Module 2 – Electricity Spot Markets (e.g. day-ahead)

2.2 Market clearing as an optimization problem

Inputs:

- All offers in the market are formulated in terms of a quantity P and a price λ
- On the supply side (N_G supply offers):
 - set of offers: $\mathcal{L}_G = \{G_j, j = 1, \dots, N_G\}$
 - maximum quantity for offer G_j : P_j^G
 - price for offer G_j : λ_j^G
- On the *demand* side (N_D demand offers):
 - set of offers: $\mathcal{L}_D = \{D_i, i = 1, \dots, N_D\}$
 - maximum quantity for offer D_i : P_i^D
 - price for offer D_i : λ_i^D

Decision variables:

- Generation schedule: $\mathbf{y}^{G} = \begin{bmatrix} y_{j}^{G}, \dots, y_{N_{G}}^{G} \end{bmatrix}^{\top}$, $0 \leq y_{j}^{G} \leq P_{j}^{G}$
- Consumption schedule: $\mathbf{y}^{D} = \begin{bmatrix} y_{1}^{D}, \dots, y_{N_{D}}^{D} \end{bmatrix}^{\top}$, $0 \leq y_{i}^{D} \leq P_{i}^{D}$

Our example auction setup

DTU

Supply: (for a total of 1435 MWh)

Company	Supply/Demand	id	P_j^G (MWh)	$\lambda_j^G \ (\in /MWh)$
$\mathrm{RT}^{(\mathbb{R})}$	Supply	G_1	120	0
WeTrustInWind	Supply	G ₂ 50		0
BlueHydro	Supply	<i>G</i> ₃ 200		15
$\mathrm{RT}^{(\mathbb{R})}$	Supply	<i>G</i> ₄ 400		30
KøbenhavnCHP	Supply	<i>G</i> ₅ 60		32.5
KøbenhavnCHP	Supply	G_6	50	34
KøbenhavnCHP	Supply	G_7	60	36
DirtyPower	Supply	G ₈	100	37.5
DirtyPower	Supply	G9	70	39
DirtyPower	Supply	G_{10}	50	40
$\mathrm{RT}^{(\!R\!)}$	Supply	G_{11}	70	60
$\mathrm{RT}^{(\!R\!)}$	Supply	G_{12}	45	70
SafePeak	Supply	G ₁₃	50	100
SafePeak	Supply	G_{14}	60	150
SafePeak	Supply	G_{15}	50	200

Demand: (for a total of 1065 MWh)

Company	Supply/Demand	id	P_i^D (MWh)	λ_i^D (\in /MWh)
CleanRetail	Demand	D_1	250	200
El4You	Demand	D_2	300	110
EVcharge	Demand	D_3	120	100
QualiWatt	Demand	D_4	80	90
IntelliWatt	Demand	D_5	40	85
El4You	Demand	D_6	70	75
CleanRetail	Demand	D_7	60	65
IntelliWatt	Demand	D_8	45	40
QualiWatt	Demand	D_9	30	38
IntelliWatt	Demand	D_{10}	35	31
CleanRetail	Demand	D_{11}	25	24
El4You	Demand	D_{12}	10	16

That is a lot of offers to match... Could an optimization problem readily give us the solution?

Centralized social welfare optimization

• The social welfare maximization problem can be written as

$$\max_{\mathbf{y}^{G}, \mathbf{y}^{D}} \sum_{i=1}^{N_{D}} \lambda_{i}^{D} y_{i}^{D} - \sum_{j=1}^{N_{G}} \lambda_{j}^{G} y_{j}^{G}$$
(1a)
subject to
$$\sum_{j=1}^{N_{G}} y_{j}^{G} - \sum_{i=1}^{N_{D}} y_{i}^{D} = 0$$
(1b)
$$0 \le y_{i}^{D} \le P_{i}^{D}, \ i = 1, \dots, N_{D}$$
(1c)
$$0 \le y_{j}^{G} \le P_{i}^{G}, \ j = 1, \dots, N_{G}$$
(1d)

• And equivalently as a *minimization problem* by minimizing the opposite objective function, i.e.

$$\min_{\mathbf{y}^{G}, \mathbf{y}^{D}} \quad \sum_{j=1}^{N_{G}} \lambda_{j}^{G} y_{j}^{G} - \sum_{i=1}^{N_{D}} \lambda_{i}^{D} y_{i}^{D}$$
subject to (1b)-(1d) (2b)

5/15

It is a simple linear program!

• One recognize a so-called **Linear Program** (LP, here in a compact form):

$$\min_{\mathbf{y}} \mathbf{c}^{\mathsf{T}} \mathbf{y}$$
(3a

subject to
$$Ay \leq b$$
 (3b)

$$\mathbf{A}_{\mathsf{eq}}\mathbf{y} = \mathbf{b}_{\mathsf{eq}} \tag{3c}$$

$$\mathbf{y} \ge \mathbf{0}$$
 (3d)

- LP problems can be readily solved in
 - Matlab, for instance with the function linprog,
 - R, with the library/function lp_solve,
 - and also obviously with GAMS, Gurobi, etc.
- However, for e.g. R and Matlab, you need to know how to build relevant vectors and matrices
- And, the solution will only give you the energy schedules in terms of supply and demand

• The vector \mathbf{y} of optimization variables \mathbf{c} of weights in the objective function are constructed as

Vector and matrices defining constraints

• For the equality constraint (balance of generation and consumption):

$$\mathbf{A}_{eq} = \begin{bmatrix} 1 \ \dots \ 1 \ -1 \ \dots \ -1 \end{bmatrix}, \ \mathbf{A}_{eq} \in \mathbb{R}^{(N_G + N_D)} \ , \qquad \mathbf{b}_{eq} = 0$$

• For the inequality constraint (i.e., generation and consumption levels within limits):

with $\mathbf{A} \in \mathbb{R}^{(N_G + N_D) \times (N_G + N_D)}$ and $\mathbf{b} \in \mathbb{R}^{(N_G + N_D)}$

• Do not forget the non-negativity constraints for the elements of y...

Getting the complete market-clearing

- By complete market-clearing is meant obtaining
 - the schedule for all supply and demand offers, as well as
 - **the price** at which the market is cleared, i.e., the so-called *market-clearing* or *system* price (in, e.g., Nord Pool)

Getting the complete market-clearing

- By complete market-clearing is meant obtaining
 - the schedule for all supply and demand offers, as well as
 - **the price** at which the market is cleared, i.e., the so-called *market-clearing* or *system* price (in, e.g., Nord Pool)
- The system price is obtained through the dual of the LP previously defined, i.e.,

$$\begin{array}{ll} \max_{\boldsymbol{\lambda},\boldsymbol{\nu}} & -\mathbf{b}^{\top}\boldsymbol{\nu} \\ \text{subject to} & \mathbf{A}_{\mathsf{eq}}^{\top}\boldsymbol{\lambda} - \mathbf{A}^{\top}\boldsymbol{\nu} \leq \mathbf{c} \\ & \boldsymbol{\nu} \geq \mathbf{0} \end{array}$$

- This is also an LP: it can be solved with Matlab, R, GAMS, etc.
- λ and ν are sets of *Lagrange multipliers* associated to all **equality** and **inequality** constraints: $\lambda = \lambda^{S}$ $\nu = [\nu_{1}^{G} \dots \nu_{N_{G}}^{G} \nu_{1}^{D} \dots \nu_{N_{D}}^{D}]^{\top}$

[Note: basics of optimization for application in electricity markets are given in: JM Morales, A Conejo, H Madsen, P Pinson, M Zugno (2014). *Integration Renewables in Electricity Markets: Operational Problems*. Springer (link)]

More specifically for the market-clearing problem

• Only one equality constraint, i.e.,

$$\sum_{i} y_i^D - \sum_{j} y_j^G = 0$$

for which the associated Lagrange multiplier $\lambda^{\rm S}$ represents the system price.

More specifically for the market-clearing problem

• Only one equality constraint, i.e.,

$$\sum_{i} y_i^D - \sum_{j} y_j^G = 0$$

for which the associated Lagrange multiplier λ^{S} represents the system price.

• And $N_D + N_G$ inequality constraints:

$$0 \le y_i^D \le P_i^D, \ i = 1, \dots, N_D$$
, $0 \le y_j^G \le P_j^G, \ j = 1, \dots, N_G$

for which the associated Lagrange multipliers ν_i^D and ν_j^G represents the unitary benefits for the various demand and supply offers if the market is cleared at λ^S .

More specifically for the market-clearing problem

• Only one equality constraint, i.e.,

$$\sum_{i} y_i^D - \sum_{j} y_j^G = 0$$

for which the associated Lagrange multiplier λ^{S} represents the system price.

• And $N_D + N_G$ inequality constraints:

$$0 \le y_i^D \le P_i^D, \ i = 1, \dots, N_D$$
, $0 \le y_j^G \le P_j^G, \ j = 1, \dots, N_G$

for which the associated Lagrange multipliers ν_i^D and ν_j^G represents the unitary benefits for the various demand and supply offers if the market is cleared at λ^S .

• The dual of the market clearing LP is also an LP which writes

$$\begin{split} \max_{\lambda^{S}, \{\nu_{i}^{D}\}, \{\nu_{j}^{G}\}} & -\sum_{j} \nu_{j}^{G} P_{j}^{G} - \sum_{i} \nu_{i}^{D} P_{i}^{D} \\ \text{subject to} & \lambda^{S} - \nu_{j}^{G} \leq \lambda_{j}^{G}, \ j = 1, \dots, N_{G} \\ & -\lambda^{S} - \nu_{i}^{D} \leq -\lambda_{i}^{D}, \ i = 1, \dots, N_{D} \\ & \nu_{j}^{G} \geq 0, \ j = 1, \dots, N_{G}, \quad \nu_{i}^{D} \geq 0, \ i = 1, \dots, N_{D} \end{split}$$

[To retrieve the dual LP, follow: Lahaie S (2008). How to take the dual of a Linear Program. (link)]

Let's also write it as a compact linear program!

• As for the **primal LP** allowing to obtain the dispatch for market participants on both supply and demand side, we write here the **dual LP** in a compact form:

$$\begin{array}{ll} \max_{\tilde{\mathbf{y}}} & \tilde{\mathbf{c}}^{\top}\tilde{\mathbf{y}} \\ \text{subject to} & \tilde{\mathbf{A}}\tilde{\mathbf{y}} \leq \tilde{\mathbf{b}} \\ & \tilde{\mathbf{y}} \geq \mathbf{0} \end{array}$$

- The next 2 slides describe how to build the assemble the relevant vectors and matrices in the above LP...
- Then, it can be solved with Matlab, R, GAMS, etc.
- And, the solution will give you the equilibrium price, as well as the unit benefits for each and every market participant

[NB: Most optimization functions and tools readily give you the solution of dual problems when solving the primal ones! E.g., see documentation of linprog in Matlab]

• The vector \mathbf{y} of optimization variables \mathbf{c} of weights in the objective function are constructed as

- No equality constraint!
- For the inequality constraint:

with $\tilde{\mathbf{A}} \in \mathbb{R}^{(N_G + N_D) \times (N_G + N_D)}$ and $\tilde{\mathbf{b}} \in \mathbb{R}^{(N_G + N_D)}$

• Solving the **primal LP** for obtaining the supply and demand schedules yields:

Supply id.	Schedule (MWh)	Demand id.	Schedule (MWh)
G ₁	120	D ₁	250
G ₂	50	D ₂	300
G ₃	200	D ₃	120
G ₄	400	D ₄	80
G ₅	60	D ₅	40
G ₆	50	D ₆	70
G ₇	60	D ₇	60
G ₈	55	D ₈	45
G ₉ -G ₁₅	0	D ₉	30
		D ₁₀ -D ₁₂	0

for a total amount of energy scheduled of 995 MWh

• Solving the dual LP gives a system price of $37.5 \in /MWh$ which corresponds to the price offer of G_8

Use the self-assessment quizz to check your understanding!

