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Classical Theory Expectations

• Equipartition: 1/2kBT per degree of freedom

• In 3-D electron gas this means 3/2kBT per electron

• In 3-D atomic lattice this means 3kBT per atom (why?)

• So one would expect: CV = du/dT = 3/2nekB + 3nakB

• Dulong & Petit (1819!) had found the molar heat capacity 

of most solids approaches 3NAkB at high T
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Molar heat capacity @ high T  25 J/mol/K
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Heat Capacity: Real Metals

• So far we’ve learned about heat capacity of electron gas

• But evidence of linear ~T dependence only at very low T

• Otherwise CV = constant (very high T), or ~T3 (intermediate)

• Why?
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Heat Capacity: Dielectrics vs. Metals

• Very high T: CV = 3nkB (constant) both dielectrics & metals

• Intermediate T: CV ~ aT3 both dielectrics & metals

• Very low T: CV ~ bT metals only (electron contribution)
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Cv = bT

© 2008 Eric Pop, UIUC ECE 598EP: Hot Chips 35

Phonons: Atomic Lattice Vibrations

• Phonons = quantized atomic lattice vibrations

• Transverse (u ^ k) vs. longitudinal modes (u || k), acoustic vs. optical

• “Hot phonons” = highly occupied modes above room temperature
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A Few Lattice Types

• Point lattice (Bravais)

– 1D

– 2D

– 3D

36
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Primitive Cell and Lattice Vectors

• Lattice = regular array of points {Rl} in space repeatable 

by translation through primitive lattice vectors

• The vectors ai are all primitive lattice vectors

• Primitive cell: Wigner-Seitz
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Silicon (Diamond) Lattice

• Tetrahedral bond arrangement

• 2-atom basis

• Each atom has 4 nearest neighbors and 12 next-nearest 

neighbors

• What about in (Fourier-transformed) k-space?
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Position  Momentum (k-) Space

• The Fourier transform in k-space is also a lattice

• This reciprocal lattice has a lattice constant 2π/a
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Atomic Potentials and Vibrations

• Within small perturbations from their equilibrium 

positions, atomic potentials are nearly quadratic

• Can think of them (simplistically) as masses connected 

by springs!

40
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Vibrations in a Discrete 1D Lattice

• Can write down wave equation

• Velocity of sound (vibration 

propagation) is proportional to 

stiffness and inversely to mass 

(inertia)
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Two Atoms per Unit Cell
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Energy Stored in These Vibrations

• Heat capacity of an atomic lattice

• C = du/dT =

• Classically, recall C = 3Nk, but only at high temperature

• At low temperature, experimentally C  0

• Einstein model (1907)

– All oscillators at same, identical frequency (ω = ωE)

• Debye model (1912)

– Oscillators have linear frequency distribution (ω = vsk)
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The Einstein Model

• All N oscillators same frequency

• Density of states in ω

(energy/freq) is a delta function

• Einstein specific heat
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Einstein Low-T and High-T Behavior

• High-T (correct, recover Dulong-Petit):

• Low-T (incorrect, drops too fast)
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The Debye Model

• Linear (no) dispersion

with frequency cutoff

• Density of states in 3D:

(for one polarization, e.g. LA)

(also assumed isotropic solid, same vs in 3D)

• N acoustic phonon modes up to ωD

• Or, in terms of Debye temperature
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Annalen der Physik 39(4)
p. 789 (1912)

Peter Debye (1884-1966)
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The Debye Integral

• Total energy

• Multiply by 3 if assuming all 

polarizations identical (one LA, 

and 2 TA)

• Or treat each one separately 

with its own (vs,ωD) and add 

them all up

• C = du/dT
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Debye Model at Low- and High-T
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• At low-T (< θD/10):

• At high-T: (> 0.8 θD)

• “Universal” behavior for all solids

• In practice: θD ~ fitting parameter 

to heat capacity data

• θD is related to “stiffness” of solid 

as expected
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Experimental Specific Heat
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Phonon Dispersion in Graphene

51

Maultzsch et al., 
Phys. Rev. Lett. 
92, 075501 (2004) Optical

Phonons

Yanagisawa et al.,
Surf. Interf. Analysis
37, 133 (2005)
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Heat Capacity and Phonon Dispersion

• Debye model is just a simple, elastic, isotropic approximation; be 

careful when you apply it

• To be “right” one has to integrate over phonon dispersion ω(k), 

along all crystal directions

• See, e.g. http://www.physics.cornell.edu/sss/debye/debye.html
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Thermal Conductivity of Solids

53

how do we explain this mess?

http://www.physics.cornell.edu/sss/debye/debye.html
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Kinetic Theory of Energy Transport
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Simple Kinetic Theory Assumptions

• Valid for particles (“beans” or “mosquitoes”)

– Cannot handle wave effects (interference, diffraction, tunneling)

• Based on BTE and RTA

• Assumes local thermodynamic equilibrium: u = u(T)

• Breaks down when L ~ _______ and t ~ _________

• Assumes single particle velocity and mean free path

– But we can write it a bit more carefully:
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l
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Phonon MFP and Scattering Time

• Group velocity only depends on dispersion ω(k)

• Phonon scattering mechanisms
– Boundary scattering

– Defect and dislocation scattering

– Phonon-phonon scattering
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Temperature Dependence of Phonon KTH
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Ex: Silicon Film Thermal Conductivity
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Bulk single-crystal silicon:

Touloukian et al. (1970)
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Doped polysilicon film:

McConnell et al. (2001)
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Undoped polysilicon film:
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Ex: Silicon Nanowire Thermal Conductivity

• Recall, undoped bulk 

crystalline silicon k ~ 150 

W/m/K (previous slide)
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Li, Appl. Phys. Lett. 83, 2934 (2003)

Nanowire diameter
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Ex: Isotope Scattering

60

~T3

~1/T

isotope
~impurity
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Why the Variation in Kth?

• A: Phonon λ(ω) and dimensionality (D.O.S.)

• Do C and v change in nanostructures? (1D or 2D)

• Several mechanisms contribute to scattering

– Impurity mass-difference scattering

– Boundary & grain boundary scattering

– Phonon-phonon scattering
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What About Electron Thermal Conductivity?

• Recall electron heat capacity

• Electron thermal conductivity
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Ex: Thermal Conductivity of Cu and Al

• Electrons dominate k in metals
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Wiedemann-Franz Law

• Wiedemann & Franz (1853) empirically saw ke/σ = const(T)

• Lorenz (1872) noted ke/σ proportional to T
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Lorenz Number
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This is remarkable!

It is independent of n, 

m, and even  !

2 2

23

e Bk
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T q

 p


 

L = /T  10-8 WΩ/K2

Metal 0 ° C 100 °C

Cu 2.23 2.33

Ag 2.31 2.37

Au 2.35 2.40

Zn 2.31 2.33

Cd 2.42 2.43

Mo 2.61 2.79

Pb 2.47 2.56

8 22.45 10 WΩ/KL  

Agreement with experiment is 

quite good, although L ~ 10x 

lower when T ~ 10 K… why?!

Experimentally
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Amorphous Material Thermal Conductivity

66

Amorphous (semi)metals: both
electrons & phonons contribute

Amorphous dielectrics:
K saturates at high T (why?)

a-Si

a-SiO2

GeTe
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Summary

• Phonons dominate heat conduction in dielectrics

• Electrons dominate heat conduction in metals

(but not always! when not?!)

• Generally, C = Ce + Cp and k = ke + kp

• For C: remember T dependence in “d” dimensions

• For k: remember system size, carrier λ’s (Matthiessen)

• In metals, use WFL as rule of thumb
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