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Abstract

The Mondrian process represents an elegant and
powerful approach for space partition modelling.
However, as it restricts the partitions to be axis-
aligned, its modelling flexibility is limited. In
this work, we propose a self-consistent Binary
Space Partitioning (BSP)-Tree process to gener-
alize the Mondrian process. The BSP-Tree pro-
cess is an almost surely right continuous Markov
jump process that allows uniformly distributed
oblique cuts in a two-dimensional convex poly-
gon. The BSP-Tree process can also be ex-
tended using a non-uniform probability measure
to generate direction differentiated cuts. The pro-
cess is also self-consistent, maintaining distribu-
tional invariance under a restricted subdomain.
We use Conditional-Sequential Monte Carlo for
inference using the tree structure as the high-
dimensional variable. The BSP-Tree process’s
performance on synthetic data partitioning and
relational modelling demonstrates clear inferen-
tial improvements over the standard Mondrian
process and other related methods.

1 Introduction

In machine learning, some tasks such as constructing de-
cision trees or relational modelling may be interpreted as
a space partitioning strategy to identify regular regions in
a product space. Models may then be fitted to the data in
each regular “block”, whereby the data within each block
will exhibit certain types of homogeneity. While appli-
cations range from relational modeling [8, 1], community
detection [19, 7], collaborative filtering [21, 15], and ran-
dom forests [11], most of the work only focuses on regular
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grids (rectangular blocks). While some recent work [25, 3]
has introduced more flexibility in the partitioning strategy,
there are still substantial limitations in the available mod-
elling and inferential capabilities.

An inability to capture complex dependencies between dif-
ferent dimensions is one such limitation. Axis-aligned cuts,
as extended from rectangular blocks, consider each divi-
sion on one dimension only. This is an over-simplified and
invalid assumption in many scenarios. For example, in de-
cision tree classification, classifying data through a combi-
nation of features (dimensions in our case) is usually more
efficient than a recursive single features division. Similarly,
in relational data modelling, where the nodes (individuals)
correspond to the dimension and the blocks correspond to
the communities the nodes belong to. An individual may
have asymmetric relations in the communities (e.g., a foot-
ball match organizer would pay more attention to the com-
munity of football while a random participant might be less
focused). While the recently proposed Ostomachion Pro-
cess (OP) [3] also tries to allow oblique cuts, several im-
portant properties (e.g. self-consistency, uniform general-
ization) are missing, thereby limiting its appeal.

To systematically address these issues, we propose a Bi-
nary Space Partitioning (BSP)-Tree process to hierarchi-
cally partition the space. The BSP-Tree process is an al-
most surely right continuous Markov jump process in a
budget line. Except for some isolated points in the line,
any realization of the BSP-Tree process maintains a con-
stant partition between these consecutive points. Instead of
axis-aligned cuts, the partition is formed by a series of con-
secutive oblique cuts. In this sense, the BSP-Tree process
can simultaneously capture more complex partition struc-
tures with inter-dimensional dependence. The proposed cut
described by the generative process can be proved to be
uniformly distributed and moreover, the measure over the
cut lines is fixed to a scaled sum of the blocks’ perimeters.

Further, a particular form of non-uniformly distributed
oblique cuts can be obtained by imposing weight functions
for the cut directions. This variant can be well suited to
cases where the directions of the cut are differentially fa-
vored. This variant might be particularly suitable for cer-
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tain modelling scenarios. For example, while ensuring the
existence of oblique cuts, axis-aligned cuts would be fa-
vored more in social networks since some communities
would need to have rectangular blocks). All variants of
the BSP-Tree process can be proved to be self-consistent,
which ensures distributional invariance while restricting
the process from a larger domain to a smaller one.

The partition of the BSP-Tree process is inferred through
the Conditional-Sequential Monte Carlo (C-SMC) sam-
pler [10, 12]. In particular, we use a tree structure for the
blocks to mimic the high-dimensional variables in the C-
SMC sampler, where each dimension corresponds to one
cut on the existing partition. Its performance is validated
in space partition applications on toy data and in relational
modelling. The BSP-Tree process provides clear perfor-
mance gains over all competing methods.

2 Related Work

Stochastic partition processes aim to divide a product space
into meaningful blocks. A popular application of such pro-
cesses is modelling relational data whereby the interactions
within each block tend to be homogeneous. For state-of-
the-art stochastic partition processes, partitioning strate-
gies vary, including regular-grids [8], hierarchical parti-
tions [25, 24] and entry-by-entry strategies [18].

A regular-grid stochastic partition process constitutes sep-
arate partition processes on each dimension of the multi-
dimensional array. The resulting orthogonal interactions
between two dimensions will exhibit regular grids, which
can represent interacting intensities. Typical regular-
grid partition models include the infinite relational model
(IRM) [8] and the overlapping communities extension of
mixed-membership stochastic blockmodels [1]. Regular-
grid partition models are widely used in real-world appli-
cations for modeling graph data [6, 26, 15].

The Mondrian process (MP) [25, 23] and its variant the
Ostomachion process (OP) [3], can produce hierarchical
partitions on a product space. The MP recursively gener-
ates axis-aligned cuts on a unit hypercube and partitions
the space in a hierarchical fashion known as the kd-tree
([24] also considers a tree-consistent partition model, but
it is not a Bayesian nonparametric model). While using
similar hierarchical partition structures, the OP addition-
ally allows oblique cuts for flexible partitions, however it
does not guarantee the important self-consistency property.

3 The BSP-Tree Process

In the Binary Space Partitioning (BSP)-Tree process,
we aim to generate partitions � on an arbitrary two-
dimensional convex polygon �. The partitioning result �
can be represented as a set of blocks � = {{�(k)}k∈N+

:

Figure 1: A realization of the BSP-Tree process in (0, τ ].

∪k�(k) = �,�(k′) ∩�(k′′) = ∅,∀k′ 6= k′′}. These blocks
are generated by a series of cuts, which recursively divide
one of the existing blocks into two new blocks. As a result,
these recursive divisions organize the blocks in the manner
as a Binary Space Partitioning tree structure, from which
the process name is derived.

We first use a pre-fixed budget τ as a termination point in
an index line of (0, τ ]. The BSP-Tree process is defined as
an almost surely right continuous Markov jump process in
(0, τ ]. Except for some isolated time points (correspond-
ing to the locations of cuts in (0, τ ]), the values (partitions)
taken in any realization of the BSP-Tree process are con-
stant between these consecutive points (cuts). Let {τl}l
denote the locations of these time points in (0, τ ] and �t
denote the partition at time t. We then have �t = �τl ,∀t :
τl ≤ t < τl+1. More precisely, �t lies in a measurable
state space (S,Σ), where S refers to the set of all potential
Binary Space Partitions and Σ refers to the σ-algebra over
the elements of S. Thus, the BSP-Tree process can be in-
terpreted as a S(0,τ ]-valued random variable, where S(0,τ ]
is the space of all possible partitions of t ∈ (0, τ ] that map
from the index line (0, τ ] into the space S . Figure 1 dis-
plays a sample function in S(0,τ ].

As well as the partition at τl−1, the incremental time for
the l-th cut also conditions only on the previous partitions
at τl−1. Given an existing partition at τl−1, the time to the
next cut, τl − τl−1, follows an Exponential distribution:

(τl − τl−1)|�τl−1
∼ Exp(

l∑
k=1

PE(�(k)
τl−1

)) (1)

where PE(�(k)
τl−1) denotes the perimeter of the k-th block

in partition �τl−1
. Each cut divides one block (the block

is chosen with probabilities in proportion to their perime-
ters) into two new blocks and forms a new partition. If the
index of the location τl of the new cut exceeds the budget
τ , the BSP-Tree process terminates and returns the current
partition �τl−1

as the final realization.

3.1 Generation of the cut line

In each block �(k) in the partition, the BSP-Tree process
defines cuts as straight lines cross through �(k). This is
achieved by generating a random auxiliary line lll(θ) with
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Figure 2: Given the partition �τ3 , the generative process for the cut line L(θ,uuu) at the location of τ4.

direction θ, onto which the block �(k) is projected, uni-
formly selecting a cut position uuu on the projected segment,
and then constructing the cut as the line orthogonal to lll(θ)
which passes through uuu. In detail, given the partition
�τl−1

at time τl−1, the generative process of the line for
the l-th cut is:

(1) Sample a candidate block �∗ from the existing blocks
{�(k)

τl−1}k=1,...,l, with probabilities in proportion to
the perimeters (refer to Proposition 1) of these existing
blocks (Figure 2 -(1));

(2) Sample a direction θ from (0, π], where the probability
density function is in proportion to the length of the
line segment lll(θ), onto which �∗ is projected in the
direction of θ1. (Figure 2 -(2));

(3) Sample the cutting position uuu uniformly on the line
segment lll(θ). The proposed cut is formed as the
straight line passing through uuu and crossing through
the block �∗, orthogonal to lll(θ) (Figure 2 -(3)).

(4) Sample the incremental time for the proposed cut ac-
cording to Eq. (1). If τl > τ , reject the cut and return
{�(k)

τl−1}k=1,...,l as the final partition structure; other-
wise accept the proposed cut, increment l to l+ 1 and
go back to Step (1) (Figure 2 -(4)).

It is clear that the blocks generated in this process are con-
vex polygons. Step (4) determines that the whole pro-
cess terminates only if the accumulated cut cost exceeds
the budget, τ . However, notice that τl → ∞ as l → ∞
almost surely (justification in Supplementary Material A).
This means an infinite number of cuts would require an in-
finite budget almost surely. I.e., this block splitting process
terminates to any finite budget τ with probability one.

In the following, we analyze the generative process for
proposing the cut. For reading convenience, we first con-
sider the case of cutting on a sample block � (a convex
polygon). Its extension to the whole partition � (i.e., a set
of blocks {�(k)}) is then straightforward.

1This can be achieved using rejection sampling. We use the
uniform distribution g(θ) = 1/π over (0, π]. The scaling param-
eter is determined as M = π/2, which guarantees a tight upper
bound such that (l(θ)/PE(�))/(M ∗g(θ)) <= 1. The expected
number of sampling times is then π/2

3.2 Cut definitions and notations

From step (3) in the generative process, the cut line
is defined as a set of points in the block L(θ,uuu) :=
{xxx ∈ �|(xxx − uuu)> · (1; tan θ) = 0}. The set of
cut lines for all the potential cuts crossing into block �
can be subsequently denoted as C� = {L(θ,uuu)|θ ∈
[0, π),uuu lies on the line segment lll(θ)}.

Each of the element in C� corresponds to a partition on
the block �. This is described by a one-to-one mapping
φ: C� → T�, where T� denotes the set of one-cut parti-
tions on the block �. The measures over C� and T� are
described as: ν�(T�) := ν� ◦ φ(C�) = λ�(C�), where
ν�(·) denotes the normalized probability measure on T�
and λ�(C�) denotes the probability measure on C�.

The direction θ and the cut position uuu are sequentially
sampled in steps (2) and (3) in the generative process,
where uuu is located on the image of the polygon pro-
jected onto the line lll(θ). For step (2), we denote by
Cθ� = {L(θ,uuu)|θ is fixed,uuu lies on the line segment} the
set of all cut lines with fixed direction θ and by λ�(Cθ�)
the associated probability measure. In Step (3), we use
λ�(L(θ,uuu)|Cθ�) to denote the conditional probability mea-
sure on the line L(θ,uuu) given direction θ.

3.3 Uniformly distributed cut lines L(θ,uuu)

It is easy to demonstrate that the above strategy produces a
cut line L(θ,uuu) that is uniformly distributed on C�.

Marginal probability measure λ�(Cθ�): We restrict the
marginal probability measure λ�(Cθ�) of Cθ� to the fam-
ily of functions that remains invariant under the following
three operations on the block � (their mathematical defini-
tions are provided in Supplementary Material B):

1. Translation t: λ�(Cθ�) = λtvvv� ◦ tvvv(Cθ�), where tvvv(·)
denotes incrementing the set of points by a vector
vvv,∀vvv ∈ R2;

2. Rotation r: λ�(Cθ�) = λrθ′� ◦ rθ′(C
θ
�), where rθ′(·)

denotes rotating the set of points by an angle θ′,∀θ′ ∈
[0, π);

3. Restriction ψ: λ�(Cθ4) = λψ4� ◦ ψ4(Cθ4), where
4 ⊆ � refers to a sub-region of �; ψ4(·) retains the
set of points in4, and Cθ4 refers to the set of cut lines
(orthogonal to lll(θ)) that cross through4.
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Figure 3: |lll(θ)| remains invariant under the operations of
translation (tvvv), rotation (rθ′ ) and restriction (ψ4).

Define a set function as f�(Cθ�) = |lll�(θ)|, where |lll�(θ)|
is the length of an image of the polygon � projected onto
the line with direction θ. It is clear that f�(Cθ�) remains in-
variant under the first two operations. For the restriction ψ,
we have f�(Cθ4) = f�({L(θ,uuu|uuu lies on lllψ4(�)(θ))}) =
|lll4(θ)| = f4({L(θ,uuu|uuu lies on lllψ4(�)(θ))}). A visual-
ization can be seen in Figure 3. Further, the following result
shows λ�

(
Cθ�
)

is fixed to a scaled form of f�(Cθ�) (proof
in Supplementary Material C):

Proposition 1 The family of functions λ�
(
Cθ�
)

remains
invariant under the operations of translation, rotation and
restriction if and only if there is a constant C such that
λ�
(
Cθ�
)

= C · f�(Cθ�) = C · |lll(θ)|,∀C ∈ R+.

Following Proposition 1, the measure of all cut lines on
the whole block � may be obtained by integrating out the
direction θ. This produces the result that the measure over
the cuts on the block is fixed to the scale of the perimeter
of the block (proof in Supplementary Material D):

Proposition 2 Assuming the direction θ has a distribution
of |lll(θ)|/

∫ π
0
|lll(θ)|dθ, the BSP-Tree process has the parti-

tion measure λ�(C�) = C ·
∫ π
0
|lll(θ)|dθ = C · PE(�).

Combining Proposition 1 and Proposition 2, we obtain the
probability measure as λ�

(
Cθ�
)

= |lll(θ)|/PE(�).

Conditional probability λ�
(
L(θ,uuu)|Cθ�

)
: Given

the direction θ, define the conditional probability
λ�
(
L(θ,uuu)|Cθ�

)
as a uniform distribution over lll(θ). That

is: λ�
(
L(θ,uuu)|Cθ�

)
= 1
|lll(θ)| .

As a result, the uniform distribution of L(θ,uuu) can be ob-
tained as λ� (L(θ,uuu)) = λ�

(
Cθ�
)
· λ�

(
L(θ,uuu)|Cθ�

)
=

1/PE(�). Further, λ� (L(θ,uuu)) = ν� ◦ φ (L(θ,uuu)) =
ν� (�∗), where �∗ ∈ T�. That is to say, the new partition
over T� is also uniformly distributed.

This uniform distribution does not require the use of partic-
ular partition priors. Without additional knowledge about
the cut, all potential partitions are equally favored.

Figure 4: Various settings of ω(θ) and example partitions.

Extension to the partition �: The extension from the
single block � to the whole partition � = {�(k)}
is completed by the exponentially distributed incremen-
tal time of {τ (k)l − τ

(k)
l−1}l for each block �(k), where

with an abuse of notation τ
(k)
l refers to the location of

the l-th cut in block �(k). In terms of partition �,
the minimum incremental time for all the blocks is dis-
tributed as as min{τ (k)l − τ (k)l−1}k ∼ Exp(

∑
k PE(�(k)))

since P (min{τ (k)l − τ
(k)
l−1}k > t) =

∏
k P (τ

(k)
l −

τ
(k)
l−1 > t) = exp(−t

∑
k PE(�(k))), which is the com-

plementary CDF of the exponential distribution. Fur-
ther, we have that P (k∗ = arg mink{τ (k)l − τ

(k)
l−1}k) =

PE(�(k∗))/
∑
k PE(�(k)), which is the probability of se-

lecting the block to be cut. These results correspond to Step
(1) and Step (4) in the generative process.

3.4 Non-uniformly distributed cut lines L(θ,uuu)

The BSP-Tree process does not require that the cut line is
uniformly distributed over C�. In some cases (e.g. in so-
cial network partitioning, where the blocks refer to com-
munities), some blocks may tend to have regular shapes
(rectangular-shaped communities with equal contributions
from the nodes). In these scenarios, axis-aligned cuts
would have larger contributions than any others. In the fol-
lowing, we generalize the uniformly distributed cuts to a
particular form of non-uniformly distributed cuts, placing
arbitrary weights on choosing the directions of the cut line.

Non-uniform measure This generalization is achieved
by relaxing the invariance restriction on the measure of
Cθ�, under the rotation operation. We use an arbitrary non-
negative finite function ω(θ) as prior weight on the direc-
tion θ. Under the rotation rθ′ , the probability measure Cθ�
requires to have the form of ω(θ + θ′) · λ�(Cθ�) = ω(θ) ·
λrθ′� ◦ rθ′(C

θ
�). Following similar arguments as proposi-

tion 1, this implies that λ�(Cθ�) = C · ω(θ) · |lll(θ)|. Given
the uniform conditional distribution of λ�(L(θ,uuu)|Cθ�),
the probability measure over L(θ,uuu) is λ� (L(θ,uuu)) ∝
ω(θ). Clearly, λ� (L(θ,uuu)) is a non-uniform distribution



Xuhui Fan, Bin Li, Scott A. Sisson

Figure 5: Example partitions on mixed measures.

and it is determined by the weight function ω(θ).

Figure 4 displays some examples of the probability func-
tion of λ� (L(θ,uuu)) and corresponding partition visual-
izations under different settings of ω(θ). The color indi-
cates the value of the PDF at the orthogonal slope θ, with
darker colors indicating larger values. While ω(θ) = 1, the
cuts follows the uniform distribution; while with ω(θ) =
1{π/2,π}, the BSP-Tree process is reduced to the Mondrian
process, whereby only axis-aligned partitions are allowed;
when ω(θ) = cos(4θ), the weighted probability distribu-
tion adjusts the original one into shapes of stripes along the
θ-axis. In each example, the colour on the same direction θ
is constant. This illustrates the uniform distribution of the
partition position uuu given the direction θ.

Mixed measure Naturally, we may use mixed distribu-
tions on θ for greater modelling specificity. If we have two
different non-negative weight functions ω1(θ) and ω2(θ),
the partition measure over these two sets can be written as
λ1�(Cθ�) = C1 ·

∫
[0,π)

ω1(θ) · |l(θ)|dθ, λ2�(Cθ�) = C2 ·∫
[0,π)

ω2(θ) · |l(θ)|dθ, where C1 and C2 are non-negative
constants. For instance, let ω1(θ) = 111{π/2,π}, ω2(θ) =
111(0,π]. The direction θ is then sampled as:

θ ∼

{ ∑
π
2 ,π

1θ
|lll(θ)|

|lll(0)|+|lll(π2 )| , z = 1;
|lll(θ)|
PE(�) , z = 0.

(2)

where z ∼ Bernoulli( C1

C1+C2 ), indicating which distribu-
tion for θ samples from. That is, θ is sampled either from
the discrete set of {π/2, π} or the continuous set of (0, π].
Figure 5 shows example partition visualizations based on
this particular mixed measure.

3.5 Self-consistency

The BSP-Tree process is defined on a finite convex poly-
gon. To further extend the BSP-Tree process to the in-
finite two-dimensional space R2, an essential property is
self-consistency. That is, while restricting the BSP-Tree
process on a finite two-dimensional convex polygon �, to
its sub-region4,4 ⊆ �, the resulting partitions restricted
to 4 are distributed as if they are directly generated on 4
through the generative process (see Figure 6).

For both of the uniform-distributed and non-uniform dis-
tributed cut lines in the BSP-Tree process, we have the fol-
lowing result (justification in Supplementary Material E):

Proposition 3 The BSP-Tree process (including the uni-
formly distributed and non-uniformly distributed cut lines
described above) is self-consistent, which maintains dis-
tributional invariance when restricting its domain from a
larger convex polygon to its belonging smaller one.

The Kolmogorov Extension Theorem [9] ensures that the
self-consistency property enables the BSP-Tree process to
be defined on the infinite two-dimensional space. This
property can be suited to some cases, such as online learn-
ing, domain expansion.

Algorithm 1 C-SMC for inferring � at (t+ 1)-th iteration
Input: Training data X , Budget τ > 0, Number of parti-

cles C, Partition sequence {τ∗l ,�∗τl}
l at the t-th itera-

tion , Likelihood function P (X|�).
1: Initialize partitions for each particle P c = � and

weight ωc0 = 1, stage l = 1, τ cl = 0
2: while ∃c, s.t. τ cl < τ do
3: for c = 1 : C do
4: if τ cl < τ then
5: if c = 1 then
6: Set P 1

l = �∗τl , τ
1
l = τ∗l

7: else
8: Sample P cl , τ

c
l according to the generative

process of the cut line in Section 3.1
9: end if

10: Set ωcl = ωcl−1 ·
P (X|P cl )
P (X|P cl−1)

11: else
12: Set P cl = P cl−1, ω

c
l = ωcl−1, τ

c
l = τ cl−1

13: end if
14: end for
15: Normalize weights ωcl =

ωcl
Wl

, Wl =
∑
c ω

c
l

16: Set j1 = 1.
17: For c = 2 : C, resample indices jc from

∑
c ω

c
l δP cl

18: ∀c, P cl = P jcl ; ωcl = Wl/C; l = l + 1
19: end while
20: Return partition at (t+ 1)-th iteration: � ∼

∑
c ω

c
l δP cl

4 C-SMC Sampler for the BSP-Tree Process

Inference for the BSP-Tree type hierarchical partition pro-
cess is hard, since early partitions would heavily influ-
ence subsequent blocks and consequently their partitions.
That is, all later blocks must be considered while mak-
ing inference about these early stage-cuts (or intra-nodes
cuts from the perspective of the tree structure). Previous
approaches have typically used local structure movement
strategies to slowly reach the posterior structure, including
the Metropolis-Hastings algorithm [25], Reversible-Jump
Markov chain Monte Carlo [27, 22]. These algorithms suf-
fer either slow mixing rates or a heavy computational cost.

To avoid this issue, we use a Conditional-Sequential Monte
Carlo (C-SMC) sampler [2] to infer the structure of the
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P4( ) = P�( ) +P�( ) +P�( ) +P�( ) + · · ·

Figure 6: Self-Consistency of the BSP-Tree process.

BSP-Tree process. Here the tree structure is taken as the
high-dimensional variable in the sampler. The cut line can
be taken as the dimension dependence between the consec-
utive partition states of the particles. In this way, a com-
pletely new tree can be sampled in each iteration, rather
than the local movements in the previous approaches.

Algorithm 1 displays the detailed strategy to infer the tree
structure in the (t+1)-th iteration, given the generative par-
tition sequence {τ∗l ,�∗τl}

l at the t-th iteration. We should
note the likelihoodP (X|�) varies in different applications.
For example, P (X|�) would be a Multinomial probability
in Section 5.1 and a Bernoulli probability in Section 5.2.
Line 2 ensures that algorithm continues until the genera-
tive process of all particles terminates. Line 6 fixes the 1-st
particle as the partition sequence in the t-th iteration in all
stages. Lines 15− 18 refer to the resampling step.

5 Applications

5.1 Toy data partition visualization

Three different cases of toy data are generated as: Case
1: Dense uniform data on [0, 1]2. The labels for these
points are determined by a realization of BSP-Tree pro-
cess on [0, 1]2; Case 2: 1, 000 data points generated from
5 bivariate Gaussian distributions, with an additional 100
uniformly distributed noisy points; Case 3: same setting
with case 2, however with an additional 500 uniformly dis-
tributed noisy points.

Using {(ξi, ηi)}Ni=1to denote the coordinates of the data
points, the data are generated as: (1) Generate an real-
ization from the BSP-Tree process � = {�(k)}k∈N+

;
(2) Generate the parameter of the multinomial dis-
tribution in �(k), φφφk ∼ Dirichlet(ααα),∀k ∈ N+;
(3) Generate the labels for the data points zi ∼
Multinomial(φφφh(ξi,ηi|{�(k)})),∀i ∈ {1, · · · , N}, where
h(ξi, ηi) is a function mapping i-th data point to the cor-
responding block.

For Case 1, we set τ = 10; for Case 2 and 3, we set τ = 3.
In all these cases, the weight function ω(θ) is set as the uni-
form distribution ω(θ) = 1/π,∀θ ∈ (0, π]. Figure 7 shows
example partitions drawn from the posterior distribution on
each dataset (we put the visualization of Case 1 in the Sup-
plementary Material). For the dense uniform data, the par-
titions can identify the subtle structure, while it might be
accused of more cutting budget. In the other two cases, the

nominated Gaussian distributed data are well classified, re-
gardless of the noise contamination.

5.2 Relational Modelling

5.2.1 Model Construction

A typical application for the BSP-Tree process is relational
modelling [8]. The observed data in relational modelling
is an asymmetric matrix R ∈ {0, 1}N×N . The rows and
columns in the matrix represent the nodes in the interaction
network and an entry Rij = 1 indicates a relation from
node i to node j. Partitions over the nodes in rows and
columns will jointly form the blocks in this observed ma-
trix. It is expected that the relations within each block share
homogeneity, compared to the relations between blocks.

The Aldous-Hoover representation theorem [20] indicates
that these types of exchangeable relational data can be
modelled by a function on the unit space [0, 1]2 and co-
ordinates in the unit interval [0, 1]. In particular, the co-
ordinates in the unit interval [0, 1] represent the nodes
and we use the block-wise function to denote the func-
tion on [0, 1]2. Here, the blocks generated in the BSP-Tree
process are used to infer the communities for these rela-
tions. In this way, the generative process is constructed
as: (1) Generate an realization from the BSP-Tree pro-
cess � = {�(k)}k∈N+

; (2) Generate the parameter of
the Bernoulli distribution φk ∼ Beta(α0, β0),∀k ∈ N+;
(3) Generate the coordinates for the data points ξi, ηj ∼
uniform[0, 1],∀i, j ∈ {1, · · · , N};(4) Generate the rela-
tions Rij ∼ Bernoulli(φh(ξi,ηj)),∀i, j ∈ {1, · · · , N}.

The details of the inference procedure can be found in the
Supplementary Material F.

5.2.2 Experiments

We compare the BSP-Tree process in relational modelling
(BSP-RM) with one “flat”-partition method and one latent
feature method: (1) IRM [8], which produces a regular-grid
partition structure; (2) Latent Feature Relational Model
(LFRM) [17], which uses latent features to represent the
nodes and these features’ interactions to describe the rela-
tions; (3), the Mondrian Process (MP-RM), which uses the
Mondrian Process to infer the structure of communities;
(4),the Matrix Tile Analysis [4] Relational Model (MTA-
RM). For IRM and LFRM, we adopt the collapsed Gibbs
sampling algorithms for inference [8]; we implement RJ-
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Table 1: Relational modeling (link prediction) comparison results (AUC±std)
Data Sets IRM LFRM MP-RM MTA-RM BSP-RM
Digg 0.792± 0.011 0.801± 0.031 0.784± 0.020 0.793± 0.005 0.820 ± 0.016
Flickr 0.870± 0.003 0.881± 0.006 0.868± 0.011 0.872± 0.004 0.929 ± 0.015
Gplus 0.857± 0.002 0.860± 0.008 0.855± 0.007 0.857± 0.002 0.885 ± 0.017
Facebook 0.872± 0.013 0.881± 0.023 0.876± 0.028 0.885± 0.010 0.931 ± 0.020
Twitter 0.860± 0.003 0.868± 0.021 0.815± 0.055 0.870± 0.006 0.896 ± 0.008

Figure 7: Toy Data Partition Visualization (left two: Case 2; right two: Case 3).

MCMC [5, 27] for the Mondrian Process and the Iterative
Condition Modes algorithm [4] for MTA-RM.

Datasets. We use 5 social network datasets, Digg,
Flickr [28], Gplus [16], and Facebook, Twitter [14]. We
extract a subset of nodes from each network dataset: We
select the top 1, 000 active nodes based on their interac-
tions with others; then randomly sample 500 from these
1, 000 nodes for constructing the relational data matrix.

Experimental Setting. In IRM, we let α be sampled from
a gamma prior Γ(1, 1) and the row and column partitions
be sampled from two independent Dirichlet processes; In
LFRM, we let α be sampled from a gamma prior Γ(2, 1).
As the budget parameter of MP-RM is hard to sample [13],
we set it to 3, which suggests that around (3 + 1)× (3 + 1)
blocks would be generated. For parametric model MTA-
RM, we simply set the number of tiles to 16. For the BSP-
Tree process, we set the the budget τ as 8, which is the same
as MP, and ω(θ) to be the form of the mixed distribution
Eq. (2). We compare the results in terms of training Log-
likelihood (community detection) and testing AUC (link
prediction). The reported performance is averaged over 10
randomly selected hold-out test sets (Train : Test = 9 : 1).

Experimental Results. Table 1 presents the performance
comparison results on these datasets. As can be seen, the
BSP-Tree process with the C-SMC strategy clearly perform
better than the comparison models. The AUC link predic-
tion score is improved by around 3% ∼ 5%.

Figure 8 (rows 1-5) illustrates the sample partitions drawn
from the resulting posteriors. The partition from the BSP-
Tree process looks to capture dense irregular blocks and
smaller numbers of sparse regions, showing the efficiency
of the oblique cuts. While the two representative cutting-
based methods, IRM and MP-RM, cut sparse regions into
bigger number of blocks. Another observation is that regu-
lar and irregular blocks co-exist in Flickr and Facebook un-
der BSP-RM. Thus, in addition to improved performance,
BSP-RM also produces a more efficient partition strategy.

Figure 8 (rows 6-7) plots the average performance versus
wall-clock time for two measures of performance. IRM
and LFRM converge fastest because of efficient collapsed
Gibbs sampling. MTA-RM also converges fast because it is
trained using a simple iterative algorithm. Although BSP-
RM takes a bit longer time to converge, it is clear that it ul-
timately produces the best performance against other meth-
ods in terms of both AUC value and training log-likelihood.

6 Conclusions

The BSP-Tree process is a generalization of the Mon-
drian process that allows oblique cuts within space par-
tition models and also provably maintains the important
self-consistency property. It incorporates a general (non-
uniform) weighting function ω(θ), allowing for flexible
modelling of the direction of the cuts, with the axis-aligned
only cuts of the Mondrian process given as a special case.
Experimental results on both toy data and real-world rela-
tional data shows clear inferential improvements over the
Mondrian process and other related methods.

Two aspects worth further investigation: (1) learning the
budget τ to make the number of partitions better fit to the
data; (2) learning the weight function ω(θ) within the C-
SMC algorithm to improve algorithm efficiency.
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Figure 8: Partition structure visualization and performance comparison on the five data sets: (from left to right) Digg,
Flickr, Gplus, Facebook and Twitter. The rows correspond to (from top to bottom) (1) IRM, (2) LFRM (refer to trained
densities for each entry in the relational data), (3) MP-RM, (4) MTA-RM, (5) BSP-RM, (6) training log-likelihood vs. wall-
clock time (s) and (7) testing AUC vs. wall-clock time (s). In BSP-RM, the colors behind the data points refer to the blocks
and the cut lines are formed as curved lines rather than straight lines, since we are ranking the data points based on their
coordinates and displaying this permutated relational matrix.
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