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Chapter 1

Introduction

In recent years, the theory of solitons has been studied extensively as one of the most
attractive fields in mathematical physics. Soliton phenomena are encountered in various
branches of physics such as fluid dynamics, plasma physics, nonlinear optics, condensed
matter physics and biophysics, and are known to be very fundamental. The history of
solitons dates back to the observation by Scott-Russell in 1834. He observed that a heap
of water in a narrow channel propagated at a constant speed without changing its form.
In 1895, Korteweg and de Vries derived an equation (now known as the celebrated KdV
equation) which describes shallow water waves. The KdV equation was shown to possess a
solitary wave solution and thus the observation of Scott Russel was explained theoretically.
However, since the KdV equation is a nonlinear partial differential equation, it was very
difficult to investigate behaviors of solutions until the innovation of computers. Zabusky
and Kruskal [106] studied the KAV equation by a numerical computation and discovered
that solitary waves interact elastically with others, i.e. collisions do not change their profiles.
In this sense, each solitary wave can be regarded as a particle and was named “soliton”. In
1967, Gardner, Greene, Kruskal and Miura (GGKM) [30, 31] introduced a new method by
which they solved the KdV equation analytically for the first time. An important step in
their method is to express the KdV equation as the compatibility condition of an eigenvalue
problem and a time evolution of the eigenfunction. The eigenvalue problem is of the form of
Schréodinger equation for the potential given by the dynamical variable of the KdV equation.
They first solved the scattering problem of the Schrodinger equation for the initial condition
at t = 0 of the KdV equation and obtained the scattering data. The time evolution of the
eigenfunction determined time dependence of the scattering data. Lastly, solving the inverse
problem of the Schrodinger scattering problem, GGKM reconstructed the solution of the
KdV equation at any time t¢ from the scattering data at time ¢. The obtained solutions
explicitly show that solitons in the KdV equation interact elastically with others [93]. Their
method consists of the processes of solving the direct problem and the inverse problem of
scattering and thus has been called the inverse scattering method (ISM). The discovery of the
ISM opened the door to theoretical and analytical studies of completely integrable systems,
which have become one of the most active fields in modern mathematical physics. After the
success of GGKM, the ISM has been developed and sophisticated by a number of authors.
Such studies have been enlarging the class of equations which have multi-soliton solutions
(for short, soliton equations). Lax reformulated the work of GGKM and constructed a
hierarchy of the KdV equation including higher-order KdV equations [57]. Now, we call a
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10 CHAPTER 1. INTRODUCTION

pair of two operators, which yields a soliton equation as the compatibility condition, the Lax
pair. Zakharov and Shabat [108,109] introduced a Lax pair of 2 X 2 matrix operators and
solved the nonlinear Schrédinger (NLS) equation through a generalization of the ISM by
GGKM. After another success of the ISM for the modified KAV (mKdV) equation [98,99],
Ablowitz, Kaup, Newell and Segur (AKNS) [4] unified a class of ISM-solvable equations by
employing various time evolutions of the eigenfunction. Their formulation is called the AKNS
formulation. Takhtajan [82] found that an extension of eigenvalue problem gives a solution
of the Heisenberg ferromagnet (HF) equation. Kaup and Newell [47, 48] introduced a novel
class of eigenvalue problem and solved a derivative nonlinear Schrédinger (DNLS) equation
and the massive Thirring model. The massive Thirring model was also solved by Kuznetsov
and Mikhailov [56]. Wadati, Konno and Ichikawa (WKI) [96] proposed a modified version
of the Takhtajan’s eigenvalue problem and derived a new hierarchy of soliton equations.
We remark that almost all of the above-mentioned extensions of the ISM assume the form
of Lax pairs expressed in terms of 2 x 2 matrices. The impressive developments of the
ISM stimulated a variety of alternative approaches in soliton theory. Among those, we
list the Hirota method [33-36, 44], the Painlevé analysis, Biacklund transformations, multi-
Hamiltonian theory [28, 59], classical r-matrix structure [22], symmetry approach [25, 64, 74]
and algebraic study based on Lie algebras [26,27] and Jordan algebras [32,79-81]. Each
approach has its own advantages in the study of soliton equations. For example, the Hirota
method is a very powerful tool to obtain explicit expressions of soliton solutions and some
other solutions. The Painlevé analysis is useful in testing integrability of novel systems.
In comparison with alternative approaches, the ISM has some great advantages. It gives
not only special solutions such as soliton solutions but also a procedure for solving the
initial-value problem and obtaining conservation laws. The ISM can be interpreted as an
extension of the Fourier transformation for nonlinear systems. In a certain sense the ISM
linearizes soliton equations and enables us to superpose one solution on another. For some
classes of soliton equations, it has been shown that the ISM gives a transformation from
original dynamical variables to action-angle variables, which directly proves their complete
integrability. Taking the above merits into account, we employ the ISM as the main approach
which we use in this thesis.

Although more than thirty years has passed since the discovery of solitons and the ISM, it
is still a matter of importance to obtain interesting generalizations of soliton equations with
preserving the complete integrability. One direction is to consider multi-dimensional exten-
sions of soliton equations. A typical example for this is the study of the Davey-Stewartson
equation, which is a (2 + 1)-dimensional generalization of the (1 + 1)-dimensional NLS equa-
tion. Another direction, which we pursue in this thesis, is to study generalizations of soliton
equations to systems which have multiple dependent variables (for short, multi-component
soliton equations). Recently there have been a lot of researches focused on this field. One of
the reasons is that multi-component soliton equations are significant in describing physical
models which have some degree of internal freedom. The system of two-component NLS
equations is a typical example which is used to describe diverse physical phenomena such as
nonlinear propagation of two polarized electromagnetic waves [12, 37,40, 46,51, 63,103]. An-
other reason may come from close interrelations between multi-component soliton equations
and algebraic structure [79-81]. As is stressed in the above, the ISM provides a procedure
to solve the initial-value problem of soliton equations. It is a prominent feature of the ISM,



11

to be sure, but in practice it is often difficult to trace time evolution of initial values via the
ISM. Thus, it is an important problem to find good schemes for numerical computation of
soliton equations. One possible solution is to find discretizations of independent variables in
soliton equations which preserves the complete integrability (for short, integrable discretiza-
tions). The discretized soliton equations are not only useful for numerical computation but
also interesting as models of nonlinear population dynamics, nonlinear electric circuits and
nonlinear lattice vibrations [19]. We can reproduce most of the properties of continuous
soliton equations by taking an appropriate continuum limit for the corresponding integrable
discretizations. Hence integrable discretizations may be regarded as a generalization of the
soliton theory. In the 1990s integrable discretizations have been studied in connection with
soliton cellular automata [67,83]. In this theory, the concept of discretizations was extended
to discretizations of dependent variables (referred to as ultra-discretizations).

The main theme of the thesis is to study multi-component soliton equations from a point
of view of the ISM. Considering various generalizations of Lax pairs, we obtain novel multi-
component extensions of soliton equations. For a part of the obtained multi-component
soliton equations, we propose an integrable discretization within the framework of a discrete
version of the ISM. The outline of the thesis is as follows.

In Chapter 2, we make a brief summary of general formulation of the ISM. As the first
step in the ISM, we introduce an auxiliary linear problem and define the Lax pair and the
zero-curvature condition. Considering some choices of 2 x 2 Lax matrix U, we introduce
well-known soliton hierarchies by AKNS, Kaup-Newell, Takhtajan and WKI. For the AKNS
hierarchy, we explain a concise outline of the ISM. We show that the formulation of the
ISM can be extended for discrete space and time. The formulation includes an integrable
discretization of the AKNS hierarchy proposed by Ablowitz and Ladik. Introducing an idea
of gauge transformations in soliton theory, we construct the Chen-Lee-Liu hierarchy from
the Kaup-Newell hierarchy.

In Chapter 3, we discuss multi-field generalizations of the AKNS formulation. We find
a matrix NLS equation and a matrix mKdV equation. We show a method to construct an
infinite number of integrals of motion, Hamiltonian structure and r-matrix representation for
the matrix equations. Applying the ISM to the matrix AKNS hierarchy, we solve the initial-
value problem and obtain multi-soliton solutions. We consider two reductions of the matrix
AKNS formulation and obtain coupled NLS (c¢NLS) equations and coupled mKdV (¢cmKdV)
equations. It is shown that the ISM is effective to the reduced systems by reflecting the
reductions in the symmetry of scattering data. We prove that a superposition of the cNLS
equations and the cmKdV equations gives a new type of coupled Hirota (cHirota) equations.

In Chapter 4, we propose a matrix generalization of the Chen-Lee-Liu equation on the
basis of Lax formulation. Considering two reductions of the matrix Chen-Lee-Liu equation in
terms of vectors, we obtain two simple types of coupled Chen-Lee-Liu equations. Recursion
formulas for the conserved densities are explicitly given. Using gauge transformations, we
clarify a connection between the obtained Lax formulations and multi-component general-
izations of the AKNS formulation. By transformations of variables we derive a new system
of coupled Kaup-Newell equations from one type of the coupled Chen-Lee-Liu equations.

In Chapter 5, we study matrix-valued DNLS-type equations, which were shown by Olver
and Sokolov [73] to possess a higher symmetry. Introducing a transformation for the matrix
Chen-Lee-Liu equation without a reduction, we prove that all systems but two in [73] have
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a Lax representation and that they each are connected with the others. For the remaining
two systems, we explain a method to linearize them and to obtain the general solution.

In Chapter 6, we explain a multi-component generalization of the second flows in the
HF hierarchy and the WKI hierarchy. For the multi-component system of the second HF
flow, we find an integrable semi-discretization. We show that there is a correspondence via
a gauge transformation between the multi-field HF flow and the multi-field WKI flow.

In Chapter 7, we discuss an integrable discretization of the multi-component soliton
equations studied in Chapter 3. By a generalization of the Ablowitz-Ladik formulation,
we obtain an integrable discretization of the matrix NLS equation and the matrix mKdV
equation. We show a reduction of the discrete matrix mKdV equation to discrete cmKdV
equations. By means of the discrete ISM, we solve the initial-value problem and derive the
N-soliton solution for the discrete cmKdV equations. By a change of dependent variables for
the discrete cmnKdV equations, we obtain discrete cHirota equations, which include discrete
cNLS equations with a special choice of parameters. We explain an essential difference
between the continuous cNLS equations and the discrete ¢cNLS equations from a point of
view of the ISM.

The final chapter is devoted to summary and concluding remarks.



Chapter 2

Inverse Scattering Method

In this chapter, we briefly explain a general idea of the ISM. Before studying multi-field
generalizations in later chapters, we summarize the class of soliton equations associated
with Lax pairs of 2 x 2 matrix form. A matrix Lax pair was introduced by Zakharov and
Shabat [108,109] for the first time to solve the NLS equation via the ISM. Ablowitz, Kaup,
Newell and Segur (AKNS) [4] refined the method by Zakharov and Shabat and established
the ISM in a simple form. After the success of AKNS, some remarkable variations of the
AKNS formulation were proposed. Typical ones are due to

(a) Kaup and Newell for a derivative NLS (DNLS) equation [48],

(b) Takhtajan for the Heisenberg ferromagnet (HF) equation [82],

(c) Wadati, Konno and Ichikawa (WKI) for a new hierarchy of integrable systems [96],

(d) Ablowitz and Ladik for a discrete NLS equation [6, 7].
We describe Lax formulations proposed by AKNS and (a)—(d). For the AKNS formulation we
state the outline of the ISM concisely. Lastly, we introduce the idea of gauge transformations
in soliton theory.

2.1 Lax Formulation
We consider a set of linear equations,
v, =U¥, ¥, =V, (2.1)

where the subscripts denote partial differentiations. Here ¥ is an L-component vector, and
U, V are L x L matrices which contain an essential parameter, say (. The compatibility
condition, 0,0,V = 0,0,V is satisfied if

U,—V,+[U, V] =0. (2.2)

Here [ -, -] is the commutator, [U, V] = UV — VU. If we choose the form of matrices U and
V appropriately, eq. (2.2) becomes equivalent to a set of nonlinear evolution equations inde-
pendent of the parameter ¢. In such cases we call ¢ the spectral parameter (or eigenvalue), U
and V the Lax pair (or Lax matrices) and eq. (2.2) the zero-curvature condition (or simply,
Lax equation). The expression (2.2) is an important step to perform the ISM. For the time
being, we explain how to choose the form of the Lax pair by taking some examples.

13



14 CHAPTER 2. INVERSE SCATTERING METHOD

2.2 AKNS Formulation

AKNS studied soliton equations associated with the 2 x 2 Lax matrix U:

U= l _;C iqg ] . (2.3)

They showed that appropriate choices of the (-dependence of the Lax matrix V' generate a
class of soliton equations. If we expand V from (2 to (°,

e[l ] 8]

we obtain a generalized form of the NLS equation,

iqt + Qee — 2q27' = 07

iry — 14 +2r%q = 0. (2:4)

The system includes the self-focusing case (r = —¢*; x denotes the complex conjugation)
and the defocusing case (r = ¢*) of the NLS equation, which were studied in [108] and [109]
respectively.
Further, expanding V from ¢3 to (°,
. —4 4q .| —2qr 2q
— ;3 2 z
V_IC[ 4]+Cl4r ]—Hgl—Qrw QqT]

qzT — 4Ty Gz + 2(]27'
2.5
+ [ —Tpe + 2r%q  —quT + qry ] ’ (2.5)

we obtain a pair of equations,

Gt + Guzz — 6qzqr = 0,
Tt + Tygy — 6727q = 0. (2:6)

This system reduces to the modified KAV (mKdV) equation for » = +¢, the complex mKdV
equation for r = +¢* and the KdV equation for r = —1 respectively.

On the other hand, assuming that V' has a term proportional to the inverse of ¢, i.e. 1/(,
we also obtain physically important equations. The choice of V' given by

V:illw _%‘lt],

57',5 —Ww

yields a set of evolution equations:

1
Wy = 5(617')75,
Gtz = 4wq, (27)
rie = 4wr.
Setting
1 1
w = Zcosu, qQq=-—Tr= —iuw,
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in eq. (2.7), we obtain the sine-Gordon equation:
Uy = SIN U.

Meanwhile, choosing

w = — coshu, =r=
1 q

we obtain the sinh-Gordon equation:

ium

Uz = sinh u.

It is surprising that only one choice of U given by eq. (2.3) yields a number of nonlinear
systems of physical significance. In fact we can generate an infinite number of nonlinear
evolution equations, which altogether we call the AKNS hierarchy, by expanding V' from
O(¢") (n=-1,1,2,...) term. As will be explained later in this chapter, we can comprehen-
sively deal with all of the members in the AKNS hierarchy in applying the ISM.

2.3 Kaup-Newell Formulation

Kaup and Newell introduced a new choice of the 2 x 2 Lax matrix U,

_ | —i¢ (a
U= [ C,r. iCQ ‘| ’ (28)
in [47,48]. They showed that a new hierarchy of soliton equations is derived in correspon-

dence with various power expansions of the Lax matrix V with respect to (. For instance,
putting eq. (2.8) and

. -2 2q ) —qr
e[ el o] ]

igz +q¢*r
+ C [ —i’l"w + 7,,2q ] ’ (29)

into the zero-curvature condition (2.2), we obtain a generalized system of the DNLS equation,

igt + Gz — i(g%r)s = 0,
iry — rop — i(r%q)s = 0. (2.10)

We call this system the Kaup-Newell equation for convenience. The Kaup-Newell equation
has been solved via the ISM under the reduction » = +¢* and appropriate boundary condi-
tions [48,50]. It is to be remarked that the massive Thirring model is also a member of the
hierarchy generated by the Lax matrix (2.8), which we call the Kaup-Newell hierarchy. This
fact will be shown in Section 2.8 in connection with gauge transformations.

2.4 Takhtajan Formulation

Takhtajan proposed a new eigenvalue problem in order to solve the HF equation in [82]. The
Lax pair is given by
U=i(S, V =2i¢*S+(SS,. (2.11)
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Here S is a square matrix which satisfies
S? =1, (2.12)

with I being the identity matrix. Substitution of eq. (2.11) into the Lax equation (2.2) gives
the equation of motion for S,

1
As a reduction of S given by
S = 5101 + 8909 + 8303 =0 - S, (2.14)

where o1, 09, 03 are the Pauli matrices,

01 0 —i 1 0
01 = 10 ) 09 = i 0 3 03 = 0 —1 3

we obtain the HF spin chain:
St =8 x Szz, |S‘2 = 1, S = (81,82, 83). (215)

Under the boundary condition
lim §=(0,0,1),

T—+o0
Takhtajan solved the HF equation by means of the ISM. Assuming the form of V' to be
a higher-order polynomial in {, we can construct higher flows of the HF hierarchy (see
Chapter 6).

2.5 WKI Formulation

WKI showed that a new series of integrable nonlinear evolution equations is constructed via
a new formulation of the ISM. In their formulation, the Lax matrix U is assumed to have

the following form:
_ | € Ca_ | -1g¢
U_l Cr iC]_Cl r i]'

2 — 1
s L S
V1—qr r o1 V1—qr | —r 0 z
we obtain from eq. (2.2) the WKI equation with the linearized dispersion relation w = k?;

q

_ rr);c;c:o’
| (”rq) . (2.16)
17y — 7\/@ ww— .

Choosing

iQt-i-(

Choosing

po ¢ el € Gr—qre  2ig
i (1 - QT)% —2i7‘$ —qzT + qTy

R (rererd Bl |8
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we obtain from eq. (2.2) the WKI equation with the linearized dispersion relation w = —k?;

A8 enc) Ll

L—qr (2.17)

Ty

)

Tt+{
(1—rg

Equations (2.16) and (2.17) are respectively looked upon as the first flow and the second flow
in the WKI hierarchy. WKI gave a formula which generates an infinite series of conservation
laws for the WKI flows. The ISM for the WKI equations was studied in [53, 78|.

2.6 ISM for the AKNS Hierarchy

In previous sections, we have summarized Lax formulations and have given a few examples
of the associated hierarchy. Now we shall concisely explain how to apply the ISM to the
obtained soliton hierarchies. Here, for brevity, we only explain the outline of the ISM for
the AKNS hierarchy. Most of the proofs of formulae in this section are omitted since they
are either a special case of the proofs for the multi-component systems in Chapter 3 or very
similar to the proofs in Chapter 3.

The spatial part of the Lax formulation by AKNS defines the following scattering prob-

2] 3]

Hereafter in this section we assume that ¢ and r vanish rapidly as x — 4o0:

lim q(z,t) = Ccl_i)rinoor(:v,t) =0. (2.19)

T—300

Let us define solutions @, @, v, 9 of eq. (2.18), which exhibit the following asymptotic
behaviors:

¢N[(1)]e_i@ as & — —oo,

-[1)

¢ ~ e as x — —o0,
0 iz

Y~ 1 le as x — +00,

T;Nl(l]]e_icz as T — 4o00.

These solutions are called Jost functions in the scattering theory. Because a pair of the Jost
functions ¢ and ¢, or ¥ and v, forms a fundamental system of the solutions of the scattering
problem (2.18), one of the two pairs is expressed as a linear combination of the other,

é(z, C) = a(Q)¥(x, ¢) + b(O)¢(z, C),
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Here the z-independent coefficients a(¢), a(¢), b(¢) and b(¢) are called scattering data. In
accordance with the boundary conditions (2.19), we assume the following expression of the
Jost functions ¢ and )

. 0 ilx * Kl (-Ta S) i(s
= [ ] ] e -i—/z [ Ky (z, 5) e'**ds, (2.20a)
b | 1] -ice < | Ki(z,s) —i¢s
Y= l 0 ] e +/m [ Ko(z. s) e **ds. (2.20b)
Substituting eqs. (2.20a) and (2.20b) into eq. (2.18), we obtain the following relations be-

tween the physical variables and the kernels:
q(z) = —2K(z,z), 7(z)=—2K,(z,x).

It can be shown that the kernels are related to the scattering data via the following integral
equations (Gel’fand-Levitan-Marchenko equations):

Ki(z,y)=F(z+y)— /:) ds; /;o dso K (7, 82)F (52 + s1)F(s1 +y), (2.21a)

Ky(z,y) = —F(z +y) — /:o ds; /:o dsoKy(z,52)F(sy + 51)F(s1 +y), (2.21b)

where F(z) and F(z) are defined in terms of the scattering data by

_1 oob(&')lm -N iz
F(z)—%/_m@egdf—lgcjeC y

o b N _
F(z) ! / we*i&df +1) epe i
> k=1

"2 ) aff)
Here we have assumed that a(¢) (a(¢)) has N (N) isolated simple zeros {(i,Ca,-*+,(n}
({¢1, ¢, -+ -, Cx}) in the upper (lower) half plane of ¢ and is nonzero on the real axis. ¢; (&)

is the residue of b(¢)/a(¢) (b(¢)/a(<)) at ¢ = ¢; (€= G)-

Next we consider time dependence of the scattering data. We assume the following
asymptotic form of the Lax matrix V:

V%lH(C) —H(C)]

under the boundary conditions (2.19), where H(() is a complex function of {. After some
calculation, we find that time dependences of the scattering data are given by

as T — £oo,

a(¢,t) = a(¢,0), (2.22a)
b(¢,t) = b(¢, 0)e 2O, (2.22b)
¢;(t) = ¢;(0)e 2H&) (2.22¢)
and
a(¢,t) = a(¢,0), (2.23a)
b(¢,t) = b(¢, 0)e ), (2.23b)
¢ (t) = 6,(0)e2H (@)1, (2.23¢)
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Due to these relations, we can easily prove that
{8, — 21 (L0,) {{~2F(22,8)} =0 (2.24n)
2 . ) 3l
{0+ 2H(—%8$) }2F(22,1)} = 0. (2.24b)

On the other hand, time-evolution equations for physical variables ¢, r have the following
form (see [1]):

0, —2H iﬁm g + ( nonlinear terms ) = 0, (2.25a)
{0 = 2H (50:)}
{at +2H (—%(%) }7“ + ( nonlinear terms ) = 0. (2.25Db)

Comparing eq. (2.25) with eq. (2.24), we find that we have a procedure to linearize soliton
equations associated with eq. (2.18). This enables us to superpose one solution of eq. (2.25)
on another by considering at the level of F' and F. We can solve the initial-value problem
in the following steps.

(a) Linearization: ¢(z,0) — —2F(2z,0), r(z,0) — 2F(2z,0).
For given potentials at ¢ = 0, ¢(z,0) and r(z,0), we solve the direct problem of
scattering and obtain the scattering data {b(&)/a(§),b(§)/a(€), (;, Ck, icj, ick}-

(b) Linear time evolution: F(2x,0) — F(2z,t), F(2z,0) — F(2z,1).
The time dependences of the scattering data are given by egs. (2.22) and (2.23). Equa-
tions (2.22a) and (2.23a) show that the eigenvalues {¢;} and {(;} are time-independent.

(c) Nonlinearization: —2F(2z,t) — q(z,t), 2F(2z,t) — r(z,1).
We substitute the time-dependent scattering data into the Gel’fand-Levitan-Marchenko
equations (2.21a) and (2.21b). Solving the equations, we reconstruct the time-dependent
potentials,
q(z,t) = 2Ky (z,75t), 7r(z,t) = —2Ky(z, 25 1).

This step corresponds to solving the inverse problem of scattering.

This solution directly proves the complete integrability of the AKNS hierarchy, that is, the
initial-value problem is solvable.

Many physically significant equations appear in the case of either r = £¢* or r = +q.
For these two cases, it is important to reflect the symmetry of the Lax matrix U in the
symmetry of the scattering data. When r = 4¢*, we have

a(Q) = {a(¢")} b(Q) = F{b(CM},
and consequently ) )
N:Na Ck:C]:;ka é]::Fc;
When r = £¢q, we have

a(¢) = a(=¢), b(¢) =Fb(=¢),
and consequently
N=N, G=-G, ¢ =Fc.
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As has been mentioned above, the initial-value problem for the AKNS hierarchy can be solved
in accordance with the steps (a)—(c). However, it is generally very difficult to solve the direct
and inverse problems of scattering (steps (a) and (c)). An exception arises in the reflection-
free case: b(§) = b(&) = 0 for real ¢. In this case, since F' and F are finite summations of
exponential functions, we may rigorously solve the Gel'fand-Levitan-Marchenko equations.
With reductions such as r = —¢*, we obtain soliton solutions. The ISM enables one not only
to solve the initial-value problem but to construct an infinite set of conserved quantities.
This is accomplished by expanding the logarithms of the time-independent scattering data,
log a(¢) and loga((), in negative powers of (. It is an interesting and important fact that the
time-independent scattering data are generating functions of the integrals of motion. This
approach, however, does not yield local conservation laws. We shall introduce an alternative
approach in later chapters, which gives not only the densities but also the corresponding
fluxes. Through this section, we have made a round-up of the general idea of the ISM for
2 x 2 Lax pairs by taking up the AKNS formulation as an example. We shall consider
generalizations of the ISM formulation to study multi-component soliton systems later in
this thesis.

2.7 Discrete Soliton Equations

The ISM is useful not only in the study of soliton equations in continuous space-time but also
in investigating soliton equations in discretized space-time. Sometimes the ISM approach
leads us into finding integrable discretizations of continuous soliton equations. To show this,
we first consider Lax formulation for the semi-discrete case, where “semi-discrete” means
that space is discrete and time is continuous. As a natural semi-discretization of eq. (2.1),
we introduce an auxiliary linear problem,

Upir =LV, U, =M,U,. (2.26)

Here , t denotes a differentiation with respect to time ¢. The compatibility condition O, E,¥,, =
E, 0,9, where E, is the shift operator in space, E,®, = ®,,1, is satisfied if

Ly + LoM, — Myt Ly, = O, (2.27)

L, and M,, which contain an arbitrary parameter, constitute the Lax pair in the semi-
discrete case. Equation (2.27) is a semi-discrete version of the zero-curvature condition (Lax
equation). Comparing eq. (2.1) with eq. (2.26), we naively expect the following relations,

.1
lim M, =V, (2.28b)
0x—0

where 0x is the lattice spacing for semi-discrete systems. It is easily proved that, with the

relations (2.28), eq. (2.27) reduces to eq. (2.2) in the continuum limit of space: dz — 0. If
we have expressed a semi-discrete system in the form of eq. (2.27), we can usually expect
that the system is completely integrable via the ISM. Hence, one effective strategy to find
an integrable space discretization of continuous soliton equations is to search for a Lax pair
which yields a set of evolution equations due to eq. (2.27). Here we have two remarks with
regard to this approach:
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(a) There are often plural schemes of integrable discretization for a continuous soliton
equation. For some of those cases, there are plural L,-matrices which reduce to the
same U-matrix in the continuum limit of space (see also (b)).

(b) Tt is not always correct that a Lax pair for a continuous system and a Lax pair for
its integrable discretization are related through eq. (2.28). One counter-example is a
discrete version of the cNLS equations, which we study in Chapter 3 and Chapter 7.

Now, on the basis of the above-mentioned strategy, let us search an integrable semi-discretization
of the AKNS hierarchy. Since eq. (2.28a) roughly means L, ~ I + dz - U, according to eq.
(2.3), the Lax matrix L, for a discrete AKNS hierarchy is expected to satisfy

| 1=éz-i¢ dz-qy 9
L”_[ 0x -1 1+5x-i§]+0(5x)'

We can prove from eq. (2.27) that the quantity Y, logdetL, is time-independent under
appropriate boundary conditions. Thus log detL,, should be the sum of a conserved density
and a function of the spectral parameter. Combining the information, we find a candidate
for the L,-matrix of a discrete AKNS hierarchy:

L, = l Ti 1q/"z ] . (2.29)

Here z = exp(—dz-i() is the spectral parameter and we have changed the scaling of g,,, r, by
0% * G — qp, 0X - Ty — T, After some trials, we find how to choose the form of M,-matrix.
For instance, choosing

- 1t
M. = 2| @ adn agnTn—1
" ‘ [ 0 ] T2 l arp—1 * b’rnQn—l + C2

1 _anfl 1 0
S LY

— z2a - G'QRTnEI +a lzaqn - %anfl ’ (230)
zary 1 — ;bry, —zb+brug, 1t e
we obtain
Qn,t — Gn+y1 — anfl + (02 — Cl)Qn + aQn+1Tnqn + anrnqnfl = Oa (2313)
Tt + 01 +arg_1 + (e1 — €)1 — brp1gnTn — arpgnrn—1 = 0. (2.31b)

The Lax pair, (2.29) and (2.30), was first proposed by Ablowitz and Ladik [6]. Thus we call
this formulation the Ablowitz-Ladik formulation.
Setting
a=-b=1, ¢ =c(=0),

in eq. (2.31), we obtain
Gnit = (]- - Qnrn)(%l-f-l - Qn—l)a

Tnt = (1 - rnQn)(TnJrl - rnfl)-
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This system is interpreted as an integrable semi-discretization of the general form of the
mKdV equation (2.6) [6]. Reductions, r, = £¢,, r» = £¢ and r, = —1, give a semi-
discrete version of the mKdV equation, the complex mKdV equation and the KdV equation
respectively.
Setting
a=b=1, ¢ —c = 2i,

in eq. (2.31), we obtain

igns + (Gn+1 + @ne1 = 20n) = @uTn(Gns1 + gn1) =0

. ’ 2.32
lrn,t - (Tn—l—l + Tn—1— 2rn) + TnQn(Tn—l—l + Tn—l) = 0 ( )

This system is interpreted as an integrable discretization of the general form of the NLS
equation (2.4). The reduction 7, = +¢ gives a discrete version of the NLS equation.

Once one has obtained an integrable semi-discretization of a continuous system, it is often
easy to find an integrable discretization of both space and time (integrable full-discretization
for short). An auxiliary linear problem in the full-discrete case is given by

\I]n—|—1 = anlna \iln = anlna

where the tilde ~ denotes the time shift in discrete time | € z: f, = fi*' = E,;f!. The
compatibility condition, FE, ¥, = E,E;V,, is satisfied if

L, and V,, and eq. (2.33) are respectively the Lax pair and the zero-curvature condition (or
Lax equation) in the full-discrete case.

Empirically we can obtain an integrable time discretization of a semi-discrete system
by choosing the same L,-matrix as the one for semi-discretization. This is true for a full-
discretization of the Ablowitz-Ladik formulation (see [7]). The ISM for the full-discrete
system can be performed only by changing the time dependence of the scattering data (see
Section 7.4 for an example).

2.8 Gauge Transformations

It is now well-known that a variety of soliton equations are connected with others in many
ways. In this section, we introduce one aspect of this fact; gauge transformations in the ISM
formulation.

If we consider a change of gauge in the linear problem (2.1),

U = g9,
the linear problem and the Lax pair are respectively changed into
o, =U'd, & =V'0,
and

U =g 'Ug—g g, (2.34a)
V=g Wg—g'g. (2.34b)
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A semi-discrete variation and a full-discrete variation of the transformation formula (2.34)
are respectively

—1
Lrln = gn+1Lngm
M, = ggangn - gn_lgn,t;

and

L;; = g;iangna
V= Gn Vagn.

Here we consider a gauge transformation for the Kaup-Newell equation (2.10) as an example.
We introduce a new pair of variables q and r by

q= qexp{—% /aC qrdx'},

. (2.35)
r= rexp{l/ rqu'}
5 :
Using eq. (2.35) and the first conservation law for eq. (2.10), i.e.
: .3
i(gr)e + (aar — arz —i50%%) =0,
we obtain from eq. (2.10)
i9; + gzz — iqrq; = 0,
.Qt q qrq (2.36)

iry — ry, —irgry = 0.

This is a type of DNLS equation proposed by Chen, Lee and Liu [20]. We call eq. (2.36) the
Chen-Lee-Liu equation. Substitution of the inverse of the transformation (2.35), i.e.

q:qexp{%/wqrdx'},
r= rexp{—%/x rqu'},

into egs. (2.8) and (2.9) gives a Lax pair for the Chen-Lee-Liu equation (2.36). We shall
show that integral terms in the Lax pair can be canceled by an appropriate choice of the

gauge. Choosing
e% fx qrdz '
9= i fa |
we obtain from eq. (2.34) a local Lax pair without integral terms for the Chen-Lee-Liu
equation:

U’=i€2[_1 1]+Clr q]+il_iqr
- _ : 1.2
VI:i&[ 2 21+C3l2r Qq]HC?l ! qr]+<l—irw+%r2q R

+i [ _i(qxr - qrw) - %quZ

L -

, . 2.38
1(Aer — arz) + 5% ] (2.38)
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We call the series of soliton equations associated with the Lax matrix (2.37) the Chen-Lee-Liu
hierarchy, which is equivalent to the Kaup-Newell hierarchy through the gauge transforma-
tion. A general form of the massive Thirring model,

) 1
qt—lmp+1§psq =0,

rt+ims—i§psr=0,
1 (2.39)
px—imq+i§qrp:0,

sm-i—imr—iiqrs:(),

is a member of the Chen-Lee-Liu hierarchy since a Lax pair for the model is given by eq.

(2.37) and
2 1
i ] m e[ e
ke I A P R R |

Here m is a nonzero constant. The system (2.39) reduces to the massive Thirring model:
. I
q: =1mp + 1§|P| q=0,
: L
P = imq Fijal’p =0,

when r = +q* and s = +p* (with double signs of the same order).

We have explained only one example of gauge transformations: the transformation be-
tween the Kaup-Newell hierarchy and the Chen-Lee-Liu hierarchy. In fact, it has been proved
that each of the AKNS formulation, the Kaup-Newell formulation, the Chen-Lee-Liu formu-
lation, the Takhtajan formulation and the WKI formulation is connected with the others via
gauge transformations (see [97] for the details). We shall study generalizations of the gauge
transformations for multi-component systems later.

2.9 Summary

We have summarized the framework of the ISM briefly in this chapter. After introducing the
Lax formulation as the compatibility condition of a linear problem, we have illustrated 2 x 2
Lax pairs by giving examples such as the AKNS formulation, the Kaup-Newell formulation,
the Takhtajan formulation and the WKI formulation. It has been made clear that each
choice of the Lax matrix U generates the associated soliton hierarchy.

Once we have a Lax pair, we expect that the system is solvable via the ISM. Starting from
a Lax pair, we have explained the scenario of the ISM for the AKNS hierarchy. It has been
shown that the ISM is essentially a transformation theory between the physical variables
and the scattering data. Defining two functions F, F in terms of the scattering data, we
have obtained a linearization technique of the AKNS hierarchy. The linearization enables
us to solve the initial-value problem of the hierarchy and to obtain conserved quantities and
soliton solutions (see later chapters for the details).
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We have studied the Lax formulation in the semi-discrete case and the full-discrete case.
By inference we have rediscovered an integrable semi-discretization of the AKNS formulation,
which is called the Ablowitz-Ladik formulation, and have obtained a semi-discrete mKdV
equation, a semi-discrete NLS equation, etc. We did not apply the ISM to the discrete
AKNS formulation since it turns out to be a special case of the ISM in Chapter 7 with a
slight modification.

We have introduced the idea of gauge transformations in soliton theory. By applying a
gauge transformation to a Lax pair for the Kaup-Newell equation, we have derived a local
Lax pair for the Chen-Lee-Liu equation. Assuming an alternative choice of the temporal
counterpart of the Lax pair, we have obtained a Lax pair for the massive Thirring model.
In later chapters it is shown that the gauge transformations are of great assistance in the
study of soliton equations.
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Chapter 3

Generalization of AKNS Formulation

The ISM has been applied to a variety of soliton equations [1,2,68]. Among the soliton
equations, the NLS equation and the mKdV equation have been studied extensively because
of their simplicity and physical significance [33,65,98,99,108,109]. As we have studied
in Chapter 2, both of the equations are members of the AKNS hierarchy. Manakov [60]
studied a system of coupled NLS (cNLS) equations and applied the ISM to the system.
Generalization of the mKdV equation to a multi-component system has been studied by some
authors [10,29,77,104]. One example is a vector version of the mKdV equation proposed
by Yajima and Oikawa [104]. Sasa and Satsuma [77] solved the initial-value problem of the
system and constructed multi-soliton solutions. Another example is a matrix version of the
mKdV equation studied by Athorne and Fordy [10].

In this chapter, we study a multi-field generalization of the NLS equation and the mKdV
equation. First, we propose a matrix generalization of the AKNS-type Lax pair to obtain
a matrix version of the NLS equation and the mKdV equation. By applying the ISM to
the matrix NLS equation and the matrix mKdV equation, we solve the initial-value problem
and obtain soliton solutions. Next, we consider a reduction of the matrix generalization of
the ISM. As a reduction of the matrix NLS equation, we reproduce the ISM for the ¢cNLS
equations studied by Manakov. As a reduction of the matrix mKdV equation, we solve
a system of coupled mKdV (cmKdV) equations by the ISM for the first time. Lastly, we
propose a superposed system of the ¢cNLS equations and the cmKdV equations.

3.1 General Formulation

3.1.1 Lax pair for the matrix mKdV equation

We introduce the following form of the Lax pair,

U:ig‘l_él IOQ]JFlzg], (3.1)
L[4 o 0 4Q1 .. [ -2QR 20,
V_1§3l 0 412]“2[4}2 O]—HC[—QRQC 2RQ]
QzR - QRw _wa + QQRQ
+[—Rm+2RQR R.Q — RQ, ] (3:2)

27
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where ( is the spectral parameter which does not depend on time, (; = 0. I; and I, are
respectively the p X p and ¢ X ¢ unit matrices ; @ is a p X ¢ matrix (made up of p rows and
g columns); R is a ¢ X p matrix. Obviously, this is a matrix generalization of the Lax pair
(2.3) and (2.5) for the system (2.6).

Substituting eqs. (3.1) and (3.2) into eq. (2.2), we get a set of matrix equations,

Ry + Russ — 3R:QR — 3RQR, = O. (3.3b)

Suppose that R is connected with the Hermitian conjugate of () by
R=¢Q!, &=+l (3.4)
Then, eq. (3.3) is reduced to
Qi + Quar — 36(QQ'Q + QQ'Q,) = 0, &= =1 (3.5)

If we restrict () to be a real matrix, eq. (3.5) becomes equivalent to what Athorne and Fordy
studied [10]. We call eq. (3.3) or eq. (3.5) the matrix mKdV equation. We shall consider the
ISM for eq. (3.5) with ¢ = —1 in Section 3.2.

3.1.2 Lax pair for the matrix NLS equation

Let us employ another form of the Lax matrix V:

.| -2 O O 2Q | QR Q.
V =1iC l o0 2l + ¢ 9RO +1i “R, RO | (3.6)
Substituting egs. (3.1) and (3.6) into eq. (2.2), we get a set of matrix equations,
iQr + Quz — 2QRQ = O, (3.7a)
iR; — Ryp + 2RQR = O. (3.7b)

Under the reduction (3.4), eq. (3.7) is cast into

Q) + Quz — 26QQ'Q =0, &=+l (3.8)

We call eq. (3.7) or eq. (3.8) the matrix NLS equation for convenience [110]. By changing
the time dependence in the ISM in Section 3.2, we can solve the initial-value problem for
the system (3.8) with ¢ = —1.

3.1.3 Conservation laws

In this subsection, we present a systematic method to construct local conservation laws for
the matrix mKdV equation and the matrix NLS equation with p = ¢ = [. It is to be
remarked that we can assume p = ¢ without any loss of generality. In fact, if p is larger
than ¢, we can change ) and R into p X p square matrices by appending the p X (p — ¢q) zero
matrix and the (p — ¢) X p zero matrix to ) and R respectively.
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We start from a special class of eq. (2.1),

wl -l ] 59

)=l ][] 610

where all the entries in egs. (3.9) and (3.10) are assumed to be [ X [ square matrices. The

following is an extension of the method for the [ = 1 case [94]. If we define a square matrix
I’ by

=00
we can prove the following relations from egs. (2.2), (3.9) and (3.10),
{tr(Uiol' + Un) }s = {tr(Vial' + Via) }a, (3.11)
Fw = U21 —+ UQQF - FUII - FU12F. (312)

Equation (3.12) is interpreted as the matrix Riccati equation. Assuming that U is expressed
as eq. (3.1), we have

Un =-iCI, Up=iCl, Ui=Q, Un =R, (3-13)

where () and R are square matrices in this case. Then egs. (3.11) and (3.12) are cast into
the following equations,

{tr (QT')}; = {some function of I', @, R and (},, (3.14)
2CQP = —QR + Q(Q™ - QI), + (QI)*. (3.15)

Equation (3.14) is of the form of a local conservation law. It shows that tr(QT') is a generating

function of the conserved densities. We expand QI' with respect to the spectral parameter
¢ as follows,

Qr = Z & c i (3.16)
Substituting eq. (3.16) into eq. (3.15), we obtaln a recursion formula,
i—1
Fioi = ~030QR+QQ ')+ Y. FeFy =01, (3.17)
k=1

Each tr F}; is a conserved density for all positive integers j. Using the formula (3.17), we
obtain the first four conserved densities,

Fi=-QR, F =-RQ,
trFy = tr{—QR;},
trFy = tr{—Q Ry + QRQR},
trFy = tr{—QRys; + 2QR, QR + QRQ,.R + 2QRQR,}.

It should be noted that all elements of matrices F; and F] are conserved densities for the
matrix mKdV equation (3.3) and the matrix NLS equation (3.7). This fact can be proved
simply by a direct calculation.
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3.1.4 Hamiltonian structure of the matrix mKdV equation and
the matrix NLS equation

Let us consider Hamiltonian structure of the matrix mKdV equation and the matrix NLS
equation with the condition that () and R are [ X [ square matrices. A set of the Hamiltonian
and the Poisson bracket for the matrix mKdV equation (3.3) is given by

1=t [{iFi}de = tr [{~iQRuws +15QRQR, — QuR) (3.18)

and
{Qx) @ Q(y)} = {R(x) @ R(y)} = O,
{Q(z)® R(y)} = id(z — y)II,
where {X@?Y}Zl = {Xij, Yiu} for matrices X, Y and II denotes the {* x {* permutation
matrix. For the matrix NLS equation, the Hamiltonian is given by

H = tr / (—F)dz = tr / {QR,. — QRQR}dz,

instead of eq. (3.18), while the Poisson bracket is the same. We can rewrite the Poisson
bracket between the elements of () and R explicitly as follows,

{Qij(2), Qui(y)} = {Rij(2), Ru(y)} = 0,
{Qij(2), Ru(y)} = i6udjd(z — y) = )0 (z — y).
Indeed, we can check the following relations,
Q: ={Q, H} = —Quzs + 3Q,RQ + 3QRQ,,
Ry={R,H} = —Ry; + 3R, QR + 3RQR,,

which are nothing but eq. (3.3). The same fact can be confirmed for the matrix NLS equation
(3.7).

3.1.5 r-matrix representation of the matrix mKdV equation and
the matrix NLS equation

In Section 3.1.3, we have shown that the matrix mKdV equation (3.3) and the matrix NLS
equation (3.7) have an infinite number of conservation laws. Now we show that all the
integrals of motion are in involution. In the following, we consider the systems on the
infinite interval and assume the rapidly decreasing boundary conditions,

Q(z,t), R(z,t) > O as x — +o0. (3.19)

If we define a classical r-matrix by

r(C, G2) = 57—~

1 0]
2(¢1 — G2) I
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the following relation,

U0 8V =i -0 ic.0), e | 5§+ | §]evwal

(3.20)
is satisfied. Here [A, B] = AB — BA is the commutator and U is given by eq. (3.1). The
transition matrix 7'(x,y; () is defined by

T(z,y;¢) = Eexp{/j U(z,C)dZ},

with £ being the path-ordering operator. From eq. (3.20), we obtain a relation for the
transition matrix [54],

{T(x,y; 1) Q?T(xay;CQ)} = [r(¢1,¢2), T(2,y;C1) @ T(,y; )] (3.21)

Taking the trace on both sides of eq. (3.21) , we get

{log 7(¢1), log 7(¢2)} = 0, (3.22)

where 7(C) is defined by
7(¢) = tr T (00, —00; €).

Expanding eq. (3.22) with respect to the spectral parameters (; and (s, we have the involu-
tiveness of the conserved quantities {J,},

{Jn; I} =0, n,m=1,2,....

This fact indicates the complete integrability of the matrix mKdV equation and the matrix
NLS equation.

3.2 Inverse Scattering Method for Matrix AKNS Hi-
erarchy

In this section we consider the scattering problem associated with 2/ x 2/ matrix (3.1) under
the constraint (3.4) with e = —1 and the boundary conditions (3.19), that is,

U, = UV, U= l et i?] ] . R=_Q, (3.23)
Q,R(=-Q") =0 as z— +oo. (3.24)

The results of this section are applicable to the matrix mKdV equation, the matrix NLS
equation and other members of the hierarchy which altogether we call matrix AKNS hier-
archy. Here we have assumed without any loss of generality that () and R are [ x [ square
matrices (see the explanation in Section 3.1.3). We consider a reduction to rectangular ma-
trices Q and R in Section 3.3.1. The main idea in what follows is a modification of the
analysis in [100, 102] for the matrix KdV equation.
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3.2.1 Scattering problem

Let ¥(¢) and ®({) be solutions of eq. (3.23) composed of 2/ rows and ! columns. We can
show that

d

—{TH(¢HP()} = 0.

S ()} = 0
Hence we define an z-independent matrix function W[¥, @],

W, ] = ¥(¢")8(C).

We introduce Jost functions ¢, ¢ and v, 1) which satisfy the boundary conditions,

¢~ l é ] T as 1 — —oo, (3.25a)

¢~ [ OI ] e as 1 — —oo, (3.25D)
and

P~ [ ] as x — 409, (3.25¢)

Y~ l 0 ] T as g — 4oo. (3.25d)

Here O and I are respectively the [ X [ zero matrix and the [ X [ unit matrix. It can be shown
that ¢el¢®, e % are analytic in the upper half plane of ¢, and ge=¢? e® are analytic in
the lower half plane of ( when () and R approach O rapidly at x — £oo. We assume the
following integral representation of the Jost functions 1 and 1,

P = [ ] 1(w+/ (z,5)e'ds, (3.26)

b = l ] e % + / e~ % ds, (3.27)

where K (z,s) and K(z,s) are column vectors whose elements are n X n square matrices,

weo= | K00] mea-[RED)

We substitute eq. (3.26) into eq. (3.23) and get the relations for K; and Kb,
lim Ki(z,s) | _| O
§—+00 K2 (:v, 8) o O |’
—2K\(z,2) = Q(z),

(0p — 05) K1 (x,8) = Q(z)Ka(x,8) (s> x),
(0p + 05)Ks(x, ) = R(x)K1(z,s) (s> x).



3.2. INVERSE SCATTERING METHOD FOR MATRIX AKNS HIERARCHY 33

Similarly, substituting eq. (3.27) into eq. (3.23), we get for K; and K>,

. Ki(z,s) ] | O
S l Ky(z, s) ] N l O ] ’
—2K5(x, 7) = R(z),

(0 — 05)Ks(z,5) = R(2) Ky (z,5) (s> m),
(0 +0,)Ki(z,5) = Q(x)Ka(z,8) (s> ).

Because a pair of the Jost functions ¢ and ¢, or ¢ and ¢ forms a fundamental system of
solutions of eq. (3.23), we can set

¢(x,¢) = ¥(z,)A(C) + ¥z, () B(C), (3.28a)

Here the coefficients A(¢), A(¢), B(¢) and B(¢) are z-independent [ x [ matrices and called
scattering data.
According to the asymptotic behaviors of the Jost functions (3.25a)—(3.25d), we get

Wi, 6] = W[5, 8 = W, o] = W[B, 9] = 1, (3.29)
W, ¢] = W[y, 9] = O, (3.29b)

A(C) = Wy, 4], (3.29¢)

A(C) = W[y, 4], (3.29d)

B(() = W[y, 4], (3.29¢)

B(¢) = W[y, ¢]. (3.29f)

The expressions (3.29¢) and (3.29d) show that A(¢) and A(C) are, respectively, analytic in
the upper half plane and in the lower half plane. Using the above relations (3.29a)—(3.29f),
we obtain the following relations among A(¢), A(¢), B(¢) and B(¢),

AN CHAQ) + BY(CYB) =1, (3.30a)
ANCHAQ) + BY(¢)B() =1, (3.30b)
AY(¢)B(¢) = BT (¢MA(C) = 0. (3.30¢)

These relations are written as

Al(¢r) BI(¢) HA(C) B(¢) ]:lf 0],

BY(¢) —AN(¢)
which leads to the inversion of eq. (3.28),
¥(x,¢) = ¢z, Q) AT(C) + d(x, O)B((),
¥(z,¢) = ¢(z, B (") — o(z, Q) AT(CY).
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3.2.2 Gel’fand-Levitan-Marchenko equations

To derive the formula of the ISM concisely, we assume that A(¢), A(¢), B(¢) and B(() are
entire functions. This assumption is true if the potentials () and R decrease faster than any
exponential function at x — +o00. The obtained result is, however, valid for larger classes of
the potentials () and R.
Multiplying A(¢)~* and A(¢)~! from the right to eqs. (3.28a) and (3.28b) respectively,
we get
¢(z, A ™ = (2, ¢) +¥(z, )B(QOA) ™, (3.31a)
oz, Q)fl(C)*1 = —(z, Q) + ¥ (2, Q)B(OA) (3.31b)
We operate
1 .
- iCy
o /C dce (y > )

on eq. (3.31a), where C is a semi-circle contour from —oc +i0" to 400 + 10" passing above
all poles of 1/detA((). After a standard calculation, we get the Gel’fand-Levitan-Marchenko
equation,

K(m,y)—i—lll (+9)+ [ K@ 9)F(s+y)ds = [g] >2),  (3.32)

where F(x) is defined by
1 .
F(a) = o [ dcé*B(Q)A(Q)
(@) = o= [ A B(OA()
We remark that A(¢)™! is given by

AO™ = 5ag A

where A is the cofactor matrix of A. We assume that 1/detA(¢) has N isolated simple poles
{¢1,¢2, -+, (n} in the upper half plane and is regular on the real axis. Each of these poles
determines one bound state. Then, by use of the residue theorem, we get an alternative
expression of F',

F(z / A€ B(€) A(€)~ —12069

Here C; is the residue matrix of B(¢)A(¢) ' at { = (.
Similarly, we operate

1 .
—iCy
2T /é dce (y > x)

on eq. (3.31b), where C is a semi-circle contour from —oo +i0~ to +oc +i0~ passing below
all poles of 1/det A(¢). We get the counterpart of the Gel’fand-Levitan-Marchenko equation,

K(aj,y)—lé]F(x—i—y)—/:oK(ac,s)F(s—i-y)ds:lg] (y > z), (3.33)
where F'(z) is defined by

Flz) = % [ ace e B)AQ)
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Assuming that 1/detA(¢) has N isolated simple poles {(i, (s, - - -, (x5} in the lower half plane
and is regular on the real axis, we get an alternative expression of F,

Fla) = 2 [7 dee B AR +i3 G
N 21 J—o g ’
Here C} is the residue matrix of B({)A({) ! at ¢ = (.

3.2.3 Time dependence of the scattering data

Under the rapidly decreasing boundary conditions (3.24), the asymptotic form of the Lax
matrix V' for the matrix mKdV equation is given by

—_ 4303
V_)l 4¢3 O

O 4iC3I] as T — *oo.

We define time-dependent Jost functions by
(t) — 1 —4ic3t I ico—sics
oV = de ~lole as T — —o00,

oW = (Ee‘“@t ~ l _OI ] pi¢e+4ic3 as T — —o0o0.

From the relations

dp® B 0 0 R
ot Ver, ot Ve,
we get ~
% = (V +4i¢’I)g, % = (V —4i*I)¢. (3.34)

We substitute the definitions of the scattering data,

¢z, ¢) = v(z,)A(C, 1) + 9 (z,¢)B((, 1),

¢(z,C) = ¥(z, ) B((, 1) — ¥(z, Q)A(C, 1),
into eq. (3.34). Then taking the limit z — 400, we obtain

At(Ca t) = Oa

By(¢,t) = 8i¢*B((, 1),

and

At(ga t) = Oa
By(¢,t) = =8i¢*B(¢, ).

The above relations lead to the following time dependences of the scattering data for the

matrix mKdV equation:
A(C,t) = A(C,0), (3.35a)
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B(£, 1) A(&,8) ™ = B(£,0)A(€,0)te™e™, (3.35b)
C;(t) = C;(0)e¥", (3.35¢)
and
A(¢, 1) = A(¢,0),

B(&,)A(E,1)™" = B(&,0)A(£,0) e .
Ci(t) = Cr(0)e 8",
Hence explicit time dependences of F(x,t) and F(x,t) are given by

1 oo o I i€, 8iC3
F(z,1) = 5 /_ _ dge B (€, 0)A(E,0)7! — i) Cj(0)e 9™ HHT, (3.36)
‘7:

F(z, / dee M B (g, 0) A(€,0) 7! +i ZCk e TG G,

Similarly to the above discussion, the time dependences of the scattering data for the matrix
NLS equation are given by

A(C, 1) = A(C, 0), (3.37a)
B(& ) A&, 1) " = B(£,0)A(&,0) e, (3.37b)
C;(t) = C;(0)e"4?, (3.37¢)

and ) B
A(G 1) = A(G, 0),
B(&, )A€, 1) " = B(&,0)A(€, 0) te ¢,
Ci(t) = Ci(0)e %",
It is remarkable that —2F(2z,t) and 2F(2z,t) satisfy the linearized dispersion relations, i.e.

(0 + ) {—2F(22,8)} =0, (3, + 0;){2F (22,1)} = 0,
for the matrix mKdV equation and

for the matrix NLS equation (see also Section 2.6).

3.2.4 Initial-value problem
Because of the constraint R = —Q, we have some relations which make the further analysis
simple.
First, we have
detA(¢) = {detA(¢H)}, (3.38)

which is proved in Appendix A. This relation gives us a useful information about the total
numbers and the positions of the poles of A(¢)~! and A(¢) !

N=N, &=¢. (3.39)
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Second, due to eq. (3.30c), we have
B(OAQ)™ ={B(¢")AC)}H,
which leads to o
B(AE)™ = {B(A(E) ™"} (&: real), (3.40a)
Cr =Gy (3.40b)
The relations (3.39) and (3.40) give a connection between F'(z,t) and F(z,1),
F(x,t) = F(x, ). (3.41)

Combining the above results, we arrive at

Ki(z,y;t) = F(z +y,t) — / dsl/ dsy K (2, 595 1) F(sg 4+ 51,8)F(s1 +y,1)1,  (3.42)

Ky(z,y;t) = —F(x + y,t) — / ds; / dsy Ko (z, 59;t) F(sy + 51,8) F(sy +y,t), (3.43)

where F'(z,t) is given by eq. (3.36).

We can solve the initial-value problem of the matrix mKdV equation, the matrix NLS
equation and any other member of the matrix AKNS hierarchy by following the procedure
(a)—(c) in Section 2.6.

As for the constraint R = —Q, one comment is in order. Because F is connected with
F by eq. (3.41), we can prove by the Neumann-Liouville expansion (see Appendix C) that
the solution of egs. (3.42) and (3.43) satisfies

K2(x7 Z; t) = _Kl(xv €, t)T'

This relation assures that the relation R(x,t) = —Q(x,t) holds at any time ¢.

3.2.5 Soliton solutions
Assuming the reflection-free condition,
B()=B() =0 (& real),

we can construct soliton solutions of the matrix AKNS hierarchy. In this case F'(x,t) is given
by

N
F(z,t) = —i)_ C;(t)e“”. (3.44)
7j=1
To solve eq. (3.42) with eq. (3.44), we set
N .
Ki(z,y;t) =1 Pu(x,t)Cy(t)Te G, (3.45)
k=1

Introducing eq. (3.45) into eq. (3.42), we have a set of algebraic equations,

N 1

X — S Iz 1 to. eQi(Cj 7€l*)$ = 1. .
Pk( at) ZZ (Cg CZ)(CJ _ Cl*)P( ’t)C (t) Cj(t) I (3 46)

1=1j=1\5 —
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We define a matrix S by
21(CJ Cl)

i
GoaG -G, 1sLEsN.

Sk = o d — Z

Then eq. (3.46) is expressed as

Sll SIN

Sxi -+ Snn N
Thus the N-soliton solution of the matrix AKNS hierarchy is given by

Q(xa t) = —2K1($, €; t)

N
= -2 Z Pk(.’lf, t)Ck(t)Te_%C’:w

k=1
C1(t)Tef2iqw
| | eateyremae
=-2(J1---1)5 . . (3.47)
—_— ;
N
Cn(t ) —ACE
For instance, the one-soliton solution of the matrix mKdV equation (3.5) with ¢ = —1 is
81(41 Sl

1
Y t 2i(¢1—¢)z t,—2i¢;z—8i¢ 3
Q1) = =21 = G- 0 O Dy (0)fe t

= —2j{ei(élq)w4i(gl 74;3)75[ B 1

(C1—¢i)?
0y (0) e TG+ Ga—i(cE+¢ ),

o0 (O)ei<<l—<f>w+4i<<?—<f3)t}_1

3.3 Reductions

Now we study two important reductions of the ISM for the matrix AKNS hierarchy. In order
to make the ISM applicable to the reduced systems, we have to reflect internal symmetry of
@ and R in the scattering data.

3.3.1 Coupled NLS equations

One simple reduction of the matrix AKNS formulation is given by the following choice:

1 Q2 dm
(] 0 ()

Q=1 . . .|, R=-Q. (3.48)
(] (] 0

The first nontrivial flow of the reduced hierarchy is a system of coupled NLS (cNLS) equa-
tions,

m
it + Gae +2D el ¢; =0, j=1,2,...,m. (3.49)
k=1
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The m = 2 case was solved by Manakov [60]. It is clear that the 2m x 2m Lax matrices for
the reduced hierarchy can be compressed into (m + 1) x (m + 1) matrices:

i ¢ - gm
—q; i

v=| !
—Gm i¢

However, since we have applied the ISM to the matrix AKNS hierarchy for a square matrix
@, it is important to take account of the symmetry (3.48). The result is summarized as
follows:

Proposition 1. (1) The reflection coefficient B(£)A(€)! for real £ is expressed as

g€ 0 -+ 0
BEag=| Y 0
gnl€) 0 o 0
(2) The residue matrices {C},---,Cy} are expressed as
a0 0
i) = af) oo 0 =[a; 0], j=12...N
W™ 0 0

where {ozg-i)} are complex functions of time ¢.

Hence F' and F' are expressed as

fi(z,t) 0 --- 0
F(z,t) = fQ(gf’t) (_) .|, Flat) =Fath
(@) 0 - 0

It should be noted that —2F(2z,t) and 2F(2z,t) have the same symmetry as @ and R
respectively. Considering the above symmetry of the scattering data, we can solve the
initial-value problem and obtain the N-soliton solution. Assuming the time dependence of
the scattering data for the matrix NLS equation (cf. eq. (3.37)), we reproduce the result for
the cNLS equations by Manakov [60]. From eq. (3.47), we obtain the N-soliton solution of
the cNLS equations (3.49):

N

(q1,02, 1 Gm) = 2D D (T e %% a, ()1, (3.50a)
=1 k=1

where

o (t)e(t), 1<1,k<N, (3.50D)

. N Q20(G-¢)r
e ”“_;(cj—cz)(cj—m
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a;(t) = a;(0)e"G", (3.50¢)

The N-soliton solution exhibits remarkable behaviors characteristic of multi-component
soliton equations. To show this, we plot the two-soliton solution (N = 2) in the two-
component case for four choices of the parameter values. If we choose the parameter values
appropriately, two solitons interact elastically with the other (Fig. 3.1). However, in general,
the density distribution of each soliton among the two components can change due to the
collision (Fig. 3.2) [76]. Thus the collision seems to be inelastic if we keep our eyes only on
one component. For particular choices of the parameter values, we can observe annihilation
and creation of soliton in one component (Fig. 3.3 and Fig. 3.4).

It is also remarkable that, by means of the reduction (3.48) for the result in Section 3.1.3
and Section 3.1.4, we obtain conservation laws and Hamiltonian structure for the reduced
hierarchy starting from the ¢cNLS equations. The appearance of Q! in eqgs. (3.15) and (3.17)
is just for a simplification of calculation and is not essential. The obtained conservation laws
in Section 3.1.3 are valid even for choices of irregular matrix Q).

3.3.2 Coupled mKdV equations

As another simple reduction of the matrix AKNS formulation, we shall study a system of
coupled mKdV (cmKdV) equations,

Ou, = ou; O, )
(;i +6(Z Cjkujuk)a—Z+ 8;; -0,  i=01,...,M—1, (3.51)
Jk=0

where the constants Cj;, are set to be symmetric with respect to the subscripts, Cjr = Cy;,
without any loss of generality. Iwao and Hirota [43] obtained multi-soliton solutions of this
system with the conditions C;; = 0. The cmKdV equations for M = 1, 2 have been solved
by the ISM. However, it has not been known whether the cmKdV equations for M > 3 and
their hierarchy can be solved by the ISM or not.

We introduce an M-component vector field w and a constant M x M matrix G,

u = (UOaula o 'auM—l)Ta G = (_CZj)a

where the symbol 7" means the transposition. Using this notation, we express the cmKdV
equations (3.51) as
u; — 6(u’Gu) Uy + Uyyy = 0. (3.52)

We assume that G is a real symmetric and regular matrix. Because a real symmetric matrix
is diagonalized by a real orthogonal matrix, we set

G =P"'AP, P'P=PP" =1,

A = diag(Ao, -, Am—1), Aj # 0 for all j.

Thus, defining a new set of dependent variables v = (v, v1,--+,vn_1)T by v = Pu, we
transform eq. (3.52) into

v, — 6( v AV ) vy + Vg = 0,
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or more explicitly,

ov; ML )81}, v

—_6(2’\7 U5

ax;:o, Aj#0, i=0,1,...,M—1.

If we change a scale of v; by +/|\;|-v; = v;, we finally obtain “normalized” cmKdV equations,

ov; M1 ov; O3 .
§_6<;} £V 7)6 + 523 =0, ¢j=sgn(A\)==%1, i=0,1,...,M—1.  (3.53)

Equation (3.53) is more convenient than eq. (3.51) to perform the ISM. Thus, we mainly
deal with eq. (3.53) as the cmKdV equations in the following. In addition, we assume that
the dependent variables {v;} are real and ¢; = -1 (=0,1,..., M —1).

Suppose that @ and R are 2™ x 2™~! (m > 2) matrices expressed as

Q™ = ol + 2%:1 veer, R™ = —poT+ %zljlvkek, (3.54)
k=1 k=1
where 2™~ x 2™~1 matrices {e1, -, eam_1} satisfy
{ei,ej}y = —26;1, (3.55a)
ef = —ep, (3.55h)
trep = 0. (3.55¢)

Here T is the 2™~! x 2™~! unit matrix. {-,-}, denotes the anti-commutator. Equation
(3.55a) gives
tr(eiej) = _2m—15i]_. (356)

An explicit representation of the matrices {e;} is given in Appendix B.
For Q™) and R defined by eq. (3.54), we can prove simple relations,

2m—1
Q(m)R(m) — R(m)Q(M) - _ Z 1)32- -,
j=0

Rm — _Qm)1,

Then substituting @™ and R™ into @ and R in the matrix mKdV equation (3.3), we
obtain the cmKdV equations,

ov; M-l ov; 0%,
— = =0,1,...,M—1 .
5 +6(JZO ])8 +53 =0 i=01.., : (3.57)

where we set M = 2m. Thus we have obtained a Lax representation for the cmKdV equa-
tions. Obviously we can obtain a Lax pair for a slightly general form of the cmKdV equations
(3.53) by changing v; — \/—¢;v; in the above context. It should be noted that the Hamil-
tonian and the Poisson bracket for the matrix mKdV equation (3.3) become invalid for the
ecmKdV equations (3.57) with M > 3. This is because the degree of freedom of Q™ and
R(™ for the cmKdV equations is less than that for the matrix mKdV equation.

Next, we discuss the initial-value problem and soliton solutions of the cmKdV equations.
Considering the scattering problem (3.23) with the potentials Q™ and R™ for m > 2, we
can show the following restrictions on the scattering data.
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Proposition 2. (1) The determinant of A(() satisfies
det A(C) = {detA(—C")}",

as a complex function of . Thus the poles of 1/detA(¢) in the upper half plane should
appear on the imaginary axis or as pairs which are situated symmetric with respect to
the imaginary axis. Therefore, we can set the values of 2/V poles as

Coj—1 = & +in,

Goj = — (o1 = —& +iny,
where 7; > 0. The condition (3.58) should be interpreted as follows; if (; is pure
imaginary, it does not need its counterpart.

j=1,2,....N, (3.58)

(2) The reflection coefficient B(£)A(&)™" for real £ is expressed as

2m—1

BOAEQ) ' =rO1+ Y rPe. (3.59)
k=1

Here 7 and r® are complex functions of £, ¢ which satisfy

rO(=€) = r®(e)7, (=€) = r®(g)". (3.60)
(3) The residue matrices {C}, Cy, - -+, Con_1,Con} are expressed as
2m—1 5

iCQj_l = C;O)][ + Z Cg- )ek,
, ’“j j=1,2,....N, (3.61)

iCy; = cJO)*]I + > c]k)*ek,

k=1

where cgo), cgk) are complex functions of time ¢. For example, {C1, Cy, - - -, Con} for the

four-component cmKdV equations are given by
iCy; 1= T 10y = 7. 0,
o l—% 51‘] N l_ ]
in a different notation.

A proof of the statements is given in Appendix D.
Considering the above conditions, we have explicit expressions of F' and F' in terms of 1

and ey,
1 0
Flo,t) = 5= [ BEDA(E, 1) e dg - 120 )el
1 00 2m—1 )
— 2_/ {( (0) 1§z+7,(0 —iéx ]I+ Z 1§w+,r k) = —1§$)ek}d§
T J0

N 2m—1 .
_ Z{(cg,o) i¢jx +C( ) * St ][+ Z k) eldi® —{—C( ) * lgjw)ek},
7=t k=1
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F(z,t) = F(x,t)T

1 foo ) ) 2m—1 ) )
- / {(T(O)elfw + T(O)*eflé“:c)][ . z (T(k)el§w + r(k)*elgw)ek} d€
2w Jo P
N 2m—1
3 {0 i S (e ¢ e ki)
j=1 k=1

Because B(&,t)A(E,t)~" and C;(t) depend on ¢ as egs. (3.35b) and (3.35¢) for the matrix
(0

mKdV equation, the time dependences of (9, ) and c; ), cg-k) are given by

rO(e,1) = r0(€. 0™, (g 1) = r¥(g, 00,
(1) = 20)e89, (1) = P (0)eH,
It should be noted that F(z,t) and F(z,t) are expressed as

2m—1

F(z,t) = fOz, )1+ Y fP(x,)ey,
k=1

2m—1

F(x,t) = f(o)(a:,t)]l— Z f(k)(x,t)ek,

k=1

where the real functions £ (z,t) and f%*)(x,t) satisfy the linearized dispersion relation
(0 + Onaa) f O (22,8) =0, (0 + Opae) [P (22,1) = 0.

Taking account of the conditions (3.58)—(3.61), we can solve the initial-value problem of the
cmKdV equations by the ISM.

We replace N in Section 3.2 by 2N and obtain the N-soliton solution of the cmKdV
equations (3.57) with M (= 2m) components,

QM (z,t) = —2K:(z, ;)
2N .
= —2i ) Py(,t)Cr(t)Te 5%°
k=1
C,(t)fe %
| | Gyte
=-2i(JI---1)S ) , (3.62)
Con(t)le=2Gn?
where the matrix S is defined by

Sy = ol % QG e
T G- G- @)

Strictly speaking, eq. (3.62) includes breathers besides solitons. In order to extract pure
soliton solutions, we assume that each soliton seen in 3, v;(t)* has a time-independent shape.

By calculating an asymptotic behavior of the tails of solitons at x — 400, we obtain the
corresponding necessary conditions on the residue matrices,

Ci(t)'C;(t), 1<,k <2N.

ng_lézj = éQjCQj_l = ngégj_l = ézj_102j = O, _] = 1, 2, cee, N. (363)
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The conditions (3.63) are translated into

As an example, we write down the pure one-soliton solution of the cmKdV equations
(3.57). Choose N =1 and set

Cl = §+1T’1 = _Cg,

2m—1
—iCy = &1+ Y ey,
k=1
_ 2m—1
—iC, =&V 1+ Y &P e
k=1

Then, from eq. (3.62) we obtain

l\')l»—l

2m—1
Q™ (z,t) = 2y sech{2mz — 8y (n? — 362)t — xo}( Z 190 )

_{_icl(o)e—Qiflz‘—Sifl(f —3n3)t —iC, (0)e 2151x+81§1(51_3n1) 1,

where x; is defined by
2m—1

e =am (23 [@0)F)
1=0

and Y2 1(¢?(0))2 = 0. For each component, the one-soliton solution is rewritten as

D=

2m—1 ,%
v;(w,t) = 2m sech{2ma — 8my(n} — 3E))t — x0}< Z |c )

. {Egj)(0)e*2i€1w78i€1(§%*37ﬁ)t + Cg) (O)e2lﬁ1w+81§1( 2-3ni)t }

It is not evident whether eq. (3.62) can be expressed as

2m—1

Q™ (z,t) = vo(xz, t) T + Z vi(x, t)ey, (3.64)
k=1
without using e;e;, e;ejey, etc. Noting the fact that summations and products of real quater-
nions are real quaternions, we can prove eq. (3.64) for m = 2 (four-component cmKdV equa-
tions) by using the Neumann-Liouville expansion (see Appendix C). It is an open problem
to prove eq. (3.64) for general M = 2m.
The results in Section 3.1.3 assure that the cmKdV equations have an infinite number
of conservation laws. We find that the first four conserved densities for the original cmKdV
equations (3.51) are given by

Il = ZCjkujuk, (365&)
7k
I = ujupq, Vi, k (j# k), (3.65b)
2
Iy = (Z Cjk“j“k) — Y Cigttj Uk o, (3.65¢)

gk gk
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3 1 1 2
I = (Z Cjk“j“k) =3 Cirujug-y_ Cjrtj Uk o+ 3 > Cirth aglh zo— 5{ (Z Cjk“juk) } :
ik @

Jk Jk Jk gk
(3.65d)
We remark that the method in Section 3.1.3 does not give the quantity (3.65b).

3.3.3 Superposition

In the preceding two subsections, we have obtained an (m + 1) x (m + 1) Lax pair for
the m-component cNLS equations and a 2™ x 2™ Lax pair for the 2m-component cmKdV
equations. We shall show that the superposition of these two systems is also completely
integrable via the ISM. In terms of complex variables,

qj = V2j—2 + iUQj_l, ] = 1,2, ..,

we obtain an alternative representation of the cmKdV equations (3.57),

m
qj,t+62‘qk|2'Qj,w+qj,www:0, j=1,2,...,m.
k=1

Thus, as the superposition of the cNLS equations and the cmKdV equations, we consider
the following coupled system:

m m
igje + 171 {@aee + 6 3 106 Gja} +72{ e + 22 Gl q;} =0, G=1,2,...,m. (3.66)
k=1 k=1

This system is a multi-component generalization of the Hirota equation [34]. Thus we call
eq. (3.66) the coupled Hirota (cHirota) equations in the following.
We introduce the following form of the Lax pair:

[ -1 i H
UZICl 1]““[ 16}% ) _iJgHZ], (3.67)

671

v :%{i@ [ - Al ] + ¢ l AR 4Q ] +i<l _—22%? 2216%262 ]
Q;UR - QRx _wa + 2QRQ

i| HiQR - 2QH,R + QRH, 2(-H,1Qq + Q. Ho) }
6| 2—HR,+R,H)  H.RQ—2RH,Q+ RQH,

Yof..| 31 —2 } Y22 | i5-Hi
- — — . . 3.68
2| g #() i, | B8

1

%(_HIQ + QHy) ]

Here I is the p X p unit matrix. @@ and R are p X p matrices. We assume the following
relations for the constant matrices H; and H,,

HlQ - QHQ = —2F1QF2, (369&)
HQR - RHl = 2F2RF1, (369]3)
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where F} and Fj satisfy
[Hi, R = [Hy, By =0, (F)?=(R)?=1. (3.70)
Substituting eqs. (3.67) and (3.68) into eq. (2.2), we get a set of matrix equations,
iQt +171{Qzas — 3Q:RQ — 3QRQ,}

+ Y { F1QuFo — FIQF,RQ — QRF1QF,} = O, (3.71a)
iRy + iv71{Ryze — 3R:QR — 3RQR,}

We present a method to reduce the matrix equations (3.71) to the cHirota equations. For
this purpose, we recursively define 2™1 x 2~! matrices H\™, HS™, F'™ F™ Q™ and
R(™) by

HY =—1, H{' =1, FV =1, B =1, (3.72)
HmD [ Hl(m) — Iym-1 ‘| HmD [ HQM) — Iom—1 ]
. HQm) + Izm—l ’ 2 H{m) + I2m—1 ’
(3.73)
m) (m)
pmn = | B T N (3.74)
—F Fy

QW =q, RY=r, (3.75)

(m) Tom_ R(m) Tom-

(m+1) _ Q Gm+1L9m-1 (m+1) _ gm+14om—1
@ [ Tmiilom—1  —RM ] R l Pg1lom1  —Q0™ ] ’ (3.76)

Here Iym-1 is the 27! x 2™~ ynit matrix. For the matrices defined by eqs. (3.72)(3.76),
we can prove the relations (3.69), (3.70) and a simple relation,

QU RM™ = RIMQU = 3" gury - Iym-,

k=1

by induction. Comparing F\™ Q™ F{™ and F{™ R F{™ with Q™ and R(™ respectively,
we observe that (—1) is multiplied to 7; in FI™ QM F™ and ¢; in F,;™" R™ F{™ . Then
substituting Q™, R(™ etc. into Q, R, etc. in the matrix equations (3.71), we obtain

m m
in,t + i’Yl{Qj,mm -6 Z qkTk - qjaw} + VQ{QJ':M” -2 Z QxTk - qj} = 0’
b=t b=t i=1,2,... m.
m m
irj0 + 171 {Tjmee — 6 3 7ok * Tiw } — V2 {Tiae — 2D Thar 75} =0,
k=1 k=1

If we assume the reduction,
— . * i —
rj = —05q;, 0;==%l,

we obtain a slightly general version of the cHirota equations,

m m
in,t + i71{Qj,$$$ + 6 Z 0k|qk|2 ’ Qj,z} + 72{q]'a$$ + 2 Z O'k|(]k|2 ) qj} = 0’
k=1 k=1

j=1,2,...,m. (3.77)
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It should be noted that 74 = 0 is the only singular value of parameters for the existence of
the 2™ x 2™ Lax pair for eq. (3.77). In the case 7y; = 0, the Lax pair is given in terms of
(m+1) x (m+ 1) matrices (see Section 3.3.1). In fact, the cHirota equations for 7; # 0 can
be transformed to the cmKdV equations. If we change variables by
3
f}/_g i(%wf;%t)

1
t=—T, z=X+ T, g =ce

Uj,
o 372 ’

we find that the system of cHirota equations (3.77) is cast into the cmKdV equations,

m
Uj,T+Zak|uk|2‘uj,X+uj,XXX:0, j:1,2,...,m.
k=1
Hence, due to the discussion in Section 3.3.2, the system of cHirota equations (3.66) is
completely integrable via the ISM. The Lax pair for the cHirota equations can also be
transformed to that for the cmKdV equations through a gauge transformation.

3.4 Summary

In this chapter, we have considered a matrix generalization of the ISM for the AKNS hi-
erarchy. As first two members of the matrix AKNS hierarchy, we obtain the matrix NLS
equation and the matrix mKdV equation. We have shown the existence of an infinity of
conservation laws, Hamiltonian structure and r-matrix representation for these two systems.
The ISM has been applied to the matrix AKNS hierarchy. The initial-value problem is solved
and the N-soliton solution is derived. As reductions of the matrix AKNS hierarchy, we have
obtained the cNLS equations and the cmKdV equations. In accordance with the reductions,
we obtain an infinite number of conserved quantities. Considering a reflection of the reduc-
tions in the scattering data, we have successfully applied the ISM to the reduced systems.
We have introduced a superposed system of the cNLS equations and the cmKdV equations,
which may be called cHirota equations. It has been shown that the cHirota equations can be
solved via the ISM since the model is transformed into the cmKdV equations. The cHirota
equations describe interactions among different modes in optical fibers with higher-order
effects and seem to be physically significant.

Iwao and Hirota obtained a Pfaffian representation for an N-soliton solution of the
cmKdV equations by means of the so-called Hirota method [43]. We stress that the initial-
value problem of the cmKdV equations has been solved in the present chapter for the first
time. In addition, it directly proves the complete integrability of the cmKdV equations. Our
scheme enables one to construct more general solutions than the already known solutions.
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Chapter 4

Coupled Chen-Lee-Liu Equations

As we studied in Chapter 2, there are two types of DNLS equation, i.e. the Kaup-Newell
equation (2.10) and the Chen-Lee-Liu equation (2.36). There is a simple transformation of
dependent variables which cast one into the other. In this sense, these two types of DNLS
equation are gauge equivalent (see Section 2.8).

For the Kaup-Newell equation, it is known that there is a simple vector generalization [27,
66,

ig, + q,, Fi(lg/*q). = 0, (4.1)

which is completely integrable. Besides the system (4.1), Fordy [27] investigated various
coupled versions of the Kaup-Newell equation by considering Hermitian symmetric spaces.
Yajima studied a generalization of coupled DNLS equations by means of a gauge transfor-
mation in [105]. Meanwhile, multi-component extensions of the Chen-Lee-Liu equation have
not been studied thoroughly from the ISM point of view.

In recent years, multi-field extensions or matrix generalizations of one-component clas-
sical integrable systems have been developed considerably by means of various approaches.
Svinolupov, Sokolov, Habibullin and Yamilov clarified close connections between soliton
equations and Jordan algebras or Jordan triple systems [32,79-81]. A remarkable feature of
their theory lies in the point that their approach exhausts all integrable cases in some classes
of multi-field equations. Olver and Sokolov [72] surveyed integrable systems whose depen-
dent variables take their values in an associative algebra, e.g. matrix-valued systems. They
listed some classes of evolution equations on associative algebras which have higher-order
symmetries.

In this chapter, we introduce a novel Lax formulation to get a matrix generalization of
the Chen-Lee-Liu equation. As reductions of the matrix equation, we obtain two types of
coupled Chen-Lee-Liu equations. Through a transformation of variables, one type is cast
into the vector Kaup-Newell system (4.1). The other type is transformed into a new type of
coupled Kaup-Newell equations. The latter type of the coupled Chen-Lee-Liu equations is
shown to be connected with the cNLS equations. We restrict ourselves to a detailed study
of two reduced systems of the matrix Chen-Lee-Liu equation. We treat the matrix Chen-
Lee-Liu equation more generally in connection with the work of Olver and Sokolov [73] in
the succeeding chapter.

23
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4.1 Coupled DNLS equations

In this section, we consider a matrix generalization of the Chen-Lee-Liu equation by use
of the ISM formulation. As reductions, we derive two new integrable systems of coupled
Chen-Lee-Liu equations.

4.1.1 Lax formulation

We choose the following form of the Lax pair as an extension of egs. (2.37) and (2.38),

o[ -1 o
U:1§2l ! IQ]JFQlR Q]Jml %RQL (4.2)
[ —2r o[ -
V:ﬂl . 2121+C3[2R 2Q]+ICQ[ N RQ]
iQ,+1QrRQ]  .[O
+<[—1Rw+§RQR i ]*1[ {(RQ, — R,Q) + 1RQRQ |~ 4?)

I, and I, are respectively the p x p and the ¢ x ¢ identity matrices. Q is a p X ¢ matrix and
R is a ¢ X p matrix. Substituting eqgs. (4.2) and (4.3) into eq. (2.2) and equating the terms
with the same powers of (, we get a set of nonlinear evolution equations,

iQ; + Que — iIQRQ, = O, (4.4a)
iR, — R,, — iR,QR = O. (4.4b)

Comments are in order. First, the equation obtained in the order O(¢° = 1) of eq. (2.2) is
automatically satisfied because of eq. (4.4). Thus, we have no restrictions on the sizes of Q
and R, that is, on p and ¢. This fact enables us to consider various multi-field extensions
of the Chen-Lee-Liu equation by choosing the forms of Q and R appropriately. Second,
the trace of U, tr U, depends on dynamical variables in this formulation. Third, Olver and
Sokolov showed that the matrix equation (4.4) possesses at least one higher symmetry [72],
which leads to a conjecture for the integrability of eq. (4.4). The existence of the Lax pair
gives a definite support to the complete integrability of the model.

4.1.2 Coupled Chen-Lee-Liu equations (type I)

As a reduction of eq. (4.4), we choose Q and R to be a row vector and a column vector
respectively,

Q:(qlan:"'aqm)a R:(rlarQa"':rm)T-

Here the superscript 7' stands for the transposition. Then, we obtain a coupled version of
the Chen-Lee-Liu equation,

m
iqjat + q],II - i Z Qklk - q],l‘ = 07
et i=1,2,...,m. (4.5)

m
It = Fjez — 1 Z kA - Mje = 0,
k=1
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In the following, we call this system the coupled Chen-Lee-Liu I equations or, simply, the
type I equations. The explicit form of the Lax matrix U is given by

[ —i¢? Ca1 Cq2 CAm
Cri i +iznaq i5r1Ge e 15610
U=| (r igroqr i3 +igrgs - i572Gm : (4.6)
L grm i%l’m(h i%rmq2 U 1C2 + i%rmqm ]

Under the reduction,
rp==+q;, J7=12,...,m,

the system (4.5) is expressed in a compact form,
iq, + q,, Tilgl’q, =0,

with g being the vector, ¢ = (91,92, -, Qm)-
We can construct an infinite number of conservation laws from the zero-curvature con-
dition for the Lax pair. If we set

U= (\Illa \1125 Tt \Ilm-Fl)Ta

in eq. (2.1), we have
m+1 m—+1

(X vy09 ), = (X V0 ') (4.7)
Jj=1 j=1
and
(Ui — U)W, 07 = — 3" Up U077 + (0,071, + 0 > U U 057 (4.8)
k(#9) k(#4)

by virtue of egs. (2.1) and (2.2) [45]. Introducing a new set of variables {I';} by
FjE\I/j+1‘111_1, j:1,2,...,m,

we get from egs. (4.7) and (4.8) with eq. (4.6),

(qu 5), = (CVu+¢ ZVMHF) (4.9)

and

qj j
;1 = —5—=a;r + q;L ot T Akl + 52a;l ) aels-
7+ 2€]] (2C)2].7$ Qz 2C] Z
Equation (4.9) shows that 3=, q,I'; is a generatlng function of conserved den51ties. We expand
q]F] as
[o.¢]

q;l; = 2(2102, -1,

to get a recursion formula for the conserved densities,

f(l —q;rj0i1 + 21q.7(qj f(l 1 Z Z (l ",
n=2
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For example, the followings are the first four conserved densities for the coupled Chen-Lee-
Liu I equations (4.5),

I, = Zerj, (4.10&)
J
I, = q;",2, v ja la (410b)
Iy = =43 qjalje +1 Qe — Gats) - 2kl (4.10c)
J J k
. 2
I4 = —4 Z(qj,;crj,zz - qj,wwrj,w) +38 Z Qj,z¥j,z Z el — {Z(quij - qjvwrj)}
j J k J

+ {(Z quj)x}2 — 1> (aj%je — Gjats) - (> qkrk)Q. (4.10d)

4.1.3 Coupled Chen-Lee-Liu equations (type IT)

As another reduction of eq. (4.4), we choose Q and R to be a column vector and a row vector
respectively,

Q= (41,82, *,4m)", R=(F1,F0, ", Tm).
Here we use the hat to distinguish dependent variables from those for type I. In this case,
eq. (4.4) reduces to

m
iqj,t + qj,acac —1 Z dk,m?k ) q] = 07
k=1 j=1,2,...,m. (4.11)
i?j,t - ?j,xx - IZ ?k,mqk : ?j =0,
k=1
We call this system the coupled Chen-Lee-Liu II equations or, simply, the type II equations
in what follows. Hisakado proposed the coupled Chen-Lee-Liu II equations independently
in [39]. The Lax matrix U for eq. (4.11) is given by

—i¢? ¢
U= R (4.12)
_ICZ Cqm
Ch wor Gl 0C% 415 7L Trln

The difference in the structure of the Lax matrices (4.6) and (4.12) should be noteworthy.
Under the reduction,
B=td, =1,2,...,m,

the system (4.11) is expressed in a vector form,

iq, + q,, Ti(q,,q")g =0,

with g being the vector, ¢ = (41,42, --,Gm). Here (, ) denotes the inner product between
vectors.

We can calculate an infinite set of conservation laws for eq. (4.11) in the same manner
as in Section 4.1.2. The recursion relations for the conserved densities are

-2 m
l A A cA A -1 n l—n
gy = —a;t;011 + 2i4;(4; e+ e e,
=1 k=1
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which yield an infinite series of conserved densities 3-; gj(-l). The first four conserved densities
are, for instance,

I = Zﬁﬁj; (4.13a)
J
i2 = 12(&]?],1 - dj,w?j)’ (413b)
J

i3 =—4 Z Qjalje +1 Z(qj?j,w - aj,ﬂﬁ?j) ) ; ks (4.13¢)
J

i4 = —4 Z(Qj,z?j,xm qj,xxr] z) T4 Z qj, mrﬁ z Z il — Q{Z(qﬁj’m N qj’x?j)}Q
J J J

+2{(Ta5h),} — i @t — daf) (Z Qi) (4.13d)
J J

It is interesting to compare eq. (4.10b) and eq. (4.13b): I, is a conserved density only after
taking the summation with respect to the subscript j.

4.2 Gauge Transformations

Let us investigate the structure of the Lax pairs given in the previous section in connection
with the AKNS formulation. In the following, dependent variables are assumed to approach
0 as |z| — oo for convenience.

4.2.1 type I

In terms of {q;}, {r;} which satisfy eq. (4.5), we introduce a new set of variables {u;}, {v;}
by

m
u; = aq; exp / Zrikdl“'}a

* k=1 i=1,2,....,m. (4.14)

= br”exp / Z qkrkdx

* k=1
Here the constants a and b satisfy ab = —i/2. Using eq. (4.14) and the first conservation law
for eq. (4.5), we obtain

1ujt+u]zz QZukvk Uj = [lqj,t+qj$$ lzqkrk q]m]aexp __/ qul’kdxl},
k=1 k=1 X k=1

m m 3 m
. . . 1 [z '
Wit — Vjze T 2 E VU - V5 = [1rj,t —ljgg —1 E reqe - rj,m]wb exp{§ / o E qrrrde }
k=1 X k=1

k=1
Hence, we conclude that if {q;} and {r,} satisfy the coupled Chen-Lee-Liu I equations, {u;}
and {v;} satisfy the nonreduced cNLS equations,

m
e + Ujae — 2 ) ukvg - uj =0,
kel j=1,2,...,m. (4.15)

W — Vjzz + 2 Z vpug - v; = 0,
k=1
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By means of the transformation (4.14), the second conserved densities (4.10b) are changed
into the first conserved densities for eq. (4.15),

1’2 = U;vy, V], l.

The Lax matrix for the ¢cNLS equations (4.15) is obtained from eq. (4.6) through a gauge
transformation,

2ibCeK 0 o 0
= —bl’;e 1 ’ K:%/:éqkrkdx',
—br,,eX 1
as
—i? u o U
U= g Ug—g7g,= | <
v;n . i¢?

We thus have shown that the scattering problem for the coupled Chen-Lee-Liu I equations
associated with eq. (4.6) is gauge equivalent to the reduction of the matrix AKNS formulation
studied in Section 3.3.1.

4.2.2 type Il

Next, let us consider a gauge transformation of the Lax matrix for the coupled Chen-Lee-Liu
IT equations. By virtue of a gauge transformation,

2ib(
7= 2 |’
—-bry --- —=br, 1
the Lax matrix (4.12) is cast into
U'=9g'Ug—g '
—i¢? i%dl?l ce i%dl?m adq
= . B 1A A A )
_ICQ 1%erl e 1%qmrm aqm
i¢? btig -0 by 0
with ab = —i/2. It is noticed that there is no longer the spectral parameter ¢ in the potential

part of U'. We can easily eliminate dependent variables in the diagonal elements of U’ by
a further transformation. Thus, the gauge-transformed Lax formulation is embedded in the
(m 4+ 1) x (m + 1) matrix generalization of the AKNS formulation [3,110].
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4.3 Generalizations

Let us consider generalizations of the coupled Chen-Lee-Liu equations (type I & II) via
transformations of variables.

4.3.1 typel

We first transform the coupled Chen-Lee-Liu I equations into a system with cubic terms
without differentiation. Let us change independent and dependent variables by

2
T =1, X:x—i——ﬂt,
o'

B (B
Qj:\/aneXp{_laX+l<E)2T}’ i=1,2,...,m
rj:\/&RjeXp{

ﬂ ) ﬂ 9 ) &y )
Px —i(B)r
i X =) T,
From eq. (4.5), we get a system of equations,
1Qir+ Qjxx —iad QpRr-Qjx —BY_ QwRk-Q; =0,
k1 k=1 j=1,2,...,m.
iRjr— Rjxx —ia) RpQr-Rjx+ 8 RiQr-R; =0,
k=1 k=1
We further utilize a kind of gauge transformation,

X m
g = Q; exp{—?ié/ﬁ Z QkdeX'},

S i=1,2,...,m,
> QuRidX'},

0 k=1

X
ri = R, exp{2i5[

and get an extension of eq. (4.5),

m m
igjr + ¢jixx — B Z QTk - 5 1 410 Z ATk, X " Gj
k=1 k=1

m m

. 2

+1(46_a)2qk7'kq]’X+(5(45+C\4)(qu’f'k) q] :0’

L m =l i=1,2,...,m.

iTj,T—Tj,XX-FﬁZTka'Tj+4i527“qu,x-rj
k=1 k=1

m m 2
+1(46 — @) Y rrq - rix — 6(46 + a)(Z rqu) r; =0,
k=1 k=1

For a choice 40 + a = 0, the system reads as

m m m
ig;r+ ¢xx — 10 @rex - ¢ — A Y qrk - gix — B Y Grk - ¢ =0,

k=1 k=1 k=1 s

m m ™ j=12,...,m.
1rj,T—rj,XX—1a2rqu,x-rj—21a2rqu-rj,x+ﬂ2rqu-rj :0,

k=1 k=1 k=1
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For m = 1, this is equivalent to the Kaup-Newell equation with a cubic term [95]. Thus, the
system (4.16) is interpreted as a new multi-field extension of the Kaup-Newell equation. We
can write an explicit expression of the corresponding Lax pair. For instance, the Lax matrix
for eq. (4.16) with « =1, 8 = 0 is given by

[ —iC? + i3 S akT Cq Cq2 Cqm ]

¢ry i +ifrg igrige o0 i3Tigm

U= (e 137241 i(? +iiraqe - - 1572Gm
L Crm i%rm(h i%rm(h e 1C2 + I%TQO i

4.3.2 type Il

Following the same procedure as type I, we obtain a generalization of the coupled Chen-Lee-
Liu IT equations (4.11). By a change of variables,

2
T =1, X—x-l-—ﬁt

= \/&Qj exp{—igX + i(g)ZT}, 1
j=1,2,...,m,
b = Vak, exp{igX - i<§)2T},

we get a system of equations,

Q7+ Qjxx —ia > QexRi-Q; — > QeRi - Q; =0,

A A ﬁlA o ﬁlAA j=1,2,...,m.
iRjr— Rjxx —ia) RixQr-Rj+ 8> RQr-R; =0,
k=1 k=1

By virtue of a gauge transformation,

Q] eXp 215/ i QkdeXl},

k=1 i=1,2,....m,

R exp 215/ ZQkdeX'},

0 k=1

we obtain

m m m
Gjr+ Gixx — B Y Gfe - G5 — 1Y QrxPe - G5+ 46 > Gefex - 4
k=1 k=1 k=1

k=1 . k=1 i=1,2,...,m.
1Tj,T—Tj,XX+,BZTka‘TJ 1a2rkqu r]+4152rqux 7,
k=1 k=1

+41(527‘qu T‘Jx—(54(5+6k( )T]=0,

k=1

HMS
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In the case 46 + o = 0, the system coincides with the vector Kaup-Newell system (4.1) in a
nonreduced form,

m m
iGr + Gixx —i(Y Gkt - 45)  — B @i -4 =0,

kol kol j=1,2,...,m. (4.17)
iT‘A]‘,T—f‘j,XX —iOJ(ZT‘AkAk 'fj)X-i-ﬂkaqu 'TA]' = 0,

k=1 k=1

This shows that the coupled Chen-Lee-Liu II equations are gauge equivalent to the vector
Kaup-Newell system. The Lax matrix for eq. (4.17) with o =1, § = 0 is given by [27, 66]

—i¢® C
o s
(P oo (P iC?

This can also be derived from eq. (4.12) by means of a gauge transformation.

4.4 Summary

In this chapter, we have found a matrix generalization of a Lax pair for the Chen-Lee-Liu
equation. As vector reductions of the matrix Chen-Lee-Liu equation, we have obtained
two types of coupled Chen-Lee-Liu equations, (4.5) and (4.11). As is often the case with
one-component soliton systems [26,27,32,72,79-81], the Chen-Lee-Liu equation also has
plural multi-field generalizations. Using the Lax pairs, the conservation laws and the gauge
transformations, we have studied the properties of the two types of coupled Chen-Lee-Liu
equations in detail. An important step to obtain the coupled DNLS equations in our theory
is the introduction of U by eq. (4.2). The form of U seems unusual, because we more or
less assume trU to be a constant (often equal to 0) for soliton systems. The Lax pair
is, however, transformed into a multi-component generalization of the AKNS formulation,
which is solvable by the ISM [1, 3,11, 18]. Instead of applying the ISM, we give formulas for
obtaining conserved quantities.

In the two-component case, the coupled Chen-Lee-Liu equations (type I & II) and the
related models may have physical significances. They may describe wave propagations in
birefringent optical fibers with nonlinear effects such as the Raman scattering and the Kerr
effect.

We can construct other flows of the hierarchies by employing the corresponding time
dependences of the scattering problems ((-dependences of the Lax matrix V). These flows
have in common the conserved densities for the original flows. Expanding the matrix V' from
0(¢%) to O(1), we get

1 .3 3 2
9jit T 5%aze ~ 17 (; Uk,2kjz + ;qkrkqj,mm) - g(; rik) Qo = 0,

1 .3 3 2
rjt =+ o Miaze + IZ (; rk,zdklj,z + ; rqurj,mc) ~ 3 (; "k%) ie =20,
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for the coupled Chen-Lee-Liu I hierarchy (cf. eq. (4.6)), and

. 1, .3 A A 3 .« S
qj,t + iqj,zzz - 12(2 qk,mrkqj,z + Z qk,zzrkqj) - g qurk Z ql,zrlqj = 07
k k k l

. 1, .3 FA N A a 3 —. 4 P
rjt+ Erj,mmm + 11 (Z Mk,aQkljz 1 Z "k,m%rj) 3 Z gLe] Z fr,eqif; = 0,
k k & ]

for the coupled Chen-Lee-Liu II hierarchy (cf. eq. (4.12)). On the other hand, by expanding
V from O((™?) to O(1), we obtain coupled versions of the massive Thirring model in a
light-cone frame [87] (see Appendix E).



Chapter 5

DNLS-Type Equations

In the previous chapter, we have studied two types of coupled Chen-Lee-Liu equations as
vector reductions for the matrix Chen-Lee-Liu equation. In this chapter, we shall consider a
transformation of dependent variables for the general form of matrix Chen-Lee-Liu equation
without any reduction. We obtain several matrix-valued systems of the DNLS type within
the framework of ISM. The motivation of the study originates in the recent work of Olver
and Sokolov. In [72,73] Olver and Sokolov made a detailed investigation on DNLS-type
systems of the form

Pt :P;m—i—f(P,S,Pw,Sw),

Sy = =Sz +9(P, S, P, Sy).

Here P and S take values in an associative algebra. For simplicity, in the following we
regard P and S as matrix-valued. f and g are non-commutative polynomials of weight 5,
where the weights of 0;, 0;, P and S are respectively assigned to be 4, 2, 1 and 1. They
made a complete list of the DNLS-type systems (5.1) which have one higher symmetry of
the following form with weight 9,

(5.1)

P’T = Pzzzz + .f(Pv Sv Pacv Sac: sz: Szz; Pzzz; Szmz)a
S’r = _Sa:arma: + g(P, S, Pza Sa:a P;L‘:l)a Sxma mexa Szzz)

Here the commutativity of the two flows, i.e. 0,0,P = 0,0;P, 0;,0,S = 0,0;S, works as a
strong constraint on the form of f and g in order for the non-commutative polynomials f
and g to exist. See [25,64, 74| for a more detailed explanation of the symmetry approach.

If a system had one higher symmetry, it was believed that the system had an infinite series
of symmetries and was thus completely integrable. However, a system proposed by Bakirov
was recently proved to be a counter-example to this empirical law [13,14]. Thus, there is no
guarantee that the systems in the list by Olver and Sokolov are really integrable, although
the counter-example seems very exceptional. The aim of this chapter is to establish the
complete integrability of all the matrix-valued systems given in [73]. In a previous chapter,
we introduced a Lax pair for the matrix generalization of the Chen-Lee-Liu equation (4.4)
which is a member of the list by Olver and Sokolov. In the present chapter, we generalize the
Lax pair for eq. (4.4) to be applicable for several matrix systems of the DNLS type in [73].
For the rest of them, instead of giving a Lax pair, we shall derive the general solution to
prove their complete integrability. Equation numbers without a ‘section number’. refer to
equations in [73].

63
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5.1 ‘C-integrability’ and ‘S-integrability’

The entries of the list by Olver and Sokolov are divided into two kinds. Two systems in the
list are interpreted as non-Abelian analogues of the following integrable system:

Pt = Dz + 20p%s; + 2app,s — affp®s?,

9.2
St = —Szx + 2ﬁ32pm + 2ﬁ55zp + 06,683]72, ( )

for a particular choice of the constants « and (3. The system (5.2) is linearizable by a change
of the dependent variables. Thus, we can construct the general solution of the system.
We often refer to such linearizable systems as ‘C-integrable’ in Calogero’s terminology [15].
On the other hand, excepting the two entries corresponding to eq. (5.2), the scalar-valued
counterparts of the systems in the list by Olver and Sokolov are given by [88]

it + Goo + 410¢°75 +1(40 — a)qgor + 6(40 + a)¢’r?* = 0,

9.3
iry — 1y + 4i07%q, +1(46 — @)rreq — 0(40 + a)r3¢* = 0, (5-3)

for special choices of the constants o and 0. This system was generated via a gauge transfor-
mation for the DNLS equation by Kundu [55] (see Section 4.3). We can write down a Lax
pair for the system (5.3) with the help of the gauge transformation. According to Calogero’s
terminology, these kinds of systems, which are linearizable by the inverse scattering formu-
lation, are called ‘S-integrable’ systems [15].

5.2 ‘S-integrable’ Systems

Let us begin with a brief summary of the matrix generalization of the Chen-Lee-Liu equation
in Chapter 4. We introduced a Lax pair (4.2) and (4.3) and obtained a matrix Chen-Lee-Liu
equation (4.4),
iQt + chzc - 1QRQz = 0,
iR; — Ry — iR,QR = O.

The system (5.4) was shown to possess at least one higher symmetry [72,73]. The system is
now proved to be completely integrable in the sense that it has a Lax pair and, as a result,
an infinite number of conservation laws.

Next, we shall prove the complete integrability of other systems in [73] in the same sense.
For this purpose, we introduce a transformation of dependent variables:

(5.4)

Q=F"'QG™, R=GRF, (5.5)
or equivalently
Q=FQG, R=G'RF.

Here F and G are invertible matrices, which in general depend on @ and R (or Q and R).
Then, time-evolution equations for Q and R, (5.4), are cast into those for Q and R:

1Q; + Quo — IQRQ, —iFF'Q +iQ(G )G — (FoF 1).Q + Q{(G ).G}s

—2F, F 'Q, +2Q,(G 1),G — 2F,F 'Q(G 1),G + (F,F 1)*Q
+ Q{(G )G} +iQRF,F'Q —iQRQ(G™),G = O, (5.6a)
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iR, — Ry, — iR,QR —i(G™),GR+iREF™ + {(G™"),G},R — R(F,F),

+2(G™Y,GR, — 2R F, Ft + 2(G™Y,GRF, F~' — {(G™)),G}*R

— R(F,FY)? +i(G™"),GRQR — iRF,F'QR = O. (5.6b)
A sufficient condition for eq. (5.6) to be local and closed equations is that F,F~' F,F~!
(G™),G and (G');G are expressed locally in closed forms in terms of ) and R, i.e. they
do not include terms with integrals, infinite sums, etc. We impose this condition on F' and

G in what follows. A closed expression of the Lax pair for the transformed system is given
by performing the gauge transformation,

F—l
v = g?, g=[ G]-

Due to this transformation, the linear problem and the Lax pair for eq. (5.4) are changed
into those for eq. (5.6):
o, =U'd, &, =V,

Here
Vo = iQu + SQRQ ~iFF'Q+1Q(G )G,
Var = —iR, + %RQR +i(G Y).GR —iRF,F !,
Vg = i%(RQx — R,Q) + %RQRQ —iRF,F7'Q + i%RQ(G‘l)mG + i%(G_l)xGRQ
—i(GY),G.

The above transformation offers a powerful tool; it yields new integrable systems of the
DNLS type by appropriate choices of F' and G. To confirm this, we list six illustrative
examples (a)—(f) with the definition of F' and G, the evolution equations for () and R and
the transformed Lax matrix U":
(a)
F =1,

(G, = —i%GlRQ = —i%RQGl,
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- iyl 1
(67 = ¢7'{5(RQ; - R,Q) - i,RQRQ}
1 .3 _
= {5(RQ: - R:Q) ~i{RQRQJG™,

iQt + wa - I(QRQ)z = Oa

iR, — Ryy — i(RQR), = O, (5.7)
1 __ -1 Q
e[ )l 9]
(b)
G_1 == ]2,
F, = —i-FQR = —i~QRF
T — _1§ - _1§Q )
F, = F{E(Q R— QR )—ilQRQR}
t 2 T T 4
1 .1
= {5(Q:R ~ QR.) +i, QRQRF,
Q0 + Qe +1QR.Q + ;QRQRQ = 0,
h (5.8)
iR, — Ry +1RQ:R — JRQRQR = O,
P I o Q). .[-1QR
e I R P R I
()
F=1I,
(G, = ilQRG‘l = ilQRG‘l
xr 2 2 bl
. 1 1 .
(G 1) = {5(QR; — Q,R) +i;QRQR}G
= {J(@R. - Q.R) +1{QRQR ~ 1L Q"R"}G ™"
iQu+ Que — 1QRQ. +1Q°R +1Q:QR — JQ’RQR + JQ*R’ + JQRQ’R="0,
(5.9)
iR, — Ryp —iR,QR+1Q,R*> +iQRR, + %QRQRQ - %QQR?’ — %QRQQR =0,
2| =1 Q). .[o
e el i ynvan |

G'=1I,

1 1
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F, = {5(R.Q ~ RQ,) +1;RQRQ} F

= {%(RxQ - RQ.) + iiRQRQ + i%R@Q}F !

Q0+ Que — IQRQ, — IRQ? ~ IRQQ. + 5 F'Q° ~ JQR'Q? =0,

2
(5.10)
. . 2 P2 : 1 32 1 2,2
iRy — Ry —iR,QR — iR Qm—lRwRQ—§R Q —|—§R QRQR=0,
PN I Q1 . .[iRQ
e[l C P n ]
(e)
G'=F,
F, = —iLFRQ = —i-RQF
T — _1§ - _15 Q )
1 1
F, = F{(RQ; — R,Q) ~ i, RQRQ}
1 3 1
= {5(RQ: — B.Q) —iTRQRQ +i; F°Q° I F,
iQt + Q:c:c - IQRQw - IQR.’L‘Q - leRQ + lRwQ2 + IRQQz - RQRQ2
- %R?Q3 - %RQQRQ =0,
5.11
iR, — Ryy — iR,QR — iRQ,R — iRQR, +iR’Q, +iR,RQ + R’QRQ (511)
1 32 1 2
— ;RQ* - JRQR*Q =0,
e[ Jecla O[]
(f)
G '=F
F, = i_FQR = —i-QRF
T — _15 - _IEQ )
F, = F{E(Q R— QR )—ilQRQR}
t 92 T T 4
1 1 1
— {i(QmR ~ QR;) +1,QRQR - 1§Q2R2}F,
iQ1 + Que + IQR.Q — 1Q°R. —1QuQR — ;Q"F’Q — Q*RQR
+ %Q?’RQ - %QRQRQ =0,
(5.12)

1 1
iR, — Ryy +iRQ.R — iQ,R?> —iQRR, + 5RQQR2 + 5QRQR2
1 T
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: —I Q | —iQR
U =ic¢® + + 2 :
e[ el p O H(RQ - QR)
For all of the six examples (a)—(f), the compatibility conditions for F' and G™1, i.e.

(Fo)e = (F)es  {(G e = {(G)ia

can be checked by a straightforward calculation with the help of eq. (5.4). As is clear from
the construction of the gauge transformations, ) and R can be rectangular matrices for (a)
and (b), while @ and R must be square matrices for (c)—(f).

Comparing the above results with those by Olver and Sokolov, we find that eq. (5.4) and
eq. (10) in [73], eq. (5.7) and eq. (7) in [73], eq. (5.8) and eq. (12) in [73], eq. (5.9) and eq.
(14) in [73], eq. (5.10) and eq. (16) in [73], eq. (5.11) and eq. (15) in [73], eq. (5.12) and
eq. (17) in [73] are respectively identical up to scalings of variables. The system (5.7) is a
well-known matrix generalization of the Kaup-Newell equation [27]. For systems (5.8), (5.9),
(5.10), (5.11) and (5.12), or (12), (14)—(17) in [73], we have obtained the Lax representations
by virtue of a non-commutative version of gauge transformations for the first time.

The systems (5.4), (5.11) and (5.12) are interpreted as matrix generalizations of eq. (5.3)
with @« = 1, § = 0. The systems (5.7) and (5.10) reduce to eq. (5.3) with a =1, § = —1/4
in the commutative case. The systems (5.8) and (5.9) correspond to eq. (5.3) with o = 1,
d = 1/4 when @ and R are scalar-valued. The symmetry approach shows that matrix
generalizations of eq. (5.3) are essentially exhausted by the above statement up to scalings
and the transposition [73]. It is remarkable that the system (5.3) has matrix generalizations
only for some choices of « and §. This feature of matrix generalizations may be explained
from our approach in the following way. In the case of scalar variables, eq. (5.3) is generated
by the gauge transformation

qg= %q exp{—Qi% /w rqu'},

r = %rexp{Qig /wqrdxl}a

for the Chen, Lee and Liu equation (2.36). Why can we not generalize this transformation
to the matrix case for the continuous parameters o and § 7 As an illustrative example, we
choose F' and G~ to satisfy

F, =1yRQF, lim F =1, G'=1,
T—Xo

where 7 is a scalar parameter. The explicit form of F' is given by
F= Eexp{i'y/ RQdz'} = I+ 3 (i17)"A..
o n=1
Here £ is the path-ordering operator and

A, = /w dzy /w1 dzg - - /znil dz,R(z1)Q(z1) - - - R(2n) Q(21)-

0

We can calculate the time derivative of F', F}, with the help of eq. (5.4). However, it is
observed that F;F'~! cannot be expressed in a closed form in general, i.e. it includes infinitely
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multiple integrals. An exception is the case of v = 1/2, which gives
1 1
F, = {;(R,Q~ RQ,) +i,RQRQ}F,

and, as a result, leads to example (d). The example explains why the transformation (5.5)
is effective for finite choices of F' and G in the matrix case.

As we have studied in Section 2.8, the spatial part of the Lax formulation for the Chen-
Lee-Liu equation is common with that for the massive Thirring model, i.e. they belong to
the same hierarchy. Thus, employing an appropriate time part in the Lax formulations in
correspondence with the Lax matrices U (or U’) in this section, we can obtain new matrix
generalizations of the massive Thirring model (see Appendix E).

5.3 ‘C-integrable’ Systems

In the previous section, we have verified that all but two of the systems proposed by Olver
and Sokolov are ‘S-integrable’, i.e. they have Lax representations and can be linearized by
the ISM. In this section, we show that two systems left for further analysis are ‘C-integrable’,
i.e. they can be linearized by a certain type of transformation of dependent variables which
resembles that in the previous section.

The two systems, (11) and (13) in [73], are matrix generalizations of eq. (5.2) with a = 0,
B = 1. We briefly summarize a solution of eq. (5.2) before investigating egs. (11) and (13).
The pair of equations (5.2) is rewritten in a linearized form as

x d 7
(pea fmo spdz )t _ (pea
(sefﬂ f% psdz )t + (sefﬂ fwo psdzx )

z
fzo sde,) = 0,

=0,

T

rr

under the boundary conditions: lim,_,,, p = lim;_,,, s = 0. In terms of functions y(z,t) and
z(z,t), which satisfy a pair of heat equations

yt_ymm:()a Zt+zzz:0a

and the boundary conditions, lim,_,,, y = lim,_,,, 2 = 0, the general solution of eq. (5.2) is
given by

T , T o
p:yefafmospdw :y{1+(a—ﬁ)/ zydx'} o
0

I

z ! x _B_
s = zeﬂfmodew = z{l + (a— ﬂ)/ yzdx'}"fﬂ,
Zo

for aw # B (cf. [16] for @« = —f3) and

for a = .
We proceed to solve egs. (11) and (13) in [73] by generalizing the above method to the
matrix case. We write eq. (11) in [73]:

Pe = Poay (5.13)
S, = —S,, + 2SP.S + 2SPS. . '
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Here P is an n; X no matrix and S is an ny X n; matrix. The boundary conditions

limP=0, limS=0,

T—T0 T—T0

are assumed for convenience. In terms of a matrix function A defined by
A, = A(-SP), A, = A(S,P —SP, — SPSP), (5.14)
the time-evolution equation for S in eq. (5.13) is rewritten in a linearized form as
(AS): + (AS)ae = O.

Here the consistency condition, A, = Ay, is checked by a direct calculation using eq. (5.13).
We introduce an n; X ng matrix Y (z,t) and an ny X n; matrix Z(x,t) which satisfy a pair

of matrix heat equations
Y, -Y,, =0, Zi+Z,,=0, (5.15)

and the boundary conditions
limY =0, lim Z=0.

T—>T0 T—>T0

The general solution of eq. (5.15) is obtained by means of the Fourier transformation. Thus,

if we set
P=Y, S=A4!Z

this gives the general solution of eq. (5.13). Due to the relation A, = —ZY, we obtain
A=1T— / Z(& )Y (', t)da'.
zo

Here we have assumed the boundary condition, lim,_,,, A = I, with I being the ny x ng
identity matrix. In conclusion, an explicit form of the general solution of eq. (5.13) is given
by
x -1
Pa,t) = Y(x,t), S(z,t)={I~ / 2@ Y (@, )da'} Z(z,1).  (5.16)
Zo
Finally, we shall derive the general solution of the only system left to solve, eq. (13)
in [73]. For this purpose, we set n; = ny and perform a change of the dependent variables:
P=AP, S=S5A4""
Noting the fact that eq. (5.14) is rewritten in terms of the new variables P and S as
A, =A(-SP), A, = A(S,P— SP,— SPSP +25*P?%),
we obtain the evolution equations for P and S:
P,=P,, —2S,P?> —2SPP, + 25PSP? — 25°P3,
Sy = —Sgs — 28%P, — 2S,SP + 2SPS, +2SP,S (5.17)
+2SPS*P +25°P* — 25?PSP — 28*P*S.

This is nothing but the system (13) in [73] up to scalings of variables. Thus, by virtue of the
derivation in the above, the general solution of eq. (5.17), which is an alternative expression
of eq. (13), is obtained straightforwardly:
Pla,t)=A7'P={I- / 2@ )Y (@', 1)da’} Y (x, 1),
o . . (5.18)
S(z,t) =SA={I- / 2@ )Y (@', 0)da’} " 2, t){1 - / 2(, )Y (', 1)da'}.
Zo

Zo
It should be noted that all of the matrices in the above expression are square matrices.
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5.4 Summary

In this chapter, we have studied matrix-valued systems of the DNLS type. Applying a kind
of gauge transformation to a matrix version of the Chen-Lee-Liu equation with a Lax pair
proposed in Chapter 4, we have derived Lax representations for all but two of the systems
proposed in [73]. Hence, these systems can be linearized through the inverse scattering
formulation and proved to be ‘S-integrable’ in the terminology of Calogero. As has been
clarified in Section 5.2, these systems are connected with the others through transformations
of the dependent variables. It should be remarked, however, that the transformations can-
not be written in a closed form in terms of the matrix-valued dependent variables. More
explicitly, if F' (or G™!) is not the identity, we may not express F' (or G™!) for the examples
(a)—(f) in Section 4 without using the path-ordering operator, infinitely multiple integrals,
etc.

For the two systems in [73] for which it remains to prove their complete integrability, we
have shown that both of them are linearizable and connected with each other by a change of
dependent variables. The transformations which linearize the two systems can be explicitly
written in a closed form in terms of the auxiliary variables Y and Z. This enables us to
obtain the general solutions of the two systems, which directly proves their ‘C-integrability’.

To summarize, we have proved for the first time that all the matrix-valued systems
proposed in [73] can be integrated by the ISM or the transformations of the dependent
variables. The dependent variables of the systems take values in either square matrices or,
more generally, rectangular matrices of arbitrary size. However, it is noteworthy that not
all of integrable multi-component systems can be expressed in terms of matrix variables of
arbitrary size.
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Chapter 6
HF Hierarchy and WKI Hierarchy

In recent years there have been a lot of progresses in the study of integrable systems with
multiple components [21, 26,27, 32,43, 60, 72, 79-81,84-88]. Among various approaches, the
Lax formulation often helps us to obtain natural and simple multi-field extensions of single-
component integrable systems [21,26,27,60,84-88]. From this viewpoint, in this chapter,
we consider integrable systems derived from the eigenvalue problem [82,96],

{ U, =UV, U=ill, (6.1)

T, =V,

where U; is independent of the spectral parameter (. We call this problem the Takhtajan-
Wadati-Konno-Ichikawa (T-WKI) type for brevity. As appropriate reductions of the corre-
sponding compatibility condition (2.2), we obtain a multi-field generalization of the second
flows of the Heisenberg ferromagnet (HF) equation and the Wadati-Konno-Ichikawa (WKI)
equation for the first time. As is well-known [41,97,111], there is a gauge transformation
between the HF hierarchy and the WKI hierarchy. We show that this correspondence can be
generalized for the multi-component case. Considering a semi-discrete version of the eigen-
value problem (6.1), we find a semi-discretization of the coupled system of the second HF
flow.

6.1 Heisenberg Ferromagnet System

6.1.1 Generalization of the second flow
Let us derive a multi-component extension of a higher flow in the HF hierarchy. In order to
investigate a generalization of the higher HF equation, we consider a Lax pair:
3
U=i(S, V =4i*S+2¢*SS, —i¢(Ses + 5Sgs), (6.2)
with
S?=1. (6.3)

Putting eq. (6.2) into the zero-curvature condition (2.2), we obtain the equation of motion
for S [41],

St + Sugz + g(S:iS)w = 0. (6.4)

73
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It should be noted that this system is consistent with the condition (6.3), i.e. we can prove
(52); = 818+ SS; = O by use of egs. (6.4) and (6.3). Of course, we can prove the same fact
for the original system (2.15).

If we consider the reduction (2.14), the matrix equation (6.4) is cast into the second flow
in the HF hierarchy. It is a vectorial equation for § with the constraint |S|> = 1. To find a
generalization with arbitrarily multiple components of the second flow, we assume that S is
expressed as

2m
S = ZiSk6k = S(m),
k=0
in terms of anti-commutative matrices {e;};
{ei, €j} = €i€; + €;€¢; = —252']'], 0< Z,] <2m.
Then eq. (6.4) reduces to a simple multi-component system,

3,2 .
5j,t+3j,mmm+ 5(2 Slg,at -Sj)x = O, ] = 0,1,...,2771. (65&)
k=0

The constraint (6.3) is interpreted into
Y osi=1. (6.5b)

Because {e;} are elements of the Clifford algebra, we can construct their matrix representa-
tion (see Appendix B). The matrix representation shows that the system (6.5) has a 2™ x 2™
Lax pair.

6.1.2 Semi-discretization

An integrable semi-discretization of the system (6.5) is given in an analogous way to [42].
As a semi-discrete version of the eigenvalue problem (2.1) with eq. (6.2), we consider the

eigenvalue problem,
\Ilnql—l - Ln\Ilna \Iln,t = Mn\pna

where
L, =1+\S,, (6.6a)
4)\? 1 4\ 1
Mn = 1_7)\2 . Sn—l(Sn + Sn—l) + 1_7)\2 . (Sn + Sn—l)
=AY A7 Sy 1 (Sp + Spe1) T HAY AT (S, + Sper) (6.6b)
j=1 j=1

Here )\ is a time-independent parameter and S,, is a matrix which satisfies
S*=1 (6.7)
Substituting eq. (6.6) into eq. (2.27), we obtain

Spt+4(Sp +Sp1) ' —4(Spy1 +S,) = 0. (6.8)
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It is easy to check that (S2); = S,1+Sn + SnSnt = O due to egs. (6.8) and (6.7). Thus, eq.
(6.8) is consistent with eq. (6.7). In parallel with the reduction in the continuous case, we
set

and obtain
259 + s 2(s9), +59)

L :0, i=01,....2m, (6.9)
1+ sks® 1y Z s s (k)

with 3~ s{¥2 = 1. Equation (6.9) with m = 1 was derived in [75]. This system is interpreted

as a semi-discretization of the coupled system (6.5). In fact, if we expand 35{11 in powers of
the lattice constant dz,

T

: . L1
s9) = sU) & (62)s) + 5((53,;)25(7) 6(595)3 s 4.

the system (6.9) is rewritten as

s — 2(dz)sY) — 3(6x>3 ;ﬂm— (Z 12.50) +0(62°) =

Thus, up to a scaling of ¢ and a Galilei transformation, the semi-discrete system (6.9) coin-
cides with the system (6.5) in the continuum limit.

6.2 WKI System

Let us consider a multi-field generalization of the WKI equation with the linearized dispersion
relation w = —k® (see eq. (2.17)). The generalization is interpreted as the one for the second
flow of the WKI hierarchy, because the WKI hierarchy starts from an equation with the
linearized dispersion relation w = k? (see eq. (2.16)). For this purpose, we choose the Lax
matrices U and V' as

—il
v=c| 4] (6.10)
i Q) Q™ RI™ — Qi) Rim) 2iQ(™)
= 4C3f l RoW if ] + C2f3 l —ZiRc(cm) Rc(cm)Q(m) _ R(m)@&m)
9] —Q(m)

Here Q™ and R™ are 2! x 2™~! matrices which satisfy the constraint,

m

QUMERM™ = R™MQ™ =3 g,ry, - 1. (6.12)

k=1
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The scalar function f in eq. (6.11) is given by

fo—— (6.13)

= .
1= qure
J k=1

An explicit representation of Q™ and R(™ which satisfy eq. (6.12) is given recursively by

QY =q, RY=r, (6.14a)
(m) I 1 R(m) I »
(m+1) = @ Gm-+152m (m+1) — Gmt1dom
Q T'm 1[2m—1 _R(m) ’ R T 112m_1 _Q(m) . (614b)
+ +

It is proved by induction that eq. (6.12) is satisfied for integers m > 1. Substituting egs.
(6.10) and (6.11) with egs. (6.12)—(6.14) into the Lax equation (2.2), we obtain a coupled
version of the second WKI flow,

gje + {(1 - f: rik)ig%',m};m =0,

k=1 . i=12,....m. (6.15)
Tt + {(1 — Z T‘qu) ZTj’I}wz = O,

k=1

As is clear from the above discussion, the Lax formulation for the system (6.15) is given in
terms of 2™ x 2™ matrices.

6.3 (Gauge Transformation

In previous sections, we have found new integrable multi-field systems (6.5) and (6.15), which
are related to the T-WKI-type eigenvalue problem (6.1). It was shown that there is a gauge
transformation between the system (6.5) with m = 1 and the system (6.15) with m =1 [41,
97,111]. In what follows, we shall prove that the gauge transformation is applicable to
the multi-component systems. For the system (6.5), we perform a transformation of the
independent variables,

€= /$ so(z', t)da’, T=t.
To

Here we assume the boundary conditions, s;, — 0 as x — x for 7 = 0,1,...,2m. From the
transformation, we obtain

O0p = 500, O = Or — (S055,¢ + SgS0.6¢ + 283 QZm Ske)Oc-
k=0
Then the Lax formulation for the system (6.5) in Section 6.1.1 is transformed into
U =U'V, U, =V'Y, (6.16)
where
U = icX, XE%& (6.17a)
V' = 450X + sy (X Xe — XeX) — (85 Xe)e. (6.17b)
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Due to eq. (6.3), the matrix X satisfies the constraint,

1
X2 = —QI
50

The compatibility condition of the transformed eigenvalue problem, U — V¢ +[U’, V'] = O,
yields

X, + (5§Xe)ee = O. (6.18)

If we take an appropriate representation of the anti-commutative matrices {e;}, the
matrix X,

2m
X =iey + Zi(s—k)ek = x™m),
k=1 50

is expressed as

—Iom-1 —iQ™
(m) _ 2
o [y 2] o1
Here Q™ and R(™ are given recursively by
QW = 51 + iﬂ, RY — _5 + 18_2’ (6.20a)
S0 S0 S0 S0
- Q) (32m+1 +i82m+2).72m—1 1
Q m+1 — - - So So , 620b
(_ Som+1 + i82 +2)I2m—1 _R(m) ( )
S0 S0
[ R(m) (52m+1 +182m+2)12m—1
Rm+D) = S0 50 6.20c
(_ Som+1 + i32m+2)l2m_1 _Q(m) ( )
| So S0 d

If we introduce a new set of variables {qx} and {ry} by ¢z = (Sox_1 + iS2k)/S0, Tk =
(_32k—1 + iSQk)/So, €q. (618) is reduced to

G+ (5505¢)ee = 0,
Tz + (5o756)ee = 0,

1 1
%ih+;CDﬁzi(m-
1= akre

k=1

The system (6.21) essentially coincides with the coupled WKI system (6.15). Further, it is
easily checked that the transformed Lax representation (6.16) with egs. (6.17), (6.19) and
(6.20) agrees with that for the coupled WKI system in Section 6.2. This shows that eq. (6.5)
and eq. (6.15), or their Lax representations are connected by a gauge transformation.

(6.21a)

where

(6.21b)
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6.4 Summary

In this chapter, we have obtained new coupled systems in the HF hierarchy and the WKI
hierarchy. These two systems are proved to be connected with each other. It is noteworthy
that Lax representations by use of the Clifford algebra yield coupled systems (6.5) and (6.15)
in a simple manner. The technique is shown to be effective for some soliton equations in other
chapters. Meanwhile just a replacement of scalar variables in 2 x 2 Lax matrices by vectors
does not give a consistent equation of motion for the T-WKI-type eigenvalue problems as
far as we have examined. We have found an integrable semi-discretization of the coupled
system (6.5), i.e. eq. (6.9), by considering a semi-discrete version of the eigenvalue problem.
For systems (6.5), (6.9) and (6.15), an infinite set of conservation laws can be obtained
recursively on the basis of the Lax pairs [85,86]. We do not give an explicit derivation of
the conservation laws in this chapter.

For the original HF equation (2.15) and the first nontrivial flow in the WKI hierarchy,
eq. (2.16), we have not found any simple generalization with multiple components so far. It
remains an open problem to find a simple multi-field generalization of eq. (2.15) or eq. (2.16).
The system (2.13) with the constraint (2.12) has a Lax representation (2.11) regardless of
the size of S [111]. However, it is difficult to find an interesting reduction, except for the
2 X 2 matrix case. If there is no simple generalization of eq. (2.15) or eq. (2.16), it should be
extremely interesting to ask why the higher flows do have a generalization and the original
flows do not.



Chapter 7

Integrable Discretizations

Today it is widely accepted that the ISM is a very effective way to study a variety of soliton
hierarchies (see, e.g. Chapter 2). As we have studied in previous chapters, we can obtain
multi-component extensions of continuous soliton equations by generalizing Lax pairs of 2 x 2
matrices to the ones of larger matrices (see also [2,11, 18,49, 60,77,104]).

On the other hand, some discrete integrable models have been investigated by means
of discrete versions of the ISM formulation [5-7,17,24,58,61,62]). However, the family of
discrete models which have been solved via the ISM is not large enough compared with that
of continuous models. In fact, the study of multi-field discrete integrable systems has not
been well-developed.

In this chapter, we propose a matrix generalization of the Ablowitz-Ladik formulation.
The Ablowitz-Ladik formulation is a discrete version of the AKNS formulation and we ex-
plained only the point in Section 2.7. Thanks to the generalization, we obtain an integrable
discretization of the matrix mKdV equation and the matrix NLS equation. Through a re-
duction of the discrete matrix mKdV equation, we obtain a discrete version of the cmKdV
equations studied in Section 3.3.2. Applying the ISM, we solve the initial-value problem and
construct multi-soliton solutions. Considering a further extension of the matrix Ablowitz-
Ladik formulation, we obtain an integrable discretization of the cHirota equations. The
discrete cHirota equations include discrete cNLS equations as a special choice of parame-
ters. On the basis of this fact, we clarify an essential difference between the Lax matrix for
the continuous cNLS equations and that for the discrete ¢cNLS equations. Using a gauge
transformation in the discrete case, we show that the ISM is also applicable to the discrete
cHirota equations.

7.1 Semi-Discretization of the Matrix AKNS Hierar-
chy

In order to obtain a matrix generalization of the Ablowitz-Ladik formulation, we first consider
the following form of the Lax pair,

L o O Q.| 1[0 0] [z Qa
L"—zlolo]Jr[Rn O]JFE[O IJ‘[R; 112]’ (7.1)

79
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2 aIl O O CLQn —CLQan_l + 01]1 O
M =2 l 0 0 ] T [ R, O |7 0 bRuQnr + 21
1] 0 -Q,.], 1[0 O
+2[—bRn 0 ]Jrz?[o —bIQ]
— 220'11 - aQanfl + CIII ZaQn - %an,1 (7 2)
B ZaRn—l - %bRn _ZLszQ + bRnQn—l + 0212 ’ .

where z is the spectral parameter which satisfies z; = 0. Here I; and I, are respectively the
p X p and ¢ X ¢ unit matrices, ), is a p X ¢ matrix, and R,, is a ¢ X p matrix.
Substituting egs. (7.1) and (7.2) into eq. (2.27), we obtain a set of matrix equations

Qn,t - aQn—}-l - an—l + (C2 - Cl)Qn + aQn—HRnQn + anRnQn—l = O: (733)
Ry + bRy + aRn_y + (¢1 — ¢2) Ry — bRpy1 QuRn — aRyQuRu_y = O. (7.3b)

Choosing the constants as
a=-b=1, ¢ =c(=0),

we obtain
Qn,t - (Qn—H - Qn—l) + (Qn—l—anQn - QanQn—l) - O, (74&)
Rn,t - (R'fl-l-l - Rn—l) + (Rn-l-lQan - RnQan—l) =0. (74b)

Since this model is interpreted as an integrable semi-discretization of eq. (3.3), we call eq.
(7.4) the semi-discrete (sd-) matrix mKdV equation. If we set

R, = -1, Qn=W,—1,
we obtain a matrix version of the Lotka-Volterra equation,
Wn,t = Wn+1Wn - Wan—1:

where W, is a square matrix.
When we take an alternative choice

a=b=1, c¢y—c1 =2i,
we obtain

iQn,t + (Qn—l—l + Qn—l - QQn) - (Qn—l—anQn + QanQn—l) = O, (753)

iR, — (Rpy1+ Ry — 2R,) + (Ru1QuRy + RQnRy—1) = O. (7.5b)

Comparing eq. (7.5) with eq. (3.7), we call this model the sd-matrix NLS equation (cf. eq.
(7.97) for a generalization). The integrable model (7.5) or, more generally, (7.3) was found
and studied by Ablowitz, Ohta and Trubatch [8,9].

Let us present a systematic method to construct local conservation laws for the system
(7.3) which includes the sd-matrix mKdV equation and the sd-matrix NLS equation as its
reductions. We start from a special class, p = ¢ = [, of eq. (2.26),

\Ifln—l—l Fln Qn \Illn
= 7.6
[ \1’271—1—1 ] [ Rn F2n ‘| [ \I}2n ] ’ ( )
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\Illn . An Bn \Illn
ERER Ak o)
where all the entries in eqgs. (7.6) and (7.7) are assumed to be | X [ square matrices. The

following is a discrete version of the method for continuous systems (see Section 3.1.3). The
zero-curvature condition (2.27) gives

Fing+ FipAy +QnCy — Ay Fip — By Ry, = 0, (7.8a)
Fong+ Fon Dy + Ry By, — Dy Fopy — Cpp1 @ = O, (7.8b)
Qi+ FinBy, +QnDy — Ap1Qn — By Fop = O, (7.8c)
Ry + F,Cy + RyA, — Dy Ry — Crpi Frpy = O. (7.8d)

Defining an [ x [ square matrix I';, by

I, =9,, 0}

1n

we can prove the following relations from eqgs. (7.6) and (7.7):
Fn—|—1 = (Rn + F2nrn)(F1n + Qnrn)ila (79)

Tni=Cp+ Dyl — TpA, — T B, T, (7.10)

Equation (7.10) can be interpreted as a matrix version of the Riccati equation. Using eqs.
(7.8) and (7.9), we can rewrite eq. (7.10) as

(Qnrn + Fln)t(QnFn + Fln)_l - An—l—l - (Qnrn + Fln)An(QnFn + Fln)_l
+ Bn—l—lrn—i-l - (Qnrn + Fln)BnFn(QnFn + Fl n)_1(711)

Taking the trace on both sides of eq. (7.11), we obtain
tr{log(Qnlyn + Fin)}e = tr(Aps1 + Bpia1lng1) — tr(A, + B,y). (7.12)

Assuming that L, is expressed as eq. (7.1), we have
1
Fl'n = ZI, an =-1. (713)
z

The matrices @, and R,, are square matrices in this case. Then egs. (7.12) and (7.9) are
cast into

1
{tr log(1 + ;in“n) }t = tr(Aps1 + Boyilng1) — t2(Ay + Baly), (7.14)

ZQnFn = Qan—l + %QnQ;il(Qn—lrn—l) - (Qnrn)(Qn—lrn—l) (715)

Equation (7.14) has the form of the local conservation law. This suggests that tr{log(/ +
QnI'n/2)} is a generating function of the conserved densities for eq. (7.3). We expand Q,I';,
with respect to the inverse of the spectral parameter z in the following form:
00 1 _
-) — )
QL) =3 =17 (7.16)

=1
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Substituting eq. (7.16) into eq. (7.15), we obtain a recursion formula for f{/)

F9 = QuRn18i1 + Qu@Qy £ Zf I =12 (7.17)

The formula (7.17) yields f); for instance,

fr(;,l) = QTLRTL—D
fr(LQ) = Qan—Q - Qan—lQn—an—Q-

We put eq. (7.16) into tr{log(I + Q,I'{7)/2)} and expand it with respect to 1/z:

tr{log(7 + %fﬁ) + 2—14f7$2) - %f}f’) +o)} = tr{%fél) + Z1—4(f752) - %fﬁ”) +oe)

Thus, the first two conserved densities given by this expansion are

IV = U = QuRys, (7.18a)
1 1
JT(l_Z) = tr{f,’(f) - §(f7(11))2} == tr{Qan_Q - Qan—lQn—an—2 - §(Qan—1)2}' (7'18b)

Next we expand @, ', with respect to z. For this purpose, we rewrite eq. (7.15) as

Qnrn = _ZQan + ZQnQ;}—l(Qn—HFn—H)(QnFn + ZI) (719)

We substitute the following expansion,
o . .
QISP =37 221l (7.20)
j=1
into eq. (7.19) and obtain a recursion formula,
j—1
— k i .
J) = QnR 5],1 + QnQangﬂl + QnQnil Z 97(121953 k), ] = 1,2,.... (7.21)

k=1

By use of the formula (7.21), the first three of the coefficients g{/) are given by

n

g7(7,1) = _Qana
97(12) = _Qan—i—l(I - Qan)7
97(13) = _Qan—f—Z(I - Qan) + Qan+lQan+l(I - Qan) + Qan—l—ZQn—f—an—f—l(I - Qan)

We put eq. (7.20) into tr{log( + @,T{"/2)} and expand it with respect to z. Then we
obtain

tr{log(I + 97(11) + 3297(12) + 2497(13) +-9)) = tr{log([ + 97(11)) + 2297(12) (I n gff))‘l

+ 2 [gP(T+g0) " - {g (I + D)1 +-
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Thus, the first three conserved densities given by this expansion are

JO = tr{log(I + ¢\V)} = tr{log(I — Q.R,)}, (7.22a)
T = Q. gD (I + gl )len = —Rns1Qn, (7.22D)
TP = o0+ o) — LT+ ) 1} ]

= tr{ —QnBny2 + QuRn2Qnii Ruyr + 5 (Qn Ryi1)? } (7.22c)

We should pay attention to the fact that all the entries of matrices J(*V and J! are
conserved densities for eq. (7.3). We can prove it by a straightforward calculation. That is
the reason why we dropped the trace in egs. (7.18a) and (7.22b). It is also noteworthy that
the appearance of @, in the derivation is just for a simplification of calculation and is not
essential. The obtained conservation laws are valid even for a choice of irregular matrix Q.

The generator of the conserved densities, tr{log(I + @,[,/z)}, is shown to be related
with a time-independent subset of scattering data defined later (see Appendix I).

7.2 Semi-Discrete Coupled mKdV Equations

Very recently, Ohta [70,71] obtained an N-soliton solution of semi-discrete(sd-) cmKdV
equations,

oul) = : (i) Q)
a: _ (1 + 3 Cjkuﬁf)ug’“))(unﬂ —u,), 1=0,1,...,M—1. (7.23)
J,k=0

This model reduces to the cmKdV equations (3.51) in the continuum limit by some variable
transformations. Hisakado [38] revealed the connection between the sd-cmKdV equations
and the 2-D Toda lattice. Hirota [35] studied a similar model,
o (%) M-1 )
;: =Y CpudulP . (u(z) — oy D, i=0,1,...,M —1,
J,k=0

in the open-end case and obtained the so-called molecule solutions.

Let us consider a reduction of the sd-matrix mKdV equation (7.4) to the sd-cmKdV
equations (7.23). As a preparation, in a similar way as in Section 3.3.2, we transform the
sd-cmKdV equations into a normalized form,

v
ot

(1—25] D —vl), =%, i=01,...,M—1 (7.24)

The above expression of the sd-cmKdV equations is more convenient than eq. (7.23) to
perform the ISM. Thus, we mainly deal with eq. (7.24) as the sd-cmKdV equations in what
follows. Further, we assume that the dependent variables {v{)} are real and ¢; = —1 (j =
0,1,....,M —1).
In an analogous way to the continuous theory in Section 3.3.2, we assume that @, and
R, are 2™~ x 2m=1 (m > 2) matrices expressed as
2m—1 2m—1

A =0T+ 3 e, B = o014 S o, (7.25)
k=1 k=1
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Here 2™~! x 2™~! matrices {ey,- - -, €am_1} satisfy egs. (3.55a)—(3.55¢). For Q™ and R(™,
we can easily prove simple relations,

QMR™ = RMQ 2 2. Iym-t. (7.26)
3=0
and
R™ = —QimT, (7.27)

These relations play a crucial role in performing the ISM. Substituting Q%m) and R%m) into
Q. and R, in the sd-matrix mKdV equation (7.4), we obtain the sd-cmKdV equations,

dvf) & D2\ :
5 =(1+Zvn )(nH—vn D, i=0,1,....M—1, (7.28)
=0

where we set M = 2m.

Because the sd-cmKdV equations are given as a reduction of the sd-matrix mKdV equa-
tion, the results in Section 7.1 assure that the sd-cmKdV equations have an infinite number
of local conservation laws. Explicit forms of the first four conserved densities for the original
sd-cmKdV equations (7.23) are given by

L = log(l +> Cjkug)u;’“)), (7.29a)
ik

(J') () ()

u(j)u ni1 for all 7, k (j # k),

12 = Z Cjkun—l—lu ) (729b)
I; = (1 + Z C]kun+1un+1) Z C]kun+2u (Z Cgkugj)ulu(k))
Y Z Cjku U’(k Z C un—}—lug:)—la (729(3)
J,k J:k

L, = (1 + Z Cjkuglﬂg%) (1 + Z Cjk“ﬁﬁl“&?&) Z Cik U’n-I—SU'
+2 Z Cjk“n+2u (1 + Z Cjkun+1u£zk+)l) (Z Cﬂcunﬂu W)+ Z Cjk“n+2u$¢k+)1)

(Z Cﬂcunﬂu(lC Z Cjkun+2un+2 + Z Cjkun+2un+1 Z Cjku(] ))

gk gk Jk
(1 + Z C]kunq‘—lunk—I)—l) (Z C]kun+1u(k))
-> Cjkunﬂu Z Cjru J)u(k Z Cik un+1un+1 (7.29d)

7.k
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7.3 ISM for the Semi-Discrete Coupled mKdV Equa-
tions

In this section we consider the scattering and inverse scattering problems associated with
the 21 x 20 (I = 2™ ') matrix (7.1),

Vint1 _ 2l Qn Vi
l A ] - l R, I ] l Ty ] ’ (7.50)
where 0, and R, are expressed as eq. (7.25) and thus satisfy the constraints,

2m—1

Jj=0

Here and hereafter the superscripts (m) of Q™ and R{™ are often omitted for convenience.
We assume the rapidly decreasing boundary conditions,

Qn. R, -0 as n— +oo. (7.32)

Let ¥, (z) and @,(z) be solutions of eq. (7.30) composed of 2/(= 2™) rows and /(= 2™~1)
columns. We introduce the following matrix function of ®®) and ®®:

W0, 0] = o0 1(— )0 (2).
This satisfies a recursion relation
Wit [0V, 0] = (I — QuR)W, [0, 0P = p, W, [0, 0], (7.33)
where p, is defined by
m=14+0,=1+ 2%1 o2, (7.34)
=0

Using eq. (7.33) repeatedly, we get
Woo|U, ] = TW o[, 3],

where 7 is defined by

o] 2m—1

T= ﬁ Pn = H (1+ Z vfj”), (7.35)

n=—oo n=-—oo

and assumed to be finite. It should be noticed that 7 is a conserved quantity (see eq. (7.29a)).
We introduce Jost functions ¢, ¢, and ,, 1, which satisfy the boundary conditions,

b ~ é ] 2" as m — —oo, (7.36a)

On ~ 7 ] 27" as n— —oo, (7.36b)
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and
Ol -n
Y ~ l I ] z as n — +o00, (7.36¢)
N I,
Uy ~ [ 0 ] z as n — +oo. (7.36d)

It can be shown that ¢,27", 1,2™ are analytic outside the unit circle (|z| > 1) on the complex
z plane, and that ¢,2", 1,2~" are analytic inside the unit circle (|z| < 1) on the z plane,
when @,, R, go to O sufficiently rapidly as n — +00. We assume the following summation
representation of the Jost functions 1, and ,:

Z z ,n'), Z " K (n,n') (7.37)
where K (n,n') and K(n,n') are column vectors which consist of two [ x [ square matrices,

K(n,n'):lKl(n:nl)], K(n,n') = l%g ”

We substitute eq. (7.37) into eq. (7.30). Equating the terms with the same power of z, we
get the relations for K; and K,

Ki(n,n) =0, (7.38a)

QnKs(n,n) = —-Ki(n,n+1), (7.38b)
Kinn+j+1)=Ki(n+1,n+j)— QuKs(n,n+73) (>1), (7.38c)

R, Ki(n,n+j)=Ky(n+1,n+j)— Ky(n,n+j5—-1) (j>1), (7.38d)

and for K; and Ko,

Ky(n,n) = O, (7.39a)

R, K (n,n) = —Ky(n,n + 1), (7.39b)
QnKs(n,n+j)=Ki(n+1,n+j)—Ki(nn+j-1) (>1), (7.39c¢)
Ky(nyn+j+1)=Ko(n+1,n+j)— R Ki(n,n+35) (j>1). (7.39d)

Because a pair of the Jost functions ¢,, and ¢, or ¥, and 1,, forms a fundamental system
of the solutions of the scattering problem (7.30), we can set

b (2) = Yn(2)A(2) + Y (2)B(2), (7.40a)

bn(2) = 1 (2)B(2) — Yn(2)A(2). (7.40b)

Here the coefficients A(z), A(z), B(z) and B(z) are n-independent ! x [ matrices which are
called scattering data.

To derive the formula of the ISM rigorously and concisely, we assume that ), and R,

are on compact support. The result is, however, applicable to larger classes of potentials @),
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and R,. According to the asymptotic behaviors of the Jost functions (7.36a)—(7.36d), we
obtain

W—oo[¢, ¢] = W*w[(ga ] = Ww[waw] = Ww[@zaﬁ] =1, (7 413)
Walg, 6] = Wil 4] = O, (7.41Db)

A(z) = Weolth, ], (7.41c)

A(z) = =Wy [y, 9], (7.41d)

B(z) = W9, 9], (7.41e)

B(z) = Weol9, g]- (7.41f)

The expressions (7.41¢) and (7.41d) show that A(z) and A(z) are, respectively, analytic
outside the unit circle (|z| > 1) and inside the unit circle (|z| < 1). Using the relations
(7.41), we obtain the following relations among A(z), A(z), B(z), and B(2):

1

AT(;)A(z) + BT(;)B(z) =1l, (7.42a)
AT(Zl—*)A(z) + BT(%)B(z) 1, (7.42b)
AT(%)B(Z) - BT(;)A(Z) —o. (7.42¢)

These relations are written in a matrix form as

i s )56 S ]=-6 7]

which leads to the inversion of eq. (7.40),
1 - _. 1

Tl/;n(z) = (bn(z)AT(z_*) + gbn(Z)BT(Z_*)’ (743&)
rUn(2) = 6a(2) B () — Bal2) A1), (7.43b)

Equation (7.43a) is used in Appendix F.

7.3.1 Gel’fand-Levitan-Marchenko equations
Multiplying A(z)~! and A(z)~! from the right to eqs. (7.40a) and (7.40b), respectively, we

obtain
bn(2)A(2) ™" = U (2) + Yn(2)B(2)A(2) 7, (7.44a)
Gn(2)A(2) Tt = —tby(2) + Un(2) B(2) A(2) 1. (7.44D)
We substitute eq. (7.37) into the right-hand side of eq. (7.44a) and operate on both sides,

1
3 fcdz z ™t (m>n),

where C denotes a contour along the unit circle |z| = 1. Then we obtain

J=K(n,m)+ i K(n,n)Fe(n' +m),

n'=n
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where F and J are defined by

1 ,
—]{ B(2)A(z) tzW+m-lqy,

Fo(n' =
C(n—l—m) 2m Je

74 bnz " A(2) " 1, (7.45)
We notice that ¢,z~" and A(z) are analytic outside the unit circle C, |z| > 1. The inverse
of A(z), i.e. A(z)™', is given by

1 o

where A denotes the cofactor matrix of A. Thus the singularities of the integrand of eq.
(7.45) in |z| > 1 come from the zeros of detA(z). We assume that 1/det A(z) has 2V isolated
simple poles {21, 23, - - -, zon } and is regular on the unit circle C' (see eq. (7.54) for the reason
why we choose the number of poles to be even). We set

. -n -1
Joo,n_zll{}}o%z A(z) 7,

and use the residue theorem. Then the integral J is computed as

Z ¢”l z] _m ! + Joo,n5n,m

2Noo

=33 K(n,n)Ciz "™ + T b,

j=1ln'=n

where C; is the residue matrix of B(2)A(z)~" at z = z;. Defining
Fp(n' +m) ZCJ (' m)- ,
we arrive at the discrete version of the Gel’fand-Levitan-Marchenko equation,

Z K(n,n")F(n'+ m) = Jooubnm (m > n). (7.46)

nl_

Here F(n) is defined by

F(n) = Fe(n) + Fp(n)

1 2N
- j[ B(2)A(z)"' 2" Mz + 3 Gy
7j=1

2m Jo

Similarly, we operate

1 1
m— >
o ]2 dz z (m >mn)
on both sides of eq. (7.44b). Then we obtain

J=—-K(n,m) Z (n,n')Fo(n' +m),
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where

Fc(n'+m):2i7ri7403( VA(2) Lo m1d,

J = L% Gn2"A(2) Lz g,
2mi Je
We notice that ¢,2" and A(z) are analytic inside the unit circle C, |z| < 1. We assume that
1/detA(z) has 2N isolated simple poles {Zz1, Zo, - - -, Zoy } and is regular on the unit circle C.
We set
jO,n = ll_%% énznA(z)—l’
and use the residue theorem. The integral J is given by

2

’(E (Zk)ckim ! + jO,ndn,m

M= ﬁMz‘
WK

K(n,n")Cyz} m—l Jon0nm,

ES
1
—

n!

where C}, is the residue matrix of B(z)A(z)™! at 2z = z. Defining
2N
Fp(n'+m) ==Y Ciz} AL

k=1

we obtain the counterpart of the discrete Gel’fand-Levitan-Marchenko equation,
K(n,m)— > K(n,n)F(n'+m) = —Jonbnm (m >n). (7.47)

Here F(n) is defined by

F(n) = Fg(n) + Fp(n)

= if B(z)A(2)"'2"" 1dz—ZC’k‘” g

2mi Je 1
From eqs. (7.38b) and (7.38d), we obtain

Ky(n,n) = (I = RyQu) ' Ka(n+1,n+1)

H(I RiQi)~ sz‘l I,

i=n

where lim K (n,n) = I isused. Similarly, from egs. (7.39b) and (7.39¢) with Jim Ki(n,n) =1,
we obtain

Ki(n,n) = (I = QuRy)'Ki(n+1,n+1)

— I - Qi Hp‘1 L.

i=n
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Thus, it is natural to set

K(n,m) = k(n,m) f[([ — RiQ;)™" = k(n,m) li_o[ pit (m>n), (7.48)
K(n,m) = k(n,m) f[([ — Q:R;) ' = R(n,m) li—o[ p;t (m>n). (7.49)

Here k(n,m) and k(n,m) are column vectors whose elements are [ x [ square matrices:

(n,m) = [ 1 (n, m) ] L R(nym) = l Fa(n, m) ] |

Ka(n, m) Ko(n,m)

In particular, x(n,n) and (n,n) are given by

sy =] 1. (7.50)
k(n,n) = é : (7.51)

Putting eq. (7.48) with (7.50) and eq. (7.49) with (7.51) into eq. (7.38) and eq. (7.39),
respectively, we obtain the relations for k1, ko, K1, and Ko,

_Kfl(nan + ]-) = Qn:

—Rao(n,n+1) = R,

ki(n,n+7i+1)=puki(n+1,n+7) — Quka(n,n+j) (>1),
Ru.k1(n,n+j) = ppka(n+1,n+j) —ke(n,n+j—1) (j>1),
Qnka(n,n+j) = puRi(n+1,n+j) —ki(n,n+j5—-1) (j>1),
Ro(n,n+7+1) = ppka(n+1,n+7j) — Rpka(n,n+j) (j>1)

In terms of k¥ and &, the Gel’fand-Levitan-Marchenko equations (7.46) and (7.47) for m > n
are rewritten as

O

K(n,m) + (I) F(n+m)+ If: k(n,n"YF(n' +m) = 0 (m > n), (7.52)
k(n,m) — é F(n+m)— ,_i K(n,n')F(n' +m) = g (m > n). (7.53)

It should be noted that the scattering problem (7.30) gives the symmetry properties of
the scattering data. Iterating eq. (7.30), we can prove that A(z), A(z) are polynomials in z
of even degree and B(z), B(z) are polynomials in z of odd degree. This fact leads to

detA(z) = detA(—=z), (7.54)

detA(z) = det A(—2), (7.55)
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which mean the eigenvalues z;, z; appear as positive-negative pairs. Further, we have
B(2)A(z)™' = =B(=2)A(~z
2) ' =-B(— -z

A
B(z)A(z)” 2)A(

Y

) (7.56)

)L (7.57)

Therefore, we can simplify the forms of F' and F as

2Fpr(n+m), m=mn+2j—1,
F(n-l—m):{ R(O ) m=n+2; j>1,
1 1 1 N —(n+m)-1
Fr(n+m) = 2—7”/0 B(2)A(z) 'z ™ e + 3 Oz, :
R j=1
and _
- 2Fgr(n+m), m=n+25—1,
F(n—i—m):{ R(O ) m:n+2§' j>1,

_ 1 _ N
Fr(n+m) = = /C B(2)A(z)'Z" e = > Cpzpt™
R k=1

Here C'r denotes a contour along the right-half portion of the unit circle C'.
The symmetry properties of F' and F' give rise to those of x and &. From egs. (7.52) and
(7.53), we obtain

/{IR(na m)a m=n-+ 2] - la

/ﬁl(n7m):{ O m:n+QJ ]217
_ Kor(n,m), m=n+25—-1, .
sty = { PG L s

Considering the above symmetry properties, we obtain the simplified Gel’fand-Levitan-
Marchenko equations for k1x and Kog:

kir(n,m) = 2Fg(n+m) — 4 i i kir(n,n")Fr(n" +n')Fr(n' +m), (7.58)

n'=n+2 n''=n+1
n! —m=even n'' —n=o0dd

Ror(n,m) = —2Fg(n+m)—4 ) > Ror(n,n")Fg(n" + n')Fr(n' + m), (7.59)
n'=n+2 n'’'=n+l1
n’ —n=even n’’—n=odd

where m — n is a positive odd number.

7.3.2 Time dependence of the scattering data

Under the rapidly decreasing boundary conditions (7.32), the asymptotic form of the Lax
matrix M, for the sd-matrix mKdV equation (7.4) is given by

22I O
Mn—>[0 z%I] as n — £oo.
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We define time-dependent Jost functions by

From the relations

we obtain

d)n,t = (Mn - ZQI)d)m (ﬁn,t = (Mn - ?I)d)n (760)
We put the definitions of the scattering data,

$n(2) = Un(2)Al2,1) + ¢ (2) B(2, 1),

$n(2) = Un(2) B(2, 1) — 9n(2)A(2, 1),

into eq. (7.6 ) Then taking the limit n — 400, we obtain the time dependences of BA™!,
C; and BA™!, Cy. They are respectively calculated as

A(z,t) = A(z,0), (7.61a)
B(z,)A(z,1) " = B(z,0)A(z,0) e~ (=), (7.61b)

Cj(t) = Ci(0)e 7 7, (7.61c)

and

1 — 212—% t
Faln,t) = 5= [ B(0)A(z,0) e (7 )tdz-i-ZC g TR
) =
F _ 1 B 1 1n-14(22= %)t L (@-B)
r(n,t) = o /e B(z,0)A(z,0)~ dz — ch lg 2
# k=1
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7.3.3 Initial-value problem

Thanks to the constraints R,, = —Q,‘; and @), R, = —o,1, we have some additional relations
besides eqgs. (7.54)—(7.57). The first additional relation is

detA(z) = {detA(%)}*, (7.62)

which is proved in Appendix F. This relation restricts the numbers and the positions of the
poles of 1/detA(z) and 1/detA(z), i.e.

N=N, z=-—- (7.63)

-
2

Due to eq. (7.42c), we have the second additional relation,

B2)A(:)™ = {B)A) Y,
which leads to o
B(2)A(2)™' = {B(2)A(2)™"}' (on |2| = 1), (7.64a)
Cy = —;20,3 . (7.64D)

The relations (7.63) and (7.64) give a relation between Fg(n,t) and Fgr(n,t),

So as to make the ISM applicable to the sd-cmKdV equations, we have to take account of the
internal symmetries of @), and R,, defined by eq. (7.25). Considering the scattering problem
(7.30) with the potentials Q™ and R{™ for m > 2, we can show the following properties of
the scattering data.

Proposition 3. (1) The determinant of A(z) satisfies
detA(z) = {detA(z")}",

as a function of z. Thus the poles of 1/detA(2) outside the unit circle appear as pairs
which are situated symmetric with respect to the real axis. Therefore, we replace N
in Section 7.3.1 with 2N and set the values of 2/V poles in the right portion outside
the unit circle C' as
S

2251 _*gj + 11 ?’]e A j=1,2,...,N, (766)

Z9j = 2551 =& — Iy = aze™,
where .

a; > 1, 0< Gj < 5,

for §; # 0. The condition (7.66) should be interpreted as follows. If §; = 0, the
corresponding pole does not need its counterpart. The values of the remaining 2V
poles in the left portion outside the unit circle are given by

RIN+k = Rk, /€=1,2,...,2N.
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(2) The reflection coefficient B(z)A(z)™! on |z| = 1 is expressed as

2m—1

B(2)A(z)"' =rO1 4 > r®e,.
k=1

Here 7 and 7 are complex functions of z and ¢ which satisfy

rO(z7) =rO%), rP() =r®().

(3) The residue matrices {Cy, Cy, - - -, Con_1,Con} are expressed as

Oq . "= )
02];1:6]- T+ Z Cj €,
k=1
2m—1

CQJ' = Cgo)*][ + Z C;k)*ek,
k=1

j=1,2,...,N,

where c;o) and cg-k) are complex functions of ¢.
A proof of the statements is given in Appendix G.
Taking account of the above conditions, we obtain explicit expressions of Fg(n,t) and

Fr(n,t) for odd n,

1 “1,-n-1 2l B
FR(n: t) = % ‘/CR B(Z)A(Z) z dz + ]gl Cjzj
L O, n 14 (O n 1y S~ k), m 1 (ke
—_ —n— *,n—1y —n— *_n—
omi /CUR{(T 2 )T+ k§1 (r®zn 4By )ek}dz
N (0) (0) 2m—1 (k:) (k;)
—n—1 * x—n—1 —n—1 * _x—n—1
+'Z1{(Cj Z; +c¢;7 2 T+ kz (c; ' z; +c; 2] )ek},(7.67)
J= =1
Fp(n,t) = Fr(n,t)T
1 2m—1
= 2—7.‘.i CUR{(T(O)’Z_”_I + r(O)*zn_l)][ — kgl (T(k)z—'fl—l _|_ T(k)*zn_l)ek} dZ
N ) ) 2m—1 ) *)
—n—1 * x—n—1 —n—1 * % -—m—1
+ Zl{(cj E7 R )1 — 1621 (c; 2"+ 7 )ek},(7.68)
j= =

where Cy g denotes the quadrant (upper-right portion) of the unit circle contour C. We see
that the coefficients of T and {e;} in eqs. (7.67) and (7.68) are real. Thus, a pair of Fy
and —Fy is expressed in the same form as eq. (7.25), as is expected from the viewpoint of
successive approximations for the Gel’fand-Levitan-Marchenko equations (see Appendix H).
Because B(z)A(z)~! and C; depend on ¢ as egs. (7.61b) and (7.61c), the time dependences

) (k)

of 7@, +*) and ¢\, ¢

;s ¢; are given by

rO(z,8) = rO(z,00e” =) 1)z 1) = ¢ B, 0)e ()
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¢ (t) = ¢ (0)e " P (t) = P (0)e )

It should be noted that FR( t) and Fg(n, t) for odd n are expressed as

2m—1

FR(n, t) = f(O) (n: t)]I + Z f(k) (na t)eka
k=1

m.w|’—‘
&.N|'-‘

2m—1

Fr(n,t) = f(ont][—Zf (n,t)ey,

where the real functions £ (n,t) and f®)(n,t) satlsfy the linearized dispersion relation,
o fO0n+1,t) — fFO2n+3,t) + fO2n-1,t) =0,
Af®2n+1,t) — fO2n+3,t)+ fB(2n—1,t) =0.

Combining eqgs. (7.58) and (7.59) with the relation (7.65), we arrive at

’{IR(na m; t)

=2Fg(n+m,t)f =4 > S kir(n, ng;t)Fr(ng +ni, t)Fr(ng +m,t)t, (7.69)

ni=n-+2 nao=n+1
n1—n=even ny—n=odd

Ror(n,m;t)

= —2Fg(n+m,t)—4 Y Ear(n,no;t)Fr(ng + ny, t) Fr(ny + m,t), (7.70)

ni=n+2 no=n++1
ni1—n=even ny—n=o0dd

for m > n, m — n = odd, where Fg(n,t) for odd n is given by eq. (7.67).

Now the initial-value problem of the sd-cmKdV equations can be solved in the same steps
as in section 2.6. The same procedure is applicable to solve the initial-value problem of the
higher flows of the sd-cmKdV hierarchy. For instance, we can consider the Lax equation
(2.27) with the L,-matrix (7.30) whose time derivative is replaced with the second flow of
the sd-cmKdV hierarchy. As a solution of such a Lax equation, we get an M,-matrix which
contains from z* to 1/2* terms. Correspondingly, the time dependences of the scattering
data (7.61b)—(7.61c) should be replaced by, for instance,

B(z,)A(z,t) " = B(z,0)A(z,0) 'e "7t

Ci(t) = Cj(O)e(z? el

Employing the above time dependences, we can solve the initial-value problem of the second
flow of the sd-cmKdV hierarchy:

av(z)

5t (1+ Z UJ)Z){(1+ Z 7(11212) an)rz (1+le fzk)l)v(%
k=0
M-1

- (T - X

M-1 i
+2(Zvn+1v(’“)+z v )i — o)}, i=01,..., M- 1.
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7.3.4 Soliton solutions

To construct soliton solutions of the sd-cmKdV equations, we assume the reflection-free
condition, i.e. B(z) = B(z) = O on |z| = 1. Then, Fg(n,t) and Fg(n,t) for odd n are given
by

(=)
J

ZC " i) =C(0)e T T, (7.71)
—n 1 ~ A (213—%2)’5
To solve eq. (7.58) (or eq. (7.69)) Wlth eqs. (7.71) and (7.72), we set
kir(n, m) Z Pi(n 22t (m —n = odd). (7.73)
Substituting eq. (7.73) into eq. (7.58), we have
2N 2N o 22 B
—4 — P, (n)Cy(t)C;(t) = —2I. (7.74)
-G T J
In terms of a matrix S whose elements are defined by
N = 2
Sk = ol — 4 — — —~Ci(t)C;(t)
G e
1
= 6l +4 C#)'C;1t), 1<lk<2N
wd + Zz2nzl*2n(zjzzk2 1)(2222‘2 1) 1()'C5(1), S LR S 2N,
eq. (7.74) is expressed by
Siooce Sian
Son1 rr Sanen 2N

Similarly, to solve eq. (7.59) (or eq. (7.70)) with egs. (7.71) and (7.72), we set
Kor(n,m) Z Pj(n ("+m) " (m—n=o0dd). (7.76)

Substituting eq. (7.76) into eq. (7.59), we have

2N 2N z2n+2 1

V4 — _
) —4 k - —P(n)Cy(t)Ci(t) = —21I. 7.7
i G- AN (7.77)
Using a matrix S,
2N 22n—|—2 1 3
Sy = oyl — 4 J - —Cy(t)C;(t

2N 1

— 6lk1+4z on *Zn(ZQ ) 1)( 350 I)Cl(t)cj(t)f’ 1<,k <2N,

jllzj




7.3. ISM FOR THE SEMI-DISCRETE COUPLED MKDV EQUATIONS 97

we rewrite eq. (7.77) as

Sy Sian
(P1P2"'P2N) : : =-2(11---1). (7.78)

SZNl S2N2N

Equations (7.75) and (7.78) are readily solved. Thus the N-soliton solution of the sd-cmKdV
equations (7.28) is given by

2N
_ 1
Qslm) (t) = —kir(n,n+ 1;t) = — Z Pr(n)Cy(t) o
k=1 k
1. 1
Cl (t) *2n+2
<1

=—2(JI---1)587" : (7.79a)
—_——
2N
1
CQN(t) * 242
2N
2N _ 1
R{™(t) = —Far(n,n+1;t) = — > Pi(n)Cj(t) =72
Jj=1 “j
1
Cl(t) 2n+2
2’11
_ Co(t)——
=2(JII---1)S5" o )zS"“ . (7.79b)
S——— .
2N .
1
Con(t) —5n72
2N

Strictly speaking, eq. (7.79) includes solitons, breathers, and their coexistence. To extract
soliton solutions, we should impose appropriate conditions on the residue matrices {C,},
{Ck}. As a criterion of soliton, we employ the condition that each solitary wave observed in

the first conserved density,
2m—1
log{1+ Y= (v{(1))*}, (7.80)

=0

has a time-independent shape. Calculating an asymptotic form of eq. (7.80) at n — +o0,
we find that the criterion gives necessary conditions

ng_légj = CQjCQj_l = ngégj_l = égj_102j = O, _] = 1, 2, cee, N. (781)

Equation (7.81) is simplified to

2m—1 .
Y (@)?=0, j=1,2,...,N. (7.82)
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To check the sufficiency of the conditions (7.81) or (7.82), we consider the N =1 case. For
this purpose, we set

_ 1 1 . 2m—1 . ~ 2m—1 ~
C, = — 20;’ = _F(C{O) 1- Z cgk) ek) = c§°)11+ Z cgk)ek,

_ 2m—1
02 = 5&0)*1_'_ Z Egk)*ek,
k=1
1 .
zZ1 = = 87W—|—10’ W > 0,
21
o0 sinh 2W
2m—1
2 0P
=0
Here eq. (7.82) for N =1 gives
2m—1 .
> @(0)” =o. (7.83)
=0

With the help of the conditions (7.81), eq. (7.79) for N =1 yields
sinh 2W
2m—1 )

42 & (0)?
=0

. {C_vl (0)e2i{n0+(cosh 2W sin 20)t} + 62 (0)ef2i{n9+(cosh 2W sin 20)t} }’ (7.84&)
R{M(t) = QUM (1) (7.84b)

QU™ (1) = sech{2nW + 2(sinh 2WW cos 20)t + ¢}

It is straightforward to show that eq. (7.84) can be expressed as eq. (7.25) with real co-
efficients v()(¢) of T and {ex}. Thus we have checked in terms of the inverse problem of
scattering that the conditions (7.25) are satisfied under Proposition 3 and the conditions
(7.81), in the case of the one-soliton solution.

Equation (7.84) can be expressed explicitly for each component as

sinh 2W
2m—1 .
\j RO

2
j=0

v®(t) = sech{2nW + 2(sinh 2WW cos 20)t + ¢o}

n

. {égi)(O)QQi{n0+(cosh2Wsin20)t} + Egi)*(0)672i{n0+(cosh2Wsin29)t}}
1=0,1,...,2m — 1. (7.85)
The soliton solution (7.85) exhibits an interesting property. Because there are two carrier
waves in one envelope soliton, the shape of soliton observed in (v{! (¢))? periodically oscillates

in time. It is observed for (7.85) that the summation of (v{) (¢))? with respect to components,
i(=0,1,...,2m —1)

3 (09 (1))? = sinh? 2W sech?{2nW + 2(sinh 2W cos 20)t + ¢y},
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has a time-independent shape, as is expected. Thus, eq. (7.85) with eq. (7.83) is interpreted
as the one-soliton solution of the sd-cmKdV equations (7.28) with M = 2m. The structure of
the one-soliton solution is essentially the same as that for the continuous cmKdV equations
(3.57) (see Section 3.3.2). This result shows that the conditions (7.81) are necessary and
sufficient for eq. (7.79) to be the pure N-soliton solution.

A comment is in order. Ohta [70,71] obtained an N-soliton solution for sd-cmKdV
equations. We conjecture that our result coincides with Ohta’s result by a particular choice
of those parameters.

It is not evident whether eqgs. (7.79a) and (7.79b) can be expressed as

2m—1
QM (1) = v+ Y v (t)ex, (7.86a)
k=1
2m—1
RIM(t) = —v@) 1+ Y o (t)ey, (7.86b)
k=1

without using the products of e; such as e;e;, e;eje;. Further, v® %) should be real in egs.
(7.86a) and (7.86b). Noting the fact that summations and products of real quaternions are
real quaternions, either eq. (7.86a) or eq. (7.86b) can be proved for m = 2 (four-component
sd-cmKdV equations) by using the Neumann-Liouville expansion (see Appendix H). It is

left for a future problem to prove both egs. (7.86a) and (7.86b) for M = 2m > 4 rigorously.

7.4 Full-Discretization

We can obtain an integrable full-discretization of the matrix AKNS formulation and, as a
reduction, an integrable full-discretization of the cmKdV equations by considering a time
discretization of the sd-cmKdV equations. For this purpose, we choose the form of the Lax
pair in the full-discrete case, L, and V,,, as

_ [ zI @y
L= ] (7.87)
I o | chi @ QnDyp + cQn
V., = l I, ] +6t{z [ D, + 2 [ R~ D.R. . 0 ]

%[ 0 A Qs — dQuy 1 +ilAn s H (7.88)

Here a and d are constants. A, and X,, are p X p matrices. D,, and Y,, are ¢ X ¢ matrices. As
was mentioned in Section 2.7, the tilde ~ denotes the time shift in discrete time [ € Z. 6t is
a difference interval of time. It is remarkable that we do not change the form of L,-matrix
from the semi-discrete case (see eq. (7.1)). Substitution of eqs. (7.87) and (7.88) into eq.
(2.33) gives

1

&(Qn - Qn) - ch—H - d@nfl - Xn—HQn + QnYn - (Il - Qan)Ananl
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+ Qn+1Dn+1(IQ - RnQn) = O, (7893,)

%(Rn —R,) +dRy1 + Ry 1 — YR, + R, X, — (I — RyQ,) DR,y
+ Ryp1Apii (I — QuRy) = O, (7.89b)
Xng1 = Xn = c(QuRn1 — Qui1 Ry), (7.89c)
Yoi1 = Yo = d(Rns1@Qn — Ru@no1), (7.89d)
(I — Qan)An = A1l — QuRy). (7.89%)
(I, = RyQp) Dy = Dy (I — RaQy), (7.89f)

The above set of matrix equations are interpreted as an integrable time discretization of eq.
(7.3). To obtain full-discrete (fd-) cmKdV equations, we choose

c=d=0, X,=0, Y,=0.
Further we assume that @, and R,, are square matrices expressed as eq. (7.25) and
An = Dn = _Fnla

where '), is a scalar variable. Then eq. (7.89) reduces to fd-cmKdV equations,

51t(~() vy (1+2ni:1 V(@9 — o)), 5=0,1,...,2m 1.
o1 _— (7.90)
Ty (1+ Z W2) =1, (1+ Y 5P?),
k=0

Since the spatial part of the Lax formulation for the fd-cmKdV equations is common with
that for the sd-cmKdV equations, we can apply the ISM to the fd-cmKdV equations in the
same way as in Section 7.3. The only essential difference lies in time dependences of the
scattering data. Assuming the boundary conditions,

vfzj)—>0 as n — *£oo, 7=12....m,
r,—-1 as n— +oo,

we obtain the time dependences of the scattering data in the full-discrete case:

A(z,l) = A(z,0),

Bl A=)~ = Bz 0)A(z,0) [ 1222}
9 9 - ) 9 1 . 5t/22 )
1—6t22\!
(D=0 ——22% )
ci() c](o>(1 - &/Z;)
By use of the above time dependence, the one-soliton solution of eq. (7.90) is computed as

sinh 2W

\/Qsz 1 (0)2
2—0,1,...,2m—1,

v (1) = sech{2nW + 2al + oo} el (0)e2tno b} | G0 % () 2itno+bl}
(1) { 0 i 1 :

n
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where W > 0,
2m—1

> @) =0,

=0

sinh 2W

4 §|c§ﬁ<o>|2

‘o (1 — ot e72W7210)(1 Ste™ 2W+210)
- (1 — &t ezw+210)(1 S5t e2W— 210) ’

g (1 — 5t e2W—20)(1 — §t ¢=2W—20)
o (1 — 6t e2W+2i0)(1 — §t e—2W+2i0)’

0 —

In the continuum limit of time (§¢ — 0), the one-soliton solution reduces to that of the
sd-cmKdV equations due to the following relations,

a = &tsinh 2W cos 260 + O(6t?),
b = &t cosh 2W sin 26 + O(6t?).

The fd-cmKdV equations possesses an infinite series of conserved quantities in common with
the sd-cmKdV equations (see eqgs. (7.29a)—(7.29d)).

7.5 Discrete Coupled Hirota Equations

We can transform the sd-cmKdV equations and the fd-cmKdV equations into other discrete
integrable systems of physical interest. For instance, if we take new dependent variables as

,ngrz - V( )a Ugrg—l = _17(1Z)7

n

the sd-cmKdV equations (7.24) are cast into a new coupled version of the self-dual network
equations [5,101],

! Vi _ o _ )
M—1 ot —In T An4l
- 5JVn(j )2
7=0

1 oI i
M-1 s ot :anl_vn()a

1— Z EjIn])

7=0

with £; = 1. Setting one variable, e.g. v{?); to be a constant in eq. (7.24) and shifting the
variables v by v@ — a;v® + b;, we obtaln a coupled version of the generalized Volterra
model [101]:

a(l) Z ]
g: :(a—l-Zij)ﬁ—nyv ) Unt1 — 2)1)

In what follows we consider another interesting transformation for the sd-cmKdV equations
and the fd-cmKdV equations.
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7.5.1 Semi-discrete coupled Hirota equations

Let us consider a transformation for the following form of sd-cmKdV equations,

avﬁf)
ot

(HZ )l -0, i=0,1,...,2m—1. (7.91)

In an analogous way to the continuous case (see Section 3.3.3), we introduce a transformation
of dependent variables to obtain sd-cHirota equations,

Ur(le—Q) +ipD) = HCntasin2et) ()

j=12,...,m. (7.92)

_v7(l2j72) + ivr(l2j71) — efZi(0n+asin29-t)7n7(Lj),

Substitution of eq. (7.92) into eq. (7.91) yields the sd-cHirota equations in a general form,

1q7(fg ia cos 20(1 — Z qy )(qr(fl —¢9)

+ asin 29{(qn+1 + q( — 2447 -> q ® k) ( qn—|— + qr(ﬂl)} =0,
k=1

17"% — ia cos 29(1 — Z rék)an)) 7“” —r9) (7.93)
— asin 20{( nll A T S (r D+ )} =0,
k=1
i=1,2,...,m.
Assuming the reduction
rd) = —g;qV*, o5 =41,
we obtain the sd-cHirota equations,
iqnj,z ia cos 20 (1 + Z xlg®)| )(q,(fll )
k=1
+asin20{(¢), + ¢, —2¢9) + Z ela® (a7 + a2} =0,
j=12...,m. (7.94)

Pulling back the transformation (7.92) to the level of the Lax representation, we obtain
an explicit Lax pair for the sd-cHirota equations (7.93). The obtained Lax formulation is
summarized as follows.

We introduce the following form of the Lax pair,

_ ei0H1 O ei9H1 Qn 1 O
Ln =2z l 9] ] + l eiHHan 10 ] + ; l ei9H2 ] ’ (795)
_ 2 I O Qn
M, = aqz l 0 ] +z l VR oi0H () ]

(0] —R,e01Q, e i0H: ] + l 0] iH, sin 26

i0Hq —i60H>
+ lO e Qne ]+i[0 I]} (7.96)

l —Q, 2R, om0 iH sin 20 0] ]
1
V4 Rn O Z2



7.5. DISCRETE COUPLED HIROTA EQUATIONS 103

where [ is the p X p unit matrix, Q,, and R, are p X p matrices. The constant matrices H;
and H, are assumed to satisfy

HlQn - QnHQ = _2F1QnF27
HQRn - RnHl = 2F2RnF1

Here F; and F5 satisfy eq. (3.70). We notice that the following relations hold:

e~ ivH1 Qnein2 = cos(2y)Q, + isin(2y) F1 Q, F,
ein2Rne—in1 — COS(Qy)Rn + ISIH(Qy)FQRTLFl

Substituting eqgs. (7.95) and (7.96) into eq. (2.27), we get a set of matrix equations

1Qnt —iac0s20(Qni1 — Q1 — Q1R Qn + QuRn Q1)

+asin 20{F1(Qni1+ Qn-1 —2Q0)Fo — F1Q, 11 YRy QD — QuRuF1Q, 1 F2} = O
(7.97a)

iRy — 1008 20(Rps1 — Rt — Rug1 QuR + Ry QR 1)

—asin20{F5(Rps1 + Rn1— 2R F1 — bR, 1 F1Qu Ry — RuQuFoR, 1 F1} = O.
(7.97b)

We recursively define 2! x 2™~ matrices H\™, H™, F\™ ™. Q(m and R(™ by egs.
(3.72)—(3.74) and

(m) (m+1) 7, R(m) (m+1)1 1
(m—|—1) _ Qn qW, 2m—1 (m—|—1) _ n q'n, 2m
QY = P [y —R(M) ] , Ry = l P Ly — QM)

Then putting Q™ R(™ etc. into Q,, R, etc. in the matrix equations (7.97), we obtain
the non-reduced sd-cHirota equations (7.93).

7.5.2 Full-discrete coupled Hirota equations

Let us introduce a transformation of dependent variables,

V=2 4 1y @-1) = gZi(natih) o),

7=12,...,m, (7.98)

sin 3 _
I'n=—c—=—"—75n :
6t sin (2 + ,@)] (7.99)



104 CHAPTER 7. INTEGRABLE DISCRETIZATIONS

Substitution of eqs. (7.98) and (7.99) into the fd-cmKdV equations (7.90) gives

1 tan 3
(1) _ o) 1— (k) (k (9)
5@ —a) - 5ttan(2a+ B) J”“( Zq )@ = ai)
tan ¢ (k)1 () B 1 0=
+ T{Juﬂ( Z an, ) qn—|—1 +¢:21) — (@) + a5 )}— 0,
1 tan (3 m . )
() _ () ; 1— k) (&) (700)  _ .()
g =) - léttan(Qoz + ﬂ)j"“( szn o) = rilh)
_tanp Gy _ (7)1 0] —
5 {jn+1<1—2r ) L) = (FY) 4 b )}—O,
jn+1(1 B Z qr(lk)rék)) = (1 _ Z ~£Lk)7:£Lk)).
k=1 k=1
Choosing
t t
an = a cos 20, an = asin 26,
dttan(2a + ) ot

1
= a=0- 5 tan~'(a dtsin20), B = tan"'(a 6tsin26),

we obtain the fd-cHirota equations,

1
L@ = ) — o0 o (1 35 ) @ — 42
k=1

+ asin 20{jn+1<1 + Z%Iq& )(qffl +q9 ) — (@9 + qg>)}: 0, j=12...m,
k=1

m m
dn (142 auld®?) = ja(1+ 3 aulg® ), (7.100)
k=1 k=1
where we have assumed r{) = —o;¢)*, o; = +1.

A Lax pair for the fd-cHirota equations is given by

eiaH1 O eiaH1 Qn 1 O
Ln—zl O]+leiaH2Rn 0 ]4';[ eiaHQ]a

[ et L sinf [.[0 s 0] Qpelfiz
o oAt sin(20z + 5) In —elfH ellatPia  e~lath O

a+ﬂ HQR —iaHy
l _ﬁnei(a+ﬂ)H1 Qn_lefiaHQ ]
1
z

ei(a—l—ﬂ)Hl anle_iaH2 + l _eiﬂHl
Ry e‘ﬁH1 0] 22 o

Here H{, Hy, Q, and R, are defined in the same way as in the continuous and the semi-
discrete case.
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7.5.3 ISM and conserved quantities

As we have explained, the scattering problem both for the sd-cHirota equations (7.94) and
the fd-cHirota equations (7.100) is given in terms of a 2™ X 2™ matrix,

o] o] g (] 101

\112 n+1 elaH2 Rn %e]aHz \IIQn

Here

o — { 0 for the semi-discretization (7.102)

0 — Ltan '(adtsin20) for the full-discretization.

To simplify the analysis, we consider a gauge transformation,

Here g, is given by

e—i(n0+ta sin 20) H1
9n =

e—i(n¢9+tasin20)H2 ] >

for the semi-discrete case and
e—i(na—l—lﬂ)Hl
gn =

e—i(na—l—lﬂ)Hg ‘| ’

for the full-discrete case (I: discrete time). Then the scattering problem (7.101) is changed
into the standard form,
q>1n—|—1 _ 21 Qn q)ln
l¢2n+1]_[Rn %I]l¢2n]’

where the transformed potentials are

_ ,—i(nf+tasin 20)H i(nf-+tasin 20)H.

Q e i(n asin 20)Hy Q el(n a sin 20) 2,
—i(nf+ta sin 20) H i(nf-+tasin 20) H:

Rn =€ ( VH> Fne ( )H

Y

for the semi-discrete case and

Qn — e—i(na—Hﬁ)Hl Qnei(na—klﬂ)Hz’
Rn — e—i(na—l—lﬂ)HgRnei(na—l—lﬂ)Hl’
for the full-discrete case. These are, respectively, Lax formulations for the sd-cmKdV equa-
tions and the fd-cmKdV equations. Thus, we can solve the initial-value problem and con-
struct multi-soliton solutions and conservation laws for the sd-cHirota equations and the
fd-cHirota equations. In fact, the N-soliton solution of the sd-cHirota equations (7.94) with
a =1, o, = 1 is obtained by combining eq. (7.79) and eq. (7.92). The N-soliton solution
exhibits remarkable behaviors as well as the N-soliton solution of the continuous cNLS equa-
tions (see Section 3.3.1). In Fig. 7.1 and Fig. 7.2, we have two pictures of the two-soliton
solution (N = 2) in the two-component case with assuming the following form of the residue

~ (03] ﬂl ~ 0 0
Cl—lo 0], 02_[—f QT]’ (7103&)

matrices:



106 CHAPTER 7. INTEGRABLE DISCRETIZATIONS

~ ay [ = | 0 0
03:l02 02], 04_[_@ a;]. (7.103b)

We remark that |¢{)| and |¢?| in Fig. 7.1 and Fig. 7.2 are independent of the value of
(cf. eq. (7.92)).
The first three conserved densities for the sd-cHirota equations and the fd-cHirota equa-

tions are given by
I = log(l — qu)rg)),
J

Iy = cos 2u r® 4 ¢@r@ 1y L igin 20 S (q¥),r@ — ¢@)r ),
T'nt ' n+1'n n +
Y J

I3 = ( ZQn+1Tn+1){COS4aZ J) +q ) () )
isi . j j 1 : . . .
+ isinda Z(Q"J“LQT”J - qg)rgj)q)} _ §{COS 20‘2_(515»217“7(1]) n qé’)rﬁl)
j

+ isin 2« Z(qﬂln({) — q,(f)rgll)} + Z quj—alr'gj—})—l Z qg)ﬁ(p;
j J /

where « is given by eq. (7.102).

There are plural ways of full-discretization of the one-component Hirota equation. In fact
we have some freedom to determine the linearized dispersion relation of fd-Hirota equation
(see [7]). However, as far as we have considered, there is no such freedom in the multi-
component case.

7.5.4 Continuum limit

In the continuum limit of time (6¢ — 0), we can equate j, to 1. Thus, we can check that
the fd-cHirota equations and the Lax pair reduce to the sd-cHirota equations and the Lax
pair. Now we consider the continuum limit of space. We denote by dx the lattice spacing of
the sd-cHirota equations. We rescale ¢ by

1
t— —(6x)2t’

and set

¢O(t) = 6z - ui(x,t), 2z =ndz,
g

pOT 0= 5
Then, we can rewrite the sd-cHirota equations (7.94) as

. . (2cos(2udx 1 m
I'U/j,t - I’Y{#u],x + guj,a;ajg; + 2 Z 0k|uk|2 . uj,LE + 0(61,‘2)}
k=1

+27M{“j,m +2) okful® - uy + 0(5552)} =0.
k=1
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Therefore, with the help of a Galilei transformation, we obtain the cHirota equations (3.77)
in the continuum limit of space (when o; = 1). We remark that the restriction § = O(dz) is
necessary for taking the continuum limit of both evolution equations and the Lax pair (see
egs. (2.28) and (7.95)). In the case a = 1, # = 7 /4, the sd-cHirota equations (7.94) reduce
to the sd-cNLS equations,

ig) + (@) + ¢, - +Zalq @9 +¢P) =0, j=1,2,...,m. (7.104)

Obviously, this system is a natural multi-field generalization of the sd-NLS equation (eq.
(2.32) with r, = +¢;) and reduces to the ¢cNLS equations (3.49) in the continuum limit of
space. However, the Lax pair for eq. (7.104) in terms of 2™ x 2™ matrices cannot be reduced
to the Lax pair for eq. (3.49) in terms of (m + 1) x (m + 1) matrices if m > 2. This case
gives a counter-example for eq. (2.28) (cf. remark (b) in Section 2.7).

7.6 Summary

In this chapter, we have presented a new multi-component extension of the discrete version
of the ISM formulation proposed by Ablowitz and Ladik. We have obtained an integrable
discretization of the matrix AKNS formulation and have given a method to construct con-
servation laws. Considering a reduction similar to the continuous case, we have obtained an
integrable discretization of the cmKdV equations. By applying the ISM to the model, we
have solved the initial-value problem and have obtained multi-soliton solutions. We remark
that both of the constraints (7.31) play an important role in the process of the ISM, while
only the former constraint is necessary for the continuous theory. This has its origin in the
fact that eq. (7.3) does not generally allow us to assume the reduction R, = +Q/, because
of the order of the products. To consider the reduction R, = :th, we should impose the
additional restriction Q,R, = R,@, = scalar on (), and R,,.

By means of a transformation of variables for the discrete cmKdV equations, we have
obtained a discrete version of the cHirota equations. The discrete cHirota equations include
discrete cNLS equations as a special case. It has been pointed out that there is a difference
in sizes between the Lax pair for the discrete cNLS equations and that for the continuous
cNLS equations. Thus, the continuum limit of space cannot cast the discrete Lax pair into
the continuous one.
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cHirota equations (7.94) with a = 1, oy

m = 2. The parameters in eq. (7.79) and eq. (7.103) are chosen as z; = 77/50 + 7i/5,

z3 = 4/5+8i/5, (a1(0), £1(0)) = (60/13,25/13), (a2(0), £2(0))

Figure 7.1: Two-soliton solution of the sd
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cHirota equations (7.94) with a = 1, o = 1,

m = 2. The parameters in eq. (7.79) and eq.

Figure 7.2: Two-soliton solution of the sd

6/5 + 3i/5,

7.103) are chosen as z

(

z3 = 4/5+81/5, (01(0), 51(0)) = (2,0), (a2(0), 52(0)) = (24/13,10/13).
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Chapter 8

Summary and Concluding Remarks

In this thesis, we have studied a variety of soliton equations with multiple components from
a point of view of the inverse scattering method (ISM). The ISM is one of the approaches
in soliton theory and each approach has its own advantages. For example, the symmetry
approach is effective in an exhaustive search for some classes of integrable systems (see,
e.g. [64,72,73]). Among various approaches, we have employed the ISM as the main method
of studying multi-component soliton equations in this thesis because of its wide applicability
and universality. In fact, by using the ISM formulation, we can construct conservation laws,
obtain most general soliton solutions, solve the initial-value problem, have superposition
principle of solutions despite the nonlinearity and clarify interrelations among soliton equa-
tions. In spite of its effectiveness, as far as the author knows, the applications of the ISM for
multi-component systems in both the continuous case and the discrete case have not been
well-developed so far. One of the main reasons for this fact lies in the difficulty of finding Lax
pairs, which is indispensable to the ISM. On the other hand, alternative techniques such as
the Hirota method [35, 36, 43,69-71], the symmetry approach with using computers [72, 73]
and the approach based on Jordan algebras and Jordan pairs [79-81] have been effectively
used in studying multi-component systems. In this thesis, with all sorts of devices, we have
found a number of novel Lax pairs for multi-component systems. Some of the systems have
not been studied by any other method and seem to be new multi-component soliton equa-
tions. On the basis of the Lax pairs, we have advanced the analysis of the multi-component
soliton equations and have obtained rigorous results such as conservation laws, soliton solu-
tions, solution of the initial-value problem, etc. Let us compactly itemize the fruits of study
which we have developed in this thesis.

(a) We have proposed a matrix generalization of the AKNS formulation and have applied
the ISM to the matrix AKNS hierarchy. Considering a reduction, we have shown that
the coupled mKdV (cmKdV) equations can be solved by the ISM [85]. By superposing
the cmKdV equations on the coupled NLS (cNLS) equations, we have obtained a new
system of coupled Hirota (cHirota) equations.

(b) We have found a Lax pair for a matrix generalization of a derivative NLS (DNLS)
equations proposed by Chen, Lee and Liu [88,90]. Through vector reductions, we
have obtained two types of coupled Chen-Lee-Liu equations. With the help of gauge
transformations and changes of variables, we have clarified the properties and the
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differences between the two types. As a secondary product, we have found a new
multi-field extension of a DNLS equation studied by Kaup and Newell.

(c) We have studied matrix-valued systems of DNLS type which Olver and Sokolov [73]
showed to have a higher symmetry. Introducing a transformation of matrix-valued
variables for the matrix generalization of Chen-Lee-Liu equation, we have obtained
Lax pairs for all systems but two in [73]. For the remaining two systems, we have
derived the general solution [90].

(d) We have discussed a multi-field generalization of the second flows in the Heisenberg
ferromagnet hierarchy and the Wadati-Konno-Ichikawa hierarchy [89]. For the obtained
two systems, we have clarified their correspondence via a change of independent and
dependent variables.

(e) We have proposed an integrable discretization of the matrix AKNS hierarchy. By an
analogous reduction to the continuous case, we have found an integrable discretization
of the cmKdV equations. We have applied the ISM to the discrete cmKdV equations
and have obtained some new results [86,91]. By a somewhat tricky transformation to
the discrete cmKdV equations, we have obtained an integrable discretization of the
cHirota equations. Assuming a special choice of parameters in the discrete cHirota
equations, we have found that the discrete ¢cNLS equations have a rather different
property from the continuous ¢cNLS equations [87, 92].

Through the thesis, we have often considered reductions of matrix-valued evolution equa-
tions to obtain multi-component soliton equations of physical significance. It is quite im-
portant to reflect the reductions in the symmetry of scattering data for the completeness
of the ISM. Multi-component soliton equations are known to be fundamental in various
fields such as fluid dynamics, nonlinear optics and plasma physics in describing physical
phenomena with internal freedoms. A typical example is the cNLS equations which describe
propagation of two polarized electromagnetic waves in a plane.

We believe that the thesis has developed the study of multi-component soliton equations
from an original aspect and will provide a new basis for further study.



Appendices

A Proof of Eq. (3.38)

In this appendix, we provide a proof of eq. (3.38). We begin with a counterpart of the linear
equations (2.1),
v, =UY,

where U is assumed to be a square matrix. Using this equation, we get a chain of identities,

U0 =0, tr(log¥),=trU,
(logdetW), = trU,

det¥ = detW(xy) - et zg Ul (A1)
In case U is given by
_ | -l @
U= [ R iCI ] ’

with square matrices I, @ and R, eq. (A.1) leads to
detWU = const.
If we take [¢ ¢ ] as ¥, we get
det[ ¢ 9] = detA"(C*) = detA(¢),
which means, )
detA(C) = {detA(C*)}".
B Matrix Representation of {e;}

In this appendix, we give a matrix representation of the anti-commutative matrices {ey, - - -, €op 1}
which satisfy the relations (3.55). The representation is recursively constructed in the fol-
lowing manner:

(i) In case of m = 2, set

61:[1 _i]EAl, 62:[_1 ‘|EA27 63:[11]EA3.
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(ii) Let {e1, €9, -, ea,_1} have a matrix representation which satisfies eq. (3.55). Then
the following set of matrices,

—iAi ®er, —iA1 ®eg, -+, —iA Qegp_1, Mo @ T, A3® 1,
gives a matrix representation of {e1, ez, -, €9m11}-
As is clear from the above construction, the representation of {ej,---, €9, 1} is given in

terms of 2™ ! x 2! matrices. It should be noted that there is a freedom of some similarity
transformations for the matrix representation of {e;}.

C Continuous Neumann-Liouville Expansion

In this appendix, we explain the Neumann-Liouville expansion for the continuous Gel’fand-
Levitan-Marchenko equations. Due to the Gel’fand-Levitan-Marchenko equations (3.32) and
(3.33), we get closed integral equations for K; and Ko,

Ki(z,y) = F(z+y) —/x dsl/x dsy K (x, 82)F (so + s1)F(s1 + ),

Ky(z,y) = —F(z+vy) — / dsl/ dsy Ko (z, 52)F (s + 51)F (51 + y).

By successive approximations, we obtain the Neumann-Liouville expansions for K; and Ko,

K (z,z) = F(22) —/:Ddsl /:odSQF(a:—i—sg)F(sg—i-sl)F(sl—f—x)—|—---

+ (—1)n/ ds; / dsg - - / dSan(ZU + Son) F'(S2n + Sanl)F(:”?nfl + Sop—2)

"'F(82+81)F(81+$)
+...’

Ky(z,z) = —F(2z) + / ds; / dsoF(x + 52)F(sg + 81)F(s1 +2) + - - -

+ (—1)n_1/ d81/ dsg - - / dson F(x + S2n)F(52n + Son—1)F(Son—1 + S2n—2)

-'-F(82+81)F(81+$)
4+ ...,

D Proof of Proposition 2

In this appendix, we give a proof of Proposition 2 in Section 3.3.2. The relation (3.12) with
eq. (3.13) becomes
T, = 2i¢CT + R™ — 1Q™T, (D.1)

for the cmKdV equations. We assume

lim '=0 (Im¢ > 0),

¢[00
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and expand I' as
X1

> @ C)lGl’ (D.2)

=1
instead of eq. (3.16). Substituting eq. (D.2) into eq. (D.1), we obtain a recursion formula,

r

-1
Gy = —00R™ + (G)). + Y. G;Q™G_;, 1=0,1,...,

j=1
where Q™ and R(™ are given by
2m—1 2m—1
Q(m) = Uo]I + Z V€L, R(m) = —’Uo][ + Z Vi€ .-
k=1 k=1

We first show the following theorem.

Theorem. Let X, Y, Z be 2! x 2™ ! matrices expressed as

2m—1
X :iEo][+ Z Tk€k,
k=1
2m—1
YV =yol+ > yrex,
k=1
2m—1
Z =zl + Z K€k,
k=1
where the coefficients g, Tx; Yo, Yr; 20, 2r are real. Then there exist real numbers wqy, wy
that satisfy
2m—1
W=XYZ+2YX =wol+ ) wiey. (D.3)
k=1

Proof. By use of eq. (3.55a), a direct calculation gives

2m—1 2m—1 2m—1
W = (.To]I + Z $i€i> (y()][ + Z ijj) (Z()I[ + Z zkek)
i=1 j=1 k=1

2m—1 2m—1 2m—1
+ (Zo]I-i- > Zlcek) (y01[+ > yjej) (9601[-1- > $i€i>

k=1 j=1 i=1

2m—1 2m—1 2m—1
= 2z0y020 1 + 229y Z zrer + 21929 Z Y€ + 2%020 Z T;€;
k=1 j=1 i=1
2m—1 2m—1 2m—1
+ xo{ Z yjzk(ejex + ek€j)} + yo{ Z xizk(eiex + ekei)} + zo{ Z zy;i(eie; + ejei)}
jok=1 i,k=1 1,j=1
2m—1
+ Z xiyjzk(e,-ejek +6k6j6i)
i,j,k=1
2m—1 2m—1 2m—1 2m—1 2m—1
= 2[(5503/0% — Zo Z Yizi — Yo Z Tizi — 20 Z fUz'yz')]I-F Z {(l"oyo - Z l"kyk)zi
i=1 i=1 i=1 i=1 k=1

2m—1 2m—1
+ (yozo -y ykzk)l'i + (Zoﬂfo + > Zkﬂﬁk)yi}ei]-

k=1 k=1
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Thus W does not include terms such as e;e;, e;eje, and can be expressed in the form of eq.
(D.3). O

Using the theorem, we can prove by the inductive method that {G;} are expressed as
2m—1

Gl = gl(0)1[+ Z gl(k)Ek,
k=1

where gl ) and gl ) are real coefficients. Therefore, T is written as
(21 ) 9 P 91 €k

(0) 2m—1 (k)

gl 9

> (= i)

k=1 ‘=1

= OO+ Y W (Q)e, (D.4)

where v(0(¢) and y*)(¢) satisfy
YO0 = (=Y, AP = (=) (D.5)

We recall the asymptotic behavior of the Jost function ¢ at x — +oo,

¢ ~ [é]eicw as T — —00,

[ A(Q)eie®
B(()e

] as T — +oo.

These relations yield
mll)r_noo ¢lelcw - I’ $1—1>I—|poo ¢lelcw - A(C)’

=[]

lim ¢p67" =0 (Im¢ > 0),

we can replace I' in eq. (D.4) with ¢o¢;'. Thus detA(C) is expressed as
detA(¢) = exp{trlog A(¢)}
= exp{tr /oo (log qﬁlei@)wdx}

{tr /Z(¢1eigw)w(¢1eigw)ld$}

{in [ @™y s}

= exp{tr /_o:o (UO’Y(O) ©) - 2:21 vey® (C)) ][da:}
{

00 2m—1
= exp 2m71/ (7)07 Z vy ) }
—00

where we have defined ¢; and ¢, by

Since we easily see that
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where we have used eqs. (3.55¢) and (3.56). Due to eq. (D.5), detA((), as a function of (,
satisfies

detA(¢) = {detA(—C")}".

This is the proof of Proposition 2 (1). Further, we obtain

B(Q)A(Q)™ = lm_¢sd;'e ™

T—+00
= tim 00T+ 3 A9,
k=1
2m—1
=01+ Y 1P (Qer, (D.6)
k=1
with the conditions
r@(¢) = {rO(=¢n}, rB(Q) = {rB (=)} (D.7)

By use of eqs. (D.6) and (D.7), it is straightforward to prove Proposition 2 (2)(3).

E Massive Thirring Model

In this appendix, we show a list of matrix generalizations of the massive Thirring model,
which are respectively a member of the DNLS-type hierarchies studied in Section 5.2. For
this purpose, we consider Lax pairs with the following dependence on the spectral parameter

C?
om0 el [ )

m? [ = m P NR%
Vi e ls T

Here Uyq, Vi1 and Uss, Voo are (-independent square matrices whose size are respectively
n1 X ny and ng X ne. @) and P are n; X no matrices. R and S are ny, X n; matrices. m
is a nonzero constant. We have derived new Lax pairs for several matrix generalizations
of the DNLS-type equation (5.3) in Section 5.2. To obtain matrix versions of the massive
Thirring model, we have only to change the time part of the Lax pairs as above. In this
formulation, the new pair of potentials P and S appears. In correspondence with the choices
of Uj; (j = 1,2), we can determine Vj; (j = 1,2) so that the zero-curvature condition (2.2)
yields a consistent set of evolution equations.

We can obtain four matrix generalizations of the massive Thirring model by the above-
mentioned method. The choices of Ujj;, Vj; (j = 1,2) and the corresponding evolution
equations are listed as follows.

() , ,
Un=0, Up= §RQ’ Vin = —5735, Voo = O,
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1
Q. imP +i;P5Q = 0,

1
Ry +imS — i§RP8 =0,

1 (E.1)
Pr —imQ + i?PRQ =0,
S, +imR — i%RQS = 0.
(b) , )
Un =0, Uy =0, Vi = _?PS’ Voo = §SP;
1
Q; —imP + i§(QS73 +PSQ) =0,
1
R, +imS — ig(SPR + RPS) =0, (E.2)
P, —imQ = O,
S, +imR = 0.
© 1 1 1
Un=0, Un=35(RQ+QR), Vu=-3PS Ve=-PS,
1
Q; —imP + i§(’P8Q - QPS) =0,
R, +imS — il(RPS —PSR) =0,
2
1 (E.3)
P, —imQ + i§P(RQ +QR) = O,
S, +imR — i%(RQ +QR)S = 0.
©) 1 1 1
Un = _ERQ’ Up=0, V= i(SP —PS), V= 5873,
1
Q; —imP + i§(QS'P +PSQ — SPQ) =0,
R, +imS — i%(S?R + RPS — RSP) =0,
(E.4)

1
P —imQ +i5RQP = O,
S, +imR — i%SRQ = 0.

In view of the Lax matrix U the cases (a)—(d) respectively correspond to eq. (5.4), (a), (c)
and (e) in Section 5.2. Other choices of U obtained in Section 5.2 lead to systems which
coincide with one of (a)—(d) up to the exchange of ¢ and z, etc. All of the systems (a)—(?)
are shown to be connected with the others through the gauge transformations utilized in
Section 5.2.
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The system (E.1) has been obtained in [84]. The others seem to be new integrable
systems. For the existence of products of the matrices in the evolution equations, @, R, P
and S must be square matrices of the same size in (¢) and ().

F Proof of Eq. (7.62)

In this appendix, we prove eq. (7.62). We start from a counterpart of the linear equations
(2.26),

\Iln—l—l = anjna

where U, is assumed to be a square matrix. Then, we get a chain of identities,

detW 1
U0 =L, —— =det L,
+1 n Y det\Ij,’—L € 7
detW, = detW_o - J[ det L. (F.1)
We consider the case that L, is given by
2l @
neln

with [ x [ (I = 2™') square matrices I, Q, and R,, which satisfy the constraints (7.31).
Equation (F.1) gives

detV¥,, = detW¥_ - ( ﬁ pn)l =7l detW¥_,

n=—oo

where p, and 7 are defined by egs. (7.34) and (7.35),

1 2m—-1 oo
pn=(detL,)t =1+0, =1+ > o2 7= T[] pa
Jj=0 n=—00

It should be noted that 7 is a conserved quantity, which is proved by the zero-curvature
condition (2.27) (see also eq. (7.29a)).
If we take [ @, ¥, ] as U, we obtain

- 1 1
i - . t—
nllgl det[ ¢, ¥ | = ] detA (z*)’

lim det] ¢, 1, | = detA(z),

n—-+0o0o

which lead to the formula to be proved,

detA(z) = {detA(Zl—*)}*.
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G Proof of Proposition 3

In this appendix, we give a proof of Proposition 3 in Section 7.3.3. Let us recall ', = ¥,,, U,
defined in Section 7.1. We assume

Then the relation (7.9) with eq. (7.13) becomes

n+1 —

R, +ZP)zI+Qn n)

= (
(Bt 2022 S (17 (LT

J=0

oo ) (1)
=> (zj+1 RuQu - T(Quln)’™! +j§0 (ZH-Z r

2m—1 2m—1
Q™ =T + > vWep,  RM™ = 01 4 > vPey,
k=1 k=1

From the theorem in D, we have the following corollary.

Corollary. Let X, Y be 2™~ x 2™~! matrices given by

X =701+ Z z®ey,

2m—1
Y =yO1+ 3 yOe,
k=1
where the coefficients z(®), z(®): y(© 4*) are real. Then there exist real numbers sg-o), sg-k)
that satisfy
S; = (XY)Y'X = X(YX) !
2m—1
= 35-0)][4— Z sg-k)ek.
k=1
The corollary can be proved from the theorem by induction.
Using the corollary, we can prove by induction that I'), is expressed by
2m—1
I, =791+ Z yEey, (G.1)

where the coefficients 7(?) and y*) satisfy

W) = {3 (@)Y, W) = (WP ) (G-2)

In other words, 7{”(2) and 4*)(2) are polynomials in 1/z with real coefficients. This fact is
particularly easy to understand when the potentials (), and R, are on compact support.
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We recall the asymptotic behavior of the Jost function ¢,, at n — 400,

¢n5lz1"] [é]z" as n — —oo,
2n
A(z)z"
~ [ B(z)z" ] as n — +oo.

These relations yield

We can show that

-1
1n-

Then we can replace I';, in eq. (G.1) with ¢9,¢7,- Thus detA(z) is expressed as

detA(z) = exp{trlog A(z)}
= exp{tr 3 [log(rns127""") — log(¢1,27™)]}

—~
I
—_

> S (Garn.))

<
Il
—
S

—1) (m)yi-1
n=—00 j=1
_1)j—1

I
3
o)
=
M8
M8

2m—1
— Qflm) (sg-?%]l—k Z s%ek)}
k=1

I
[¢]
s
—— —— ,—: —— —— ——
(]
IM8
WK

el o s ()T g0 RS )
= exp42 > Z T (vn Sim— O Un sj’n)}.
n=-—o00 j=1 k=1

At the last equality, we have used egs. (3.55¢) and (3.56). Due to eq. (G.2), detA(z), as a
function of z, satisfies
detA(z) = {detA(z")}".
This is a proof of Proposition 3 (1).
Further, we obtain
B(2)A(z)™" = lm_¢2ndy, - 2™

n

n—+oo
(0) k)
_ . 0 2n 2n
= Jlim [0 3 )
2m—1
= T(O)(Z)][+ Z r(k)(z)ek, (G.3)

k=1
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with conditions
rOz) = {9}, r®(z) = {FP ()} (G.4)

Using egs. (G.3) and (G.4), we can straightforwardly prove Proposition 3 (2)(3).

H Discrete Neumann-Liouville Expansion

In this appendix, we explain the Neumann-Liouville expansion for the discrete Gel'fand-
Levitan-Marchenko equations. We begin with the Gel’fand-Levitan-Marchenko equations
(7.58) and (7.59),

kir(n,m) (m >n, m—n = odd)

= QFR(TZ =+ m) —4 Z Z I{lR(n, n + 2[2 — I)FR(Qn + 2l2 + 2[1 — 1)FR(TL + 2l1 =+ m),
I1=11=1

Ror(n,m) (m >n, m —n = odd)

I1=11l2=1

By successive approximations, we obtain the Neumann-Liouville expansion for kg and Kog,

K)lR(TL, n + 1)

=2Fp(2n+1) =8> > Fr(2n+2ly — 1)Fr(2n+ 2l + 2l; — 1) Fr(2n + 21, + 1)
lh=1ls=1

12 (- T Y- Z (2n + 2ly; — 1) Fr(2n + 2lo; + 2ly;_1 — 1)

FR(ZH + 2[2j_1 + 212]'—2 - 1) v FR(277, + 2[3 + 2[2 - 1)
Fr(2n + 2l + 21, — 1)Fr(2n + 21, + 1)
+ SR

RQR(H, n -+ 1)

= —2Fp(2n+1)+8>_ Y Fr(2n+2ly — 1)Fr(2n+ 2l + 21 — 1)Fr(2n + 20 + 1)
l1=11l2=1
=1lla=1  Ig;=1

FR(27’L + 2l2j_1 —+ 2l2j_2 — 1) tee FR(Q’I’L + 2[3 + 2[2 - 1)
Fr(2n + 2l + 21, — 1)Fr(2n + 21, + 1)
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I Trace Formulae

In this appendix, we show interrelations between the generator of the conserved densities
tr{log(/ + Q,I'n/z)} for eq. (7.3) in Section 7.1 and the scattering data in Section 7.3.

For the moment, we do not impose restrictions such as eqgs. (7.26) and (7.27) on square
matrices @), and R, and consider the sd-matrix equation (7.3). We supplement some defi-
nitions and relations. First, let us define the inverse of (7.40) by

Yn(2) = 6n(2)A(2) + ¢n(2) B(2),
Yn(2) = ¢a(2)B(2) — du(2) A(2).

Secondly, the asymptotic behaviors of the Jost functions ¢, and 1, are given by

%Elzl"] [é]z” as n — —oo,
2n
A(z)z"
~ [ B(z)z" ] as n — +oo,

I\ .
~ lO]z as n — 4o0.

Further, we can prove that ¢;,¢;, is a polynomial in 1/z and 2,17, is a polynomial in z.
Therefore, we can replace ¢s,¢;, and ¥y, by F,(l_) and F§L+) in Section 7.1 respectively.
It is important that the ratios of two components, ¢o,¢;, and 10,,1;,}, are invariant when
we consider the time-dependent Jost functions ¢{) = ¢ne®”t and ) = e,

Now, we can relate the scattering data with the generator of the conserved densities. The
determinant of A(z), detA(z), is expressed as

logdetA(z) = trlog A(z)
=tr i log(@1nr12""") —log(¢1nz™")]

n=—oo

=tr ), log[p1ni101,42 ]

n=—oo

n=—oo

=tr »_ log[l—i- %Qnrg—)]
> 1 1 1 )
= tr Z [Z_QQanfl + ;{QanfZ - Qanlenfanf2 - E(Qanfl) } + - ] .

n=-—oo

Similarly, det.A(z) is rewritten as

log det.A(z)
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= —tr Y [log(¥1ni127"") — log(¥1,2")]

oo 1 B B
= —tr ) log|l + ;Qmm—g]
o 1
= —tr ¥ 1og[1+ ;QHFM
=tr > [~log(I - QuRy) + 2*QnRns1

1
+ Z4{Qan+2 - Qan+2Qn+1Rn+1 - E(QHRVH-I)Q} +-- ]

Here the time independence of A(z), A;(2) = O, is proved in the same manner as in Sec-
tion 7.3.2. It is now clear how the scattering data are expressed in terms of the integrals
of motion for the sd-matrix equation (7.3). However, it should be stressed that the above
expansions do not yield local conservation laws. The method presented in Section 7.1 is
useful because it gives not only the densities but also the corresponding fluxes.

Conversely, the integrals of motion can be expressed in terms of the scattering data. For
simplicity, we assume that

(a) @, and R, are expressed as eq. (7.25). Thus, Proposition 3 holds.

(b) detA(z) and detA(z) have 4N simple zeros outside and inside the unit circle C,

respectively. None of them lies on the unit circle C.

(c) detA(z) and detA(z) approach 1 rapidly as |z| — co and z — 0, respectively.

Then, we can derive the following expansion for the sd-cmKdV equations (7.28):

log det A(z)

-y —[1§V:{(i)" ~ )+ 1 74 w" log det(A(w) A(w))dw]
= ~ on nj:l Z;-( J omi Je g

o0 1 1 2N 1 1 _ ~
= kgl ok [E 2 Z—;)Qk - zj%} + g w1 logdet(A(w)A(w))dw]
_ii[li{(l)%j%i)%_ 2% *2k}+i/ ( 2k71+ 721%1)1 |d tA 24
=t =1 "% zj G mi Joyg v v og |detA(w)| w].

(L.1)

The coefficients of 1/2%* (k = 1,2,...) give an infinite number of the integrals of motion,
which we call the trace formulae. Here, C'r and Cyg denote the right-half portion and the
upper-right portion of the unit circle C, respectively, as is mentioned in Section 7.3. The
determinant of A(z) is related to the determinant of A(z) by eq. (7.62). It can also be shown
that det.A(z) and detA(z) are connected by

logdetA(z) = — > logdet(I — Q,R,) + logdetA(z).
Thus, we can directly obtain expansions of logdetA(z) and logdet.A(z) with respect to z
from eq. (L.1).
A derivation of eq. (I.1) is omitted because it is analogous to that in the continuous
theory [1,23,107]. Related results were also obtained by Kodama [52].
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