

Programme MesoMay 2

Inventaire faunistique non exhaustif des écosystèmes coralliens mésophotiques à Mayotte

Maîtres d'ouvrage:

DEAL Mayotte : terre plein de M'Tsapere 97600 Mamoudzou, M'Tsapere – Nicolas Deloncle - Tel : 02 69 63 35 11 nicolas.deloncle@developpement-durable.gouv.fr

Parc Naturel Marin de Mayotte : Centre d'affaires de l'aéroport, Aéroport de Mayotte – 97615 Pamandzi - Clément Lelabousse -Tel : 06 39 68 22 83

clement.lelabousse@ofb.gouv.fr

Maîtres d'œuvre:

BIORECIF: 3 ter rue de l'albatros 97434 La Saline Les Bains Ile de La Réunion – Thierry Mulochau - Tel.: 0692685831 <u>biorecif@gmail.com</u>

Dates:

Campagnes terrain : de juin 2019 à aout 2020

Rapport : septembre et octobre 2020

Bancarisation Base de Données Récif : octobre 2020

Echantillonnage terrain : photographies et prélèvements

G. Barathieu, O. Konieczny: Association Deep Blue Exploration

C. Delamarre, S. Quaglietti, D. Budet: Association Service de Plongée Scientifique

Patrick Plantard, Camille Loisil: Association Poisson Lune

Expertise faunistique

Liste des experts présentés dans le tableau 2 page 7

Rapport

Thierry Mulochau

A citer sous la forme :

Mulochau T., Durville P., Maurel L., Barathieu G., Budet D., Delamarre C., Konieczny O., Loisil C., Quaglietti S., Plantard P., Anker A., Bidgrain P., Bigot L., Bo M., Boissin E., Bonnet N., Bourmaud C., Conand C., De Voogd N., Ducarme F., Faure G., Fricke R., Huet R., Mah C., Messing C., Paulay G., Philippot V., Poupin J., Schleyer M., Stöhr S., Trentin F., & Wickel J. (2020) Inventaire faunistique non exhaustif de quelques sites situés en zone récifale mésophotique à Mayotte. Programme MesoMay - BIORECIF – DEAL Mayotte. 47 p et annexes.

© Photos: Associations Deep Blue Exploration, Service de Plongée Scientifique et Poisson Lune

SOMMAIRE

I.	Introduction	p4
11.	Matériel et méthode	p6
	A. Les stations et sites	p6
	B. Méthode	p8
	C. Expertise faunistique	p8
	D. Bancarisation des données	p9
III.	Résultats	p9
	A. Les poissons	p10
	B. Les mollusques	p19
	C. Les crustacés	p25
	D. Les échinodermes	p27
	E. Les scléractiniaires	p30
	F. Les hydraires	p32
	G. Les gorgones	p34
	H. Les coraux mous	p36
	I. Les antipathaires	p38
	J. Les porifères (spongiaires)	p40
	K. Autres phylums: tuniciers (ascidies), planaires	p42
IV.	Discussion et perspectives	p43
V.	Bilan MesoMay	p45
VI.	Bibliographie	p46
VII.	Financements	p48
Anne	oxes	n49

Inventaire faunistique non exhaustif des écosystèmes coralliens mésophotiques à Mayotte

Mulochau T.¹, Durville P.², Maurel L.¹³, Barathieu G.³, Budet D.⁴, Delamarre C.⁴, Konieczny O.³, Loisil C.²¹, Quaglietti S.⁴, Plantard P.²¹, Anker A⁵., Boissin E²². Bidgrain P.⁶, Bigot L.⁷, Bo M.⁵, Bonnet N.⁷, Bourmaud C.⁷, Conand C.⁷, De Voogd N.⁶, Ducarme F.⁶, Faure G.⁷, Fricke R.¹⁰, Huet R.¹¹, Mah C.¹², Messing C.¹⁴, Paulay G.¹づ, Philippot V.¹⁵, Poupin J.¹⁶, Schleyer M.¹⁶, Stöhr S.¹⁶, Trentin F.⁶, & Wickel J.²⁰

¹Biorecif, 3 ter rue de l'Albatros 97434 La Réunion, France – biorecif@gmail.com

I. Introduction

Les écosystèmes coralliens mésophotiques (ECM) situés entre 50 m et 150 m de profondeur sur les pentes des récifs de l'indo Pacifique restent largement méconnus malgré leurs surfaces importantes. La zone mésophotique est intermédiaire entre la zone euphotique, proche de la surface (< à 30 m) et la zone oligophotique, dite « crépusculaire », située au-delà de 150 m et qui s'étend jusqu'à plusieurs centaines de mètres en milieu récifale tropicale avant que la lumière ne disparaisse complètement. Les zones récifales mésophotiques présentent un biotope différent des récifs situés proches de la surface avec notamment deux facteurs importants qui interviennent sur la répartition des différentes espèces, la lumière qui diminue avec la profondeur et la température de l'eau de mer qui est souvent inférieure de guelques degrés à celle observée proches de la surface.

Le développement de nouvelles techniques de plongée (recycleurs et mélanges gazeux « Heliox », « Trimix »), des ROV (Remotely Operated Vehicle) et de l'imagerie automatisée ont permis récemment d'étudier la biodiversité de quelques zones récifales mésophotiques situées en bas des pentes des récifs barrières. La biodiversité y est bien moins connue que celle située dans la zone euphotique, certains genres de madréporaires sont encore présents mais avec la profondeur et la lumière décroissante, certains organismes les remplacent et deviennent dominants : Porifera (« éponges »), octocoralliaires (« gorgones », « coraux mous »,...), antipathaires (« coraux noirs »), échinodermes,... Les peuplements de poissons sont souvent différents, de nombreuses espèces évoluent dans cette zone, certaines endémiques des zones mésophotiques explorées (cf. Hawaï) ou encore non décrites -

²Galaxea

³Deep Blue Exploration

⁴Service de Plongée Scientifique

⁵Universidade Federal do Ceara, Labomar

⁶Association Vie Océane

⁷Université de La Réunion, Entropie

⁸Museum National d'Histoire Naturelle

⁹Naturalis Biodiversity Center

¹⁰State Museum of Natural History Stuttgart

¹¹Association française de Conchyliologie

¹²Smithsonian Institution

¹³Kart'eau

¹⁴Nova Southeastern University

¹⁵Naturum Etudes

¹⁶Ecole Navale BCRM

¹⁷University of Florida

¹⁸South African Association for Marine Biological Research

¹⁹Swedish Museum of Natural History

²⁰Marex

²¹Poisson Lune

²²CRIOBE

http://www.sciencemag.org/news/2017/03/naturalist-richard-pyle-explores-mysterious-dimly-lit-realm-deep-coral-reefs

De nombreuses publications émettent l'hypothèse que les ECM, plus profonds et vraisemblablement moins soumis aux impacts d'origine anthropique que les récifs coralliens proches de la surface, pourraient permettre la résilience des récifs moins profonds plus vulnérables (Kahng *et al.*, 2017; Morais *et al.*, 2018; Muir *et al.*, 2018).

Les contraintes logistiques et juridiques pour accéder aux zones mésophotiques des récifs dans un cadre de plongée professionnelle représentent des obstacles importants auxquels les chercheurs ont longtemps été confrontés, ce qui explique en partie ce manque de connaissance de la biodiversité des zones mésophotiques notamment en milieu récifal. De plus, le déploiement de ROV et matériels collecteurs d'images en haute définition dans le cadre de missions scientifiques nécessitent souvent des financements importants. En France, la législation a récemment évolué en proposant un décret sur la plongée professionnelle scientifique avec le classement IIIB - http://inpp.org/wp-content/uploads/2020/01/mentionbjoe-20190524-0120-0019.pdf

Le programme MesoMay a pour objectif de réaliser un premier inventaire faunistique non exhaustif de certains sites situés au niveau des ECM à Mayotte. Ce programme s'est décliné en deux phases, une première de septembre 2018 à mai 2019 basée uniquement sur les images collectées par les plongeurs et dont les résultats ont été présentés dans un rapport (Mulochau et al., 2019) et bancarisés dans la BD Récif, et une seconde phase de juin 2019 à août 2020 dont les résultats sont présentés dans ce rapport. Cette seconde phase se différencie de la première par le prélèvement d'échantillons permettant la détermination des taxons impossibles à déterminer à partir des images. Ce programme permet d'allier la science participative, avec les associations de plongeurs, et les chercheurs et experts faunistiques des différents phylums.

Des missions d'inventaires faunistiques sur les zones marines profondes ont déjà eu lieu sud-ouest zone du de l'océan Indien et autour Mayotte de (https://expeditions.mnhn.fr/campaign/biomaglo, Tab. 18 https://expeditions.mnhn.fr/campaign/benthedi, Tab. 19). Ces missions ont concerné plusieurs îles (Mayotte, Comores, Glorieuses,...), des hauts-fonds (Zélée, Banc du Leven, ...) et les prélèvements réalisés à la drague ou au chalut ont souvent été faits au-delà de la zone mésophotique (> 150 m), rarement en zone mésophotique et sur les récifs de Mayotte.

La découverte de la biodiversité des ECM à Mayotte pourra ainsi permettre d'avoir une meilleure connaissance des habitats et des organismes qui y évoluent, et d'initier des démarches de conservation et de gestion de cette biodiversité qui pourraient permettre la résilience de certaines zones récifales ou de certaines espèces impactées par les différentes activités humaines.

II. Matériel et méthode

A. Les stations et sites

Huit stations ont été échantillonnées de juin 2019 à aout 2020 (Tab. 1 et Fig. 1) : cinq sont situées au sud-ouest de Mayotte sur les pentes externes du récif barrière à proximité des sites « Passe Bateau » et « Passe Bouéni », les trois autres stations sont situées à l'est de Mayotte en pente externe de la Passe en S et à l'est de la Petite Terre. Les différences de profondeurs pour chaque station (Tab. 1) peuvent être importantes et représentent les profondeurs minimum et maximum échantillonnées lors des différentes plongées réalisées au cours de ce programme.

Stations	Sites	Prof en m	Nbre de plongées	Latitude	Longitude
Passe Bateau	Passe Bateau	70à 120	17	12.974649°S	44.978671°E
Bouéni	Passe Bouéni	65 à 130	10	12.931583°S	44.964250°E
Passe en S	Passe en S	70 à 133	9	12.876000°S	45.282517°E
Tombant des aviateurs	Tombant des aviateurs	90 à 145	4	12.817767°S	45.292967°E
Sanctutum	Entre Passe Bouéni et Passe Bateau	70 à 80	4	12.952667°S	44.970417°E
Menhir	Entre Passe Bouéni et Passe Bateau	75 à 90	2	12.968783°S	44.975650°E
St Hélène	700 m au nord du tombant des aviateurs	85	1	12.812283°S	45.295950°E
Grotte	Passe Bateau	75	1	12.974600°S	44.978700°E

Tableau 1. Stations et sites échantillonnés par les plongeurs de juin 2019 à août 2020 avec la profondeur (= « Prof » en mètres), le nombre de plongées (= « Nbre » de plongées) sur chaque station et les coordonnées géographiques en degrés décimaux.

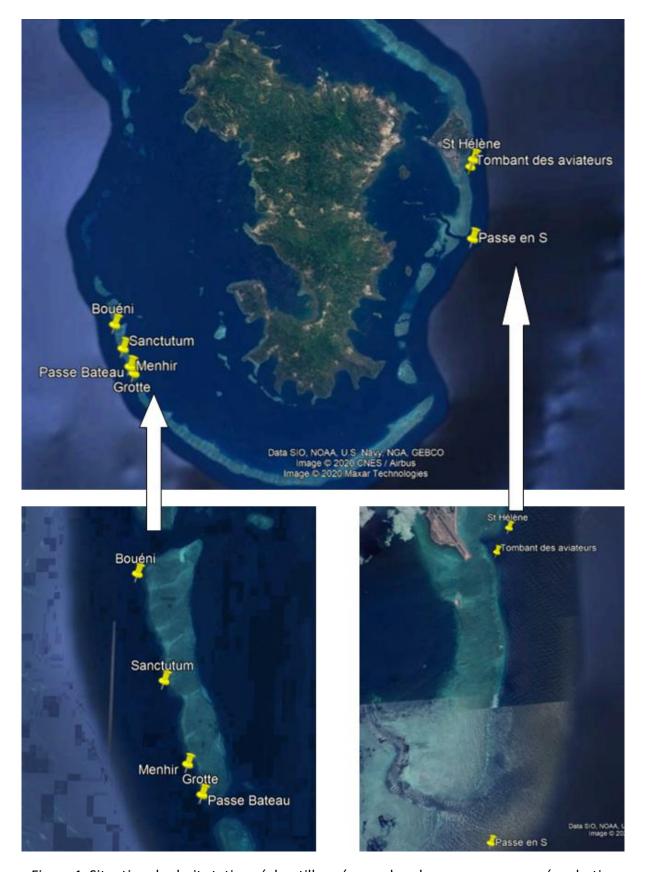


Figure 1. Situation des huit stations échantillonnées par les plongeurs en zone mésophotique à Mayotte dans le cadre du programme MesoMay de juin 2019 à août 2020 (© Google Earth – Image Landsat / Copernicus – Data SIO. NOAA. US. Navy. NGA.GEBCO)

B. Méthode

Lors d'une plongée sur une station, les plongeurs réalisent un parcours aléatoire variant de 10 à 40 minutes selon la profondeur et pendant lequel ils photographient la faune des ECM et collectent certains des organismes observés. L'ensemble des images et des collectes réalisées par les plongeurs sont analysées, triées par phylums, puis envoyées aux différents experts pour détermination des organismes. Les plongeurs réalisent des prises de vues de qualité permettant de reconnaitre et mettre en évidence les caractères morphologiques pour la détermination de certains phylums au niveau de la famille, du genre ou de l'espèce, notamment pour les poissons, la plupart des crustacés, mollusques, holothurides, astérides, échinides, certains scléractiniaires... Cependant, des prélèvements sont nécessaires pour déterminer au genre ou à l'espèce les éponges (Porifera), octocoralliaires (gorgones,...), antipathaires (« coraux noirs »), ophiurides, crinoïdes, ascidies, certaines crevettes... Les prélèvements réalisés dans le cadre de ce programme ont permis d'identifier les spécimens collectés, soit en ne prélevant qu'un petite partie des individus (gorgones, antipathaires...), soit la totalité de l'individu lorsque celui-ci était trop petit (hydraires par exemple).

C. Expertises faunistiques

Le tableau 2 présente les principaux experts ayant contribué à la réalisation de l'inventaire faunistique des sites échantillonnés en zone mésophotique lors du programme MesoMay.

Phylums	Experts	Intstituts / Universités
Antipathaires	M. Bo	Université de Gênes
Ascidies	F. Monniot	Museum National d'Histoire Naturelle
Asterides	C. Mah	Smithsonian Institution
Crinoïdes	C. Messing	Nova Southeastern University
Crustacés	J. Poupin	Ecole Navale BCRM
Crustacés	A. Anker	Universidade Federal do Ceara
Echinides	C. De Ridder	Université Libre de Bruxelles
Echinodermes et poissons	T. Mulochau	Bureau d'études Biorecif
Echinodermes	C. Conand	Université de La Réunion - MNHN
Echinodermes	F. Ducarme	Museum National d'Histoire Naturelle
Gorgones	V. Philippot	Naturum Etudes
Gorgones	S. Sartoretto	Ifremer
Hydrozoaires	N. Bonnet	Université de La Réunion
Hydrozoaires	C. Bourmaud	Université de La Réunion
Madréporaires	G. Faure	Université de La Réunion
Madréporaires	L. Bigot	Université de La Réunion
Mollusques	R. Huet	Association française de Conchyliologie
Mollusques	P. Bouchet	Museum National d'Histoire Naturelle
Mollusques	L. Bozzetti	Association Conchyliologique de Nouvelle-Caledonie
Nudibranches	P. Bidgrain	Association Vie Océane
Nudibranches	F. Trentin	Association Vie Océane
Octocoralliaires	M. Schleyer	The South African Association for Marine Biological Research
Ophiurides	E. Boissin	Ecole Pratique des Hautes Etudes
Ophiurides	S. Stöhr	Swedish Museum of Natural History
Poissons	P. Durville	Bureau d'études Galaxea
Poissons	R. Fricke	State Museum of Natural History Stuttgart
Poissons	J. Wickel	Marex
Spongiaires	N. De Voogd	Naturalis Biodiversity Center
Spongiaires	M. Klautau	Universidade Federal do Rio de Janeiro

Tableau 2. Experts faunistiques des différents phylums ayant contribués à la détermination des spécimens observés lors du programme MesoMay

D'autres experts peuvent avoir été sollicités par ce réseau d'experts et n'apparaissent pas dans ce tableau.

D. Bancarisation des données

L'ensemble des données déterminées par les experts est bancarisé dans la Base de Données Récif. La bancarisation des données du pogramme MesoMay 2 et des données collectées lors de la mission ROV en décembre 2019 avec le PNMM a été réalisée en octobre 2020 (cf. annexe 3)

III. Résultats

48 plongées ont été réalisées sur les 8 stations entre 65 et 145 m de profondeurs (Tab. 1 et Fig. 1). Les stations les plus échantillonnées sont « Passe Bateau » et « Bouéni » avec respectivement 17 et 10 plongées et plusieurs centaines de photographies d'organismes et d'habitats de la zone mésophotique réalisées sur ces deux sites. La zone entre la Passe Bouéni et la Passe Bateau regroupe 5 des 8 stations échantillonnées en zone mésophotique et située sur les pentes externes de récif barrière du sud-ouest de Mayotte. Un total de 34 plongées a été effectué sur cette zone de juin 2019 à mars 2020, représentant environ 70 % des plongées réalisées dans le cadre de ce programme. Les autres sites situés dans l'est de Mayotte, Passe en S, tombant des aviateurs et Saint Hélène, ont été échantillonnés lors de la même période avec 14 plongées.

Un total 606 espèces a été inventorié sur les 8 stations dont 155 espèces de poissons, 324 mollusques, 28 crustacés, 80 cnidaires (dont 13 scléractiniaires, 38 hydraires, 14 gorgones, 5 coraux mous et 10 antipathaires), 14 échinodermes, 4 éponges et 1 platyhelminthe. Certaines déterminations n'ont pu être faites qu'au niveau de la famille et, dans ce cas, il peut y avoir plusieurs genres ou espèces non décrits dans cet inventaire au sein de chacune de ces familles. Certains phylums sont très sous évalués en nombre d'espèces, notamment les porifères (« spongiaires ») et les tuniciers (« ascidies »), qui doivent être prélevés pour être déterminés et qui nécessiteraient une ou plusieurs campagne(s) dédiée(s) à leur inventaire.

Photo 1. Panorama présentant la biodiversité des récifs mésophotiques à Mayotte (75 m Passe Bateau)

A. Les poissons (Actinopterygii et Elasmobranchii)

389 images ont été analysées rigoureusement pour identifier et répertorier les différentes espèces de poissons. Un total de 155 espèces a pu être comptabilisé (Tab. 3). 16 % sont uniquement décrites sous leur nom de genre, car les photographies n'ont pas permis de les identifier à l'espèce. 92 d'entre-elles, soit 59 %, sont généralement décrites comme des espèces typiquement coralliennes que l'on retrouve sur les récifs à faible profondeur, telles que le poisson papillon *Chaetodon lunula*, le poisson soldat *Sargocentron diadema* ou le zancle *Zanclus cornutus*. On montre ici qu'elles fréquentent aussi les milieux beaucoup plus profonds. A l'inverse, 38 d'entre-elles, soit 24 %, sont des espèces typiquement mésophotiques qui ne sont pas présentes sur les récifs de faible profondeur, comme le poisson papillon *Chaetodon mitratus*, le barbier *Pseudanthias pulcherrimus* ou le labre *Bodianus opercularis*. Les autres sont des espèces pélagiques (1 %) ou indéterminées (16 %).

Genres - Espèces	Genres - Espèces	Genres - Espèces
Acanthurus dussumieri	Dendrochirus biocellatus	Paracheilinus mccoskeri
Acanthurus sp.	Dendrochirus zebra	Parapercis sp.
Aethaloperca rogaa	Diagramma labiosum	Parupeneus cyclostomus
Anampses lineatus	Dunckerocampus dactyliophorus	Parupeneus sp.
Aphareus furca	Echeneis naucrates	Plagiotremus rhinorhynchos
Apogon indicus	Ecsenius midas	Platax orbicularis
Apolemichthys trimaculatus	Epinephelus lanceolatus	Plectorhinchus gibbosus
Arothron meleagris	Epinephelus tukula	Plectranthias inermis
Arothron nigropunctatus	Fusigobius maximus	Plectranthias sp.
Balistoides conspicillum	Fusigobius sp.	Plectranthias winniensis
Bodianus anthioides	Galeocerdo cuvier	Plectropomus laevis
Bodianus bimaculatus	Genicanthus caudovittatus	Pomacanthus imperator
Bodianus diana	Genicanthus sp.	Pomacanthus semicirculatus
Bodianus opercularis	Gracila albomarginata	Pristiapogon fraenatus
Bryaninops sp.1	Gymnocranius griseus	Pristiapogon kallopterus
Bryaninops sp.2	Gymnocranius superciliosus	Pristipomoides sp.
Canthigaster smithae	Gymnosarda unicolor	Pseudanthias bimarginatus
Canthigaster tyleri	Gymnothorax flavimarginatus	Pseudanthias cooperi
Caranx ignobilis	Gymnothorax javanicus	Pseudanthias pulcherrimus
Caranx lugubris	Gymnothorax nudivomer	Pseudanthias squamipinnis
Caranx melampygus	Gymnothorax richardsonii	Pseudocheilinus evanidus
Caranx melampygas Caranx sexfasciatus	Gymnothorax sp.	Pseudochromis aureolineatus
Carcharhinus amblyrhynchos	Halichoeres iridis	Pseudochronns aureonneatus Pseudodax moluccanus
Centropyge debelius	Halichoeres trispilus	Ptereleotris grammica
Centropyge multispinis	Heniochus acuminatus	Pterois antennata Pterois miles
Cephalopholis aurantia	Hippocampus jayakari	
Cephalopholis miniata	Hoplolatilus fronticinctus	Pygoplites diacanthus
Cephalopholis polleni	Hoplolatilus sp.	Remora sp. Sargocentron diadema
Cephalopholis sexmaculata	Iracundus signifer Labroides dimidiatus	<u> </u>
Cephalopholis sonnerati	Labroides dimidiatus Lethrinus olivaceus	Sargocentron spiniferum
Cephalopholis spiloparaea		Scarus caudofasciatus
Chaetodon auriga	Liopropoma lunulatum	Scorpaenidae sp.
Chaetodon lunula Chaetodon mitratus	Liopropoma sp.	Scorpaenopsis oxycephalus
	Lutjanus argentimaculatus	Seriolina nigrofasciata
Chaetodon sp.	Lutjanus notatus	Sphyraena jello
Cheilodipterus artus	Luzonichthys waitei Malacanthus brevirostris	Sphyrna lewini
Cheilodipterus sp.		Sufflamen bursa
Chlidichthys johnvoelckeri	Mola sp.	Synchiropus monacanthus
Chromis nigroanalis	Monotaxis grandoculis	Synchiropus stellatus
Chromis opercularis	Myripristis chryseres	Synodus sp.
Chromis pembae	Myripristis vittata	Taeniurops meyeni
Chromis sp.1	Naso hexacanthus	Torpedo fuscomaculata
Chromis sp.2	Naucrates ductor	Trimma anaima
Chromis sp.3	Nebrius ferrugineus	Trimma sp.
Cirrhilabrus sp.	Nemateleotris decora	Trimma taylori
Cirrhilabrus wakanda	Neoniphon aurolineatus	Variola albimarginata
Cirrhithichthys oxycephalus	Odonus niger	Xanthichthys auromarginatus
Cirrhitichthys aprinus	Ostorhinchus apogonoides	Zanclus cornutus
Coris caudimacula	Ostracion cubicus	Zapogon evermanni
Cymolutes sp.1	Oxycheilinus arenatus	
Cymolutes sp.2	Oxycheilinus sp.	
Dactyloptena orientalis	Oxycirrhites typus	
Dascyllus trimaculatus	Paracaesio sordida	

Tableau 3. 155 espèces de poissons ont été inventoriées à partir de photos et de vidéos prises sur les sites situés en zone mésophotique à Mayotte lors de la seconde phase du programme MesoMay

BIORECIF

Une analyse par familles et par nombre d'espèces de chaque famille, permet de mieux appréhender la structure des peuplements dans cette zone mésophotique (Tab. 4).

Familles	Nombres d'espèces
Serranidae	22
Labridae	18
Pomacanthidae	8
Apogonidae	7
Gobiidae	7
Scorpaenidae	7
Pomacentridae	7
Carangidae	6
Chaetodontidae	5
Holocentridae	5
Lutianidae	5
Muraenidae	5
Balistidae	4
Lethrinidae	4
Tetraodontidae	4
Acanthuridae	3
Cirrhitidae	3
Malacanthidae	3
Blenniidae	2
Callionvmidae	2
Carcharhinidae	2
Echeneidae	2
Haemulidae	2
Microdesmidae	2
Mullidae	2
Pseudochromidae	2
Svngnathidae	2
Dactvlopteridae	1
Dasvatidae	1
Ephippidae	1
Ginglymostomatidae	1
Molidae	1
Ostraciidae	1
Pinguipedidae	1
Scaridae	1
Scombridae	1
Sphrvrnidae	1
Sphyraenidae	1
Synodontidae	1
Torpedinidae	1 1
Zanclidae	1
Total: 41 Familles	155 sp.

Tableau 4. Familles et nombres d'espèces par famille

Un total de 41 familles de poissons a pu être recensé pour les 155 espèces observées (Tab. 3 et 4). Les familles les mieux représentées sont les Serranidae (mérous), avec 22 espèces comptabilisées dont 5 espèces d'Anthias, suivi des Labridae (girelles), avec 18 espèces répertoriées et des Pomacanthidae (poissons anges), avec 8 espèces. Cette répartition est très différente de celle des récifs de faible profondeur où les Pomacentridae (demoiselles), les Labridae (girelles) et les Chaetodontidae (papillons), sont généralement les familles les mieux représentées, alors que les Serranidae (mérous) présentent souvent une diversité spécifique plus faible (Werner et Allen, 1998).

46 espèces de poissons sont nouvelles pour Mayotte et n'avaient pas encore été décrites dans les études sous-marines précédentes (Wickel et Jamon, 2010; Wickel et al., 2014) (Tab. 5). Une partie d'entre elles ont déjà été recensées lors de la phase 1 du programme.

Parmi ces espèces qui n'avaient pas encore été répertoriées à Mayotte, dix pourraient être nouvelles pour la science (Tab. 5 espèces en rouge). Elles ont été indiquées par leur probable nom de genre telles que *Chromis* sp.1, sp.2 et sp.3, *Chaetodon* sp., *Cirrhilabrus* sp., *Cymolutes* sp.1 et sp.2, *Geniacanthus* sp., *Hoplolatilus* sp. ou *Liopropoma* sp. (photos 2). Pour pouvoir les identifier et les décrire correctement, il serait nécessaire d'en prélever quelques individus car les photos ne permettent pas une identification définitive.

Genres - Espèces	Genres - Espèces	Genres - Espèces
Apoaon indicus	Genicanthus sp.	Plectranthias winniensis
Bodianus bimaculatus	Gymnocranius ariseus	Pseudanthias bimarginatus
Bodianus opercularis*	Gvmnocranius superciliosus	Pseudanthias pulcherrimus*
Centropyae debelius*	Gvmnothorax nudivomer*	Pseudochromis
Chaetodon sp.	Gymnothorax richardsonii	Ptereleotris grammica
Chlidichthys iohnyoelckeri*	Halichoeres trispilus*	Remora sp.
Chromis pembae	Hoplolatilus sp.	Synchiropus monacanthus
Chromis sp.1*	Iracundus sianifer	Svnchiropus stellatus
Chromis sp.2	Liopropoma lunulatum	Trimma anaima
Chromis sp.3	Liopropoma sp.	Trimma tavlori
Cirrhilabrus wakanda	Luzonichthvs waitei*	Xanthichthvs
Cirrhilabrus sp.	Malacanthus brevirostris*	Zapogon evermanni
Cvmolutes sp.1	Nemateleotris decora*	
Cvmolutes sp.2	Oxvcheilinus arenatus*	
Cirrhitichthys aprinus	Paracaesio sordida	
Dunckerocampus	Paracheilinus mccoskeri	
Fusiaobius maximus	Plectranthias inermis	
		Total : 46 sp.

Tableau 5. Espèces non répertoriées dans l'inventaire des poissons de Mayotte, d'après Wickel et al., 2014, avec en rouge les espèces supposées nouvelles pour la science et « sp* » espèces également observées lors de la phase 1 du programme

Hoplolatilus sp. Photos 2. Espèces probablement nouvelles pour la Science et nécessitant d'être prélevées pour

Genicanthus sp.

être décrites

Liopropoma sp.

Analyse des régimes alimentaires des espèces de poissons observées en zone mésophotique

L'analyse des régimes alimentaires donne une image de la structure des peuplements de poissons (Bozec, 2006). Dans un récif corallien en bonne santé, Harmelin-Vivien (1979) montre que l'ensemble des carnivores (planctonophages, invertivores et piscivores) représentent généralement entre 60 et 80 % des espèces (dont 50 % d'invertivores), 10 à 20 % d'herbivores et 10 à 20 % d'omnivores. Si l'habitat n'est pas modifié et si les impacts sont faibles, ces proportions restent temporellement stables au sein d'une même région géographique (Letourneur et al., 1988).

Dans notre étude, on retrouve environ 50 % d'espèces invertivores, mais on observe un total de carnivores (planctonophages, invertivores et piscivores) de plus de 90 % des espèces répertoriées (Fig. 3). Les herbivores ne représentent que 2 % et les omnivores 7 % des régimes alimentaires des espèces de poissons observées. En zone mésophotique, la structure des peuplements est donc très différente de celle des récifs coralliens de surface. La diminution de la lumière en grande profondeur est la cause principale de cette différence, avec un basculement des régimes trophiques vers les carnivores strictes (Coleman et al., 2018).

On note également une très forte proportion de prédateurs (piscivores) qui représentent 25 % des espèces observées, ce qui est supérieur aux valeurs habituellement notées sur les récifs coralliens qui varient entre 7 et 22 % selon les sites (Wickel et al., 2014; Bruggmann et al., 2016). Beaucoup de ces espèces présentent par ailleurs un grand intérêt commercial, comme les Serranidae (mérous) ou les Carangidae (carangues) qui deviennent rares dans tout l'océan Indien en raison de la surpêche (Guilhaumon et al., 2018).

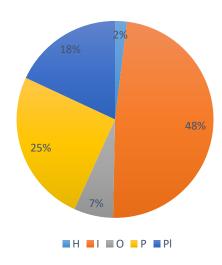


Fig 3. Régimes alimentaires (en pourcentage du nombre d'espèces) – (« H » : Herbivores, « I » : Invertivores, « O » : Omnivores, « P » : Piscivores, « PI » : Planctonophages)

Vulnérabilité et statut de conservation des espèces de poissons observées

Parmi les espèces observées lors de cette campagne, six d'entre elles font l'objet d'un classement sur la liste rouge des espèces menacées établit par l'UICN (2020).

Ce sont surtout les Chondrichtyens qui sont concernés, comme les Sphyrnidae avec *Sphyrna lewini*, « en danger critique », observées sur plusieurs sites en bancs et qui fait également l'objet d'un classement en annexe II de la CITES, les Carcharhinidae (*Carcharhinus amblyrhynchos et Galeocerdo cuvier*, toutes deux « quasi menacées »), les Ginglymostomatidae (*Nebrius ferrugineus*, « vulnérable »), les Dasyatidae (*Taeniurops meyeni*, « vulnérable ») et également certains Ostéichtyens, comme les Serranidae (*Epinephelus lanceolatus*, « vulnérable ») (photos 3).

Sphyrna lewini

Carcharhinus amblyrhynchos

Galeocerdo cuvier

Nebrius ferrugineus

Taeniurops meyeni

Epinephelus lanceolatus

Photos 3. Six espèces de poissons observées en zone mésophotique lors du programme MesoMay 2 font l'objet d'un classement UICN, dont le requin marteau (en haut à gauche) « en danger critique » d'extinction

Révision des profondeurs maximales observées lors de MesoMay et décrites dans la bibliographie

Toutes les observations de cette campagne ont été réalisées à une profondeur supérieure à 50 m. Or, 59 % des espèces répertoriées ici sont généralement décrites, dans la littérature et dans les bases de données, comme typiquement coralliennes et vivant à faibles profondeurs. Une révision semble donc s'imposer (Tab. 6), au moins pour 24 espèces où les profondeurs maximales observées lors de MesoMay sont beaucoup plus importantes que celles de la littérature, avec par exemple *Labroides dimidiatus* (labre nettoyeur) décrite à une profondeur maximale de 40 m, observé à plusieurs reprises sur le site de Passe bateau à plus de 70 m, *Odonus niger* (baliste bleu) décrite à une profondeur maximale de 35-40 m et *Scarus caudofasciatus* (perroquet) donnée pour 40 m, observés sur le site de Passe bateau à plus de 70 m.

Genres - Espèces	FishBase	Myers	Genres - Espèces	FishBase	Myers	Genres - Espèces	FishBase	Myers
	100	400	2 1 1 1 1 1 1 1		40	2 1 111		
Acanthurus dussumieri	130	130	Dendrochirus biocellatus	40	40	Paracheilinus mccoskeri	50	?
Acanthurus sp.			Dendrochirus zebra	80	60	Parapercis sp.	405	
Aethaloperca rogaa	60	54	Diagramma labiosum	?	40	Parupeneus cyclostomus	125	92
Anampses lineatus	45	42	Dunckerocampus	56	56	Parupeneus sp.		40
Aphareus furca	122	122	Echeneis naucrates	85	?	Plagiotremus rhinorhynchos	40	40
Apogon indicus	8	?	Ecsenius midas	40	30	Platax orbicularis	30	30
Apolemichthys trimaculatus	60	40	Epinephelus lanceolatus	200	100	Plectorhinchus gibbosus	25	20
Arothron meleagris	73	14	Epinephelus tukula	400	150	Plectranthias inermis	65	?
Arothron nigropunctatus	25	?	Fusigobius maximus	21	?	Plectranthias sp.		
Balistoides conspicillum	75	75	Fusigobius sp.			Plectranthias winniensis	116	?
Bodianus anthioides	60	60	Galeocerdo cuvier	800	?	Plectropomus laevis	100	90
Bodianus bimaculatus	60	60	Genicanthus caudovittatus	70	70	Pomacanthus imperator	100	70
Bodianus diana	50	25	Genicanthus sp.			Pomacanthus semicirculatus	40	30
Bodianus opercularis	75	100	Gracila albomarginata	120	120	Pristiapogon fraenatus	50	25
Bryaninops sp.1			Gymnocranius griseus	80	100	Pristiapogon kallopterus	158	45
Bryaninops sp.2			Gymnocranius superciliosus	20	?	Pristipomoides sp.		
Canthigaster smithae	40	37	Gymnosarda unicolor	250	100	Pseudanthias bimarginatus	65	?
Canthigaster tyleri	40	40	Gymnothorax flavimarginatus	150	150	Pseudanthias cooperi	91	60
Caranx ignobilis	188	80	Gymnothorax javanicus	50	46	Pseudanthias pulcherrimus	70	?
Caranx lugubris	354	?	Gymnothorax nudivomer	271	165	Pseudanthias squamipinnis	55	20
Caranx melampygus	190	190	Gymnothorax richardsonii	15	?	Pseudocheilinus evanidus	60	40
Caranx sexfasciatus	146	90	Gymnothorax sp.			Pseudochromis aureolineatus	30	?
Carcharhinus	1000	274	Halichoeres iridis	43	43	Pseudodax moluccanus	60	40
Centropyge debelius	90	90	Halichoeres trispilus	56	56	Ptereleotris grammica	60	50
Centropyge multispinis	30	30	Heniochus acuminatus	178	75	Pterois antennata	86	50
Cephalopholis aurantia	300	250	Hippocampus jayakari	80	?	Pterois miles	85	50
Cephalopholis miniata	150	150	Hoplolatilus fronticinctus	70	60	Pygoplites diacanthus	80	48
Cephalopholis polleni	120	120	Hoplolatilus sp.	70	00	Remora sp.	80	40
Cephalopholis sexmaculata	150	150	Iracundus signifer			Sargocentron diadema	60	30
		-		40	40			
Cephalopholis sonnerati	150	150	Labroides dimidiatus	40	40	Sargocentron spiniferum	122	122 40
Cephalopholis spiloparaea	108	108	Lethrinus olivaceus	185	185	Scarus caudofasciatus	40	40
Chaetodon auriga	60	30	Liopropoma lunulatum	350	?	Scorpaenidae sp.	400	
Chaetodon lunula	170	30	Liopropoma sp.			Scorpaenopsis oxycephalus	400	35
Chaetodon mitratus	80	68	Lutjanus argentimaculatus	120	120	Seriolina nigrofasciata	150	?
Chaetodon sp.			Lutjanus notatus	50	40	Sphyraena jello	200	?
Cheilodipterus artus	158	20	Luzonichthys waitei	55	35	Sphyrna lewini	1000	200
Cheilodipterus sp.			Malacanthus brevirostris	50	45	Sufflamen bursa	90	90
Chlidichthys johnvoelckeri	75	?	Mola sp.			Synchiropus monacanthus	428	?
Chromis nigroanalis	40	40	Monotaxis grandoculis	100	100	Synchiropus stellatus	40	?
Chromis opercularis	40	40	Myripristis chryseres	350	235	Synodus sp.		
Chromis pembae	50	50	Myripristis vittata	80	80	Taeniurops meyeni	500	430
Chromis sp.1			Naso hexacanthus	150	137	Torpedo fuscomaculata	439	430
Chromis sp.2			Naucrates ductor	300	?	Trimma anaima	35	?
Chromis sp.3			Nebrius ferrugineus	70	70	Trimma sp.		
Cirrhilabrus sp.			Nemateleotris decora	70	70	Trimma taylori	50	?
Cirrhilabrus wakanda	80	?	Neoniphon aurolineatus	188	160	Variola albimarginata	200	100
Cirrhithichthys oxycephalus	40	40	Odonus niger	40	35	Xanthichthys auromarginatus	150	147
Cirrhitichthys aprinus	40	40	Ostorhinchus apogonoides	60	30	Zanclus cornutus	182	182
Coris caudimacula	57	25	Ostracion cubicus	280	35	Zapogon evermanni	70	?
Cymolutes sp.1			Oxycheilinus arenatus	60	46	p - g	 	<u> </u>
Cymolutes sp.2			Oxycheilinus sp.	55			 	
Dactyloptena orientalis	100	45	Oxycirrhites typus	100	100	Total : 155 sp.		
Dascyllus trimaculatus	55	55	Paracaesio sordida	200	100	. σται . 155 5μ.		
Duscyllus triffiutulutus	JJ	JO	ו מומכמבטוט טטומוממ	200	100		1	<u> </u>

Tableau 6. Révision des profondeurs maximales de l'aire de répartition verticale des espèces indiquées dans la base de données FishBase et dans un ouvrage de référence (Lieske et Myers, 1995) – en jaune les différences les plus marquées par rapport à nos observations (entre 50 et 130 m)

Bilan poissons MesoMay 2

A l'heure actuelle, l'inventaire des poissons marins de Mayotte fait état de 759 espèces pour 118 familles (Wickel *et al.*, 2014). 14 % d'entre elles ont été observées lors de MesoMay 2 et 46 espèces n'avaient jamais été inventoriées à Mayotte à notre connaissance, dont peut-être 10 nouvelles pour la science.

L'étude des régimes alimentaires montre une structure des peuplements essentiellement constituée de carnivores. La raréfaction des végétaux en grande profondeur explique cette composition trophique peu structurée, contrairement aux récifs de surface qui comptent une plus grande diversité de régimes alimentaires (Sandin et Sala, 2012). Ce peuplement mésophotique serait donc plus fragile et moins résistant à certaines pressions (surpêche, pollution, modification de l'habitat...), à l'inverse des peuplements de surface beaucoup plus diversifiés et peut-être davantage capables de s'adapter (Wickel *et al.*, 2014).

Certaines espèces observées lors de cette campagne, comme les requins et les mérous, sont rares et sont considérées comme vulnérables et menacées. Elles ont également de fortes valeurs halieutiques et quelques-unes comme le requin tigre et le requin marteau halicorne sont de grandes espèces prédatrices pélagiques victimes de la surpêche (Pauly et Zeller, 2016). Le fait de pouvoir encore les observer sur les tombants profonds des récifs de Mayotte témoigne d'une relative préservation de ces écosystèmes. La grande profondeur et la difficulté d'accès constituent, pour l'instant, un frein à leurs prélèvements. La zone mésophotique représenterait donc, à l'instar des monts sous-marins, un dernier refuge pour ces espèces en danger (Durville *et al.*, 2020).

La limite d'aire de répartition en profondeur est largement sous-estimée dans la littérature pour de nombreuses espèces observées en zone mésophotique lors du programme MesoMay (Tab. 6). Les observations faites montrent que beaucoup d'espèces observées zur les récifs proches de la surface fréquentent également a zone mésophotique et font donc partie de ces espèces rustiques et ubiquistes dont les populations s'adaptent à des habitats différents. Elles peuvent alors être considérées comme moins vulnérables que d'autres dont l'aire de répartition se restreint soit aux zones peu profondes, soit uniquement à la zone mésophotique. Cette information est essentielle dans une approche de conservation au niveau spécifique, car elle permet de mieux cibler les espèces fragiles.

Bilan poissons MesoMay 1, 2 et mission ROV

- 254 espèces de poissons ont été inventoriées sur les sites échantillonnés en zone mésophotique à Mayotte.
- 53 d'entre-elles, soit 21 %, sont des espèces typiquement mésophotiques qui ne sont pas présentes sur les récifs de faible profondeur.
- 59 espèces sont nouvelles pour Mayotte et n'étaient pas décrites dans la bibliographie de référence (Wickel et Jamon, 2010 ; Wickel et al., 2014).
- 12 espèces pourraient être nouvelles pour la Science et nécessitent d'être prélevées pour être décrites.

B. Les mollusques (Mollusca)

Un total de 324 espèces de mollusques a été inventorié lors de la seconde phase du programme MesoMay réparti au sein de 4 classes (Gastropoda, Bivalvia, Scaphopoda et Polyplacophora) et de 109 familles. La classe des Gastéropodes représentent 87 % des espèces recensées avec 285 espèces (Tab. 7a à 7d). Certaines espèces indéterminées, notées « sp » ou « aff », sont, soient indéterminables en raison de l'état de la coquille ou non déterminables sur photo si l'échantillon n'a pas été prélevé, soient nécessitent des expertises et des recherches plus poussées pour décrire l'espèce notamment en raison d'un manque de bibliographie.

Les familles de mollusques les mieux représentées sont celles des Triphoridae et des Pyramidellidae avec respectivement 33 et 23 espèces inventoriés (Tab. 7a à 7d et photos 4).

Photos 4. Exemples de micro-gastéropodes échantillonnés dans le sable en zone mésophotique à Mayotte : *Subulophora peasi* 5,6mm (Triphoridae) ; *Pyrgulina consobrina* 3mm (Pyramidellidae) ; *Inella asperrima* 3,5mm (Triphoridae)

	T	T
Classes	Familles	Genres/Espèces
Gastropoda	Anabathridae	Afriscrobs quantilla
Gastropoda	Ancillariidae	Ancilla sarda
Gastropoda	Angariidae Arcidae	Angaria
Gastropoda	Arcidae	Arca aff. ventricosa Arca avellana
Gastropoda Gastropoda	Arcidae	
Gastropoda	Assimineidae	sp Assiminea aff. sinensis
Gastropoda	Atlantidae	Atlanta aff. gaudichaudi
Gastropoda	Atlantidae	Atlanta aff. inflata
Gastropoda	Barleeiidae	Barleeia
Gastropoda	Bellolividae	Olivellopsis amoni
Gastropoda	Caecidae	Caecum aff. inhacaense
Gastropoda	Caecidae	Caecum farcimen
Gastropoda	Caecidae	Caecum gracile
Gastropoda	Caecidae	Caecum sepimentum
Gastropoda	Caecidae	Parastrophia cygnicollis
Gastropoda	Calliostomatidae	sp
Gastropoda	Cavoliniidae	Telodiacria quadridentata
Gastropoda	Cavoliniidae	sp
Gastropoda	Cerithiidae	Bittium aff. glareosum
Gastropoda	Cerithiidae	Cerithidium aff. actinium
Gastropoda	Cerithiidae	Cerithidium cerithinum
Gastropoda	Cerithiidae	Cerithidium diplax
Gastropoda	Cerithiidae	Cerithium aff. rostratum
Gastropoda	Cerithiidae	Cerithium aff. citrinum
Gastropoda	Cerithiidae	Cerithium echinatum
Gastropoda	Cerithiidae	Cerithium zebrum
Gastropoda	Cerithiidae	Ittibittium aff. parcum
Gastropoda	Cerithiidae	Pictorium versicolor
Gastropoda	Cerithiidae	Rhinoclavis aspera
Gastropoda	Cerithiidae	Varicopeza pauxilla
Gastropoda	Cerithiopsidae	Belonimorphis belonimorphis
Gastropoda	Cerithiopsidae	Cerithiopsis aff. hedista
Gastropoda	Cerithiopsidae	Cerithiopsis aff. boucheti
Gastropoda	Cerithiopsidae	Cerithiopsis aff. jousseaumei
Gastropoda	Cerithiopsidae	Cerithiopsis eutrapela
Gastropoda	Cerithiopsidae	Horologica aff. interiecta
Gastropoda Gastropoda	Cerithiopsidae Cerithiopsidae	Horologica aff. martini Horologica macrocephala
Gastropoda	Cerithiopsidae	Joculator aff. murciai
Gastropoda	Cerithiopsidae	Joculator aff. megacephala
Gastropoda	Charoniidae	Charonia tritonis
Gastropoda	Chromodorididae	Chromodoris boucheti
Gastropoda	Chromodorididae	Chromodoris lochi
Gastropoda	Chromodorididae	Hypselodoris bullockii
Gastropoda	Clathurellidae	Etremopa royi
Gastropoda	Clathurellidae	Lienardia aff. strombillum
Gastropoda	Clathurellidae	Nannodiella acricula
Gastropoda	Cliidae	Clio pyramidata
Gastropoda	Coloniidae	Bothropoma aff. isseli
Gastropoda	Coloniidae	Collonista rubricincta
Gastropoda	Coloniidae	Homalopoma quantillum
Gastropoda	Colubrariidae	Colubraria aff. tenera
Gastropoda	Columbellidae	Euplica ionida
Gastropoda	Columbellidae	Mitrella moleculina
Gastropoda	Columbellidae	Seminella peasei
Gastropoda	Columbellidae	Zafra morini
Gastropoda	Columbellidae	Zafra ocellatula
Gastropoda	Columbellidae	Zafra succinea
Gastropoda	Columbellidae	Zafrona isomella
Gastropoda	Conidae	Conasprella aff. articulata
Gastropoda	Conidae	Conus barthelemyi
Gastropoda	Conidae	Crossola aff suvicina
Gastropoda	Conradiidae	Crosseola aff. cuvieriana
Gastropoda Gastropoda	Costelariidae Costelariidae	Vexillum aff. castum Vexillum aff. emiliae
Gastropoda	Costelariidae	Vexillum aff. sculptile
Gastropoda	Costelariidae	Vexillum aff. virginale
Gastropoda	Costelariidae	Vexillum bipartitum
Gastropoda	Costelariidae	Vexillum rubrum
Jastiopoda	Costeiainaac	V CAMAIII TUDI UITI

Classes	Familles	Genres/Espèces
Gastropoda	Creseidae	Creseis aff. conica
Gastropoda	Creseidae	Creseis acicula
Gastropoda	Creseidae	Creseis clava
Gastropoda	Creseidae	Creseis virgula
Gastropoda	Creseidae	Styliola subula
Gastropoda	Cylichnidae	Cylichna aff. minuta
Gastropoda	Cylichnidae	Cylichna aff. dulcis
Gastropoda	Cypraeidae	Cypraea tigris
Gastropoda	Cypraeidae	Leporicypraea aff. rosea
Gastropoda Gastropoda	Cypraeidae Cystiscidae	Leporicypraea mappa Cystiscus aff. minutissimus
Gastropoda	Cystiscidae	Cystiscus aff. viaderi
Gastropoda	Cystiscidae	Cystiscus bougei
Gastropoda	Cystiscidae	Cystiscus sandwicensis
Gastropoda	Cystiscidae	Gibberula aff. spiriplana
Gastropoda	Dialidae	Diala aff. sulcifera
Gastropoda	Discodorididae	Halgerda
Gastropoda	Discodorididae	Halgerda aff. carlsoni
Gastropoda	Discodorididae	Halgerda wasinensis
Gastropoda	Ellobiidae	Sp
Gastropoda Gastropoda	Ellobiidae Eoacmaeidae	Melampus granife Eoacmaea profunda
Gastropoda	Epitoniidae	Alora aff. rapunculus
Gastropoda	Epitoniidae	Amaea globularis
Gastropoda	Epitoniidae	Epidendrium sordidum
Gastropoda	Epitoniidae	Epitonium aff. gradilis
Gastropoda	Eulimidae	Cyclonidea dondani
Gastropoda	Eulimidae	Eulima aff. gentilomiana
Gastropoda	Eulimidae	Fusceulima
Gastropoda	Eulimidae	Hemiliostraca amamiensis
Gastropoda	Eulimidae	Melanella aff. acicula
Gastropoda	Eulimidae	Pyramidelloides mirandus
Gastropoda Gastropoda	Eulimidae Eulimidae	Scalenostoma Sticteulima lentiginosa
Gastropoda	Eulimidae	aff. Annulobalcis
Gastropoda	Eulimidae	aff. Melanella
Gastropoda	Fissurellidae	Emarginula costulata
Gastropoda	Fissurellidae	Emarginula decorata
Gastropoda	Granulinidae	Granulina aff. isseli
Gastropoda	Granulinidae	Marginellopsis
Gastropoda	Haminoeidae	Vellicolla ooformis
Gastropoda	Heliconoididae	Heliconoides inflatus
Gastropoda	Hipponicidae	Hipponix aff. radiata
Gastropoda Gastropoda	Hipponicidae Hipponicidae	Hipponix antiquatus Sabia conica
Gastropoda	Horaiclavidae	Carinapex minutissima
Gastropoda	Iravadiidae	Chevallieria columen
Gastropoda	Iravadiidae	Turbonilla aff. concinna
Gastropoda	Juliidae	Julia
Gastropoda	Liotiidae	Cyclostrema alveolatum
Gastropoda	Liotiidae	Cyclostrema sulcatum
Gastropoda	Lottiidae	Notoacmea flammea
Gastropoda	Lottiidae	Patelloida
Gastropoda Gastropoda	Mangeliidae Mangeliidae	Eucithara aff. cazioti Eucithara aff. pusilla
Gastropoda	Mangeliidae	Eucithara ajj. pusilia Eucithara coronata
Gastropoda	Mangeliidae	Heterocithara bilineata
Gastropoda	Mangeliidae	Heterocithara himerta
Gastropoda	Mangeliidae	Pseudorhaphitoma drivasi
Gastropoda	Marginellidae	Dentimargo pumilus
Gastropoda	Marginellidae	Hydroginella osteri
Gastropoda	Marginellidae	Marginella gennesi
Gastropoda	Marginellidae	Serrata serrata
Gastropoda	Mitridae	Roseomitra rosacea
Gastropoda	Mitromorphidae	Anarithma metula
Gastropoda	Mitromorphidae Muricidae	Mitromorpha aff. poppei Chicoreus aff. microphyllus
Gastropoda Gastropoda	Muricidae Muricidae	Drupella aff. fragum
Gastropoda	Muricidae	Morula coronata
Gastropoda	Nassariidae	Nassarius aff. delicatus
Gastropoda	Naticidae	aff. Polinices
Gastropoda	Naticidae	Tanea undulata

Tableau 7a et 7b. 285 espèces de mollusques gastéropodes ont été inventoriées dans le cadre du programme MesoMay 2

Classes	Familles	Genres/Espèces
Gastropoda	Omalogyridae	Ammonicera japonica
Gastropoda Gastropoda	Omniglyptidae Orbitestellidae	Omniglypta Orbitestella regina
Gastropoda	Ovulidae	aff. Phenacovolva
Gastropoda	Ovulidae	Phenacovolva rosea
Gastropoda	Philinidae	Philine rubrata
Gastropoda	Phyllidiidae	Phyllidia
Gastropoda	Phyllidiidae	Phyllidia aff. alyta
Gastropoda	Phyllidiidae	Phyllidia ocellata
Gastropoda	Phyllidiidae	Phyllidiella aff. shireenae
Gastropoda	Phyllidiidae	Phyllidiella aff. meandrina
Gastropoda	Phyllidiidae	Phyllidiella aff. rosans
Gastropoda	Phyllidiidae	Phyllidiopsis aff. holothuriana
Gastropoda	Phyllidiidae	Phyllidiopsis gemmata
Gastropoda	Phyllidiidae	Phyllidiopsis shireenae
Gastropoda	Phyllidiidae	Reticulidia suzanneae
Gastropoda	Pickwothiidae	Sansonia shigemitsui
Gastropoda	Pickwothiidae	Sansonia sumatrensis
Gastropoda	Pisaniidae	Engina spica
Gastropoda	Plyceridae	Tambja
	Pseudomelatomidae	Otitoma cyclophora
Gastropoda	Pyramidellidae	Babella aff. gloria
Gastropoda	Pyramidellidae Pyramidellidae	Babella caledonica
Gastropoda		Babella mariellaeformis
Gastropoda	Pyramidellidae Pyramidellidae	Chrysallida cancellata Chrysallida pura
Gastropoda	Pyramidellidae	Cingulina isseli
Gastropoda Gastropoda	Pyramidellidae	Cingulina Isseli Cingulina laticingulata
Gastropoda	Pyramidellidae	Costabieta portentosa
Gastropoda	Pyramidellidae	Eulimastoma eutropia
Gastropoda	Pyramidellidae	Kongsrudia mutata
Gastropoda	Pyramidellidae	Longchaeus turritus
Gastropoda	Pyramidellidae	Megastomia zaleuca
Gastropoda	Pyramidellidae	Odetta bosyuensis
Gastropoda	Pyramidellidae	Odostomella aff. opaca
Gastropoda	Pyramidellidae	Odostomia gulicki
Gastropoda	Pyramidellidae	Polemicella dautzenbergi
Gastropoda	Pyramidellidae	Polemicella polemica
Gastropoda	Pyramidellidae	Pyrgulina aff. melvilli
Gastropoda	Pyramidellidae	Pyrgulina consobrina
Gastropoda	Pyramidellidae	Syrnola subulina
Gastropoda	Pyramidellidae	Turbonilla aff. scalpidens
Gastropoda	Pyramidellidae	Turbonilla aff. coromandelica
Gastropoda	Pyramidellidae	Turbonilla aff. acicularis
Gastropoda	Raphitomidae	Daphnella aff. boholensis
Gastropoda	Raphitomidae	Kermia aff. cavernosa
Gastropoda	Raphitomidae	Kermia aff. daedalea
Gastropoda	Raphitomidae	Pseudodaphnella nexa
Gastropoda	Raphitomidae	Tritonoturris aff. capensis
Gastropoda	Raphitomidae	Veprecula aff. arethusa
Gastropoda Gastropoda	Retusidae Ringiculidae	Retusa minima Ringicula prismatica
Gastropoda	Rissoelidae	Rissoella globosa
Gastropoda	Rissoidae	Alvania aff. suprasculpta
Gastropoda	Rissoidae	Alvania aff. hueti
Gastropoda	Rissoidae	Benthonella aff. decorata
Gastropoda	Rissoidae	Haurakia marmorata
Gastropoda	Rissoidae	Lucidestea aff. vitrea
Gastropoda	Rissoidae	Lucidestea ina
Gastropoda	Rissoinidae	Phosinella digera
Gastropoda	Rissoinidae	Rissoina aff. deshayesi
Gastropoda	Rissoinidae	Rissoina aff. obeliscus
Gastropoda	Rissoinidae	Rissoina balteata
Gastropoda		n:
Gastropoda	Rissoinidae	Rissoina costulata
Gastropoda		Rissoina costulata Rissoina nivea
	Rissoinidae Rissoinidae Rissoinidae	Rissoina nivea Rissoina sculpturata
Gastropoda	Rissoinidae Rissoinidae Rissoinidae Samlidae	Rissoina nivea Rissoina sculpturata Samla bilas
Gastropoda	Rissoinidae Rissoinidae Rissoinidae Samlidae Scaliolidae	Rissoina nivea Rissoina sculpturata Samla bilas Finella aff. purpureoapicata
Gastropoda Gastropoda	Rissoinidae Rissoinidae Rissoinidae Samlidae Scaliolidae Scaliolidae	Rissoina nivea Rissoina sculpturata Samla bilas Finella aff. purpureoapicata Finella pupoides
Gastropoda Gastropoda Gastropoda	Rissoinidae Rissoinidae Rissoinidae Samlidae Scaliolidae Scaliolidae Scaliolidae	Rissoina nivea Rissoina sculpturata Samla bilas Finella aff. purpureoapicata Finella pupoides Scaliola arenosa
Gastropoda Gastropoda	Rissoinidae Rissoinidae Rissoinidae Samlidae Scaliolidae Scaliolidae	Rissoina nivea Rissoina sculpturata Samla bilas Finella aff. purpureoapicata Finella pupoides

Classes	Familles	Genres/Espèces
Gastropoda	Scissurellidae	Scissurella rota
Gastropoda	Scissurellidae	Sinezona singeri
Gastropoda Gastropoda	Skeneidae Skeneidae	Dillwynella aff. planorbis
Gastropoda	Skeneidae	Leucorhynchia caledonica Leucorhynchia crossei
Gastropoda	Skeneidae	Lodderia lodderae
Gastropoda	Skeneidae	Rotostoma impleta
Gastropoda	Solecurtidae	Azorinus cunhai
Gastropoda	Tornatinidae	Acteocina involuta
Gastropoda	Tornatinidae	Acteocina aff. tenuistriata
Gastropoda	Tornidae	Cyclostremiscus nodiferus
Gastropoda	Tornidae	Lophocochlias parvissimus
Gastropoda Gastropoda	Tornidae Tornidae	Sigaretornus planus
Gastropoda	Trimusculidae	sp Trimusculus mauritianus
Gastropoda	Trinchesiidae	Trinchesia sibogae
Gastropoda	Triphoridae	Coriophora aff. fusca
Gastropoda	Triphoridae	Euthymella aff. bilix
Gastropoda	Triphoridae	Euthymella concors
Gastropoda	Triphoridae	Euthymella elegans
Gastropoda	Triphoridae	Hedleytriphora elata
Gastropoda	Triphoridae	Hedleytriphora scitula
Gastropoda	Triphoridae	Inella asperrima
Gastropoda Gastropoda	Triphoridae Triphoridae	Iniforis douvillei Mastonia aff, maenades
Gastropoda	Triphoridae	Mastonia aff. maenades Mastonia aff. millepunctata
Gastropoda	Triphoridae	Mastonia aff. maenades
Gastropoda	Triphoridae	Mastonia aff. adamsi
Gastropoda	Triphoridae	Mastonia algens
Gastropoda	Triphoridae	Mastonia hindsi
Gastropoda	Triphoridae	Mastonia perlata
Gastropoda	Triphoridae	Mastonia undata
Gastropoda	Triphoridae	Mastoniaeforis chaperi
Gastropoda	Triphoridae	Metaxia albicephala
Gastropoda Gastropoda	Triphoridae Triphoridae	Metaxia brunnicephala Mitromorpha kilburni
Gastropoda	Triphoridae	Monophorus aff. atratus
Gastropoda	Triphoridae	Obesula levukensis
Gastropoda	Triphoridae	Subulophora peasi
Gastropoda	Triphoridae	Subulophora rutilans
Gastropoda	Triphoridae	Triphora aff. shepstonensis
Gastropoda	Triphoridae	Triphora aff. aethiopica
Gastropoda	Triphoridae	Triphora aff. africana
Gastropoda Gastropoda	Triphoridae Triphoridae	Triphora formosa Triphora mirifica
Gastropoda	Triphoridae	Triphora tubifera
Gastropoda	Triphoridae	Viriola abbotti
Gastropoda	Triphoridae	Viriola intergranosa
Gastropoda	Triphoridae	Viriola tricincta
Gastropoda	Trochidae	Broderipia eximia
Gastropoda	Trochidae	Calliotrochus marmoreus
Gastropoda	Trochidae	Clanculus aff. ceylonicus
Gastropoda	Trochidae	Pagodatrochus variabilis
Gastropoda Gastropoda	Trochidae Trochidae	Pseudominolia biangulosa Pseudominolia splendens
Gastropoda	Trochidae	Umbonium vestiarium
Gastropoda	Trochoidea	Lodderena ornata
Gastropoda	Turbinidae	Bolma
Gastropoda	Turbinidae	Lunella coronata
Gastropoda	Turridae	Lophiotoma abbreviata
Gastropoda	Turridae	Turridrupa bijubata
Gastropoda	Turridae	Turritella cingulifera
Gastropoda	Turridae	Turritella gracillima
Gastropoda	Turritellidae	Colpospira aff. runcinata
Gastropoda Gastropoda	Umbraculidae Vanikoridae	Umbraculum Vanikoro aff. granifera
Gastropoda	Vanikoridae	Vanikoro agr. granijera Vanikoro acuta
Gastropoda	Vermetidae	sp
Gastropoda	Vitrinellidae	Circulus novemcarinatus
Gastropoda	Vitrinellidae	Circulus octoliratus
Gastropoda	Vitrinellidae	Pseudoliotia aff. henjamensis

Tableau 7c et 7d. 285 espèces de mollusques gastéropodes ont été inventoriées dans le cadre du programme MesoMay 2

Certaines espèces remarquables de gastéropodes ont été observés comme *Conus barthelemyi* échantillonné à 130 m de profondeur sur la station Passe en S et recensé seulement pour la seconde fois à Mayotte ou *Charonia tritonis* observé à 80 m à Bouéni (Photos 5).

Photo 5. *Conus barthelemyi* très rarement observé à Mayotte (à gauche) et *Charonia tritonis* (à droite) observés lors de MesoMay 2

Ces espèces (photos 5) sont menacées sur certaines zones récifales du sud ouest de l'océan Indien, comme à La Réunion où elles ont été considérées comme espèces déterminantes lors des Znieff marines.

Plusieurs espèces de micro-gastéropodes inconnus ou rarement observés à Mayotte ont été échantillonnées comme *Babella caledonica* (85 m, Passe en S), *B. mariellaeformis* (100 m, tombant des aviateurs) ou *Kermia aff. cavernosa* (85 m, Passe en S) (Photos 6).

Photos 6. *Babella caledonica* 1 mm (à gauche) et *Kermia aff. cavernosa* 2.7 mm (à droite)

35 espèces de bivalves, 1 espèce de polyplacophores et 3 espèces de scaphopodes ont été recensées lors de MesoMay 2 (Tab. 8).

Classes	Familles	Genres/Espèces
Bivalvia	Arcidae	Acar plicata
Bivalvia	Eulimidae	Aclis angulifera
Bivalvia	Arcidae	Barbatia aff. foliata
Bivalvia	Arcidae	Barbatia aff.setigera
Bivalvia	Mytilidae	Botula fusca
Bivalvia	Chamidae	Chama aff. asperella
Bivalvia	Corbulidae	Corbula persica
Bivalvia	Corbulidae	Corbula taitensis
Bivalvia	Dimyidae	Dimya aff. japonica
Bivalvia	Ungulinidae	Diplodonta lateralis
Bivalvia	Lucinidae	Divaricella ornatissima
Bivalvia	Lucinidae	Epicodakia minuata
Bivalvia	Cardiidae	Fragum mundum
Bivalvia	Cardiidae	Ctenocardia virgo
Bivalvia	Lucinidae	Funafutia
Bivalvia	Hiatellidae	Hiatella
Bivalvia	Hiatellidae	Hiatella australis
Bivalvia	Hiatellidae	Hiatella australis
Bivalvia	Lasaeidae	Kellia aff. rosea
Bivalvia	Limidae	Limaria
Bivalvia	Limidae	Lima aff. ceylanica
Bivalvia	Limopsidae	Limopsis chuni
Bivalvia	Lucinidae	Loripes clausus
Bivalvia	Dimyidae	Neoatreta filipina
Bivalvia	Lucinidae	Parvidontia laevis
Bivalvia	Pectinidae	Pecten
Bivalvia	Pectinidae	aff. Laevichlamys allorenti
Bivalvia	Lucinidae	Pillucina neglecta
Bivalvia	Plesiotrochidae	Plesiotrochus luteus
Bivalvia	Semelidae	Rochefortina sandwichensis
Bivalvia	Galeommatidae	Scintillula pustula
Bivalvia	Spondylidae	Spondylus candidus
Bivalvia	Spondylidae	Spondylus nicobaricus
Bivalvia	Glycymerididae	Tucetona audouini
Bivalvia	Veneridae	aff. Dosinia
Polyplacophora	Chitonidae	Chiton
Scaphopoda	Gadilidae	Cadulus
Scaphopoda	Dentaliidae	Dentalium
Scaphopoda	Pulsellidae	Pulsellum

Tableau 8. 35 bivalves, 3 scaphopodes et 1 polyplacophore ont été recensés dans le cadre de MesoMay 2

Le nombre total de mollusques recensés dans le cadre de MesoMay 1 et 2 est de 134 familles et 331 espèces. La collecte de petites quantités de sable en zone mésophotique lors de la seconde partie du programme a permis d'inventorier de nombreux micro-mollusques présents dans le sédiment et qui sont dominants dans cet inventaire non exhaustif des mollusques. Certains mollusques, comme *Conus barthelemyi*, certaines espèces du genre *Babella*,... sont caractéristiques des ECM, mais il est difficile de fournir une liste des espèces de mollusques mésophotiques observés à Mayotte car de nombreuses espèces se rencontrent également sur les récifs euphotiques. De plus, certaines coquilles échantillonnées en zone mésophotique peuvent provenir des zone récifales proches de la surface et se retrouver plus en profondeur après avoir dérivé ou coulé le long du récif.

L'espèce *Triplostephanus hoaraui* avait été observée lors de MesoMay 1 (Mulochau et al., 2019), et, à notre connaissance, n'avait pas encore été échantillonnée à Mayotte (http://www.gastropods.com/6/Shell 11956.shtml; Drivas, J. & Jay, M., 1988).

Lors de la mission MesoMay ROV réalisée en décembre 2019 avec le Parc Naturel Marin de Mayotte, une seiche tropicale (*Sepia latimanus*) avait été observée en zone mésophotique (photo 7).

Photo 7. Une seiche tropicale (*Sepia latimanus*) observée en zone mésophotique à 85 m de fond à l'aide d'un ROV sur le grand récif nord-est de Mayotte

C. Les crustacés (Crustacea)

28 espèces de crustacés ont été inventoriées réparties au sein de 15 familles dont la mieux représentée regroupe des genres et espèces de crevettes appartenant à la famille des Palaemonidae (Tab. 9 et photos 8). Parmi ces espèces, deux n'avaient jamais été observées sur Mayotte.

Classes	Familles	Genres/Espèces	Remarques
Malacostraca	Barbouriidae	Parhippolyte misticia	
Malacostraca	Chirostylidae	Chirostylus aff. dolichopus	
Malacostraca	Diogenidae	Aniculus maximus	
Malacostraca	Diogenidae	Calcinus aff. fuscus	
Malacostraca	Diogenidae	Dardanus megistos	
Malacostraca	Diogenidae	Dardanus aff. sanguinolentus	
Malacostraca	Epialtidae	Xenocarcinus tuberculatus	nouvelle espèce Mayotte prélévée MNHN
Malacostraca	Galatheidae	Allogalathea babai	
Malacostraca	Lysmatidae	Lysmata amboinensis	
Malacostraca	Munididae	Munida barbeti	
Malacostraca	Munididae	Munida aff. olivarae	
Malacostraca	Odontodactylidae	Odontodactylus aff. brevirostris	
Malacostraca	Odontodactylidae	Odontodactylus aff. scyllarus	
Malacostraca	Palaemonidae	Cuapetes platycheles	
Malacostraca	Palaemonidae	spp	Plusieurs sp à prélever pour les différencier
Malacostraca	Palaemonidae	Cuapetes aff. nilandensis	
Malacostraca	Palaemonidae	Thaumastocaris streptopus	
Malacostraca	Palaemonidae	Urocaridella antonbruunii	
Malacostraca	Palaemonidae	Zenopontonia rex	
Malacostraca	Pandalidae	Plesionika narval	
Malacostraca	Porcellanidae	Lissoporcellana aff. quadrilobata	
Malacostraca	Portunidae	Gonioinfradens paucidentatus	
Malacostraca	Rhynchocinetidae	Rhynchocinetes aff. conspiciocellus	
Malacostraca	Stenopodidae	Stenopus hispidus	
Malacostraca	Stenopodidae	Stenopus pyrsonotus	
Malacostraca	Trapeziidae	Quadrella aff. coronata	
Malacostraca	Trapeziidae	Quadrella maculosa	
Malacostraca	Trapeziidae	Quadrella serenei	nouvelle espèce Mayotte

Tableau 9. 28 espèces de mollusques ont été échantillonnées dans le cadre de la seconde phase du programme MesoMay. Deux espèces n'avaient jamais été observées à Mayotte (= « Nouvelle espèce Mayotte »)

Photos 8. Munida barbeti (en haut à gauche), Rhynchocinetes aff. conspiciocellus (en haut à droite) et Gonioinfradens paucidentatus (en bas à gauche) ont été observés en zone mésophotique à Mayotte lors du programme MesoMay 2. Quadrella serenei a été observé pour la première fois à Mayotte (en bas à droite)

Le nombre total de crustacés recensés dans le cadre de MesoMay 1 et 2 est de 23 familles et 46 espèces. La famille des Palaemonidae est la mieux représentée avec 9 espèces. L'ensemble des données MesoMay ont été transmises à Joseph Poupin, expert crustacés, qui a bancarisé les données dans une base de données publique (Legall & Poupin, 2020) dédiée à ce phylum : http://crustiesfroverseas.free.fr/search-result.php?refregion=Mesophotic.

Sept nouvelles espèces de crustacés ont été recensées lors de MesoMay 1 et 2 (Tab. 10) dont une potentiellement nouvelle pour la Science, qui nécessite d'être prélevée pour être décrite.

Classes	Familles	Genres/Espèces	Remarques
Malacostraca	Palaemonidae	Manipontonia psamathe	Nouvelle espèce Mayotte
Malacostraca	Palaemonidae	Pontonides ankeri	Nouvelle espèce Mayotte
Malacostraca	Palinuridae	Justitia longimana	Nouvelle espèce Mayotte
Malacostraca	Rhynchocinetidae	Rhynchocinetes sp.	Nouvelle espèce Science à prélever
Malacostraca	Stenopodidae	Stenopus pyrsonotus	Nouvelle espèce Mayotte
Malacostraca	Epialtidae	Xenocarcinus tuberculatus	nouvelle espèce Mayotte prélévée MNHN
Malacostraca	Trapeziidae	Quadrella serenei	nouvelle espèce Mayotte

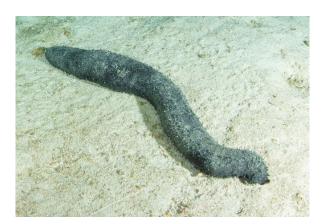
Tableau 10. Sept nouvelles espèces pour Mayotte ont été recensées lors de MesoMay 1 et 2 dont une potentiellement nouvelle pour la Science

D. Les échinodermes (Echinodermata)

14 espèces d'échinodermes ont été inventoriées en zone mésophotique lors du programme MesoMay 2. La famille des Holothuriidae est la mieux représentée avec 4 espèces (Tab. 11 et photos 9). Des prélèvements d'ophiures ont permis de confirmer l'espèce *Ophiothrix purpurea* par barcoding en collaboration avec le Criobe et Emilie Boissin, et des prélèvements d'*Actinopyga caerulea* et d'*Holothuria edulis* ont été réalisés pour la génétique en collaboration avec l'université de Floride et Gustav Paulay, les résultats sont toujours en attente et seront présentés dans le rapport MesoMay 3.

Classe	Famille	Genres/Espèces	Remarques
Asteroidea	Goniasteridae	Ferdina mena	
Asteroidea	Goniasteridae	Fromia nodosa	
Asteroidea	Ophidiasteridae	sp	
Crinoidea	Antedonidae	aff. Dorometra mauritiana	
Crinoidea	Colobometridae	Cenometra bella	
Crinoidea	Colobometridae	Decametra	
Echinoidea	Diadematidae	Diadema	
Holothuroidea	Holothuriidae	Actinopyga caerulea	Echantillons de téguments
Holothuroidea	Holothuriidae	Holothuria edulis	Echantillons de téguments
Holothuroidea	Holothuriidae	Holothuria aff. leucospilota	Nouvelle espèce Mayotte
Holothuroidea	Holothuriidae	Holothuria fuscopunctata	
Ophiuroidea	Ophiotrichidae	Ophiothrix aff. lepidus	_
Ophiuroidea	Ophiotrichidae	Ophiothrix	
Ophiuroidea	Ophiotrichidae	Ophiothrix purpurea	Barcoding CRIOBE

Tableau 11. 14 espèces d'échinodermes ont été inventoriées lors du programme MesoMay 2



Photos 9. Ferdina mena n'avait jamais été observée à Mayotte à 75 m de profondeur (en haut à gauche), H. edulis semble être assez fréquente en zone mésophotique à Mayotte (en haut à droite). Les oursins sont très rarement observés en zone mésophotique lors du programme MesoMay, ce diadème a été observé à 70 m de profondeur (en bas à gauche). Holothuria fuscopunctata, observée à 80 m, est une espèce commerciale, impactée par la pêche aux holothuries dans de nombreuses zones de l'indo-Pacifique, les zones mésophotiques pourraient être des zones refuges pour certaines espèces d'holothuries (en bas à droite)

Le nombre total d'échinodermes recensés lors de MesoMay 1 et 2 est de 26 espèces réparties dans 12 familles. Deux nouvelles espèces d'holothuries ont été inventoriées pour Mayotte, *Holothuria* aff. *leucopsilota* dont le nom d'espèce reste à confirmer par des prélèvements qui n'ont pas pu être réalisés et *H. coronopertusa* qui n'avait pas été observée dans l'océan Indien. Cette espèce a fait l'objet d'une publication scientifique dans le bulletin de la Bêche de Mer de la Commission du Pacifique Sud (Mulochau et al., 2020). Un spécimen vivant de l'oursin *Chondrocidaris* aff. *gigantea* a été observé pour la première fois à Mayotte à 157 m de profondeur lors de la mission ROV avec le PNMM en décembre 2019 (Mulochau et al., 2020) (photos 10).

Photos 10. Holothuria coronopertusa (en haut à gauche) et H. aff. leucospilota (en haut à droite) n'avaient jamais été observées à Mayotte et ont été inventoriés lors de la phase 1 et 2 du programme MesoMay. L'oursin Chondrocidaris aff. gigantea (en bas à gauche) observé à 157 m de profondeur à l'aide d'un ROV en décembre 2019 (mission PNMM) et 9 espèces d'holothuries ont été observées en zone mésophotique lors de ce programme (ici Stichopus pseudohorrens, en bas à droite)

E. Les scléractiniaires (coraux durs) (Cnidaria – Anthozoa – Hexacorallia)

13 espèces de scléractiniaires ont été inventoriées lors de la phase 2 du programme MesoMay. Le genre *Leptoseris* reste le mieux représenté au sein de l'ordre des scléractiniaires avec 4 espèces. Deux espèces sont nouvelles pour Mayotte : *Leptoseris troglodyta*, espèce sans zooxanthelle, qui n'avait jamais été observé dans l'océan Indien et dont plusieurs spécimens ont été observés dans une grotte. Cette espèce a fait l'objet d'une publication scientifique (Pichon et al., 2020). L'espèce *Duncanopsammia* aff. *axifuga* est également nouvelle pour Mayotte et n'était pas référencée dans le sud ouest de l'océan Indien (Tab. 12 et photos 11).

Classe	Famille	Genres/Espèces	Remarques
Anthozoa	Fungiidae	Cycloseris wellsi	
Anthozoa	Dendrophylliidae	Duncanopsammia aff. axifuga	nouvelle pour Mayotte
Anthozoa	Lobophylliidae	Echinophyllia aff. aspera	
Anthozoa	Fungiidae	Fungia	
Anthozoa	Agariciidae	Leptoseris aff. troglodyta	nouvelle pour l'océan Indien
Anthozoa	Agariciidae	Leptoseris scabra	
Anthozoa	Agariciidae	Leptoseris aff. foliosa	
Anthozoa	Agariciidae	Leptoseris hawaiensis	
Anthozoa	Pocilloporidae	Madracis hellana	
Anthozoa	Psammocoridae	Psammocora aff. explanulata	
Anthozoa	Coscinaraeidae	Craterastrea levis	
Anthozoa	Caryophyllidae	aff. Polycyathus	
Anthozoa	Dendrophylliidae	Tubastrea aurea	

Tableau 12. 13 espèces de scléractiniaires ont été inventoriées en zone mésophotique à Mayotte



Photos 11. Plusieurs spécimens de *Leptoseris troglodyta* ont été observés dans une grotte en zone mésophotique à Mayotte (en haut à gauche), cette espèce n'avait jamais été échantillonnée dans l'océan Indien. *Duncanopsammia* aff. *axifuga* est également une espèce de scléractiniaire nouvelle pour Mayotte (en haut à droite). Le genre Leptoseris semble dominant sur les sites échantillonnés lors du programme MesoMay (en bas à droite et à gauche)

Le nombre total de scléractiniaires recensés lors des phases 1 et 2 du programme MesoMay est de 18 espèces réparties dans 11 familles. Le genre de scléractinaires dominant en zone mésophotique à Mayotte sur les sites échantillonnés semble être *Leptoseris* (photos 11). La phase 2 du programme a permis de prélever certains spécimens et de les déterminer, avec certaines espèces qui s'avèrent être nouvelles pour Mayotte (Tableau 12).

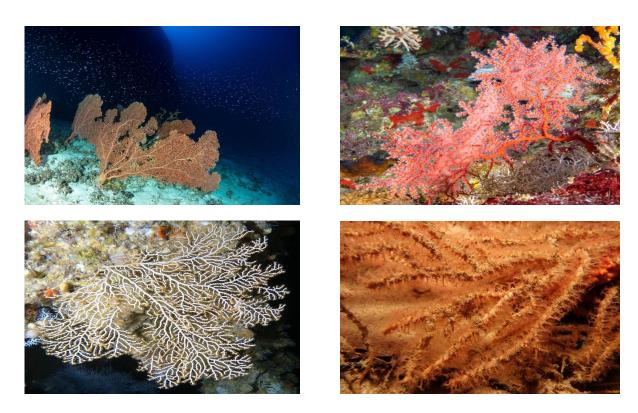
F. Les hydraires (Cnidaria – Hydrozoa)

Au moins 38 espèces et 16 familles d'hydraires ont été observées dans le cadre de MesoMay 2, mais seulement 18 ont pu être identifiés jusqu'à l'espèce car leur détermination à partir de photos reste difficile et des prélèvements sont nécessaires pour recenser les différentes espèces d'hydraires (Photos 12 et Tab. 13). Les familles des Aglaopheniidae et des Halopterididae semblent les mieux représentées sur les sites échantillonnés en zone mésophotique dans le cade de ce programme. Cladocarpus keiensis n'avait jamais été échantillonné à Mayotte et est une espèce mésophotique avec Zygophylax rufa et Hincksella cylindrica. Les hydraires sont vraisemblablement l'une des classes de cnidaires « sous échantillonnée » dans cet inventaire.

Photos 12. Quelques exemples d'espèces d'hydraires observées en zone mésophotique à Mayotte lors du programme MesoMay avec *Egmundella amirantensis* (en haut à gauche), les polypes déployés d'une colonie de *Sertularella diaphana* (en haut à droite), *Gymnangium hians* (en bas à gauche) et *Stylaster* aff. *flabelliformis* (en bas à gauche)

Le nombre total d'hydraires recensés lors des phases 1 et 2 du programme MesoMay est d'au moins 40 espèces réparties dans 16 familles.

Classe	Famille	Genres/Espèces	Remarques
Hydrozoa	Aglaopheniidae	aff. Gymnangium	
Hydrozoa	Aglaopheniidae	aff. Lytocarpia phyteuma	
Hydrozoa	Aglaopheniidae	Cladocarpus keiensis	Nouvelle sp Mayotte
Hydrozoa	Aglaopheniidae	Gymnangium hians	
Hydrozoa	Aglaopheniidae	Lytocarpia phyteuma	
Hydrozoa	Aglaopheniidae	Lytocarpia aff. brevirostris	
Hydrozoa	Aglaopheniidae	Macrorhynchia	
Hydrozoa	Aglaopheniidae	Taxella gracilicaulis	
Hydrozoa	Aglaopheniidae	Taxella hornelli	
Hydrozoa	Campanulariidae	aff. Obelia	
Hydrozoa	Campanulariidae	Clytia	
Hydrozoa	Campanulinidae	Egmundella amirantensis	
Hydrozoa	Clavidae	aff. Turritopsis	
Hydrozoa	Clavidae		
Hydrozoa	Eudendriidae	Eudendrium	sp1
Hydrozoa	Eudendriidae	Eudendrium	sp 2
Hydrozoa	Eudendriidae	Eudendrium	sp 3
Hydrozoa	Haleciidae	Halecium	sp
Hydrozoa	Halopterididae	Antennella balei	
Hydrozoa	Halopterididae	Antennella aff. secundaria	
Hydrozoa	Halopterididae	Halopteris	sp
Hydrozoa	Halopterididae	Halopteris	sp 1
Hydrozoa	Halopterididae	Halopteris	sp 2
Hydrozoa	Halopterididae	Monostaechas	sp 1
Hydrozoa	Halopterididae	Monostaechas	sp 2
Hydrozoa	Kirchenpaueridae		
Hydrozoa	Lafoeidae		
Hydrozoa	Oceaniidae	Oceania armata	
Hydrozoa	Plumulariidae	aff. Plumularia	
Hydrozoa	Plumulariidae	Antennella	
Hydrozoa	Plumulariidae	Plumularia aff. setacea	
Hydrozoa	Sertulariidae	aff. Sertularella	
Hydrozoa	Sertulariidae	Dynamena aff.quadridenta	
Hydrozoa	Sertulariidae		sp2
Hydrozoa	Sertulariidae	Sertularella delicata	
Hydrozoa	Sertulariidae	Sertularella diaphana	
Hydrozoa	Stylasteridae	Stylaster aff. flabelliformis	
Hydrozoa	Syntheciidae	Hincksella cylindrica	
Hydrozoa	Syntheciidae	Synthecium aff.patulum	
Hydrozoa	Syntheciidae	Synthecium	sp1
Hydrozoa	Thecatae	,	
Hydrozoa	Thyroscyphidae	Thyroscyphus bedoti	
Hydrozoa	Zygophylacidae	Zygophylax rufa	

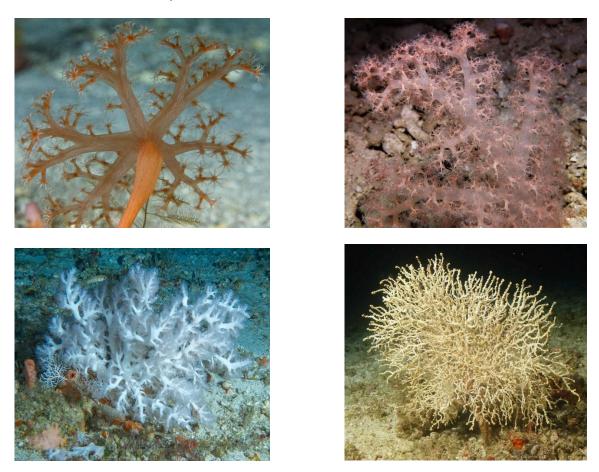

Tableau 13. Au moins 38 espèces d'hydraires ont été observées en zone mésophotique à Mayotte lors de la phase 2 du programme MesoMay. *Cladocarpus keiensis* est une espèce nouvelle pour Mayotte

G. « Les Gorgones » (Cnidaria – Octocorallia - Alcyonacea)

Au moins 14 espèces et 4 familles de gorgones ont été observées en zone mésophotique sur les sites échantillonnés et seulement 3 individus ont pu être déterminées à l'espèce (Tableau 14 et photos 13). Les prélèvements réalisés d'une petite partie des gorgones sur certains spécimens ont permis d'accroître les connaissances sur les genres et espèces présents en zone mésophotique à Mayotte, mais d'autres prélèvements seront nécessaires pour que l'inventaire des gorgones soit davantage abouti.

Classe	Famille	Genres/Espèces	Remarques
Anthozoa	Anthothelidae	aff. Iciligorgia	
Anthozoa	Ellisellidae	Ellisella	
Anthozoa	Ellisellidae	Junceella	
Anthozoa	Ellisellidae	Nicella	
Anthozoa	Ellisellidae	aff. Coelogorgia	
Anthozoa	Ellisellidae	aff. Verrucella verriculata	
Anthozoa	Plexauridae	Bebryce	
Anthozoa	Plexauridae	Bebryce sp2	
Anthozoa	Plexauridae	Paracis pustulata	
Anthozoa	Plexauridae	Villogorgia nozzolea	
Anthozoa	Plexauridae	Villogorgia sp.2	
Anthozoa	Plexauridae	aff. Astrogorgia	
Anthozoa	Subergorgiidae	Annella reticulata	
Anthozoa	Subergorgiidae	Subergorgia	

Tableau 14. 14 espèces ont été observées en zone mésophotique à Mayotte sur les sites échantillonnés lors du programme MesoMay


Photos 13. Quelques exemples de gorgones observés en zone mésophotique à Mayotte avec Annella reticulata (en haut à gauche), Verucella sp (en haut à droite), Paracis pustulata échantillonnée à 131 m de profondeur (en bas à gauche) et Subergorgia sp (en bas à droite)

H. « Les coraux mous » (Cnidaria – Octocorallia - Alcyonacea)

Cinq espèces de coraux mous ont été observées en zone mésophotique à Mayotte dans le cadre du programme MesoMay 2 (Tab. 15 et photos 14). Trois spécimens ont été prélevés et sont en cours d'analyse pour être déterminés à l'espèce. Une espèce de corail mou a été observée pour la première fois à Mayotte, *Pacifiphyton* sp.

Classe	Famille	Genres/Espèces	Remarques
Anthozoa	Nidaliidae	Chironephthya	
Anthozoa	Nephteidae	Pacifiphyton	nouvelle sp Mayotte
Anthozoa	Nephteidae	Dendronephthya	
Anthozoa	Nephteidae	sp	
Anthozoa	Alcyoniidae	aff. Eleutherobia	

Tableau 15. Cinq espèces de corail mou ont été observées en zone mésophotique à Mayotte dont une espèce nouvelle pour Mayotte

Photos 14. Quelques exemples de coraux mous observés en zone mésophotique à Mayotte pendant le programme MesoMay 2 avec *Pacifiphyton* sp observé pour la première fois à Mayotte (en haut à gauche), les genres *Dendronephthya* (en haut à droite) et *Chironephthya* (en bas à gauche) sont représentés par plusieurs espèces qui nécessitent des prélèvements pour être différenciées, et certains genres ne peuvent pas être déterminées à partir de photos (en bas à droite)

Le nombre total de coraux mous recensés pendant les phases 1 et 2 du programme MesoMay est de sept espèces réparties dans trois familles. Les prélèvements sont nécessaires pour déterminer les différentes espèces de coraux mous et ce groupe est vraisemblablement « sous évaluée » dans cet inventaire.

I. Les Antipathaires (« coraux noirs ») (Cnidaria –Hexacorallia – Antipatharia)

Dix espèces d'Antipathaires ont été recensées en zone mésophotique à Mayotte dans le cadre du programme MesoMay 2 (Tab. 16 et photos 15). Parmi ces espèces, huit ont été déterminées à partir de prélèvements de petits bouts de branches des spécimens.

Classe	Famille	Genres/Espèces	Remarques
Anthozoa	Antipathidae	Allopathes robillardi	prélevée
Anthozoa	Antipathidae	Antipathes aff. grandiflora	non prélevée
Anthozoa	Antipathidae	Antipathes aff. simplex	prélevée
Anthozoa	Antipathidae	Antipathes lentipinna	prélevée
Anthozoa	Antipathidae	Cirrhipathes aff. sanguina	prélevée
Anthozoa	Antipathidae	Cirrhipathes aff. spiralis	prélevée
Anthozoa	Aphanipathidae	Aphanipathes verticillata	prélevée
Anthozoa	Myriopathidae	Cupressopathes abies	prélevée
Anthozoa	Myriopathidae	Myriopathes aff. ulex	non prélevée
Anthozoa	Myriopathidae	Myriopathes myriophyllia	prélevée

Tableau 16. Le programme MesoMay 2 a permis le recensement de 10 espèces d'Antipathaires en zone mésophotique à Mayotte

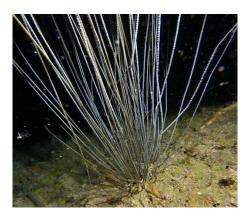


Photo 15. Les Antipathaires sont diversifiés en zone mésophotique et peuvent former des massifs de plusieurs m² abritant de nombreux organismes comme ce *Myriopathes* (en haut à droite) ou cet *Aphanipathes* (en bas à gauche). *Allopathes robillardi* a été observé à 115 m (en haut à gauche) et *Cirrhipathes* aff. *sanguina* (en bas à droite) à 75 m au niveau de la Passe en S

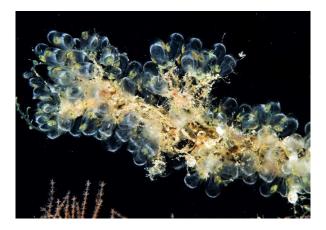
Le nombre total d'Antipathaires recensés pendant les phases 1 et 2 du programme MesoMay est de 12 espèces réparties dans trois familles. Les prélèvements de petits bouts de branches sont nécessaires pour déterminer les différentes espèces d'Antipathaires.

J. Les éponges (Porifera)

La richesse spécifique des spongiaires est très importante si on se réfère aux photos des tombants et surplombs faites en zone mésophotique sur les sites explorés dans le cadre de ce programme. Pour déterminer les éponges à l'espèce, il faut les prélever. Quelques prélèvements d'éponges ont été réalisés dans le cadre de MesoMay 2 et ont permis de déterminer 4 genres/espèces (Tab. 17 et photos 16). Le phylum des Porifères est le moins abouti dans cet inventaire et le nombre d'espèces échantillonnées n'est pas représentatif des observations réalisées en zone mésophotique qui montrent que les éponges peuvent être dominantes sur le substrat dur de certains habitats des écosystèmes coralliens mésophotiques.

Classe	Famille	Genres/Espèces	Remarques
Demospongiae	Petrosiidae	Xestospongia testudinaria	
Demospongiae	Phloeodictyidae	Oceanapia	prélevée
Demospongiae	Esperiopsidae	Ulosa	prélevée
Demospongiae	Scleritodermidae	Aciculites aff. tulearensis	prélevée

Tableau 17. Quatre genres de Porifères ont été inventoriés à partir de prélèvements au niveau des écosystèmes coralliens mésophotiques à Mayotte


Photos 16. Les éponges deviennent dominantes au niveau de certains habitats des écosystèmes coralliens mésophotiques sur les sites échantillonnés lors du programme MesoMay à Mayotte (en bas à droite). Certains genres et espèces ont pu être déterminés à partir des prélèvements des spécimens : *Aciculites* aff. *tulearensis* prélevés à 100 m de profondeur au niveau de la Passe en S (en haut à gauche), *Ulosa* sp et *Oceanapia* sp à 90 m (en haut à droite et en bas à gauche)

BIORECIF

K. Autres phylums: tuniciers (ascidies) (Tunicata) et planaires (Platyhelmintes)

<u>Les ascidies</u> sont présentes en zone mésophotique sur les sites explorés lors de ce programme mais nécessitent d'être prélevées pour être déterminées à l'espèce (Photos 17).

Photos 17. Exemples d'ascidies (Tunicata) observées en zone mésophotique appartenant à la famille des Clavelinidae

Un inventaire, même exhaustif, des ascidies n'a pas pu être mis en place dans le cadre de MesoMay 1 et 2 en raison de l'absence de collaboration avec les experts contactés. Françoise Monniot (MNHN) a récemment souhaité collaborer au programme MesoRun à La Réunion, identique dans ces objectifs à MesoMay, et pourrait être l'expert de référence pour les ascidies dans le cadre de MesoMay 3.

Un genre de <u>platyhelminthes</u> (« Planaires ») a été observé dans le cadre de MesoMay 2, Pseudoceros sp (photo 18). Cette espèce est différente des deux autres observées dans le cadre de MesoMay 1 (Mulochau et al., 2019)

Photo18. *Pseudoceros* sp. est la seule espèce de Platyhelmintes (« planaires ») observée lors du programme MesoMay 2

IV. Discussion et perspectives

L'exploration des écosystèmes coralliens mésophotiques (ECM) des récifs de l'indo-Pacifique est relativement récente. Les recherches et évaluations environnementales ont longtemps été limitées aux zones récifales situées proches de la surface pour des raisons scientifiques, de suivis d'impacts anthropiques mais également liées aux contraintes de la plongée subaquatique à l'air présentant rapidement des limites aux incursions au-delà de 30 ou 40 m de profondeurs. Les ECM ont pu commencer à être explorés avec le développement de la plongée au recycleur et mélanges gazeux en lien avec la recherche scientifique laquelle a trouvé un intérêt important à la connaissance de ces zones notamment avec l'hypothèse que les ECM plus éloignés de la surface et des impacts anthropiques pourraient avoir un rôle important à jouer en tant que refuge pour des espèces récifales évoluant à faible profondeur. Une meilleure connaissance de la biodiversité des ECM permettra de mieux appréhender l'assemblage des espèces qui y évolue et leur rôle en lien avec les récifs proches de la surface. Les ECM ont surtout été étudiés dans la zone Atlantique et aux Caraïbes, la communauté scientifique manque de données pour les ECM situés dans l'indo-Pacifique et il parait difficile d'extrapoler ce qui a été étudié au niveau des zones récifales de l'Atlantique à la zone de l'indo-Pacifique. D'autre part, l'hypothèse des ECM comme zone refuge permettant à certaines espèces de « recoloniser » les zones récifales proches de la surface n'est à ce jour pas validée et repose en partie sur des populations d'espèces communes et génétiquement identiques aux récifs euphotiques et mésophotiques (Turner et al., 2017).

Cet inventaire faunistique non exhaustif réalisé dans le cadre du programme MesoMay sur certains sites situés en zone mésophotique à Mayotte n'avait jamais été fait auparavant. Les deux phases du programme ont montré que les images réalisées par les plongeurs sont souvent de bien meilleures qualités que les images faites par les ROV ou caméras sous-marines immergées depuis la surface, et permettent ainsi de déterminer davantage d'organismes. La comparaison de la mise en œuvre et des bénéfices apportés par le ROV ou les plongeurs a été détaillée dans le rapport sur la mission ROV de décembre 2019 avec le PNMM (Mulochau et al., 2020). La seconde phase du programme MesoMay a permis de compléter l'inventaire notamment avec la collecte d'une partie ou de la totalité de certains organismes qui n'étaient pas déterminables à partir des photos. Certains organismes observés lors de MesoMay sont vraisemblablement nouveaux pour la Science et nécessitent d'être prélevés pour confirmés ou pas cette dénomination de « nouvelle espèce ». La capture de spécimens mobiles (poissons, crevettes,...) est difficile d'autant que le contexte des plongées en zone mésophotique complique les prélèvements. Le travail restant pour décrire la biodiversité des sites échantillonnés en zone mésophotique dans le cadre de cette étude est important, notamment pour certains phylums, comme les porifères (« spongiaires »). Ce phylum semble présenter une diversité spécifique très importante sur les tombants et surplombs observés sur les ECM, ce qui ne ressort pas dans le cadre de cet inventaire au regard du nombre de genres décrits (Tab. 17). Les porifères nécessitent vraisemblablement une étude ciblée pour la description des espèces de ce phylum sur les sites échantillonnés dans le cadre du programme MesoMay et le phylum des tuniciers (ascidies) pourrait être inventorié en même temps.

L'état de santé et la stabilité des ECM, la préservation de leur biodiversité et le degré de connectivité génétique entre les récifs euphotiques et les zones récifales mésophotiques pourraient contribuer à la capacité de résilience des récifs proches de la surface et à guider les futures stratégies de gestion et de conservation. Plusieurs publications montrent que les ECM fournissent des habitats et des zones

refuge essentiels aux espèces ciblées par la pêche, et représentent donc des zones cruciales pour la gestion des stocks. Ainsi, certaines espèces, impactées par la pêche sur les récifs euphotiques (< 30 m), appartenant par exemple aux familles des Serranidae (mérous) ou des Carangidae pour les poissons, ou les Holothuridae pour les échinodermes, pourraient être en partie protégées de certaines pratiques au niveau des ECM (chasse sous-marine, collecte, voire de la pêche à la ligne avec les difficultés à pêcher plus profond...). La compréhension du fonctionnement des ECM, de leur gestion et de leur protection passent nécessairement par une phase d'acquisition de connaissance.

Les deux premières phases de MesoMay n'avaient pas pour objectif de collecter des données d'abondances des différentes espèces commerciales observées sur les ECM, l'objectif du programme étant orienté vers de l'acquisition de connaissances sur la biodiversité de la zone mésophotique et des habitats rencontrés à travers un inventaire faunistique non exhaustif des sites échantillonnés. Cependant dans le cadre d'une problématique de gestion et de conservation de certaines espèces commerciales, il parait intéressant d'évaluer leurs abondances observées sur certains sites en zone mésophotique. Les données d'abondances d'espèces commerciales en milieu mésophotique et leurs suivis dans le temps sont rares. La suite du programme, MesoMay 3, propose notamment d'expérimenter une méthode afin de permettre cette évaluation lors des futurs suivis et d'avoir des tendances d'évolution de certaines populations dans le temps. Cette expérimentation pourrait être couplée à une collecte de données de recouvrement de substrat dur. La phase 3 du programme propose donc une orientation vers une problématique de gestion/conservation avec la collecte de données d'abondances, notamment d'espèces commerciales, à travers des suivis de type GCRMN. Cette action du programme MesoMay 3 ne sera cependant possible que grâce aux données collectées lors des précédentes phases de MesoMay qui ont chacune permis d'apporter des éléments tangibles sur les habitats et la biodiversité des ECM sur les sites prospectés à Mayotte.

V. Bilan MesoMay 1 et 2

100 plongées en zone mésophotique ont été réalisées entre 50 et 145 m de profondeur

Un ROV a été immergé 46 fois en zone mésophotique entre 50 et 157 m de profondeur

756 espèces inventoriées

254 espèces de poissons inventoriées dont 59 sp nouvelles pour Mayotte avec certaines qui pourraient être nouvelles pour la Science

331 sp de mollusques dont 1 nouvelle pour Mayotte, 46 sp de crustacés dont 7 nouvelles sp pour Mayotte, 26 sp d'échinodermes dont 2 nouvelles sp d'holothuries pour Mayotte, 18 sp de scléractiniaires dont 2 nouvelles sp pour Mayotte, 40 sp d'hydraires dont une est nouvelle pour Mayotte, 14 sp de gorgones, 7 sp de coraux mous dont une est nouvelle pour Mayotte, 12 sp d'Antipathaires, 4 sp d'éponges, 3 sp de planaires et 1 sp de polychètes

Deux publications scientifiques, d'autres en cours ou à venir et trois rapports

Bancarisation des données MesoMay (1, 2 et ROV) dans la Base de Données Récif (cf. annexe 3).

VI. Bibliographie

Bozec Y.M., 2006. Les poissons des récifs coralliens de Nouvelle-Calédonie : estimations d'abondance, relations habitat-poissons, interactions trophiques et indicateurs écologiques. Paris (FRA) ; Paris : Université de Paris 6, Th. : Océanographie et Environnements Marins, Université de Paris 6 : 312 p.

Bruggemann H., Bigot L., Cauvin B., Chabanet P., Durville P., Guillaume M., Hoarau L., Mulochau T., Penin L., Tessier E., Urbina I. & K. Pothin, 2016. Positive MPA effects after 8 years of conservation effort at Réunion Island (Indian Ocean). 13th international coral reef symposium.

Coleman R.R., Copus J.M., Coffey D.M., Whitton R.K. et B.W Bowen, 2018. Shifting reef fish assemblages along a depth gradient in Pohnpei, Micronesia. *Peer J*, *6*, e4650.

Drivas J. & M. Jay, 1988. Three New Species of the Genus Terebra from the Mascarenes Islands, Indian Ocean (Neogastropoda: Terebridae). *Venus* **47(3)**: 167-171

Durville P., Mulochau T., Quod J.P., Pinault M. et L. Ballesta, 2020. Premier inventaire ichtyologique du mont sous-marin La Pérouse. Ile de La Réunion, sud-ouest océan Indien. Expédition La Pérouse, 2019. *Annales de la société de sciences naturelles de la Charente-Maritime*. Soumis.

Guilhaumon F., Savelli M.P., Bigot L., Durville P., Matthews T. J. and P. Chabanet, 2018. Functional vulnerability in Western Indian coral reef fishes: Indicator species and conservation priorities *Diversity and Distributions*. WIOMSA Symposium, Mauritius.

Harmelin-Vivien M.L., 1979. Ichtyofaune des récifs coralliens de Tuléar (Madagascar): Ecologie et relations trophiques. Thèse d'Etat, Univ. Aix- Marseille II : 165 pp.

IUCN 2020. The IUCN Red List of Threatened Species. Version 2020-2. https://www.iucnredlist.org

Kahng S., Copus J.M. &D. Wagner, 2017. Mesophotic Coral Ecosystems. In: Rossi S., Bramanti L., Gori A., Orejas C. (eds) Marine Animal Forests. Springer, Cham

Legall N. & J Poupin. 2020. - CRUSTA: Database of Crustacea (Decapoda and Stomatopoda), with special interest for those collected in French overseas territories. With 'Mesophotic' Crustacea for Mayotte at http://crustiesfroverseas.free.fr/search result.php?refregion=Mesophotic. Consulted September 2020

Letourneur Y., Kulbicki M. et P. Labrosse, 1998. – Spatial structure of commercial reef fish communities along terrestrial runoff gradient in the Northern lagoon of New Caledonia. *Environ. Biol. Fish.*, 51: 141-159.

Lyeske E. et R.F. Myers, 1995. Guide des poissons des récifs coralliens. Delachaux et Niestle (Eds.). 400 p.

Morais J. & B. A. Santos, 2018. Limited potential of deep reefs to serve as refuges for tropical Southwestern Atlantic corals. Ecosphere/ESA Vol. 9, Issue 7. https://doi.org/10.1002/ecs2.2281

Mulochau T., Delamare C. & C. Conand, 2020. First occurrence of the species *Holothuria coronopertusa* in Mayotte, in the Indian Ocean. SPC Bêche-de-mer Information Bulletin # 40, p 46-48 https://coastfish.spc.int/publications/bulletins/la-beche-de-mer/512-beche-de-mer-information-bulletin-40

Mulochau T., Durville P. et J. Mathey (2020) Exploration de la zone mésophotique de quelques pentes externes de Mayotte à l'aide d'un ROV – Inventaire faunistique non exhaustif - BIORECIF – Parc Naturel Marin de Mayotte. 23 p et annexes.

Mulochau T., Durville P., Barathieu G., Budet D., Delamarre C., Konieczny O., Quaglietti S., Anker A., Bidgrain P., Bigot L., Bo M., Bonnet N., Bourmaud C., Conand C., De Voogd N., Ducarme F., Faure G., Fricke R., Huet R., Mah C., Maurel L., Messing C., Philippot V., Poupin J., Sartoretto S., Schleyer M., Stöhr S., Trentin F. & J. Wickel, 2019. Inventaire faunistique non exhaustif de quelques sites situés en zone récifale mésophotique à Mayotte - BIORECIF – GALAXEA - DEAL Mayotte. 30 p et annexes.

Mulochau T., Huet R., Trentin F., Rauby T., Holon F., Ballesta L. et P. Durville, 2020. Inventaire des mollusques du mont sous-marin La Pérouse – Ile de La Réunion, sud-ouest océan Indien –Expédition La Pérouse 2019. *Folia conchyliologica* 56: 3-15 et erratum 57 p48 http://www.cernuelle.com/file/Folia%20Conch%2056.pdf

Muir P.R. Wallace C.C., Pichon M. & P. Bongaerts, 2018. High species richness and lineage diversity of reef corals in the mesophotic zone. **285.** *Proc. R. Soc. B.* http://doi.org/10.1098/rspb.2018.1987

Pauly D. et D. Zeller, 2016. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications. Nature Publishing Group. 7, 10244.

Pichon M., Rouzé H., Barathieu G., Konieczny O., Adjeroud M. et Thomassin B. 2020. Extension of the known distribution of the scleractinian coral *Leptoseris troglodyta* to the southwestern Indian Ocean: new record from mesophotic caves in Mayotte. Bulletin of Marine Science 96 (4) https://doi.org/10.5343/bms.2020.0009

Poupin J., Barathieu G., Konieczny O. & T Mulochau, en préparation. - Inventaire des crustacés mésophotiques de Mayotte photographiés en plongée Tek. Naturae. Muséum national d'Histoire naturelle, Paris, http://sciencepress.mnhn.fr/fr/periodiques/naturae

SANDIN S.A. et E. Sala. Using successional theory to measure marine ecosystem health. *Evol. Ecol.*, 26(2): 435-448.

Turner J.A., Babcock R.C., Hovey R. & G.A. Kendrick, 2017. Deep thinking: a systematic review of mesophotic coral ecosystems. *ICES Journal of Marine Science*, Vol. 74, Issue 9, pp 2309–2320. https://doi.org/10.1093/icesjms/fsx085

Werner, T.B. & G.R. Allen, 1998 A rapid biodiversity assessment of the coral reefs of Milne Bay Province, Papua, New Guinea. RAP Working Papers 11, Conservation International, Washington, DC, 109 p.

Wickel J., Jamon A., Pinault M., Durville P. & P. Chabanet, 2014. Composition et structure des peuplements ichtyologiques marins de l'île de Mayotte (sud-ouest de l'océan Indien). *Cybium* (38) 3: 179-203.

Wickel J. & A. Jamon, 2010. Inventaire taxonomique actualisé des poissons marins de l'île de Mayotte et des bancs récifaux de Geyser-Zélée, Canal de Mozambique. Liste révisée des espèces et élaboration d'une base de données fonctionnelle. 35 p. + annexes. Rapport LAGONIA/APNEE pour le compte de la DAF Mayotte.

VII. <u>Financements</u>

Les phases 1 et 2 du programme MesoMay ont été financées par la DEAL de Mayotte et le Parc Marin de Mayotte (mission ROV).

Annexes

Annexe 1

Campagne BIOMAGLO - MNHN et Ifremer - 2017

Campagne	Collecte	Date début	Date texte	Lat début	Lat fin	Long début	Long fin	Localité	Prof début	Prof fin	Engin
BIOMAGLO	CP4796	23/01/2017	23-janv-17	-11.440267	-11.441816	47.324184	47.342533	Iles Glorieuses	147	80	Chalut à perche
BIOMAGLO	DW4793	23/01/2017	23-janv-17	-11.4405	-11.4415	47.327999	47.3405	Iles Glorieuses	122	94	Drague Warén
BIOMAGLO	DW4807	25/01/2017	25-janv-17	-11.484834	-11.493167	47.460999	47.466667	Iles Glorieuses	97	124	Drague Warén
BIOMAGLO	DW4836	28/01/2017	28-janv-17	-12.428333	-12.420333	43.924332	43.932167	SE Moheli	82	88	Drague Warén
BIOMAGLO	DW4841	29/01/2017	29-janv-17	-12.38	-12.385	43.560001	43.553333	SW Moheli	333	154	Drague Warén

Tableau 18. Stations échantillonnées en zone mésophotique autour des îles du sud-ouest de l'océan Indien pendant la campagne BIOMAGLO - https://expeditions.mnhn.fr/campaign/biomaglo

Campagne BENTHEDI – CNRS – 1977

Campagne	Collecte	Date fin	Date texte	Lat texte	Long texte	Habitat	Localité	Info localité	Prof début	Prof fin	Engin
BENTHEDI	R80 (BENT80-R)	31/03/1977	31-mars-77	12°33'S	44°55,7'E	fond riche en grandes éponges et gorgones	Mayotte	Banc de l'Iris	50		Récolte à vue en plongée
BENTHEDI	R109 (BENT109-R)	10/04/1977	10APR1977	12°25,6'S	46°16,2'E	herbier à Thalassodron, dôme de sable et platier madréporaires	S du Banc de la Zélée		50		Récolte à vue en plongée
BENTHEDI	F78 (BENT78-F)	31/03/1977	31-mars-77	12°34'S	44°56'E	faubert riche en pralines de mélobésiées et en Halimeda	Mayotte	NW du Banc de l'Iris	140	80	Foubert
BENTHEDI	DRO5 (BENT5-DR)	18/03/1977	18-mars-77	12°32'S	47°40,2'E	bcp de débris rocheux grès gris jauneà la cassure avec grosses alvéoles	W Banc du Leven		150	35	Drague à roche
BENTHEDI	DR07 (BENT7-DR)	19/03/1977	19-mars-77	11°29'S	47°18'E	pas de sédiments fragment de grès	W îles Glorieuses		200	80	Drague à roche
BENTHEDI	F69 (BENT69-F)	30/03/1977	30-mars-77	12°31'S	45°02'E	riche en éponges, nodules de mélobésiées, gorgones antipathaires	Mayotte	NE du récif Nord	200	50	Foubert

Tableau 19. Stations échantillonnées en zone mésophotique autour des îles et hauts-fonds du sud-ouest de l'océan Indien pendant la campagne BENTHEDI - https://expeditions.mnhn.fr/campaign/benthedi

Annexe 2

Autorisations de prélèvements et de transport :

1. Arrêté préfectoral n°07/UTM/AIML/2019 portant autorisation de prélèvements scientifiques

- VU l'arrêté préfectoral n°705/2018 du 24 juillet 2018 portant délégation de signature au chef de l'unité territoriale de Mayotte;
- VU la demande en date du 4 mars 2019 formulée par M. Thierry Mulochau;
- VU l'avis réputé favorable du Commandant de la base navale ;
- VU l'avis favorable de la direction de l'environnement, de l'aménagement et du logement en date du 15 mars 2019;
- VU l'avis favorable des services techniques du pare marin de Mayotte en date du 8 mars 2019;

ARRETE

Article 1: Dans le cadre des études sur les littoraux de Mayotte pour les opérations suivantes :

- Programme MES/OMAY

les personnes ci-dessous référencées conformément aux déclarations adressées par M. MULOCHAU à l'UT-DMSOI sont autorisées à plonger et prélever des spécimens d'alcyonaires, gorgones, scléractinaires, hydraires, spongiaires, ascidies, mollusques, certains échinodermes (crinoïdes, holothuries, ophiures,...) et certains crustacés.

- Daniel Budet: Moniteur, classe IIB.
- Clément Delamarre : Moniteur, Classe IIb, Dejeps
- Sébastien Quaglietti : Moniteur, Classe IIB, Dejeps E4, Nitrox et Trimix
- Konieczny Olivier : DEJEPS, Instructeur Recycleur, Plongeur Trimix PTH 120
- -Barathieu Gabriel: Niveau 3, recycleur PTH120

La présente décision est délivrée sous réserve de la conformité et de la validité des certificats nécessaires aux opérations de plongée envisagées et de l'aptitude médicale des plongeurs.

Cette autorisation est délivrée pour la période du 27 mars 2019 au 30 août 2020

Article 2: Les opérations de prélèvement sont effectuées à partir des navires :

- « Nyamba » immatriculé DI 38651
- « Mwamba » immatriculé DI F32016

et sous la responsabilité de leur chef de bord.

Ces navires sont armés par un équipage à jour de leur brevet (capitaine/matelot), de leur aptitude médicale et en nombre suffisant conformément au permis de navigation.

<u>Article 3</u>: Les missions de plongée sont effectuées sous la responsabilité de leur chef de bord par des navires armés par des équipages à jour de leur brevet (capitaine/matelot), de leur aptitude médicale et en nombre suffisant conformément aux permis de navigation.

www.developpement-obrable.gosv.fr

Article 3: Conformément à l'article L5725-2 du code des transports, le capitaine d'un navire immatriculé à Mayotte et l'officier chargé de sa suppléance sont français.

Article 4: Les capitaines des navines précités avertissent l'autorité maritime via la station « Mayotte trafic » du début et de la fin de chaque sortie en mer.

<u>Article 5</u>: Toute découverte archéologique doit immédiatement être déclarée auprès du service de l'unité territoriale de Mayotte de la DMSOI.

Article 6: l'arrêté n°06/UTM /AIML/2019 du 27 mars 2019 est annulé.

Article 7: Cet arrêté est susceptible de recours en plein contentieux devant le tribunal administratif dans un délai de deux mois à compter de sa notification.

Pour le préfet et par délégation, Le Chef de l'unité territoriale de Mayotte

L'attaché male d'administration Adjointe na cuerde de Merrite ne de Mayotte

Michèle SEVEN

Copies : DEAL/PNM/Services de contrôle de l'État

1

www.developpement-durable-gousti

2. Autorisation de transport de coraux dans le cadre du programme MesoMay – DEAL Mayotte courrier du 18 mars 2019

MINISTÈRE DE LA TRANSITION ÉCOLOGIQUE ET SOLIDAIRE

Direction de l'Environnement, de l'Aménagement et du Logement de Mayotte

Mamoudzou, le 18 mars 2019

Service de l'Environnement et de la Prévention des Risques Unité Biodiversité

Courrier d'autorisation de transport de spécimens de coraux dans le cadre d'une mission scientifique

Nos réf. :

Affaire suivie par : Julie RICHARD

Courriel : julie richard@developpement-durable.gouv.fr
Tél.: 02 69 60 92 94 - Fax: 02 69 63 35 10

Objet : Transport d'échantillons de coraux prélevés dans le cadre du programme MesoMay sur le territoire de

Je soussignée Mme Caroline MAUDUIT, cheffe du Service environnement et prévention des risques (SEPR), atteste que Monsieur Thierry MULOCHAU, président de la société BIORECIF, est autorisé à transporter des spécimens de coraux de Mayotte vers les pays de l'Union européenne, dans le cadre des travaux de recherche menés lors de la mise en œuvre du programme MesoMay à Mayotte, sur la période du 15 mars 2019 au 30 août 2020.

Cette opération concerne des espèces inscrites à l'annexe B de la Convention CITES. Leur transport vers un pays de l'Union européenne constitue un mouvement qui ne requiert aucun document CITES.

Cette opération ne concerne pas d'espèces protégées au titre de l'article L411-1 du code de l'environnement.

> La cheffe du service environnement et prévention des risques

> > Caroline MAUDUIT

www.ecologique-solidaire.goux.tr

Horaires d'ouverture : 8h00-12h00 / 14h00-17h00 Tél. : 02 69 61 12 54 – fixx : 02 69 61 07 11 BP 109 Terre Plein de M'tsapéré 97600 Mamoudzou

Annexe 3

Bancarisation des données dans la Base de données Récif

Structuration des données d'inventaire du projet MESOMAY

2

Octobre 2020

L Résumé - métadonnées

La biodiversité récifale profonde située dans la zone mésophotique entre 50 m et 150 m de profondeur reste largement méconnue. Le programme MesoMay, piloté par BIORECIF, consiste dans sa première phase, une exploration de cette zone sur les pentes récifales de Mayotte.

Le protocole consiste à se rendre sur une zone précise, puis de réaliser des plongées (plus ou moins longue en fonction de la profondeur), les observateurs, prennent des photographies d'espèces plutôt remarquables dans l'objectif de réaliser un inventaire. Ces images sont ensuite analysées par les experts de chaque phylum pour une identification.

II. Mise en forme des données

1. Quadrilabo

Compte tenu de la volumétrie des données (multiplicité des passages et des taxons identifiés), le choix est porté sur l'utilisation du masque Quadrilabo pour l'intégration des données. Le format Quadrilabo permet un import dans le système central Quadrige, puis une redescente des données vers une application BD Récif installée en local sur le poste d'un utilisateur ayant les droits d'accès aux données. La majeure partie du travail consiste à organiser les données, à trier les paramètres mesurés. Une fois ce tri réalisé, les éléments de référentiels doivent être créés, puis la stratégie constituée.

Le masque Quadrilabo repose sur la codification SANDRE des éléments de référentiel fournis par la cellule Quadrige.

2. Champ mnémonique

Le champ mnémonique d'observation est un champ non obligatoire et libre qui permet d'identifier l'observation. Ici, le choix est porté sur un code qui permet notamment de savoir si l'observation a été réalisée en plongée ou depuis le ROV.

BIORECIF

Signification du mnémonique : AAAAMMJJ- XXX - Station

AAAAMMJJ: Date

XXX : soit ROV si les photos sont prises depuis le ROV ou PSM si elles sont prises en plongée

sous- marine

Station : Nom de la station homogène

3. Correspondances Observateurs

Les observateurs, ici, sont les photographes qui ont pris les photos et permis l'analyse. Le champ d'origine était loin d'être homogène. Le travail d'homogénéisation a été réalisé par Kart'eau et les correspondances établies sont décrites dans le Tableau 1. Quand pour une même observation, les observateurs sont issus de deux organismes différents, un choix arbitraire de l'un des deux organismes a été fait. Les observateurs sont ensuite repris de manière nominative.

Tableau 1 : Correspondance des Observateurs

Observateurs	Organisme observateur			
Camille Loisil	POISSON_LUNE			
Camille Loisil/Patrick Plantard	POISSON_LUNE			
Clement Delamare	SPS-976			
Gaby Barathieu	DEEP_BLUE_EXPLORATION			
Gaby Barathieu/Olivier Konieczny	DEEP_BLUE_EXPLORATION			
Gaby Barathieu/Olivier Konieczny/Patrick Plantard	DEEP_BLUE_EXPLORATION			
Gaby Barathieu/Sebastien Quaglietti/Clement Delamare	SPS-976			
Patrick Plantard	POISSON_LUNE			
Patrick Plantard/Olivier Konieczny	POISSON_LUNE			
Sebastien Quaglietti	SPS-976			
Sebastien Quaglietti/Clement Delamare	SPS-976			
	BIORECIF			
(vide)	SPS-976			
	DEEP_BLUE_EXPLORATION			

4. Correspondances Analystes / Experts

L'analyste, au sens BD Récif, est la personne référent des résultats saisis, en cas de contrôle ultérieur de la base, c'est l'analyste qui sera contacté pour des éventuelles modifications/corrections. Il est convenu avec Biorecif, d'associer GALAXEA à tous les résultats poissons et BIORECIF à tous les résultats invertébrés. Pour des besoins d'identification, Biorecif s'est appuyé sur des experts régionaux des invertébrés. Ceux-ci sont consignés dans le fichier fourni dans un champ. Cette information est conservée dans le champ commentaire sur résultat. Kart'eau a dû homogénéiser ce champ, décrit dans le Tableau 2.

Tableau 2 : Correspondances des experts et du champ Commentaire sur résultat repris dans BDRécif

Analyste (Libellé homogénéisé)	Champ commentaire
Charles Messing	Charles Messing (Nova Southeastern University)
Chris Mah/Frederic Ducarme	Chris Mah (Smithsonian Institution) et Frederic Ducarme (MNHN)
Emilie Boissin	Emilie Boissin (CRIOBE)
Emilie Boissin/Sabine Stöhr	Emilie Boissin (CRIOBE) et Sabine Stöhr (Swedish Museum of Natural History)
Gerard Faure/Lionel Bigot	Gerard Faure et Lionel Bigot (Université de La Réunion)
Joseph Poupin	Joseph Poupin (Ecole Navale BCRM)
Joseph Poupin/Arthur Anker	Joseph Poupin (Ecole Navale BCRM) et Arthur Anker
Lionel Bigot/Gerard Faure	Gerard Faure et Lionel Bigot (Université de La Réunion)
Marzia Boissin	Marzia Boissin (Université de Gênes)
Mike Schleyer	Mike Schleyer (The South African Association for Marine Biological Research)
Nicole De Voogt	Nicole De Voogt (Naturalis Biodiversity Center)
Nicole Gravier-Bonnet	Nicole Gravier-Bonnet (retraitée Université de La Réunion)
Patrick Durville	Patrick Durville (Galaxea)
Philibert Bidgrain/Florence Trentin	Philibert Bidgrain et Florence Trentin (Association Vie Océane)
Raymond Huet	Raymond Huet (Association française de Conchyliologie)
Thierry Mulochau	Thierry Mulochau (Biorecif)
Thierry Mulochau/Chantal Conand	Thierry Mulochau (Biorecif) et Chantal Conand (Université de La Réunion)
Thierry Mulochau/Chantal De Rieder/Frederic Ducarme	Thierry Mulochau (Biorecif), Chantal De Rieder (Université Libre de Bruxelles) et Frederic Ducarme (MNHN)
Thierry Mulochau/Emilie Boissin	Thierry Mulochau (Biorecif) et Emilie Boissin (CRIOBE)
Thierry Mulochau/Frederic Ducarme	Thierry Mulochau (Biorecif) et Frederic Ducarme (MNHN)
Véronique Philippot	Véronique Philippot (Naturum Etudes)

5. Correspondances profondeurs

Dans le fichier d'origine, les profondeurs sont renseignées à l'échelle du taxon, or dans les faits la profondeur exacte ou la gamme de profondeurs est renseignée par plongée. Une plongée correspond à un réplicat, et pour chaque observation, un réplicat est réalisé. Dans BDR, il est possible de renseigner soit une profondeur exacte, soit une profondeur minimale et maximale d'un réplicat. C'est ainsi que sont reprises les informations de profondeurs. Toutefois, lorsque les combinaisons de profondeurs sont examinées pour chaque date/station, quelques anomalies sont rencontrées et corrigées, lorsque 2 gammes de profondeurs sont différentes, le minimum des 2 ou plusieurs gammes et choisi, de même pour le maximum.

III. Structure des données de poissons

1. Programme & stratégie

Les données issues du projet MesoMay2 sont reprises dans le même couplet programme/stratégie que Mesomay 1 :

Programme		
Code	Libellé	Description
MESOMAY_MAYOT TE _PARCOURS_ALE ATOI RE	Inventaire dans la zone mésophotique (50 à 150m) autour de Mayotte	Inventaire de tous les phylums à partir de photographies réalisées en plongées profondes (recycleur et mélange gazeux) dans la zone de 50 à 150m de profondeur

Stratégie						
Libellé	Description					
Parcours aléatoires Poissons et invertébrés – 2018-2019- 2020	Projet MesoMay piloté par Biorecif, impliquant des photographes des associations Deep Blue Exploration, Service de Plongée Scientifique et Poisson Lune. Seul le paramètre présence est renseigné, il s'agit d'un inventaire en zone mésophotique.					

2. Stations

Les zones échantillonnées correspondant plus à des zones qu'à des points précis, les observations sont rattachées à un lieu surfacique. Chaque observation (passage) pourra ensuite être renseignée avec ses coordonnées réelles correspondant aux coordonnées théoriques.

Ce lieu surfacique, déjà créé lors de MesoMay 1 correspond à la ZEE de Mayotte.

Tableau 3 : Caractéristique du lieu de surveillance utilisé pour l'intégration des données

Libellé du lieu	Mnémoniqu e	Code SANDRE
Mayotte_surfacique_ZEE	145-S-298	60011072

3. Moyen d'acquisition

Photographie.

4. Taxons

Un comparatif entre les taxons fournis par Biorecif et le référentiel BD Récif/Worms est réalisé, le Tableau 4 montre les anomalies rencontrées.

Tableau 4 : Comparaison entre la liste des taxons fournie par Biorecif et le référentiel BD Récif – Seuls les taxons non trouvés dans le référentiel ou avec une faute, ou encore ayant changé de nom se trouve ici

Taxons	Anomalie rencontrée	Taxon saisi	Taxon référent		
Coscinarea wellsi	faute + obsolescence du taxon	Coscinaraea wellsi	Cycloseris wellsi		
Leptoseris hawaiensis	faute	Leptoseris hawaiiensis	Leptoseris hawaiiensis		
Naso vlamingi	faute	Naso vlamingii	Naso vlamingii		
Patelloida	faute	Patelloidea	Patelloidea		
Sufflamen chrysopterus	faute	Sufflamen chrysopterum	Sufflamen chrysopterum		
Sufflamen fraenatus	faute	Sufflamen fraenatum	Sufflamen fraenatum		
Tubastrea	faute	Tubastraea	Tubastraea		
Tubastrea aurea	obsolescence du taxon	Tubastraea aurea	Tubastraea coccinea		
Bodianus leucostictus	faute	Bodianus leucosticticus	Bodianus leucosticticus		
Elisellidae	faute	Ellisellidae	Ellisellidae		
Leptoseris explanulata	faute	Leptoseris explanata	Leptoseris explanata		
Scorpaenopsis oxycephalus	faute	Scorpaenopsis oxycephala	Scorpaenopsis oxycephala		
Antennella balei	non trouvé (renseignée depuis une réf biblio)	Antennella balei	Antennella balei		
Caecum farcimen	ajout sous-genre	Caecum (Fartulum) farcimen	Caecum (Fartulum) farcimen		
Melampus granife	faute	Melampus granifer	Melampus granifer		
Myriopathes myriophyllia	faute	Myriopathes myriophylla	Myriopathes myriophylla		
Sertularella delicata	obsolescence du taxon	Sertularella delicata	Sertularella diaphana		
Turritella gracillima	obsolescence du taxon	Turritella gracillima	Turritella cingulifera		
Turritopsis chevalense	obsolescence du taxon	Turritopsis chevalense	Oceania armata		
Vexillum rubrum	obsolescence du taxon	Vexillum rubrum	Atlantilux rubra		
Xyrichthys pavo	obsolescence du taxon	Xyrichthys pavo	Iniistius pavo		
Holothuria edulis	ajout sous-genre	Holothuria (Halodeima) edulis	Holothuria (Halodeima) edulis		
Holothuria fuscopunctata	ajout sous-genre	Holothuria (Microthele) fuscopunctata	Holothuria (Microthele) fuscopunctata		

L'affichage du taxon saisi permet de garder l'information du taxon qui a été identifié par l'expert, ce champ ne sera pas altéré par les changements de noms suite aux changements de la classification, contrairement au champ "taxon référent". L'ensemble des taxons créés pour les besoins de cette reprise sont listés en Annexe 1.

5. PSFMU

Un seul PSFMU (Paramètre, Support, Fraction, Méthode et Unité) est utilisé pour cette reprise de données.

Tableau 5 : Tableau du PSFMU mesuré sur réplicat de la stratégie - Les éléments en orange sont ceux qui font l'objet de création lors de cette reprise

Libellé PSFM	Р	s	F	М	U	Regroupé	Qualitatif	Valeurs qualitative s
Présence_ C orail	PRESABS_TA	Corail, récifs coralliens	San s objet	Parcours aléatoire, inventaires des taxons remarquables identifiés par photographie (projet MesoMay)	Pas d'unité			Présence/ A bsence
SANDRE	7554	54	21	6000659 6	Х			

6. Codage des éléments de référentiel

En plus des taxons, et des PSFMS, d'autres éléments doivent être codés SANDRE.

Tableau 6 : Liste des autres éléments qui nécessitent d'être codés SANDRE

Elément de référentiel	Libellé Q2	Code SANDRE
Réseau	MESOMAY_MAYOTTE_PARCOUR S_ALEATOIRE	MESOMAY_MAYOTTE_PARCOUR S_ALEATOIRE
Préleveur 1 (=service observateur)	SPS-976	84380287700020
Préleveur 2 (=service observateur)	DEEP_BLUE_EXPLORATION	60004802
Préleveur 3 (=service observateur)	POISSON_LUNE	60004801
Analyste 1	BIORECIF	80162849600011
Analyste 2	GALAXEA	80155057500014
Saisisseur	KARTEAU	79444661700027
Engin de prélèvement	Photographie	60001863
Unité (profondeur de prélèvement)	Mètre	111

IV. Intégration des données dans BD Récif

Après intégration des données dans BD Récif,

- 65 passages créés
- 65 prélèvements créés,
- 0 échantillons créés,
- 0 résultats de mesure créés,
- 1398 résultats taxon créés.

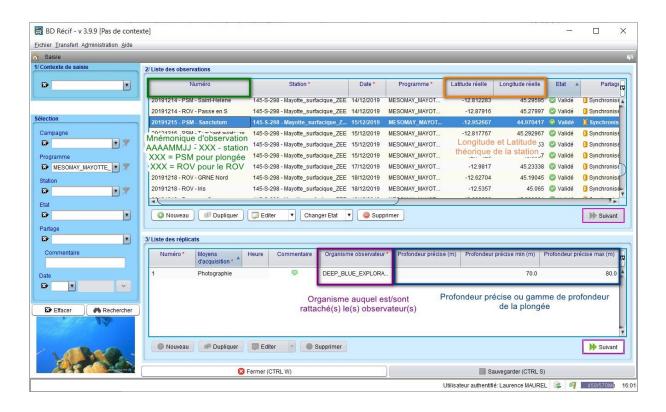


Figure 1 : Ecran de saisie des observations - 1 observation = 1 réplicat

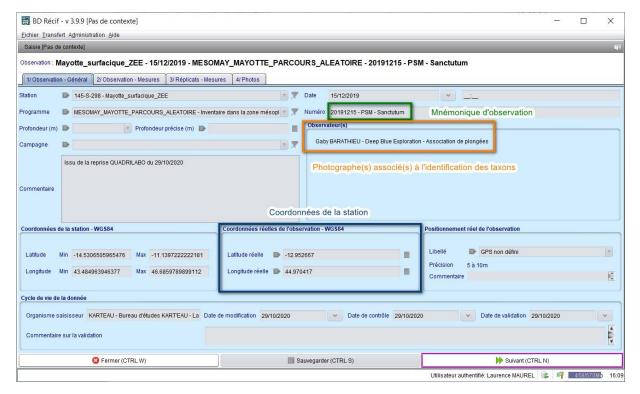


Figure 2 : Ecran de saisie correspondant à l'onglet "Général" de l'observation – reprend les informations de l'encart observation de la Figure 1 + les observateurs

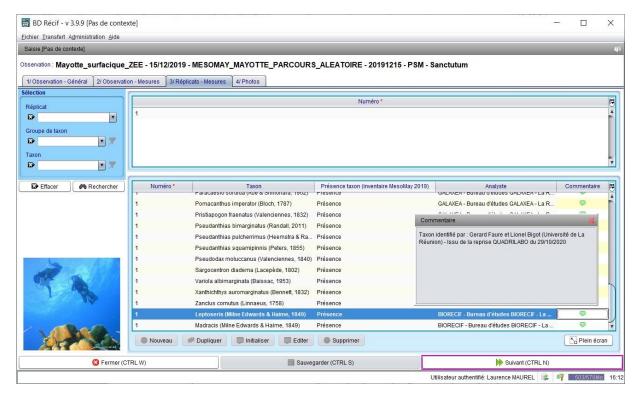


Figure 3 : Ecran de saisie des paramètres sur réplicat (1 ligne = 1 taxon observé) – Le commentaire associé à chaque taxon correspond au commentaire renseigné dans le fichier transmis par Biorecif et des experts qui ont participé à l'identification séparé d'un "|" quand un commentaire existait déjà

BIORECIF

ANNEXE : Liste des taxons (268) qui ont été créés lors de cette reprise, car non existant dans le référentiel BD Récif

ScientificName	AphiaID	Taxon status	Authority
Acar plicata	215258	accepted	(Dillwyn, 1817)
Aciculites	171173	accepted	Schmidt, 1879
Aclis angulifera	880424	accepted	(Yokoyama, 1922)
Acteocina involuta	828551	accepted	(G. Nevill & H. Nevill, 1871)
Afriscrobs quantilla	591289	accepted	(W. H. Turton, 1932)
Allogalathea elegans	246208	accepted	(Adams & White, 1848)
Allopathes robillardi	289392	accepted	(Bell, 1891)
Alora	137937	accepted	H. Adams, 1861
Amaea globularis	456980	accepted	Bozzetti, 2009
Ammonicera japonica	567508	accepted	Habe, 1972
Anarithma metula	594417	accepted	(Hinds, 1843)
Ancilla sarda	448014	accepted	(Reeve, 1864)
Angaria	204420	accepted	Röding, 1798
Antipathes lentipinna	283910	accepted	Brook, 1889
Aphanipathes verticillata	411122	accepted	Brook, 1889
Arca avellana	215248	accepted	Lamarck, 1819
Babella	588302	accepted	Dall & Bartsch, 1906
Babella caledonica	956435	accepted	Peñas & Rolán, 2017
Babella mariellaeformis	956433	accepted	(Nomura, 1938)
Bebryce	125308	accepted	Philippi, 1841
Belonimorphis belonimorphis	395543	accepted	Jay & Drivas, 2002
Benthonella	138441	accepted	Dall, 1889
Bothropoma	345577	accepted	Thiele, 1924
Botula fusca	420694	accepted	(Gmelin, 1791)
Broderipia eximia	594218	accepted	G. Nevill & H. Nevill, 1869
Cadulus	138024	accepted	Philippi, 1844
Caecum (Fartulum) farcimen	545260	unaccepted	Carpenter, 1857
Caecum gracile	731502	nomen dubium	Carpenter, 1858
Caecum sepimentum	545358	accepted	de Folin, 1868
Calliotrochus marmoreus	567748	accepted	(Pease, 1861)
Carinapex minutissima	217093	accepted	(Garrett, 1873)
Cerithidium	238092	accepted	Monterosato, 1884
Cerithidium cerithinum	473090	accepted	(Philippi, 1849)
Cerithidium diplax	397036	accepted	(R. B. Watson, 1886)
Cerithiopsis eutrapela	591403	accepted	Melvill & Standen, 1896
Cerithium zebrum	216673	accepted	Kiener, 1841
Chevallieria columen	607379	accepted	(Melvill, 1904)
Chondrocidaris	512415	accepted	A. Agassiz, 1863
Chrysallida cancellata	160198	accepted	(d'Orbigny, 1841)
Chrysallida pura	743293	accepted	(Saurin, 1962)
Cingulina isseli	140940	accepted	(Tryon, 1886)
Cingulina laticingulata	739289	unaccepted	[sic]
Circulus	1308117	accepted	(Melvill, 1906)
novemcarinatus Circulus octoliratus	1308042	accepted	(Carpenter, 1856)
Cirrhilabrus wakanda	1358386	accepted	Tea, Pinheiro, Shepherd & Rocha, 2019

ScientificName	AphiaID	Taxon status	Authority
Cladocarpus keiensis	284086	accepted	Schuchert, 2003
Clanculus	138587	accepted	Montfort, 1810
Clio pyramidata	139033	accepted	Linnaeus, 1767
Collonista rubricincta	737899	accepted	(Mighels, 1845)
Colpospira	446487	accepted	J. Donald, 1900
Colubraria	137703	accepted	Schumacher, 1817
Coriophora	588661	accepted	Laseron, 1958
Costabieta portentosa	956394	accepted	Peñas & Rolán, 2017
Creseis acicula	139034	accepted	(Rang, 1828)
Creseis clava	605988	unaccepted	(Rang, 1828)
Creseis virgula	139035	accepted	(Rang, 1828)
Crosseola	598301	accepted	Iredale, 1924
Ctenocardia virgo	381490	accepted	(Reeve, 1845)
Cupressopathes abies	289759	accepted	(Linnaeus, 1758)
Cyclonidea dondani	880422	accepted	Poppe & Tagaro, 2016
Cyclostrema alveolatum	863100	taxon inquirendum	Jousseaume, 1872
Cyclostrema sulcatum	740803	taxon inquirendum	A. Adams, 1850
Cyclostremiscus nodiferus	987353	accepted	Pilsbry & Olsson, 1952
Cystiscus	224702	accepted	Stimpson, 1865
Cystiscus bougei	719090	accepted	(Bavay, 1917)
Cystiscus sandwicensis	596920	accepted	(Pease, 1860)
Dardanus megistos	208700	accepted	(Herbst, 1804)
Dentimargo pumilus	473764	accepted	(Redfield, 1870)
Diala	137890	accepted	A. Adams, 1861
Dillwynella	413477	accepted	Dall, 1889
Dimya	415304	accepted	Rouault, 1850
Diplodonta lateralis	213501	accepted	E. A. Smith, 1876
Duncanopsammia	267399	accepted	Wells, 1936
Ellisella	125298	accepted	Gray, 1858
Ellisellidae	125274	accepted	Gray, 1859
Emarginula costulata	211112	accepted	Deshayes, 1863
Emarginula decorata	211113	accepted	Deshayes, 1863
Engina spica	490970	accepted	Melvill & Standen, 1895
Eoacmaea profunda	456580	accepted	(Deshayes, 1863)
Epicodakia minuata	814988	accepted	(Deshayes, 1863)
Epidendrium	345294	accepted	A. Gittenberger & E. Gittenberger, 2005
Epidendrium sordidum	389681	accepted	Gittenberger & Gittenberger, 2005
Etremopa royi	433672	accepted	(G. B. Sowerby III, 1913)
Eulimastoma eutropia	588393	accepted	(Melvill, 1899)
Euplica ionida	511778	accepted	(Duclos, 1840)
Euthymella	570658	accepted	Thiele, 1929
Euthymella concors	591576	accepted	(Hinds, 1843)
Euthymella elegans	591577	accepted	(Hinds, 1843)
Editiyillolla ologario			
Finella	138264	accepted	A. Adams, 1860
	138264 140595	accepted accepted	A. Adams, 1860 A. Adams, 1860

ScientificName	AphiaID	Taxon status	Authority
Fromia nodosa	213300	accepted	A.M. Clark, 1967
Funafutia	367271	accepted	Glover & J. D. Taylor, 2001
Fusceulima	137973	accepted	Laseron, 1955
Gibberula	137881	accepted	Swainson, 1840
Granulina	138165	accepted	Jousseaume, 1888
Gymnocranius superciliosus	835108	accepted	Borsa, Béarez, Paijo & Chen, 2013
Haurakia marmorata	594633	accepted	(Hedley, 1907)
Hedleytriphora	591589	accepted	B. A. Marshall, 1983
Hedleytriphora elata	591591	accepted	(Thiele, 1930)
Hedleytriphora scitula	592583	accepted	(A. Adams, 1854)
Heliconoides	605964	accepted	d'Orbigny, 1836
Heliconoides inflatus	605965	accepted	(d'Orbigny, 1835)
Hemiliostraca	205248	accepted	Pilsbry, 1917
Hemiliostraca amamiensis	566291	taxon inquirendum	(Habe, 1961)
Heterocithara bilineata	434000	accepted	(Angas, 1871)
Heterocithara himerta	434014	accepted	(Melvill & Standen, 1896)
Hiatella australis	545939	accepted	(Lamarck, 1818)
Homalopoma	345714	accepted	(Gould, 1861)
quantillum Horologica	390682	accepted	Laseron, 1956
Horologica	591443	'	Laseron, 1956
macrocephala		accepted	,
Hydroginella osteri	828523	accepted	(Jousseaume, 1875)
Inella asperrima	591620	accepted	(Hinds, 1843)
Iniforis douvillei	591633	accepted	Jousseaume, 1884
Ittibittium	473020	accepted	Houbrick, 1993
Joculator	531816	accepted	Hedley, 1909
Julia	206683	accepted	Gould, 1862
Kermia	205316	accepted	W. R. B. Oliver, 1915
Kongsrudia mutata Leucorhynchia	535985	accepted	(Dautzenberg, 1913)
caledonica	577188	accepted	Crosse, 1867
Leucorhynchia crossei	596662	accepted	(Tryon, 1888)
Lienardia	181085	accepted	Jousseaume, 1883
Limopsis chuni	504621	accepted	Thiele, 1931
Lissoporcellana	410076	accepted	Haig, 1978 (Olsson & McGinty,
Lodderena ornata	224556	accepted	1958)
Lodderia lodderae	719387	accepted	(Petterd, 1884)
Longchaeus turritus	730769	accepted	(A. Adams, 1854)
Lophiotoma abbreviata	217112	accepted	(Reeve, 1843)
Lophocochlias parvissimus	765226	accepted	(Hedley, 1899)
Loripes clausus	213486	accepted	(Philippi, 1848)
Lucidestea	535715	accepted	Laseron, 1956
Lucidestea ina	597945	accepted	(Thiele, 1925)
Lunella coronata	216363	accepted	(Gmelin, 1791)
Lytocarpia phyteuma	117303	accepted	(Kirchenpauer, 1876)
Macrorhynchia	117003	accepted	Kirchenpauer, 1872
Marginella	138166	accepted	Lamarck, 1799
Marginella gennesi	208178	accepted	H. Fischer, 1901
Marginellopsis	456462	accepted	Bavay, 1911
Mastonia	206398	accepted	Hinds, 1843
Mastonia algens	591707	accepted	Jousseaume, 1898

ScientificName	AphiaID	Taxon status	Authority
Mastonia hindsi	591691	accepted	(Deshayes, 1863)
Mastonia perlata	591698	accepted	(Issel, 1869)
Mastonia undata	591706	accepted	Kosuge, 1962
Mastoniaeforis chaperi	591716	accepted	Jousseaume, 1884
Megastomia zaleuca	743046	accepted	(Melvill, 1910)
Melampus granifer	574841	accepted	(Mousson, 1849)
Metaxia albicephala	565193	accepted	Kay, 1979
Metaxia brunnicephala	565194	accepted	Kay, 1979
Mitrella moleculina	511534	accepted	(Duclos, 1840)
Mitromorpha	146463	accepted	Carpenter, 1865
Mitromorpha kilburni	432805	accepted	Drivas & Jay, 1986
Monophorus	138573	accepted	Grillo, 1877
Monostaechas	117115	accepted	Allman, 1877
Morula coronata	571708	accepted	(H. Adams, 1869)
Munida barbeti	392298	accepted	Galil, 1999
Myriopathes myriophylla	290436	accepted	(Pallas, 1766)
Nannodiella acricula	596943	accepted	(Hedley, 1922)
Neoatreta filipina	703776	accepted	(Bartsch, 1913)
Nicella	125299	accepted	Gray, 1870
Notoacmea flammea	456623	accepted	(Quoy & Gaimard, 1834)
Obesula levukensis	591808	accepted	(R. B. Watson, 1880)
Odetta bosyuensis	739636	accepted	(Nomura, 1937)
Odostomella	138412	accepted	Bucquoy, Dautzenberg & Dollfus, 1883
Odostomia gulicki	588396	accepted	Pilsbry, 1918
Olivellopsis amoni	1036143	accepted	(Sterba & Lorenz, 2005)
Omniglypta	343667	accepted	Pilsbry, 1905
Ophiothrix purpurea	212427	alternate representation	von Martens, 1867
Orbitestella	138295	accepted	Iredale, 1917
Orbitestella regina	594432	accepted	Kay, 1979
Otitoma cyclophora	565529	accepted	(Deshayes, 1863)
Pacifiphyton	267666	accepted	Williams, 1997
Pagodatrochus variabilis	567700	accepted	(H. Adams, 1873)
Paracis pustulata	290619	accepted	(Wright & Studer, 1889)
Parastrophia cygnicollis	534343	accepted	(Hedley, 1904)
Parvidontia laevis	457463	accepted	Glover & J. D. Taylor, 2007
Philine rubrata	574602	accepted	Gosliner, 1988
Phosinella digera	598045	accepted	(Laseron, 1956)
Pictorium versicolor	745851	accepted	E. E. Strong & Bouchet, 2013
Plectranthias inermis	212539	accepted	Randall, 1980
Plesiotrochus luteus	592241	accepted	(Gould, 1861)
Polemicella	 	· ·	, , ,
	955942	accepted	(Melvill, 1910)
dautzenbergi		· ·	, , ,
dautzenbergi Polemicella polemica Pseudanthias	730737	accepted	(Melvill, 1910)
dautzenbergi Polemicella polemica	730737 712590	accepted	, , ,
dautzenbergi Polemicella polemica Pseudanthias bimarginatus Pseudanthias parvirostris	730737 712590 218280	accepted accepted accepted	(Melvill, 1910) Randall, 2011 (Randall & Lubbock, 1981)
dautzenbergi Polemicella polemica Pseudanthias bimarginatus Pseudanthias parvirostris Pseudochromis aureolineatus	730737 712590	accepted	(Melvill, 1910) Randall, 2011 (Randall & Lubbock, 1981) Gill, 2004
dautzenbergi Polemicella polemica Pseudanthias bimarginatus Pseudanthias parvirostris Pseudochromis aureolineatus Pseudodaphnella nexa	730737 712590 218280 388753 432839	accepted accepted accepted	(Melvill, 1910) Randall, 2011 (Randall & Lubbock, 1981) Gill, 2004 (Reeve, 1845)
dautzenbergi Polemicella polemica Pseudanthias bimarginatus Pseudanthias parvirostris Pseudochromis aureolineatus	730737 712590 218280 388753	accepted accepted accepted accepted	(Melvill, 1910) Randall, 2011 (Randall & Lubbock, 1981) Gill, 2004

ntificName	AphiaID	Taxon status	Authority
Pseudominolia splendens	567724	accepted	(G. B. Sowerby III, 1897)
Pseudorhaphitoma drivasi	434778	accepted	Kilburn, 1993
Ptereleotris grammica	219620	accepted	Randall & Lubbock, 1982
Pulsellum	138398	accepted	Stoliczka, 1868
Pyramidelloides mirandus	536340	accepted	(A. Adams, 1861)
Pyrgulina	236150	accepted	A. Adams, 1863
Pyrgulina consobrina	739975	accepted	(A. Adams, 1861)
Retusa minima	533826	accepted	Yamakawa, 1911
Rhinoclavis aspera	215120	accepted	(Linnaeus, 1758)
Ringicula prismatica	853186	accepted	de Folin, 1868
Rissoella globosa	722686	accepted	Ponder & Yoo, 1977
Rissoina	138457	accepted	d'Orbigny, 1841
Rissoina balteata	216942	nomen dubium	Pease, 1869
Rissoina costulata	598010	nomen dubium	Dunker, 1860
Rissoina nivea	216936	accepted	A. Adams, 1853
Rissoina sculpturata	761488	accepted	Preston, 1908
Rochefortina sandwichensis	507280	accepted	(E. A. Smith, 1885)
Rotostoma impleta	719462	accepted	Laseron, 1958
Sabia conica	180992	accepted	(Schumacher, 1817)
Samla bilas	1047248	accepted	(Gosliner & Willan, 1991)
Sansonia shigemitsui	413943	accepted	Kase, 1998
Sansonia sumatrensis	413944	accepted	(Thiele, 1925)
Scalenostoma	206350	accepted	Deshayes, 1863
Scaliola arenosa	216913	accepted	A. Adams, 1862
Scaliola elata	141415	accepted	Issel, 1869
Scaliola glareosa	527563	accepted	A. Adams, 1862
Scintillula pustula	876264	accepted	(Deshayes, 1863)
Scissurella rota	493086	accepted	Yaron, 1983
Sepia latimanus	220305	accepted	Quoy & Gaimard, 1832
Serrata serrata	473998	accepted	(Gaskoin, 1849)
Sertularella delicata	717309	unaccepted	Billard, 1919
Sigaretornus planus	572208	accepted	(A. Adams, 1850)
Sinezona singeri	389829	accepted	Geiger, 2006
Spondylus candidus	207881	accepted	Lamarck, 1819
Sticteulima lentiginosa	139891	accepted	(A. Adams, 1861)
Stylaster flabelliformis	285878	accepted	(Lamarck, 1816)
Styliola subula	139048	accepted	(Quoy & Gaimard, 1827)
Subulophora peasi	592112	accepted	(Jousseaume, 1884)
Subulophora rutilans	591842	accepted	(Hervier, 1898)
Synchiropus monacanthus	219781	accepted	Smith, 1935

ScientificName	AphiaID	Taxon status	Authority
Syrnola subulina	740012	accepted	A. Adams, 1863
Taeniurops meyeni	712972	accepted	(Müller & Henle, 1841)
Tanea undulata	570116	accepted	(Röding, 1798)
Taxella hornelli	990314	accepted	(Thornely, 1904)
Telodiacria quadridentata	1419957	accepted	(Blainville, 1821)
Thaumastocaris streptopus	220198	accepted	Kemp, 1922
Thyroscyphus bedoti	287748	accepted	Splettstösser, 1929
Trimusculus mauritianus	220095	accepted	(Martens, 1880)
Triphora formosa	592171	accepted	Deshayes, 1863
Triphora mirifica	367704	accepted	Deshayes, 1863
Triphora tubifera	592138	accepted	Thiele, 1925
Tritonoturris	205408	accepted	Dall, 1924
Tucetona audouini	742054	accepted	Matsukuma, 1984
Turridrupa bijubata	345706	accepted	(Reeve, 1843)
Turritella cingulifera	446545	accepted	G. B. Sowerby I, 1825
Turritella gracillima	215160	unaccepted	Gould, 1861
Turritopsis chevalense	284461	unaccepted	(Thorneley, 1904)
Umbonium vestiarium	216355	accepted	(Linnaeus, 1758)
Umbraculum	138620	accepted	Schumacher, 1817
Vanikoro acuta	1264086	accepted	(Récluz, 1844)
Varicopeza pauxilla	473153	accepted	(A. Adams, 1855)
Velifer hypselopterus	217887	accepted	Bleeker, 1879
Vellicolla ooformis	1342132	accepted	(Habe, 1952)
Veprecula	432584	accepted	Melvill, 1917
Verrucella	267944	accepted	Milne Edwards & Haime, 1857
Vexillum bipartitum	208329	accepted	(E. A. Smith, 1884)
Vexillum rubrum	751919	unaccepted	(Broderip, 1836)
Villogorgia	125316	accepted	Duchassaing & Michelloti, 1862
Villogorgia nozzolea	286472	accepted	Grasshoff, 1996
Viriola abbotti	591887	accepted	(F. Baker & Spicer, 1935)
Viriola intergranosa	591881	accepted	(Hervier, 1898)
Viriola tricincta	591885	accepted	(Dunker, 1882)
Xenocarcinus tuberculatus	208897	accepted	White, 1847
Xyrichthys pavo	322459	unaccepted	Valenciennes, 1840
Zafra	182802	accepted	A. Adams, 1860
Zafra morini	511621	accepted	(Viader, 1938)
Zafra ocellatula	511624	accepted	(Hervier, 1900)
Zafra succinea	511637	accepted	(Hervier, 1899)
Zafrona isomella	511650	accepted	(Duclos, 1840)