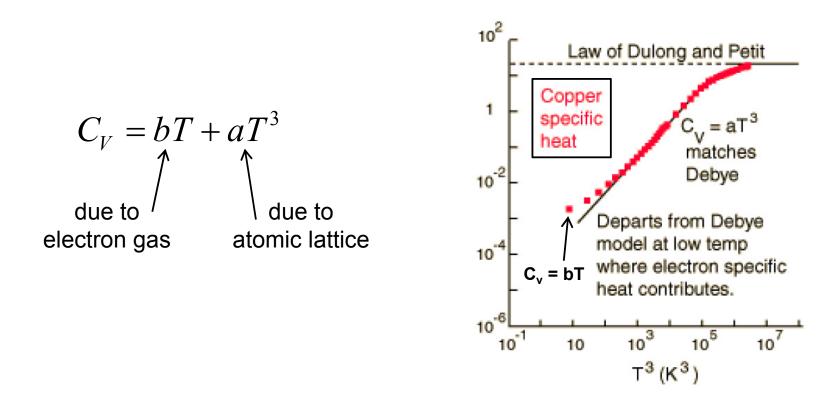
Classical Theory Expectations

- Equipartition: 1/2k_BT per degree of freedom
- In 3-D electron gas this means 3/2k_BT per electron
- In 3-D atomic lattice this means 3k_BT per atom (why?)
- So one would expect: $C_V = du/dT = 3/2n_ek_B + 3n_ak_B$
- Dulong & Petit (1819!) had found the heat capacity per mole for most solids approaches 3N_Ak_B at high T

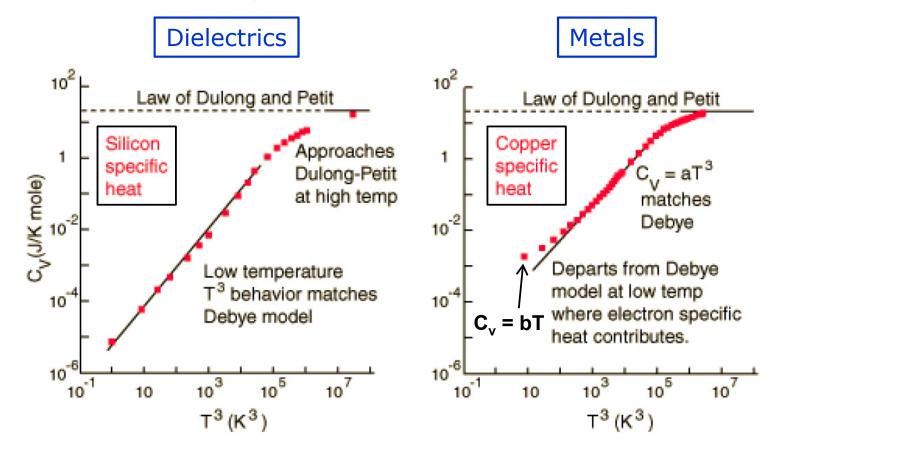
Molar heat capacity @ high T \rightarrow 25 J/mol/K

Heat Capacity: Real Metals



- So far we've learned about heat capacity of electron gas
- But evidence of linear ~T dependence only at very low T
- Otherwise $C_V \sim \text{constant}$ (very high T), or $\sim T^3$ (intermediate)
- Why?

Heat Capacity: Dielectrics vs. Metals



• Very high T: $C \sim 3nk_B$ (constant) both dielectrics & metals

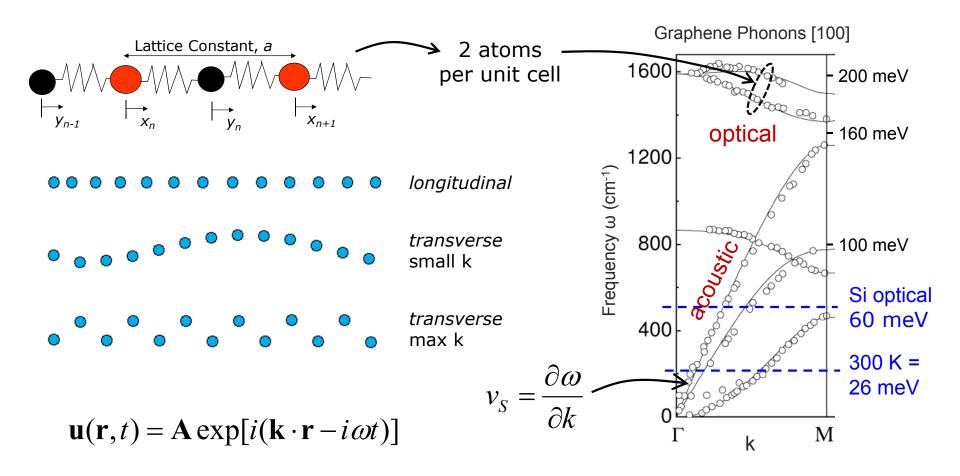
• Intermediate T: C ~ aT^{d/n} both dielectrics & metals in "d" dimensions*

phonon contribution

• Very low T: $C \sim bT$ metals only \rightarrow electron contribution

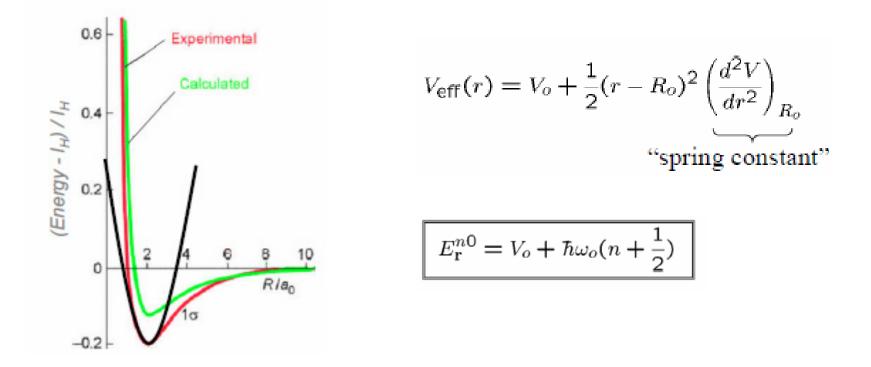
* for $\omega \propto k^n$ phonon dispersion

Phonons: Atomic Lattice Vibrations



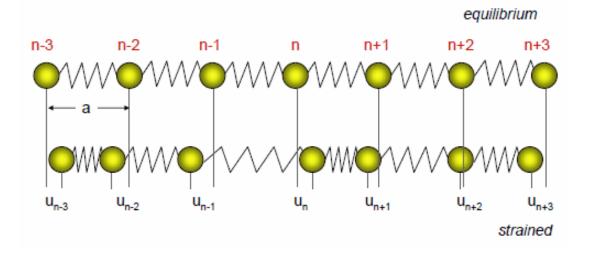
- Phonons = quantized atomic lattice vibrations ~ elastic waves
- Transverse $(u \perp k)$ vs. longitudinal modes $(u \parallel k)$, acoustic vs. optical
- "Hot phonons" = highly occupied modes above equilibrium temperature

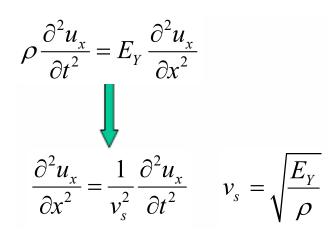
Atomic Potentials and Vibrations



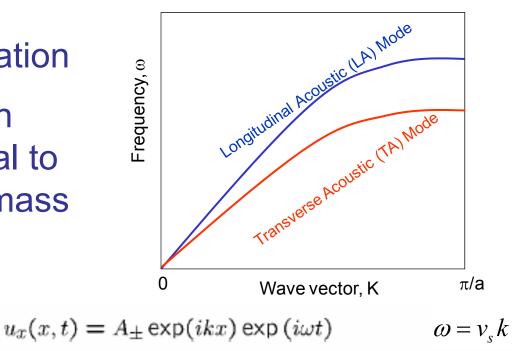
- Within small perturbations from their equilibrium positions, atomic potentials are nearly <u>quadratic</u>
- Can think of them (simplistically) as masses connected by springs!

Vibrations in a Discrete 1D Lattice



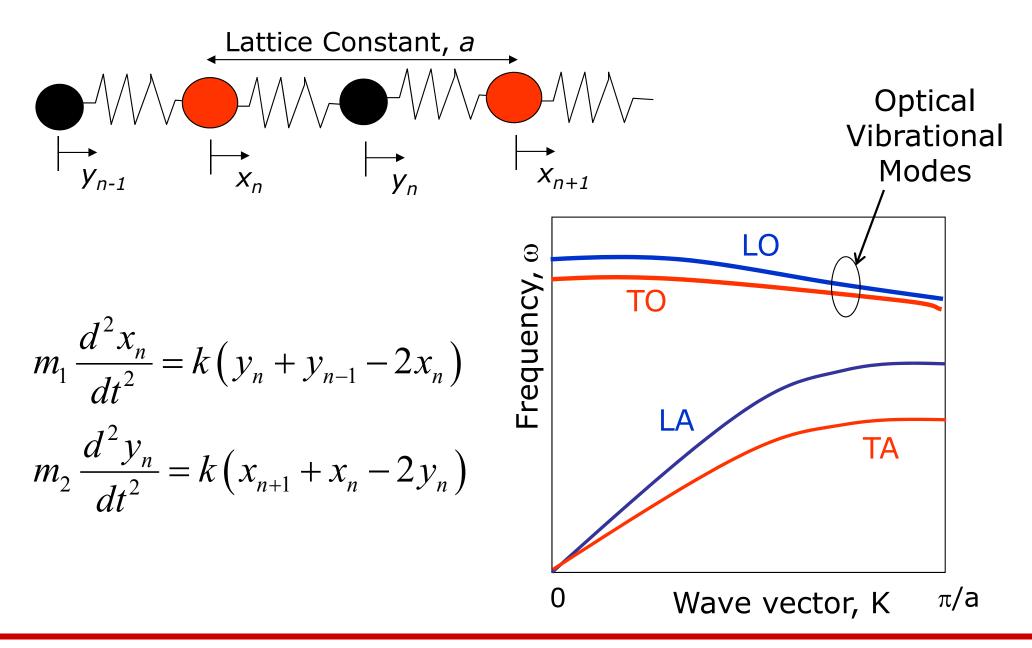


- Can write down wave equation
- Velocity of sound (vibration propagation) is proportional to stiffness and inversely to mass (inertia)



See C. Kittel, Ch. 4 or G. Chen Ch. 3

Two Atoms per Unit Cell



Energy Stored in These Vibrations

• Heat capacity of an atomic lattice

$$C_L = \frac{du}{dT} =$$

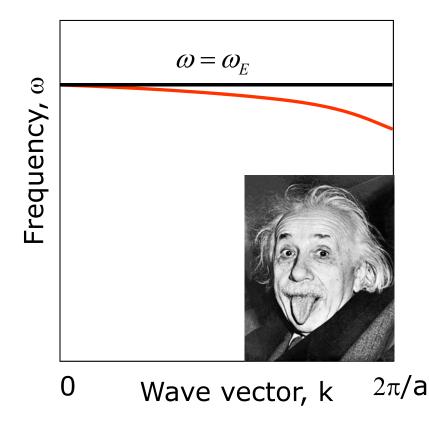
- <u>High temperature</u>: classically, recall $C = 3N_Ak_B$
- Low temperature: experimentally $C \rightarrow 0$
- Einstein model (1907)
 - All oscillators at same, identical frequency ($\omega = \omega_E$)
- Debye model (1912)

- Oscillators have linear frequency distribution ($\omega = v_s k$)

The Einstein Model

- All *N* oscillators same frequency
- Density of states in ω (energy/freq) is a delta function

$$g(\omega) = 3N\delta(\omega - \omega_E)$$



• Einstein specific heat

$$C_{E} = \frac{du}{dT} = \int \hbar \omega \frac{df(\omega)}{dT} g(\omega) d\omega$$

Einstein Low-T and High-T Behavior

• <u>High-T</u> (correct, recover Dulong-Petit):

$$C_E(T) \approx 3Nk_B \left(\frac{\hbar\omega_E}{T}\right)^2 \frac{\left(1 + \frac{\hbar\omega_E}{T}\right)}{\left(1 + \frac{\hbar\omega_E}{T} - 1\right)^2} \approx 3Nk_B$$

Einstein model OK for optical phonon heat capacity

• <u>Low-T</u> (incorrect, drops too fast)

$$C_{E}(T) \approx 3Nk_{B} \left(\frac{\hbar\omega_{E}}{k_{B}T}\right)^{2} \frac{e^{\hbar\omega_{E}/k_{B}T}}{\left(e^{\hbar\omega_{E}/k_{B}T}\right)^{2}}$$
$$\approx 3Nk_{B} \left(\frac{\hbar\omega_{E}}{k_{B}T}\right)^{2} e^{-\hbar\omega_{E}/k_{B}T}$$

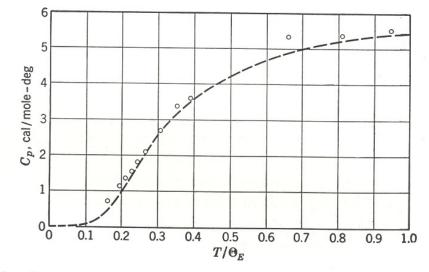


Fig. 6.2. Comparison of experimental values of the heat capacity of diamond and values calculated on the Einstein model, using $\Theta_E = 1320^{\circ}$ K. [After A. Einstein, Ann. Physik **22**, 180 (1907).]

Stanford EE 323: Energy in Electronics

The Debye Model

- Linear (no) dispersion with frequency cutoff
- Density of states in 3D:

$$g(\omega) = \frac{\omega^2}{2\pi^2 v_s^3}$$

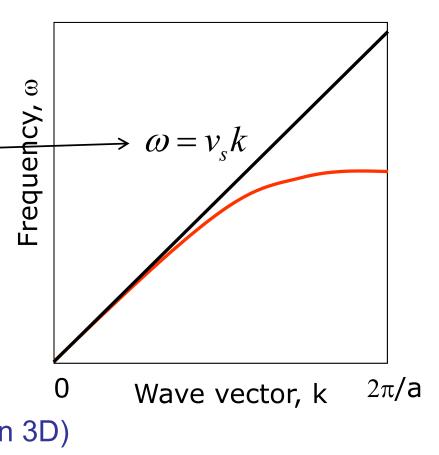
(for one polarization, e.g. LA) 0 (also assumed isotropic solid, same v_s in 3D)

- N acoustic phonon modes up to ω_{D}
- Or, in terms of Debye temperature

$$\theta_D = \frac{\hbar v_s}{k_B} \left(6\pi^2 N \right)^{1/3}$$

 k_D roughly corresponds to max lattice wave vector ($2\pi/a$)

 ω_D roughly corresponds to max acoustic phonon frequency



797

oder mit Berücksichtigung der Definitionsgleichung (7)

(9)
$$U = 9 N k T \left(\frac{T}{\Theta}\right)^{s} \int_{0}^{\Theta/T} \frac{\xi^{s} d\xi}{e^{\xi} - 1}$$

Bekanntlich (wie übrigens natürlich auch aus (9) folgt) würde dem Dulong-Petitschen Gesetz der Wert

U = 3 N k T

entsprechen. Die in (9) ausgesprochene Beziehung können wir also folgendermaßen in Worte fassen:

Die Energie eines Körpers bekommt man, indem man den Dulong-Petitschen Wert multipliziert mit einem Faktor, welcher eine universelle Funktion ist von dem Verhältnis $T|\Theta, d, h$. Temperatur T dividiert durch charakteristische Temperatur Θ .

Setzen wir abkürzend

$$\frac{\Theta}{T} = x$$

so hat jener Faktor nach (9) den Wert:

$$\frac{3}{x^3}\int\limits_0^x\frac{\xi^3\,d\,\xi}{e^{\xi}-1}$$

Verstehen wir unter N die Anzahl Atome pro Atomgewicht, so stellt (9) die entsprechende Energie dar und wir bekommen dann durch Differentiation nach T die Atomwärme bei konstantem Volumen C_v , wofür wir, solange keine Verwechslung zu befürchten ist, einfach C ohne Index schreiben wollen. So ergibt sich aus (9)

(10)
$$C = 3 N k \left[\frac{12}{x^3} \int_{0}^{x} \frac{\xi^3 d\xi}{e^{\xi} - 1} - \frac{3 x}{e^{x} - 1} \right],$$

wenn wir wieder mit x das Verhältnis Θ/T bezeichnen.

Die Größe 3 Nk hat bekanntlich den Wert 5,955 cal.; bezeichnen wir denselben mit C_{∞} , weil er in der Grenze für $T = \infty$ erreicht wird, so können wir statt (10) auch schreiben

(10')
$$\frac{C}{C_{\infty}} = \frac{12}{x^3} \int_{0}^{x} \frac{\xi^3 d\xi}{e^{\xi} - 1} - \frac{3x}{e^{x} - 1}$$

Annalen der Physik 39(4) p. 789 (1912)

Peter Debye (1884-1966)

The Debye Integral

• Total energy

$$u(T) = \int_{0}^{\omega_{D}} \hbar \omega f(\omega) g(\omega) d\omega$$

- Multiply by 3 if assuming all polarizations identical (one LA, and 2 TA)
- Or treat each one separately with its own (v_s, ω_D) and add them all up
- C = du/dT

people like to write: (note, includes 3x)

 $\omega = v_{s}k$

Wave vector, k

Frequency, ω

 $\mathbf{0}$

$$C_D(T) = 9Nk_B \left(\frac{T}{\theta_D}\right)^3 \int_0^{\theta_D/T} \frac{x^4 e^x dx}{(e^x - 1)^2}$$

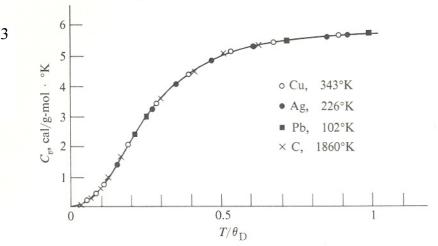
2

 $2\pi/a$

Debye Model at Low- and High-T

• At low-T (< $\theta_D/10$): $C_D(T) \approx \frac{12\pi^4}{5} N k_B \left(\frac{T}{\theta_D}\right)^3$

• At high-T (> 0.8 θ_D): $C_D(T) \approx 3Nk_B$



Element	$\theta_{\rm D}$, °K	Compound	$\theta_{\rm D}, {}^{\circ}{\rm K}$
Li	335	NaCl	280
Na	156	KCl	230
Κ	91.1	CaF ₂	470
Cu	343	LiF	680
Ag	226	SiO_2 (quartz)	255
Au	162		
Al	428		
Ga	325		
Pb	102		
Ge	378		
Si	647		
С	1860		
Graphite	∫ 2480 →	in-plane (sp2)	↓ to res
•		out-of-plane (vdV	V) f since

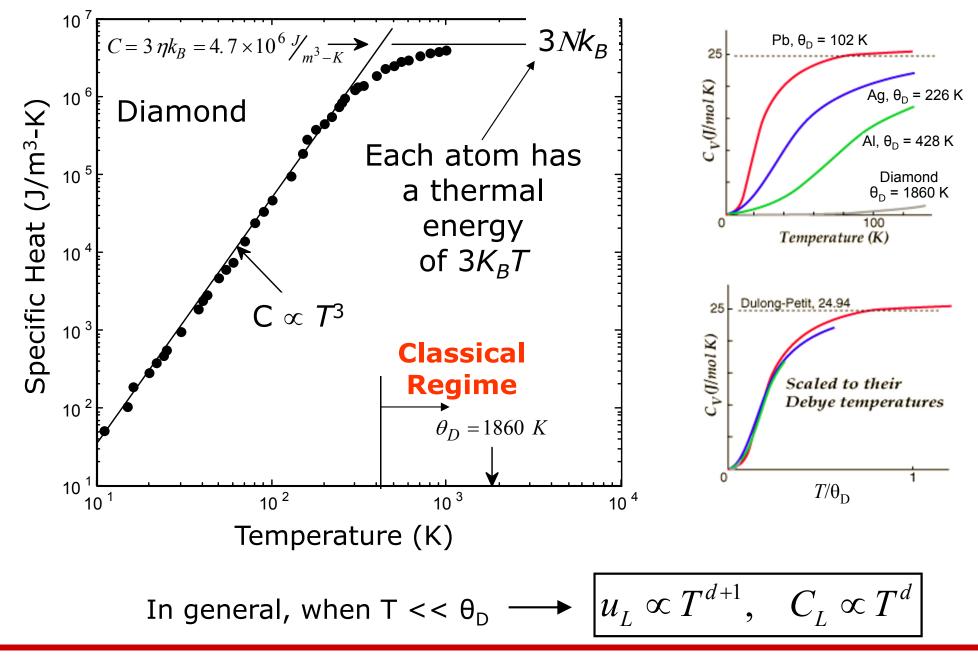
Debye Temperatures

Fig. 3.13 Specific heats versus reduced temperature for four substances. to Debye temperatures. Note the high Debye temperature for diamond.

- "Universal" behavior for all solids
- In practice: θ_D ~ fitting parameter to heat capacity data
- θ_D is related to "stiffness" of solid and melting temperature

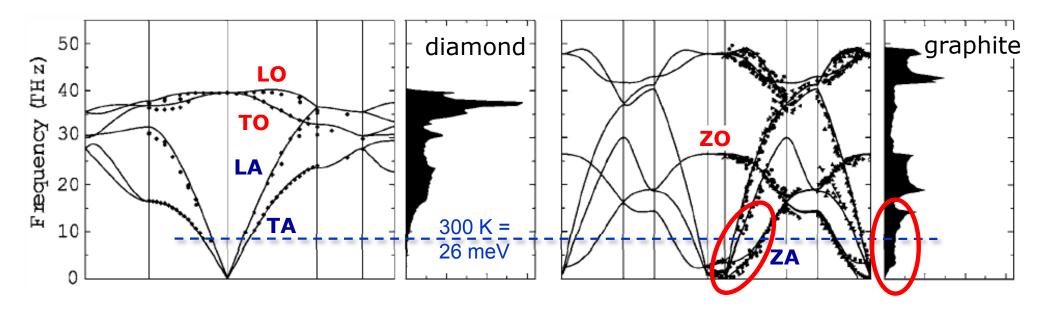
 $\begin{cases} to resolve low-temperature heat capacity "quandary" \\ since graphite data was neither 2-D (T²) nor 3-D (T³) \end{cases}$

Experimental Specific Heat



Stanford EE 323: Energy in Electronics

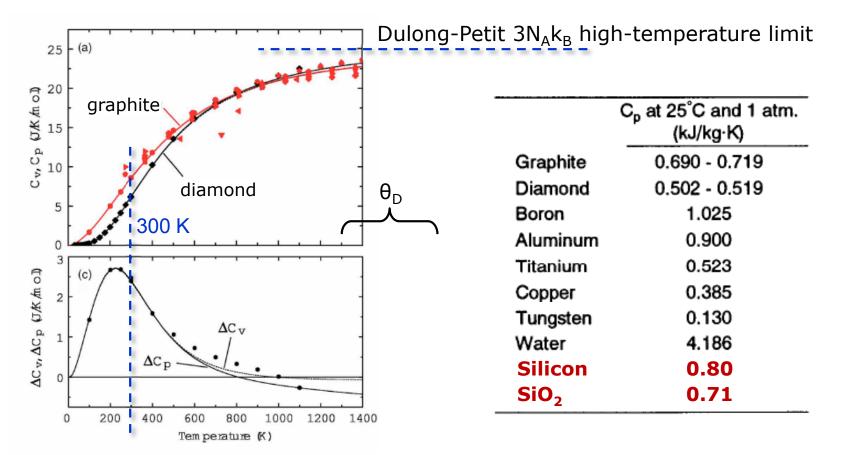
Phonon Dispersion of Diamond & Graphite



- Diamond "like" silicon:
 - Longitudinal & transverse (x2) acoustic (LA, TA)
 - Longitudinal & transverse (x2) optical (LO, TO)
- Graphite is unusual:
 - Layer-shearing, -breathing, and -bending modes (ZA, ZO)
 - Higher optical freq. than diamond, strong sp² bond stretching modes
 - Graphite has more low-frequency modes

Tohei, Phys. Rev. B (2006)

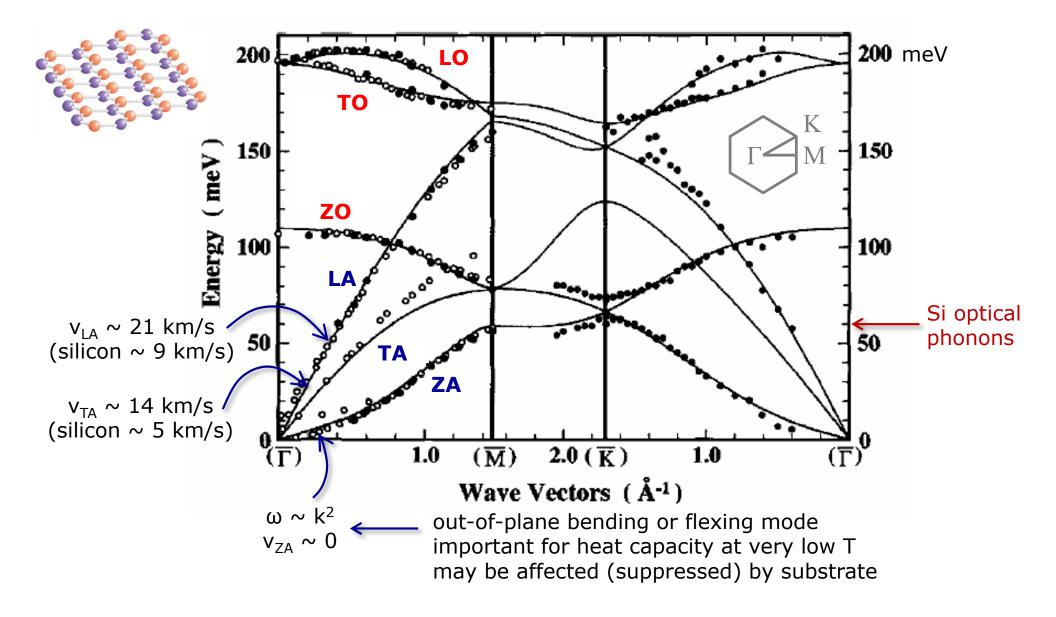
Heat Capacity of Diamond & Graphite



- Graphite has higher phonon DOS at low frequency → about 30% higher heat capacity than diamond at room T
- Both increase up to Debye temperature range, then reach "classical" 3N_Ak_B limit

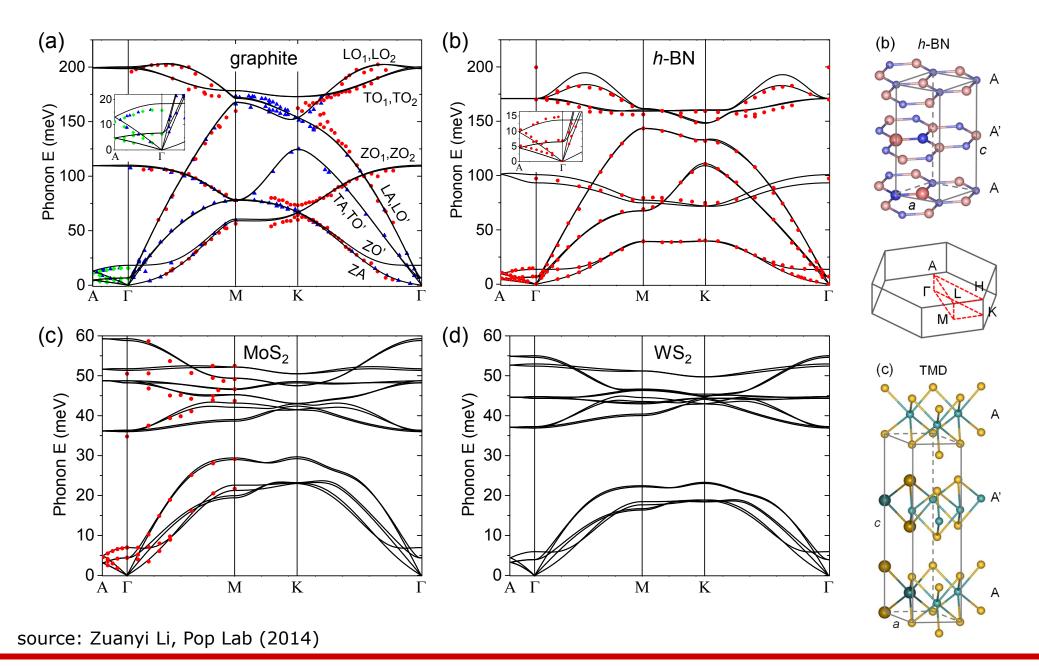
Pierson (1993) Tohei, Phys. Rev. B (2006)

Phonon Dispersion of Graphene

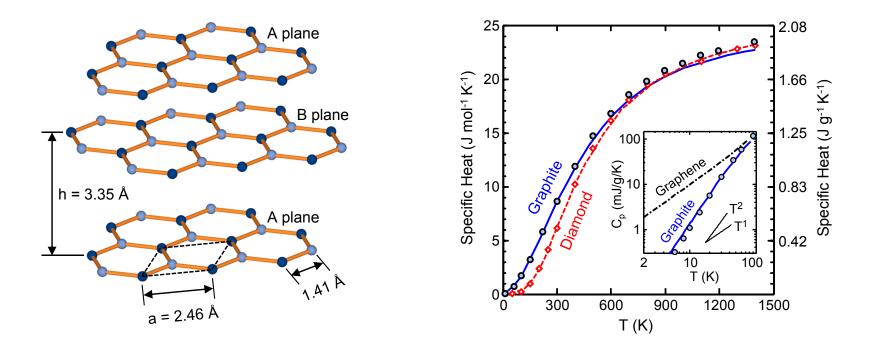


Yanagisawa et al., Surf. Interf. Analysis 37, 133 (2005) Maultzsch et al., Phys. Rev. Lett. 92, 075501 (2004)

Phonon Dispersion of Other 2D Layers



Heat Capacity of Graphene



- C_p of graphene is same as graphite (and > diamond) above 100 K
- Around room temperature all are about 0.7 J/g/K, about one-third of the classical Dulong-Petit limit
- Below 100 K, C_p scales as T^{d/n} for phonon dispersion ω ~ kⁿ in d dimensions → graphene C_p as T to T², graphite C_p as T³ to T²

see E. Pop et al., MRS Bulletin 37, 1273 (2012) and references therein

Heat Capacity and Phonon Dispersion

- Debye model is just a simple, elastic, isotropic approximation; be careful when you apply it
- To be "right" one has to integrate over phonon dispersion ω(k), along all crystal directions
- See, e.g. <u>http://pages.physics.cornell.edu/sss/debye/debye.html</u>

