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Classical Theory Expectations

• Equipartition: 1/2kBT per degree of freedom
• In 3-D electron gas this means 3/2kBT per electron
• In 3-D atomic lattice this means 3kBT per atom (why?)
• So one would expect: CV = du/dT = 3/2nekB + 3nakB

• Dulong & Petit (1819!) had found the heat capacity per 
mole for most solids approaches 3NAkB at high T
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Molar heat capacity @ high T  25 J/mol/K
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Heat Capacity: Real Metals

• So far we’ve learned about heat capacity of electron gas
• But evidence of linear ~T dependence only at very low T
• Otherwise CV ~ constant (very high T), or ~T3 (intermediate)
• Why?
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Heat Capacity: Dielectrics vs. Metals

• Very high T: C ~ 3nkB (constant) both dielectrics & metals

• Intermediate T: C ~ aTd/n both dielectrics & metals in “d” dimensions*

• Very low T: C ~ bT metals only  electron contribution

27

Cv = bT
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Phonons: Atomic Lattice Vibrations

• Phonons = quantized atomic lattice vibrations ~ elastic waves

• Transverse (u k) vs. longitudinal modes (u || k), acoustic vs. optical

• “Hot phonons” = highly occupied modes above equilibrium temperature
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Atomic Potentials and Vibrations

• Within small perturbations from their equilibrium 
positions, atomic potentials are nearly quadratic

• Can think of them (simplistically) as masses connected 
by springs!
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Vibrations in a Discrete 1D Lattice

• Can write down wave equation
• Velocity of sound (vibration 

propagation) is proportional to 
stiffness and inversely to mass 
(inertia)
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Two Atoms per Unit Cell
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Energy Stored in These Vibrations

• Heat capacity of an atomic lattice
•

• High temperature: classically, recall C = 3NAkB

• Low temperature: experimentally C  0
• Einstein model (1907)

– All oscillators at same, identical frequency (ω = ωE)

• Debye model (1912)
– Oscillators have linear frequency distribution (ω = vsk)
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The Einstein Model

• All N oscillators same frequency
• Density of states in ω

(energy/freq) is a delta function

• Einstein specific heat
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Einstein Low-T and High-T Behavior

• High-T (correct, recover Dulong-Petit):

• Low-T (incorrect, drops too fast)
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The Debye Model
• Linear (no) dispersion

with frequency cutoff

• Density of states in 3D:

(for one polarization, e.g. LA)
(also assumed isotropic solid, same vs in 3D)

• N acoustic phonon modes up to ωD

• Or, in terms of Debye temperature
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Annalen der Physik 39(4)
p. 789 (1912)

Peter Debye (1884-1966)
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The Debye Integral
• Total energy

• Multiply by 3 if assuming all 
polarizations identical (one LA, 
and 2 TA)

• Or treat each one separately 
with its own (vs,ωD) and add 
them all up

• C = du/dT
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• At low-T (< θD/10):

• At high-T (> 0.8 θD):
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Debye Model at Low- and High-T

• “Universal” behavior for all solids

• In practice: θD ~ fitting parameter 
to heat capacity data

• θD is related to “stiffness” of solid 
and melting temperature

Graphite 2480
180

in-plane (sp2)
out-of-plane (vdW)

to resolve low-temperature heat capacity “quandary”
since graphite data was neither 2-D (T2) nor 3-D (T3)
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Experimental Specific Heat
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• Diamond “like” silicon:
– Longitudinal & transverse (x2) acoustic (LA, TA)
– Longitudinal & transverse (x2) optical (LO, TO)

• Graphite is unusual:
– Layer-shearing, -breathing, and -bending modes (ZA, ZO)
– Higher optical freq. than diamond, strong sp2 bond stretching modes
– Graphite has more low-frequency modes

Phonon Dispersion of Diamond & Graphite

LO

TO

LA

TA

ZO

ZA

Tohei, Phys. Rev. B (2006)

300 K =
26 meV

graphitediamond
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• Graphite has higher phonon DOS at low frequency  about 30% 
higher heat capacity than diamond at room T 

• Both increase up to Debye temperature range, then reach 
“classical” 3NAkB limit

Heat Capacity of Diamond & Graphite

Silicon 0.80
SiO2 0.71

Pierson (1993)

300 K

Dulong-Petit 3NAkB high-temperature limit

θD

Tohei, Phys. Rev. B (2006)

graphite

diamond
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Phonon Dispersion of Graphene

Yanagisawa et al., Surf. Interf. Analysis 37, 133 (2005)

Si optical
phonons

meVLO

TO

LA

TA

vTA ~ 14 km/s
(silicon ~ 5 km/s)

vLA ~ 21 km/s
(silicon ~ 9 km/s)

ZO

ZA

ω ~ k2

vZA ~ 0
out-of-plane bending or flexing mode
important for heat capacity at very low T
may be affected (suppressed) by substrate

42

Maultzsch et al., Phys. Rev. Lett. 92, 075501 (2004)
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Phonon Dispersion of Other 2D Layers
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Heat Capacity of Graphene

• Cp of graphene is same as graphite (and > diamond) above 100 K

• Around room temperature all are about 0.7 J/g/K, about one-third of 
the classical Dulong-Petit limit

• Below 100 K, Cp scales as Td/n for phonon dispersion  ~ kn in d 
dimensions  graphene Cp as T to T2, graphite Cp as T3 to T2
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see E. Pop et al., MRS Bulletin 37, 1273 (2012) and references therein
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Heat Capacity and Phonon Dispersion
• Debye model is just a simple, elastic, isotropic approximation; be 

careful when you apply it

• To be “right” one has to integrate over phonon dispersion ω(k), 
along all crystal directions

• See, e.g. http://pages.physics.cornell.edu/sss/debye/debye.html
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