as you reduce the bandwidth.  So for the smallest statistical fluctuations in any noise 

measurement, it's always best to use the largest possible bandwidth f.  (Of course, there 

may be growing systematic errors, such as the effects of capacitive roll-off, which 

accompany such a choice of larger f.) 

 

A simple explanation of the reason for a Dicke limit also explains the τ 
-1/2

 dependence.  

We know that the output of the amplifier/filter chain is limited to bandwidth f.  It 

follows that the autocorrelation time of this signal is of order 1/f.  Thus the use of 100-

kHz bandwidth gives a filtered noise signal with an autocorrelation time of about 10 s.  

Hence there's a 'fresh value', or a statistically-independent measure of <Vin(t)
2
 >, available 

every 10 s.  If we use a τ = 0.1 s averaging time, the number of statistically-independent 

measures of noise power we can make during that time is 

 

N  (0.1 s of time) / (10 s per fresh measurement) = 10
4
  . 

 

The mean of all these 10
4
 measurements is what the meter reveals via its average reading.  

But since those 10
4
 individual readings are each of them random and independent, we 

expect fractional fluctuations of the meter reading to be of order N 
-1/2

.  This hand-waving 

argument in fact gives 

Vmeter / < Vmeter > = 1 N 
-1/2

 = 1 { τ  / (f)
 -1 

} 
-1/2

 = 1 (f τ) 
-1/2

  , 

 

just as discussed above. 
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In a computer data-logging environment, it's easy to get a large sample of meter-reading 

voltages.  For any choice of τ, it's easy to test if successive readings, taken at time 

spacing τ (or better, 2τ), display statistical independence (ie. absence of correlation).  It's 

also easy to compute <Vmeter>, and to form the histogram of Vmeter readings (expected to 

be distributed about their mean in Gaussian fashion).  The standard deviation of all the 

readings displayed in the histogram defines the characteristic scale of fluctuations, 

Vmeter.  Then the Dicke limit can be tested empirically for its f and τ dependence. 

 

The Dicke limit also imposes stiff requirements on any noise-based experiment that seeks 

to attain really high precision.  If shot noise were to be used in search of a part-per-

million measurement of e, and if all systematic effects were fully under control, this limit 

would ultimately require some meter reading to display 

 

Vmeter / < Vmeter > = 10 
-6

  , 

 

and that, in turn, would require (f τ) 
-1/2

 = 10
-6

, or (f τ) = 10
+12

.  For a bandwidth of  

f   100 kHz = 10
5
 /s, that would require a total averaging time of τ = 10

7
 s, or about 

four months!  (One method for doing this would be to set the meter-averaging switch to a 

1-second time constant, and take one reading every second until 10
7
 readings had been 

collected and averaged.)  This provides another example of the desirability, at least on 

statistical grounds, of using the largest possible bandwidth f. 

 

 


