
P H Y T O S P H E R E  R E S E A R C H  

1027 Davis Street, Vacaville, CA 95687-5495 
707-452-8735 

email:  phytosphere@phytosphere.com    http://phytosphere.com 

Use of phosphite to protect Ione manzanita 

(Arctostaphylos myrtifolia) stands from root rot caused by 

Phytophthora cinnamomi 

 
 

Final Contract Performance report 

 

31 August 2016 

 

Contract: L12AC20094 - BLM / CESU Institute for Wildlife Studies, Sept 2012 - Aug 2016 

Phytosphere project 2012-1001 

 

Prepared by: 

Tedmund J. Swiecki, Ph. D.  

Elizabeth Bernhardt, Ph. D. 

 

Prepared for: 

Brian Hudgens, Institute for Wildlife Studies, PO Box 1104, Arcata, CA  95518 

  



Phosphite / Ione manzanita - Final project report 2016 Page 2 of 56 

P H Y T O S P H E R E  R E S E A R C H  

Contents 

Contents ........................................................................................................................................................ 2 

Acknowledgements ....................................................................................................................................... 3 

Executive Summary ...................................................................................................................................... 4 

Introduction ................................................................................................................................................... 4 

Objectives ................................................................................................................................................. 5 

Plot phasing plan ...................................................................................................................................... 5 

1. Phase 1 plots: standard application volume (300 L/ha) ............................................................................ 8 

1.1.  Methods ............................................................................................................................................ 8 

1.1.1.  Spray materials .......................................................................................................................... 8 

1.1.2.  Plot layout ................................................................................................................................. 8 

1.1.3. Phosphite application ................................................................................................................. 9 

1.1.4. Disease evaluation .................................................................................................................... 14 

1.2.  Results ............................................................................................................................................ 14 

2.  Phase 2 plots:  Ultra-low volume (30 L/ha) application phytotoxicity trial ........................................... 18 

2.1.  Methods .......................................................................................................................................... 18 

2.1.1. Ultra low volume sprayer ......................................................................................................... 18 

2.1.2. Phosphite concentration ........................................................................................................... 19 

2.1.3. Surfactant compatibility tests ................................................................................................... 19 

2.1.4. Phytotoxicity test using microplots .......................................................................................... 21 

2.3.  Results and discussion .................................................................................................................... 23 

Spray application patterns ULV versus standard rate ........................................................................ 23 

3.  Phase 2/3 plots:  Efficacy tests using ultra-low volume (30 L/ha) application and reduced treatment 

band width ................................................................................................................................................... 24 

3.1. Methods ........................................................................................................................................... 24 

3.1.1. ULV sprayer: calibrating and regulating the speed of the spray head ...................................... 24 

3.1.2. ULV plot set up and spray application initial plots: 9E, 9W,10,11E, 11W, 12E and 12W...... 27 

3.1.3. ULV plots AH13- AH18 - 26 November 2014 / 20 February 2015......................................... 29 

3.1.4. ULV plots AH19-AH25 - 2 January 2015 / 20 February 2015 ................................................ 29 

3.1.5. ULV plots AH26-AH28 - 2 January 2015 ............................................................................... 29 

3.1.6. Plot baseline data ...................................................................................................................... 30 

3.2. Results and discussion ..................................................................................................................... 32 

3.2.1. Application precision ............................................................................................................... 32 

3.2.2. Assessment of plot evaluation methods ................................................................................... 33 

3.2.3 Single ULV applications at 8 or 10 kg/ha ................................................................................. 34 

3.2.4. Split ULV applications at 16 or 20 kg/ha ................................................................................. 37 

4.  Phase 4 plots:  Use of phosphite to protect seedling regeneration in old P. cinnamomi mortality centers

 .................................................................................................................................................................... 43 

4.1.  Methods .......................................................................................................................................... 43 

4.1.1.  Initial treatment and assessments — 2014 cohort ................................................................... 43 

4.1.2.  Phosphite treatment of 2016 cohort and retreatment of 2014 cohort seedlings ...................... 44 

4.2.  Results ............................................................................................................................................ 44 

4.2.1.  Effect of phosphite application on seedling survival .............................................................. 44 

4.2.2.  Growth of seedlings in the phase 4 seedling treatment experiment ........................................ 46 



Phosphite / Ione manzanita - Final project report 2016 Page 3 of 56 

P H Y T O S P H E R E  R E S E A R C H  

5.  Baiting for P. cinnamomi in treated plots .............................................................................................. 49 

5.1.  Methods ...................................................................................................................................... 49 

5.2.  Results and discussion ................................................................................................................ 51 

6.  Conclusions, recommendations, and further research............................................................................ 52 

7.  Efforts to publicize results ..................................................................................................................... 54 

Literature Cited ........................................................................................................................................... 55 

 

Cover photo: Phosphite-treated (12.4 kg/ha at 300 L/ha spray volume) Arctostaphylos myrtifolia plot 3B 

(right) and nontreated control plot 3A (left).  Tape marks the plot front of the treated plot (right).  When 

plots were established in 2011, the edge of the disease front was along the same line (extending beyond 

the tape to the left) in both treated and control plots.  Mortality due to Phytophthora cinnamomi root 

disease has obliterated most of the plants in the control plot and the buffer separating the control and 

treated plots (left). The left edge of the treated plot, which receives a lower spray rate due to the sprayer 

design, shows some recent plant mortality. Photo date: 5 August 2016. 
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Executive Summary 

This report presents results on experimental phosphite treatments to protect native stands of 

Arctostaphylos myrtifolia from root rot caused by the introduced pathogen Phytophthora cinnamomi.  

Treating plants at two-year intervals with a foliar application of potassium phosphite at 12.4 kg/ha using a 

standard spray volume of 300 L/ha provided good control of disease.  P. cinnamomi propagule density 

was lower at the disease front of treated plants compared to nontreated plants, but levels of inoculum 

would be sufficient to allow disease to progress if phosphite treatment was discontinued.  This application 

rate was also effective in reducing mortality among seedlings which had started to grow in old mortality 

centers.   

We initiated a series of experiments to find an effective phosphite dose using ultra low volume (ULV) 

applications.  Due to the amount of liquid used for standard rate applications, a successful protocol for 

ULV treatment is necessary to allow for application by air or in off-road situations that commonly exist in 

Ione manzanita habitat. ULV treatments use approximately one tenth the spray volume of standard 

volume sprays, i.e., about 30 L/ha, and therefore require a large increase in the concentration of the spray 

solution.  Microplot tests indicated that phytotoxicity could develop after ULV applications of 12.4 kg/ha. 

To reduce the likelihood of phytotoxicity, initial ULV treatments were applied at 8 and 10 kg/ha.  

However, these lower applications rates showed inadequate levels of disease suppression.  We initiated a 

second set of studies using split ULV applications, i.e., two applications separated by a period of 4-6 

weeks, which allowed us to double overall application rates (to 16 and 20 kg/ha) while minimizing 

phytotoxicity.  Initial evaluations indicate greater disease control at 20 kg/ha compared to 16 kg/ha, but 

repeat applications and further evaluations are needed to determine whether ULV applications will 

adequately suppress disease progress if applied at two-year intervals.   

Introduction 

Ione manzanita, Arctostaphylos myrtifolia, is a rare and threatened California endemic plant that is limited 

to the unusual, highly acidic soils of the Ione formation in the central Sierra Nevada foothills.  Significant 

disease problems in natural stands of A. myrtifolia, including death of large patches of plants, were noted 

as early as 1988 (Wood and Parker 1989).  In the summer of 2002, we determined that Phytophthora 

cinnamomi was the cause of a root and crown rot that has killed large areas of A. myrtifolia and A. viscida 

in an area of A. myrtifolia habitat south of Ione, California (Swiecki and Bernhardt 2003; Swiecki et al 

2003).   

In subsequent studies (Swiecki et al 2005), we determined that mortality due to P. cinnamomi has affected 

large portions of Ione manzanita habitat north of the town of Buena Vista.  Genetic analyses showed that 

this widespread infestation apparently arose from several distinct introductions of the pathogen to the area 

and subsequent spread from established disease centers.  A second Phytophthora species, P. cambivora 

was also associated with declining Ione manzanita in one site.   

Phytophthora cinnamomi can persist for many years in the soil and it is very difficult to eradicate.  Hence, 

efforts to prevent spread from existing infestations will form the basis for protecting Ione manzanita’s 

dwindling habitat from this pathogen for the foreseeable future.  In Australia, where P. cinnamomi has 

infested and devastated several hundred thousand hectares of native forests, large scale application of 

phosphite has been used to help slow spread of the pathogen and protect rare plant communities (Barrett 
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2003, Barrett et al 2003, 2004, Hardy et al 2001b).  Phosphites (also called phosphonates) are simple 

inorganic salts (mono- and di-potassium salts of phosphorous acid) that are classified as biopesticides by 

the USEPA.  Phosphite functions as a systemic and selective fungicide that protects plants against 

Phytophthora species but has very low toxicity to non-target organisms (Guest and Grant 1991).  

Phosphite residues in the soil are converted by soil microorganisms to phosphate, a plant nutrient and 

naturally-occurring constituent of soils.   

Plants do not metabolize phosphite.  In plants, phosphite moves in both the phloem and the xylem.  In the 

phloem, it moves towards metabolic sinks for sugars and amino acids.  Thus, the phenology of the plants 

at the time of application affects which tissues accumulate the most phosphite from any one application.  

The amount of phosphite applied to a plant is proportional to the amount of phosphite absorbed, but 

various species absorb phosphite at different rates.  Drought stressed plants do not absorb phosphite well.  

Absorption of high amounts of phosphite can cause phytotoxicity in some plants (Guest and Grant 1991, 

Hardy et al 2001a). 

Phosphite has a complex mode of action that is not totally understood.  Concentrations in a plant may be 

high enough to be directly toxic to Phytophthora in some cases.  At lower concentrations, phosphite 

stimulates the plant to mount a resistant reaction in response to infection (Guest and Grant 1991, Hardy et 

al 2001a).  Experimentation is required to optimize phosphite dose and timing to achieve disease control 

for each plant/pathogen interaction. 

In 2011, under a previous project, we set up a field trial to test efficacy of potassium phosphite against P. 

cinnamomi root rot (Swiecki and Bernhardt 2012).  This study continued that initial field trial and 

established additional trials to test efficacy of various application rates and treatment volumes. 

Objectives 

The objectives of this project were as follows. 

1.  Continue the study initiated in 2011 and initiate new studies to test the effectiveness of phosphite in 

slowing the spread of mortality caused by Phytophthora cinnamomi in natural stands of Ione manzanita.  . 

2.  Make results of the study available to assist land managers and researchers in the management of this 

disease on Ione manzanita and other affected native plant species.  Results were made available to Bureau 

of Land Management (BLM) via quarterly reports.   

Plot phasing plan 

We have followed a phased approach in our program for testing whether phosphite can be used to protect 

stands of Ione manzanita from mortality caused by P. cinnamomi.  In general, it is necessary to establish 

efficacy for the application methods tested in one phase before proceeding to the next related phase.  To 

accelerate progress to the degree possible, we were able to work on several phases in parallel and 

combine some elements from different phases. Plot phase numbers referred to in this report are the same 

as those in the narrative for contract Amendment 1 (12/27/2013).   

Phase 1 plots:  Standard volume application rates.  We started a study in 2011 (prior to this contract) 

in which phosphite was applied at a standard spray volume (300 L/ha) at 12.4 kg/ha.  This treatment has 
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been reapplied at a two year retreatment interval.  The intent of the study was to determine whether 

phosphite application was effect in reducing mortality caused by P. cinnamomi under field conditions.  

Based on positive results from this study, we have progressed to subsequent phases. 

Phase 2 plots:  Ultra-low volume (ULV) application rates.  Use of phosphite over large patches of Ione 

manzanita would require aerial application, which requires much lower total spray volumes per unit area 

than used for standard volume applications (phase 1 plots).  To maintain the 12.4 kg/ha application rate 

with a lower spray volume, a higher phosphite concentration must be used in the spray solution, 

increasing the risk of phytotoxicity.  Under this contract, we conducted additional microplot phytotoxicity 

tests using higher concentration / ultra low volume applications to determine rates that can be tolerated 

without significant damage. 

Results from phytotoxicity tests were used to set ULV application rates near the maximum tolerated 

dosage.  Because early results showed poor efficacy at these rates, we converted most of our plots to a 

split application regime.  Under  this regime, two sprays are separated in time by a period of at least 4-6 

weeks.  This allows some phosphite to be translocated from the leaves so that phytotoxicity is avoided 

even though the total dose if doubled. 

Phase 3 plots: Treatment band width.  Phase 1 plots phosphite plots extended 7 m into the healthy 

stand from the edge of active root disease centers.  The level of efficacy seen in the phase 1 plots 

suggested that a narrower band of plants along a disease front could be treated to prevent expansion of P. 

cinnamomi into the noninfested stand.  This has the potential to both reduce treatment cost and make 

application with ground equipment more feasible.  In phase 2 testing of ULV applications, we 

concurrently tested use of narrower treatment band, mostly  2 to 3 spray swaths wide (2.4 to 3.6 m).  

Phase 4 plots.  Use of phosphite to protect seedling regeneration in old mortality centers.  Treating 

individual surviving plants in mortality centers is effectively the ultimate reduction in treatment band 

width (phase 3).  In parallel with phase 2 studies, we established a study to determine whether it was 

feasible to protect individual A. myrtifolia seedlings that had become established in older portions of 

mortality centers.  Without treatment, these seedlings typically do not survive for more than a few years.  

Treating these recruits to allow them to survive to reproductive age would help maintain genetic diversity 

and provide options for potential rehabilitation of affected stands.   

Phase 5 plots.  Extended retreatment interval.  Once efficacy has been established under any of the 

above treatment regimes, the final step is determining the longest retreatment interval that can be used to 

maintain efficacy.  Our standard retreatment interval is 2 years.  Given the limited duration of the project 

and the need to repeat efficacy tests over at least two cycles, it has not been possible to reach this phase of 

testing to date.  

Table 1 presents a summary of all phosphite plots established, treated, and monitored under this contract.
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Table 1.  Phosphite treatment plots at Apricum Hill Preserve.  Currently all plots are set up with a 2 year retreatment interval. 

Plot type 

Phosphite 
rate, 
kg/ha 

Spray 
volume, 
L/ha 

Plot depth, 
m (band 
width) 

Plot 
numbers Treatment dates Evaluation dates Monitoring method 

Standard rate 
(phase 1) 

12.4  300 7 1A, 1C, 2B, 
3A, 4A, 8A 

4/28/2011 
4/19/2013 
3/4/ 2015 

6/8/2011 
1/24/2013, 9/30/2013, 
4/21/2014, 
3/9 or 4/20/2015, 3/25/2016 
8/5/2016 

Measurements along 
disease front 

ULV: initial single 
application, then 
split application 
(phase 2/3) 

Single: 10 
Split: 20 
(10+10) 

30 Single: 2.4 
Split: 2.4 
(plot 10 
irregular) 

9E, 10, 11W, 
12W 

5/6/2014 initial at 
10 kg/ha 
1/23/2015 & 
3/9/2015 

2/18 or 3/9/2015 
3/25/2016 
8/5 & 8/6/2016 

Measurements along 
disease front, dieback 
ratings 

ULV: initial single 
application, then 
split application 
(phase 2/3) 

Single: 8 
Split: 16 (8+8) 

30 Single: 2.4 
Split: 2.4 

9W, 11E, 
12E 

5/6/2014 initial at 
8 kg/ha 
1/23/2015 & 
3/9/2015 

3/25/2016 
8/5 & 8/6/2016 

Measurements along 
disease front, dieback 
ratings 

ULV split application 
(phase 2/3) 

20 (10+10) 30 2.4 – 5 13, 14, 15, 
16, 17, 18 

11/26/2014 & 
2/20/2015 

4/1/2016 
8/4/2016 

Photopoints 

ULV split application 
(phase 2/3) 

20 (10+10) 30 2.4 - 6 19, 20, 21, 
22-23, 24-25 

1/2/2015 
2/20/2015 

4/1/2016 
8/4/2016 

Photopoints, 
Measurements along 
disease front (19) 

ULV single 
application 
(phase 2/3) 

10 30 3.6 (average) 26/28, 27 1/2/2015 4/1/2016 
8/4/2016 

Photopoints 

Standard rate1, 
individual seedlings 
(phase 4) 

12.4 
 

300 0.5 or less Individually 
tagged 
seedlings 

2014 cohort: 
3/24/2014 or 
4/9/2014 
2014 and 2016 
cohorts: 
3/18/2016 

7/17/2014 
4/20/2015 
3/18/2016 
8/5/2016 

Individual plant ratings 
and measurements 

1
 Ten seedlings initially treated using 10 kg/ha ULV application, all converted to standard rate at second application date. 
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1. Phase 1 plots: standard application volume (300 L/ha) 

Plots were first established at the California Department of Fish and Wildlife (CDFW) Apricum Hill 

Preserve in 2011, prior to the start of this contract (Swiecki and Bernhardt 2011).  We subsequently 

retreated these plots at 2 year intervals.  The disease suppression achieved with standard volume (300 

L/ha) treatment is used as a basis for comparison for disease suppression achieved with the ultra low 

volume (ULV) phase 2 and 3 plots.   

1.1.  Methods 

1.1.1.  Spray materials 

Reliant
®
 Systemic Fungicide (Quest Products LLC, Linwood KS EPA reg. No. 83416-1) was used as the 

source of phosphite.  Undiluted Reliant
®
 contains 619.5 g/L of active ingredient (a.i.), consisting of a 

mixture of mono- and dipotassium salts of phosphorus acid.  It is a 45.8% a.i. liquid concentrate that is 

fully miscible with water.  It is chemically identical to Agri-Fos
®
, which was used for the 2011 and 2013 

applications.  To enhance spray deposition and uptake, a non-ionic organomodified trisiloxane surfactant 

(Break-thru
®
, Plant Health Technologies, Lathrop, CA; CA Reg. No. 65343-50003) was added at 0.03% 

by volume in all years.  

1.1.2.  Plot layout 

In 2011, we established five sets of plots containing six treated plots and five nontreated control plots in 

healthy stands of A. myrtifolia, most with some intermixed A. viscida (Figure 1).  These and all other 

plots described in this report are located at the CDFW Apricum Hill Preserve.  The preserve, which is not 

open to the public, is located on the west side of Jackson Valley Road about 4 km southeast of the Town 

of Ione in Amador County. 

One plot set (plot 1) was made up of three matched plots.  Two of these were treated and the third was left 

as a nontreated control.  Each of the other plot sets (2, 3, 4, and 8) consisted of matched pairs of plots.  

We applied phosphite to one plot in each of these plot pairs.  Each plot is 6 m wide and 7 m long.  For 

plot sets 1, 2, 3 and 4, one of the 6 m plot faces was located along an active P. cinnamomi root disease 

front; the plot extended 7 m from the disease front into the healthy part of the stand.  In plot set 2, one of 

the 7 m plot sides of each plot was also parallel to another disease front, so disease spread into these plots 

could also occur along these long sides.  Plot set 8 was set up in a patch of Ione manzanita that was not 

directly adjacent to an active root disease center.  The front (west) edges of plots 8A and 8B (6 m wide 

side) were located along on old unpaved road that leads to a large root disease center about 7 m away.  

The road was considered to be the most likely route by which P. cinnamomi would be introduced into the 

plot area.  Mortality due to P. cinnamomi has also been advancing toward the old road from the west. 

All plot corners were marked with carriage bolts (6 mm diameter, 100 mm long) driven into the ground 

through a 40 mm-diameter fender washer atop a square piece (about 10 cm across) of white vinyl 

flashing.  GPS coordinates were recorded for all plot corners.  These coordinates were used in conjunction 

with aerial imagery to develop a GIS layer of plot polygons (Figure 1). 
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Figure 1.  Locations of phase 1 phosphite-treated plots (cyan rectangles) and matched control 
plots (yellow rectangles).  Plot set numbers are shown in white.  Purple shaded plots are phase 
2/3 ULV plots described below. White lines at left and right of image are approximate borders of 
the California Department of Fish and Wildlife Apricum Hill Preserve.  Jackson Valley Road is 
visible at the upper right corner of the image (Google Maps image). 

1.1.3. Phosphite application 

We used the custom spray rig we designed and built in 2011 to reapply phosphite to the plots.  This spray 

apparatus:  

- allows us to spray the plots at the desired application volume (300 L/ha) with a high degree of 

accuracy and repeatability; 

- minimizes the amount of travel between infested and noninfested ends of the plots;  

- avoids mechanical damage to Ione manzanita that would be associated with straight line 

walking or vehicle traffic through the plot area; 

- is light and portable enough to transport into the plot areas, which are accessed with some 

difficulty by foot; 

- requires no more than two people to operate. 

The spray rig consists of a short spray boom that travels along a tubular monorail that is suspended over 

the plot area (Figure 2).  The monorail is supported by a pair of reinforced PVC pipe legs on each end that 

can be adjusted to obtain the desired height of the boom above the canopy.  Poles are inserted into the 

monorail tubing and extend past the legs.  During the application, these end poles are pulled downward, 



Phosphite / Ione manzanita - Final project report 2016 Page 10 of 56 

P H Y T O S P H E R E  R E S E A R C H  

which flexes the monorail into a slight upward arch that overcomes the sag that otherwise develops in the 

unsupported center of the monorail.  The spray boom is shuttled across the monorail by winding a line 

attached to the boom onto a large-diameter spool.  Rotating the spool at a regulated speed causes the 

boom to travel over the plot at a constant velocity.  The entire spray apparatus is easily assembled and 

dissembled into sections for transport (Figure 3).   

The spray boom that travels along the monorail is about 1 m wide and has three Teejet XR 11001VS 

nozzles mounted on 0.5 m centers.  At a spray height of 0.5 m above the canopy, the boom produces a 1.5 

m-wide spray swath after accounting for necessary nozzle pattern overlap.  Four swaths centered 1.5 m 

apart were used to spray the 6 m width of each plot.  The length of each swath was 7 m, the distance that 

the boom travels along the monorail.  The outer 7 m edges of each plot (to right and left when facing the 

plot) receive a lower rate since there is no overlap in the spray pattern at the outer edges.  

The spray solution is delivered from a polyethylene tank to the spray boom via a battery-operated 

diaphragm pump (SHURflo Model 8009-541-236) which has a rated output of 3.79 L/min (1 gal/min).  

The speed of the pump is varied using a DC motor speed controller that allows us to reduce pump output 

below this rating.  We calibrated the sprayer by adjusting the pump speed to register a given line pressure 

(96.5 KPa=14 psi) on a gauge that was mounted at the end of the monorail closest to the pump (Figure 4).  

The tank, pump, controller, and battery were all mounted on a modified bicycle.  We used an electric 

switch on a wire that extended to the end of the monorail to start and stop the sprayer (Figure 4).   

For the April 2015 application, sprayer pressure was 96.5 KPa, and sprayer output was 9.7 ml/sec through 

the three nozzles of the spray boom. To produce the desired spray volume of about 300 L/ha (1.27 L for 

each 42 m
2
 plot), the uptake spool was rotated so that the boom traversed the 7 m plot length in about 33 

seconds.  This required 8.5 revolutions of the spool.  To pace the spool rotation rate, we used a 

metronome (Ludwig metronome application on iPod Touch) that provided audio signals for each quarter 

and full revolution at the desired rate of travel.  For this configuration, a metronome speed of 62 beats per 

minute (0.97 sec/beat) provided the proper pace for controlling the speed of the boom to approximately 

0.21 m/sec.  All spray swaths were sprayed in one direction, starting at the far (healthy) end of the plot 

and ending at the near (disease front) end. 

Phosphite applications 2011 and 2013 

We originally sprayed the six phosphite-treated plots on 28 April 2011 at 12.4 kg/ha with 0.03% Break-

thru
®
 surfactant.  Winds were variable during the applications, which were conducted between 11:25 and 

18:55 PDT.  Due to plot orientations, spray drift beyond the plot borders was minimal and in most cases 

was directed away from control plots.  Plots were treated at a spray volume of about 300 L/ha (1.27 L for 

each 42 m
2
 plot).  Applications were made using the monorail spray apparatus described above (Figures 

1-5). 

We retreated the six phosphite-treated plots using the same rates and methods on 19 April 2013.  This was 

about a week earlier than the date of our 2011 application.  However, because winter/spring rainfall had 

been low in 2013, plant phenology and water stress levels were similar to conditions in the original 2011 

applications.  Skies were clear and sunny and the air temperature ranged from about 26 to 30 C.  Winds 

were light and from the west during the applications, which were conducted between 12:05 and 18:45 
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PDT.  As before, spray drift beyond the plot borders was minimal and did not affect control plots.  Al 

Franklin, retired BLM staff serving as a BLM volunteer, assisted us with the spraying operation.   

Phosphite applications 2015 

We retreated the six phosphite-treated plots using the same rates and methods as described above on 3 

April 2015.  This was earlier in the spring than the two previous applications.  However, because 

winter/spring rainfall had been low in 2015 and phosphite uptake is poor in drought stressed plants, we 

scheduled the application earlier in the season.  Plant phenology was similar to conditions in the previous 

two applications.  Skies were clear and sunny and the air temperature was about 22 C.  Winds were light 

and from the west during the applications, which were conducted between 11:38 and 18:20 PDT.  As 

before, spray drift beyond the plot borders was minimal and did not affect control plots.  Beth Brenneman 

(BLM) assisted us with the spraying operation (Figure 5).  

Plots were treated with 12.4 kg/ha and 0.03% surfactant spray solution that was made a day in advance of 

the application.  Due to the amount of spray held in the lines and tank and the losses associated with 

calibration, line purging and other processes, we made up 15 L of spray, about twice the volume actually 

needed for the plots, which provided an adequate buffer of spare material.  The spray volume target was 

300 L/ha (1.27 L for each 42 m
2
 plot, 7.6 L total).  From measurements of leftover materials and 

additional estimates of small losses, we calculated that the applied amount was about 99% of the target 

volume. 
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Figure 2.  Spraying apparatus used to apply phosphite to phase 1 (300 L/ha) plots.  Spray 
apparatus set up over plot 8A in 2011 (top) and in use in the same plot in 2013 (center; photo by 
Al Franklin).  Bottom: apparatus in use in plot 1A in 2011.  Note lack of disease front for plot 8A. 
Turning the spool at a regulated rate pulls the three-nozzle spray boom along the rail at a 
constant speed. 



Phosphite / Ione manzanita - Final project report 2016 Page 13 of 56 

P H Y T O S P H E R E  R E S E A R C H  

 
Figure 3.  Spraying apparatus dissembled and packed for transport between plot areas. The 
entire apparatus is assembled and disassembled by hand by sliding sections together.  Most 
joints are held together through the use of spring-action buttons.  Four Phillips-head screws are 
used to lock two stiffeners in place. 
 

 

 
Figure 4.  Pump end of monorail sprayer showing pump power switch (center left) and pressure 
gauge (center right).  Photo by Al Franklin. 
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Figure 5.  Beth Brenneman and Ted Swiecki confer during phosphite application 3 April 2015. 

1.1.4. Disease evaluation  

For each plot, we laid a measuring tape along the 6 m wide front edge of the plot (adjacent to diseased 

area for plots 1, 2, 3, and 4) using the two plot corners markers as reference points.  Starting at this 

reference line, we measured the distance to the first healthy foliage (either A. myrtifolia or A. viscida) in 

20 cm-wide belt transects placed at 0.5 m intervals along the reference line.  The belt transects were 

centered at the sample distance and oriented perpendicular to the tape.  Distances toward the plot center 

were recorded as positive numbers and distances in the opposite direction were recorded as negative 

numbers.  The species of the first live foliage encountered was recorded (either A. viscida or A. 

myrtifolia).  Initial baseline data were collected 6/8/2011.  Subsequent evaluation dates were 1/24/2013, 

9/30/2013, 4/21/2014, 3/9 and 4/20/2015, 3/25/2016, and 8/5/2016 (Table 1).  We measured distance to 

the first live A. myrtifolia as a separate variable beginning with the 9/30/2013 evaluation. 

1.2.  Results 

Repeated measures multivariate analysis of variance (MANOVA) of the distance to the first live A. 

myrtifolia from the plot front showed that plot set, treatment, plot set by treatment, and date of evaluation, 

were all significant at p<0.0001.  Plot set 8, which is not yet at an active front, was not included in this 

analysis.  Disease advance from the front edge of the phosphite-treated plots continued to be suppressed 

through August 2016 (Figures 6-8, cover photo).  Plants have also died at the edges of some of the treated 

plots where these edges are now adjacent to P. cinnamomi-related mortality.  As noted above, the 
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phosphite application rate is one-half of the target rate at these outer plot edges due to lack of overlapping 

spray from an adjacent nozzle.   

The average advance of the disease front in the phosphite-treated plots (excluding plot set 8, which is not 

yet at an active front) from 2011 through August 2016 was 26 cm, compared to an average advance of 

396 cm in the control plots (significantly different at p<0.0001, one-sided t test).  A few plants have died 

near the leading edge of the disease front in some of the treated plots.  This scattered mortality suggests 

that we are operating near the dosage limit for efficacy and that it may not be possible to reduce the 

phosphite rate (12.4 kg/ha) or extend the retreatment interval beyond 2 years without a reduction in 

efficacy. 

 
Figure 6.  Change in average position of disease front from baseline between June 2011 to 
August 2016 in phosphite-treated and adjacent control plots at five locations at the Apricum Hill 
preserve.  Potassium phosphite was applied as an overhead spray at 300 L/ha at a rate of 12.4 
kg/ha in spring 2011, 2013, and 2015.  Error bars represent one standard error of the mean. 
Plot set 8 is not yet along an active disease front.  
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Figure 7.  Average distance (cm) to the first live A. myrtifolia foliage along each plot front edge 
between June 2011 and July 2016 by treatment and plot.  Negative distances seen in the 
baseline 2011 data indicate that some plant edges were to the outside of the reference line 
used to mark the plot front.   

 
As shown by the significant MANOVA model term for plot set and illustrated in Figures 6 and 7, 

different rates of disease advance have been observed in the various control plots.  In particular, disease 

advance into the control plot in plot set 2 has been particularly slow.  This plot is on a slight mound, and 

the drought conditions that have prevailed over most of the period since the plots were established may 

account for the slow movement of disease into the plot.  The difference in disease advance between plots 

also accounts for the significant plot set by treatment interaction term in the MANOVA model.  The 

effect of phosphite treatment on disease advance is greatest in those plot sets where the most disease has 

developed in the corresponding control plot.   

-100

0

100

200

300

400

500

600

700

1
-J

u
n
-2

0
1
1

1
-A

u
g

-2
0
1
1

1
-O

c
t-

2
0
1
1

1
-D

e
c
-2

0
1
1

1
-F

e
b

-2
0
1
2

1
-A

p
r-

2
0
1
2

1
-J

u
n
-2

0
1
2

1
-A

u
g

-2
0
1
2

1
-O

c
t-

2
0
1
2

1
-D

e
c
-2

0
1
2

1
-F

e
b

-2
0
1
3

1
-A

p
r-

2
0
1
3

1
-J

u
n
-2

0
1
3

1
-A

u
g

-2
0
1
3

1
-O

c
t-

2
0
1
3

1
-D

e
c
-2

0
1
3

1
-F

e
b

-2
0
1
4

1
-A

p
r-

2
0
1
4

1
-J

u
n
-2

0
1
4

1
-A

u
g

-2
0
1
4

1
-O

c
t-

2
0
1
4

1
-D

e
c
-2

0
1
4

1
-F

e
b

-2
0
1
5

1
-A

p
r-

2
0
1
5

1
-J

u
n
-2

0
1
5

1
-A

u
g

-2
0
1
5

1
-O

c
t-

2
0
1
5

1
-D

e
c
-2

0
1
5

1
-F

e
b

-2
0
1
6

1
-A

p
r-

2
0
1
6

1
-J

u
n
-2

0
1
6

1
-A

u
g

-2
0
1
6

1
-O

c
t-

2
0
1
6

A
ve

ra
ge

 d
is

ta
n

ce
 o

f d
is

ea
se

 fr
o

n
t 

in
to

 p
lo

t 
(c

m
)

Date evaluated

Control,1

Control,2

Control,3

Control,4

Phosphite,1

Phosphite,2

Phosphite,3

Phosphite,4



Phosphite / Ione manzanita - Final project report 2016 Page 17 of 56 

P H Y T O S P H E R E  R E S E A R C H  

 

 
Figure 8.  Phosphite-treated plot 1A and adjacent control plot 1B in June 2011 (top) and August 
2016 (bottom).  All manzanitas in the control plot to an average distance of 6 m from the 
baseline (measuring tape in both images), and in the untreated buffer between the two plots, 
died.  Only a small amount of mortality along the front edge (to left in image) has been seen in 
the phosphite-treated plot. Some recent dead plants are visible that extend into the edge of the 
treated plot along the nontreated side, where application rate is reduced. 

Phosphite-treated

Nontreated control

Phosphite-treated

Nontreated control
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2.  Phase 2 plots:  Ultra-low volume (30 L/ha) application phytotoxicity 

trial 

Results reported above showed that alternate year phosphite applications in standard volume sprays (300 

L/ha) at 12.4 kg/ha significantly reduced the rate at which P. cinnamomi mortality centers expand.  It is 

practical to apply phosphite at this rate in areas accessible by vehicle or small areas with only foot access 

(using backpack or bicycle-mounted sprayers).  However, it would be difficult to treat larger patches in 

relatively inaccessible terrain at this application volume due to the amount of liquid that needs to be 

transported.  Alternatives for such areas include aerial application or the use of much lower application 

volumes applied by hand.  These situations require a shift to ultra low volume (ULV) applications. 

As application volume is reduced, the phosphite solution concentration needs to be increased to maintain 

a constant rate of phosphite per unit area.  However, increasing phosphite and/or surfactant concentration 

may increase the risk of foliar phytotoxicity.  We therefore conducted a series of spray mixture 

compatibility tests and additional microplot phytotoxicity tests using higher concentration / ULV 

applications to determine rates that would not cause significant damage.  

2.1.  Methods 

2.1.1. Ultra low volume sprayer 

We researched several different sprayer types which would allow us to treat plots at about a 30 L/ha 

application volume.  This volume is typical for a helicopter application.  Note that this is a 10-fold 

reduction in application volume per hectare compared to the standard ground application volume (300 

L/ha) used in phase 1 plots.  To minimize the production of fine droplets that are prone to drifting and 

evaporating, we selected controlled droplet application (CDA) equipment for use in this system. 

We purchased a Dramm MH-1 Microfit Herbi
®
 Standard Lance CDA sprayer for the study applications.  

These sprayers are widely used for ULV herbicide applications and have been used by Australian 

researchers for phosphite applications in P. cinnamomi management studies.  This sprayer uses gravity to 

drip spray solution though a tube with a plastic tip onto a spinning disk.  The disk, which is powered by a 

6 VDC motor, breaks the solution into fine droplets within a relatively narrow diameter range and spreads 

them out in a 1.2 m diameter ring (=spray swath width).   

To eliminate the need to keep the spray solution reservoir elevated and to provide a more constant flow 

rate, we removed the sprayer reservoir and connected the spray line to a 12 VDC variable flow peristaltic 

pump (SP300, APT instruments).  The pump was fitted with tubing to provide a flow rate of 0.86 ml/sec 

with the pump motor running at its maximum speed.  Power to both the 12 VDC pump and 6 VDC 

spinning disk motors are supplied by a sealed compact 12 VDC battery.  An adjustable 1.5-37V DC/DC 

buck converter board (Marlin P. Jones & Assoc. Inc.) was used to step down the voltage from the battery 

to the sprayer disk motor.  The battery, pump, solution reservoir, and DC/DC converter were consolidated 

in a modified tackle box.  Switches to separately control the motor and pump were mounted on a 

modified extendable pole to which the spinning disk applicator was attached.  The extendable pole 

allowed us to extend the spray swath to a distance of more than 2.5 m from the operator.  The final 

spraying apparatus is shown in Figure 9.  The extendable pole and dual switch box were not incorporated 

in the initial version of the sprayer used for the phytotoxicity tests. 
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2.1.2. Phosphite concentration 

The phase 1 plots were treated with 12.4 kg/ha, applied using a solution of 0.0413 kg/L at a volume of 

300 L/ha.  To maintain the same rate when spraying only 30 L/ha requires a 10 fold increase in phosphite 

concentration (to 0.413 kg/L, Table 2).  However, we were concerned that absorption of the phosphite 

might be less efficient with the ULV spray, so we also tested a higher rate, 15 kg/ha, which represents a 

20% increase in rate per unit area.  At this rate, the solution concentration is 0.5 kg/L, which is 81% of the 

strength of the undiluted product.  Another reason for using this higher rate was to see if some light 

phytotoxicity would develop with the ULV spray.  To ensure that we were applying phosphite close to the 

maximum tolerated dose, we needed to see some evidence of phytotoxicity at one of these concentrations 

to verify that the plants were taking up the applied phosphite.  

2.1.3. Surfactant compatibility tests 

In phase 1 tests, we used the organosilicate surfactant Break-thru
®
 at 0.03% by volume in the spray 

solution.  This was the surfactant used by the Garbelotto lab (UC Berkeley) for their initial phytotoxicity 

and efficacy assays.  However, this surfactant is not on the BLM-approved adjuvant list, so we looked for 

alternatives from the approved list that might perform similarly.  We obtained samples of the non-ionic 

surfactant Activator90
®
 and Freeway

®
, a surfactant blend of alcohol ethoxylates, silicone-polyether 

copolymer, propylene glycol and dimethylpolysiloxane, from the manufacturer, Loveland Products Inc. 

(Greely, CO) for use in our tests. 

Rates of surfactant used for ULV herbicide applications vary widely, and we could not find much 

published information on the use of surfactants with ULV phosphite applications.  For example, 

experiments in Australia have used 0.2% BS1000 (Cropcare Australasia, Queensland) surfactant (Shearer 

and Crane 2009) and 2% Synertrol Oil (Barret 2003).  Some of the herbicide literature we examined 

suggested that efficacy was superior if the concentration of surfactant was maintained at the same 

application rate per hectare.  This would require a 10-fold increase in the concentration of surfactant (to 

0.5% v/v for Break-thru and Freeway, 1.25% for Activator90) beyond the level used in standard spray 

volume applications.   

We mixed small batches of phosphite and each of the three surfactants prior to our initial application and 

observed that spray solution precipitates developed.  Consequently, we performed a series of mix tests to 

find compatible mixtures that would not form precipitates.  Distilled water was used in all solutions to 

avoid potential interactions related to water quality.  Activator90 was incompatible with the 0.413 kg/L 

phosphite solution used for the 12.4 kg/ha ULV applications, even when added at both the standard high 

(0.5% v/v) and low (0.125% v/v) label rates.  The higher rate flocculated immediately and formed a 

surface scum.  The lower rate had similar problems that developed some minutes after mixing.  The 

flocculates formed in the solution would clog nozzles and result in an uneven spray pattern.  Freeway 

formed a fine precipitate with the 0.413 kg/L phosphite solution at concentrations of 0.5% and 0.25%, as 

well as the high label rate of 0.125% v/v.  However, the low label rate of Freeway (0.05%) was 

compatible with 0.413 kg/L phosphite, as was 0.05% Break-thru.  
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Figure 9.  Ultra low volume sprayer used for study applications.  Top: sprayer in use.  Pump 
and spinning disk motor are turned on with a single switch.  A second switch deactivates the 
disk motor, allowing only the pump to run.  This setting is used for filling the tubing to the spray 
head.  Bottom: box holding spray reservoir (bottle in left image) as well as the pump, battery, 
and voltage converter (right image) plus electrical connections and tubing connections to the 
pump. 
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Table 2.  Rates and concentrations of potassium phosphite and surfactants used in standard 
volume (300 L/ha) and ULV (approximately 30 L/ha) applications. 

Plot type: Phase 1 and 
4 plots 
disease 
control 

Phase 2 
plots ULV 

phytotoxicity 
microplots 
low rate 

Phase 2 
plots ULV 

phytotoxicity 
microplots 
high rate 

Phase 2 and 
3 plots 
disease 

control low 
rate 

Phase 2, 3, 
and 4 plots 

disease 
control high 

rate 

Potassium phosphite 
rate, kg/ha 

12.4 12.4 15  8 10 

Volume, L/ha 300 30 30 28.31 28.31 

Potassium phosphite 
concentration, kg/L 

0.04133 0.4133 0.5 0.2824 0.3529 

Surfactant 
concentration v/v 

0.03% 0.05% 0.05% 0.05% 0.05% 

1Final configuration of the sprayer for 2015 applications had a calibrated flow rate of 0.85 ml/s; phosphite 
concentrations were adjusted to reflect this actual application volume, spray head velocity (1 m/s), and number of 
passes (2 passes). 

2.1.4. Phytotoxicity test using microplots 

We set up 14 1-meter square microplots in three separate areas (Figure 10).  The corners of each 

microplot were marked with flagging tape and the microplot number was marked on a wire stake flag.  

GPS coordinates were also recorded for each plot.   

Based on our surfactant compatibility tests, we discontinued consideration of Activator90.  The 

phytotoxicity microplots were sprayed at two phosphite rates (12.4 and 15 kg/ha; 0.413 and 0.5 kg/L, 

respectively).  The two rates were duplicated in mixtures using one of two surfactants (Break-thru and 

Freeway), both at 0.05% v/v.  This provided four different surfactant/phosphite treatments.  In each of the 

three plot areas, one plot was randomly assigned to be sprayed with each of the phosphite concentration × 

surfactant combinations.  In addition, one area had two additional microplots.  One was sprayed with 

Break-thru and the other with Freeway mixed only with distilled water (0.05% v/v).   

Plots were sprayed 9 April 2014, under mild weather conditions with minimal wind (Figure 11).  A PVC 

pipe frame was laid over the plot to clearly mark its boundaries.  A PVC pipe marked in 24 cm 

increments was laid along one edge of the frame and was used as an index to help regulate sprayer travel 

rate.  A metronome running at 60 beats per min (Ludwig metronome application on an iPod Touch) was 

used to set a cadence for moving the spray head at a rate of 0.24 m/s across the plot.   

Unlike the flat fan-shaped pattern produced by the spray nozzles used in phase 1 plots, the CDA sprayer 

pattern is a 1.2 m ring with an open center.  To obtain uniform coverage at the target volume, both edges 

of the ring need to pass over the sprayed area.  For phytotoxicity microplots, it was necessary to start with 

the spray head at least 60 cm from the microplot edge and finish with the head 60 cm beyond the plot 

edge to make sure that both sides of the spray pattern passed over the whole plot.   

As a result of this spray pattern, plants outside of the plot on either side actually receive a reduced 

phosphite dose, about 50% of the dose applied within the 1 m
2
 plot.  Observations of these areas allowed 

us to estimate the phytotoxicity of doses that were about half of the applied doses, i.e., about 7.5 and 6.2 

kg/ha. 
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Figure 10.  Locations of phase 2 phytotoxicity microplots for ULV applications (cyan dots) at 
Apricum Hill.  Phase 1, 2, 2/3 (plot sets 9-12), and 4 phosphite study plots are also shown.  
Phase 1 plots (300 L/ha at 12.4 kg/ha - blue rectangles, control - yellow rectangles) are the 
same as shown in Figure 1.  Phase 2/3 ULV plots sprayed at approximately 30 L/ha are outlined 
in pink (8 kg/ha) and purple (10 kg/ha).  White and black symbols mark individual seedlings that 
were either treated with phosphite or left as nontreated controls.  Only a portion of the 
individually-treated study seedlings had individual GPS points; others (not shown) were located 
near these symbols.  Imagery: Google Earth, August 2013. 

 
Figure 11.  Application of potassium phosphite to microplot with the CDA sprayer.  The PVC 
pole along one edge of the frame is marked in 24 cm increments.  IPOD metronome was set so 
the audible signal prompted the applicator to move the spray head at the appropriate rate.  Pink 
flags mark the corners of the microplot. 
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Each microplot was photographed prior to the application.  The microplots were rephotographed and 

visually evaluated for phytotoxicity symptoms on 21 April and 6 May 2014.  

2.3.  Results and discussion 

The surfactants alone caused no visible symptoms on the treated plants.  However, microplots treated 

with phosphite showed varying amounts of phytotoxicity (Table 3).  The primary symptom associated 

with treatment was leaf tip necrosis, and the proportion of leaves within each microplot with phytotoxicity 

symptoms varied between and within the plots.  Phytotoxicity was generally seen in a higher proportion 

of leaves treated at 15 kg/ha than at 12.4 kg/ha.  Buffer areas on each side of the plots that received 

approximately half rates (7.5 and 6.2 kg/ha) did not show phytotoxicity symptoms. 

The 12.4 kg/ha rate used in this trial was previously tested at the 300 L/ha rate on 31 March 2011, 3 

weeks earlier that the application date in the current experiment (Swiecki and Bernhardt 2012).  No 

significant phytotoxicity was observed in that 300 L/ha application, in which the phosphite concentration 

was 0.041 kg/L.  In the current test, even though the dose rate per unit area was the same (12.4 kg/ha), 

some phytotoxicity developed.  This suggests that the higher phosphite concentration (0.41 kg/L) is more 

likely to cause phytotoxicity.  This may be related to slight variations in the amount of solution delivered 

to small areas, which cannot be avoided.   

Because the 0.41 kg/L concentration was somewhat phytotoxic and provided no margin of safety, we 

decided to reduce the phosphite concentration and rate per unit area for larger scale tests.  For our initial 

ULV disease control plots, we decided to test two lower rates, which would provide a margin of safety.  

However, it was possible that at these lower dosages efficacy might be reduced and/or a shorter 

retreatment interval would be required.  The rates we selected for initial phase 2/3 plots were 10 kg/ha 

(high rate) and 8 kg/ha (low rate), which have corresponding phosphite concentrations of 0.33 and 0.27 

kg/L.  The lower rate (8 kg/ha) was close to the 7.5 kg/ha half rate at the edges of the phytotoxicity plots 

which did not result in phytotoxicity.  The 10 kg/ha represents nearly the midpoint between the 8 kg/ha 

rate and the 12.4 kg/ha rate. 

Table 3.  Results of microplot phytotoxicity test comparing two phosphite rates and two 
surfactants, 3 plots per dilution/surfactant combination. 

Phosphite 

rate 

Phosphite 

concentration Surfactant  

Phytotoxicity rating (number of microplots) 

(kg/ha) (kg/L)  Acceptable Intermediate Not acceptable 

15 0. 5 Break-thru 0 3 0 

15 0. 5 Freeway 1 2 0 

12.4 0. 41 Break-thru 0 3 0 

12.4 0. 41 Freeway 1 2 0 

 

Spray application patterns ULV versus standard rate 

We used white vinyl tags to visualize the spray droplet pattern produced by the CDA sprayer versus a 

pump-up sprayer calibrated to deliver a standard rate application using a Teejet XR 11001VS nozzle.  As 

shown in Figure 12, the 300 L/ha application provides more complete wetting of surfaces with a wide 

range of droplet sizes.  The spray deposit from the 30 L/ha application with the CDA sprayer leaves much 
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more space between droplets, but the distribution uniformity is quite good and the droplets show less 

variation in size. Nonetheless, the small sized droplets may dry more quickly and reduce the amount of 

material absorbed into the plant to below the target amount. 

3.  Phase 2/3 plots:  Efficacy tests using ultra-low volume (30 L/ha) 

application and reduced treatment band width 

Because potential plot areas are limited at Apricum Hill, we incorporated elements of both phase 2 (ULV 

application efficacy) and phase 3 (application band width) tests into the new plots we established in 

spring 2014.  Based on the appearance of phytotoxicity in plants treated with phosphite via ULV 

application, it was clear that phosphite was being taken up by the sprayed plants.  Hence, we could 

reasonably expect to see some level of efficacy in plants treated via ULV application.   

Furthermore, our monitoring of previously treated plots (12.4 kg/ha at 300 L/ha) indicated that the P. 

cinnamomi disease front has not moved more than about a meter into any of the treated plots (Figures 6 

and 7) and that few P. cinnamomi propagules were detected 0.75 m from the disease front (see Section 5 

below).  Previous work (Swiecki and Bernhardt 2005) showed the P. cinnamomi was rarely detected 2.5 

m from a disease front.  Based on these observations, it seemed likely that the narrowest sprayed area that 

is likely to offer reasonable protection from disease spread would be about 2.5 meters. 

We combined these two factors and set up disease control plots that were sprayed using an ULV 

application in a band that was 2.4 m wide (2 spray swaths using the ULV sprayer).  We used two different 

application rates (8 and 10 kg/ha) that were low enough to avoid phytotoxicity.  These rates are lower 

than the rate used in phase 1 plots (300 L/ha), so the new plots were expected to demonstrate the 

minimum spray application parameters (phosphite rate and treated area width) needed to obtain 

acceptable levels of efficacy.   

3.1. Methods 

3.1.1. ULV sprayer: calibrating and regulating the speed of the spray head 

The main technical issue associated with the ULV sprayer setup had been finding a way to precisely 

regulate the speed of the spray head as it passes over the vegetation.  This is challenging because the 

spray head is typically moved using a combination of motions, both walking and sweeping the pole over 

the vegetation.  There are various techniques that can be used to help maintain a calibrated speed along 

straight-line paths, but the incorporation of curves or arcs in the spray pattern complicates matters 

significantly.  Initial spraying of ULV plots set up 6 May 2014 used a calibrated rope as a guide to keep 

spray head velocity at the desired speed.  The rope was marked at 0.25 m increments.  The applicator 

moved the spray head across the plot using an audible beat from a metronome to time movement (1 beat 

per increment) (Figure 13).  
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Figure 12.  Top - 300 L/ha phosphite spray deposition on vinyl marker using the handheld 
sprayer shown in Figure 26.  Bottom - 30 L/ha (ULV) spray droplet distribution on vinyl placed in 
a phytotoxicity trial microplot sprayed with the CDA sprayer.   
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Figure 13.  Spray being applied with CDA sprayer to plot 9W.  The marked yellow rope was 
used as a guide to keep spray head velocity at the desired speed.  The rope was marked at 
0.25 m increments.  The applicator moved the spray head across the plot using an audible beat 
from a metronome to time movement (1 beat per increment). 

 
To use the ULV sprayer effectively, we needed a more efficient way to allow the spray operator to 

modulate the speed of the spray head to keep it within the target speed.  We thought that a sensor 

mounted on the spray head that tracks true ground speed and provides an auditory output would be the 

best option for hand-operated equipment.  We identified a compact unit, the FlySight GPS 

(http://www.flysight.ca/index.htm), which calculates Doppler speeds and is programmed to provide 

auditory feedback.  This instrument was designed to provide feedback on glide ratio to skydivers via 

audible tones.  The stock software in the unit was not ideally suited to our use, but the product’s 

developer, Michael Cooper, indicated that he could work with us to modify the software.  We specified 

that we would like the unit to produce a solid, mid-frequency tone (middle C, about 262 Hz) when 

operating at the target speed.  As the speed deviates from the target, the tone rises (if speed is too high) or 

drops (if speed is too low) while at the same time being broken up into pulses that increase in frequency 

as the deviation increases.  This provides fairly intuitive auditory feedback that allows the operator the 

speed up or slow down the motion of the spray head as needed to maintain it in the target range.  Michael 

Cooper programmed this behavior into the firmware and software of a FlySight unit that we purchased. 

Given the limitations of the Doppler GPS resolution, we selected a target speed of 0.5 m/s, which is twice 

as fast as we had used in previous ULV applications.  To apply the target dose of 10 kg/ha, we maintained 

our solution concentration at 0.35 kg/L and made 2 passes over each treated swath from opposite 

directions.  This application pattern is likely to provide a more uniform and complete application than a 

single swath, given that there are some irregularities in any given spray pass.  Because the FlySight GPS 

is light (about 60 g with a mounting bracket we added) and compact (about 1.5 cm tall, 4.8 cm length and 

width), we were able to mount it to the top of the CDA sprayer head (Figure 14).  Sound output is routed 

http://www.flysight.ca/index.htm
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via an audio cable to a portable battery-powered speaker (we used a HMDX model HX-P140) that is 

attached to the spray boom handle near the control switches.  

We tested and practiced with the FlySight to check the tone output against ground speed measured on a 

tape measure.  The unit appeared to work well, although we had intermittent problems getting the sound 

to start, which required repeated powering on and off of the GPS unit.  Despite this issue, we used this 

unit in the field on 26 November 2014 to treat plots AH13-18.  The intermittent starting problem 

reappeared and eventually got to the point that we could not get the sound to activate after the first swath 

of the last plot treated (plot AH18).  After this, we contacted Michael Cooper with a detailed description 

of the problem we were having with the sound after our return.  He was eventually able to replicate the 

error and correct the firmware to solve this intermittent problem, which was the result of a failure of the 

sound to restart after a memory buffer dump. 

 
Figure 14. Head of the CDA with attached FlySight GPS unit.  The FlySight is mounted on a 
metal plate that is magnetically attached to bracket on the spray head.  The audio cable (black 
cord) runs back to portable mini speaker that is attached to the spray handle.  The unit is place 
in a plastic bag to protect it from blown spray. 

3.1.2. ULV plot set up and spray application initial plots: 9E, 9W,10,11E, 11W, 12E and 

12W 

We set up seven plots 6 May 2014 along active disease fronts to test the efficacy of ULV treatment (Table 

4, Figure 10).  ULV plots were applied as banded treatments, generally 2.4 to 3.6 m wide, along disease 

fronts rather than the strictly rectangular plots as used for the standard volume treatments.  These 

treatments were done in a manner that would be suitable for ground application on an operational basis.   

Plot layout varied slightly from plot to plot, depending on the nature of the disease front.  In plots 9E and 

9W (Figure 15), 10, and 11E and 11W, phosphite was applied to plants that were at the edge of an active 

disease front, although in plots 10 and 11, there were some unvegetated gaps between the recently killed 

plants and live plants.  Furthermore, the active disease front for plot 11W is at the back of the plot, which 

is not easily accessed.  The edge of the disease front adjacent to plots 12E and 12W was very irregular, so 
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the treated areas were variable distances (0.27 to 3.1 m) from the disease front.  Where enough area was 

available to establish two adjacent plots, we treated one plot at 8 kg/ha and the second plot at 10 kg/ha.  

Plot 10 was too small to subdivide, so we used only the 10 kg/ha rate.  We used the Freeway
®
 surfactant 

blend at 0.05% (v/v) for all plots.  Phosphite concentrations of the spray solution for each plot are shown 

in Table 4.  Spray applications were made on 6 May 2014 under mild temperatures with variable overcast 

(Figure 13).  

 
Figure 15.  Plot 9 at time of initial plot setup, viewed from within the adjoining P. cinnamomi 
mortality center.  Pink flags mark the edge of healthy foliage.  The left side of the plot (9W) was 
treated at 8 kg/ha), and the right side (9E) was treated at 10 kg/ha). 

 
We checked these plots 2 Jan 2015.  Based on advance of the disease fronts into the treated areas, 

particularly for plots 9W and 9E, we decided to convert the plots to a split application regime to double 

the applied dose.  We planned for 4-6 weeks between the two applications.  The first dose of the split 

application was applied 23 Jan 2015 and the second dose was applied 9 March 2015, for a total dose of 

either 16 or 20 kg/ha.  

Table 4.  Initial application rate and monitoring system used for plots treated by ULV application 
6 May 2014. 

Plot 
number 

Phosphite 
rate (kg/ha) 

Monitoring system Monitoring 
line length 

(m) 
Individual plant 

ratings 
Distance to first 

healthy A. myrtifolia, 

9W 8 yes yes 5.5 

9E 10 yes yes 6 

10 10 yes yes 6 

11E 8 no yes 6 

11W 10 yes no n.a. 

12E 8 no yes 8 

12W 10 no yes 8 
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3.1.3. ULV plots AH13- AH18 - 26 November 2014 / 20 February 2015   

The first ULV plots were set up in May 2014, after spring rains finished.  We intended to set up another 

set of plots after the first rains of fall.  It is known that drought-stressed plants do not absorb phosphite.  

We had hoped to set up several ULV plots on County of Amador property west of the transfer station 

Buena Vista Road.  However, as discussed in previous progress reports, we encountered several issues 

when scoping this property.  For several reasons, including access and security difficulties, we did not 

attempt to establish study plots at this location. 

At Apricum Hill, we investigated several different parts of the preserve we had not previously explored 

and set up six new plots (plots AH13- AH18) along disease fronts in several areas (Figure 15).  All plots 

were placed in areas where they could prevent or slow movement of P. cinnamomi into remaining live 

stands or patches of A. myrtifolia.  Many of these new plots were located along a main path/drainage that 

runs through the center of the preserve.  Mortality due to P. cinnamomi affected many stretches along this 

drainage.  Depending on the plot geometry, we treated bands of vegetation that were two to three spray 

swaths wide, i.e., 2.4 to 3.6 m from either the disease front or from unvegetated areas along the main path.  

We used the FlySight to time spray applications for five of the six new plots.  For the last plot (plot 

AH18), which was both linear and adjacent to a strip of open ground, we reverted to timing the last 

swaths using a metronome as had been done with the spring ULV applications due to technical difficulties 

with the FlySight.   

Linear fronts of this set of plots total approximately 75 meters.  We treated these plots at 10 kg/ha on 26 

November 2014.  After noting the lack of control associated with the ULV treatments on 2 January 2015, 

we decided to convert these plots to split application plots by reapplying phosphite at 10 kg/ha (20 kg/ha 

total application) on 20 February 2015. 

3.1.4. ULV plots AH19-AH25 - 2 January 2015 / 20 February 2015  

We set up an additional set of ULV plots (AH19-AH25) on 2 Jan 2015. These plots were treated at 20 

kg/ha in two split applications of 10 kg/ha each.  The second application occurred 20 February 2015.  In 

treated stands with fairly linear edges, plots were generally 3.6 m wide (3 swaths).  In areas with more 

irregular stands, patterns were varied, resulting in effective widths from 2.4 m to about 6 m wide.  

3.1.5. ULV plots AH26-AH28 - 2 January 2015  

Plots 26/28 and 27, which were treated with a 10 kg/ha ULV application on 2 Jan 2015 showed moderate 

levels of phytotoxicity on 20 Feb 2015, when the second application was scheduled.  Phytotoxicity 

generally indicates high levels of phosphite in the plant, so we did not reapply phosphite to these plots to 

avoid excessive phytotoxicity.  We have previously noted variation in sensitivity to applied phosphite in 

Ione manzanita, which may be due to localized soil chemistry or plant phenotype. The edges of these 

plots were somewhat irregular, and the width of the treated band was mostly around 3.6 m.  The current 

set of phosphite-treated plots and application dates are summarized in Table 1 and shown in Figure 16. 
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Figure 16.  Location of phosphite-treated plots listed in Table 1 at Apricum Hill Preserve 
(seedling plots not shown).  Yellow (control) and turquoise (treated) squares are standard 
volume (300 L/ha) plots treated at 12.4 kg/ha.  ULV plots (30 L/ha) are color coded to show final 
application rates: purple plots=split application, 20 kg/ha; pink plots= split application, 16 kg/ha; 
red plots=single application, 10 kg/ha.  Arctostaphylos myrtifolia appears low growing and olive 
green in the aerial image, areas killed by Phytophthora cinnamomi appear gray.  Imagery date 
4/18/2014, Google Earth. 

 

3.1.6. Plot baseline data 

For ULV plots 9E, 9W, 10, 11E, 12E, 12W, and 19, we have monitored progress the P. cinnamomi 

disease toward and into the treated areas following the same methods used in the phase 1 plots.  We used 

two markers (carriage bolt driven into the soil through a fender washer and a square of vinyl flashing) to 

mark the ends of a straight monitoring transect line along the advancing disease front.  At 0.5 m intervals 

along the monitoring transect line (1 m intervals for plot 19 which has a 12 m long monitoring line), we 

measured the distance to the first live A. myrtifolia along a perpendicular line projected from the 

monitoring transect line.  We did not use this methods in plot 11W because it was subject to disease 

ingress from multiple directions. 

In addition, for ULV plots 9E, 9W, 10, 11E, and 11W, we tagged individual healthy plants along the 

disease front and visually rated the amount of canopy dieback.  We estimated canopy dieback using a 
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pretransformed (arcsine transformation) 7 point scale, where: 0 = no dieback seen, 1= less than 2.5%, 2 = 

2.5% to 19%, 3 = 20% to 49%, 4 = 50% to 79%, 5 = 80% to 97.4%, 6 = 97.5% or more.  

3.1.7. Photopoint monitoring for ULV plots 13-28 

The monitoring method we have used with the original standard volume plots is not well suited to the 

more irregular geometry of the plants in plots set up in Nov 2014-Jan 2015.  Therefore, we developed a 

method for taking overhead photopoints that can be rephotographed periodically to evaluate disease 

progress in the plots, irrespective of the pattern of disease progress into the plots.  

Overhead photopoints were set up along disease fronts or the outer edge of the treated area if it was not 

adjacent to a defined disease front.  At each photopoint, an aluminum nail (7.6 cm long) was used to pin a 

numbered aluminum tag and underlying square of vinyl flashing (to improve visibility) to the ground.  

GPS coordinates were also recorded for each photopoint.  

Digital images were recorded at the photopoints using a remotely activated Canon SX50HS digital 

camera mounted on an extendable pole (Figure 17), the base of which was set onto the tag.  The pole was 

extended to bring the lens surface 3.4 m above ground when the pole was vertical.  The camera was 

mounted on a bracket that was inclined away from the pole (toward the plot) by 18 degrees.  The 

mounting bracket was on an extendable arm that placed the center of the lens 53 cm horizontally from the 

center of the pole axis toward the plot.  The camera aspect ratio was set at 3:4, and the lens at 28 mm 

equivalent zoom (wide angle).   

An angle gauge attached to the pole was used to adjust the pole to a vertical orientation.  A 1 m length of 

PVC pipe (marked in 25 cm increments) was set in the plot facing in the same direction as the camera 

bracket arm and served as a linear dimension reference for each photo.  The azimuth of the reference stick 

(and camera bracket arm) was recorded for each photopoint.  Initial overhead photos were taken 18 and 

20 February and 9 March 2015.  Photos were retaken 1 April 2016, and 5 August 2016.  Photopoint 

images taken on different dates were compared visually and increased areas of canopy dieback were 

identified.  The area of new canopy dieback was computed for each pair using the length of reference 

stick to estimate the area of new canopy dieback.   
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Figure 17.  Overhead photo monitoring using camera mounted on an extendable pole.  An angle 
gauge (partly visible below left forearm) was used to adjust the vertical angle of the pole.  A 1 m 
reference stick (laying on top of the plants) is visible to left of camera pole. 

 
 

3.2. Results and discussion 

3.2.1. Application precision 

The FlySight GPS has the advantage of providing GPS tracks showing the movement of the spray head.  

After downloading the tracks, we converted them to KLM files that we imported into ArcGIS.  Points 

beyond the sprayed areas were deleted and we merged 0.6 m buffers (radius of the spray pattern from the 

head) around the remaining points to develop the polygons shown in Figures 9 and 15 and calculate plot 

areas (Table 5). 
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Table 5.  Areas of ULV plots 13-28, calculated from polygons generated by buffering around 
recorded tracks from the FlySight GPS mounted on the spray head. 

Plot Area, m2 

13 29.01 

14 116.87 

15 77.09 

16 34.79 

17 38.02 

18 89.29 

19 43.65 

20 76.90 

21 78.70 

22-23 125.05 

24-25 56.03 

27 25.84 

26+28 84.42 

Total 875.64 

 
About 2.5 L of spray was nominally required to treat the plots shown in Table 1 at the actual delivered 

volume of 28.3 L/ha.  The actual amount needed is actually somewhat less, due to gaps in the vegetation 

and other factors that reduce the treated area somewhat.  Based on our best estimates, it appears that we 

applied 90 to 100% of the target volume in our applications.  This indicates that the audio signals 

provided by the FlySight GPS allowed us to move the spray head at a rate very close to the target 

velocity, despite the wide variations in plot geometry.  It also appears that actual applied rates were 

probably slightly under rather than over the target, though within any plot, some variation in dosage can 

be expected due to small areas of gaps or overlap.  However, the use of two passes per swath 

(necessitated by the GPS limitation for minimum velocity) should have helped to even out the applied rate 

within plots. 

3.2.2. Assessment of plot evaluation methods 

As a group, the ULV plots have irregular disease fronts compared to the standard rate plots, so various 

monitoring methods were tested to monitor disease progress in the ULV plots.  Where the disease front is 

fairly linear, measurements of change from a permanent, monumented baseline was generally the simplest 

and was adequate for showing progressive disease spread into a healthy stand.  This method, used in the 

phase 1 plots discussed above, was also used in plots 9, 12, and 19, and portions of plots 10 and 11W.  

This method is subject to some noise in year to year measurements associated with slight changes in the 

alignment of the distance tape along the baseline.  While distances are normally quite repeatable in dense 

stands, gaps between plants can lead to widely different readings if the alignment of the sample point is 

off.  Comparisons with previous data are helpful for avoiding these errors.  A related issue is that if 

portions of a plant near the baseline survive for an extended period while plants behind it are killed, no 

change in the disease front will be reflected in the data.  When the front plant does die, the data will show 

a sudden large advance in the disease front at that point.  The use of many points along the disease front 

generally decreases the influence of these two issues. 
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Rating canopy dieback of individual plants was used in plots 9, 10, and 11, and was the method used for 

phase 4 plots described in the next section.  This methods is the best way to monitor health of scattered 

individual plants, as in the phase 4 plots.  This method also provided a fairly sensitive way to document 

mortality along a disease front, especially an irregular front.  However, it was more time consuming to set 

up and rate than other assessment methods for monitoring large numbers of grouped plants.  This method 

also does not provide data on further advancement of disease once the individual tagged plants are dead. 

Photomonitoring using low-altitude aerial images from fixed locations provided a fairly sensitive way for 

monitoring irregularly-scattered dieback and mortality in a group of plants (Figure 18).  This method can 

account for mortality that may move in from different directions more readily than measurements from a 

baseline.  Evaluation of the images can be geared to data needs.  Initial visual comparisons between 

images were used identify whether any changes had occurred.  For the purposes of our work, estimating 

the areas of new mortality, using the reference stick as a size scale, was sufficient for identifying the 

magnitude of change in the plots.  Issues with photomonitoring include getting good exposures without 

strong shadows, which make photointerpretation more difficult.  We also had some reliability problems 

with our remote shutter release, particularly at the last evaluation.  An adequate workaround was to take 

the photos using a custom self-timer setting.  With our equipment, we were not able to preview images 

before shooting.  The ability to preview images remotely would make alignment simpler and would 

minimize the number of images with suboptimal exposures. 

3.2.3 Single ULV applications at 8 or 10 kg/ha 

Plots 9 - 11 

As noted above, our initial ULV plots were established using rates that were below the threshold of 

phytotoxicity.  Plots 9E and 9W are adjacent to standard rate plot 3 and its control and are along the same 

extended disease front (Figure 15).  Plots 9W and 9E were initially treated 6 May 2014 at rates of 8 and 

10 kg/ha, respectively, at 30 L/ha spray volume (ULV).  Initial evaluations of the advancing disease front 

in February 2015, showed that disease suppression at these ULV rates was inadequate to slow disease 

progress, particularly when compared to plot 3B, which was treated at the standard volume and rate 

(Figure 19).   

As seen in Figure 20, plots 9W and 9E also showed large increases in dieback among tagged plants from 

the 2014 to 2015 ratings. The tagged plants in plots 9W and 9E were directly adjacent to an active disease 

front, but this was not the case for plots 10 and 11, which were also initially treated 6 May 2014.  

Mortality was somewhat scattered around these plots, resulting in ragged disease fronts that could not be 

effectively monitored with the distance from a linear baseline.  Because of the uneven disease pressure 

along plots 10 and 11, the average change in dieback ratings was much lower than seen in plot 9.  

Nonetheless, canopy dieback increased significantly in plot 10 (10 kg/ha ULV) between 2014 and 2015, 

again indicating that this ULV rate was not providing adequate disease control (Figure 20).  There was 

little change in plot 11.  
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Figure 18.  Overhead photo monitoring images (tag 1370) taken with the camera pole in 
February 2015 (top) and August 2016 (bottom).  Orange marks on the 1 m reference stick are 
25 cm apart.  New plant mortality (brown foliage) is visible in the later (bottom) image compared 
to the initial image. 
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Figure 19.  Changes in average distance to first live A. myrtifolia from April/May 2014 and 
March/April 2015 for plots 3 and 9.  Bars marked with an asterisk differ significantly from the 
control at p<0.05 (Dunnett’s test).  All plots are along the same extended disease front.  
Changes were measured relative to a fixed baseline.  Negative value in plot 3B (phosphite-
treated, 12.4 kg/ha at 300 L/ha, last treated spring 2015) represents growth of live plant canopy 
toward the baseline. Plot 9 phosphite treatments were a single ULV (30 L/ha) application at 8 or 
10 kg/ha at (ULV) in May 2014.  Error bars are one standard error of the mean. 
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Figure 20.  Percent canopy dieback measured for individual tagged A. myrtifolia along plot 
fronts for ULV plots 9, 10, and 11 in May 2014 and Feb/Mar 2015.  Application rate was either 8 
or 10 kg/ha in 2014.  Each error bar is constructed using one standard error from the mean.  
Canopy dieback was rated using a 0-6 scale based on the following arcsine-transformed 
percentage scale: 0: Symptom not seen, 1:< 2.5%, 2: 2.5% to <20%, 3: 20% to < 50%, 4: 50% 
to < 80%, 5: 80% to < 97.5%, 6: 97.5% to 100% 

 
Several factors could have contributed to the poor efficacy seen in these initial ULV phosphite treatments.  

These include: 

1.  The lower ULV application rates (reduced to 8 and 10 kg/ha to avoid phytotoxicity) were 

inadequate.  The standard volume plots received 12.4 kg/ha. 

2.  Uptake of the phosphite applied via ULV was less efficient than when applied at standard 

spray volumes. 

3.  Due to the dry spring, plants were already too water-stressed by 8 May 2014 to absorb 

adequate amounts of phosphite. 

 
The end result of any or all of these factors is that the level of phosphite in the plants was too low to halt 

disease progress.  Increasing the applied dose was the most likely way to increase efficacy in these plots.  

Increasing the phosphite concentration in a single ULV application was not a viable option, based on our 

earlier phytotoxicity tests.  However, the applied concentration can be effectively increased by using a 

split application, two successive treatments within about a two month span.  Split ULV applications have 

been used in Australia as a way to increase applied dose while minimizing potential for phytotoxicity.   

3.2.4. Split ULV applications at 16 or 20 kg/ha 

Based on results from the single application ULV treatments described above, we decided to convert 

treatments in all phosphite ULV plots to split applications with total applied rates of 16 kg/ha (two 

successive 8 kg/ha applications) and 20 kg/ha (two successive 10 kg/ha applications).  The only 

exception, discussed below, were plots 26/28 and 27.  All of the split application treatments were 
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completed in spring 2015, and were last evaluated in early August 2016.  Results to date for the split 

application plots are described below. 

Plots 9 - 11 

Initial results a little more than one year after the split applications were applied indicate that suppression 

of disease advance is most effective at the 20 kg/ha split application (Figures 21, 22).  This shows up 

most clearly in the disease front evaluation (Figure 21) where the disease progress in the 16 kg/ha split 

application did not differ significantly from the control plot.  Individual plant dieback ratings did not 

change significantly between 2015 and 2016 (Figure 22) suggesting that the split applications were 

having an effect in those plots where disease was present.  In the case of plot 9E, the rating did not change 

largely because most of the rated plants were already dead.  As noted above, a drawback of this 

evaluation method is that it is limited to the plants that were originally tagged and provides no further data 

once those plants have died. 

 
Figure 21.  Changes in average distance to first live A. myrtifolia from March/April 2015 to 
August 2016 for plots 3 and 9.  Bars marked with an asterisk differ significantly from the control 
at p<0.05 (Dunnett’s test).  All plots are along the same extended disease front.  Changes were 
measured relative to a fixed baseline.  Phosphite was applied to plot 3 at 12.4 kg/ha at standard 
volume of 300 L/ha (last treated spring 2015).  Plot 9 treatments were split ULV (~30 L/ha) 
applications applied in spring 2015, at overall rates of 16 or 20 kg/ha.  Error bars are one 
standard error of the mean. 
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Figure 22.  Percent canopy dieback measured for individual tagged A. myrtifolia along phosphite 
ULV plot fronts for plots 9, 10, and 11 in Feb/Mar 2015, and Mar/Apr 2016.  Phosphite 
treatments were split ULV (~30 L/ha) applications applied in spring 2015, at overall rates of 16 
or 20 kg/ha.  Each error bar is constructed using one standard error from the mean.  Canopy 
dieback was rated using a 0-6 scale based on the following arcsine-transformed percentage 
scale: 0: Symptom not seen, 1:< 2.5%, 2: 2.5% to <20%, 3: 20% to < 50%, 4: 50% to < 80%, 5: 
80% to < 97.5%, 6: 97.5% to 100% 
 

Plot 12 

The design of ULV plot 12 differed from other plots in that the phosphite was applied in a band starting 

some distance from the active disease front.  This was necessary in large part because the initial disease 

fronts were very uneven (Figure 23).  This plot configuration provides a different way to gauge treatment 

efficacy.  The rate of disease progress can be followed for several years in the nontreated portion of the 

plot. As the disease front reaches the phosphite-treated plants, disease progress should slow substantially 

or stop if the treatment is effective.   

Disease progress in the plots, as measured from a fixed baseline, is shown in Figure 23 and summarized 

in Figure 24.  Plot 12E and 12W were originally set up as a single application ULV plots, with rates of 8 

kg/ha and 10 kg/ha, respectively, applied on 6 May 2014.  The edge of the treated area was 250 cm from 

the 2014 baseline for plot 12E, about 50 to over 300 cm from the disease front.  By the time that the 16 

kg/ha ULV split application was applied in 2015, the disease front had advanced to the edge of the treated 

area in several spots (Figure 23, top).   

Plot 12W initially received a single 10 kg/ha ULV application (May 2014) and was subsequently treated 

with a split ULV application (20 kg/ha total) in January-March 2015.  The 2014 plot baseline was only 

140 cm from the treated area, with the disease front nearly at the treatment line at several points and 200 



Phosphite / Ione manzanita - Final project report 2016 Page 40 of 56 

P H Y T O S P H E R E  R E S E A R C H  

cm away at other points (Figure 23). At least one and preferably two or more years of observations are 

still needed to determine the efficacy of treatments in these plots.  When evaluated in 2016, recent 

mortality was observed within the treated area in both plots, but some of these plants may have been 

infected by the time the split application was made.  Larger areas of mortality were seen in the treated 

area of plot 12E, which had the lower phosphite rate (16 kg/ha split application).  However, this plot 

showed a higher rate of disease progress overall than 12W between March 2015 and August 2016. 

 
 
Figure 23.  Distances from a baseline (dashed line) to the first live A. myrtifolia foliage between 
April 2014 and August 2016 in plots 12E (top) and 12W (bottom).  Plots were treated with 
phosphite beyond the distance shown with the solid line in May 2014 (single ULV application) 
and early 2015 (split ULV application). Rates used were 8 (single) and 16 kg/ha (split) for 12E 
and 10 (single) and 20 kg/ha (split) for 12W. 
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Figure 24.  Average distance from 2014 baseline to first live A. myrtifolia foliage between April 
2014 and August 2016 in plots 12E (top) and 12W (bottom).  Plots were treated with phosphite 
beyond the distance shown with the dashed lines in May 2014 (single ULV application) and 
early 2015 (split ULV application). 

Plots 13-25 

Plots 13 though 25 were all treated via ULV applications at the 20 kg/ha total rate, with final applications 

occurring in February 2015 (Table 1).  One objective in setting up these plots was to protect as many as 

possible of the at-risk A. myrtifolia stand edges at Apricum Hill, to help conserve these stands and keep 

options open for future studies.  Hence, these plots varied greatly with respect to their proximity and 

orientation relative to active disease fronts, overall plot geometry, and the maximum treated band widths.  

Due to the complex monitoring issues posed by these plots, we used fixed aerial photopoints to monitor 

disease progress in these plots.  Initial photos were taken in February 2015 and all photopoints were 

rephotographed in April and August 2016.  Nontreated control photopoints were established in close 

proximity to treated areas to provide comparative data on disease progress.  

April 2016 photographs showed few changes from those taken February 2015, but many August 2016 

photographs showed substantial changes (e.g., Figure 18).  The increase in the area of dead manzanita 

canopy between February 2015 and August 2016 for treated and control plots is shown in Figure 25.  

Trends in this data should be considered preliminary for several reasons.  As noted above, plots vary 

greatly with respect to proximity to disease fronts.  Furthermore, data for treated plots have not been 

analyzed for the effect of band width.  For example, an outlying single plant in a site with high disease 
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pressure was treated by split ULV application at 20 kg/ha and was dead in August 2016.  The effective 

treated band width for this plant would have been only about 1 m.  Observations of the treated sites and 

photopoints suggest that the 20 kg/ha split applications are suppressing disease so far, but the two-year 

efficacy cannot be assessed at this point.  As with other plots noted above, additional data collection, 

preferably through at least one more full treatment cycle, will be needed to evaluate these treatments.  

Control plots, N=15 

ULV plots N=49 
 
Figure 25.  Increase in mortality (m2) February 2015 to August 2016 assessed from 
photomonitoring images in nontreated (top) and phosphite-treated (bottom) ULV (20 kg/ha) split 
application plots 13-25.   

Plots 26/28 and 27 

These plots were scheduled to be treated as split application plots along with nearby plots 22-25.  

However, substantial amounts of foliar phytotoxicity were observed on 20 Feb 2015, when the second 

application was scheduled.  Rather than risk further phytotoxicity, we skipped the second application for 

these plots.  The plots in question were higher on the slope and may have been on a different soil type 

than plants in nearby plots.  This might have affected their phosphorus levels and sensitivity to 

phytotoxicity.  Alternatively, absorption of the spray may have been greater among these plants due to 

their physiological condition or leaf morphology (e.g., thinner cuticle).   

Phytotoxicity symptoms were not evident in these plants in the 2016 evaluations.  Photomonitoring of 

these plots has not yet shown any new mortality in the plots.  As with the other ULV plot discussed 

above, continued monitoring will be needed to obtain definitive results.  It would also be instructive to 

retreat these plots to determine whether the observed hypersensitivity to phosphite is repeatable.  
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4.  Phase 4 plots:  Use of phosphite to protect seedling regeneration 

in old P. cinnamomi mortality centers   

We have previously observed that A. myrtifolia seedlings commonly become established in areas where 

the previous A. myrtifolia stand has been killed by P. cinnamomi.  Based on our recent observations at the 

Apricum Hill Preserve, it appears that these seedlings are most likely to establish where all the mature 

plants have been dead for many years.  By that point, the dead manzanitas have generally broken down to 

a few large diameter stems.  Manzanita seedlings are generally absent from areas where the stand has 

been killed more recently. 

These observations suggest that in the absence of hosts, P. cinnamomi propagule populations in the soil 

decrease over time to the point that susceptible seedlings can become established.  However, we also 

commonly observe that these seedlings are killed at varying ages well before they attain the size of 

mature plants.  Presumably, as their root systems expand, they eventually encounter scattered pockets of 

P. cinnamomi inoculum, which infect and reproduce on the roots, leading to severe root rot and plant 

death. 

In our phase 4 plots, we are investigating whether A. myrtifolia seedlings that establish in old mortality 

centers can be protected for an extended period, perhaps indefinitely, if they are treated with phosphite.  If 

the plants can at least survive to reproductive age, this strategy could help maintain genetic diversity and 

provide options for potential rehabilitation of affected stands.   

4.1.  Methods 

4.1.1.  Initial treatment and assessments — 2014 cohort 

In spring 2014, we located live A. myrtifolia seedlings in several old P. cinnamomi mortality centers.  

Suitable seedlings were tagged with round, numbered aluminum tree tags, which were placed over small 

rectangles of vinyl flashing and fastened to the ground with aluminum nails (7.6 cm long).  Tags were 

placed a short distance from individual plants or small groups (generally 2 or 3) of plants.  For groups of 

plants, each seedling was identified by its distance and azimuth from the tag.  To facilitate relocation, we 

placed a wire stake near each tagged plant or plant group (white for controls, blue for treated) and 

collected GPS waypoints within the areas where tagged seedlings were located.   

For each seedling, we measured the longest canopy axis (length) from leaf tip to leaf tip and measured the 

perpendicular axis (width) in the same way.  Plant height was measured from ground to highest leaf tip.  

To estimate the live cross-sectional canopy area of the seedlings, we used the formula for an ellipse: 

(Plant length/2) × (Plant width/2) × π  

Individual seedlings (or small groups of seedlings with a single tag) were assigned to be treated with 

phosphite or left as controls.  Assignment was not completely random because we needed to allow 

sufficient separation to avoid overspray or drift of phosphite onto controls, but treated and control plants 

were intermixed throughout the study areas.  We collected data on 113 seedlings in total. 

Fifty-three seedlings were left as nontreated controls.  Most of the remaining seedlings were sprayed with 

phosphite at a rate of 12.4 kg/ha at the standard volume of 300 L/ha.  We used a modified garden sprayer 
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pressurized to 138 kPa (20 psig) attached to a hand wand with a TeeJet XR 11001VS nozzle (Figure 26).  

The nozzle delivered 5 ml/s at 138 kPa, and was moved over the ground surface at 0.33 m/s to apply the 

desired 300 L/ha volume.  We used a PVC frame marked at 33 cm intervals and the Ludwig iPod 

metronome application set at 60 beats/min to provide the appropriate timing for each marked increment.  

The spray nozzle height above the canopy top was maintained at approximately 50 cm to provide the 

proper pattern width.  Seedlings were initially treated on either 24 March or 9 April 2014.  

Eleven individual seedlings near the edge of plot 11W were treated with phosphite at 10 kg/ha with the 

CDA (controlled droplet applicator) sprayer at an ultra low volume (ULV) of 30 L/ha.  Phosphite was 

applied to these plants on 6 May 2014.  In total, 60 seedlings were treated with phosphite in 2014. 

We made an initial evaluation of the seedlings on 17 July 2014 because a number of the tagged seedlings 

were already dead or dying at that time.  Seedlings were also re-evaluated for symptoms and remeasured 

on 20 April 2015, 18 March 2016, and 5 August 2016.   

4.1.2.  Phosphite treatment of 2016 cohort and retreatment of 2014 cohort seedlings 

To maintain a 2-year retreatment interval, we retreated the surviving plants from the 2014 seedling cohort 

with phosphite on 18 March 2016.  To help maintain the total sample size, we added a cohort of 44 

additional seedlings to the study.  Seedlings were measured, rated, and tagged as described above.  

Twenty two of these seedlings were left nontreated to act as controls.  The remaining 22 seedlings in this 

new 2016 cohort were sprayed with potassium phosphite.  We used the 12.4 kg/ha rate applied at 300 

L/ha for all treated seedlings, including the seedlings that had been treated at 10 kg/ha using the ULV 

application (30 L/ha) in 2014.  Our results in 2015 for treated ULV plots suggested that the lower 10 

kg/ha rate was suboptimal, so we standardized all of the applications to the higher rate /higher volume 

spray.  Furthermore, given the small target size of the treated seedlings and the wide spray pattern of the 

ULV sprayer, there was no practical advantage of using the ULV sprayer for individual seedlings over the 

standard sprayer. 

4.2.  Results 

4.2.1.  Effect of phosphite application on seedling survival 

Seedling survival was significantly higher among phosphite-treated seedlings than controls in both 

cohorts.  Survival of the 2014 cohort of treated seedlings is shown in Figure 27.  Control seedlings 

consistently showed higher rates of mortality than phosphite-treated seedlings; these differences were 

significant (p<0.05) by 100 weeks after the start of the study treatment.  By 5 August 2016, survival of 

the 2014 treated seedling cohort was 65%, compared to 19% for the nontreated seedlings.  Results were 

equally dramatic for the 2016 cohort.  Twenty weeks after the March 2016 treatment, 100% of the 

phosphite-treated seedlings were alive compared to 55% of the nontreated seedlings (significant at 

p=0.0005, 2-tail Fisher’s exact test). 
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Figure 26.  Phosphite application to marked seedlings at the 12.4kg/ha - 300 L/ha volume using 
a modified garden sprayer.  The frame was placed over the seedling (visible near flag) and was 
marked to allow the applicator to time movement of the sprayer nozzle to an audio pulse 
generated by a metronome. White vinyl square with numbered tree tag is visible near the base 
of the seedling.   

 

 
 
Figure 27.  Survival of phosphite-treated (12.4 kg/ha, 300 L/ha, blue line) and nontreated (red 
line) A. myrtifolia 2014 seedling cohort over time.  Initial treatment occurred at time 0, 
retreatment occurred at 106 weeks.  Shading represents the 95% confidence interval of the 
survival percentages.  Initial seedling populations: 53 nontreated (N) and 60 treated (Y) 
seedlings.   
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4.2.2.  Growth of seedlings in the phase 4 seedling treatment experiment 

One of the more surprising aspects of the seedling study was the fast growth rate exhibited by some of the 

seedlings (Figure 28). The average size of the 2014 seedling cohort did not differ significantly between 

treatments at either the beginning or the end of the study (August 2016), indicating the phosphite 

treatment did not have a negative effect on growth rate of treated seedlings.  Treated seedlings exhibited a 

steady increase in total canopy cover over time, even though some plants in the treated cohort died.  

Among controls, mortality rates were so high that growth of surviving seedlings could not compensate for 

the loss of canopy area from killed seedlings, so the total canopy area decreased over the observation 

period (Figure 29).   

A similar trend was seen with the 2016 seedling cohort.  Average seedling size did not differ significantly 

between phosphite-treated and non-treated seedlings.  No seedlings died among treated seedlings over the 

five months after treatment, and total canopy area increased by 26% as seedlings grew (Figure 30).  In 

contrast, almost half of the non-treated seedlings died in the 5 months between March and August 2016, 

reducing the canopy cover of this cohort by 62% (Figure 30). 

Initial seedling size also had a significant effect on mortality. A logistic regression model, using August 

2016 mortality as the outcome and treatment and initial size in 2014 as predictors, was significant at P ≤ 

0.0001.  Effect likelihood ratio tests showed that both treatment and initial size were significant at P 

<0.01, but the interaction between the two predictors was nonsignificant.  Phosphite-treated plants were 

more likely to survive than nontreated plants (odds ratio 8.96, 95% CI 3.7-23.9).  In addition, larger plants 

were more likely to survive than smaller ones.  A likely explanation of this effect is that seedlings 

growing in sites with more P. cinnamomi inoculum tend to be infected sooner and die while still small.  

Conversely, seedlings tend to survive longer, and therefore grow larger, if they are located where levels of 

P. cinnamomi inoculum are low.  Based on our field observations, even these larger plants will eventually 

encounter P. cinnamomi inoculum in the soil and be killed.  However, the time between infection to plant 

mortality is also likely to be longer for larger plants with more extensive root systems, than for smaller 

plants.  This would also tend to increase the survival time of larger seedlings overall. 

These results indicate that potassium phosphite treatment has potential as a means of keeping seedlings 

alive in areas infested with P. cinnamomi.  However, substantial levels of mortality may still occur among 

phosphite-treated plants (Figure 27).  This strategy seems to have the greatest potential when used on 

larger seedlings in areas where inoculum levels are likely to be low.  
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Figure 28.  Growth of seedlings 1265 (control) and 1163 (phosphite-treated) over a 13 month 
period.  Note positions of rocks, tags, and flags (arrows) for reference. 
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Figure 29. Change in total canopy area of phosphite-treated (12.4 kg/ha, 300 L/ha; blue line) 
and nontreated (red line) A. myrtifolia seedlings from the 2014 cohort.  Phosphite treatment 
applied 24 March or 9 April 2014 and 18 March 2016.  Initial seedling populations: 53 
nontreated (N) and 60 treated (Y).   
 

 
Figure 30. Change in total canopy area of phosphite-treated (12.4 kg/ha, 300 L/ha; blue line) 
and nontreated (red line) A. myrtifolia seedlings from the 2016 cohort.  Phosphite treatment 
applied 18 March 2016.  Initial seedling populations: 22 nontreated (N) and 22 treated (Y).  
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5.  Baiting for P. cinnamomi in treated plots 

We conducted soil sampling in 2014 to determine whether phosphite treatments in the phase 1 plots were 

having a detectable effect on P. cinnamomi populations levels in the soil.   

5.1.  Methods 

We collected soil samples from the edge of the apparent disease front of phase 1 phosphite-treated and 

control plot sets 1, 2, 3, and 4 on 17 July 2014.  We had previously collected a similar series of soil 

samples in April 2014.  In the July 2014 round of sampling, we increased replication in each plot and 

changed the soil collection protocol slightly, to ensure that samples collected at the 0.75 m distance from 

the disease front were not inadvertently closer than this distance to a dead or symptomatic manzanitas.   

In each plot, we collected samples at four positions relative to the visible edge of the disease front.  Two 

samples (distance = 0 m) were taken at the edge of the first live plant along the disease front.  Two other 

samples were collected at a distance of 0.75 m from the disease front and any other symptomatic or dead 

plant, but were not necessarily in line with the 0 m samples.  We avoided areas where we had collected 

soil samples in April 2014.  For each sample, we recorded the distance in meters from the left side of the 

plot (looking into the plot from the disease center) and the distance into the plot from the baseline edge.   

Soil samples were collected by first scraping away organic debris and loose soil surface soil (generally 

less than 1 cm depth) with a trowel.  We then used the blade end of a mason’s hammer to break up the 

soil to a depth of about 10 cm and collected soil and associated roots from this loosened soil.  This portion 

of the soil profile typically contains the highest density of A. myrtifolia roots and P. cinnamomi can 

typically be recovered from this zone if it is present.  We emphasized the collection of live and dead root 

pieces in all samples, which are more likely than is the bulk soil to be associated with Phytophthora 

inoculum. 

We placed about 0.75 to 1 liter of soil and root pieces from each excavated hole in 1 gallon zip closure 

plastic bags.  Each sample was collected from a single sampling hole.  Soil samples were placed in an 

insulated container for transport back to the laboratory.  Sampling tools and shoes were thoroughly 

cleaned and disinfested with 70% isopropanol between all samples and before traveling out of known or 

suspected infested areas. 

One day after sample collection, we added carbon-filtered tap water to the sample bags to adjust the soil 

moisture to about field capacity (about -30 kPa soil matric potential).  Samples were maintained at field 

capacity for 3 days to promote sporangium production.  Temperatures during this period fluctuated 

diurnally between 20 and 27 C. 

After the 3-day adjustment period, we placed one unwounded, rinsed, green Bartlett pear fruit into each 

pre-moistened soil sample and added enough carbon-filtered tap water to submerge the soil and root 

sample to a depth of about 1 to 2 cm.  We also added Rhus integrifolia leaf pieces as baits at this time.  

Baits of Rhus integrifolia were useful in the previous round of soil sampling in April, as diagnostic 

structures of P. cinnamomi formed on the leaves when they were subsequently incubated in water.  Pear 

and leaf baits were incubated in the flooded soil samples for 3 days.  Temperatures during the incubation 

period fluctuated diurnally between 20 and 27 C. After three days, symptoms had become evident on at 

least some of the pears and leaf baits.  At that point, pear baits were removed from the flooded soil, rinsed 
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with water, and incubated on racks at 20 C and observed daily for further symptom development.  Disease 

reactions on the pears were classified according to a 5 point scale (Figure 31). 

Leaf baits were removed, rinsed with water, and floated in petri dishes containing nonsterile charcoal-

filtered tap water and incubated at 20 to 27 C, and periodically examined using a microscope.  

Identification of P. cinnamomi was confirmed by observations of diagnostic morphological characteristics 

(sporangia, chlamydospores, and hyphal swellings) on leaf baits.  In addition, we cut tissue pieces from 

the edges of brown spots on the pears and placed them in agar media in petri plates.  Plates were 

examined periodically with a microscope for the presence of diagnostic morphological characteristics. 

We used ordinal logistic regression using JMP 9.0.3 (SAS Institute Inc.) to analyze pear symptom 

severity, which was treated as an ordinal variable.  Treatment (control or phosphite application) and 

distance from disease front (0 or 0.75 m) were used as predictor variables.  Data from the April sample 

were pooled with the July data to give an overall sample size of 48 (4 plots×2 treatments×2 distances×3 

samples). 

 
Figure 31.  Pears from soil baiting, illustrating 0-5 scale symptom severity.  Dark brown 
discoloration is the normal symptom of P. cinnamomi infection in green pears.  A black 
permanent marker was used to draw dotted lines around existing blemishes on the pear 
surfaces before baiting.  These lines are visible in the two “1” rating pears and the center and 
left “0” rating pears. 

 

Symptom severity 0-5

45 3 2 1

0 0 0

45 3 2 1



Phosphite / Ione manzanita - Final project report 2016 Page 51 of 56 

P H Y T O S P H E R E  R E S E A R C H  

5.2.  Results and discussion  

Figure 32 summarizes the results obtained through pear baiting of soil samples.  At the disease front 

(distance = 0 m), pear symptom intensity was significantly lower in the phosphite-treated plots than in the 

control plots (Table 6).  There was no statistical difference in detection 0.75 m from the disease front 

between treated and nontreated plots.  The overall trends in the data were the same if the analysis was 

restricted to the July 2014 data only, but with the smaller sample size (N=32), the effect of treatment was 

not significant. 

 
Figure 32.  Average pear bait symptom severity for soil samples collected from control and 
phosphite-treated (12.4 kg/ha, 300 L/ha) plots, combined April and July 2014 data. 

 
 

Table 6.  Effect likelihood ratio tests for ordinal logistic model of pear symptom severity 
combined July and April 2014 data (N=48, overall model P <0.0001). 

Source DF Likelihood 
ratio χ2 

P level 

Treatment 1 6.1034095 0.0135 

Distance from disease front, m 1 33.8988302 <.0001 

Treatment × Distance from 
disease front, m 

1 6.74129017 0.0094 

 
These results are consistent with our previous studies, which showed that inoculum levels drop off 

substantially within a meter from the apparent disease front (Swiecki et al 2005).  As seen in Figure 33, 

high levels of inoculum (ratings of 3 or more) were more common in the control plots than in the 

phosphite-treated plots at the 0 m distance.   
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Figure 33.  Histograms of pear bait symptom severity ratings (0-5 scale) for two distances from 
the disease front (columns 0 and 0.75 m) and treatment (top row - control; bottom row - 12.4 
kg/ha phosphite spray at 300 L/ha).  Each histogram contains values from 12 pears (3 pears for 
each treatment × distance combination × 4 plots).   

 
It is clear from Figure 33 that P. cinnamomi continues to persist near the disease front in phosphite-treated 

plots.  Wilkinson et al (2001) showed that sporangia and zoospores of P. cinnamomi were produced from 

phosphite-treated Banksia grandis and Eucalyptus marginata seedlings, albeit in lower numbers than 

from nontreated plants. These data suggest that the width of a phosphite-treated band should be well over 

a meter from the disease front edge to provide an adequate barrier to the spread of P. cinnamomi.  These 

data also indicate that if phosphite treatment is terminated after a few years, disease is likely to advance 

into the treated area as soon as phosphite levels drop below effective levels in the plants.  The fact that 

disease fronts have not advanced substantially into the treated plots to date indicates that effective 

phosphite levels are being maintained in plants under the current two-year treatment schedule with the 

12.4 kg/L - 300 L/ha spray volume application. 

6.  Conclusions, recommendations, and further research 

The research reported here conclusively demonstrates that foliar applications of potassium phosphite can 

be used to protect stands of A. myrtifolia from root rot caused by P. cinnamomi.  Data from the phase 1 

plots (Figures 6, 7) clearly show that spraying 12.4 kg phosphite/ha at a 300 L/ha spray volume on a 2-
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year retreatment schedule can prevent the advance of disease along an active disease front in the presence 

of P. cinnamomi inoculum (Figures 32, 33).  Although it may be possible to extend this retreatment 

interval to 3 years, we have not tested this possibility (phase 5).  Given that there were small amounts of 

mortality seen along the disease front under the 2-year retreatment schedule, it seems likely that 

additional mortality will occur if the retreatment interval is extended.  In areas where the main objective is 

to protect as much of the remaining occupied habitat as possible, maintaining a higher level of efficacy is 

preferable. 

Applying 12.4 kg phosphite/ha at 300 L/ha spray volume to seedlings also shows clear potential to extend 

the life of individual plants that recruit in old mortality centers.  The best potential appears associated 

with treating larger plants that have already survived for a year or more, presumably due to low local 

inoculum levels.  The main utility of this application strategy would be to help maintain the soil seed bank 

and the genetic diversity associated with these plants.  The 300 L/ha spray volume used to treat these 

plants is not a strong liability because of the very limited canopy areas being treated. 

In contrast, treating the extensive borders between diseased and healthy areas in affected A. myrtifolia 

habitat would be difficult to manage with the 300 L/ha spray volume because of the difficult access to the 

areas needing treatment and the high volume of spray required.  That is why much of our research efforts 

in this project have been directed at determining whether treatment at ultra low volume (ULV) is feasible 

and how to maximize efficacy with ULV applications. 

We developed a reliable and accurate method for making ULV spray applications with hand-carried 

ground equipment that is suitable for use in A. myrtifolia habitat.  We also have determined what spray 

concentrations can be used without causing substantial phytotoxicity.  We also determined that single 

applications at a non-phytotoxic rate (10 kg/ha at 30 L/ha spray volume) do not appear to have acceptable 

levels of efficacy.  We have determined that split applications can be used to apply rates up to at least 20 

kg/ha in a single season.  However, definitive efficacy assessments of these split applications are still 

pending.  Initial data suggest that split applications of 16 kg/ha may not be sufficiently effective.  This 

result alone indicates that phosphite uptake must be less efficient in ULV applications compared to 

standard volume applications, given that rates of 12.4 kg/ha have been effective when applied at 300 

L/ha.  It remains to be seen whether the 20 kg/ha ULV split application treatment will provide the 

efficacy seen in the phase 1 standard volume plots.  Further observations of existing treated plots, 

including a second round of applications, would the most cost- and time-efficient way to resolve these 

outstanding questions. 

The partial results from ULV studies to date suggest that further research is needed to optimize phosphite 

uptake in ULV applications.  These may include changes in surfactant rate or use of different surfactants; 

inclusion of other adjuvants such as humectants; different timing of applications relative to plant 

phenology and weather conditions (rainfall, dew); or small changes in sprayer output (e.g., increase from 

current 28.3 L/ha to 32 L/ha).  All such changes have to be checked for their potential to cause 

phytotoxicity, but the field screening methods we have developed allow for fairly rapid and reliable 

phytotoxicity testing. 

One issue for future testing may be finding additional suitable test locations.  Due to the expansion of P. 

cinnamomi-related mortality at the Apricum Hill Preserve, there are very few areas left to establish 
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additional efficacy tests.  Because of the long-term nature of these tests, limited-access areas such as the 

Apricum Hill Preserve, where habitat is being protected over the long term, are the best locations for 

these studies.  In addition, these tests provide a positive conservation benefit by helping to protect stand 

edges from further encroachment by P. cinnamomi. 

Phosphite treatments have potential to help hold the line against P. cinnamomi, but in the end, these 

treatments mainly help to buy time.  In association with other work we have been doing with 

Phytophthora root diseases introduced into restoration sites with nursery stock, we have been testing 

methods to eradicate Phytophthora from soil.  This is technically challenging and relatively costly, but 

has the potential to allow infested habitat areas to be converted back to a state that would support A. 

myrtifolia populations.  Of the methods that can eradicate P. cinnamomi from soil, long-term solarization 

of old mortality centers may be the most feasible.  Its application would be limited to specific sites and 

would require adequate site preparation.  Research would be needed to not only determine whether P. 

cinnamomi could be eliminated but also whether the heat treatment had other either adverse or beneficial 

effects on the soil that would affect reestablishment of A. myrtifolia  

7.  Efforts to publicize results 

We met with CDFW staff members including Eric Kleinfelter, Cherilyn Burton, Jeb Bjerke, Laura Hayes 

and Tim Nosal at the CDFW Apricum Hill Preserve on 17 June 2014.  With the exception of Eric, these 

staff members had not been to the Preserve before.  They were interested in observing the effects of P. 

cinnamomi on the A. myrtifolia population first-hand.  In addition, they wanted to locate the population of 

the endangered Ione buckwheat (Eriogonum apricum var. apricum) on the Preserve.  Cherilyn, Jeb, and 

Laura were planning to set up a monitoring plot to follow populations of Ione buckwheat.  We showed 

them the populations of Ione buckwheat at the preserve, discussed and demonstrated sanitation measures 

they should take to avoid spreading P. cinnamomi, and discussed the dangers associated with 

Phytophthora-infested nursery stock being used in habitat restoration projects.  As a followup, we 

provided editorial input on an email that Cherilyn subsequently sent to all members of the CDFW botany 

list on 1 July 2014. 

Presentations 
Ted Swiecki gave the following presentations that included information from the research funded by this 

contract. 

Testing and Implementing Methods for Managing Phytophthora Root Diseases in California Native 

Habitats and Restoration SitesSixth Sudden Oak Death Science Symposium, San Francisco, CA.  

6/23/2016.   

Phytophthora introductions into California native habitats and restoration sites.  CDFW 

Conservation Lecture Series: Concerns Over Plant Pathogen Introductions in Native Plant Nurseries and 

Restoration Sites.  Sacramento, CA.   4/19/16 

Can phosphite treatments limit spread of root rot caused by Phytophthora cinnamomi in habitat of 

Ione manzanita?  62nd Annual Conference on Soilborne Plant Pathogens, Parlier, CA.   3/23/16 
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Effects of Phytophthora introductions into California native habitats and restoration sites.  An 

Expanding Threat: Exotic Phytophthora species entering native landscapes. 2016 Northern California 

Botanists Symposium,  Chico, CA.  1/13/16 

Phytophthora rising: Effects of introductions into California native habitats and restoration sites.  

Do No Harm: Considerations of pathogens, pests, and plant disease in restoration activities, UC Palm 

Desert Campus, Palm Desert, CA.  11/5/2015 

Phytophthora species in native plant nurseries, restoration sites, and native habitats in California . 

Public meeting, Santa Clara Valley Water District, San Jose, CA.  2/12/15 

Limiting the destruction of Ione manzanita habitat caused by the exotic pathogen Phytophthora 

cinnamomi . California Native Plant Society 2015 Conservation Conference, San Jose, CA. 1/15/15 

Phytophthora species: life cycle, distribution, dispersal, impacts in California. Responding to an 

Expanding Threat: Exotic Phytophthora  Species in Native Plant Nurseries, Restoration Plantings, and 

Wildlands.  San Francisco, CA.  12/2/14. 
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