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PACIFIC SYMPOSIUM ON BIOCOMPUTING 2010

This year marks the 15th year of PSB. Started in 1996 by Teri Klein and Larry Hunter, the meeting was a session 
within the Hawaii International Conference on Systems Sciences Conference (HICSS) for a couple of years. The 
interest in biocomputing was great and was threatening to alter the balance of attendees within the HICSS meeting, 
and so the organizers asked Teri and Larry to find an alternative. Taking advantage of the nice meeting opportunities 
in Hawaii immediately following New Year’s Day, they created PSB with a simple formula: oral presentation of peer 
reviewed papers in emerging areas of biocomputing, interactive poster sessions, and lively discussion sessions on 
these topics. They invited Keith Dunker and Russ Altman to join the team for the second PSB, and we have been 
working together ever since. 

In fifteen years, we have had some papers that have made remarkable impact. Using Google Scholar, the top 15 
papers, in terms of citations over the last 15 years are listed below (with number of citations listed as of September 
2009, followed by the reference). Obviously, there are other great papers,  especially ones that have been written in 
the last few years, that have not yet had time to rise to the top of this list. Nevertheless,  the list provides highlights of 
the last 15 years in biocomputing challenges. 

(573) REVEAL, A General Reverse Engineering Algorithm for Inference of GeneticNetwork Architectures S. Liang, 
S. Fuhrman and R. Somogyi; Pacific Symposium on Biocomputing 3:18-29 (1998).

(457) Modeling Gene Expression with Differential Equations T. Chen, H. L. He, and G.M. Church; Pacific 
Symposium on Biocomputing 4:29-40 (1999).

(422) Principal Components Analysis to Summarize Microarray Experiments: Application to Sporulation Time 
Series S. Raychaudhuri, J.M. Stuart, and R.B. Altman; Pacific Symposium on Biocomputing 5:452-463 (2000).

(419) The Spectrum Kernel: A String Kernel for SVM Protein Classification Leslie, E. Eskin,  and W.S. Noble; 
Pacific Symposium on Biocomputing 7:566-575 (2002).

(294) EDGAR: Extraction of Drugs, Genes and Relations from the Biomedical Literature T.C. Rindflesch, Lorraine 
Tanabe, John N. Weinstein, and L. Hunter; Pacific Symposium on Biocomputing 5:514-525 (2000).

(270) Mutual Information Relevance Networks: Functional Genomic Clustering Using Pairwise Entropy 
Measurements A. J. Butte and I. S. Kohane; Pacific Symposium on Biocomputing 5:415-426 (2000).

(245) Biobibliometrics: Information Retrieval and Visualization from Co-Occurrences of Gene Names in Medline 
Abstracts B.J. Stapley and G. Benoit; Pacific Symposium on Biocomputing 5:526-537 (2000).

(218) Hybrid Fold Recognition: Combining Sequence Derived Properties with Evolutionary Information D. Fischer; 
Pacific Symposium on Biocomputing 5:116-127 (2000).

(215) Hybrid Petri Net Representation of Gene Regulatory Network H. Matsuno, A. Doi, M. Nagasaki, and S. 
Miyano; Pacific Symposium on Biocomputing 5:338-349 (2000).

(198) Discovery of Regulatory Interactions Through Perturbation: Inference and Experimental Design T.E. Ideker, 
V. Thorsson, and R.M. Karp; Pacific Symposium on Biocomputing 5:302-313 (2000).

(152) Cluster Analysis and Data Visualization of Large-Scale Gene Expression Data G.S. Michaels,  D.B. Carr, M. 
Askenazi, S. Fuhrman, X. Wen and R. Somogyi; Pacific Symposium on Biocomputing 3:42-53 (1998).

(191) ANN-Spec: A Method for Discovering Transcription Factor Binding Sites with Improved Specificity C.T. 
Workman and G.D. Stormo; Pacific Symposium on Biocomputing 5:464-475 (2000).

(137) Development of a System for the Inference of Large Scale Genetic Networks Y. Maki, D. Tominaga, M. 
Okamoto, S. Watanabe, and Y. Eguchi; Pacific Symposium on Biocomputing 6:446-458 (2001).
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(130) A Comparison of Genetic Network Models L.F.A. Wessels, E.P. Van Someren, and M.J.T. Reinders; Pacific 
Symposium on Biocomputing 6:508-519 (2001).

(126) Detecting Gene Relations from MEDLINE Abstracts M. Stephens, M. Palakal, S. Mukhopadhyay, R. Raje, 
and J. Mostafa; Pacific Symposium on Biocomputing 6:483-496 (2001).

We have seen PSB papers cited in the other “high impact journals” and it is satisfying to know that the work 
presented here is making a real difference. We have spoken with scientists who hesitate to submit their work to PSB 
for fear that it will not be subsequently consider eligible for a journal. This is an understandable concern,  but is 
mitigated by the excellent penetration of PSB paper as they are listed in Medline and clearly generate some 
attention, if they are good.

We would like to thank our keynote speakers. Dr. Stanley Nelson, Professor of Human Genetics and Psychiatry at 
the David Geffen School of Medicine at UCLA will talk about “Whole genome sequencing: issues and progress 
towards common application.” Our keynote in the area of Ethical, Legal and Social Implications of Technology will 
be Dr. Isaac Kohane, Professor of Pediatrics and Medicine, Harvard Medical School who will discuss issues related 
to the ethical application of emerging technical capabilities.

PSB provides sessions focusing on emerging areas in biomedical computation. These sessions are frequently 
conceived at the meeting itself,  during the discussion times. Again, the efforts of a dedicated group of researchers 
has led to an outstanding set of sessions, with associated introductory tutorials. These organizers provide the 
scientific core of PSB, and their sessions are as follows: 

Bernard Moret, Webb Miller, Pavel Pevzner, and David Sankoff
Computational Challenges in Comparative Genomics

Rolf Backofen, Hamidreza Chitsaz, Ivo Hofacker, S. Cenk Sahinalp, and Peter F. Stadler
Computational studies of non-coding RNAs

Tanya Berger-Wolf, Teresa Przytycka, Mona Singh, and Donna Slonim
Dynamics of Biological Networks

Samuel Flores, Julie Bernauer, Xuhui Huang, Ruhong Zhou, and Seokmin Shin
Multi-resolution Modeling of Biological Macromolecules

Can Alkan, Michael Brudno, Evan E. Eichler, Maricel G. Kann, S. Cenk Sahinalp
Personal Genomics

Gil Alterovitz, Silvio Cavalcanti, Taro M. Muso, Marco F. Ramoni, and May Wang
Reverse Engineering and Synthesis of Biomolecular Systems

In addition, we welcome three satellite workshops to PSB this year:

Richard Goldstein, Phil Husbands, Chrisantha Fernando, and Dov Stekel
In silico biology

Peter Sterk, Lynette Hirschman, Dawn Field, John Wooley
Metagenomics, Metadata and Metaanalysis (m3)

Adrien Coulet, Nigam Shah, Larry Hunter, Chitta Baral and Russ B. Altman
GPD-Rxn Workshop: Genotype-Phenotype-Drug Relationship Extraction from Text
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Tiffany Murray continues to run the peer review process and assembly of the proceedings. We thank the National 
Institutes of Health and the International Society for Computational Biology (ISCB) for travel grant support. We are 
particularly grateful to BJ McKay-Morrison at ISCB for her assistance. We also acknowledge the many busy 
researchers who reviewed the submitted manuscripts on a very tight schedule. The partial list following this preface 
does not include many who wished to remain anonymous, and of course we apologize to any who may have been 
left out by mistake. 

We look forward to a great meeting once again. 

Aloha!          

Pacific Symposium on Biocomputing Co-Chairs, 
September 28, 2009
   
Russ B. Altman
Departments of Bioengineering, Genetics & Medicine, Stanford University

A. Keith Dunker
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine

Lawrence Hunter
Department of Pharmacology, University of Colorado Health Sciences Center

Teri E. Klein
Department of Genetics, Stanford University
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Thanks to the reviewers… 
 
Finally, we wish to thank the scores of reviewers. PSB requires that every paper in this volume be reviewed by at 
least three independent referees. Since there is a large volume of submitted papers, paper reviews require a great 
deal of work from many people. We are grateful to all of you listed below and to anyone whose name we may have 
accidentally omitted or who wished to remain anonymous. 
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1COMPUTATIONAL CHALLENGES IN COMPARATIVE GENOMICSSESSION INTRODUCTIONBERNARD M.E. MORETLaboratory for Computational Biology and BioinformatisEPFL (Swiss Federal Institute of Tehnology)EPFL-IC-LCBB INJ 230, Station 14, CH-1015 Lausanne, SwitzerlandE-mail: bernard.moret�ep.hWEBB C. MILLERDepartment of BiologyPennsylvania State UniversityUniversity Park, PA 16823, USAE-mail: wm2�psu.eduPAVEL A. PEVZNERDepartment of Computer Siene & EngineeringUniversity of California, San Diego9500 Gilman Drive, Mail Code 0404, La Jolla, CA 92093-0404, USAE-mail: ppevzner�s.usd.eduDAVID SANKOFFDepartment of Mathematis and StatistisUniversity of Ottawa585 King Edward, Ottawa, ON K1N 6N5, CanadaE-mail: sanko��uottawa.aComparative methods have long been a mainstay of biology, partiularly evolutionary biology; they arealso at the ore of medial researh based on animal models of human physiology. They �nd their mosthallenging and most �tting appliation, however, in the study of whole genomes, as they are the main toolsthrough whih we an study the billions of base-pairs forming the sequene of animal and other genomes.Comparing whole genomes, whih is neessarily done through omputational methods due to the size of thegenomes, has given rise to the researh area known as omparative genomis.Comparative genomis is the tool of hoie for identifying genes in both well studied and newly sequenedgenomes; for studying the aquisition of virulene or drug resistane in pathogens; for traking down geneomplexes responsible for inheritable diseases or suseptibilities; and for engineering desirable new traits inrops; and for studying many forms of aners. More generally, omparative genomis is the tool of hoieto eluidate how the geneti blueprint translates into spei� funtions and how that blueprint evolves inpopulations and into various speies.Comparative genomis uses not just whole-genome sequenes, but also dense single-nuleotide polymor-phism (SNP) maps, geneti maps, and sequenes of individual genes, but it is haraterized by its emphasison a whole-genome approah. Its omputational methods inlude ombinatorial optimization, mahine learn-ing, and data mining, while muh work has also been devoted to visualization of its �ndings|witness, forexample, the many spetaular full-olor �gures illustrating the orrespondenes between the human andmouse genomes.The fous of our session is on omputational models and algorithms; this session at PSB'10 follows aprevious session on the same theme at PSB'09, whih also featured �ve papers. The �ve papers inluded inour session all exemplify the genome-wide approah of the area.Two of the papers fous on anestral reonstrution, a topi that has reently attrated muh interest,but where assessing the validity of results is obviously very diÆult. Hikey and Blanhette, in "A pratialalgorithm for estimation of the maximum likelihood anestral reonstrution expeted error," provide the �rst
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2systemati approah to suh an assessment, using a diret analog of the phylogeneti bootstrapping proess.Gavranovi and Tannier, in "Guided genome halving: provably optimal solutions provide good insights intothe predupliation anestral genome of S. erevisiae," disuss a speialized appliation of anestral inferenein whih, given a ontemporary genome whose lineage is known to have seen a whole-genome dupliation,and a losely related genome whose lineage diverged before that dupliation and serves as a guide, thepredupliation anestor is inferred.Two other papers are onerned with metagenomis, where samples are taken of an entire biota (seawater,soil, animal gut, et.), the samples sequened, and the resulting sequenes (mostly unassembled) plaed withina phylogeny of related organisms|a proess that has already enabled us to disover very large numbers ofnew speies. Clemente, Jansson, and Valiente, in "Aurate taxonomi assignment of short pyrosequeningreads," puth forth the proposition that the ommon strategy of assigning metagenomi sequenes to the rootof an entire lade an be advantageously replaed by a strategy of assigning these sequenes to internal nodesthat optimize some ROC harateristis. and demonstrate of the use of their strategy on marine and gutdata. Essinger and Rosen, in "Benhmarking BLAST auray of genus/phylum lassi�ation of metagenomireads," also address the question of proper assignment of metagenomi reads to a phylogeny, but examinethe even more ommon strategy of identifying subsequenes with high similarity by using BLAST on anentire database.Finally, the �fth paper showases a fasinating appliation of omparative genomis to what might at�rst be viewed as a problem in population genetis: how to optimize the hoie of a founder population torepopulate a speies through aptive breeding. Miller, Wright, Zhang, Shuster, and Hayes, in "Optimizationmethods for seleting founder populations for the aptive breeding of endangered speies," present formula-tions and algorithms for seleting a founder population from an existing wild population. Suh problems dealwith very small populations and target spei� olletions of alleles, many of whih will be represented inonly a few individuals|thus genomi methods, whih deal with individual genomes, are better suited thanstandard population genetis methods, whih tend to deal with distributions over sizeable populations.We are very pleased to feature suh work at this PSB'10 session and want to take this opportunity tothank attendees, presenters, all submitting authors, and the referees who together made it possible.
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Ambiguities in the taxonomy dependent assignment of pyrosequencing reads are usually resolved by mapping each

read to the lowest common ancestor in a reference taxonomy of all those sequences that match the read. This

conservative approach has the drawback of mapping a read to a possibly large clade that may also contain many
sequences not matching the read. A more accurate taxonomic assignment of short reads can be made by mapping

each read to the node in the reference taxonomy that provides the best precision and recall. We show that given a

suffix array for the sequences in the reference taxonomy, a short read can be mapped to the node of the reference
taxonomy with the best combined value of precision and recall in time linear in the size of the taxonomy subtree

rooted at the lowest common ancestor of the matching sequences. An accurate taxonomic assignment of short reads

can thus be made with about the same efficiency as when mapping each read to the lowest common ancestor
of all matching sequences in a reference taxonomy. We demonstrate the effectiveness of our approach on several

metagenomic datasets of marine and gut microbiota.

Background

The advent of next-generation sequencers has been accompanied by new computational challenges to deal
with the ever increasing amounts of data produced.1 In particular, metagenomic analysis of microbial com-
munities2,3 has resulted in a plethora of tools for comparative studies, such as determining the richness and
diversity of communities,4–7 or test their similarity.8–11

A more fundamental problem is how to determine the composition of a particular community given the
set of pyrosequencing reads obtained from a sample, that is, what species (or strains) are present, and in what
proportion. Two strategies have been proposed, based on whether a taxonomy is assumed or not. Binning
approaches discard the use of bacterial taxonomies since they tend to be biased towards cultivable species, and
apply instead some unsupervised classification method (clustering) on the reads to determine the structure
of the population. Self-Organizing Maps,12,13 Support Vector Machines,14 z-score correlations,15 or nearest
neighbors16 have been successfully utilized for this purpose. Taxonomy-based approaches, on the other hand,
map the reads to known species in a given taxonomy, usually based on the 16S rRNA. Ambiguous fragments
that cannot be unequivocally assigned to a specific taxon are mapped to an inner node of the taxonomy,
usually the lowest common ancestor (LCA) of all sequences to which the read might be assigned.17–20

Both binning and taxonomy-based methods need to define a measure to compare sequences. Similarity-
based methods use sequence identity to determine how alike sequences are: BLAST18,19,21 and number of
mismatches22–25 are commonly used measures. Sequence composition methods use instead intrinsic features
of the sequences to determine their similarity, such as their GC-content26 or k-nucleotide frequencies.14,15,20

In this paper, we address the problem of how to assign ambiguous short reads with a taxonomy-based
3
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approach and a measure of similarity based on the number of mismatches between sequences. The hidden
assumption made by previous studies when assigning these fragments to the LCA is that a higher coverage
should be preferred to a higher accuracy (see Fig. 1). Our work is a generalization aimed at maximizing the
F -measure in order to assign ambiguous reads at inner nodes of the taxonomy that are not necessarily the
LCA. Notice that the use of the F -measure in this context is just one of the several possible assignment
strategies and it does not reflect the accuracy of the global assignment schema, which would also include
unambiguously assigned reads and be affected by the chosen measure of similarity between fragments.

Bacteria
Aquificae

Aquificae
Aquificales

Aquificaceae
Aquifex

Aquifex pyrophilus
Hydrogenobaculum

Hydrogenobaculum acidophilum
Hydrogenobacter

Hydrogenobacter subterraneus
Hydrogenobacter thermophilus
Hydrogenobacter hydrogenophilus?

Persephonella
Persephonella hydrogeniphila?

Persephonella marina?

Persephonella guaymasensis?

Sulfurihydrogenibium
Sulfurihydrogenibium subterraneum?

Sulfurihydrogenibium azorense?

Sulfurihydrogenibium yellowstonense
Thermocrinis

Thermocrinis albus
Thermocrinis ruber

Hydrogenivirga
Hydrogenivirga caldilitoris

Fig. 1. Coverage and accuracy of assigning ambiguous reads to the LCA. The assignment of an ambiguous read to the

family Aquificaceae, the LCA of the six matching taxa H. hydrogenophilus, P. hydrogeniphila, P. marina, P. guaymasensis, S.
subterraneum, and S. azorense, marked up with a star, has a 100% coverage (recall) but a 6/14 = 43% accuracy (precision).
The assignment to the genus Persephonella, instead, has a coverage of 3/6 = 50% and an accuracy of 100%.

Methods

Given a reference taxonomy T , a set R of short reads, and a threshold value k of sequence similarity, let Ri

be the ith read, let Mi be the leaves of T matching Ri with up to k mismatches, let Ti be the subtree of T

rooted at the lowest common ancestor of Mi, and let Ni be the leaves of Ti not matching Ri with up to k

mismatches. Let also Li = Mi ∪ Ni.
4
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Further, consider some arbitrary, but fixed, ordering of the nodes of T , say in postorder, let Ti,j be the
subtree of T rooted at the jth node of Ti in postorder, let Mi,j be the leaves of Ti,j matching Ri with up to
k mismatches, and let Ni,j be the leaves of Ti,j not matching Ri with up to k mismatches.

For the ith read and the jth node of Ti in postorder, the leaves of Ti can be partitioned in the following
four subsets (see Fig. 2):

• TP i,j = Mi,j (true positives)
• FP i,j = Ni,j (false positives)
• TN i,j = Ni \ Ni,j (true negatives)
• FN i,j = Mi \ Mi,j (false negatives)

Then, the precision of classifying Ri as Tj is Pi,j = |TP i,j |/(|TP i,j | + |FP i,j |), and the recall is Ri,j =
|TP i,j |/(|TP i,j |+ |FN i,j |). The combined F -measure of precision and recall is Fi,j = 2Pi,jRi,j/(Pi,j + Ri,j).

It is easy to see that Fi,j = 2Pi,jRi,j/(Pi,j + Ri,j) = 2|TP i,j |/(2|TP i,j | + |FP i,j | + |FN i,j |) =
2|TP i,j |/(|TP i,j | + |FP i,j | + |Mi|) = 2|Mi,j |/(|Li,j | + |Mi|). This gives a simple algorithm for comput-
ing the best possible taxonomic rank to which each read can be assigned, in time linear in the size of Ti.
Given the set Mi of matching sequences for a read Ri, it suffices to compute the sets Li,j and Mi,j for each
node j in Ti during a bottom-up traversal of Ti.27,28 Notice that it takes time linear in the size of Mi to find
the root of Ti, because T has constant height, and no additional preprocessing of T is required.29

Ti

Ti,j

Ni Ni,j Mi,j Mi

TN FP TP FN

Fig. 2. Precision and recall of assigning the ith read to the jth node of Ti in postorder.

Results and Discussion

It is not completely clear yet what microbial community structure different environments possess, but re-
sults so far seem to indicate a high degree of variability both in environmental30 and gut samples,31 with
significant differences between gut and other microbiomes.32 The distribution of functions seems to be more
conserved though,33 indicating that a core functionality can be achieved through different species distribu-
tions. Understanding this correlation requires accurate measurements of both variables, and our work aims
at reducing the amount of error introduced by the assignment of ambiguous fragments to the LCA of a group
of species.
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While feature-based and binning approaches13,14 require long fragments (more than 1K bp), taxonomical
methods can work with shorter reads, which can be as effective as longer sequences for taxonomic assignment
provided that the region of the 16S rRNA is adequately chosen.34,35 The algorithm we introduce here is also
very efficient and can process large number of fragments in time at most linear in the number of reference
sequences for each fragment, providing a useful tool to quickly test hypotheses about microbial communities.
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human twins gut (V6)
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rat gut

Fig. 3. Distribution of the 23,621 marine, 91,335 human gut, 776 human twins gut (V2 region), 94,999 human twins gut (V6
region), 4,395 chicken gut, and 31,509 rat gut pyrosequencing reads ambiguously matched with up to 2 mismatches to two or

more of the 5,165 sequences in the reference bacterial taxonomy.

In order to demonstrate the effectiveness of our approach, we have studied taxonomic assignment in
several microbial communities: marine,30 human gut,36 lean and obese human twins gut,31 chicken gut,37
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and rat gut38 samples. The samples themselves contain 454 pyrosequencing tags for a variable region of 16S
rRNA, between 50 and 329 bp in length, and for each of these bacterial communities, we have used both the
LCA approach and our approach to assign each of the pyrosequencing reads at the best possible taxonomic
rank, using a reference bacterial taxonomy of 5,165 near-full-length type cultures of high quality17 with a
uniform scheme of seven taxonomic ranks (domain, phylum, class, order, family, genus, species).

The taxonomy covers the whole spectrum of known bacteria, and the dominant phyla are Proteobacteria,
Actinobacteria, Firmicutes, Bacteroidetes, and Tenericutes, with 1,925, 1,285, 1,178, 355, and 160 species,
respectively. The near-full-length 16S reference sequences range from 1,202 to 1,780 bp.

The marine (V6 region) samples themselves range from 50 to 100 bp, with an average length of 62 bp;
the human gut (V6 and V3 regions) samples range from 50 to 165 bp, average 101 bp; the human twins gut
(V2 region) samples range from 50 to 317 bp, average 231 bp; the human twins gut (V6 region) samples
range from 50 to 129 bp, average 60 bp; the chicken gut (V6 region) samples range from 55 to 75 bp, average
60 bp; and the rat gut (V4 region) samples range from 50 to 329 bp, with an average length of 231 bp.

We have built a suffix array for the 5,165 sequences in the reference bacterial taxonomy using the GEM-
do-index tool,39 and have matched each of the pyrosequencing reads to the 5,165 reference sequences using
the GEM-mapper tool39 with appropriate parameter settings for finding all matching sequences with up to
2 mismatches, which is about 99% identity for reads of 200 bp. The distribution of those pyrosequencing
reads that could not be unambiguously matched to a single sequence in the reference bacterial taxonomy is
given in Fig. 3.

The pyrosequencing reads that matched two or more sequences in the reference bacterial taxonomy were
assigned to the LCA of the matching sequences in the taxonomy, and they were also assigned at the best
possible taxonomic rank using our method. The distribution of reads assigned at the taxonomic rank of
domain, phylum, class, order, family, and genus using the LCA of the matching sequences in the taxonomy
is shown in Table 1, and the distribution of reads assigned at the taxonomic rank of class, order, family,
genus, and species using the new method is shown in Table 2.

Table 1. Number of ambiguous pyrosequencing reads assigned at various

taxonomic ranks using the LCA of the matching sequences in the reference

bacterial taxonomy of 5,165 sequences.

taxonomic number of reads

rank marine human twins twins chicken rat
V6 V6, V3 V2 V6 V6 V4

domain 40 1
phylum 29 5,498 3 13,133 130 49

class 12,099 2,354 1,854 154 3

order 976 5 13 8 8 35
family 3,428 49,647 371 2,343 1,441 3,582

genus 7,089 33,831 349 77,661 2,662 27,839

23,621 91,335 776 94,999 4,395 31,509

Table 2. Number of ambiguous pyrosequencing reads assigned at various
taxonomic ranks using our method in the reference bacterial taxonomy of

5,165 sequences.

taxonomic number of reads
rank marine human twins twins chicken rat

V6 V6, V3 V2 V6 V6 V4

class 2
order 4 2
family 860 2,150 16 195 3 57

genus 17,705 8,441 411 2,353 210 3,622

species 5,056 80,744 343 92,451 4,182 27,828

23,621 91,335 776 94,999 4,395 31,509
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These results show that only 3,213 of the 23,621 marine ambiguous reads (13.60%), 4,231 of the 91,335
human gut ambiguous reads (4.63%), 35 of the 776 human twins gut (V2 region) ambiguous reads (4.51%),
635 of the 94,999 human twins gut (V6 region) ambiguous reads (0.67%), 45 of the 4,395 chicken gut
ambiguous reads (1.02%), and 48 of the 31,509 rat gut ambiguous reads (0.15%) were actually assigned to
the LCA of the matching sequences using our method.

The remaining 96.67% of the ambiguous reads were assigned at a deeper taxonomic rank than the LCA
of the matching sequences using the new method. While assigning a read to the LCA of the matching
sequences in the taxonomy tends to produce assignments at the ranks of class, order, family, and genus, the
new method produces more accurate assignments at the ranks of genus and species.

Conclusions

We have shown in this paper that ambiguities in the taxonomy dependent assignment of pyrosequencing
reads can be resolved in an accurate way by mapping each read to the node of a reference taxonomy with the
best combined value of precision and recall, in time linear in the size of the taxonomy subtree rooted at the
lowest common ancestor of the matching sequences, given a suffix array for the sequences in the reference
taxonomy. We have demonstrated the effectiveness of this approach on several metagenomic datasets of
marine and gut microbiota, by showing that most reads are actually assigned at a deeper taxonomic rank
than the LCA of the matching sequences in the reference taxonomy.

The experimental results were obtained using a reference bacterial taxonomy of 5,165 near-full-length
type cultures of high quality.17 The incompleteness and bias towards cultivable species of the taxonomy
might affect these results. Most species in the gut of an individual are rare,40 and the microbiome has
a small number of deep-branching taxa with large diversity at the leaves, with different humans showing
different patterns of abundance of microbial species.41 As our knowledge of the human microbiome expands,
we expect the number of unclassified species to diminish and the effectivenes of taxonomical methods to
improve consequently.
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Metagenomics is the study of environmental samples. Because few tools exist for metagenomic analysis, a natural step has been to 

utilize the popular homology tool, BLAST, to search for sequence similarity between sample fragments and an administered database. 

Most biologists use this method today without knowing BLAST’s accuracy, especially when a particular taxonomic class is under-

represented in the database. The aim of this paper is to benchmark the performance of BLAST for taxonomic classification of 

metagenomic datasets in a supervised setting; meaning that the database contains microbes of the same class as the ‘unknown’ query 

fragments. We examine well- and under-represented genera and phyla in order to study their effect on the accuracy of BLAST. We 

conclude that on fine-resolution classes, such as genera, the accuracy of BLAST does not degrade very much with under-

representation, but in a highly variant class, such as phyla, performance degrades significantly. Our analysis includes five-fold cross 

validation to substantiate our findings. 

 
1.  Introduction 

 

The relatively new field of metagenomics has been rapidly expanding over the past several years [1, 2]. This field 

focuses on DNA obtained from an environmental sample rather than from pure cultures in a laboratory. This 

markedly substantial difference from conventional microbial genomics poses a unique set of problems that are now 

gaining attention. Instead of asking the question “How does one organism work?” we are now interested in “Who is 

here in this sample and what are they doing?”. Since greater than 99% of microbes cannot be cultivated in isolation 

[3], metagenomics is a necessity if we wish to understand the microbial diversity of our planet. 

 Examples of metagenomic applications include human health, soil fertility and forensics. The National Institute 

of Health has created an initiative called The Human Microbiome Project to examine microbes associated with 

health in several areas of the human body [2]. For example it is hypothesized that the human gastrointestinal tract 

contains microbes that outnumber human cells 10 to 1 [2]. Many of these microbes are believed to be involved with 

the digestive process. Most of these microbes cannot be isolated in the laboratory. Therefore they cannot be cultured 

for abundance so that their DNA can be extracted and amplified for genomic analysis. Instead we turn to 

metagenomics where we obtain the DNA of the environmental sample, extract and amplify the DNA, sequence the 

samples, assemble the samples and finally attempt to annotate the sequences. Annotation is certainly an elusive task 

since we do not know which microbes are in the sample to begin with. So we turn to sequence alignment tools such 

as BLAST [4, 5] which aid us in answering a fundamental question in metagenomics, namely “Who is here?”. 

Before we can fully trust the results of BLAST for taxonomic classification, we seek to benchmark how database 

representation affects its performance. 

 
2.  Background on Taxonomy 
 

Answering the question “Who is here?” is an issue of taxonomy. Taxonomy refers to the science of naming and 

classifying organisms. The National Center for Biotechnology Information (NCBI) maintains a taxonomy database 

which is considered a well respected source by the scientific community for taxonomic information [4]. The 

standard hierarchy of the taxonomy used in this paper is Phyla, Order, Family, Genus, Species, Strains as 

recommended by the NCBI.  As of September 2009 there are over 339,500 taxa represented in the database. Of 

these taxa 968 are completely sequenced genomes of microbial organisms. Clearly, this is only a small fraction of 

the microbes inhabiting our planet today, however, the databases are expanding rapidly and as the field of 

metagenomics becomes more pervasive we shall see substantial increases in the number of taxa maintained in these 

databases. 

 When an organism’s DNA or metagenomic sample has been sequenced it is a natural step to compare this new 

sequence to existing, annotated sequences in the databases for similarity [6, 7]. BLAST (Basic Local Alignment 

Search Tool) is both a web based and standalone tool developed by the NCBI for comparing sequence similarity 
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between two nucleotide or protein sequences [5]. The most popular way researchers use the tool is to input a 

sequence as a query against the public sequence databases which include NCBI Taxonomy 

(http://www.ncbi.nlm.nih.gov/Taxonomy/). BLAST returns sequences that are similar to the input query. BLAST 

will attempt to align the query with the sequences in the databases and then issue a statistical report to provide a 

level of confidence in the alignment. BLAST is actively maintained by the NCBI and can be found here 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

 The first alignment in the report returned by BLAST is supposedly the sequence in the database with the 

greatest similarity to the query sequence. When the query sequence is small (e.g. < 500bp), BLAST tends to produce 

multiple ambiguous top-hits. It has been found that the closest BLAST hit is often not the nearest-neighbor [8]. 

Generally speaking, microbiologists rely on the BLAST results without question [9, 10, 11]. Researchers have now 

begun to analyze and compare the performance of BLAST for metagenomic datasets. The findings are indicating 

that classifying genome sequence fragments based on the best BLAST hit only yield reliable results if there are close 

relatives represented in database for comparison [12, 13].    

 
3.  Method 
 

A total of 635 distinct microbial strains downloaded in 2008 from the NCBI Genbank database were considered for 

our experiments. We have found that each of the 635 strains in our database can be classified to one of 19 different 

phyla and 272 different genera. In order to partition the database for our experiments we decided to focus on two 

well-represented and two under-represented classes each for the levels of phyla and genus. Thus two separate 

experiments were performed; one for the level of phyla and the other for genus. Table 1 shows the composition of 

each class for each experiment. 

 
Table 1. The class composition for the phyla and genus five-fold cross validation experiments are provided below. A total of 463 strains were 

included in the phyla experiment. We chose to use two phyla having well-representation and two having under-representation in the database. For 

example, Proteobacteria (well) accounted for 315 (68%) of the 463 strains included in the experiment. These strains were partitioned into five 

groups each containing 63 strains. The remaining three classes were partitioned in the same manner ensuring that approximately 20% of the 

strains belonging to the class were in each group. The first group from all four classes was combined and BLAST against the remaining four 

groups. This procedure was repeated five times so that each group was used for query once. An identical procedure was used at for the genus 

experiment.   

 

Phyla 

Total Strains – 463 Database (80%) – 370 Query (20%) – 93 

Well-Represented Under-Represented 

Class # of Strains # Queries Sampled Class # of Strains # Queries Sampled 

Proteobacteria (well1) 315 (68%) 63 Crenarchaeota (under1) 15 (3%) 3 

Fermicutes (well2) 116 (25%) 23 Tenericutes (under2) 17 (4%) 4 

Genus 

Total Strains – 64 Database (80%) – 51 Query (20%) – 13 

Well-Represented Under-Represented 

Class # of Strains # Queries Sampled Class # of Strains # Queries Sampled 

Steptococcus (well1) 26 (40%) 5 Yersinia (under1) 10 (16%) 2 

Staphylococcus (well2) 18 (28%) 4 Synechococcus (under2) 10 (16%) 2 

 

 The two well-represented classes were chosen to be the two classes at each level that contained the greatest 

amount of microbial strains. For example, the phyla class Proteobacteria contained 315 strains out of the 635 strains 

in the overall database. The two under-represented classes were chosen arbitrarily so that they each contain no more 

than 20 strains. Many classes in the database contained only 1 strain; however the five-fold cross validation 

statistical measure necessarily requires that we have a minimum of 5 strains. We chose under-represented classes 

containing 10 to 17 strains as shown in Table 1.  

 The five-fold cross validation experiments proceeded as the following for phyla using 500bp query fragments. 

The identical procedure was followed for the level of genus thus yielding two separate experiments. The distribution 
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of the classes for the experiments can be found in Table 1. To measure the possible effect of class bias, we also 

performed an equal class representation experiment at the phyla level as discussed in the results section.  

 Since we have chosen five-fold cross validation, we randomly partitioned the strains from each class into five 

groups. The first group from each class was combined to create a set of query strains. To simulate a metagenomics 

dataset obtained using the next generation of 454 pyrosequencing technology [14], each query strain’s genome was 

randomly sampled extracting 100 fragments each 500bp in length. Each fragment was annotated with its 

membership class so that we could determine if BLAST correctly matched the fragment. These sampled fragments 

were used as queries for BLAST sequence alignment. The whole-genomes of the remaining strains were used to 

construct the BLAST training database in which BLAST would attempt to align against the query sequences. For 

example, in the phyla experiment, 93x100 (20%) query fragments were BLAST against a database of 370 (80%) 

whole-genomes comprised of the remaining strains belonging to the 4 phyla. The percent accuracy is calculated as 

the number of query fragments correctly identified by BLAST over the total number of query fragments. This 

procedure was repeated a total of five repetitions so that each strain was in the query test set once. The results from 

the five partitions were averaged and the standard deviation was calculated. A survey of cross validation methods 

can be found from these sources [15, 16, 17]. 

 BLAST may potentially return multiple ambiguous hits meaning that all of the top scores returned have the 

same statistical expect value (e-value). In these instances all of the aligned sequences must be from the true 

taxonomic class otherwise the BLAST result was marked incorrect for the corresponding query sequence. 

Additionally, BLAST may not return a report for a query sequence that it has determined to be a low-complexity 

region. In these few instances we marked the query as incorrect. While this filter may be turned off we’ve found that 

BLAST consumes significantly more resources; therefore we’ve chosen to leave it in the default setting.  

 

4. Results 
 

4.1 Well/Under Representation Experiments 
 

The results of the two cross-validation experiments with well/under representation are summarized in Table 2. Each 

experiment had four classes; two classes that were well-represented by strains in the dataset and two classes that 

were under-represented. The percent accuracy is the number of strain fragments that BLAST matched with the 

correct class over the total number of fragments. The average score reported is the average of all five repetitions of 

the cross validation experiment. The standard deviation is calculated in a similar manner. Individual scores for each 

repetition, for all experiments are provided in Appendix A.1. 

 In addition to the percent accuracy of BLAST across all strains for each experiment, Table 2 lists the accuracy 

of BLAST on the four individual classes as well as the accuracy on the combined well and under represented 

classes. Each of these combined groups contains two classes.  

 
Table 2. The percent accuracy scores of BLAST for the genus and phyla experiments are provided below. BLAST was marked correct if it 

matched the query fragment to the correct class and incorrect otherwise. It was also marked incorrect if it provided multiple ambiguous hits 

whereupon these hits belonged to two or more different classes. The percent accuracy for each cross validation repetition is the number of correct 

matches over the total number of query fragments. The percent accuracy scores over all five repetitions were average and are provided below 

along with the standard deviation of scores. 

 

Percent Accuracy All Well Well 1 Well 2 Under Under 1 Under 2 

500bp Genus 
AVG 95.87 96.60 95.65 97.87 94.15 96.90 91.40 

STD 2.10 3.10 4.91 3.03 3.57 4.56 8.51 

500bp Phyla 
AVG 87.21 90.06 92.67 83.01 48.74 36.80 59.38 

STD 2.29 2.30 0.79 7.80 9.64 16.43 14.52 
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Figure 1. This bar graph illustrates the data provided in Table 2. All four classes in the genus experiment exhibited similar percent accuracy 

scores. However, there is a clear difference in percent accuracy between the well- and under-represented classes in the phyla experiment. We’ve 

found that this is due in part to the genus level having less diversity than the phyla level. 

 

 All seven different scores for percent accuracy are plotted against the two experiments in Figure 1. The trend 

across the two experiments indicates that accuracy increasingly diminishes moving from 500bp genus to 500bp 

phyla. It is evident from Figure 1 that the percent accuracy of all strains for each experiment is highly dependent on 

the accuracy of BLAST correctly identifying the fragments belonging to strains having membership in the under-

represented classes. This is evident from the disparity between the under-represented scores for genus and phyla. 

Genus under-represented has an accuracy nearly 40% higher than the phyla under-represented group. Predictably, 

genus percent accuracy for all strains is nearly 10% higher than phyla.  

 
4.1.1 Phyla 
 

There were a total of 463 strains considered in the phyla experiments. Each cross-validation repetition consisted of 

93 (20%) strains chosen at random without replacement to BLAST against the remaining 370 (80%) strains in the 

dataset (see Table 1). Accordingly, every strain in the dataset was used as a test strain once. Each test strain was 

sampled randomly 100 times; each sample consisted of a fragment 500bp in length. These 100 fragments were used 

in place of the test strain. The phyla experiment shows that well-represented strains scored approximately 40% 

higher than under-represented strains.  

 Strains belonging to the under-represented class Crenarchaeota were misclassified 78% on average. These 

misclassified fragments were frequently matched with strains belonging to the well-represented phyla. For example, 

BLAST classified 74% of fragments belonging to Pyrobaculum aerophilum to Proteobacteria (well) rather than 

Crenarchaeota (under) as expected.  

 In general, when BLAST misclassified fragments, 5% of the misclassifications belonged to a strain in the 

under-represented classes. Of the remaining 95% misclassified fragments, approximately 72% of the 

misclassifications went to strains belonging Proteobacteria (well) alone. This is similar to chance since the database 

is comprised of 93.3% well-represented strains. Furthermore, Proteobacteria (well) makes up for about 73% of the 

combined well-represented classes. Generally speaking, BLAST frequently confused under-represented fragments 

with well-represented phyla. 
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4.1.2 Genus 
 

There were a total of 64 strains considered in the genus experiments. Each cross-validation repetition consisted of 13 

(20%) strains chosen at random without replacement to BLAST against the remaining 51 (80%) strains in the dataset 

(see Table 1). Accordingly, every strain in the dataset was used as a test strain once. Each test strain was sampled 

randomly 100 times; each sample consisted of a fragment 500bp in length. The genus experiment shows that well-

represented strains scored marginally higher than under-represented strains. 

 BLAST misclassified 25% of Synechococcus CC9311 (under) 500bp fragments with strains belonging to the 

other three genera. 76% of these misclassifications went to a well-represented genus. When BLAST misclassified a 

fragment 21% of the misclassifications belonged to strains in the under-represented classes. Of the remaining 79% 

misclassified fragments, 48% went to strains belonging to the well-represented to Staphylococcus (well) alone. 

Generally speaking, BLAST frequently confused under-represented fragments with well-represented genus. 

 
4.2 Equal Representation Experiments 
 

The result of the phyla cross validation experiment with equal class representation is presented in Table 3. A dataset 

consisting of 60 strains was constructed to have equal representation among the four phyla classes. 15 strains were 

randomly sampled from each class from our original phyla dataset of 463 strains. Each cross-validation repetition 

consisted of 12 (20%) strains chosen at random without replacement to BLAST against the remaining 48 (80%) 

strains in the dataset (see Appendix A.2). Accordingly, every strain in the dataset was used as a test strain once. 

Each test strain was sampled randomly 100 times; each sample consisted of a fragment 500bp in length. These 100 

fragments were used in place of the test strain. 

 
Table 3. The result of the equal-representation cross validation experiment is provided below. The first score column is the percent accuracy of 

BLAST for all four classes while the four columns to the right, labeled with the phyla’s abbreviated name, refer to the individual scores for each 

class considered in this experiment. These are the same four phyla considered in the well/under represented experiment except now we have 

selected 15 strains from each class for this experiment so that each repetition will have equal-representation among the four classes in the 

database. The cross validation procedure used here is identical to the one used for the well/under experiments. 

 

Percentages All Prot Firm Cren Ten 

500bp Phyla 
AVG 63.75 73.33 61.53 53.46 66.67 

STD 8.23 13.88 10.35 10.78 13.44 
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Figure 2. This bar graph illustrates the data provided in Table 3. The four classes in the equal-representation experiment have percent accuracy 

performance much more similar to one another than in the well/under representation experiment. This finding indicates that class composition in 

the database affects the performance of BLAST with well-represented classes having higher accuracy than under-represented classes. 
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 The average percent accuracy for the experiment is shown in Figure 2. The overall percent accuracy decreased 

by ~25% from the well/under represented phyla experiment while the standard deviation increased from ~2.5% to 

~8%. The percent accuracy decrease is mostly contributed to the decrease in accuracy (~29%) of Proteobacteria. The 

increase in standard deviation is also most significantly affected by Proteobacteria whose standard deviation 

increased by ~14%. This increase was expected since Proteobacteria was considered a well-represented class in the 

previous experiments and we’ve found that variance decreases with increasing representation. 

 
5. Discussion  
 

It is clear from our experiments that the accuracy of BLAST is highly dependent on the composition of the training 

database. The well/under phyla experiment confirmed that the well-represented classes have nearly 40% higher 

accuracy than the under-represented classes. Still BLAST is performing much better than chance on all classes. For 

phyla (500bp) we see that Proteobacteria (well) scored 92.67%. With a database composition of 252/370 we confirm 

that this score is much higher than chance which would be about 68%. This can also be verified for under-

represented classes. For instance BLAST scored 59.38% for Tenericutes (under). Given its database composition we 

would expect a percent accuracy of 14/370 or 3.7% by chance.  

 Upon further examination of the database’s composition we observe the ratio of well to under-represented 

strains in the phyla database is nearly 14:1 (Figure 3). Incidentally, by chance, if we rolled a die we would expect 

BLAST to classify a strain to a well-represented class 14/15 or 93.3% percent of the time. While we found through 

our experiments that BLAST is able to classify much better than chance, the allocation of BLAST misclassifications 

follows a different trend. For example, in the phyla experiments when BLAST misclassified a fragment ~ 95% 

(nearly chance) of the fragments were assigned to a well-represented class.  

 

 

 
Figure 3. The pie charts above show the class composition for both the phyla and genus well/under experiments. The well-represented classes in 
the phyla experiment had nearly 40% higher percent accuracy scores than the under-represented classes. The difference in percent accuracy 

scores between the classes in the genus experiment was marginal. 

 

 These trends are also reflected in the genus experiments. For example for genus (500bp) we find that 

Streptococcus (well) scored 96.6%. By chance we would observe 21/51 or 41.1% accuracy. For Yersinia (under) 

BLAST scored 91.4% while a score by chance would be 8/51 or 15.6%. As shown in Figure 3 the genus database 

composition is about 2.2:1 predicting that BLAST would classify a strain to a well-represented class about 69% of 

the time by chance. This is reflected in the allocation of BLAST misclassifications where about 76% of the BLAST 

misclassified fragments went to a well-represented class. 

 The chart in Figure 1 indicates that the genus experiment outperformed the phyla experiment. We hypothesized 

that this was due to the difference in the well/under database composition (Figure 3) between the sets of 

experiments. Since the phyla under-represented composition is only 7% of the entire database as opposed to 31% for 
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the genus experiments, we wanted to find out if phyla overall percent accuracy score would approach the scores for 

the genus experiments if we increased the percent composition of phyla’s under-represented classes.  

 We conducted the equal-representation experiment among the four classes at the phyla level to further test for 

compositional bias. The results show that the scores for the two under-represented classes increased while the scores 

for the two well-represented classes decreased substantially resulting in similar performance for all 4 phyla classes. 

Therefore we find that class composition size affects performance; improvement for the well-represented classes and 

degraded accuracy for under-represented classes. Proteobacteria’s (well1) percent accuracy decreased 29% while 

Firmicutes (well2) decreased 22%. We infer that strains belonging to the genus level have less diversity than at the 

phyla level since there was such a substantial decrease in scores at the phyla level when the dataset was reduced to 

the size of the under-represented genus classes. There is proof to show that 16s rRNA sequences have 6% 

divergence at the genus level and 3% for species so we infer that this percentage is higher at the phyla level [18]. 

 The standard deviation for classes in the phyla well/under represented experiment is shown in Figure 4. It is 

clear that class size has a significant effect on the standard deviation of percent accuracy scores. Proteobacteria with 

252 strains had a standard deviation of 0.79% while Crenarchaeota with 12 strains had a standard deviation of 

16.43%. The overall standard deviation for phyla increased from 2.29% to 8.23% moving from the well/under 

represented to the equally represented experiment.  Database composition remains an important consideration in 

BLAST experiments in addition to the certainly of class labels. 
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Figure 4. The bar graph above shows the standard deviations of BLAST’s percent accuracy for each class over all five repetitions in the phyla 
well/under represented experiment. This graph clearly shows that for phyla the standard deviation of percent accuracy scores reported from 

BLAST decreases with increasing examples in the database. 

 
6.  Conclusion  
 

Several five-fold cross validation experiments were examined in this study. Our analysis has shown that database 

composition contributes substantially to the accuracy of the BLAST algorithm. Overall we’ve found that the 

standard deviation of percent accuracy scores decreases with increasing class representation in the database. We’ve 

also demonstrated that BLAST performs much better than chance even when representation in the database is much 

smaller than the majority as shown in the phyla experiments. However, when BLAST misclassifies a fragment, it 

appears to assign the fragment by chance. 

 As shown in Figure 1 the genus experiment scored higher than the phyla experiment. We’ve shown through our 

equal-representation phyla experiment that this marked difference is most likely attributed to the genus level having 

better definition and less diversity than the phyla level. The study demonstrates the intuitive result that a user of 

BLAST would want to build a database having as much representation as possible to increase accuracy and decrease 

the standard deviation of scores. As the numbers from the experiments show, the output of BLAST is clearly not 

always the correct match and we suggest the use of additional, external information to form a consensus of matches. 
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Appendix 

A.1 CV Results - Well/Under Representations 
 

Table 4. Results of the well/under cross validation experiment at the genus level, 500bp fragments 

 

Genus Results – 500bp 

Overall Dataset 

 Repetition Training Test % Correct 

1 51 13 97.15 

2 51 13 93.23 

3 51 13 98.62 

4 52 12 94.67 

5 51 13 95.69 

    AVG 95.87 

    STD 2.10 

 

Genus Well-Represented Genus Under-Represented 

Combined  Combined 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 35 9 99.00 1 16 4 93.00 

2 35 9 93.44 2 16 4 92.75 

3 35 9 99.11 3 16 4 97.50 

4 36 8 93.00 4 16 4 98.00 

5 35 9 98.44 5 16 4 89.50 

    AVG 96.60     AVG 94.15 

    STD 3.10     STD 3.57 

Streptococcus Yersinia 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 21 5 100.00 1 8 2 100.00 

2 21 5 88.20 2 8 2 89.00 

3 21 5 99.00 3 8 2 97.50 

4 21 5 93.20 4 8 2 98.00 

5 20 6 97.83 5 8 2 100.00 

    AVG 95.65     AVG 96.90 

    STD 4.91     STD 4.56 

Staphylococcus Synechococcus 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 14 4 97.75 1 8 2 86.00 

2 14 4 100.00 2 8 2 96.50 

3 14 4 99.25 3 8 2 97.50 

4 15 3 92.67 4 8 2 98.00 

5 15 3 99.67 5 8 2 79.00 

    AVG 97.87     AVG 91.40 

    STD 3.03     STD 8.51 
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Table 5. Results of the well/under cross validation experiment at the phyla level, 500bp fragments 

 

Phyla Results – 500bp 

Overall Dataset 

Repetition Training Test % Correct 

1 370 93 88.51 

2 370 93 89.94 

3 371 92 84.05 

4 371 92 87.62 

5 370 93 85.94 

  AVG 87.21 

  STD 2.29 

 

Phyla Well-Represented Phyla Under-Represented 

Combined Combined 

Repetition # Training # Test % Correct Repetition # Training # Test % Correct 

1 345 86 90.98 1 25 7 58.14 

2 345 86 93.47 2 25 7 46.57 

3 345 86 87.50 3 26 6 34.67 

4 345 86 89.72 4 26 6 57.50 

5 344 87 88.63 5 26 6 46.83 

  AVG 90.06   AVG 48.74 

  STD 2.30   STD 9.64 

Proteobacteria Crenarchaeota 

Repetition # Training # Test % Correct Repetition # Training # Test % Correct 

1 252 63 91.94 1 12 3 50.67 

2 252 63 93.29 2 12 3 28.00 

3 252 63 91.71 3 12 3 14.67 

4 252 63 93.44 4 12 3 36.00 

5 252 63 92.97 5 12 3 54.67 

  AVG 92.67   AVG 36.80 

  STD 0.79   STD 16.43 

Firmicutes Tenericutes 

Repetition # Training # Test % Correct Repetition # Training # Test % Correct 

1 93 23 88.35 1 13 4 63.75 

2 93 23 93.96 2 13 4 60.50 

3 93 23 75.96 3 14 3 54.67 

4 93 23 79.52 4 14 3 79.00 

5 92 24 77.25 5 14 3 39.00 

  AVG 83.01   AVG 59.38 

  STD 7.80   STD 14.52 
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A.2 CV Results - Equal Representation 
 

Table 6. Results of the equal-representation cross validation experiment at the phyla level, 500bp fragments 

 

Phyla Results – 500 bp 

Overall Dataset 

Repetition Training Test % Correct 

1 48 12 61.50 

2 48 12 73.50 

3 48 12 69.42 

4 48 12 52.08 

5 48 12 62.25 

    AVG 63.75 

    STD 8.23 

 

Proteobacteria Crenarchaeota 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 12 3 72.00 1 12 3 45.33 

2 12 3 91.33 2 12 3 71.00 

3 12 3 61.67 3 12 3 56.33 

4 12 3 58.67 4 12 3 45.33 

5 12 3 83.00 5 12 3 49.33 

    AVG 73.33     AVG 53.46 

    STD 13.88     STD 10.78 

Firmicutes Tenericutes 

Repetition # Training  # Test % Correct Repetition # Training  # Test % Correct 

1 12 3 57.00 1 12 3 71.67 

2 12 3 56.33 2 12 3 75.33 

3 12 3 80.00 3 12 3 79.67 

4 12 3 58.00 4 12 3 46.33 

5 12 3 56.33 5 12 3 60.33 

    AVG 61.53     AVG 66.67 

    STD 10.35     STD 13.44 
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We present theoretical and practical advances on the Guided Genome Halving problem, a combinatorial optimisation

problem which aims at proposing ancestral configurations of extant genomes when one of them has undergone a

whole genome duplication. We provide a lower bound on the optimal solution, devise a heuristic algorithm based
on subgraph identification, and apply it to yeast gene order data. On some instances, the computation of the bound

yields a proof that the obtained solutions are optimal. We analyse a set of optimal solutions, compare them with a

manually curated standard ancestor, showing that on yeast data, results coming from different methodologies are

largely convergent: the optimal solutions are distant of at most one rearrangement from the reference.

1. Motivations

The genomes of extant species underwent different changes in the course of evolution. These changes are

studied at various levels: from modifications at a nucleotide-base level to rearrangements of large pieces of

DNA, or duplication of the whole genome.

Genome rearrangement phylogeny methods have matured over the past decade7 and reached the point

where their results can be interpreted together with the results of biologists.

At a low level of resolution, the usually considered mutations that alter genomes are reversals, translo-

cations, fusions and fissions of chromosomes, often included in a general abstract operation called Double

Cut-and-Join (DCJ), which has the advantage of being computationally easy to handle and of modelling

many realistic rearrangements.16

Following El-Mabrouk and Sankoff,5 Zheng et al18 have generalized the genome rearrangement problems

by introducing the possibility of considering a whole genome duplication in the genome histories. They provide

a heuristic algorithm19 which is able to propose the organization of a set of genes along the history of yeast

genomes.

In the same time, Gordon et al8 chose not to use an automatic method to reconstruct the preduplication

ancestor of Saccharomyces cerevisiae. Their arguments, among others, were that (i) only a small subset of

the genes (less than 20%) can be taken into account, those which have retained two copies after the WGD,

and (ii) the optimization problems are computationally complex and the methods are still in development.

In this paper, we report some advances on the theoretical study of the guided genome halving problem,

and apply a heuristic algorithm on “double conserved syntenies” of different yeast species. As shown in

a previous study,12 the computation of double syntenies allows to apply the guided halving problem on

instances that cover a good ratio of the exant genes (over 95%), and the computation of a lower bound proves

that on some instances, the algorithm reaches an optimal solution. It is a solution to the two mentioned

objections of Gordon et al,8 and the comparison of the obtained solutions with the manually constructed one

shows a good convergence. There were other objections in the paper of Gordon et al, as well as in a comment

of Sankoff9 in the same journal, as the possible huge number of optimal solutions, or the inability of the

models to account for certain types of rearrangements, like telomeric translocations. This still calls for a

theoretical answer (though telomeric translocations are actually taken into account by the DCJ framework)

whereas the surprising convergence between all the solutions we find on one instance and the manually

reconstructed ancestor shows that some dataset are already accessible.
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In the next section, we present the mathematical definitions of the genomes and the rearrangements that

may alter them. Then in Section 3, we propose a lower bound on the guided halving solutions, based on the

so-called “double distance” computation. This bound may be reached, so is able to prove optimality of some

solutions. Its usage in a branch and bound algorithm calls for efficient ways to compute it, since the double

distance computation is NP-hard for the DCJ distance, and we are only able to compute its exact value for

the easiest instances here. In Section 4, we describe the principle of our heuristic algorithm, and compare its

efficiency with the state of the art one of Zheng et al19 on some common instances build from yeast genomes,

but with a low coverage of the whole genomes. Finally in Section 5, we apply this algorithm on good coverage

syntenies on yeast genomes, and provide some information on the history of Hemiascomycetes, which we can

compare to the ones Gordon et al. They are very similar, and give the hope that algorithmic rearrangement

studies can provide good insights into genome evolution.

2. Genomes and rearrangements

2.1. Genes and genomes

We use the standard algorithmic definitions of genes and genomes3,13∗. A gene A is an oriented sequence of

DNA nucleotides, identified by its tail At and its head Ah. Tails and heads are called extremities of the gene.

An adjacency is an unoriented pair of gene extremities. A genome Π is a set of adjacencies on a set of genes,

such that every gene extremity participates in at most one adjacency. In a genome, an adjacency means that

two genes are consecutive on the DNA molecule. In a genome Π, a gene extremity which is not adjacent to

another gene extremity is called a telomere. A telomere a is also written as an adjacency a◦, where ◦ is an

abstract symbol not related to a gene, and called a telomeric adjacency.

For given genome Π, the genome graph GΠ has vertex set the set of all gene extremities, and edge set

the union of non telomeric adjacencies and edges AtAh, called gene edges, for every gene A. This graph

has vertices of degree one or two. Thus, connected components are paths and cycles, and are called the

chromosomes of Π. Paths are linear chromosomes, whereas cycles are circular chromosomes. Telomeres are

degree one vertices of the genome graph. A genome with only linear, or only circular, chromosomes is called

linear or circular genome, respectively.

A genome can also be represented as a set of strings, by writing the genes for each chromosome in the

order in which they appear in the paths and cycles with a bar over the gene if the head of the gene appears

before the tail and none if the tail appears before the head (this depends on an arbitrary direction of reading).

For each linear chromosome, there are two possible equivalent strings, for two opposite traverses of the path.

We have also two oposite circular strings for circular chromosomes.

Example 2.1. Let

Π = {AhCt, ChDh, BhEh, EtBt}

be a genome with five genes {A,B,C,D,E}. The corresponding genome graph is the following:

At Ah Ct Ch Dh Dt

Bh Bt

EtEh

and the string representation consists in the linear string ACD̄ (or DC̄Ā) and the circular string BĒ (or

EB̄).

∗They do not meet the biological definition of genes, but are more precisely “families of homologous sequences”, containing

from 0 to several genes in each genome.
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A Double Cut-and-Join (DCJ) operation (sometimes called 2-break rearrangement) is defined for two

adjacencies pq and rs of a genome. Telomeric adjacencies are also considered and any p, q, r or s could be a

◦ symbol. Moreover even the adjacency ◦◦ is considered. Thus, the DCJ transforms two adjacencies pq and

rs into either pr and qs, or ps and qr. The DCJ was introduced by Yancopoulos et al16 to encompass all

interesting types of genomic rearrangements. Indeed, an inversion, a chromosome fusion or fission, as well as a

reciprocal translocation, is a particular case of a DCJ. A non-reciprocal translocation, meaning a chromosome

arm is translocated to another chromosome, is also a DCJ. Transpositions and block interchanges can be

mimicked by two consecutive DCJs, the intermediate genome containing a circular chromosome.

Example 2.2. Consider genome from Example 2.1 and the DCJ that transforms adjacencies AhCt, BhEt

into AhBh, CtEt. The new genome is then

Π′ = {AhBh, EhBt, CtEt, ChDh}

and its genome graph becomes

At Ah Ct Ch Dh DtBh Bt EtEh

Given a genome Π, it is always possible to transform it into another arbitrary genome on the same set of

genes applying a sequence of DCJ operations. This leads to the definition of DCJ distance.

The DCJ Sorting and Distance Problem. Given two genomes Π and Ψ defined on the same set of

genes, find a shortest sequence of DCJ operations that transforms Π into Ψ. The length of such a sequence

is called the DCJ distance between Π and Ψ, denoted by dDCJ(Π,Ψ).

As the DCJ distance is the main distance we consider here, dDCJ is often abbreviated by d. When three

genomes are considered, this yields the Median problem:

The Genome Median Problem. Given three genomes Π1, Π2, Π3, find a median genome Π wich

minimises dDCJ(Π1,Π)+dDCJ (Π2,Π)+dDCJ (Π3,Π).

The breakpoint graph of a set of genomes on the same set of genes is the graph on vertex set the extremities

of all genes, and edge set the set of adjacencies of all genomes. If an edge is an adjacency on a genome Π, it

is called a Π-edge.

Each vertex of the breakpoint graph has degree at most the number of considered genomes. So for two

genomes, it is a set of paths and cycles. The DCJ distance is easily computed from the breakpoint graph:

for two genomes Π and Ψ on n genes, if C is the number of cycles and P the number of paths with an even

number of edges (including trivial path with 0 edges),

d(Π,Ψ) = n − (C + P/2).

The DCJ sorting and distance problems thus have a linear time running solution.3 The genome median

problem, however, is NP-hard13 under the DCJ distance, thought there are good algorithms to solve it.11,15

2.2. Duplicated genes and genomes

A duplicated gene is a couple of homologous oriented sequences of DNA nucleotides, identified by two tails At
1

and At
2, and two heads Ah

1 and Ah
2 . An all-duplicates genome ∆ is a set of adjacencies on a set of duplicated

genes, where each gene extremity is contained in at most one adjacency.

For a genome Π on a gene set, a doubled genome Π⊕Π is an all-duplicates genome on the set of duplicated

genes from the same gene set such that if AxBy (x, y ∈ {t, h}) is an (possibly telomeric) adjacency of Π (Ax

or By may be ◦), either Ax
1By

1 and Ax
2By

2 , or Ax
1By

2 and Ax
2By

1 , are adjacencies in Π ⊕ Π.

We note that on a doubled genome one finds two identical copies of each chromosome when we ignore the

1′s and 2′s in the names of genes. More precisely, it has two copies of each linear chromosome, and for each
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circular chromosome, either two circular copies or one circular chromosome containing the two successive

copies. For one genome Π there is an exponential number of possible doubled genome Π ⊕ Π.

The DCJ distance and median problems generalize to the case of duplicated genomes in several ways.

The DCJ distance between two all-duplicates genomes is easily derived from the usual DCJ distance

and has a polynomial time computation. But if we ignore the 1′s and 2′s in the names of genes, then then

it calls for an re-assignement of 1′s and 2′s which minimizes the distance, and this problem is NP-complete.

The double distance problem. The double distance between an ordinary genome Π and an all-

duplicates genome ∆ is defined as d(Π,∆) = minΠ⊕Πd(Π ⊕ Π,∆). It is also NP-hard.13

The Genome Halving Problem. Given an all-duplicates genome ∆ on a set of duplicated genes, find

a doubled genome Π ⊕ Π on the same set of genes such that the DCJ distance between ∆ and Π ⊕ Π is

minimal. The DCJ distance minΠ⊕Π d(Π ⊕ Π,∆) (the genome halving score) is denoted by gh(∆).

The genome halving problem aims at constructing possible preduplication configuration of genomes which

have undergone a whole duplication in the course of their histories. Computationnally, it is a generalization

of the DCJ sorting problem (indeed if the two copies of the ancestral doubled genome evolve independently

and no rearrangement concerns both, then it is equivalent to simple DCJ sorting). It was solved in the

most complicated case where only linear chromosomes are allowed by El-Mabrouk and Sankoff,5 resulting

in a rather complicated algorithm. Alekseyev and Pevzner discuss and solved the same problem on unichro-

mosomal genomes.1 Recently, solutions with DCJ distance were presented by Warren and Sankoff14 and

Mixtacki.6

The solution relies on the contracted breakpoint graph† of the genome ∆: its vertex set is the set of pairs

of homologous extremities of duplicates genes (two extremities (Ah
1 , Ah

2 ) or (At
1, A

t
2) form a single vertex).

Two vertices are connected by an edge if two extremities are adjacent in ∆. This graph is a set of cycles

and paths. If we call n the number of genes (counting one for the two duplicates), EC the number of cycles

of even length and EP the number of paths with an even number of edges (including trivial paths with no

edges), then Mixtacki6 proved that

gh(∆) = n − (EC + ⌊
EP

2
⌋).

This formula yields a linear algorithm to solve the Genome Halving problem. The analysis of this

algorithm shows the existence of a large, often exponential, number of optimal solutions. This fact makes it

inappropriate for any practical, biologically significant computation. Seoighe and Wolfe10 noted this extreme

non-uniqueness of solution to genome halving problem and propose to use a reference genome, i.e. outgroup

to reduce this number. Zheng et al18 formalize this approach and propose the first computational method

to solve it following with more recent19 and more efficient method applied to find phylogenetic relationships

among yeasts of the Saccharomyces complex. Here they also define the Genome Halving problem with two

outgroups.

The Guided Genome Halving Problem. Given an all-duplicates genome ∆ and an ordinary genome

Γ defined on the same set of genes, find an ordinary genome Π which minimizes

ggh(∆,Γ) = dDCJ(∆,Π) + dDCJ (Π,Γ).

These problems have different variants depending of the possibility for a genome of having one or several

chromosomes, only linear chromosomes or only circular chromosomes or a mix between the two. In what

follows we consider the genomes with several, exclusively linear chromosomes and the distance is DCJ distance

as defined here. The problem is a generalization of the median problem and is NP-hard as shown by Tannier

et al. and by Zheng et al.13,19

†It is a generalization to linear chromosomes of the “contracted breakpoint graph” defined by Alexseyev and Pevzner,1 and is

the line-graph of the “natural graph” used by Mixtacki.6
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3. A lower bound

For the median problem, there is a usual folklore lower bound that is used for very efficient branch and

bound approaches.15 Indeed, for three genomes Π1, Π2 and Π3, and a median genome Π, it is trivial from

the triangle inequality that

dDCJ(Π1,Π) + dDCJ(Π2,Π) + dDCJ(Π3,Π)

≥
dDCJ(Π1,Π2) + dDCJ(Π1,Π3) + dDCJ(Π3,Π2)

2
.

The Guided Genome Halving problem is a generalization of the median problem (indeed, if from the

ancestor the two copies of the doubled genome evolve independenly and no rearrangement mixes the two,

then it is equivalent to the median problem). But no such bound exists for this problem. We draw an

equivalent, though less trivial and less computationally easy, which helps evaluating solutions.

Theorem 3.1. Given an all-duplicates genome ∆ and an ordinary genome Γ defined on the same set of

genes,

ggh(∆,Γ) ≥
dDCJ(Γ,∆) + gh(∆)

2
.

Indeed, it is an easy exercise to show that the double distance verifies the triangle inequality. This yields,

for any genome Π and doubled genome Π ⊕ Π,

d(Γ ⊕ Γ,∆) ≤ d(Γ ⊕ Γ,Π ⊕ Π) + d(Π ⊕ Π,∆).

Clearly, Γ ⊕ Γ can be chosen so that d(Γ ⊕ Γ,Π ⊕ Π) ≤ 2d(Γ,Π), which gives

d(Γ ⊕ Γ,∆) ≤ 2d(Γ,Π) + d(Π ⊕ Π,∆).

Adding d(Π ⊕ Π,∆) to both sides, we get

d(Γ ⊕ Γ,∆) + d(Π ⊕ Π,∆) ≤ 2(d(Γ,Π) + d(Π ⊕ Π,∆)).

And finally, as by definition gh(∆) ≤ d(Π ⊕ Π,∆) and d(Γ,∆) ≤ d(Γ ⊕ Γ,∆),

d(Γ,∆) + gh(∆)

2
≤ d(Γ,Π) + d(Π ⊕ Π,∆).

Which, for a genome Π such that ggh(Γ,∆) = d(Γ,Π) + d(Π ⊕ Π,∆), yields the result

The bound may be reached only if the optimal solution of the guided halving problem is also an optimal

solution to the halving problem for the all-duplicates genome.

It is based on the computation of the double distance, which is NP-complete.13 So it is not immediately

usable in a branch and bound algorithm as the one for the median problem.15 A less tight bound may be used

by replacing dDCJ(Γ,∆) by dBP (Γ,∆)/2, where dBP is the double breakpoint distance and is computed with

a linear algorithm (see Tannier et al13). This more tractable bound is less often reached and never allows to

prove optimality in our case. For the easiest instances on yeast data (see Section 5), we could compute the

DCJ bound exactly and it allows to prove optimality of our Guided Genome Halving solutions given by the

algorithm below.

4. The Algorithm for Guided Genome Halving

4.1. Contracted breakpoint graphs

Previous work and experience on solving the problem computationally come from Sankoff’s group.18,19 The

first approach18 was to generate all possible genome halving solution and thereafter choose the subset of

solutions that minimize the distance from the outgroup. At the end, the authors develop local improvement
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heuristic searching in the neighbourhood of optimal halving solutions in order to find better solutions. Due

to potentially huge number of halving solutions only numerical results for maize with 34 doubled blocks are

reported. For any bigger instance one is obliged to choose heuristically a small subset of halving solutions

and proceed with the method, therefore trade off the time and quality of solutions.

The inspiration for our algorithm is the idea from Zheng et al19 where the authors combine information

from both the all-duplicates genome and the outgroup early in the process of constructing the ancestor. We

will use a small concrete genome with 5 duplicated genes to explain the main idea of the algorithm, and we

will use the genome of Example 2.1 as an outgroup.

Definition 4.1. Let ∆ be all-duplicates genome and let Γ be an ordinary genome defined on the same set

of genes. The contracted breakpoint graph of ∆ and Γ is the graph built on the contracted breakpoint graph

of ∆ (which edges are called the red edges), by adding an edge (called blue edge) for each adjacency of Γ.

We note the obtained graph B(∆,Γ).

Example 3: Let ∆ = a1b1c̄1b2d̄1ē1a2c2d̄2ē2 be an all-duplicated genome. Let Γ = ac̄bdē be an ordinary

linear unichromosomal genome. The associated contracted breakpoint graph follows (red edges are drawn

bold, while blue ones are thin).

et at bt

ct ah

ch

dh bh

eh dt

4.2. The algorithm

We used similar ideas as in Alekseyev and Pevzner2 or Zhao and Bourque,17 who find “reliable rearrange-

ments” in a multiple breakpoint graph, as well as in Xu,15 who searches for “adequate subgraphs” in a

multiple breakpoint graph. The two are the dynamic and static versions of the same principle: indentifing

some subgraphs in a breakpoint graph (whether it is a multiple or a contracted breakpoint graph changes

only the details) for which there is a provably optimal local ancestral arrangement, and thus rearrangements.

That is, for some patterns on the graph, it is possible to draw a realiable ancestor, and then to restrict the

heuristic principles on the rest of the graph, which we expect much smaller.

A DCJ operation on genome ∆ is immediately transposable on the contracted breakpoint graph: it

consists in deleting two edges (or one edge and one telomere), and join the 4 pending vertices by two other

edges. We chose the dynamic approach of Alekseyev and Pevzner2 or Zhao and Bourque,17 identifying reliable

rearrangements: we start with the contracted breakpoint graph of ∆ and Γ, and apply DCJ operations in

sequence until all red edges are doubled, which means we reached a doubled genome, so a solution to the

guided genome halving problem. We detect the following three configurations:

• We apply first all DCJs that directly lead to a red-blue cycle of length two;

• then we choose small sequences of DCJ leading to red-blue cycles of length two, at the condition

that it is not destroying any other red-blue two cycle. We can recognize such a sequence in the

contracted breakpoint graph: it is drawn from cycles consisting of some red edges and one blue edge,

while other blue edges adjacent to cycle are adjacent to red connected components (see Figure 1).

The sequence can be shuffled to diversify the final solution.

• finally choose sequences of DCJ leading to red-blue cycles of length four, at the condition that it

is not destroying immediately any red-blue 2-cycle. We recognize such a sequence in the contracted

breakpoint graph as a cycle consisting of some red edges and two blue edges while other blue edges

adjacent to the cycle are adjacent to other red connected components of the contracted breakpoint

graph (see Figure 1). The sequence can be shuffled to diversify the final solution.

26



September 23, 2009 17:12 WSPC - Proceedings Trim Size: 11in x 8.5in document

a)

12t 2h 3t 5t 8t

This is a straitforward case where a red

edge is parallel to a blue edge. We choose

the DCJ that transforms (2h, 3t), (5t, 8t)

into (5t, 3t), (2h, 8t), constructing a double-

red/blue cycle.

b)
12t 2h 3t 5t 4h 7h

Here there is a red-blue cycle but its par-

ity does not allow a sequence of DCJs that

construct a double-red/blue cycle.

c)
12t 2h 3t 5t 4h 7h

In this case, there is a red-blue cycle with

adequated parity. A first DCJ connects 3t

and 5t while the other connects 2h and 4h.

Note that any order of these DCJs will con-

struct one double-red/blue cycle.

d)
12t 2h 3t 5t 4h 7h

1t 3h 5h 4t 6h

This configuration forces the choice of two

DCJs: one that connects 3t and 5t while the

other connects 3h and 5h. These operations

lead to a double-red/blue cycle of size 4 that

is solved with only one DCJ.

Fig. 1. The detected DCJ rearrangements. Red edges are drawn black and blue edges are drawn grey.

When no such pattern is found, we apply series of DCJ which all lead to an optimal genome halving

ancestor, with a randomized choice.

4.3. Results on Sankoff’s instances on yeast genomes

Zheng et al19 use their Guide Genome Halving Heuristic on several instances built from yeast genes (personnal

communication). They choose a pool of genes from the Yeast Gene Order Browser,4 namely those which are

in one exemplar in the non duplicated species and in exactly two exemplars in the duplicated species. So a

minority of the genes are covered, make it difficult to compare with the manual reconstructed ancestor of

Gordon et al.8 However they provide a good benchmark for comparison with our method, showing that we

come to similar performances. We achive slighlty better solutions on the majority of instances. Results are

presented on Table 1.

5. Results on high coverage yeast data

5.1. Double conserved syntenies

The instances of the Guided Genome Halving problem were constructed by a double conserved synteny

method described in an earlier paper,12 which roughly consists in, given orthologies between a duplicated

genome and a non-duplicated genome (all orthologies are taken from the YGOB4) looking for a set S of gene

families which have one gene in the first genome, and at least one in the second, and verify

(1) the genes of S are contiguous in Lk;

(2) the genes of S form two contiguous segments ASc and BSc in Sc, of at least 2 genes each;

(3) the two sets ALk and BLk of genes of Lk which have homologs respectively in ASc and BSc form two

intersecting segments in Lk;

(4) At least one extremity of ASc (resp. BSc) is homologous to an extremity of ALk (resp. BLk);

(5) S is maximal for these properties.

The first two conditions impose the presence of one segment in Lk and two orthologous segments in

Sc, with a minimum size. It is the basis of the double synteny signal. The presence of at least two genes
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Instance Γ - ∆ 2n d(∆, X ∗ X) d(X,Γ) d(X,Γ)

AG-CG 538 186 153 144

AG-SC 1012 119 188 187

KL-CG 546 186 147 147

KL-SC 1026 122 197 197

KW-CG 542 188 215 205

KW-SC 994 121 323 317

A∗-CG 600 199 84 71

A∗-SC 1062 124 5 8

AG-V 576 61 148 149

KL-V 584 62 157 155

KW-V 582 62 212 210

A∗-V 600 62 29 27

Table 1. Comparison of the results obtained in Zheng et al19 and by our algorithm. The first column indicated the

couple of compared species. The number of duplicated genes (in these instances they are the synteny blocks) is re-

ported in the second column while in the third on we find the genome halving distance. All the best solutions we

found are also genome halving solutions. The forth and the fifth column contain distances from the solution the out-

group as reported by Zheng et al and obtained in this study. AG stands for E. gossypii, CG for C. glabrata, SC

for S. scerevisiae, KL for K. lactis, KW for K. waltii, A∗ for the pre-duplication ancestor of SC and CG, and

V for the post-duplication last common ancestor of SC and CG. These are the notations used by Zheng et al.

avoids the possible fortuitous presence of one transposed or misannotated gene. The third condition avoids

the ambiguous signal of two successive single syntenies. The fourth condition is used to orient the markers.

In this way, we were able to compare every pair of duplicated yeast (2 assembled species) and non-

duplicated yeast (5 assembled species). The coverage of the genomes is always above 95%, which allows to

reconstruct a large part of the history of the genomes.

5.2. The alternative ancestors

One first surprising thing already remarked in the earlier study12 is that the solutions to the Guided Genome

Halving on two species (Saccharomyces cerevisiae and Lachancea kluyverii) and the manually constructed

ancestor of Gordon et al8 from 11 species come very close. It is confirmed here, by the examination of several

solutions.

First of all, on this instance, our program (as well as the one of Zheng et al19) finds an optimal solution:

indeed, the value of the solution is 140, while the bound gives 139.5. This instance is one of the few for which

the bound is tractable without involving deep algorithmics. So it is a good information that no arrangement

can be strictly more parsimonious than the ones we find.

Our solutions are sequences of DCJs on the all-duplicates genome. 26 different sequences lead to an opti-

mal solutions, and among the 26 solutions, only two are different. They vary by one reciprocal translocation

and are both distant of one telomeric translocation from the solution of Gordon et al,8 which is suboptimal

for the number of DCJ (score 141).

The only point in which all three results vary is the position of a small part of Gordon et al8’s ancestral

chromosome 1 (Anc1.1-Anc1.120), which is alternatively fusioned to ancestral chromosome 2 or 6.

5.3. The rearrangements

Gordon et al8 have also manually infered all the rearrangements from the ancestral genome to Saccharomyces

cerevisiae. They found in total 144 rearrangements, 73 being inversions, 66 reciprocal translocations and 5

telomeric translocations.
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We find 115 DCS between our ancestor and the genome of Saccharomyces cerevisiae, and 116 between

Gordon et al’s ancestor. The difference is probably partly due to our definition of Double Conserved Syntenies,

which allow local rearrangements to a certain extant. Rearrangement distances are always difficult to compare

at different levels of resolution. But interchromosomal rearrangements are comparable, since rearrangements

inside the makers should be only inversions.

There is no unique scenario as pointed by Gordon et al,8 and some types of rearrangements are difficult

to assess with certainty. But for a pool of 26 scenarios, we found around 20 inversions, 7 couples of DCJs

transposing or exchanging the positions of blocks, 70-71 reciprocal translocations, and 7-8 telomeric translo-

cations. The number of reciprocal translocations and telomeric translocations hashas the same order than

in the manually reconstructed scenario. Inversions are much less numerous, even if transposition couples

of DCJs are counted as 3 inversions. So most inversions seem so be included local rearrangements within

the syntenies. No current method can faithfully evaluate this number of local rearrangements which involve

double conserved syntenies.

Gordon et al8 only make their analyses on the Saccharomyces cerevisiae branch. Here, we are able

to reconstruct also the whole distance matrix between all yeast species available in YGOB.4 The results,

in terms of numbers of DCJs, are reported in Table 2. The tendecies in the rearrangement rates on all

species follow the “number of blocks” statistic of Gordon et al.8 A multiple study would identify the shared

rearrangements, but this is left for a future work.

E.gossypii K.lactis L.thtolerans L.waltii* L.kluyveri Z.rouxii

S.cerevisiae 117 + 163 116 + 183 111 + 67 114 + 84 115 + 25 119 + 118

S.bayanus* 156 + 164 140 + 175 168 +109 166 + 120 176 + 83 173 + 144

C.glabrata 251 + 177 258 + 189 266 + 108 256 + 124 266 + 75 273 + 136

N.castellii* 177 + 169 166 + 189 192 + 106 192 + 118 199 + 81 195 + 146

V.polyspora* 199 + 173 192 + 182 220 + 101 216 + 117 225 + 78 215 + 146

Table 2. DCJ distances between pairs of genomes. A+B means: A is the distance from the ancestor to the duplicated species, and

B is the distance from the ancestor to the non-duplicated species. So on one line, we expect the first number to be approximatively

the same (up to a variation on the number of local rearrangements inside the markers, which vary for each comparison). Species

which name is followed by an asterisk are not yet assembled, so probably the number of rearrangements is overestimated.

6. Conclusion

We presented an algorithm for the Guided Genome Halving problem, as well as a lower bound. The algorithm

uses ideas similar to the ones of Zheng et al,19 accompagnied by principles used for the median problem by

Xu,15 or for multiple comparisons by Alekseyev and Pevzner2 or Zhao and Bourque,17 which is natural as

the guided halving generalizes the median. On some instances coming from yeast order data, the bound

gives a proof that the obtained solution is optimal. Comparing a set of optimal solutions with a standard

preduplication ancestor of Saccharomyces cerevisiae, we obtain two interesting conclusions : the standard

arrangement is sub-optimal, at one operation from optimal solutions, and the latter vary only by the position

of a single block.

This shows that on yeast data, it seems that the Guided Halving problem provides a very good mod-

elization, perhaps better than on mammalian data, where automatic methods have diverged from standard

manual studies for a while.

Future work will concern the efficient computation of the double distance problem, in order to provide a

bound which is possible to use within an algorithm for the Guided Genome Halving. Zheng et al19 have also

generalized the Guided Halving to instances with two non-duplicated genomes. The data and study from

Gordon et al8 also calls for the possibility of reconstructing the full Saccharomycetes phylogeny on several

duplicated as well as non duplicated species.
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A PRACTICAL ALGORITHM FOR ESTIMATION OF THE
MAXIMUM LIKELIHOOD ANCESTRAL RECONSTRUCTION ERROR
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The ancestral sequence reconstruction problem asks to predict the DNA or protein sequence of an ancestral species,

given the sequences of extant species. Such reconstructions are fundamental to comparative genomics, as they provide

information about extant genomes and the process of evolution that gave rise to them. Arguably the best method for

ancestral reconstruction is maximum likelihood estimation. Many effective algorithms for accurately computing the

most likely ancestral sequence have been proposed. We consider the less-studied problem of computing the expected

reconstruction error of a maximum likelihood reconstruction, given the phylogenetic tree and model of evolution,

but not the extant sequences. This situation can arise, for example, when deciding which genomes to sequence

for a reconstruction project given a gene-tree phylogeny (The Taxon Selection Problem). In most applications,

the reconstruction error is necessarily very small, making Monte Carlo simulations very inefficient for accurate

estimation. We present the first practical algorithm for this problem and demonstrate how it can be used to quickly

and accurately estimate the reconstruction accuracy. We then use our method as a kernel in a heuristic algorithm

for the taxon selection problem. The implementation is available at http://www.mcb.mcgill.ca/ blanchem/mlerror

Keywords: Ancestral Reconstruction Error; Maximum Likelihood; Ancestral Genomes; Error estimation; Sequence

Evolution

1. Introduction

The rapid increase in DNA sequencing throughput over the last few years has greatly increased the number
of species whose genome is completely or partially sequenced. This represents an extraordinary opportu-
nity for comparative genomics and genome evolution studies. The availability of a few dozen mammalian
genomes paves the way for efforts toward the computational inference of ancestral genomes, based on those
of extant species. Ancestral sequence reconstructions have been undertaken at several levels. Ancestral pro-
tein sequences have been inferred and their function tested1–3 . Blanchette et al.4 have reconstructed large
genomic regions of ancestral mammals and Paten et al.5 have proposed reconstructions for whole ancestral
mammalian genomes. Ancestral sequence reconstructions are key to understanding how genomes evolve and
how sequences adapt. They further provide useful information toward the functional annotation of extant
genomes, through the identification of evolutionary signatures.6–8

Much of the work in the ancestral sequence reconstruction community has focused on designing algo-
rithms to infer ancestral states as accurately as possible. The process starts with the multiple alignment
of orthologous sequences9–12 and a model of sequence evolution, from which a phylogenetic tree is derived.
Given this data, one seeks assignments of sequences to ancestral nodes that produce the most parsimonious
or most likely evolutionary scenario. If only substitutions are allowed and sites evolve independently from
each other, ancestral states can be inferred separately for each site, using the Fitch algorithm for parsi-
mony,13 Sankoff’s algorithm for weighted parsimony,14 or Felsenstein’s algorithm for maximum likelihood,15

all of which run in time O(n · L), where n is the number of extant species and L is the number of sites.
When insertions and deletions are considered, finding the maximum parsimony solution becomes NP-hard16

because sites cannot be treated independently. However, good heuristics have recently been developed.7,17

The presence of genome rearrangements and duplications complicate ancestral inference further.18–21

While good algorithms or heuristics exist for most versions of the ancestral sequence reconstruction
problem, the problem of assessing the accuracy with which the sequence at given ancestral node can be
reconstructed has received less attention. Specifically, we are interested in the following problem:
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ANCESTRAL RECONSTRUCTION EXPECTED ACCURACY PROBLEM
Given:

• A phylogenetic tree T
• A stochastic model of sequence evolution along each branch of T
• An ancestral sequence reconstruction algorithm M

Find: The expected accuracy with which algorithm M can reconstruct the sequence at each ancestral node,
where the expectation is taken over all possible realizations (set of sequences at the leaves of T ) of the
evolutionary process. Note that no sequences are part of the input to the AREA problem. Instead, sequences
are random variables generated by the stochastic model of evolution: a random sequence is generated at
the root of tree T and evolves randomly, according to the stochastic model provided for each branch, until
leaf sequences are obtained. Let Xi be the random sequence generated at node i. An ancestral sequence
reconstruction algorithm M computes a deterministic function of the random sequences generated at the
leaves, Xl1 , Xl2 , ..., Xln to predict an ancestral sequence X̂root at the root of T . Our goal is to estimate the
expected value of the difference d(Xroot, X̂root) between the generated and predicted ancestral sequence, for
some appropriate edit-distance measure d(·).

Perhaps the simplest approach to assess the expected reconstruction accuracy of a given algorithm
on a given tree is through simulations: Repeatedly generate sequences on T , apply the algorithm to the
set of sequences generated at the leaves, and measure the distance between the generated and inferred
sequences at the root of T , to eventually obtain an unbiased estimate of the expected error. Blanchette et
al.22 used this approach to show that, given the genomes of 20 well-chosen mammalian species, the genome
of the Boreoeutherian ancestor (ancestor of all eutherian mammals except Xenarthrans (e.g. armadillo) and
Afrotherians (e.g. elephant)) could be reconstructed with only approximately 1% error. However, simulations
are very computationally expensive and provide little understanding of the fundamentals of the problem. A
more efficient approach is sought because AREA lends itself to use as a kernel for more general algorithms.
For instance, even a very basic heuristic for the taxon selection problem (defined below) can require up to
O(n!) reconstruction error estimates to be performed. Another example would be in cases where an aggregate
of different site-by-site reconstruction errors across an entire genome must be computed. This can happen
in the presence of a varying mutation rate or gaps, and may require millions of instances of AREA to be
solved.

In this paper, we seek a more efficient approach to estimate the expected reconstruction error for maxi-
mum likelihood inference for substitutions. We start by reviewing related work, giving basic definitions and
notation, introducing a straightforward random sampling algorithm. We then describe a faster, heuristic
sampling approach and prove that it can provide an upper bound on the error. Finally, results on biological
and simulation data are presented in Section 6, demonstrating that our approach is applicable to a wide
range of trees. Equipped with efficient algorithm for reconstruction error estimation, in Section 7 we consider
the problem of species selection: Given a large phylogenetic tree with a particular internal node N of interest,
which subset of k leaves yields the maximum information about ancestor N . The ability of fast and accurate
error estimation can thus open the door to a number of applications.

2. Previous work

An exact method for computing the accuracy of ancestral reconstruction using parsimony, given a tree
topology and stochastic model of evolution, was presented by Maddison.23 Although efficient, this dynamic
programming algorithm cannot be extended to more general models of parsimony where, for example, differ-
ent transitions can be associated with different scores. Parsimony also suffers the drawback that, depending
on the model of evolution used, the reconstruction accuracy when using parsimony may actually decrease as
more taxa are added to the tree.24 Maximum Likelihood (ML) provides a statistically robust framework for
performing ancestral reconstructions under general models of evolution. Yang et al.25 adapted Felsenstein’s
pruning algorithm15 to efficiently estimate the most likely ancestral states of protein sequences with the
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greatest marginal maximum likelihood. Others have published similar results.26–28 In most of these studies,
the accuracy of the method is indirectly measured by the relative contribution of the reconstructed ancestor
to the overall likelihood of the tree, including the observed character states at the leaves. Some work has
also been done to determine how topology relates to reconstruction error.24,29–31 However, there is no known
analog for Maddison’s algorithm in the ML setting that exactly computes the reconstruction error given
only the tree topology and model, and we conjecture that the problem is NP-Hard. Ma and Zhang32 have
recently shown that the problem does admit a fully polynomial time approximation scheme (FPTAS), but
the complexity of their algorithm is O(n17

ε8 ) for a DNA alphabet, making their result primarily of theoretical,
rather than practical, use.

3. Definitions

Let T = (V,E) be a rooted phylogenetic tree with n leaves. The length of edge e is denoted `(e). Throughout
this paper we use the Jukes Cantor model of evolution33 on the alphabet A = {a1, a2, ..., a|A|}. Under this
model, all ancestral states have equal prior probabilities (π = 1

|A| ) and the probability of a mutation occurring

on edge e is pe = |A|−1
|A| (1− e`(e)). Let set D = {d1, d2, ..., d|A|n} represent the set of all possible assignments

of character states to the leaves of T . Pr[di|T ] is the likelihood of the tree for the site given leaf configuration
di, and can be computed in O(n · |A|2) time using Felsenstein’s dynamic programming algorithm.15 The
marginal maximum likelihood ancestral reconstruction for a site given a leaf configuration d ∈ D is

R(T , d) = argmax
a∈A

Pr[d|r = a, T ] (1)

where r is the ancestral state at the root of T . Given that the prior probabilities are all equal, we assume
throughout that the true ancestral state is a1, and it follows that the reconstruction error can be expressed
as

RE(T ) =
∑
d∈D

Pr[d|r = a1] ·

{
0 if R(T , d) = {a1}
1 otherwise.

(2)

Note that in this study, we consider the unambiguous reconstruction error, and a reconstruction is only
considered correct of a1 is the unique solution returned by R(T , d). It is clear that a naive implementation
of Equation 2 would require time O(|A|n+2 · n), which is impractical for even moderately large trees. In this
paper, we develop heuristics to efficiently estimate this summation, focusing on a small number of terms
that contribute most to the total reconstruction error.

4. Monte Carlo Simulation

An estimate of the reconstruction error can be obtained by a simulation, as mentioned above, which runs as
follows. The true ancestral state is selected using the prior (equilibrium) distribution. The desired substitution
model is then used to simulate random substitutions downwards along the branches until a configuration
of states at the leaves is obtained. This configuration of leaf states is then used to predict the ancestral
state. If it does so incorrectly, the trial is counted as an error event. Let K be the random variable denoting
the total number of errors encountered after N trials. Because the outcomes of each trial are independent,
K ∼ Bin(N, p). The reconstruction error can be estimated as p̂ = K

N and the normal approximation can be
used to estimate the binomial confidence interval:

p ∈

[
p̂− z1−α/2

√
p̂(1− p̂)

N
, p̂ + z1−α/2

√
p̂(1− p̂)

N

]
(3)

where z1−α/2 is the critical value of the two two-tailed normal distribution at level α (e.g. z1−α/2 =
1.96 for 95% confidence). This approach is powerful in the sense that it can be used to accurately esti-
mate the error with very few assumptions about the underlying model. However, as the true reconstruction

33



September 22, 2009 18:29 WSPC - Proceedings Trim Size: 11in x 8.5in hickey

error becomes very small, it is possible that an intractable number of samples will be required to obtain
a reasonable estimate. This is because the size of the confidence interval decreases proportional to

√
N .

Furthermore, if K = 0 (as expected if p < 1
N ), then the confidence interval is undefined.

5. Prioritized Enumeration Algorithm

In this section, we describe an enumeration approach that will accurately estimate the reconstruction error
in much fewer than 1

RE(T ) trials. This method is based on the observation that a relatively small subset of
leaf configurations often account for nearly all of the reconstruction error.

5.1. Mutation Scenarios

We analyze leaf configurations in relation to the mutation scenarios that can give rise to them. Define a
mutation scenario m ⊆ E as a set of edges of T where mutations occur. The reconstruction error can be
rewritten in terms of the error of all |PE| = 2|E| possible scenarios, where PE is the power set of E. We
then have

RE(T ) =
∑

m∈PE

Pr[m] ·RE(T |m), (4)

where

Pr[m] =
∏
e∈m

pe

∏
e∈E−m

(1− pe),

and the reconstruction error for an individual scenario can in principle be computed by analyzing all possible
(|A| − 1)|m| leaf state configurations that it can give rise to:

RE(T |m) =
∑
d∈D

Pr[d|m] ·

{
0 if R(T , d) = a1

1 otherwise.
(5)

Pr[d|m] is the probability of a particular leaf configuration occurring on the tree given that mutations only
occur on the edges of m. If d assigns a mutated state to a leaf that does not lie below m, then Pr[d|m] = 0.

There are an exponential number of possible mutation scenarios, and the cost of computing the recon-
struction error of a single scenario is exponential in the size of that scenario. As such, using (4) to exhaustively
compute the error is no more efficient than the original definition (2). However, we hypothesize that only
a small fraction of scenarios contribute significantly to the reconstruction error. Furthermore, we expect
that the RE of these scenarios, RE(T |m) will tend to be relatively large, and therefore faster to estimate
accurately using sampling. Intuitively, these significant scenarios will often contain mutations located closer
to the root of the tree, where a smaller number of mutations can affect more leaves, causing a greater loss of
signal. The two primary computational challenges of this approach are to rapidly determine the most relevant
scenarios, and quickly estimate the reconstruction error of each. These tasks are equivalent to identifying
largest terms in Equation (4) and computing the summation in Equation (5), respectively, and are explained
in the following two subsections.

5.2. Prioritization Strategy

The ideal order in which to explore mutation scenarios is decreasing on Pr[m] ·RE(T |m). This way, if only
a k-subset of all scenarios are evaluated, the accuracy of the estimated error will be maximal. It is unknown
how to exactly compute the k scenarios that contribute the most to the reconstruction error, but we use
the next two lemmas below in our algorithm to efficiently estimate them. We say that a leaf xi lies below a
scenario m, which we denote xi ≺ m, if there exists an edge e ∈ m on the path from xi to the root of T . We
also use a similar notation to compare two scenarios: m � m′ if, for all e ∈ m, there exists an edge e′ ∈ m′

such that e lies on the path between e′ and the root (including the possibility that e = e′).
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Lemma 5.1. Let m be a mutation scenario where no two mutations are on the same root-to-leaf path, and
m′ be any scenario obtainable by moving mutations in m away from the root in T , then

RE(T |m′) ≤ RE(T |m).

Proof. Let m′ be obtained by moving edge ev ∈ m to one of its children, eu. For any leaf configuration d

such that R(T , d) = a1 and Pr[d|m] > 0, there exists a unique configuration d′ obtainable from d by assigning
all leaves below ev but not below eu to state a1. Furthermore, Pr[d′|m′] = Pr[d|m] because |m| = |m′| and no
mutations occur on the same root-to-leaf path. From Lemma A.1 (see Appendix), R(T , d) = a1 → R(T , d′) =
a1. RE(T |m′) ≤ RE(T |m) follows directly from Equation (5), and the proof can be completed by induction
on the number of edges moved.

Lemma 5.2. Let m and m′ be two mutation scenarios such that |m| ≤ |m′| and let `max be the length of
the longest edge in T . Then

Pr[m′]
Pr[m]

< τ |m
′|−|m|,

where τ = (|A|−1)(1−e−`max )
1+e−`max

and τ < 1 whenever `max < − ln |A|−2
2(|A|−1) . (Proof follows directly from the

definition of the Jukes Cantor model.)

For example, for |A| = 4, τ < 1 when `max < 1.09, which corresponds to an extremely long branch, never
observed in trees that lend themselves to ancestral reconstruction. In the case of the mammalian tree used
in Section 6, `max = 0.18 and τ = 0.27, which means that the probability of a scenario will tend to drop
quickly with its size (but note also that the number of scenarios grows exponentially with their size).

Our algorithm enumerates mutation scenarios in increasing order of their size. Scenarios of the same
size are evaluated in lexicographic order, where edges are ranked based on their depth in the tree (i.e. the
edges closest to the root come first). Lemmas 5.1 and 5.2 show that this is generally a good approximation
to a lexicographic ordering on (Pr[m], RE(T |m)), which we find to be an effective estimate of the ranking
based on the true objective, Pr[m]RE(T |m). Figure 1 provides an example of the enumeration procedure.
The edges of the phylogenetic tree are first ranked (Figure 1(a)), then the scenarios are visited in the order
of a breadth-first search of the tree shown in Figure 1 (b). It is important to note that this tree traversal
visits each scenario once, and that all scenarios below m in the search tree are supersets of m. Also, as shown
in the following section, mutation scenarios with multiple mutations on a single root-to-leaf path are never
explicitly evaluated. Therefore the fact that Lemma 5.2 does not apply in these cases does not impact its
applicability here.

5.3. Scenario Evaluation and Bounding the Search

The algorithm must be able to quickly estimate RE(T |m) to effectively explore the search space. The cost of
exactly computing this value, as described in Equation (5), is O((|A|−1)|m|·n·|A|2), which is impractical for all
but the smallest scenarios. We therefore propose a procedure to efficiently estimate RE(T |m) by considering
many scenarios at once. For a given scenario m, consider the following ”pessimistic” leaf configuration
pess(m) = x1, x2, ..., xn, where

xi =
{

a1 if m contains no edge on the path from i to the root
a2 if m contains at least one edge the path from i to the root

The leaf configuration pess(m) is pessimistic because all mutations lead to the same character a2, which
causes the maximal probability of reconstruction error. Note that it is possible that Pr[pess(m)|m] = 0
(when there are two mutations in the same lineage). REpess(T |m) is used to denote the pessimistic estimate
of RE(T |m) and is computed in O(n · |A|2) as follows:

REpess(T |m) =

{
0 if R(T , pess(m)) = a1

1 otherwise.
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Fig. 1. (a) Phylogenetic tree where a mutation scenario {2, 4} is highlighted. The ancestral state (a1) mutates to a2 along

branches 2 and 4. (b) Corresponding search tree, traversed breadth first by the heuristic sampling algorithm. Scenario {2, 4} is

explored on the second level.

We now present a fast algorithm for estimating REpess(T |m), before relaxing it produce a more accurate
estimator. Let ext(m) = {m′ : m ⊆ m′} be the set of scenarios that extend m and let below(m) = {m′ :
m′ � m} be the set of scenarios below m. The following two properties, which directly follow from Lemma
A.1, enable a branch and bound approach to further speed up the search.

Lemma 5.3. If REpess(T |m) = 1, then REpess(T |m′) = 1,∀m′ ∈ ext(m)

Lemma 5.4. If REpess(T |m) = 0, then REpess(T |m′) = 0,∀m′ ∈ below(m)

Lemma 5.3 allows us to prune the search tree at any scenario that does not yield a correct reconstruction under
the pessimistic evaluation, since all scenarios below it in the search tree are supersets and will necessarily
fail the pessimistic evaluation. In the example search shown in Figure 1(b), if RE({2}) = 1, then the three
nodes below {2} in the search tree will also have REpess = 1 and need not be visited. The total probability
of ext(m) can be computed in linear time:

Pr[m ∩ ext(m)] =
∏
e∈m

pe

∏
e/∈(m∪ext(m))

(1− pe).

Pr[m∩ below(m)] can be computed in a similar manner. Lemma 5.4 allows for a similar optimization, except
only extensions consisting of edges below m in the tree can be pruned. In the example, if RE(T |{1}) = 1
then the search tree can be pruned at {1, 3} and {1, 4} but not {1, 2}.

Let succ(m) be the set of all scenarios below m on the search tree. Pruning the search tree as described
above does not take full advantage of Lemmas 5.3 and 5.4, because ext(m) and below(m) may contain
scenarios that are not in succ(m). These sets grow exponentially with |m|, however, so storing in memory
all scenarios that have and have not been visited quickly becomes infeasible. Instead, a small cache is used
to store the outcome of the most recently visited scenarios in the breadth-first search. As each new scenario
is visited, the cache is checked before the scenario is evaluated. If it extends or lies below an appropriate
scenario in the cache, its RE(m|T ) can be retrieved without an explicit evaluation. Let REpess(T ) =∑

m∈PE Pr[m] ·REpess(T |m). Lemmas 5.3 and 5.4 guarantee that when using the pessimistic evaluation of
scenarios as described, the algorithm will exactly compute REpess(T ). Furthermore, his value is an upper
bound for RE(T ) (Theorem A.1, see Appendix).

Assuming all mutations mutate to the same state is simplistic, as it becomes more likely that independent
mutations give rise to two or more different states as the size of m increases. This situation is accounted for by
estimating RE(T |m) using a small number of random samplings, whereby scenario m is used to generate a set
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of r random leaf configurations. The error is estimated as k
r where k is the number of failed reconstructions

out of r random trials. Finally, Lemmas 5.3 and 5.4 are relaxed to apply when RE(T |m) ≥ 1 − α and
RE(T |m) < 1−α respectively, where α is a chosen constant. Pseudocode for both the pessimist and relaxed
sampling versions is provided in Algorithm 5.1.

Algorithm 5.1 Estimate RE(T )
TotalError ← 0;
ScenarioQueue q ← {};
while |q| > 0 do

m← q.pop()

error ←

{
REpess(T |m) if pessimist mode

REsample(T |m) if sample mode
if error ≥ 1− α then

TotalError ← TotalError + error · Pr[m ∪ succ(m)]
else

TotalError ← TotalError + error · Pr[m ∪ succ(m) ∩ below(m)]
for e ∈ succ(m)− below(m) do

q.push(m ∪ e)
return TotalError

6. Results

The prioritized enumeration algorithm was implemented in C++. Since we are unable to exactly compute
the true error for non-trivial trees, the random Monte Carlo sampling approach was also implemented to use
as a baseline for comparison. We carried out various experiments to determine the accuracy of the upper
bound and estimates proposed here.

We first estimated the reconstruction error for the Boreoeutherian ancestor based on an actual mam-
malian phylogeny made of 32 species.34,35 Figure 2 shows the average estimates obtained from 100 separate
Monte Carlo simulations, as a function of the number of trials, N . This yields an unbiased estimator of
the true reconstruction error, together with a mean confidence interval for that value. The mean estimates
obtained from the prioritized enumeration, either using the pessimistic upper bound or the random sampling
version a are plotted as well. The standard deviation of the estimates obtained with the sampling-based
prioritize enumeration approach is too small to plot (σ = 0.00043). We observe that, as expected, the pes-
simistic version of the algorithm overestimates the reconstruction error. However, the sampling approach
quickly converges to the correct value and, moreover, it does so with much less variance than the Monte
Carlo simulations. In both cases, a fairly accurate estimate of the RE is obtained by our algorithm after
fewer than 50 scenarios.

We then estimated the accuracy of our reconstruction errors on random trees. A set of 50 trees of size n

and expected total number of substitutions µ were randomly generated using the Yule model of speciation.36

Branch lengths were assigned using a uniform random distribution and scaled to total µ. For each tree,
the 99% confidence interval I99% for the RE was first estimated based on 5000 Monte Carlo simulations.
Reconstruction errors were then estimated, evaluating a number k of leaf configuration ranging from 5 to
5000. Our first set of random trees have 50 leaves, with µ = 1, and with an average 99% reconstruction
error confidence interval of 0.007± 0.002. Figure 3(a) shows, for each value of k, the fraction of the trees for
which the estimate obtained after k configurations lies within I99%. The second set of trees (Figure 3(b))

ar = 2 and relaxation parameter α = 0 consistently gave the best performance and were used for all experiments.
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Fig. 2. Reconstruction Error of the Boreoeutheirian common ancestor. 99% confidence interval is shown for the Monte Carlo

simulation.

was generated with n = 100, µ = 5 and had an average 99% confidence interval for the reconstruction error
of 0.020± 0.004. In terms of running time, the cost of evaluating each scenario is effectively identical to that
of a single simulation trial. The graphs therefore show that the heuristic algorithm was able to accurately
estimate 98% and 82% of the trees in the batches, respectively, an order of magnitude faster than running
the full simulation. The same procedure was also applied to trees randomly selected from PANDIT 17.0,37 a
database of protein phylogenies. Two groups of 50 trees were created: the first with between 25 and 50 taxa
(mean 99% C.I. = 0.007± 0.002; Figure 3(c)) and the second with between 50 and 100 taxa (mean 99% C.I.
= 0.003± 0.001, Figure 3(d)). Clearly, the smaller the RE to be estimated, the more accurate and faster our
approach is, as fewer scenarios need to be evaluated. The algorithm performed worse overall on the PANDIT
trees, indicating that balance and branch-length distribution are factors as well.

Figure 4 reports the estimated reconstruction error obtained at each ancestral node of the mammalian
phylogeny. Of course, these numbers do not reflect the accuracy of actual reconstructed ancestral sequences
(as reported in Blanchette et al.22), because they only model substitutions and ignore alignment issues.
Nonetheless, the estimated REs are informative about the ancestral nodes that can best be reconstructed. We
first note that reconstruction errors vary significantly across the tree (from 0.11% to 3.5%). Excluding recent
primate ancestors, the nodes that can best be reconstructed correspond to early ancestors that lived during
the mammalian radiation. Indeed, those are the ones for which the largest number of nearly independent
noisy copies exist. Interestingly, the RE of the ancestral primate is nearly two times higher than that of the
Boreoeutherian ancestor, which predates it by approximately 25 Million years. However, all human ancestors,
except the eutherian mammals ancestor, can be reconstructed with less than 0.7% error. On the other hand,
nodes adjacent to three long branches (mouse-rat ancestor, rabbit-pika ancestor, hedgehog-shrew ancestor)
have much higher reconstruction errors.

7. The Taxon Selection Problem

A natural application for an efficient algorithm to compute RE is the taxon selection for the ancestral
reconstruction problem, introduced by Li et al.39 This problem asks to select among the leaves of a large
phylogenetic tree, a set of k taxa that will allow reconstructing a given ancestral node with minimum error,
provided the tree and a model of evolution. Using the Maddison algorithm as a kernel, Li et al. showed
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(b) Random Simulation (n = 100, µ = 5)
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(c) PANDIT (25 ≤ n < 50)
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Fig. 3. Fraction of errors estimated within the 99% confidence interval by number of mutation scenarios evaluated for batches

of simulated and real trees.
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that a backward selection algorithm is an effective heuristic for genome selection under parsimony.39 The
algorithm starts from the complete set of species and greedily prunes the least valuable leaves from the tree
until k remain.

We have investigated a similar algorithm to select an ideal set of species for ML-based ancestral recon-
struction. The algorithm is similar to Li et al.’s. The only major difference is that when multiple species
candidates for removal yield RE that cannot be distinguished based on our estimation algorithms, the species
that is the furthest away from the target ancestral node is the one selected for pruning. Figure 5 reports the
order in which species are removed, and the resulting RE for the Boreoeutherian ancestor. We note that a RE
of less than 1% can be achieved by selecting only seven (armadillo through orangutan) slow-evolving species
that sample the outgroup (Xenarthra, Afrotheria), and the main descendant phyla (primates, laurasia, etc.).
This algorithm evaluates O(n!) different topologies requiring an efficient reconstruction error estimate. The
reduced variance of our approach, relative to MC simulation, is also desirable for this application: In a
comparable amount of time, it will produce a much more stable solution.
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Fig. 5. Greedy species selection algorithm. The order in which species are pruned is presented along with the reconstruction

error at each step. The final species is Sloth

8. Conclusion

We have presented a novel algorithm for estimating the error of maximum likelihood ancestral reconstruction.
It is based upon quickly enumerating and evaluating the mutation scenarios that contribute the most to
RE(T ) using a branch-and-bound search strategy. The assumption of a pessimistic leaf configuration is
used to guarantee a non-trivial upper bound on the error. This assumption is then relaxed by performing a
restricted sampling for each scenario, in order to more closely approximate the true error. We used our method
to compute the RE of the Boreoeutherian mammal ancestor, the subject of several important ancestral
reconstruction studies, and it quickly converged on an extremely accurate estimate. Benchmarks run on
batches of simulated trees and those drawn at random from an online database showed that estimated
reconstruction errors were within the 99% confidence interval of the unbiased estimator in the majority of
cases. The best performance was seen in cases where the error is very small, a situation that we foresee in
most real-life reconstruction applications.

The high speed and low variance of the prioritized enumeration algorithm make it a useful building
block for solutions to complex problems. In this study, it was used to quickly determine all the errors of all
internal nodes of the mammalian tree, and as an objective function in a greedy heuristic solution to the taxon
selection problem. We envision more applications, such as large genomes that require multi-site analysis due
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to hypothesized gaps or changes in substitution rate parameters, that could require efficient estimation of
small errors. One avenue of future work that could lead to an increase of applicability of the algorithm is
by exploring more complex models of DNA substitution. While not all properties stated in this paper hold
for more general models, we conjecture that the overall strategy will be effective for any model where the
probability of mutation is relatively low. Another area in which our approach can potentially be optimized is
in the scenario enumeration. The current approach has a sound basis, but it may be possible to more directly
sample the relevant mutation scenarios, using more information about the topology and branch lengths.
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Appendix A. Upper Bound

Lemma A.1. If R(T , d) = as then R(T , d′) = as where d′ is obtained from d by reassigning to as the state
of any subset of leaves.

Proof. We begin by showing that Pr[v = as|d′] ≥ Pr[v = as|d] for any node v on the tree. If v is a leaf,
Pr[v = as|d′] = 1 and Pr[v = as|d] = 0 if v is reassigned and Pr[v = as|d′] = Pr[v = as|d] otherwise. If
v is an internal node, we make the inductive hypothesis that the inequality holds for v’s children. That is,
Pr[u = as|d′] = Pr[v = as|d] + δu where δu ≥ 0. To simplify the notation, we use p and q to respectively
denote Pr[u = as|v = as] and Pr[u = as|v = at] for at 6= as. Pr[v = as|d] can be computed from its children
as follows:15

Pr[v = as|d] =
∏

u∈child(v)

p · Pr[u = as|d] + q ·
∑
i6=s

Pr[u = ai|d]


By the inductive hypothesis,

Pr[v = as|d′] =
∏

u∈child(v)

p · (Pr[u = as|d] + δu) + q ·

∑
i6=s

Pr[u = ai|d]

− δu


=

∏
u∈child(v)

p · Pr[u = as|d′] + q ·
∑
i6=s

Pr[u = ai|d′] + δu(p− q)


≥ Pr[v = as|d]

since, under the Jukes Cantor model, p ≥ q. The same procedure can be used to show that that Pr[v =
at|d′] <= Pr[v = at|d] for t 6= s. As before, the leaf case is trivial. If v is an internal node,

Pr[v = at|d] =
∏

u∈child(v)

p · Pr[u = at|d] + q ·
∑
i6=t

Pr[u = ai|d]

 .

From the induction hypothesis that Pr[u = at|d′] = Pr[u = at|d]δu for u ∈ child(v),

=
∏

u∈child(v)

p · (Pr[u = at|d]− δu) + q ·

∑
i6=t

Pr[u = ai|d]

 + δu


=

∏
u∈child(v)

p · Pr[u = at|d′] + q ·
∑
i6=t

Pr[u = ai|d′] + δu(q − p)

 ≤ Pr[v = as|d].

Since Pr[v = as|d′] ≥ Pr[v = as|d] and Pr[v = at|d′] ≤ Pr[v = at|d] for any t 6= s, then
argmaxi∈A Pr[v = ai|d] = as → argmaxi∈A Pr[v = ai|d′] = as.
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Theorem A.1. Let REpess(T ) be the reconstruction error obtained by pessimistic scenario evaluation. Then
RE(T ) ≤ REpess(T ).

Proof. It is sufficient to show that for any mutation scenario m, RE(T |m) ≤ REpess(T |m). The inequality
trivially holds when RE(T |m) = 0, so we need only consider the case where m is a scenario such that
RE(T |m) > 0. By definition, there exists a leaf configuration d = {d1, d2, ..., dn} such that R(T |d) = as 6= a1.
Now consider the scenario pess(m), where every leaf below a mutation has state as and all other leaves have
the true ancestral state a1. Both d and pess(m) only contain non-a1 states at leaves which are below
mutations. It follows that pess(m) can be constructed from d by changing the states of a subset of leaves
to as. From Lemma A.1, R(T , pess(m)) = as, giving REpess(T |m) = 1, which implies that RE(T |m) ≤
REpess(T |m).
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Methods from genetics and genomics can be employed to help save endangered species. One potential use is 
to provide a rational strategy for selecting a population of founders for a captive breeding program. The hope is 
to capture most of the available genetic diversity that remains in the wild population, to provide a safe haven 
where representatives of the species can be bred, and eventually to release the progeny back into the wild. 
However, the founders are often selected based on a random-sampling strategy whose validity is based on 
unrealistic assumptions. Here we outline an approach that starts by using cutting-edge genome sequencing and 
genotyping technologies to objectively assess the available genetic diversity. We show how combinatorial 
optimization methods can be applied to these data to guide the selection of the founder population. In particular, 
we develop a mixed-integer linear programming technique that identifies a set of animals whose genetic profile 
is as close as possible to specified abundances of alleles (i.e., genetic variants), subject to constraints on the 
number of founders and their genders and ages. 

 
1.   Introduction 

It is generally agreed that techniques from genetics and genomics can be useful for understanding, and 
ideally sometimes preventing, the process of extinction1,2,3. One facet of species-conservation efforts, when 
appropriate, is to breed animals of an endangered species in captivity, e.g., in zoos and wildlife parks, with 
the goal of releasing them back into the wild at some time in the future. In some cases, the number of 
animals has dropped so low that all members of a species have been captured, as was done in North 
America for the California condor, red wolf and black-footed ferret. A better approach may be to identify 
species whose numbers are declining sharply but where more animals exist than can be supported in 
captivity, and to select from among the wild animals a representative subset to serve as the founder 
population for the captive breeding program. 

In such cases, there is broad agreement among wildlife management officials that a goal should be for 
the founder population to capture at least, say, 95% of the genetic diversity of the wild population.  
However, there is disagreement over precisely what this means and how to achieve it. Perhaps the most 
common reasoning goes as follows4. Suppose a genomic position has two alleles in the population, with 
frequencies p and 1–p. A founder population consisting of a random sample of n animals has 2n instances 
of that position, and the probability that all of them contain the first allele is p2n. Thus, the probability that 
the n animals have at least one copy of each allele (rather than 2n copies of the same allele) is: 

 
1 – p2n – (1–p)2n. 

                                                        
† Correspondence: webb@bx.psu.edu 
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If we want to obtain, with 95% certainty, both alleles at each random locus that occurs with a frequency of 
at least 0.05 in the wild population, then 30 founders are adequate, as is shown by evaluating the formula 
with p = 0.05 and n = 30. To have a 95% chance of capturing an allele with a frequency of only 1% 
requires 150 founders; 30 founders will probably not contain it. 

The deficiency in this reasoning is that alleles don’t occur at random in a wild population. Instead, a 
given allele is likely to occur more frequently in one sub-population than another, e.g., because of 
geographical barriers to gene flow. Thus, for example, picking all of the founders from one sub-population 
can easily miss alleles that are common overall. In practice, without an accurate survey of the genetic 
profile of the species, the number, degree of differentiation, and geographical locations of the relevant sub-
populations may not be known. 

Modern methods for sequencing and genotyping make it possible to directly assess the genetic 
diversity of a species and identify its population structure; sequencing a small sample of geographically 
distinct individuals can identify a number of the available genetic variants, and genotyping methods can 
then efficiently determine the genetic make-up of a large number of individuals population-wide. This 
paper describes how the resulting data can be used to select an optimal subset of the genotyped individuals 
that best matches specified allele frequencies, while satisfying additional constraints such as the total 
number of individuals selected, the number of males, and a suitable distribution of ages. Also, we show that 
allowing a bit of flexibility in the choice of founders can simplify the computation. In another formulation, 
we know the average genetic characteristics in sub-populations of the species, but not the genotypes of the 
individual candidates for the founder population. 

One way to select the target genetic profile for the founder population is to match what is observed in 
living animals. In that case, random sampling would be justified if there is no population-genetic structure 
to the sampled population. Using the genotyping data required by our approach, one could run a program 
like STRUCTURE5 to see if such structure exists. 

The goal of recapitulating the distribution of alleles found in the overall population is by no means the 
only approach. We believe that in some cases a preferable goal may be to restore the balance that existed 
before the species was affected by the onslaught of industrial pollution, pesticides, disease, etc. in the last 
century or two. (We assume here that the pollution has been cleaned up, since we wouldn’t want to undo 
any progress the species has made in dealing with it.) To support this approach, we are developing 
improved methods for sequencing the DNA from museum specimens6,7, which can be used to determine 
past allele frequencies and population structure, and thereby identify a more natural target allele 
distribution for a founder population. 

Another option for the target profile is where all alleles have frequency 0.5. For each locus, this 
minimizes the probability that an allele will be lost due to random genetic drift in the captive population. 
(This observation can be rigorously proved by martingale theory.) Moreover, this choice maximizes the 
genetic diversity in the captive population, since the probability that two randomly selected copies of a 
locus with minor allele frequency p are different is 2p(1–p), which is maximized when p = 0.5. 

 
2.  Methods 
2.1.  The Data 
In our approach, several individuals of the species (perhaps even just a single individual) are sequenced 
using next-generation sequencing technology, until an adequate number of genomic differences has been 
identified. This step is not as easy as it sounds, because we assume that at the start of this process we know 
nothing about the genomic characteristics of the target species. In contrast, next-generation sequencing 
instruments and the available software for analyzing the data they produce are primarily designed for re-
sequencing, i.e., where the goal is to look for small differences from an available “reference” genome 
sequence. Often, and also in our case, the main quest is for single-nucleotide polymorphisms, abbreviated 
SNPs. (Experts might cringe at this use of “SNP”, instead requiring that a nucleotide difference be 
observed at a certain frequency, say ≥ 1%, before deserving the title of a polymorphism.) We call this 
initial stage for our approach “identifying SNPs without a reference”. In more detail, the problem is to start 
with a specification for the desired number of SNPs, and automatically process short fragments of 
unannotated sequence data, identifying putative SNPs until enough have been found. We have developed 
software to solve this problem, but that is not the focus of this report. The outcome of this stage is a list of 
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genomic positions, each identified by, say, the 50 nucleotides on each side, where we predict that two 
distinct alleles are present in the population. 

Once enough SNPs have been predicted, we design a custom genotyping array — a fabricated device 
that uses hybridization of DNA samples to the sequences flanking the putative sequence difference to 
determine which variant of each SNP is possessed by each assayed individual. For now, let us assume that 
each animal has two copies (maternal and paternal) of that genomic position; they can be the same (in 
which case we say the individual is homozygous for the SNP) or different (heterozygous). For each SNP, 
arbitrarily pick one of the two variants as the “reference allele”, and suppose there are L variant nucleotide 
positions and that K individuals have been genotyped. The outcome of the genotyping step is an array, A, 
with L rows and K columns, whose value Aij at the intersection of row i and column j is the number of 
copies (0-2) of the ith SNP’s reference allele that was observed in the jth individual. (Be warned that in other 
contexts it may be common for the roles of rows and columns to be reversed.) 

There are many ways to formulate the problem of using genotyping data to select an optimal founder 
population for a captive-breeding program. We next describe a few of the possibilities. 

 
2.2.  Formulation 1: Approximating Specified Allele Frequencies using Mixed-Integer-Programming 
Tools 

Suppose that from a pool of K genotyped individuals we want to select N (a specified size of the founder 
population) whose combined allele frequencies are as close as possible to a given ideal, e.g., the species’ 
allele frequencies in the year 1900 as estimated from museum specimens. Let L denote the number of SNP 
positions, which we assume are biallelic (two variants), and for each SNP pick one allele arbitrarily for 
reference. Denote the target frequency of the reference allele for SNP i (where 1 ≤  i  ≤  L) by fi with 0 ≤ fi ≤ 
1. Thus, in the founder population of N animals, there ideally will be bi = 2Nfi occurrences of that allele. 
Selecting a founder population is then equivalent to determining N binary variables xj∈{0,1} for 1 ≤  j  ≤  
K, where xj = 1 if the jth animal is in the founder population and xj = 0 otherwise. The requirement that there 
be N founders can be stated as ∑xj = N. The number of occurrences of reference allele i in the founder 
population is ∑{Ai,jxj : 1 ≤  j  ≤  K}, which we want to be very close to the chosen target value bi.  

We will typically want to place additional constraints on the set of selected individuals. For instance, 
suppose we want to select exactly 50 individuals, of which 20 are males, and 10 are two years old. We form 
a 3-by-K array, C, where first row is all 1s, the second row has a 1 in column j if the jth genotyped 
individual is a male (0 for a female), and the third row has a 1 in positions corresponding to 2-year-olds (0 
otherwise). Our constraints then have the form Cx = d, where d = (50, 20, 10)T. 

Thus, our focus is on the following general formulation: We are given the L × K matrix A of allele 
frequencies Ai,j, the vector b =(b1,b2,…,bL)T that indicates the desired total abundance of each reference 
allele in the founder population, and the M × K matrix C and vector d =(d1,d2,…,dM)T that represent other 
constraints on the population (such as total population size, number of individuals of each age, number of 
each sex, and so on). We want to determine a vector x = (x1,…,xK)T of binary variables that indicate 
whether individual j (j=1,2,…,K) is included in the selected population, such that the desired allele 
abundances are matched as closely as possible subject to the specified constraints.  Our problem 
formulation is thus 
 

Minimizex ρ(Ax–b) subject to Cx ≤ d,   x∈{0,1}K, 
 
where ρ(.) denotes a loss function that measures goodness of fit between two vectors of length L. (Although 
the constraints are written as inequalities, our discussion generalizes immediately to the case in which some 
or all are equality constraints.) The most useful goodness-of-fit measures ρ are the sum-of-squares 
function, the l1 (sum-of-absolute-values) loss function, or the l∞ (maximum residual) loss function, leading 
to the following three specific formulations: 
 

Minimizex (1/2L)Σi
 (Ai. x–bi)2 subject to Cx ≤ d,   x∈{0,1}K, 

 
(where Ai. denotes the ith row of A);  
 

Minimizex Σi=1,2,…,L
  |Ai. x-bi|/L  subject to Cx ≤ d,   x∈{0,1}K 
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and: 
 

Minimizex  maxi=1,2,…L |Ai. x-bi| subject to Cx ≤ d,   x∈{0,1}K 
 

 The objective in the least-squares formulation can be rewritten as  (1/2) xTQx + cTx where Q = 
(1/L)ATA and c = –(1/L)ATb, leading to a binary quadratic program. The l1 and l∞ formulations can be 
formulated as mixed-integer linear programs (MIP) by using some standard reformulation techniques. For 
the l1 formulation, we introduce variables ri and si to denote the positive and negative parts of Ai. x – bi, 
respectively, and defining r =(r1,r2,…,rL) and s =(s1,s2,…,sL), we obtain the following reformulation: 

 
 

Minimizex,r,s 1T(r +s)  subject to  r – s =Ax – b,  Cx ≤ d,  r ≥ 0,  s ≥ 0,  x∈{0,1}K, 
 
where 1 denotes the vector of length L whose elements are all 1. In fact, this is a binary MIP, since the 
solution contains a combination of continuous variables (r and s) and binary variables (x). For the l∞ 

formulation, we obtain: 
  

Minimizex,η η  subject to –η1 ≤ Ax – b≤η1,  Cx ≤ d,  x∈{0,1}K, 
 
where η is a scalar that captures the largest magnitude among elements in the vector Ax – b.  

Commercial packages for solving MIP include CPLEX (www.ilog.com) and Xpress 
(www.dashoptimization.com), while CBC in the COIN-OR collection (https://projects.coin-or.org/Cbc) is a 
good open-source alternative. Many packages (including CPLEX and Xpress) now include support for 
integer quadratic programs as well as linear MIPs. Modeling languages are also available that interface to 
these solvers and allow users to specify their problem in an intuitive fashion. These include AMPL 
(www.ampl.com) and GAMS (www.gams.com). However, the problems in this paper have a simple 
enough form that modeling languages are not necessary unless one wishes to use the NEOS Solver, a web 
server for solving optimization problems at no cost (see www-neos.mcs.anl.gov).  

MIPs are known to be extremely difficult to solve in general (they are NP-hard). However, for many 
practical problems, good solutions can be obtained in a reasonable amount of computing time. The 
algorithms underlying MIP codes are based on branch-and-bound strategies, cutting planes, and various 
other heuristics. When applied to the binary MIP above, branch-and-bound strategies construct a tree of 
relaxed problems, where in each node of the tree some of the binary variables xj are fixed at 0 or 1 while the 
others are allowed to take on any value in the range [0,1]. This “relaxation” is a (continuous) linear 
program whose optimal value yields a lower bound on the optimal value of the original MIP. At each node 
of the tree, we form two child nodes by choosing one of the relaxed variables xj and fixing it to 0 and 1, 
respectively. Note that the lower bound achieved at each child node must be at least as great as the lower 
bound at the current node. (At the root node of the tree, we relax all the variables and impose only the 
bounds xj∈[0,1], j=1,2,…,K, along with the constraints Cx ≤ d.) The full tree would have 2K nodes in total, 
but the hope is that we can avoid examining the vast majority of the tree by cutting off branches on which 
the lower bound is already greater than the value obtained at the “incumbent” – the feasible point with the 
best known objective value obtained to date.  

Cutting planes are additional linear constraints added to the relaxed problem whose function is to 
exclude fractional solutions – those in which some components xj are not either 0 or 1. Cuts can also be 
applied at lower nodes in the branch-and-bound tree. MIP software typically contains many heuristics for 
deciding on branching strategy (i.e. choosing the relaxed variable xj on which to branch at each node), 
deciding what kinds of cutting planes to find and how often to look for them, and looking for candidate 
feasible solutions to use as incumbents. By setting options at input, users can control all these aspects of the 
codes. 

The problems arising in this application have a property that makes them quite difficult to solve with 
standard MIP strategies. Because of the nature of the problem data, relaxation of the binary variables leads 
to a relaxed solution that has most of its components in the interior of the interval [0,1]. (This is true at 
most of the nodes of the branch-and-bound tree as well as at the root node.) Hence, the relaxed solutions 
are far from being feasible points for the original problem, and they produce only a weak lower bound on 

46



the true objective. The upshot is that the branch-and-bound strategy is not able to exclude large parts of the 
tree from the search, and many nodes must be visited (and the relaxed problem at those nodes solved) 
before the lower bound increases to the point where a candidate solution can be declared to be nearly 
optimal. (This effect has also been observed in related contexts by D. Bienstock, in a personal 
communication.) It is likely that the heuristics for finding good candidate solutions in these codes do in fact 
generate near-optimal solutions after a fairly short time; the difficulty comes in verifying that indeed it is 
close to the best attainable. Generation of better lower bounds remains an open research question in 
computational mixed-integer linear programming. 

When we use the mixed-integer quadratic programming formulation arising from the sum-of-squares 
loss function (see below), the same issue arises. However, in this case, in an unpublished manuscript dated 
2009, D. Bienstock proposes to use lower bounds on the curvature of the quadratic objective to improve the 
quality of the lower bounds obtained at the nodes of the branch-and-bound tree. In our case, the matrix A 
(and Q = ATA) typically is well conditioned, so the bounds obtained by these means may be significantly 
stronger than the standard lower bound. We note that software frameworks for mixed-integer quadratic and 
nonlinear programs are much less prevalent than for linear MIPs, and this fact together with the large 
values of K and L for some data sets makes the logistics of developing a code for solving this problem quite 
daunting. 
 
2.3.  Formulation 3: A Pure Integer-Programming Variation 

 
We have also explored simpler optimization problems related to selecting a set of individuals that satisfy 
requirements on their genotypes and other constraints. The hope is that the problem can be solved more 
efficiently than the problems discussed in the previous section, and that at least in some instances the 
solution will be adequate for the needs at hand. 

For instance, formulating the computation as a linear programming problem whose only unknowns are 
the K binary variables xj widens the domain of solvers that can be applied. One approach is as follows. Let 
A, b, C and d be as in Formulation 1. There, A and b have L rows and contribute to the objective function, 
while C and d have M rows and constitute the constraints. Let us assume that the constraints require that 
either Ck. x = dk or Ck. x ≥ dk for 1 ≤ k ≤ M (where Ck. denotes the kth row of C). Form the (2L+M–1) × K 
array A2 and vector b2 as follows. For every row of A, corresponding to the reference allele for a particular 
SNP, A2 contains that row plus a row for the other allele of that SNP. Thus the sum of the two rows has a 2 
in every position. The corresponding two entries in b2 are the SNP’s entry in b (giving the target abundance 
for the reference allele) and 2N minus that value. The other rows of A2 and b2 are taken from C and d, 
omitting the constraint that the founder-population size is N. The pure integer-programming approximation 
to Formulation 1 is:  

 
Minimize ∑xj subject to A2x  ≥ b2,   x∈{0,1}K 

 
This reformulation makes the following changes. First, the size of the founder population is now 

variable. For instance, if each of 5 age groups is required to have 10 representatives among the founders, it 
might require 55 founders to also satisfy the other constraints. Also, where we formerly required the 
abundance of the reference allele for the ith SNP to approximate bi (and by inference the abundance of the 
SNP’s other allele to approximate 2N–bi), we now require the two alleles’ abundances to equal or exceed 
those values. Finally, equality constraints in Formulation 1 are relaxed to inequalities. For instance, an 
original requirement of exactly 20 males now requires at least 20 males. Compared to the l1 version of 
Formulation 1, this gives a problem with many fewer unknowns (but the same number of binary 
unknowns), though there are far more constraints. In this respect it is similar to the l∞ version of 
Formulation 1. 

An advantage of looking at the problem this way is that several approaches for cutting corners are 
suggested. First, it may be possible in practice to simply discard most of the constraints. For instance, if the 
only concern is to retain rare alleles, then constraints where the required allele frequency exceeds an 
appropriate lower bound could be removed. Another strategy is to replace the function being optimized (the 
number of founders) by a constraint that the founder population be “small enough”. For instance, if we 
want to require that there be at least 10 individuals in each of five age groups (requiring 50 founders), we 
can add the constraint ∑xj ≤ 55. Strategies like these can substantially expand the range of problem that are 
readily solved, as illustrated in Section 3.3, below. 
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2.4.  Formulation 4: Selecting Animals That Aren’t Genotyped 

Another variant is to again fix the number of animals to be chosen, say N, and optimally select from 
the already genotyped pool and/or ungenotyped wild individuals. For ungenotyped animals, we assume that 
the genetic profiles of animals from different populations or geographic regions are already characterized 
from the genotyping. The point is not that individuals who are not genotyped are being selected. Rather, the 
issue is that representative individuals are being sampled from populations whose general properties are 
assumed to be known, even if the specific individuals are unknown. 

Suppose we have L SNPs characterized for K populations (or geographic locations). Fix a “reference” 
allele for each SNP (say, the more-common allele), and let pi,j denote that allele’s frequency for SNP i in 
population j, where 1 ≤  i  ≤  L and 1 ≤  j ≤  K. We assume that pi,j is known. If we want to sample xj animals 
from population j, an optimal sampling strategy that yields the desired genetic diversity can be determined 
by the following criteria: 

 
• The expected abundance of the reference allele for the ith  SNP closely approximates the target value bi. 
• If population j has cj individuals, then 0 ≤ xj ≤ cj.  
• The total sample size is N. 
 

Let P = {pi,j} denote the L × K matrix of allele frequencies, pi denote the ith row of P, and b = 
(b1,b2,…,bL)T. Also let x = (x1, · · · , xK)T denote the vector of unknown animal-counts from the various sub-
populations. For SNP i, the expected count for the reference allele is 2pix. Thus, the above criteria can be 
expressed as: 
 

Minimizex ρ(Px–b) subject to 0 ≤ xj ≤ cj  and xj an integer for 1 ≤ j ≤  K and ∑xj = N. 
 
Here ρ can be any of the loss functions mentioned above. To include both selection (from genotyped 
animals) and sampling (from the wild), we can treat each genotyped animal as a “one-individual 
population”, for which pi,j equals 0 (homozygote wild type), 0.5 (heterozygote) or 1 (homozygote 
mutation), and cj = 1. In cases where the sub-population sizes cj are fairly large, the restriction to integer 
solutions might not be so onerous as the constraint to binary unknowns in Formulation 2; rounding the 
entries of a solution to the continuous-variable problem might be good enough in practice. That is, the 
problem is solved by allowing each variable xj to assume arbitrary real values between 0 and cj, and then 
the optimal value replaced by the closest integer. 
 
3. Experience 

In essence, the genotyping data considered in this paper consists of a matrix with L rows and K columns, 
where each row corresponds to a genomic position where different nucleotides have been observed within a 
species, and each column corresponds to an individual animal of that species. Each entry is 0, 1, or 2, 
depending how many copies of the (arbitrarily chosen) reference allele for that difference are present in that 
individual. (For now, we are considering autosomal nucleotide polymorphisms, but in Section 3.4 we 
sketch what needs to be changed for other kinds of genomic polymorphisms, such as microsatellites.) Small 
numbers of these so-called SNPs (single nucleotide polymorphisms) have been used for various purposes 
related to wildlife management8, but we anticipate the day, not long off, when next-generation sequencing 
and large-scale genotyping methods will be employed. In particular, our goal here is to use such data to 
select a set of animals with optimal genetic diversity that meets certain additional constraints, and we have 
described combinatorial optimization methods for several formulations. We now recount our experience to 
date with applying some of those methods to realistic (though mostly artificial) sets of data. 

 
3.1. Test Data 
 
Large genotype data sets will soon be available for endangered species, including the orangutan (personal 
communication from C. Bustamante and D. Locke). Currently, data for 384 SNPs and 322 individuals is 
available for a bird, the collard flycatcher9. Much larger data sets are available for some domesticated 
species. For instance, for cattle there is data for 37,470 SNPs and 497 individuals10. However, the most 
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extensive data sets are for humans, and we have employed these data to begin evaluating our proposed 
methods. 

We used human genotypes from a preliminary data release from the 1000 Genomes Project11,12, which 
we downloaded from ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/release/2009_04/. We identified over 4 
million SNPs having data from each of the population groups CEU, JPTCHB, and YRI, which yielded 
complete data for 172 individuals. To experiment with various solution techniques we created data sets by 
randomly selecting L rows and K columns from the derived array of genotypes, for various values of L and 
for K ≤ 172. In our tests, and we anticipate also in practice, L (the number of SNPs) is typically larger than 
K (the number of genotyped animals). When genders and ages of the individuals were needed, we 
randomly assigned genders and age groups 1 to 5 with equal probabilities. When a vector of target allele 
frequencies was needed, we scaled the observed frequencies in the selected genotypes to the desired size of 
the founder population. That is, for each row (SNP), we summed the numbers (0-2) in that row, multiplied 
by the size of the founder population, and divided by the number of columns (genotyped individuals). 

 
3.2. Results Obtained with Mixed Integer Programming Formulations 

For the problem of fitting a desired distribution of allele frequencies, we first wanted to see how well one 
can do using freely available software, without any attempt to tune the software’s behavior to the 
particularities of our data, and making only modest use of computational resources. To do this, we 
attempted to solve instances of the l1 version of Formulation 1 using a MIP solver called CBC run at the 
NEOS13 server (without an “Options File” to adjust CBC’s behavior). For each of several combinations of 
L and K, we requested a founder population with 20 males and 10 animals of each age (1 to 5), for a total of 
50 founders. For 200 SNPs and 100 animals, the problem was solved to optimality in just over 3 minutes. 
When the number of SNPs was raised from 200 to 300, the time needed to find an optimal solution shot up 
to almost an hour. For 500 SNPs and 100 animals, or 300 SNPs and 172 animals, the computation exceeded 
our 5000-second time limit, producing a solution that is probably reasonable, but quite possibly not 
optimality. 

We next report on results obtained with the commercial MIP solver CPLEX on the l1 and l∞ 

formulations, using a data set with 5000 SNPs and 172 individuals. Again, it was required to select 10 
individuals of each age 1 through 5, of whom 20 would be males, for a total of six constraints. The 
objective was to make the frequency of alleles in the selected population as close as possible to the 
frequency in the overall population, in the l1 or l∞ sense. The modeling language GAMS14 (www.gams.com) 
was used to define the model. (Direct use of GAMS models has the advantages that they allow variants of 
the models to be tried quickly, and that GAMS files can be submitted to the NEOS server.) 

CPLEX, like other MIP solvers, allows many options and parameters to be set to non-default values, to 
improve their efficiency. Insight into the nature of problems being solved, and some trial-and-error and 
parameter tuning, can lead to dramatic improvements in run time over default values. For these problems, 
however, we able to obtain only modest improvements over default behavior by choosing alternative values 
of these parameters. Techniques that can handle the special characteristics of these problems (noted above) 
and produce verified optimal solutions in a reasonable amount of time are not available in current MIP 
solvers and are a topic of ongoing research. We believe, however, that the code is finding close-to-optimal 
solutions in reasonable time. As noted above, the difficulty comes only in verifying that they are indeed 
near-optimal, as we need to examine a large fraction of the nodes on the search tree to increase the lower 
bound to a level close to the best feasible solution obtained so far. 
 We mention for the record that the following non-default parameter values were used in the CPLEX 
runs reported here: cliques=–1 and covers=–1 (to turn off certain kinds of cut generation), dpriind=3 (to use 
steepest-edge pricing in slack space of the simplex method used at each node), varsel=4 (to force the use of 
pseudo-reduced costs as a criterion for branching), symmetry=5 (to generate symmetry-breaking cuts 
aggressively during the early stages of the solution process), mipemphasis=4 (to emphasize the search for 
better candidate solutions rather than improvement of the lower bound). We make no claims that this 
combination gives the best performance overall, or even that it is better than the default settings on these 
problems.  CPLEX Version 11.2 was executed on both formulations for 15,000 CPU seconds (a limit 
prescribed by us) on a PC with an Intel Xeon quadcore CPU at 2.66 GHz, running Red Hat Enterprise 
Linux Server release 5.3, with 4GB of DDR2 memory at 800 MHz.  
 For the l∞ formulation, the code found a point with objective value 9.9770, with a lower bound of 
1.3901, within a few hundred seconds of CPU time. The candidate solution was found by running default 
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heuristics and adding cuts to the relaxed problem at the root node of the search tree. During the remainder 
of the 15,000 seconds of execution time, 1460 nodes of the search tree were examined and four 
progressively better candidate solutions were found. At termination, the best solution found had objective 
9.4070, while the lower bound had increased only to 1.8060. 
 For the l1 formulation, the code quickly identified a candidate solution with objective 2.2173, with a 
lower bound of .3931, again without performing any branching. During the remainder of the execution 
time, three more candidate solutions with progressively better objective values were identified, with the 
final solution having objective 2.2150, while the lower bound had increased to 0.4717. Only 201 nodes of 
the branch-and-bound search tree were evaluated. 
 We note that the solutions obtained with these two objectives were quite different. In fact, of the 50 
individuals in each solution, only 19 were selected in both. 
 We conclude by reporting results obtained with the binary quadratic programming formulation. Note 
that the only variables in this formulation are the original 172 binary variables. (By forming the Hessian 
matrix Q and linear term c explicitly, we avoid the need to introduce any additional continuous variables.) 
We found that the results were improved slightly when we performed a simple transformation of A and b, 
before forming Q and c. Since a total of 50 animals are to be selected (that is, 50 of the components of x are 
1 at the optimum, while the remainder are zero), we can subtract 1 from all elements of A, while 
subtracting 50 from each element of b. After this transformation, A contains elements –1, 0, and +1, and 
Q=(1/L)ATA can have slightly better conditioning. We use this shifting procedure for the experiment 
reported below. 

For this formulation, we wrote a C code to set up the problem and call CPLEX. Except for the 
termination criteria (which enforced a limit of 15,000 seconds on CPU time), default parameter settings for 
CPLEX’s MIQP solver were used. Within a few seconds, the code finds an incumbent (the best feasible 
point encountered to date) with objective 3.9701. A total of 22 incumbents are found during the run. The 
last of these (which is the solution reported by the code) has an objective of 3.8113. After about a minute, 
the lower bound is approximately 1.71; it increases steadily but slowly thereafter to a final value of 1.8878.  
About 13,500,000 nodes of the branch-and-bound tree are examined during the run. CPLEX’s mixed-
integer QP solver makes much less use of cuts, and thus places much more reliance on branching as a 
means of solving the problem. 

To compare the optimization methodology with a random strategy as a means for selecting a set of 
individuals that fits the target allele frequencies while satisfying the constraints, we programmed in 
MATLAB a code that generates 3414 feasible points for this test set at random. The mean of the objective 
values obtained from this process is 6.2729, with a standard deviation of 1.1798. The best objective found 
was 4.8353, which is significantly worse than the solution obtained by the optimization code after just a 
few seconds of run time. 
 
3.3. The Pure Integer-Programming Variation 
 
For a given set of genotyping data, finding a “sweet spot” for the many combinations of potential LP 
shortcuts, available solvers, and choices of solver options will require some effort. As might be expected of 
a computational problem with exponential time complexity, seemingly minor changes in the approach often 
mean the difference between a quick solution and failure of the computation to terminate in a reasonable 
time. However, we now report one simple experiment that hints at what can be achieved. 

In Section 3.2 we noted failure of a straightforward attempt to run a NEOS MIP solver on random data 
for 300 SNPs and 172 animals. To experiment with reformulations of the problem, we generated random 
data for 2000 SNPs and 172 animals and applied the following shortcuts to the approach outlined in Section 
2.3. First, we permitted up to 55 founders (while continuing to require at least 10 in each of the five age 
groups). Second, we retained constraints on the allele abundance only when the lower bound was 5 or less, 
leaving 146 of the original 4000 allele-abundance constraints. Using C-language programs that we wrote to 
convert genotyping data to MPS format, we submitted the data to the SCIP15 optimizer at the NEOS server 
(with no “Parameter file”). In around 30 seconds, SCIP found a feasible solution containing 55 founders. 
We discovered that 16 of the original alleles whose constraints had been removed had less than 5 
occurrences in the computed founder-set. All of those had at least 3 occurrences, which might be 
considered adequate under certain conditions. An alternative is to add the requirement that each of those 16 
alleles occur at least 5 times to the 146 allele-abundance constraints, and re-solve the problem. 
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We also experimented with an even simpler integer-programming formulation, using a real-world data 
set. The objective was simply to guarantee a minimum number of occurrences of each allele, using 
genotyping data from a 96-SNP array that we designed for the Tasmanian devil (Sarcophilus harrisii), a 
species that is gravely threatened by extinction from a transmissible tumor16. We used the array to genotype 
85 animals, and for the following analysis used the 69 SNPs that appeared in more than one animal. The 
problem we investigated was to select a set of animals that contains each allele at least twice, which 
corresponds to a binary linear programming problem of minimizing Σxj subject to Ax ≥ 2, x∈{0,1}K, where 
2 denotes the vector containing 2s. For our 69-by-85 array, A, linear programming selected four animals. 
Interestingly, a simple greedy algorithm17 that repeatedly picks the animal that adds the most “uncovered” 
alleles, selected six animals. With four randomly selected animals, an average of only 22.7 of the 69 alleles 
appeared at least twice. Looked at another way, random selection picked an average of 31.9 animals before 
reaching 2-fold representation of every allele. What makes the problem difficult for random sampling is 
that a few of the alleles appeared only a few times among the 85 animals. (Extensive comparisons of the 
greedy and random selection strategies for a very similar problem have been published by others18.) 

 
 
3.4. Handling Other Types of Polymorphisms 
 
Our approach has been described under the assumption that each genetic marker has two possible states, 
and that each individual has two copies. Minor adjustments are required for other cases, such as 
microsatellites with multiple states, or sex-chromosome or mitochondrial markers where an individual may 
have fewer than two copies. For instance, for a microsatellite with three observed lengths, we could devote 
three rows of the genotypes array, one for each length. For each column (individual) the values in those 
rows will each be 0, 1, or 2, and the sum of the three values will be 2 (except perhaps for microsatellites on 
a sex chromosome). This works for both the linear-programming and the quadratic-programming 
formulations. 
 
4.  Conclusion 
We have developed and evaluated several methods that can use high-throughput genotyping data to select a 
set of animals that best approximates a specified allele profile, subject to additional constraints; the selected 
animals might be used as founders for a captive breeding program or reintroduced into a former range for 
that species, for example. We anticipate that the costs of sequencing and genotyping will continue to 
plummet, making it feasible to gather genome-wide population-genetic data from hundreds of animals from 
each of many species. One can easily imagine having genotypes for many thousand SNPs in hundreds of 
individuals from an endangered species, and using that information to select founders. The number of SNPs 
required to reliably represent genome-wide variation is liable to depend heavily on the particular species 
(not to mention how one interprets “reliably represent”).  For humans it has been estimated19 that, among 
all of the 6 million common (minor-allele frequency ≥ 0.1) European SNPs in the human genome, about 
80% could be ascertained at ρ2 > 0.8 through pairwise linkage disequilibrium (LD) by genotyping 0.8 
million European common and non-redundant variants in the database dbSNP. To cover a similar 
percentage of common SNPs in African-Americans, the number increases to 1.1 million SNPs. For a highly 
bottlenecked species with more extensive LD, the required number of SNPs could be much less. 

In any case, even with the available technologies, affordable approaches are possible. For a few tens of 
thousands of dollars it is possible to sequence transcripts (cDNA) from several individuals, from which 
polymorphic amino-acid positions can be identified. If the number of those differences exceeds the desired 
array capacity, computational analysis could reduce them to the differences that show signs of being 
functionally important20. For an additional few tens of thousands of dollars, a custom genotyping array can 
be purchased and applied to genotype those differences on several hundred animals. Techniques described 
in this paper, such as the mixed-integer-programming technique, can then perform an optimal, or at least 
near-optimal, selection of founders, in the sense of capturing desired abundances of the putatively 
functional protein variants. 

Departure of the target allele distribution from the distribution in the overall population increases the 
value of using an approach like ours, compared to simple random selection. For instance, we might want to 
avoid hybridized alleles (e.g., cattle genes in American bison). More generally, the belief that the goal of 
conservation efforts is to restore ecosystems to their “natural state”, which to some writers means their state 
before any human intervention, has been widely discussed21. Several publications22,23 have used museum 
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specimens to determine earlier genetic profiles. However, this has typically been done using only tiny 
amounts of hyper-variable sequence data, such as 500 bp from the mitochondrial control region or a small 
number of microsatellites. Another scenario with differing allele profiles might be importing animals to 
bring a struggling population up to a viable size when we want to retain its unique genetic make-up and/or 
reduce the threat of outbreeding depression. 

Other decisions related to species conservation have been approached with computational methods. 
One such problem is selecting a set of species to be preserved. The problem has been formalized as 
optimally selecting a specified number of species, given a phylogenetic tree relating a more inclusive set of 
species and with branch lengths that measure inter-species differences. A natural objective is to maximize 
the sum of branch lengths in the induced subtree24. A simple greedy algorithm guarantees an optimal 
solution25, and dynamic-programming algorithms solve several generalizations26.27. 

A set of individuals within a species is less well represented by a weighted tree, and other ideas have 
been applied to selecting intervals, with “maximum diversity” a frequent goal. For instance, given a set of 
genetic markers (SNPs, microsatellites, allozymes, etc.) one could try to maximize the number of observed 
alleles represented in the selected set of individuals28. This is essentially just the infamous Minimum Set 
Cover problem29, which is NP-complete and hence solved in biodiversity practice17 and studied in 
computer science theory30 using approximation methods (including linear programming). The problem 
studied here, with the added complexity of an arbitrary target distribution and constraints on gender and 
age, is correspondingly more challenging. 

A somewhat different class of optimization problems arises for management of a captive breeding 
program, where in addition to genotypes one has access to genealogies. As with selection of founders, there 
is tension between the potential goals of maximizing diversity and maintaining allele frequencies31. 
Combinatorial optimization methods have been proposed for designing breeding programs32,33. 

 
To keep pace with plummeting costs for sequencing and genotyping, more work is needed to extend 

the computational approaches described in this paper. Cutting-edge research in optimization algorithms that 
exploits the particular characteristics of this family of optimization problems may be needed to best utilize 
cutting-edge data-producing technologies. 
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1. Introduction

Until recently, RNA has been viewed as a simple “working copy” of the genomic DNA, simply transporting

information from the genome into the proteins. In the 1980s, this picture changed, to certain extent, with

the discovery of ribozymes and the realization that the ribosome is essentially an “RNA machine”. Since the

turn of the millenium, however, RNA has moved from a fringe topic to a central research topic following the

discovery of RNA interference (RNAi), the post transcriptional silencing of gene expression via interactions

between mRNAs and their regulatory RNAs.

More recent studies1,2 have revealed that a large fraction of the genome sequences give rise to RNA

transcripts that do not code for proteins. Those RNAs that do not code for proteins are called non-coding

RNAs (ncRNAs).

A recent computational screen estimated the number of small regulatory RNAs, which form an important

class of non-coding RNAs, in Arabidopsis thaliana to be in the order of 75,000.3 Among small RNAs, two

subclasses form the bulk of all regulatory RNAs: microRNAs (miRNAs) and small interfering RNAs (siRNAs)

— which are of similar length (21 to 25 nt) and composition but different by origin. It is predicted that these

two subclasses regulate at least one-third of all human genes. There are many other classes of non-coding

RNAs with functionalities beyond simple regulation of gene expression: examples include snoRNAs, snRNAs,

gRNAs, and stRNAs, which respectively perform ribosomal RNA (rRNA) modification, RNA editing, mRNA

splicing and developmental regulation.4 Even for these well-studied RNAs, their precise mode of function

remains poorly understood.

In addition to such endogenous ncRNAs, antisense oligonucleotides have been used as exogenous in-

hibitors of gene expression; antisense technology is now commonly used for therapeutic purposes and as a

research tool. The therapeutic objective of antisense technology is to block the production of disease-causing

proteins. In principle, these artificial regulatory RNA molecules could be employed as drugs for the treatment

of a variety of human diseases including various types of cancer, rheumatoid arthritis, brain diseases, and

viral infections.5 As a research tool, antisense nucleic acids may be used to study metabolic networks by

controling or interfering with the dynamics and function of various modules in the network. Furthermore,
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synthetic nucleic acid systems have been engineered to self-assemble into complex structures performing

various dynamic mechanical motions.6 Despite advances in computational studies of non-coding RNA, there

are still many open areas and unresolved issues particularly for high-throughput applications based on the

new genome sequencing technologies.

The main objective of this session is to discuss new algorithms, software tools and their applications in

non-coding RNA bioinformatics. In particular, the papers in this session exemplify recent progress in compu-

tational methods that help non-coding RNA sequence prediction and identification, structure prediction and

determination, and function determination. Specific problems in computational studies of ncRNAs include:

• Algorithms for modelling interactions between RNAs and other molecules, particularly RNA-RNA

and RNA-protein interactions

• Learning thermodynamic parameters that are involved in the prediction of secondary and tertiary

structure of non-coding RNAs

• Novel approaches to single or joint RNA structure prediction and determination

• Algorithms for exploring RNA folding pathways and kinetic traps on the energy landscape

• Alignment and comparative analysis of multiple non-coding RNA sequences

• RNA evolution

• Functional classification of non-coding RNAs

• Modelling classes of single or joint non-coding RNAs through stochastic context free grammars and

their variations

• Tools that detect structural motifs in a genome sequence, especially those that could be potentially

involved in the regulation of target mRNAs

• Combinatorial and heuristic tools for de novo non-coding RNA identification in a genome sequence

• Efficient algorithms for searching RNAs in a data collection with specific sequence and structural

motifs.

2. Session papers

Recent improvements in sequencing methods have introduced high-throughput, low-cost, and cloning-free

(thus less labor-intensive) technologies. The revolution in DNA sequencing will shortly result in an enormous

collection of sequence data pertaining to the genomes and transcriptomes of various human individuals from

different populations and also various species. Several papers in this session try to address the increased

demand for this type of data analysis.

RNA secondary structure and folding kinetics have always been a central research topic in computational

studies of RNA. In the first paper of this session, Thachuk et al. make two new contributions to the problem

of calculating pseudoknot-free folding pathways with minimum energy barrier between pairs (A,B) of RNA

secondary structures. Their first contribution is an exact algorithm to find a minimum barrier direct folding

pathway for a simple energy model in which each base pair contributes equally to the structures stability.

In a direct (minimum length) folding pathway, intermediate structures contain only base pairs in A and B

and are of length |A| + |B|. The problem is NP-hard, therefore their algorithm requires exponential time

in the worst case. Their second contribution proves that for the simple energy model, repeatedly adding or

removing a base pair from A or B along a pathway does not lower the energy barrier.

Dotu et al. describe dynamic programming segmentation algorithms to segment RNA secondary and

tertiary structures into distinct domains in the second paper. A possible application is to determine the

boundaries of predicted ncRNAs. Under the assumption that microRNA precursors are less than 100nt long,

their method predicts the precursors embedded in a genomic context of up to 1000nt with an accuracy

around 90%. They also compare their algorithm to the manual segmentation of 16S rRNAs reported in the

literature.

As a solution to a fundamental problem in computational studies of ncRNAs, RNAz has been used for

de novo prediction of structured non-coding RNAs in comparative genomics data. In the third paper, RNAz
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2.0 is presented which improves the previous version in several aspects: It uses a dinucleotide background

models to increase accuracy, and an entropy measure to represent sequence similarities. In addition, it has

been trained on a larger data set, using either sequence-based or structural alignments. As a result RNAz 2.0

has a significantly lower false positive rate than the previous version.

Recent advances in high-throughput sequencing for the first time provide the opportunity to study the

entire transcriptome sequences and concentrations. In many cases, a significant part of the transcriptome

consists of non-coding RNAs. Some of these ncRNAs are processed by the cell post-transcriptional machinery

to yield shorter RNA products. It is believed that these splicing patterns depend on the secondary structure.

This leads to specific patterns of short reads that can be detected after mapping the read sequences to the

reference genome. In the fourth paper, Langenberger et al. suggest that these read patterns are characteristic

for the spliced RNA transcripts. Therefore, Langenberger et al. explore the potential of short read sequence

data in the classification and identification of non-coding RNAs.

Okada et al. report on an improved version of the Structure Conservation Index, used in RNAz. based

on centroid estimators rather than minimum free energy structures. Poolsap et al. present a dynamic pro-

gramming approach to compute RNA-RNA interactions for the case where the sequences motifs involved in

the binding are known in advance.

Acknowledgements

We thank all the authors who submitted papers to the session, and we gratefully acknowledge the reviewers

who contributed their time and expertise to the peer review process.

References

1. The FANTOM Consortium, Science 309, 1159 (2005).
2. ENCODE Project Consortium, Nature 447, 799 (2007).
3. M. W. Vaughn and R. Martienssen, Science 309, 1525 (2005).
4. R. F. Gesteland, T. R. Cech and J. F. Atkins (eds.), The RNA World, 3rd edn. (Cold Spring Harbor Laboratory

Press, Plainview, NY, 2006).
5. A. Fjose and O. Drivenes, Birth Defects Res C Embryo Today 78, 150 (2006).
6. P. Guo, J Nanosci Nanotechnol 5, 1964 (2005).

56



September 22, 2009 17:11 WSPC - Proceedings Trim Size: 11in x 8.5in new

1

RNA STRUCTURAL SEGMENTATION

IVAN DOTÚ
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We describe several dynamic programming segmentation algorithms to segment RNA secondary and tertiary struc-
tures into distinct domains. For this purpose, we consider fitness functions that variously depend on (i) base pairing
probabilities in the Boltzmann low energy ensemble of structures, (ii) contact maps inferred from 3-dimensional
structures, and (iii) Voronoi tessellation computed from 3-dimensional structures. Segmentation algorithms include
a direct dynamic programming method, previously discovered by Bellman and by Finkelstein and Roytberg, as well
as two novel algorithms – a parametric algorithm to compute the optimal segmentation into k classes, for each value
k, and an algorithm that simultaneously computes the optimal segmentation of all subsegments.

Since many non-coding RNA gene finders scan the genome by a moving window method, reporting high-scoring
windows, we apply structural segmentation to determine the most likely 5′ and 3′ boundaries of precursor microR-

NAs. When tested on all precursor microRNAs of length at most 100 nt from the Rfam database, benchmarking
studies indicate that segmentation determines the 5′ boundary with discrepancy (absolute value of difference be-
tween predicted and real boundaries) having mean −0.640 (stdev 15.196) and the 3′ boundary with discrepancy
having mean −0.266 (stdev. 17.415). This yields a sensitivity of 0.911 and positive predictive value of 0.906 for
determination of exact boundaries of precursor microRNAs within a window of approximately 900 nt. Additionally,
by comparing the manual segmentation of Jaeger et al. with our optimal structural segmentation of 16S and 16S-
like rRNA of E. coli, rat mitochondria, Halobacterium volcanii, and Chlamydomonas reinhardii chloroplast into 4
segments, we establish the usefulness of (automated) structural segmentation in decomposing large RNA structures
into distinct domains.

Availability: Source code for all algorithms is available at http://bioinformatics.bc.edu/clotelab/.

Keywords: non-coding RNA gene finder, segmentation algorithm,secondary structure, tertiary structure, RNA do-
main

1. Introduction

Several groups, such as Benaola-Galván et al.,3 Román-Roldán et al.,16 and Li et al.,10–12 have developed

recursive segmentation algorithms with the goal of segmenting chromosomal regions in order to detect iso-

chores, CpG islands and other broad genomic features. The underlying idea of such divide-and-conquer

recursive segmentation algorithms is similar to that of C4.5 decision trees, cf. Quinlan,15 and depends on

repeatedly splitting a segment into left and right halves in order to maximize the Jensen-Shannon divergencea

JS(L, R) = H(W ) −
m

n
H(L) −

n − m

n
H(R). (1)

aSee Lin13 for more on the Jensen-Shannon divergence, Kullback-Liebler distance, etc.
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Here L, R are the left and right segments of the whole segment W , the lengths of L, R, W are respectively

m, n−m, n, and H(X) denotes the Shannon entropy of segment X .b Figure 1 depicts the pseudocode corre-

sponding to this approach, where it should be noted that the main weakness of the recursive segmentation

method is to determine when to discontinue segmentation. See Clote and Backofen4 for detailed explanation

and full pseudocode of this algorithm.

While this method has been applied to the detection of broad features of chromosomal DNA,3,10–12,16

other segmentation algorithms in the literature have been introduced by Finkelstein and Roytberg5 (dy-

namic programming), and Schmidler et al.17 (Bayesian a posterior method).c Applications of the dynamic

programming segmentation algorithm of Finkelstein and Roytberg5 have been given by Sunyaev et al.18 for

multiple alignments of proteins, while applications of the Bayesian a posterior method have been presented by

Schmidler et al.17 to predict protein secondary structure α-helices and β-sheets given the primary sequence

information.

In this paper, we describe a dynamic programming segmentation algorithm, previously discovered by

Bellman2 and by Finkelstein and Roytberg,5 as well as several novel algorithmic extensions. The segmen-

tation algorithms are applied to segment 3-dimensional RNA structures into domains, and use to detect

the boundaries of certain non-coding RNA genes within high scoring windows, as determined by many

moving-window genome scanning algorithms.

1 void segment( int i, int j, double s) {
2 max=0

3 for k=i to j-1{
4 L = wi · · ·wk

5 R = wk+1 · · ·wj

6 if statistical significance of splitting L, R exceeds s then

7 if JS(L, R) > max then

8 max = JS(L, R)
9 x = k
10 }
11 print x

12 segment(i,x,s)

13 segment(x+1,j,s)

14 }

Fig. 1. Pseudocode for recursive segmentation algorithm of Román-Roldán et al.16 Note that one of the difficulties of this
approach consists in determining a minimum threshold s, below which segmentation is discontinued.

2. Methods

The problem we consider consists in segmenting a sequence S = 〈s1, . . . , sn〉 into a number of consecutive

subsequences (called segments) S1, . . . , Sk. (The sequence S is thus the concatenation of S1, . . . , Sk.) Each

segment Si is associated with a base fitness function value f(Si, S) which only depends on the elements in

Si and those in S \ Si, not on the segmentation itself. In this paper, such a function will be expressed in

terms of two functions g and h as follows:

f(Si, S) =

∑

x,y∈Si,x 6=y g(x, y) −
∑

x∈Si,y∈S\Si
h(x, y)

|Si|
(2)

bIn general, if X is a sequence in the k-letter alphabet Σ, then H(X) equals −
Pk

i=1 pi · ln pi, where pi is the relative frequency
of the ith letter of Σ. Typical applications of entropy in genomic segmentation consider the 2-letter alphabet {R, Y } of purines
(A,G) and pyrimidines (C,T), the 2-letter alphabet {S, W} of strong (C,G) and weak (A,T) nucleotides, etc.
cAn anonymous referee kindly pointed out the pertinence of the much earlier paper by R. Bellman.2

58



September 22, 2009 17:11 WSPC - Proceedings Trim Size: 11in x 8.5in new

where |Si| denotes the number of elements in Si. This contrasts with previous methods16–18 where base

fitness function f(Si, S) depends only on Si, but not on S \Si. Our goal is to find a segmentation S1, . . . , Sk

that maximizes the sum of the fitness values, i.e.,

k
∑

i=1

f(Si, S). (3)

Observe that the number of segments k is not fixed and is chosen to maximize the overall fitness. In the

following, we also use fi,j to denote f(〈si, . . . , sj〉, S).

2.1. Dynamic programming using quadratic time and quadratic space

We now present an O(n2) algorithm to solve this problem. The key idea underlying the algorithm is to reason

about partial segmentations which cover prefixes (s1, . . . , sk) but whose fitness values are computed with

respect to the entire sequence S. Obviously, when k = n, we obtain a solution to the original problem.

The algorithm is based on a recurrence relation on the starting positions and lengths of the last segment in

an optimal (partial) segmentation. More precisely, V (ℓ, x) denotes the fitness value of the best partial segmen-

tation whose last segment has length ℓ and starting position x; i.e. V (ℓ, x) equals the fitness of 〈s1, . . . , sx+ℓ−1〉

when segmented into S1, . . . , Sk for arbitrary k, where the rightmost segment Sk = 〈sx, . . . , sx+ℓ−1. The base

case corresponds to x = 1 and is given by

V (ℓ, 1) = f1,ℓ (4)

for 1 ≤ ℓ ≤ n. The recursive case for 1 < x is given by the formula

V (ℓ, x) = fx,x+ℓ−1 + max{V (i, j) : j + i = x} (5)

The left part of the sum is the fitness value of the last segment. The right part is the fitness value of the

best partial segmentation that ends at x− 1. It is obtained by considering the fitness values of all the partial

segmentations of 〈s1, ..., sx−1〉. By induction, these fitness values are associated with their last segments, i.e.,

segments that start at some position j, have some length i, and end at position x − 1. The fitness value of

the optimal segmentation of S is then given by

max{V (ℓ, x) : ℓ + x = n + 1, ℓ > 1, x ≥ 1}. (6)

Given the entry (ℓ∗, x∗) with maximal fitness value V (ℓ∗, x∗), the set of starting positions st[ℓ∗, x∗] of the

segments in the best segmentation can be traced backwards from using the following recurrence

st[ℓ, x] = {x} ∪ st[x − p, p]

where p = max{p′ : V (x − p′, p′) = max{V (i, j) : j + i = s}};

st[ℓ, 1] = ∅

(7)

which, at each step, retrieves the last segment 〈sx−p, . . . , sx−1〉 of the optimal partial segmentation.

We now argue that these recurrence relations can be computed by an O(n2) dynamic programming

algorithm. First observe that the expression

max{V (i, j) : j + i = x} (8)

must only consider x−1 segments since j ≥ 1 and i ≥ 1, i.e., there are only O(x) pairs to consider. Moreover,

observe that this expression does not depend on ℓ in the recurrence relation and hence can be computed

once for all entries V (1, x), . . . , V (n− x, x). As a result, the dynamic programming algorithm runs in O(n2)

provided that the expression is computed once at the beginning of each column. Note also that the index p in

the recurrence for st can be computed during the forward computation, so that the backward computation

takes only O(n) time.

Note that this algorithm can yield the maximum, minimum, and average fitness of all segments; however,

the space required is quadratic. In the next section, we describe a linear space algorithm.
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1 int[n][n] parametricSegmentation(rna,f,numSegments){
2 /*-------------------------------

3 rna is RNA sequence, f is base fitness function.

4 ----------------------------------------------------*/

5 n = len(rna); SplitPoints = ∅
6 for d = LOWER to n
7 for num = 2 to min(numSegments, d/LOWER)
8 for m = (num − 1) · LOWER + 1 to d − LOWER − 1
9 val = PF (m,num − 1) + fm+1,d

10 if val > max
11 splitPoint = m
12 max = val
13 PF (d, num) = max
14 SplitPoints[d,num] = splitPoint

15 return SplitPoints //Using SplitPoints array, one can perform traceback

16 }

Fig. 2. Pseudocode for parametric segmentation algorithm to compute optimal parametric fitness PF (d, k) over all segmen-
tations of [1, d] into k segments. Note how bounds for minimum segment size (LOWER) and maximum segment size (UPPER)
can easily be accommodated within such segmentation algorithms.

2.2. Dynamic programming using quadratic time and linear space

Given the complete segment S = s1, . . . , sn, let F (i) designate the maximum fitness over all segmentations

of s1, . . . , si. Straightforwardly,

F (i) =

{

0 if i = 0

max(f1,i, max1≤k<i F (k) + fk+1,i) else.
(9)

It can be seen how the maximum fitness of S is given by F (n), and by means of tracebacks, we obtain the

obtimal segmentation. Computation time is obviously quadratic in n, while space is linear in n. This latter

version of the segmentation algorithm turned out to be equivalent to that of Finkelstein and Roytberg,5

displayed in equation (9).

We can extend equation (9) by computing the partition function over all segmentations, defined by

Z = Z(n), where by induction on i we define

Z(i) =

{

1 if i = 0

exp(f1,i) +
∑

1≤k<i Z(k) · exp(fk+1,i/RT ) else
(10)

where R is the universal gas constant and T absolute temperature.d Using the partition function, one can

sample high fitness (suboptimal) segmentations to determine the maximum expected accurate segmentation, in

analogy to the maximum expected accurate RNA secondary structure, denoted McCaskill-MEA, as described

in Kiryu et al.7 For reasons of space, we do not further describe the partition function, sampling, or MEA

segmentations in this article.

2.3. Parametric dynamic programming method

In this section, we describe a new algorithm that computes, given an RNA sequence (structure) and integer

K, the optimal segmentation into k segments, for each 1 ≤ k ≤ K. This algorithm runs in time O(n2K) and

space nK.

The underlying idea of the algorithm described in this section is to maintain separately indexed tables

PF (m, i) for the parametric optimal fitness over all segmentations of [1, m] into i segments; i.e. we inductively

define PF (m, i) = max1≤k<m PF (k, i− 1)+ fk+1,m. (See Figure 2 for pseudocode of algorithm.) Clearly the

dIn this setting, RT is simply a constant and can be taken to be equal to 1.

60



September 22, 2009 17:11 WSPC - Proceedings Trim Size: 11in x 8.5in new

1 int[n][n] segmentation(rna){
2 // rna is RNA sequence, f is pre-computed base fitness function.

3 n = len(rna); SplitPoints = ∅
4 for d = 1 to n − 1
5 for i = 1 to n
6 j = i + d
7 if (j > n) then break

8 max = fi,j

9 for k = i to j − 1
10 val = F (i, k) + fk+1,j

11 if val > max then

12 max = val
13 splitPoint = k
14 F (i, j) = max
15 SplitPoints[i,j] = splitPoint

16 return SplitPoints

17 }

Fig. 3. Algorithm to determine optimal segmentation of each subsequence [i, j], with run time O(n3) and space O(n2). This
algorithm is inspired by the Nussinov-Jacobson algorithm,14 which determines the secondary structure having maximum number
of base pairs. Assuming the base fitness function f has been precomputed, this algorithm computes the fitness F (i, j) for the
optimal segmentation of each subsequence [i, j]. The optimal segmentation can be computed by traceback using the information
from SplitPoints.

run time of parametric segmentation is O(n2 · K) and the space requirement is O(n · K), when computing

optimal segmentations of [1, n] into k segments, for all k ≤ K.

2.4. Optimal fitness of all segmentations of subwords

In this section, we describe a cubic time algorithm to compute the optimal segmentation, simultaneously for

all subwords [i, j], where 1 ≤ i ≤ j ≤ n. This algorithm is inspired by the Nussinov-Jacobson algorithm,14

which determines the secondary structure having a maximum number of base pairs. (See Figure 3 for the

pseudocode of this algorithm.) By using this algorithm, where the base fitness function f is defined from the

contact map obtained by RNAview,19 one could produce segmentations where low scoring initial portions

[1, i − 1] and low scoring terminal portions [j + 1, n] are dropped, thus leaving a segmentation of subword

[i, j]. The manual segmentations of Jaeger et al.6 described in the Results section appears to be of this type.

2.5. Fitness Functions

We have considered different base fitness functions for RNA secondary structure, all of them fitting in the

following scheme:

fi,j =

∑

i≤x<y≤j w1 · px,y −
∑

x∈[i,j]

∑

y 6∈[i,j] w2 · px,y

j − i + 1
(11)

where fi,j is the fitness function of segment [i, j] and px,y can be the following:

• The base pair probability between nucleotides x and y as computed by RNAfold -p (or by RNAplfold

-p).

• The existence (or not) of a base pair between nucleotides x and y as computed by RNAview.

The pseudocode to compute the fitness function for base pairing probabilities (and equivalently for

contact maps) is depicted in Figure 4.

We have also considered a 3D fitness function (which can also be used for proteins or other molecules)

which consists on minimizing the normalized volume (by computing a tessellation with Qhull1). The fitness

61



September 22, 2009 17:11 WSPC - Proceedings Trim Size: 11in x 8.5in new

1 void fitness(rna){
2 using RNAfold -p determine base pairing probabilities pi,j

3 n = len(rna)

4 for d = 0 to n
5 for i = 1 to n
6 j = i + d
7 if j>n then break

8 if i==j

9 sum = 0.0

10 else //i < j
11 sum = fi,j−1

12 for k = 1 to n
13 if i ≤ k < j
14 sum += (w1 + w2) · pk,j

15 else if k < i
16 sum -= w2 · pk,j

17 else if k > j
18 sum -= w2 · pj,k

19 fi,j = sum
j−i+1

20 return f

21 }

Fig. 4. The base fitness fi,j of segment [i, j] is defined by normalizing the sum
P

i≤x<y≤j w1 ·px,y −
P

x∈[i,j]

P

y 6∈[i,j] w2 ·px,y

by segment length, where base pairing probabilities px,y are computed by RNAfold -p. Straightforward implementation of the
formula for fi,j requires O(n4) time. In contrast, this figure depicts pseudocode to compute base fitness function f in time
O(n3).

function of segment [i, j] is thus the negative normalized volume as calculated by Qhull, i.e. fi,j = − vol
diam

,

where vol and diam respectively denote the volume and diameter of the Voronoi polyhedra of residues

i, . . . , j.

3. Results

3.1. Finding Precursor microRNAs

As previously mentioned, we applied our segmentation to help determine non-coding RNA genes within a

window of flanking nucleotides. Many non-coding RNA gene finders use a moving window strategy, where the

likelihood that the fixed-size window contents contain a non-coding RNA gene is represented by a numerical

score. To that end, we tested our segmentation algorithm to detect precursor microRNA within a window

of flanking nucleotides, where the flanking nucleotides were extracted from the EMBL genomic file. Our

experiment can be summarized as follows.

• Download all the accession codes for precursor micro RNA, riboswitches and SECIS (only results

for precursor microRNA are reported here).

• Download the EMBL data for each of the above with 500 flanking nucleotides on each side (when

possible). In some cases, there were fewer than 500 nucleotides to the left, or less than 500 nucleotides

to the right, in which case the sequence was skipped.

• Run segmentation algorithm by varying the following parameters:

– flanking nts (50, 100, 200, 400)

– max segment size(100, 1000 which translate to not having a maximum size in practice)

– weight combinations w1 w2(10, 01, 11, 21, 12, 51, 15)

– base pairing probabilities, obtained by RNAfold -p

• Report histograms and measures of accuracy.

• Run segmentation with flanking nucleotides replaced by random combination (permutation)

62



September 22, 2009 17:11 WSPC - Proceedings Trim Size: 11in x 8.5in new

Table 1. Boundary prediction: precursor microRNA from Rfam of size ≤ 100 nt.

Left Border Right Border Stats

Parameters Mean St Dev Mean St Dev Sensitivity PPV

w1 = 1, w2 = 0 − 50 9.984 16.193 -9.486 17.115 0.774 0.990
w1 = 1, w2 = 0 − 100 10.032 15.814 -10.035 17.441 0.770 0.992
w1 = 1, w2 = 0 − 200 9.691 15.059 -10.887 17.450 0.765 0.993
w1 = 1, w2 = 0 − 400 10.206 15.899 -11.038 18.063 0.761 0.992

w1 = 0, w2 = 1 − 50 -2.453 14.132 1.891 13.149 0.927 0.888
w1 = 0, w2 = 1 − 100 -1.807 7.102 1.379 11.489 0.969 0.936
w1 = 0, w2 = 1 − 200 -3.331 11.541 4.199 10.462 0.963 0.887
w1 = 0, w2 = 1 − 400 -4.113 11.803 3.351 12.122 0.949 0.876

w1 = 1, w2 = 1 − 50 -0.598 15.612 1.235 14.142 0.922 0.903
w1 = 1, w2 = 1 − 100 -0.701 9.917 1.428 10.856 0.956 0.935
w1 = 1, w2 = 1 − 200 -1.492 11.211 1.624 10.344 0.945 0.916
w1 = 1, w2 = 1 − 400 -1.322 12.006 1.483 12.571 0.935 0.909

w1 = 2, w2 = 1 − 50 -0.524 15.994 0.125 15.654 0.913 0.905
w1 = 2, w2 = 1 − 100 0.376 12.380 1.096 13.667 0.934 0.927
w1 = 2, w2 = 1 − 200 -0.299 15.326 -0.132 14.447 0.920 0.918
w1 = 2, w2 = 1 − 400 -0.640 15.196 -0.266 17.415 0.911 0.906

w1 = 1, w2 = 2 − 50 -1.958 12.122 0.846 11.772 0.933 0.908
w1 = 1, w2 = 2 − 100 -0.846 9.419 1.547 8.970 0.964 0.939
w1 = 1, w2 = 2 − 200 -2.251 10.180 2.080 9.906 0.953 0.911
w1 = 1, w2 = 2 − 400 -2.955 11.547 2.168 11.022 0.944 0.894

w1 = 5, w2 = 1 − 50 0.740 15.887 -0.723 17.444 0.901 0.913
w1 = 5, w2 = 1 − 100 1.968 15.787 -1.572 17.908 0.886 0.921
w1 = 5, w2 = 1 − 200 2.524 16.453 -1.482 16.025 0.886 0.927

w1 = 5, w2 = 1 − 400 2.392 17.011 -2.727 18.053 0.868 0.920

w1 = 1, w2 = 5 − 50 -2.408 13.061 1.129 12.430 0.931 0.899
w1 = 1, w2 = 5 − 100 -1.431 8.053 1.203 10.187 0.966 0.939
w1 = 1, w2 = 5 − 200 -2.997 10.655 3.569 10.482 0.960 0.894
w1 = 1, w2 = 5 − 400 -3.843 11.888 3.297 11.626 0.949 0.878

Tables 1 and 3 show, respectively, the results of our segmentation with and without maximum segment

size limit. The main conclusions that can be drawn are the following:

• Certain weight combinations yield very poor results, specially in the case of w1 = 0, w2 = 1 and

w1 = 1, w2 = 0 which means that both characteristics of inside and cross-segments are necessary.

• Giving a higher weight to cross-segment characteristics does not yield the best results which indicates

that the local structure of the precursor micro RNA is stronger than its lack of potentially base pair

with other regions in other suboptimal configurations.

• Overall, the weight combination w1 = 2, w2 = 1 achieves the best results.

• The algorithm is robust to the size of the flanking nucleotides.

• Limiting the maximum size of the segment does impact efficiency. Interestingly, the weight combi-

nation w1 = 5, w2 = 1 performs better in this case. This seems to indicate that a higher weight to

inside base pairings is necessary for larger instances since it reinforces its locality, i.e., if there are

more nucleotides there are potentially more possibilities of cross-segment base pairings which (in

this case), for nucleotides farther away in the primary sequence might not be very significant.

A very useful tool to visualize the quality of the results is to plot the distributions of both left and right

end segments of the calculated precursor micro RNA. This information is depicted in Figure 5. Note that

both distributions are very similar and they clearly show a higher concentration of segmentations in which

the distance from the actual end segment and the calculated one are very close to 0.

It is conjectured that precursor micro RNAs have a very strong local structure with which the flanking

nucleotides cannot compete. To prove that our algorithm is sensitive to that local structure (which is consis-

tent with the fact that a higher weight for inside segment yields better results) we have carried out a set of

experiments in which we permuted the flanking nucleotides before performing the segmentation. Results of
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Table 3. Boundary prediction: precursor microRNA from Rfam, no size limit.

Left Border Right Border Stats

Parameters Mean St Dev Mean St Dev Sensitivity PPV

w1 = 1, w2 = 0 − 50 9.113 16.578 -8.624 17.574 0.782 0.984
w1 = 1, w2 = 0 − 100 9.325 16.005 -9.341 17.723 0.777 0.989
w1 = 1, w2 = 0 − 200 9.016 15.235 -10.222 17.661 0.772 0.990
w1 = 1, w2 = 0 − 400 9.479 16.141 -10.322 18.314 0.769 0.988

w1 = 0, w2 = 1 − 50 -48.997 0.057 49.994 0.113 1.000 0.467
w1 = 0, w2 = 1 − 100 -98.990 0.098 100.000 0.000 1.000 0.304
w1 = 0, w2 = 1 − 200 -199.000 0.000 200.000 0.000 1.000 0.179
w1 = 0, w2 = 1 − 400 -399.000 0.000 400.000 0.000 1.000 0.099

w1 = 1, w2 = 1 − 50 -37.814 17.105 39.601 17.305 0.993 0.552
w1 = 1, w2 = 1 − 100 -58.402 42.203 62.003 42.980 0.978 0.507
w1 = 1, w2 = 1 − 200 -58.929 72.924 57.685 72.334 0.966 0.604
w1 = 1, w2 = 1 − 400 -60.941 99.448 65.014 99.134 0.957 0.614

w1 = 2, w2 = 1 − 50 -28.331 21.168 28.611 22.686 0.980 0.649
w1 = 2, w2 = 1 − 100 -34.624 39.918 33.177 40.922 0.956 0.666
w1 = 2, w2 = 1 − 200 -22.457 34.832 25.801 39.003 0.960 0.725
w1 = 2, w2 = 1 − 400 -25.801 43.108 30.119 45.335 0.948 0.702

w1 = 1, w2 = 2 − 50 -42.132 13.798 43.605 13.462 0.997 0.514
w1 = 1, w2 = 2 − 100 -76.897 34.990 80.740 33.833 0.990 0.395
w1 = 1, w2 = 2 − 200 -123.775 82.962 120.785 84.169 0.989 0.385
w1 = 1, w2 = 2 − 400 -214.867 169.619 211.993 169.320 0.979 0.343

w1 = 5, w2 = 1 − 50 -11.170 21.748 10.871 21.846 0.943 0.802
w1 = 5, w2 = 1 − 100 -9.219 26.431 9.563 26.815 0.913 0.821
w1 = 5, w2 = 1 − 200 -7.762 22.604 7.460 22.576 0.923 0.836

w1 = 5, w2 = 1 − 400 -6.720 25.015 5.871 24.055 0.905 0.840

w1 = 1, w2 = 5 − 50 -45.601 10.258 46.775 9.366 0.998 0.488
w1 = 1, w2 = 5 − 100 -87.682 25.800 91.077 23.983 0.998 0.341
w1 = 1, w2 = 5 − 200 -174.678 53.153 167.801 62.362 0.999 0.226
w1 = 1, w2 = 5 − 400 -339.252 118.600 352.521 104.862 0.995 0.136

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

-80 -60 -40 -20  0  20  40  60  80

nucleotide distance

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

-120 -100 -80 -60 -40 -20  0  20  40  60

nucleotide distance

Fig. 5. Distribution of boundary discrepancy for 5′ end (left panel) and 3′ end (right panel) of precursor microRNAs within
window having 400 nt flanking both on left and right of microRNA. Analysis performed over all precursor microRNAs from
Rfam 9.1 (January 2009, 454 subfamilies). Here, discrepancy is defined as the absolute value of the difference between predicted
boundary and real boundary.

this are shown in Table 5 (where we compare them against the normal seuquence, i. e., that with the actual

flanking nucelotides), and the distributions are depicted in Figure 6. These results are for weight combination

w1 = 2, w2 = 1 with 400 flanking nucleotides and with no maximum segment size limit. As it can be seen,

results are very similar to those for the actual sequence which proves the robustness of our approach.
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Table 5. Boundary prediction: permuted versus unpermuted tails of precursor miRNA

Left Border Right Border Stats

Parameters Mean St Dev Mean St Dev Sensitivity PPV

Normal − 50 -0.524 15.994 0.125 15.654 0.913 0.905
Normal − 100 0.376 12.380 1.096 13.667 0.934 0.927
Normal − 200 -0.299 15.326 -0.132 14.447 0.920 0.918
Normal − 400 -0.640 15.196 -0.266 17.415 0.920 0.918

Permuted − 50 1.129 14.073 -2.334 15.948 0.899 0.939
Permuted − 100 0.251 11.629 -1.074 14.183 0.928 0.944
Permuted − 200 1.180 14.354 0.113 12.329 0.918 0.933
Permuted − 400 0.287 14.406 -0.955 15.669 0.910 0.924
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Fig. 6. Distribution of boundary discrepancy for 5′ end (left panel) and 3′ end (right panel) of precursor microRNAs within
window having 400 nt flanking both on left and right of microRNA. Analysis performed over all precursor microRNAs from
Rfam 9.1 (January 2009, 454 subfamilies) with permuted flanking nucleotides.

Table 7. Manual and computed segmentations of 16S rRNA.

Organism & method seg 1 seg 2 seg 3 seg 4 fit 1 fit 2 fit 3 fit 4

E. coli (manual) 27 − 509 515 − 857 866 − 1326 1329 − 1476 0.628 0.623 0.462 0.658
E. coli (computed) 1 − 338 339 − 350 351 − 1132 1133 − 1542 0.399 0.635 0.573 0.570
rat mitochondrial (manual) 20 − 279 279 − 509 526 − 829 829 − 953 0.550 0.459 0.559 0.323
rat mitochondrial (computed) 1 − 459 460 − 484 485 − 928 929 − 953 0.551 0.760 0.785 0.6221
H. volcanii (manual) 21 − 495 501 − 857 865 − 1342 1342 − 1474 0.600 0.618 0.597 0.617
H. volcanii (computed) 1 − 84 85 − 405 406 − 433 434 − 1476 0.551 0.760 0.785 0.622
C. reinhardii (manual) 27 − 509 515 − 857 866 − 1326 1329 − 1476 0.632 0.622 0.596 0.647
C. reinhardii chloroplast (computed) 1 − 754 755 − 1350 1351 − 1413 1414 − 1476 0.480 0.466 0.673 .563

3.2. Finding RNA domains

Our initial motivation for developing a segmentation algorithm was to determine an automated method to

decompose large X-ray structures of RNA, such as PDB code 1FFK, into coherent units, or domains. Also,

to segment RNA sequences in which secondary structure is available.

With the intent of benchmarking the accuracy of MFOLD, Jaeger et al.6 performed a manual segmenta-

tion of E. coli 16S rRNA, as well as the 16S-like rRNA domains of rat mitochondria, Halobacterium volcanii,

and Chlamydomonas reinhardii chloroplast into 4 segments.

In Table 7 we present results from the manual and optimal segmentation of 16S rRNA into four seg-

ments. Optimal segmentation is calculated using base pairing probabilities with weights w1 = 2, w2 = 1

(these weights were determined by previous benchmarking experiments). In that table, column headings,

seg abbreviates segment, while fit abbreviates fitness. The manual segmentation was created by Jaeger et

al.,6 while the computed segmentation used the parametric algorithm described in Figure 2. Note that we

could have modified (but did not) the parametric segmentation to discard with no penalty a small initial
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Table 8. Average, min, max fitness over all segments in manual segmentation of 16S rRNA.

Organism & method avg min max fit 1 fit 2 fit 3 fit 4

E. coli 0.308 −1.000 0.857 0.628 0.623 0.462 0.658
rat mitochondrial 0.190 −1.000 0.857 0.550 0.459 0.559 0.323
H. volcanii 0.292 −1.000 0.857 0.600 0.618 0.597 0.617
C. reinhardii 0.299 −1.000 0.916 0.632 0.622 0.596 0.647

Fig. 7. (Left) Segmentation of the riboswitch with PDB code 3F4H:X. This optimal segmentation has 4 segments, respectively
of weights 0.0, 0.913, 1.913, 2.038. Segmentation produced by applying software RNAview,19 which annotates all hydrogen bonds
(canonical base pairs, non-canonical base pairs, single nucleotide stacking). Using the resulting contact map, we determined
an optimal segmentation, where the fitness function used involved a weight of 2 for contacts within the same segment and a
penalty of 1 for contacts between segments. (Right) Three-dimensional display of the same segmentation, where segments of
PDB file 3F4H:X are demarcated in different colors, using Pymol.

and final segment. Since this was not done, all computed segmentations begin at nucleotide 1 and end at the

last nucleotide, unlike that from the manual segmentation. This explains how a manual segmentation can

paradoxically have higher fitness than the computed optimal segmentation.

Even though our optimal segmentation does not always resemble the manual segmentation, from Table

8 (which shows average, minimum and maximum fitness for all segments) it can be seen how all manually

calculated segments have fitnesses higher than the average. This seems to indicate that our fitness function

correlates with reality but that possibly more specific information needs to be added to boost efficiency.

Figure 7 presents two alternative representations of the optimal segmentation of FMN riboswitch

(3F4H:X) with respect to the base fitness function defined from the contact map (base pairing) output

from RNAview. The left panel of Figure 7 depicts the segmentation in text format while the right panel

displays the segmentation as a Pymol image in which different segments appear in different colors. This

latter image shows more clearly the division in domains, which appear to be reasonable in light of its 3D

representation.

Alternatively, the base fitness function can be defined using Voronoi tessellation computed by Qhull.

Segmentations obtained in this manner are applicable to both RNA and protein 3-dimensional structures;

indeed, Figure 8 displays optimal segmentations of the secretin protein with PDB code 1Y9L and of the

metabotropic glutamate receptor protein (mGluR) with PDB code 1EWT. Note that segments determined

by structural segmentation are not simply α-helices or β-strands.

4. Conclusions

In this paper, we present a dynamic programming algorithm that produces an optimal segmentation for

RNA, given either an RNA sequence, or secondary structure, or tertiary structure. Given 3-dimensional RNA

structures, the fitness function can be defined using Voronoi tessellation obtained by Qhull or alternatively

using contact maps produced by RNAview. Given an RNA sequence, the fitness function can be defined
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Fig. 8. (Left) Segmentation of the secretin protein with PDB code 1Y9L. Gram-negative pathogens such as Shigella, Salmonella,
Yersinia and Pseudomonas use a type III secretion apparatus to translocate virulence proteins into host cells. X-ray structure
determined by Lario et al.9 (Right) Segmentation of the metabotropic glutamate receptor (mGluR) with PDB code 1EWT.
X-ray structure determined by Kunishima et al.8 Each segment in the optimal segmentation is displayed in a different color.
Images produced by Pymol.

from base pairing probabilities computed by McCaskill’s algorithm.e

Optimal parametric segmentation, described in Figure 2, as well as simultaneous optimal segmentation

of all intervals, described in Figure 3, both appear to be new. In future work, we plan to describe the dynamic

programming computation of the partition function for segmentations, as suggested in equation (10), and

to stochastically sample (suboptimal) segmentations. Applications of segmentation in the context of RNA

include (i) an automated method to decompose large RNA 3-dimensional structures into domains suitable

for estimating knowledge-based potentials or instead for benchmarking secondary structure algorithms, as

done manually by Jaeger et al.,6 (ii) a method to determine the possible 5′ and 3′ boundary of non-coding

RNA gene found within a window of a genome scanning algorithm. As future work we would like to add

other metrics to our fitness function as well as to perform exhaustive benchmarking on 3D segmentation

using Qhull. Preliminary results on trans-membrane proteins (Figure 8) show the potential of this fitness

function whenever X-ray structures are available.
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RNAz is a widely used software package for de novo detection of structured noncoding RNAs in comparative genomics
data. Four years of experience have not only demonstrated the applicability of the approach, but also helped us to
identify limitations of the current implementation. RNAz 2.0 provides significant improvements in two respects: (1)
The accuracy is increased by the systematic use of dinucleotide models. (2) Technical limitations of the previous
version, such as the inability to handle alignments with more than six sequences, are overcome by increased training
data and the usage of an entropy measure to represent sequence similarities. RNAz 2.0 shows a significantly lower
false discovery rate on a dinucleotide background model than the previous version. Separate models for structural
alignments provide an additional way to increase the predictive power. RNAz is open source software and can be
obtained free of charge at: http://www.tbi.univie.ac.at/~wash/RNAz/
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1. Introduction

Noncoding RNAs (ncRNAs) are transcripts that are not translated to proteins but function directly on the

RNA level. During the past few years it has become evident that such “RNA genes” are more common than

previously thought. MicroRNAs, for instance, have profoundly changed our view of gene regulation, and

several completely new classes of ncRNAs were discovered recently.1 They have been found to be involved

in such diverse processes as transcriptional regulation,2–4 post-transcriptional regulation,5 chromatin modi-

fication and epigenetics,6,7 and development.8 Non-coding RNAs thus are key players in cellular regulation,

a realization that has also moved the computational analysis and the annotation of ncRNAs at genome-wide

scales into the focus of attention.

With the rapidly increasing availability of genomic sequence data, the de novo prediction of ncRNAs is of

particular interest. While protein gene prediction is a classical problem in computational biology and has been

studied for more than 15 years, RNA gene prediction is still in its infancy. Nevertheless, significant progress

has been made regarding the prediction of “structured ncRNAs”. This class of ncRNAs is characterized

by evolutionary conserved secondary structures which appear to be important for their function. Most of

the well-characterized ncRNAs belong to this class. Leading software tools developed for de novo RNA gene

finding therefore use evolutionary conservation of functional secondary structures as the main signal to detect

these ncRNAs.9–13

RNAz also detects structural ncRNAs by means of a comparative approach. In addition to measuring

evolutionary conservation, however, it also explicitly evaluates the thermodynamic stability of the secondary

structure.14 A support vector machine (SVM) is then used to evaluate both criteria. RNAz 1.0 has been used

successfully to map structural ncRNAs in a wide variety of genomes.15–20 A large number of these predictions

have also been verified experimentally.21–23 Moreover, the generic approach and many algorithmic details

developed for RNAz 1.0 have been re-used, extended, and adapted to other problems in the field of RNA

gene-finding.11,24–30

The wide-spread use of RNAz 1.0 also helped to identify some of its limitations and to point our directions
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for improvements. In this contribution, we describe a major update of the RNAz program. It is based on the

results of two follow-up studies,31,32 on our experiences gained during many real-life applications, in particular

the ENCODE pilot project,33,34 and last but not least, on the user feedback we received over the past four

years.

One major improvement is that RNAz 2.0 now allows to calculate thermodynamic stability scores based

on a dinucleotide background model. It has been noted early-on that folding algorithms utilizing stacking

energies of adjacent base-pairs in their energy model are sensitive to the dinucleotide content.35 In the

context of genome-wide ncRNA predictions, this effect can lead to an increased number of false positive

calls as pointed out several times.32,33,36 The new dinucleotide model in RNAz 2.0 now avoids this source of

potential false positives and increases the accuracy of the program.

Another major limitation of RNAz 1.0 was the fact that only alignments with at most six sequences

could be scored. This rather arbitrary restriction was the result of the limited amount of comparative data

sets that were available at the time. During the past few years, however, comparative data sets have grown

massively and therefore we adapted the algorithm to allow flexible analysis of alignments of any size.

2. Methods

2.1. Overview of the RNAz algorithm

RNAz predicts functional RNA structures on two independent criteria: (i) thermodynamic stability and (ii)

structural conservation.

A common way to express thermodynamic stability is in terms of a z-score. This is simply the number

of standard deviations by which the minimum free energy (MFE) deviates from the mean MFE of a set of

randomized sequences with the same length and base composition. A negative z-score thus indicates that a

sequence is more stable than expected by chance. As this procedure involves energy evaluation of a large set

of random sequences it is not applicable for large-scale genomic screens. RNAz instead uses support vector

regression (SVR) to estimate the mean and the standard deviation based on the nucleotide composition of

a sequence.

RNAz evaluates evolutionary conservation of RNA structures in terms of the structure conservation index

(SCI). A consensus secondary structure is predicted using the RNAalifold algorithm,42 which is an extension

of standard minimum free energy folding algorithms with the constraint that all sequences have to fold

into a common structure. Compensatory mutations, i.e. mutations that preserve a certain base pair, yield

bonus energies, while inconsistent mutations add penalty energies. RNAz measures structural conservation

by calculating the ratio of the consensus folding energy to the unconstrained folding energies of the single

sequences.

Both criteria are combined by another support vector machine model that classifies the input alignment

as “structural RNA” or “other”. A graphical overview of the RNAz algorithm is depicted in Fig. 1. In the

following, we describe independent refinements of these steps that improve the overall prediction accuracy

of the RNAz approach.

2.2. z-score regression for dinucleotide shuffled sequences

As in RNAz 1.0, we use support vector regression to compute z-scores for folding energies because the direct

approach via repeated shuffling and folding is too costly for genome-wide applications.

In order to efficiently train the regression engine of RNAz 2.0, we used the following grid-like procedure:

We first generated synthetic sequences of length 50 with G+C content, A/(A+U) ratio, and C/(C+G) ratio

ranging from 0.20 to 0.80 in steps of 0.05. For each of these start sequences we then generated 500,000

mononucleotide shuffled sequences and discarded those sequences where the relative difference between the

observed dinucleotide frequency and the expected frequency exceeded the threshold of 1.5. Evaluation on

human ENCODE sequences showed that only a small fraction of approximately 1% of the sequences have

a higher value and it was hence considered to be a reasonable threshold. Sequences of length 100, 150 and

70



by an explicit sequence sampling

procedure

Estimate mean (µx) and

standard deviation (σ)

for each sequence

Calculate SVR descriptors

consensus free energy calculation

Use RNAalifold for

of the alignment (Econsensus)

a structural alignment?

Was the input

Use RNAfold for

calculation of each sequence

minimum free energy (Ex)

Calculate average z-score

z̄ = 1
N

∑

x∈A

Ex−µx

σx

Descriptors within trainings range?

and remove all gaps

Extract single sequences

µx, σx

descriptors sequences

sequences

Ex

Econsensus

z̄

SCI

H

Classification probability

(Preprocessed) multiple
sequence alignment

conservation index

Calculate the structure

Calculate normalized

Shannon entropy

of the alignment

H = − 1
L

L
∑

i

∑

j∈Σ
pi

j log2 pi
j

SCI = Econsensus
1
N

∑

x∈A

Ex

20-30
SVR SVR

30-35 35-40
SVR SVR

40-45 45-50
SVR

50-55
SVR

55-60
SVR

60-65
SVR

65-70
SVR SVR

70-80

trained on

SVM

ClustalW

alignments

trained on

SVM

alignments

LocARNATE

Fig. 1. Outline of the RNAz 2.0 work-flow and algorithm. In a first step large genomic multiple alignments are processed using
rnazWindow.pl into smaller alignments. This filtering procedure involves several steps: (i) overlapping windows given a fixed
window and step size are created, (ii) sequences that contain too many gaps are removed and (iii) from the remaining sequences
only those sequences are kept that meet a predefined average pairwise identity threshold. The resulting alignments are then
separately processed by RNAz. First, structure and energy predictions are performed for both the single sequences and the
alignment. These results can be immediately combined to calculate the SCI as the measure of the evolutionary conservation of
the RNA sequences in the alignment. In a second step, the mean free energy and the standard deviation used for the calculation
of the z-score are estimated. For this purpose descriptors based on the nucleotide composition (G+C content, A/(A+U) ratio,
C/(C+G) ratio, all 16 dinucleotide frequencies and the length of the sequence) are calculated for each sequence. If descriptors are

within the training boundaries they are passed to the corresponding support vector regression (SVR) based on the G+C content.
Otherwise, the mean and the standard deviation are evaluated explicitly by folding of 1,000 randomized sequences with the
same dinucleotide composition. In a final step the average z-score of the sequences, the SCI and the normalized Shannon entropy
of the alignment are passed to the classification SVM, which returns a probability estimate that the given alignment harbours
thermodynamically stable and/or evolutionary conserved RNA secondary structures. Parts that are highlighted in dashed boxes
are new or modified components of RNAz algorithm. RNAfold and RNAalifold are part of the Vienna RNA Package. Numbers
in the SVR boxes indicate the G+C content the particular SVR is trained on. For a detailed explanation of the formulas we
refer to section 2.3.

200 where then generated by concatenating the initial set of sequences 2 to 4 times. This initial set can be

generated very quickly and served as the basis for the selection of a much smaller, approximately evenly
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spaced, training set with representative dinucleotide frequencies. A sequence from the initial set was only

added to the representative training set if the Euclidean distance of the dinucleotide frequencies to any

sequence already present in the representative set was above a certain threshold (0.075 for a G+C content of

0.20 and 0.80, 0.100 for a G+C content of 0.25, 0.30, 0.70 and 0.75, and 0.125 for the remaining range). For

the final training set we also added sequences of length 75, 125 and 175, which were generated as described

above, resulting in a total of 1,155,737 training instances.

For each of these instances, we generated 1,000 randomized sequences by the Altschul-Erikson algo-

rithm37 with the same dinucleotide composition and used RNAfold38 with parameter -d2 to evaluate their

folding free energy. More than 1 million training instances are by far too many to be used in SVM training

procedures in reasonable time. For this reason we split the training instances into smaller subsets according

to their G+C content. In total we have 10 subsets with at most 150,000 training instances. We used the

SVM library LIBSVM to train regression models for the mean and the standard deviation for each of the

ten subsets. As input features we used the G+C content, the A/(A+U) ratio, the C/(C+G) ratio, all 16

dinucleotide frequencies and the length of the sequence scaled to the interval [0,1]. The regression for esti-

mating the mean free energy was trained to learn energy per nucleotide, while the standard deviation was

not scaled. We chose the ν variant of regression and a radial basis function kernel. The standard grid search

approach was used to find optimal combinations for SVM parameters. Regression accuracy was monitored

on an independent test set compiled from randomly selected sequences of variable length from 50 to 200 nt

from the human ENCODE regions. The average number of support vectors for the mean and the standard

deviation regression models are 8,763 and 8,607, respectively.

2.3. Training data generation and training of the SVM classifier

Training and test sets are based on the data available in the Rfam 9.1 database.39 93 RNA families were

selected based on their signals for thermodynamic stability and structural conservation. The RNAz 2.0

training set covers a broad range of different RNA families including major classes such as tRNAs, snoRNAs,

microRNAs, riboswitches, and bacterial regulatory RNAs.

For each RNA family, a set of alignments with varying numbers of sequences and average pairwise

identities was generated using the following strategy: Rfam full alignments were used if they contained

less than 300 sequences, otherwise we used the seed alignments. For our purpose the use of at most 300

sequences proofed well to generate a set of alignments over the desired range of average pairwise identities.

Rfam alignments were utilized only as a source to retrieve family members of a particular ncRNA class and

only extracted, ungapped RNA sequences were used for subsequent analyses.

First, Rfam alignments were filtered to remove nearly identical sequences, so that the training alignments

contained sequences with at most 98% identity. The sequences were then re-aligned using ClustalW. For each

of these ncRNA family alignments we then proceeded as follows: for each number of sequences from 2 to 15

we generated at most 10 alignments with a randomly chosen average pairwise identity between 50 and 98%

and with a maximum relative difference in sequence lengths of 65% using rnazWindow.pl which is part of

the RNAz analysis pipeline.44

To ensure that this set of positive training examples contained only instances with good structural

conservation signals we filtered alignments by using tree editing distances between the structures of the

sequences in the alignment as a quality measure of structural conservation. Ordered, rooted trees can be

deduced from the dot-bracket notation of RNA secondary structures. Tree editing defines a metric in the

space of trees by a set of operations (deletions, insertion and relabeling of nodes) and hence can be used

to calculate distances between RNA secondary structures.31 For each alignment we extracted sequences,

removed gaps and calculated the averaged pairwise tree editing distance using RNAdistance with options

-d2 -Dh to enable dangling ends and to use the HIT representation for RNA secondary structures. We

repeated this for a set of 100 randomized alignments and calculated an empirical p-value as a measure of

structural conservation. Alignments with a p-value higher than 0.05 were removed from the training set.

Alignments retained after this filtering procedure were realigned with ClustalW with standard options for
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application to sequence-based alignments.

For the generation of structural alignments for the training set we chose to use LocARNATE,40 which is

a structural alignment program based on the Sankoff algorithm for the simultaneous solution of the RNA

folding and the alignment problem. LocARNATE uses RNAfold for structure predictions and hence the same

energy parameters as RNAz does. LocARNATE was called with options --no-seq --no-struc to generate

global, structural alignments.

Negative instances of the training set were generated by shuffling using multiperm41 v. 0.9.3 if the

normalized Shannon entropy of the alignment31 was less than 0.50. Otherwise, alignments were simulated

using SISSIz32 to ensure full randomization for the more diverse alignments where shuffling can become

inefficient. The final training set was composed of 10,538 alignments for each the positive and the negative

class.

The RNAz 2.0 SVM classifier uses three features to detect structured noncoding RNAs: (i) the average

minimum free energy z-score z̄ estimated from a dinucleotide shuffled background, (ii) the SCI and (iii) the

normalized Shannon entropy H of the alignment as a measure for the content of evolutionary information.

Consider an alignment A consisting of N sequences. Let Ex denote the minimum free energy of sequence

x, and let µx and σx be the mean and standard deviation, respectively, of the folding energies of a large

number of random sequences of the same length and same dinucleotide composition as x. The averaged

z-score of the alignment A is defined as

z̄ =
1

N

∑

x∈A

Ex − µx

σx

The SCI of an alignment is given as the fraction of the consensus folding free energy (Econsensus) to the

average of the folding free energies of the single sequences:

SCI =
Econsensus

1
N

∑

x∈A

Ex

The normalized Shannon entropy H of an alignment A of RNA sequences over the alphabet Σ = {A, C, G,

U, -} is defined as the sum of the Shannon entropies of the individual columns divided by the length of the

alignment denoted by L:

H = −
1

L

L
∑

i

∑

α∈Σ

pi

α log2 pi

α

The probability pi
α is approximated by the observed frequency of character α in alignment column i (nor-

malized by the number N of sequences in the alignment). All features were scaled to a range of [-1,1].

Standard grid search combined with a 10-fold cross validation was applied to find optimized SVM param-

eters. Among the models with the best cross-validation accuracy (top 20) we chose the model that showed

best performance on an independent test set created the same way as the training set. The output of the

final classification SVM is a probability estimate that the input alignment contains thermodynamically stable

and/or structurally conserved RNA sequences.

A second, independent, SVM classifier was trained on sequence/structure-based alignments generated

by LocARNATE using the same procedure.

3. Results

3.1. Dinucleotide based z-scores

To estimate the mean and standard deviation of folding energies for mononucleotide shuffled sequences it is

feasible to sample uniformly simply by varying variables describing the four mononucleotide frequencies and

the length of the sequence on a grid. This approach cannot, however, be extended that easily for dinucleotide

shuffled sequences. One has to consider the much larger space of dinucleotide compositions that is occupied by
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Fig. 2. z-scores calculated by support vector regression in comparison with z-scores determined from 1,000 random samples
preserving dinucleotide frequencies for 10,000 randomly drawn sequences from the human ENCODE regions. Correlation of
z-scores is 0.996 and the mean absolute error is 0.076.

sequences of practical interest. In this work we use a grid-like approach, where we first apply uniform sampling

to cover the mononucleotide space and then choose, for each data point in the grid, a representative set of

sequences that covers the dinucleotide space for that particular base composition. However, this procedure

still gave more than one million training instances. The training data was split into different ranges of

the G+C content to guarantee efficient training and fast prediction. This comes at the price of increased

memory consumption but keeps the number of support vectors comparable to the approach used in RNAz

1.0. Accuracy of the z-score regression for dinucleotide shuffled sequences was evaluated on 10,000 randomly

chosen sequences of variable length from 50 to 200 nt from the human ENCODE regions34 (Fig. 2) and

genomic sequences of D. melanogaster and E. coli. The mean absolute error (MAE) and the correlation (R)

of z-scores calculated by SVM regression compared to z-scores determined from 1,000 random samples is

0.0748 and 0.996, respectively (n = 30, 000; genomic sequence from ENCODE regions, D. melanogaster, and

E. coli). Comparisons of z-scores determined from 1,000 dinucleotide shuffled sequences to 100 dinucleotide

shuffled sequences (MAE= 0.107, R = 0.992) and to 1,000 mononucleotide shuffled samples (MAE= 0.420,

R = 0.916) clearly demonstrate that our method is a suitable approach for fast and efficient estimation of

dinucleotide controlled z-scores. RNAz 1.0 also showed restrictions on the base composition because of the

training range of the SVR. This limitation is now overcome by explicit generation of shuffled sequences once

the base composition of a sequence is out of the training range. Since boundaries have been chosen broadly

(e.g. G+C content from 20 to 80%) this will only apply in a small minority of cases.

3.2. New training sets and improved classification model

Since the postulation of the SCI, it has been a major point of criticism that the SCI evaluates structural

conservation on the energy level rather than on the RNA structures themselves. However, in previous study31

it has been shown that the SCI is on average the most powerful method and that it is only outperformed by
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Fig. 3. Accuracy of RNAz 2.0 classification (black) vs. RNAz 1.0 classification (orange) on a previously published data set for
the evaluation of noncoding RNA gene finders.32 The positive instance data set consists of 4,303 alignments of structural RNA
families (5S ribosomal RNA, U2 spliceosomal RNA, tRNA, Hammerhead ribozyme, U3 snoRNA, U5 spliceosomal RNA, Group
II catalytic intron, and Mir-10 microRNA) with two to six sequences per alignment. The negative instance data set consists of
4,303 alignments taken from random genomic location, which resemble approximately the same dinucleotide composition and
conservation degree as the positive set. The inset shows the region of high specificity were RNAz 2.0 clearly outperforms the old
version.

other approaches in the high sequence identity range. Attempts to use other conservation measure methods

than the SCI, however, failed to give results of comparable quality (data not shown).

To use the SCI for efficient classification one has to take into account the average pairwise identity and

the number of sequences as well. Due to the lack of comparative data at the time of training of the initial

RNAz algorithm limits on these two descriptors were rather arbitrarily chosen. In this work we generated a

new training set covering a broader range of RNA families and evaluate sequence variation in terms of the

normalized Shannon entropy which has been shown to combine both sequence variation and the number of

sequences into one measure.31 This does not only result in dimensionality reduction of the final classification

model, but also overcomes the need to set an upper boundary to the number of sequences in an alignment.

The new RNAz 2.0 algorithm now uses the average z-score of the sequences in the alignment based

on a dinucleotide background model, the SCI and the normalized Shannon entropy as features in the final

classification model. To evaluate the predictive power of RNAz 2.0 we chose a test set used in a previous

study.32 This test set is especially well suited as it contains randomly chosen genomic regions from vertebrate

alignments as negative controls. The background dinucleotide content in vertebrate genomes is known to be

the main reason for false positive calls in RNAz 1.0.33 Although both versions perform well on this test set,

RNAz 2.0 clearly outperforms version 1.0 in the high specificity range (Fig. 3). For example, at the generally

used 0.01 false-positive cutoff, RNAz 2.0 shows 0.899 sensitivity compared to 0.688 in the old version.

It is a well known fact that sequence-based alignment methods fail to give high quality alignments

regarding RNA secondary structures in low average pairwise identity ranges. By using structural alignments

one can expect an improvement in discrimination capability of the SCI for alignments with low sequence
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Fig. 4. ROC curves for the RNAz 2.0 prediction accuracy on sequence-based alignments (black) vs. structural alignments (red).
A significant improve of the overall predictive power of RNAz 2.0 is achieved by use of structural alignments. The test set is
composed of 2,455 alignments of various ncRNA families with an average pairwise identity between 30 and 70%, as well as
a negative set consisting of 2,455 alignments derived by randomization of reference alignments with multiperm or SISSIz as
described in section 2.2. Sequence-based alignments were generated with ClustalW, while structural alignments were generated
with LocARNATE.

similarity.11 Therefore, we trained a separate SVM decision model based on sequence/structure alignments,

similar to the approach used in RSSVM.30 Structural alignments were generated using LocARNATE, a multiple

alignment variant of LocARNA.46 As depicted in Fig. 4 structural alignments improve the overall predictive

power of RNAz.

Recent studies (e.g. Washietl et al.33) have shown that RNAz suffers from a high false discovery rate

(FDR). We therefore evaluated the performance of both versions for the human ENCODE regions. 17-way

MAF alignments based on the human genome assembly hg.17 were downloaded from the UCSC genome

browser. In total we screened 193,634 MAF alignments derived by pre-filtering with rnazWindow.pl with

standard options (window length is 120 nt, step size is 40 nt, average pairwise identity the resulting alignment

is optimized to is 80%, and at most six sequences are allowed). Both reading directions were considered in

our analysis. A dinucleotide background model was generated with SISSIz32 and all hits detected by RNAz

on this data set were considered to be false positives. Results are summarized in Tab. 1. While RNAz 1.0

shows a very high FDR of around 80%, the FDR of RNAz 2.0 is much lower being around 54% for high

confident hits (classification probability > 0.9). It seems noteworthy, that in a previous study33 the FDR for

RNAz 1.0 on ENCODE data was estimated to be around 50%. This estimate was based on a rather simplistic

ad hoc method to correct for the dinucleotide bias. The new results are based on the more accurate SISSIz

null model and demonstrate that RNAz 1.0 is even more affected by the dinucleotide bias than previously

assumed. The new version, however, reduces this source of false positives significantly.

To investigate a potential G+C bias of RNAz that was observed for version 1.0,33 we also trained a

classification model that included the G+C content as fourth feature. This additional feature, however, had

little impact on the predictions. In particular, the distribution of the G+C content of the positive predictions
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Table 1. Comparison of the false discovery rate (FDR) based on ENCODE
regions and a dinucleotide background model for low (P > 0.5) and high
(P > 0.9) confidence hits. A hit corresponds to a single alignment derived from
pre-filtering of ENCODE MAF alignments with rnazWindow.pl.

RNAz 1.0 RNAz 2.0

# low conf. # high conf. # low conf. # high conf.

ENCODE regions 17,814 6,854 6,880 2,259
background 14,489 5,596 4,090 1,219

estimated FDR 81% 82% 59% 54%

remained nearly unchanged (data not shown). This suggests that the elevated G+C content of RNAz hits

is not an artificial bias, but rather reflects the G+C content of true functional RNAs. Consistent with this

observation, the G+C bias of structured RNAs has been used successfully for de novo prediction of RNA

genes.43 Preliminary analysis of the ENCODE data showed that the effect is smaller for RNAz 2.0 than in

the earlier version.

3.3. Computational speed

The performance of RNAz 2.0 in comparison to RNAz 1.0 was benchmarked on 50,000 randomly chosen MAF

alignments from the ENCODE data set. Alignment length was 120 nucleotides and alignments contained

at most six sequences. Experiments were conducted on an Intel Xeon 2.40GHz CPU. For each alignment

both reading directions were examined, resulting in a total of 100,000 alignments that had to be scored. The

execution time required by RNAz 1.0 was 202 min, RNAz 2.0 with explicit shuffling switched off was 252

min and RNAz 2.0 using explicit shuffling was 1,230 min. Although explicit shuffling had to be used for only

1% of the sequences (5,524 out of 549,210), it comes with an tremendous overhead increasing the run time of

RNAz 2.0 almost 5-fold. We extracted those alignments where explicit shuffling was used and compared the

classification probability to the one derived from calling RNAz with option --no-shuffle to avoid explicit

shuffling. For the vast majority of cases (96%) the change in classification probability was less than 1%. For

this data set the maximal observed difference was 0.21. In general, we observed larger differences in the range

from 0.2 to 0.8 than in the regions close to 0 or 1.

With option --no-shuffle, RNAz 2.0 has an execution time that is increased by about 25% compared

to RNAz 1.0.

4. Future directions

In this work we present a major update of the RNAz algorithm. Evaluation of thermodynamic stability has

been improved by considering a dinucleotide background model. This directly translates into a significantly

lower false discovery rate. In addition to the dinucleotide z-score, the overall prediction accuracy is improved

by a combination of the use of a new training set and the normalized Shannon entropy as a measure of

sequence variation. Furthermore, the updated version is not any more restricted to limitations concerning

the base composition or number of sequences in the input alignment.

The generation of structural alignments is computationally expensive but we showed that they can

improve the RNAz classification power. This is true in particular for alignments of low average pairwise

identity. Given that the overall computational complexity of LocARNATE is O(n4), the routine use of structural

alignments on a genome-wide scale is still out of reach, at least when off-the shelf hardware is used. In

general, it has to be questioned if ncRNA gene finding would benefit from realigning genomic alignments

available to date with a structural aligner. These alignments have been generated by means of sequence-

only based methods and therefore are not likely to contain homologous RNA sequences that evolve fast

on nucleotide level but retain structural conservation. A feasible strategy, however, is the pre-selection of
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syntenic regions based on better-conserved flanking regions.13 Such an approach could be employed for

the detection of conserved local structures in the untranslated regions of protein-coding mRNAs, where

orthology is established based on similarities of the much better conserved coding sequences. The re-scoring

of positively scored hits of a sequence-based RNAz screen after re-aligning them with a structural aligner

may help to increase the overall accuracy, in particular for relatively poorly conserved alignment slices. One

could also use RNALfold45 augmented with the z-score prediction engine of RNAz to screen for loci that show

signature of increased thermodynamic stability then re-evaluate these loci using structural alignments with

RNAz 2.0 to also account for structural conservation.

An open question, not covered by this work, is how to address the growing number of species in genomic

alignments. The use of the normalized Shannon entropy helped us to remove the upper limit on the number

of sequences in the alignment. Preliminary analysis of RNAz 2.0 on multiz 44-way, 28-way and 17-way

alignments shows, however, that the simple use of more sequences does not necessarily correlated with

improved classification power. To a large extent the increased conservation signal is counteracted by increasing

levels of alignment errors. Structural variation of the ncRNAs themselves also poses technical challenges. To-

date, an algorithm that addresses both possible misalignments and structural variation is still missing.

RNA secondary structure prediction is sensitive to the exact ends of the input sequence. The use of

arbitrarily determined alignment windows of fixed width thus introduces noise. This issue will be allevi-

ated in a forthcoming update of RNAz that addresses the pre-processing of long genomic alignments. Here,

the sliding window approach will be replaced by the systematic use of RNALalifold,47 an algorithm that

computes locally stable consensus RNA secondary structures. These are then used to extract alignments of

self-contained (sub)structures for RNAz scoring.

RNAz 2.0 was trained on two particular alignment methods, ClustalW for sequence-based alignments

and LocARNATE for structure-based alignments. As RNAz uses a machine learning approach, we have to expect

some influence of the alignment algorithm since the features passed to the SVM implicitly also incorporate

properties of the alignment algorithms themselves. It may thus become necessary to either re-align the input

data or to train decision models for alternative alignment methods.

Supplementary material

An Electronic Supplement located at www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/09-026/

compiles a supplemental figure and data sets used in this work.
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Current methods for high throughput sequencing (HTS) for the first time offer the opportunity to investigate the
entire transcriptome in an essentially unbiased way. In many species, small non-coding RNAs with specific secondary
structures constitute a significant part of the transcriptome. Some of these RNA classes, in particular microRNAs
and snoRNAs, undergo maturation processes that lead to the production of shorter RNAs. After mapping the
sequences to the reference genome specific patterns of short reads can be observed. These read patterns seem to
reflect the processing and thus are specific for the RNA transcripts of which they are derived from. We explore here
the potential of short read sequence data in the classification and identification of non-coding RNAs.

Keywords: High throughput sequencing; read patterns; small RNA processing; small RNA classification; machine
learning

1. Introduction

Whole-Transcriptome analysis of many species and cell types reveals massive expression of non-coding RNA.

It is widely believed that non-coding RNAs act as regulators upon transcription and translation. Recent

investigations of whole RNA cDNA-Libraries based on high throughput sequencing (HTS) have shown that

these libraries contain both primary and processed transcripts. Over the last years, several classes of small

RNAs with a length of about 20nt have been discovered. The most prominent classes are miRNAs, piRNAs,

and various variants of endogenous siRNAs.1,2 In addition, small RNAs have been found to be associated

with transcription start and stop sites of mRNAs.3–5 Several studies reported that well-known ncRNA loci

are also processed to give rise to small RNAs. MicroRNA precursor hairpins, for instance, are frequently

processed to produce additional “off-set RNAs” (moRNAs) that appear to function like mature miRs. These

moRNAs were discovered in Ciona intestinalis ,6 where they form an abundant class of processing products.

At much lower expression levels they can also be found in the human transcriptome.7 Specific cleavage

and processing of tRNAs was observed in the fungus Aspergillus fumigatus8 and later also found in human

short read sequencing data.9 Small nucleolar RNAs (snoRNAs) are also widely used as a source for specific

miRNA-like short RNAs.10–12 The same holds true for vault RNAs.13,14 Little is known, however, about

the mechanisms of these processing steps and their regulation. Here, we show that the production of short

RNAs is correlated with RNA secondary structure and therefore exhibits features that are characteristic for

individual ncRNA classes. The specific patterns of mapped HTS reads thus may be suitable to identify and

∗P.F.S has external affiliations with the Fraunhofer Institute IZI, the Institute for Chemistry of the University of Vienna, and
the Santa Fe Institute.
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Fig. 1. Non-coding RNAs exhibit specific block patterns. (a) Distribution of short reads at the hsa-mir-370 locus. There
are three clearly distinct blocks of reads: they correspond to moR (5’-end), miR* (center) and miR (3’-end) transcripts. The
conservation pattern is shown below. (b) The class of miRNAs often shows a block pattern of two or three separated blocks.
(c) snoRNAs tend to have miRNA-like mature and star blocks at their 5’ and 3’ hairpins with minor overlaps, while a series of
overlapping blocks is striking for the tRNA class (d).

classify the ncRNAs from which they are processed. We explore here to what extent such an approach is

feasible in practise.

The first step towards this goal is the identification of ncRNA loci from a collection of mapped HTS

reads. We have recently developed the tool blockbuster7 to simplify this task in genome-wide analyses. The

program merges mapped HTS reads into blocks based on their location in the reference genome (Fig. 1a).

After the assembly of blocks, specific block patterns for several ncRNA classes can be observed. For example,

miRNAs typically show 2 blocks corresponding to the miR and miR* positions (Fig. 1b). A similar processing

can be observed for snoRNAs (Fig. 1c). On the other hand, tRNAs show more complex block patterns with

several overlapping blocks (Fig. 1d).

2. Methods

The dataset analyzed here was produced according to standard small RNA transcriptome sequencing proto-

cols in the context of other projects and will be published in that context. In brief, total RNA was isolated

from the frozen prefrontal cortex tissue using the TRIzol (Invitrogen, USA) protocol with no modifications.

Low molecular weight RNA was isolated, ligated to the adapters, amplified, and sequenced following the
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Fig. 2. HTS data reflects structural properties of ncRNAs. Upper panels show the number of 5’-ends of mapped HTS reads
(bars) relative to aligned the 5’-ends (dashed vertical lines) of 27 ACA boxes (left), 81 CD boxes (middle) and 87 tRNAs (right).
The area in the lower panel represents the number of boxes and tRNAs present at the distance relative to their aligned start
sites. In accordance with Taft et al.12 a sudden and sharp increase of 5’-ends is seen just upstream of the snoRNAs’ ACA and
C boxes, resp., indicating that read blocks reflect structural properties of snoRNAs. Similarily, the number of 5’-ends increases
just upstream of the tRNA and the relative start sites of its three loop regions (dotted lines). Downstream the start sites there
is a sudden drop in the number of reads.

Small RNA Preparation Protocol (Illumina, USA) with no modifications. All small RNAs, 17-28nt long,

were mapped to the human genome (NCBI36.50 Release of July 2008) using segemehl,15 a method based

on a variant of enhanced suffix arrays that efficiently deals with both mismatches as well as insertions and

deletions. We required small RNAs to map with an accuracy of at least 80% and only the best hit was

selected. Reads mapping multiple times to the genome with an equivalent accuracy were discarded. After

filtering the effective accuracy was > 97%. Subsequently, all hits were sorted by their genomic position. Two

reads were assigned to the same putative ncRNA locus, i.e. cluster, if separated by less than 100nt. Clusters

consisting of less than 10 reads were discarded because of their low information content.

To detect specific expression patterns, we divided consecutive reads into blocks using blockbuster.7

Here, we used a width parameter of s = 0.5, a value that requires blocks to be well separated to be

recognizedas distinct. We required a cluster to have at least 2 blocks. In the following we refer to the number

of reads comprised in a block as the block height. Using blockbuster, we identified 852 clusters across the

whole human genome. This set comprises 2,538 individual blocks and 85,459 unique reads. 434 clusters were

found within annotated ncRNA loci [miRBase v12 (727 entries), tRNAscan-SE (588 entries) and snoRNAbase

v3 (451 entries)], see Tab. 1.

We then computed secondary structures (using RNAfold16) to assess the relationship of reads and struc-

ture. For each read, the base pairing probabilities were calculated for the sequences composed of the read

itself and 50nt of flanking region both up- and downstream. These data were also collected separately for

reads found within annotated miRNA, tRNA, and snoRNA loci, respectively.

In order to investigate whether the short reads patterns carry information on the particular ncRNA

class from which they orginate, we selected three distinct ncRNA classes and performed a random forest

Table 1. In total 434 of 852 clusters were found within regions of annotated miRNA, tRNA
and snoRNA loci. While the average number of blocks is similar for all three ncRNA classes, the
number of reads differs significantly among the classes.

RNA class source loci found blocks/cluster (mean) reads/cluster (median)

microRNAs miRBase v12 218 2.42 ± 1.04 4535.33
tRNAs tRNAscan SE 87 3.22 ± 1.92 183.95
snoRNAs snoRNAbase v3 129 2.60 ± 1.66 127.5
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Fig. 3. Base pairing probabilities increase at the 5’-end and decrease at the 3’-end of reads mapped to ncRNA loci. (a) The
3’- and 5’-ends are indicated by dashed lines. The median base pairing probability increases sharply at the 5’-ends (upper left)
and drops again at the 3’-ends of reads mapped to miRNA loci (upper right). A similar – but attentuated – effect is observed
for snoRNAs (middle panel) and tRNAs (lower panel). (b) The median base pairing probabilities at 5’- (left panel) and 3’- ends
(right panel) for all reads within the 852 clusters. The 5’- and 3’-ends are indicated by dashed vertical lines.

classification:17,18 tRNAs (n = 87), miRNAs (n = 218) and snoRNAs (n = 129). Based on a visual inspection

of the mapped reads, ten features were selected to train the random forest model: the number of blocks within

a cluster (blocks), the length of a cluster (length), the number of nucleotides covered by at least two blocks

(nt overlap), the number of overlapping blocks (block overlap), the maximum, minimum and the mean block

height (max, min and mean height) in a cluster as well as the maximum, minimum and the mean distance

between consecutive blocks (max, min and mean distance).

3. Results

The 5’-ends of reads arising from known snoRNAs preferentially map just upstream of the C- and ACA-boxes.

This indicates the correlation of mapping patterns with processing steps and thus with structural properties

of snoRNAs (Fig. 2). Based on earlier findings that miRNA-like products are derived from snoRNAs12 and

the observation that miRNA transcripts tend to have higher blocks (Tab. 1), the two peaks shown in the

Figure 2 (left) probably represent small RNAs produced from the 5’- and 3’-hairpins of the HACA (see also

Fig. 1c). CD-snoRNAs show, in contrast to the HACA-snoRNAs, only a single prominent peak at the 5’-end

(Fig. 2, middle). An increased number of 5’-ends of HTS reads is also observed just upstream of loops of

tRNAs (Fig. 2 (right)).

The pairing probabilities of bases covered by HTS reads are significantly increased (Fig. 3b). Just up-

stream the 5’-end of these reads, the median base pairing probability increases sharply and reaches a level of

> 0.9. At the 3’-end the base pairing probability drops again. However, median base pairing probabilities of

bases covered by the center of reads drop down to 70%. Although this effect is boosted by reads found within

miRNA loci, it can also be observed unambiguously for reads within snoRNA and tRNA loci (Fig. 3a).

The observation that blocks reflect structural properties of ncRNAs was exploited to train a random forest

classifier to automatically detect miRNAs, tRNAs and snoRNAs. After visual inspection of block patterns for

some representatives of these classes, ten features were selected. Their evaluation reveals significant statistical

differences among the chosen ncRNA classes (Fig. 4). As expected, the number of reads mapped to miRNA
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Fig. 4. Box plots for 8 different features selected to train the random forest classifier. The number of reads mapped to miRNA
loci alone (max block height and min block height) effectively distinguish miRNAs from other ncRNAs. Likewise, the distribution
of block distances seems to be a specific feature for miRNAs. Compared to other regions, tRNA loci frequently show block
overlaps of two or more blocks. The minimum block distance shows a median overlap of ≈5nt for blocks in within tRNA loci.
SnoRNAs typically have longer block distances than the other classes.

loci (minimum and maximum block height) clearly distinguishes miRNAs from other ncRNA classes. In

contrast to tRNAs and snoRNAs the maximum block distance of miRNAs shows a very narrow distribution

around 40nt, reflecting the distance between miR and miR* transcripts. Furthermore, the class of tRNAs

frequently shows more block overlaps than snoRNAs and miRNAs. The distance of blocks is an important

feature for snoRNAs: the maximum block as well as the minimum block distance is higher compared to both

tRNAs and miRNAs.

The random forest model was repeatedly trained with randomly chosen annotated loci and different

training set sizes in order to determine predictive values (PPV) and recall rates. For the training sets
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Table 2. Positive predictive values (PPV) and recall rates for train-
ing sets of size 150 and 250. For each set size means, medians and
standard deviations are calculated from 20 randomly sampled train-
ing sets.

PPV recall
#loci mean sdev mean sdev

Training size 250

all 852 0.889 0.015 0.799 0.015

miRNA 227 0.932 0.020 0.918 0.023
tRNA 287 0.860 0.040 0.683 0.046

snoRNA 143 0.819 0.032 0.694 0.060
other 195

Training size 150

all 852 0.827 0.020 0.698 0.027

miRNA 236 0.900 0.027 0.847 0.041
tRNA 348 0.755 0.044 0.580 0.062

snoRNA 115 0.733 0.057 0.525 0.071
other 153

comprising 150 clusters the random forest model shows a positive predictive value > 0.7 for all three ncRNA

classes. The recall rate for miRNAs is well above 80%. However, with a rate of ≈ 0.55 the recall of snoRNAs

and tRNAs is relatively poor (Tab. 2). For larger training sets containing 250 clusters, the positive predictive

value (PPV) is > 0.8 for all classes. For miRNAs the classification achieves recall rates and PPVs of > 0.9.

Likewise, the recall rates for snoRNAs and tRNAs rise to 0.7-level. In summary, for both training set sizes

and all classes the random forest model achieves PPVs and recall rates of ≈ 0.8.

We applied the classifier to unannotated ncRNA loci. A list of miRNA, snoRNA, and tRNA candidates

predicted is available from the supplementary page (http://www.bioinf.uni-leipzig.de/∼david/PSB/).

This resource includes the original reads, their mapping accuracy and their mapping location in machine-

readable formats. Furthermore, the page provides links to the UCSC genome browser to visualize the block

patterns. For microRNAs and snoRNAs, we also indicate whether the candidates are supported by indepen-

dent ncRNA prediction tools.

The 29 miRNA predictions contained 3 miRNAs (hsa-mir1978, hsa-mir-2110, hsa-mir-1974) which have

already been annotated in the most recent miRBase release (v.14), as well as a novel member of the mir-548

family, and another locus is the human ortholog of the bovine mir-2355. In addition, we found two clusters

antisense to annotated miRNA loci (hsa-mir-219-2 and hsa-mir-625). Such antisense transcripts at known

miRNA loci have been reported also in several previous publications,20–22,24 lending further credibility to

these predictions.

For the tRNAs and snoRNAs we expect a rather large false positive rate. The 78 tRNA predictions are

indeed contaminated by rRNA fragments, but also contain interesting loci, such as sequence on Chr.10 that

is identical with the mitochondrial tRNA-Ser. SnoReport,23 a specific predictor for HACA snoRNAs based

on sequence and secondary features, recognizes 44 (20%) of our 223 snoRNAs predictions.

Short RNAs are processed from virtually all structured ncRNAs. Complex read patterns are observed,

for instance, for the 7SL (SRP) RNA and the U2 snRNA. Y RNAs, which have a panhandle-like secondary

structure produce short reads mostly from their 5’ and 3’ ends, see Fig. 5.

4. Discussion

In extension of previous work establishing that various ncRNA families produce short processing products

of defined length,6,9,12 we show here that these short RNAs are generated from highly specific loci. The

dominating majority of reads from short RNAs originates from base paired regions, suggesting that these

RNAs are, like miRNAs, produced by Dicer or other specific RNAases. For example, specific cleavage products

have recently been reported for tRNAs.19 In this work we show that the block patterns are characteristic

for three different ncRNA classes and thus suitable to recognize additional members of these classes. For
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instance, the random forest trained with loci annotated in the mirBase v12 predicted five additional miRNAs

reported in the mirBase release 14 as well as two “antisense microRNA”.

The block patterns for the evaluated ncRNAs show some interesting characteristics. Although miRNA

loci accumulate far more reads than tRNAs and snoRNA loci, the reads are extremely unevenly distributed

across the blocks. For tRNAs we observe series of overlapping blocks that are specific enough to separate

this class from other classes with high positive predictive values.

However, the successful prediction of miRNAs heavily depends on the height of the blocks, i.e. the

number of reads that map to a potential locus. In comparision tRNAs and snoRNAs show significantly lower

positive predictive values and recall rates. A relatively large training set is required to achieve PPV’s > 80%.

Obviously, the selection of appropriate features is crucial for the success of the presented approach. Hence,

the random forest classifier is not sufficient as it stands and the identification of other characteristic features

is subject to further research. The integration of secondary structure information of cluster regions is likely

to enhance the prediction quality.

Beyond the classification by means of soft computing methods, this survey shows that HTS block patterns

bear the potential to greatly improve and simplify ncRNA annotation. Given the striking relationship of HTS

reads and secondary structure for some ncRNA classes, block patterns may also be used in the future to

directly infer secondary structure properties of non-coding RNAs from transcriptome sequencing data. In

this context, although not shown here, block patterns may also help to identify new classes of RNAs directly

from transcriptome sequencing data.
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RNAz, a support vector machine (SVM) approach for identifying functional non-coding RNAs (ncRNAs), has been

proven to be one of the most accurate tools for this goal. Among the measurements used in RNAz, the Structure
Conservation Index (SCI) which evaluates the evolutionary conservation of RNA secondary structures in terms
of folding energies, has been reported to have an extremely high discrimination capability. However, for practical

use of RNAz on the genome-wide search, a relatively high false discovery rate has unfortunately been estimated.
It is conceivable that multiple alignments produced by a standard aligner that does not consider any secondary
structures are not suitable for identifying ncRNAs in some cases and incur high false discovery rate. In this study,
we propose C-SCI, an improved measurement based on the SCI applying γ-centroid estimators to incorporate the

robustness against low quality multiple alignments. Our experiments show that the C-SCI achieves higher accuracy
than the original SCI for not only human-curated structural alignments but also low quality alignments produced
by CLUSTAL W. Furthermore, the accuracy of the C-SCI on CLUSTAL W alignments is comparable with that of
the original SCI on structural alignments generated with RAF for which 4.7-fold expensive computational time is

required on average.

Keywords: structure conservation index; centroid estimators; non-coding RNAs

1. Introduction

Many studies have recently discovered essential roles of non-protein-coding functional RNAs (ncRNAs)
in cells such as translation, post-transcriptional gene regulation and maturation of rRNAs, tRNAs and
mRNAs.1,2 Therefore, to identify ncRNAs in genomes and analyze their functions is a crucial task for not
only molecular cell biology but also bioinformatics.

It is well-known that such biological functions of ncRNAs are deeply related to their secondary structures
which consist of hydrogen-bonded base-pairs including the Watson-Crick base-pairs (A-U and G-C), the wobble
base-pairs (G-U) and other non-canonical base-pairs. These base-pairs stabilize the structure of RNAs in terms
of the free energy. Thus, the secondary structure with the minimum free energy (MFE) has been regarded
as the most reliable prediction of RNA secondary structures.

However, MFE alone could not be an appropriate measure for identifying ncRNAs since the free energy
is heavily biased by the nucleotide composition.3 Therefore, several comparative approaches for identifying
ncRNAs have been proposed.4–10 For this purpose, Washietl et al. have developed RNAz which uses a support
vector machine (SVM) approach, and have proposed the Structure Conservation Index (SCI) as a feature
to measure the evolutionary conservation in terms of secondary structures.7 Assuming that MFE for the
consensus secondary structure is close to that for each sequence if a given multiple alignment is structurally
conserved, the SCI is defined as the rate of MFE for the common secondary structure to averaged MFE for
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each sequence. MFEs for each sequence and the common secondary structure are calculated by RNAfold and
RNAalifold both part of the Vienna RNA packages,11,12 respectively.

RNAz with the SCI has been proven to be the one of the most accurate tools for identifying ncRNAs.7,13

However, for practical use of RNAz on the genome-wide search, a relatively high false discovery rate has
unfortunately been estimated.14 It is conceivable that multiple alignments produced by a standard aligner
that does not consider any secondary structures are not suitable for identifying ncRNAs in some cases and
incur high false discovery rate. Wang et al. have also suggested that the genome-wide alignments in the UCSC
Genome Browser15 produced by MULTIZ16 should be improved in some regions for identifying ncRNAs.17

To improve the accuracy, two strategies can be considered: the one is to employ a structural aligner such
as RAF18 to produce high quality alignments, and the other is to develop a more robust method against
low quality alignments. Since the former strategy will consume impractical execution time for structural
alignments, this study takes the latter strategy.

Recently, CentroidFold which employs γ-centroid estimators for predicting RNA secondary struc-
tures has been developed, and has been shown to be more accurate than other existing tools.9 Especially,
CentroidFold can predict much more accurate common secondary structures for low quality multiple
alignments produced by CLUSTAL W19 than RNAalifold.

In this study, we propose C-SCI, an improved measurement based on the SCI applying γ-centroid
estimators for (common) secondary structure prediction, instead of RNAfold and RNAalifold, to incorporate
the robustness against low quality multiple alignments. Our experiments show that the C-SCI achieves
higher accuracy than the original SCI for not only human-curated structural alignments but also low quality
alignments produced by CLUSTAL W. Furthermore, the accuracy of the C-SCI on CLUSTAL W alignments
is comparable with that of the original SCI on RAF alignments for which 4.7-fold expensive computational
time is required on average.

2. Method

2.1. Structure Conservation Index

The Structure Conservation Index (SCI) evaluates secondary structure conservation of a given multiple
alignment of RNAs in terms of the minimum free energy (MFE). We denote with S(x) the entire folding
space of a single sequence x and denote with S(A) the entire consensus folding space of an alignment A. The
SCI is defined as

SCI(A) =
EAlign(yMFE

A )
1

#A

∑
x∈A E(yMFE

x )
, (1)

where #A is the number of sequences in the alignment A. For a single sequence x, E(y) denotes the free
energy of a secondary structure y ∈ S(x), and yMFE

x = arg miny∈S(x) E(y) is defined to be the MFE
structure of x calculated by RNAfold.11 Similarly, for an alignment A, EAlign(y) is the free energy of a
consensus structure y ∈ S(A), and yMFE

A = arg miny∈S(A) EAlign(A) is the consensus MFE structure of A

calculated by RNAalifold.12 The free energy of a consensus structure is defined as the average of the energy
contributions of the single sequences plus covariance scores for bonuses of compensatory and consistent
co-mutation in the alignment.

The consensus MFE alone could be used to identify functional RNAs likelihood of functional RNAs in
terms of thermodynamic stability of consensus folded structures. However, it is difficult to make straight-
forward use of it, since the folding energy is heavily biased by the nucleotide composition and the length of
the alignment. The SCI solved this problem by normalizing EAlign(yMFE

A ) with the average of E(yMFE
x ) for

all x ∈ A. From a different view, the SCI reflects the idea that for a well-conserved alignment the structure
of each sequence resembles each other and the consensus structure resembles all of them, so EAlign(yMFE

A )
would have as low value as E(yMFE

x ), otherwise EAlign(yMFE
A ) would not. The SCI is near 0 for an alignment

that is not structurally conserved, whereas the SCI is near 1 or above for an alignment that is structurally
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conserved. Especially, if the alignment is structurally well-conserved and compensatory and consistent mu-
tation often occurs, the SCI may be above 1.

As shown in the definition (1) of the SCI, the SCI obviously depends on the accuracy of common
secondary structure prediction, which is also deeply influenced by the quality of multiple alignments of
RNAs. This fact is supported by a previous study20 and our results shown in Sec. 3. For the genome-wide
search, high quality alignments that consider RNA secondary structures cannot be obtained easily due to the
computational cost for calculating structural alignments. Therefore, a robust method that does not require
high quality alignments is required.

2.2. γ-Centroid Estimator

CentroidFold implements a γ-centroid estimator which predicts secondary structures with the maxi-
mum expected accuracy by a kind of posterior decoding methods on the base-pairing probability matrix.
CentroidFold employs a gain function between a true secondary structure θ and a predicted secondary
structure y on x defined as

Gγ(θ, y) =
∑

1≤i<j≤|x|

{γI(yij = 1)I(θij = 1) + I(yij = 0)I(θij = 0)}, (2)

where γ is a weight for base-pairs, yij is 1 if the i-th and j-th nucleotides form a base-pair in y, and
I(condition) is the indicator function, which takes 1 or 0 relying on whether condition is true or false. The
gain function (2) is equal to the weighted sum of the number of true positives and the number of true negatives
of base-pairs. CentroidFold predicts a secondary structure y ∈ S(x) which maximizes the expectation of
Gγ(θ, y) with respect to an ensemble of all possible secondary structure S(x) which is distributed under a
posterior distribution p(θ|x),

Ep(θ|x)[Gγ(θ, y)] =
∑

θ∈S(x)

Gγ(θ, y)p(θ|x)

=
∑

1≤i<j≤|x|

((γ + 1)pij − 1)I(yij = 1) + C, (3)

where C is a constant independent of y, and pij = Ep(θ|x)[θij ] is the base-pairing probability that the i-th
and j-th bases form a base-pair. The optimal secondary structure ŷ = arg maxy∈S(x) Ep(θ|x)[Gγ(θ, y)] can be
calculated efficiently by using the following DP algorithm:

Mi,j = max


Mi+1,j

Mi,j−1

Mi+1,j−1 + (γ + 1)pij − 1

maxk[Mi,k−1 + Mk,j ]

, (4)

and tracing back from M1,|x| to calculate ŷ. The model of the posterior distribution p(θ|x) can be chosen
from various implementations including the McCaskill model21 based on the Boltzmann free energy and the
CONTRAfold model22 based on a machine learning technique.

CentroidFold can also predict a common secondary structure of a multiple alignment of RNAs by
using averaged γ-centroid estimators. The optimal common secondary structure which maximizes the sum
of the expected gain (2) for all x ∈ A, that is,

ŷ = arg max
y∈S(A)

∑
x∈A

Ep(θ|x)[Gγ(θ, y)]

can similarly be calculated by using (4) with the averaged base-pairing probability23 defined as

p̄ij =
1

#A

∑
x∈A

Ep(θ|x)[θij ],
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instead of pij .
The weight γ in the definition (2) controls the number of predicted base-pairs, that is, the trade-off

between specificity and sensitivity of predicted base-pairs. If γ = 1, this estimator is equivalent to the
centroid estimator.24,25

CentroidFold has been shown to be more accurate than other existing tools.9 Especially, Centroid-

Fold can predict much more accurate common secondary structures than RNAalifold for low quality multiple
alignments produced by CLUSTAL W.

2.3. The C-SCI

Now, we propose an improved measurement of secondary structure conservation based on the SCI by em-
ploying CentroidFold for (common) secondary structure prediction, instead of RNAfold and RNAalifold,
to incorporate the robustness against low quality multiple alignments.

At first, we predict the consensus centroid structure for an alignment A, denoted by yC
A , and centroid

structures for each sequence x ∈ A, denoted by yC
x , by using CentroidFold. For a single sequence, we

map a predicted structure onto each sequence x and calculate its free energy E(yC
x ) for all of the sequences.

For an alignment, we map a predicted consensus structure onto each sequence x and get rid of gaps and
corresponding parts of the structure. In removing a gap, if the part of structure corresponding to the gap is
represented as unpaired, the compartment is removed, whereas if the corresponding part is represented as
paired, the compartment is removed and its pair is removed or converted to unpaired depending on whether
the pair corresponds gap or not. To calculate the energy, we use RNAeval11 with the predicted structure on
the sequence. The free energy of a consensus secondary structure is calculated from the averaged free energy
for all sequences and the covariance score which is implemented according to RNAalifold.12

Then, the C-SCI is calculated as follows:

C-SCI(A) =
EAlign(yC

A)
1

#A

∑
x∈A E(yC

x )
. (5)

The C-SCI has two parameters which affect the discrimination capability of the C-SCI. We denote γA as the
parameter γ for predicting consensus secondary structures on multiple alignments, and γS as γ for predicting
secondary structures on single sequences. These parameters were determined by 10-fold cross-validation with
the grid search on γ ∈ {2k : −10 ≤ k ≤ 10, k ∈ Z} for γA and γS . The detail of how the 10-fold cross-validation
was performed is written in the section 3.1. Furthermore, the C-SCI has a modification that if the predicted
structure is unstable and the energy has positive value, the energy is treated as 0. This is because C-SCI
may get a high value regardless of secondary structure conservation, if the numerator and the denominator
of C-SCI are positive.

3. Result

3.1. Evaluation

To confirm the discrimination capability of the C-SCI, we performed the experiments along with the previous
study26 on BRAliBase 2.1 data set,27 which is constituted with 18,990 reference alignments of 36 RNA
families and the same number of the corresponding sets of sequences which are not aligned. Reference
alignments included in BRAliBase 2.1 are human-curated alignments which are made from Rfam database28

aiming for evaluating structural alignments. We also produced multiple alignments using CLUSTAL W19

version 1.83 with standard settings to investigate the discrimination capability on low quality alignments.
For each alignment, we generated negative controls by utilizing shuffle-aln.pl.29 This program shuffles
columns of a given alignment to destroy its secondary structure, while maintaining gap patterns, nucleotide
compositions and sequence length. We generated five negative controls for each alignment. These alignments
were binned according to their normalized Shannon entropy by the size of 0.05. The normalized Shannon
entropy is defined as the average of the Shannon entropy for the individual column over all columns in the
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Table 1. Detail information about reference alignments.

entropy number of alignments average pairwise sequence identity
2 3 5 7 10 15 2 3 5 7 10 15

0.10 827 111 11 2 0 0 92.3 93.8 94.7 94.9 — —
0.15 922 329 48 27 16 6 87.5 90.9 93.1 93.6 93.9 94.0

0.20 974 502 148 50 16 8 83.1 87.4 89.9 91.0 91.7 92.8
0.25 432 479 253 158 58 18 77.6 84.1 87.2 88.3 89.2 89.4
0.30 391 178 262 138 108 65 72.6 80.6 84.6 86.0 87.0 87.7

0.35 456 108 71 95 71 47 67.4 76.6 81.8 83.7 84.8 85.5
0.40 554 134 32 23 16 14 62.6 72.7 78.3 80.6 82.4 83.3
0.45 588 194 48 10 8 3 57.4 68.5 74.2 75.8 79.5 77.8
0.50 559 195 68 38 13 5 52.6 64.5 69.9 71.0 72.1 75.0

0.55 739 194 83 53 27 16 47.5 61.1 65.8 67.0 69.3 69.5
0.60 797 196 82 44 34 20 42.5 58.0 64.1 65.0 66.6 67.2
0.65 589 234 61 21 10 3 37.7 55.1 63.9 62.7 64.2 63.4
0.70 478 320 43 10 5 2 32.5 51.7 61.6 63.1 64.6 63.8

0.75 244 274 39 18 2 1 27.8 48.2 57.9 62.9 59.6 58.9
0.80 126 313 71 17 8 6 22.6 44.3 54.6 56.4 61.6 59.5
0.85 37 326 117 22 11 2 18.2 40.9 53.2 56.1 59.4 60.5
0.90 2 227 139 39 12 2 14.1 37.1 49.9 55.1 56.6 56.2

0.95 0 130 125 68 24 2 — 33.8 46.4 51.2 54.2 58.9
1.00 0 131 168 62 25 13 — 31.0 43.6 49.2 51.8 53.8
1.05 0 41 141 79 46 18 — 29.2 41.6 45.3 49.4 52.2
1.10 0 4 100 99 34 18 — 26.2 39.1 42.7 45.9 51.1

1.15 0 2 61 92 48 25 — 24.0 37.5 40.5 42.7 44.2

In the content of “number of alignments”, each column corresponds to the number of alignments
constituted with the designated number of sequences (2, 3, 5, 7, 10 or 15 sequences). Similarly in
the content of “average pairwise sequence identity”, each column means the average of average
pairwise sequence identity in the alignments with the designated number of sequences.

alignment whose length is |A|,

H = − 1
|A|

|A|∑
i=1

∑
j∈Σ

pi
j log2 pi

j , (6)

where j is in the alphabet Σ = {A, U, G, C, -} constituted with the four nucleotides and the gap character
“-”, and pi

j is the probability observing the character j in column i. We used the alignments in the bins
from 0.1 to 1.15 of normalized Shannon entropy according to Ref. 26. The number of alignments and the
average of averaged pairwise sequence identity (APSI) on reference alignments for each normalized Shannon
entropy bin are summarized in Tab. 1. This shows that higher entropy regions tend to include the alignments
with lower APSI or with larger number of sequences. Therefore, most of alignments with small number of
sequences appear in low entropy region.

To evaluate the performance of the various strategies, we performed the receiver operating characteristic
(ROC) curve analysis. An ROC curve is a plot of true positive rate versus false positive rate in varying the
discrimination threshold of a classifier. The area under the ROC curve (AUC) is used for evaluation of the
discrimination: the shift of AUC to 1 means better discrimination capability. Calculation of AUC for each
entropy subset was done by using ROCR package.30

In our study, we compared the C-SCI with the original SCI and the measurement “base-pairing distance”
(pairwise, consensus), which have been reported to achieve as high AUC as the SCI.26 Base-pairing distance
is a measurement to compare two single structures by using the Hamming distance. Here “pairwise” means
the comparison of each structure of a single sequence with each other, and “consensus” means the comparison
of each structure of a single sequence with the consensus structure. For the structures compared in base-
pairing distance, we adopted MFE structures. The SCI and base-pairing distance were implemented by using
RNAfold with options “-d2” and RNAalifold with options “-d2”. RNAalifold has recently been updated
by replacing the simple covariance scores with a more sophisticated RIBOSUM31-like scoring matrices.32

However, it has been reported that the new covariance scoring matrices failed to improve the accuracy of
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Table 2. Averaged AUC of each measurement.

Method Reference CLUSTAL W

C-SCI (McCaskill model) 0.950 0.899
C-SCI (CONTRAfold model) 0.955 0.912
SCI 0.927 0.853

Base-pair distance (consensus) 0.905 0.849
Base-pair distance (pairwise) 0.900 0.854

the SCI although this update improved the accuracy of common secondary structure predictions. Therefore,
we employed the previous covariance scores described in Ref. 12. For implementing the C-SCI, we used
CentroidFold version 0.0.4 for predicting secondary structures, and RNAeval11 from Vienna RNA Package
version 1.7.2 for calculating the free energy of predicted structures. The C-SCI has two parameters γA and
γS , and we performed 10-fold cross-validation for each bin of normalized Shannon entropy. We determined
γA and γS which maximize AUC on the 90% of the dataset in each bin, and calculate AUC on the rest 10%
of the dataset. As for evaluation we adopted the average of 10 AUCs.

3.2. Discrimination capability

Figure 1 shows the results of AUC analysis of the C-SCI (McCaskill model, CONTRAfold model), the SCI
and base-pair distance (consensus, pairwise) on reference alignments and CLUSTAL W alignments for each
bin of normalized Shannon entropy, indicating that the C-SCI achieved the highest AUC, especially on low
entropy region. Table 2 shows the summarized result by averaging AUC values in all bins. This indicates
that the C-SCI achieves higher AUC on both alignments than the other measurements. Especially with
CONTRAfold model, the C-SCI achieved the highest AUC in the C-SCI variants. The parameters γA and
γS used in 10-fold cross-validation are written in Table S1 in the Supplemental material.

Furthermore, to investigate the reason why on the low entropy region the C-SCI could achieve extremely
higher AUC than the other measurements on both alignments, we plotted the behavior of the median value
of the score on reference alignments for each bin of normalized Shannon entropy. To clarify the difference
between the SCI and the C-SCI, we show the result of two measurements: the SCI and the C-SCI with
CONTRAfold model which has the highest averaged AUC as shown in Fig. 2. For the SCI, the score
distribution of the positive data and that of the negative data is so close that even 25%-quantile of the
positives and 75%-quantile of the negatives overlap on low entropy region. On the other hand, the C-SCI
could clearly separate these score distributions well with γA and γS optimized by 10-fold cross-validation for
each bin of normalized Shannon entropy. This suggests that the C-SCI has higher discriminant power than
the SCI, especially, on low entropy region.

3.3. Computational complexity

To address the genome-wide search, the computational cost is a serious problem. It is obvious that the
use of reference alignments which are structurally corrected by human curation is impractical although all
the measurements achieve high accuracy on reference alignments. Two alternative approaches are to use
structural aligners which can align RNA sequences with conserving their secondary structures, and to use
the standard aligners like CLUSTAL W. We produced the structural alignments using RAF18 version 1.00
with default settings. RAF is one of the most efficient structural aligners based on the Sankoff algorithm33

which simultaneously aligns and folds given RNA sequences. All the experiments was executed on a Linux
machine with AMD Opteron 2200SE (2.8GHz).

As shown in Tab. 3, all the measurements on RAF alignments achieve as high accuracy as those on
reference alignments, and much higher than those on CLUSTAL W alignments. However, huge computational
time is required for producing structural alignments even by RAF (the elapsed time: 1.86 seconds on average),
which is known as the most efficient structural aligner, comparing with CLUSTAL W (0.0147 seconds on
average). On the other hand, our approach the C-SCI, has an advanced property of robustness against low
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(a) reference alignments

0.2 0.4 0.6 0.8 1.0

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Normalized Shannon Entropy

A
U

C

C−SCI (CONTRAfold model)
C−SCI (McCaskill model)
SCI
Base Pair distance (consensus)
Base Pair distance (pairwise)

(b) CLUSTAL W alignments

Fig. 1. The discrimination capacity of the C-SCI, the SCI and base-pair distance in AUC on reference alignments and
CLUSTAL W alignments for each bin of normalized Shannon entropy.

quality alignments. In fact, Tab. 3 indicates that averaged AUC of the C-SCI with CONTRAfold model on
CLUSTAL W alignments is comparable with that of the SCI on RAF alignments. Furthermore, the elapsed
time for calculating the SCI through RAF alignments was 1.99 seconds for each alignment on average,
whereas that of the C-SCI with CONTRAfold model through CLUSTAL W alignments was only 0.426
seconds for each alignment on average. In case that structural alignments might be unavailable such as the
genome-wide search, the C-SCI is practical to use and is expected to have as high discriminant power as the
SCI on structural alignments.
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Fig. 2. The behavior of median of the SCI and the C-SCI distribution along with the entropy on reference alignments. In each
of positive and negative line sets, the solid line means the median of the distribution and the lower and upper dashed lines

mean 25%-quantile and 75%-quantile of the distribution.

4. Discussion

We proposed the C-SCI, an improved measurement of secondary structure conservation, and examined its
performance. The result was summarized in Tab. 2, which shows that the C-SCI is much more discriminative
than the SCI and other measurements. This is because the C-SCI outperforms others in low entropy area
as shown in Fig. 1. By the observation that important genes have high sequence identities between related
species on the sequence alignment, the alignments with high sequence identity can be in the major part of
data on which calculation of the measurement are performed. Therefore, the improvement of the accuracy
on low entropy will be of great benefit. Table 2 also shows that the C-SCI with CONTRAfold model exceeds
the C-SCI with McCaskill model. This is because CONTRAfold model has more appropriate parameters to
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Table 3. Calculation time and AUC of each measurement. The result of calculation time is shown on
the second scale.

RAF CLUSTAL W
Method AUC Timea Total timeb AUC Timea Total timeb

C-SCI (McCaskill model) 0.953 0.241 2.10 0.899 0.222 0.237

C-SCI (CONTRAfold model) 0.957 0.445 2.30 0.912 0.411 0.426
SCI 0.923 0.130 1.99 0.853 0.135 0.150
Base-pair distance (consensus) 0.908 0.195 2.06 0.849 0.188 0.203

Base-pair distance (pairwise) 0.901 0.179 2.04 0.854 0.166 0.181

Timea: elapsed time for calculating the SCI or the C-SCI only. Total timeb: total elapsed time for

aligning sequences and calculating the SCI or the C-SCI.

estimate a secondary structure.
To examine the reason why the improvement on low entropy region occurs, we further calculated the

score distribution of positive data and negative data of each measurement and showed that the C-SCI could
separate these data more clearly in Fig. 2. This also shows that the median of the C-SCI on negative controls
gets close to 0, whereas that of the SCI does not in low entropy region. We can discuss two things: why
the C-SCI on negative controls tends to get close to 0 and why the C-SCI exhibits higher discrimination
capability than the SCI. For the former question, we suppose that this is because the tendency that the
consensus secondary structure is the open chain or an unstable structure is strong on the negative controls
whereas not on the positive data with the proper γA and γS . For the latter one, we suppose that this is
because MFE of consensus structure does not increase so much by shuffling columns, whereas the energy
of the consensus structure calculated by a γ-centroid estimator increase significantly. Note that we cannot
exclude the possibility that the shuffling algorithm used in our experiments does not work uniformly for all
the bin of the entropy to preserve gap patterns and conservation patterns of columns. The number of possible
pairs of columns to be shuffled depends on the gap patterns and conservation patterns which are reflected in
the entropy. Further investigation should be done by using more sophisticated negative controls generating
algorithms such as SISSIz10 which can preserve dinucleotide composition in alignments in expectation.

Moreover, we investigated the computational time for calculating measurement and alignment shown
in Tab. 3. This shows that the C-SCI on CLUSTAL W alignment is expected to be as discriminative as
the SCI on structural alignment although the C-SCI through CLUSTAL W alignment is 4.7 times faster.
Hence the C-SCI is practical, also considering that calculating structural alignments is not reasonable for
genome-wide search. We can conclude that the C-SCI is computationally practical to use as well as much
more discriminative than the SCI.

Supplemental materials

The parameters γA and γS optimized by 10-fold cross-validation for each bin of normalized Shannon entropy
in CLUSTAL W alignments are written in the supplemental material. See the following file.
http://www.dna.bio.keio.ac.jp/˜okada/psb2010/supplemental1.pdf
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Noncoding antisense RNAs have recently occupied considerable attention and several computational studies have

been made on RNA-RNA interaction prediction. In this paper, we present novel dynamic programming algorithms
for predicting the minimum energy secondary structure when binding sites of one of the two interacting RNAs are
known. Experimental results on several known RNA-RNA interaction data show that our proposed method achieves
good performance in accuracy and time.

Keywords: RNA secondary structure; RNA-RNA interaction; dynamic programming

1. Introduction

In recent years, analysis of noncoding RNAs has attained great importance. They play a crucial role in some
biological processes including post-transcriptional regulation of gene expression. Some noncoding RNAs,
called antisense RNAs, aim at inhibiting their target RNA function through base complementary binding.
Some antisense RNAs use full complementarity to their target for binding, whereas a number of antisense
RNAs use partial complementarity,1 and several kissing hairpin structures (Fig. 1) caused by loop-loop
interaction have been reported.2

To predict joint secondary structures of interacting RNAs, several dynamic programming (DP) algo-
rithms have been proposed so far. Andronescu et al.3 developed the PairFold algorithm for secondary struc-
ture prediction of two interacting RNAs of minimum free energy. Since this algorithm is based on the Zuker’s
algorithm4 for predicting pseudoknot-free structure of a single RNA, its time complexity is O((n+m)3) where
n and m are respective lengths of two input sequences. The PairFold algorithm, however, cannot deal with
any kissing hairpins, which are essentially equivalent to pseudoknotted structures when concatenating two
interacting sequences. On the other hand, DP algorithms presented by Pervouchine,5 Alkan et al.6 and Kato
et al.7 can predict joint secondary structures including kissing hairpins in O(n3m3) time. However, the time
complexity of these algorithms is prohibitive in case n ≃ m (i.e., O(n6) time), which is the same complexity
of a prediction algorithm for pseudoknots.8

Viewing RNA-RNA interaction prediction from a different angle inspires us to consider the situation
where we aim at predicting the secondary structure with binding sites of one of the two interacting RNAs
(e.g., target RNA) on condition that interacting sites of the other RNA (e.g., antisense RNA) are known. In
fact, we assume that a “profile” of intermolecular binding is given in advance, which can be obtained from the
known secondary structure of the antisense RNA. This assumption could be reasonable since we can reduce
computational complexity of a kind of interaction prediction and discover new target RNAs for antisense
RNAs with known profiles. In this paper, we propose novel DP algorithms for predicting RNA secondary
structures with binding site locations. Note that our formulation of the prediction problem requires that the
order in which binding sites appear in an antisense RNA should be the same as the order in its target RNA
(see Fig. 1). To deal with binding sites as well as base-paired structures, we design an extension of the classical
Nussinov’s algorithm,9 which essentially minimizes the sum of base pair energies. In addition, we develop
another DP algorithm that can incorporate stacking energy, which is based on the Zuker’s algorithm.4 Both
of our proposed algorithms can run in O(N3n3) time where N is the number of binding sites and n is a

∗These authors contributed equally to this work.
†To whom correspondence should be addressed.
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5' 3'

3' 5'

Target RNA

Antisense RNA

Fig. 1. An example of RNA-RNA interaction containing kissing hairpins. A black circle indicates one base of a binding site.

Table 1. An energy function
e cited from Ref. 10.

Base pair Energy value

{G, C} −5
{A, U} −4

{G, U} −1

sequence length. Since N can be regarded as a constant in most cases, the time complexity of our algorithms
can be evaluated as O(n3). We demonstrate the performance of our approach using the proposed algorithms
on some data sets.

2. Methods

In this section, we will present dynamic programming (DP) algorithms for predicting RNA secondary struc-
tures with binding sites. Before going through the details of the algorithms, let us begin with definitions of
RNA secondary structure and the prediction problem considering binding sites.

2.1. Preliminaries

Definition 2.1 (RNA secondary structure). For an RNA sequence s = s1s2 · · · sn where si ∈ Σ =
{A,C,G,U} (1 ≤ i ≤ n), a secondary structure of s is defined as a set R of position pairs (i, j) that satisfies
the following conditions:

• 1 ≤ i < i + 1 < j ≤ n;
• ∀(i, j), (i′, j′) ∈ R; i = i′ ⇐⇒ j = j′.

Next, let us formally define the binding site profile.

Definition 2.2 (Binding site profile). Let N be the number of binding sites and b̄p = s̄p,1s̄p,2 · · · s̄p,ℓp ∈
Σ∗ (1 ≤ p ≤ N) denote a binding site (subsequence) of an antisense RNA sequence. Let sisi+1 · · · sj ∈ Σ∗

be a subsequence of a target RNA sequence. Then, for each p (1 ≤ p ≤ N), a binding site profile Ip(i, j) of
sisi+1 · · · sj is defined as follows:

Ip(i, j) =


γ

ℓp∑
k=1

e(si+k−1, s̄p,k) (j = i + ℓp − 1, and ∀k; si+k−1 is complementary to s̄p,k),

∞ (otherwise),

(1)

where γ is a positive weight parameter, and e is an energy function that maps from a valid base pair to the
corresponding energy value (see Table 1).

It should be noted that we do not know the actual binding sites of the target RNA in advance even though
the actual binding sites of the antisense RNA are given. Instead of using the binding site profile, estimates
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3’ CGUACCAGAACCAGCUU 5’Antisense RNA

Target RNA 5’ AUUGGCAGGUCCGGUUAA 3’

UGG GGUC (Base complementarity)

GGUU

b
1

(Known binding sites)

I
1
(3, 5) I

2
(8, 11) I

2
(13, 16)

b
2

(Binding site profiles)

Fig. 2. An example of binding site profile.

of binding energies could be used in our algorithms if the binding sites of the antisense RNA are known and
the binding energies depend on the stacking energies of the base pairs involved in the binding sites.

Example 2.1. Consider an antisense RNA sequence shown in Fig. 2 with known binding sites b̄1 = ACC
and b̄2 = CCAG. We first compute their complementary subsequences UGG for b̄1 and GGUC, GGUU for
b̄2. Notice that we also take the wobble pair {G, U} into account. Then, we search for those complementary
subsequences through the target sequence. Since UGG matches at the location from 3 to 5 in the target, we
have I1(3, 5) = −4− 5− 5 = −14 where γ = 1 in Eq. (1) and the energy function shown in Table 1 are used.
The rest of the elements of I1 are equal to ∞ because no other sites of length three in the target match
UGG. In a similar way, we obtain I2(8, 11) = −19 and I2(13, 16) = −15, and the rest of the elements of I2

are set at ∞.

With these definitions, we define the prediction problem of RNA secondary structure with binding sites.

Definition 2.3 (RNA secondary structure prediction with binding sites).

Input: A target RNA sequence s = s1s2 · · · sn ∈ Σ∗ and N binding site profiles I1, I2, . . . , IN of s.

Output: The optimum secondary structure of s whose subsequences match the binding sites in the order
from I1 to IN .

2.2. DP Algorithms

We develop two prediction models based on DP. The first DP-based model is an extension of the Nussinov’s
algorithm9 using a simple base pair energy function. For the second model, we extend the first model to
utilize the stacking energy and loop energy functions, which is based on the Zuker’s algorithm.4

2.2.1. Base pair energy model

In the beginning, we define DP tables to design the algorithm. Let s = s1s2 · · · sn be an RNA sequence. As
in the conventional case, we let W (i, j) denote the minimum free energy of secondary structure formed from
a subsequence sisi+1 · · · sj of s. In addition, let Wpq(i, j) be the minimum free energy of secondary structure
for sisi+1 · · · sj that contains binding sites corresponding to Ip, Ip+1, . . . , Iq (1 ≤ p ≤ q ≤ N). Note that
Wpq(i, j) is a four dimensional table. We use this notation to facilitate comparison with the other DP table
W (i, j).

These DP tables are initialized as follows:

W (i, i) = 0, Wpq(i, i) = ∞ (1 ≤ ∀i ≤ n; 1 ≤ ∀p ≤ ∀q ≤ N).

The recursions are classified into three cases as shown below. In the first case, we use the simple Nussinov’s
algorithm for predicting secondary structure without binding sites. The second case is used for dealing with
the structure with just one binding site. The third case is used for predicting the structure with two or more
binding sites.
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i ji+1 I
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i ji+1 j−1
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i k jk+1 I
p

i k jk+1

Fig. 3. Recursion for Wpp(i, j). A dashed curve indicates that we do not know whether or not two bases connected by the

curve form a base pair, and a solid curve shows that two bases connected by it definitely form a base pair.

Case 1 (the Nussinov’s algorithm):

W (i, j) = min


W (i + 1, j),

W (i, j − 1),

W (i + 1, j − 1) + e(i, j),

min
i≤k<j

{W (i, k) + W (k + 1, j)},

(2)

where e(i, j) is the simple energy function for a base pair (si, sj). In the above DP recursion, the first and
the second cases of minimization represent the cases where si and sj do not form a base pair. The third case
says that si and sj form a base pair, and the resulting energy e(i, j) is added to the present value of W .
The forth formula represents the bifurcation structure. Note that k is the position at which the structure
bifurcates in such a way that the sum of energies of two substructures is minimized.

Case 2 (p = q):

Wpp(i, j) = min



Ip(i, j),

Wpp(i + 1, j),

Wpp(i, j − 1),

Wpp(i + 1, j − 1) + e(i, j),

min
i≤k<j

{Wpp(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpp(k + 1, j)}.

(3)

The first case means that sisi+1 · · · sj is a possible binding site and we adopt the corresponding score Ip(i, j)
computed in Eq. (1). The formulas from the second through the fourth are similar to the ones from the first
through the third in Eq. (2). The fifth case represents the bifurcation structure where the binding site is
contained in the former part of the bifurcation. Since the latter part of the bifurcation does not contain any
binding sites, we use W computed in Eq. (2). The last case is a counterpart of the fifth case. Following a
diagrammatic representation in Ref. 8, we provide a schematic representation of the recursion for Wpp(i, j)
in Fig. 3.

Case 3 (q ≥ p + 1):

Wpq(i, j) = min



min
i≤k<j

min
p≤r<q

{Wpr(i, k) + Wr+1,q(k + 1, j)},

Wpq(i + 1, j),

Wpq(i, j − 1),

Wpq(i + 1, j − 1) + e(i, j),

min
i≤k<j

{Wpq(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpq(k + 1, j)}.

(4)
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Fig. 4. Recursion for Wpq(i, j).

The first case is designed for computing the bifurcation of secondary substructures, each of which contains
the binding sites. It should be noted that the former part of the bifurcation contains the binding sites
corresponding to Ip, . . . , Ir, whereas the latter part corresponds to the substructure with binding sites for
Ir+1, . . . , Iq. The other cases can be interpreted as in Case 2. Figure 4 illustrates the above DP recursion.

We now evaluate the complexity of the above algorithm. Computing Eq. (2) takes O(n3) time. Equa-
tions (3) and (4) can be computed in O(Nn3) and O(N3n3) time, respectively. Therefore, the overall time
complexity is evaluated as O(N3n3). By similar evaluation, we can see that the space complexity is O(N2n2).

The minimum energy of the secondary structure of the input sequence is equivalent to W1,N (1, n), and
the optimum secondary structure can be retrieved by tracing back the DP tables from W1,N (1, n).

2.2.2. Stacking energy model

Since the energy function used in the above DP algorithm is very simple, there is room for further improve-
ment of our DP model. It is widely accepted that calculating contributions for stacking energy rather than
individual contributions for each base pair yields better prediction. Hence, we extend the above DP algorithm
based on this idea. In order to incorporate stacking energy into our previous DP model, we introduce addi-
tional DP tables. Let V (i, j) be the minimum free energy of secondary structure formed from a subsequence
sisi+1 · · · sj such that si and sj form a base pair. Let Vpq(i, j) be the minimum free energy of secondary
structure for sisi+1 · · · sj that contains binding sites corresponding to Ip, Ip+1, . . . , Iq such that si and sj

form a base pair. Note that W (i, j) and Wpq(i, j) are defined in the same way as in the base pair energy
model. Although energies of multi-branched and exterior loops could be incorporated into the recursions of
W and Wpq, we exclude such energy rules for simplicity.

Initialization conditions for W and V are as follows:

W (i, i) = ∞, V (i, i) = ∞, Wpq(i, i) = ∞, Vpq(i, i) = ∞ (1 ≤ ∀i ≤ n; 1 ≤ ∀p ≤ ∀q ≤ N).

The revised version of the DP recursions is as follows:
Case 1 (the Zuker’s algorithm):

W (i, j) = min


W (i + 1, j),

W (i, j − 1),

V (i, j),

min
i≤k<j

{W (i, k) + W (k + 1, j)},

(5)
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V (i, j) = min



eh(i, j),

V (i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{V (i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{W (i + 1, k) + W (k + 1, j − 1)} + b,

(6)

where eh(i, j) is the destabilizing energy of a hairpin loop closed by a pair of (si, sj), es(i, i + 1, j − 1, j) is
the stacking energy of two pairs (si, sj) and (si+1, sj−1), ebi(i, i′, j′, j) is the destabilizing energy of a bulge
or an interior loop closed by pairs (si, sj) and (si′ , sj′), and b is a penalty for a bifurcation structure. Notice
that in Eq. (5), the case where si and sj form a base pair is represented by V (i, j). As can be seen in Eq. (6),
V (i, j) is computed by minimizing among the four cases. The first case represents the energy of a hairpin
loop closed by (si, sj). The second formula adds the stacking energy of (si, sj) and (si+1, sj−1) to the present
value of V . The third case represents a substructure where a bulge or an interior loop occurs in si · · · si′ and
sj′ · · · sj . The fourth formula is used for computing bifurcation.

Case 2 (p = q):

Wpp(i, j) = min



Ip(i, j),

Wpp(i + 1, j),

Wpp(i, j − 1),

Vpp(i, j),

min
i≤k<j

{Wpp(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpp(k + 1, j)},

(7)

Vpp(i, j) = min



min
i<i′<j′<j

{Wpp(i′, j′) + er(i, i′, j′, j)},

Vpp(i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{Vpp(i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{Wpp(i + 1, k) + W (k + 1, j − 1)} + b,

min
i<k<j−1

{W (i + 1, k) + Wpp(k + 1, j − 1)} + b,

(8)

where er(i, i′, j′, j) is the approximate destabilizing energy of a pair of subsequences (si+1 · · · si′−1, sj′+1 · · ·
sj−1), which is obtained by removing si′ · · · sj′ from si+1 · · · sj−1. Vpp(i, j) is computed by minimizing among
the five choices. The first formula represents the case where the binding site corresponding to Ip is contained
in the sequence closed by a base pair (si, sj). The other cases are similar to those of the V (i, j) recursion.

Case 3 (q ≥ p + 1):

Wpq(i, j) = min



min
i≤k<j

min
p≤r<q

{Wpr(i, k) + Wr+1,q(k + 1, j)},

Wpq(i + 1, j),

Wpq(i, j − 1),

Vpq(i, j),

min
i≤k<j

{Wpq(i, k) + W (k + 1, j)},

min
i≤k<j

{W (i, k) + Wpq(k + 1, j)},

(9)
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Table 2. Results of the base pair energy model (BPEM), where n is the length of a
target sequence and N is the number of binding sites. Note that for the ATP sensitive

ribozyme-Substrate, n indicates the length of the antisense sequence. Since the substrate
does not fold into secondary structure, only the binding sites can be detected by the
algorithms, which is too simple. Therefore, we used the substrate to compute the binding
site profile and predicted secondary structure and binding sites of the ATP sensitive

ribozyme.

Antisense-Target n N SEN (%) PPV (%) Time (s)

Tar-Tar*11 16 1 100.00 90.00 0.20
R1inv-R2inv12 19 1 100.00 100.00 0.23
DIS-DIS13 35 1 82.35 73.68 0.85

CopA-CopT14 57 3 100.00 93.94 17.76
ATP sensitive ribozyme-Substrate15 59 2 52.17 36.36 9.01
IncRNA54-RepZ16 61 2 100.00 94.87 9.72
RyhB-SodB17 87 1 37.50 25.00 10.27

OxyS-fhlA14 100 2 59.09 52.00 43.25

Average 78.89 70.73 11.41

Vpq(i, j) = min



min
i<i′<j′<j

{Wpq(i′, j′) + er(i, i′, j′, j)},

Vpq(i + 1, j − 1) + es(i, i + 1, j − 1, j),

min
i<i′<j′<j

{Vpq(i′, j′) + ebi(i, i′, j′, j)},

min
i<k<j−1

{Wpq(i + 1, k) + W (k + 1, j − 1)} + b,

min
i<k<j−1

{W (i + 1, k) + Wpq(k + 1, j − 1)} + b.

(10)

Vpq(i, j) in Case 3 differs from Vpp(i, j) in Case 2 in that the present subsequence sisi+1 · · · sj contains at
least two binding sites.

Finally, we evaluate the complexity of this algorithm. Obviously, complexity for computing Eqs. (9) and
(10) dominates the overall complexity of the algorithm. Computing the first formula of Eq. (9) takes O(N3n3)
time. Exact analysis of the first and third formulas of Eq. (10) reveals time complexity of O(N2n4). In actual
case, however, the loop size is bounded by a constant, and thus the complexity can be reduced to O(N2n2).
Therefore, the overall time complexity is evaluated as O(N3n3). The space complexity is O(N2n2).

3. Results

Our two DP models were tested on the data set comprising eight antisense-target RNA complexes with
known structures, taken from several literatures (see Tables 2–4). In fact, an antisense sequence was
used for constructing a binding profile, whereas the corresponding target sequence was used for predict-
ing its structure with binding sites. For the binding site profile computation, we used γ = 2 in Eq.
(1). We employed Table 1 for the simple energy parameter e, and adopted sophisticated energy pa-
rameters for folding at 37◦C provided by the Turner Group18 (the recent version is available online at
http://www.bioinfo.rpi.edu/zukerm/rna/energy/) for other parameters including eh, es, etc. We limited the
size of interior and bulge loops to at most four nucleotides. The penalty for a bifurcation structure b was set
at 1. We implemented the algorithms in Java on a machine with Intel Core 2 Duo CPU 1.20GHz and 2.00GB
RAM. Prediction accuracy was measured using sensitivity (SEN) and positive predictive value (PPV) defined
below:

SEN =
♯ of correctly predicted base pairs + ♯ of correctly predicted bases of binding sites

♯ of observed base pairs + ♯ of observed bases of binding sites
,

PPV =
♯ of correctly predicted base pairs + ♯ of correctly predicted bases of binding sites

♯ of predicted base pairs + ♯ of predicted bases of binding sites
.

Note that ♯ represents the number.
Tables 2 and 3 show the prediction accuracy of the base pair energy model (BPEM) and that of the

stacking energy model (SEM), respectively. Figure 5 depicts predicted structures of the fhlA RNA of the
longest sequence in the data set. We can see that SEM outperforms BPEM in terms of accuracy.
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Table 3. Results of the stacking energy model (SEM).

Antisense-Target SEN (%) PPV (%) Time (s)

Tar-Tar* 100.00 100.00 0.39

R1inv-R2inv 92.31 100.00 0.53
DIS-DIS 100.00 100.00 2.92
CopA-CopT 96.77 100.00 50.09

ATP sensitive ribozyme-Substrate 100.00 92.00 29.11
IncRNA54-RepZ 100.00 97.37 30.23
RyhB-SodB 83.33 64.52 31.77
OxyS-fhlA 90.91 90.91 115.40

Average 95.42 93.10 32.56

[Observed structure]
AUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCG
(((((.(((((((((((...)))))))..*******.....)))).))))).........((((((((.((((....*********.)))).))))))))

[Predicted structure by BPEM]
AUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCG
((..(((((((.((.(((((((..(.((.*******)))))))))))))).).).).))))(((((((((((.(.(.*********))))))))))))).

[Predicted structure by SEM]
AUGACCUUUUGCACCGCUUUGCGGUGCUUUCCUGGAAGAACAAAAUGUCAUAUACACCGAUGAGUGAUCUCGGACAACAAGGGUUGUUCGACAUCACUCG
(((((.(((((((((((...)))))))..*******))))......))))).........((((((((.((((....*********.)))).))))))))

Fig. 5. Prediction results for the fhlA RNA. A pair of parentheses denotes a base pair and a series of asterisks represents a
binding site.

Table 4. Comparison of F-measure (%) between our models, the stacked pair

model (SPM) and the loop model (LM) presented in Ref. 6. Note that LM returned
no base pair when ATP sensitive ribozyme-Substrate was used as an input.

Antisense-Target BPEM SEM SPM LM

Tar-Tar* 94.74 100.00 90.00 90.00
R1inv-R2inv 100.00 96.00 100.00 100.00

DIS-DIS 77.78 100.00 82.35 82.35
CopA-CopT 96.88 98.36 83.33 78.79
ATP sensitive ribozyme-Substrate 42.86 95.83 55.32 0.00
IncRNA54-RepZ 97.37 98.67 81.58 81.58

RyhB-SodB 30.00 72.73 53.97 52.78
OxyS-fhlA 55.32 90.91 80.00 78.72

Average 74.37 94.06 78.17 70.68

We then compared the performance of our proposed methods with that of existing DP-based models,
called the stacked pair model (SPM) and the loop model (LM) presented in Ref. 6, using the inteRNA web
server19 (see Table 4). In the web interface, we set gap penalty and maximum substructure length at 0 and
61, respectively, for all eight RNA pairs. SPM and LM took much time for prediction due to their high time
complexity as stated in Sec. 1. We calculated F-measure F , which is the harmonic mean of SEN and PPV
defined by F = 2 · SEN · PPV/(SEN + PPV). As Table 4 shows, the prediction performance of SEM is the
best of all four models on average.

To demonstrate the applicability of our profile-based approach to target discovery, we further tried
analyzing some RNAs with unknown structures and binding sites, given binding profiles of specific antisense
RNAs. Test sequences were selected to be homologous to the known target sequence (query) for the antisense
RNA using BLASTN. Figures 6 and 7 illustrate two candidate prediction results using SEM. We must note
that in the figures it is not clear whether or not the predicted binding sites actually interact with the
antisense RNAs since the number of detected binding sites was fewer than that of the known homologous
target RNAs. The prediction result of CP001122 (see Fig. 6), which has 90% sequence identity with the
known target CopT, shows that SEM detected two binding sites on CP001122. Note that the second binding
site inside the hairpin loop (CUGC in Fig. 6) was ascribed to the profile computed from the third binding
site located in the exterior loop of CopT, which leads to more uncertainty of predicted target sites. As for
another example, SEM recognized only one binding sites on CU928158 (see Fig. 7), which has 89% sequence
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AAACCCCGAUAAUCUUCGUCAAGUUUGGCGACUGCGAAGAAGAUUACCGGGGCCC

...(((((.((((((((......******..****...)))))))).)))))...

Fig. 6. A prediction result of a sequence CP001122 Salmonella enterica subsp. enterica serovar Kentucky str. CVM29188

plasmid pCVM29188 146, which has 90% sequence identity with the CopT RNA to which the antisense CopA binds. Notice
that only two binding sites were predicted as compared with the known target CopT with three binding sites.

UUGCGGUGCAUUCCUGGAUAGCAAAAUGUCGUAUACACCAAUGAGCGAUCUCGGACAACAAGGGCUGUUCGAUAUCACUCG

.((((.(((..*******..)))......))))........((((.(((.(((((((........))))))).))).))))

Fig. 7. A prediction result of a sequence CU928158 of the Escherichia fergusonii ATCC 35469 chromosome, which has 89%
sequence identity with the fhlA RNA to which the antisense OxyS binds. Notice that only one binding site was predicted as

compared with the known target fhlA with two binding sites.

identity with the known target fhlA. On the other hand, exactly two binding sites were found for another
test sequence of 99% sequence identity with fhlA (the result is not shown here).

4. Conclusion

We proposed new dynamic programming algorithms for predicting RNA secondary structures with binding
sites. The performance of the algorithms for the base pair energy model (BPEM) and the stacking energy
model (SEM) was demonstrated for several known RNA-RNA interaction data. Judging from the results,
it can be said that the advantages of BPEM are faster running time than that of SEM and the simplicity
of DP, which is a natural extension of the classical prediction algorithm for single RNA folding. However,
prediction accuracy of BPEM plummets for some inputs. On the other hand, SEM is a more complex model
than BPEM but a robust one in a sense that prediction accuracy hardly fluctuates according to the length
of an input sequence. We further compared the prediction results with those of other prediction methods,
which shows that SEM outperforms those earlier models.

Our approach is a novel method of RNA-RNA interaction prediction from a different point of view
(i.e., use of profile of intermolecular interaction), and achieves lower time complexity compared with earlier
methods. Moreover, use of our profile-based method can improve prediction performance. Our method will
also be useful in discovering new target sites for an antisense RNA with a known binding profile. To ensure
this advantage, exhaustive search for candidate targets has to be performed as our future work. If the profile
of an interacting protein is available, our method could be applied to RNA-protein interaction prediction,
which is also left as a challenging task.
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PSEUDOKNOTS AND TEMPORARY ARCS
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We make two new contributions to the problem of calculating pseudoknot-free folding pathways with minimum
energy barrier between pairs (A,B) of RNA secondary structures. Our first contribution pertains to a problem
posed by Morgan and Higgs: find a min-barrier direct folding pathway for a simple energy model in which each base
pair contributes −1. In a direct folding pathway, intermediate structures contain only base pairs in A and B and
are of length |A△B| (the size of the symmetric difference of the two structures). We show how to solve this problem
exactly, using techniques for deconstructing bipartite graphs. The problem is NP-hard and so our algorithm requires
exponential time in the worst case but performs quite well empirically on pairs of structures that are hundreds of
nucleotides long. Our second contribution shows that for the simple energy model, repeatedly adding or removing
a base pair from A ∪ B along a pathway is not useful in minimizing the energy barrier. Two consequences of this
result are that (i) the problem of determining the min-barrier pseudoknot-free folding pathway from the space of
direct pathways with repeats is NP-hard and (ii) our new algorithm finds the min-barrier pathway not only from
the space of direct folding pathways but in fact from the space of direct pathways with repeats.

Keywords: RNA secondary structure; RNA folding pathways; energy barrier problem

1. Introduction

We present new algorithms for exactly computing direct folding pathways between two RNA structures

that have minimum energy barrier, for a simple energy model. We first briefly motivate the energy barrier

computation problem, describe previous work on energy barrier calculation and summarize our results.

Motivation. RNA molecules play vital roles in the cell, not only because of the diverse structures they

can form but also because of their ability to fold into alternative structures under changing environmental

conditions.1–6 Thus knowledge of folding pathways between pairs of alternative RNA structures is very

valuable for inferring RNA function in such environments, and is valuable also for predicting RNA structure,

e.g., in light of co-transcriptional folding.2,7–10

Computational approaches for predicting folding pathways focus on secondary structure— the set of

base pairs that form when an RNA molecule folds. As illustrated in Fig. 1, the folding pathway from an

initial to a final structure is a sequence of intermediate structures, each differing from the previous one by

a single base pair (or equivalently by a single arc in the arc diagram representation). Much focus to date

has been on pathways of pseudoknot-free secondary structures— structures in which no base pairs cross.

Since folding is a thermodynamically-driven probabilistic process, folding pathways tend to avoid high-energy

structures. As a result, many methods for predicting folding pathways or energy landscapes— particularly

course-grained methods designed to work for long structures which do not attempt to model the complete

energy landscape— are guided by calculations of the energy barrier.2,11 Energy barrier calculations have

also been useful in constructing barrier trees and to study properties of disordered systems in statistical

physics.12–14

If π = P0,P1, . . . ,Pm is a folding pathway from structure A to structure B (i.e., A = P0 and B = Pm),

the energy barrier of π is max1≤i≤m E(Pi)−E(P0), where E(S) denotes the free energy change of secondary

structure S. In this paper we focus on a simple energy model in which each base pair contributes −1 to the

total energy. The energy barrier of pair (A,B) is the lowest energy barrier, taken over all pathways from A

to B. Note that there is always a folding pathway from A to B in which first all arcs (base pairs) of A are

removed and then all arcs of B are added. The question is whether there is another pathway that avoids
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Fig. 1: (a) A possible pseudoknot-free folding pathway is shown for an initial structure A transitioning

through intermediate structures (B, C, . . .) until the final structure I is reached. Structures are represented

as arc diagrams. For a particular position in the pathway, the top of the arc diagram denotes the base pairs

of the structure and the bottom of the diagram denoes the base pairs that are currently not in the structure

but need to be in the final structure. Each structure along the pathway differs from its neighbours by at

most one arc. Furthermore, each arc is either removed (if in A) or added (if in I) at most once along the

pathway and thus the pathway is direct. (b) The corresponding energy plot. The barrier in this example is

two.

such a high energy barrier, by adding arcs of B before all arcs of A are removed. Throughout, we consider

only pseudoknot-free pathways, in which all intermediate structures are pseudoknot-free.

Background and previous work. There is a rich literature on the problem of predicting folding pathways

and energy landscapes; see the recent work of Geis at al.,2 Tang et al.11 and the references therein. We focus

here on algorithms for energy barrier calculation which are an important component of many approaches to

estimation of folding pathways and energy landscapes. Such methods have been proposed, for example, by

Morgan and Higgs,13 Wolfinger et al.,12,14 Flamm et al.15 and Geis et al.2

Several versions of the energy barrier problem have been studied, which are distinguished by properties

of the intermediate structures. Morgan and Higgs focus on direct folding pathways from structure A to

structure B in which intermediate structures contain only arcs in A ∪ B and such that the total pathway

length is |A△B|. In such pathways, each arc from the initial structure not also in the final structure is

removed exactly once and each arc from the final structure not also in the initial structure is added exactly

once along the pathway. A larger class of pathways is obtained by allowing the the length of the pathway to

exceed |A△B|. We call such pathways direct-with-repeats pathways since an arc from A or B may be added

or removed multiple times along the pathway. An even more general class of pathways allow intermediate

structures to contain “temporary” base pairs which are neither in A nor in B. Morgan and Higgs call such

pathways indirect. Thus, direct pathways are a subclass of direct-with-repeats pathways, which in turn are

a subclass of indirect pathways.

Morgan and Higgs assume the simple energy model in which each base pair contributes −1 to the total

free energy. Using a randomized greedy approach, they construct several low-barrier direct pathways and take

the minimum energy barrier of these as their estimate. (They also construct indirect pathways using a “single

link clustering” method.) Wolfinger et al. use a barrier tree to represent the folding landscape; identifying

nodes in the tree (which are called saddle points) is analogous to calculating energy barriers. Flamm et al.’s
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method15 for approximating energy barriers explores direct pathways by performing a breadth-first search,

maintaining the best m candidate solutions at each step. As m becomes large, the search does become

exhaustive, yielding an exact solution, however exponential runtime and memory are required. The program

barriers
12 is capable of computing exact direct and indirect pathways, provided a complete sample of low

energy states separating the two structures is provided. However, this approach is also exponential in runtime

and space and thus unsuitable for medium or large problem instances.

For their Kinwalker folding pathway predictor, Geis et al.2 describe a heuristic which explores the space of

possible direct pathways in a more sophisticated manner than does the Morgan-Higgs heuristic, incorporating

a parameter lookahead technique to avoid excessive runtimes. While their method uses the Turner energy

model to evaluate energy barriers, it relies on simple addition and removal of base pairs (and thus the simple

energy model) while generating putative low-barrier pathways.

In summary, all current methods are either heuristic in nature and thus are not guaranteed to find the

exact energy barrier between two structures, or are exponential in both runtime and space, precluding their

use on even medium sized problem instances. Thus there is strong motivation for finding a fast method

which can exactly compute the energy barrier between two structures. Indeed, the Geis et al. method can

estimate energy barriers for structures of long sequences (1,500nt or more) but the authors note that “as the

performance of Kinwalker crucially depends on approximating saddle heights, further improvements to the

Morgan-Higgs heuristic as well as alternative approaches will be investigated”.

Finally, in earlier work, we showed that the problem of finding the energy barrier of direct pathways be-

tween two structures is NP-hard.16 Thus we do not expect to find an algorithm for energy barrier calculation

whose running time is bounded by polynomial in its input, in the worst case.

Our results. Our main contributions are new approaches for exactly calculating the energy barrier between

two RNA secondary structures along direct, pseudoknot-free pathways. To develop a sound theoretical basis

for energy barrier calculation we follow the approach of Morgan and Higgs: we assume a simple energy

model in which each base pair contributes −1 to the total energy and we focus on the problem of finding

min-barrier pathways between structures with minimum free energy. Structure S is a minimum free energy

(MFE) structure for a given sequence if no other structure for the sequence has lower energy than S. A

sequence may have more than one MFE structure.

Our methods exploit elegant algorithms for bipartite graphs to split a problem into independent sub-

problems where possible. The theoretical run-time complexity of our algorithms is exponential in the worst

case; this is not surprising since the problem is NP-hard.16 However, our empirical analysis shows that im-

plementations of our algorithms can often find the energy barrier on problem instances with hundreds of

nucleotides in seconds. Our algorithms are highly amenable to parallelization and have potential to work with

more sophisticated energy models that include Turner parameters for base stacking, for example. Further-

more, our methods could be integrated with current heuristics in order to improve energy barrier estimation

on structures with thousands of nucleotides.

Our second contribution addresses the following question: for the simple Morgan-Higgs energy model

could direct-with-repeats pathways have lower energy barriers than direct pathways? We show that the

answer to this question is no: repeated arcs cannot help to lower the energy barrier of a pathway. Two

consequences of this contribution are that (i) the problem of determining the min-barrier pseudoknot-free

folding pathway from the space of direct-with-repeats pathways is NP-hard and (ii) our algorithm finds

the min-barrier pathway not only from the space of direct folding pathways but in fact from the space of

direct-with-repeats folding pathways.

In Section 2 we present our result that repeated arcs do not help to decrease the energy barrier in

direct pathways. In Section 3 we present our new algorithmic techniques for exactly computing min-barrier

pseudoknot-free folding pathways. We present our empirical analysis in Section 4. We provide a brief discus-

sion and suggest directions for future work in Section 5.

110



September 21, 2009 19:3 WSPC - Proceedings Trim Size: 11in x 8.5in psb2010

2. Repeated base pairs do not lower the energy barrier

In this section we show that on a folding pathway from structure A to structure B, repeatedly adding or

removing arcs from A or B along the pathway cannot help to reduce the energy barrier. This enables us to

consider only direct (i.e., repeat-free) pathways in our later algorithms without loss of generality.

It is convenient in this section to slightly generalize the definition of a folding pathway, so that a structure

on the pathway differs from its predecessor by at most one (rather than exactly one) arc. A sequence

T = T [1], T [2], . . . , T [m] is a transformation sequence for a direct-with-repeats pathway π = P0, . . . ,Pm if

for all i ∈ [1, m], one of the following holds:

• T [i] = +a, Pi = Pi−1 ∪ {a}, and a /∈ Pi−1;

• T [i] = −a, Pi = Pi−1 \ {a}, and a ∈ Pi−1;

• T [i] = no-op and Pi = Pi−1;

where a ∈ P0 ∪ Pm. We call each T [i] an operation. Let T̂ [i] = a if T [i] ∈ {+a,−a}.

Theorem 2.1. For any direct-with-repeats pseudoknot-free pathway π from structure A to structure B there

is a direct pseudoknot-free pathway from A to B with energy barrier at most that of π.

Proof. Consider a direct-with-repeats pathway π = P0, . . . ,Pm from A = P0 to B = Pm and let

T [1], . . . , T [m] be a transformation sequence for π. For each a ∈ A, we call each occurrence of +a or −a in

T , except for the last −a, a repeat operation. Similarly, for each b ∈ B, each occurrence of +b or −b in T

except for the last +b is a repeat operation.

If π is direct we are done, so suppose that π is not direct. We will show how to construct a pathway

π′ and corresponding transformation sequence which has fewer repeats than does T , with the barrier of π′

being at most that of π. The proof follows since we can iterate this construction until we obtain a direct

transformation sequence from A to B.

Let I+
A and I−A be the subset of indices i ∈ [1, m] for which T [i] is a repeat operation of the form +a and

−a, respectively, where a ∈ A. Similarly, let I+
B and I−B be the subset of indices i ∈ [1, m] for which T [i] is

a repeat operation of the form +b and −b, respectively, where b ∈ B. To construct a new pathway π′ with a

smaller number of repeats we consider two cases:

Case 1: |I−A | ≥ |I
+
B |.

Case 2: |I−A | < |I
+
B |.

We will construct π′ only in Case 1. The construction in Case 2 follows by symmetry. Indeed, by

reversing the pathway π and its transformation sequence T and replacing each + by a − and vice versa in

T , we obtain a pathway π̄ from Ā = B to B̄ = A and a corresponding transformation sequence T̄ . Now

we have that |I−
Ā
| = |I+

B | > |I
−
A | = |I

+

B̄
|. Therefore, the construction in Case 1 produces a transformation

sequence from B to A with a smaller number of repeat operations. Its reversal, with +’s changed to −’s and

vice versa, is a transformation sequence from A to B which has a smaller number of repeat operations than

does T .

We use the following notation. For each i ∈ I−A (i.e., T [i] = −a for some a ∈ A and is not the last such

−a), find the smallest index i′ > i for which T [i′] = +a. We say that i is a partner of i′ and vice versa, and

write partner(i) = i′ and partner(i′) = i. Similarly, every j ∈ I+
B is partnered with the smallest j′ > j for

which T [j′] = −b. For any J ⊆ [1, m], let partner(J) = {partner(j); j ∈ J}.

Consider Case 1. We will identify subsets I ⊆ I−A and J ⊆ I+
B such that the transformation sequence

T (I, J) obtained by replacing all operations in T at positions I ∪ partner(I) ∪ J ∪ partner(J) with no-op’s

has a smaller number of repeat operations and corresponds to a valid pathway π′ from A to B. By valid,

we mean that π′ is pseudoknot-free and has barrier no greater than that of π. The sets I−A and I+
B satisfy a

useful property. To describe this, we say that i conflicts with j if T [i] = −a, T [j] = +b, arcs a and b cross

and j ∈ [i, i′] where i′ = partner(i). For any I ⊆ I−A , let conflict(I) be the subset of [1, m] that conflicts

with indices in I. Note that if i conflicts with j, it must be that [j, partner(j)] ⊂ [i, partner(i)]. The useful

property we have is that conflict(I−A) ⊆ I+
B .
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We initially set I = I−A and J = I+
B . We will cull sets I and J until T (I, J) is a valid transformation

sequence. After each culling step sets I and J will satisfy the following two properties: (a) |I| > |J | and (b)

conflict(I) ⊆ J . Before each culling step (including the first one), we have |I| ≥ |J | and conflict(I) ⊆ J .

A culling step is as follows. For any r ∈ [1, m] let Ir be the subset of I ∩ [1, r] whose partners are after

position r and let Jr be the subset of J ∩ [1, r] whose partners are after position r. Suppose that for some r,

|Ir | < |Jr|. (1)

Let I ′ = I − Ir and let J ′ = J − Jr. The sets I ′ and J ′ are results of the culling step. If there is no r such

that |Ir | < |Jr|, no culling step is performed.

We will show that after the culling step, I ′ and J ′ satisfy properties (a) and (b). We immediately have

that |I ′| > |J ′| because of the fact that the removed subsets satisfy inequality (1) and that |I| ≥ |J |. For

property (b), we have that conflict(I ′) ⊆ conflict(I) ⊆ J . Hence, to prove that conflict(I ′) ⊆ J ′ it is enough

to show that conflict(I ′) ∩ Jr is empty. Assume to the contrary that some i ∈ I ′ conflicts with j ∈ Jr. Since

j ∈ Jr, r ∈ [j, j′], where j′ = partner(j). Since i and j conflict, [j, j′] ⊂ [i, i′], where i′ = partner(i). Hence,

r ∈ [i, i′], a contradiction with the assumption that i ∈ I ′ = I − Ir.

Now set I = I ′ and J = J ′. Repeat the culling step for the resulting (new) sets I and J , until there

no longer is any r with |Ir | < |Jr|. Note that there can only be a finite number of culling steps, since each

removes a non-empty subset from J (since, |Jr| > |Ir |, Jr, the set which is removed from J , is non-empty).

Thus, at the end of the culling process, we have sets I and J with the following properties:

(1) I ∪ J is non-empty,

(2) conflict(I) ⊆ J and

(3) for all i ∈ [1, m], |Ii| ≥ |Ji|.

Since I ∪ J is non-empty, T (I, J) has fewer repeats than does T . Using property (2) we can show that the

pathway π′ corresponding T (I, J) is pseudoknot free. Finally, property (3) implies that the energy barrier

of π′ is at most that of π (details will appear in the full paper).

We have shown that the direct pseudoknot-free energy barrier problem is NP-complete.16 The above

result implies the following corollary.

Corollary 2.1. The direct-with-repeats pseudoknot-free energy barrier problem is NP-complete.

Example.

a1
a2

a3 a4 a5

b1

b2

b3

b4

b5

A

B

Fig. 2: Initial structure A and final structure B

Consider the pair of structures (A,B) in Fig. 2 and the following transformation sequence for a pathway

from A to B:

−a1 −a2 +b1 +b2 −b1 +a2 −b2 −a3 −a4 +b2 −a2 +b1

T [1] T [2] T [3] T [4] T [5] T [6] T [7] T [8] T [9] T [10] T [11] T [12]

−a5 +b3 −b3 +a3 +a4 +a5 −a3 −a4 −a5 +b3 +b4 +b5

T [13] T [14] T [15] T [16] T [17] T [18] T [19] T [20] T [21] T [22] T [23] T [24]
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We begin by identifying the sets I−A = {2, 8, 9, 13} and I+
B = {3, 4, 14}. Now, we find partners for the

indexes in these sets. First, I−A : partner(2) = 6, partner(8) = 16, partner(9) = 17, and partner(13) = 18.

Now, I+
B : partner(3) = 5, partner(4) = 7 and partner(14) = 15.

Initially, we set I = I−A = {2, 8, 9, 13} and J = J+
B = {3, 4, 14}. Note that the conditions |I| = 4 > 3 = |J |

and conflict(I) = {14} ⊆ J are true before the first culling step. Now, there is an r such that |Ir| < |Jr|: in

particular, if r = 7, Ir = {2} and Jr = {3, 4}. Hence, the new I is set to I − Ir = {8, 9, 13} and the new

J to J − Jr = {14}. We can now set I = I ′ and J = J ′. After this step we can see that I is non-empty,

conflict(I) = {14} ⊆ J and for all i ∈ [1, m], |Ii| ≥ |Ji| since the only element in J occurs after all the

elements in I. We now replace operations at positions I ∪ partner(I) ∪ J ∪ partner(J) with no-ops. We will

denote no-ops by ǫ. The transformation sequence is now:

−a1 −a2 +b1 +b2 −b1 +a2 −b2 ǫ ǫ +b2 −a2 +b1

T [1] T [2] T [3] T [4] T [5] T [6] T [7] T [8] T [9] T [10] T [11] T [12]

ǫ ǫ ǫ ǫ ǫ ǫ −a3 −a4 −a5 +b3 +b4 +b5

T [13] T [14] T [15] T [16] T [17] T [18] T [19] T [20] T [21] T [22] T [23] T [24]

Once again, we identify the sets I−A = {2} and I+
B = {3, 4}. Since |I−A | < |I

+
B | we are now in Case 2. We

proceed by reversing the transformation sequence and replacing each + with a −, and vice versa to obtain

a transformation sequence T̄ from Ā = B to B̄ = A. This results in the following transformation sequence:

−b5 −b4 −b3 +a5 +a4 +a3 ǫ ǫ ǫ ǫ ǫ ǫ

T [1] T [2] T [3] T [4] T [5] T [6] T [7] T [8] T [9] T [10] T [11] T [12]

−b1 +a2 −b2 ǫ ǫ +b2 −a2 +b1 −b2 −b1 +a2 +a1

T [13] T [14] T [15] T [16] T [17] T [18] T [19] T [20] T [21] T [22] T [23] T [24]

Now our new I−
Ā

= {13, 15} and I+

B̄
= {14}, so we are back in case 1. Next, we identify the partners

of these repeats: partner(13) = 20, partner(15) = 18, and partner(14) = 19. As before, we initially set

I = I−
Ā

= {13, 15} and J = I+

B̄
= {14}. We know that there is no r such that |Ir| < |Jr| because J ’s only

element occurs after an element in I, so |Ir | and |Jr| need to be at least equal for any r. So, sets I and J do

have all three expected properties: I is non-empty, conflict(I) = {14} ⊆ J and for all i ∈ [1, m], |Ii| ≥ |Ji|.

We now replace operations at positions I ∪ partner(I) ∪ J ∪ partner(J) with no-ops, obtaining the new

transformation sequence (here, for brevity, we collapse T [7] through T [20] since they are all no-ops:

−b5 −b4 −b3 +a5 +a4 +a3 ǫ −b2 −b1 +a2 +a1

T [1] T [2] T [3] T [4] T [5] T [6] T [7− 20] T [21] T [22] T [23] T [24]

Since we are interested in a pathway from A to B, we need to reverse the transformation sequence and

replace every + with a −.The transformation sequence is now repeat-free:

−a1 −a2 +b1 +b2 ǫ −a3 −a4 −a5 +b3 +b4 +b5

T [1] T [2] T [3] T [4] T [5− 18] T [19] T [20] T [21] T [22] T [23] T [24]

3. Algorithms for exactly computing energy barriers

In this section we describe our algorithms for finding the min-barrier pathway between two structures. We

model the problem in terms of bipartite graphs.

For a pair of pseudoknot-free structures for the same RNA sequence, we define the conflict graph to be

a bipartite graph G = (A, B; E) where A is the set of arcs from the first structure, B is the set of arcs from

the second structure and there is an edge in E between arc a ∈ A and arc b ∈ B if and only if a and b are

crossing. Throughout, we denote the neighbours (in A) of a subset B′ of B by N(B′). Also, we denote the

subgraph of G induced by subsets A′ ⊆ A and B′ ⊆ B by G/(A′, B′). We need a notion analogous to that

of a pair of MFE structures in the context of bipartite graphs. We say that G is pairwise-optimal if the size
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of the maximum independent set in the graph is |A|(= |B|). If A and B are MFE structures then G must

be pairwise-optimal; otherwise the largest independent in the conflict graph G would be a set of arcs with

lower free energy than either A or B. We let [i, j] represent the interval (set of integers) {i, i + 1, . . . , j}.

Let G = (A, B; E) be a pairwise-optimal bipartite graph. A set pathway for G is a sequence of independent

sets S0, . . . , Sm, each of which is a subset of A ∪ B, such that (i) S0 = A, (ii) Sm = B and (iii) for

every i = 1, . . . , m, |Si−1△Si| = 1 (the size of symmetric difference is one, i.e., at each step one arc is

either added or removed). The transformation sequence corresponding to this set pathway is the sequence

of singletons S0△S1, . . . , Sm−1△Sm. The set pathway is direct if its corresponding transformation sequence

has no repeating elements. The barrier of the pathway (or its corresponding transformation sequence) is

k = maxi |A| − |Si|. (Since A is a maximum independent set of (A, B; E), it must be that |A| − |Si| ≥ 0 for

all i, 1 ≤ i ≤ m.) We say that a set pathway is a (≤ k)-barrier set pathway or a k-barrier pathway if its

barrier is ≤ k or = k, respectively. A min-barrier set pathway is a set pathway whose barrier is less than or

equal to the barriers of any other set pathway for G. Consider the following problem:

Direct Set Barrier Problem. Given a pairwise-optimal bipartite graph G = (A, B; E) and an integer k,

find a direct set pathway with barrier at most k for G if one exists.

An instance of the Direct Energy Barrier Problem can be mapped to an instance of the Direct Set

Barrier Problem by contructing its conflict graph. However, the Direct Set Barrier Problem is actually a

more general problem since not every bipartite graph is realizable by a pair of pseudoknot-free structures.

Algorithm Overview. Our algorithm for the Direct Set Barrier Problem uses two key ideas. The first

is a splitting strategy: if for some proper non-empty subset B1 of B the induced subgraph G/(A1, B1) is

pairwise-optimal where A1 = N(B1) then we can determine the solution for (A, B; E) by recursively solving

the problem on the induced subgraphs G/(A1, B1) and G/(A \ A1, B \ B1) and combining the solutions to

the subproblems. Specifically, if G/(A1, B1) is pairwise-optimal then we can show three properties described

in the following lemma (due to space limitations we omit details of the proof of correctness of our algorithm

here and elsewhere but these will be provided in the full paper):

Lemma 3.1. Let G = (A, B; E) be a pairwise-optimal bipartite graph and let G1 = G/(A1, B1) be pairwise-

optimal where B1 is a proper non-empty subset of B and A1 = N(B1). Let G′ = G/(A \ A1, B \ B1).

Then

(1) G′ is pairwise-optimal,

(2) if T1 and T ′ are (≤ k)-barrier transformation sequences for G1 and G′ respectively then T1, T
′ is a

(≤ k)-barrier transformation sequence for G and

(3) G has a (≤ k)-barrier set pathway only if both G1 and G′ do.

For efficiency reasons, our implementation generalizes this splitting idea by splitting the problem into as many

“minimal” pairwise-optimal subproblems as possible. We say that (A, B; E) is minimal pairwise-optimal if

|A| = |B| and the only independent sets in (A, B; E) of size |A| are A and B.

The second key idea is a cutting strategy for reducing the size of minimal pairwise-optimal problem

instances. We have developed two cutting strategies. The first, the two-sided cutting strategy, generates the

subgraphs G/(A\{a}, B \{b}) for each choice of a ∈ A and b ∈ B and recursively solves each of the resulting

subproblems with the barrier set to k − 1. The following lemma states that if we do this for all possible

choices of a and b, we are guaranteed to find a (≤ k)-barrier set pathway for G if one exists.

Lemma 3.2. Let G = (A, B; E) be minimal pairwise-optimal. Then

(1) G/(A \ {a}, B \ {b}) is pairwise-optimal for all a ∈ A and b ∈ B,

(2) if G/(A\{a}, B \{b}) has a transformation sequence T ′ with barrier at most k−1 then T = {a}, T ′, {b}

is a transformation sequence for (A, B; E) with barrier at most k and

(3) G has a transformation sequence with barrier at most k only if G/(A\{a}, B \{b}) has a transformation

sequence with barrier at most k − 1 for some a ∈ A and b ∈ B.
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The second cutting strategy is a one-sided cutting strategy. Suppose that in some (≤ k)-barrier pathway

for G, b is the first node of B removed in the corresponding transformation sequence T . Let A′ be the set of

nodes of A which conflict with b (i.e., N(b′) = A′) and let B′ be the set of nodes of B such that N(B′) ⊆ A′.

Then we can assume without loss of generality that all nodes of A′ are first removed in T and immediately

thereafter all nodes of B′ are added. Abusing notation slightly, we can write that T = −A′, +B′, . . . where we

mean that the singleton subsets of A′ are listed first in an unspecified order, followed by the singleton subsets

of B′ in an unspecified order. Given A′ and B′, we’d like to use the algorithm recursively on the remaining

subgraph G/(A−A′, B−B′). However this subgraph is not pairwise-optimal and in fact |A−A′| < |B−B′|

(otherwise we would be able to apply the splitting strategy). To circumvent this problem we create a new

bipartite graph G′(b) by adding k′ = |A′| − |B′| “artificial” nodes to G and connecting them to all nodes in

B − B′. To obtain a (≤ k)-barrier pathway for G, we then recursively obtain the transformation sequence

T ′ of a (≤ k)-barrier pathway for the new graph G′(b), remove the singletons of T ′ that involve the k′ extra

nodes and finally append what’s left of T ′ to A′, B′. The following lemma states that if we do this for all

possible choices for b, we are guaranteed to find a (≤ k)-barrier set pathway for G if one exists.

Lemma 3.3. Let G = (A, B; E) be minimal pairwise-optimal. Then

(1) G′(b) is pairwise-optimal for all b ∈ B,

(2) if T ′ is a (≤ k)-barrier transformation sequence for G′(b) for some b then the transformation sequence

T obtained from T ′ via the cutting strategy is a (≤ k)-barrier transformation sequence for G and

(3) G has (≤ k)-barrier transformation sequence only if for some b ∈ B, G′(b) has a (≤ k)-barrier transfor-

mation sequence.

The Direct-SetBarrier algorithm, presented as Algorithm 3.1 below, incorporates the splitting and

two-sided cutting strategy. First, the input graph (A, B; E) is split to yield one or more subproblems (line

3), via a call to procedure Split(A, B; E). We describe later how this procedure works. The subproblems

produced by this split procedure cannot be split further, so our cutting strategy reduces these to smaller

subproblems (lines 12-19), unless they are already trivial to solve (lines 9-10), and concatenates the solutions

to the subproblems. By changing the inner loop, the one-sided cutting strategy can be implemented.

In the rest of this section we provide more details of the Split procedure. We conclude with a note on

the theoretical run-time and space complexity of the algorithm. In Section 4 we provide an empirical analysis

of the performance of our algorithm.

Details of the Split procedure. Given as input a pairwise-optimal bipartite graph G = (A, B; E), our

Split procedure produces a sequence of non-empty bipartite graphs G1, G2, . . . , Gp via the following steps.

First find a maximum matchingM in (A, B; E) using the Hopcroft-Karp algorithm.17 (As we note in our

correctness proof, well-known results on bipartite graphs show that such a matching exists.) Second, create

the precedence graph for G andM. By precedence graph, we mean the directed bipartite graph D = (A, B; E′)

where E′ = {(b, a)|b ∈ B ∧ (b, a) ∈ E} ∪ {(a, b)|a ∈ A ∧ (a, b) ∈ M}. Third, using Tarjan’s algorithm,18 find

the strongly connected components in the precedence graph. Finally, create a total order of these components

in a manner that is consistent with their topological ordering in the associated condensation graph, i.e. the

directed acyclic graph in which each strongly connected component is condensed into a single node. Let

(Ai, Bi) be the set of nodes in the ith component in this total ordering. Then the graph Gi is chosen to be

the subgraph of G/(A− ∪i−1
j=1Aj , B − ∪

i−1
j=1Bj) induced by the nodes (Ai, Bi). The next lemma summarizes

important properties of the Split procedure.

Lemma 3.4. Given as input a pairwise-optimal bipartite graph G = (A, B; E) the Split procedure produces

a sequence G1 = (A1, B1; E1), G2 = (A2, B2; E2), . . . , Gp = (Ap, Bp; Ep) such that

(1) Gi is minimal pairwise-optimal for each i, 1 ≤ i ≤ p and

(2) Ai = N(Bi) in the graph G′
i = G/(A− ∪i−1

j=1Aj , B − ∪
i−1
j=1Bj) for all i, 1 ≤ i ≤ p.
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Algorithm 3.1 Direct Set Barrier Algorithm Direct-SetBarrier((A, B; E), k)

1: // INPUT: a non-empty pairwise-optimal bipartite graph (A, B; E) and a barrier k ≥ 0

2: // OUTPUT: a direct transformation sequence from A to B with barrier at most k, or “no solution”

3: call procedure Split(A, B; E) to obtain subproblems G1 = (A1, B1; E1), . . . , Gp = (Ap, Bp; Ep)

4: T ← ∅ // empty sequence

5: if k ≤ 0 then

6: return “no solution”

7: else

8: for i = 1 to p do

9: if |Ai| ≤ k then

10: append Ai, Bi to T

11: else

12: // the inner loop:

13: for all a ∈ Ai and b ∈ Bi do

14: call Direct-SetBarrier(Gi/(Ai \ {a}, Bi \ {b}), k − 1)

15: if a sequence T ′ was returned then

16: append {a}, T ′, {b} to T

17: exit the inner loop

18: end if

19: end for

20: if no transformation sequence was found in the inner loop then

21: return “no solution”

22: end if

23: end if

24: end for

25: return T

26: end if

Run-time and space complexity. The run-time of the Split(A, B; E) procedure is dominated by the

time needed to find a maximum matching in a bipartite graph. This time is O(n2.5), or more precisely

O(n1/2m) using the Hopcroft-Karp algorithm17 where n = |A| = |B| and m = |E|. The remaining steps of

the Split(A, B; E) procedure take O(n + m) time.

The Direct-SetBarrier((A, B; E), k) algorithm with the two-sided cutting strategy has theoretical

run-time complexity O(n2k+2.5). Recall that k is the input which specifies the allowable barrier, i.e. the

algorithm determines whether (A, B; E) has a set with barrier at most k. The worst case arises when every

call to the Split procedure produces just one subproblem, because in this case we are not able to split a

problem (or its recursive subproblems) into smaller independent problems. In this case the inner loop is

called O(n2) times on a subproblem with allowable barrier k − 1 and the recursion bottoms out when k

reaches 0. We therefore have O(n2k) calls to the Direct-SetBarrier((A, B; E), k) algorithm (Algorithm

3.1), each taking time O(n2.5) for a total running time of O(n2k+2.5). Note that the run-time is exponential in

k. However, since the problem is NP-hard,16 we cannot hope for an algorithm whose run-time is polynomial

in n, m and k in the worst case.

The worst-case run-time complexity of the algorithm with the one-sided cutting strategy is nO(n) since

in this case k is not reduced on recursive calls and so the depth of recursion depends on the degree to which

the problem size is reduced at each level of recursion.

Thus which cutting strategy is best depends on the input. When k is small, the two-sided cutting strategy

dominates but when the one-sided cutting strategy succeeds in reducing the problem size consistently, then

the latter is more effective. Our empirical analysis sheds more insight on the trade-offs.
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All of the techniques used by the algorithm use O(n + m) space. Finally we note that Direct-

SetBarrier takes as input a specific candidate k for the min-barrier. To find the barrier when k is unknown,

we can use a divide and conquer approach. Initially, we know k is in the range [1, |A|]. We can try k = |A|/2;

if we find a solution we then we know the range is [1, |A|/2]. If not, we know the range is [|A|/2 + 1, k]. We

continue to reduce the range by a factor of 2 until the range is 1, at which point we know the min-barrier.

This increases the run-time by a factor that is logarithmic in the input size.

4. Empirical Results

We implemented both of our algorithms for the Direct-SetBarrier problem, in order to study their

efficiency in practice on biologically motivated data. Here we describe our experimental setup and protocol

for generating problem instances and describe our results on the performance of our algorithm.

Implementation and experimental environment. Both algorithms were coded in C++ and compiled

using g++ (GCC version 4.2.1). All experiments were run on our reference PCs with 2.4Ghz Intel Pentium

IV processors with 256KB L2 cache and 1GB RAM, running SUSE Linux version 10.3.

Generation of problem instances. With the motivation of studying algorithm performance across a

variety of problem instances, we randomly sampled five sequences for each of four different classes of non-

coding RNA—Transfer RNA, Transfer Messenger RNA, Ribonuclease P RNA, and 5S Ribosomal RNA,—

found in the RNA STRAND database.19 For each sequence, five MFE structures—with respect to number of

base pairs—were determined using a modified version of the Nussinov-Jacobsen algorithm.20 The modified

algorithm stored all optimal paths within the traceback matrix. In this way, we were able to randomly

sample five different MFE structures for the same sequence. Identical structures were discarded. Every

possible pairing of structures for the same sequence formed a new problem instance. Thus, ten problem

instances were created for each sequence, resulting in 200 problem instances overall. The distribution of

sequence length and the resulting number of conflicting base pairs between paired structures can be seen in

Fig. 3. In general, and as expected, the number of conflicting bases pairs increases with sequence length.

Fig. 3: Distribution of conflicting base pairs for generated problem instances.

Algorithm runtime performance. Both algorithms were run for a maximum of 1 CPU hour on each

of the 200 hundred problem instances. The nO(n) algorithm found solutions to 183 instances, while the

O(n2k+2.5) algorithm found solutions to 184 instances. Interestingly, the nO(n) algorithm found solutions to

three instances not found by the O(n2k+2.5) algorithm; likewise, four instances were found by the O(n2k+2.5)
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algorithm not found by the nO(n) algorithm. Of the instances that were solved, optimal barriers were found

within 1 CPU second by both algorithms in 90% of the cases with barrier height ranging from 1 to 8. The

barrier of harder instances ranged from 6 to 11, with a mean of 9. In general, the O(n2k+2.5) algorithm was

the best performing for harder instances. However, as can be seen in Fig. 4, both algorithms excelled for

certain instances relative to one another.

Fig. 4: The required time to find an optimal barrier pathway shown for two time scales.

The instances which failed to be solved within our cut-off time tended to have the highest number of

conflicting base pairs. We also found that the instances which failed to be solved tended to have the largest

minimally pairwise-optimal subproblems generated by the Split procedure. For each problem instance, we

recorded the size of the maximum subproblem, as well as the average size of all subproblems, produced by

the Split procedure at the top level of recursion, We measured size as number of base pairs. Fig. 5 shows

the frequency of problem instances which have given maximum (left) and average (right) subproblem size.

The problem instances which have maximum subproblems of size 200 or more were those that failed to be

solved. Alternative methods for splitting or recursing on such subproblems would clearly be valuable.

Fig. 5: Frequency of maximum (left) and average (right) subproblem sizes, measured as number of base pairs

in the subproblem produced by the first call to the Split procedure for a given instance. The max and

average are taken over all subproblems generated for a given instance.
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5. Conclusion

We have presented new approaches for calculating energy barriers between RNA secondary structures using

classical bipartite graph algorithms, and can prove that our methods find the min-barrier direct folding

pathway between two MFE secondary structures. Our algorithms run very efficiently on structures of length

up to 300nt and solved the vast majority of our generated instances of length up to 500nt.

Our methods show much promise for further development. They can be generalized to find energy barriers

between non-MFE structures by exploiting the introduction of “artificial” nodes as in the one-sided cutting

strategy. Our algorithms are highly amenable to parallelization: subproblems generated both by the Split

procedure and the cutting strategy can be solved independently. Furthermore, there is more potential for

creative means to split or otherwise reduce the size of a problem.

Even on instances that are intractable for our algorithm, preliminary analysis suggests that our algorithm

might yield tight approximate bounds. For example, while the algorithm may be slow on some long instances

when given the “true” min-barrier k, it can be fast when given k− 1 and k + 1, thereby narrowing the range

to 2. The ability to establish a narrow range could be sufficient for some methods that approximate RNA

energy landscapes.2,11 We plan to investigate this further.

Other important directions for future work are to determine whether low-barrier pathways produced by

our methods for the simple energy model are competitive with pathways found by state-of-the-art heuristics

using a thermodynamic energy model, or whether our techniques can be extended to obtain exact energy

barriers with more realistic energy models. Also of interest would be a follow-up of the Morgan and Higgs

study to determine how barrier heights scale with sequence length, particularly for long sequences. Further

testing of our method on more biologically-relevant pairs of structures will be necessary to answer these

questions. Finally, development of efficient exact methods for determining min-barrier indirect pathways, i.e.

pathways that allow temporary edges, is an interesting unresolved challenge.
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Biological network analysis has become a central component of computational and systems 
biology. Because  such  analysis  provides  a  unifying  language  to  describe  relations within 
complex  systems,  it  has  played  an  increasingly  important  role  in  understanding 
physiological  function.    Significant  efforts  have  focused  on  analyzing  and  inferring  the 
topology and structure of cellular networks and on relating them to cellular  function and 
organization.    However, much  of  this work  has  taken  a  static  view  of  cellular  networks, 
despite  the  knowledge  that  biological  networks  can  change  with  time,  context,  and 
conditions.   We introduce this session on The Dynamics of Biological Networks to encourage 
and support the development of computational methods that elucidate the dynamic interactome. 
 
Biological networks encompass many types of variation.  Temporal variation can be inferred via 
experimentally determined large-scale (static) cellular networks, along with other high-
throughput experimental data sets that provide snapshots of biological systems at different times 
and conditions. These data are often integrated with static interaction data (e.g. protein-protein, 
domain-domain, or regulatory interactions), time- or environment-dependent expression data, 
protein localization data, or other contextual information.   Temporal variation also operates at 
the evolutionary scale and can be inferred via comparison of biological networks across species. 
An evolutionary perspective on network dynamics can help shed light on molecular function and 
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behavior as well as on the phylogenetic relationships between species.  Contextual variation 
overlaps heavily with temporal variation, but focuses more specifically on characterizing 
reactive variation and the conditions that cause it.  Studying context may also encompass 
examining sequence or genetic variation within a population of contemporaries and exploring 
how that variation affects network topology and function.      
 
Uncovering the dynamic nature of cellular networks has clear relevance to human health, as 
defects in signaling and regulatory pathways are associated with many serious diseases, such as 
cancer. Correlating changes in genotype with changes in disease phenotype and studying these 
changes in the context of protein-protein interaction networks, signaling networks and 
transcriptional networks has begun to provide new understating of mechanism of complex 
diseases as well as help uncover markers for disease recognition and classification. 
 
As in the previous year, this year’s session on Dynamics of Biological Networks brings together 
scientists working on various aspects of the dynamic nature of biological networks. The session 
includes an invited talk, six contributed papers, and a panel discussion. The invited talk, by 
Edward Marcotte, relates gene networks to disease and evolutionary dynamics.  Specifically, he 
will discuss new methods for linking genes to traits that reveal surprising disease models and that 
are intimately connected to evolutionarily conserved gene networks.   
 
The papers selected for presentation address a broad spectrum of problems related to network 
dynamics.  Several papers explore context specificity.  In particular, Fang, et al., directly link 
gene expression data with context or medical conditions.  They present an algorithm that finds 
sets of genes that are highly co-expressed in many samples from a given context (such as cells 
grown in a nutrient-deficient condition), but that are not co-expressed in most samples in a 
different context (such as cells grown in normal media).  Their approach defines gene sets likely 
to form context-specific pathways.   
 
Many approaches to finding functional modules in biological networks rely on graph-partitioning 
algorithms that optimize a single objective function.  In contrast, the paper by Navlakha, et al. 
looks at ensembles of optimal and near-optimal partitions to determine node centrality in 
modules and module variability.  The variation observed between the different partitions may 
shed light on context-specific variations in the composition of functional modules.   
 
Chowdhury and Koyutürk also focus on finding functional modules or subnetworks of protein-
protein interaction networks that are coordinately dysregulated in disease. Their work builds on 
the idea that a group of genes that are individually only marginally dysregulated with respect to 
the phenotype might provide a clearer signal when considered together.  
 
Building and evaluating dynamic network models is another theme of the session.  Context 
specificity is also an underpinning of the work of Morcos et al., who use a combination of 
methods to predict protein and domain interactions and apply belief propagation to provide 
support for a theoretical model of mobility for M. xanthus.   
 
Venkatraman et al. introduce a mathematical model of activation of Plasmin and urokinase-type 
plasminogen proteases regulating the extracellular environment. The computational simulation of 
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the dynamics of their model predicts that the system exhibits bistable behavior, a prediction that 
is then validated experimentally.  
 
A final theme of the session focuses on studying dynamics at an evolutionary time scale.  
Chindelevitch, et al., present a new algorithm for global alignment of protein-protein interaction  
networks.  The edge-swapping technique that they use to search the space of possible alignments 
is not only efficient in practice, but also helps to generate hypotheses about the evolutionary 
dynamics of the protein interaction networks between the described species.   
 
In addition to the oral presentations, one paper has been selected for presentation in the 
proceedings. In this work, Przulj et al. describe a new model for the evolution of protein-protein 
interaction networks, and compare a number of different evolutionary dynamic models on a 
range of data sets.   
 
Though the topics are varied, all of the work presented in this session shares the common goal of 
relating system dynamics to our understanding and modeling of biological networks.  We hope 
that this session stimulates further research into characterizing and interpreting the dynamic 
interactome.   
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We propose a novel algorithm, PISwap, for computing global pairwise alignments of protein interaction networks,

based on a local optimization heuristic that has previously demonstrated its effectiveness for a variety of other
NP-hard problems, such as the Traveling Salesman Problem. Our algorithm begins with a sequence-based net-

work alignment and then iteratively adjusts the alignment by incorporating network structure information. It has a

worst-case pseudo-polynomial running-time bound and is very efficient in practice. It is shown to produce improved
alignments in several well-studied cases. In addition, the flexible nature of this algorithm makes it suitable for dif-

ferent applications of network alignments. Finally, this algorithm can yield interesting insights into the evolutionary

history of the compared species.

Keywords: Network alignment; Local optimization; Functional orthology

1. Introduction

Ever since high-throughput experimental screening techniques such as yeast two-hybrid analysis,1 mass spec-

trometry,2 and TAP3 made protein interaction networks available for several species, efforts have been made

in the bioinformatics community to extract useful biological information from these networks. One important

goal has been to produce accurate alignments of two or more of these networks, with the expectation that this

would help in establishing the biological function of unknown proteins by exhibiting their correspondence

with the proteins of another species with known biological function, and providing insight into evolutionary

dynamics.

Algorithms for network alignment can be broadly separated into two distinct categories: local and global

algorithms. The distinction is similar to the one made for sequence alignment algorithms. More specifically,

local network alignment4 is concerned with identifying a subnetwork of one species closely matching a

subnetwork of another species (or having a given topology). Typically, multiple closely matching subnetworks

are identified by such algorithms, which may be mutually inconsistent.5 On the other hand, global network

alignment algorithms5 attempt to match two or more networks as a whole, and their output is a single

mapping between the nodes of the networks. In the present paper, which deals with the global alignment

problem, we view this mapping as a bipartite matching, where the nodes on one side of the matching are

the proteins from one network, and the nodes on the other side, the ones from the other network.

1.1. Contribution

We propose a novel method, based on local optimization, for computing pairwise alignments of protein

interaction networks. The method begins by identifying an optimal alignment based purely on sequence

data, which correctly determines functionally orthologous proteins in many, but not all, cases. In order to

adjust this initial alignment, the algorithm uses the intuition that conserved interactions can compensate for

matching proteins whose sequences are not particularly similar to one another. In this way, the topology of

the networks is taken into account, and information is propagated from each node to its neighbors.

Using the protein interaction networks available for three species: yeast, fly, and worm, we perform

pairwise alignments on each pair. The results compare favorably to those produced by other methods.

Furthermore, we suggest that the algorithm can be used to produce several alignments with almost no

∗Also at the Institute of Information Science (IIS), Academia Sinica, Taipei 115, Taiwan.
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123



September 27, 2009 0:15 WSPC - Proceedings Trim Size: 11in x 8.5in ppiswap

2

additional cost, or fine-tuned by combining it with other algorithms for partitioning or clustering protein

interaction networks. Finally, we explain how specific information produced by this algorithm can produce

insights into the evolutionary dynamics of protein interactions.

1.2. Related Work

A number of techniques for the problem of PPI network alignment exist. These include NetworkBLAST-M,6

Graemlin 2.0,7 IsoRank,5 IsoRankN8 and PATH,9 though a number of other techniques exist as well.4,10–15

Some of these methods can handle more than two networks. NetworkBLAST-M computes a local alignment

by greedily finding regions of high local conservation based on inferred phylogeny. Graemlin 2.0, in contrast,

computes a global alignment by training how to infer networks from phylogenetic relationships on a known

set of alignments, then optimizing the learned objective function on the set of all networks. IsoRank uses

spectral graph theory to first find pairwise alignment scores across all pairs of networks, obtained by a

spectral method on a product graph; IsoRank then uses these scores in a greedy algorithm to produce the

final alignment. The more recent IsoRankN uses a different method of spectral clustering on the induced

graph of pairwise alignment scores. As pointed out in a recent paper,9 one of the main difficulties faced by

network alignment algorithms is the lack of an accurate and reliable gold standard for evaluation purposes.

2. Problem Formulation

We consider the global alignment of a pair of protein-protein-interaction (PPI) networks. Each network is

represented by a graph whose vertices correspond to proteins, and there is an undirected edge between two

vertices if the corresponding proteins are found to interact with each other.

Given a pair of PPI networks and a list of pairwise sequence similarities between proteins in the two

networks computed according to some criterion, the specific aim of global alignment is to find a mapping

between the proteins of the two networks that best represents conserved biological function. We formulate

this network alignment problem as a graph-theoretical problem.

Let GX = (X,EX) and GY = (Y,EY ) be two PPI networks in which ex = (x, x′) ∈ EX and ey =

(y, y′) ∈ EY , with x, x′ ∈ X and y, y′ ∈ Y , represent interaction between two proteins in GX and GY

respectively.

Suppose G = (X ∪ Y,E) is an edge-weighted bipartite graph in which each edge e = (x, y) ∈ E is

associated with a nonnegative edge weight s(e), which represents the sequence similarity between x ∈ X

and y ∈ Y . That is, s : E → Z+ denotes a sequence similarity function on the edges of G, where sequence

similarity on an edge, a pair of proteins, could be, for instance, the BLAST Bit-value of the sequences as

retrieved from Ensembl.19

A matching M ⊆ E of G is defined to be a subset of edges such that no two edges in M share an endpoint.

In addition, given a matching M , we let a function t : E → Z+ be a topology similarity function with respect

to M if for an edge e = (x, y), t(e) represents the topology similarities between the neighborhoods of x ∈ X
and y ∈ Y . The topology similarity function represents the number of edges in GX and GY conserved by

the matching M .

More precisely, for an edge e = (x, y), t(e) is the number of edges between the neighborhoods of x and y,

N(x) of GX and N(y) of GY respectively, which are also in the matching M , i.e. t(e) = |{(x′, y′) ∈ M |x′ ∈
N(x) and y′ ∈ N(y)}|.

Our objective is to find a matching M that maximizes the following weight function w:

w(M) =
∑
e∈M
{αt(e) + (1− α)s(e)}, (1)

where α ∈ [0, 1] is a parameter controlling the importance of the network topology similarities relative

to sequence similarities. This is equivalent to the objective function introduced by Singh et al.5
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The above weight function contains two terms: the topology similarity function t and the sequence

similarity function s. Tuning the parameter α allows us to change the relative importance of PPI network

data in finding the optimal global alignment. For instance, α = 0 implies no network data will be used, while

α = 1 indicates only network data will be used.

We will use a local search approach to pairwise PPI network alignment in a manner similar to 2-Opt

as follows: when given a maximum weighted bipartite matching M∗ in G = (X ∪ Y,E), we define a subset

preferY (x) for each x ∈ X, which consists of the c highest-weighted neighbors of x in Y (where the weight

of a neighbor of x is given by its sequence similarity to x). Similarly, for every y ∈ Y , a vertex subset

preferX(y) ⊆ X is similarly defined to consist of the c highest-weighted neighbors of y in X. Here, c is

some relatively small integer chosen ahead of time. It can be shown20 that c = 20 suffices for most practical

applications.

Our aim is to repeatedly find a candidate e′ = (u, v), v ∈ preferY (x), u ∈ preferX(y) to swap with

e = (x, y), where e, e′ ∈ M∗, such that the weight of the new matching, w((M∗ \ {e, e′}) ∪ {e1, e2}), where

e1 = (x, v) and e2 = (u, y) are the edges obtained by swapping e and e′, is higher than w(M∗).

Just as in IsoRank,5 we seek to maximize an objective function consisting of two terms, one accounting

for sequence similarity between the proteins that get matched to each other, and the other one, for the

number of interactions preserved by the matching. Our search space is the set of all matchings. We use

the parameter α ∈ [0, 1] to control the relative importance of the topology information with respect to the

sequence information. This formulation of the problem is known to be NP-hard, and even APX-hard,16 which

means that it does not admit a polynomial-time approximation scheme unless P = NP. Since the size of

the search space (i.e. the number of possible matchings) grows exponentially with the number of proteins in

each network, we use a local search technique adapted from other NP-hard optimization problems, which is

described in detail in the following section.

3. Algorithmic results

The main idea of our algorithm for the global alignment of pairwise PPI networks is a two-phase approach

to searching for a matching that maximizes our objective function. The special case of our problem with

α = 0 (i.e. one where only sequence information is used) is a variant of the linear assignment problem, which

is that of finding a maximum-weight matching in a bipartite graph.

Hence the first stage of our algorithm finds a maximum-weight matching in the bipartite graph obtained

by joining pairs of proteins in the two networks, where the weight of an edge is given by the sequence similarity

of the two proteins that it joins. This matching can be obtained by the well-known Hungarian algorithm in

polynomial time24 and sped up with extensive use of priority queues and decomposition techniques.23

In the second stage of our algorithm, we apply the local search method, which is widely used in the

combinatorial optimization field, to iteratively improve the initial matching while taking into account both

the sequence score and the topology score of the matching.

From a variety of local search methods, we make use of the 2-Opt algorithm, which was first proposed

by Croes.18 The 2-Opt algorithm is one of the most famous heuristics for the well-known Traveling Salesman

Problem.25 Given a set of cities, the Traveling Salesman Problem is to find an ordering of cities that minimizes

the total length of the tour when visiting all the cities in some order and returning to the starting city. The

basic concept of the 2-Opt algorithm is simple. A move deletes two edges of the original tour, thus breaking

the tour into two paths, and then reconnects those paths by swapping these edges.

Local search algorithms do not appear to perform well from a theoretical point of view. Papadimitriou

and Steiglitz27 have shown that no local search algorithm (like 2-Opt) that takes polynomial time per move

can guarantee a constant approximation ratio for TSP unless P = NP. In addition, it has been shown that

a sequence of exponential moves might be required by 2-Opt before halting26 and an analogous result17 has

been extended to 3-Opt and k-Opt.

Although the worst-case analysis of the 2-Opt algorithm is pessimistic, the average-case analysis is

considerably more optimistic. A significant discovery17 has shown that the expected approximation ratio to
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the optimum is bounded by a constant. A similar improvement with respect to running time has been obtained

as well. That is, the expected number of moves is polynomially bounded. Furthermore, 2-Opt outperformed

almost all the local search and greedy algorithms in experimental results for TSP.20 More precisely, 2-Opt

(or k-Opt) gave better final tours than other local search algorithms for TSPLIB instances20 with respect

to both approximation ratio and running time.

The technique of iterative edge swaps is, however, not limited to TSP. It is also the basis of an algorithm

for graph randomization, which attempts to produce a random graph with a given degree distribution.21 It

can be shown22 that the corresponding Markov chain converges to the uniform distribution on the set of all

connected simple graphs with the given degree distribution, thus giving an exact algorithm.

Fig. 1. The situation before and after a possible edge swap. The edges M1 and M2 of the matching are swapped out and
replaced by M

′
1 and M

′
2. The matching is illustrated in black, conserved edges are in blue, and non-conserved edges are in red.

Figure 1 illustrates a matching on a pair of small networks transformed by an edge swap. It is important

to note that an edge swap generally changes the conserved edges, provided these edges are incident to (i.e.

share a vertex with) each of the two edges being swapped.

We now present the pseudocode of our algorithm. Its running-time is analyzed in the Appendix.

Algorithm 3.1. PISwap

Given a weighted bipartite graph G = (X∪Y,E) with a maximum weighted matching M∗ and parameters

α and c,

(1) Compute topology similarities t(e) and weight w(e) for each edge e ∈ M∗, where the weight w(e) =

αt(e) + (1− α)s(e);

(2) Find a candidate set S consisting of every edge e = (x, y) ∈M∗ which satisfies the following condition:

There is e′ = (u, v) ∈M∗ with v ∈ preferY (x), u ∈ preferX(y) such that, for e1 = (x, v), e2 = (u, y),

swap(e, e′) := {w(e1) + w(e2) + α(t(e1) + t(e2))} − {w(e) + w(e′) + α(t(e) + t(e′))} > 0; (2)

(3) while S 6= ∅
do

3-1. Select the pair of edges e = (x, y) ∈ S and e′ = (u, v) which achieve the maximum value of swap(e, e′);

3-2. Swap e, e′ with e1 = (x, v), e2 = (u, y) to obtain a new matching (M∗ \ {e, e′}) ∪ {e1, e2} and

S = S \ {e, e′};
3-3. Verify if the new inserted edges e1, e2 satisfy the condition (2) above and put them into S if necessary;

3-4. Update the topology similarities t(e) for each edge e ∈M∗ with one endpoint in N(x)∪N(u) and the

other, in N(y) ∪N(v) and modify w(e) and swap(e, e′);

end while

(4) Output the final matching M∗.
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4. Implementation details

The algorithm was implemented in Python 2.5.431 using the NetworkX32 package, as well as Joris van

Rantwijk’s GPL implementation of the maximum-weight matching algorithm based on the blossom method

for finding augmenting paths and the primal-dual method for finding a matching of maximum weight.33 All

experiments were performed on a Lenovo laptop with a 64-bit architecture running Windows Vista with an

Intel Core 2 Duo T9600 CPU and 4 GB of RAM.

5. Experimental results

In spite of the analysis presented in the Appendix, the running-time of our algorithm is actually dominated

by the preprocessing step, that of finding a maximum-weight bipartite matching. This is because the running

time is cubic in the size of the input, whereas the number of iterations in the main loop of the algorithm

was typically between 40 and 120. Thus, the upper bound presented in the analysis is overly pessimistic.

We used the value c = 200 for our experiments, since this was close to the maximum degree ∆ of the input

networks (which was 190, 184 and 323 for C.elegans, D.melanogaster and S.cerevisiae, respectively).

In terms of actual time, the initial matching took between 5 and 10 minutes to compute on a single-

processor laptop, but it was then saved and used with multiple values of α and c. Each of the runs of the

second stage of the algorithm took no more than 15 to 20 seconds to produce the final mapping.

The ratio of α to 1 − α can be thought of as giving the relative weight of sequence information to

topology information. We found that choosing α to make this relative weight half of what it is for the initial

mapping was a good rule of thumb. In other words, since the original mapping was based purely on sequence

information, we chose α to favor the topology twice as much as the original mapping did, in all the reported

experiments. We used both raw BLAST scores and normalized BLAST scores, retrieved from the IsoRank

website.34 The raw BLAST scores used were computed as s(i, j) = B(i, j)+B(j, i), where B(i, j) is the value

given by BLAST on input i and j (this is because BLAST may occasionally produce “asymmetric” results).

The normalized scores were computed as s(i,j)√
s(i,i)s(j,j)

, and resulted in values between 0 and 1. Although our

algorithm is described as dealing with integers, it is actually capable of handling fractional weights (although

the running-time bound proved in the Appendix does not hold in that case). Also, it is important to note

that since the initial matching was a maximum-weight matching, not all the proteins which had a non-zero

similarity to some protein in the other species ended up in the matching — the size of the matching was

roughly 0.9 min(|V1|, |V2|), or 90% of the largest possible matching. We chose not to force matches between

proteins with zero sequence similarity to all proteins in the other species, since topology alone does not

suffice to create a reliable matching between them.5

Table 1 illustrates the results for the unnormalized input data (the results for the normalized data

are qualitatively very similar). It clearly shows that PISwap compares favorably to other algorithms. The

abbreviations denote the species used: CE = C.elegans, DM = D.melanogaster, SC = S.cerevisiae. The

figures for the initial matching are provided for comparison purposes only, and it is the final alignments that

are output by the algorithm.

The number of swaps required was 97 (102) for that between D.melanogaster and S.cerevisiae, 38 (54) for

that between C.elegans and S.cerevisiae, and 71 (85) for the mapping between C.elegans and D.melanogaster.

In each pair, the first number indicates the unnormalized case and the second, the normalized case. Note that

these are significantly higher than the diameter (length of the path between the two most distant nodes) of

the networks, which are 14, 11 and 9 for C.elegans, D.melanogaster and S.cerevisiae, respectively, meaning

that information may have had a chance to propagate to all of the nodes.

To evaluate the output, we first used the HomoloGene database35 which is thought to contain a reliable

orthology mapping, though mainly based on sequence similarity between the proteins and the DNA regions

that code for them.35 We also looked at the number of conserved interactions. It is interesting to note that,

compared to the initial matching, the final matching contains the same number of functional orthologs based

on HomoloGene as the gold standard (except in the case of C.elegans and D.melanogaster, where the pair
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Table 1. Evaluation of alignments based on unnnormalized sequence data

DM-SC alignment CE-SC alignment CE-DM alignment
Initial Final Initial Final Initial Final

Number of swaps 0 97 0 38 0 71

HomoloGene pairs 51 51 41 41 819 818

Conserved edges 272 398 106 150 80 154

Functional Coherence N/A 0.510 N/A 0.172 N/A 0.355

(CO5C8.6, CG1826) becomes lost in the swapping process), while at the same time having significantly more

conserved interactions (on average, 60% more). This shows that our algorithm is indeed performing its goal

of achieving a high topology similarity while retaining an excellent sequence similarity. For comparison, let

us mention that the D.melanogaster - S.cerevisiae alignment produced by the five algorithms (MP,28 MRF,29

IsoRank,5 GA9 and PATH30) studied by Zaslavskiy et al.9 produce between 36 and 41 orthologous pairs

from HomoloGene, compared to 51 for our algorithm (although the additional constraints imposed on the

problem studied there make it difficult to perform a fair comparison).

In addition, we computed the Functional Coherence values, following the method outlined by Singh et

al.5 The method for computing Functional Coherence can be summarized as follows. First, the GO terms

corresponding to each protein are collected. Then, each GO term is mapped to a subset of the so-called

standardized GO terms, which in this case are its ancestors at a distance 5 from the root of the GO tree.

Finally, the similarity between each pair of aligned proteins is computed as the median of the fractional

overlaps of their corresponding sets of standardized GO terms. The Functional Coherence of an alignment

is defined as the average pairwise Functional Coherence of the protein pairs that it matches. The values for

the D.melanogaster-S.cerevisiae alignment produced by our algorithm was 0.510, comparable to the values

of 0.519, 0.509 and 0.522 produced on the same input by IsoRank, GA and PATH, respectively.9

6. Evolutionary model

Although the edge-swapping technique was originally inspired by the field of combinatorial optimization,

one can speculate that it can actually give us insights into the way two networks evolved from a common

ancestor. If the networks of two closely related species are being analyzed, it is conceivable that at the outset,

the proteins of the two networks are essentially identical in sequence, and hence, their correspondence can be

determined exclusively on the basis of sequence information. Suppose, however, that as the two species evolve,

a pair of proteins in one of the species have traded functions with one another. In that case, reconstructing

the initial correspondence would require precisely an edge swap.

Comparing the network alignment problem to the (simpler) sequence alignment problem, one could say

that edge swaps at the network level are the analog of compensatory mutations at the sequence level. One

could then argue that, just as compensatory mutations can provide important clues for the evolutionary

history of the sequences, function exchanges (represented by edge swaps) can provide important indications

for the evolutionary history of the protein interaction networks. Unfortunately, function exchanges are much

more difficult to detect than compensatory mutations, since network data is noisy, incomplete and unreliable.5

Nevertheless, an algorithm such as PISwap could be adapted to estimating the number of function exchange

events that have taken place during the evolutionary process.

While evolutionary events other than exchanges of function, such as duplications, insertions and deletions

of proteins, certainly take place in biological networks,14 this approach can still yield useful biological insights.

In addition, the evolutionary distance between two species could in principle be computed from the number

of evolutionary events (including function exchanges) that have taken place, and could perhaps provide a
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more accurate estimate than the (appropriately defined and weighted) edit distance between two orthologous

sequences present in those two species, since it would in some sense encompass all the protein sequences at

once.

7. Discussion

We presented an algorithm for performing a global alignment of two protein interaction networks. In this

algorithm, the parameter α plays an important role because it determines the relative importance of the

topology data and the sequence data. Although our objective function is identical to that used in the

IsoRank algorithm,5 there are a number of important differences. IsoRank performs a random walk on the

graph G = GX ⊗ GY , the tensor product of the two networks, where at each step, the walk is restarted

with probability 1−α at a node v = (x, y) in G chosen at random from the distribution proportional to the

sequence similarity s(x, y).36 On the other hand, our algorithm can be thought of as performing a walk on

the set of all matchings in the complete bipartite graph, and this walk is not random, but has the property

that every step increases the value of the objective function. Another difference from IsoRank is that the

output of IsoRank in terms of the pairwise alignment scores Rij changes continuously with α, whereas in our

algorithm, the set of possible matchings is discrete and it is clear that the interval [0, 1] can be subdivided

into non-overlapping subintervals such that on each one, the resulting matching is the same. Finally, our

algorithm is not based on a spectral method, unlike both IsoRank and IsoRankN.

It is conceivable to obtain an “ensemble” or “fuzzy” mapping by using the mappings produced with

several different values of α. The common part of these mappings would provide a more reliable set of

functional orthologs, while the differences between the mappings could be used to evaluate the confidence of

the assignments produced. In order to apply that strategy, it suffices to compute a single maximum-weight

bipartite matching, which is the more time-intensive part of the algorithm, and save it in order to be able

to reuse it with different values of the parameter α.

In order to speed up the algorithm without degrading its performance, it is possible to combine it with

preprocessing by a graph-partitioning algorithm. For instance, if the two networks, GX and GY , are each

partitioned into two pieces (for instance, via a min-cut algorithm37), say, (G1
X , G

2
X) and (G1

Y , G
2
Y ), one could

apply the algorithm on each pair of pieces and then find the one that works best. Because there would be

few edges between G1
X and G2

X , as well as between G1
Y and G2

Y , the difference in performance would not

be significant. However, since the running time is O(M3), dominated in practice by the maximum-weight

bipartite matching, if we assume that the number of vertices in both pieces is roughly equal, this would

reduce the overall running time by a factor of 2. This strategy, of course, can also in principle be applied

with other kinds of partitioning algorithms (such as community detection algorithms38).

Finally, as discussed in the previous section, this algorithm could yield new insights into the evolutionary

history of the two species being analyzed.
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8. Appendix

This appendix presents a running-time bound for our algorithm, with proof.

8.1. Running-time analysis

In what follows, M∗ always denotes the mapping at the current iteration.

First, note that only topology similarities t(e) for each edge e ∈ M∗ incident to a node in N(x), N(y),

N(u), and N(v) are changed when we swap the edges (x, y) and (u, v) in M∗. In addition, as we consider

the weight difference w(M∗ \ {e, e′} ∪ {e1, e2}) − w(M∗), removing the edge e = (x, y) ∈ M∗ causes the

weight loss w(e), but it also causes neighbors in N(x) and N(y) to lose αt(e). Removing the edge e′ = (u, v)

produces an analogous effect. On the other hand, there is a weight gain w(e1) as well as αt(e1) from inserting

the edge e1 = (x, v). Inserting the edge e1 = (x, v) produces an analogous effect.

Therefore, the weight of the matching M∗ increases by the quantity swap(e, e′), defined in (2). The

inequality in (2) thus ensures that the objective function increases after the swap.

Theorem 8.1.

Given a a weighted bipartite graph G = (X ∪ Y,E) with a maximum weighted matching M∗ and param-

eters α and c, the running time of PISwap is pseudo-polynomial time bounded in the worst case.

Proof.

It is readily seen that the cardinality of a maximum-weight matching M∗ is |M∗| ≤ min{|X|, |Y |}. Note

that the preprocessing of PISwap to obtain a maximum weighted matching M∗ by the Hungarian algorithm

takes O(|M∗|3) time.

Let ∆ denote the largest degree of a vertex in GX and GY , i.e. the largest number of neighbors a vertex

in X∪Y can have. Let B denote the largest similarity value for two sequences, i.e. B = maxx∈X,y∈Y {s(x, y)}.
In Step 1 we compute the topology similarities t(e) and the weights w(e) for each edge e = (x, y) ∈M∗.

Since we consider all possible pairwise combinations between neighbors of x and neighbors of y, this requires

O(|M∗| ×∆2) time.

In Step 2 we find the candidate set S. We first compute the subsets preferY (x) and preferX(y) for each

vertex in X ∪Y . The running time is bounded by O(|X|× |Y |) since it requires O(|Y |) (respectively O(|X|))
time to find the c highest-weighted neighbors in Y (respectively X) for each vertex x ∈ X (respectively

y ∈ Y ), for any constant c.

We then find all the edges e′ ∈ M∗ satisfying the condition (2) for every edge e ∈ M∗. For every edge

e = (x, y) ∈M∗, there are at most c2 edges in M∗ with one endpoint in preferX(y) and the other endpoint

in preferY (x) that e can be swapped with. The weight difference swap(e, e′) can be computed in constant

time from the topology similarities and sequence similarities for every edge. Hence Step 2 takes O(c2|M∗|)
time. Without loss of generality, we assume c ≤

√
|M∗|; otherwise we can check all pairs of edges in M∗ to

see if they are able to be swapped, at a cost of O(|M∗|2).

Step 3 is an iteration, and we first consider the time complexity of one iteration. The maximum value of

swap(e, e′) can be found in constant time by using a priority queue. The swap operation also takes constant

time. For the two new inserted edges of M∗, we verify if they satisfy the property (2) in O(c2) time as above.
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The last step to update the values of t(e), w(e), and swap(e, e′). This takes O(∆2) time as above, since only

the edges e ∈M∗ with one endpoint in N(x)∪N(u) and the other, in N(y)∪N(v), are affected. Therefore,

each iteration requires O(max{c2,∆2}) time.

Finally, consider the number of iterations of the while loop. The total sequence score is an integer and

varies between 0 and |M∗| × B, and similarly, the total topology score is an integer and varies between 0

and |M∗|2; the consecutive values of w(M∗) form a strictly increasing sequence whose length is bounded

by (|M∗| × B + 1) × (|M∗|2 + 1) ∈ O(|M∗|3 × B). Since step 3 is the dominating one, PISwap runs in

O(max{c2,∆2} ×B × |M∗|3) time. �
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In the study of complex phenotypes, single gene markers can only provide limited insights into the manifestation
of phenotype. To this end, protein-protein interaction (PPI) networks prove useful in the identification of multiple

interacting markers. Recent studies show that, when considered together, many proteins that are connected via phys-

ical and functional interactions exhibit significant differential expression with respect to various complex phenotypes,
including cancers. As compared to single gene markers, these “coordinately dysregulated subnetworks” improve diag-

nosis and prognosis of cancer significantly and offer novel insights into the network dynamics of phenotype. However,

the problem of identifying coordinately dysregulated subnetworks presents significant algorithmic challenges. Existing
approaches utilize heuristics that aim to greedily maximize information-theoretic class separability measures, however,

by definition of “coordinate” dysregulation, such greedy algorithms do not suit well to this problem. In this paper,

we formulate coordinate dysregulation in the context of the well-known set-cover problem, with a view to captur-
ing the coordination between multiple genes at a sample-specific resolution. Based on this formulation, we adapt

state-of-the-art approximation algorithms for set-cover to the identification of coordinately dysregulated subnetworks.

Comprehensive experimental results on human colorectal cancer (CRC) show that, when compared to existing algo-
rithms, the proposed algorithm, NetCover, improves diagnosis of cancer and prediction of metastasis significantly.

Our results also demonstrate that subnetworks in the neighborhood of known CRC driver genes exhibit significant co-

ordinate dysregulation, indicating that the notion of coordinate dysregulation may indeed be useful in understanding
the network dynamics of complex phenotypes.

1. Introduction

Variations among organisms occur in every aspect of biological systems, including their morphology, behavior,
physiology, development and susceptibility to common diseases. Many of these phenotypes are controlled by
multiple genetic and epigenetic factors and are therefore called complex phenotypes (multigenic traits), in
contrast to phenotypes that are controlled by single genes (monogenic or Mendelian traits).1

In the past decade, genome-wide monitoring of gene expression, enabled by DNA microarray technology,
has been commonly used as an important tool for the investigation of complex phenotypes, including human
cancers. Differential analysis of gene expression facilitates identification of genes that are dysregulated with
respect to the phenotype of interest; that is, genes that exhibit significant difference in the amount of mRNA
transcripts present in a range of phenotype and control samples. To date, systematic analyses of differential
gene expression has led to identification of genetic markers associated with many complex diseases, including
leukemia,2 breast cancer,3 lung cancer4 and prostate cancer,5 as well as genes that are associated with tumor
grade, metastasis, and disease recurrence .6–9

While investigation of differential gene expression for individual genes proves useful in identification of
single-gene markers, it offers limited insights into the interplay between multiple interacting factors. There-
fore, research on complex phenotypes rapidly shifts toward identification of multiple genes that are together
differentially expressed. Such multiple markers are likely to shed light on the underlying molecular mecha-
nisms of complex phenotypes. Knowledge of molecular interactions proves extremely useful in identification
of multiple markers, in that it establishes the physical basis for understanding the dynamics of the interplay
between multiple factors, through network models. Indeed, integration of genome-wide expression data with
protein-protein interactions (PPIs) is shown to be useful in extracting subnetworks composed of genes with
correlated expression profiles across diverse conditions.10,11

In the context of complex phenotypes, a range of algorithmic approaches are developed for the identi-
fication of phenotype-implicated subnetworks. Earlier studies quantify differential expression for each gene
individually and search for subnetworks with significant aggregate differential expression.12–15 While these
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Fig. 1. Illustration of the proposed algorithm,NetCover, for identifying coordinately dysregulated subnetworks. (A) Binarized mRNA
expression data with 10 paired samples and 5 genes. A light/dark square indicates that the respective gene is “expressed”/“not expressed”
in the respective sample. (B) Part of human PPI network showing the interactions among the products of these genes. (C) Differential
expression profile for each gene. A black/grey box indicates that the respective gene is up-regulated/down-regulated in the phenotype
(with respect to control) for the respective paired sample (the gene covers the sample positively/negatively). (D) Progress of the algorithm
showing the gene added to the subnetwork at each iteration and the set of samples covered by the corresponding subnetwork. (E) The
resulting subnetwork, comprising of the highlighted genes and solid edges, covers all samples positively.

approaches are useful in relating individual genes that are differentially expressed, they do not necessarily
capture the coordination or synergy in the dysregulation of multiple genes (e.g., genes that do not exhibit
significant differential expression when considered individually, but exhibit significant differential expression
when considered together). Chuang et al.16 address this problem by considering subnetwork activity, defined
as the aggregate expression of gene products in the subnetwork in each sample. Assessment of differential
expression with respect to subnetwork activity enables identification of subnetworks that are coordinately dys-
regulated; i.e., groups of interacting proteins with collective mRNA-level differential expression. As compared
to single gene markers, such subnetwork markers are shown to provide better classification performance in the
prediction of disease progression in breast cancer.16 Similarly, the concept of synergistic differential expression
captures the collective differential expression of a group of genes that are not individually dysregulated.17

The concept of coordinate dysregulation is quite promising in generating novel insights into the network
dynamics of complex phenotypes. However, the problem of identifying subnetworks with significant coordi-
nate dysregulation is intractable. Furthermore, since the objective function associated with this problem is
combinatorial in nature,17 bottom-up heuristics that grow subnetworks to greedily maximize the objective
function may seriously lack global awareness. Motivated by these considerations, we formulate this problem
as a variation of the well-known set-cover problem. The proposed approach is illustrated in Figure 1. As seen
in the figure, we first quantize a gene expression dataset with paired samples into binary expression levels.
Then, for each gene, we identify individual samples that are covered (can be discriminated as phenotype or
control) by the expression level of that gene. Subsequently, we search the human protein-protein interaction
(PPI) network for subnetworks composed of genes that together cover all samples in the dataset. Since the
genes in such a subnetwork complement each other in discriminating phenotype and control, we expect that
these subnetworks may have a modular role in the manifestation of phenotype.

In the next section, we formally introduce the proposed framework. We argue that this formulation better
suits to the notion of coordinate dysregulation from a biological perspective, in that it captures the coordination
between multiple genes at a sample-specific resolution. Furthermore, we theoretically establish the relationship
between set-cover and information-theoretic formulation of coordinate dysregulation. We then adapt state-of-
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the-art approximation algorithms for set-cover to the problem of identifying minimal subnetworks that cover
all samples in a dataset. In Section 3, we evaluate the biological relevance of identified subnetworks in the
context of diagnosis and prognosis of human colorectal cancer (CRC). Comprehensive experimental results
show that, subnetworks identified by the proposed algorithm, NetCover, outperform subnetworks identified
by existing algorithms in terms of accurate classification of tumorigenic and metastatic samples.

2. Methods

In this section, we first introduce the notion of coordinate dysregulation and provide the motivation for the pro-
posed algorithmic approach. Then, based on an information-theoretic formulation of coordinate dysregulation,
we demonstrate the relationship between the problem of identifying coordinately dysregulated subnetworks
and the well-known set-cover problem. Finally, we propose a cover-based algorithm for the identification of
coordinately dysregulated subnetworks and discuss how the subnetworks identified by our algorithm can be
used for the diagnosis and prognosis of complex diseases.

2.1. Coordinately Dysregulated Subnetworks

In the context of a specific phenotype, a group of genes that exhibit significant differential expression and
whose products are connected to each other through physical and functional interactions may be useful in
understanding the network dynamics of the phenotype. This is because, the patterns of (i) collective differ-
ential expression and (ii) connectivity in PPI network are derived from orthogonal sources (sample-specific
mRNA expression and generic protein-protein interactions, respectively). Thus, they provide corroborating
evidence indicating that the corresponding subnetwork of the PPI network may play an important role in the
manifestation of phenotype. In this paper, we refer to the collective differential expression of a group of genes
as coordinate dysregulation. A group of coordinately dysregulated genes that induce a connected subnetwork
in a PPI network is thus called a coordinately dysregulated subnetwork.

Dysregulation of a gene with respect to a phenotype. For a set V of genes and U of samples, let Ei ∈ R|U|
denote the properly normalized18 gene expression vector for gene gi ∈ V, where Ei(j) denotes the relative
expression of gi in sample sj ∈ U . Assume that the phenotype vector C annotates each sample as phenotype or
control, such that Cj = 1 indicates that sample sj is associated with the phenotype (e.g., taken from a tumor
tissue) and Cj = 0 indicates that sj is a control sample (e.g., taken from a normal tissue). Then, the mutual
information I(Ei;C) = H(C) − H(C|Ei) of Ei and C is a measure of the reduction of uncertainty about
phenotype C due to the knowledge of the expression level of gene gi. Here, H(X) = −

∑
x∈X p(x) log p(x)

denotes the Shannon entropy of discrete random variable X with support X . The entropy H(Ei) of the
expression profile of gene gi is computed by quantizing Ei properly. Clearly, I(Ei;C) provides a reasonable
measure of the dysregulation of gi, since it quantifies the power of the expression level of gi in distinguishing
phenotype and control samples.

Coordinate dysregulation. Now let G = (V, E) denote a PPI network where the product of each gene gi ∈ V
is represented by a node and each edge gigj ∈ E represents an interaction between the products of gi and
gj . For a given subnetwork of G with set of nodes S ⊆ V, Chuang et al.16 define the subnetwork activity of
S as ES = 1√

|S|

∑
gi∈S Ei, that is the aggregate expression profile of the genes in S. Then, naturally, the

dysregulation of subnetwork S is given by I(ES ;C), which provides a measure of the reduction of uncertainty
about phenotype C due to the knowledge of the aggregate expression level of the genes in S. In the following
discussion, we refer to I(ES ;C) as the coordinate dysregulation of S.

Identification of coordinately dysregulated subnetworks. Clearly, identification of subnetworks with
maximal I(ES ;C) is an intractable computational problem. Simple greedy approaches to this problem grow
subnetworks by starting from a single protein and adding to the subnetwork the proteins in its network
neighborhood. At each step, the protein in the neighborhood that maximally increases I(ES ;C) is added to
the subnetwork. While such algorithms are useful in identifying subnetworks with reasonably high coordinate
dysregulation, they are biased toward identifying subnetworks with very few genes that exhibit significant
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individual dysregulation. Consider, for example, a group of genes that are marginally dysregulated with respect
to the phenotype, when considered individually. Assume that these genes exhibit significant dysregulation when
considered together (i.e., have a large I(ES ;C)). This group of genes is not likely to be identified by such an
algorithm since the individual contribution of each gene to the dysregulation of the subnetwork will not be
apparent at any stage of the algorithm until all genes are added to the subnetwork. Indeed, in our experiments
on a gene expression dataset (GSE8671) with 8987 genes and 32 samples of colorectal adenomas paired with
those of normal mucosa, such an algorithm assigns 84% of the genes to subnetworks composed of at most two
genes. However, for effective investigation of the systems biology of complex phenotypes, larger subnetworks
with weaker individual, but stronger coordinate dysregulation are very interesting since they offer insights
beyond what single gene markers can provide. In the following discussion, we propose a novel framework that
utilizes biological insights into the dysregulation of genes at a sample-specific resolution, to develop algorithms
for more effective discovery of such coordinately dysregulated subnetworks.

2.2. Coordinate Dysregulation and Set Cover

We now show that the problem of identifying coordinately dysregulated subnetworks can be formulated as a
variation of the set-cover problem. For this purpose, consider a binary representation of the gene expression
data of interest. Binary representation of gene expression is commonly utilized for several reasons, including
removal of noise, algorithmic considerations, and tractable biological interpretation of identified patterns. Such
approaches are shown to be effective in the context various problems, ranging from genetic network inference19

to clustering20 and classification.21 There are also many algorithms for effective binarization of gene expression
data.22 For our purposes, let Êi denote the binarized expression profile of gene gi (we discuss how we binarize
a gene expression dataset in our experiments in Section 3). We say that gene gi is expressed (or “on”) in
sample sj if Êi(j) = 1 and not expressed (or “off”) if Êi(j) = 0.

In order to illustrate the relationship between coordinate dysregulation and set-cover, we introduce various
concepts that provide insights into the dysregulation of genes at a sample-specific resolution. For this purpose,
we assume that the gene expression data is paired; that is, there is one-to-one correspondence between phe-
notype and control samples. This is indeed the case for many available gene expression datasets that monitor
complex phenotypes, e.g., for each sample taken from a cancerous tissue of a patient, a control sample is also
taken from the part of the tissue without the lesion. This approach controls for the noise and bias that might
be introduced by the biological variability among different tissues or individuals. Formally, we assume that
|U| = 2n is even, and for each 1 ≤ j ≤ n, the pair of samples sj and sj+n are phenotype and control samples
that are associated with each other (i.e., they come from the same individual or tissue). A sample instance of
binary gene expression data with paired samples is shown in Figure 1(A). We can now define the positive and
negative cover for a gene.

Definition 1. Positive and Negative Cover Set of a Gene. A gene gi is said to cover a sample
sj positively/negatively if it is up-regulated/down-regulated in the phenotype sample with respect to con-
trol (Êi(j) = 1 and Êi(j + n) = 0/ Êi(j) = 0 and Êi(j + n) = 1). The set of samples that are covered
positively/negatively by gi is called the positive/negative cover set of gi and denoted Pi = P(gi)/Ni = N (gi).

Note here that the notion of up- or down-regulation of a gene with respect to a sample depends on
the procedure for binarization of expression levels. For this reason, we systematically evaluate the effect of
binarization on the performance of our algorithms in Section 3.

The positive and negative cover sets of the genes in Figure 1(A) are shown in Figure 1(C). As seen in
the figure, gene B covers S2 positively since it is expressed in C2 while it is not expressed in N2. Overall,
the positive cover set of gene B is given by P(B) = {S2, S3, S4} and its negative cover set is given by
N (B) = {S8, S9}. Observe that, since gene B is dysregulated with respect to samples S2, S3, and S4, it can be
used to distinguish phenotype and control samples based on its expression in a given sample. However, clearly,
the statistical power (or reliability) of gene B in distinguishing phenotype and control samples depends on the
number of samples that it covers. Moreover, the samples S8 and S9, which are covered negatively by gene B

136



September 22, 2009 20:24 WSPC - Proceedings Trim Size: 11in x 8.5in paper

interfere with its power in distinguishing phenotype and control samples, since the signals provided by these
two groups of samples are conflicting with each other.

Based on these observations, we postulate that genes that can distinguish different sets of samples may
be complementary of each other in the manifestation of phenotype. In other words, the dysregulation of genes
involved in similar processes may have similar effects on phenotype, and since such genes are expected to
be functionally related, they are likely to be in close proximity of each other in a network of interactions.
Consequently, if we can identify subnetworks composed of genes that together cover all samples consistently
(i.e., either positively or negatively), then the products of these genes may indeed have a coordinate effect
on the manifestation of the phenotype. These subnetworks may be useful as features for classification of
phenotype and they may reveal targets for theurapetic intervention. Motivated by these considerations, we
formulate the problem of identifying coordinately dysregulated subnetworks as one of identifying minimal
groups of interacting genes that cover all samples either positively or negatively. To provide a theoretical
foundation for this approach, we first show that the cardinality of the cover set of a gene is related to a sound
measure of class separability, namely the mutual information between the expression profile of the gene and
the phenotype vector.

Theorem 1. For any two genes gi, gj ∈ V , if | |Pi| − |Ni| |>| |Pj | − |Nj | |, then I(Êi;C) > I(Êj ;C).

Proof. By definition of mutual information, we have I(Êi;C) − I(Êj ;C) = H(C|Êj) −H(C|Êi). Therefore,
it will suffice to show that | |Pi| − |Ni| |>| |Pj | − |Nj | | implies H(C|Êi) < H(C|Êj). First note that

H(C|Êi) = P (Êi = 0)H(C|Êi = 0) + P (Êi = 1)H(C|Êi = 1). (1)

We will show that H(C|Êi = 0) and H(C|Êi = 1) both decline with growing | |Pi| − |Ni| |, to conclude that
H(C|Êi) also declines with growing | |Pi| − |Ni| |, since P (Êi = 0) and P (Êi = 1) are both positive.

Now, for x, y ∈ {0, 1}, let n(x,y)
i denote the number of samples with phenotype x in which the binary

expression of gi is y; e.g., n(1,0)
i is the number of phenotype samples in which gene gi is not expressed. Then,

clearly

H(C|Êi = 0) = h(p(0)
i ) and H(C|Êi = 1) = h(p(1)

i ). (2)

Here, h(p) = −p log p − (1 − p) log(1 − p) denotes the entropy of a Bernoulli random variable with success

probability p, p(0)
i = n

(0,0)
i

n
(0,0)
i +n

(1,0)
i

, and p(1)
i = n

(0,1)
i

n
(0,1)
i +n

(1,1)
i

. Let n+
i = |Pi|, n−i = |Ni| and let m+

i /m−i denote the

number of samples in which gi is expressed/not expressed in both phenotype and control. Then, we can write:

n
(0,0)
i = n+

i +m−i , n
(0,1)
i = n−i +m+

i , n
(1,0)
i = n−i +m−i , and n

(1,1)
i = n+

i +m+
i . (3)

Consequently,

p
(0)
i =

n+
i +m−i

n+
i + n−i + 2m−i

, (4)

and therefore we have p(0)
i − 1/2 = n+

i −n
−
i

2(n+
i +n−i +2m−i )

. Since p(0)
i − 1/2 assumes its zero at n+

i = n−i and its

derivative with respect to n+
i is always positive, |p(0)

i − 1/2| grows with growing |n+
i − n

−
i |. Since the entropy

function h(p(0)
i ) is maximized at p(0)

i = 1/2 and declines with growing |p(0)
i − 1/2|, we conclude that h(p(0)

i )
(similary, h(p(1)

i )) declines with growing | |Pi| − |Ni| |, completing the proof. �
This theorem establishes that the number of paired samples for which a gene is consistently up- or down-

regulated is directly associated with the information its expression profile provides on the phenotype. It can
be seen from the construction of the proof that this result can also be generalized to the aggregate expression
profile ES of a subnetwork S (where ES is quantized properly). Motivated by this observation, we generalize
the notion of positive and negative cover sets to subnetworks and conjecture that a subnetwork with a larger
consistently positive or negative cover set provides more information on the phenotype.
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Definition 2. Positive and Negative Cover Set of a Subnetwork. For a given subnetwork S ⊆ V,
the positive and negative cover sets of S are respectively defined as P(S) =

⋃
gi∈S Pi and N (S) =

⋃
gi∈S Ni.

2.3. Minimal Covering Subnetwork Problem

We now formulate the coordinately dysregulated subnetwork identification problem as one of identifying min-
imal subnetworks that cover all samples either positively or negatively. Similar set-cover based approaches are
also shown to be effective in feature selection.23 Here, rather than searching for the “best” subnetwork in the
entire network, we look for the “best” subnetwork associated with a given gene. This is because, from a biolog-
ical perspective, it is not necessarily true that a single subnetwork that maximizes an objective criterion over
the entire network will be the only relevant subnetwork. On the contrary, for various applications including
identification of subnetwork markers for classification, multiple subnetworks are useful. Furthermore, in un-
derstanding the relationship between the manifestation of phenotype at different levels of cellular control (e.g.,
genomic sequences, gene expression, protein expression), researchers may be interested in finding subnetworks
associated with known genetic markers. Indeed, in Section 3.5, we demonstrate that subnetworks associated
with known genetic markers (“driver genes”) of colorectal cancer (CRC) are more effective in classification of
CRC as compared to subnetworks associated with random genes. Furthermore, proteomic targets that are iden-
tified based on differential protein expression, when used as seeds for identification of dysregulated subnetwork
markers, are shown to provide significant insights into the systems biology of complex phenotypes.24

Definition 3. Minimal Covering Subnetwork Associated with a Gene. For a set of paired samples
U , a set of genes V with binary expression profiles Êi ∈ {0, 1}|U|, a PPI network G = (V, E) and a gene gi ∈ V,
the minimal covering subnetwork associated with gi is defined as a subnetwork Si ⊆ V satisfying the following
conditions:

(1) gi ∈ Si.
(2) Si is a local subnetwork, i.e., ∀ gj ∈ Si, ∃ gk ∈ Si such that δ(gj , gk) ≤ `, where δ(gj , gk) denotes the

network distance between gj and gk, and ` denotes an adjustable threshold that specifies the desired
locality of the subnetwork (if ` = 1, the subnetwork is connected).

(3) Si covers all samples either positively or negatively, i.e., P(Si) = U or N (Si) = U .
(4) If P(Si) = U (N (Si) = U), then |N (Si)| (|P(Si)|) is minimum over all subnetworks that satisfy the above

three conditions.
(5) Si is minimal, i.e., ∀gj ∈ Si, subnetwork Si \ {gj} does not satisfy the above conditions.

Condition (1) ensures that the subnetwork is indeed associated with the gene of interest. Condition (2)
ensures that the genes in the subnetwork are functionally associated with each other. Condition (3) ensures
that for each paired sample, there is at least one gene in the subnetwork that can distinguish phenotype and
control. Condition (4) ensures that the noise introduced by the genes that are dysregulated in the opposite
direction is minimal. Finally, condition (5) ensures that there are no redundant genes in Si.

Note that the minimal covering subnetwork problem is similar to the minimum connected cover (MCC)
problem introducted by Ulitsky et al.25 However, there is a fundamental conceptual difference between the
two problems. MCC searches for subnetworks in which multiple genes are dysregulated in each phenotype
sample. On the contrary, minimal covering subnetwork problem explicitly looks for subnetworks composed of
genes that are complementary of each other in distinguishing phenotype and control samples.

2.4. Algorithm for the Identification of Minimal Covering Subnetworks

There is a clear conceptual and mathematical similarity between the minimal covering subnetwork problem
and the well-known set-cover problem. An instance of the set-cover problem consists of a finite set X and a
family F of subsets of X, such that the union of all the sets in F constitute X. The set-cover problem asks
for a minimum size subset C ⊆ F such that the union of all sets in C is equal to X. Clearly, the minimal
covering subnetwork problem is a special case of this NP-hard problem.26 Here, the selection of sets in C
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(which corresponds to Si) are further constrained by (i) the network locality of the genes in Si and (ii) a
second collection of associated sets, union of which is to be minimized. We here adapt a polynomial-time
approximation algorithm for this well-studied problem, which works by picking, at any stage, the set that
covers the maximum number of remaining uncovered elements.27

The proposed algorithm for the identification of minimal covering subnetworks, NetCover, is illustrated
in Figure 1. For a given gene gi, assume without loss of generality that |Pi| > |Ni|. Then, NetCover identifies
the minimal covering subnetwork associated with gi as follows:

(1) Initialize subnetwork: Si ← {gi}
(2) Initialize set of uncovered samples: T ← U \ Pi
(3) Initialize set of neighboring genes: Q ← {gj ∈ V : δ(gi, gj) ≤ `}
(4) For all genes gj ∈ Q, compute P ′j ← Pj ∩ T
(5) Find the genes in Q with maximum |P ′j | and let gk be the gene among these genes with minimum |Nj |
(6) Update subnetwork: Si ← Si ∪ {gk}
(7) Update set of uncovered samples: T ← T \ P ′k
(8) Update set of neighboring genes: Q ← Q∪ {gj ∈ V : δ(gk, gj) ≤ `} \ {gk}
(9) If T = ∅ or Q = ∅, return Si; otherwise, go to step (4)

Since the cardinality of Q is bounded by |V| and the loop (4)-(9) can be repeated at most |V| times, the
worst-case running time of this algorithm is O(|V|2). However, in our experiments on several colorectal cancer
datasets, we observe that the algorithm successfully identifies covering subnetworks that are fairly small (i.e.,
the loop exists with T = ∅ after a few iterations).

2.5. Using Minimal Covering Subnetworks for Classification

To quantify the discriminative potential (hence, relevance to the manifestation of phenotype) of discovered
subnetworks, we use these subnetworks to build classifiers for diagnosis and prognosis of the phenotype. For
this purpose, for a given gene expression dataset, we first discover the minimal covering subnetwork for all
genes in the human PPI network. Then, since the minimal covering subnetworks for more than one gene might
be identical, we eliminate the subnetworks that are redundant. Subsequently, we score each of the remaining
subnetworks according to their coordinate dysregulation (I(ES , C)). Then we select the K non-redundant
subnetworks with maximum I(ES , C). Here, we consider a subnetwork redundant if it shares a gene with
a subnetwork that is already selected. The number of selected subnetwork features, K, is designated as an
adjustable parameter. Finally, we use the aggregate expression profiles (ES) of these selected subnetworks to
compute feature vectors for each sample. We then use these feature vectors to train and test classifiers for the
prognosis and diagnosis of the phenotype of interest, as we discuss in the next section.

3. Results and Discussion

In this section, we comprehensively evaluate the performance of the proposed algorithm in the context of
human colorectal cancer (CRC) and compare its performance with the greedy algorithm by Chuang et al.,16

which aims to directly maximize the additive mutual information by greedily growing subnetworks. We then
investigate the biological relevance of coordinately dysregulated subnetworks in the network neighborhood of
genes that are implicated in CRC according to gene association studies.

3.1. Human Colorectal Cancer (CRC)

Colorectal Cancer (CRC) is the third most common cancer and second leading cause responsible for cancer
related death in the western world.28 CRC generally starts with a simple, benign tumor. Most often, these
growths go undetected, even for years, before they develop into malignancies. Therefore, until the symptoms
of cancer are developed, diagnosis of cancer is rather difficult. Monitoring of differential gene expression is
therefore useful for diagnosis of cancer at early stages, as well as prognosis of the development of the tumor
and therapeutic outcome. Furthermore, since most deaths are related to diagnosis of CRC in late stages,
understanding of the network dynamics of CRC thorough its various stages may be very useful in development

139



September 22, 2009 20:24 WSPC - Proceedings Trim Size: 11in x 8.5in paper

of more effective therapeutic intervention strategies. To this end, if coordinately dysregulated subnetworks that
are identified with respect to dysregulation at a particular stage can successfully classify disease at another
stage, such subnetworks may be identified as those that are important in the development of disease. For
this reason, in our experimental studies, we use a particular dataset to identify coordinately dysregulated
subnetworks and use these subnetworks to develop classifiers for the diagnosis and prognosis of CRC with
respect to other datasets.

3.2. Datasets

In our experiments, we use three CRC-related microarray datasets obtained from GEO (Gene Expression
Omnibus, http://www.ncbi.nlm.nih.gov/geo/index.cgi). These datasets, which are referenced here by
their accession number in the GEO database, are the following:

• GSE8671 contains the expression profiles of 8,987 genes across 32 prospectively collected adenomas paired
with those of normal mucosa.29

• GSE10950 contains the expression profiles of 18,171 genes across 24 normal and tumor pairs.30

• GSE6988 contains the expression profiles of 17,104 genes across the following tissue samples: paired tissues
of 25 normal colorectal mucosa, 27 primary colorectal tumors, 13 normal liver and 27 liver metastasis, and
20 primary colorectal tumors without liver metastasis.31

The human protein-protein interaction data used in our experiments is obtained from the Human Protein
Reference Database (HPRD http://www.hprd.org). This dataset contains 35023 binary interactions among
9299 proteins, as well as 1060 protein complexes consisting of 2146 proteins. The binary interactions contain
in vivo, as well as in vitro interactions obtained via high-throughput screening. We integrate the binary
interactions and protein complexes using a matrix model (i.e., each complex is represented as a clique of the
proteins in the complex), to obtain a PPI network composed of 42781 binary interactions among 9442 proteins.

In order to reduce the effect of systematic experimental bias in high-throughput microarray experiments,
the expression profile of each gene in each dataset is normalized to have a mean value of zero and standard
deviation of one across all the samples. For the identification of subnetworks, these normalized expression
values are then binarized by setting the largest α% of the normalized expression values to 1 and all of the rest
to 0. Here, α is an adjustable parameter that specifies the fraction of “expressed” genes in the dataset. This
tunable binarization scheme is chosen with a view to investigating the effect of binarization on the performance
of NetCover (related experimental results are provided at the end of this section). In the experimental results
reported in the following discussion, α is set to 25% since this value is found to be optimal for the performance
of NetCover in all experiments. Note here that binary expression levels are used only for the identification
of dysregulated subnetworks via NetCover. On the other hand, coordinate dsyregulation of subnetworks
is computed by quantizing the aggregate expression profiles into eight bins, since this value is found to be
optimal for the performance of Chuang et al.’s greedy algorithm. Therefore, the performance methods other
than NetCover does not depend on α.

3.3. Experimental Design

NetCover is implemented in Matlab. Using this implementation, two different sets of coordinately dysreg-
ulated subnetworks are generated based on the datasets GSE8671 and GSE10950. In order to evaluate the
classification performance of these subnetworks, extensive experiments are performed by using various types of
classifiers and different classification problems. Three classification problems are considered for this purpose:

• Diagnosis of samples in GSE10950. Subnetworks discovered using GSE8671 are used to predict the class
(cancerous vs. non-cancerous) of samples in GSE10950.
• Diagnosis of samples in GSE6988. Sets of subnetworks discovered using GSE8671 and GSE10950 are used

to predict the class (cancerous vs. non-cancerous) of samples in GSE6988.
• Prognosis of samples in GSE6988. Subnetworks that are discovered using GSE8671 and GSE10950 are

used to classify the 27 colorectal tumors with liver metastasis and 20 without liver metastasis in GSE6988
into metastatic vs. non-metastatic classes.
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For each of these problems, two types of classification tests are performed:

• Cross-classification (CC): The classifier is trained on one dataset and tested on another dataset (note
that this is not applicable to the prognosis of samples in GSE6988, since other datasets do not contain
metastasis information).
• Leave-one-out cross-validation (LOOCV): For each sample in a dataset, one sample is left out and the

classifier is trained using the remaining samples in that dataset, which is then used to classify the corre-
sponding sample. The performance of the classifier is evaluated by repeating this procedure for all samples.

For each instance, two types of classifiers are used: (i) a quadratic regression model, provided by Matlab’s
classify function and (ii) a support vector machine (SVM), provided by Matlab’s svmclassify function.
3.4. Classification Performance in Diagnosis and Prognosis of Colorectal Cancer

In this section, we report systematic experimental results on the diagnostic and prognostic performance of the
subnetwork markers identified on GSE10950 and GSE8671 datasets on classifying samples in the GSE10950
and GSE6988 datasets. The performance of each of these sets of subnetwork markers is compared against
(i) the subnetwork markers identified by Chuang et al.’s greedy approach16 (also implemented in Matlab for
comparison purposes), and (ii) single gene markers. NetCover takes about 10 minutes for the identification
of subnetworks associated with all genes in each of GSE10950 and GSE8671, while the greedy algorithm takes
about 30 minutes to complete the same task. The subnetwork markers that are identified by Chuang et al.’s
algorithm are ranked and used for classification in the same way as the subnetwork markers identified by
NetCover. Similar to subnetwork markers, single gene markers are ranked based on their individual mutual
information with the phenotype and the top k markers are used for classification for 1 ≤ k ≤ K.

The number of (subnetwork or single gene) markers, denoted K, is used as a free parameter for building,
training, and testing the performance of classifiers. For each 1 ≤ K ≤ 50, the performance of the classification
is measured using ‘Area Under ROC Curve’(AUC) criterion. AUC is a measure of the overall performance of a
classifier, which accounts for the trade-off between the precision (selectivity) and recall (sensitivity) achieved
by the classifier. Here, precision is defined as the fraction of true positives among all samples classified as
phenotype by the classifier, while recall is defined as the fraction of true positives among all true phenotype
samples. AUC is a measure of the average precision across varying values of recall (or vice versa) and an AUC
of 1.0 indicates that the classifier provides perfect precision without sacrificing recall. Therefore, a value of
AUC closer to 1.0 indicates better performance of a classifier. Note that, when prediction of the classifier does
not depend on an adjustable threshold (i.e., there is only a single point on the ROC curve), the AUC value
returned by Matlab is equal to the arithmetic mean of precision and recall. In those cases, other measures such
as the harmonic mean of precision and recall (known as F-measure) are considered more reliable; however, in
our experiments, AUC and F-measure provided similar results while comparing different classifiers.

The overall performance of the subnetwork and single gene markers is evaluated in Figure 2. In this figure,
to systematically evaluate the performance of the subnetwork and single gene markers across different values of
K, we report (i) average AUC across all values of K, ranging from 1 to 50 (average performance of the classifier)
and (ii) maximum AUC across this range of K (optimal performance of the classifier that can be obtained
by adjusting the number of markers accurately). As seen in the figure, in all three experiments (diagnosis of
GSE10950, diagnosis and prognosis of GSE6988), subnetworks identified by NetCover demonstrate better
classification performance compared to subnetworks discovered by greedy algorithm and single gene markers for
both classification procedures and classifier types used. This observation indicates that NetCover discovers
subnetworks that are more relevant in terms of the network dynamics of the progression of CRC, in that
subnetworks identified in one dataset can distinguish samples in another data set better, as compared to
single gene markers or subnetworks identified by another state-of-the-art algorithm.

3.5. Coordinately Dysregulated Subnetworks Associated with Hallmarks of CRC

In recent years, comparative genomic studies of CRC have revealed many genes with mutations that may
be associated with colorectal cancer. These “Hallmarks of CRC” include APC, CTNNB1, KRAS, HRAS,
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Fig. 2. Comparison of the classification performance of subnetwork markers identified by NetCover against subnetwork markers iden-
tified by Chuang et al.’s algorithm and single gene markers. In each figure, the AUC for diagnosis and prognosis of samples in GSE8671,
GSE10950, and GSE6988 datasets is shown for different combinations of classification and performance evaluation methods. For each
configuration, average and maximum AUC (i.e., the best classification that can be obtained by accurately adjusting the number of fea-
tures) are measured across number of markers ranging from 1 to 50. (A) Average, (B) maximum AUC for cross-classification (CC) using
support vector machines (SVM). (C) Average, (D) maximum AUC for CC using Quadratic Regression (QR). (E) Average, (F) maximum
AUC for leave-one-out cross-validation (LOOCV) using SVM. (G) Average, (H) maximum AUC for LOOCV using QR.
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Fig. 3. Classification performance of coordinately dysregu-
lated subnetworks associated with genes that are known to be
susceptible for CRC, as compared to subnetworks associated
with randomly selected genes.

Fig. 4. Effect of binarization on the performance of Net-
Cover. The graph shows the area under ROC curve for three
instances with respect to fraction (α) of genes that are con-
sidered as “expressed”.

SMAD4, TGFBR2, MYC, SRC and DCC.28 To investigate whether the neighborhood of these genes con-
tain coordinately dysregulated subnetworks that may be relevant in the manifestation of CRC, we discover
coordinately dysregulated subnetworks associated with these genes using both NetCover and Chuang et
al.’s greedy algorithm, on datasets GSE8671 and GSE10950. Then, we use the subnetworks identified on each
dataset to classify the samples in the other dataset. In Figure 3, the AUC provided by these classifiers is com-
pared against the AUC provided by the same number of subnetworks associated with randomly selected genes.
As can be seen in the figure, the subnetworks associated with the hallmarks of CRC demonstrate very high
classification accuracy for both datasets. Furthermore, NetCover identifies larger subnetworks with better
classification performance, as compared to the greedy algorithm. These results indicate that the coordinately
dysregulated subnetworks associated with the CRC driver genes can be used to understand the effect of the
mutations in the driver genes on the dysregulation of the other genes within the context of network dynamics.
These subnetworks may also be useful in discovering proteins that are related to disease-causing genes but
may not exhibit significant individual dysregulation.32

3.6. Effect of Binarization

In order to investigate the effect of binarization on the performance of the proposed algorithm and to choose the
cutoff level at which to binarize the gene expression data, we fix α, which specifies the fraction of “expressed”
genes in the dataset, at values of 5%, 10%, 25% and 50%. Then we use NetCover to discover the dysregulated
subnetworks at each level of α and perform systematic experiments whose results are reported in Figure 4. It
can be observed from the figure that the subnetworks discovered at α = 25% show best performance for all
instances. For this reason, we choose the cutoff level at which 25% of the genes are “expressed” to binarize
the gene expression data.

4. Conclusion

In this paper, we propose a novel computational approach for identifying coordinately dysregulated subnet-
works in a complex phenotype like cancer. Our algorithm integrates protein-protein interaction data with
clinical gene expression data to capture the coordinated dysregulation of multiple interacting genes. Applica-
tion of our algorithm on human colorectal cancer (CRC) datasets shows its potential in identifying subnetworks
with high relevance to disease progression. However, our current algorithm is defined in terms of paired gene
expression data; that is, datasets where there is a one-to-one relationship between control and phenotype
samples. Extension of this approach to unpaired datasets will broaden the application of the proposed frame-
work. Furthermore, the subnetwork identification algorithm implemented here is based on an approximation
algorithm for the set-cover problem. Development of algorithms for more effective search of the subnetwork
space may lead to identification of more biologically relevant subnetworks. Finally, detailed investigation of
the subnetworks identified by NetCover may shed light into the network dynamics of CRC.
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In this paper, we study methods to identify differential coexpression patterns in case-control gene expression data. A

differential coexpression pattern consists of a set of genes that have substantially different levels of coherence of their

expression profiles across the two sample-classes, i.e., highly coherent in one class, but not in the other. Biologically, a

differential coexpression patterns may indicate the disruption of a regulatory mechanism possibly caused by disregulation

of pathways or mutations of transcription factors. A common feature of all the existing approaches for differential

coexpression analysis is that the coexpression of a set of genes is measured on all the samples in each of the two

classes, i.e., over the full-space of samples. Hence, these approaches may miss patterns that only cover a subset of

samples in each class, i.e., subspace patterns, due to the heterogeneity of the subject population and disease causes. In

this paper, we extend differential coexpression analysis by defining a subspace differential coexpression pattern, i.e., a

set of genes that are coexpressed in a relatively large percent of samples in one class, but in a much smaller percent

of samples in the other class. We propose a general approach based upon association analysis framework that allows

exhaustive yet efficient discovery of subspace differential coexpression patterns. This approach can be used to adapt a

family of biclustering algorithms to obtain their corresponding differential versions that can directly discover differential

coexpression patterns. Using a recently developed biclustering algorithm as illustration, we perform experiments on cancer

datasets which demonstrates the existence of subspace differential coexpression patterns. Permutation tests demonstrate

the statistical significance for a large number of discovered subspace patterns, many of which can not be discovered

if they are measured over all the samples in each of the classes. Interestingly, in our experiments, some discovered

subspace patterns have significant overlap with known cancer pathways, and some are enriched with the target gene sets

of cancer-related microRNA and transcription factors. The source codes and datasets used in this paper are available at

http://vk.cs.umn.edu/SDC/.

Keywords: Differential coexpression; differential biclustering; differential network analysis; association analysis

1. Introduction

Diseases are often caused by perturbations in networks of genes or their products that are working together to

keep a cell in a healthy state. DNA microarrays are one of the most popular technologies for studying these

perturbations and understanding their effect on the expression of genes at a large scale, and eventually linking

them to diseases. The genome-wide expression profiles of many types of diseases, particularly tumors, have

been analyzed, and several associations have been identified between gene expression profiles and phenotypes

corresponding to different stages of cancer.30 Traditional analysis of gene expression data for this task focuses on

the identification of (groups of) genes with substantially different expression values (up- or down-regulated) across

sample-classes of interest, commonly known as differentially expressed (DE) genes (or patterns).8 An example of

such a group of differentially expressed genes is shown in Figure 1(a), where these genes have significantly higher

expression levels in the disease class than in the control class.

However, given that diseases are often caused by the disruption of a system, or network, of genes, identifying

only the individual differentially expressed genes may not be adequate for discovering the underlying mechanisms

of all the diseases. An important example of such mechanisms is the dysregulation of signaling pathways in

cancer.14 A complementary view for studying these mechanisms is provided by a differential coexpression pattern

(DC),20,22,27,34 which is defined as a set of genes that have substantially different levels of coherence of their

expression profiles in the two sample-classes, i.e., highly coherent in one class, but not in the other. An example

of a DC pattern is shown in Figure 1(b), where the constituent genes are either all up-, down-, or neutrally-

regulated for each sample in the control group (shown by the vertical streaks), but they do not follow any

particular trend in the disease group. Biologically, a differential coexpression pattern may indicate the disruption

of a regulatory mechanism possibly caused by the disregulation of a pathway20 or a mutation of a transcription

factor,16,17 among other mechanism. Figure 1(c) illustrates one of these mechanisms, where the mutation of a

regulator causes the disruption of the normal activity of a pathway. Specifically, G0 is a dominant regulator of
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Fig. 1. Illustration of (a) a differential expression (DE) pattern, (b) a differential coexpression (DC) pattern, and (c)
a possible mechanism for the occurrence of a DC pattern due to the mutation of a regulator. Note that, while G0 is a
dominant regulator of G1-G4, the latter genes are also regulated by other independent regulators, that are not shown in
the two pathway graphs for simplicity. ((a) and (b) taken from Kostka and Spang (2004).20)

G1-G4 that leads to the coordinated and hence coherent expression of all of them. However, once mutated in the

disease state, G0 is unable to regulate these genes, and their regulation may be taken over by other independent

regulators that may only be active in the disease state. Now, since the regulation of G1-G4 is independent,

they are no longer coordinated, thus leading to the disruption of the coherence of their expression. Therefore,

DC patterns can serve as biomarker candidates for some diseases, e.g. cancer and its subtypes,16,20,47 as well as

for differentiating between evolutionarily-related species.17 Furthermore, at a representation level, a DE pattern

can be considered as a connected subgraph of a coexpression network, which is intact in one sample-class but

not connected in the other. Such a convenient representation of these patterns can be very useful for their

visualization and understanding, and we present some examples of this in Section 3.

Owing to their definition, differential coexpression patterns cannot be discovered via univariate analysis,

since the coherence of expression values of a group of genes has to be measured collectively. Corresponding to

this need, several techniques for identifying DC patterns have been proposed in the literature, the first ones of

which only searched for gene-pairs with sufficiently different correlations (or other statistical measures) between

the two classes.21–23,34 Extending this to larger groups of genes, differential coexpression has also been studied

in the context of clustering17,44 and coexpression networks,7,11,12,27,47,48 where a cluster or a sub-network of

genes is considered differentially coexpressed if they collectively have different pairwise coexpression across the

sample-classes of interest. Some algorithms also employ differential coexpression measures collectively for a set

of genes,20,29 instead of only pairwise coexpression measures. Recently, some studies have adopted a related but

different perspective and have proposed methodologies for identifying differentially coexpressed gene-pathway

pairs31 and pathway-pathway pairs.6

Despite the differences in the methodologies adopted by these approaches for finding DC patterns, a feature

common to all of them is that the coexpression of a set of genes is measured over all the samples in each of

the two classes, i.e., over the full space of samples. For instance, the example shown in Figure 1(b) is a full-

space DC pattern. However, as pointed out for the discovery of differentially expressed genes,39,41,46 the causes

of diseases as well as the population affected by them, are often heterogeneous in nature. In such a scenario,

full-space approaches may not always be appropriate and may ignore patterns that cover only a subset of the

samples in each class, i.e., subspace patterns. For instance, a set of genes may only be coexpressed over 60%

of the samples in the normal class, and may not be even slightly coexpressed over any of the samples in the

disease class, thus qualifying to be a valid subspace pattern. However, this pattern may not be uncovered if the

discovery algorithm requires the constituent genes to be coexpressed over all the samples in the normal class.

Indeed, even if a pattern can be discovered by both full-space approaches and subspace approaches, the latter

can better indicate the subgroup of samples on which the pattern is coexpressed, and thus may allow further

study of the different causes of diseases and different demographics among subgroups of samples, which may

potentially help personal diagnosis and treatment. These challenges call for the design of new approaches that
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can discover patterns that only show differential coexpression over subsets of the samples in the two classes,

and can also indicate these subsets as a companion to the patterns. Interestingly, similar challenges faced by

traditional clustering approaches have motivated the design of a variety of biclustering algorithms.5,25

In this paper, we address these challenges by extending differential coexpression analysis to enable the

discovery of subspace DC patterns. We define these patterns as sets of genes that are coexpressed over a relatively

large percent of the samples in one class, but in a much smaller percent of samples in the other class. Following this

definition, we propose a general approach based upon association analysis framework1 that allows exhaustivea yet

efficient discovery of subspace differential coexpression patterns. This approach can be used to adapt a family of

biclustering algorithms that have antimonotonicity24,28,43,49,51 to obtain their corresponding differential versions

that can directly discover differential coexpression patterns. Specifically, we illustrate the features of our approach

by extending a recently developed biclustering algorithm.28 Experiments using this approach on lung cancer

datasets demonstrate the existence of subspace differential coexpression patterns in real-life data. Permutation

tests demonstrate the statistical significance for a large number of discovered subspace patterns, many of which

can not be discovered if they are measured over all the samples in each of the classes. Interestingly, some

discovered patterns also have a significant overlap with known cancer pathways, and some are enriched with the

target gene sets of a cancer-related microRNA and a cancer-related transcription factor. These results suggest

that subspace DC patterns may aid in developing new understanding about the mechanisms underlying cancer

and other diseases.

2. Proposed Approach

In this section, we first extend differential coexpression analysis to subspace patterns, then we will describe a

general approach for the discovery of subspace differential coexpression patterns.

2.1. Subspace Differential Coexpression Analysis

A subspace differential coexpression pattern is a set of genes that are highly coexpressed in a relatively large

percent (not necessarily all) of samples in one class, but in a much smaller percent of samples in the other

class. We formulate the problem of subspace differential coexpression pattern discovery as follows. Let D be

a gene expression dataset with a set of p genes, G = {g1, g2, ..., gp}, and two classes of samples, A and B,

which can be considered as cases and controls of size NA and NB , respectively, i.e., A = {a1, a2, ..., aNA
} and

B = {b1, b2, ..., bNB
}. Let Ψ be a coexpression measure for a set of genes α (α ⊆ G). To illustrate, this measure

could be a test as to whether the minimum of the pairwise correlation of the expression profiles of the genes in α

is above a particular threshold. We use AΨ(α) (BΨ(α)) to denote the subset of samples in A (B) on which α is

coexpressed, i.e., AΨ(α) ⊆ A and BΨ(α) ⊆ B. The two ratios, |AΨ(α)|
|A|

and |BΨ(α)|
|B|

are respectively the percentage

of samples in A and B on which α is coexpressed. They are denoted as RΨ
A(α) and RΨ

B(α), respectively. The

absolute difference of these two ratios can be used to measure the subspace differential coexpression of α:

Definition 2.1. Subspace Differential Coexpression (SDC)

SDCΨ(α) = |RΨ
A(α) − RΨ

B(α)| (1)

Given a threshold d, a set of genes α (α ⊆ G) is called d−differentially coexpressed if SDCΨ(α) ≥ d.

Then, the problem of subspace differential coexpression pattern discovery with reference to a threshold d can be

formulated as discovering all the d−differentially coexpressed patterns.

We will explain our approach for addressing this problem using Figure 2, which shows a number of types

of subspace and full-space, differentiating and non-differentiating, coexpression patterns. Figure 2(a) shows a

conceptual example of a differential full-space pattern, while Figure 2(b) shows a conceptual example of a

differential subspace pattern. Figures 2(c) and 2(d) are examples of non-differential patterns. Although Figure

2(e) is a differential full-space pattern, it contains a redundant gene, i.e., the dashed curve.

aGiven a threshold, an exhaustive search guarantees to discover all the patterns w.r.t. that threshold. Different from brute-force

search, exhaustive search may avoid exploring the whole search space by pruning a large number of patterns that are guaranteed to
disqualify the threshold.
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Fig. 2. Different types of full-space and subspace, differential and non-differential coexpression patterns. Each curve
denotes the expression values of a gene on all the samples. The horizontal line separates all the samples into class A and
B. Five patterns are illustrated, with a brown line indicating the samples on which the set of genes are coexpressed.

.

Given Definition 2.1, an effective mining algorithm is expected to discover patterns like (a), (b) and (e) in

Figure 2, but not the patterns that are equally coexpressed in the two classes (as shown in Figure 2(c) and (d)).

However, if we take a further look at pattern (e), we can observe that, although the four genes together have

differential coexpression, two genes are coexpressed in both of the two classes (the two red curves). Only one of

the two coexpressed genes is enough to form a differential coexpression pattern with the other two genes (the

two blue curves). Indeed, including both genes would lead to redundancy that is conceptually unappealing and

increases the number of patterns, without improving the SDC measure given in Definition 2.1. We considered

the patterns like (e) as redundant ones that can be represented by their subsets. Therefore, for the control of

redundant genes as well as for efficient pattern discovery, patterns like (e) will also be pruned together with the

non-differential ones like (c) and (d) in the pattern mining process.

A common property of the five patterns in Figure 2 is that, they are all coexpressed in a large percent of

samples in class A. In the meanwhile, the common property of the three patterns that are expected to be pruned,

namely (c),(d) and (e), is that they all have at least one pair of genes that are coexpressed in a large percent of

samples in class B. Motivated by these two observations, we refine the target of subspace differential coexpression

pattern mining as those sets of genes that are coexpressed in a relatively large percent of samples in one class,

while all of the pairs of genes in the set are coexpressed in a much smaller percent of samples in the other class.

Mathematically, we define a measure for this refined criteria as follows:

Definition 2.2. Refined Definition of Subspace Differential Coexpression (S̃DC) (Assume RΨ
A(α) ≥ RΨ

B(α))

S̃DC
Ψ

(α) = RΨ
A(α) − maxi,j∈α(RΨ

B({i, j})) (2)

S̃DC is computed as the difference between the percent of samples in class A on which α is coexpressed and

the maximal percent of samples in class B on which a size-2 subset of α is coexpressed. A large value for S̃DC

indicates that a set of genes, α is coexpressed on a much larger percent of samples in class A compared to the

coexpression of any size-2 subset of α in class B. Therefore, given a proper threshold, d, S̃DC can differentiate

interesting subspace differential coexpression patterns like patterns (a) and (b) from uninteresting patterns like

patterns (c) − (e).

Mathematically, for some coexpression measures, S̃DC has another property called antimonotonicity, which

basically means that S̃DC(α) is guaranteed to be no less than the S̃DC of any superset of α. For S̃DC(α)

to have the antimonotonicity property, it is sufficient that the coexpression measure used to define S̃DC(α)

is antimonotonic (A formal proof is given in Fang et al.9). Indeed, the coexpression measures used in several
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existing association-based and subspace clustering based biclustering algorithms have this property.24,28,43,49,51

This antimonotonicity property guarantees that, given a threshold, d, S̃DC can be used in a systematic yet

efficient pattern mining framework, namely Apriori,1 to discover all and only the patterns with S̃DC ≥ d. We

briefly describe the computational algorithm for this approach in Section 2.2.

2.2. Computation Algorithm

The Apriori framework is essentially a bottom-up exhaustive combinatorial search framework initially designed

for association analysis on binary data. Different from brute-force search, given an antimonotonic measure M

and a threshold m, the Apriori search algorithm can avoid exploring the whole search space of all sets of items

(genes in our case) by pruning a large number of candidates that are guaranteed to disqualify the threshold based

on the antimonotonicity of M.

The process of searching patterns with S̃DC ≥ d in the Apriori framework can be viewed as the generation

of a level-wise pattern tree. Every level of the tree contains patterns with the same number of genes. If the level

is increased by one, the pattern size (number of genes in each pattern) is also increased by one. Every pattern has

a branch (sub-tree) which contains all the supersets of this pattern. The search is breadth-first. We first check all

the patterns at the second level, since the elemental component of differential coexpression analysis is a pair of

genes. If a pattern does not satisfy the user-specified S̃DC threshold d, the whole branch corresponding to this

pattern can be pruned without the need of further checking. This is guaranteed by the antimonotone property

of S̃DC measures.9 Following this approach, the pattern tree grows level-by-level until all the qualified patterns

have been discovered. This algorithm is systematic yet efficient for handling large-scale datasets. Note that, in

Definition 2.2, it is assumed that RΨ
A(α) ≥ RΨ

B(α). In practice, the algorithm will be run twice, one time to find

patterns for which RΨ
A(α) ≥ RΨ

B(α), and the other to find patterns for which RΨ
B(α) ≥ RΨ

A(α). Use of the general

measure S̃DC in the Apriori framework allows the effective pruning of non-differential coexpression patterns like

(c) and (d), and also controls gene redundancy in patterns like (e). S̃DC also provides the antimonotonicity that

allows exhaustive yet efficient discovery of differential coexpression patterns like (a) and (b) (Figure 2) in the

Apriori framework. We will use S̃DC-Apriori to denote the the approach of using the general measure S̃DC in

the Apriori algorithm.

The coexpression measures used in several existing association-analysis-based and subspace-clustering-based

biclustering studies have the antimonotonicity property24,28,43,49,51 and can be adapted to yield their correspond-

ing differential versions that can directly discover differential coexpression patterns. Because of the complemen-

tarity of biclustering algorithms (i.e. they may discover patterns in common with each other, as well as some

unique to their formulation), their corresponding differential versions are also complementary to each other.

2.3. DiffRange: an illustration of S̃DC

In this paper, we shall use a specific instance of this approach based on a recently proposed antimonotonic

coexpression measure, namely range-support.28 This measure is intended for the discovery of constant-row bi-

clustersb25 in the Apriori framework. Conceptually, a range-support pattern is a set of genes that are coexpressed

(the expression value of the set of genes fall within a close range) over a set of conditions in a gene expression

data matrix. Let RangeSupr
A(α) denote the range-support of α in class A (an instantiation of RΨ

A(α)), i.e. the

percentage of samples in class A that fall within the predefined range threshold r. From Definition 2.2(S̃DC),

the corresponding differential range-support measure DiffRange (Differential Range-support) can be adapted:

Definition 2.3. Given a range threshold r, the DiffRange of a subset of genes α (α ⊆ G) on class A and B

DiffRange(α) = RangeSupr
A(α) − maxi,j∈α(RangeSupr

B({i, j})) (3)

3. Experimental Results

In this section, we describe the experimental design for the analysis of the subspace differential coexpression

patterns discovered by DiffRange. The, we present experimental results which demonstrate that the proposed

bIn a constant-row bicluster, the set of genes have similar expression values on each condition/sample.
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general approach discovers statistically significant and biologically relevant subspace differential coexpression

patterns in real-life data. .

3.1. Datasets and Preprocessing

In the experiments, three lung cancer datasets3,35,36 are used, which are all generated with Affymetrix microar-

rays.c To have a larger sample size for better illustration of the existence of subspace patterns and of their

statistical significanced, we combined the three datasets resulting in 102 samples with lung cancer and 67 nor-

mal samples (total 169 samples). Across the three datasets, 8787 genes are common. We preprocessed the three

datasets with RMA-normalization.18 Additional cross-platform normalization algorithms2,32 were also tested

and gave similar results, so only RMA normalized results are included here. The effect of different normalization

methods on differential coexpression pattern mining will be studied in future work.

Instead of normalized gene expression data, we used rank-converted values, i.e., the expression values are

converted to expression ranks ranging from 1 to 169 (number of samples) separately for each gene (similar

as used in Spearman’s rank correlation). Our analysis shows that rank-conversion can allow the discovery of

patterns containing genes with different ranges of expression values but still showing differential coexpression.

Thus, we focus on the analysis of the patterns discovered on rank-converted data, on which more patterns are

discovered. The patterns discovered on the data with expression value are presented on our website. Note that,

rank-transformation is especially useful for DiffRange, since it is based on the biclustering algorithm28 designed

to find constant-row patterns.25 Such rank-transformation may not be required in the S̃DC-Apriori framework

for other biclustering algorithms that are able to find coherent additive, coherent multiplicative or coherent

evolution biclusters.25

Higgins et al.15e collected a list of genes that are shown to be related to cancer. Out of the 8787 genes in

the dataset, 1975 are on the cancer gene list. In the following experiments, we analyze the subspace patterns

discovered on these 1975 genes (rank-converted data, and denoted as dataset D′), because cancer genes are more

likely to have disregulated patterns and based on the existing knowledge of these cancer genes, the evaluation

on the patterns discovered from these genes can better illustrate the biological relevance of subspace differential

coexpression patterns. Note that although these 1975 genes are known to be related to cancer, the subspace

differential coexpression patterns discovered on them can provide new insights about their relationship with

cancer, e.g., by identifying the interactions among individual cancer genes.

3.2. Pattern Discovery

With parameters r = 0.2f , and d = 0.2, DiffRange is used in the Apriori framework to discover subspace DC

patterns on D′. Most patterns are of size-2 (gene-pairs), but there are also size-3 and size-4 patterns (no larger

size patterns are discovered for the selected parameters). To control the redundancy of genes among size-3 and

size-4 patterns,g we order them by decreasing SDC value and sequentially select a subset of the patterns in

which none of the pairs of patterns have greater than 25% overlap of genes. This compact set has 95 patterns (88

size-3 patterns and 7 size-4 patterns). Figure 3(a) shows the size and SDC value for each discovered DC pattern.

3.3. Are the discovered subspace differential coexpression patterns statistically significant?

Due to the issues of low sample size and high-dimensionality for data sets used for problems such as biomarker

discovery, many patterns may be falsely associated with the class label by random chance, especially when a

large number of combinations of genes are searched. This raises the multiple-hypothesis testing problem.33 In this

paper, a permutation test is used to evaluate the statistical significance of the discovered subspace DC patterns.

Specifically, the original class labels are randomly shuffled 1000 times. For each random labeling, the same

cThe first two use platform HG-U95A, while the other uses platform HG-U133A
dThe patterns discovered from the three datasets separately are not statistically significant in the permutation test (refer to Section

3.3 for details), due to the low sample size of each individual datasets.
eIn this paper, we union the two lists respectively downloaded in October 2008 and June 2009, with a total of 2622 genes
fIn the rank-converted data, this means k genes have coherent expression if the rank difference of their expression is less than 20%

of the 169 samples, i.e. 33.
gNote that in the discussion of pattern (e) in Fig. 2, the redundancy is within a pattern rather than among the patterns like here.
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(b) Statistically significant DC pat-
terns according to the permutation
test.

Fig. 3. Patterns discovered with the original class labels (a) and indication of the statistically significant ones (b).

DiffRange parameters (r = 0.2 and d = 0.2) are used to discover a set of patterns. With the 1000 randomized

labels, only size-2 patterns are discovered, with SDC values in the range of [0, 0.4620]. Figure 3(b) indicates this

range by overlaying a double-arrow on top of the patterns discovered with the original class labels (as shown

in Figure 3(a)). Considering 0.4620 as a statistical significance cutoff, Ellipse A indicates the 560 statistically

significant gene-pairs whose SDC value was never exceeded by any random pattern. In addition, since there are

no size-3 and size-4 patterns discovered with randomized labels in the permutation test, the 88 size-3 patterns

(Ellipse B) and 7 size-4 pattern (Ellipse C) are also considered statistically significant. Note that, although a

differential coexpression pattern can be highly coexpressed in either the cancer class or the normal class,21,22

all the statistically significant patterns in the three ellipses are highly coexpressed in the normal class while less

coexpressed in the cancer class.

3.4. How differentially coexpressed are the discovered subspace patterns when measured
over full-space?

In this experiment, we measure the full-space differential coexpression for the statistically significant subspace

patterns selected based on the above permutation test, i.e., the 560 gene-pair patterns and the 88 size-3 patterns

and the 7 size-4 patterns. We will show that there are subspace patterns that have close-to-random differential

coexpression when considered as full-space patterns. A variety of full-space differential coexpression measures are

proposed in existing work as discussed in section 1. As used in several studies,20,34,44 we will use the correlation

difference of a pattern between the two classes for illustration purpose. For a gene-pair pattern, correlation

difference is just the difference of the two correlations respectively in the two classes. For a pattern of size greater

than 2, we compute the difference between the average pair-wise correlation in the normal and cancer class to

measure the correlation difference.

The three subfigures in Figure 4 plot the correlation difference and SDC for the statistically significant

size-2, size-3, and size-4 patterns, respectively. The three dashed lines indicate the statistical significance cutoff

of correlation difference for size-2, size-3 and size-4 patterns (0.9361, 0.5176 and 0.4953), respectively, which is

also decided via permutation test. For the gene-pair patterns (Figure 4(a)), several observations can be made:

(i) some patterns are considered statistically significant by both correlation difference and SDC (region A); (ii)

some gene-pairs are considered significant only by SDC but not by correlation difference (region B). Among these

patterns, several pairs have close-to-zero correlation difference(within the circle), which means they show very

little differential coexpression when considered as full-space patterns; and (iii) there are also 801 gene-pairs that

are only considered significant in terms of correlation difference but not by SDC (region C). This is as expected

since many factors can affect the discovery of DC patterns, e.g. different coexpression measures, different mining

algorithms, and the parameters used in the algorithms. Our highlight is the existence of subspace differential

coexpression patterns that show close-to-random differential coexpression when considered as full-space patterns.

Similar observation can also be made in Figures 4(b) and 4(c) which respectively plot the correlation difference

for the size-3 and size-4 patterns.
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Fig. 4. Illustration of the full-space differential coexpression (correlation difference) for the discovered statistically signif-
icant subspace differential coexpression patterns. The dashed lines in (a) − (c) indicate the statistical significance cutoffs
for correlation difference for size-2, size-3 and size-4 patterns respectively. The solid line in (a) is the statistical signifi-
cance cutoff for SDC (0.4620). There are no corresponding lines in (b) and (c) because all the patterns of size 3 and 4
are statistically significant in terms of SDC as discussed in section 3.3. Region A contains patterns that are considered
significant by both correlation difference and SDC; Region B has patterns that are not significant as full-space patterns,
several of which have close-to-zero correlation difference (within the circle); and Region C shows the significant full-space
patterns that are not discovered by SDC.

Fig. 5. A statistically significant subspace differential coexpression pattern, for which the minimal pairwise correlation
in the normal class is only 0.28. For better visualization, samples are sorted by increasing range of expression ranks
separately in the two classes (similar for Figures 6(a), 6(b) and 7(a)).

.

In Figure 5, we illustrate a subspace DC pattern with very small correlation difference (0.19). This pattern

is coexpressed in only 58% of the normal samples h, and the minimal pairwise correlation of the genes in this

pattern over all the normal samples is only 0.28. For this pattern, it is not reasonable to assume that the genes

are coexpressed on all the normal samples. Furthermore, discovering the pattern as a subspace DC pattern can

explicitly show the subgroup of samples on which the three gene show coexpression, i.e., the 39 normal samples

and the 3 cancer samples in the cancer class. This allows further analysis of the difference between the 39 normal

samples with the pattern and the 28 without it (e.g., different demographic characteristics), which may help

personalized diagnosis and treatment.

The existence of subspace patterns that show small and insignificant differential coexpression when considered

as full-space patterns demonstrates the potential usefulness of subspace differential coexpression analysis. Next,

we will evaluate the biological relevance of the discovered subspace patterns.

3.5. Are the discovered subspace differential coexpression patterns biologically relevant?

Quantitatively, two enrichment experiments are used to evaluate the biological relevance of the discovered sub-

space differential coexpression patterns: (i) enrichment with ten known cancer-related signaling pathways i,15 (ii)

enrichment with the 5452 gene sets in the Molecular Signature database (MSigDB)j.37 Since patterns of size-2

hThis is with respect to the DiffRange parameters used to discover the patterns, r = 0.2. Similar for Figures 6(a) and 6(b)
ihttp://cbio.mskcc.org/CancerGenes/Select.action
jSpecifically, MSigDB contains 386 positional gene sets, 1892 curated gene sets, 837 motif gene sets, 883 computational gene sets,
and 1454 GO gene sets. http://www.broadinstitute.org/gsea/msigdb/
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(a) The pattern that is enriched with the TNFα/NFκB signaling pathway
(enrichment p-value 0.0011).

(b) The pattern that is enriched with the WNT signaling pathway (enrichment
p-value 0.0042).

Fig. 6. Two patterns that are respectively enriched with the TNFα/NFκB and the WNT signaling pathway.

are difficult to assess in terms of enrichment, we perform the two biological evaluations only for the 95 patterns

of size 3 or 4. Briefly, (i) six patterns have an overlap of 2 or more genes with one of the ten known cancer-related

pathways, (ii) in the MSigDB enrichment, 40 patterns have enrichment p-value less than 0.001, among which

five have p-value less than 0.0001. Detailed enrichment results can be found on the paper website.

Note that, due to the limited knowledge about differentially coexpressed patterns, the current stage of

differential coexpression pattern mining is still hypothesis generation rather than hypothesis verification, as

discussed in Kostka and Spang.20 Indeed, since all the 95 patterns are statistically significant in the permutation

test, and all the genes contained in the 95 patterns are known cancer-related genes15 (as described in section

3.1), they can be considered as hypotheses that may lead to new understanding of the interactions among them,

and of the relationship between differential coexpression and cancer mechanism. Therefore, in addition to the

above standard enrichment analyses, we will illustrate and discuss several interesting patterns that are enriched

with known cancer pathways, or target sets of cancer-related microRNAs and transcription factors.

Figure 6 displays two patterns that are enriched with the TNFα/NFκB signaling pathway and the WNT

signaling pathway respectively. Several observations can be made from these two figures. Firstly, they both

show strong differential coexpression, i.e. they are both highly coexpressed in the normal class, and much less

coexpressed in the cancer class. Secondly, both patterns are subspace differential coexpression patterns, i.e., they

show coexpression in only 67% and 64% of the normal samples respectively. Similar to the pattern shown in

Figure 5, these two patterns are coexpressed in only about two-third of the normal samples. Discovering them

as subspace patterns also points out the subgroup of samples covered by them. This allows further study of

the different causes of diseases and the different demographics among subgroups of samples. Finally, both the

TNFα/NFκB and WNT signaling pathways have been shown to be related to lung cancer.19,40 Discovering

the differential coexpression patterns enriched with these pathways may shed new light on the understanding of

the two pathways and their relationships to cancer mechanism.

Among the six patterns that are enriched with at least one cancer pathway, three are enriched with the

TNFα/NFκB pathway. In Figure 7(a), the union of the three patterns, containing ten genes, are plotted.

All the ten genes are known cancer-related genes.15 Out of the ten genes, six overlap with the TNFα/NFκB
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(a) Visualization of the pattern. (b) Enriched IPA subnetwork.

Fig. 7. The union of the three patterns that are all enriched with the TNFα/NFκB signaling pathway. There are ten
genes in this combined pattern (all are known cancer related genes), out of which six are included in the TNFα/NFκB
signaling pathway (enrichment p-value 1.4024 × 10−5).

pathway (enrichment p-value 1.4024× 10−5). This may suggest that the other four genes may also participate in

or interact with this cancer pathway.31 Figure 7(b) shows the enriched IPAk subnetwork, containing 8 of the ten

genes (the 8 genes are shaded). Interestingly, IPA also shows that the connecting components (NFκB complex,

ERK, Mapk and Cyclin E ) are also known to be related to cancer.

Specifically among those patterns that are not considered significant by correlation difference (Region Bs in

Figure 4), some are enriched with the target gene sets of cancer-related microRNAs and transcription factors.

For example, the first two genes in the pattern (PIK3C2B,TSC22D1,AKAP12 ) are among the set of target genes

of miR-101 (p-value 0.001), a small non-coding RNA that regulates gene expression. miR-101 was shown to be

down-regulated in cancer.10 This agrees with the loss of coexpression of its target genes (PIK3C2B,TSC22D1 )

in the cancer class. Furthermore, the miR-101 targets are enriched for several signaling pathways, and the third

gene AKAP12 is a known regular of protein kinase A (PKA), a central signaling pathway involved in cell growth

and proliferation. This may lead to the differential coexpression of (PIK3C2B,TSC22D1 ) and AKAP12 together

as a DC pattern. In another example, the first two genes in the pattern (ETV4,PTHLH,CBX5 ) are among the set

of genes with promoter regions [−2kb, 2kb] around the transcription start site containing the motif TTACGTAA

which matches the binding site for the transcription factor ATF2 (p-value 2.5119×10−4). Mutations of ATF2 was

shown to be related to cancer,45 which agrees with the loss of coexpression of its target genes (ETV4,PTHLH )

in the cancer class. In addition, the ATF2 targets show enrichment for transcription regulation (repression), and

CBX5 is component of heterochromatin, an epigenetic factor in the regulation of gene expression. This may lead

to the differential coexpression of (ETV4,PTHLH ) and CBX5 together as a DC pattern.

4. Conclusions

In this paper, we studied methods to identify disease-related change of coexpression subnetworks, i.e. differen-

tial coexpression analysis. Specifically, we extended differential coexpression analysis to subspace patterns and

proposed an approach based upon association analysis framework1 that allows exhaustive yet efficient discovery

of subspace differential coexpression patterns. This approach can be used to adapt a family of biclustering al-

gorithms to obtain their corresponding differential versions that can directly discover differential coexpression

patterns. We illustrated the general approach on a recently-developed biclustering algorithm, and presented the

results of experiments on lung cancer datasets using this algorithm. The results showed the existence of mean-

ingful subspace differential coexpression patterns in real-life data. Permutation tests demonstrated the statistical

significance for a large number of discovered patterns, many of which can not be discovered if they are measured

over all the samples in each of the classes. Interestingly, some discovered patterns also have a significant overlap

with known cancer pathways, and some are enriched with the target gene sets of a cancer-related microRNA and

kIngenuity Pathway Analysis: http://www.ingenuity.com/
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a cancer-related transcription factor. These results suggest that subspace DC patterns may aid in developing

new understanding about the mechanisms underlying cancer and other diseases.

5. Limitations and Future Work

In this section, we discuss several limitations of the proposed approach, possible solutions and future work.

(1) Size of patterns: Due to the fixed thresholds imposed on S̃DC in the Apriori framework, there may be

some larger patterns that do not satisfy the thresholds and are split into smaller ones. This limitation of

association analysis is usually addressed by pattern summarization,13 in which smaller size patterns are

merged into larger ones under some criteria. For example, the size-10 pattern in Figure 7 is obtained by

merging three smaller patterns as described in Section 3.5. More sophisticated summarization approaches13

can be exploited in future work.

(2) Enhancing scalability: The scalability of the approach depends on the mining algorithm, as well as the

permutation test. Generally, the algorithm itself takes about ten minutes for 2000 genes, several hours for

4000 genes and more than a day for all the 8787 genesl, which is acceptable. However, the real challenge

comes from the permutation test in which the mining algorithm is called 1000 times, the total time of which is

unacceptable on all the 8787 genes. Thus, to have a comprehensive evaluation of the discovered patterns, we

limited the pattern discovery and the follow-up statistical and biological analysis to the subset of genes that

are known to be related to cancer. In future work, for the efficiency of the mining algorithm, more effective

pruning schemes should be studied together with preprocessing procedures such as standard deviation based

gene filteringm. For the scalability in the context of permutation test, efficiency could possibly be improved

by reusing the calculation over the large number of permutations as studied by Zhang et al.50

(3) Modifying other biclustering algorithms: In this paper, DiffRange is presented as an illustration of

the general approach, S̃DC-Apriori, for modifying a biclusteirng algorithm to its differential version. As

discussed in Section 2.1, S̃DC-Apriori can also be applied to modify other biclustering algorithms24,43,49,51

with the antimonotonicity property, and their corresponding differential versions are expected to complement

DiffRange for discovering differential coexpression patterns.

(4) Differential biclustering: Differential coexpression patterns can essentially be considered as biclusters that

exist mostly in one class but not in the other. Indeed, such type of biclusters have already been observed

in several studies,26,38,51 where a set of biclusters are discovered in the first step and then the ones that

are unique to a single class are selected in the second step. Such a two-step approach can also be used to

discover differential coexpression patterns. However, the general approach proposed in this paper, S̃DC-

Apriori, can be considered as an initial effort towards a more general differential biclustering problem,

where more efficient discovery of differential biclusters are possible by making use of class labels within the

biclustering process. Similar problems can also be formulated as differential/discriminative co-clustering and

differential/discriminative subspace clustering in the data mining community.

(5) Pattern-based classification: Since a subspace differential coexpression pattern explicitly captures the

subgroups of samples it covers, it will also be interesting to investigate the predictive power of subspace

differential coexpression patterns in a pattern-based classification framework,4,42 where the combination of

traditional differentially expressed genes and subspace differential coexpression patterns may provide more

accurate disease diagnosis.
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The gram-negative myxobacterium Myxococcus xanthus is equipped with an interesting motility system that allows

it to reverse direction on average every 8 minutes by switching the construction of two motility engines at the ends

of this rod-shaped bacterium. While the mechanisms responsible for timing and engine construction/deconstruction

are relatively well understood, there are several competing hypotheses as to how they are coupled together. In this

paper we examine the evidence for protein interactions underlying these possible couplings using a novel framework

consisting of a probabilistic model describing protein and domain interactions and a belief propagation inference

algorithm. When provided with large amount of indirect pieces of information, such as high-throughput experiment

results, and protein structures, we can reliably determine the relative likelihoods of these hypotheses, even though

each individual piece of evidence by itself has very limited reliability. The same framework can be used to map large

protein and domain interaction networks in myxobacteria and other organisms.

Keywords: PPI; DDI; M. xanthus; motility reversals; inference; Sum-Product Algorithm

1. Introduction

The availability of large quantities of experimental data, protein information, crystal structures of proteins

and domains stimulated research on quantitative methods to estimate protein-protein (PPI) and domain-

domain (DDI) interaction likelihoods. At the present time, most of these efforts have been focused on proving

the effectiveness of these algorithms on known protein datasets. However, fewer efforts have been put into

using such predictive tools to understand and study the dynamics of protein networks of actual interest in

biology from an in silico perspective. In this work, we aim to do this by concentrating in a particular pathway

related to motility in myxobacteria. Specifically, our study focuses on the study of Myxococcus xanthus, a

gram-negative myxobacterium which under extreme conditions of starvation stops swarming and starts a

new developmental phase to coordinate their motion cooperatively to aggregate and ultimately form fruiting

bodies.1 This multicellular cooperation in an unicellular organism makes Myxococcus xanthus an important

model to understand regulatory pathways where many cells work together to achieve a common functional

role.

To achieve this we use a PPI/DDI inference framework to provide a set of possible interactions underlying

signaling pathways in M. xanthus. M. xanthus cells reverse the direction of gliding, which leads to efficient

swarming, by controlling the assembly and disassembly of motility engines. For these reasons, M. xanthus

is an interesting system to perform PPI predictions, since many of its proteins and domains have homology

with chemosensory and other regulatory proteins in other well studied proteobacteria like Escherichia coli,

Salmonella typhimurium and other sequenced δ-proteobacteria. Structures of domains in E. coli proteins

are available, a feature required for the structural scoring. We also include structural complexes of domains

obtained from the iPfam database to enhance the predictive nature of our methodology.
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2. Methods

2.1. Sum-Product Algorithm for DDI/PPI Inference

Posterior probabilities for domain and protein interaction pairs can be obtained by calculating the marginals

of a joint probability distribution that is a function of protein interaction experiments, domain interaction

evidence and the relationship between domain composition of proteins and the fact that individual inde-

pendent domains establish physical contacts leading to protein interactions. We calculate this using the

Sum-Product Algorithm (SPA),2 an efficient method to compute marginals of multivariate functions that

factor into products of simpler functions. The SPA uses a graph representation of this joint probability dis-

tribution, called the factor graph, and obtains marginal values by iteratively exchanging messages along the

graph edges. One of the advantages of SPA is the ability to improve prediction accuracy against other known

methods like maximum likelihood estimation, while at the same time correct experimental errors. SPA will

not only estimate the probability of potential interaction but also will re-score the experimental input data

and correct putative experimental errors. We present a more in-depth derivation and validation of the use

of SPA for PPI and DDI inference in.3 In this work, we include a brief overview of the method and focus on

its application to protein networks in M. xanthus.

We denote by Ai,j = 1 a hypothesis that proteins i and j interact, by Bx,y = 1 a hypothesis that domains

x and y interact, and use Mi,j and Nx,y to quantify the results of interaction measurements or experimental

evidence performed on the protein pair (i, j) and domain pair (x, y), respectively. According to the model,

the joint probability distribution P (A,B,M,N|H), where H denotes the set of the domain architectures of

proteins, factors into a product

P (A,B,M,N|H) =
∏

(i,j)

P (Mi,j |Ai,j)
∏

(x,y)

P (Nx,y|Bx,y)P (Bx,y)P (A|B,H). (1)

The terms P (Mi,j |Ai,j) and P (Nx,y|Bx,y) represent the probability that an experiment produces a positive

result given that proteins i and j actually interact and the probability of a positive measurement given that

domain x interacts with y, respectively. These terms serve as the main information input points of the model.

The term P (Bx,y) represents the a priori probability of a domain-domain interactions and is set for all x

and y to an estimated probability that two randomly selected domains would interact. The central part of

our model is described through deterministic relations of the form

Ai,j =
∨

(x,y)∈Bi,j(H)

Bx,y for all (i, j), (2)

where Bi,j(H) is the set of domain pairs, such that one domain is present in protein i and the other in

j. Relations (2) state that a protein pair interacts if and only if at least one of its domain pairs interacts.

This set of equations must be satisfied by all Ai,j and Bx,y. Consequently, the probability P (A|B,H) can

be factored into a product of individual indicator functions for each (i, j). The factor graph illustrating the
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Fig. 1. Factor graph representation of the joint probability distribution P (A,B,M,N|H).

complete factorization is presented in Figure 1. The SPA iteratively recomputes messages along each edge in
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the graph according to equations specific to the type of the node from which the message originates. After

completing a predefined number of iterations, the algorithm obtains the a posteriori probabilities of PPI,

P (Ai,j = 1|M,N,H), and DDI, P (Bx,y = 1|M,N,H), which are the final result of the inference task. They

are obtained from all messages incoming into their corresponding variable nodes, i.e.,

P (Ai,j = 1|M,N,H) =



1 +
K

Ai,j
∏

k=1

eα
Ai,j

k





−1

, (3)

P (Bx,y = 1|M,N,H) =



1 +

KBx,y
∏

k=1

eα
Bx,y

k





−1

, (4)

generated in the final iteration. Where α
Ai,j

k is the log-ratio message entering node Ai,j along the branch

k in the factor graph of Figure 1. In this model, the domain pair architecture as well as potential protein

pairs are connected via a factor graph. Hence, protein and domain pair probability estimates depend on the

shared domain pair architecture. Since protein domain architectures define the topology of the factor graphs

they directly affect the computation of probabilities via message passing.

2.2. Data Sets

Several sources were used to extract relevant information for PPI inference. Protein information was retrieved

from Uniprot4 and 3-D protein structures from the Protein Data Bank.5 Domain composition of each protein

was extracted from Pfam 22.6 PPI data were obtained from two main sources: Database of Interacting Protein

(DIP),7 where most of the interaction pairs were obtained using yeast two-hybrid assays and IntAct,8 which

contains a higher number of interactions with different reliability levels. In3 we use a high quality binary

dataset of PPI in Saccharomyces cerevisiae, compiled by Yu et al.9 for performance evaluation and validation.

The algorithm also uses 6,081 iPfam domain interaction pairs as input.10

Table 1. Data sets used by our inference in silico methodology

Data Source Description

Uniprot Protein general information and sequence

DIP Database and literature 33,234 protein interactions

(May 2007)
IntAct 150,876 protein interactions

Yeast Golden Set (Yu et al.) 2,581 protein interactions

Pfam version 22 Domain composition of proteins
iPfam 6,081 Domain-domain interactions with complex

PDB Protein and Domain three dimensional structure

For the M. xanthus system we used a list of 23 proteins that are known to be related to the Frz system.

Out of 253 possible pairings, SPA found a list of 66 potential PPI with a probability larger than 0. These

interactions contained 18 unique proteins. We discarded protein interactions that do not share the same

cellular location to obtain Figure 2. Finally, Table 2 shows 10 protein pairs that either have experimentally

confirmed interactions or that contain potential interactions that seem biologically meaningful for the motility

reversal model in M. xanthus. The discarded protein interactions have a mean score of 0.6634 while the 10

selected interactions have a mean score of 0.8064.

2.3. SPA run time and scalability

Run time of this algorithm depends on the size of the factor graph and the number of iterations defined in the

message passing algorithm. The factor graph scales quadratically with the number of proteins and domains
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analyzed. However, given the nature of the input data, where domains are not shared among all the proteins

and the fact that we only have measurements for a smaller subset of protein pairs, a series of disconnected

factor graphs are created for the input protein and domain datasets. We process these disconnected factor

graphs independently, which allows parallelization and scalability of the inference task. We do predictions

using the high performance computing cluster (HPCC) of the University of Notre Dame. Using 2.29 GHz

Quad-Core AMD Opteron processors we run SPA with 19 iterations in less than two hours including the

largest connected subgraph.

3. Predicting interactors in M. xanthus reversal system

We studied how the control of reversals in gliding direction of M. xanthus takes place. M. xanthus has two

different multi-protein engines: S-motility and A-motility; both involve social interactions. S-motility depends

on Type IV Pili motors.11 These pili attach to fibrils surrounding other M. xanthus cells and by means of

retraction pull the cell forward. A-motility, is associated with slime secretion. One hypothesis states that

slime coming out of several molecular nozzles at polar ends of the cell pushes the cell forward12.13 Pili should

be present in the leading part of the cell while slime nozzles be part of the back of the cell. This configuration

allows for pilus retraction and slime propulsion at the same time. A second hypothesis relates A-motility

with non-polar cell surface adhesion complexes.14 M. xanthus cells are able to move over surfaces by gliding,

they reverse their direction of movement with an average period of approximately 7.2 minutes.15 This period

seems to be optimal to achieve higher swarming rates and cell flux.16 These reversals occur by switching

motility engines from one end of the cell to the other. Under the slime propulsion model, a process of nozzle

inactivation takes place when secretion is switched from one pole to the other, and pili are inactivated when

they switch from one end to the other. A control circuit is needed for engine switching that would lead to

cell reversals. That circuit includes the Frz (frizzy) system which is deemed responsible of controlling the

frequency of reversals in M. xanthus.17 This circuit is based on a two-component system that clocks the time

to exchanging motility engines in the ends of the cell. Frizzy proteins that control the reversal frequency

include FrzCD (uniprot accession: P43500), a methyl-accepting chemosensory protein having similarities

with MCP proteins used for flagellar swarming in E. coli, but which is cytoplasmic in M. xanthus and not

a membrane protein as in E. coli .15 Also important is FrzE (P18769), a histidine kinase composed of two

domains similar to CheY (P0AE68) and CheA (P07363) proteins in E. coli .18 FrzE has autophosphorylating

function induced by a phosphate transfer from the HK domain (CheA) to its response regulator (CheY).

It is suggested that FrzE∼P is responsible for signaling reversal of polarity to the motility engine. FrzG

(P31758) is a methyltransferase similar to CheB (P07330), which is involved in the methylation of FrzCD,

for adaptation. During fruiting body development, the FruA (Q1D7Q3) response regulator triggers FrzCD

methylation. During growth there is no FruA, and FrzCD is spontaneously methylated at a low rate.19

Igoshin et al.20 constructed a dynamical model of the Frz system. During reversals the levels of methy-

lated FrzCD and FrzE∼P oscillated consistently out of phase, suggesting that these proteins form a negative

feedback loop. The loop describes accurately the frequency of reversals observed in M. xanthus when nu-

trients are scarce and development towards fruiting body formation is in its initial phase. For the model of

Igoshin et al. to be valid, it requires one of two potential protein pairs. These hypotheses still remain to be

tested experimentally. The two potential interactions are the following: FrzE-FrzF and FrzE-FrzG. To test

these hypotheses, we used our predictive methodology on a list of proteins involved in the FruA-Frz network.

Since several interactions forming part of the reversal mechanism are understood and their existence has

been established, we have a way to assess our predictions. Reproducing interactions that are already studied

provides support to our methodology and at the same time shows the potential of in silico methodologies to

reproduce scientific efforts to elucidate protein interactions in a given pathway. On the other hand, predicting

protein interactions in proteins of and related to the Frz-Mgl network let us investigate the plausibility of

these competing hypotheses. The prediction algorithm was run using the data sets presented in Methods.

Figure 2 presents a PPI network that was the outcome of the algorithm.

In Figure 2, nodes represent signaling proteins while the edge represent the physical interaction pre-
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Fig. 2. Predicted network of interactions in the Frz system of M. xanthus.

diction. Self interactions have been subtracted to facilitate readability. This network has also a color code

classification: orange nodes represent proteins in the negative feedback loop of Igoshin’s model; red proteins

are related to A-motility; yellow nodes play a role in S-motility; green nodes are being identified to have a

role in both A and S motility systems and finally MglA is represented by a blue node. This node plays an

important role in the connection of the reversal control and the actual motility mechanisms.

Table 2 presents a summary of the most important predicted interactions in the signaling network of M.

xanthus. It includes literature references and SPA scores to those interactions discuss here, illustrating the

correct predictive capabilities of our methodology. The bottom part of the table encompasses those PPI for

which we have not found literature describing them, however, our predictions present computational evidence

about their interaction and our analysis shows that their biological role might be of importance and thus

can be further studied.

Table 2. Predicted Interactions found in Literature and novel interactions for

M. xanthus

Predicted Reference SPA score

Interaction

FrzE - FrzG 20 Hypothesis (high likelihood) 0.96

FrzE - FrzCD 21 0.99

FrzE - FrzZ 22 (suggested) 1.00

FrzF - FrzCD 21 0.46

MglA - MasK (Q1DB00) 23 1.00
MglA - AglZ 24 0.56

MglA - FrzE Predicted , (motility bridge) 0.639

MglA - FrzF Predicted 0.95
MglA - RomR Predicted (A-motility) 0.56

MglA - Tgl Predicted (S-motility) 0.95

3.1. Analysis of hypotheses in Igoshin’s model

We turned our discussion to those potential interactions that make possible a negative feedback loop yielding

a biochemical oscillator in the signaling circuit of M. xanthus. Based on these results, we provide compu-

tational support for one of these hypothesis. The hypothesis FrzE-FrzG, was predicted with high score (see
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Table 2). The PDB 1a2o provides structural evidence that proteins with these domains might create in-

teracting complexes. Djordjevicj et al.25 determined the crystal structure of CheB. It has two domains, a

response regulator and a CheB methylesterase joined by a linker. They found that in its unphosphorylated

state, the RR would bind the CheB methylest domain and impede its activity. The crystal in 1a2o shows how

an unphosphorylated response regulator interacts with the effector domain CheB methylest with a surface

area of 1000 Å
2
. They also argued that phosphorylation of the response regulator would induce a conforma-

tional change that takes both domains apart and free the methylesterase to perform its catalytic function.

Phosphorylation induces minor reorientation of regulator helices α4 and α5, resulting in disruption of the

inter-domain interaction. Protein CheA phosphorylates the response regulator in CheB.26 In the regulatory

circuit of M. xanthus, the FrzG-FrzE interaction is different because FrzG only has the CheB methylest

domain, hence this domain could be active in the absence of a regulator. We hypothesize that the unphos-

phorylated response regulator in FrzE could help inhibit FrzG function, while an autophosphorylated FrzE

could not block FrzG methylesterase and activating it as a consequence. This hypothesis is plausible but

unconfirmed. Our results suggest that the biochemical oscillator depends on the FrzE-FrzG interaction.

3.2. Searching for interactions with MglA, the proposed switch protein

Although the mechanism to control the frequency of reversals in M. xanthus has been studied extensively

through the Frz system, and other two-component systems,27 there are still some missing links needed to

uncover the connection between the MglA switch and the actual A and S engines. MglA has been shown

experimentally to have an influence in both A and S engines.28 Cells with mutant mglA genes fail to reverse

and fail to swarm. They show simultaneous secretion of slime from both ends of the cell;13 it is suggested,

but not experimentally confirmed, that pili are also present from both ends of the cell. Thus MglA may

serve as a switch to start disassembly of engines at both ends of the cell.16 MglA-GTP might pick the end

that should lose pili by losing Tgl (P95324) and would also select the end to inactivate slime propulsion by

potentially interacting with CglB (O31191).29

We included MglA, with a conserved Ras domain, in our list of interactors. We were interested in

the interaction patterns of MglA with respect to proteins in the Frz system and other proteins related to

motility. We found that MglA has a potential central role in both motility systems and the Frz system

given its predicted interactions with different members of these systems. Figure 2 depicts MglA in blue, and

presents edges with several proteins. We start our discussion by analyzing the inferred interaction MglA-

FrzE, since this interaction could potentially represent the link between the Frz system and the two motility

systems in M. xanthus.

Our estimation algorithm produced a score for Ras-Response reg, supporting the plausibility that a

potential interaction between MglA and FrzE results from a physical contact between the Ras domain in

MglA and the phosphorylated Response reg in FrzE. The domain pair Ras-Response reg-P which underlies

the FrzE-MglA interaction leads to the prediction of other interactions that seem important to our study.

The protein pairs MglA-FrzZ (Q7BU54) and MglA-FrzS (Q1D4U9) are also plausible interactions between

a Ras domain pair and response regulators. These results suggest how MglA has an important role for the

switching of motility in the Frz system of M. xanthus.

3.3. MglA interacts with Tgl and RomR

We also investigated a possible interaction between MglA and engine proteins. Tgl is a lipoprotein needed

for the assembly of the PilQ (Q9ZFG1) secretin and thus for S-motility. Tgl is a stimulatable protein found

in membrane. It allows PilQ to assemble with the help of six TPR (Tetratrico peptide repeat superfamily)

repeats. One hypothesis is that three of these repeats interact with one monomer of PilQ, while the three

remaining repeats interact with the adjacent PilQ monomer.29 We investigated if MglA interacts with Tgl.

Our prediction algorithm infered that TPR 1, one of the domains present in Tgl, interacts with high prob-

ability with the Ras domain in MglA. This domain interaction would potentially trigger the destruction of
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Tgl or its removal from PilQ.29 The inclusion of iPfam evidence in our algorithm allowed us to identify a

crystal structure (PDB: 1e96) showing the Ras domain in complex with TPR 1. When this structure was

obtained, Rittinger et al. suggested that this interaction is important for the assembly of protein (enzyme)

complexes.30 This proposition provides more plausibility to the hypothesis that MglA-GTP causes PilQ to

disassemble. It is possible that through this interaction, MglA opens Tgl in such a way that it makes it

accessible to a protease that would then contribute to the disassemble of PilQ at one end of the rod shaped

cell.31

RomR is an essential protein for slime engine function. Its switching from the extremes of the cell

depends on MglA. Thus, we are interested in the possible interaction MglA-RomR. Søgaard-Andersen et

al.32 report that RomR has a Response reg (receiver) domain in the N terminal and an output domain

in the C terminal of the protein. Søgaard-Andersen et al. proposed that correct RomR polarity depends

on the small GTPase MglA. They also state the importance of RomR for A-motility and how this protein

relocates synchronously with another Frz protein: FrzS. They concluded that the Receiver domain is involved

in dynamic RomR localization and that this is required for reversals, while the output domain is a polar

targeting determinant. Their studies also showed that when the receiver domain is not phosphorylated then no

reversals are observed. On the other hand, if the receiver domain is always phosphorylated then there is a 1.5

fold increase in reversal frequency. However, the RomR kinase has yet to be identified. With this information

and based on our prediction of interaction between Ras-Response reg-P, we provide computational evidence

that indeed MglA could interact with RomR.

4. Discussion

In this work, PPI/DDI prediction methods are combined with the biological understanding of the reversal

system of M. xanthus as an attempt to improve present knowledge of the players involved in this process. A

contribution of this work is to illustrate how this framework is used to study small networks that perform

important functions in an organism. The focus in M. xanthus’ reversal system is due to its importance

in development and swarming. Support for this approach is provided by predicting interactions previously

reported in the literature. This study provides an assessment of the contribution of interactions FrzE-FrzF

and FrzE-FrzG as being part of the biochemical oscillator that controls the reversal frequency. Results suggest

that FrzE-FrzG plays an important role in negative feedback circuit. Furthermore, this framework let us reach

a more detailed explanation of how the response regulator domain in FrzE possibly interacts with the CheB

methylesterase domain in FrzG. This interaction possibly inhibits FrzG demethylation activity. When the

response regulator is phosphorylated this interaction is broken allowing FrzG to demethylate FrzCD. This

mechanism is needed to support the negative feedback model in the “Frizzilator”.

We investigated the role of MglA as a switch to control the construction of motility engines in M. xanthus.

Predictions showed the central role of this protein, first as a bridge with the negative feedback system by

interacting with FrzE and how its interactions with RomR, Tgl, FrzS and AglZ (Q1D823) are important for

both A and S engines. With these predictions, along with the present understanding of the reversal switch

it is possible to expand the model of this system. This model is illustrated in Figure 3.

The model shows how MglA serves as a link between the signaling pathway involving Frz proteins and

the motility engines. MglA receives a signaling message from FrzE that triggers the destruction of old engines

in the ends of the cell. Potential interactions of MglA with Tgl and FrzS have an impact in the switching

of S-motility engines. Parallel to these interactions, MglA is predicted to be interacting with RomR and

AglZ, showing a connection with the A-motility engines. This expanded model could help devise testable

hypotheses in the motility system of M. xanthus.

Acknowledgments

This work was supported in part by NSF grant CCF-0622940.

163



September 23, 2009 14:38 WSPC - Proceedings Trim Size: 11in x 8.5in morcos

Fig. 3. Expanded model of switching motility in M. xanthus. Switching is triggered by FrzE-MglA. MglA-GTP interacts

with A and S motility systems.
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Unveiling the modular structure of biological networks can reveal important organizational patterns in the cell. Many

graph partitioning algorithms have been proposed towards this end. However, most approaches only consider a single,
optimal decomposition of the network. In this work, we make use of the multitude of near-optimal clusterings in

order to explore the dynamics of network clusterings and how those dynamics relate to the structure of the underlying

network. We recast the modularity optimization problem as an integer linear program with diversity constraints.
These constraints produce an ensemble of dissimilar but still highly modular clusterings. We apply our approach

to four social and biological networks and show how optimal and near-optimal solutions can be used in conjunction

to identify deeper community structure in the network, including inter-community dynamics, communities that are
especially resilient to change, and core-and-peripheral community members.

1. Introduction

Many types of biological networks, such as protein interaction networks and metabolic networks, are known
to be modular in nature15. Modules are typically composed of a set of nodes that are all functionally
related. Uncovering such functional building blocks is useful because it can provide us with a systems-
level understanding of how the cell is organized. Several graph partitioning algorithms have been recently
proposed for this purpose (e.g.40,2,30,32,34), but these algorithms typically select only a single solution from
the vast space of possible clusterings. The chosen solution is meant to characterize the modular structure of
the data, but it ignores the horde of near-optimal solutions.

Near-optimal solutions are crucial in many respects. For example, they can help assess confidence in the
optimal partitioning. If a near-optimal solution is nearly as good as the optimal, we may be unsure whether
it is the near-optimal or the optimal partitioning that represents the true community structure. This is
especially true in the presence of noise, when the true community structure might be obscured and as a
result only emerge as some near-optimal solution. More locally, pairs of nodes that are co-clustered in many
near-optimal partitionings can be confidently determined to be members of the same community. Equivalence
classes of these frequently co-clustered nodes can be considered the “core” members of a community. Others
ought to be considered tenuous or “peripheral” members. Thus, unlike single solution approaches that treat
each individual as an equivalent community member, near-optimal solutions provide a way to measure the
strength of membership of members to each community. Further, understanding inter-and intra-community
interactions can be used to quantify how robust or resilient a community is to change. By taking such
interactions into account, we transition from treating communities as static, independent blobs to dynamic
blobs with varying memberships. Finally, there is also theoretical and empirical evidence suggesting that
single point solutions in high-dimensional spaces do not represent the data as well as ensembles of solutions4.
This is particularly true in machine learning, where ensembles of classifiers have been consistently shown to
outperform single models36,37.

In this article, we look at a broad collection of social and biological networks and show how near-optimal
clusterings impart information into community dynamics that would otherwise be missed using single solution
approaches. We use the popular modularity partitioning criteria proposed by Newman34. Modularity has
received mixed reviews regarding its relevance to biological networks. It was shown to perform poorly at
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recovering functional modules from large protein interaction networks31, but it has been effective at finding
modules in smaller metabolic networks11. We consider it here for smaller networks, but use it simply as
a template to investigate near-optimal solutions. It is likely that other approaches will also reap similar
benefits by considering ensembles of solutions.

To explore near-optimal community partitions, we cast modularity optimization as an integer linear
program (ILP), as has been done before1,3, but add diversity constraints so that each subsequent clustering
is not only adequately different from all previous solutions, but also has high modularity. This way, we
directly optimize for both diversity and quality. The collection of solutions returned constitute a partial
“energy landscape” that represents overlaid decompositions of the network.

Several techniques have been proposed for finding ensembles of optimal and near-optimal solutions to sim-
ilar ILP problems. For example, both randomly perturbing objective function weights by a small amount29,12,
or perturbing the input data itself and re-clustering16,21, can help explore different regions of the clustering
space (though selecting the size of that perturbation can be difficult). Alternatively, a randomized rounding
procedure to convert a fractional solution to an integral one can be used1, yielding a slightly different par-
titioning each time. In addition, heuristic techniques such as simulated annealing11,27 can be used instead
of ILPs to optimize the modularity. Such approaches explicitly explore the state space, and an ensemble of
partitionings can be generated by saving any good solutions observed. But these techniques are all based
on the idea of randomization: perturbing the inputs or the outputs randomly, or randomly transitioning
between solutions. Such randomized procedures suffer from at least two deficiencies. First, they often yield
solutions very similar to the optimal because large deviations are improbable to be generated at random.
Secondly, there is no guarantee that the perturbed solutions have high modularity. The randomized proce-
dure may generate many diverse solutions of poor quality. Other approaches vary input parameters, such
as the number of clusters to return22, though there can exist multiple reasonable clusterings that have the
same number of clusters. Recently, another approach was proposed that systematically perturbs the input
data such that the transformed and original data retain similar properties; an alternative clustering is then
found by clustering the transformed data38. Here, we take the approach of explicitly constraining for di-
versity within the clustering process itself. This guarantees that each successive solution is both sufficiently
different from previously obtained solutions and achieves the maximum possible modularity attainable under
the given diversity criteria.

We explore a broad spectrum of social and biological networks in an attempt to show the types of insights
that can be extracted from large collections of near-optimal solutions. We begin with Zachary’s karate club
social network43, which documents the fission of a group of university students after an internal dispute over
the price of karate lessons. Interestingly, we find that the clustering closest to the actual resulting fission of
the club (i.e. the true clustering) does not appear until the 31th near-optimal solution. We also show that
exploring near-optimal solutions can help identify fringe members of the two factions.

We next look at the ERK1/ERK2 mitogen-activated protein kinase (MAPK18) signal-transduction path-
way. We identify functional subunits that correspond well to known submodules of the pathway, and we
classify their robustness across the modularity landscape. Two portions of the ERK pathway consistently
remain tightly bound, whereas all other components are eventually split. We also identify gatekeeper nodes
that lie between functional modules in the Integrin signalling pathway26.

Finally, we consider a network of cortical-cortical connections in the human brain and find 53 of the first
60 near-optimal solutions are within 1% of the optimal modularity. Of these, 12 have a > 3% advantage in
spatial coherence over the optimal clustering, indicating that they might better represent the true modules
of the brain. Differentially classified nodes in this case can be used to identify spatial outliers with respect to
the topology. The immense number of similar solutions also suggests tremendous uncertainty in the optimal
partitioning.

In all four networks, we find insights conveyed by near-optimal partitionings that helps augment our
current understanding of community structure and dynamics.
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2. Generating A Diverse Ensemble of Partitionings

Below, we describe our procedure for generating an ensemble of distinct, high-modularity clusterings using
integer linear programming (ILP). All superscripts used below indicate indices, not exponentiation.

2.1. Integer Programming for Modularity

Intuitively, maximizing modularity corresponds to finding communities where the number of edges lying
within a cluster is much greater than we would expect by chance (under an Erdös-Renyi null distribution),
and the number of edges connecting two different clusters is much less. Formally, the modularity q(G, C) of
an undirected, unweighted network G with community decomposition C is defined as

q(G, C) :=
∑

u,v∈V

(Auv − kukv/(2m)) (1− xuv) , (1)

where Auv is an entry in the adjacency matrix for G (it is 1 if u and v interact and 0 otherwise), ku is
the degree of node u, m is the total number of edges, and the variables xuv describe C by indicating which
vertices are in the same community. More specifically, we have a variable xuv for every pair of nodes u < v,
with the interpretation that xuv = 1 if u and v belong to different clusters, and xuv = 0 otherwise. Letting
muv = Auv−kukv/(2m), a pair of nodes u, v in the same cluster contributes muv to the total modularity (muv

may be negative). Hence, we seek to maximize
∑

u,v muv(1−xuv) by setting the xuv variables appropriately.
To ensure that the nodes identified as co-clustered are consistent with each other, we must enforce the

triangle inequality. This leads to the following integer linear program, MOD-ILP:

maximize
∑
u∈V

∑
v∈V

muv(1− xuv) (2)

subject to

xuv + xvw ≥ xuw for all u, v, w ∈ V (3)

xuv ∈ {0, 1} (4)

This ILP is identical to the one proposed by Agarwal et al.1 for modularity maximization and is similar to
the ILP proposed for correlation clustering by Charikar et al.5 Another similar ILP, where instead xuv = 1
indicates that u and v are in the same cluster and with consequently modified constraints, was proposed by
Brandes et al.3 Here, we use MOD-ILP as a tool to generate ensembles of diverse community decompositions,
as described in the next section. The ILP can be solved to optimality via branch-and-bound using an ILP
solver such as glpk25 or CPLEX17. There are

(
n
2

)
variables and 3

(
n
3

)
constraints, where n is the number of

nodes. For large networks solving the ILP to optimality can be time consuming. Hence, a rounding heuristic
has been proposed1 based on an approximation algorithm for correlation clustering5. In this approach, the
integrality constraints (4) are replaced by constraints requiring 0 ≤ xuv ≤ 1 and the fractional solution
is rounded, treating the fractional xuv values as pairwise distances between the nodes. In this article, we
focus on smaller networks that can be solved to optimality. However, for larger networks the LP-relaxation
of MOD-ILP (with subsequent rounding) can be used, along with the same diversity constraints that are
discussed below.

2.2. Diversity Constraints

A solution to MOD-ILP reveals only one possible partitioning of the network. Suppose X0 is a
(
n
2

)
-vector

〈x0
uv〉 representing an optimal solution to MOD-ILP, and let ~1 be the

(
n
2

)
-vector with every component equal

to 1. The following constraints require a vector X to be different from vector X0:

X0 · (~1−X) ≥ d0
merge (5)

(~1−X0) ·X ≥ d0
split (6)
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Here, · denotes the dot product between the vectors. Considering X0, d0
merge and d0

split to be constants, the
constraints represented in (5) and (6) are linear. By adding them to MOD-ILP and finding a new optimal,
the ILP is forced to return a solution X that is different from X0. The amount of difference is governed
by the parameters d0

split and d0
merge. Equation (5) requires that at least d0

merge variables change from 1 to
0, thereby requiring that d0

merge pairs of nodes formerly in separate clusters become co-clustered. Similarly,
equation (6) requires that at least d0

split pairs that were co-clustered in X0 are placed in separate clusters
in X. The parameters d0

merge and d0
split can be set to vary the level and type of diversity desired. Both

constraints are required to balance between larger-and smaller-sized clusters, respectively. We can avoid
setting separate levels of each diversity type by consolidating these constraints:

X0 · (~1−X) + (~1−X0) ·X ≥ dchanges , (7)

where the left-hand side is equivalent to the Hamming distance, ∆(X, X0), between vectors X and X0.
Re-solving MOD-ILP with constraint (7) added will find an alternative optimal (if one exists) or will find a
second-best partitioning.

To speed up the solution of the ILP, we can use a heuristic algorithm to find a reasonable partitioning
and then supply that partitioning to the integer programming solver as an initial basis. Here, this was
necessary only for the Integrin pathway and the human brain network, where we used the partitioning found
by Newman’s spectral method34 as a starting basis. This provided the solver a starting point for the branch-
and-bound process and resulted in convergence in minutes (as opposed to hours). Such an initial basis does
not alter the optimality of the solution found.

2.3. Modularity Landscape

A partial “modularity landscape” of a network can be generated by iteratively solving MOD-ILP including
constraint (7) while increasing dchanges. If Xi is the solution of the ith iteration, in the i + 1 interaction, we
set

di+1
changes = ∆(X0, Xi) + 1. (8)

In contrast to repeated sampling using, e.g., simulated annealing11,27, this approach guarantees that succes-
sively obtained partitionings maximize modularity while still being sufficiently different from the optimal,
X0. We call this the distance-based method of generating diverse solutions.

An alternative method for generating an ensemble of diverse, high-modularity partitionings is to re-
peatedly resolve MOD-ILP with the addition of several constraints of the form of Equation 7, one for each
previously uncovered solution. In other words, on the ith iteration, for each previous solution Xj (0 ≤ j < i),
we add a constraint Xj · (~1 − X) + (~1 − Xj) · X ≥ 1 to MOD-ILP. A new solution will have at least one
difference from each previously uncovered solution. We call this the point-based method because it is akin
to avoiding specific markers on the clusterings space. The point-based method produces clusterings that
are finer-grained than the distance-based approach because there can exist many solutions having distance
between di

changes and di+1
changes that the distance-based method would miss. Using the point-based method,

the ith solution returned is a provably ith optimal network decomposition in terms of modularity (clusterings
with identical modularity will be ordered arbitrarily). The distance-based method more quickly samples
a more diverse collection of solutions. By setting dchanges > 1, the point-based approach could also be
adopted to more rapidly sample the solution space. In the results described below, we experiment with the
distance-based approach and the point-based approach with dchanges = 1.

2.4. Determining Core and Peripheral Community Members

Nodes that travel together across the modularity landscape can be thought of as core members of a commu-
nity. Such nodes remain together despite the additional diversity constraints added, which implies that their
cohesion is stronger than that of other pairs of nodes. Nodes whose co-clustered neighbors fluctuate across
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Figure 1. Zachary’s karate club social network43. The network consists of 34 nodes and 78 edges. Blue circles correspond

to Mr. Hi’s faction. Red squares correspond to the officers’ faction.

solutions can be considered peripheral members that lie on the outskirts of the community. We find core and
peripheral members of communities by creating a co-clustering matrix whose entries equals the number of
clusterings in the landscape in which nodes u and v are co-clustered. Dense blocks in the matrix correspond
to core members; cavities within dense blocks indicate peripheral activity or overlapping modules. Such
matrices have been previously investigated in a different context — consensus clustering28,9 — where the
goal is typically to return a centroid clustering that lies centrally amongst a given set of input clusterings.
Finding core and peripheral proteins within dense subgraphs in protein interaction networks has also recently
been shown to be useful for protein complex identification8,23,24. We use the co-clustering matrix as a means
to identify inter-and intra-module clustering dynamics.

3. Results

We used MOD-ILP with diversity constraints to produce modularity landscapes for the karate club social
network43, the ERK1/ERK2 MAPK18 and Integrin26 metabolic pathways, and a coarse-level human brain
network13. For each network, we show how exploring ensembles of near-optimal solutions reveals clustering
dynamics that would otherwise be missed by single solution approaches.

3.1. Karate Club Network

We begin by studying the modularity landscape of Zachary’s karate club network43, shown in Figure 1. This
network consists of 34 nodes and 78 social-interaction edges. Due to an internal dispute over the price of
karate lessons, the group split into two factions, one corresponding to the club’s karate instructor, Mr. Hi,
and the other to the club’s officers. Although not a network derived from molecular biology, it has the
advantage of being small enough to examine by hand and to have hand-curated evidence regarding social
interactions and community membership.

The distance-based approach found 82 different clusterings, after which no more feasible clusterings
existed. These clusterings had between 1 and 5 communities. Figure 2 shows the modularity landscape
produced by MOD-ILP with diversity constraints using the distance-based approach. In each panel, the
x-axis gives the solution number. The y-axis in the top panel shows the distance from each solution to the
optimal solution; the y-axes of the middle and bottom panels show the solution’s modularity and number
of communities, respectively. The number of communities does not monotonically decrease with lower
modularity. Instead, different components join or break-off as dictated by the resulting modularity and
diversity constraints. This implies that our ensembles do not simply correspond to iteratively choosing
different levels in the modularity hierarchical tree decomposition6.

Although the true structure consisted of 2 communities, the optimal modularity solution (with modularity
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Figure 2. Modularity landscape of the karate club network. The x-axis in all panels shows the community index (ordered

list of clusterings returned by iterative runs of MOD-ILP with distance-based diversity constraints). The 0th community index

corresponds to the optimal modularity clustering. (a) The Hamming distance from each clustering to the optimal modularity
clustering. (b) The modularity of each clustering. There are 10 clusterings with modularity > 0.4, and 37 with modularity

> 0.3. (c) The number of communities in each clustering.

0.419790) had four clusters (with each faction broken into two communities). The network is not split into the
two communities until the 31st solution. This solution has modularity 0.343195 and corresponds closely to the
actual groups formed (with the exception of nodes 9, 10, 20, and 31 — all topologically fringe, three of which
were weak supporters of their faction leaders43). Such a solution would never be found unless near-optimal
solutions were considered. Further, randomized rounding procedures would be unable to generate diverse
solutions for this network, because even when the integrality constraints were relaxed, allowing xuv ∈ [0, 1],
an integral solution was returned. This argues for the necessity of a constraint-based approach.

The point-based method, which only constrains each solution to be minimally different from all previous
solutions, produced many more finer-grained solutions corresponding to incremental merging and splitting
of communities. In fact, the 100th solution of the point-based approach still had a modularity above 0.4.
Although this level of detail could be useful for some applications, here we seek to more coarsely characterize
the clustering dynamics, and therefore only further consider the distance-based solutions.

Dynamics for individual nodes can be better understood by looking at near-optimal solutions. For
example, the solution with the provably second-best modularity, which is also the clustering that is output
by Newman’s spectral method34, consists of 4 clusters but with slightly smaller modularity (0.418803) than
the optimum. The difference lies in the classification of node 10, which, in the second-best clustering is
placed with Mr. Hi and in the optimal clustering is placed with the officer’s faction. Zachary measures the
strength of friendship between pairs of individuals based on their interactions in other social contexts (for
example, academic classes, student pubs, and other karate studios43) and finds that node 10 had nearly
equal interaction with members from both factions. Node 10 was also not a strong believer in either faction’s
ideology (although he ultimately chose the officer’s club after the fission). Hence, it makes sense that node
10 was the first to jump from one clustering to the other.

Another interesting case occurs for node 20. He lies in Mr. Hi’s faction in the optimal clustering, but in
subsequent clusterings is co-clustered with members from the officer’s faction. According to Zachary, node
20 ultimately chooses Mr. Hi’s club, but only weakly supported Mr. Hi’s position in the dispute43. Looking
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Figure 3. (a) The ERK1/ERK2 MAPK signalling pathway18. The network consists of 32 nodes and 54 edges. The color

of the node indicates the subcellular localization of the signalling component (green = cytosol, orange = plasma membrane, gray
= nucleus, blue = plasma membrane translocation, and pink = mitochondrion). The network was drawn using Cytoscape39.

(b) “Flip-book” showing the clustering dynamics of the ERK1/ERK2 MAPK pathway. Each of the four blocks

corresponds to a clustering produced by MOD-ILP with distance-based diversity constraints. The number of the clustering is
shown at the top, and its modularity on the bottom. Each cluster is blocked within a polygonal shape. A variety of near-optimal

clusterings provide alternative, legitimate decompositions of the network.

at the network, 20 is connected to both faction leaders, plus an additional supporter of Mr. Hi. Topologically
and anecdotally, it seems to make sense then that node 20 is a peripheral member of Mr. Hi’s karate club.

Trying to identify core and peripheral nodes by only looking at the neighbors of a node, however, can
be misleading. Node 3, for example, is a topologically fringe node with 10 total edges, 5 to members in
both factions. But, according to Zachary43, node 3 was a strong supporter of Mr. Hi, whose club he joined
after fission. In our ensemble, we only see node 3 switch from a Mr. Hi-dominant clustering to a clustering
dominated by officer members three times. These all occur near the end of the landscape, at clusterings 72,
78, and 80, which have a very low modularity (average = 0.030188). Using only network neighbors to classify
a node as core or peripheral is therefore not always sufficient. Further, the landscape also provides a way to
confidently say what groups of nodes do not belong together. A static analysis of the optimal clustering will
clearly be unable to understand these type of community dynamics.

3.2. Signalling Networks

We considered the ERK1/ERK2 mitogen-activated protein kinase (MAPK) pathway18 shown in Figure 3a.
MAPK is a signal-transduction pathway that is highly-conserved across eukaryotes. MAPKs phosphorylate
serines and threonines of target proteins and regulate a vast array of cellular functions, including gene
expression, mitosis, and metabolism19. The extra-cellular signal-regulated kinases (ERKs) play a functional
role in cell division, in particular meiosis and mitosis19. Identifying functional modules in such pathways
is important because modules are often conserved across organisms, and thus can be used to generate new
pathways from reference pathways20,41. The pathway consists of 32 nodes and 54 edges.

Figure 3b shows four snapshots of the modularity landscape. The optimal modularity (clustering 1)
consists of five clusters roughly corresponding to nodes surrounding the Ras activation module, the Raf
and MEK kinase modules, and the larger ERK module (split into three) — all known submodules of the
pathway. In subsequent clusterings, nearby cores are either split or merged together, corresponding to finer-
and coarser-grained functional subunits of the pathway. As in the karate network, we also find that the
number of clusters does not simply monotonically decrease (or increase) as the diversity constraint, dchanges,
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Figure 4. Co-clustering heatmap for the ERK1/ERK2 MAPK pathway18. A broad view of how pairs of nodes

traverse the modularity landscape. Each cell (u, v) in the heatmap corresponds to the number of clusterings in which nodes u
and v were placed together. The nodes are ordered according to the optimal modularity found by MOD-ILP. Though outlines

of the five optimal modules are present, the fluctuation of activity within and between the five blocks reveal interesting inter-

and intra-community interactions.

is increased.
Figure 4 shows a global view of how the affiliation between each pair of nodes changes across clusterings.

The intensity of cell (u, v) in the heatmap corresponds to the number of clusterings in the landscape in which
nodes u and v are co-clustered. A similar picture was obtained by setting the intensity of a cell (u, v) to be
the total modularity sum of all clusterings in which u and v were co-clustered. The nodes are ordered based
on the clusters from the optimal modularity clustering.

The outlines of the five optimal blocks in Figure 4 provide a basic hint about the modular structure of the
pathway, but it does not tell the whole story. For example, nodes 20 (PKA) and 27 (Rap1a) travel together
much more than 27 and 13 (Mos), even though all three were placed together in the same optimal module.
From the layout shown in Figure 3a, this makes sense — PKA and Rap1a are connected to the core Raf
module by only one edge, and are also connected to each other. This suggests that they play a peripheral
role in the module in which they were placed, or perhaps that they should be placed together in their own
module.

The heatmap also provides a way to measure the confidence in a community by looking at how a group
of nodes change their membership with respect to each other. For example, nodes 15, 17, 30, 31, and 32,
corresponding to a portion of the ERK module, were co-clustered across all clusterings, as indicated by the
solid red block in the upper-right corner of Figure 4. This implies that we are very confident in this module,
more so than any other. Other clusters vary greatly with respect to how often their members travel together.
An optimal clustering alone would yield a heatmap with solid red blocks for all clusters, which is much less
informative of community membership strength.

We also looked at the Integrin signalling pathway26, known to be vital for cell migration and growth. This
pathway is longer and less dense than the ERK/MAPK pathway. The optimal modularity clustering found
a reasonable decomposition consisting of modules with long chains of nodes. These long chains are often
prefaced by gatekeeper nodes that branch off multiple non-overlapping paths. Network centrality measures
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Figure 5. Anatomical network of the human cerebral cortex13. The network consists of 66 nodes (brain regions) and

2, 149 multiedges (dense axonal-pathways). The ‘r’ and ‘l’ prefixes correspond to the right and left hemispheres of the brain.

The remaining portion of the names correspond to cortical regions (e.g. ENT = entorhinal cortex, TP = temporal pole, PC =
posterior cingulate cortex, CUN = cuneus, and PARH = parahippocampal cortex). The layout is set to spatially agree with

the actual positions of the regions in the brain. Coordinates of the regions were estimated from Figure 6 in Hagmann et al.13,

as well as from the Brede database35. The network was drawn using Cytoscape39.

have also been used to globally identify highly “between” nodes,42,14 though they do not typically take
modules into account. Interestingly, many of the near-optimal clusterings identified these gatekeepers by
placing them into different modules corresponding to the various branches. For example, the Cdc42 protein
acts as a between-module node that ultimately leads to activation of actin and the c-Jun N-terminal kinases
(JNK). It was first placed amongst nodes in the JNK module, but later switches into the actin module. A
similar dynamic was seen for branches leading out of the focal adhesion kinase (FAK), which is involved in
cellular adhesion and migration.

3.3. Brain Network

Lastly, we investigated a network representing the axonal-pathways within the cortex of the human brain.
Brain maps have typically been constructed using functional magnetic resonance imaging (fMRI), which
measures neural activity via blood flow (e.g.10,7). Recently, Hagmann et al.13 used a technique called
diffusion spectrum imaging (DSI) which identifies neuronal fiber trajectories by looking at the diffusion of
water molecules in brain tissues. DSI produces a 3D water-flow gradient at specified positions in the brain
to which tractography can be applied to recover the underlying neural tracts. Tractography identifies, for
each position, the diffusion of water to that position from all other directions. Thus, we can determine the
axonal trajectories across white matter, i.e. the connectivity across different regions in the brain. Regions
are typically defined manually after white-gray matter segmentation (white = nerve connections, gray =
congregations of neurons). The resulting network is composed of nodes (brain regions) and weighted edges,
corresponding to the density of the connection between brain regions.

Hagmann et al.13 applied their technique to generate a brain “connectome” for five human participants.
Each connectome consists of 998 regions of interest. They also created a coarser network by condensing the
998 regions into 66 anatomical regions. An edge (u, v) in the anatomical network was weighted by computing
the average of all edges that map to (u, v). To handle weighted networks, we used an extended version of
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Figure 6. “Flip-book” showing the clustering dynamics of the anatomical brain network13. Each of the three blocks

corresponds to a clustering produced by MOD-ILP with distance-based diversity constraints. The number of the clustering is

shown at the top, with modularity and spatial coherence on the bottom. Co-clustered nodes share the same color and shape.
Black circles highlight nodes whose communities change across clusterings. The optimal modularity clustering does not have

the highest coherence with the spatial coordinates of the regions.

modularity that converts weighted edges to unweighted, multi-edges33. In particular, in the multi-edged
anatomical network we created b1000 ·w(u, v)c edges between nodes u and v, where w(u, v) is the weight of
edge (u, v) in the weighted anatomical network. The only change required in the definition of modularity
is with Auv, which is now the number of edges that go between u and v, instead of just 0 or 1. The final
anatomical network contained 66 nodes and 2, 149 multiedges. Hagmann et al.13 applied modularity to the
anatomical network to identify regional hubs.

We ran MOD-ILP with diversity constraints on the first subject’s human connectome (Figure 5). The
similarity between the modularity values of the near-optimal solutions suggest extreme uncertainty in whether
the optimal solution represents the true partitioning. Figure 6 shows the optimal clustering plus two near-
optimal clusterings returned by the distance-based approach. The near-optimal clusterings are only slightly
less topologically modular. In fact, amongst the first 60 solutions, we find that 53 are within 1% of the
optimal modularity.

The brain network is unique among those that we consider because the nodes have a fixed spatial position.
Hagmann et al.13 assigned spatial coordinates to each region corresponding to its center of mass, but because
not all spatial coordinates were available, the layout in Figure 5 is a taken from the layout drawn in Hagmann
et al.13 Three-dimensional spatial coordinates were directly available for 23 of the 66 regions. An additional
15 regions were assigned spatial coordinates based on averaging the coordinates from several studies for the
relevant region using the Brede neuroimaging database35.

The spatial coordinates themselves define a rough clustering, which can be used as an additional measure
(along with modularity) to evaluate the likelihood of a particular brain network partitioning. We defined
the spatial coherence of a clustering as the average Euclidean distance between anatomical regions placed in
the same cluster. The near-optimal clusterings shown in Figure 6 have a better spatial coherence than the
optimal solution at only a tiny decrease in modularity, despite having the same number of clusters. In fact,
out of the 60 near-optimal solutions 30 of these solutions have a > 1% advantage in spatial coherence, 24 have
a > 2% advantage, and 12 have a > 3% advantage. Naturally, clusters and nodes that do not match what
is expected spatially may be the most interesting to investigate further. The nodes that are differentially
clustered within the ensemble of solutions (circled in black in Figure 6) are typically such spatial outliers.
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4. Conclusions

We investigated the clustering dynamics of four social and biological networks to reveal how these networks
are organized. In all four settings, we showed how traversing the modularity landscape by explicitly con-
straining for diversity can be used to uncover deeper community structure that would otherwise be absent
from single-solution or randomization-based procedures. In particular, we used ensembles of near-optimal
network decompositions to identify resilient communities, core-peripheral community members, and finer-
and coarser-grained community structure. We also found cases where near-optimal solutions corresponded
better with known community structure than the optimal solution. We presented mostly anecdotal evi-
dence regarding inter-and intra-module dynamics. Testing these notions on a large scale, such as for the
automated identification of core-peripheral proteins in protein complexes8,23,24, is a potential avenue for
future work. It would also be interesting to characterize the relationship between clustering dynamics across
the energy landscape and clustering dynamics across time. Nonetheless, we believe the insights provided
by near-optimal solutions augment our current understanding of community structure and dynamics, and
should not be ignored.
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Understanding the evolution and structure of protein-protein interaction (PPI) networks is a central problem of

systems biology. Since most processes in the cell are carried out by groups of proteins acting together, a theoretical
model of how PPI networks develop based on duplications and mutations is an essential ingredient for understanding
the complex wiring of the cell. Many different network models have been proposed, from those that follow power-
law degree distributions and those that model complementarity of protein binding domains, to those that have
geometric properties. Here, we introduce a new model for PPI network (and thus gene) evolution that produces
well-fitting network models for currently available PPI networks. The model integrates geometric network properties
with evolutionary dynamics of PPI network evolution.

Keywords: evolutionary dynamics, protein-protein interaction networks, geometric network model

1. Introduction

Understanding protein-protein interactions (PPIs) and the complex networks that they form is a central

problem in systems biology. The crucial role that proteins play in most cellular processes justifies intense

study of the complex wiring of their interactions. Note that the network of interactions may contain sig-

nificant information that cannot be extracted solely from a study of protein sequences, because individual

proteins rarely function alone. Instead they “cooperate” with other proteins, and the resulting complex net-

works of protein-protein interactions may provide information that cannot be ascertained from the study

of sequences or even sequence comparison. Hence, in the post genomic era, there is considerable scientific

value in understanding topological properties of PPI networks and the biological origin and meaning of those

properties.

The mathematical foundations for studying PPI networks are graph theory and statistics. A PPI network

is modeled as an undirected unweighted graph (also called a network) G(V, E), where V is a set of nodes

(proteins) and E is a set of edges (i.e., interactions between protein pairs). Since self-loops in E significantly

complicate the analysis of graphs, we make the simplifying assumption that they are not allowed. Since

subgraph isomorphism is NP-complete,1 exact network comparisons are computationally infeasible. Thus,

easily computable heuristics are used for comparing networks. These heuristics are commonly called network

properties and can historically be divided into two groups: local and global properties. Global properties

include the degree distribution, the clustering coefficient, the average shortest path length, and various forms

of network centralities .2,3 Local ones include network motifs4–6 and graphlets,7 both of which relate to the

occurrence of small subgraphs in a larger graph. While motifs refer to subgraphs (not necessarily induced)

that occur at an unusually high frequency, graphlets refer to all induced subgraphs regardless of their

frequency. As such, graphlets provide a more thorough description of a network and allow their comparison,

such as through graphlet degree distribution agreement (GDD-agreement);8,9 see section 2.2 for details. By

using these properties to compare networks, well-fitting network models for biological networks have been

proposed.7,8,10,11 Also, network properties have been used to suggest protein function and involvement in

disease.12–16 Network models have further been exploited to guide biological experiments and discover new

biological features.17,18

∗Corresponding author.
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The first attempts to model real-world networks began with the Erdös-Rényi (ER) random graph

model.19 This model has well-studied mathematical properties, although it is very simplistic. Erdös-Rényi

random graphs have only two parameters: the number of nodes in the network and the probability p of

an edge between any two nodes. The ER model poorly captures both global and local properties of PPI

networks.7,8 This implies that the structure of PPI networks is not completely random, presumably because

evolution has imposed structural patterns that deserve close investigation.

Scale-free networks, popularized by Barabási and Albert, were proposed as a new and better model

for early data sets of protein-protein interaction networks.20 In these networks, degree distributions fol-

low a power-law. The popularity of this model is explained by the fact that in many real-world networks

(including PPI networks) a part of the degree distribution obeys a power-law. Barabási and Albert also pro-

posed a preferential attachment model, which can generate networks with power-law degree distributions.

The scale-free model, however, has several conceptual drawbacks. First, the degree distribution is not a

sufficiently discriminative measure, since two networks can have exactly the same degree distribution, but

completely different local structure. For example, a graph containing 100 triangles has exactly the same

degree distribution as one containing a single 300-node cycle. In fact, the gene duplication and mutation

model for generating networks with power-law degree distributions, proposed by Vaźquez et al.,21 fits PPI

networks much better than does the preferential attachment model, even though both generate graphs with

power-law degree distributions. Furthermore, the systematic study of the fly’s PPI network classified it as a

duplication-mutation-complementation network instead of a preferential attachment one.22 Thus, variants of

the scale-free model of gene duplications and mutations have been proposed.23–25 The second major draw-

back of the scale-free network model for PPI networks comes from the fact that currently available PPI

datasets are both noisy and incomplete. It has been shown that subsets of scale-free networks are not scale-

free26,27 and therefore, since current PPI datasets have power-law degree distributions, it is not clear that

complete and clean PPI networks are scale-free. Recently, geometric random graphs28 were introduced as a

better model of PPI networks; in these graphs, nodes correspond to points in space distributed uniformly and

independently at random and edges exist between nodes corresponding to points that are close in space; see

section 2.1 for details. These graphs have Poisson degree distributions, but there exist variants of geometric

graphs in which this is not the case. In has been shown that geometric random graphs fit PPI networks much

better than other commonly used network models despite the fact that parts of degree distributions of PPI

networks often follow a power-law.7,8,11,29

In this paper we introduce a new model of PPI network evolution that results in networks that provide

the best currently known fit to high confidence PPI networks. Since geometric random graphs seem to

provide the best fit to the currently available PPI networks and since genomes have evolved through gene

duplication and mutation events rather than at random, we bridge the concepts of network geometricity

with the evolutionary dynamics. We introduce two new network models of geometric gene duplication and

mutation, which utilize geometric graph principles to model the evolutionary dynamics of PPI networks.

2. Methods

It is important to distinguish between two conceptually different types of network models, which we refer to

as descriptive and network-driven models. Descriptive models describe general properties of all networks of

a particular type (e.g., PPI networks). For example, the scale-free model reproduces the power-law degree

distribution (regardless of the exponent γ in the power law P (k) ∼ k−γ) which was observed in many,

though not all, PPI datasets. Our new geometric gene duplication models and scale-free gene duplication21

models are also descriptive because they model the principle (gene duplication and mutation) by which all

PPI networks have evolved. A network-driven model, in contrast, tries to model a particular PPI network

instance as well as possible. For example, trained geometric model (“geo-train”),11 stickiness-index-based

model (“sticky”)10 and Erdös-Rényi random graphs with the same degree distribution as data (“er dd”)

require a particular network example and then try to reproduce its structure.

Since descriptive models do not need to be fitted to the particular network example they do not suffer
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from over-fitting. On the other hand, network-driven models must have an example network to learn their

parameters and therefore might over-fit the data. Hence, to avoid over-fitting, one should be careful and

properly adjust the number of free parameters in such models using, for example, the Bayesian Information

Criterion.11 In this study, we show how the geometric graph framework can be used to create a well-fitting

descriptive model of PPI networks. For a geometric network-driven model, see Kuchaiev and Pržulj (2009).11

2.1. Geometric Gene Duplication and Mutation Models

A geometric random graph28 is a graph G(V, E) with the set of nodes V distributed uniformly at random

in some metric space. An edge exists between two nodes u and v if the distance between them d(u, v) is

less than ǫ, for some constant ǫ and some appropriate norm. The crucial parameters of this model are: the

metric space, its dimensionality, and the distribution of nodes in that space. Intuitively, each protein can be

described with its biochemical properties and therefore proteins reside in some multidimensional biochemical

space. However, currently, it is hard even to hypothesize about the nature or dimensionality of that space. In

this study, we focus on altering the distribution of the nodes in a low-dimensional Euclidean space in a way

which simplistically models evolutionary dynamics of protein-protein interaction networks. Euclidean space

is chosen just as a proof of concept. Note that highly dimensional spaces are less interesting, since if we allow

enough dimensions, we can trivially embed a network into such a space. Thus it is encouraging to discover

that only a few dimensions are required to accurately model this space geometrically,7,8,11,29 indicating that

geometricity is an important factor in modeling PPI networks. Furthermore, PPI networks can be directly

embedded into a low dimensional space, in the sense that nodes sharing a graph-theoretic neighborhood can

be placed close together in a geometric space in such a way that the resulting geometric graph is almost

identical to the original.29

We introduce two geometric network models that incorporate the principles of gene duplications and

mutations. Each of our models determines the principle by which the network is grown from an initial, small

seed network. Growth is governed by adding new nodes intended to model gene duplications and mutations,

moderated by natural selection as follows. A duplicated gene starts at the same point in biochemical space

as its parent, and then “evolutionary optimization” acts either to eliminate one, or cause them to slowly

separate in the biochemical space. This means that the child inherits some of the neighbors of its parent

while possibly gaining novel connections as well. The further the “child” is moved away from its “parent,”

the more different their biochemical properties are. The randomness in the direction of the move models

which subset of parent’s properties (i.e. network interactions) will be preserved.

We refer to our two new models as GEO-GD expansion and GEO-GD with a probability cutoff. Each

GEO-GD model network starts from a small initial seed network. For simplicity we use a 5-node clique,

although we do not know what effect the exact makeup of the seed network will have on the final structure

(this will be tested in a future paper). To create our seed networks, we place 5 nodes uniformly at random

inside a sphere of radius ǫ
2 in the embedding space. As a proof of concept, we use 3-dimensional Euclidean

space for growing both of our GEO-GD models.

2.1.1. GEO-GD Expansion Model

Starting from the seed network, this model adds nodes iteratively, by choosing as the parent an existing node

uniformly at random and placing a child node in a random direction at a randomly chosen distance of at

most 2ǫ from the parent, where ǫ is the same parameter as was used in the definition of a geometric random

graph. The movement at a distance less than ǫ allows the child to keep some of the parent’s connections,

whereas the movement at a distance of greater than ǫ allows the child to form a completely new set of

connections. Thus, the child-node is adjacent to some of the neighbors of the parent-node, while at the same

time potentially gains new interactions. We stop once we reach a predetermined number of nodes.
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2.1.2. GEO-GD with a Probability Cutoff Model

This model is almost identical to the expansion model, except that the child can be duplicated in two different

ways, rather than just one. In both cases, the child moves in a randomly chosen direction, but the two cases

differ in the distance the child can move: with probability p, the child can move a maximum distance of ǫ,

while with probability 1−p it can move up to 10ǫ; the second case is meant simply to model a large mutation

rather than a small one.

Figure 1 presents some examples of distributions of points on the plane generated by our models. As

it follows from this figure, the GEO-GD with a probability cutoff model generates networks with more

pronounced clusters than GEO-GD expansion model, especially for higher values of parameter p. We only

present points in the figure without edges, since edges would clutter the figure. Note that after n nodes were

generated by GEO-GD Expansion or GEO-GD with a Probability Cutoff model, the resulting number of

edges E′ in the model network might be different from the number of edges in the data. Hence, in order to

tune this number to our desired number of edges (i.e., to the number of edges of the PPI network that we

are modeling) we have to rescale our initial ǫ by a small amount. If we denote by E the number of edges

in the data, we first calculate the distances between all pairs of nodes in the model network, then we order

them from the smallest to the largest and choose the Eth smallest distance as the re-scaled value ǫ
′

. Then

we connect two nodes by an edge if they are closer than ǫ
′

in the space. Since we rescale the ǫ in order to

produce as many edges as in the data, the initial value of ǫ is not important.

Fig. 1. Example distributions of points in the 2 dimensional Euclidean space, generated by (A) GEO-GD expansion model
(genedupl), and GEO-GD with a probability cutoff model where (B) (genedupl-p:0.2) p = 0.2, (C) (genedupl-p:0.4) p = 0.4,
and (D) (genedupl-p:0.6) p = 0.6 (genedupl-p:0.6). Here p is the probability of the move within ǫ distance from the parent node
and 1 − p is the probability of the move within 10ǫ distance.
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2.2. Evaluation of the Models

To evaluate the fit of the network model to the data, we need to compare the model networks to the PPI

networks. As described in the Introduction, since large network comparisons are computationally infeasible,

we examine the fit of local and global network properties of the model to the data. Since PPI networks are

incompletely explored, global properties of such incomplete data are likely to be biased, or even misleading

with respect to the currently unknown complete PPI networks. However, certain parts of these networks

are very well studied (e.g., parts relevant for human disease). Thus, since we have detailed knowledge of

certain local parts of PPI networks, but the data outside these well-studied parts are currently incomplete,

global statistics are likely to provide misleading information about the PPI network as a whole, whereas

local statistics are likely to be valid and meaningful. For these reasons, we focus on examining the similarity

of networks by using our highly constraining measure of local network similarity, graphlet degree distribution

(GDD) agreement .8 Its formal definition is as follows.

First, a graphlet is a small, connected, induced subgraph of a network;7 an induced subgraph with a

node set A ⊆ V of a graph G(V, E) is obtained by taking A and all edges of G having both endpoints in A.

There are 30 possible non-isomorphic graphlets on 2, 3, 4 and 5 nodes7 (Figure 2; isomorphism is defined

below). The GDD-agreement is a generalization of the degree distribution. Since the degree distribution

P (k) measures the number of nodes “touching” k edges and since an edge is the only 2-node graphlet,

we generalize the degree distribution into the spectrum of distributions measuring the number of nodes

“touching” k graphlets, for each of the 30 2-5-node graphlets. Clearly, the degree distribution is the first one

in this spectrum.
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Fig. 2. The 30 2-5-node graphlets G0, G1, G2, . . . , G29. In each graphlet, nodes belonging to a different automorphism orbit
are of different shade. The 73 automorphism orbits of the 30 graphlets are labeled from 0 to 72. The figure is taken from Pržulj
(2007).8

However, when we do this, we notice that while an edge was “symmetric,” other graphlets might not be

in the following sense. From a topological point of view, it is relevant to distinguish between automorphism

orbits within each graphlet. For example, in a 3-node linear path (graphlet G1 in Figure 2), the “end-nodes”

are topologically identical, i.e., can be mapped to each other by an automorphism, an isomorphism of a graph

with itself, where an isomorphism between two graphs is a bijection of their node sets that preserves their

adjacency; the “middle node” of a 3-node path can only be mapped to itself by an automorphism. Therefore,

a 3-node path has two different automorphism orbits. There are 73 automorphism orbits for the 30 2-5-

node graphlets (Figure 2).8 Thus, the graphlet degree distribution (GDD) is a 73-component distribution
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of a network. Its jth component, dj(k), is the sample distribution of the number of nodes in the network

touching a particular graphlet k times at automorphism orbit j. The GDD-agreement is a similarity measure

between graphlet degree distributions of two networks. It is a number between 0 and 1, meaning that two

networks have similar GDDs if their GDD-agreement is close to 1, and otherwise, their GDDs are different

(see Pržulj (2007)8 for details). Note that GDD-agreement is a very strong measure of structural similarity

of small-world networks (those with small diameters), since in these networks 5-node graphlets reach most

of the network from each node. Since PPI networks are small-world, as demonstrated in Table 1 below,

GDD-agreement based on up to 5-node graphlets is a strong measure of comparing their topologies to each

other, or to model networks. We use our GraphCrunch software package9 to calculate GDD-agreement and

other network properties and evaluate the fit of model networks to the data.

3. Results

We test our model on four eukaryotic organisms whose PPI network data were produced using different

biotechnologies, as well as deposited into curated databases. The organisms are baker’s yeast Saccharomyces

cerevisiae,33–35 fruitfly Drosophila Melanogaster ,36,37 worm Caenorhabditis elegans38,39 and human.38,40–42

Table 1 shows the PPI networks that we analyze along with their sizes, some global network properties,

and references the data originates from. YH1 and YH2 contain high-confidence parts of Collins et al.33 and

von Mering et al.34 data sets that contain both binary interaction and co-complex data (see section 4.3 for

details). Similarly, FH1 and FH2 contain high confidence parts of Giot et al.36 and Finley et al.37 fruitfly

binary PPI data sets; FH2 is more recent and thus believed to be of higher quality than FH1. WE1 is the

worm PPI network downloaded from BioGRID and WH1 is the high confidence binary PPI network from

Simonis et al.39 Human PPI network HE1 contains binary interactions from Rual et al.,40 HH1 contains high-

quality binary interactions from Venkatesan et al.,42 while HE2 and HE3 are downloaded from BioGRID and

HPRD, respectively. All of the networks have short average pathlenghts, i.e., they are small-world networks.

Table 1. PPI Networks that we analyze.

Network Organism Number of
Nodes

Number of
Edges

Avg Path-
length

Cluste-
ring
Coef.

Reference (source of the data)

YH1 Yeast 1,622 9,074 5.53 0.55 Collins et al.33

YH2 Yeast 988 2,455 5.19 0.34 von Mering et al.34

YH3 Yeast 2,018 2,705 5.61 0.04 Yu et al.35

FH1 Fly 4,602 4,637 9.43 0.01 Giot et al.36

FH2 Fly 1,345 3,112 4.50 0.03 Finley et al.37

WE1 Worm 2,821 4,470 4.84 0.02 BioGRID (v2.0.51)38

WH1 Worm 2,528 3,706 5.32 0.02 Simonis et al.39

HH1 Human 235 239 4.53 0.00 Venkatesan et al.42

HE1 Human 1,873 3,463 4.34 0.03 Rual et al.40

HE2 Human 8,446 25,525 4.63 0.10 BioGRID (v2.0.51)38

HE3 Human 9,182 34,119 4.26 0.10 HPRD(v7)41

We compare the fit of our new models to PPI networks with the fit of other commonly used network

models. The list of network models that we analyze is presented in Table 2. For each model, we evaluate

the fit to the data to 30 random networks from the model that are of the same size as the data (have the

same number of nodes and edges as the data). We report the averages and standard deviations of their

fit in Figures 3, 4, 5, and 6 below. For our GEO-GD model with cutoff probability p, we vary p over all

possible values between 0.1 and 0.9 in increments of 0.1 to determine p that yields the best fit. For our

trained geometric model,11 for each of the species, we trained it on the part of the species’ PPI network
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that is reported to be of high confidence. The scale-free gene duplication model that we analyze21 (denoted

by “vespdd:x,” see Table 2) in addition to the number of nodes and edges has two probabilistic parameters

p and q representing the probabilities of a child node to keep the parent’s interactors and form new ones,

respectively. Similar to what we do for our GEO-GD model to generate the best fitting model networks to

the data, we vary p for vespdd:x from 0.3 to 0.7 in increments of 0.1 and for each p seek q using a binary

search starting from q = 0.5 such that the resulting number of edges in the model network is within 1% of

the number of edges in the data network (the number of nodes is the same as in the data). Figures 3, 4, 5

and 6 present GDD-agreements between the data and the model networks.

Table 2. Network models that we analyze.

Model Abbreviation Network Model

er Erdös-Rényi (ER) random graph model19

er dd ER model with the same degree distribution as the data43

geo Geometric random graph model7

sf Scale-free Barabási-Albert preferential attachment model20

sticky Stickiness-index-based model10

geo-trained Trained geometric model11

vespdd:x Scale-free gene duplication model21 with probability p = x of child node keeping parent’s interactors

genedupl GEO-GD expansion model

genedupl-p:x GEO-GD with a probability cutoff model, with cutoff probability p = x

Fig. 3. GDD-agreement between yeast PPI and model networks. x−axis presents different model networks (see Table 2),
y−axis presents the average values of GDD-agreements between the data and 30 model networks from each model. Lines with
different point shapes correspond to different PPI networks (see Table 1); the error bar around a point is one standard deviation
above and below the mean.

For yeast YH1 and YH2 PPI networks, our new GEO-GD model outperforms any other model, with
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the best results being achieved by the GEO-GD model with the probability cutoff p = 0.8. For YH3 yeast

network, vespdd:x model slightly outperforms any of the geometric models. Note that YH3 network is much

sparser than YH1 and YH2 in terms of the number of edges and it has a much smaller clustering coefficient

than the other two yeast networks (Table 1). Thus, it is possible that YH3 contains many false negatives, i.e.,

missing interactions and that vespdd:x model is better for modeling sparser networks. We comment on the

types of interactions (binary versus co-complex) of these three networks in the Discussion section. Trained

geometric model also provides a good fit to the data, but performs slightly worse than the best geometric

and scale-free gene duplication models (Figure 3). Since yeast PPI networks are currently the most complete

over all eukaryotic PPI networks, the superior fit of our GEO-GD model suggests that our model successfully

captures the evolutionary dynamics of PPI networks.

Fig. 4. GDD-agreement between human PPI and model networks. See the legend of Figure 3.

The situation is slightly different for PPI networks of human, fruitfly, and worm where scale-free gene

duplication model slightly overperforms the geometric ones (Figures 4, 5 and 6). For human PPI networks, in

all cases the best model is scale-free gene duplication model, except for HH1 network for which the best model

is scale-free preferential attachment model (sf). Note however, that HH1 human network that is very small

and sparse containing only 239 interactions between 235 proteins. Also, as mentioned above, all PPI networks

of human are less complete than the PPI networks of yeast. For example, even though HH1 network contains

only high-quality binary human PPIs (obtained by yeast-two-hybrid, Y2H, experiments), it is clearly an

extremely small sample from the full human interactome. Also, since HH1 is extremely sparse, this indicates

that many true interactions are likely to be missing. This is further corroborated by the fact that Erdös-Rényi

random graphs provide the best fit to HH1 (Figure 4) and it is widely believed that topology of PPI networks

is not random. Furthermore, the scale-free preferential attachment model (sf) provides as good of a fit to

HH1 as Erdös-Rényi random graphs. This supports the hypothesis of the scale-free nature of incompleteness

in the data.8,26,27 Geometric gene duplication models (expansion and probability cutoff) have improved their

fit over the geometric random graph model, only slightly doing worse than scale-free gene duplication model

(we comment on the meaning of this slight underperformance in the Discussion section).
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Fig. 5. GDD-agreement between fruitfly PPI and model networks. See the legend of Figure 3.

For fruitfly and worm PPI networks, scale-free gene duplication model slightly overperforms our geo-

metric gene duplication models, while our gene duplication models outperform all other models (Figures 5

and 6).

Fig. 6. GDD-agreement between worm PPI and model networks. See the legend of Figure 3.

186



September 30, 2009 15:58 WSPC - Proceedings Trim Size: 11in x 8.5in przulj

4. Discussion

4.1. Sensitivity of GDD-agreement

Note that model networks generated with the same parameters that are coming from any random graph

model that we analyzed have GDD-agreement of 0.86 ± 0.01.8 Thus, since GDD-agreement of YH3 with

our GEO-GD genedupl model (Table 2) is 0.8 and its GDD-agreement with the vespdd:x model is 0.84,

the difference in the fit of these two models to the data falls within the sensitivity error of the GDD-

agreement measure. Similar holds for the slight overperformace of our GEO-GD over vespdd:x for YH1 and

YH2 networks. That is, both GEO-GDD and vespdd:x model provide the best possible fit to the yeast PPI

networks that can be measured with the best currently available network comparison tool. Our contribution

is not only in proposing an intuitive, geometric paradigm of evolutionary network dynamics, but also in

designing such models with fewer parameters than similar scale-free-based models (see below).

4.2. Parameters of Network Models

An important characteristic of any model is its number of parameters. For any network model, we need at

least two parameters (specified either explicitly or implicitly): the number of nodes and the number of edges

in the network. More complicated models can have additional parameters. Clearly, among two models which

fit the data equally well, the model with fewer parameters is better, since it provides a simpler description of

the phenomena. The scale-free gene duplication model,21 in addition to the number of nodes and edges, has

two parameters p and q which are the probabilities of keeping old and forming new connections, respectively,

for the duplicated node. In contrast, our new geometric gene duplication with a probability cutoff model

has only one additional parameter, p, whereas geometric gene duplication expansion model does not have

any parameters except of the number of nodes and edges in the network. As our experiments show, our new

models fit denser high quality yeast PPI networks better than any other network model. Also, they perform

on the networks of other species approximately the same as scale-free gene duplication model. The slightly

better performance of a scale-free gene duplication model on human, fly and worm networks can be explained

by the lower quality of these networks (compared to yeast networks) and the fact that this model has more

parameters than our new models. Since our new geometric gene duplication model has fewer parameters,

we can conclude that it is a better network model. Of course, one might argue that geometric graphs have

an additional parameter, D, the dimensionality of the underlying Euclidean space. However, our previous

research shows that the exact value of dimensionality is not important.7,8,11,29 Instead, the important fact

is that the PPI networks are well modeled by low-dimensional geometric graphs.

4.3. Types of PPI Data

We need to distinguish between PPI networks containing solely binary interactions (obtained by Y2H) and

those containing co-complex data (obtained by mass spectrometry of purified complexes). Since the “spoke”

and “matrix” models are used for co-complex PPIs, binary interaction networks are believed to have fewer

false positives than networks containing co-complex data.39,42 In the “spoke” model, edges exist between

the bait and each of the preys, but not between the preys, while in the “matrix” model, a fully connected

graph is formed between the bait and all preys. However, binary data still contain false negatives (missing

interactions) due to technological limitations of Y2H (e.g., Y2H is not good at detecting membrane PPIs).

The goal of our study is to provide a better model for high confidence PPI networks that are as complete as

possible. Our new GEO-GD model outperforms any other model for yeast YH1 and YH2 networks, which

are high confidence parts of the yeast interactome containing both binary and co-complex data, although

vespdd:x model is a close contestant (Figure 3). YH3 network contains only binary interactions detected by

high quality Y2H experiments. However, this network is extremely sparse, containing only 2,705 interactions

amongst 2,018 proteins and therefore, it contains many false negatives. Nevertheless, the fit of our GEO-GD

to YH3 network is remarkable. It is possible that if we used as the seed network a sparse graph, e.g. a 5-
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node path, instead of a 5-node clique for growing our GEO-GD models, we would obtain even better fitting

GEO-GD networks for binary interaction data.

Human PPI network HE1 consists solely of binary interactions. HH1 network consists only of high-quality

binary interactions, but its level of false negatives (missing interactions) is very high, which potentially

explains why simple Erdös-Rényi random graphs (er) and scale-free preferential attachment models (sf) are

the best for this data set (Figure 4). HE2 and HE3 human networks were downloaded from BioGRID and

HPRD and thus contain both types of PPIs, which makes them more complete, but with higher levels of false

positives than in HE1 and HH1. Both of the fly PPI networks contain only binary PPIs and they can both

be modeled indistinguishably well by geometric and scale-free gene duplication and mutation models (Figure

5). Worm WH1 network contains solely binary interactions, whereas WE1 contains both types of PPIs. They

are both modeled well by geometric as well as by scale-free gene duplication and mutation models (Figure

6).

5. Conclusion

We have shown how the geometric graph framework can be used to model the principle of gene duplications

and mutations by which all PPI networks have evolved. We demonstrated that our new descriptive network

models of geometric evolutionary dynamics are well-fitting to the currently available PPI networks of eu-

karyotic organisms. The fact that geometric and scale-free gene duplication and mutation models always

perform approximately the same and often outperform other models leads to the conclusion that it is not the

power-law degree distribution of the currently available PPI datasets that is important, but the underlying

processes of evolutionary dynamics that created these networks.

A mathematical model of any real-world phenomena has two ultimate goals: to provide better under-

standing of the phenomena and to allow practical applications. The scale-free models were used to describe

the data; however their practical applications were limited to simply estimating the size of the interac-

tomes. Geometric framework allows to work with network’s nodes as with point in the metric space which

is much more convenient from the mathematical point of view and can be used for such important practical

applications as, for example, PPI network de-noising.18 Due to their better fit to the data and mathemat-

ical convenience for the practical applications, we believe that geometric random graph model is the most

promising framework for working with PPI networks.

Acknowledgments

This project was supported by the NSF CAREER grant IIS-0644424.

References

1. S. A. Cook, Proc. 3rd Ann. ACM Symp. on Theory of Computing, 151-158 (1971).
2. M. E. J. Newman, SIAM Review, 45, 167-256 (2003).
3. M. E. J. Newman, in The New Palgrave Encyclopedia of Economics, L. E. Blume and S. N. Darlauf (eds.), 2nd

edition (2008).
4. R. Milo, S. S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, Science, 298, 824-827 (2002).
5. S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, Nature Genetics, 31, 64-68 (2002).
6. R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt, S. Shen-Orr, I. Ayzenshtat, M. Sheffer, and U. Alon, Science, 303,

1538-1542 (2004).
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9. T. Milenković, J. Lai, and N. Pržulj, BMC Bioinformatics, 9, 70 (2008).
10. N. Pržulj and D. J. Higham, Journal of the Royal Society Interface, 3, 10 (2006).
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Plasmin and urokinase-type plasminogen activator (uPA) are ubiquitous proteases regulating the extracellular environment. They can 
activate each other via proteolytic cleavage, suggesting the potential for complex dynamic behaviors that could be elucidated by 
computational modeling.  Ordinary differential equations are constructed to model the activation dynamics of plasminogen into 
plasmin, and single-chain uPA (scUPA) into two-chain uPA (tcUPA).   Computational simulations and phase plane analysis reveal 
two stable steady states for the activation of each protein.  Bifurcation analysis shows the in silico system to be bistable.  Cell-free 
experiments verify the system to have ultrasensitive activation behavior, where scUPA is the stimulus and plasmin the output.  
Furthermore, two significantly different steady states could be seen in vitro for the same stimulus levels, depending on the initial 
activation level of the plasmin.  The switch-like dynamics of the uPA-plasmin system could have potential relevance to many normal 
and disease processes including angiogenesis, migration and metastasis, wound healing and fibrosis.    
 Keywords: Urokinase-Type Plasminogen Activator, Computational modeling, Nonlinear Dynamics   

1. INTRODUCTION 

Mathematical modeling of molecular interaction kinetics can give insight into dynamic characteristics and time-
dependent functions of molecular networks [1-3].  The nonlinearity inherent in such networks can cause dynamical 
effects that play a transformative role in converting signals into biological functions. Qualitative changes in the 
outcome of pathway behavior, called bifurcations, arise from nonlinearity of interaction networks and are dependent 
on the parameter values. Analysis of transitions in system outcome due to changing parameters is called bifurcation 
analysis [4, 5]. Bifurcation analysis has been used on biological models like the cell-cycle [10, 11]. A common 
bifurcation in biology is bistability, or existence of two steady states, which transforms a gradual input change into 
an “all-or-none” switch.  Bistability can explain the switch-like nature of apoptosis [6-9] and cell-cycle progression 
[10-13].  

Bistability is most often studied in reversible pathways, especially those involving phosphatases and kinases 
[14]. Proteases, well known for their importance in the homeostasis of the extracellular matrix (ECM), are enzymes 
that catalyze the irreversible cleavage of a protein backbone.  Some previous work has examined the systems-level 
dynamics of protease networks [15].  Plasmin (PLS) is a ubiquitous serine protease activated from the secreted 
protein plasminogen (PLG). Irreversible conversion of PLG to PLS is facilitated by plasminogen activators (PA) 
which nick at the Arg560-Val561 bond of PLG to release the active PLS protease [16]. Tissue Plasminogen Activator 
(tPA) mediates PLG activation in connective tissues, while urokinase Plasminogen Activator (uPA) mediates PLG 
activation in the tissue context [17].  

PLS is crucial in haemostasis and blood clotting where it converts inactive fibrinogen to fibrin, causing 
degradation of clots [18]. In tumor angiogenesis, PLS has been confirmed as a pro-angiogenic activator causing 
dissolution of ECM components to allow for development of new blood tissues [19]. In wound healing, PLS 
contributes to remodeling of injured/wounded ECM by activating the proteases that dissolve scars [20]. In addition, 
PLS can activate TGF-β1 from its inactive latent LTGF-β1 form [7, 8, 14] and TGF-β1 is an essential factor in the 
production of the ECM.  

In this paper, we use mathematical modeling to investigate the dynamics of PLS activation by urokinase, and 
our modeling shows the system to be bistable.  The model and its construction are described in section 2.  
Simulations and bifurcation analysis of the model follow in section 3.  Finally in Section 4 we show experimental 
results that validate the mathematical predictions, confirming that uPA-mediated PLS activation is ultrasensitive and 
bistable.  
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2. MODEL CONSTRUCTION 
 
Although an integral part of many pathways, proteases have not been as extensively modeled and studied as their 
kinase-phosphatase counterparts.  A protease reaction is generally irreversible, as the cleaved fragments of the 
substrate diffuse apart and/or the substrate is consumed.  Proteases are usually broad-spectrum reactors, meaning 
they are capable of cleaving different protein substrates having similar target sequences. The simple, classical 
manner of protease activation is auto-activation (Figure 1a), in which an active protease X cleaves its inactive 
precursor form.  An alternative manner of activation (Figure 1b) operates via regulation of an intermediate 
regulatory enzyme (Y), which also has active and precursor forms.  This is a common type of positive feedback 
imposed by the activated protease and is seen in pathways such as caspase activation, MMP activation and blood 
clotting.  Figure 1c displays a variant in which the “inactive” precursor Y has some low level of catalytic activity 
which can by itself initiate activation of the protease.  

d.) 

 Table 2- Parameter values 
Table 1- Ordinary Differential Equations (ODEs)
Parameters Values 

keff1 0.0017 µM-1min-1

keff2 1 µM-1min-1

keff3 0.03 µM-1min-1

n 3 
µ1= µ3 0.0001 min-1

µ2=µ4 0.001 min-1

α1 0.00009 µM min-1

α2 0.001 µM min-1

ODEs Reaction Rates 

d[scUPA]/dt=-v2+α1-µ1*[scUPA] 
 
d[PLG]/dt=-v1-v3+α2-µ2*[PLG] 
 
d[PLS]/dt=+v1+v3-µ4*[PLS] 
 
d[tcUPA]/dt=v2-µ3*[tcUPA] 

v1=keff1*[scUPA]*[PLG] 
 
v2=keff2*[scUPA]*[PLS]n 

 
v3=keff3*[tcUPA]*[PLG] 

 
 
Figure1.  Model Construction. a) Active Protease (X ) activating itself from inactive form (X ). b) Protease feedback through intermediate 
regulatory enz

act ina
yme Y. c) Initiator inactive protease (Yina) activating X. d) Actual model of PLS activation from PLG mediated by uPA. Table 1 

owing the ODEs and the reaction rates. µ (1,2,3 and 4) represent degradation of respective species and α (1 and 2) represent production rates of 
scUPA and PLG respectively. Table 2 lists the normalized parameter values used for modeling. 

 

 

sh
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uPA mediated PLS activation follows the mechanism of Figure 1c with some additional considerations (Figure 

1d, and Table 1).  UPA is secreted as a single chain form (scUPA) having very little intrinsic activity, but it can 
cleave the Glu-PLG form of plasminogen to produce PLS[16]. PLS in turn cleaves scUPA into the two-chain form, 
tcUPA, activating it completely by nicking at the Lys158-Ile159 bond.  tcUPA has 12-fold greater enzymatic activity 
for PLG than the scUPA form [16] . tcUPA creates positive feedback (Figure 1d) by cleaving PLG to form more 
PLS. Being the completely activated form of scUPA, tcUPA has more reactivity to PLG than scUPA. PLS activity 
has been modeled empirically as a co-operative process with a Hill coefficient (n), similar to reference 21.  Substrate 
competition can be a cause for co-operativity in enzyme action, apart from the traditional mode of allosteric co-
operativity [21]. PLS being a broad substrate enzyme could thereby exhibit co-operativity in its activity towards 
scUPA in the ECM. Production and degradation terms are important in this network (figure 1d) because, for 
example, if some production process does not occur to balance degradation, then any amount of degradation would 
even

ating hypotheses, and directing experimental design, but we do not draw 
conc sions from the modeling alone. 

 

3.    MODEL SIMULATION 

n 0.2-0.25 µM, Figure 2b). A system with such high sensitivity to parameter values is called 
ultrasen

ion. A variety of other system parameters are capable of causing similar switches in the steady state 
ot shown). 

 

tually cause the system to decay to a single steady state at zero. 
Extensive experimental literature on PLS and uPA provides narrow ranges for most rate constants in this model 

[16, 22-24].  Some parameter uncertainty remains and is examined directly in Sections 3.3 and 3.4.  The numerical 
parameters we chose for closer study, explained in Appendix A and listed in Table 2 of Figure 1, represent a 
plausible qualitative model, but not an absolute quantification of all phenomena. Our purpose is to use modeling for 
elucidating possible behaviors, gener

lu

3.1 Steady state behavior of PLS 

To understand the behavior of the system, we simulate the PLS-uPA model from Section 2. Using random initial 
conditions of all the species (Figure 2a), we follow the time progression curves of PLS. Interestingly, we notice that, 
depending on initial concentrations, PLS can attain two different steady states: a lower steady state at 0.02 µM and a 
higher one at 0.27µM. Usually reaction systems tend to converge to one steady state, and the presence of two steady 
states suggests bistability. The steady state behavior of PLS, computed in response to different concentrations of the 
initiator protease, scUPA, shows a sharp change in PLS steady state levels, caused by very little change in scUPA 
concentration (betwee
“ sitive” [14]. 
 Since activation is irreversible, we note that turnover would be necessary for the system to be able to switch 
from activated to inactivated steady states.  Indeed, changes in the production rate (which might reasonably occur in 
vivo when different cell types proliferate or die) can cause the system to switch up or down.  A time-progression plot 
(Figure 2c) of PLS, responding to stepwise changes in the scUPA production rate, shows the dependence of PLS 
steady state on small changes in scUPA production.  In this case, scUPA production less than 9.4 µM min-1 keeps 
PLS in its lower steady state; while a production rate of 9.7µM min-1 is sufficient to maintain a steady state with 
higher activat
(n
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Figure 2.  Steady state simulations.  a) PLS time progression with random initial concentrations. b) Effect of the production rate of scUPA 
(α1) on the time progression of PLS. c) Steady State of PLS for different initial concentrations of scUPA.  

3.2 Phase plane Analysis 

 To investigate the steady states of the system, we used phase plane analysis which projects the full model onto 2 
variables, for visualizing the essential dynamics of a minimized representative system.  The reduction of the system, 
shown fully in Appendix B, decreases the number of degrees of freedom in the system by assuming some quantities 
to have zero derivative, as if at steady state.  The sets of points where the remaining  species are also at steady state 
are called nullclines. Intersections of nullclines are fixed points (equilibrium points) of the overall system. After the 
model reduction of Appendix B, the nullclines of the system are as follows: 

  
pls_ n  =  

a* TP
D2 + a

     (1) 

  
tcupa _ n =  

(pls)n * keff2 * TU
keff2 * (pls)n + D1

   (2) 
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The nullclines are plotted in Figure 3, where the tcUPA nullcline is a dotted light grey, and PLS is a solid line. These 
intersect at three points labeled A, B and C. The solutions of the ODEs are plotted as tiny arrows across the plane, 
pointing in the direction of time evolution.  The trajectory arrows converge towards points A and B, indicating that 
A and B are stable states.  C is an unstable steady state because trajectories near C move the system either towards 
A or B.  Eigen-value analysis confirms the stability, as points A and B have real negative Eigen-values while point 
C has positive Eigen-values. The system therefore exhibits two steady states and is “bistable.” 

 
Figure 3: Nullclines for the two species tcUPA (dotted line) and PLS  (solid line). The points where nullclines intersect are the steady states of the 
system. A and B are stable steady states, while C is unstable. Trajectories are shown as smaller arrows  

3.3 Bifurcation analysis   

The steady state behavior of the model seen in Sections 3.1 and 3.2 is dependent on parameter values. In order to 
understand how PLS makes the transition from the lower steady state to a higher one, we did bifurcation analysis. 
Bifurcation analysis relates parameter change with the system response. Figure 4a shows the effect on PLS steady 
state of changing Keff2 , the PLS efficiency parameter.  Values of Keff2 between 0.1-1.3 µM-1min-1 allow PLS to 
exist in two different steady states (Figure 4a), depending on initial conditions. Starting from an initial higher PLS 
concentration (grey curve, “Going Down” of Figure 4a), allows the system to achieve the higher steady state over a 
wider range of Keff2 values before jumping down at Keff2 = 0.1 µM-1min-1.  
 Starting the system with a lower initial concentration of PLS (black curve, “Going Up”, of Figure 4a), shifts into a 
higher steady state at a different threshold, 1.3 µM-1min-1 of Keff2. Such systems exhibiting different thresholds for 
switching between two different steady states are called “hysteretic”[5]. Figure 4b is a bifurcation diagram with 
Keff3, the tcUPA efficiency rate, as the bifurcation parameter. For Keff3 ≤0.02 µM-1min-1, the PLS steady state is 
low, while at Keff3 values higher than 0.053 µM-1min-1, PLS reaches the higher steady state.  The dotted line in 
Figure 4b describes unstable equilibrium states, to which the system will not converge. Changes in two parameters 
Keff3 and µ2 [a degradation parameter, see Appendix B] yield a two-parameter bifurcation diagram (Figure 4c), 
where the area within the shaded cusp represents configurations with 3 fixed points or bistability, and the areas  
outside the cusp represent monostable regions.  
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Figure 4:  Bifurcation analysis: a) Change in steady state of PLS in µM with change in the Keff2 parameter. b) Bifurcation diagram of PLS with 
changing the Keff3 parameter. The dashed black line indicates unsteady states. c) 2-Parameter bifurcation diagram with the dark region being 
bistable. µ2=µ3=D2. d) Bifurcation parameter robustness.  

3.4 Parameter robustness 

The bifurcation diagram results indicate a range of parameters over which the system can be bistable. Parameters in 
a biological system are never known with high confidence, and there are often differences in the same phenomenon 
between different in vivo models. We did a robustness analysis for the presence of bistable behavior in this system 
over a broad range of all the parameters (20% on either side of reference) [9] and noted the number of parameter sets 
which are capable of being bistable using a hysteretic technique similar to [25]. Briefly, each parameter was varied  
+/-20% of its reference value, keeping the other parameters constant, and each was checked for the presence of 
hysteretic behavior, i.e. a different threshold in the two steady states of the system. As shown in Figure 4d, >=30% 
of the varied parameter population is still capable of inducing a bistable response in the system.   
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 4.    EXPERIMENTAL EVIDENCE 

We measured the dynamic behavior of PLS, in an isolated in-vitro cell free system. scUPA and PLG are the inputs 
to the system, which were provided as initial concentrations and also in the form of constant production.   
 For testing the ultrasensitive nature of the model, we measured PLS steady states after providing different 
initial concentrations [26].  Variable amounts of scUPA between 0.1nM and 6nM were given, along with a non-
variable initial concentration of 1µM PLG.  During the progression of the experiments, slight amounts of scUPA and 
PLG were added, at rates of 50pM/min and 1nM/min, respectively.  PLS was monitored using its substrate s-2251, 
which can be measured as absorbance at 405nm.  Figure 5a shows a time profile of PLS activity, which achieves 
steady state 4 hrs after being initiated with 0.5nM of scUPA.  Figure 5b shows the steady state levels of PLS activity 
in response to variable initial concentrations of scUPA.  When initial scUPA levels were 0.9nM or lower, the PLS 
steady state activity level was low at 0.24 O.D.  scUPA levels of 2nM or higher resulted in PLS achieving steady 
state at a high level (0.95 O.D).  Between 0.9 and 2.0nM, the system made a sudden transition in the steady state of 
PLS.  This is a sigmoidal curve, indicative of ultrasensitive behavior, as opposed to a hyperbolic curve typical for 
Michaelis-Menten reactions [26]. 

Bistability was verified using the “going-up” and “coming-down” method [27] for observing hysteresis.  The 
“going-up” experiments were initiated with PLS and PLG concentrations in the ratio 60%PLG: 40%PLS (0.6µM 
PLG: 0.4µM PLS). Varying initial concentrations of scUPA were added, and PLS steady state was monitored.  For 
the “coming-down” experiments, the ratio was reversed (0.4µM PLG: 0.6µM PLS) and parallel values of scUPA 
were used.  Thus we varied the initial activation state of the PLS without varying the absolute amount of the protein.  
If the system were indeed monostable, then the system would converge to the same steady state of PLS activation, 
irrespective of the initial activation ratio.  As seen in Figure 5c, intermediate concentrations between 0.7nM and 
4nM scUPA exhibited two steady states of PLS activation, depending on the initial activation ratio. 
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DISCUSSION  

In this paper, we employed computational and experimental methods to study the activation behavior of 
uPA and PLS, a pair of proteases that are crucial to regulating extracellular environments.  Our work describes PLS 
as the system output, but there are significant downstream biological implications for uPA as well, so that uPA 
activation should also be viewed as an output.  Both enzymes are synthesized in relatively inactive forms and both 
must be cleaved to be activated. They cleave each other in a positive feedback loop, so that any significant 
accumulation of either enzyme is sufficient to switch both towards their activated forms.  Simulations show this 
arrangement is capable of generating behavior that is bistable as well as ultrasensitive.  Simulations also show the 
importance of turnover.  Because degradation causes removal of all forms, but influx affects only the uncleaved 
forms, the synthesis and degradation rates play an important role in determining the steady state.  For example, 
changes in the production rate are alone sufficient to induce the ultrasensitive change in output (Figure 2b).   We 
verified that the PLS activation dynamics resemble the simulations as follows: small changes in scUPA 
concentration were capable of causing large absolute increases in PLS activity; and PLS can exhibit two different 
steady states for the same amount of scUPA protein, depending on the initial activation state of the PLS. 

PLS, PLG and urokinase (uPA) are influential in many physiological processes.  Our discovery that they 
can exhibit bistable activation dynamics could have important repercussions for a number of normal and disease 
processes such as angiogenesis, tumor metastasis, wound healing and fibrosis. Angiogenesis, the process of growing 
new blood vessels, is tightly regulated by a variety of pro- and anti-angiogenic factors[19].  Angiogenesis occurs as 
a switch-like decision [28, 29], the mechanism of which is not known. uPA and PLS play crucial roles in 
angiogenesis [29], and if the PLS-uPA system can exhibit bistable switching, this could contribute to the switch-like 
behavior of angiogenesis.   

Normal cell migration and pathological cell invasion require coordination of proteases and other 
extracellular factors to remodel the extracellular matrix (ECM).  PLS and uPA act directly on the ECM [20], and 
PLS also regulates many members of the canonical ECM-regulating family, the matrix metalloproteinases (MMPs).  
The potential of PLS and uPA to switch between two stable levels of activation may have implications for cell 
migration, such as coordinating diverse, gradual signals into a synchronized cellular function. 

Deficiency of uPA or plasminogen has been shown to lead to reduced healing and to promote progression 
of fibrosis[30].  Fibrosis is often characterized as an overactive wound-healing response [31].  Our observation that 
uPA and PLS are relatively insensitive to stimuli when they are not near the ultrasensitive threshold might aid in 
understanding why the wound healing response fails to switch off in some cases.  The bistability of the uPA/PLS 
subsystem may have far-reaching consequences that should be investigated in future work.   

  

MATERIALS AND METHODS 

Model simulations were done using the ODE15s stiff solver of MATLAB (www.mathworks.com). Pplane7 was 
used for Phase plane analysis and XPPAUT (www.math.pitt.edu/~bard/xpp/xpp.html) used for bifurcation analysis. 

Human scUPA was purchased from American Diagnostica and Glu-PLG was from Merck.  All solutions were 
prepared in Tris buffer (0.05 M Tris-HCL, 0.10 M NaC1, 0.01% Tween 80, pH 7.4).  Chromogenic substrate of 
PLS, s-2251, with chemical formula H-D-Val-Leu-Lys-pNA.2HCl was purchased from Chromogenix. In the 
presence of PLS the following reaction occurs, releasing pNA.  

H-D-Val-Leu-Lys-pNA + PLS → H-D-Val-Leu-Lys-OH + pNA 
The color intensity of pNA can be measured at O.D. of 405nm. A TecanM200 microplate reader was used for 
measuring changes in absorbance.  
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ABBREVIATIONS 

ECM - Extracellular Matrix; PLG - Plasminogen; PLS - Plasmin; TGF-β1 - Transforming growth factor Beta 1; 
LTGFβ1 - Latent Transforming growth factor Beta 1;UPA - Urokinase Plasminogen activators; scUPA - single 
chain Urokinase Plasminogen activator; tcUPA - two chain Urokinase Plasminogen activator; PAI1 - Plasminogen 
Activator Inhibitor -1;ODE - Ordinary differential equations.  
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APPENDIX A  
      Table 3 –Parameter values and references 

 
Parameters Parameter values References Normalized Values Used 

(Values/Keff2 *β) 

Keff1 0.061  µM-1min-1 [16] 0.0017 µM-1min-1

Keff2 35 µM-1min-1 [8] 1 µM-1min-1  

Keff3 0.978 µM-1min-1 [16] 0.03 µM-1min-1

n 1<n<5  3 

µ1= µ3  [32], [6] 0.0001 min-1

µ2=µ4  [33, 34] 0.001 min-

α1  [35] 0.00009 µM min-1

α2  [35] 0.001 µM min-1

 

 

 

 

 

 
 
 
 
 
 
 
 
Table 3 lists the parameter values with references and their normalized values. Although these parameters are consistent with 
data and highly plausible, they are not necessarily unique.  Due to the irreversibility of most of the reactions, production and 
degradation terms are non-trivial. Degradation (µi) and production (αi) terms have been adjusted based on [32, 35], and they may 
contain some bias towards values exhibiting bistable behavior.  The assumption of equal degradation rates for inactive and active 
proteases was made for nullclines, similarly to [15].  To avoid numerical errors from the XPPAUT software, the parameters were 
normalized as follows: all parameter values were divided by Keff2 for rescaling, and multiplied by β for restoring units.  β is  
1µM-1min-1.   
 

APPENDIX B: REDUCTION METHOD FOR BIFURCATION ANALYSIS  

We let TU, the total Urokinase, be defined as scUPA + tcUPA, and TP be defined as PLG + PLS.  For analyzing the 
equilibrium of the system, we assume the following time derivatives to be zero, which would occur if the system is 
at steady state. 

  TU' = scupa' + tcupa'  = 0    (B.1) 

  TP' = plg' + pls'  = 0    (B.2) 

For ease of notation, we assume equal degradation rates of the proteases, µ1=µ4=D1 and µ2=µ3=D2. By solving the 
ODEs at steady state and substituting in (B.1) and (B.2) we get  
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TU' = kprod1 - D1(tcupa + scupa)      (B.3) 

 
TP' = kprod2 - D2 (pls + plg)       (B.4) 

Solving (B.3) and (B.5) further at steady state gives  

 
TU =

kprod1
D1

= scupa + tcupa       (B.5) 

 
TP =

kprod2
D2

= plg + pls       (B.6) 

Substituting PLG=TP-PLS into the ode for PLS and solving for PLS at steady state, we get the PLS nullcine 
(PLS_n) as  

  
pls _ n =

a * TP

D2 + a
    (B.7) 

Where 
.
 Similarly, the tcUPA nullcline (tcUPA_n) is 

 
a = (keff1 * scupa + keff3 * tcupa)

  
tcupa _ n =  

(pls)n * keff2 * TU
keff2 * (pls)n + D1

   (B.8)   
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MULTI-RESOLUTION MODELING OF BIOLOGICAL MACROMOLECULES 

SAMUEL FLORES, JULIE BERNAUER, XUHUI HUANG, RUHONG ZHOU, AND SEOKMIN SHIN  
	  

1. Introduction 

The field of molecular modeling has long recognized modeling the folding, assembly, and long-time 
dynamics of large macromolecules as its biggest challenge, since it is precisely at large size and long time 
scales that computational methods are most taxed.  In response, many methods have been developed to 
reduce the computational cost by coarsening the granularity of the problem.  Inevitably accuracy remains 
limited for these methods and so in recent years a consensus has emerged that we should work at more than 
one level of resolution, often simultaneously, in an approach known as multi-resolution modeling.  We 
propose to organize a session on multi-resolution approaches to predict and analyze macromolecular 
structure, assembly and dynamics.  This session will focus on state-of-the-art methodological developments 
and applications at different levels of molecular organization.  Research directions are based on 
developments arising in the community field of the organizers, like the ones developed in the NIH Center 
for Biomedical Computation at Stanford University.    In this proposal, the emphasis is made on integrative 
techniques for analysis of molecular structure and organization. Bridging the gap between computer 
science and structural biology, we represent an emerging community, presenting new efficient 
representations for the prediction and analysis of molecular structures and dynamics. 

 

2. Session Summary 

.  
This session includes an invited talk, seven reviewed oral presentations, three additional accepted papers, a 
discussion session, and a tutorial.  We are pleased to have the distinguished Professor Michael Levitt as our 
invited keynote speaker.  Ron Levy will preside at our discussion session. 

3.1 Oral presentations 

 
Multi-resolution Modeling of Biological Macromolecules toward understanding allosteric signaling 
mechanisms in the ATPase domain of molecular chaperones  
Authors: Ying Liu and Ivet Bahar 
 
This paper represents a biologically important problem: the allosteric signaling pathways of molecular 
chaperones, HSP70.  In order to investigate this problem, the authors adopt a multi-resolution approach by 
combining methods at different resolutions: sequence alignment, residue contact map, Gaussian network 
model, and mutual 
information. They show that a subset of central residues located at the interface between the two lobes of 
the Nucleotide Binding Domains near the nucleotide binding site form a putative communication pathway 
invariant to structural changes. 
 
Multi-resolution and multi-physics approach for interactively locating functionally linked ion 
binding sites by steering smal molecules into electrostatic potential maps using a haptic device 
Authors:  Olivier Delalande, Nicolas Ferey, Benoist Laurent, Marc Geroult, Brigitte Hartmann, and Marc 
Baaden 
 
In this work a haptic device is cleverly used to find ion binding sites on a protein.  The user experiences 
tactile feedback which provides a quick and intuitive assessment of binding affinity.   
 
3D-BLAST: 3D protein structure alignment , comparison, and classification using spherical polar 
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Fourier correlations 
Authors: Lazaros Mavridis and David Ritchie. 
 
The authors represent protein atomic density using spherical harmonics and Laguerre-Gaussian radial 
functions and find that the lowest-order terms can be used to quickly scan a database of structures and 
evaluate shape similarity.  The results suggest a structural search tool fast enough to be implemented on a 
web server is within reach. 
 
Structural prediction of protein-RNA interaction by computational docking with propensity-based 
statistical potentials 
Authors:  Laura Pérez-Cano, Albert Solernou, Carles Pons, Juan Fernández-Recio 
 
Relatively little work has been done in protein-RNA docking, possibly due to the paucity of solved 
complexes.  In this work a coarse-grained residue-nucleotide potential is devised which is then used to 
discriminate the native complex from decoys generated by rigid-body rotations and translations of the 
molecules.    
 
Multi-resolution Modeling of Biological Macromolecules Multiscale dynamics of macromolecules 
using Normal Mode Langevin 
Authors: Jesus A. Izaguirre, Christopher R. Sweet, and Vijay S. Pande  
 
In this paper, the authors introduce a new approach that has addressed an important issue in multi-scale 
modeling of biological macromolecules: how to project out fast motions of biological macromolecules in 
an automatic way and explicitly propagate only slow degrees of freedom.   In this way, one can achieve a 
speedup in simulations without sacrificing accuracy. In order to achieve this goal, the authors use the 
coarse-grained normal mode analysis to decompose the dynamics of the biological macromolecules into 
slow and fast modes. Only slowest degrees of freedom are then explicitly propagated by a Langevin 
integrator.  They demonstrate the power of 
the new method by folding of the Fip35 mutant of WW domain.  This method is promising in multi-scale 
simulations of biological macromolecules. 
 
Constructing multi-resolution markov state models (MSMS) to elucidate RNA hairpin folding 
mechanisms 
Authors: Xuhui Huang, Yuan Yao, Gregory Bowman, Jian Sun, Leonidas Guibas, Gunnar Carlsson, and 
Vijay Pande 
 
Most multi-scale modeling approaches are based on multi-scale representation of the molecules. These 
approaches are normally limited by their accuracy by leaving out important degrees of freedoms.  In this 
paper, the authors introduce a completely different multi-scale approach by generating multi-resolution 
Markov State Models (MSMs) to analyze dynamic atomistic simulation data.  MSMs are a powerful tool to 
predict long timescale dynamics from many short simulations; however, previous constructions of MSMs 
are all focused on a single resolution. The key insight of their new algorithm Super-level-set Hierarchical 
Clustering (SHC) is to generate a set of super levels covering different density regions of phase space, and 
then cluster each super level separately.  The authors demonstrate the power of the new algorithm using the 
folding of a small RNA hairpin.  This new algorithm holds its promise to bridge the timescale gap between 
simulations and experiments, and also opens up a new generation of algorithms to treat the dynamics at 
multi-resolutions. 
 

3.2 Papers without oral presentation  

 
Predicting RNA structure by multiple template homology modeling 
Authors: Samuel Flores, Yaqi Wan, Rick Russell, and Russ Altman.   
 
This is the first published application of RNABuilder, a multi-purpose macromolecular modeling code 
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which uses the Simbody internal coordinate mechanics library.  The authors show that a “Frankenstein” 
molecule comprised of ribozyme fragments from two different species can be used as a template for 
modeling the structure of a ribozyme from a third.  In regions for which no template is available, base 
pairing forces are used to enforce known contacts.  The results show how threading can be done for highly 
interconnected RNAs with relatively low sequence similarity to molecules of known structure. 
 
Insights into the intra-ring subunit order of TRIC/CCT: a structural and evolutionary analysis 
Authors: Nir Kalisman and Michael Levitt  
 
The TRiC complex in eukaryote is composed of 8 different protein products arranged in a ringed structure. 
 The order of the subunits in the ring is still unknown despite its important functional role. In this work we 
mapped evolutionary information of TRiC onto a structural hypothesis, which led us to formulate several 
restrictions on the possible ring arrangements.  We conclude that 72 ring arrangements (out of the possible 
7!=5040) are consistent with those restrictions. 
 

3.3 Tutorial  

 
The tutorial aims to address emerging multi-resolution approaches to predict and analyze structure, 
assembly and dynamics of biological macromolecules.  In particular, the following three topics will be 
discussed: (1) Multi-scale modeling of RNA structures. (2) Macromolecular assembly prediction and 
analysis, and (3) Conformational sampling. 

Multi-scale modeling for RNA structures.  Turning the secondary structures of a RNA molecule into 3-
dimensional RNA structure can be done with the assistance of various computer programs. For example, 
Nucleic Acid Builder (NAB) is a modeling language with utilities to create, analyze and manipulate 
molecular structures.  Visual Molecular Dynamics (VMD) is a popular molecular viewer which permits the 
user to drag atoms or molecules using a mouse.  It is also possible to connect to a molecular dynamics 
package and apply forces with a mouse, a process called Interactive Molecular Dynamics (IMD).  Multi-
resolution techniques could potentially improve such tools.  For example, the user could be empowered to 
selectively rigidify parts of the molecule, or to apply forces to specific internal coordinates such as torsion 
angles, or to enforce geometric constraints between molecular subunits such as nucleotide bases.  One such 
tool, RNABuilder, is introduced in this session.   

Macromolecular assembly prediction and analysis. The function of biological macromolecules often 
relies on their interactions with one or many partners. These interactions tend to deform the 
macromolecules to better adapt their binding partners.  This process involves not only shape 
complementarities but also chemical interactions. For example, protein-protein docking prediction 
techniques usually include two steps: finding putative complex conformations and scoring them to keep the 
most biologically relevant.  Finding suitable conformers involves large conformational sampling, and it is 
difficult to be achieved at atomic level for large assemblies.  Thus, multi-resolution approaches are 
necessary to be introduced to deal with large complexes.  Such multi-resolution approaches have already 
shown to be the promising by successfully predicting individual side-chain contacts at the interface in the 
last CAPRI, the worldwide competition on docking of protein complexes.  Furthermore, in the past few 
years, new algorithms dealing with multiple scales of representations and multiple levels of experimental 
data have emerged in the docking community for detecting interfaces, sampling and scoring the exploration 
results.  In the tutorial, we will discuss the challenges on developing new multi-resolution techniques for 
conformation selection of protein-protein docking.  For example, multi-scale scoring functions based on 
geometric criteria will be discussed. 

Conformational sampling. Conformational sampling is one of the major changelings for the multi-scale 
modeling of the biological macromolecules due to the rugged nature of the free energy landscapes.  
Without adequate sampling, it is impossible to validate the parameters or force fields or to address 
phenomena that occur on biologically relevant timescales.  Many methods have been developed in an 
attempt to address the sampling problem such as Generalized Ensemble (GE) algorithms like Replica 
Exchange Method (REM) and Simulated Tempering (ST), Metadynamics, Transition path sampling, and 
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Adaptive seeding method.  Some sampling algorithms such as Resolution Replica Exchange can even 
directly integrate simulations running at different resolution and greatly enhanced their ability to sample the 
conformational space.   
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Metal ions drive important parts of biology, yet it remains experimentally challenging to locate their binding sites. Here we 
present an innovative computational approach. We use interactive steering of charged ions or small molecules in an electrostatic 
potential map in order to identify potential binding sites. The user interacts with a haptic device and experiences tactile feedback 
related to the strength of binding at a given site. The potential field is the first level of resolution used in this model. Any type of 
potential field can be used, implicitly taking into account various conditions such as ionic strength, dielectric constants or the 
presence of a membrane. At a second level, we represent the accessibility of all binding sites by modelling the shape of the target 
macromolecule via non-bonded van der Waals interactions between its static atomic or coarse-grained structure and the probe 
molecule(s). The third independent level concerns the representation of the molecular probe itself. Ion selectivity can be assessed 
by using multiple interacting ions as probes. This method was successfully applied to the DNase I enzyme, where we recently 
identified two new cation binding sites by computationally expensive extended molecular dynamics simulations. 

1. Introduction 

Metal ions drive important parts of biology, yet it remains experimentally challenging to locate their binding 
sites. A particular example may concern the mechanisms underlying the formation of non-specific protein-DNA 
complexes. In this context, we have recently studied the DNase I/DNA system as a representative and rather 
simple model of a non-specific complex. DNase I is a glycoprotein hydrolyzing DNA phosphodiester linkages in 
the presence of divalent cations, Ca2+ and Mg2+. We demonstrated that Ca2+ and Mg2+ are crucial for optimizing 
the electrostatic fit between DNA and enzyme. In particular, extended molecular dynamics simulations at atomic 
detail allowed us to identify two new cation binding sites that are functionally important [1]. Such high-
resolution atomistic methods are computationally expensive and require long simulation times. Could these ion 
binding sites also have been detected with simpler methods? Maybe this could be achieved at lower resolution 
and requiring less computational power? In the present manuscript we set out to describe a new method aimed at 
these goals, using the molecular dynamics results as a reference for assessing our findings. The purpose of this 
method is to provide a fast user-guided search in order to locate potential binding sites, prior to detailed 
investigations of these sites using more accurate but computationally expensive approaches. 

Recently, we have described the exciting possibilities of interactive molecular simulations for studying 
biological macromolecules [2]. Here, we demonstrate that this approach can be used for locating ion binding 
sites. The concept of our method is to interactively explore electrostatic potential fields while being guided 
towards the binding sites by force feedback. This interactive haptic approach may be traced back to the work of 
Nagata et al. [3] who explored the concept in the context of protein-ligand docking. Their work was somewhat 
ahead of its time, as may be illustrated by the following observations: "Certain limitations remain; for example, 
only twenty protein atoms can be used to generate the electrostatic field. Furthermore, the system can only use 
globular probes, preventing drug molecules or small chemical groups from being simulated. These limitations 
are the result of our insufficient computer resources". Today, this situation has changed and we did not observe 
any significant computational limitations. Our approach has been tested on systems as big as a pentameric 
ligand-gated ion channel comprising 1 500 amino acid residues [4]. Of course, the raw increase in computer 
speed is not the only reason for such an improvement. Adapted software solutions and improved algorithms 
further render current approaches more efficient. 

Using such an interactive approach for locating ion binding sites is a new idea. It will be illustrated with the 
DNase I example system. Previously, electrostatic steering has been described for a variety of cases such as 
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enzyme-ligand binding [5], tRNA binding [6], antibody-antigen association [7] and Cdc42 recognition [8]. 
Computational methods have been used in several of these studies, but interactive virtual reality (VR) 
approaches only marginally. Why are such VR approaches useful? VR efficiently introduces a human element in 
the process and benefits from the user's experience and insight. Enabling the user to sense the electrostatic 
potential field via tactile feedback is a major advantage. The electrostatic potentials of biomolecules are often 
complex volume and multi-level data, rendering the visual perception of individual binding sites difficult if not 
impossible. Adding haptic feedback to their interactive exploration significantly simplifies this task. Here, we 
use such an approach on a biomolecular system in order to explore potential variations at the DNase surface, to 
locate favourable binding sites, and to discover far-reaching electrostatic pathways guiding ions to these sites. 

The representation used for the simulation system is innovative. It could be summarized as a multi-level 
simulation combining multiple physics models and is intrinsically multi-resolution. The potential field is the first 
level of resolution used in this model. At a second level, we represent the accessibility of all binding sites by 
modelling the shape of the target macromolecule at atomic or coarse-grained resolution. The third independent 
level concerns the representation of the molecular probe itself. By using multiple scales and resolutions it is 
possible to focus on the essential degrees of freedom of a complex biological system. This makes the user’s 
interaction with the system more efficient.  

The interactive VR-based approach renders the scientific task nice and enjoyable, hence encouraging the 
user to pursue his investigation. Another example of this kind is the ‘‘Fold It!’’ project (http://fold.it) that 
recently brought interactive simulations to the fore. ‘‘Fold It!’’ is a 3D-puzzle desktop game, in which the user’s 
task is to fold proteins interactively and without any knowledge prerequisites. The puzzle is essentially based on 
an interactive-intuitive learning process. The similarities such applications bear with video games should not 
delude scientists to underestimate the scientific value of such approaches. 

2. Materials and Methods 

2.1. Structural data and model preparation for the DNase I system 

Several experimental structures of the DNase I enzyme from different biological contexts were considered as 
reference in this study: the enzyme crystallized in its apo form (PDB code 3DNI [9]), in a DNase I:Actin 
complex (PDB code 1ATN [10]) or bound to an oligonucleotide duplex (PDB code 1DNK [11]). Calcium ions 
are found in some of these structures: apo DNase I (3DNI) bears two Ca2+ binding sites (described below as sites 
1 and 2) and the DNase I:Actin complex reveals three Ca2+ binding sites (sites 1, 2 and 3). 

In the interactive explorations, a model derived from previous molecular dynamics (MD) simulations is used 
to represent the enzyme. This model corresponds to the most representative conformer of the whole trajectory as 
determined by an exhaustive cluster analysis [1]. The detection of ionic binding pockets and their localization in 
the crystallographic structures have been based on this model. In the MD simulations, the AMBER parm99 force 
field has been used [12]. Consistently, we generated the parameters for the electrostatic potential calculation (pqr 
files) with the pdb2pqr program [13] using the --ff=amber option, including for ionic probes. The potential was 
determined with the APBS software [14] and standard input was obtained with the --apbs-input option. Ionic 
strength was introduced using a 0.15 M concentration of both +1 and -1 charged ions with a 2.0 Å radius value 
(APBS parameters). 

The shape of the DNase I molecule was represented via van der Waals parameters from the AMBER parm99 
force field (atomic resolution) or from the coarse-grained model by Zacharias [15] (low resolution). 

Every interactive experiment consisted in at least four independent trials to detect binding pockets for each 
probe. We concluded that a binding site was found when the probe got stuck in a location where it was 
impossible to escape without increasing the user force range. Attractive pockets at the enzyme surface where the 
ion could easily be retrieved were not considered as binding sites. 

2.2. MyPal: an interactive simulation approach combining an electrostatic potential field and pairwise 
non-bonded interactions 

MyPal stands for Molecular scrutinY of PotentiALs. The application has a corresponding French name with the 
same meaning: MonPote, "MOlécules Naviguant sur un POTEntiel". In this section we describe the underlying 
methodology developed in order to study the behaviour of ions or small molecular probes interacting with a 
static macromolecular target molecule. In this approach, based on a classical Newtonian simulation, ionic probes 
are immersed into and guided by an electrostatic potential field induced by the target molecule. In addition, the 
3D shape of the target molecule is taken into account by representing its static 3D structure interacting with the 
probe molecules. The simulation deals with both electrostatic properties and steric constraints induced by the 3D 
shape of the target molecule. Moreover, in order to study the behaviour of several interacting ions or molecules, 
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non-bonded Coulomb and van der Waals interactions between all the probes are calculated. These inter-probe 
interactions are merged with the electrostatic potential from the map and the van der Waals interactions with the 
target molecule. The user can remain passive and observe the movements of the ionic probes from their initial 
positions during a simulation in progress. Alternatively, the user can act on the probes by selecting and applying 
external forces taken into account by the simulation, in order to explore the potential and identify binding sites. 

A MyPal simulation requires two datasets as schematically shown in Figure 1. The first dataset corresponds 
to the structure and potential of the target macromolecule, including all static particles in the simulation (left). 
The second dataset describes a separate dynamic molecular structure including the ionic probes (right).  

 

 
 

Figure 1: Schematic flow diagram for setting up a MyPal simulation. Level 1 deals with the calculation of the electrostatic potential grid. 
Here we use the pdb2pqr tool in order to set up the radii and charges of the target macromolecule using the atomistic AMBER parm99 force 
field. Then we compute its electrostatic potential map using the APBS software [14]. The potential is saved as an OpenDX file and used as 
input for MyPal. At level 2, the 3D shape of the target molecule is modelled as a set of static spherical particles at the desired resolution (all-
atom: AA, multi-bead coarse grained: CG or single-bead carbon alpha: CA). The ionic probes are modelled at level 3, using a set of radii and 
charges. The latter parameters may represent different resolutions such as naked vs. hydrated ions. Levels 1 and 2 are static, whereas the 
particles in level 3 are dynamic and can be guided by the user. 
 

During the simulation, forces are computed and applied on the dynamic particle set (Pdynamic). We explicitly 
consider potential, van der Waals, Coulomb and external forces. 

The potential forces Felect act on the ionic probes and originate from the electrostatic potential map. They are 
defined by computing the gradient of the electrostatic potential. In Equation (1), we consider particle p belonging 
to the spatial cell Ci,j,k of the electrostatic potential grid, and Ei,j,k the value of the potential in this cell. We define 
the gradient as the mean of the difference between the Ei,j,k potential and the potentials of the six adjacent cells, 
two for each axis. This method of computing the gradient reduces the bias related to the discretization of the 
grid. 

 
 
 
 

(1)  

 
 
 
The van der Waals forces Fvdw applied to the ionic probes (Pdynamic) are computed taking into account all 

interactions between the ionic probes and the static particles defining the 3D shape of the target molecule, and 
between ionic probes themselves (Pall). As shown in Equation (2), these forces are computed using the following 
approximation for the van der Waals interactions. 
 

(2)  
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The Coulomb forces Fcoulomb applied to the ionic probes (Pdynamic) take into account all electrostatic 

interactions between the ionic probes according to Equation (3). 
 

(3)  

 
Finally, these forces are summed with an external force provided by the user through the graphical interface 

during the simulation. 
 

(4)  

This multi-resolution approach consists of three independent levels of modelling. The potential field is the 
first level of resolution used in this model (level 1 in Figure 1). In principle, any type of potential field could be 
used, not only electrostatic ones. Most of the scrutinized potentials in the present work are Poisson-Boltzmann 
type electrostatic potentials computed using the APBS software [14]. Such potentials are subject to several 
parameters (resolution, ionic strength, solvent and solute dielectric constants) and may thus implicitly take into 
account an averaging over selected solvent or solute degrees of freedom. More complex scenarios, for instance 
the presence of a biological membrane environment for a membrane protein target, could also be taken into 
account with tools such as AquaSol [16]. Deriving the potential field from an average over a molecular dynamics 
simulation could help to mimic the flexibility of the target molecule. These are only a few examples of how the 
resolution and underlying physics of the potential field can be varied. At a second level (level 2 in Figure 1), we 
model the accessibility of a binding site by representing the shape of the target macromolecule via non bonded 
van der Waals interactions between its static structure and the probe molecule(s). For this representation, a whole 
range of parameterizations commonly used in molecular mechanics is available. These comprise the detailed 
atomistic scale (AA), medium-resolution multi-bead coarse graining (CG) and single-bead carbon alpha models 
(CA) [17]. Level 3 in Figure 1 is the third, independent level of modelling and concerns the molecular probe 
itself. At this level, van der Waals and coulombic interactions are treated. Radii and charges can be chosen in 
order to fine-tune the desired properties of the ionic probes by considering effects such as solvation (increased 
radii) or charge screening (decreased charges). 

It should be stressed that the MyPal approach is computationally cheap. The electrostatic map is computed 
offline prior to the interactive simulation and there are only a small number of dynamic ionic probes on which 
pairwise interactions are computed. Given the reduced number of degrees of freedom, namely the positions of 
the ionic probes, thorough sampling of phase space is easily achieved. 

2.3. Visualizing a simulation in progress 

During the design of the MyPal application, initial tests have been carried out with the VMD software [18]. This 
approach couples visualization and simulation with the MDDriver library [19], using the IMD protocol [20]. All 
screenshots in the present manuscript were obtained using VMD. VMD is however not optimally adapted to 
some of the specific tasks occurring during an interactive simulation. As an example, there is no visual feedback 
during the particle selection task, making it difficult to select the particle of interest with confidence. Multiple 
selections are not available using direct interactions with the mouse or a haptic device, but only using the 
Graphical User Interface (GUI). In order to surmount these shortcomings, we are now developing our own 
simple visualization tools specifically designed for interactive visualization. We use the visualization toolkit 
VTK [21] for visual rendering. VTK provides high-level features, such as isosurface rendering of electrostatic 
potential maps. In an enhanced version, our tool allows us to visualize up to several hundred thousand particles 
in interactive time using a GPU shader implementation of spherical representations. VTK was encapsulated into 
a Cocoa application, allowing us to quickly develop a GUI using the XCode and Interface Builder tools. As soon 
as this application will be finalized, it will be made freely available in order to simplify interactive potential 
exploration as described in this work [22]. 

2.4.  Interacting with the ionic probes during a simulation 

In order to interact with a MyPal simulation in progress, it is possible to use a mouse for adding force constraints 
on the probe particles. This approach provides two degrees of freedom, e.g. the x- and y-axes, for the interaction. 
However, using a haptic device is even better adapted to this task, in particular for selecting and moving particles 
in 3D space. Such a device with three instead of two degrees of freedom is more intuitive and efficient for 
interacting with a complex three-dimensional object. Furthermore, the immediate haptic feedback when a 

  

 

r 
F (p! Pdynamic ) =

v 
F elec (p) +

r 
F vdw (p) +

r 
F coulomb (p) +

r 
F user(p)

  

 

r 
F coulomb (p! Pdynamic ) = "

qpq # p 

r 
u p # p 

4$%
0
dp # p 

2

# p !Pdynamic

&

208



particle is actually picked significantly improves the user experience and greatly helps to immerse the user in the 
molecular scene. When using visual feedback only, the user often asks for additional explanations before getting 
started. With force feedback, this barrier is lifted, as the interactive simulation becomes more intuitive and is 
comparable to dextrous manipulations such as those carried out in daily life. Hardware requirements are modest 
(details in section 2.6). In our experience, this approach is viable using a small and affordable haptic device, 
providing 3D positions and handling 3D directional force feedback. Such an entry-level solution designed for a 
desktop use is targeted at a large user community and is very easy to set up. The availability of convenient 
drivers that are compatible with software libraries such as VRPN [23] was a major criterion for our choice.  

The interaction with the simulation was implemented as in VMD, allowing the user to impose forces on 
probe particles and experience a tactile feedback. The haptic device is used in order to control the direction of 
the forces applied to selected particles and to adjust the amplitude of these forces. This interaction method 
contains two stages. The first stage comprises the selection of a single probe particle or a set of particles that we 
will name Pselection, using a 3D tool attached to a haptic device and its buttons. In a second stage, the model 
described in Equation (5) is used in order to compute the forces Fsimulation applied to the selected particles and 
sent to the MyPal simulation as external force (see section 2.2). Fsimulation is proportional to the distance between 
the geometrical centre of the particle set and the tracker position PT. 

 

(5)  

The main idea of this approach is to link the selected atoms and the 3D haptic tool with a spring. Instead of 
providing direct haptic rendering of forces computed in the simulation, the force feedback Ffeedback only depends 
on the spring length according to Equation (6), which in turn is influenced by the way the simulation reacts to the 
applied force.   

(6)  

 
We emphasize that the haptic loop computation frequency must be between at least 300 to 1000 Hz in order 

to provide a haptic rendering of good quality. A strong point of the approach described above is that a low 
physical simulation framerate does not cause instabilities and does not affect the quality of the haptic feedback. 
With this decoupled spring model, force feedback can be computed at a very high frequency required by the 
haptic device.  

2.5. Coupling simulation, visualization and interaction 

In this section, we briefly explain how simulation, interaction and visualisation modules exchange data. Figure 2 
illustrates a schematic view of the data flow in the application presented in this work. We use the MDDriver 
library as central element in order to couple a visualization, interaction and MyPal simulation module. 
Previously, this library was successfully used to couple the GROMACS molecular dynamics engine [24] with 
VMD in order to carry out interactive studies of several biomolecular systems comprising enzymes and 
membrane proteins [2]. Here we use a similar approach in order to couple the MyPal program with our own 
visualization code based on VTK or with the visualization module VMD. 

The MDDriver library provides a simplified and high-level API [19] for exchanging particle positions 
computed in a simulation module and custom user-generated forces from the visualization and interaction 
modules. The adapter layers shown in Figure 2 are specific for a given simulation or visualization software. They 
are mainly in charge of transforming the physical values into adequate units, but can also operate more complex 
transformations, such as changing data from a given discretization model to another one. The adapters are in 
charge of redistributing and collecting the data in a parallel application. For implementing MDDriver in a given 
software package, the major part of the work consists of locating the adequate routines in the simulation 
algorithm where the data exchange needs to take place. The exchange with the visualization tool includes 
sending atom positions, receiving forces and managing control events for the simulation. 

Further coupling is needed by our interactive approach. It consists of coupling the peripherals management 
library, e.g. for working with a haptic device, and the visualization module. We use the VRPN library [23], 
which offers a device independent implementation, in order to read out the position and orientation of a tool used 
to select particles in the visualization module. VRPN is further used in order to generate force feedback along the 
lines described in section 2.4. 
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Figure 2: The MDDriver library couples a simulation code with a visualization code. MDDriver provides an API for exchanging particle 
positions computed in a simulation module and custom forces from the visualization and interaction modules [19]. Haptic device 
management is provided by the VRPN library [23] and force feedback is computed as described in section 2.4 

2.6. Hardware setup and typical configuration 

All interactive MyPal simulations were performed on a 3GHz dual quad-core MacPro Apple computer. 
Although the MyPal application itself is not parallelized, a multi-core workstation makes it possible to run all 
parts of the application on the same machine without performance issues. This includes visualization, haptic 
device server and calculation tasks. The molecular scene display was rendered using an NVIDIA Quadro FX 
5600 graphics card. Stereo rendering was achieved via a Crystal Eyes stereovision device. Two devices were 
tested for user interaction and tactile feedback: a Phantom Omni haptic device and a higher precision Phantom 
Premium 1.5A, both by Sensable Technologies. Scene navigation was achieved with a Spaceball device 
providing six degrees-of-freedom. 

The MyPal application can easily be run in a desktop context, with minimal spatial requirements, and does 
not require any sophisticated hardware setup. In our experiments, the typical configuration was to mount the 
haptic device, Spaceball, mouse and keyboard in front of a big screen. Figure 3 illustrates such a typical setup. 

 

 
 

Figure 3: Typical hardware setup for an interactive exploration experiment based on the MyPal simulation tool. The user (a) can navigate the 
scene with a Spaceball device (b). Further control can be achieved via a keyboard (c) and a mouse (f). Interaction with the calculation and 
force feedback from MyPal occur via a haptic device (d). The scene is shown on a large screen (e) with an avatar representing the user-
driven tool (cone in top-left corner of the screen), and a visual rendering indicating the user force (red arrow) acting on the ionic probe (green 
sphere). 

3. Biological application – results and discussion 

3.1. DNase I cation binding sites revealed by atomistic molecular dynamics simulations 

We will use our previous results on cation binding sites in the DNase I enzyme as reference to compare our 
interactive simulations to. It has been shown elsewhere that molecular dynamics (MD) simulations are powerful 
– yet computationally expensive – tools for locating such sites [25]. Specific and non-specific protein-DNA 
interactions imply the formation of intermolecular interfaces requiring electrostatic and structural 
complementarity between the related partners. A precise functional role for metal ions in this process is certainly 
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an interesting hypothesis worthwhile exploring. The DNase I/DNA complex is a representative and rather simple 
model to study these non-specific interactions. We have recently carried out four 25 ns molecular dynamics 
simulations of the apo enzyme where the cation composition was varied between Na+, Ca2+ and Mg2+ [1]. 
Detailed analysis of cation coordination in these simulations revealed four distinct sites. Two sites show a 
preference for calcium and two are selective for magnesium (Figure 4, left panel). The calcium binding sites 
were previously known [9], whereas the two magnesium sites were unexpected. We have shown that cations are 
essential for the biological function of DNase I, allowing DNA to bind to the enzyme. Indeed, the concurrent 
occupation of all four sites with the proper cation is required for an electrostatic fit between DNA, negatively 
charged, and the enzyme interface, also negatively charged in the absence of cations. This may imply that the 
information about the binding sites is encoded in the electrostatic potential map of the enzyme (Figure 4, right 
panel). In the following paragraphs, we reproduce key results of the MD study using the interactive MyPal 
application. 
 

   
Figure 4: On the left, DNase I cation binding sites numbered from 1 to 4. Calcium binding sites are shown in cyan, magnesium binding sites 
in orange. The main amino acid residues constituting each site are indicated. On the right, electrostatic potential isosurfaces for potential 
values of -15.0(blue)/+15.0(red) kT/e are superposed onto the DNase I backbone structure and ions (in black). 

3.2. Locating the four previously identified ion binding sites with MyPal using interactive exploration at 
atomic resolution 

Figure 4 (right panel) illustrates the difficulty of visually identifying ion binding pockets due to the complexity 
of typical macromolecular electrostatic potentials. Even knowing their location (Figure 4, left panel), the binding 
sites cannot be distinguished. By using tactile feedback with our interactive MyPal application, it was however 
possible to locate all four binding sites with confidence and high precision (e.g. 0.9 Å positional deviation for the 
first site, mainly limited by the spacing of the potential grid). The interactive approach proved quick and 
intuitive. 

Starting from a relaxed reference structure extracted from the MD trajectories, we interactively scanned the 
entire electrostatic potential surface of DNase I. An initial potential was calculated considering standard 
physiological ionic strength (0.15M NaCl). Na+, Ca2+ and Mg2+ are potential ionic probes. For the identification 
of the binding sites we primarily used a hard sphere representation of the small divalent Mg2+ cation as it offers 
several advantages as a probe. Its double charge facilitates long-range electrostatic steering towards the binding 
pockets and its small size (0.79 Å) increases the accuracy for sensing the rough and detailed molecular surface at 
atomic resolution. The structural model of DNase I was extracted from MD simulations with binding sites 
occupied by ions that are mainly coordinated by amino acids and not water molecules. Consequently, it is 
important to consider a “naked” ion and not a hydrated one as probe. Otherwise the ion would not fit into the 
preformed coordination sphere at each site. More generally, considering hydrated ions using an implicit 
hydration shell remains feasible by increasing the probe radius and possibly varying the charge in order to take 
into account solvent shielding. 

The parameters used for calculating the electrostatic potential affect the interactive exploration, in particular 
ionic strength. Taking into account ionic strength leads to locally more accurate potential maps. The downside of 
this for interactive experiments is that the detection of potential wells becomes harder as the range of 
electrostatic steering shortens. Without ionic strength, we achieved comparable precision, but did more easily 
detect several of the binding sites. The results for both series of experiments, with and without ionic strength, are 
presented in Figure 5. Despite the simplicity of the representations of protein surface and ions, all four ion 
binding sites identified by MD are retrieved by our approach. No other strong binding sites (false positive 
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locations) were detected, which can be a problem with other approaches [26]. We did observe several attractive 
interactions located at pockets on the enzyme surface. These locations correspond to shallow minima requiring 
little force to extract the ions and were not considered as binding sites. 

 

 
Figure 5: Visual summary of the interactive experiments. On the left, the results of a series of experiments for detecting a priori unknown 
ion binding sites are shown. The reference position of each binding pocket as determined by MD simulation is shown as a red sphere. 
Transparent spheres display MyPal predictions obtained for a potential map with (orange) or without (green) ionic strength. On the right, an 
ion substitution experiment ("molecular-billiard") at site 2 is depicted. Such an experiment probes the selectivity of a given ionic pocket for 
different ions. 

3.3. "Molecular-billiard" for probing site selectivity by ion substitution 

In the previous section, we successfully described how to locate the four DNase I cation binding sites. We did 
however not assess their selectivity. For this purpose, we have carried out a series of additional experiments, 
each starting with a different ionic probe at a given site. We then tried to interactively substitute the probe by 
another ion. We considered magnesium, calcium, sodium and chloride ions as probes. Figure 5 and Table 1 
illustrate and summarize the results for these ion substitution "molecular-billiard" simulations. 

As might be expected, chloride as an anion cannot be stabilized within any of the four cation binding 
pockets, nor can it displace a bound cation. Sites 1 and 2 are calcium selective, which is generally verified. It is 
however surprising that magnesium is able to substitute for calcium at site 1. This may be related to the 
simplicity of our model in which selectivity depends on the shape of the pocket itself and the pathway for 
accessing it. Generally speaking, buried and narrow sites are unreachable for large ions, whereas sites localized 
at the enzyme surface are readily subject to ion exchange. In the latter case, haptic feedback helps the user to 
distinguish between favourable and unfavourable substitutions. The favourable substitution of Na+ with Ca2+ 
requires little user forces, whereas Na+ can only displace Ca2+ using excessive force. Generally, Mg2+ can 
displace Ca2+ but the opposite remains impossible, except for the exposed calcium selective site 2. Sites 3 and 4 
are selective towards the small divalent Mg2+ cation (rMg2+=0.79 Å). Site 4 is deeply buried and does not permit 
binding of the two bigger positive ions (rCa2+=1.71 Å ; rNa+=1.87 Å). Site 3 can accommodate sodium and 
calcium in agreement with the 1ATN crystal structure [10]. Those ions are however easily displaced by 
magnesium. On the other hand, magnesium cannot be displaced by any of the other two cations, corroborating 
the magnesium selectivity of this site. 

 
Table 1. Ion substitution simulation results. The table indicates whether exchange from X to Y is possible () or impossible (). For 
instance, Ca  Cl means that Ca2+ cannot be displaced by Cl-. A minus sign indicates that initial positioning of the chosen probe ion at the 
given binding pocket was not possible via our approach. 
 

Probe  (Site) Ca2+ (1) Ca2+ (2) Mg2+ or Ca2+(3) Mg2+ (4) 
Ca  Mg Ca  Mg Mg  Ca Mg  Ca Mg2+/Ca2+ Mg  Ca Mg  Ca Ca  Mg - 
Ca  Na Ca  Na Mg  Na Mg  Na Na+ Na  Ca Na  Ca Na  Mg - 
Ca  Cl Ca  Cl Mg  Cl Mg  Cl Cl- - - - - 
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The selectivity assessment remains a qualitative one, in particular due to the simplicity of the metal model. 
Recent work seems to indicate that induced polarization effects in the coordination sphere might be required to 
fully capture metal ion binding [27]. Such an improved potential function would presumably require further 
refinements, such as a completely polarizable forcefield, flexible sidechains and explicit water molecules [28, 
29]. In our approach, we intentionally use approximations in order to speed up the search. More refined 
representations should be used a posteriori in order to refine the results of this initial haptic search. 

The current implementation of MyPal was not designed in order to provide precise quantitative binding 
affinity estimates, but to be capable of distinguishing in real time between non-existing, weak and strong ion 
binding sites and assess the relative selectivity of significantly different ionic probes. The approximations made 
in the choice of the model representation limit the precision that could be obtained with the current 
implementation. Despite these limitations, it remains in principle possible to quantify the strength of binding. 
This aspect will be addressed in future work. One possible approach would be to calculate the work required by 
the user to extract an ion from its binding site. 

These future extensions would also be beneficial for applications in docking and drug discovery. MyPal is 
already capable of handling rigid multi-atomic drug-like molecules. It is possible to displace a probe and assess 
whether it interacts favourably with cavities and pockets of a macromolecule. Currently the application does 
however lack tools to assess the ranking of different binding poses and the comparison between different probes. 
The implementation of such tools using the non-bonded interactions between target and probe molecules would 
be straightforward. 

3.4. Predicting the location of ionic binding pockets: multi-resolution exploration using a coarse grained 
protein shape 

Up to this point we have described experiments on a model structure with preformed ion binding sites. In this 
sub-section we validate our interactive approach using DNase I extracted from the DNase I/DNA 1DNK 
structure [11], crystallized without any divalent cation (ion-free DNase I). The expected locations of the binding 
sites were defined by superimposing the MD model onto the crystallographic structure. 

We start with the same representation as previously, using a high-resolution atomistic model in order to 
describe the protein shape. All four binding sites can be located, albeit with reduced accuracy. The static 
conformation captured by the ion-free crystal structure biases the exploration by imposing an ill-suited local 
shape for the putative binding sites. For instance, in the case of the Mg2+ binding sites, the most solvent 
accessible and thus the least affected site deviates 2.5 Å from the reference location. Site 4, the most buried – 
e.g. potentially most biased – pocket can only be detected with significantly less precision and a deviation up to 
3.9 Å from the expected site. 

By lowering the resolution of the molecular shape representation, it should be possible to reduce these 
artefacts observed at atomic resolution. We used a coarse-grain representation with several beads per residue. In 
these simulations, the offset of the most buried magnesium site largely decreased from 3.9 to 2.2 Å. This 
decrease represents an important gain in precision. Localization of the more solvent-accessible pockets benefits 
to a lesser extent from coarse graining, with improvements ranging from 0.2 Å (site 3) to 0.4 Å (site 2). 

Introducing flexibility in the model is an alternative to lowering the resolution of the representation. The 
protein or the complex could then be deformed in order to fit a binding interaction. The haptic device would help 
to render deformations fast and easy. Flexibility requires the introduction of bonded interactions in the model. 
Such a development is currently under way in our laboratory. 

A positive conclusion can be drawn on the predictivity of our method. The multi-resolution approach 
combining an electrostatic potential grid computed from an all-atom structure and a coarse-grained molecular 
surface representation for steric repulsion is efficient for predicting ion binding sites in a quick and interactive 
manner. As an explanation, we may venture that the electrostatic contribution is a cooperative effect of several 
coordinating charged groups. A single misplaced sidechain is not critical and atomic resolution is appropriate 
even for distorted binding sites. A single atom sterically occluding the binding site is however a severe problem, 
calling for a low resolution representation of the molecular shape or alternatively for the introduction of 
flexibility in the model.  

4. Conclusion and outlook 

MyPal is a method for interactively locating ion binding sites by steering ionic probes into electrostatic potential 
maps using a haptic device. This multi-resolution approach, coupled with interactive devices is an important 
improvement of existing methods. This new strategy already emerges as potentially useful for other applications 
such as docking small ligands on proteins. Here we show how it facilitates the discovery of new relevant ion 
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binding sites by successfully retrieving the location of cation binding sites in DNase I and assessing their 
selectivity, combining atomic and coarse-grained resolutions. 

The interactive experiments described in this article are particularly well adapted in order to acquire an 
intuitive understanding of the possible role of counterions in a biomolecular system. They can be carried out 
without any specific equipment, just using a mouse and on-screen visual feedback. However, we show that 
tactile feedback is essential for an efficient exploration of complex electrostatic potentials. Generally speaking, 
immediate feedback from the simulation adds a new dimension of user perception. Haptic feedback in particular 
is very intuitive and further increases the understanding of a given system. The force resistance allows the user 
to experience physical effects such as electrostatic steering or steric repulsion while extracting or inserting an ion 
in a binding pocket. A movie illustrating some interactive MyPal experiments on DNase I is available [22]. 

MyPal is complementary to existing methods such as deterministic or random computer generated searches 
for ionic binding sites. The human element based on the user’s expertise is an essential feature of our approach. 
At the same time this human element makes it difficult to exhaustively test MyPal and compare it to other 
methods. Different users will use MyPal differently and a user’s attention will wear off with time. Locating four 
ion binding sites such as in the case of DNase I remains feasible in a single work session. Such an exploration 
guided by the expertise of the user should be used prior to more computationally expensive approaches. For 
example, the 4th ion binding site in DNase I was quickly identified with MyPal, whereas it only appeared after 
extensive equilibration in an MD simulation. The MD simulation does however enable a very detailed and 
quantitative characterization of ion binding with extensive statistics. 

The MDDriver library developed in order to couple molecular simulation engines with a visualization tool 
was used here in the context of a multi-resolution and multi-physics application. MDDriver is readily available 
on http://mddriver.sourceforge.net. The MyPal software implementing the simulation methodology presented in 
this manuscript, as well as the graphical tool designed for interactive simulations and simple visualization tasks 
based on Cocoa and VTK, will both be made available very soon. Important future improvements may concern 
visualization, e.g. the implementation of volume rendering, and ways to quantify, record and analyze interactive 
experiments more systematically. 

Many future applications for MyPal can be imagined. Ions play a particularly central role inside ion 
channels and their selectivity, gating mechanisms and preferred ionic transport pathways could be investigated 
via interactive simulations. Closer to the example of the DNase I enzyme, the nucleosome still remains 
uncharted territory when it comes to locating its ion binding sites and assessing their functional role. Ion 
channels in membrane proteins and ions bound to the nucleosome are good examples of very large systems for 
which MyPal could provide a simple and straightforward method to capture molecular properties. Substantial 
time savings regarding simulation time and analysis are expected compared to classical approaches using MD. 
Furthermore, even at the present stage, MyPal is not limited to the docking of ions or small ligands, and should 
therefore be generally applicable in many biological domains. For instance, it opens the prospect to investigate 
larger molecular assemblies and their interactions. As an example, one could imagine moving the DNase I 
enzyme described in this manuscript along its DNA substrate to probe sequence specificity. This would be 
particularly challenging for a nucleosomal DNA substrate. 
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Despite the importance of 3D structure to understand the myriad functions of RNAs in cells, most RNA molecules remain out of reach 
of crystallographic and NMR methods. However, certain structural information such as base pairing and some tertiary contacts can be 
determined readily for many RNAs by bioinformatics or relatively low cost experiments. Further, because RNA structure is highly 
modular, it is possible to deduce local 3D structure from the solved structures of evolutionarily related RNAs or even unrelated RNAs 
that share the same module. RNABuilder is a software package that generates model RNA structures by treating the kinematics and 
forces at separate, multiple levels of resolution. Kinematically, bonds in bases, certain stretches of residues, and some entire molecules 
are rigid while other bonds remain flexible.  Forces act on the rigid bases and selected individual atoms.  Here we use RNABuilder to 
predict the structure of the 200-nucleotide Azoarcus group I intron by homology modeling against fragments of the distantly-related 
Twort and Tetrahymena group I introns and by incorporating base pairing forces where necessary. In the absence of any information 
from the solved Azoarcus intron crystal structure, the model accurately depicts the global topology, secondary and tertiary 
connections, and gives an overall RMSD value of 4.6 Å relative to the crystal structure. The accuracy of the model is even higher in 
the intron core (RMSD = 3.5 Å), whereas deviations are modestly larger for peripheral regions that differ more substantially between 
the different introns. These results lay the groundwork for using this approach for larger and more diverse group I introns, as well for 
still larger RNAs and RNA-protein complexes such as group II introns and the ribosomal subunits. 

1. Introduction 

RNA plays pervasive roles in gene regulation and expression. Messenger RNA provides the template for protein 
synthesis but also forms structures to regulate that synthesis (1). MicroRNAs inhibit protein production by 
promoting degradation of their targeted mRNA transcripts or stalling of their translation (2, 3). Even the remarkable 
machinery that synthesizes proteins, the ribosome, is composed primarily of RNA. Further, recent genomics 
approaches have indicated that much of the human genome is transcribed and most of it is not translated into 
protein, suggesting that many more functions of RNA are yet to be discovered (4, 5). The diversity of functional 
roles for RNA has profound implications for the early development of life, and the elucidation of these functions 
holds the promise of novel treatments for human diseases (6).  
 
However, our understanding of RNA structure and function is continually hampered by a persistent lack of structural 
coordinates. Part of the challenge arises from the experimental difficulty of crystallizing a highly charged, very 
flexible molecule with a dearth of the distinctive surface features needed for specific crystal packing (7). 
Compounding the problem, many structured RNAs can adopt alternative conformations at equilibrium or as long-
lived kinetic traps during folding (8, 9). Theoretical approaches are also challenged by these features, both by the 
delicate energetic balance between alternative conformations and by the long times required to equilibrate during 
folding.  
 
The structures of relatively small RNAs can often be predicted by one of several methods. Fragment Assembly of 
RNA (FARNA) assembles structures by sampling trinucleotide fragments from a database and screens these 
structures using a coarse grained potential that favors base pairing and stacking geometries (10). Similarly, MC-Sym 
samples four-nucleotide cycles from a database that are consistent with known base pairing contacts and 
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progressively builds up structure (11). Both of these methods, however, have computer time requirements that scale 
poorly with size, and rely on fragment databases that include only limited diversity. They therefore have not been 
shown to predict the structure even of molecules as large as tRNA (at ~75 nucleotides), except when using a 
fragment library that contains tRNA (12). Discrete Molecular Mechanics (DMD) has a simplified potential for 
RNAs, which are represented by three pseudoatoms per nucleotide; it can solve the structure of tRNA but larger 
molecules remain out of reach. The Nucleic Acid Simulation Tool (NAST) uses one pseudoatom per nucleotide to 
represent RNA structure and can fold the (~150 nt) P4/P6 domain of the Tetrahymena group I intron (13). However, 
its force field is too coarse to discriminate the native state from decoys at larger size scales. 
 
Homology modeling can be used to predict the structure of larger molecules when structural homologs are available.  
The first step is to obtain a correspondence between residues in the molecule to be modeled and a template; if the 
sequence identity is low this process must be done manually.  The next step is to geometrically align residues from 
the model onto corresponding residues in the template.  Lastly, the structure of any inserted regions must be solved 
and deletions must be closed.  Kevin Sanbonmatsu and collaborators have threaded the E. coli 16S ribosomal RNA 
onto a template from Thermus Thermophilus. The model and template have 75% sequence identity, considerably 
higher than that between Azoarcus and Twort ribozymes (<50%).  The only insertions are in nine hypervariable 
regions that are not in contact with each other. These were dealt with by adding fragments from additional 
structures.  Since the model does not have the flexibility needed to align and form long range contacts, it would be 
difficult to build structures that are interconnected in regions with no single structural homolog, as occurs with the 
Azoarcus ribozyme. Further, there is no code distributed for this method, leaving the technique to be applied by 
computational experts (14).  
 
There is therefore a need for a homology modeling program that can 1) structurally align corresponding residues 
while allowing close user control over the threading, 2) incorporate templates from a third molecule or molecules, 3) 
solve the structure of connecting regions with no template by enforcing sterics, chemistry, and base pairing while 
allowing flexibility and 4) be accessible to the experimentalist. In the current work we describe a multi-resolution 
modeling approach (see Background) that does all of this. 
 
Requirement 1 is met by applying forces which align the threaded and template bases. These are specified by the 
user just like the base pairing forces described below. Requirement 2 is met by adding more templates and 
connecting them to the threaded molecule. The molecules are completely rigid, a feature of our multi-resolution 
modeling (MRM) approach. 
 
Requirement 3 is the ability to predict structures of connecting regions by applying steric exclusion and base-pairing 
forces while maintaining bond lengths and angles. Our method requires secondary and tertiary base pairing contacts, 
which are provided by the user in a simple format. Each of these contacts becomes a term in our force field, with 
force and torque components, which act to bring the paired bases into the indicated geometry. Simulated annealing 
is then used to escape kinetic traps or local energy minima. The kinematics treats each backbone atom as an 
independent body and the bases as rigid units. In parallel, the base pairing forces act on a single atom per base, and 
the sterics are treated with contact spheres on a few atoms per nucleotide. The parallel treatment of forces and 
mobilities at different levels of resolution is another MRM aspect of our method. RNABuilder can solve the 
structures of small connecting regions without a template and does not compute interactions between all near 
neighbors, thus addressing the scaling issues inherent in both fragment assembly and Molecular Dynamics(MD)-like 
methods.  
 
Requirement 4 is met by providing an easy-to-use interface that was used in this work to specify all parameters of 
our model, including the sequences, base-pairing contacts, and correspondence between the model and templates. A 
single input file is prepared by the user to provide the RNA sequences, base-pairing contacts, and simulation 
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parameters.  A tutorial is provided (Distribution section), which includes example input files to use as a starting 
point for the user’s own runs. Although no significant computational skill is required, modeling decisions require 
molecule-specific knowledge which an experimentalist would be expected to have about his or her system. 
 
Here, we use RNABuilder to model the structure of a large, multi-domain RNA, the 200-nucleotide Azoarcus group 
I intron, by homology modeling with multiple templates. Group I introns have been powerful model systems for 
understanding RNA structure, folding, and function since they were discovered as the first catalytic RNAs more 
than 25 years ago (9, 15-18). By comparing our model to the solved crystal structure of the intron, we show that the 
model correctly captures the domain structures, connections and topology and gives an overall RMSD of 4.6 Å.  

2. Background 

2.1.  Classification of multi-resolution modeling (MRM) techniques  

Multi-resolution modeling (MRM) has emerged as a useful paradigm. MRM refers to the modeling of molecules at 
coarse grained resolution, with direct or indirect connection to the corresponding atomistic model (in which each 
atom is an independent body). According to the Ayton, Noid, and Voth classification (19), such schemes can be 
either serial or parallel. In a serial scheme, the parameters and form of the coarse grained model can be developed 
from the atomistic one (S-A), from various sources of knowledge (S-B), or from thermodynamic data (S-C). In a 
parallel scheme, the coarse and atomistic models can interact (P-1) or run concurrently under a resolution exchange 
methodology (P-2). RNABuilder is an MRM method of type P-1, since the kinematics (which in certain places are 
atomistic, and in other places very coarse) and the forces (mostly coarse grained) form part of a single system. 

2.2. Multibody dynamics 

Internal coordinate multibody dynamics is a method for simulating molecules. Instead of storing the Cartesian 
coordinates of each atom as would be done in a conventional MD simulation, one represents the state of the 
molecule via its natural "internal coordinates", such as bond lengths and torsional angles (20). It then becomes trivial 
to constrain any internal coordinate: one simply keeps it fixed, only integrating the unconstrained degrees of 
freedom. Internal coordinate multibody dynamics is much more difficult to implement than traditional MD, since it 
is necessary to transform atom locations to Cartesian coordinates before calculating forces, to transform the forces 
back to internal coordinates again before integrating, and to calculate the effective inertia of each coordinate based 
on the current state of the molecule at each time step; however there exist efficient linear time algorithms for 
performing these operations. When a system is highly constrained, internal coordinate multibody dynamics is far 
more efficient than Cartesian MD. In fact, the more highly constrained the system is, the more efficient it becomes, 
in direct contrast to Cartesian constraint algorithms which become less efficient as constraints are added (21). 

2.3. Simbody and Molmodel 

Our RNABuilder package is written using the Simbody (22) internal coordinate mechanics library and its molecular 
mechanics extension, Molmodel, both available from SimTK.org. Simbody includes variable step size integrators 
(23), which continually attempt to maximize the integration step size without exceeding error tolerances, leading to 
significant time savings as well as stable behavior when dealing with large forces. Molmodel permits us to rigidify 
all template molecules and part of the modeled structure saving the computational expense often associated with 
modeling large structures. RNA bases can be modeled as rigid bodies and so base pairing forces and torques can be 
applied to the base rather than to individual atoms, reducing the number of calculations to be performed. Lastly, 
Simbody provides collision-detecting Contact spheres (24), which we use on selected atoms as an approximate 
treatment of sterics. 
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2.4. RNABuilder force field, mobilizers, and constraints 

The coarse grained force field used in this work consists of forces and torques which act to bring the interacting 
bases into the base pairing geometry specified by the user using the baseInteraction commands. No forces act 
between bases unless specified by the user, except stacking forces which are automatically added to helices. The 
first base has an attachment frame which is part of the glycosidic nitrogen body but which is often located several 
angstroms from the nucleus, and which has a specified relative angular orientation. The second base has only a body 
frame located at the glycosidic nitrogen nuclear center and rotated such that the x-axis lies along the glycosidic bond 
axis and the z-axis lies normal to the base plane and points in the 3’ direction, assuming helical geometry. The 
forces act to pull the attachment and body frames together in cartesian space, and the torques act to align them 
rotationally. Since the bases are rigid by default this is sufficient to bring all atoms into a desired base pairing 
geometry. Parameterization of the force field thus consists primarily of determining the translation and rotation of 
the attachment frame that will result in the base pairing geometry; a program is provided to compute these 
parameters but most users will simply use the distributed parameters. These parameters include those corresponding 
to all base pairs catalogued by Leontis et al (including the WatsonCrick) (25), plus stacking and a Superimpose 
interaction used in threading to align the threaded with the template base. See Methods for enforcement of these 
interactions. 
 
The geometric relationship between attachment and body frames is enforced by means of a potential that has a 
strength parameter cutoffPotential (user adjustable in the RNABuilder parameter file) based loosely on base pairing 
enthalpies (26, 27). It also has a range parameter cutoffRadius (set by the user in the RNABuilder input file) based 
on ranges reported for base pairing and stacking forces (10, 27). RNABuilder detects runs of three or more 
consecutive WatsonCrick base pairs and automatically enforces helical geometry. The potential is harmonic at close 
range and inverse at long range. The requirement that the potential and its derivative match at cutoffRadius leads to 
the following form:   
 

 
The force is obtained by differentiation.  These quantities are plotted in Figure 1 below. 
 

 
Figure 1. Potential and force as a function of distance from attachment frame of residue 1 to body frame of residue 2. 
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We provide a contact force, which can attach spheres to selected atoms to prevent steric clashes. These spheres 
interact repulsively when they overlap. The HardSphere keyword specifies that spheres be added to 2-3 atoms per 
residue, for any specified range of residues. We used this on selected residues to push apart overlapping strands. 
 
RNABuilder also provides a series of mobilizer commands which set the flexibility of the molecule. The default 
mobilizer rigidifies all base bonds; most backbone bond lengths and angles are fixed but dihedral angles are allowed 
to vary. This guarantees that all bonds will have reasonable local geometry. In this work we use the ‘Rigid’ 
mobilizer to rigidify the template molecules, and parts of the threaded molecule which at certain stages were 
considered to be converged. The Rigid mobilizer reduces computational expense since it simply removes certain 
degrees of freedom rather than imposing constraint equations which must then be solved.  
 
Lastly, RNABuilder includes a constraint called ‘Weld’ which fixes the C3’ carbon of any residue to that of any 
other. We used this where two separate chains had been rigidified and needed to be held together. A constraint 
comes at a cost since it adds an equation that must be solved in Simbody. 

3. Methods  

The Azoarcus group I intron sequence was aligned and threaded to the Twort intron (Fig. 2) (28). The RNAs include 
secondary structure features that are numbered by convention and designated P (helix), J (junction), or L (loop). 
Direct correspondences are present over most of the length of the RNA, allowing straightforward threading of 
secondary elements P3, P4, P6, and P7, as well as several internal lops and single-stranded joining segments (J3/4, 
J6/7, J8/7, J4/5, and J6/6a). However, in regions that are sufficiently different between the two RNAs that direct 
correspondences are not present, alternative methods were used. Two ‘tetraloop-receptor’ tertiary interactions were 
threaded against a fragment of the Tetrahymena intron that includes the same type of interaction. For three short 
connecting segments, no existing group I intron structures were identified with corresponding sequences in the same 
positions and with the same numbers of nucleotides, and these segments were therefore left unthreaded (shown in 
black in Fig. 2). Similarly, two hairpin loops were not threaded because structures with the same sequences were not 
available. 

3.1.  Modeling the P1-P2 stacked helix 

The P1 helix, which includes the strand that is cleaved during splicing, is three base pairs in the Azoarcus intron but 
four base pairs in the Twort intron. However, this length difference is compensated by a difference in P2, which is 
one base pair longer in the Azoarcus intron. Therefore, the first base pair of the Azoarcus P2 was threaded to the 
fourth base pair of P1 in the Twort structure. Because the final base pair of the Azoarcus P2 element was modeled 
onto P1, but the joining sequence J2/3 emanates from P2, J2/3 was not threaded. 

3.2. Modeling the P9 region 

From its sequence, the Azoarcus intron has the potential to form a P9.0 helix consisting of two G-C base pairs, but 
on the 5´-side there are three consecutive Gs, and it is not clear from the sequence which two form these base pairs 
(see Fig. 2). We modeled base pairs by the two 5´-most Gs, which allowed threading of the single nucleotide linking 
P7 and P9.0. From P9.0 to P9 on the 5´-side, there are two unpaired nucleotides in the Azoarcus intron sequence. We 
threaded these nucleotides into P9, where they could form one canonical and one non-canonical base pair, 
generating a P9 helix that would be the same length as in the Twort intron. The Azoarcus intron has three unpaired 
nucleotides connecting P9 to P9.0 (J9/9.0), whereas the Twort intron has seven unpaired nucleotides connecting in 
the corresponding junction. These three nucleotides were threaded onto the three nucleotides immediately upstream 
of P9.0 in the Twort intron. 
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3.3. Modeling tetraloop-receptor interactions using additional templates 

It was not possible to thread two tetraloop-receptor interactions of the Azoarcus intron. One of these sites was 
disordered in the Twort intron crystal structure and the other site has a different type of receptor (29, 30). We 
threaded both of these interactions using the structure of the P4-P6 domain of the Tetrahymena ribozyme (31), 
which has the same type of tetraloop and receptor as the Azoarcus intron. After completing an initial round of all of 
the modeling steps (see below), we observed that one of the loops, L2, had moved so that it approached its receptor 
too closely to be physically reasonable. We therefore reinforced the correct conformations in this contact by again 
threading these regions to the Tetrahymena intron template (see Results). 

3.4. Hairpin loops 

Some hairpin loops could not be threaded to the Twort intron because of natural or engineered differences. Two such 
hairpins, P5a and P8a, were threaded to sequences in the Tetrahymena intron as described above. A third, P6a, was 
omitted and modeled as a blunt-ended helix.  

3.5. Using RNABuilder to perform threading 

We began by threading the flexible Azoarcus group I ribozyme onto the Twort ribozyme using the RNABuilder 
commands described in the Background section. There is a gap in the Twort structure where the distal end of P5 is 
deleted; accordingly we modeled this template using two strands which were then rigidified and welded to each 
other. We used the ’Superimpose’ twoTransformForce to pull together bases in Azoarcus and Twort that were 
aligned as described above. Of the residues that have no equivalent in Twort, some were left to be folded by 
threading to additional templates as described above. Others were in known helical regions and modeled by applying 
‘WatsonCrick’ twoTransformForces. The ‘HardSphere’ contact was applied only to residues where a steric clash 
occurred.  
 
The model we obtained in this step was a global 3D structure with P1/2, P4-P6, P3-P7 and P9 formed exactly as 
Twort ribozyme but with several other portions not yet folded. The latter included the tetraloop-receptor in L2-P8, 
especially the receptor part in P8, since there is no template in Twort for this type of receptor. Azoarcus L9-P5 is 
similar to Twort but as mentioned the top of P5 stem including half of the receptor was distorted and deleted from 
the crystal structure. Lastly, the distal end of P6a in the Azoarcus intron construct used for crystallization has an 
engineered U1A loop, which of course is not present in the Twort intron or in the natural Azoarcus intron. We 
introduced a chain break in the model between nucleotides 109 and 110 to circumvent the engineered loop. 
 
To model L2-P8 and L9-P5, in the second stage, we introduced as additional templates two copies of the L5b and P6 
fragments from the Tetrahymena ribozyme. In each copy, L5b and P6 were rigidified using the ‘Rigid’ mobilizer 
and welded together using the ‘Weld’ constraint. Then ‘Superimpose’ baseInteractions were used to attach one copy 
each to the ends of the Twort P8 and P5 helices. With these prostheses the template now had the desired motifs in 
L2-P8 and L9-P5. The appropriate Azoarcus intron nucleotides were then threaded onto the corresponding 
nucleotides of the Tetrahymena intron fragment. 

4. Results  

To use homology modeling to predict the structure of the Azoarcus group I intron, we first aligned the secondary 
structure of the Azoarcus intron, established by comparative sequence analysis, to a version of the Twort secondary 
structure that was validated by its crystal structure (28) (Fig. 2). Although the crystal structure of the Azoarcus 
intron has been solved (32, 33), we did not use any information from this structure in the alignment or in the 
subsequent modeling. Despite representing different subgroups – the Azoarcus is designated as a IC3 intron and the 
Twort intron is a IA2 intron – the core elements of secondary structure and their connections are conserved (34). 
Further, many of these secondary structure elements and connections are identical in length between the two introns 
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and were aligned in a straightforward manner. Although the Twort intron includes some helical elements that are not 
present in the Azoarcus intron, the Azoarcus intron is not as large and complex as many group I introns, and all of its 
helical elements are present in the Twort intron. 
 
Nevertheless, some structural features differ significantly between the two introns, such that it was not possible to 
directly thread certain local regions to the Twort intron structure (Fig. 3; see Methods). Most notably, two tertiary 
contacts in the Azoarcus intron are formed by canonical tetraloop-receptor interactions between a GAAA tetraloop 
and a receptor that includes an internal loop and has been termed the 11-nucleotide receptor (29). One of these 
contacts is between L2 and P8 and the other is between L9 and P5. Although the Twort intron has tetraloop-receptor 
interactions at equivalent positions, the interacting partners are of different structural classes. Instead of being the 
11-nucleotide receptor, one of the receptors consists of two Watson-Crick base pairs, and the tetraloop for this 
receptor is GUAA instead of GAAA.  The other receptor, in P5, includes an internal loop and interacts with a 
GAAA tetraloop. However, it is a non-canonical version of the 11-nucleotide receptor, and it could not be used as a 
template regardless because it was disordered in the crystal structure (28). 
 

 
 
Figure 2. The secondary structures of A) the Azoarcus intron, B) the Twort intron, and C) the P4-P6 domain of the Tetrahymena intron. The 
domains are color-coded, with like colors indicating a correspondence between the Azoarcus model and the Twort or Tetrahymena intron 
templates. This correspondence was used as the basis for threading. Note that the tetraloop-receptor structure from the interaction of L5b with 
J6a/6b of the Tetrahymena intron (orange) was used as a template for both tetraloop-receptor contacts within the Azoarcus intron. Regions that 
were not threaded are shown in black.  
 
To model these tetraloop-receptor interactions, we took advantage of the presence of the canonical 11-nucleotide 
receptor in the P4-P6 domain from the Tetrahymena intron, whose structure has been solved by x-ray 
crystallography (31). We aligned the Tetrahymena intron fragment to the Twort intron structure by using the base 
pairs adjacent to the receptor motif and then threaded the tetraloop and receptor sequences from the Azoarcus intron 
onto the corresponding nucleotides within the Tetrahymena intron fragment (Fig. 3; see also Fig. 2). 
 
The final model of the Azoarcus intron was evaluated by superimposing it against the structure of the intron 
determined by crystallography (Fig. 4). The model has an RMSD with respect to the crystallographic coordinates of 
4.59 Å (Table 1). The topology is correct throughout the intron, and the placement of helices is also largely correct. 
The closest overall agreement is found in the core region, with an RMSD value of 3.54 Å.  The active site has a 
slightly higher RMSD value of 3.70 Å. 
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The peripheral regions also give a good overall agreement with the structure, as illustrated in Fig. 4. Nevertheless, 
larger differences were observed in the periphery than in the core. The receptor within P8, which was modeled using 
the Tetrahymena intron fragment, was positioned correctly and maintained the correct local structure, as expected 
from the known structural conservation of this tetraloop-receptor motif (31-33). However, a portion of P2 is shifted 
downward along its axis relative to its position in the crystal structure. Because the interaction of the tetraloop with 
the receptor in P8 was enforced by threading directly to the Tetrahymena intron fragment, the shift of P2 results in a 
minor, local distortion of P2 close to its distal end (Fig. 5A). Intriguingly, the shift of P2 can also be seen for the 
Twort intron structure relative to the Azoarcus intron structure (data not shown), suggesting that the subtle structural 
mismatch in this region, relative to the Azoarcus intron, is inherent to the Twort intron template. 
 

 
 
Figure 3. Modeling the Azoarcus intron (blue) by threading to fragments of the Twort and Tetrahymena intron structures. Three rigid fragments 
were used as templates: the nearly-complete intron from Twort (left, yellow) and the tetraloop receptor from the P4-P6 domain of the 
Tetrahymena intron (top, orange). The fragments corresponding to the Azoarcus intron were initially in extended conformations (bottom). The 
final model of the threaded Azoarcus intron, superimposed on the Twort and Tetrahymena template fragments, is shown at right. 
 
Table 1 

Region Nucleotides RMSD (Å) 

Entire intron 4-206 4.59 

Core:  
P1, P3, P4, P6, P7, P8, P8a 

 10-12, 41-59, 86-99, 120-153,  
158-178, 206  3.54  

Active site 
8-12, 85-89, 126-132, 137, 168-181, 
180-181, and 203-205, and substrate 

residues -3 to +2 
3.70 

Periphery:  
P2, P5, P5a, P6a, P9, P9.0 

 13-40, 60-84, 100-119, 154-157,  
179-205  5.40 

 
There are also small but significant differences in the P9 region. Notably, nucleotides G182 and A183, which were 
threaded into P9 of the Twort intron, do not form P9 pairs in the Azoarcus intron crystal structure (Fig. 5B). Instead, 
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they stack with the preceding nucleotides, forming an extension of P9.0 with non-canonical base pairs to A201 and 
A202. In large part because of this base-pairing difference, the RMSD value for P9.0 and P9 ranges above 5.0 Å, 
well above the average (Table 2). Nevertheless, the global and even local architectural features of this region are 
intact, with a sharp bend from P9.0 to P9 and the formation of a tetraloop-receptor contact with P5. 
 

 
 

Figure 4. Model of the Azoarcus intron (blue) superimposed on the structure determined by x-ray 
crystallography (green). Visible helices are labeled (see Fig. 2). 
 
 

 
 
Figure 5. Regions of the Azoarcus intron model (blue) superimposed on the corresponding regions of the crystal structure (green). A) Tetraloop-
receptor interaction of L2 and P8. B) P9 and P9.0. Each region is shown in wall-eyed stereoview in the same orientation as Figure 3.  
 
Table 2 
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Region Nucleotide range RMSD (Å) 

P1 10-12, 1-3 of the substrate oligonucleotide  2.55 
P2 13-37 4.34 

J2/3 38-40 7.20 
P3 41-47, 136-143 3.45 

J3/4 48-50 5.55 
P4 51-56, 88-93 3.11 

J4/5 57-59, 85-87 2.75 
P5/5a 60-84 5.62 

P6 94-96, 122-124 3.37 
J6/6a 97-99, 120-121 3.22 
P6a 100-119, 108-111 omitted 4.90 
J6/7 125-127 3.94 
P7 128-134, 173-178 4.01 
P8 144-166 4.34 

J8/7 167-172 3.66 
P9.0 179-181, 203-205 4.90 

J9/9.0 182-183, 198-202 6.00 
P9 184-197 5.96 
wG 206 3.05 

5. Discussion 

We used the RNABuilder software package to predict the structure of the Azoarcus group I intron by homology 
modeling to multiple templates. RNABuilder is an MRM method in that the templates, bases, and converged part of 
the model are rigidified, while forces are simultaneously treated at multiple levels of granularity. The model 
generated using this method displayed good agreement to the solved crystal structure of the Azoarcus intron, 
suggesting that this approach will be useful for a variety of applications in the structural biology of RNA.  
 
RNABuilder takes advantage of several features of the SimTK core toolkit (https://simtk.org), including multibody 
mechanics and the Contact subsystem, which make the software well-suited for applications such as that described 
here. Because they permit accurate physical simulation of constrained models, these features are valuable for 
generating structural predictions by modeling against known RNA structures or fragments. Multibody mechanics is 
faster for simulations with many constraints, whereas in Cartesian mechanics constraints add computational cost. In 
homology modeling it is useful to constrain portions of the structure while others are built, making multibody 
mechanics the logical choice. For the regions that are allowed to move, the contact spheres used by RNABuilder are 
an economical way to approximately detect and prevent steric clashes. With these features, RNABuilder is an 
exceptionally efficient software package for modeling structures of large, highly constrained systems like group I 
introns and other structured RNAs. 
 
In determining how to model the Azoarcus intron, we took steps to ensure that we were not inadvertently 
introducing information from the Azoarcus intron crystal structure. For the alignments, we only used a secondary 
structure model of the Azoarcus intron that was generated before the structure was solved (28). For regions that 
required decisions about how to thread them to the Twort intron structure, we adopted a systematic approach in 
which we maximized the correspondence to the Twort intron. In the region of P9, where the correspondences were 
the least clear (see Methods), this strategy resulted in successful prediction of the P9.0 base pairs but caused us to 
incorrectly predict two base pairs within P9. The tetraloop-receptor partners, which we modeled by threading to the 
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Tetrahymena intron fragment, are identical to the Tetrahymena intron sequences and had been predicted to share the 
same structure (28). 
 
Although the agreement between the model and the Azoarcus crystal structure was strong throughout the molecule, 
it is instructive to consider the regions that gave the highest similarity and the regions that were lower. The most 
striking agreement was found within the core of the intron (Table 1), as might be expected because this is the most 
highly conserved region. Therefore, threading to even the distantly-related group I intron from Twort gave a good 
structural model for the Azoarcus ribozyme. The RMSD in the active site is somewhat higher, mostly because this 
region contains P9.0 and J9/9.0 which had higher disagreement (see below).  On the other hand, the agreement was 
less strong in the periphery, where the conservation between the Azoarcus and Twort introns is much weaker. 
 
Lower accuracy was also observed in regions where the peripheral architectures differ between the introns. The 
Twort intron possesses additional peripheral elements, relative to the Azoarcus intron, which influence the 
connections between structural domains. Specifically, the junction between P9 and P9.0 is part of a three-helix 
junction in the Twort intron, whereas it is a two-helix junction in the Azoarcus intron (see Fig. 2). Analogously, the 
connection between P7 and P3 is part of a complex multi-helix junction in the Twort intron, whereas it is a simple 
stacked-helix connection in the Azoarcus intron. In light of these substantial structural differences, it is striking that 
the threading approach can give as good agreement as it does in these regions. Presumably, an important factor 
favoring accurate modeling here is that the Azoarcus intron possesses a minimal set of peripheral structure elements, 
and it is therefore essential for the function of the intron that each peripheral element conform to the orientations and 
contacts found in homologous structural elements in other introns. 
 
The success of the modeling here suggests that this approach is likely to be useful for modeling of even larger and 
more complex RNAs. The use of internal coordinates (in which dynamics are computed in linear time) and a force 
field consisting only of user-imposed interactions (avoiding long-range physical forces whose calculation scales 
poorly) means that significantly larger molecules can be treated with only a proportionate increase in cost.  Further, 
some portions converge early and these can be rigidified while the rest of the threading continues, reducing 
computational cost.  In this work the helices of azoarcus that were not threaded were formed by manually specifying 
base pairing contacts; by extension larger regions or even entire molecules could potentially be formed by 
specifying a sufficient number of such contacts.  Alternatively these regions could be formed using MC-Sym, DMD, 
or NAST, which can build molecules in the 50-150 residue size range. 
 
In one potential extension of this work, recent crystal structure determination and model of group II introns may 
prove useful for modeling of distantly related group II introns (35, 36). It may also be possible to model the 
ribosomal subunits as well as the much larger complete ribosomes, viral genomes (37), and spliceosomal complexes 
using this method. Key to the extension of our method is the ability to model larger regions of the molecule without 
templates and to handle such molecules without excessive computer time and memory requirements. The existing 
code makes substantial progress in these directions. In future work, continued improvements in speed, memory 
usage, and accuracy of the force fields will be useful for modeling of larger molecules and complexes. 
 
 
 

6. Distribution 

A binary distribution of RNABuilder is available for download from the RNAToolbox project on the Stanford 
Simbios Center’s website, SimTK.org. A tutorial is available in the “Downloads” section.  Simbios also provides 
software support and workshops. 
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Simulating biologically relevant timescales at atomic resolution is a challenging task since typical atomistic simulations are at least two 
orders of magnitude shorter.  Markov State Models (MSMs) provide one means of overcoming this gap without sacrificing atomic resolution by 
extracting long time dynamics from short simulations.  MSMs coarse grain space by dividing conformational space into long-lived, or metastable, 
states.  This is equivalent to coarse graining time by integrating out fast motions within metastable states.  By varying the degree of coarse 
graining one can vary the resolution of an MSM; therefore, MSMs are inherently multi-resolution.  Here we introduce a new algorithm Super-
level-set Hierarchical Clustering (SHC), to our knowledge, the first algorithm focused on constructing MSMs at multiple resolutions.  The key 
insight of this algorithm is to generate a set of super levels covering different density regions of phase space, then cluster each super level 
separately, and finally recombine this information into a single MSM.  SHC is able to produce MSMs at different resolutions using different super 
density level sets.  To demonstrate the power of this algorithm we apply it to a small RNA hairpin, generating MSMs at four different resolutions. 
We validate these MSMs by showing that they are able to reproduce the original simulation data.  Furthermore, long time folding dynamics are 
extracted from these models.  The results show that there are no metastable on-pathway intermediate states.  Instead, the folded state serves as a 
hub directly connected to multiple unfolded/misfolded states which are separated from each other by large free energy barriers.   
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1. Introduction 

       Conformational changes are crucial for a wide range of biological processes including protein folding[1], 
RNA folding[2] and the operation of key cellular machinery[3-5].  Extensive genetic, biochemical, biophysical and 
structural experiments can be performed to understand these conformational changes[3-5].  However, probing the 
mechanisms of conformational changes at atomic resolution is very difficult experimentally and without these 
details it is impossible to understand the fundamental chemistry they perform.  Computer simulations may 
complement such experiments by providing dynamic information at an atomic level.  However, there is a gap 
between the timescales where interesting biologically relevant conformational changes occur (typically 
microseconds and up) and those we can simulate at atomic resolution (typically only tens of nanoseconds).  The 
length of atomistic simulations is limited by the need to take small timesteps (1 or 2 fs), which is determined by 
high frequency motions such as chemical bond stretching.  One natural way to bridge this timescale gap is to use 
coarse grained models where the smallest unit of the system represents a group of atoms[6, 7].  In these models, 
much longer timesteps are allowed since the high frequency motions are not explicitly simulated.  Coarse grained 
simulations work well for a variety of problems[8-12]; however, these models sacrifice accuracy for speed, making 
them less than ideal for investigating the detailed mechanisms of conformational changes.      

An alternative approach to overcome the timescale gap is to build discrete-time Markov State Models (MSMs) 
[13-17].  These models may be built from many short (nanosecond timescale) simulations and then propagated to 
give long timescale dynamics, such as processes occurring on microsecond timescales or even longer.  MSMs 
partition phase space into a number of distinct states, called metastable states, such that intra-state transitions are 
fast but inter-state transitions are slow.  Such separation of timescales ensures that the model is Markovian, in that 
the probability of being in a given state at time t+∆t depends only on the state at time t.  In an MSM, the time 
evolution of a vector representing the population of each state may be calculated by repeatedly left-multiplying by 
the transition probability matrix. 

 
( ) [ ( )] (0nP n t T t PΔ = Δ                                               (1) 

 
where P(n∆t) is a vector of state populations at time n∆t and T is the column-stochastic transition probability matrix. 
Any model is Markovian for a sufficiently long lag time (τ = ∆t), because the system is able to relax to an 
equilibrium distribution from any arbitrary starting distribution after one lag time.  The key point is to build a model 
with a lag time that is shorter than the timescale of the process of interest with a reasonable number of states.  This 
requires a very good state decomposition, which is difficult.  A few different approaches have been developed to 
address this issue[13-18].  There also exist other methods to bridge the timescale gap such as milestoning [19].  
However, most of these methods require the reaction coordinate is known a priori, while this information is often 
difficult to obtain.   

MSMs are also multi-resolution in nature[13, 14].  In order to achieve a Markovian model at a certain lag time, 
the states must be defined such that large internal free energy barriers are avoided and conformations within the 
same metastable state can interconvert within one lag time.  Thus, the number of states needed in an MSM depends 
on the desired lag time.  The smaller the lag time is, the more states the MSM needs to ensure that dynamics within 
each state are memory-less after one lag time.  A short lag time would result in a high resolution MSM having many 
metastable states, capturing numerous free energy minima separated by small barriers.  A longer lag time results in a 
low resolution MSM with only a few states, each of which contains multiple local free energy minima.  We 
introduce a new algorithm, Super-density-level Hierarchical Clustering (SHC), to construct MSMs at different 
resolutions for conformational dynamics.  To our knowledge, SHC is the first algorithm focusing on generating 
MSMs at multiple resolutions.  

The key insight of the SHC algorithm is to cluster conformations hierarchically using super density level sets in 
a bottom-up fashion starting with the densest regions of phase space, which correspond to the bottoms of free 
energy minima.  This algorithm can generate multi-resolution models by tuning the super density level sets, and 
each level of resolution constitutes a discrete-state MSM with a particular partitioning of phase space.  At low 
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resolution, it generates a coarse state decomposition with a small number of metastable states while at high 
resolution it generates a finer state decomposition with more metastable states. This leaves one the flexibility to 
select an MSM at the best resolution to study their biological problem.   

The procedure to build MSMs using SHC is as follows. (1) Partition the conformations into a large number of 
states, called microstates, according to their structural similarity.  An approximate K-centers clustering 
algorithm[20] is used here as it gives states with approximately uniform size, resulting in a correlation between the 
population of each state and its density.  (2) Split the microstates into n density levels ordered from high to low 
density (L= {L1, … Ln}) such that each level contains approximately the same number of conformations.  Then 
construct super density level sets Si, where 1 2 1...iS L L L L−i i= ∪ ∪ ∪ .  Thus each super density level contains all 
previous levels . (3) Within each super density level (Si), perform spectral clustering to group 
kinetically related microstates.  Metastable regions are better separated at high density super levels, since most of 
the fuzzy microstates in the transition region are excluded at these levels.  Now, build a graph representing the 
connectivity of the states across super density levels.  Then generate gradient flows along the edges of the graph 
from low to high density levels.  Each attraction node (or attractive basin) where the gradient flow ends is assigned 
to a new metastable state. (4)  Assign every microstate not belonging to an attraction node to the metastable state it 
has the largest transition probability to.  Thus we have a complete state decomposition for an MSM.  Furthermore, 
this procedure may be repeated with different super density level sets to construct MSMs at different resolutions.  
The larger the number of super density levels, the finer the resolution and the larger the number of metastable states 
in the final MSM.  

1 2... iS S S⊆ ⊆

In order to test SHC, we apply it to a small RNA hairpin with microsecond time scale dynamics: an eight 
nucleotide RNA GCAA tetraloop with the sequence 5’-GCGGCAGC-3’.  It has 4 bases in the loop and two stem 
base pairs as shown in Figure 1.  RNA hairpins are a ubiquitous secondary structure motif often involved in tertiary 
contacts[21].  Much experimental work has been done on these systems as a step towards understanding larger RNA 
molecules but knowledge of their folding is still incomplete[22-28].  Despite their small size, even eight nucleotide 
hairpins fold on a microsecond timescale[23], about two orders of magnitude longer than typical atomic simulations.  
However, using SHC, we are able to construct multi-resolution MSMs from many short 45 ns atomistic simulations. 
These models are able to predict microsecond timescale dynamics.  We compare MSMs at different resolutions and 
also validate them by confirming their ability to reproduce the original simulation trajectories.  Furthermore, we 
extract the kinetics between the most populated metastable states from our MSMs.  The results suggest that the 
folded state is a hub connected to many non-native metastable states that are mostly uncoupled from one another.  
No metastable intermediate states are identified, while there are a few misfolded states such as states with shifted 
base pairing or an unfolded loop.  This indicates that folding of an eight nucleotide RNA hairpin with only two stem 
base pairs might be different from RNA hairpins with longer stems where stable thermodynamic intermediate states 
were seen in previous simulations[22].          
   

Figure 1. (A) Structure of the 8 nucleotide RNA GCAA tetraloop, generated by truncating the two terminal base pairs from the NMR structure of 
a 12 nucleotide tetraloop (PDB ID 1zih).  (B) The cartoon representation of the same structure using sticks to represent the orientation of the 
bases.  The same cartoon representation will be used in Figure 6 to illustrate representative structures from different metastable states. 
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2. Methods 

Here we explain the SHC algorithm in detail using an RNA GCAA tetraloop as an example.  The dataset we 
examine here contains 9,963 45ns explicit solvent molecular dynamics simulations with an aggregate simulation 
time of 448 microseconds.  Conformations are saved every 0.2 ns, and the total number of conformations is about 
2.3 million. These simulations are initiated from different metastable regions of phase space identified by short 
Simulated Tempering[29, 30] simulations following the Adaptive Seeding Method (ASM)[31].  More simulation 
details are available in Appendix A.   

2.1.  Partitioning conformations into microstates 

Modern computer simulations can easily generate massive data sets with millions of conformations, making 
analysis of these data sets computationally challenging.  To reduce the dimensionality of the data, we first group 
conformations into a large number (a few thousand or tens of thousands) of small clusters called microstates based 
on their structural similarity, in this case measured using the Root Mean Square Deviation (RMSD) between all 
heavy atoms.  Each microstate must be small enough to ensure conformations in the same state can interconvert 
rapidly.  An approximate K-centers clustering algorithm[20] was used here to generate microstates by minimizing 
the maximum cluster radius, where the cluster radius is defined as the maximum heavy atom RMSD distance 
between the cluster center and any other conformation within the cluster.  The detailed implementation of the 
algorithm is discussed elsewhere[18, 20], and the code for the approximate K-centers clustering is available through 
the MSMBuilder package[18].  This algorithm has a computational complexity of O(kN), where k is the number of 
clusters and N is the number of conformations to be clustered.  Moreover, it gives states with approximately equal 
radii.  As a result, there is a correlation between the population of each microstate and its density, allowing us to 
define density levels in the subsequent steps.   

We have clustered ~2.3 million conformations into 10,000 microstates, and the same microstate decomposition 
is used to build all MSMs in this work.  The cluster radius distribution has a sharp peak around 4 Å, confirming that 
the clusters have approximately equal radius (data not shown).  Thus, the population of each microstate is a 
reasonable indicator of its conformational density.  However, we note that even small differences in the radius of 
microstates may imply relatively large variations in their volumes due to the high dimensionality of conformation 
space.  We empirically find that assuming all clusters have approximately equal volumes is useful.  In the future, we 
can improve the density estimation step by working on low dimensional sub-manifolds where density estimation is 
consistent and accurate.  These low dimensional sub-manifolds can be constructed with nonlinear dimensionality 
reduction techniques[32]. 

2.2. Super density level set formation 

In this step, we first split the microstates into n density levels L= {L1, … Ln}.  As discussed above, the density 
of microstates d1...dk can be estimated from their populations by dividing number of conformations within each 
microstate by the total number of conformaitons.  We order microstates according to the value of di and classify the 
microstates into n consecutive levels.  Each level contains about the same number of conformations.   Density levels 
are ordered from high to low density, and labeled 1 to n.  For example, from our RNA dataset, we have generated a 
density level set with three levels L= {L1, L2, L3}.  L1, L2, and L3 contain 146, 615, and 1810 microstates 
respectively, and approximately an equal number of conformations (each level contains about 25% of the total 
conformations, the remaining conformations are ignored until the final step of the algorithm).  Thus, level L1 has the 
least number of microstates and contains only the highest density regions.  From the density level set, we can easily 
construct the super density level set S= {S1, …, Sn} by defining i i1 2 1...iS L L L L−= ∪ ∪ ∪ .  Each super density 
level contains all previous levels .  In our example, three super density levels S1, S2, and S3 are 
created, containing 25%, 50% and 75% of the total conformations respectively.   Recently,  a topological data 
analysis approach[33, 34] based on similar ideas regarding clustering in density level sets has been successfully 
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applied to perform geometric clustering on biomolecular data.  However, we found in this study that super level 
sets yield better results than density level sets in identifying kinetically metastable states  (data not shown).      

2.3. Spectral Clustering within super density levels 

Spectral clustering [35-38]  is performed on a transition probability matrix within each super density level (Si).  
Since these transition probablity matrixs are generated by normalizing number of transitions between pairs of 
micorstates by counting directly from the original simulation trajectories,  applying spectral clustering on them is 
able to lump kinetically related microstates into larger metastable states.  Metastable regions are better separated in 
high density super levels, since most of the fuzzy microstates in transition regions are excluded at these levels.  For 
example, in the RNA dataset, multiple disconnected blocks are found in the transition probability matrix for level 
S1, indicating good separation of metastable regions.  When we move up to levels containing more low density 
microstates, less and less disconnected blocks are found in the transition probability matrix, and eventually the 
matrix becomes completely connected.  In the example with three density levels, the first level S1 contains 35 
metastable states, S2 contains 25, and S3 contains only 6 states.  In order to identify nearly disconnected blocks in a 
transition matrix, we choose eigenvalues very close to 1 for spectral clustering.  In particular, a constant spectral gap 
of 0.0001λΔ =  is used for this example.   

 

Figure 2. A graph describing the connectivity of the metastable states generated by SHC.  Each node in the graph denotes a single metastable 
state.  Each row corresponds to one super density level:  states belonging to S1 (in red), S2 (in blue), and S3 (in green) contain 25%, 50%, and 75% 
of all the conformations respectively.  Two nodes are connected if they share microstates, and the arrows represent the gradient flows from low 
density to high density regions, i.e. from S3 to S1.  Arrows representing self transitions are plotted at attraction nodes where the flow ends.  The 
radius of each node is scaled linearly by its population within each super level.   

Next we build a graph representing the connectivity of the metastable states across super density levels. Figure 
2 is an example of such a graph with three levels.  Each node in the graph represents one metastable state.  As 
discussed above, the number of nodes in each level decreases from S1 to S3.  In S1, there is a large node (node 1) 
containing 64% of all the conformations in that level.  Similar nodes can also be found in other levels such as node 
2 (83%) in S2 and node 3 (99%) in S3. These results suggest that there is a large metastable state corresponding to 
the folded state, to be discussed in more detail in the Results and Discussion section.  In the next step, gradient 
flows are generated along the edge of the graph from low to high density levels.  Nodes that do not have any flow 
into denser states correspond to basins of attraction, or metastable states.  For example, node 1 is an attraction node, 
while nodes 2 and 3 are not.  As shown in Figure 2, there are 46 attraction nodes in this model (35 in S1 and 11 in 
S2). Thus the model contains 46 metastable states. 

2.4. Assigning microstates not in attraction nodes 

In the previous step, all the attraction nodes were selected as metastable states.  Here, we will assign the 
remaining nodes to metastable states, as well as microstates that were not included in any of the density levels.  This 
is achieved by computing the transition probabilities from each of these microstates to all possible metastable states, 
and assigning each microstate to the metastable state it has the largest transition probability to.  If a particular 
microstate cannot transition to any of the metastable states in a single step we consider a progressively larger 
number of steps until we see transitions between this microstate and some metastable state.  
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Following the above steps yields a complete state decomposition for an MSM.  In the example shown in 

Figure 2, a 46-state MSM is generated.  In order to construct MSMs at different resolutions we repeat the same 
procedure using different numbers of super density levels.   

3. Results and Discussion 

3.1. Constructing MSMs at different resolutions 

Using SHC, we have constructed four different MSMs by varying the number of super density levels (NL) all 
with a lag time of 0.2 ns.  The super density level set is defined as S= {d0/NL, 2d0/NL,…, d0}, where d0 = 0.75.  
Specifically, we used 3, 6, 9, and 15 super density levels, yielding MSMs referred to as L3 MSM, L5 MSM, L9 
MSM and L15 MSM respectively.  In addition, we also built a model (L1 MSM) with L = 1 as a control.  Some 
properties of these models are listed in Table 1.   
 

Table 1. Number of states (N), metastability (Q), and average self transition Probability (<Tii>=Q/N)  
for five MSMs generated by SHC using super density level sets containing L levels. 

 
L 1 3 6 9 15 
N 6 46 57 63 68 
Q 5.95 44.3 54.2 59.3 63.4 

<Tii> 99.1% 96.3% 95.1% 94.1% 93.2% 
 

The first property in the table is the number of macrostates in each MSM.  This number increases with L, and 
L15 MSM contains more than ten times more states than L1 MSM.  With many more states, L15 MSM is a higher 
resolution model than L1 MSM.  Thus SHC is able to generate multi-resolution MSMs by changing the number of 
super density levels NL.  Metastability is another important property for an MSM.  A good MSM should contain a 
state decomposition which maximizes the separation of timescales.  The self-transition probability, indicating the 
stability of each macrostate, is a simple and straightforward way to check if there is a good separation of timescales.  
The metastability (Q) listed in Table 1 is defined as the sum of the self-transition probabilities (Tii) of each 
macrostate.  Table 1 also shows the average self transition probability: <Tii> = Q/N, where N is the number of 
metastable states.  <Tii> decreases with L, indicating higher resolution models have smaller average self transition 
probabilities.  This is consistent with the fact that higher resolution models will capture smaller free energy minima, 
which are separated by smaller free energy barriers and therefore less metastable.   

Another interesting property, which is not listed in the table, is the population of each macrostate. For the 
control model L1 MSM, the populations of the six states ordered from high to low are: 98.0%, 1.6%, 0.2%, 0.05%, 
0.05%, and 0.05%.  Only two states have populations greater than 1%, and the rest have negligible populations.  A 
closer look at the data shows that these four states each contain only a single microstate, and they are almost 
disconnected from the rest of phase space.  Thus these four states might not be significant metastable regions, but 
just noise due to insufficient sampling.  This is one issue with spectral clustering algorithms such as PCCA[37] and 
PCCA+[38], which tend to first separate the most disconnected blocks from the transition probability matrix.  This 
makes it difficult to choose a proper number of metastable states in order to identify all the significant metastable 
regions.  SHC is able to overcome this issue by clustering from the highest density super level, which guarantees 
that the most populated metastable regions are identified first.  L3 MSM, L5 MSM, L9 MSM, and L15 MSM 
contain 8, 15, 12, and 10 states with populations larger than 1% respectively.     

3.2. Validating MSMs 

In this section, we will validate the MSMs discussed above in two ways: implied timescales and Chapman-
Kolmogorov equation. 

Implied timescales.  Examining the behaviors of the implied timescales is one way to check if the model is 
Markovian as first suggested by Swope. et. al.[16].  Implied timescales (τk) can be computed from the eigenvalues 
of the transition matrix T as shown below:  
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where μk is an eigenvalue of the transition matrix with the lag time τ.  Each implied timescale describes an aggregate 
transition between subsets of macrostates.   If the model is Markovian and Equation (1) holds, the exponentiation of 
T should be identical to an MSM constructed with a longer lag time, and the implied timescales will be independent 
of the lag time.  This requires that lag times are sufficiently long.  The shortest lag time for this condition to hold is 
defined as the Markovian time, which is correlated with the longest internal equilibrium time of any state.  Figure 3 
displays implied timescales plots as a function of the lag time for L3 MSM.  As shown in Figure 3 (a), the implied 
timescales level off around a lag time of 20ns.  This implies that the model is Markovian with long enough lag 
times.  However, big fluctuations are observed for the three slowest timescales.  A further investigation shows that 
these slow timescales are due to low-population states which are nearly disconnected from the other states.  If we 
exclude three states (with populations 0.1%, 0.09%, and 0.04%) containing very few non-self transition counts from 
our analysis, these slowest timescales disappear (see Figure 3 (b)).  The implied timescale plots for other resolution 
MSMs also level off as shown in Figure 4.  These results suggest that MSMs generated from SHC are Markovian 
with sufficiently long lag times.  Higher resolution MSMs with a finer discretization of phase space should have 
shorter Markovian times, since the intra-state equilibrium times are shorter.   Looking at Figure 4, the implied 
timescales of L15 MSM seem to level off slightly faster than those of L6 MSM.  However, it is hard to tell by eye 
whether there is any large difference in the Markovian times for these models.  Thus, the implied timescales check 
has some drawbacks.  It is difficult to determine by eye if and where the implied timescales level off.   In addition, 
small uncertainties in the eigenvalues can induce large uncertainties in the implied time scales[14].     
 

 
 
Figure 3. Top twenty implied timescales as a function of the lag time for the L3 MSM (L3 denotes the super density level set containing 3 levels) 
The plots are generated by using (a). the transition probability matrix with all 46 states. (b) the transition probability matrix with only 43 states 
with three nearly uncoupled states excluded (These three states have very few transition counts to other states).  

 

Figure 4. Top twenty implied timescales as a function of the lag time for (a) L6 MSM, (b) L9 MSM, and (c) L15 MSM.  L6, L9, and L15 indicate 
that 6, 9 and 15 super density levels are used to generate these MSMs respectively.  The insert in (b) is the same as the main figure except that the 
y axis goes up to 7 microseconds in order to show one very long implied timescale.  
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     Chapman-Kolmogorov Check.  An alternative way to validate MSMs is to directly check if Equation (1), a 

form of  the Chapman-Kolmogorov equation, holds[14].   Figure 5 shows the time evolution of the populations of 
the top eight most populated states in L3 MSM.  Populations extracted from the raw data are compared with those 
generated by the MSM starting from the same initial populations (see Equation (1)).  As shown in Figure 5, these 
populations agree well within statistical error.  Similar agreement was found for the other MSMs as well (data not 
shown). These results suggest that MSMs generated by SHC are consistent with the original dataset from which 
they were constructed.  The final obervation is that population distriutions are almost flat,  which may suggest that 
the starting conformations of the simulations generated from the Adaptive Seeding Method[31] are already close to 
the equilibrium distribution (See Appendix 1 for details). 
 

 
Figure 5. Comparison between the time evolution of the populations of the eight most populated states (with populations larger than 1%) in the 
L3 MSM (red) and the raw data (black).  The error bars in the black curves are the standard deviations computed from one hundred boot strapping 
runs each of which randomly selected 8,000 of 9,963 trajectories with replacement. A 20ns lag time is used to build the transition probability 
matrix based on the L3 MSM state decomposition. 

3.3. RNA hairpin folding mechanism 

Despite the small size of RNA hairpins, there is some debate over whether they fold in a two-state or multi-state 
manner.  Thermodynamic measurements such as temperature melting[25] support the two-state model, while kinetic 
experiments such as temperature jump suggest a multi-state model[39].  Using the laser  temperature jump 
technique, the Gruebele group[23] observed two unfolding relaxation phases of the eight nucleotide gcUUCGgc 
hairpin at low temperatures: a fast phase of 1-2 microseconds, and a slow phase of 5-10 microseconds[23, 40]. They 
also developed a lattice model with four metastable states that accurately reproduced the experimental data[23].  
However, it is difficult to extract information at atomic resolution from this simple model.   

MSMs are a useful tool for extracting kinetics from atomistic simulations.  From L3 MSM, we have computed 
the Mean First Passage Time (MFPT) between the eight most populated metastable states.  The MFPT is defined as 
the average time taken to get from the initial state to the final state[41].  It can easily be computed from a transition 
probability matrix (see the Appendix B for details).  The results of this calculation are displayed in Figure 6, along 
with representative structures from each state.  State 1 is the folded state and has the largest population (77.1%), 
indicating the free energy surface is biased to the native state at 300K.  Multiple non-native states, each directly 
connected to the folded state, are also identified: e.g. states 3 and 4 with coil structures, state 2 with a shifted base 
pairing, and state 5 with an unfolded loop.  MFPTs for folding (i.e. transitions from non-native states to the folded 
state) are all around a few hundred nanoseconds, while MFPTs for unfolding are at least an order of magnitude 
longer (from a few to tens of microseconds).  This confirms that the folded state is the most stable state at 300 K.  
All MFPTs between non-native states are at least eight microseconds, much longer than those for folding.  This 
suggests that these states are uncoupled from each other.   Therefore, no metastable on-pathway intermediate states 
are indentified in this system.  The transition from state 1 (folded) to 8 (shifted base pairing) has the longest MFPT 
(45.7 microseconds) among all the unfolding transitions, indicating a large energy barrier for breaking non-native 
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base pairing/stacking followed by forming native ones.  State 5 (unfolded loop) has the shortest MFPT (0.16 
microseconds) among all the folding transitions, which suggests the kinetics of loop rearrangements are relatively 
rapid. 

We have successfully extracted kinetic information between the most populated metastable states from our 
MSMs.  The overall unfolding timescales fall in a range of a few to tens of microseconds, in qualitative agreement 
with experimental observations.  However, direct comparisons between our simulations and laser T-jump 
experiments are not possible at present because our simulations are at a single temperature and are therefore unable 
to capture effects due to the temperature jump.  No stable thermodynamic intermediate states were found for folding 
of this 8 nucleotide RNA hairpin, in contrast to a previous study of a 12 nucleotide hairpin[22].  These results 
suggest that increasing the number of stem base pairs complicates the folding mechanisms of RNA hairpins. 

   

 
 

Figure 6: Mean First Passage Times (MFPTs) between the eight most populated states in the L3 MSM with a lag time of 20ns (L3 MSM is 
generated from a super level set with three levels, see Table 1 for details).  All the MFPTs are in units of microseconds.  States are labeled in red 
from 1 to 8 according to their populations in descending order. The populations of each state are shown in black. Two representative 
conformations are shown from each state using Pymol[42] with a cartoon representation.  These conformations were extracted by selecting the 
centers of the top populated microstates in each macrostate. 

4. Conclusions and Future Plans 

Markov State Models (MSMs) are a useful tool for bridging the gap between experimental and computational 
timescales.  MSMs are inherently multi-resolution, however, algorithms focused on constructing MSMs at different 
resolutions are lacking.  Here we have introduced a new algorithm, called Super-level-set Hierarchical Clustering 
(SHC), which is capable of constructing MSMs of conformational dynamics at multiple resolutions.  The key 
insight of this algorithm is to perform spectral clustering hierarchically using super level sets starting from the 
highest density level, which guarantees that highly populated metastable regions are identified before less populated 
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ones.  This is an improvement over direct application of spectral clustering to the full data set, which tends to 

identify sparse states that are very weakly coupled to the rest of phase space due to insufficient sampling before 
identifying real metastable states in denser regions of phase space.  We applied SHC to an 8 nucleotide GCAA 
RNA tetraloop, and built four MSMs at different resolutions.   Each of these models was validated by both the 
implied timescales and Chapman-Kolmogorov checks.  The overall unfolding timescales predicted from our MSMs 
are between a few and tens of microseconds, which are qualitatively consistent with those observed by laser 
temperature jump experiments.  Our results suggest that there are no metastable intermediate states.  Instead, the 
folded state is directly connected to multiple unfolded and misfolded states, which all fold faster than they 
interconvert with one another.   

In SHC, we use the populations of microstates from K-centers clustering to approximate their conformation 
density.  However, estimating densities in high dimensional spaces is quite challenging.  In particular, our 
approximate K-centers algorithm only generates clusters with approximately equal radii and small variances in the 
cluster radius may induce large volume differences.  In the future, we plan to improve our density estimates by 
computing kernel density functions around microstate centers or the average of the kernel density for a few 
randomly selected conformations within the state.  Alternatively, we may employ nonlinear dimensionality 
reduction techniques[32] to discover lower dimensional spaces where the density may be estimated more easily.   
We have demonstrated that SHC is able to generate a large number of MSMs at different resolutions.  However, we 
haven’t discussed how to determine which one is the best model.  A Bayesian approach to compare different MSMs 
by Bacallado et al.[43] may be used for model selection in the future.  Finally, while we have focused on identifying 
metastable states in this work, SHC may also be used to identify intermediate and transition states by studying non-
attractive nodes in lower density super density levels.  In addition to being biologically relevant themselves, 
identification of these states could allow us to perform adaptive sampling by starting more simulations from 
transition states in order to rapidly sample transition events between metastable states.   
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 Appendix A: Simulation Details 

Our simulations were generated using the Adaptive Seeding Method (ASM)[31]. First, two sets of 1120 27ns 
Simulated Tempering (ST) simulations[29, 30] were run: one started from a folded state and the other from a 
random coil.  An independent MSM with 10 states was then built using MSMBuilder[18] for each dataset in order 
to identify the dominant metastable states. Next, one hundred random conformations were selected from each 
metastable state and used as starting points  for new constant temperature simulations (2,000 points in total).  Five 
45ns constant temperature 300K MD simulations were launched from each point.  This resulted in a dataset with 
9,963 trajectories (some simulations were not completed).  All the simulations were performed using Stanford’s 
Bio-X2 cluster and Folding@Home[44].  We used nucleic acid parameters from the AMBER99 force field[45, 46]. 
The RNA molecule was solvated in a water box with 2,543 TIP3P[47] waters and 7 Na+ ions.  The simulation 
system was minimized using a steepest descent algorithm, followed by a 100ps MD simulation applying a position 
restraint potential to the RNA heavy atoms.  All NVT simulations were  coupled to a Nose-Hoover thermostat with 
a coupling constant of 0.02ps-1[48].  A cutoff of 10 Å was used for both VdW and short range electrostatic 
interactions.  Long-range electrostatic interactions were treated with the Particle-Mesh Ewald (PME) method[49].  
Nonbonded pair-lists were updated every 10 steps with an integration step size of 2 fs in all simulations. All bonds 
were constrained using the LINCS algorithm[50]. 
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Appendix B: Mean First Passage Time (MFPT) 

The mean first passage time (MFPT) from initial state i to final state f  in an MSM is the average time taken to 
get from state i to state f[41].  The MFPT (Xif) given that a transition from state i to j was made first is the time it 
took to get from state i to j plus the MFPT from state j to f.  Thus the MFPT (Xif) can be defined as (cite), 

 

(if ij ij jf
j

X P t X= +∑                   (A.1) 

where tij is the lag time of the transition matrix T.  The boundary condition for this calculation is: 
 

0ffX =                  (A.2) 

 
The set of linear equations in Equation (A.1) and (A.2) can be solved to obtain the MFPT Xif.  
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Proteins and other macromolecules have coupled dynamics over multiple time scales (from femtosecond to millisecond

and beyond) that make resolving molecular dynamics challenging. We present an approach based on periodically
decomposing the dynamics of a macromolecule into slow and fast modes based on a scalable coarse-grained normal

mode analysis. A Langevin equation is used to propagate the slowest degrees of freedom while minimizing the nearly

instantaneous degrees of freedom. We present numerical results showing that time steps of up to 1000 fs can be used,
with real speedups of up to 200 times over plain molecular dynamics. We present results of successfully folding the

Fip35 mutant of WW domain.

Keywords: Normal mode dynamics; Langevin dynamics; Multiscale integrators

1. Introduction

Proteins are unique among polymers since they adopt 3D structures that allow them to perform functions
with great specificity. Many proteins are molecular machines that serve numerous functions in the cell. For
instance, protein kinases serve as signal transductors in the cell by catalyzing the addition of phosphate to
specific residues in the same or different proteins. Different signals cause kinases to change from an inactive to
an active state. To understand these biophysical processes, it is necessary to understand how proteins move
(the mechanism), the kinetics (rates, etc.), and the stability of these conformations (thermodynamics).1

Despite many years of research, simulating protein dynamics remains very challenging. The most straight-
forward approach, molecular dynamics simulations using standard atomistic models (e.g. force fields such as
CHARMM2 or AMBER3 ), quickly runs into a significant sampling challenge for all but the most elementary
of systems. Detailed atomistic simulations are currently limited to the nanosecond to microsecond regime.
The fundamental challenge to overcome is the presence of multiple time scales: typical bond vibrations are
on the order of femtoseconds (10−15 sec) while proteins fold on a time-scale of microsecond to millisecond.
The identification of the slowest variables in the system (e.g. associated with the slowest time scales and
transition rates) is to a large extent an unresolved problem.

We introduce a novel scheme for propagating molecular dynamics (MD) in time, using all-atom force
fields, which currently allows real speedups of 200-fold over plain MD. We have an automatic procedure
for discovering the slow variables of MD even as a molecule changes conformations, based on recomputing
coarse-grained normal modes (CNMA). CNMA is fast, with cost comparable to force computation rather than
diagonalization. We propose a scheme to propagate dynamics along only these slowest degrees of freedom,
while still handling the near instantaneous dynamics of fast degrees of freedom. We present successful results
for folding a WW domain mutant, and simulating dynamics of calmodulin and a tyrosine kinase (details in
http://www.normalmodes.info).

Our slow variables are approximate low-frequency modes. Normal modes are the eigenvectors of the
Hessian matrix H of the potential energy U at an equilibrium or minimum point x0 with proper mass
normalization. More formally assume a system of N atoms with 3N Cartesian positions and diagonal mass
matrix M. Then, M−

1
2HM−

1
2Q = QΛ, where Λ is the diagonal matrix of ordered eigenvalues and Q the

matrix of column eigenvectors q1, · · · , q3N . The frequency of a mode is equal to
√
λ where λ is the eigenvalue.

What we accomplish with normal mode analysis (NMA) is a partitioning in frequency. Low frequency modes
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correspond to slow motions of the protein while the fastest modes are associated with fast local bond
vibrations. This allows for efficient propagation of the slow dynamics. The following algorithm is used for
‘partitioned propagation’ for a system of N atoms.

1.1. Initial setup.

Starting at an initial conformation x0 ∈ R3N , we define X and Y as vectors ∈ R3N of displacements from
x0 in the slow and fast spaces, respectively. Then any configuration, x, can be written as x = X + Y + x0,

for projection matrices P (x) and its complement P⊥(x) = (I − P )(x)

X = P (x)x, Y = P⊥(x)x. (1)

The initial conformation x0 is chosen as a local minimum so that we can expand the potential energy
U(x) about x0. The essence of the method is to select Q0 ∈ 3N × m, as the first m column eigenvectors
(q1, · · · , qm), ordered according to their eigenvalues, as the basis for the projection matrix s.t.

P 0 = M−
1
2Q0Q

T
0 M

1
2 . (2)

In the linear case the time step is bounded by the asymptotic stability of the method4 at a frequency equal
to
√
λi, rather than the highest frequency in the system. Our results show this is a good heuristic to choose

the time step.

1.2. General step.

At step i we propagate the system using the mapping Φ, which is based on a complete all-atom force-field,
not a harmonic approximation: [

Xi

Yi

]
= ΦPi−1

[
Xi−1

Yi−1

]
, (3)

such that the system is minimized w.r.t. the fast variables, i.e. ∇Y U(Xi + Yi + xo) = 0. At the initial step,
∇XU(X + Y + xo) = 0 as well, which is required for the initial frequency partitioning. We then find the
projection matrix, which is a function of x, from the eigenvectors of M−

1
2HiM

− 1
2 , Qi,

P i = M−
1
2QiQ

T
i M

1
2 . (4)

Fig. 1. Maximum speedup possible for the dynamics in the

slow subspace defined by keeping a certain percentage of modes
for different molecules.
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This leads to a quadratic approximation for small
Y and hence we can determine the frequencies for
the fast variables by diagonalization to find the
new projection matrix P i = P (xo +Xi−1). Note
that without the initial frequency partitioning, it
would not be possible to obtain a new projec-
tion matrix. We assume that the distribution of
frequencies in the model remains constant. Fig-
ure 1 shows that this is a reasonable assumption
for most folded proteins. In particular, this means
that the eigenvalues associated with Y are nearly
invariant with X.

It is common to increase time steps in MD
by constraining bonds to hydrogen, although in-
discriminate constraining of bond angles signifi-
cantly alters the dynamics. Similarly, some approaches to coarse-graining dynamics describe molecules as
collections of rigid and flexible bodies. It is difficult to determine a priori the flexibility of different parts
of a macromolecule, and there are numerical difficulties associated with the fastest timescales still present
in the system which limit time steps to about a third of the fastest period.5 Equations of motion for low
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frequency modes allow substantially larger time step discretizations than fine-grained MD. This approach is
more general than constraining parts of the molecule. The speedups possible are illustrated in Figure 1 for
systems from 22 to 7200 atoms. These speedups are computed as the ratio of the largest time step possible
by only keeping some percentage of modes over the time step needed when keeping all the modes. Notably,
several different proteins show similar behavior, with potential speedups of three orders of magnitude when
one resolves only a small numbers of modes. To make this discussion concrete, using 10 modes for calmodulin
allows one a maximum time step of 1,000 fs, and for src kinase a time step of 2,000 fs.

1.3. Partition Function.

We can now define the partition function for the method as

Z =
∫
X+x0

∫
Y

ρ(Ȳ |X̄ + X̄ + x0) dȲ dX̄ =
∫
x

ρ(x̄) dx̄, (5)

as required.

1.4. Partition Function Approximations.

Exact solutions of Eqn. (5) require sampling the entire fast variable Y phase-space for a given slow variable
value X (computing potential of mean force). This would require additional computation to the algorithm
described above. For the initial implementation we choose the approximation, for slow variable X,∫

Y

ρ(Ȳ |X +X + x0) dȲ ≈ ρ ((Ymin|X) +X + x0) , (6)

which is readily available from the algorithm. For ρ(a) = exp(−βa) this is a reasonable approximation,
but assumes we are at a global minimum w.r.t. X. In that case, it represents the most probable value of
ρ(Y |X). Even though this approximation may seem crude, our numerical results show that this is a good
approximation for thermodynamics and kinetics, except perhaps when very few modes are used to form P .

1.5. Numerical discretization.

We discretize Eqn. (3) using a numerical integrator that generates dynamics that sample Eqn. (6). Equations
for the rate of change of the slow variables X with associated momenta Π need to be formulated. We wish
to find a way to calculate dΠ/dt in terms of X and Π only. The following exact equation can be derived
(which can also be found in6):

dX(t)
dt

= Π,
dΠ(t)

dt
= −

drift︷ ︸︸ ︷
∇XA−

friction︷ ︸︸ ︷∫ t

0

Cr(s) ·Π(t− s) ds+

noise︷︸︸︷
r(t), (7)

Cr(s) =
〈
r(τ + s) r(τ)T

〉
, ∀τ (fluctuation dissipation theorem) (8)

These equations are in reduced units and we omitted the dependence of the memory kernel Cr on X and
Π. The brackets 〈〉 define the thermodynamic average in the canonical ensemble. Eqn. (7) can be derived
using the Mori-Zwanzig projection.6 The potential A(X) is the Potential of Mean Force (PMF, or Helmholtz
free energy) for variable X. The integral in Eqn. (7) represents a friction. In this model the friction includes
memory so this equation is often called the Generalized Langevin Equation (GLE). The last term r(t) is a
fluctuating force with zero mean:

〈
r(t)|X0,Π0

〉
= 0. This is a conditional average over Cartesian coordinates

x and momenta px keeping X = X0 and Π = Π0 fixed. This equation can be rigorously derived from
statistical mechanics and is therefore an attractive starting point to build coarse grained models.

We model the protein using implicit solvent models (ISM), which have been shown to be sufficiently
accurate for a number of applications, including protein folding studies. They are attractive because they
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greatly reduce the cost of simulating a protein. Using the approximation of Eqn. (6), Eqn. (7) can be simplified
into a Langevin equation:

dX = V dt, MdV = fdt− γMV dt+ (2kBTγ)1/2
M1/2dW (t), (9)

where f = −P f∇U(Ymin|X + X + x0) is the instantaneous projection of the force unto the slow subspace,
P f = MPM−1, t is time, W (t) is a collection of Wiener processes, kB is the Boltzmann constant, T is
the system temperature, V are the velocities and γ is a scalar friction coefficient, for instance γ = 91 ps−1

for water-like viscosity. A Wiener process is a random function which is continuous but nowhere differen-
tiable, and its derivative is white noise. A standard Wiener process has means and covariances 〈W (t)〉 = 0,
〈W (s)W (t)〉 = min{s, t}. Systematic determination of the friction and noise can be done using efficient
numerical algorithms proposed by Darve and collaborators.7 The latter is important for kinetics but not for
computing thermodynamic averages.

2. Methods

2.1. Normal Mode Langevin (NML)

We have previously published a numerical discretization of Eqn. (9) called Normal Mode Langevin (NML),
which calculates the evolution of low frequency normal modes, while relaxing the remaining modes to their
energy minimum or performing Brownian dynamics in the fast mode space (these two are equivalent).8

NML was originally formulated using only an initial frequency partitioning to determine the slow and fast
variables. However, the approximation to the low frequency dynamics afforded by NMA is only valid around
an equilibrium configuration. After propagation of the slow modes, parasitic fast frequencies are introduced
into the slow dynamics space, which invalidate the original frequency partitioning (both eigenvalue and
eigenvector sets). Nonetheless, there is evidence that the physically relevant motions of proteins can be
captured by a low frequency space,9–15 which motivates our approach of keeping track of the low frequency
space as the molecule changes conformation.

While the partitioning of slow and fast variables in the partition function above is dependent on the
configuration x, in practical implementations, we only need to update this partitioning by rediagonalization
when the frequency partitioning is no longer valid. Currently, we determine the rediagonalization frequency
empirically, although we are exploring use of bounds on frequency content of the spaces to trigger diagonal-
ization.

This paper presents several novel improvements of NML: The first is use of the algorithm for partitioned
propagation of normal mode dynamics presented above, which does not depend on validity of the initial
partitioning throughout a trajectory. The second is a scalable direct method, CNMA, for computing low
frequency modes from the Hessian, which allows scaling to large molecules and long timescales. The third
is a new numerical integrator, Langevin Leapfrog, that can more accurately take larger time steps when
discretizing the equations of motion of NML than existing algorithms. Finally, we show that this formulation
of NML can simulate protein folding.

A method similar in spirit to NML is LIN, developed by Schlick and collaborators.16 LIN also performs a
partitioning in frequency. However, LIN uses implicit integration for the low frequency modes and determines
the evolution of the fast frequency modes using normal mode analysis. Langevin dynamics is used to dampen
resonances. Clearly, the choices of numerical discretizations are very different: NML uses an explicit integrator
for the low frequency modes, minimization or Brownian Dynamics to maintain the fast modes around their
equilibrium values, and the scalable diagonalization to make rediagonalization affordable. A deeper difference
is that in NML the Langevin equation is motivated by coarse-graining of the dynamics and the choice of
implicit solvent model, rather than purely numerical reasons.
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2.2. Langevin Leapfrog

In the original NML Eqn. (9) was discretized using the Langevin Impulse (LI) integrator.17 LI is exact
for constant force, and has shown numerical advantages over other commonly used Langevin integrators.18

Schematically, a step of the NML propagator performs the following steps:
Update velocities: advance velocities using a long time step using the projection of forces unto slow

subspace C.
Slow fluctuation: advance positions based on the projected velocities computed above.
Fast mode minimization: minimize positions on fast subspace C⊥. The smaller the coupling between

C and C⊥, the fewer steps of minimization are needed. With very few modes in C coupling is very small.
In this paper we examine numerically the ability of Langevin integrators (including NML based on

them) to correctly resolve dynamics for large time steps. We observe that even LI is not accurate and has a
large discretization time step dependent over-damping. We derive a new integrator which we call Langevin
Leapfrog, which can take large time steps with much greater accuracy. This is particularly true when used
in the NML schemes.

Langevin Leapfrog is derived as a splitting method where velocities and positions are updated separately.
Splitting methods arise when a vector field can be split into a sum of two or more parts that are each simpler
to integrate than the original. Thus, we first integrate Eqn. (9) over time t for the velocities (from initial
velocity V (0) at time 0), assuming X to be constant during the velocity update:

V (t) = e−γt

[∫ t

0

eγτ
(
M−1f(X) +

√
2kBTγM

− 1
2 dW (τ)

)
dτ + C1

]
, (10)

for constant C1. Then,

V (t) =
(

1− e−γt

γ

)
M−1f(X) +

√
2kBTγM

− 1
2 e−γt

∫ t

0

eγτdW (τ) dτ + C1e
−γt. (11)

The expression e−γt
∫
eγτdW (τ) dτ is equivalent to multiplying a random variable Z with mean zero and

unit variance by the factor

e−γt

√∫ t

0

(eγτ )2 dτ =

√
1− e−2γt

2γ
. (12)

If we assume t = 0 at initial velocity V n, initial positions Xn and t = ∆t/2 at V n+ 1
2 then

C1 = V n, (13)

and

V n+ 1
2 = e−γ

∆t
2 V n +

(
1− e−γ∆t

2

γ

)
M−1f(Xn) +

√
2kBTγM

− 1
2

√
1− e−γ∆t

2γ
Zn, (14)

for random variable Zn with zero mean and unit variance.
Positions can be found, assuming constant velocity during the position update, from:

Xn+1 = Xn + ∆t V n+ 1
2 , (15)

and finally the remaining half step for the velocities

V n+1 = e−γ
∆t
2 V n+ 1

2 +

(
1− e−γ∆t

2

γ

)
M−1f(Xn+1) +

√
2kBTγM

− 1
2

√
1− e−γ∆t

2γ
Zn+1, (16)

for random variable Zn+1, again with zero mean and unit variance.
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2.3. Coarse-grained Normal Mode Analysis

The need to re-diagonalize a mass-weighted Hessian in NML, while greatly improving the accuracy of the
model and making it possible to track conformational change, is very expensive, with O(N3) computational
time and O(N2) memory. We have developed a coarse-grained normal mode analysis that is scalable. CNMA
is a 2-level, direct method that uses a dimensionality reduction strategy that allows computation of low
frequency modes in O(N9/5) time and O(N) memory.

2.3.1. Dimensionality reduction strategy.

The coarse-graining strategy to computing the frequency partitioning is based on 2 ideas. The first is to find a
reduced set of normalized vectors E whose span contains the low frequency space of interest, C. The second is
to find an orthogonal set of vectors V with the same span as E, which are ordered according to the diagonal
elements of V THV . The span of the first m columns of V, where m is the number of reduced collective
motions, still spans C and constitute the approximate low frequency eigenvectors. To keep computational
cost low, we form H, and matrix-vector products involving H, in linear cost, O(N). A brief description
follows.

2.3.2. Choice of reduced matrix E.

In order to form E, we use a model of a protein that is easier to diagonalize than the full-atom forcefield
model, but that nonetheless contains the same low frequency motion space. Our model is that of independent
blocks of residues with arbitrary rotation, translation, and low frequency dihedrals. Clearly, such a model
allows more flexibility than the full-atom protein model. We show that it can indeed contain the low frequency
motion space of interest. We start from a block Hessian in which each block H̃ij (composed of 1 or more
residues) is zero if i 6= j. The remaining blocks on the diagonal are assumed to be independent of all other
blocks. This block Hessian is then diagonalized, which is equivalent to performing independent diagonalization
for each block. The block Hessian eigenvectors and eigenvalues, Qi and Di, are calculated as follows:

H̃iiQi = QiDi.

Our hypothesis is that interactions among residues responsible for the low frequency space of interest will
be included, either by projection or directly, in the first few eigenvectors of Qi, and need to be included in
E. The source of these vectors is as follows:

1. External low frequency motions due to nonbonded interactions are projected onto the first 6 eigen-
vectors of Qi, corresponding to conserved degrees of freedom (d.o.f.) per block. In other words,
external forces manifest themselves in rotations or translations of each residue-block.

2. External low frequency motions due to bonded interactions are projected onto the dihedral space,
and will consist of 2 vectors of Qi, due to backbone dihedrals of up to 2 connecting blocks.

3. Internal low frequency motions, for instance due to side-chain dihedral motions, will also be in the
dihedral space and thus will be in Qi.

Residue: ARG PRO ASP PHE CYS LEU GLU TYR GLY

No. vectors: 15 9 11 13 10 12 13 13 8

Residue: LYS ALA ILE ASN GLN THR VAL SER MET

No. vectors: 14 9 14 12 14 11 11 11 15
Table 1: Number of vectors, k, selected per residue for BPTI, showing that larger residues require greater numbers

of vectors.

The number of vectors of Qi included in E varies according to the residue composition. We refer to
the average number of these vectors by block as the block d.o.f. (bdof ). We expect that the eigenvectors
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identified above will correspond to the first k ordered eigenvalues. The number k varies between blocks and
is determined by selecting a cutoff frequency from the block eigenvalues. Table 1 gives values of k for BPTI,
where the bdof = 12, and where each block has only 1 residue. As expected, larger residues such as ARG
require a greater number of vectors to describe their low frequency motions than smaller ones like GLY.

2.3.3. Finding orthogonal matrix V .

Fig. 2. Dimensionality reduction strategy.Figure 2 illustrates the dimensionality reduction
strategy. The dimensions of E are 3N ×n, where
n� N. The quadratic product ETHE produces
a matrix S of reduced dimensions n × n. H is a
Hessian that includes interactions among residue-
blocks, i.e., the full Hessian or an approximation
thereof. We use the Hessian coming from using
cutoff in the nonbonded forces. From the diago-
nalization of S we can obtain Q. In particular, we
(cheaply) diagonalize the symmetric matrix S to
find orthonormal matrix Q̃ s.t.

SQ̃ = Q̃Ω,

for diagonal matrix Ω. We can then write

QTHQ = Ω,

for Q = EQ̃. V is defined as the first m columns of Q, where m is typically in the range of 10 - 100. Our
subspace of dynamical interest, C, is included in the span of V .

We can evaluate how well the span of E represents C using the following result: Let the ith ordered
diagonal of Ω be σi = Ωii. It can be shown that the highest frequency mode in C, fmax, satisfies

fmax ≤
√
|σm|.

The Rayleigh quotient σm = ET
mHEm can be used to establish the maximum time step that can be taken in

subspace C for stability. It follows that if σm is close to the mth ordered eigenvalue of H, then V is a good
representation of the low frequency space of interest. Since this result does not take account of conserved
d.o.f., with zero eigenvalues, we need to be careful to include these in our target E.

2.3.4. Efficient implementation.

The quadratic product ETHE, which naively implemented would still be an O(N3) operation, is made
O(N) by exploiting the quasi-block structure of H and E and using cutoff for the electrostatics. This cost
can still be maintained if full electrostatics are needed by using coarse-grained electrostatic representations.
Figure 3 illustrates the block structure of H, which is similar to a protein contact map. Contiguous residues
give a tri-diagonal block structure. Non-contiguous residues within a cutoff form off-diagonal blocks due
to nonbonded forces. The block structure of E follows from its composition from eigenvectors of the block
Hessians H̃ii.

3. Results

3.1. Normal Mode Langevin dynamics

We performed folding simulations of the Fip35 mutant of WW domain using NML, discretized with Langevin
Leapfrog, with periodic rediagonalization using CNMA. The force field is CHARMM 27 with the screened
Coulomb potential implicit solvent model (SCPISM).19 The temperature T = 300 K and friction coefficient
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Fig. 3. Segment of a BPTI molecule and its associated Hessian entries. Here, for illustration, a block is defined by one residue.
Each residue corresponds to a Hessian block containing all of the forces within the residue, denoted ‘Full’. Adjacent residues

have a corresponding electrostatic block denoted ‘Elec.’, e.g. Elec. 13-14. Physically local residues within the cutoff distance

have a corresponding electrostatic block, e.g. Elec. 13-38. Bonds connecting non-adjacent residues, such as the disulfide bonds
shown, correspond to small 3x3 blocks in the Hessian.
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Fig. 4. (a) RMSD of Cα of β-sheets (in Å) for Fip35 WW folding NML simulation. (b) Snapshots from the same simulation,
(i) at the start, (ii) after 125 ns, and (iii) after 330 ns.

γ = 91 ps−1. We compared to a set of 1000 simulations using plain Langevin dynamics with same T and γ,

with combined sampling of 393µs from Ensign and Pande,20 where 2 simulations fold. From a set of 200 NML
simulations with combined sampling of 198µs, we found 2 that folded. Folding is determined as in their work:
the 3 β-sheets are fully formed and the RMSD of their residues to the native structure is less than 3 Å. These
NML simulations used 10 modes, CNMA parameters of bdof = 14 and 2 residues per block, and time step of
100 fs. Figures 4(a) and 4(b) show the RMSD, and snapshots from an NML folding simulation, respectively.
We estimated a folding rate of 〈k〉 = (66µs)−1 with σ(k) = (114µs)−1. The rate reported by Ensign and
Pande is 〈k〉 = (131µs)−1 with σ(k) = (226µs)−1. An experimental rate has been reported21 as (13.3µs)−1.
Our results suggest agreement of the free energy of activation within a factor of 2, a reasonable expectation
for these force fields. The folding rate was computed using a Bayesian modification of a maximum likelihood
estimate.22 With n folding simulations out of N total simulations, with total necessary simulation time Θ,
the estimators for the mean rate and its variance are:

〈k〉 =
n+ 1

Θ
, var(k) =

n+ 1
Θ2

.
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Θ is the sum of the first-passage times for simulations that folded, plus total simulation time for simulations
that did not fold. In our NML simulations, one simulation folded after 33 ns and another one after 303 ns,
and all the simulations ran for 1µs.

These results were not significantly different when running folding simulations with 15 and 20 modes.
The number of residues per block used in CNMA is chosen to optimize runtime, and is a function of N as
explained below. We determine the bdof to use for CNMA by comparing the L2 norm for the difference of
the low frequency eigenvalues against those of a full diagonalization, or when this is too costly, against a
diagonalization with large bdof . We use the minimum bdof after which the norm reaches a plateau.

It would be desirable to have more folding events for computation of the rate in order to reduce the
standard deviation. The significance of our result is that NML with periodic rediagonalization can track
large conformational change with very few modes.

Molecule Atoms ∆t (fs) Itrs ns/day Speedup

Fip35 WW 544 1 - 6 -
Fip35 WW 544 100 1.0 240 40
Fip35 WW 544 200 1.2 360 60
Fip35 WW 544 500 4.0 455 76

Calmodulin 2262 1 - 0.4 -
Calmodulin 2262 100 1.0 13.7 34
Calmodulin 2262 500 1.9 60.4 151
Calmodulin 2262 1000 8.2 90.9 227

Tyr kinase 7214 1 - 0.07 -
Tyr kinase 7214 100 1.2 1.6 23
Tyr kinase 7214 500 1.3 7.4 106
Tyr kinase 7214 1000 1.8 14.4 206

Table 2: Speedup of NMLL vs. MD. Rows with time step ∆t of 1 fs correspond to MD. “Itrs” is the average number
of minimization iterations. “Speedup” is the speedup of using NMLL vs. plain MD. All NMLL runs use 10 modes

and rediagonalization every ps.

Timings of NMLL and MD on one core of Xeon E5420 2.5 GHz, computed by running 100 ps of equili-
bration and 1 ns of simulation are in Table 2. These results show that there is not a significant overhead in
our NMLL approach, considering the performance gained from a significantly larger time step (in comparison
with previous approaches, which could take large time steps as well, but with a large overhead that limited
their applicability16).

3.2. Coarse grained normal mode analysis (CNMA)

Fig. 5. Rayleigh quotients and true eigenvalues for different

Hessian coarse graining schemes.
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Figure 5 shows how well these choices of coarse-
graining represent the low frequency space of a
protein. Results were obtained by using different
values of k in constructing E vs. the true eigen-
values for BPTI. The closer the line is to the true
eigenvalues, the better the coarse-graining strat-
egy. Rotation/translation means that E is made
from the first 6 eigenvectors of each residue-block
matrix. Rotation/translation/Φ − Ψ means that
in addition vectors are included that correspond
to low frequency dihedral motions. Note that only
including the first 6 eigenvectors of the block Hes-
sians in E diverges from the true eigenvalues,
whereas also including the low frequency dihedral
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Molecule Atoms Lapack Lapack CNMA CNMA
Time [s] RAM [Gb] Time [s] RAM [Gb]

WW 551 14.4 0.04 0.37 0.01

BPTI 882 59.9 0.11 0.89 0.03

CaM 2262 980.6 0.74 3.89 0.12

Tyr Kinase 7214 31450.0 7.49 31.90 0.69

F1-ATPase 51181 11.2E6 377.0 1827.0 2.04

Table 3: Comparison of the ‘brute force’ Lapack diagonalization and the coarse grained method for different atomic
models.

vectors gives very good results. We can thus evaluate the fitness of any proposed Hessian coarse-graining
procedure.

3.2.1. Scaling results.

Five models were used for the comparison of the ‘brute force’ diagonalization and the CNMA method: Pin1
WW domain (PDB 1I6C), BPTI (PDB 4PTI), Calmodulin (PDB 1CLL), Tyrosine kinase (PDB 1QCF),
and F1-ATPase (PDB 2HLD). The results can be seen in Table 3. The scaling with time for the ‘brute force’
Lapack diagonalization method is known to be O(N3). For the coarse grained CNMA method using b blocks
we have the cost of diagonalizing all b blocks as O((N/b)3) × b = O(N3/b2) and for the small projected
matrix as O(b3), which has a minimum cost when b ∝ N3/5, giving an estimated cost of O(N9/5). This is
borne out by the numerical evidence. For the coarse grained method the RAM resource usage is reduced
from the ‘brute force’ scaling of O(N2) to O(N).

Other diagonalization techniques to obtain low frequency eigenvectors are reported in the literature, such
as the ODMG energy functional, which was recently used by Dykeman and Sankey to analyze viral capsids.23

Unlike these methods, which are iterative, and where convergence is highly system dependent, CNMA is a
direct method, has been validated in a rigorous way, both through useful bounds on the eigenvalues, and
through its application in NML. Our own numerical experiments with Tracemin and other iterative methods
for solving our eigenvalue problem indicate that convergence of these iterative methods is very slow, since
they require an approximation to the inverse of the Hessian from the start. Our dimensionality reduction
strategy for CNMA is more effective.

3.3. Langevin Leapfrog

Fig. 6. Free energy for alanine dipeptide
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We applied NML to study the isomerization ki-
netics of blocked alanine dipeptide (ACE ALA
NME) between the C7 equatorial and αR confor-
mations. Conformation A is C7 equatorial and C5
axial combined, and conformation B is αR. Figure
6 shows the free energy as a Ramachadran plot
for Alanine Dipeptide using a sigmoidal screened
Coulomb potential.24 We refer to NML with redi-
agonalization to update the low frequency modes
as NML(m,period) where m is the number of slow
modes propagated, and period the rediagonaliza-
tion period in femtoseconds. LL greatly elimi-
nates the over-damping due to the discretization
time step of LI. Figure 7(a) shows the isomerization rates for alanine dipeptide using LI, NML using LI
(NMLI) and NML using LL (NMLL). Note that NMLL can compute the rate with time steps of 16 fs using
12 modes (6 conserved plus 6 real modes) with rediagonalization every 100 steps, whereas LI and NMLI’s
rate significantly decreases with increasing time step.
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Figure 7(b) shows the isomerization rate for alanine dipeptide for varying rediagonalization periods: the
rate is correctly computed for NMLL(m,100) for even 7 modes (6 conserved plus 1 real mode).
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Fig. 7. Isomerization rate as (a) function of time step for different Langevin integrators, and (b) different rediagionalization

periods. Error bars are smaller than the symbol sizes.

4. Conclusions

We have presented a novel scheme to propagate multiscale dynamics of proteins and other macromolecules,
based on computing periodically coarse-grained normal mode dynamics. We have presented results of folding
a WW domain, as well as speedups on different proteins. A major advance detailed herein is a scheme to
calculate NML dynamics in a very efficient way, i.e. with scaling of the form O(N9/5), which allows for the
rapid calculation of long timescale dynamics. This was further demonstrated with specific examples, including
the microsecond dynamics of the folding of a WW-domain. Thus, in its current implementation described
herein, NML can greatly accelerate molecular dynamics calculation for a wide variety of applications, while
retaining quantitative fidelity to more traditional methods.

The main approximation in NML is the assumption of Eqn. (6) regarding fast frequency motion. Numer-
ical evidence suggests this is a reasonable assumption, but this issue needs to be more thoroughly evaluated,
and if necessary, computationally efficient approximations of the PMF need to be derived. Since NML pre-
scribes frequent rediagonalization, the PMF needs only be valid in a neighborhood of phase space around a
given value of the slow variable X. Thus, this is a less formidable problem than in the general coarse-graining
case.

Current work includes extending the Langevin equation to include memory, which may be relevant when
using very few low frequency modes if one wants to compute kinetics; implementing a multilevel formulation
of CNMA with O(N logN) complexity, and combining NML with Markov State Models to reach millisecond
time scale dynamics. All these methods are included in the open source software Protomol.25 There is an
implementation reference and a tutorial on running NML, along with a discussion of how to choose the bdof
parameter of CNMA and the number of modes in NML (http://sourceforge.net/projects/protomol).
NML will be included in future releases of the library OpenMM.
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TRiC is an important group II chaperonin that facilitates the folding of many eukaryotic proteins.  The TRiC complex consists of two 

stacked rings, each comprised of eight paralogous subunits with a mutual sequence identity of 30-35%.  Each subunit has unique 

functional roles that are manifested by corresponding sequence conservation.  It is generally assumed that the subunit order within 

each ring is fixed, but this order is still uncertain.  Here we address the problem of the intra-ring subunit order by combining two 

sources of information: evolutionary conservation and a structural hypothesis.  Specifically, we identify residues in the TRiC subunits 

that are likely to be part of the intra-unit interface, based on homology modeling to the solved thermosome structure.  Within this set 

of residues, we search for a subset that shows an evolutionary conservation pattern that is indicative of the subunit order key.  This 

pattern shows considerable conservation across species, but large variation across the eight subunits.  By this approach we were able 

to locate two parts of the interface where complementary interactions seem to favor certain pairing of subunits.  This knowledge leads 

to restrictions on the 5,040 (=7!) possible subunits arrangements in the ring, and limits them to just 72.  Although our findings give 

only partial understanding of the inter-subunit interactions that determine their order, we conclude that they are comprised of 

complementary charged, polar and hydrophobic interactions that occur in both the equatorial and middle domains of each subunit. 

1. Introduction  

Chaperonins are large protein complexes that assist in the folding of nascent and misfolded polypeptide chains.  The 

group II chaperonins are found only in eukaryotes and archaea and share a similar overall structure [1].  They consist 

of two stacked rings with flexible tops that can open and close through an ATP binding and hydrolysis cycle.  Upon 

closure, an isolated cavity is formed within each ring, where refolding of polypeptide chains can occur.   

TRiC is an important member of the group II chaperonins, and is highly conserved in most eukaryote families.  

It has been implicated in the folding pathways of many proteins, most notably actins and tubulins [2,3,4].  Each ring 

in TRiC consists of eight paralogous subunits: A, B, G, D, E, H, Q and Z.  The specific differentiation of the eight 

TRiC subunits is highly conserved.  For example, the sequence identity between the α subunit of yeast and the α 

subunit of bovine is greater than 60%, yet the sequence identity between different subunits in bovine is only ~30%.  

Clearly, this remarkable conservation is likely to ensure a constant order of the subunits within the ring in addition to 

its other functional roles in TRiC [5,6]. 

Because of their allosteric nature, the lid closure and the ATP cycle are highly influenced by the order of 

subunits within the ring [7].  Yet, despite its functional role, the order of subunits in the ring is still debated.  Liou 

and Willison [16] proposed an arrangement of subunits in the ring that is based on a very difficult experimental 

protocol that analyzes micro-complexes, i.e. very partial fragments of TRiC rings found in cell extracts.  This 

arrangement is used to this day [7,8], but has not been validated by a different methodology.  Unfortunately, 

structural data that could unambiguously resolve the order of the subunits is not available.  TRiC is very refractory to 

crystallization, and cryo-EM reconstructions of TRiC are currently at insufficient resolution to differentiate the 

subunits [8].        

In order to make progress in the elucidation of ring order, we tried a computational approach.  The subunit order 

in TRiC is a challenging modeling problem because of the large number of possible arrangements for this complex.  

In addition, the sequence identity between the subunits is high as well (~30%) making the molecular key to the 

subunit order more subtle.  To overcome these difficulties we combined two sources of information: evolutionary 

conservation and a structural hypothesis.  The structural model is based on the crystal structures for a close 

orthologue of TRiC, the archaeal thermosome [9].  The thermosome is also a group II chaperonin that consists of 
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only two subunit types, which are not very differentiated (60% sequence identity).  We analyzed the model by 

looking for residues that were part of the subunit interface and showed a conservation pattern that may indicate of the 

subunit order.  Specifically, we looked for patterns that showed considerable conservation across species, but large 

variability across the eight subunits.  We identified several areas of the interface where complementary interactions 

could putatively favor certain subunit pairings.  From this analysis we derived a set of constraints that limit the 

number of possible subunits arrangements from 5,040 to 72. 

2. Methods 

The evolutionary profile in each position is based on sequence alignments from 13 species (number in parenthesis is 

sequence identity to the bovine gene): Bovine (100%), Human (97%), Zebrafish (86%), Ciona (74%), Drosophila 

(73%), C. Elegans (68%), Arabidopsis (66%), Yeast (63%), Neospora (61%), Candida (61%), Dictyostelium (61%), 

Plasmodium (58%) and Paramecium (58%).  This order of decreasing sequence identity to the bovine genes is kept 

(in a left to right manner) throughout the presentations in the tables.  The main guideline in choosing these specific 

organisms was to form a diverse set of family representatives that spans the eukaryotic evolutionary tree.  A 

secondary guideline was to use only fully annotated genomes that had clear annotation of the eight different subunits.  

The eight sequences from each organism were aligned to each other and to the thermosome sequences using the 

COBALT multiple sequence alignment tool from NCBI [10]. 

The structural model (Fig. 1) was based on the crystallographic structure of the archaeal thermosome from T. 

acidiphilum (PDB 1A6D).  The sequence identity between TRiC and the thermosome is ~40%, indicating a highly 

reliable model.  Unlike TRiC, which has eight different subunits, each ring in the thermosome is composed of four 

repeats of two different subunits (α and β).  This arrangement leads to only two different interfaces, and we focused 

on the α-β interface. We exclude the apical domain from the structural analysis because it is unclear whether TRiC 

assembles in a close or open conformation.  We also exclude the loops spanning residues 53-57 and 163-166 since 

they are structurally variable between the two thermosome subunits. 

 

 

 

 

 

 

 
 

 

 

 

 
Figure 1. Our structural model is based on the known structure of the thermosome (PDB file 1A6D), which has α (blue) and β (red) subunits that 

alternate around each of the two rings.  The structure is viewed from the top (left) and side (right).  The three domains of one of the α subunits in 

the top ring are colored cyan, green & magenta for the equatorial, middle & apical domains, respectively.  The central schematic shows how to 

map the 8 subunits - A, B, G, D, E, H, Q & Z - of TRiC in a proposed arrangement (boxed) onto the top ring of the thermosome.  This 

arrangement is brought as an example only, and is not part of our suggested set of 72. 

Throughout the text we present possible subunit arrangements in the ring as a string of eight letters.  These refer 

to the subunit order in a counterclockwise direction in the top ring when viewed from the top.  Wherever we refer to 

the left and right subunits of an interface, we mean the respective interacting subunits in the top ring when viewed 

from the side (Figure 1, right)
1
. 

                                                 
1 Molecular graphics images were produced using the UCSF Chimera package from the Resource for Biocomputing, Visualization, and 

Informatics at the University of California, San Francisco (supported by NIH P41 RR-01081) [11]. 
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A position in a certain subunit was considered conserved across species if it showed consistent physio-chemical 

properties in 11 or more of the species (i.e. mostly hydrophobic, negatively-charged, long-polar etc.).  A position 

was considered as a possible candidate for the molecular key of the subunit order if at least two subunits were 

conserved across species, but showed remarkably different physio-chemical properties (i.e subunit Z and H in 

position 1 in Table 1).  The definition of the interaction centers was more subjective and was based on manual 

inspection of clusters of positions that were characteristic of the order key.     

3. Results 

This study presents a practical approach towards elucidation of the intra-ring subunit order of TRiC by combining 

two sources of information: evolutionary conservation and a structural hypothesis.  Three assumptions are made: 

1. The subunit order within the ring is fixed, and each of the eight subunits appears once in the ring.  This 

assumption greatly limits the possible number of arrangements in the ring to 5,040 (=7!). In particular, it 

removes the burden of analyzing the interactions of any subunit with a same copy of itself. 

2. Structural hypothesis. The structural interface between subunits in the ring resembles the interface observed in 

the solved crystallographic structure of the archaeal thermosome [9].  This assumption is justified by the high 

sequence identity (~34%) between TRiC and the thermosome, as well as by supporting data from EM structural 

studies [8].  The structural analysis is therefore based on a straightforward alignment of the bovine TRiC 

sequences onto the solved thermosome structure. 

3. Evolutionary information. The subunit order, as well as the molecular key that determines it, is conserved across 

different eukaryote species ranging from unicellular organisms to mammals.  Strong support for this assumption 

comes from the much higher sequence identity observed between subunits of the same type across species 

relative to the identity between different subunit types in the same organism.  This assumption is a valuable 

source of evolutionary information, as it implies that the residues participating in the order key are under 

selective evolutionary pressure. 

Guided by these assumptions, analysis progressed in three steps.  In the first step, all the residues in the 

thermosome structure that participate in an inter-subunit contact (within van der Waals contact distance) were pooled 

into a putative interface set.  In the second step, we checked the evolutionary pattern of each residue in the interface 

set, and looked for conservation pattern that may confer order information.  Specifically, we looked for residue 

positions that showed considerable conservation across species, but large variation across subunits (see for example 

Table 1).  If several such positions were spatially clustered in the thermosome structure, we pooled them together 

into a putative interaction center.  Five putative interaction centers were identified in this manner, however only two 

of them are amenable to reliable structural interpretation at this stage.  In the last step, we tried to infer a number of 

structural restrictions from the two final interaction centers.  We used these restrictions to discard the majority of the 

5,040 subunit arrangements.  This step is especially sensitive to the subtle structural differences between TRiC and 

the thermosome.  We, therefore, were very conservative in our arguments, preferring to retain more possible 

arrangements.  By this analysis, we were able to limit the number of possible subunit arrangements by 70 fold to just 

72 (Table 3). 

3.1. Interaction Center 1 

In the thermosome, residue D48 from the α subunit makes a partially buried salt bridge with residue R515 from the β 

subunit (Fig. 2).  In this arrangement, the aspartic side-chain is quite buried within the interface, while the arginine 

side-chain is relatively free to move into the solvent.  In the thermosome, this salt bridge is conserved in both the α-β 

and the β-α interfaces.  Table 1 shows the residue types that are observed in these two positions across 13 species 

(rows) and across the different subunit types (columns).  The 13 letters in each subunit and position are arranged in 

decreasing sequence similarity to the bovine genes, and range from bovine (left) to the unicellular paramecium 

(right).  The table shows a consistent conservation pattern: each position conserves the residue property (charge, 

hydrophobicity etc.) across species, but large variation occurs between subunit types. 

The data suggest that the observed salt bridge from the thermosome is conserved between some of the subunits 

in TRiC, but is absent in others.  Because of the partial burial of the aspartic side-chain, there will be a considerable 

energetic advantage if a positively-charged side-chain from the next subunit can form a salt bridge with it.  Following 
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this reasoning, the possible subunit arrangements are restricted to those where any of the {A,B,D,E,H} subunits is 

followed by any one of the {A,B,G,D,E,Q} subunits.  The Q subunit is included in the latter group, even though it 

does not always have a positive charge in that position, so as to make our restrictions as conservative as possible.  

Applying this first restriction lowers the number of possible subunit arrangements from 5,040 to 480. 

A conserved hydrophobic pattern is observed for subunits G and Z in Position 1 and for subunit Z alone in 

Position 2.  Disregarding the Z-Z interface, the G-Z interface forms a very favorable hydrophobic interaction.  

Furthermore, a hydrophobic residue in Position 2 will cause unfavorable burial of any polar residue in Position 1.  

This reasoning restricts the subunit arrangements to those with a G-Z interface.  Applying this restriction further 

lowers the number of possible subunit arrangements to 240.  The G-Z restriction is validated independently by 

interaction center 2 (see below). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Two complementary residues at the interface of two thermosome subunits.  Unit α (blue) and subunit β (red) are the left and right 

subunits, respectively, in the top ring when viewed from the side of the particle.  In TRiC this salt bridge is not conserved between all subunits.  

The amino acids at these two positions in different organisms are shown in Table 1. 

 
Table 1.  The residue types observed in TRiC in the two homologous positions to the two marked thermosome residues in figure 2a. 

 

 Position 1: Unit α  D48 Position 2: Unit β R515  

A DDDDDDDDDDDDD D RRRRRRRRRRRRR R A 

B DDDDDDDDDDDDD D RRRRRRRRRRRRR R B 

G MMMLLLLLLLLLL hp
b
 RRRRRRRRRRRRR R G 

D DDDDDDDDDDDDD D KKKKKKKRRRKKK [KR] D 

E DDDDDDDDDDDDD D KKKKKKKKKKKKK K E 

H DDDDDDDDDDDDD D SSSSSSSSGSSSS [SG] H 

Q NNNNNNNNNNNNK [NK] RRRSKKRSSSRKR [RSK] Q 

Z MMMMVLILILLYL hp
b
 LLLLLLLLLLLLL L Z 

 
a For each subunit and position the data from 13 different organisms are shown in the order: Bovine, Human, Zebrafish, Ciona, Drosophila, C. 

Elegans, Arabidopsis, Yeast, Neospora, Candida, Dictyostelium, Plasmodium and Paramecium.  The amino acids that occur in each row are 

shown to the right of that row.  

b “hp” is a  conserved hydrophobic position. 

3.2. Interaction Center 2 

In the thermosome, the N-terminal part of a helix from the middle domain is interacting with the equatorial domain 

of the next subunit in the ring (Fig. 3).  The interaction involves a glutamic acid side-chain (Position 3) that makes 

electrostatic interactions with both the positive histidine ring (Position 1) and the dipole-related charged N-terminal 

of the helix.  In addition, the histidine side-chain makes a hydrophobic interaction with the methionine side-chain 

(Position 2).  In TRiC, these positions are altered, but show conservation patterns that are consistent with the order 
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key (Table 2).  As with the previous center, the table refers to adjacent subunits in the ring and the positions are as 

marked in Figure 3.   

Position 3 is central in this network because it interacts with the helix terminal and possibly with all other 

positions.  Most subunits in this position have a conserved a negatively-charged residue, which is compatible with 

the positive charge of the helix terminal as seen in the thermosome structure.  In striking contrast, the Z subunit 

displays a conservation pattern of positively-charged amino acids.  The expected electrostatic repulsion between the 

helix terminal and the Z subunit can be facilitated if any of the other positions provides a mediating negative charge.  

The only possibility is Position 1 in the G subunit that conserves negative charge.  This match revalidates the G-Z 

condition we derived previously from interaction center 1.  It also suggests that the helix terminal of the G subunit is 

protruding from the Z subunit, because the interaction is mediated by an additional side-chain.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Three complementary residues at the interface between two thermosome subunits.  Subunit α (blue) and subunit β (red) are the left and 

right subunits, respectively, in the top ring when viewed from the side of the particle.  The amino acids at these three positions in different 

organisms are shown in Table 2. 

 

Table 2.  The residue types observed in TRiC for the three homologous positions to the three marked thermosome residues in figure 3 a.   

 

 Position 1: Unit α H379 Position 2: Unit β M79 Position 3: Unit β E82  

A FFFIFVYYFYLFL hp VVVVVVVIIIIIV hp EEEEEEEEDEQNE [EDQN] A 

B QQQQQQHQQQHHH [QH] VVVVIVVVVVIII hp DDDEDDDNNNDDE [DNE] B 

G EEEDDDDDDDDDD [DE] SSSSSSSSSSSSS S EEEEEEEEEEEEE E G 

D LLLLLLLMLMLLL hp MMMMMMMMMMMMM M EEEEEEEEQDEEE [EQD] D 

E MMMMMMMMMMMMM M LLLLLLLLLLLLL L EEEEQEEQEQQEE [EQ] E 

H QQQQQQQQQQQQQ Q TTTTTTITITTIV [TIV] DDDDDDDDDDDDD D H 

Q NNNNNSSNNNNNN [NS] MMMMLILVLVMIM hp MMMIMMLMMMMKM [MILK] Q 

Z HHHHHHHYHYHYH [HY] LLLLMMMLMMLMM hp KKKKRKRRRRRRR [RK] Z 
 

a See footnotes to Table 2. 

 

Another unusual subunit in Position 3 is subunit Q, which shows a unique hydrophobic conservation.  Together 

with Position 2, subunit Q displays a significant hydrophobic patch at this interaction center.  A favorable 

hydrophobic interaction can form in the interface between this patch and one of the hydrophobic side-chains from 

Position 1.  This reasoning restricts the subunit arrangements in the ring to those where the Q subunit is preceded by 

one of the subunits from the following group {A,D,E}.  Applying this restriction further lowers the number of 

possible arrangements of subunits in a ring to 144.  This interaction is also likely to lead to bulging at the helix 

terminal, since it does not form an interaction of the helix terminal with a negative side-chain in Position 3. 

Unit α H379 

Unit β  

E82 

Unit β  

M79 
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Finally, Position 2 shows a general hydrophobic conservation pattern. A strong exception is subunit G, which 

shows a conserved polar pattern (subunit H is similar, but less conserved).  A hydrophobic side-chain from Position 

1 is likely to bury this serine upon subunit binding.  We can therefore forbid subunit arrangements in which the G 

subunit is preceded by one of the subunits from the group {A,D,E}.  Applying this restriction further lowers the 

number of possible subunit arrangements to in the ring 72.  Of all the restrictions discussed so far, this is the one we 

are least confident with, because of the weaker nature of polar burial as compared to charge burial.  However, the 

two-fold reduction in possible subunits arrangements makes this restriction valuable. 

 
Table 3.  The 72 possible subunit arrangements in the ring sorted alphabetically. 

 

ABDEQGZH ABDEQHGZ ABDQGZHE ABDQHGZE ABEDQGZH ABEDQHGZ 

ABEQGZHD ABEQHGZD ABGZDEQH ABGZDQHE ABGZEDQH ABGZEQHD 

ABGZHDEQ ABGZHDQE ABGZHEDQ ABGZHEQD ADBEQGZH ADBEQHGZ 

ADBGZEQH ADBGZHEQ ADEQBGZH ADEQGZHB ADEQHBGZ ADEQHGZB 

ADQBGZHE ADQEBGZH ADQGZHBE ADQGZHEB ADQHBGZE ADQHEBGZ 

ADQHGZBE ADQHGZEB AEBDQGZH AEBDQHGZ AEBGZDQH AEBGZHDQ 

AEDQBGZH AEDQGZHB AEDQHBGZ AEDQHGZB AEQBGZHD AEQDBGZH 

AEQGZHBD AEQGZHDB AEQHBGZD AEQHDBGZ AEQHGZBD AEQHGZDB 

AQBGZHDE AQBGZHED AQDBGZHE AQDEBGZH AQEBGZHD AQEDBGZH 

AQGZHBDE AQGZHBED AQGZHDBE AQGZHDEB AQGZHEBD AQGZHEDB 

AQHBGZDE AQHBGZED AQHDBGZE AQHDEBGZ AQHEBGZD AQHEDBGZ 

AQHGZBDE AQHGZBED AQHGZDBE AQHGZDEB AQHGZEBD AQHGZEDB 

 

 
Table 4. Number of occurrences of allowed subunits pairing in the 72 possible ring arrangements 

 

Subunit A B G D E H Q Z #Partners 

A - 16 - 16 16 - 24 - 4 
B 12 - 36 12 12 - - - 4 

G - - - - - - - 72 1 

D 16 16 - - 16 - 24 - 4 

E 16 16 - 16 - - 24 - 4 

H 14 12 18 14 14 - - - 5 

Q 4 6 18 4 4 36 - - 6 

Z 10 6 - 10 10 36 - - 5 

#Partners 6 6 3 6 6 2 3 1  
 

The 72 possible arrangements of subunits we find here only sample 33 of the 56 different possible subunit 

pairings (see Table 4), and not in equal measure.  This distribution could be used in experiment planning that can 

determine subunit pairing (such as the double immuno-labeling and cryo-EM reconstruction used by Martin-Benito 

et al. [12]).  For example, an experiment of double labeling with antibodies against the Q and H subunits is 

guaranteed to lower the number of possible arrangements to 36.  If the particle reconstruction reveals the extra 

density due to the bound antibodies on successive subunits, then the only possible pairing is QH as pairing HQ has 

already been eliminated.  On the other hand, if the extra densities are further apart around the ring, then the only 

possible pairing for subunit H is ZH as there are only two allowed pairings with H to the right, QH and ZH.  
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4. Discussion 

In this study we used evolutionary information and a structural model to narrow the number of possible subunit 

arrangements in the ring of TRiC from 5,040 to 72 (Table 3).  This specific type of data analysis has already been 

used effectively in many other studies [13-15], but its application to TRiC is novel both in terms of the magnitude of 

the problem as well as in the level of detail demanded.  Two sources of errors might jeopardize the validity of the 

results: wrong restrictions due to misinterpretation of the structural model or, more likely, because the model itself 

contains errors that reflect the difference between TRiC and the thermosome.  These concerns are always inherent to 

this type of methodology, and we tried to alleviate them by adherence to the most conservative possible assumptions 

and views of the data.  Somewhat paradoxically, the lack of great detail in our assumptions actually makes them 

more robust to errors in the model: minor changes in backbone or side-chain conformations are unlikely to break 

them.   

We emphasize that the five positions described in the tables are not the entire molecular key for the subunit 

order.  At least three other putative interaction centers show conservation patterns that are likely to be important for 

the interface specificity.  These centers were not used here because we are currently unsure of their interpretations 

for two main reasons.  First, some of these centers are more complex and involve three interactions or more.  The 

analysis of so many interactions requires a more rigorous modeling of the side-chain positions.  Second, in some 

areas a significant backbone change is likely as large variations are already evident between the two thermosome 

subunits (loop 53-57 for example).  Analysis of these areas requires consideration for backbone flexibility.   

Our results start to reveal the molecular basis for the subunit order within the ring.  It appears that a hydrophobic 

core, which is conserved across all subunits, provides a general scaffold for the interface between two successive 

subunits in the ring.  This scaffold is bordered by interaction centers that are subunit-pair specific.  The subunit order 

results from complementary charged, polar, and (to lesser extent) hydrophobic interactions that make the correct 

pairing more favorable than the alternatives.  The subunit similarity excludes the possibility of significant steric 

clashes as a source of order information.  Only the equatorial domains are part of the general hydrophobic interface.  

Major ordering information is encoded in Interaction Center 2 from the middle domain.  Since the middle domain 

mediates between the ATP site and the lid, it is likely that the subunit specificity in interaction center 2 has 

functional relevance. 

In order to completely determine the subunit arrangement in the ring, we see two possible courses of action.  

Perhaps most intuitively, structural data from other studies could be used to further validate and limit the set of 

subunit arrangements presented here.  We believe that EM structural studies will be extremely valuable in that 

context.  Alternatively, more detailed modeling could lead to additional structural insights from the unexplored 

interaction centers, as well as to tighter restrictions from the two interaction centers already described.  That level of 

detail requires the use of more computer intensive approach with explicit modeling of side-chain conformations and 

backbone flexibility.  We are currently testing various computational tools for that purpose and hope to make further 

progress in the future.   

4.1. Inconsistencies with the Liou and Willison model 

Liou and Willison [16] suggested an arrangement of subunits in the ring that is still in use.  They inferred this 

arrangement from 6 association patterns of TRiC micro-complexes, i.e. very partial fragments of TRiC rings found in 

cell extracts.  Unfortunately, none of the 72 possibilities that we summarize in Table 3 is consistent with the Liou and 

Willison arrangement.  The G-Z interaction is among the first restrictions to prohibit their arrangement, which does 

not include it.  However, we see a very strong signal for its occurrence in this work.  Furthermore, out of the 72 

possibilities we suggest, only one is consistent with 4 out of the 6 association patterns from the Liou and Willison 

work, and the rest are consistent with 3 or less.  The clear inconsistency between the two studies suggests that the 

micro-complexes they identified are not always genuine parts of the intact complex. 
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Accurate and efficient methods to simulate biomolecular systems at multiple levels of detail simultaneously are an ongoing challenge 
for the simulation community.  Here we present a new method for multi-scale simulation where a complex system can be partitioned 
into two loosely-coupled sub-systems, one coarse-grained and one atomistic.  If the coupling between the coarse-grained and atomistic 
systems can be encoded into discrete states that interconvert slowly, we can construct a Markov state model where we approximate 
any given transition  P[(si,tj)->(sk,tl)] in the joint space of the coarse-grained and atomistic systems as the product of two orthogonal 
transitions  P(si->sk | tj) and P(tj->tl | sj).  We provide a formalism for constructing such models and describe how they may be applied 
to multi-scale simulation of membrane proteins.   This “cross-graining” methodology may provide a general means to efficiently 
simulate mixed-scale systems.

1. Introduction

Many biological systems have the following canonical challenge:  outcomes depend on fine degrees of freedom, yet 
they involve large systems and large timescales.  Indeed, an underlying principle behind biological signal 
transduction is that fine sensitivity to subtle molecular changes controls large-scale effects.  This poses a challenge 
for mechanistic simulation; it is often computationally intractable to capture all the fine-scale details of a system 
while simultaneously reaching the time and length scales required to address emergent behavior.  

Driven by this challenge, "coarse-grained" approaches have been developed to use a  reduced degree-of-
freedom representation for more efficient computation.  However, many systems have important transitions 
governed by fine-grained degrees of freedom such that it is challenging to derive a coarse-grained representation 
that is computationally efficient yet sufficiently predictive.  Full mixed-scale simulation, in which fine-grained and 
coarse-grained representations can be combined freely, is an ongoing challenge for the field.   In this work, we derive 
an alternate multi-scaling technique where fine-grained and coarse-grained representations are combined at the level 
of a statistical reaction model, a Markov state model.   We show that under certain conditions this method, which we 
term “cross-graining,” performs at least as well as the ideal mixed-scale simulation that has yet to be fully realized.

Whether atomistic or coarse-grained representations are used, Markov state models have recently gained 
traction as a means to analyze and interpret molecular simulation data [1-4].  They draw on the notion that at some 
level molecular reactions are Markov chains—stochastic processes where, given a suitable encoding of state 
information at time t and a minimum “lag time” τ, the state of the system at time t + τ depends only on the state at t.  
Methods have recently been developed to determine such state encodings from a set of simulation trajectories,  assess 
model quality, and use the resulting statistical reaction model to predict ensemble properties and long-timescale 
behavior of the system [5-7].

Here we address an important subset of “multi-scale” problems where one can partition a system into two 
processes of interest, each with associated degrees of freedom.  For instance, one process may depend primarily on 
atomistic degrees of freedom {xi}, while another process depends primarily on coarse-grained degrees of freedom 
{yi}.  An example is given in Figure 1.  As we will discuss,  these processes can be correlated.   We show how 
Markov state models yield a means to obtain multi-scale dynamics in this case and further derive a scheme for 
"cross-graining" where each set of transitions can be computed using only the relevant degrees of freedom.  We 
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provide an example of how this approach yields efficient sampling compared even to a full “ideal” multi-scale 
simulation.

Figure 1.  Sample membrane-protein system.  Shown here is the E. coli outer membrane protein A (OmpA) inserted in a lipid bilayer [8].  
OmpA is unfolded or aggregated in solution but assumes a beta-strand conformation in membranes; these strands then assemble to form a beta-
barrel pore.  To simulate this in a multi-scale manner, we consider the protein and its immediate environment atomistically as degrees of freedom 
{xi} and the larger membrane-water system as degrees of freedom {yi}.

We motivate our cross-graining approach by considering the insertion and assembly of membrane pores.  
Contemporary coarse-gained force fields such as MARTINI [9] have had good success in simulating lipid 
membranes [10-16], and they have also been used to simulate protein assembly in membranes,  given a constrained 
protein conformation [8, 17-19].   Robust simulation of protein refolding has proven more challenging.  We seek an 
approach that can use atomistic simulation to determine the protein conformational dynamics within each coarse-
grained "state" of the membrane system and also use the protein conformation in each state to inform a coarse-
grained simulation of large-scale protein-membrane interactions—in this case by providing data for the coarse-
grained protein torsions and conformational restraints.  Grossly, one could imagine the fine-grained instantiations of 
each coarse-grained state as simulating the protein in solution, the protein in an encounter complex with the 
membrane, and a variety of membrane-inserted states.  The coarse-grained state would determine the composition 
and macroscopic restraints on the protein surroundings for the fine-grained simulation; the fine-grained state would 
yield torsional restraints to constrain the protein for the coarse-grained simulations.  Under the proper conditions, 
such an approach can provide both fine-scale conformational dynamics and efficient simulation of large systems.   
The cross-graining method we have developed addresses these challenges, although it also proves more general as 
well.

2. Theory

Let us consider a molecular system where the degrees of freedom can be partitioned into two sets,  {xi} and {yi}.  Let 
us further consider two sets of processes, one of which primarily depends on {xi} (our fine-grained degrees of 
freedom) and one of which primarily depends on {yi} (our coarse-grained degrees of freedom).  These two processes 
can be inter-dependent; we will both state this formally below and show a simple 2D example to make this intuitive.  
The fundamental approximation, however, is that at some level of granularity we can treat the joint free energy 
landscape ({xi},{yi}) as the direct product of the individual free energy landscapes {xi} ⊗ {yi}.  

Any classical molecular system can be represented as a Markov chain for some set of states and some time 
resolution [1].  A trivial proof of this is to consider the set of states corresponding to all points in phase space and 
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continuous time (or for a simulation, time resolution corresponding to the integrator time step).  The time evolution 
of this system is a history-independent stochastic process.  Therefore suppose we construct a Markov state model to 
represent the behavior of our system on degrees of freedom {xi} and a second Markov state model to represent the 
behavior on degrees of freedom {yi}.   For the moment, we will take the partitioning of degrees of freedom as given; 
determining the optimal partitioning of phase space into states and the optimal partitioning of degrees of freedom 
into {xi} and {yi} are separate problems, each non-trivial.  

Since these degrees of freedom {xi} and {yi} may be coupled,  any transition a -> b on {xi} will be Markovian 
on {xi} but may depend on {yi}.  Stated more formally, given a sequence of states (u1..un) on {xi} and a sequence of 
states (v1..vn) on {yi}, the mutual information I(un+1 ; un |  u1..un-1) = 0 [20] but I(un+1 ; un |  vn) ≥ 0.  We now partition 
state space {xi} into states {si} and {yi} into “macrostates” {ti}.  We choose a set of macrostate definitions for S and 
T such that knowledge of (s,t) is sufficient information to make P(a -> b) Markovian by the above criterion.  In the 
limit of completely uncoupled degrees of freedom, there is no dependence on the state Y, while in the opposite limit 
of completely coupled degrees of freedom one could have a system where each point in phase space {yi} 
corresponds to a distinct state.  

To make this intuitive, we consider the case where x and y each consist of one degree of freedom.  A free energy 
diagram in this 2D space is schematized in Figure 2.  Cross-graining applies well when each set of (si,tj) -> (sk,tl) 
transitions occurs on well-separated timescales.  In one such case we may have si -> sk transitions followed 
sequentially by tj -> tl transitions (Fig. 2a); in another the si -> sk transitions relax quickly enough compared to tj -> tl 
(Fig. 2b) that we can make the following approximation:

€ 

P {s},t j( )→ {s},tl( )( ) ≈ P si( ) ⋅ P t j | si( )→ tl | si( )( )
si ∈{s}
∑            (1)

Cross-graining performs poorly where fast or highly cooperative transitions exist on both {xi} and {yi} (Fig. 2c); this 
can in principle be solved by using a shorter Markov timescale τ, but this comes at the cost of a greatly increased 
sampling requirement and thus can become prohibitively expensive.

Figure 2.  Two-dimensional free energy diagram.  This schematic contour plot shows state configurations well suited (a and b) and poorly 
suited (c) for cross-graining. 

Let us leave the problem of state selection aside for the moment and assume that we can select states, either 
using prior experimental knowledge or by applying a clustering algorithm to an initial sampling of state space [6, 7].  
To specify the matrix of transition probabilities P(si -> sj |  t ∈ T, τ1) we can sample trajectories in {xi} using a 
sampling  algorithm of our choice while holding t constant and repeating this for each t in T.  We perform the same 
operation on {yi} while holding s constant for each state s in S.  This sampling (where one might use molecular 
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dynamics simulation in a molecular system) illustrates the "cross-grained" nature of our approach—when sampling 
on {xi}, the information encoded in the state variable t provides sufficient information regarding {yi}, the other 
degrees of freedom are effectively coarse-grained away.  The converse applies to sampling {yi}.  By treating each 
subspace separately in this manner, we can substantially ease the task of sampling phase space.  

To use the example of protein insertion and assembly with the MARTINI force field, the atomistic 
representation would include the protein and, depending on the coarse-grained state, the surrounding water or 
membrane.  These surroundings encode the coarse-grained state information.  The coarse-grained representation 
contains the full system and encodes the atomistic state by using the protein secondary structure to determine 
torsional potentials (as is standard in MARTINI) and optionally some additional conformational restrains (c.f. the 
work of Marrink, Sansom and co-workers [17, 21]).

Given the transition probabilities P(si -> sj |  t, τ1), P(ti -> tj |  s, τ2), we can then construct a single first-order 
Markov state model on the joint space (si,tj).  If we formulate the transition probabilities on τ3>= max(τ1, τ2), 
P[(si,tj)->(sk,tl) |  τ3] = P(si->sk |  tj, τ3)P(tj->tl | si, τ3).  This approximation of conditional independence is a key one; 
transitions that are highly cooperative between coarse-grained and fine-grained degrees of freedom will result in a 
poor approximation here.  This can be partially addressed with a finer sampling of state space, but at a cost of 
increased sampling.  Thus, highly cooperative transitions are an area for further methods development.  For most 
cases, however, this approximation provides an MSM describing the full state of the system, which we can query for 
equilibrium probabilities, kinetic properties, ensemble experimental observables, etc. much as any single-resolution 
Markov state model [1, 5, 16].

3. A simple model for the insertion and assembly of a membrane pore

Let us consider a simple system for which phase space can be partitioned into degrees of freedom {xi} and {yi} and 
that has the following transitions:

€ 

on {xi} :   A
k1 →  
k4

←   I1
k2 →  
k5

←   I2

k3 →  
k6

←   B

on {yi} :   C
k7 →  
k10

←   I3

k8 →  
k11

←   I4

k9 →  
k12

←   D
 (2)

and where the states {s1..s4} = {A,I1,I2,B} and {t1..t4}={C,I3,I4,D} are Markovian given the joint state of the system 
(si,tj).   These states and the rates given below were chosen to loosely resemble a simple model for the insertion and 
assembly of a membrane pore, similar to the rough model proposed for the assembly of hemolysin E [22].  The fine-
grained state A corresponds to the solution protein conformation, I1 to a hydrophobic-exposed protein conformation 
in contact with the membrane, I2 to a membrane-inserted and refolded conformation, and B to the protein 
conformation in the assembled pore.  The coarse-grained state C corresponds to the protein distant from the 
membrane, I3 to the protein at the membrane interface,  I4 to the protein inserted in the membrane, and D to the fully 
assembled pore.  A Markov model in full molecular detail for this process would likely have many more states, but 
this provides an experimentally-motived simple model for our proof of principle.  If we have knowledge of the 
macrostate definitions i.e. the mappings X->S and Y->T but not the transition rates {k}, we can set up the following 
sampling approach to estimate the rates:

1.  Start n simulation trajectories on {xi} for each macrostate t on {yi}; these can be from a single start state (e.g. A) 
or distributed among start states from a random seeding approach or a more sophisticated sampling scheme such 
as that described in [23]. Similarly start m simulation trajectories on {yi} for each macrostate s on {xi}.  Using 
the state mappings given, this will yield a set of trajectories each of the form (u1..un | ti) where the macrostate ti 
remains fixed and (v1..vn | si) where si remains fixed.  Macrostate mappings can also be iteratively refined at this 
stage. 

2.  Estimate the transition probabilities for each of these Markovian sub-graphs:
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P si → s j | tk( ) =
Count un ∈ si,un+1 ∈ s j | tk( )

Count un ∈ si | tk( )
 (3)

3.  Construct the transition probabilities for the combined Markovian state model P[(si,tj)->(sk,tl) | τ3] = P(si->sk | tj, 
τ3)P(tj->tl | si, τ3).

We demonstrate this approach by sampling n random trajectories on {xi} for each macrostate t ∈ T using a 
transition probability matrix constructed from the rates {k}  listed in Table 1 for the reaction scheme given above.  
We similarly take n random trajectories on {yi} for each macrostate s ∈ S.  Starting states are randomly selected 
from a uniform distribution over macrostates.  We construct the transition probabilities for the combined Markovian 
state model as specified above using our “observed” trajectories and compare to the same number of 8n total 
trajectories sampled directly from the combined transition probability matrix.    We let n vary between 20 and 100, 
perform 100 random sampling procedures of this nature for each value of n and compare the convergence of the 
transition probability matrix eigenvalues as performed previously [23].  Transition probability eigenvalues yield the 
implied timescales for the system and are hence an important target for validation.  Results are plotted in Figure 3.

Table 1.  Rate constants used for simple system.  First-order rate constants are given in reduced units of time τ. 

Macrostate on {yi}Macrostate on {yi}Macrostate on {yi}Macrostate on {yi}Macrostate on {yi}Macrostate on {yi}
C (solution) I3 (interfacial) I4 (inserted) D (pore)

k1 1.00E-09 1.00E-05 1.00E-05 1.00E-05
k2 1.00E-09 1.00E-05 1.00E-05 1.00E-05

Rate k3 1 1.00E-07 1.00E-05 1.00E-05
k4 1 1.00E+00 1.00E-05 1.00E-09
k5 1 1.00E-05 1.00E-07 1.00E-09
k6 1 1.00E-05 1.00E-09 1.00E-09

Macrostate on {xi}Macrostate on {xi}Macrostate on {xi}Macrostate on {xi}Macrostate on {xi}Macrostate on {xi}
A (solution 
conformation)

I1 (hydrophobic 
exposure)

I2 (partially 
refolded)

B (membrane 
fold)

k7 1.00E-05 1.00E-03 1.00E-03 1.00E-03
k8 1.00E-09 1.00E-05 1.00E-03 1.00E-03

Rate k9 1.00E-09 1.00E-09 1.00E-05 1.00E-05
k10 1 1.00E-05 1.00E-05 1.00E-05
k11 1 1.00E-05 1.00E-07 1.00E-09
k12 1.00E-05 1.00E-09 1.00E-09 1.00E-09
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Figure 3.  Convergence of eigenvalues for cross-graining.  Convergence is compared between cross-grained sampling and direct sampling on 
the combined transition probability matrix.  Panels (a) and (b) show convergence of the mean of each eigenvalue across 100 random samples, 
while panels (c) and (d) show convergence of the variance.

Convergence of the relaxation timescales yielded by sampling with our "cross-graining" strategy are compared 
to convergence with an "ideal" multi-scale simulation that can seamlessly mix coarse-grained and atomistic degrees 
of freedom (mixed CG/AA simulation).  Both systems show good convergence over the range 40-100 trajectories of 
length 1000 τ in each of 8 start state combinations.   The clear advantage for cross-graining becomes evident, 
however, when one considers the compute time required.  

We examine computational efficiency in two respects, first with regard to the efficiency of the individual 
simulations and with regard to the sampling techniques employed.  In each of these, cross-graining performs at least 
as well as the optimal mixed CG/AA simulation.  Within the individual simulations, cross-graining allows the 
coarse-grained and atomistic simulations to be effectively decoupled and run in parallel.   This results in optimal 
scaling across processors and performance equivalent to the hypothetical perfect multi-scale integrator, in which 
force calculations and coordinate updates can be performed at different timesteps for different parts of the system 
with no overhead.

Cross-graining also performs at least as well as optimal mixed CG/AA simulation with regard to sampling 
efficiency.  If we have a naive sampling approach where we uniformly sample transitions in the macrostate space (si, 
tj), cross-graining and mixed CG/AA simulation are equivalent.   This equivalence also assumes that for every (si,  tj) 
start state we require even sampling of the si -> sk transitions and the tj -> tl transitions.  We have taken such an even-
sampling approach in the example above, but recent work has shown a substantial advantage for "adaptive 
sampling" methods that weight the distribution of starting states according to their contribution to the variance of 
transition matrix eigenvalues [23].  In the case of villin headpiece folding, such a strategy improved convergence by 
a factor of over 1000.  For a given (si,tj) pair,  unless we require precisely the same degree of sampling from si |  tj and 
tj |  si, we “waste” the sampling across the other degrees of freedom.  Since multi-scale simulation typically targets 
systems where coarse-grained degrees of freedom relate to long-timescale phenomena and atomistic degrees of 
freedom relate to shorter-timescale phenomena, we end up performing atomistic simulations over the coarse-grained 
timescales.  Using the hemolysin example discussed above, the protein alone comprises 100,000 atoms; if we 
consider the solution case, simulate water molecules within 1 nm of the protein, and take τ = 1ns, then every 
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unnecessary trajectory of the resulting 375,000 atom system sampled at length 1000τ would take several months of 
simulation time using 128 Intel Cloverton cores (benchmarked with Gromacs 4.0 [24]).

4. Outlook

The “cross-graining” approach that we describe is particularly amenable to problems such as insertion, refolding, 
and assembly of membrane protein oligomers.  Membranes and membrane proteins have long been a target for 
coarse-grained simulation [17,  25, 26], and assembly of folded protein subunits has been studied by several 
researchers, as has the insertion of pre-formed helices.  However, the process of insertion and folding of peptides 
that have different conformations in solution and in the membrane is more challenging for coarse-grained simulation 
[27].  Even more difficult are large systems such as E. coli hemolysin (Figure 4) that are are thought to undergo 
partial unfolding and refolding at the membrane interface prior to assembly in the membrane [22].  One approach to 
cross-graining such a system is to coarse-grain the hemolysin-membrane-water system with states representing 
protein in solution, protein at the membrane interface, inserted protein,  and various intermediates in assembly.  The 
hemolysin monomer and its immediate surroundings (solution or membrane) are represented atomistically.   
Sampling the atomistic system will yield Markov state models for the conformational dynamics of the protein in 
each of the coarse-grained states—data that are difficult to compute accurately in the coarse-grained system alone.  
Sampling the coarse-grained system will yield the long-timescale behavior of protein insertion and pore formation, 
data that are not computationally tractable via atomistic systems.  Experimental data from crystal structures and 
biochemical studies can guide the initial state definitions; this approach also provides a means to computationally 
evaluate structural models for refolding, insertion, and assembly such as those recently proposed for hemolysin [22].

Figure 4.  Solution-state and assembled conformations of E. coli hemolysin E.  

5. Conclusions

We have presented a means to construct unified multi-scale kinetic models by performing individual simulations at a 
single scale and combining the simulations and scales in a Markov state model.   This is accomplished by 
partitioning a system into two sets of degrees of freedom that are loosely coupled.  This loose coupling and the 
specification of a discrete number of Markovian “macrostates” allows the approximation of any given transition  
P[(si,tj)->(sk,tl)] as the product of two orthogonal transitions  P(si->sk |  tj) and P(tj->tl |  sj).   We outline how this 
method applies to membrane protein simulations,  but we anticipate it will prove a much more general method for 
performing multi-scale simulation, helping to overcome the challenges of simultaneous mixed-scale simulation.
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TOWARD UNDERSTANDING ALLOSTERIC SIGNALING MECHANISMS IN THE ATPASE 
DOMAIN OF MOLECULAR CHAPERONES 
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The ATPase cycle of the heat shock protein 70 (HSP70) is largely dependent on the ability of its nucleotide binding domain (NBD), 
also called ATPase domain, to undergo structural changes between its open and closed conformations. We present here a combined 
study of the Hsp70 NBD sequence, structure and dynamic features to identify the residues that play a crucial role in mediating the 
allosteric signaling properties of the ATPase domain. Specifically, we identify the residues involved in the shortest-path 
communications of the domain modeled as a network of nodes (residues) and links (equilibrium interactions). By comparing the 
calculations on both closed and open conformation of Hsp70 NBD, we identified a subset of central residues located at the interface 
between the two lobes of the NBD near the nucleotide binding site, which form a putative communication pathway invariant to 
structural changes. Two pairs of residues forming contacts at the interface in the closed conformation of the NBD are observed to no 
longer interact in the open conformation, suggesting that these specific interactions may play a switch role in establishing the 
transition of the NBD between the two functional forms. Sequence co-evolution analysis and collective dynamics analysis with elastic 
network model further confirm the key roles of these residues in Hsp70 NBD dynamics and functions. 

1. Introduction 

Heat shock proteins (HSPs), also known as molecular chaperones, are ATP-regulated machines that perform several 
housekeeping activities in the cell: they assist in folding newly synthesized peptides, or unfolding and refolding 
partially folded or misfolded proteins, they regulate the intracellular trafficking of proteins, facilitate, in particular 
the recognition of those to be degraded by the proteasome, and most importantly, assist in the correct folding, and 
prevent the aggregation, of the proteins denatured in response to heat and other environmental stresses [1,2].  

Hsp70 is one of the most ubiquitous members of the HSP family. It exists in almost all organisms [3]. It is 
composed of two domains: the ATPase domain, also referred as nucleotide binding domain, NBD [4], and the 
substrate binding domain (SBD) [5]. The two domains regulate the activity of each other via allosteric 
communication: ATP hydrolysis at the NBD increases the substrate binding affinity of the SBD, thus lowering the 
substrate exchange rate of the latter; on the other hand, the replacement of the ADP produced upon ATP hydrolysis 
by a new ATP (nucleotide exchange) lowers the binding affinity of the SBD thus enhancing the release and 
exchange of substrates [3]. 

The regulation of substrate binding affinity during the ATPase cycle is a crucial aspect of the chaperone activity 
of Hsp70, and notably, of other HSP family members [6]. The ATPase domain undergoes conformational changes 
between open and closed forms during the ATPase cycle, which correspond to different nucleotide binding states.  
The open conformation has been observed in the presence of ATP [7,8] and in the complexes formed with a class of 
co-chaperones called nucleotide exchange factors (NEFs) [9-11]. NEFs are known to assist nucleotide exchange by 
stabilizing the open form. Nucleotide exchange efficiency is viewed to be largely dependent on the conformational 
change to an open state.  

In the present study, we examined the type of conformational changes occurring in the ATPase domain, and 
their influence on inter-residue communication pathways. Our previous examination of another ATP-regulated 
allosteric machine, the bacterial chaperonin GroEL, showed that the structure has access to intrinsically favored 
collective dynamics, on the one hand, and to well-defined signal transduction pathways that transmit allosteric 
effects away from the ATP binding site, on the other [12]. Redistribution of on-pathway interactions during the most 
cooperative (global) modes of motion of the chaperonin has been proposed to be a mechanism of allosteric 
regulation [13]. Toward gaining insights into the dynamic aspects of allosteric regulation, this time in the Hsp70 
ATPase domain, we adopted here a multi-pronged approach: First, we identified a number of key residues 
distinguished by their central role in so far as the allosteric signal transduction across the molecule is concerned. 
This approach takes account of all atom-atom contacts, which are mapped into a low resolution, residue-level 
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evolution patterns of these residues. Third, we examined their collective dynamics using a simple elastic network 
model, the Gaussian network model (GNM) [14,

Notably, the presently identified “central
Residues in the first group are highly conserved across Hsp70 NBD sequence homologs. These residues exhibit 
little, if any, movement in the global modes predicted by the GNM, serving as hinge centers near the nucleotide 
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turn facilitate nucleotide binding or release; (ii) conserved residues participate in h
thus playing a role in maintaining the native contact topology; whereas sequentially variable but correlated residues 
exhibit a moderate mobility essential to enable functional changes in conformation. 

2. Materials and Methods 

2.1.  Structural Data 

The Hsp70 ATPase domain consists of two lobes [4]. Lobe I consists of subdomains IA and IB, and lobe II, of 
subdomains IIA and IIB (Figure 1a). We used the structures of the bovine homolog of Hsp70 (Hsc70) (PDB id: 
1hpm [16]) for the closed form of the NBD. For the open form, we considered two structures of the same species 
complexed with mammalian NEFs:  a complex with BAG, and another with Sse1, with respective PDB identifiers of 
1hx1 [9] and 3c7n [17]. The structural alignment in Figur
positions of subdomains IB and IIB, as the structure undergoes a conformational chang
forms. 

 

 

Figure 1. (a) Subdomains of Hsp70 ATPase domain: IA (green; residues 1
189-228 and 307-C-terminus) and IIB (orange; residues 229
closed form (white) is a structure observed in the absence of nucleotide (PDB id: 1hpm) [16].  Two open forms are shown, both obs
complexes formed with NEFs: In cyan is the structure from the complex with the Sse1 (PDB id: 3c7n) [17]; and in orange
complexed with BAG (PDB id: 1hx1) [9]. The NEFs (Sse1 and BAG) are not shown here. The three structures have been aligned usi
Kabsch algorithm ([21] as implemented in PyMol).

 A number of residues lining the cleft between the two lobes of the NBD 
dulate the opening and closing of the cleft. Second, we analyzed the sequence conservation and co

evolution patterns of these residues. Third, we examined their collective dynamics using a simple elastic network 
model, the Gaussian network model (GNM) [14,15]. 

central” residues belong to two groups in terms of their evolutionary patterns. 
Residues in the first group are highly conserved across Hsp70 NBD sequence homologs. These residues exhibit 

the global modes predicted by the GNM, serving as hinge centers near the nucleotide 
binding site. The second group comprises co-evolving residue pairs. These residue pairs tend to concertedly make 
and break contacts upon closing or opening of the nucleotide-binding cleft.  Our results indicate that (i) the 
predicted global modes of the Hsp70 ATPase domain entail alterations in inter-residue contact topology, which in 
turn facilitate nucleotide binding or release; (ii) conserved residues participate in hinge centers in the global modes 
thus playing a role in maintaining the native contact topology; whereas sequentially variable but correlated residues 
exhibit a moderate mobility essential to enable functional changes in conformation.  

The Hsp70 ATPase domain consists of two lobes [4]. Lobe I consists of subdomains IA and IB, and lobe II, of 
subdomains IIA and IIB (Figure 1a). We used the structures of the bovine homolog of Hsp70 (Hsc70) (PDB id: 

of the NBD. For the open form, we considered two structures of the same species 
complexed with mammalian NEFs:  a complex with BAG, and another with Sse1, with respective PDB identifiers of 

[17]. The structural alignment in Figure 1(b) shows that there is a global change in the relative 
positions of subdomains IB and IIB, as the structure undergoes a conformational change between closed and open 

of Hsp70 ATPase domain: IA (green; residues 1-39 and 116-188), IB (purple; residues 40-
terminus) and IIB (orange; residues 229-306). (b) Ribbon diagram of the superimposed closed and open conformations. The 

ed form (white) is a structure observed in the absence of nucleotide (PDB id: 1hpm) [16].  Two open forms are shown, both obs
complexes formed with NEFs: In cyan is the structure from the complex with the Sse1 (PDB id: 3c7n) [17]; and in orange
complexed with BAG (PDB id: 1hx1) [9]. The NEFs (Sse1 and BAG) are not shown here. The three structures have been aligned usi
Kabsch algorithm ([21] as implemented in PyMol). 

A number of residues lining the cleft between the two lobes of the NBD 
the cleft. Second, we analyzed the sequence conservation and co-

evolution patterns of these residues. Third, we examined their collective dynamics using a simple elastic network 
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residue contact topology, which in 
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The Hsp70 ATPase domain consists of two lobes [4]. Lobe I consists of subdomains IA and IB, and lobe II, of 
subdomains IIA and IIB (Figure 1a). We used the structures of the bovine homolog of Hsp70 (Hsc70) (PDB id: 

of the NBD. For the open form, we considered two structures of the same species 
complexed with mammalian NEFs:  a complex with BAG, and another with Sse1, with respective PDB identifiers of 

e 1(b) shows that there is a global change in the relative 
e between closed and open 

 

-115), IIA (cyan; residues 
306). (b) Ribbon diagram of the superimposed closed and open conformations. The 

ed form (white) is a structure observed in the absence of nucleotide (PDB id: 1hpm) [16].  Two open forms are shown, both observed in the 
complexes formed with NEFs: In cyan is the structure from the complex with the Sse1 (PDB id: 3c7n) [17]; and in orange is that assumed when 
complexed with BAG (PDB id: 1hx1) [9]. The NEFs (Sse1 and BAG) are not shown here. The three structures have been aligned using the 
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2.2. Sequence Data 

We started from the multiple sequence alignment (MSA) of 4839 sequences retrieved from the PFAM database [18] 
for Hsp70 family (PFAM id: PF00012). This family includes a wide range of subfamilies, some of which have 
biological functions not represented by the canonical Hsp70 (e.g., the Hsp110 subfamily). We refined the MSA 
using the consensus sequence of the ATPase domain (380 residues) in the bovine cytosolic homolog of Hsp70. The 
refinement consists of the following steps: (i) iterative implementation of the Smith-Waterman algorithm (SW) for 
pairwise alignment [19] using the consensus sequence against each sequence in the MSA, and elimination of those 
below a threshold SW score (of 300) so as to retain the closest orthologs to the human (Hsc70) and bacterial (DnaK) 
chaperones, (ii) removal of the MSA columns that correspond to insertions with respect to the consensus sequence, 
thus restricting the number of amino acids to 380, and (iii) elimination of the sequences that contain more than 10 
gaps. The refinement resulted in 1627 sequences, which has been subjected to sequence conservation and correlation 
analyses. Conserved residues were identified with the WEBLOGO web server [20], and correlated residues by 
mutual information (MI) analysis. 

2.3. Identification of Central Residues 

We adopted the approach proposed by Nussinov and coworkers [22] to identify the central residues of the ATPase 
domain. These are the residues that exhibit a high probability of participating in shortest-path communication when 
all such paths between all residue pairs are examined. The protein is modeled as a network to this aim, each node 
representing a residue. Nodes corresponding to residues A and B are connected if at least one atom of A is within 
4.5 Å distance from an atom of B. In previous studies, such contact-based network models have been pointed out to 
exhibit properties of small-world networks [23,24]. We utilized as metric the characteristic path length (L) --- a 
global property of the network defined as the average shortest path length between all pairs of nodes. The shortest 
path between each pair of nodes is computed using the Dijkstra's algorithm. The centrality of residue k is measured 
by the difference ∆Lk=Lhyp(k) - L in characteristic path length with respect to the original network, obtained for the 
hypothetical network where node k and all connected edges have been removed. If there is a significant increase in 
the characteristic path length due to removal of residue k, then residue k is considered to be a "central residue" in 
establishing internode communication. Central residues are hypothesized to play a role in allosteric signal 
transduction. Indeed, Nussinov and coworkers [22] have applied the method to seven distinct families, to find results 
consistent with experimental data. It should be noted however, that the identification of central residues may be 
sensitive to missing residues. In addition, the test set of proteins used in previous work for establishing the centrality 
contains globular proteins exclusively. The applicability of the method to other proteins remains to be established.  

2.4. Gaussian Network Model (GNM) 

We used the Gaussian network model (GNM) [14,15] for analyzing the equilibrium dynamics of the ATPase 
domain. Details on the method can be found in our previous studies. In summary, the structure is modeled as an 
elastic network, the position of each node being identified by that of each α-carbon; and pairs of nodes (Cα) within a 
cutoff distance of 7.3 Å are connected by elastic springs to account for the tendency of the structure to maintain its 
inter-residue contact topology under native state conditions. Knowledge of inter-residue contact distribution permits 
us to construct the Kirchhoff matrix Γ, also known as Laplacian in graph theory. Eigenvalue decomposition of Γ, or 
its inverse, C = Γ-1, 

 1 1
k k k k k

k k

λ λ− −= =∑ ∑C u u CT  (1) 

yields information on the spectrum of collective modes (fluctuations) intrinsically accessible to the structure under 
equilibrium conditions. Here λk and uk represent the kth eigenvalue and eigenvector, respectively of Γ, the 
summation is performed over all N-1 nonzero eigenmodes, for a protein of N residues/nodes and λk

-1Ck is the 
contribution of the kth mode to C. The diagonal elements of Ck represent the normalized square fluctuations of the N 
residues, also called the mobility profile, induced by mode k, and the off-diagonal elements scale with the cross-
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correlations between residue fluctuations. Each mode contribution is weighted by the inverse eigenvalue (which is 
proportional to the square root of the mode frequency) such that the lowest frequency modes make the largest 
contribution to C. We focus here on the modes in the low frequency regime, as the major determinants of potentially 
functional movements, and examine the weighted average mobility profiles Σkλk

-1Ck / Σkλk
-1 for 1 ≤ k ≤10.  

2.5. Mutual Information (MI) 

We adopted the mutual information (MI) content as a measure of the degree of co-evolution between residue pairs 
[25,26]. Accordingly, each of the N columns in the MSA generated for a protein of N residues is considered as a 
discrete random variable Xi (1 ≤ i ≤ N) that takes on one of the 20 amino-acid types with some probability. The MI 
associated with the random variables Xi and Yj corresponding to the ith and jth positions is defined as 

 
( ; )

( , ) = ( ; ) log
( ) ( )

i j
i j i j

x x i ji j

P X Y
I X Y P X Y

P X P Y
∑∑
all all

 (2) 

where P(Xi ; Yj) is the joint probability of observing amino acid type X at position i, and Y at position j; P(Xi) and 
P(Yj) are the marginal/singlet probabilities for amino acids of types X and Y at the two respective positions. Eq (2) 
permits us to evaluate the N × N MI matrix I  with elements Iij = I(Xi , Yj). Iij varies in the range [0, Imax], with the 
lower and upper limits corresponding to uncorrelated and most correlated pairs of residues. The MI is a classical 
concept from information theory; however, like other methods based on sequence information, the performance of 
the MI metric also relies on the quality of MSA. 

3. Results and Discussion 

3.1.  Centrality Profile of Different Conformations of NBD 

We calculated the centrality profile of all the three structures, the NBD in the closed state and the two others, in the 
open state. The results are shown in Figure 2 for the unbound (panel (a) and Sse1-bound (panel (b)) of the ATPase 
domain. The centrality profile for the BAG-bound form exhibits patterns similar to those observed in panel (b). 
From the characteristic path length and the RMSD calculated from structural alignment, we infer that the lobes of 
the Sse1-bound NBD are further apart than the BAG-bound form. 

 

 
 

Figure 2. The centrality profile for NBD residues. The profiles are calculated for (a) the closed form, and (b) the open form in the Sse1-bound 
NBD. The abscissa represents the fractional change ∆Lk/L in characteristic path length compared to the original network, maxima referring to 
nodes that have a strong impact on communication efficiency, if removed. 
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Comparison of panels (a) and (b) shows that the two profiles exhibit similar features (i.e., peaks and minima at 

the same regions), while the relative heights of the peaks vary. In particular, the peaks near residues located at the 
inter-lobe interface, that is residues 257-276 (helix II) and residues 10-60, are suppressed in the open form. In 
contrast, some residues located at the nucleotide binding pocket (e.g., Arg342 and Asp366) are increased in the open 
form (note that the ordinate scales are different in the two panels). The increase in centrality suggests that they 
assume an enhanced role in establishing the communication away from the active site in the open form. 

We consider the top ranking (top 2%, or equivalently, top 8 residues) residues in the centrality profile in each 
case and refer to them as the central residues in the following text. Among them four are distinguished as central 
residues in all of three structures, regardless of the open or closed state of the NBD: Lys71, Arg72, Glu175 and 
His227; in contrast, the other four residues vary with the conformation (Table 1). 
 

Table 1. Central residues in the closed and two open conformations of Hsp70 NBD. 

PDB id L(Å) Binding NEF conformation Central residues(*) 
shared by all Specific to examined structures  

1hpm 14.06  None closed Lys71 Arg72 
Glu175   His227 

Tyr15  Tyr41  Arg261  Arg272 
1hx1 14.67 BAG open Ala60  Arg261  Arg342  Asp366 
3c7n 15.26 Sse1 open Leu73  Asp232  Lys271  Arg342  

(*) fully conserved residues are written in boldface (see Fig. 4a). Note that Leu73 and Asp232 are also highly conserved. 

3.2. Central Residues Have Different Structural and Sequence Variation Characters 

We examined the position of the central residues on the structure (Figure 3), and performed sequence analyses to 
examine their conservation profile and co-evolutionary properties (Figure 4).  

The four residues that are invariant to conformational changes are colored cyan in Figure 3, and are labeled in 
Figure 3b. Interestingly, these (sequentially separated) residues appear to form a (spatially contiguous) 
communication path across the lobes, starting from His227 and ending at Glu175. Indeed, Lys71 and Glu175 serve 
as catalytic residues [27,28] and are believed to regulate a proline switch that regulates the inter-domain allosteric 
interactions. Studies by Johnson and McKay also show that mutations of Lys71 and Glu175 impede the functional 
conformational change of ATPase domain, which appears to block the signal transduction between subdomains IIB 
and IA [29]. His227 is located at the calcium binding site and its mutation significantly weakens the catalytic 
activity [30,31]. Since the central residues are found to be mediating allosteric communications in a variety of 
protein families [22], we propose these residues to play not only a catalytic role, but also a signaling role in 
communicating the nucleotide exchange events to the other regions of the NBD, including for example the interface 
with the substrate-binding domain. 

These four residues are also highly conserved. The sequence logo [20] shown in Figure 4a indicates that 
residues Lys71, Arg72 and Glu175 are fully conserved. His227, although not conserved, can only be substituted by 
phenylalanine, although histidine probability is much higher, suggesting that a large aromatic group may be 
functional at this position. The interaction of Arg72 and His227, as can be seen from Figure 3e, can be viewed as a 
highly conserved amino-aromatic interaction [32], which is presumably maintained when histidine is replaced by 
phenylalanine. So even though His227 tolerates a mutation to phenylalanine, its interaction with Arg72 is conserved. 
In the following text we will refer to these 4 residues as the shared central residues (SCR). 

The other central residues also exhibit patterns relevant to functional changes in NBD conformation. In the 
closed form, these residues (Tyr15, Tyr41, Arg261 and Arg272) are distributed along the cleft formed by lobes I and 
II to form two closely interacting pairs: Arg272---Tyr15 and Arg261---Tyr41. These pairs serve as two bridges that 
connect subdomain IIB with IA (Arg272---Tyr15) and with IB (Arg261---Tyr41). Bukau and coworkers [33] have 
shown that the salt bridges formed between helix I and helix II, labeled in Figure 1a, affect the nucleotide exchange 
of NBD. We speculate that among the residues located on these two helices, these two pairs arginines and tyrosines, 
also involved in amino-aromatic interactions, play a key role in controlling the subdomain closure and opening that 
in turn ensure efficient nucleotide stabilization or release, respectively. Moreover, since the central residues are 
supposed to be the most “indispensable” residues in establishing the shortest-path communications, the two pairs we 
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identified might be the “anchors” that maintain the closed conformation of NBD. Indeed, this conjecture is 
reinforced by the collective dynamics of the NBD in the next section.  

Interestingly, residues at these four positions also tend to co-evolve as may be seen from the MI map in Figure 
4b. By examining the sequence logo (Figure 4a), we found that the variation of amino acids at these residues 
primarily arises from the difference between the Hsp70 mammalian homolog Hsc70 and the Hsp70 bacterial 
homolog Dnak. The interactions between the two lobes of DnaK, as well as its interaction with NEF (GrpE in this 
case) primarily consist of hydrophobic contacts; whereas in Hsc70, there is a prominence of electrostatic 
interactions. The co-evolution of these central residues is in line with the specificity of their interactions in different 
organisms.  

In the BAG-bound NBD, which assumes a less open conformation between the two NEF-bound structures, 
there still remains a contacting residue pair between the tips of subdomains IB and IIB (Arg261---Ala60, see Figure 
3c), but this interaction can hardly account for the interface between the lobes. On the other hand, Arg342 and 
Asp366 are both conserved and form the nucleotide binding pocket. Their interactions are crucial for maintaining 
the conformation of the active site. In the Sse1-bound NBD, because subdomains IB and IIB have undergone a 
rotation, Asp232 becomes in contact with Lys227, which implies a putative extension of the SCR to subdomain IIB. 
Similarly, Leu73 extends SCR to subdomain IB. Lys271 and Arg342 are both conserved residues at the active site, 
and mutagenesis study showed that Arg342 is crucial for sulfogalactolipid recognition [34].  
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Figure 3. Position of Hsp70 NBD central residues. Panels (a) and (b) display the positions on the NBD closed form, (c) on the
bound to BAG and (d) on NBD open form bound to Sse1. Panel (e) highlights the interaction of Arg72 and His227. The conserved central 
residues are colored cyan; other central residues are colored orange. Panel (b) is the rotated view of panel (a), and the con
are only labeled in panel (b). The diagram was generated with PyMOL. (http://pymol.sourceforge.net)
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Figure 4. Sequence analysis of central residues. (a) Sequence logo of the SCRs (marked with cyan triangles) and other central residues 
with orange triangles) identified in the closed and open (BAG
274 and 10-80, which includes the central residues located at the lobe interfac
cyan, whereas others are written in orange. 

Sequence analysis of central residues. (a) Sequence logo of the SCRs (marked with cyan triangles) and other central residues 
h orange triangles) identified in the closed and open (BAG-complexed) ATPase domain. (b) Mutual information map between residues 173

80, which includes the central residues located at the lobe interface in the closed state. The SCRs’ residue num
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complexed) ATPase domain. (b) Mutual information map between residues 173-

residue numbers are written in 

276



 
3.3. Global Dynamics of ATPase Domain and 

As suggested in [22], the central residues generally relate to the system fragility; that is, these residues ought to 
remain "stable" to maintain the biological function of the molecule. From the sequence perspective, this requires 
sequence conservation; from the structural dynamics perspective, one might expect to see little variations, if any, in 
their spatial positions. In order to critically examine their dynamical characters, we examined the equilibrium 
dynamics of the ATPase domain using the GNM. We focused in particular on the low frequency end of the spectrum 
of modes, given that these modes are usually highly cooperative and 
centrality profile and the mobility profile resulting from the weighted average of the 10 slowest modes of the closed
form NBD (Figure 5). Strikingly, the mobility profile (which represents the normalized distr
fluctuations in residue positions driven by these modes) exhibits minima at the peaks of the centrality profile, and 
vice versa. Minima in the mobility profile represent sites that act as hinges (or anchors) in the collective modes. 
Notably, all the central residues coincide with minima (Figure 5a), which is indicative of their key role in the global 
motions of the NBD. Arg261 and Arg272 are of particular interest: first, their mobility is higher than that of other 
central residues, suggesting a lower energy barrier for them to dissociate from lobe I to facilitate the cleft opening; 
second, helix II as the linkage between two most mobile regions of NBD, is implicated in functional motions.

Overall, the centrality profile and the slow modes 
Figure 5b. Figure 5a indicates the correspondence between the peaks of one curve and the valleys of the other, in 
most cases. In Figure 5b, the residues with high centrality (
Asp86 (labeled in italic in Figure 5b). Indeed, Asp86 is located in an exposed helix that accounts for the rotation of 
subdomain IB and forms a salt bridge with Arg72, which in turn is one of the shared central residues pre
identified. It appears that the salt bridge between Asp86 and Arg72 is critical to the motion of the exposed helix. On 
the other hand, the residues with negative centrality are usually located at the ends or tips of the structure, cons
with their high mobility. 

 

 

Figure 5. Comparison of the slowest modes and the centrality profile. (a) Mobility profile resulting from the weighted average of the 1
modes and the re-scaled centrality profile of the NBD closed form. The centrality profil
corresponding to central residues are labeled, in addition to another outlier, Asp86, distinguished by its high mobility. (b)
centrality for all residues in the NBD closed form. The points cor
taken from the two curves in panel a, for each residue.
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3.4. Summary of Different Types of Central 

Here is an overview of the central residues based on our findings in 
remains to be seen how these results apply to central residues in other families of proteins. We can group the central 
residues into three categories depending on their location on the structure and/or their rol
dynamics: 

1. The hinge point 
2. bridging point at the interface near the cleft (or contact interface)
3. stretched linker (or long helix/loop stretching out)
In the first case, the central residues (e.g., SCR) connect two parts, at least one of 
residues mediate the communications between different parts of the molecule, and transmit the information 
necessary for the proper functioning of the molecule. Perturbations at these residues are most likely to impede 
function. These residues are also highly conserved and serve as hinge points not only with respect to the two 
structural elements that are directly connected, but in the global dynamics of the entire NBD.
central residues serve as linkages at the interface between substructures that have intrinsically access to alternative 
(e.g. open and closed) conformations. They act as the 
of the motions of the moving parts. These residues ar
mutations compared to the first case. Yet, their important role is signaled by correlated mutations that take place 
which presumably aim at restoring the key role (that of locking the closed form in th
third category, although we did not observe any such residue in this study, they have been observed in other 
systems. For example, the inter-domain linker between the NBD and SBD of the Hsp70 possess such residues, 
which evidently play a key role in establishing the allosteric communicatio

 

 

Figure 6. Three scenarios for the central residue’s location on the structure. 
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We note that similar studies have been conducted for identifying allosteric residues and communication pathways, 
including the work of Tang and coworkers
analysis (SCA) of Ranganathan and coworkers 
performance of different methods for detecting sequence correlations 
Aldrich [41] and by Eyal et al. [42]. Calculations performed here for Hsp70 with 
of pathways starting from His227 to Lys
interface of subdomains IA and IIA (e.g, His227
the destination was set to Arg72, however, 
His227 and Arg72. The difference in the
employs evolutionary information for 
present approach for identifying pathways
SCA on Hsp70 indicates that Lys71 and Arg72 
belongs to another cluster, and His227
Gierasch). 
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which presumably aim at restoring the key role (that of locking the closed form in this case). For residues in the 
third category, although we did not observe any such residue in this study, they have been observed in other 
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present approach for identifying pathways is exclusively based on topology. On the other hand, the 
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4. Conclusion 

We presented here a computational study of the ATPase domain of Hsp70 to identify and analyze the residues 
that are crucial for efficient transduction of signals within this domain. This particular domain serves as a signal 
transduction module not only in molecular chaperones but many other proteins, as well, and understanding the 
position and role of key residues in establishing allosteric communication is a topic of broad interest.  We identified 
a subset of central residues across sub-domains, which form a communication pathway invariant to structural change 
between open and closed forms. We also identified two pairs of interacting residues bridging the lobes in the closed 
conformation but no longer interacting in the open conformation.  

The analysis of sequence correlations and collective dynamics assisted in assessing the key role of these 
residues in mediating domain movements relevant to function, supporting the functional character of central residues 
in allosteric systems..The findings independently obtained by centrality profile based on graph-theoretical methods, 
GNM based on statistical mechanical principles, and sequence analysis provide complementary perspectives on the 
allosteric potential, intrinsic dynamics and sequence evolution properties, respectively, of  the examined system. 
These three pieces of data have been advantageously combined here to extract a uniform picture of the structural and 
dynamic aspects of Hsp70 NBD function. Further investigation of the detailed mechanism of transition between the 
NBD closed and open conformations and its coupling to the SBD, using the adaptive ENM [43], holds promise 
toward gaining deeper insights about, and further establishment of, the functional significance of particular residues 
and interactions inferred from the present study. 
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This paper presents a novel sequence-independent method of aligning protein structures using three-dimensional spherical polar 
Fourier (SPF) representations of protein shape. The approach is demonstrated by clustering subsets of the CATH database for each of 
the four main CATH fold types, and by searching the entire CATH database of some 12,000 structures using several protein structures 
as queries. Overall, the automatic SPF clustering approach agrees very well with the expert-curated CATH classification, and ROC-
plot analyses of the database searches show that the approach has very high precision and recall. Database query times can be reduced 
considerably by using a simple rotationally-invariant pre-filter in tandem with a more sensitive rotational search with little or no 
reduction in accuracy. Hence it should soon be possible to perform on-line 3D structural searches in interactive time-scales. 

1. Introduction 

The BLAST and FASTA sequence alignment programs are probably considered by most biologists as the standard 
tools for searching genomic nucleotide or amino acid sequence databases. However, it is known that in nature 
protein structure is more conserved than protein sequence. Hence, structural alignments can provide significant 
insights about protein function and can help classify protein families into functional super-families [1]. Considering 
the large and rapidly growing number of three-dimensional (3D) protein structures available in the Protein Databank 
(PDB [2]), it is important to develop new methods to align and compare protein structures [3]. Current protein 
structure alignment methods such as SSM [4], CE [5], VAST [6], SSAP [10], and DALI [1] typically use graph-
matching and dynamic programming techniques to identify and align cliques of backbone Cα atoms or secondary 
structural features. However, these approaches are slow compared to conventional sequence alignment methods. 
Furthermore, finding the best way to perform 3D structural alignments remains an open question [7]. The most 
widely used protein structure classifications are the CATH [8] and SCOP [9] databases, both of which are curated by 
human experts. In CATH, the classification is initially performed using SSAP, whereas SCOP relies more on visual 
inspection by the curators. In both cases, it would be desirable to be able to assemble and update structural 
classifications in a more automated way. 

In a significant step towards performing protein structure comparisons more efficiently, Mak et al. [11] and Sael 
et al. [12] showed that the 3D shapes of large protein molecules could be compared and classified very rapidly using 
special 3D pose-invariant descriptors derived from spherical harmonic (SH) and Zernike polynomials [13]. Hence 
this kind of approach offers the possibility of being able to search a 3D database of protein structures very rapidly. 
Similarly, it has been shown previously that the related spherical polar Fourier (SPF) representation provides a fast 
way to perform protein-protein docking correlations [14,15]. However, until now, the SPF approach has not been 
used to superpose and compare protein shapes. Conceptually, the use of Zernike descriptors has close parallels with 
the SPF representation, although Mak et al. and Sael et al. did not exploit the special rotational properties of the SH 
basis functions. Hence their approaches can detect similar protein shapes, but cannot superpose them. There is 
growing interest in the use of SH-based shape representation techniques [16-25]. The novelty of our SPF 
representation compared to other SH-based approaches is its use of orthonormal Laguerre-Gaussian (GL) radial 
functions to give a 3D density-based representation of molecular shape. This removes the requirement that 
molecular surfaces should be star-like with respect to the chosen coordinate origin [26], and it allows both rotational 
an translational correlation expressions to be calculated analytically [27]. In this paper, we demonstrate that SPF 
correlations may be used to superpose and compare protein structures in an efficient and completely sequence-
independent manner. We present results obtained by clustering multiple protein structures selected from the CATH 
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database, and we demonstrate the utility of our approach by performing queries of single protein structures against 
the entire CATH database of some 12,000 protein structures. 

2. Methods 

2.1. Spherical Polar Fourier Shape Density Functions 

In the SPF approach, protein shapes are represented as 3D density functions expressed as expansions of orthonormal 
basis functions:  
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where N is the order of the expansion, �	
��� are Laguerre-Gaussian radial functions, 
���, φ� are real spherical 
harmonics, and �	
� are the expansion coefficients which are calculated numerically as described previously [14]. 
Figure 1 shows the SPF representations of a pair of similar nitrogenase domains at several expansion orders. 
 

 
 
Figure 1. Two similar nitrogenase proteins, represented as SPF expansions at expansion orders N=5, 10, 15, and 20. The protein in the top row is 
from azotobacter vinlandii (PDB code 2MIN). The protein in the bottom row is from clostridium pasteurianum (PDB code 1MIO).  
 

In order to superpose a pair of protein structures we calculate a rotation-dependent Carbo-like similarity score 
SROT using: 
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Conceptually, one protein is held fixed and a six-dimensional (6D) rotational/translational search over positions of 
the second protein is performed. However, in practice it is more efficient to implement the search using one 
translational and five Euler angle rotational coordinates [14]. 

 

2.2. Rotationally Invariant Fingerprints 

Protein superpositions can be calculated relatively quickly by using FFT techniques to accelerate the 6D search [14]. 
However, it is necessary to develop even faster comparison techniques in order to search very large 3D structural 
databases. Noting that expansion coefficients with the same values of m transform amongst themselves under 
rotation, it is natural to use the vector interpretation of SH coefficients to construct rotationally invariant (RI) 
fingerprints (RIFs) as: 
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If the coefficients anlm define the shape density of a protein, then the rotation-invariant descriptors An together 
encode the protein’s radial mass distribution. By analogy to Eq  2, the RIF similarity score is written as:           
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2.3. Implementation 

Our approach has been implemented in a C program called 3D-Blast. We have used 3D-Blast to calculate and store 
SPF coefficients for all the proteins of the CATH database. However, the approach could equally be used to store 
SPF descriptions of other protein structure databases such as SCOP, for example. Given a protein query structure in 
PDB format, 3D-Blast will calculate its SPF representation and then use only the resulting SPF expansion 
coefficients to search its database.  

2.4. Data Preparation 

In order to evaluate the SPF approach, clustering experiments were performed on selected proteins from the CATH 
database [8,10], and the entire CATH database was searched using SPF density functions as queries. In CATH, 
proteins are assigned to a super-family according to their fold class, architecture, topology, and homology. This 
classification scheme is essentially hierarchical, with the top-level class consisting of four possible fold types: All-α, 
All- β, α+β, and irregular. Each of the four levels in the CATH hierarchy is identified by a numeric code. 
Additionally, CATH names each protein according to its four-letter PDB code, its chain letter, and the number of 
domains (e.g. 1IOMA02). These naming conventions are followed here. For each clustering experiment, five or six 
super-families with the same architecture were selected in such a way as to give around 30 protein structures for 
each CATH fold class. Hence the aim of these experiments is to assess how well our approach can identity proteins 
with the same topology and homology within a given fold architecture. The details of the super-families used here 
are shown in Table 1.  

For the initial database search experiment, asparagine synthetase (PDB code 12AS, CATH super-family 
3.30.930.10) was selected as the query structure. The 3.30.930.10 super-family has 27 members, and these were 
treated as “positives” while the remaining proteins in the database were treated as “negatives” with respect to the 
query. If a scoring function were to reproduce exactly the CATH classification, the 27 positives would appear at the 
top of the ranked list. However, such an ideal outcome is seldom observed in practice. Hence Receiver-Operator-
Characteristic (ROC) curves [28] are used to analyse objectively the precision/recall characteristics of the scoring 
functions. In a ROC analysis, each element of the ranked list is considered in turn, and the number of positives and 
negatives in the sublists to each side of the current element are counted. Here, we call the high similarity sublist the 
“hit list”. A true positive (TP) is assigned when an element in the hit list contains an original positive, and a false 
positive (FP) is assigned if that element contains a negative. Conversely, a true negative (TN) is assigned when an 
original negative falls outside the hit list, and a false negative (FN) is assigned if that position is occupied by a 
positive member. ROC plots are produced by plotting the true positive rate (TPR) on the y-axis against the false 
positive rate (FPR) on the x-axis, where TPR and FPR are given by: 
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The quality of a scoring function can quickly be assessed from the shape of a ROC plot. For example, a random 
scoring function would give a diagonal line (TPR=FPR), whereas a perfect scoring function would give a horizontal 
line (TPR=1) with a maximum value for the area under the curve (AUC=1).  
 
Table 1. The 23 CATH super-families used in the four clustering experiments, grouped according to class and architecture. For each super-family 
the name of each representative protein is provided according to the CATH naming convention. 

Class +  
Architecture 

Topology + 
Homology 

Protein Name  
and Function 

Representative 
member 

 
230.10 Cytochrome p450-Terp; Domain 2 1iomA02 

All- α 120.10 Bifunctional Trypsin/Alpha-Amylase Inhibitor 1beaA00 
Orthogonal Bundle 225.10 NK - Lysin 1l9lA00 

(1.10) 167.10 Regulator of G-Protein Signalling 4; Domain 2 1dk8A02 

 
30.10 DNA Binding (I) , subunit A 1qrvA00 
109.10 Umud Fragment, subunit A 1jhfB00 
150.10 Urease, subunit B 1ejxB00 

All- β 110.10 Cysteine Knot Cytokines, subunit B 1g47A00 
Ribbon 77.10 Hemagglutinin; Chain A, domain 2 1jsdA02 

(2.10) 160.10 Vascular Endothelial Growth Factor - 165, Heparin - 
binding Domain 1kmxA00 

10.10 Seminal Fluid Protein PDC - 109 (Domain B) 1h8pA02 
130.10 P-30 Protein 1dy5A00 

α+β 170.10 Elastate; Domain 1 1u4gA01 
Roll 150.10 DNA Polymerase III; Chain A, Domain 2 1ok7A01 

(3.10) 110.10 Ubiquitin Conjugating Enzyme 2grrA00 
120.10 Flavocytochrome B2; Chain A; Domain 1 1cyoA00 
280.10 MYOD Basic-Helix-Loop-Helix Domain, subunit B 1nlwE00 
290.10 Bacteriorhodopsin Fragment 1bctA00 

Irregular 410.10 Factor Xa Inhibitor 1g6xA00 
(4.10) 490.10 High-Potential Iron-Sulfur Protein; Chain A 1iuaA00 

400.10 Low-density Lipoprotein Receptor 2fcwB02 
320.10 Dihydrolipoamide Transferase 1w85I00 

 

3. Results 

3.1. Expansion Resolution and Protein Superposition 

It was shown previously that SPF expansions of order N ≥ 25 are required for protein-protein docking correlations 
[14]. However, from our previous results on small-molecule virtual screening [29], we expected that considerably 
lower order expansions would be sufficient to calculate satisfactory protein shape-density superpositions. In order to 
test this hypothesis, we selected four example protein pairs with sequence identities ranging from 28% to 43%  
previously identified by Levitt and Gerstein [30], and we superposed them using different expansion orders. The 
root mean square deviation (RMSD) for each superposed pair was calculated between corresponding Cα atoms 
identified by ProFit [31]. Figure 2 shows the RMSD as a function of the expansion order N. 
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Figure 2. On the left, the RMSD values of four protein pairs are plotted against the expansion order N. On the right, the time per pair-wise search 
is plotted against the expansion order N. 
 
Figure 2 shows that using an expansion order of N ≥3 is generally sufficient to obtain good superpositions (with 
RMSDs ranging from 2Å to 5Å), requiring about 0.25 seconds per superposition. However, we choose to use 
expansions to order N=6 in order to disambiguate cases where flipping about an axis might give similar scores [29]. 
Figure 2 shows that calculating N=6 correlations is only marginally more expensive than using N=3. Figure 3 shows 
the N=6 superposition of the nitrogenase proteins shown in Figure 1. 
 

 
Figure 3. The superposition of a pair of nitrogenase proteins calculated using N=6 SPF correlations, shown as ribbon cartoons (left), backbone 
traces (middle), and as 3D SPF density expansions to order N=25 (right). The protein in the top row is from azotobacter vinlandii (PDB code 
2MIN). Top row: PDB code 2MIN; middle row PDB code 1MIO; bottom row their superposed orientation. The two proteins have a sequence 
identity of 43%. 
 

3.2. Clustering Protein Structures 

For the All-α clustering experiment, five super-families were selected, as listed in Table 1. For each pair of proteins 
in this set, a correlation search was performed to find the orientation that gives the maximum Carbo similarity score 
(Eq 2). Ward’s agglomerative clustering [32] was then applied to the resulting table of pair-wise similarity scores. 
The clustering results in Figure 4 show that the 1.10.230.10 and 1.10.167.10 super-families are correctly assigned to 
two separate groups. Although there exist some differences in the clusters produced for the remaining super-
families, there is still a very good agreement between the calculated SPF clusters and the CATH hierarchy. The most 
notable exception is that suposin (PDB code 1N69) is grouped with the 1.10.30.10 super-family. From visual 
inspection of Figure 4 it can be seen that the overall fold of suposin is much closer to that of the 1.10.30.10 super-
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family than the CATH assignment of 1.10.225.10. This suggests that the automatic SPF classification could 
potentially help the CATH curators resolve unusual or ambiguous cases.  

For the All-β class, six super-families were selected. As can be seen in Figure 5, SPF clustering correctly 
distinguishes all six groups, but two proteins are misplaced according to the CATH classification. These are the 
carboxy-terminal LIM domain (PDB code 1CTL) and the influenza virus hemagglutinin (PDB code 2VIR) which 
are grouped with the singleton heparin-binding domain (PDB code 1KMX). This seems to occur because 1CTL and 
2VIR are calculated to be less similar to the other members of their respective CATH super-families, and they are 
grouped with 1KMX largely because all three proteins have similar steric bulk. 

For the α + β class, five super-families were selected. From these five super-families the 3.10.130.10 and 
3.10.120.10 super-families are correctly assigned into two groups, as shown in Figure 6. The other three super-
families (3.10.110.10, 3.10.150.10, and 3.10.170.10), present a similar case to the All-α results, whereby one super-
family group (3.10.110.10) is split into two sub-groups and two super-family groups (3.10.170.10 and 3.10.150.10) 
are merged into one. Nonetheless, despite these differences, the overall consistency of the SPF clustering with the 
CATH hierarchy is clearly very good.  

For the irregular class, six super-families were selected. As in the All-β example, SPF clustering is completely 
consistent with the CATH hierarchy. However, two proteins are misplaced with respect to the CATH classification, 
namely bikunin from the inter-alpha-inhibitor complex (PDB code 1BIK) and the tick anticoagulant peptide (PDB 
code 1D0D), which are both grouped with the 4.10.490.10 super-family. This seems to be due to the difference in 
size between those proteins and the rest of their super-family of factor XA inhibitors. For example, Figure 7 shows 
that bikunin has a repeat of the same motif as the other factor XA inhibitors. Hence, it is sterically too large to be 
clustered with the other XA inhibitors, and is instead placed with the larger proteins of the 4.10.490.10 super-family. 
 

 
 
Figure 4. SPF clustering results of the All-α class. Left: the dendrogram obtained using N=6 with five clusters; Right: the corresponding groups 
and the representative proteins for each group. 
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3.3. Database Searching 

Because it is relatively time-consuming to calculate high order comparisons, different rotational and rotation-
invariant parameters were tested to explore the extent to which the speed of queries on a large database can be 
improved while still performing accurate searches. In each case, the asparagine synthetase structure (PDB code 
12AS, CATH super-family 3.30.930.10) was superposed onto each protein in the database using N=6 SPF 
correlation searches, and the database structures were ranked in order to similarity to the query. Figure 8 shows the 
resulting ROC curves obtained for a range of expansion orders when querying the CATH database, from which it 
can be seen that our approach gives very good precision and recall. Figure 9 shows the 27 members of this super-
family, which were treated as true positives with respect to the query. To analyse the results further, the TPs were 
clustered into 5 groups. The query belongs to group 1 and when using an expansion order of N ≥6, all members of 
this group were found in the top 10 hits. groups 2 and 3 have similar β-sheet structures to group 1, but different 
arrangements of α-helices. All proteins in groups 2 and 3 are ranked in the top 20% of the database. All proteins in 
group 4 are ranked in the top 30%. The singleton group 5 is an obvious outlier due to its extra α-helical domain. 

Figure 8 also shows results for the RIF scoring function. Compared to the rotation-dependent scoring function, 
the RIF function generally performs remarkably well. However, the two functions behave rather differently on the 
first percentages of the database. For example, the rotational searches give a TPR of around 40% on the first 0.1% of 
the database, whereas the RIF searches give a TPR of only around 10%. Hence, the RIF function is not sufficiently 
sensitive to be used on its own but it could usefully be used as a fast pre-filter on the database so that the more 
expensive rotation-dependent function is only applied to the most promising candidates. In order to test the notion, 
the CATH database was searched using the RIF and rotational scoring functions in tandem using several protein 
structures as queries: asparagine synthetase, ALF4-activated Giα1 protein (PDB code 1AGR), chicken cysteine-rich 
protein (PDB code 1B8T), dihydrolipoyllysine-residue acetyl transferase (PDB code 1W4E), and UbcH7 (PDB code 
1C4Z). Using a RIF pre-filter similarity threshold of 0.99, which selects from 2% to 15% of the database for 
rotational re-scoring, each tandem search takes less than 10 minutes compared to 75 minutes for full rotational 
searches on a 2.3GHz Pentium Xeon processor. Figure 10 shows the resulting ROC plots for the rotational, RIF, and 
the tandem searches. This figure shows that tandem searches achieve the same high level of performance as the 
rotational searches. The very high precision/recall values further support the utility of the SPF scoring functions. 

 

 
Figure 5. SPF clustering of the All-β class. Left: the dendrogram obtained using N=6 with six clusters; Right: the corresponding groups and the 
representative proteins for each group. 
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Figure 6. SPF clustering of α + β class. Left: the dendrogram obtained using N=6 with five clusters; Right: the corresponding groups and the 
representative proteins for each group. 
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Figure 7. SPF clustering of the irregular class. Left: the dendrogram obtained using N=6 with six clusters; Right: the corresponding groups and 
the representative proteins of each group. 
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Figure 8. ROC plot analyses obtained when querying the entire CATH database 
function (Eq 2); B: close-up view of (A); C: RIF scoring function (Eq 
 

 
Figure 9. Clustering the CATH super-family 3.30.930.10 
the query protein 12asA00. 
 

. ROC plot analyses obtained when querying the entire CATH database with the 12asA00 structure. A: rotation
up view of (A); C: RIF scoring function (Eq 4); D: close up view of (C). 

ily 3.30.930.10 into five groups. The representative members of each group are illustrated along with 

 

. A: rotation-dependent scoring 

 

to five groups. The representative members of each group are illustrated along with 
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Figure 10. ROC plot analyses obtained when querying the entire CATH database using the 1AGR, 1B8T, 1W4E, 1C4Z and 12AS, structures. A: 
rotation-dependent scoring function (Eq 2); B: close-up view of (A); C: RIF scoring function (Eq 4); D: close up view of (C); E: Tandem scoring; 
F: close up view of (E). 
 

4. Discussion and Conclusions 

It has been shown that low resolution SPF expansions provide a reliable and fast sequence-independent way to 
superpose and compare protein structures. The clustering results of the four CATH super-families show that SPF 
clustering generally agree with the CATH classification. The database search results show that a large protein 
structure database can be queried accurately using SPF expansions to order N=6. In order to accelerate further the 
scoring calculation, the use of a simple rotationally invariant scoring function was investigated. Our RIF scoring 
function is significantly faster to calculate, but it is less precise than a rotational search. Nonetheless, the RIF 
function may still be used effectively as an initial filter when searching large databases. Using the RIF function in 
tandem with the rotational function to re-score only the top matches of the database gives very promising results. 
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Thus tandem searches are much faster than full rotational searches, yet the recall/precision is almost equivalent. 
Currently a limitation of our approach is that proteins larger than a typical domain of around 100-150 residues are 
not represented well due to the exponential decay of the GL functions at large radial distances. However, we are 
working to extend the resolution range of our approach to be able to describe proteins of any size, and we are 
enhancing the approach to be able to detect the presence of symmetrical domains and repeated motifs, for example. 
We also aim to develop a web-based interface for general use by the biological community. As well as being able to 
calculate rapidly sequence-independent protein structure superpositions, we believe that the SPF approach could 
provide an automatic and objective way to enhance the quality of protein structure classifications. 
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Despite the importance of protein-RNA interactions in the cellular context, the number of available protein-RNA complex structures is 
still much lower than those of other biomolecules. As a consequence, few computational studies have been addressed towards protein-
RNA complexes, and to our knowledge, no systematic benchmarking of protein-RNA docking has been reported. In this study we 
have extracted new pairwise residue-ribonucleotide interface propensities for protein-RNA, which can be used as statistical potentials 
for scoring of protein-RNA docking poses. We show here a new protein-RNA docking approach based on FTDock generation of 
rigid-body docking poses, which are later scored by these statistical residue-ribonucleotide potentials. The method has been 
successfully benchmarked in a set of 12 protein-RNA cases. The results show that FTDock is able to generate near-native solutions in 
more than half of the cases, and that it can rank near-native solutions significantly above random. In practically all these cases, our 
propensity-based scoring helps to improve the docking results, finding a near-native solution within rank 100 in 43% of them. In a 
remarkable case, the near-native solution was ranked 1 after the propensity-based scoring. Other previously described propensity 
potentials can also be used for scoring, with slightly worse performance. This new protein-RNA docking protocol permits a fast 
scoring of rigid-body docking poses in order to select a small number of docking orientations, which can be later evaluated with more 
sophisticated energy-based scoring functions.   

1. Introduction  

Understanding the molecular mechanism of protein-RNA recognition in order to understand and predict such 
interactions is one of the grand challenges in structural biology. In recent years, the growing awareness for the 
importance of RNA in the context of protein-RNA interactions, together with the publication of the 50S and 30S 
ribosome subunits,1,2 have increased the volume of data on these complexes. However, in spite of this, the level of 
structural knowledge of protein-RNA association is quite poor in comparison to that of other biomolecules. 
 Given that experimental determination of protein-RNA complexes at high resolution is challenging (being 
crystallization one of the main bottle-necks), computational approaches for structural modeling at different 
resolution levels are increasingly needed in order to complement existing experimental data on protein-RNA 
interactions of interest. One promising tool is computational protein-RNA docking, which can provide structural 
models at residue and even atomic resolution level, but there are still very few reported methods as compared to 
protein-protein or protein-ligand docking, and certainly there are no systematic studies on large data sets. To our 
knowledge, the largest reported benchmark set for protein-RNA docking consisted on five cases.3 In this context, 
the Critical Assessment of PRediction of Interactions (CAPRI) experiment (http://www.ebi.ac.uk/msd-srv/capri), a 
blind international docking competition to evaluate the performances of protein-protein computational docking 
methods, proposed recently the first protein-RNA complex target. The experiment nicely showed how some 
docking methods can be adapted to predict the tridimensional structure of a protein-RNA complex. Indeed, our 
pyDock scoring protocol,4 which achieved excellent results for protein-protein docking in past CAPRI tests,5 
identified the second best model among all participants in the scorer experiment, with excellent ligand RMSD of 3.8 
Å with respect to the X-ray structure of the complex. However, this experiment also highlighted the limitations of 
current methods. In addition to better treatment of flexibility, new scoring parameters specifically adapted for 
protein-RNA binding are needed. 
 In this sense, a number of studies have used available structural data of real protein-RNA interfaces in order to 
understand this type of interaction and extract better parameters for predictions.6-16 Some of these studies reported 
individual propensities and all-atom statistical potentials for the characterization of modeled protein-RNA 
interactions at atomic level. For instance, all-atom hydrogen-bond statistical potentials have been applied to identify 
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near-native docking solutions.3 Other all-atom statistical potentials found interesting details of the protein-RNA 
interaction.12-16 However, coarse-grained statistical potentials at residue-nucleotide level have the advantage of low 
computational cost for their application to larger benchmark sets in order to develop new docking methods 
(something that is needed before considering more detailed functions). In a previous work,6 we extracted and 
successfully used single residue interface propensities for protein-RNA to identify RNA-binding sites in proteins. In 
the present study, we have extracted new pairwise residue-ribonucleotide propensities for protein-RNA with the 
goal of being of predictive value for docking. For that, we have used a standard FFT-based approach to generate 
protein-RNA rigid-body docking poses, and then we have used the new propensities to successfully score these 
docking poses. We have also tested other reported single residue or residue-ribonucleotide propensities,6,9,15,16 in 
order to check the capability of these statistical potentials for the scoring of rigid-body docking poses. 
      

2. Methods 

2.1. Pairwise residue-ribonucleotide interface propensities from protein-RNA structural data 

We extracted protein-RNA pairwise interface propensities using the same training data set that we previously used 
to extract individual interface propensities, which was composed of 282 non-redundant protein-RNA interactions.6 
These propensities can be calculated from the observed frequency of the specific residue-ribounucleotide pairs of 
type pq (p = 1...20 for amino acid residues; and q = 1...4 for ribonucleotides) at the protein-RNA interfaces, as 
compared with the expected frequency of these pairs according to the protein and ribonucleotide surface 
composition, as it is shown by equations 1-4: 

 

∑ ∑
∑
×

p q

S
q

S
q

S
p

S
p

pq

I
pq

I
pq

I
pq NNNN

NN
=P

//

/
               (1) 

 where NI
pq is the number of pairs between residue type p and ribonucleotide type q at the protein-RNA 

interfaces (the pairs were defined by having at least one atom within 4 Å distance from each other), ΣNI
pq the total 

number of residue-ribonucleotide pairs at protein-RNA interfaces, NS
p and NS

q the number of surface residues and 
ribonucleotides of type p and q respectively (surface residue or ribonucleotide were defined as those with accessible 
surface area ASA > 0.1 Å2), and ΣNS

p and ΣNS
q the total number of surface residues and ribonucleotides, 

respectively.  
 Then, propensities PI

pq were easily converted to free-energy estimates or statistical potentials by equation 2:  
 

stat
pqΔG  = -RTln( I

pqP )                                     (2) 

 
 The statistical potential ΔGstat

pq thus represents the empirical energy of forming a pair between a residue of 
type p and a ribonucleotide of type q at the interface, given their frequencies at the protein and ribonucleotide 
surfaces, being R the gas constant and T the absolute temperature (we have used here RT as 0.59 kcal/mol). 
Therefore, negative statistical potential values indicate favorable binding energies. 
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2.2. Protein-RNA rigid-body docking and scoring by propensity-based statistical potentials 

We used FTDock17 to generate 10.000 protein-RNA docking poses. We used the same FTDock version as we 
previously used for testing our pyDock method for scoring of protein-protein docking, that is, with no electrostatics 
and 1.2 Å grid resolution. 
 We evaluated all generated docking poses by a very fast algorithm that scored solutions based on the existing 
contacts at interface. For every residue-ribonucleotide pair at the interface of the docking pose (that is, those that 
have at least one atom within 4 Å distance from each other), the corresponding propensity value according to its 
type was assigned. The propensity-based values of all pairs were summed and formed the final score of the given 
docking pose i, as in equation 3:  

∑Δ=Δ
pq

stat
pq

stat
i GG                                      (3) 

 Finally, all docking solutions were ranked according to these propensity-based scores. For comparison, we 
also tested other previously described propensity values, either pairwise residue-ribonucleotide or single residue 
propensities. In the case of pairwise residue-ribonucleotide propensities, we converted the reported values (usually 
observed and expected frequencies) to statistical potentials as above described. In the case of single residue 
propensities, we summed the corresponding values of all interface residues according to their types.  
 

2.3. Benchmarking the method on known protein-RNA complex structures 

In order to benchmark our method, we compiled a set of non-redundant protein-RNA complexes of known 
structure, in which there is an available unbound structure for at least one of the two components. This produced a 
total of 12 cases, two of which had available structure for both unbound protein and RNA molecules, five had 
available only the unbound protein structure, and the remaining five had available structure for only the unbound 
RNA (Table 1). In order to avoid redundancy we ensured there was no more than 70% of sequence identity between 
any pair of proteins within the data set. On the other hand, we considered as unbound proteins those with more than 
95% of sequence identity with respect to the bound protein, and as unbound RNAs those with more than 85% of 
sequence identity with respect to the bound RNA structures in the protein-RNA complexes. 

 
Table 1. Structural data set of protein-RNA interactions used in this study. For each molecule the PDB and chain identifiers are 
shown. The RMSD in Å between the receptor or ligand used here and the bound structure is also shown in brackets.  

 
Name Complex PDB Receptor PDB 

(RMSD) 
Ligand PDB 
(RMSD) 

Tyrosyl-tRNA synthetase splicing factor / group I intron RNA 2RKJ_a:c 1Y42_x (0.9) 1Y0Q_a (3.0) 

Ct domain of elongation factor SelB / SECIS RNA 1WSU_a:e 1LVA_a  (0.7) 1MFK_a (3.1) 

NF-Kb / anti-NFKb RNA aptamer 1OOA_a:c 1OOA_a (0.0) 2JWV_a (5.4) 

Stnthetic Fab / P4-P6 ribozyme domain 2R8S_l:r 2R8S_l (0.0) 1HR2_a (4.3) 

Elongation factor SelB from E.Coli / SECIS RNA 2PJP_a:b 2PJP_a (0.0) 1MFK_a (3.1) 

SRP 19 / 7S.S SRP RNA  1LNG_a:b 1LNG_a (0.0) 1Z43_a (2.1) 

SRP ribonucleoprotein core Variant 6 / RNA 2PXV_a:b 2PXV_a (0.0) 1CQL_a (8.1) 

RNA-binding protein 15.5 K complexed / RNA 1E7K_a:c 2JNB_a (3.2) 1EK7_c (0.0) 

HutP / Hut mRNA  1WPU_a:c 1WPV_a (0.2) 1WPU_c (0.0) 

Norwakl Virus Polymerase with CTP / RNA 3BSO_a:p 1SH0_b (1.3) 3BSO_p (0.0) 

Pp7 Coat protein dimer in complex / RNA hairpin 2QUX_a:c 2QUD_a (0.8) 2QUX_c (0.0) 

Structure of 9-subunit archaeal exosome / RNA 2JEA_a:c 2JE6_a (0.4) 2JEA_c (0.0) 
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 This set of structures was used to benchmark the docking results. We compared the predicted docking 
poses with the real protein-RNA complex structures by superimposing protein alpha-carbons of predicted and real 
complexes, and then calculating the RMSD between the RNA molecules (considering all atoms). A near-native 
solution was defined as a docking pose with RNA RMSD, calculated as described above, smaller than 10 Å, which 
is in line with the criteria used in the CAPRI experiment. This was calculated for the 10,000 docking poses 
generated by FTDock,17 and we computed success rates as the percentage of cases in which at least a near-native 
solution was found within a given number of docking poses as scored by the docking algorithm. The success rates 
expected by random were calculated by randomly shuffling the scores of the docking solutions (the process was 
repeated 100 times and the average was calculated). 
 
 

3. Results 

3.1. New pairwise residue-ribonucleotide interface propensities for protein-RNA 

We computed pairwise residue-ribonucleotide interface propensities from a set of protein-RNA complex structures, 
and then we converted them to statistical binding potentials (see Methods). The resulting values for all residue-
ribonucleotide types are shown in Figure 1. We found in this analysis that the most populated residue-ribonucleotide 
pairs at protein-RNA interfaces are those composed of the amino acid residues arginine (R), lysine (K) and histidine 
(H). On the contrary, the least favored pairs are composed of the following residues: aspartic acid (D), glutamic acid 
(E), cysteine (C), valine (V), leucine (L) and isoleucine (I). In most of the cases, for a given residue type, we do not 
see significant differences in the pairwise propensity values with regards to the four ribonucleotide types. This can 
be clearly seen in Figure 1, in which the major differences can be found among the residue types and not among the 
ribonucleotide types. These results are consistent with our previously reported single residue propensities for 
protein-RNA,6 and show the important role of electrostatic forces in protein-RNA binding, with negative RNA 
charge playing a determinant role in RNA-binding areas in proteins. Interestingly, the important role of 
electrostatics in protein-RNA binding underlines a major difference with protein-protein association, where 
desolvation and hydrophobic effect seem much more important. 
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Figure 1. Pairwise protein-RNA statistical potentials (favorable pairs are in red; disfavored in blue). 
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3.2. Protein-RNA rigid-body docking and scoring by propensity-based statistical potentials 

For seven out of the 12 cases, the FTDock rigid-body docking generated at least a near-native solution within the 
total 10,000 docking poses. The results are shown in Table 2. In two cases, the near-native solutions are ranked 
below 10 by FTDock, but the rest of cases there is no near-native solution ranked below 100. We can also see that 
the propensity-based scoring alone improves the best rank of a near-native solution in three of the cases, as 
compared with the original FTDock scores. As a consequence, in three cases a near-native solution is found with 
rank below 100. Moreover, when the propensity-based scores are used in combination with the original FTDock 
scores (simply by adding the scores, no weight optimization has been attempted here to avoid overfitting given the 
small number of cases), in practically all cases the near-native rank values improve with respect to the original 
FTDock scores  (except 1WPU, which slightly worsens from 159 to 170). Actually, in four cases a near-native 
solution is found with rank below 100. This indicates a clear predictive value of the pairwise propensity scores. 
Interestingly, the FTDock and the propensity values are quite complementary: in three of the cases, a near-native 
solution is found with rank below 10 by either FTDock or propensity-based scoring.  
 
 
 

Table 2. Results of protein-RNA docking and scoring. The total number of near-native solutions in the docking set is shown. The 
best rank of a near-native solution (RMSD < 10Å) is shown, after scoring by FTDock, by propensity-based potentials, and by 
combined score (in brackets is given the RMSD in Å of the near-native solution with respect to the x-ray complex structure, in 
addition to the fraction of native fnat and non-native fnon-nat contacts as defined in CAPRI). 

 
Complex PDB Number of 

near-native 
solutions 

Best near-native rank by 
FTDock scoring 

(RMSD) (fnat; fnon-nat) 

Best near-native rank by 
propensity-based scoring 

(RMSD) (fnat; fnon-nat) 

Best near-native rank by 
FTDock + propensity 

scoring 
(RMSD) (fnat; fnon-nat) 

1WSU 5 2015 (8.9) (0.23; 0.84) 70 (9.0) (0.23; 0.88) 1049 (9.0) (0.23; 0.88) 

2PJP 9 1590 (9.3) (0.43; 0.75) 213 (9.7) (0.43; 0.75) 763 (8.9) (0.43; 0.75) 

1LNG 4 131 (5.3) (0.55; 0.22) 660 (5.3) (0.55; 0.22) 92 (5.3) (0.55; 0.22) 

1E7K 46 7 (9.6) (0.05; 0.90) 778 (8.7) (0.18; 0.67) 7 (9.6) (0.05; 0.90) 

1WPU 44 159 (8.1) (0.35; 0.57) 1989 (9.8) (0.19; 0.74) 170 (8.1) (0.35; 0.57) 

2QUX 14 157 (8.1) (0.45; 0.70) 1 (8.5) (0.45; 0.67) 60 (8.1) (0.45; 0.70) 

2JEA 17 9 (9.1) (0.18; 0.95) 61 (8.3) (0.18; 0.96) 7 (9.1) (0.18; 0.95) 

 
 
 

3.3. Examples of successful predictions 

It is remarkable that for the 2QUX case (unbound protein vs. bound RNA), the scoring by the new pairwise 
propensities is able to find a near-native solution ranked 1. As can be seen in Figure 2, the predicted RNA 
orientation on the protein surface is very close to that in the x-ray structure. The best rank obtained by FTDock 
scoring was 157, so the effect of using the new propensity-based potentials on the final scoring is dramatic in this 
case.  
 Another example of successful application of protein-RNA docking can be found in a recent CAPRI blind 
experiment. Targets 33 and 34 were a protein-RNA case. In target 33, both molecules (protein and RNA) needed to 
be modeled since there was no available x-ray structure. That was an extremely difficult case for which no group 
was able to submit an acceptable model. Target 34 was the same complex, but with the bound structure of the RNA 
provided by the organizers (although with random orientation). For this target, we generated docking poses with 
FTDock and with RotBUS (and in-house developed program for rigid-body docking; see upcoming publication). 
The docking poses were scored by our protein-protein scoring function pyDock,4 with desolvation parameters for 
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RNA adapted from those used by us in protein-protein docking. In addition, we applied distance restraints to one 
residue-ribonucleotide pair and six ribonucleotides that, according to literature, were likely to be at the interface. 
The result was an acceptable model within the ten submitted models (it was ranked 885 before applying restraints, 
and rank 3 after restraints). Moreover, in the scorers experiment, our method identified the second best model 
among all participants, with excellent ligand RMSD of 3.8 Å with respect to the X-ray structure of the complex. 

 
 

Figure 2. Solution ranked 1 after the new propensity-based scoring in the docking of Pp7 Coat protein dimer with RNA hairpin 
(protein in white CPK; RNA in cyan ribbon). For comparison, the x-ray structure (PDB 2QUX) of the protein-RNA complex is 
shown (RNA in magenta ribbon, after superimposing protein molecules). 

 
 

4. Discussion 

4.1. New pairwise propensities for protein-RNA interaction. Comparison to other reported propensities 

 

We can compare our new propensities with other reported protein-RNA propensities, all of them derived from 
smaller data sets.9,15,16 In practically all of the studies, the favored residues are R and K, but their pairwise 
preferences for the ribonucleotides change. In our work here and in others,9,16 there are no significant differences on 
the preferences of R and K for any ribonucleotide, but in some studies they see preferred pairs as R-U,11,12,15 or K-
A.11,12 Interestingly, in our study we can see H residues with higher pairwise propensities, while this is not observed 
in any of the previous studies. Histidine residue can act as positively charged, depending on the environment, so this 
can explain its high propensities. This was already discussed in our previous study on single residue interface 
propensities.6 On the other side, while in our study the aromatic residues are not amongst the most preferred pairs, 
in other studies they are.9,16 We have seen before that this can strongly depend on the data set used for deriving the 
propensities. For instance, we checked that there are more aromatic residues involved in the interaction with single 
chain RNA molecules, so the proportion of this type of RNA in the data set could modify the propensity values.6 
Interestingly, we see that although the global propensities of pairs involving W and Y residues are small (favorable, 
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but small), they have slightly higher preferences for A and U ribonucleotides (especially in the case of Y residue). 
While all the reported propensities may reflect different characteristics of the protein-RNA interaction, we are more 
confident in the general applicability of the propensities described in this work, given that they were extracted from 
the largest data set so far (282 non-redundant protein-RNA interactions).6 

 

4.2. Use of other reported propensities (single and pairwise) for scoring 

We have seen above that our new pairwise residue-ribonucleotide propensities improve the scoring of rigid-body 
protein-RNA docking poses. In order to check whether this represents an advance over other reported protein-RNA 
propensities, we have also used these other propensities in the same conditions to check their results in docking. For 
this, we selected different protein-RNA propensities from bibliography9,15,16 and from an own previous work.6 We 
used both pairwise residue-ribonucleotide interface propensities6,9,15,16 as well as single residue interface 
propensities.6,9,16 We compiled a total number of seven different protein-RNA propensity matrices, five of which 
were pairwise propensities, and two single residue interface propensities. Because the propensity definition varied 
among the different studies, we considered for all of them the reported expected (Fobs) and observed (Fexp) 
frequency values, which we transformed into propensities (P = Fobs / Fexp) and then into their respective statistical 
potentials  following our definition (eq. 2 and 3). 
 The results of using different propensity values can be seen in Figure 3. In general, the pairwise 
propensities described in this work, especially when is combined with FTDock score, give the best success rates. 
Actually, most of the other propensities give success rates that are not significantly above random. However, the 
pairwise propensities from Westhof laboratory16 had reasonable good results, indeed significantly above random. 
Moreover, it is interesting that single residue propensities from our previous work6 and from Westhof laboratory16 
obtained quite good success rates. Two important conclusions can be derived from this: i) the determinant for 
protein-RNA specificity lies mostly on the protein residues, and ii) the predictive value of the statistical potentials 
depend strongly on the size and composition of the database used to derive the propensities. 
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Figure 3. Success rates of protein-RNA docking after scoring by different propensity-based statistical potentials. 
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4.3. FTDock docking and scoring performance is better than in protein-protein docking 

While the number of protein-RNA cases for which a near-native solution is found by FTDock (58%) is inferior to 
that in protein-protein docking (where a near-native solution is found in 77% of the cases), it is interesting that for 
some cases, the number of near-native solutions is quite high (Table 2). Especially in the cases of 1EK7 and 1WPU, 
more than 40 near-native solutions are found, a number clearly above the performance in protein-protein docking. 
Moreover, the success rate of FTDock scoring for the top 10 solutions is well above random (in protein-protein, 
success rates for FTDock scoring, run in the same conditions as here, was always similar to random).4 This could 
indicate that geometry complementarity is more important in protein-RNA than in protein-protein (electrostatics 
should also be important in the interaction, but the FTDock version we are running here has no electrostatics, so this 
should not affect the scoring). This higher importance of surface complementarity is consistent with the fact that no 
statistical preferences are found within the ribonucleotides. That is, while protein residues have different 
preferences derived from their different chemico-physical characteristics, the ribonucleotides are more similar in 
thermodynamic behaviour, and perhaps the contribution of RNA to specificity lies more on conformational aspects. 
Actually, in the cases where FTDock has the best results (1EK7, 2JEA), the RNA molecule is in the bound 
conformation, and thus the rigid-body approach can take full advantage of the geometry complementarity. 
 

5. Conclusions 

In summary, we have proposed here a new protocol for protein-RNA docking, based on FFT rigid-body docking 
followed by scoring with new pairwise residue-ribonucleotide interface propensities derived from protein-RNA 
complex structures. The docking approach and new propensities have been tested in the largest protein-RNA 
benchmark, to our knowledge. The results show that FTDock can be successful if RNA conformation is in the 
bound conformation, and that the new propensities help to improve the rank of the near-native docking poses in 
virtually all cases.  
 From the results shown here and our experience in the blind CAPRI experiment, we can envisage a 
possible strategy for protein-RNA docking. First, rigid-body docking between protein and RNA based on FFT 
algorithms or on any other efficient approach. Then, we can use a combination of geometry-based scoring and 
propensity statistical potentials as a filter to select a few hundred docking poses, which later will be evaluated with 
more complete energy function. Finally, the use of a minimal information that can be integrated as distance 
restraints can dramatically improve the results. One of the main bottlenecks for continuing development in protein-
RNA docking is the lack of cases in which both the unbound protein and RNA structures are simultaneously 
available. Therefore, it seems that future developments will need to focus on the use of homology-based models of 
RNA in docking. 
 Although beyond the scope of current work, it would be interesting in the future to check the capabilities of 
our protein-RNA statistical potentials for the prediction of protein-DNA interactions. However, reported data on 
protein-RNA and protein-DNA propensities highlight the specific differences between these types of interfaces,  
specifically that in DNA-binding the phosphate group is determinant for the interaction, so protein charged residues 
are preferred, while in RNA-binding the ribose and nucleotides are more relevant, being the protein aromatic 
residues key for specificity.7,8,10,12,14 These findings, together with preliminary tests (data not shown) indicate that 
our protein-RNA propensities are specific for protein-RNA binding. As future work, derivation of new protein-
DNA propensities, in the same fashion as that described here for protein-RNA, could be successfully applied for 
DNA-binding interface prediction and docking studies. 
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1. Introduction

Until just recently, bioinformaticians and genomicists did not have access to genomic data from multiple

human individuals or many different species due to labor intensiveness and limitations of targeted approaches

such as array comparative genomic hybridization (arrayCGH), PCR, SNP microarrays and similar assays,

and the cost of cloning based traditional sequencing technology. This restricted our understanding of the

evolution of species as well as normal and disease-causing genetic variation between different individuals

of the same species. Recent improvements in sequencing methods introduced high-throughput, low-cost

and cloning-free (thus less labor-intensive) technologies such as pyrosequencing (Roche 454), sequencing by

synthesis (Illumina), sequencing by ligation (AB SOLiD), single-molecule sequencing (HeliScope), and many

others. The revolution in DNA sequencing opened many possibilities for researchers working in the fields of

evolution, genetic variation, diseases of genomic origin, and even personalized medicine. The reduced cost

for whole-genome resequencing prompted a large-scale genome variation study called the 1000 Genomes

Project∗ that aims to sequence the genomes of approximately more than 1000 individuals from different

populations to build the most extensive genetic variation database to date. The new sequencing technologies

can also be employed to discover functional landscape of the human genome as part of the ENCODE Project†,

such as epigenetic variation (methylation patterns and histone modification) and protein-DNA interaction.

Further uses of the high-throughput sequencing technologies include transcriptome analysis, non-coding RNA

discovery, gene expression profiling, rapid testing of genotype-phenotype associations, and identification of

pathogens.

Our genetic identity not only determines our physical differences, but it also defines our susceptibility

against diseases. Several groups are working on various methods to exploit the power of cost efficient se-

∗http://www.1000genomes.org
†http://www.genome.gov/10005107
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quencing technologies as well as more traditional genome analysis approaches (SNP microarrays, arrayCGH,

etc.) to better perform genotype-phenotype associations, in particular to identify susceptibility to disease,

and eventually diagnose disease at its early stages. The ultimate goal is to vastly improve the field of phar-

macogenomics, which can broadly be defined as the study of the relationship between genotype and drug

response and how the drugs affect our metabolism. The abundance of new sequence data gives many oppor-

tunities to advancing our understanding of how to optimize drug combinations for each individual’s genetic

makeup. The underlying computational tools for such studies analyze available sequence data to identify dif-

ferences between a reference genome and high-throughput sequenced genomes and perform sequence oriented

clustering and classification to obtain both normal and disease-related phenotype associations.

This session focuses on the development of novel computational methods in all aspects of Personal

Genomics including genetic and epigenetic variation discovery, genotype-phenotype associations, indexing

and cataloguing both normal and disease-related variation, exome capture and resequencing, and personalized

medicine. This session has a broad target audience that includes algorithm developers working on sequence

analysis, genomics researchers, pharmacogeneticists, and medical geneticists.

2. Session Summary

This session includes an invited talk, five reviewed oral presentations, two additional accepted papers and a

tutorial. The studies presented in this session focus on the development of computational methods to analyze

genomic data generated with various types of methods.

2.1. Papers

The paper by Garten et al. targets an important pharmacogenomics problem that is an essential first

step of personalized medicine. This work presents methods to automatically curate a network of drug-gene

relationships through text mining. The authors propose that accurate curation of drug-gene relationships

together with their previously described algorithm that ranks potential pharmacogenes will help identify

genes that can explain variation in drug response.

The paper by Li, Chen, and Li addresses the problem of detecting genome-wide haplotype polymor-

phism. The authors present a computational framework combining the efforts of recombination detection,

zero-recombinant haplotype inference and haplotype local structure clustering to jointly use the pedigree

and population information. The methods presented in this work accurately reveal the haplotype structure

in human populations on a genome-wide level.

The paper by Greene et al. addresses the problem of test of interaction between genes (epistasis). The

authors present a novel permutation test that allows the effects of nonlinear interactions between multiple

genetic variants to be specifically tested in a manner that is not confounded by linear additive effects.

This method for explicitly testing epistasis or gene-gene interaction effects will likely be complimentary to

genome-wide association studies (GWAS) improving our understanding of biological and statistical epistasis

and their roles in human health and disease.

Li, Iakoucheva, Mooney, and Radivojac investigate the influence of disease associated mutations

on known post-translational modifications. The authors provide a statistical analysis method to estimate

statistical confidence of the observed trends of post-translational modification sites and amino acid substi-

tutions.

The paper by Yavas et al. describes a new software that utilizes SNP microarray data to predict

rare copy number variants (CNVs) from raw copy number. Accurate and inexpensive detection of CNVs

are particularly important in disease studies where large number of patients with genetic disease can be

genotyped. The authors also describe an algorithm based on simulated annealing to refine the breakpoints

of the detected CNVs.

In addition to the oral presentations, the Personal Genomics session also contains two more valuable

studies published in the proceedings. The paper by Grady et al. describes a computational framework
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composed of a variety of filters to identify a subset of interesting SNPs from a much larger set for efficient

interaction analysis in genome-wide association study (GWAS) data. Finally, Thomson et al. presents the

application of the “sequence feature variant type” (SFVT) method to analyze the HLA genetic association

in Juvenile Idiopathic Arthritis.

We are excited by the breadth of research in the field of Personal Genomics, and are hopeful that our

session will help bring together researchers in these areas. The five papers presented at our session, and the

additional two papers in the proceedings were selected with the help of several reviewers, whose help we

gratefully acknowledge.

3. Acknowledgments

We would like to thank all the authors who submitted their work to the Personal Genomics Session. We are

also indebted to the anonymous reviewers who contributed their time and expertise to evaluate the submitted

papers.
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A critical goal of pharmacogenomics research is to identify genes that can explain variation in drug response. We have previously 
reported a method that creates a genome-scale ranking of genes likely to interact with a drug.  The algorithm uses information about 
drug structure and indications of use to rank the genes.  Although the algorithm has good performance, its performance depends on a 
curated set of drug-gene relationships that is expensive to create and difficult to maintain. In this work, we assess the utility of text 
mining in extracting a network of drug-gene relationships automatically. This provides a valuable aggregate source of knowledge, 
subsequently used as input into the algorithm that ranks potential pharmacogenes. Using a drug-gene network created from sentence-
level co-occurrence in the full text of scientific articles, we compared the performance to that of a network created by manual curation 
of those articles. Under a wide range of conditions, we show that a knowledge base derived from text-mining the literature performs as 
well as, and sometimes better than, a high-quality, manually curated knowledge base. We conclude that we can use relationships 
mined automatically from the literature as a knowledgebase for pharmacogenomics relationships. Additionally, when relationships are 
missed by text mining, our system can accurately extrapolate new relationships with 77.4% precision.  

1. Introduction 

Individuals have variable response to drug treatment1,2. The assumption underlying personalized medicine and 
pharmacogenetics is that an individual’s genotype can be used to predict variable drug response3. Understanding and 
describing this variation is an essential first step of personalized medicine2,4,5.  Pharmacogenomics investigates how 
genes and their variation impact drug response. Such research has historically been pharmacogenetic, focusing on 
smalls set of genes or proteins6.  However, in this new age of high throughput technologies, the research has become 
increasingly pharmacogenomic, involving multiple genes. Pharmacogenomics (PGx) knowledge has expanded 
rapidly, as we uncover new connections between genes and the effects of their variants on drug response. Simply 
determining the genes that are important for drug response is a critical requirement. Recently, high throughput 
technologies such as genome wide association studies have yielded important new insights, however these 
technologies are plagued with high false positive rates, and statistical analysis of the data does not take advantage of 
existing biomedical knowledge7,8.  Hansen et al. recently described an algorithm that uses existing knowledge in 
order to rank 12,460 genes in the genome on the basis of their potential relevance to a specific drug of interest9. This 
algorithm can prioritize genes in high throughput data sets, thus removing some false positives.   The Hansen 
algorithm, called PGxPipeline, uses two knowledge bases of known drug-gene relationships, the Pharmacogenomics 
Knowledge Base (PharmGKB)10 and DrugBank11. While these knowledge bases are extremely useful for 
pharmacogenomics they are also created manually by a staff of curators, who read the literature and annotate the 
PGx information. Thus, they are expensive to maintain and difficult to update, particularly as the volume of 
pharmacogenomic literature increases.  

 
Therefore, there is a need for a scalable, inexpensive way to generate a comprehensive knowledge base of drug-

gene relationships that can be used as input to the PGxPipeline algorithm. PharmGKB contained knowledge about 
                                                             
§ First author, † Corresponding author, russ.altman@stanford.edu 
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 2 
404 drugs and 585 genes at the time of download, however the literature contains an order of magnitude more of 

both drugs and genes10. Automatic methods of monitoring this space are necessary. 
 
Text mining techniques allow us to survey the literature in an automated fashion, and extract information from 

the unstructured scholarly literature12, into a structured format in a database. As described by Hunter and Cohen, 
today’s interdisciplinary research scientist has an increasingly overwhelming amount of literature to assimilate13.  
Only through efficient text mining techniques can the data in the literature be extracted and rendered most useful. 
We previously described Pharmspresso14, which performs the task of extracting pharmacogenomic relationships 
from sentences.   In this work we combined Pharmspresso and PGxPipeline to assess the suitability of automatically 
derived knowledge in training a gene-ranking algorithm. Thus, we can compare the performance of the text-mining-
based knowledge source to the curation-based knowledge source utilized by Hansen, et al. If successful, we can 
contemplate using a continuously updated and expanded network of drug-gene relationships as the literature 
expands. This will clearly improve the results as Hansen et al. showed that the performance of the ranking algorithm 
depends critically on the size of the set of input drug-gene relationships9. Additionally, this work also serves as an 
external validation for the Pharmspresso automated text-mining algorithm, which, until now, has only been validated 
on a small set of relationships. 

2. Methods 

 
2.1. Generation of corpus for text mining algorithm 

We used the QUOSA desktop 
application15 to automatically download 
the full text PDFs of all articles that 
were manually curated by PharmGKB 
curators.  At the time the PharmGKB 
relationships were extracted from the 
database, 2202 articles had been 
curated. Of these, 1731 articles had 
available full text and this set was used 
as our corpus. 
 
2.2.  Generation of PharmGKB 

set of drug-gene relationships 
for training 

We extracted drug-gene relationships 
from the core tables of PharmGKB10, 
for all 1731 articles for which we had 
full text. Of these articles, 964 
contained drug-gene relationships (the 
remaining 767 contained drug-disease 
or gene-disease relationships). A total 
of 1782 unique drug-gene relationships 
are found in these 1731 articles. For 
articles that contain more than one gene 
or more than one drug we relate all 
possible combinations of genes and 
drugs. 
 

Figure 1. Methods overview: A knowledge base of drug-gene relationships is extracted 
from a curated source (PharmGKB and DrugBank) as well as from an automatic text-
mining source (Pharmspresso). One classifier is trained using each of the two types of 
knowledge sources and then validated against a gold standard set of drug-gene 
relationships to allow comparison of the two sources. 
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2.3.  Generation of gold standard drug-gene relationships 

The PharmGKB staff curate the literature at the article level, annotating the genes and drugs discussed in the article. 
In order to obtain a gold standard of manually curated relationships at the single relationship level, we used only 
those articles that mention at most one gene and one drug, to ensure a direct pharmacogenomic relationship between 
gene and drug. There were 916 such articles, containing a total of 682 unique drug-gene relationships. This was used 
as our gold standard for evaluation. We use this validation set derived from PharmGKB data to compare the 
performance of a classifier trained on PharmGKB data and a classifier trained on text-mined data; it is important to 
note that this validation set is not 
included when training either 
classifier. 
 

2.4. Extraction of drug-gene 
relationships from text by 
Pharmspresso  

We used the Pharmspresso system 
described previously14 to extract the 
drug-gene relationships from the 
corpus. Pharmspresso extracts all 
sentences that contain co-occurrences 
of a gene and a drug (see Figure 2). To 
allow direct comparison of 
performance of the PGxPipeline using 
the text-mining-based drug-gene 
network to the curation-based drug-
gene network, we used only genes and 
drugs found in the PharmGKB 
database when running the 
Pharmspresso algorithm: a total of 585 
genes and 404 drugs. 

 
 

2.5. Generation of scores for drug-gene relationships by PGxPipeline algorithm  

The PGxPipeline algorithm, as presented by Hansen et al., assigns scores to 12,460 genes representing their 
propensity to modulate drug response for a query drug. Figure 3 illustrates this method. Briefly, the algorithm 

derives the scores by using two  knowledge bases, 
(1) a gene-gene interaction network and (2) a 
drug-gene relationship network. These two 
networks are combined to make a gene-gene-drug 
network. For a query drug, the PGxPipeline scores 
each gene by comparing the query drug to drugs 
connected to that gene in the gene-gene-drug 
network, and assigning a score based on this 
similarity. Drug similarity is measured by both 
structural similarity and similarity of indications. 
As described in Hansen et al. structural drug 
similarity is defined as the Tanimoto coefficient 
of 166 structural features. The Tanimoto 

Figure 3. The Pharmacogenomics Pipeline.  Given a drug, D, each gene in 
the genome is scored based on the similarity of the neighboring drugs to the 
query drug. A neighboring drug may interact directly with the gene (D2) or 
indirectly (D1, D3, D4) through neighboring genes (G1, G2). 

Figure 2. Description of Pharmspresso system for relationship extraction at the sentence 
level. A corpus of full-text articles is first tokenized into sentences. Pharmspresso then 
marks up the sentences by identifying terms associated with genes and drugs. A drug-gene 
network is then created by drawing edges between genes and drugs that co-occur at the 
sentence level. The width of the edge corresponds to the number of articles that support 
the relationship.  

Corpus of Full-Text 
Articles tokenized 
into sentences

Pharmspresso 
identifies sentences 
containing gene and 
drug terms

Drug-Gene 
relationships 
extracted

1.

2.

3.

Gene 

Lexicon

Drug 

Lexicon
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 4 
coefficient is also used as a metric to compare the similarity of the indication sets of two drugs. We trained a 

logistic regression classifier on the input positive examples and random negative examples using these two types of 
features, structural similarity and indication set similarity. The more similar the drugs in the local network of the 
gene are to the query drug, the higher the score the gene will receive. 
 

The original PGxPipeline9 used PharmGKB as a source of “genetic” drug-gene relationships, DrugBank as a 
source of “physical” drug-gene interactions, and the InWeb interactome16 as a source of gene-gene interactions. 
InWeb is a protein-protein interaction network created with data from experiments. In this work, we explored the 
use of drug-gene relationships mined from the literature, as an alternative knowledge source to the algorithm, in 
place of using the combination of relationships provided by the PharmGKB curation process and the physical 
interactions from DrugBank. 

2.6. Refining the source of negative relationships  

In order to provide negative relationships to the logistic classifier during training, the PGxPipeline matches each 
positive relationship from its gold standard with relationships between that same drug and three randomly selected 
genes. The set of genes it samples from is the entire set of genes in InWeb, PharmGKB, and DrugBank (12,460 
genes). The PGxPipeline knowledge base contains approximately 400 drugs and 12,460 genes.  However, only 
approximately 1,000 of those genes have relationships (genetic or physical) with drugs. Given a gene chosen at 
random from the set 12,460 genes, the chance that the 
gene will have any drug relationships is quite low. The 
consequence of this is that it can be relatively easy to 
differentiate between a positive and negative 
relationship, since most negative examples have no 
important relationships with any drugs.  
In order to make our classification task more 
challenging we select negative examples from among 
known pharmacogenes—genes that in fact have at 
least some known relationship with a drug. Therefore, 
we replaced the pool of genes from which negative 
examples are selected with only the set of genes that 
exists in PharmGKB  (585 genes), a much smaller 
gene set of known pharmacogenes. This allows us to 
more stringently evaluate the classifier while still 
maintaining the power to predict potential drug 
relationships with unknown pharmacogenes. 

2.7. Comparison of the two drug-gene 
knowledge sources: Curated versus Text-
Mined 

To facilitate comparison between the text-mining-based classifier and the curation-based classifier we trained a 
logistic regression classifier in a similar manner, and validated with fivefold cross-validation. Therefore, in each of 
the folds, all knowledge about the relationships in the validation set (1/5 of the data) is dropped from the training set 
(the 4/5 of the data used for training). The performance of each classifier on this task is a metric of how accurate the 
model is in classifying known pharmacogenetic relationships. 

Figure 4. The intersection of drug-gene interactions identified by 
Pharmspresso text-mining or by PharmGKB curators, and those 
interactions receiving high scores when applying the text-mining-
based classifier. Pharmspresso identified 5,312 pharmacogenomic 
interactions, PharmGKB contained 1782 interactions, with an overlap 
of 1,157 between the two sources. 
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2.8. Using text-mining-derived relationships combined with PGxPipeline scores to extrapolate; discovering 

additional drug-gene relationships 

Pharmspresso identified 5,312 pharmacogenomic relationships, PharmGKB contained 1,782 relationships, with an 
overlap of 1,157 between the two sources (Figure 4). As expected and previously described14, Pharmspresso is a 
very sensitive test for pharmacogenomic relationships, while PharmGKB is a highly specific one. There are 625 
relationships in PharmGKB that Pharmspresso does not identify when searching for co-occurrence at the sentence 
level (the lexical names of the gene and drug may not occur in the same sentence). To test whether we can use the 
PGxPipeline scores to recognize true relationships not directly found in literature by Pharmspresso, we did the 
following: We trained the classifier with the 5,132 drug-gene relationships found by text-mining and applied the 
classifier to all of the 625 drug-gene relationships in PharmGKB that were not found by text-mining, to get a 
pharmacogene score for each relationship.  For comparison we also applied the classifier to a randomly generated 
set of drug-gene relationships to get a pharmacogene score for each relationship.  We then investigated our ability to 
use the pharmacogene score to distinguish between the relationships that were in PharmGKB versus the randomly 
created relationships. (To find relationships in region titled “Extrapolated Knowledge” in Figure 4.)  

2.9. External validation: New relationships registered by the PharmGKB staff 

During the time since we first downloaded the pharmacogenomic relationships from PharmGKB an additional 1,462 
articles were curated resulting in an additional 1,636  drug-gene relationships.  This set of relationships was used as 
an external validation set. For each drug-gene relationship we used the trained classifier to score the relationship and 
randomly sampled three more genes to pair with the drug as a source of negative relationships.  
 

3. Results 

3.1. Comparison of the two drug-gene knowledge sources: Curated versus Text-Mined 

To evaluate the use of a text-mining based network as a pharmacogenomic relationship knowledge base we 
compared the performance of the text-mining-based classifier with that of the curation-based classifier (Methods 
2.7) using 5-fold cross validation on the gold standard set of drug-gene relationships (Methods 2.3). We find that the 
text-mining-based classifier out-performs the curation-
based classifier, with receiver operator characteristic 
(ROC) curves with area under the curve (AUC) of 0.701 
and 0.672 respectively (see Figure 5). Besides having an 
overall AUC that is slightly higher, the text-mining-
based classifier achieves high sensitivity in the region of 
high specificity (FPR ≤ 0.2).  Achieving a greater AUC 
in this area alone is often desirable by experimentalists 
as the algorithm can ensure a very low false positive 
rate, even though it may not have high recall. In addition 
we tested the two classifiers under the exact conditions 
described by Hansen (negative set genes selected from 
InWeb and broader definition of gold standard from 
PharmGKB data). This yields ROC curves with AUC 
values of 0.814 and 0.799 for the curation-based 
classifier and the text-mining based classifier 
respectively, and so under those conditions the 
performance of the two classifiers is comparable. The 
0.814 AUC of the curation-based classifier is slightly 

Figure 5. The ROC curves for the curation-based classifier and text-
mining-based classifier validated on the gold standard. The text-
mining-based classifier out-performs the curation-based classifier. 
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 6 
lower than the 0.82 as reported by Hansen et al., presumably because the input knowledgebase is smaller—it is 

based on the subset of 1731 articles for which we obtained full text to allow fair comparison with Pharmspresso. 

3.2. Using text-mining-derived relationships combined with PGxPipeline scores to extrapolate; discovering 
additional drug-gene relationships 

We observe that there are relationships in 
PharmGKB that Pharmspresso does not 
discover when searching for co-occurrence 
at the sentence level and thus not used to 
train the text-mining-based classifier. We 
explored whether we can detect these 
relationships by using the scores assigned 
by the classifier. As described in Section 
2.8, we selected a balanced set of positive 
and negative relationships and tested which 
relationships lie in the region titled 
“Extrapolated Knowledge” in Figure 4 
(relationships positively scored by the 
classifier, not found by text-mining, and in 
PharmGKB). We call these “extrapolated” 
since they were not identified by the text-
mining algorithm and so not part of the 
input knowledge base of drug-gene 
relationships. We validated against the 
PharmGKB relationships and found 3.44-
fold enrichment (134/39) with a cutoff 
score of zero. That is, of the set of 173 
relationships that score positively, we have 
134 true positives that are in PharmGKB 
and presumably 39 false positives, a false 
discovery rate (FDR) of 22.5%. 
 

Figure 6 describes the contribution of 
the local network to the score for a given 
pharmacogenomic relationship extrapolated 
from the text-mining-derived relationships 
by the text-mining-based classifier, for 
three examples. These examples represent a 
known pharmacogenetic relationship (they 
appear in PharmGKB) where the drug and 
gene did not co-occur at the sentence level 
in the literature, yet the text-mining-based 
classifier assigns the relationship a high 
score.  

 
Figure 6A shows the underlying 

evidence for the predicted relationship 
between the drug trimipramine and gene 

Figure 6. Examples of extrapolation of drug-gene interactions using the text-mining-
based PGxPipeline classifier. All examples are in fact found in PharmGKB; meaning 
there is literature support for these relationships recorded manually by curators. 
Although Pharmspresso misses them, they are recovered by the PGxPipeline scoring 
mechanism. Zigzag line: suggested, positive-score interaction (left panel). This 
interaction is not found directly in the literature by Pharmspresso, but receives a 
positive PGxPipeline score (score appears on the line). Solid lines: gene-gene 
relationships from InWeb. Dashed/dotted lines: drug-gene relationship found in 
literature by Pharmspresso. Dashed red - indication similarity, Dotted blue - 
structural similarity. The score shown on the edge represents the similarity score of 
the edge’s drug, to the query drug. 
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 7 
SLC6A4, based on the text-mining-derived network of drug-gene relationships, and the gene-gene interactions in 
InWeb. SLC6A4 is a sodium-dependent serotonin transporter. The drug trimipramine is a tricyclic antidepressant17. 
The support for the predicted relationship between SLC6A4 and trimipramine stems from the similarity to the two 
drugs directly related to the gene, in the text-mining-derived network (mirtazapine and clomipramine), and from the 
similarity to the drug carbamazapine, which is related in the text-mining-derived network to the CALR gene, found 
to interact with SLC6A4 in the InWeb network. Mirtazapine is an antidepressant used for the treatment of moderate 
to severe depression, and has a very similar set of indications as trimipramine 18. Of the drugs that co-occur in the 
literature with SLC6A4, the one that is most similar in structure to trimipramine is clomipramine. Of the drugs 
related to the CALR gene in the text-mining-derived network, the one that is most structurally similar to 
trimipramine, the query drug, is carbamazapine. It is also the most similar in its indications: both carbamazapine and 
trimipramine are used to treat depression, the indirect connection to carbamazapine via CALR boosts the 
prediction10. 

 
Figure 6B shows the support for the relationship between doxorubicin and BAK1, a BCL2-antagonist/killer 1. 

The InWeb interactome connects BAK1 to two genes, TP53 and BCL2, each of which has a literature co-mention 
with docetaxel, an anti-mitotic chemotherapy medication. Both doxorubicin and docetaxel are cancer treatments as 
well, and so the similarity of indications plays a role in uncovering the relationship between BAK1 and doxorubicin. 
Doxorubicin is a type of anthracycline, which is the most active group of cytotoxic agents for the treatment of breast 
cancer. Docetaxel with anthracyclines are sometimes used together and share structural similarity19. BAK1 
“borrows” drug relationships from its neighbors to boost the likelihood of sharing a relationship with doxorubicin. 

 
Figure 6C shows the predicted relationship between diltiazem and CYP2C8. Diltiazem is a calcium channel 

blocker, a member of the benzothiazepine class that reduce blood pressure through vasodilation20. It is used to treat 
hypertension and rhabdomyolysis, as is verapamil. InWeb connects CYP2C8 to 3 genes: ALDH7A1, ALDH2, and 
PON1. Each of these interact with drugs that have substantial structural or indication overlap with diltiazem10. 
CYP2C8 itself is found in the literature with 2 drugs; pitavastatin has the highest indications similarity to diltiazem 
and repaglinide has the highest structural similarity to 
diltiazem. 

3.3. External Validation of the text-mining-
based pharmacogene classifier 

As an external validation of the text-mining-based 
classifier 1,636 drug-gene relationships added to the 
PharmGKB after we established the training set as 
well as three times that many randomly chosen drug-
gene relationships were scored. The ROC curve has an 
area under the curve of 0.78, as shown in Figure 7.  
The text-mining-based classifier had comparable 
performance to the curation-based classifier on the 
same external validation set, which produced a ROC 
curve with an AUC of 0.8. 
 

There are relationships found by Pharmspresso 
that do not appear in PharmGKB. We scored each of 
these relationships by leaving out the knowledge about 
the relationship during training of the text-mining 
based classifier. The relationships that receive positive 
scores appear in the intersection of the green and blue 

Figure 7. The ROC curve for the literature-based classifier on the 
external validation set of 1,636 drug-gene interactions not included 
in the training set.  This performance was achieved under the same 
conditions as presented in the Hansen paper. 
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 8 
circles of Figure 4 – that is, the intersection of regions “Text-mining relationships” and “Text-mining based high 

scoring relationships”. Within this intersection, those that do not appear in PharmGKB are titled “Putative 
Relationships” and are sent to the curators for potential insertion into PharmGKB. For example, the relationship 
between CYP3A5 and cyclosporine scored highly, was not in the original set of PharmGKB relationships (thus 
appears in region titled “Putative Relationships” in Figure 4), and in fact PharmGKB now has three articles 
supporting this relationship 21-23. 
 

4. Discussion 

In this work, we explored the use of a text-mining-derived network of drug-gene relationships, as a knowledge base 
to replace human-curated literature relationships in the PGxPipeline. The PGxPipeline uses the knowledge base to 
predict pharmacogenes for an input query drug. While the human curated data are high quality, they are much less 
abundant.  In this application, it is apparent that the improved coverage afforded by automatic detection outweighs 
the introduction of noise and errors because of imperfect text-mining extraction.  Of course, the benefits are 
substantial:  curation is a very expensive process (in terms of time and money), whereas text-mining is inexpensive 
and scalable14. In addition, PharmGKB staff curators often only read the abstract of articles because of the large 
volume of papers they must annotate.   Abstracts do not necessarily contain the pharmacogenomic drug-gene 
relationship reported by the article, whereas the Pharmspresso system analyzes the full text of an article. 
 

The task of Pharmspresso is really to identify relationships between genes and drugs, within the small scope of 
a single sentence. This is not what PharmGKB curators have been tasked with; they curate articles with respect to 
the genes and drugs that are mentioned without specifically asserting which genes and drugs relate.  Therefore, it is 
not surprising that when using the high-quality gold standard the text-mining-based classifier actually performs 
slightly better than the curation-based classifer (0.701 AUC vs. 0.672 respectively, Figure 5).  These results 
demonstrate that the drug-gene network derived by Pharmspresso can be used in place of manually curated data in 
the PGxPipeline algorithm, which may allows us to enlarge the drug-gene network to millions of articles in the 
scientific literature.  Our results also provide an independent, large-scale, external validation of the usefulness and 
accuracy of Pharmspresso. Pharmspresso had previously been validated on a small evaluation set.  Finally, we have 
demonstrated that the scores assigned by the PGxPipeline can be used to detect new relationships.   

 
The Hansen et al. algorithm relied on a manually-curated network of pharmacogenomic drug-gene relationships 

derived from experimental or clinical data, as reported in the literature. Our results show, however, that a text-mined 
sentence co-occurrence drug-gene network can perform as well and even better under some circumstances. We 
acknowledge that the co-occurrence drug-gene network contains noise. Nonetheless, it is more likely that a co-
occurrence is a meaningful relationship than a random one. Text mining allows us to generate a large network of 
relationships, thereby increasing the signal-to-noise ratio. This implies that the likelihood of a pharmacogenomic 
drug-gene relationship increases in proportion to the number of similar drugs that co-occur in the literature with the 
gene or genes in its pathway. We can therefore expect that as our knowledge base increases by mining more 
pharmacogenomic articles, so will our power to predict pharmacogenomic relationships. Additionally, because the 
method is general, this logic may apply to other types of pharmacogenomic relationships such as drug-SNP 
relationships, a hypothesis which we are currently investigating. 

 

4.1. Limitations 

While we have shown that we can predict pharmacogenomic drug-gene relationships based on a corpus of 
pharmacogenomic articles, it not yet clear that this methodology will work for other interesting biological problems, 
such as deriving drug-SNP relationships or gene regulatory networks. The generality of our methodology may be 
limited since our analysis is based on a corpus that is highly enriched for pharmacogenomics articles. We plan to 
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investigate how dependent the performance of the algorithm is on this specialized corpus. One other limitation of 
using simple co-occurrence is the inability to derive the type of drug-gene relationship text-mined from the 
literature24. For example, it would be advantageous to know if a drug and gene have a positive or negative 
relationship or whether the gene is pharmacokinetic or pharmacodynamic for the drug. This type of characterization 
of edges in the network requires more sophisticated text mining. 
 

Our next step is to expand the corpus of articles available to Pharmspresso to include a larger 
pharmacogenomics literature. Methods that classify publications likely to contain pharmacogenomic information, 
such as MScanner, can be used to filter Medline in order to identify pharmacogenomic articles25. This expansion of 
the drug-gene relationship network will greatly improve the performance of the PGxPipeline.  The PGxPipeline 
relies on other types of relationship networks in addition to the drug-gene network, namely a gene-gene network and 
a drug-disease network.  Mining these relationships from the literature may also increase the predictive power of the 
algorithm as well as keep the knowledge base scalable and up-to-date. Finally, we plan to incorporate high-scoring 
predictions into the curation pipeline at PharmGKB, to prioritize these predictions for curator review and subsequent 
insertion into the knowledge base. 

 
Pharmacogenomics is not only concerned with the important genes but also with their particular variations that 

impact drug response.  For example, variations in the VKORC1 and CYP2C6 genes are critical for determining 
warfarin dose, and can be used to predict the optimal dose of warfarin26-29. The Pharmspresso algorithm can detect 
genetic variations, and can be used to create a network linking specific variations to specific drugs14.  Such a 
network might be useful in refining the PGxPipeline to weight pharmacogene predictions based on this additional 
knowledge source.  The text-mining-based PGxPipeline classifier produced a substantial number of high scoring 
drug-gene relationships that were not found to be in PharmGKB.  A high-throughput biological assay could be 
employed to test these relationships for their validity. 
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The methods to detect gene-gene interactions between variants in genome-wide association study (GWAS) datasets have not been well developed 
thus far. PLATO, the Platform for the Analysis, Translation and Organization of large-scale data, is a filter-based method bringing together many 
analytical methods simultaneously in an effort to solve this problem. PLATO filters a large, genomic dataset down to a subset of genetic variants, 
which may be useful for interaction analysis. As a precursor to the use of PLATO for the detection of gene-gene interactions, the implementation 
of a variety of single locus filters was completed and evaluated as a proof of concept.  To streamline PLATO for efficient epistasis analysis, we 
determined which of 24 analytical filters produced redundant results. Using a kappa score to identify agreement between filters, we grouped the 
analytical filters into 4 filter classes; thus all further analyses employed four filters. We then tested the MAX statistic put forth by Sladek et al. 1 
in simulated data exploring a number of genetic models of modest effect size. To find the MAX statistic, the four filters were run on each SNP in 
each dataset and the smallest p-value among the four results was taken as the final result. Permutation testing was performed to empirically 
determine the p-value. The power of the MAX statistic to detect each of the simulated effects was determined in addition to the Type 1 error and 
false positive rates. The results of this simulation study demonstrates that PLATO using the four filters incorporating the MAX statistic has 
higher power on average to find multiple types of effects and a lower false positive rate than any of the individual filters alone. In the future we 
will extend PLATO with the MAX statistic to interaction analyses for large-scale genomic datasets. 

1. Introduction  

1.1.  Dissecting the Genetic Architecture of Complex Traits in GWAS 

In the quest for disease susceptibility genes, genome-wide association studies (GWAS) have become the 
standard approach utilized by many investigators, with the promise of finding genes.  Innovation is needed for the 
analysis and interpretation of GWAS data, as we are headed for a calamity. In the past, there have been problems 
replicating single-locus candidate genes studies2.  Soon, we will be faced with many 500K and 1M (1-million) SNP 
datasets with failure to replicate, as well as a flood of publicly available data that could be a gold mine, if the 
appropriate analysis strategy is utilized.  Currently, no single analytical method will allow us to extract all 
information from a GWAS; in fact, no single method can be optimal for all datasets, especially when the genetic 
architecture for a given disease is not well understood.  Therefore, an integrative platform is needed to accommodate 
the multitude of sophisticated analytical methods being developed in the field for analysis as we learn more about 
the genetic architecture as well as which methodologies are successful for GWAS analyses.  As a resolution to this 
crisis, we have developed a system, the Platform for the Analysis, Translation, and Organization of Large Scale data 
(PLATO), for the analysis of GWAS data that will incorporate numerous analytic approaches as filters.  The use of 
multiple filters that can be used in a modular way will allow a flexible analytical strategy that can be tailored to each 
investigation.  In particular, these filters will be critical in the search for complex interactions among genes and/or 
the environment.  It is already feasible to search all individual effects on even 1M single nucleotide polymorphisms 
(SNPs); however, once interactions between SNPs are considered, the problem becomes much less tractable.  Most 
GWAS contain at least 500,000 or 1M SNPs and sometimes include environmental or clinical factors. Many 
common diseases are believed to be multifactorial, having multiple genetic and/or environmental disease 
susceptibility factors that may or may not have statistically detectable main effects 3,4. Interaction effects have been 
discovered as influential in conditions such as hypertension 5, Hirschsprung’s disease 6, and cystic fibrosis7,8; 
examples such as these demonstrate the importance of considering interactions during analysis of GWAS data. 
Efficiently exploring the search space when considering interactions in GWAS data becomes challenging very 
quickly, considering that looking for an interaction between just two variables among 500,000 requires the analysis 
of about 1.25x1011 models. It is nearly infeasible to exhaustively search a space that large, much less the space that 
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results from searching for interactions between three or more variables out of 500,000 or 1M SNPs.  Since 

exhaustive approaches are intractable, alternative strategies must be employed.  

1.2. PLATO 

PLATO is a computational framework that analyzes SNPs and other independent variables using a variety of 
filters in an effort to identify a subset of interesting SNPs from a much larger set. A filter in this case is defined as 
an analytical method or knowledge-based approach which mediates a reduction in the number of SNPs to a smaller 
subset. PLATO allows the flexibility of applying filters in series, parallel, or individually and also allows the 
specification of filters for different disease models (additive, dominant, etc).  Furthermore, PLATO is extensible, 
allowing users to easily implement their own analytical methods as filters using a modular C++ library. By 
narrowing down the number of SNPs using various filters, looking for interactions between the remaining variables 
may be feasible.     

 An important consideration when applying multiple analytical filters to a dataset is the potential for redundancy 
among the filters.  It is well known that many analytical methods are similar and follow the same underlying 
principles.  Still, in many studies, several similar methods are often used and the results compared.  Within PLATO, 
many of the filters are highly correlated; however, the different filters are options for analysis to accommodate user 
preferences. Since some of the filters are correlated, it is not necessary to analyze datasets with all of them.  By 
grouping filters into classes according to their tendency to identify overlapping subsets of putatively important 
SNPs, and subsequently running filters from these distinct classes, it may be possible to remove the most SNPs with 
the fewest number of filters, and subsequently reduce computation time. It is also possible that by running multiple 
distinct filters, “noise” SNPs can be removed and the truly significant effects can be found by singling out SNPs 
that repeatedly appear highly ranked across multiple filters. 

To determine which of the PLATO filters yield unique results, a simulation study was performed.  Simulations, 
where the true location and size of the genetic effect are known, prove indispensible for evaluating new analytical 
techniques.  Genomic data with a known effect was simulated, specifying disease prevalence and a disease variant. 
The resulting data was then analyzed using all twenty-four PLATO filters individually. A kappa statistic was used as 
a measure of comparison to provide a mechanism for grouping filters into subsets that yield similar results. One 
filter from each resulting group was chosen as a representative filter for the group based on ease of use and 
interpretation. These filter sets were then further subset into filter classes by their tendency to rank embedded 
genetic effects similarly. Once a set of filter classes had been determined, we implemented a MAX statistic in an 
additional simulation. Here, one filter from each of the four filter classes was performed on the simulated data for 
each SNP in the dataset, taking the lowest p-value among the four tests for each SNP. Permutation was then 
performed on the entire analysis procedure to create an empirical null distribution and the results were compared 
with those found from running the four filters individually. The PLATO approach utilizing the MAX statistic 
(PLATO_MAX) out-performed all of the individual filters alone and demonstrates promise for future applications to 
multiple types of analyses, in particular the search for epistasis. 

2. Methods 

2.1. Data Simulation 

The genomeSIMLA software 9,10 was used to conduct the data simulations. Simulation was performed by 
first generating a population of 100,000 chromosomes containing 1000 bi-allelic polymorphisms. For each 
chromosome, all polymorphisms with exception of the disease polymorphism(s) were initialized randomly with 
respect to allele frequency within a range of minor allele frequency between 10% and 50%. We conducted a two-
stage simulation study.  In the initial phase of the simulation study, the goal was to determine the redundancy among 
the PLATO filters. For these simulations, the disease minor allele frequency was fixed at 25%. In the second phase 
simulations, the goal was to evaluate the approach whereby the correlated filters were clustered into filter classes 
and the MAX statistic was evaluated. Here, the disease polymorphisms were allowed to vary freely in allele 
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frequency. Once the population of chromosomes was initialized, a penetrance function describing the size of the 
disease effect and the location of the disease locus was applied and random sampling theory was utilized in order to 
choose datasets of 1000 cases and 1000 controls. In all simulations for the estimation of power, 100 datasets were 
used; however, to test the Type 1 error rate of the PLATO_MAX approach, 1000 datasets were simulated.  

A number of different disease models were simulated for the different elements of this study. Table 1 lists 
the different genetic models simulated.  First, to determine the agreement between filters, single-locus additive, 
dominant, and recessive genetic effects with an odds ratio of 1.2, 1.5, 1.8, and 2.0 were simulated independently.  In 
addition, a null model with no genetic effect was simulated separately. The simulated data used to further subset 
these filters into filter classes included six genetic effects: 2 each of additive, dominant, and recessive effects with 
one effect of each pair having an odds ratio of 1.2 and the other an odds ratio of 1.5. Finally, the data simulated to 
test the PLATO_MAX approach was evaluated using three effects, each exhibiting an odds ratio of 1.5 under 
additive, dominant, and recessive models. 

 
Table 1. Simulation Design 
 Model type (effect size)  

Experiment Additive Dominant Recessive Null 

Agreement between filters 

(Kappa comparison) 

OR = 1,2, 1.5, 1.8, 2.0 OR = 1,2, 1.5, 1.8, 2.0 OR = 1,2, 1.5, 1.8, 2.0 X 

Creation of filter classes OR = 1.2 and 1.5 OR = 1.2 and 1.5 OR = 1.2 and 1.5 N/A 

PLATO_MAX Power analysis OR = 1.5 OR = 1.5 OR = 1.5 N/A 

Type I error analysis  

(null data) 

N/A N/A N/A X 

 

2.2. PLATO Filters 

The datasets generated were analyzed individually using each of 24 different filters making up the 
comprehensive set of filters currently available for PLATO (Table 2). There are several of these filters that are 
subsets of filters with different data encodings. For example, the LIKELIHOODRATIO (G) filter is a 
LIKELIHOODRATIO filter that uses a genotypic data encoding while LIKELIHOODRATIO (A) is a 
LIKELIHOODRATIO filter that uses an allelic data encoding. Each filter type is summarized below, including how 
it functions as well as the meaning of different data encodings. The contingency table analytical methods utilized by 
the filters are further illustrated in Figure 1. 

 
Table 2.Filters implemented in current PLATO analyses. A-Allelic; G-Genotypic; ADD-Additive; D-Dominant; R-Recessive. 

ARMITAGE (ADD) MDR 
ARMITAGE (G) NMI (A) 
CHISQUARE (A) NMI (ADD) 
CHISQUARE (G) NMI (D) 

LIKELIHOODRATIO (A) NMI (G) 
LIKELIHOODRATIO (ADD) NMI (R) 

LIKELIHOODRATIO (D) ODDSRATIO 
LIKELIHOODRATIO (G) UNCERTAINTYCOEFF (A) 
LIKELIHOODRATIO (R) UNCERTAINTYCOEFF (ADD) 

LOGISTICREGRESS (ADD) UNCERTAINTYCOEFF (D) 
LOGISTICREGRESS (D) UNCERTAINTYCOEFF (G) 
LOGISTICREGRESS (R) UNCERTAINTYCOEFF (R) 
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Figure 1. Six contingency table based filters used in PLATO. Adapted from (Bush, 2008)11. 

 

The ODDSRATIO filter utilizes a 2x2 table with the minor and major allele types as the columns and case and 
control status as the rows. To calculate the statistic, the product of cases with the minor allele (A) and controls with 
the major allele (D) is divided by the product of the cases with the major allele (B) over the controls with the minor 
allele (C). The ARMITAGE filter uses a Cochran-Armitage trend test to find the probability that a particular 
genotype is disease-associated by fitting the case-control distribution to a linear predictor equation of the form pi = a 
+ Bxi where i is the genotype being tested and B is the effect being attributed to the genotype 12-15. Statistically 
speaking, testing disease association is looking for rejection of the null hypothesis that B=0. The CHISQUARE filter 
uses a chi-square 12 test to look for differences between observed and expected numbers of cases and controls for 
each genotype. LIKELIHOODRATIO filters use an analytical method that is very similar to the CHISQUARE 
filters. The difference between these methods is that in calculating the statistic, a log ratio of the difference between 
observed and expected is used as opposed to the squared deviation from expected 12. The NMI and 
UNCERTAINTYCOEFFICIENT filters are quite similar, both functioning on the entropy in the data 16. They 
examine the amount of information any particular genotype provides about the disease status. The main difference is 
that NMI (Normalized Mutual Information) is a normalized measure, as reflected in the name 12,17. 

 The LOGISTICREGRESS filters are one of the few types of filters - along with the Multifactor Dimensionality 
Reduction (MDR) filter - which do not use a contingency table measure to calculate the statistic used for 
comparison. LOGISTICREGRESS refers to logistic regression analysis. Logistic regression is a standard method 
used by epidemiologists when looking for disease association with both genetic and environmental factors 18. 
Logistic regression uses a logistic equation to fit the pattern of cases and controls with respect to genotype and then 
determines if the genotype classes are predictive of disease. This equation is of the form p(x)=exp(a + Bx)/(1 + 
exp(a + Bx) ), where p(x) is the probability of getting the disease and B is the coefficient describing the effect of the 
genotype x 12.     MDR is an analytical method initially developed to analyze interactions between variables such as 
SNPs involved in disease susceptibility, although it can also identify single-locus effects 19. The underlying method 

Odds Ratio (OR)
The Odds Ratio is a measure of effect size for a variable. In the
case of genetics, Odds Ratio indicates the risk a particular SNP
predisposes. It compares the number of cases with the
assumed disease allele to the number of controls with the
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of the MDR filter takes a specified number of polymorphisms and looks at the intersection of genotypes to 
determine if, for a particular single- or multi-locus genotype, there are more cases than controls with that genotype 
combination (Figure 2). MDR utilizes a cross-validation measure to divide the data into N equal-sized partitions, 
looking for high risk genotypes in N-1 partitions –the training set– and then examining the predictive value of those 
high risk genotypes in the remaining partition of the data – the testing set. The process is then repeated N times until 
all of the partitions have been used as the testing set. The result is two measures of accuracy for each model MDR 
evaluates, the classification accuracy and the prediction accuracy. The classification accuracy describes the number 
of cases and controls the particular model classifies correctly in the training set while the prediction accuracy 
describes the same measure in the testing set. In this PLATO study, MDR was run with 10-fold cross validation 
analyzing single-locus models only. 
 

                                 
Figure 2. The MDR method. MDR partitions data into N parts and then uses N-1 of those to do the association test and the other part to 
look at the predictive accuracy of the models found. Adapted from (Ritchie and Motsinger, 2005)20. 

 
 Most of the filters implemented in PLATO utilize multiple different data encodings, as shown in Table 1. There 

are 5 different data encodings: additive, dominant, recessive, allelic, and genotypic (Figure 3). The additive 
encoding assumes that the addition of each disease allele results in increased disease risk. Dominant and recessive 
encodings are very similar, the only difference being where the disease is assumed to reside. In both cases, a 2x2 
table is made in which the cases and controls for the dominant homozygote and heterozygote from the 3x2 
genotypic table are condensed into one column and the cases and controls for the recessive homozygote reside in the 
other column. The genotypic encoding is very similar to the additive encoding, with each genotype possessing one 
column. The only difference is that the genotypic encoding is not necessarily ordered. Where the additive encoding 
assumes an order to the genotypes in the model, the genotypic encoding does not necessarily possess order in the 
columns. The allelic encoding simply makes a 2x2 table with the cases and controls that have a major allele and 
minor allele. Having multiple encodings such as these allows the user to bias a test for a specific disease model 
which might be present.  
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Figure 3. The five different data encodings available in using the PLATO filters are depicted. The r0, r1, r2 values correspond to the 
number of cases with the particular genotypes while s0, s1 and s2 refer to the controls with those genotypes. 

2.3. The Kappa Statistic 

The kappa statistic has been suggested as a good measure to determine agreement between classifiers 21. It is a 
way of examining how well two ranking systems – in this case, filters – classify data in the same way. The idea is to 
build a 1000x1000 matrix corresponding to the rankings for the 1000 loci by each filter. In the matrix, tallies are 
placed according to the rankings for each filter (see example in Table 3). If two filters agree on a ranking, the tally 
will lie directly on the diagonal. The kappa statistic (Eq 1.) looks at the degree to which these tallies group around 
the diagonal and awards a score of 1 for a perfect agreement at all rankings for two filters. In our method, a 
weighting measure is used to score tallies closer to the diagonal higher than those that occur further away. Based on 
suggestions from Landis and Koch 22, a kappa score of 0.60 was used as the cutoff to group filters with similar 
results. Some of the filters run in this comparison were previously known to have correlated results but were 
included as a proof of concept for using the kappa statistic. 
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Table 3. An example of a kappa statistic matrix. First, the rankings for the two filters are aligned to create a matrix which is then 
populated by tallies for each agreement in rankings in each filter. The kappa statistic then measures the degree to which the tallies fall on 
the diagonal. 
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2.4. Implementing the PLATO_MAX approach 

The MAX statistic is a measure utilizing multiple data encodings to maximize the power for finding a genetic 
effect. Sladek et al.1 originally utilized this statistic with a combination of the additive, dominant, and recessive 
encodings in logistic regression. We have extended the statistic to include the genotypic encoding of the chi-square 
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test, which is shown in our results to be uncorrelated with logistic regression. To implement the PLATO_MAX 
approach1 and test its efficacy, a simulation study was performed. First, 100 datasets with 1000 cases and 1000 
controls were simulated to find the power of the method. Three genetic effects with an odds ratio of 1.5 – one 
additive model, one recessive model, and one dominant model – were embedded in these datasets. To find the MAX 
statistic for each SNP, four filters – LOGISTICREGRESS (ADD/D/R) and CHISQUARE (G) – were run and the 
minimum p-value between the four was kept as the best solution. These four filters represented one filter from each 
of the four filter classes identified (as described in the results below).  We selected one filter per class based on ease 
of use and interpretation.  In order to deal with multiple testing issues, a set of 1000 permutations was performed, 
building a null distribution for each SNP. Here, the disease status was randomized to create 1000 null datasets where 
the genotype matrix was held constant but the association between genotype and phenotype was removed.  The full 
PLATO_MAX analysis was performed on each null dataset and the lowest p-value was obtained from each dataset 
and collected in the empirical null distribution. The original lowest p-value was then compared to the permutation 
null distribution to find a corrected p-value. The power was calculated for each of the three effects at α=0.01 and 
0.05 levels as the number of times out of the 100 datasets that the SNP in question was found to be significant after 
permutation testing. The false positive rate was calculated as the average number of incorrect loci found to be 
significant for each dataset divided by the number of SNPs in the dataset. We also investigated the Type 1 error rate 
of the PLATO_MAX approach by simulating 1000 datasets with no genetic effect. The PLATO_MAX approach 
was then run with permutation and the number of times which SNPs were found to be significant with the null 
model was examined. 

3. Results 

3.1. Kappa Comparisons 

The kappa score was used to do pair-wise comparisons between all 24 filters that are used in the current version 
of PLATO. This created a set of 276 comparisons which were repeated for all 13 models tested. To do the 
comparisons, the raw results from each filter were first sorted into a list of rankings that were suitable for making an 
ordered matrix (Table 3). For each filter comparison, the 1000 rankings were lined up so that one filter’s rankings 
made up the columns and the other’s made up the rows. Then, tallies were placed in the matrix corresponding to 
instances in which the rankings from the two filters agreed. The kappa statistic weighs the degree to which these 
tallies fall on the diagonal, as perfect agreement will be demonstrated by all tallies falling on the diagonal. A kappa 
statistic score of 1 is given in the case of perfect agreement between two filters. The score of 0.60 was used as 
significant based on literature about the statistic22.  
 
Table 4. The list of filter groups that resulted from kappa statistic comparisons. 

Group 1 Group 2 Group 3 Group 4 
LIKELIHOOD (ADD) CHISQUARE (A) ARMITAGE (A) LIKELIHOODRATIO (D) 

LIKELIHOOD (G) LIKELIHOODRATIO (A) ARMITAGE (G) NMI (D) 
NMI (ADD) NMI (A) LOGISTICREGRESS (ADD)  

NMI (G)    
Group 5 Group 6 Group 7 Group 8 

LIKELIHOODRATIO (R) UNCERTAINTYCOEFF (ADD) CHISQUARE (G) LOGISTICREGRESS (D) 
NMI (R) UNCERTAINTYCOEFF (G)   
Group 9 Group 10 Group 11 Group 12 

LOGISTICREGRESS (R) MDR ODDSRATIO UNCERTAINTYCOEFF (A) 
Group 13 Group 14   

UNCERTAINTYCOEFF (D) UNCERTAINTYCOEFF (R)   
 

Using the cutoff stated above, the filters were grouped into sets that provided non-redundant results. By 
grouping the filters for all 13 models, it became apparent that the same groups appeared regardless of the type or 
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size of the effect simulated, including a null model. The result of this experiment is a set of 14 groups in which all 

filters within each group had a kappa score of at least 0.60 with each other (Table 4). Once we arrived at these 14 
groups, we chose one filter from each group as the representative filter based on the number of assumptions the 
method made and/or the commonality of its use. We then ran these 14 filters on 10 datasets simulated with 6 genetic 
effects to determine the remaining correlation between filter rankings present even after kappa statistic comparison. 
On the basis of these results, we grouped these 14 filters into four filter classes with correlated findings (Table 5).  
For future analyses, we propose using a single analytical filter from each filter class.  This filter is chosen based on 
interpretability and ease of implementation. 
 
 
Table 5. Filter Classes found to display correlation in analysis results. Highlighted in bold italics is the selected filter for the 
PLATO_MAX experiment. 

Filter Class 1 Filter Class 2 Filter Class 3 Filter Class  4 
CHISQUARE (A) CHISQUARE (G) LIKELIHOODRATIO (D) LIKELIHOODRATIO (R) 

LOGISTICREGRESS (ADD) LIKELIHOODRATIO (ADD) LOGISTICREGRESS (D) LOGISTICREGRESS (R) 
UNCERTAINTYCOEFF (A) UNCERTAINTYCOEFF (ADD) UNCERTAINTYCOEFF (D) UNCERTAINTYCOEFF (R) 

ODDSRATIO MDR   

3.2. The PLATO_MAX Approach 

The PLATO_MAX approach was implemented to examine its power to identify multiple types of genetic 
effects while controlling the false positive and Type 1 error rates of the method. The power of the PLATO_MAX 
approach (using the four filter class filters) is compared to using each of the four filters individually for each effect 
in Table 6.  In addition, the false positive and Type 1 error rates are given in Table 6.  
 
Table 6. Power, False positive and Type 1 error rate of the PLATO_MAX approach compared to each individual filters. 

   MAX LOGISTIC (ADD) LOGISTIC (D) LOGISTIC (R) CHISQUARE (G) 
Power (0.05)      

Additive 75 83 78 56 71 
Dominant 97 96 97 23 97 
Recessive 45 28 7 57 47 

AVG POWER 72.3 69.0 60.7 45.3 71.7 
      

False Positive 0.04795 0.05795 0.06039 0.06735 0.0537 
Type 1 Error 0.054473     

      
Power (0.01)      

Additive 52 63 59 34 49 
Dominant 92 85 97 11 91 
Recessive 24 13 2 37 23 

AVG POWER 56 53.7 52.7 27.3 54.3 
      

False Positive 0.00954 0.01458 0.01482 0.01739 0.01308 
Type I error 0.01254     

 
Here the false positive rate is the average number of incorrect loci found to be significant for each dataset 

divided by the number of SNPs in the dataset where an actual genetic model was simulated. On the contrary, the 
Type I error rate is the average number of incorrect loci found to be significant for each dataset divided by the 
number of SNPs in the dataset where no genetic effect was simulated. The PLATO_MAX approach had power of 
75%, 97% and 45% to find the additive, dominant, and recessive effects respectively at an alpha level of 0.05 and 
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power of 52%, 92%, and 24% at the 0.01 level. The average power of the PLATO_MAX approach over the three 
effects at the 0.05 level was 72.3% as opposed to the average power of the four individual filters which was 69.0% 
for LOGISTICREGRESS (ADD), 60.7% for LOGISTICREGRESS (D), 45.3% for LOGISTICREGRESS (R), and 
71.7% for CHISQUARE (G). The false positive rate of the PLATO_MAX was lower than the individual filters at 
0.04795 and 0.00954 for an alpha of 0.05 and 0.01 respectively. Finally, the Type 1 error rate of the method was 
well controlled at 0.054473 at an alpha of 0.05 and 0.012541 at an alpha of 0.01. 
 

4. Discussion 

GWAS analyses have thus far been fairly straightforward single locus tests of association such as logistic 
regression, chi-square tests, or Cochran-Armitage trend tests.  These tests have been successful in many situations.  
Clearly, the optimal test is highly dependent on the type of effect being detected.  Since we do not know a priori 
what type of effect we are looking for, some groups, such as Sladek et al.1 have proposed using multiple analyses 
simultaneously and taking the maximum statistic as the final solution.  Using multiple analysis approaches (as 
filters) and employing a maximum statistic allows one to test for many known types of effects and have power to 
detect them while controlling the Type I error rate. 

The motivation for PLATO is twofold.  First, the fact that any single underlying analytical scheme will reveal 
only some important results and that multiple filters will reveal different subsets of important results.  However, 
once results are obtained these results can be viewed in light of the results from other filters to best understand the 
full meaning of the genetic data.  The potential to use multiple filters forces no a priori assumptions about the mode 
of action of the genetic components of a phenotype allowing the most general possible analysis and interpretation.  
This is critical as it is rare that we know what type of effect we are attempting to detect in disease gene association 
studies.  Thereby the ability to evaluate the association in the context of many different models and select the 
optimum solution for the dataset at hand, while controlling Type I error rate is a great success.  Second, it is 
hypothesized that the genetic architecture of complex disease will include interactions between many genes as 
well as the environment.  In GWAS scale datasets, searching for interactions is a computational challenge; thus 
filtering the full set of GWAS SNPs to a smaller subset will be critical in the quest for detecting interactions.  
PLATO accomplishes both of these goals. 

There are a large number of possible filters that one can envision for the PLATO framework.  Currently, 
PLATO has the following tests implemented: Cochran-Armitage trend test, chi-square, likelihood ratio, logistic 
regression, MDR, normalized mutual information, odds ratio, and uncertainty coefficient as well as a thorough 
quality control filter including sample and SNP efficiency, HWE, allele frequency, rates of homozygosity, 
concordance checks, gender errors, and Mendelian errors. In addition, PLATO currently has the following filters 
under development: the Biofilter23, data transformations, conditional logistic regression, MDR-PDT, generalized 
MDR, Cochran-Mantel-Haenszel analysis, linkage disequilibrium (r^2), linear regression, and TDT.  

PLINK is another currently available software package for GWAS data24.  PLATO differs from PLINK in two 
significant ways.  First, PLINK is primarily for performing one test of association for each single SNP across the 
genome; whereas PLATO performs multiple single locus tests and uses a MAX statistic with permutation testing to 
determine statistical significance.  Second, while PLINK has a few regression-based tests for interaction, that is not 
the focus; whereas, the primary goal of PLATO is to provide a mechanism for searching for complex gene-gene and 
gene-environment interactions in GWAS data.  With multiple interaction filters integrated with tests for main effects 
as well as biological knowledge, PLATO will provide a powerful framework to elucidate the genetic architecture of 
complex disease. 

This study examined the redundancy among filters currently available for PLATO, the creation of filter classes 
based on these correlations, and the utility of the PLATO_MAX approach in the context of one filter from each 
class. We simulated case-control data for a number of effects and then compared results from each filter after 
running them on this data. The kappa statistic provided a means of comparison between these results, allowing for 
the grouping of filters into sets based on similar results. From 276 filter-filter comparisons, 14 groups of filters with 
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kappa statistic scores greater than 0.60 were obtained. As expected based on the numerical formulas, these 14 

groups were then filtered down through elimination of some filters and grouping of correlated entities to form 4 
filter classes. The primary motivation for this research was finding an effective way to filter GWAS data to 
determine an interesting subset of SNPs and therefore reduce the number of model comparisons during interaction 
analysis. This was accomplished through selection of an informative group of filters to achieve reduced 
computational time during a PLATO run. In addition to reducing the number of filters, we have implemented a 
useful analysis tool in the form of the MAX statistic. Although the PLATO_MAX approach only offers a small 
power gain for individual genetic effects, it has shown that it has higher power to detect all types of genetic effects 
than the individual filters composing it. The PLATO_MAX approach also has a lower false positive rate than any of 
the other filters alone.  

 The current study offers multiple avenues for future exploration. Now that a set of filter groups has been 
proposed, it must be determined which filter from each group provides the most accurate results.  While it is 
possible that the best filter from each group could vary for different effects, this will supply a default PLATO filter 
set to achieve the largest degree of filtering with the smallest computational obligation in most cases. In addition, we 
can use this new default filter set to test the idea that looking for an intersection between results from multiple filters 
can filter out background noise. By running several filters that each provide different results and then selecting for 
SNPs which receive high scores in all filters, it should be possible to sift out the uninformative background noise of 
SNPs that are significant in one filter only. Power and type I error studies must be performed to test this notion. 

In addition to realizing an increase in power for single-locus genetic analysis, this exercise in implementing the 
MAX statistic has demonstrated an important point which was introduced by the computational optimization field: 
“No Free Lunch” (NFL)25. The NFL theory states that no one method run alone is best in all situations. Although we 
have demonstrated this theory in the search for single-locus genetic models, it is likely to be an even more important 
consideration when analyzing epistatic models. This concept is supported also by previous research in the field. 
Upon testing a number of interaction-searching analysis methods, it was found that the performance of each was 
dependent on the context of the interaction or genetic effect being searched for26. When a single-locus effect was 
presented, the methods that condition on main effects out-performed those which look specifically for epistasis. On 
the other hand, when two-locus and three-locus models were imparted to these methods, different interaction-
searching methods surpassed both those conditioning upon main effects as well as each other depending on the 
particular context of the multi-locus effect. In addition, when MDR and FITF were applied to look for gene-
environment interactions involved in the etiology of pancreatic cancer, the researchers found that a combination of 
methods was necessary to mine the data effectively and identify the important multi-locus models27.  In the future 
we will extend the PLATO_MAX approach to include methods designed for interaction searching. 

 PLATO is a very flexible analytical method with promise as a major component of association studies. With its 
ability to run filters individually, in series or in parallel as well as the opportunity for users to implement their own 
filters, PLATO can be easily customized for any study. Future work will likely introduce a study design that takes 
advantage of this customization to use PLATO as both an analytical method and a prior to performing interaction 
analysis. 
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One goal of personal genomics is to use information about genomic variation to predict who is at risk for various common 

diseases.  Technological advances in genotyping have spawned several personal genetic testing services that market genotyping 

services directly to the consumer.  An important goal of consumer genetic testing is to provide health information along with the 

genotyping results.  This has the potential to integrate detailed personal genetic and genomic information into healthcare decision 

making. Despite the potential importance of these advances, there are some important limitations.  One concern is that much of 

the literature that is used to formulate personal genetics reports is based on genetic association studies that consider each genetic 

variant independently of the others.  It is our working hypothesis that the true value of personal genomics will only be realized 

when the complexity of the genotype-to-phenotype mapping relationship is embraced, rather than ignored.  We focus here on 

complexity in genetic architecture due to epistasis or nonlinear gene-gene interaction.  We have previously developed a 

multifactor dimensionality reduction (MDR) algorithm and software package for detecting nonlinear interactions in genetic 

association studies.  In most prior MDR analyses, the permutation testing strategy used to assess statistical significance was 

unable to differentiate MDR models that captured only interaction effects from those that also detected independent main effects.  

Statistical interpretation of MDR models required post-hoc analysis using entropy-based measures of interaction information.  

We introduce here a novel permutation test that allows the effects of nonlinear interactions between multiple genetic variants to 

be specifically tested in a manner that is not confounded by linear additive effects.  We show using simulated nonlinear 

interactions that the power using the explicit test of epistasis is no different than a standard permutation test. We also show that 

the test has the appropriate size or type I error rate of approximately 0.05. We then apply MDR with the new explicit test of 

epistasis to a large genetic study of bladder cancer and show that a previously reported nonlinear interaction between is indeed 

significant, even after considering the strong additive effect of smoking in the model. Finally, we evaluated the power of the 

explicit test of epistasis to detect the nonlinear interaction between two XPD gene polymorphisms by simulating data from the 

MDR model of bladder cancer susceptibility. The results of this study provide for the first time a simple method for explicitly 

testing epistasis or gene-gene interaction effects in genetic association studies. Although we demonstrated the method with 

MDR, an important advantage is that it can be combined with any modeling approach.  The explicit test of epistasis brings us a 

step closer to the type of routine gene-gene interaction analysis that is needed if we are to enable personal genomics. 

1. Introduction 

1.1.  Personal Genomics 

The era of commercial genetic testing and personal genomics was ushered in with help from the discovery and 

characterization of mutations in BRCA1 and BRCA2 that account for between 20% and 40% of all cases of 

familial breast cancer [1]. Unfortunately, the remaining 60% to 80% of familial breast cancer remains 

unexplained and the elusive BRCA3 gene has not yet been identified despite significant efforts using the full 

spectrum of genetic and genomic tools available [2].  Failure to find the putative BRCA3 gene is somewhat 

surprising given the familial nature and high heritability of this type of breast cancer. The current strategy for 

revealing genetic architecture is to carry out a genome-wide association study (GWAS) with a million or more 

single nucleotide polymorphisms (SNPs) that capture much of the common single nucleotide variation in the 

human genome by tagging blocks of variants that are in linkage disequilibrium [3,4].  These SNPs are then 

individually tested for association with a specific disease state. The GWAS approach is based on the hypothesis 

that scanning the entire genome for single SNP associations in an unbiased manner that ignores current 
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understanding about disease etiology will reveal much of the currently unexplained genetic architecture of a 

particular disease. 

Despite the excitement surrounding the GWAS approach, and the time and financial resources already 

committed, the results have generally been underwhelming.  Consider, for example, the application of GWAS to 

identification of cancer susceptibility genes.  A recent review of these studies shows that a number of new 

susceptibility loci have been identified for several types of cancer, including breast, prostate, colorectal, lung 

and skin [5].  The identification of new associations is certainly important.  However, as Easton and Eeles [5] 

note, the increase in risk for the susceptibility alleles at each of these loci is generally 1.3-fold or less. For 

familial breast cancer, Easton et al. [6] reported five significant, replicated associations that were identified by 

GWAS in a three-stage study design.  Four of these variants were in known genes and one was located in a 

hypothetical gene.  Assuming a multiplicative model, these five loci combine to explain only 3.6% of the excess 

familial risk of breast cancer and, as suggested by Ripperger et al. [2] were not deemed to be suitable for genetic 

testing due to their small effect sizes [6].  In a recent follow up study with two additional stages of testing and 

replication two additional susceptibility loci were identified with odds ratios of 1.11 and 0.95, respectively, each 

accounting for much less than 1% of the familial risk of breast cancer [7].  When combined with the previously 

known genetic risk factors for familial breast cancer, the estimated fraction of risk explained is approximately 

5.9%.  This is in stark contrast to BRCA1 and BRCA2 mutations that account for between 20% and 40% of 

familial breast cancer.  While the application of GWAS to familial breast cancer has generated new knowledge, 

it has not resulted in new genetic tests that can be used to predict and prevent familial breast cancer.  These 

results are particularly discouraging for more common diseases such as sporadic breast cancer that are likely to 

have a much more complex genetic architecture.  As Clark et al. [8] predicted, our success with GWAS depends 

critically on the assumptions we make about disease complexity. It is the goal of this study to develop a new 

hypothesis testing methodology that can be used to directly confront the challenge of detecting and 

characterizing epistasis or nonlinear gene-gene interaction that accounts for a portion of the complex etiology of 

common diseases. 

1.2. Genetic Architecture of Common Diseases 

When designing and executing a genetic association study of disease susceptibility it is very important to 

consider the assumptions that are being made about the genetic architecture of the disease [8].  The questions 

that we ask, the hypotheses that we formulate, the analytical tools selected for data analysis and the inferences 

we make from the results are all limited by the assumptions we make about genetic architecture.  Weiss [9] has 

defined genetic architecture as 1) the set of genes and DNA sequence involved in the disease, 2) their variation 

in the population and 3) their specific effects on the phenotype. It was initially thought that much of the genetic 

risk of familial breast cancer could be explained by three genes (BRCA1, BRAC2 and the hypothetical BRCA3). 

However, it is now clear that the remaining 60% to 80% of risk is likely to be explained by many genes each 

with multiple variations that have very small effects.  It also likely that each variant contributes to risk of 

sporadic breast cancer through nonlinear interactions with other variants in the genome and with multiple 

environmental factors such as diet and smoking.  We focus here on epistasis or gene-gene interaction that is 

expected to be a ubiquitous component of the genetic architecture of common diseases. 

William Bateson coined the word epistasis in the early 1900s to explain deviations from Mendelian 

inheritance [10]. The term literally means “standing upon”, and Bateson used it to describe characters that were 

layered on top of other characters thereby masking their expression. Since Bateson there have been many 

different and evolving definitions of epistasis or gene-gene interaction [e.g. 11-17].  For example, Fisher [18] 

defined epistasis in a statistical manner as an explanation for deviation from additivity in a linear model.  This 

non-additivity of genetic effects measured mathematically is different than the more biological definition of 

epistasis from Bateson.  We have previously made the distinction between Bateson's biological epistasis and 

Fishers statistical epistasis [16].  This distinction is important to keep in mind when thinking about the genetic 

architecture of common human diseases because biological epistasis happens at the cellular level in an 

individual while statistical epistasis is a pattern of genotype to phenotype relationships that results from genetic 

variation in a human population. This distinction becomes important when attempting to draw a biological 

conclusion from a statistical model that describes a genetic association.  Moore and Williams [16] and Phillips 

[13] have discussed the idea that more modern definitions of epistasis may be needed in light of our new 

knowledge about gene networks and biological systems.  However, the classic definitions provided by Bateson 

[10] and Fisher [18] still provide a good starting point for thinking about gene-gene interactions. 

1.3. A Multifactor Dimensionality Reduction Approach to Detecting Epistasis 

As discussed above, one of the early definitions of epistasis was deviation from additivity in a linear model [18].  

The linear model plays a very important role in modern genetic epidemiology because it has a solid theoretical 

foundation, is easy to implement using a wide-range of different software packages, and it is easy to interpret. 
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Despite these good reasons to use linear models [14,15], they do have limitations for explaining genetic models 

of disease because they have limited ability to detect nonlinear patterns of interaction [19].  Here, a nonlinear 

interaction is defined as a synergistic or nonadditive effect of multiple genetic variants that is greater than the 

independent effects of the variants considered alone. It is well documented that linear models have greater 

power to detect main effects than interactions [20-22].  The limitations of the linear model and other parametric 

statistical approaches have motivated the development of computational approaches such as those from machine 

learning and data mining that make fewer assumptions about the functional form of the model and the effects 

being modeled [23-25]. Several recent reviews highlight the need for new methods [26] and discuss and 

compare different strategies for detecting statistical epistasis [15,27]. 

As reviewed recently by Cordell [15], multifactor dimensionality reduction or MDR has emerged as one 

important new and novel method for detecting and characterizing patterns of statistical epistasis in genetic 

association studies that complements the linear modeling paradigm. Multifactor dimensionality reduction 

(MDR) was developed as a nonparametric (i.e. no parameters are estimated) and genetic model-free (i.e. no 

genetic model is assumed) data mining and machine learning strategy for identifying combinations of discrete 

genetics and environmental factors that are predictive of a discrete clinical endpoint [28-34]. Unlike most other 

methods, MDR was designed to detect interactions in the absence of detectable main effects and thus 

complements other statistical approaches such as logistic regression and other machine learning methods such as 

random forests and neural networks.  At the heart of the MDR approach is a feature or attribute construction 

algorithm that creates a new variable or attribute by pooling genotypes from multiple SNPs (see Figure 1).  The 

general process of defining a new attribute as a function of two or more other attributes is referred to as 

constructive induction, or attribute construction, and was first described by Michalski [35].  Constructive, 

induction using the MDR kernel, is accomplished in the following way.  Given a threshold T, a multilocus 

genotype combination is considered high-risk if the ratio of cases (subjects with disease) to controls (healthy 

subjects) exceeds T, otherwise it is considered low-risk.  Genotype combinations considered to be high-risk are 

labeled G1 while those considered low-risk are labeled G0.  This process constructs a new one-dimensional 

attribute with values of G0 and G1.  It is this new single variable that is assessed, using any classification 

method.  The MDR method is based on the idea that changing the representation space of the data will make it 

easier for methods such as logistic regression, classification trees, or a naive Bayes classifier to detect attribute 

dependencies.  As such, MDR complements any classification methods such as those reviewed by Hastie et al. 

[24].  Cross-validation is used to prevent overfitting while permutation testing is used to assess statistical 

significance and to control for false-positives due to multiple testing. This method has been confirmed in 

numerous simulation studies and a user-friendly open-source MDR software package written in Java is freely 

available from www.epistasis.org. 

Although MDR is a powerful method for detecting nonlinear interactions in the absence of independent 

main effects it, like other machine learning methods, does not explicitly disentangle these two types of genetic 

effects.  In other words, a statistically significant MDR model could capture interactions, main effects or both 

interactions and main effects.  It may not be immediately apparent to the user which types of effects are 

represented in a high-order MDR model. This has been previously addressed through post-hoc analysis methods 

that use entropy-based measures of interaction information to identify evidence of nonlinear interactions [33].  

These information theoretic approaches work well but do not reveal directly which genetic effects made a 

meaningful contribution to the statistical significance. We propose here a new explicit test of epistasis that can 

be used in conjunction with MDR or any other method to directly test for nonlinear gene-gene interaction while 

holding the independent main effects constant. 

1.4. Redefining the Null Hypothesis in Genetic Association Studies 

The present study is motivated by the need to greatly improve our knowledge of biological and statistical 

epistasis and its role in human health and disease.  We know very little about the role of epistasis in human 

biology and public health because the focus for so long as has been on the effects of single genes and single 

genetic variants in biological and clinical endpoints.  Given the ubiquity of complexity in genetic architecture, 

with epistasis as a central component, we propose a rephrasing of our research questions.  Instead of asking 

which single SNP is associated with disease, we propose asking which combination of SNPs is associated with 

disease.  Rephrasing the question in this manner necessitates a redefinition of the null hypotheses that needs to 

be tested using statistical and computational methods.  Given the reality of complexity, and this specific 

research question, we propose the following logical set of hypotheses as a starting point for retooling our 

analytical approach to this problem.  First, we propose testing the null hypothesis that the associations in the 

data are only linear and additive using methods such as MDR and the explicit test of epistasis that were designed 

specifically for this purpose.  Once there is significant evidence for rejecting the null hypothesis of linearity, it is 

then a logical next step to test the universal null hypothesis of no association using linear statistical methods 

such as logistic regression that are powered to model the independent and additive main effects.  Rejection of 

the universal null in addition to the linear null provides a set of results generated in a systematic manner that 
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addresses complexity that can then be interpreted biologically using experimental methods or that can be 

interpreted statistically using approaches such as parsimony.  Is the evidence generated by testing the linear null 

more compelling than the evidence generated by testing the universal null?  Answering this question will help 

further our understanding of genetic architecture.  We propose here a new 'explicit test of epistasis' that allows 

us to directly test the linear null hypothesis using MDR or any other method. 

 
Figure 1. MDR attribute construction.  A) Illustrates distribution of cases (left bars) and controls (right bars) for each of the three genotypes 

of SNP1 and SNP2.  The dark-shaded cells have been labeled „high-risk‟ using a threshold of T = 1.  The light-shaded cells have been 

labeled „low-risk‟.   B) Illustrates the distribution of cases and controls when the two functional SNPs are considered jointly.  A new single 

attribute is constructed by pooling the “high-risk” genotype combinations into one group (G1) and the low-risk” into another group (G0).   

2. Methods 

2.1. An Explicit Test of Epistasis 

The goal of our proposed explicit test of epistasis is provide a hypothesis testing framework that will allow us to 

directly test the null hypothesis that the only genetic effects in the data are linear and additive.  As described in 

detail by Pattin et al. [36], the current hypothesis testing framework for MDR is based on a permutation test that 

randomizes the class (i.e. case and control) labels so that the only genetic associations in the permuted data are 

there by chance (see Figure 1A and 1B).  Permutation testing is used because it doesn't assume we know the null 

distribution of the test statistic (e.g. testing accuracy) and it controls for false-positives due to multiple testing.  

However, the current permutation testing framework provides a global p-value for an MDR model that might 

have main effects, gene-gene interactions, or a combination of both.  Significance tells us nothing about the 

nature of the MDR model and only reflects the fact that the model predicts class better than chance. 

We propose here an explicit test of interaction that has all the same advantages of the permutation testing 

framework but that is able to provide a p-value that reflects only the nonlinear interaction or epistasis 

component of the model.  To accomplish this, we first sort the data rows (i.e. the subjects) by class into cases 

and controls (see Figure 1C). We then randomize each column (i.e. the SNPs) within each class.  This removes 

any relationship between genotypes within class but preserves the overall genotype frequency difference 

between the classes.  This new type of permutation randomizes any interaction effects while keeping the 

independent main effects as defined by class differences in genotype frequency.  This allows us to generate 

permuted datasets under the null hypothesis that the only genetic associations in the data are linear or additive in 

nature and that any nonlinear interaction effects are only there by chance.  This yields an explicit test of epistasis 

when combined with a method such as MDR that is capable of modeling nonlinear interactions. 

We have included the explicit test of interaction in the MDR permutation testing (MDRpt) module that is 

open-source and freely available from www.epistasis.org. 
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Figure 2. Overview of the explicit test of epistasis. Shown on the left (panels A and C) is a hypothetical dataset with three attributes (e.g. 

SNPs) coded X1, X2 and X3 and class (i.e. case-control status).  Each row of the dataset is one of 40 subjects with hypothetical binary 
genotypes colored in light shades of blue and case-control status coded darker shades of blue.  In this simple example, X1 and X2 effect 

disease risk through a nonlinear interaction while X3 has an independent main effects that is reflected by a frequency difference in 

genotypes between cases and controls.  Panel B shows the process of randomizing class labels in a standard permutation test.  Panel D 
shows the same data randomized for the explicit test of interaction.  Here, the columns are randomized within each class.  Note that the 

genotype frequencies within each class remain fixed.  This preserves the independent main effects while randomizing any nonlinear 

interactions. 

2.2. Multifactor Dimensionality Reduction Analysis 

As described above, the goal of MDR is to change the representation space of the data using constructive 

induction to make nonlinear interactions easier to detect.  This is accomplished by combining two or more 

variables or attributes into a single attribute that can be modeled using a discrete data classifier.  Here, we used a 

simple probabilistic classifier that is similar to naïve Bayes [31] to model the relationship between variables 

constructed using MDR and case-control status.  Naïve Bayes classifiers were assessed using balanced accuracy 

as recommended by [37].  For each dataset we evaluated all possible pairwise combinations of SNPs using 

MDR.  The model with the maximum training accuracy as assessed with ten-fold cross validation was selected 

as the best model. The testing accuracy (i.e. predictive ability) of the single best MDR model was then assessed 

using the cross-validation hold-out data. We used the open-source MDR software package that is freely 

available from www.epistasis.org.  A tutorial on MDR can be found in the November and December 2006 

postings at compgen.blogspot.com. 

2.3. Evaluation of Power and Type I Error Using Simulated Data 

The goal of the simulation study was to generate artificial datasets that could be used to evaluate the power of 

the MDR within the explicit test of epistasis framework to detect nonlinear gene-gene interactions.  We 

developed a total of 35 different penetrance functions that define a probabilistic relationship between genotype 

and phenotype where susceptibility to disease is dependent on genotypes from two loci in the absence of any 

marginal effects.  The models were distributed evenly across seven broad-sense heritabilities (0.01, 0.025, 0.05, 
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0.1, 0.2, 0.3, and 0.4) with minor allele frequencies of 0.4. A total of five models for each of the seven 

heritabilities were generated for a total of 35 models.  More information about the mathematics of penetrance 

functions and heritability can be found in Culverhouse et al. [38]. A heritability of 0.01 is a very small genetic 

effect size while 0.4 is a very large genetic effect size. The details of the 35 penetrance functions used here have 

been previously described in detail by Velez et al. [37].  Genotype frequencies for all 35 epistasis models were 

consistent with Hardy-Weinberg proportions.  One hundred data sets were generated for each model with three 

sample sizes (400, 800, and 1600 total individuals) with case-control proportions of 1:1.  Each pair of functional 

polymorphisms was embedded within a set of 20 independent single-nucleotide polymorphisms (SNPs).  A total 

of 7,000 artificial datasets were generated and analyzed.  For evaluating the type I error of the explicit test of 

epistasis, null data sets with no functional SNPs were generated by permuting the case-control labels of the data 

sets described above. All simulated data are available upon request. 

The power of MDR using the explicit test of epistasis test was estimated as the percentage of times MDR 

correctly identified the two functional SNPs in the best model out of each set of 100 datasets for which the result 

was statistically significant at the 0.05 level (i.e. the testing accuracy was equal to or higher than the top 5% 

highest testing accuracies in the permuted data). Type I error was estimated as the proportion of times that the 

permutation test indicated a statistically significant MDR model in data consistent with the null hypothesis of no 

association. 

 

 
Figure 3. Distribution of cases (left bars) and controls (right bars) for each XPD genotype (coded 0, 1, 2) and for pack years of smoking 

(pack.yr) in the bladder cancer example. Dark shaded cells indicate high-risk for disease while light-shaded cells indicate low-risk. The p-
value from a standard permutation test for this model was <0.001. Note that it is difficult to tell which attribute has a main effect and which 

are interacting and how these different effects contribute to the statistical significance. 

2.4. Application to Bladder Cancer 

We demonstrated use of the explicit test of epistasis with real data by applying it to a genetic epidemiology 

study that examined the relationship between DNA repair gene SNPs, smoking, and bladder cancer 

susceptibility that was previously analyzed using MDR and a 1000-fold permutation test [39]. The study 

analyzed 355 bladder cancer cases and 559 controls ascertained from the state of New Hampshire. This study 

focused specifically on genes that play an important role in the repair of DNA sequences that have been 

damaged by chemical compounds (e.g. carcinogens).  Seven SNPs were measured including two from the X-ray 

repair cross-complementing group 1 gene (XRCC1), one from the XRCC3 gene, two from the xeroderma 

pigmentosum group D (XPD) gene, one from the nucleotide excision repair gene (XPC), and one from the AP 

endonuclease 1 gene (APE1).  Each of these genes plays an important role in DNA repair.  Smoking is a known 

risk factor for bladder cancer and was included in the analysis along with gender and age for a total of 10 

attributes.  Age was discretized to > or ≤ 50 years. 

A parametric linear statistical analysis of each attribute individually revealed a significant independent main 

effect of smoking as expected (P < 0.05).  However, none of the measured SNPs were significant predictors of 

bladder cancer individually (P > 0.05).  Andrew et al. [39] used MDR to exhaustively evaluate all possible two-, 

three-, and four-way interactions among the genetic and environmental attributes. For each combination of 

attributes a single constructed attribute was evaluated using a naïve Bayes classifier.  Training and testing 

accuracy were estimated using 10-fold cross-validation.  A best model was selected that maximized the testing 

accuracy. The best model had a testing accuracy of approximately 0.63 and included two SNPs from the XPD 

gene and smoking. The distribution of cases and controls with each genotype/smoking combination is illustrated 

above in Figure 3.  They statistically evaluated this model with a 1000-fold permutation test and determined 

these results to be highly significant (p<0.001). Post-hoc analysis of the MDR model using entropy-based 
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measures of interaction information revealed that the two XPD polymorphisms had evidence of nonlinear 

interaction or synergy in the near complete absence of main effects.  Interestingly, the joint effect of the two 

XPD SNPs was larger than the independent from the effect of smoking. As such, these data provide an ideal test 

case for the proposed explicit test of interaction.  Is the nonlinear interaction between the two XPD SNPs 

statistically significant after holding the effects of smoking constant in the new permutation test or was the 

significance only due to the large effect of smoking? To answer this question we applied MDR with the explicit 

test of interaction to the bladder cancer data and determined the statistical significance of the model comprised 

of the two SNPs from the XPD gene and smoking. 

To assess the power of the explicit test of epistasis to detect the joint effect of the two XPD SNPs in the 

bladder cancer we simulated 100 datasets using three different MDR models from the bladder cancer data 

analysis described above.  First, we simulated 100 datasets using the MDR model containing the two XPD 

SNPs.  Second, we simulated 100 datasets using the MDR model containing just smoking.  Third, we simulated 

100 datasets using the MDR model containing the two XPD SNPs with smoking.  The total number of simulated 

attributes was the same as the original data. We applied MDR along with the explicit test of interaction to each 

simulated dataset and recorded the power to detect an interaction.  We expect the results of this study to provide 

realistic power estimates for real data with a detectable interaction and a strong independent main effect. 

3. Results 

3.1. The Power and Type I Error of the Explicit Test of Epistasis 

Table 1 summarizes the power and the type I error (in parentheses) of the explicit test of epistasis to detect 

nonlinear interactions in the simulated data using MDR models.  The power exceeded 0.80 for all sample sizes 

for data with moderate to large genetic effect sizes (heritability > 0.025).  Power also exceeded 0.80 at sample 

sizes of 1600 and 800 for the small genetic effect sizes of 0.01 and 0.025, respectively.  It is important to note 

that these power estimates are extremely close (± 0 to 0.01) to those estimated using a standard permutation test 

by Pattin et al. [36]. These results demonstrate that the new explicit test of interaction does not lose power to 

detect nonlinear interactions as compared to a standard permutation test. 

Also shown in Table 1 in parentheses are the estimates of the false-positive rate or type I error.  Note that in 

each case the type I error rate was approximately 0.05 suggesting that the explicit test of interaction is an 

appropriately sized test.  As with power, this is not different than has been previously reported for standard 

permutation tests with MDR [36]. This is important given that MDR is a machine learning algorithm that looks 

at the data in a combinatorial manner. 

 
Table 1. Summary of the power and type I error (parentheses) of the explicit test of interactions when combined with MDR. 

 

Sample Size 

Heritability 

0.01 0.025 0.05 0.10 0.20 0.30 0.40 

400 0.22 (0.06) 0.65 (0.06) 0.87 (0.04) 0.95 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 

800 0.51 (0.04) 0.88 (0.07) 0.98 (0.04) 1.00 (0.06) 1.00 (0.06) 1.00 (0.04) 1.00 (0.07) 

1600 0.87 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.04) 1.00 (0.05) 1.00 (0.05) 1.00 (0.04) 

3.2. Application to Bladder Cancer 

As described above, the bladder cancer study of Andrew et al. [39] makes an ideal test case for the new explicit 

test of interaction because a statistically significant MDR model was detected that consisted of two interacting 

SNPs and smoking that appeared to have an independent main effect.  This model was determined to be 

significant at the 0.001 level using a standard permutation test and, at the time, it wasn't clear the degree to 

which the significance was due to the main effect of smoking, the nonlinear gene-gene interaction, or both.  We 

applied MDR with the explicit test of interaction and found the same best model with the p-value of 0.005.  This 

is a highly significant result that confirms the important role of a nonlinear interaction between the two XPD 

polymorphisms.  This synergistic interaction was still highly significant even after controlling for the 

contribution made by smoking, a known risk factor for bladder cancer. 

Figure 4 below illustrates the distribution of testing accuracies for best MDR models from the standard 

permutation test and the explicit test of interaction.  First, note that the center for the permutation distribution is 

approximately 0.50.  This is the result that is expected if a fair coin were used to predict who is a case and who 

is a control.  Now note that the distribution for the explicit test of epistasis is shifted to the right. This shift is due 

to the factors with independent main effects in the data such as smoking that are fixed during the randomization 

process used by the explicit test of epistasis. 
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Figure 4. Distribution of testing accuracies from best MDR models obtained from 1000 datasets randomized using a standard permutation 
test (red squares) and the explicit test of epistasis (purple circles).  Note that the permutation distribution is centered (dashed line) at 

approximately 0.50, as expected. However, the center null distribution derived from the explicit test of epistasis is shifted to the right.  This 

new center is consistent with the fixed main effects in the data. The testing accuracy for the best MDR model from the bladder cancer data is 
shown on the right (solid line).  The area to the right of 0.637 is shaded purple and is equivalent to the p-value of 0.005. 

 

What was the power to detect this effect?  As described above, we evaluated power by simulating data from 

MDR models of the two XPD SNPs, just smoking and the two XPD SNPs with smoking.  We found that the 

power to detect just the interaction was 1.00 while the power to detect the interaction with the effect of smoking 

in the model was 0.94.  This reduction in power is not surprising given the increase in MDR model size from 

two factors (two dimensions) to three factors (three dimensions).  As expected, the power to detect an 

interaction for the model with just smoking was 0.06.  This is approximately equal to the type I error rate of 0.05 

since there was no interaction to find.  These findings confirm the results from the earlier simulation study.  The 

power results are not relevant to the actual bladder cancer data analysis since a highly significant model was 

detected with a p-value of 0.005.  However, they do help to reveal the operating characteristics of the explicit 

test of interaction. 

4. Discussion 

Epistasis or gene-gene interaction is expected to be a ubiquitous component of the genetic architecture of 

common human diseases [40]. As such, it has very important implications for the success of personal genomics 

which is currently based almost entirely on results from genetic association studies that only consider one SNP 

or one gene at a time.  Moore and Williams [41] have suggested that personal genomics will not reach its full 

potential to impact human health until the full complexity of the genotype-to-phenotype relationship is 

addressed in all genetic studies. What can be done to improve the usefulness of personal genomics?  Moore and 

Williams [41] offer the following five recommendations:  

 

1.  We need to greatly improve our understanding of biological and statistical epistasis and their roles in human 

health and disease.  

2.  We need powerful analytical tools that are designed to address the complexity of genetic architecture due to 

epistasis and other phenomena. 

3.  We need better experimental methods for confirming statistical models of epistasis in animal models or in 

human cell culture.   

4.  We need to remember the principles of classical genetics as we immerse ourselves in the excitement of 

cutting-edge genotyping technology and emerging methods for rapidly sequencing an entire genome. 
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5.  We need to continue to integrate systems biology into human genetics in a meaningful manner.   

 

The goal of the present study was to develop a hypothesis testing framework and methodology that can be 

used with methods such as MDR that were designed specifically for detecting and characterizing nonlinear or 

nonadditive gene-gene interactions in genetic association studies.  As such, this study is consistent with the first 

two recommendations listed above.  We have introduced an explicit test of epistasis that can be used to test the 

null hypothesis that the only genotype-to-phenotype relationships in the data are linear and additive.  This is 

important because until now methods such as MDR could only perform a universal test of the null hypothesis of 

no association [36].  Inferences about nonadditive interactions were made from post-hoc analyses using methods 

based on information theory [33].  We demonstrated using simulated data that this approach retains the power of 

a standard permutation test to detect epistasis across a range of effects sizes and sample sizes.  Further, we 

demonstrated that this new approach has a reasonable type I error rate of approximately 0.05.  Finally, we 

applied this new approach to a large genetic study of bladder cancer and were able to confirm a previously 

reported nonadditive gene-gene interaction in the presence of the large independent effect of smoking [39]. 

In addition to introducing a new method for epistasis analysis, we have also introduced a new hypothesis 

testing framework that redefines the null hypothesis of no genetic association into component parts that are 

more consistent with the assumption that the genetic architecture of common diseases is complex (see Section 

1.4).  It is important to note that idea of testing the null hypothesis of linearity using nonlinear statistical 

methods is not new.  For example, Theiler et al. [42] introduced the method of surrogate data in the context of 

time series analysis as way to test for nonlinear patterns with the confounding of linear patterns. With the 

method of surrogate data, a discrete Fourier transform of a time series is taken, the phases are randomized and a 

new time series generated using an inverse discrete Fourier transform.  The resulting phase-randomized time 

series has the same linear patterns as the original time series with all other patterns randomized.  This procedure 

makes it possible to test the null hypothesis of linearity using any statistic that is capable of measure nonlinear 

patterns.  As reviewed by Moore [43], the method of surrogate data is a type of permutation and thus has many 

similarities to the explicit test of interaction introduced here. 

The advantages of the explicit test of epistasis include its simplicity and its flexibility.  First, the explicit test 

of interaction is simply a modified permutation test that randomizes the attribute columns within each class.  

Thus, it can be easily implemented in a Perl or Python script or in a data analysis package such as R.  We have 

also provided the method in the open-source MDR permutation testing module.  Second, the approach is very 

flexible in that it can be generally applied to any method that is designed for detecting nonlinear gene-gene 

interactions.  Thus, it could be combined with other machine learning methods such as decision trees, neural 

networks or support vector machines. The only disadvantage of the approach is that permutation testing can add 

a significant amount of computational time.  This will be important for application of these methods to GWAS.  

Approaches such as the extreme value distribution (EVD) that can reduce the number of permutations that need 

to be performed are likely to help address this problem [36]. 

We recommend several future studies with the explicit test of epistasis.  First, it will be interesting to use 

the explicit test of epistasis to compare the power of different methods for detecting gene-gene interactions in 

the presence of independent main effects.  This will be important because some methods may be confounded by 

any linear additive patterns in the data.  Second, it will be important to demonstrate that the EVD approach 

described by Pattin et al. [36] could be combined with the explicit test of epistasis without violating the 

distributional assumptions of the EVD.  This will be important in the context of GWAS where computational 

efficiency is extremely important. Finally, it will be very important to implement the explicit test of interactions 

with other real datasets where both interactions and independent main effects are present.  Reanalysis of 

published epistasis results to confirm nonlinear interactions will be helpful for determining statistical 

significance.  We anticipate the explicit test of epistasis will play an important role in the detection, 

characterization and interpretation of nonlinear gene-gene interactions in genetic association studies.  As such, it 

will play an important role in improving the impact of personal genomics and other healthcare endeavors that 

depend critically on published genetic association results that reflect the underlying genetic architecture of the 

disease in question. 
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Understanding and predicting molecular cause of disease is one of the major challenges for biology and medicine. One particular area 
of interest continues to be computational analyses of disease-associated amino acid substitutions. To this end, various studies have 
been performed to identify molecular functions disrupted by disease-causing mutations. Here, we investigate the influence of disease-
associated mutations on post-translational modifications. In particular, we study the loss of modification target sites as a consequence 
of disease mutation. We find that about 5% of disease-associated mutations may affect known modification sites, either partially (4%) 
of fully (1%), compared to about 2% of putatively neutral polymorphisms. Most of the fifteen post-translational modification types 
analyzed were found to be disrupted at levels higher than expected by chance. Molecular functions and physiochemical properties at 
sites of disease mutation were also compared to those of neutral polymorphisms involved in the process of post-translational 
modification site disruption. Disease-associated mutations in the neighborhood of post-translationally modified sites were found to be 
enriched in mutations that change polarity, charge, and hydrophobicity of the wild-type amino acids. Overall, these results further 
suggest that disruption of modification sites is an important but not the major cause of human genetic disease. 

1. Introduction  

1.1. Function of post-translational modifications 

Protein post-translational modifications are reversible or irreversible chemical alterations of a protein after its 
translation. They include covalent additions of particular chemical groups (e.g. phosphoryl), lipids (e.g. palmitic 
acid), carbohydrates (e.g. glucose) or even entire proteins (e.g. ubiquitin) to amino acid side chains, as well as the 
enzymatic cleavage of peptide bonds [1]. With some exceptions (e.g. hydroxylation), protein post-translational 
modifications occur at side chains that can act as either strong (C, M, S, T, Y, K, H, R, D, E) or weak (N, Q) 
nucleophiles, while the remaining residues (P, G, L, I, V, A, W, F) are rarely involved in covalent modifications of 
their side chains. Post-translational modifications frequently affect protein function via changes in the protein 
structure and dynamics. Alternatively, modified residue may be a part of a binding region directly recognized by a 
partner. For example, phosphotyrosines are known to be directly targeted by the SH2 domains [2] and acetyllysines 
are targeted by bromodomains [3]. Similarly, proteolitic cleavage is typically a part of degradation pathways. 
Biologically, post-translational modifications are involved in a number of activities such as regulation of gene 
expression, activation/deactivation of enzymatic activity, protein stability or destruction, mediation of protein-
protein interactions etc. [1]. Whatever the molecular context, the major role of post-translational modifications is to 
enable signaling and regulatory mechanisms that modulate protein's cellular function.  
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There are more than 200 documented types of post-translational modifications, many of which were discovered 

only recently [4]. More interestingly, a large fraction of them are catalyzed by modifying enzymes. It is estimated 
that about 5% of the genes in Homo sapiens are modifying enzymes [1]. There are 518 kinases in the human genome 
and more than 150 phosphatases [5]. Similarly, the human genome also codes for around 600 E3 ubiquitinating 
ligases and 80 deubiquitinases [6]. These modifying enzymes are ubiquitous in all kingdoms of life, especially in 
eukayotes. For example, there are 1019 kinase- and 300 phosphatase-coding genes in Arabidopsis thaliana and even 
the yeast genome codes for 119 kinases [7]. However, despite the increasing recognition of their importance, the 
commonness and full functional repertoire of post-translational modifications are still unknown. The focus of this 
study is on the phenotypic effects of the disruption of post-translationally modified sites by the single amino acid 
substitution events. 

1.2. Mutation of post-translational modification sites may lead to disease 

There are a number of cases in which mutations of the post-translational target sites were found to be directly 
involved in disease. One example is a loss of N-linked glycosylation in the prion protein (PRNP), where amino acid 
substitution T183A was shown to be involved in autosomal dominant spongiform encephalopathy [8]. This 
particular variant causes numerous clinical symptoms such as early-onset dementia, cerebral atrophy, and 
hypometabolism. Interestingly, a wild-type form of PRNP was also found to be protease-resistant in the presence of 
the mutant. N-linked glycosylation occurs on asparagine residues in NX[ST] motifs, thus the loss of the threonine in 
the consensus sequence prevents the attachment of a carbohydrate. Modifications of the NX[ST] motif have 
previously been implicated in intracellular accumulation of PRNP in vitro [9]. Another example is a loss of 
acetylation sites in androgen receptor (AR). Loss of AR acetylation has been implicated in Kennedy's disease, an 
inherited neurodegenerative disorder. Here, amino acid substitution K630A or both K632A and K633A have been 
shown to cause a significant slowdown of ligand-dependent nuclear translocation [10]. Furthermore, the non-
acetylated mutants misfold and form aggregates with several other proteins, including ubiquitin ligase E3, thus 
affecting proteosomal degradation. And yet another example involves serine phosphorylation in the period circadian 
protein homolog 2 protein (PER2). Mutation of S662 is associated with the familial advanced sleep phase syndrome, 
an autosomal dominant disorder with early sleep onset (around 7:30pm) and early awakening (around 4:30am), but 
normal sleep duration [11]. Biochemical studies have shown that phosphorylation of S662 affects phosphorylation 
(by casein kinase CKIε) of several other residues in PER2, resulting in an overall hypophosphorylation of PER2. 
Interestingly, creation of a negative charge by S662D or an excess of CKIε restores the phosphorylation patterns of 
PER2. The current working hypothesis regarding PER2 is that phosphorylation of S662 likely creates a recognition 
site for CKIε and triggers a cascade of downstream effects. However, functional roles of phosphorylated PER2 are 
still largely unknown [11]. 

In addition to the individual examples, systematic studies implicating post-translational modifications in disease 
are now facilitated by the rapid growth of databases containing disease-associated mutations, human 
polymorphisms, and also post-translational modifications. One of the first such studies was carried out by Wang and 
Moult who analyzed protein structures and concluded that a large majority of human inherited disease mutations 
affect protein stability [12]. Only a small percentage of amino acid substitutions were estimated to affect post-
translational modifications and binding sites in general; however, only N-linked glycosylation was investigated. In 
addition, Wang and Moult studied only protein structures, whereas several types of post-translational modifications 
were shown to be preferentially occurring in the disordered protein regions [13-15]. Vogt et al. looked into the gain 
of N-linked glycosylation sites and their involvement in disease predicting that a number of disease associated 
mutations introduce changes in glycosylation patterns by creating NX[ST] motifs [16, 17]. Lee et al. [18] and Yang 
et al. [19] matched experimentally determined modification sites with amino acid substitutions from different 
databases and found 47 and 64 substitutions to affect post-translational modifications. In our previous work, we 
studied modification of confidently predicted phosphorylation sites affected by the somatic mutations and found that 
both gain and loss of phosphorylation target sites may be an active mechanism in cancer [20]. This study was 
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recently extended to include confident predictions of methylation, ubiquitination, and O-linked glycosylation, 
implicating all three modifications in disease [15, 21, 22]. 

1.3. Outline of the study 

In this study, we adopt a simple strategy and analyze a larger number of post-translational modifications in the 
context of disease-associated and putatively neutral amino acid substitutions. Experimentally verified sites of post-
translational modifications were searched against amino acid substitution databases with the goal of investigating 
whether (and in what ways) changes of post-translational modifications are affected by inherited and somatic disease 
mutations. We found that disease-associated mutations are enriched in the fraction of directly disrupted modification 
sites, but also those found in their close proximity. In contrast, the putatively neutral polymorphisms occur less 
frequently in the neighborhoods of the modification sites. Furthermore, we found that the sites of post-translational 
modifications were enriched in amino acid substitutions that change physicochemical properties of the wild-type 
amino acids. 

2. Materials and Methods 

2.1. Data sets 

The data sets of post-translational modifications were collected from several public databases and the literature. We 
mined Swiss-Prot [23], Human Protein References Database (HPRD) [24], Phospho.ELM [25], Protein Data Bank 
(PDB) [26], O-GlycBase [27], PhosphoSite [28], and PhosphoPOINT [19]. Only modification types containing 50 
or more instances were of interest, resulting in 15 different post-translational modifications from a number of 
different species. In total, these data sets contained 78,975 unique sites (Table 1).  
 

Table 1. Summary of the data sets of post-translational modifications. All modifications were extracted from 
Swiss-Prot and HPRD. Glycosylation sites were also extracted from O-GlycBase and PDB. Phosphorylation sites 
were additionally extracted from PDB, Phospho.ELM, PhosphoSite, and PhosphoPOINT. 

Post-translational modification Total sites Total proteins Human sites Human proteins 
Phosphorylation 62,269 17,116 30,838 8,428 
N-linked glycosylation 4,971 2,257 2,181 906 
O-linked glycosylation  2,853 367 295 93 
Acetylation  2,600 1,896 1,024 677 
Amidation 2,163 1,339 44 30 
Hydroxylation  1,301 251 211 29 
Proteolytic cleavage  1,285 531 1,285 531 
Methylation 911 407 430 143 
Pyrrolidone carboxylic acid 728 590 78 74 
Ubiquitination 516 353 266 196 
Carboxylation 447 122 88 15 
SUMOylation 381 201 319 160 
Palmitoylation 328 200 163 88 
Sulfation 229 145 80 38 
Myristoylation 156 153 61 58 

 
The data set of the inherited amino acid substitutions in humans (Disease-I) was assembled from the Human Gene 
Mutation Database (HGMD) [29] and Swiss-Prot. The data set of somatic mutations in cancer (Disease-S) was also 
collected from Swiss-Prot and several recent cancer gene resequencing projects reviewed by Lee et al. [30]. The 
sites already present in the Disease-I data set were removed from Disease-S. Finally, the putatively neutral 
polymorphisms (Neutral) were downloaded from the Swiss-Prot database. All polymorphisms found in the disease 
sets were removed. We assumed that only a small fraction of neutral polymorphisms may be involved in disease, 
that is, that the large majority of them are either neutral or have minor phenotypic effects. The data sets of amino 
acid substitutions are summarized in Table 2. In total, the set contained 73,463 amino acid substitutions from 12,987 
proteins. 
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Table 2. Summary of the data sets of amino acid substitutions. The number of sites includes the set of unique 
positions of amino acid substitutions in a particular set. 

Data set Number of substitutions Number of sites Number of proteins Source  
Putatively neutral (Neutral) 29,190 28,864 10,416 Swiss-Prot 
Disease, inherited (Disease-I) 40,512 33,416 2,605 HGMD, Swiss-Prot 
Disease, somatic (Disease-S) 3,761 3,191 2,336 Swiss-Prot, Literature 

2.2. Matching post-translational modifications with amino acid substitutions 

In order to investigate the relationships between post-translational modifications and amino acid substitutions, 
different scenarios were considered. First, a set of human post-translational modifications was created by: (1) 
including only those sites that were experimentally identified in human proteins, and (2) mapping of 25-residue long 
fragments from any other species (modification site ±12 amino acids around it) to the human proteins such that all 
25 residues were identical to the corresponding residues in the human protein. Clearly, in the latter case, the 
correctness of such modification sites is not guaranteed; however, an exact 25-residue fragment match is expected to 
be a strong indication of functional similarity. This is often true for the modifications where only local interaction 
exists with the modifying enzyme (e.g. kinases), however, in some other cases with long-range interactions (e.g. E3 
ligase binding in ubiquitination) the assumption may be less likely to hold. The fragment length of 25 was chosen 
based on the phosphorylation data for which there is evidence of physical kinase-substrate binding within about 7-12 
residues of the modification site [31]. We refer to the experimentally verified human modification sites as true sites, 
while the ones obtained by the exact fragment matches are referred to as the homology sites. 

Two types of matching between amino acid substitutions and post-translational modifications were considered: 
(1) matches where the substitutions occurred at a modification site and (2) matches where the substitution site was in 
the neighborhood of the modification site (i.e. between residues −3 and +3). This matching was based on an 
assumption that a mutation can affect the post-translational modification if it is in the vicinity of the target residue. 
One such situation occurs with mutation R16C, which diminishes phosphorylation of S19, in human PTP synthase 
and causes hyperphenylalaninemia [32-34]. The situation where a substitution site and the modification site are at 
the same position is referred to as the direct match. A substitution site that is no more than 3 residues away from the 
modification site is referred to as the neighborhood match. An example of a neighborhood match to a homology site 
is shown in Figure 1. 
 

 

 
 

Figure 1. Stylized depiction of the matching between post-translational modification sites and amino acid substitutions. In this example, an 11-
residue fragment corresponding to an experimentally verified phosphorylation site (serine, colored in red) from M. musculus is first matched to a 
homologous protein from H. sapiens. The corresponding residue S15 in the human protein is subsequently designated as phosphorylated 
(homology site). Finally, an observed amino acid substitution E17D, located within 3 residues from S15, is considered to impact the 
phosphorylation site (neighborhood match). 

2.3. Statistical analysis 

With all the matched sites of post-translational modifications and amino acid substitutions, two strategies were 
adopted to estimate statistical confidence of the observed trends. First, we used the t-test and the binomial test to 
estimate whether a certain group of amino acid substitutions (Neutral, Disease-I, Disease-S) is enriched or depleted 
in a particular modification. The hypergeometric test was used to estimate enrichment and depletion in functional 
terms for each of the categories. The amino acid property changes were studied for the mutations in the 
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neighborhood of modification sites (±3 residues). Three properties were investigated: side chain polarity (polar, non-
polar), charge (positive, negative, neutral), and hydrophobicity (hydrophobic, hydrophilic), and the significance of 
those results was estimated using the t-test. 

2.4. Conservation index analysis 

Positional conservation was calculated using a commonly used conservation index AL2CO [35]. First, all 12,987 
human proteins with mutations were searched against GenBank for the 500 best hits. These sequences were 
subsequently aligned using ClustalW program [36]. Then, the positional entropy by Henikoff and Henikoff [37] was 
calculated as the conservation index for all modification sites. The conservation index value was normalized to the 
0-1 interval; the higher the value a position gets, the more conserved the position is. 

3. Results 

Using the two scenarios for obtaining post-translational modification sites (true and homologous sites) and using 
two strategies of matching them to the amino acid substitutions (direct and neighborhood matches), we analyzed 
amino acid substitutions in inherited disease, somatic disease, and neutral polymorphisms with respect to post-
translational modifications. 

3.1. Disease-associated and neutral mutations affecting post-translational modifications 

The percentage of all amino acid substitutions that lie directly on or in the neighborhoods of modification sites in 
Disease-I, Disease-S, and Neutral data sets was investigated first. We found that direct and neighborhood mutations 
were in the vicinity of true and homology modification sites in 4.5% of cases in Disease-I, 3.1% of cases in Disease-
S, and 2.1% of cases in Neutral data set (Figure 2). When only unique substitution sites were considered, these 
frequencies were 3.9%, 3.3%, and 2.1%, respectively (Figure 2). The most significant differences between the sets 
of inherited disease and neutral substitutions were detected in the cases of N-linked glycosylation (233 out of 306 in 
Disease-I; P = 1.6e−19), carboxylation (62/63; P = 2.4e−17), hydroxylation (68/72; P = 8.6e−16), acetylation 
(75/91; P = 4.9e−10), proteolytic cleavage (84/120; P = 1.9e−5), and O-linked glycosylation (32/41; P = 3.5e−4). 
Thus, the disease-associated mutations are more likely to affect post-translational modifications than the neutral 
substitutions (P = 5.6e−4). 
 
 

 
 

Figure 2. The fraction of disease-associated amino acid substitutions (inherited and somatic) that are assumed to affect post-translational 
modifications, compared to the fraction of neutral polymorphisms: (A) true modification sites and (B) homology modification sites. The white 
line in each bar separates direct matches from neighborhood matches. The error bars indicate 68% confidence intervals estimated by 
bootstrapping with 10,000 iterations. 
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Figure 3 shows the trends of enrichment and depletion of unique amino acid substitution sites that directly match 
experimentally verified (i.e. true) modification sites. The trend T was calculated as 
 𝑇 = 𝑓 − 𝑓𝑓 + 𝑓  

 
where 𝑓  and 𝑓 ≠ 0 are the observed and expected rates (relative frequencies) of substitutions that match 
modification sites, respectively. The trend is positive if 𝑓 > 𝑓  and negative if 𝑓 > 𝑓 . T = 1 is the 
maximum value and involves a hypothetical situation with 𝑓 = 0 and 𝑓 ≠ 0; T = −1 is the minimum value and 
indicates that 𝑓 = 0. Since inherited disease, somatic disease, and neutral polymorphisms contain 51%, 5%, and 
44% of all substitution sites used in this study, 𝑓  was set to 0.51, 0.05, and 0.44 for the three data sets, 
respectively. The ratio of the three groups of amino acid substitutions also determines the null hypothesis that was 
used to calculate statistical significance of the observed enrichment or depletion. Trends similar to those observed in 
Figure 3 were present when the matching process was extended to homologous modification sites and neighborhood 
matches (Figure 4). 
 
 

 
 

Figure 3. Trends that indicate whether a data set is enriched (T > 0) or depleted (T < 0) in direct matches between amino acid substitutions and 
true post-translational modifications. Only modifications with 5 matches or more are shown. The error bars indicate 68% confidence intervals 
estimated by bootstrapping with 10,000 iterations.  

 
 

 
 

Figure 4. Trends that indicate whether a data set is enriched (T > 0) or depleted (T < 0) in direct and neighborhood matches between amino acid 
substitutions and true and homology post-translational modifications. Only modifications with 10 matches or more are shown. The error bars 
indicate 68% confidence intervals estimated by bootstrapping with 10,000 iterations.  

342



 
Table 3 shows the observed numbers of amino acid substitutions matching post-translationally modified sites. The 
P-value for the positive trends T was calculated as 
 𝑃 = 𝐾𝑖 𝑓 1 − 𝑓  

 
where K is the total number of matches to any of the three substitution sets and k is the observed number of matches 
in a particular data set. The P-value for the negative trends was calculated by replacing k by 0 and K by k in the 
limits of the summation operator. 
 

Table 3. The observed rates of matches between amino acid substitutions and true and homology post-translational 
modification sites. Example: for N-linked glycosylation, out of 31 mutations that directly matched N-linked 
glycosylation sites, 4 were observed in the neutral set (Neutral) and 27 in the inherited disease set (Disease-I). The 
expected number of matches were 13.6 and 15.8, respectively. Blue color indicates lower-than-expected observed 
frequencies; red indicates higher-than-expected observed frequencies. P-values were calculated using the binomial 
distribution. The Bonferroni-corrected value of 5.6e−4 (n = 90) was used to assign statistical significance for each 
group.  

 

Post-translational modification 
Direct match; true sites Direct and neighborhood match; homology sites 

Neutral Disease-I Disease-S Neutral Disease-I Disease-S 
fobs P fobs P fobs P fobs P fobs P fobs P 

Phosphorylation 47/136  76/136  13/136  457/1218 2.0e−6 670/1218  91/1218 5.3e−5 
N-linked glycosylation 3/28 2.2e−4 27/31 2.7e−5 0/31  70/306 8.3e−15 233/306 1.6e−19 3/306 1.8e−4 
O-linked glycosylation 4/13  9/13  0/13  10/45  35/45 2.1e−4 0/45  
Acetylation 1/8  7/8  0/8  12/91 2.4e−10 75/91 4.5e−10 4/91  
Amidation 1/1  0/1  0/1  2/4  2/4  0/4  
Hydroxylation 0/2  1/2  1/2  2/72 1.1e−15 68/72 6.6e−16 2/72  
Proteolytic cleavage 7/29  22/29  0/29  36/120  84/120 1.9e−5 0/120  
Methylation 0/4  4/4  0/4  6/20  12/20  2/20  
Pyrrolidone carboxylic acid 1/1  0/1  0/1  2/2  0/2  0/2  
Ubiquitination 0/0  0/0  0/0  2/24 1.7e−4 20/24  2/24  
Carboxylation 0/29 4.8e−8 29/29 3.4e−9 0/29  1/63 6.3e−15 62/63 2.4e−17 0/63  
SUMOylation 0/0  0/0  0/0  2/7  4/7  1/7  
Palmitoylation 0/0  0/0  0/0  4/16  12/16  0/16  
Sulfation 0/3  3/3  0/3  2/12  10/12  0/12  
Myristoylation 0/1  1/1  0/1  1/3  2/3  0/3  

 
 
Figure 3, Figure 4, and Table 3 indicate that the substitutions associated with inherited disease affect the sites of 
post-translational modifications with frequencies higher than expected by chance. In contrast, putatively neutral 
polymorphisms affect modification sites with lower-than-expected frequencies.  

3.2. Conservation index analysis 

It has been widely studied that disease-associated mutation sites are more evolutionarily conserved than human 
polymorphic sites [38]. Here, we analyzed the conservation of the post-translationally modified sites for which there 
are known amino acid substitutions either at the modification site itself or in its neighborhood. Not so surprisingly, 
we find that the modification sites directly matching disease-associated substitution sites are more conserved than 
those matching neutral polymorphic sites (Figure 5A). However, post-translational modifications lying in the 
neighborhood (±3 residues) of inherited disease mutations are also more conserved than the modification sites 
corresponding to the neutral polymorphisms, with a similar margin. On the contrary, the conservation of somatic 
mutations is significantly lower when the neighborhoods of modification sites were considered. 
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Figure 5. Sequence conservation index for post-translational modification sites matching disease-associated and neutral substitution sites: (A) 
direct match and (B) direct and neighborhood match. The conservation index was calculated as described in Section 2.4, with higher numbers 
indicating higher conservation. The error bars indicate 68% confidence intervals estimated by bootstrapping with 10,000 iterations.  

3.3. Gene function analysis 

To further study the impact of amino acid substitutions that occur in the vicinity of the modification sites, we 
analyzed gene functions of all types of post-translational modifications. The genes were first separated into the gene 
set containing disease mutations (inherited and somatic) and the gene set containing neutral polymorphisms (the two 
sets of genes were overlapping). Each of the sets was further split into the set of genes where amino acid 
substitutions impact modifications sites and the remaining genes. Then, the gene enrichment analysis of the two 
pairs of data sets was performed using the GOstat software [39]. It is important to understand that the set of disease-
associated mutations impacting modification sites was compared to the remaining set of genes containing disease 
mutations in order to avoid biases that correspond to the disease genes [40]. In this way, we assume that it may be 
possible to identify molecular and cellular functions that were disrupted by the disease mutations or those that are 
regulated by post-translational modifications and related to minor phenotypic variations. The results of this analysis, 
using the Gene Ontology [41] category molecular function, are shown for the phosphorylation data set (Figure 6).  
 

 
 

Figure 6. GO enrichment analysis between genes containing mutations in the vicinity of the predicted phosphorylation sites vs. the remaining 
genes from a selected data set. The analysis was done separately for genes containing disease-associated mutations and genes containing neutral 
polymorphisms. Top 5 molecular functions are shown, where the upper (red) bars indicate functions enriched in the set with phosphorylation site 
disruption, while the lower (green) bars indicate functions for the remaining set of genes from the group. 

 
Interestingly, both sets of genes (with disease related mutations and with neutral polymorphisms) in the vicinity of 
phosphorylation sites have significant enrichment in different molecular functions. For example, kinase, transferase, 
and signal transduction activities are significantly enriched in the disease-associated set, whereas RNA binding, 
transcription factor and receptor activities are significantly enriched in the neutral substitutions set. However, both 
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sets are enriched in important molecular functions, thereby suggesting that  both disease and neutral substitutions in 
the vicinity of phosphorylation sites, may have an impact on protein function. 

3.4. Amino acid properties of substitutions in the vicinity of modification sites 

Next, we analyzed physicochemical properties of the amino acid substitutions affecting post-translational 
modifications. Polarity, charge, and hydrophobicity were chosen for this analysis. These properties were studied for 
the amino acid substitutions occurring directly and in the neighborhood (±3 residues) of all types of modified sites. 
Figure 6 shows the enrichment and depletion of the observed changes in all three data sets. We observed that the 
inherited disease mutations are enriched in the change of all three properties for several modification types. On the 
other hand, neutral mutations are depleted in such changes. Somatic mutations do not show significant signals 
potentially due to the small size of the data set. 
 

 
 
Figure 7. Enrichment and depletion of types of amino acid substitutions observed in the sets of disease-associated substitutions and putatively 
neutral polymorphisms. P-values were calculated using the binomial distribution. The plotted value is 10 + log10(P + 1⋅10−10), where P is the P-
value. The darker colors indicate values with lower P-values. All values below the Bonferroni-corrected value 3.7e−4 were set to 1. 

4. Discussion 

When personalized medicine is the next frontier for scientists, industry, and the general population, it is important to 
develop computational approaches that can lead to a better understanding of the etiology of disease. Integration of 
genetic and molecular information is a sensible step in this direction because it provides a structural and functional 
perspective to the human variation data. 

In this study, we analyzed disease-associated and putatively neutral amino acid substitution data and found that 
about 4.5% of amino acid substitutions (3.9% of unique sites) may affect protein function through disruption of 
post-translational modifications. On the other hand, about 2.1% of neutral polymorphisms may be affecting post-
translational modifications. These numbers further indicate that post-translational modifications are not the majority 
cause of human genetic disease. However, we have still found 238 post-translationally modified sites in human 
proteins whose mutation was causative of disease. In total, 1,289 modification sites were found to be in the close 
proximity to the inherited disease mutations and represent candidates for further experimental verification. 

Given our data, there are several problems that could have lead to the ascertainment bias. For example, our data 
set of post-translational modifications was heavily skewed towards phosphorylation (79%), where mass 
spectrometry techniques have lead to a recent explosion in the number of identified sites. On the other hand, it may 
be argued that the modifications not identified using high-throughput methods may be more likely to be disease-
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relevant. It is also unclear whether the sets of inherited disease data are representative since it may be expected that 
genetic-association studies are more successful in identifying markers of monogenic diseases or familiar forms of 
complex diseases. Finally, the set of neutral polymorphisms is probably contaminated with yet undiscovered disease 
mutations and has not been controlled for population biases. 

We also analyzed the enrichment and depletion of amino acid substitutions for each post-translational 
modification and found that most follow similar trends when inherited disease is compared to the neutral 
polymorphisms. These trends held for both experimentally verified modification sites and those transferred by 
homology. In the case of somatic mutations, we observed some interesting cases as well. For most examples, we 
have not found matches between post-translational modifications and observed somatic mutations. However, in the 
cases of methylation, phosphorylation and ubiquitination, there was an increased trend of disruption of post-
translational modifications. Previous work has already addressed disruption of confidently predicted 
phosphorylation sites in cancer [20]. Thus, the correspondence between actual sites and somatic mutations found in 
this study further supports this hypothesis. 

While direct disruption of post-translational modifications is likely to have functional implications, the partial 
disruption of modified sites has a potential to lead to subtle phenotypic effects that may be more dependent on the 
variation present in other genes before causing organism-wide dysregulation. We believe that such changes are 
particularly fitting to the framework of complex disease and interaction between genetic and environmental factors.  
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Data from current gene-disease association studies motivate changes to existing haplotype inference methodologies.
Many datasets are now comprised of both pedigree and population data so it is desirable to incorporate both sources
of information when inferring haplotypes. The availability of high-density SNP data also makes it possible to deter-
mine and use the precise locations of recombination events. Our proposed method reconstructs haplotype structure
on a genome-wide level by jointly using the information from the Mendelian law of inheritance and local popula-
tion structure. The method combines in one framework new techniques of recombination event detection, maximum
likelihood optimization of population haplotype diversity and our previous algorithm of zero-recombinant haplotype
reconstruction. Experiments on both real and simulated datasets prove the efficiency and accuracy of our approach
in reconstructing the haplotype structure. Our method makes it possible to reveal the haplotypic variation on a
genome-wide level.

Keywords: haplotypic variation, genetic linkage, Mendelian law

1. Introduction

Haplotypes are mostly obtained by computational methods from genotype data instead of directly by molecular
methods due to the high cost of the current technology. Haplotypes if corrected inferred provide exact infor-
mation on the linkage of SNPs, which is of substantial importance in detecting gene-disease association.1,4,15

Typically haplotype inference from pedigree and population data is performed separately. Methods on pedigree
data12,18 make use of the Mendelian law of inheritance and some parsimony criteria on the number of recom-
bination events. Due to the enrichment of constraints in pedigrees, such methods are usually fast. Methods on
population data such as fastPHASE16 and Beagle5 make use of the clustering property of haplotypes in the
population over short regions. Due to the enumerative nature of these methods, they are usually slow. With
respect to haplotyping accuracy, previous analyses13 have demonstrated that using family constraints alone
achieves better accuracy than using population information alone. On the other hand, population information
works better than family constraints in imputing missing genotypes. Therefore, it is most desirable to jointly
use the family and population information. Beagle recently added the function to process data sets of many
trios and parent-offspring pairs.6 The authors reported that Beagle achieved extreme accurate results on data
sets of trios compared to data sets of unrelated individuals due to the use of the rules of Mendelian inheritance.

Linkage analysis7,9 can actually yield the maximum likelihood haplotype configuration in terms of both
family constraints and population haplotype frequency by enumerating every possible inheritance pattern and
every possible allele assignment. However the time complexity of this approach is exponential to either the
number of markers or the pedigree size, thus it is infeasible for any reasonably large dataset. To avoid exhaus-
tive enumeration, it is critical to represent the set of all compatible family configurations in a compact form. Li
and Li14 found that by assuming no recombination it is possible to represent the set of family configurations
as a linear span of variables that can be found by solving a linear system of binary variables representing
inheritance and phase. However, to apply this method to whole-genome data, we must first identify recom-
bination positions in each family such that we can segment the chromosomes into recombinant-free regions.

∗Corresponding author.
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Furthermore, to find an optimal solution using population haplotype frequency, we need a computationally
feasible way to search the solution space since the number of possible haplotypes is potentially exponential
to the number of markers. In this paper, we present a framework combining the efforts of recombination
detection, zero-recombinant haplotype inference, and local haplotype structure clustering to jointly use the
family and population information. Our method makes it possible to accurately reveal the haplotype structure
in human populations on a genome-wide level. The algorithm is implemented in C++ and is freely available
upon request.

2. Methods

The overall flow of the method MML (Mendalian Constrained Maximum Likelihood) is staged in three steps
as illustrated in Algorithm 2.1.

Algorithm 2.1 MML
(1) Infer recombination positions for each family and each chromosome. Partition the chromosomes according
to recombination positions.
(2) On each pedigree, for each of the zero-recombinant segments, apply DSS14 (our previously developed algo-
rithm to handle Mendelian constraints) to establish the solution space under Mendelian and zero-recombinant
constraints.
(3) Search the solution space (obtained in (2)) for the optimal solution with maximum likelihood based on
population haplotype frequency.

In step 1, we infer recombination positions in each nuclear family of the pedigree by analyzing identical
by descent (IBD) status of alleles between each sibling pair. Based on the inferred recombination positions,
we partition chromosomes into segments such that every segment is recombinant-free. In step 2, we derive all
possible configurations of a pedigree under Mendelian and zero-recombinant constraints for each recombinant-
free segment obtained in step 1. This is done by using our previous algorithm DSS.14 DSS can output a
compact description of all compatible solutions as a linear space. In step 3, we use haplotype frequencies in
the population to identify the optimal haplotype configuration of each pedigree. We will describe step 1, step
2 and step 3 in Sec. 2.1, Sec. 2.2 and Sec. 2.3 respectively.

2.1. Detect Recombination Events in Families with Dense Markers

Recombination events are implied if a common inheritance vector for a segment of loci that satisfies Mendelian
constraints cannot be found. Typically, there is uncertainty as to how many recombination events occur and at
which loci or in which individuals these events occur. Usually, such parsimony criteria as minimum number of
recombinants12 are used to find a possible assignment. However, with the availability of densely marked data,
we can almost always fix the inheritance vector within each zero-recombinant region due to the enrichment
of Mendelian constraints. Consequently, we can also develop special techniques to localize the recombination
positions with minimal ambiguity.

For each nuclear family, we look at the IBD status of the alleles and its sibling pairs to detect a recom-
bination position. The change of IBD status from one locus to another indicates a change in the inheritance
pattern, that is, a recombinant. Loci of a father (similarly for a mother) can be divided into three categories
depending on their informativeness in determining the paternal IBD status of a sibling pair.

(1) informative: he is heterozygous, and the phases of both children are determined at this locus.
(2) semi-informative: he is heterozygous, and at least one of the children is not phased at this locus.
(3) non-informative: he is homozygous at this locus.
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In situation (1), since the father is heterozygous, the IBD status and the IBS (identical by state) status
of the paternal alleles of a sibling pair are equivalent. In situation (2), the IBD status of the paternal alleles is
not determined, but it is dependent on the IBD status of the maternal alleles. If we can somehow resolve the
IBD status of the maternal alleles at this locus, we can also infer the IBD status of the paternal alleles. Note
that in this situation, the mother must be heterozygous, otherwise all children would be phased. In situation
(3), this locus provides no information about the paternal IBD status of any of the sibling pairs.
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Fig. 1. A segment of a chromosome from a nuclear family with 2 children. Colored nodes are informative alleles which have
determined IBD status between these two siblings, with squares and circles representing paternal and maternal alleles respectively.
Remaining alleles are non-informative. At each locus, alleles colored the same are identical by descent(IBD). A frame around a
pair of alleles indicates that they are semi-informative, and this pair of alleles infers IBD between two siblings if in the context
of the informative loci nearby. From the IBD status between siblings, we can infer a paternal recombination event between the
9th and 12th locus, but with the ambiguity whether it happens in Child1 or Child2. We suppose the recombinant is in Child2 for
illustration purposes.

Informative loci give a narrow-spaced probing on the IBD status of the whole chromosome. We can
detect recombination events by observing the change of IBD status of alleles among these informative loci.
By doing so, however, we may miss possible double recombination events that do not manifest a change in
the IBD status between two nearby informative loci. If we assume markers are dense, however, the possibility
of a double recombination event within a short distance is negligible. Fig. 1 shows an example on how to
detect recombination positions in a nuclear family. By using informative markers, we could infer a paternal
recombination event between the 9th and 14th locus.

Semi-informative loci can help further localize the recombination position because it is almost impossible
for a paternal and a maternal recombination event to occur coincidentally within a short region. If a semi-
informative locus falls between two informative loci indicating different paternal IBD status, we can assume no
recombination on the maternal side and let its maternal IBD status follow that of its surrounding informative
loci. By assuming the maternal IBD status, we can now infer the paternal IBD status for this semi-informative
locus. For example, in Fig. 1, at the 12th loci, by assuming that Child1 and Child2 are not IBD for their
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maternal alleles, we infer that the sibling pair are also not IBD for their paternal alleles, so that we could
refine the recombination position to be between the 9th and 12th locus.

Since ambiguous intervals of recombination events now only contain non-informative markers which are
compatible with any inheritance pattern, we may pick any position within such intervals to partition a chromo-
some into recombinant-free segments. Notice that for non-informative loci, the phases of all family members
are actually fixed, and thus the choice of a recombination position will not influence the final haplotype
configuration.

To determine the individual in which the recombination event actually occurs, we can look at the IBD
status of all sibling pairs. If we observe that the IBD status changes between a specific child i and any of the
other children, while there is no change among these children themselves, then child i carries the recombinant.
However, if the nuclear family has only two children, then the ambiguity is unresolvable in this way. Notice
that the assignment of recombination to a different child will result in a different haplotype configuration in
the parent. Therefore in this situation, we can use population haplotype frequency to suggest a most probable
assignment.

2.2. Establish the Solution Space under Mendelian Constraints

We can use two types of binary variables: p variables and h variables, to encode the Mendelian constraints in
a pedigree. A p variable indicates the phase of two alleles of an individual. pa = 0 means that the smaller-
numbered allele (“1”) of individual “a” is of paternal source, pa = 1 means it is of maternal source. An h

variable indicates the inheritance relationship between a parent-child pair, hab = 0 means that the paternal
allele of individual “a” is transmitted to individual “b”, hab = 1 means that the maternal allele is transmitted.
Fig. 2 gives an example of the relationship between the p variables and the h variable of a parent-child pair
under Mendelian constraints. As established in previous work,14,18 Mendelian law can be expressed as linear
equations of h variables and p variables.

b
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1 2

1 2

0=ap

0=bp

1 2
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1=bp
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1=abh
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b

0=abh
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2 1

2 1

1=bp

1=ap

0=bp

2 1

b
21

1=abh

a

1=ap

Fig. 2. Individual a is the father of individual b. In the situation where both a and b are heterozygous, relationship between p
variables and the h variable can be expressed as pb = pa + hab.

If we assume no recombination within a certain number of loci, the h variable between a parent-child pair,
which indicates the inheritance patterns, should be the same for each of these loci. In this case, we can put
constraints on h variables from different loci together to form a single linear system. Li and Li14 discover an
almost linear time algorithm, DSS, to obtain a general solution to such a system. Here, a general solution
means a description of all solutions as a linear span of variables.

The establishment of a general solution is important because it facilitates the search in the solution space
for particular solutions to satisfy specific properties. The freedom in the solution space can be partitioned
into two parts: the freedom of the inheritance vector (all h variables) and the freedom of the allele assignment
(all p variables) under a fixed inheritance vector. Experiments14 have shown that the inheritance vector is
usually fixed for a segment of 100 or more loci. Once the inheritance is determined, the relationship between
alleles of different individuals is determined with only 1 degree of freedom (if all members of the pedigree are
heterozygous) or no degrees of freedom (if one or more members are homozygous). Fig. 3(a) shows an example
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for the first situation. In the case of a missing genotype, there might be an increase in degrees of freedom (Fig.
3(b)). By applying the Mendelian and zero-recombinant constraints, we can greatly reduce the search space
for finding the maximum likelihood solution using population local structure, which will be discussed in Sec.
2.3.

12

1212

12

1212

3 4

56

1 2 a a

a aaa

aa aa

aa

12

1212

??

1212

3 4

56

1 2 a a

a baa

aa aa

bb

(a) (b)

Fig. 3. (a) A pedigree of 6 individuals. All individuals are heterozygous with genotype “12” at a certain locus. For this fixed
inheritance vector, the relationship between alleles of different individuals is determined. a is a variable denoting the status of an
allele and ā is its complementary status. (b) Same pedigree and inheritance vector as (a), but at a different locus with genotype
missing at individual 4. In this case, there are two degrees of freedom represented by variables a and b.

2.3. Maximum Likelihood Solution Based on Population Haplotype Frequency

The inheritance vector (h variables between each parent-child pair) specifies how founder haplotypes are
transmitted to every descendant of a pedigree and the configuration of a pedigree is fully determined by the
inheritance vector and the founder haplotypes. If the inheritance vector is fixed, the likelihood of a configuration
of a pedigree is simply the product of founder haplotype probabilities.

In Sec. 2.2, we describe how Mendelian and zero-recombinant constraints provide a small candidate set
of all possible haplotype configurations for each pedigree. Next, we need to pick a solution of maximum
likelihood from this candidate set based on haplotype frequencies. Since the actual haplotype frequencies
in the population are unknown, we use an EM (Expectation Maximization) procedure to find the optimal
solution. The procedure is described in Algorithm 2.2. The initial pool of haplotype frequencies is generated
by randomly sampling from founder haplotypes within the solution space of each pedigree. In step (2), we
search the solution space for an optimal configuration with the highest likelihood. In step (3), we update the
haplotype frequency pool only with the optimal solution of each pedigree. It is different from conventional
EM methods, where all possible solutions are updated into the pool weighted by their current likelihood. By
adopting such an approximation, we can significantly hasten the optimization process by not traversing the
entire solution space.

Algorithm 2.2 Haplotype Frequency EM
(1) Build the initial pool of haplotype frequencies by randomly sampling from the solution space of each
pedigree.
repeat

(2) Find the optimal solution with maximum likelihood based on the current pool.
(3) Update the pool with the haplotype frequencies of optimal solutions obtained in (2).

until convergence is achieved

2.3.1. Probabilistic prefix tree for fast branch-and-bound optimization

We create a data structure called “probabilistic prefix tree” to facilitate the search of the optimal configuration
in the solution space. A probabilistic prefix tree is essentially a binary search tree which encodes the frequencies
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of each haplotype and their prefixes. It provides quick indexing for haplotype frequencies and can be updated
dynamically using conventional binary search tree techniques. Each leaf node in the tree represents a haplotype
and each internal node represents a prefix. The frequencies of internal nodes can be generated by simply
summing up the frequencies of all leaf nodes of its subtree. Fig. 4 shows an example of a probabilistic prefix
tree.

As discussed in Sec. 2.2, for a fixed inheritance vector, the relationship between alleles of different family
members is fixed at each locus. On a pedigree of n founders and m markers, we do a depth first search from
locus 1 to locus m of a haplotype, where for each locus we pick an assignment for all 2n founder alleles if there
is one or more degrees of freedom. Meanwhile, we calculate the likelihood of the pedigree up to the current
locus which is the product of frequencies of the founder haplotype prefixes ending at locus i:

∏
j=1..2n freq(hj

i ).
Since the frequency of any haplotype prefix is greater than that of the entire haplotype, if the likelihood drops
below the bound, we backtrack for there is no possibility of a better solution. Otherwise, we move to the next
locus until we reach m. If we achieve a higher likelihood, we replace the bound with the new likelihood and
record the current best configuration.
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Fig. 4. On the left is the haplotypes and their count (in brackets) in the population. On the right is the probabilistic prefix tree
after adding all these haplotype to an empty tree. Some nodes are annotated with the normalized frequencies of the corresponding
haplotypes or haplotype prefixes.

3. Experimental Results

3.1. Detect Recombination Events and Haplotype Diversity

We use MML to analyze haplotype polymorphisms in a real human population. There are 32250 markers
spanning a region of 170 million base pairs on chromosome 6, with an average marker interval distance of
5kb. Missing genotype rate is 0.12% and typing error rate (as reflected by Mendelian inconsistency) is 0.11%.
There are 3 isolated individuals and a total of 193 nuclear families, among which 112 have 2 children and 81
have 1 child.

From 112 families with 2 children, we infer 322 paternal and 535 maternal recombination events. Fig. 6
shows the resolution of the inferred recombination positions. 82% of the recombination events can be localized
within an interval less than 100kb, and 53% within an interval less than 30kb.

Fig. 5(c) shows the averaged degree of freedom at each locus of a family after applying the Mendelian and
zero-recombinant constraints. Based on the actual heterozygosity rate of the current dataset, there is expected
to be 1.3347 degrees of freedom on a family of 2 children or 0.9982 degrees of freedom on a family of 1 child at
each locus. By exploiting these constraints first, we have eliminated more than 95% of the phasing freedom of
a family. A big family size will result in fewer degrees of freedom due to the increased number of constraints.

As shown in Fig. 5(a), the haplotype diversity varies for different locations of the chromosome. In the
initial sampling (Fig. 5(b)), 23.41%(8.41%) of the most common haplotypes covers 90%(80%) of the total
frequency. This indicates that most of the common haplotypes are recovered and sampled multiple times.
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Fig. 5. X axis is the location as in base pairs on chromosome 6. (a)(b) Two charts show the number of haplotypes within each
segment of 20 markers across chromosome 6, in the final configuration and the initial sampling respectively. Two solid lines are
average numbers smoothed over 5 and 50 segments. The dashed line is the number of the most common haplotypes covering
90% of the total frequency. (c) Degree of freedom at each locus under Mendelian and zero-recombinant constraints. The lines
are averaged values over all pedigrees of 1 child (upper) and 2 children (lower) respectively. Results are smoothed over 100 and
1000 markers. (d) Recombination rate in terms of centimorgan per million base pairs. (e)(f) The bottom two charts show the
marker density, the paternal and maternal recombination positions over the whole chromosome. There are no markers around the
centromere region.
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Fig. 6. The distribution of the length of ambiguous intervals of inferred recombination positions.

3.2. Evaluation of Accuracy and Scalability

We used the Cystic Fibrosis Transmembrane-Conductance Regulator (CFTR) Gene Data Set8 for small scale
testing and Simulated Rheumatoid Arthritis (RA) Data from Genetic Analysis Workshop (GAW) 15 for
genome-wide testing of MML. We also compare the performance of our program with the conventional linkage
analysis approach. Here, we use the statistical tool package Merlin.2 Merlin can be used to perform haplotype
inference on datasets of family and population mixed type. It first evaluates the inheritance vector in each fam-
ily by exhaustive enumeration. Then it uses an EM approach to obtain the maximum likelihood configuration
based on the population haplotype frequency. In order to deal with large numbers of markers, Merlin groups
the markers by some pre-determined length and generates one single inheritance vector for each segment by
assuming no recombination. However, if there does exist recombination in a segment, the program will fail. In
Sec. 3.2.1, we compare MML and Merlin on small lengths of markers with different pedigree sizes to examine
the efficiency by explicitly using Mendelian constraints rather than pure enumeration. On a genome-wide
level (Sec. 3.2.2), our program can still successfully reveal the actual haplotype structure when Merlin is not
applicable due to unresolved recombination.

3.2.1. Influence of pedigree size, missing rate on performance

We simulate pedigrees with no recombination to evaluate the performance of MML on zero-recombinant seg-
ments with different data settings. Pedigrees are generated with different sizes (4, 17, 29, 52) and missing rates
(0.00, 0.05, 0.10, 0.15, 0.20) by using SimPed .10 We pick from the CFTR data a subset of 29 distinct haplo-
types of 19 markers spanning a region of 1.8Mb on chromosome 7q31. SimPed will assign founder haplotypes
by sampling from the given set and transmit them onto other family members assuming no recombination.
Each population has 500 families of a given parameter setting, and we average our results over 10 replicates
of a population. The accuracy and running time comparison between MML and Merlin are shown in Fig. 7.

By explicitly exploiting the Mendelian constraints instead of enumerating all possible inheritance vectors,
MML can achieve much greater time efficiency than Merlin on large pedigrees or on high missing rates (Fig.
7(b)). Both methods achieve better accuracy with large pedigrees (Fig. 7(a)) due to increased family constraints
and population information. By adopting an approximate EM algorithm instead of traversing the whole search
space, MML is of negligible accuracy difference to Merlin. This demonstrates the approximation approach to
be a reasonable trade-off for efficiency. This is further confirmed on a large pedigree size of 52 (table in Fig. 7),
where the performance of Merlin crashes with a high error rate (up to 30%) and exponentially longer running
time due to too much freedom in resolving the inheritance vector. On the other hand, MML exhibits very
robust consistency in both accuracy and efficiency.
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(b) running time
010203040500.000.050.10 0.150.20 0.000.05 0.100.150.20 0.000.05 0.100.150.20missing raterunning time (sec) 110100100010000
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4 17 29 52

Fig. 7. Comparison of two methods on a dataset of 500 pedigrees. Performance is examined on 4 different pedigree sizes: 4, 17,
29, 52 and 5 different missing genotype rates: 0.00, 0.05, 0.10, 0.15, 0.20. Error rate is calculated by comparing the allele-by-allele
difference between the inferred the haplotype and the correct haplotype.

3.2.2. Genome-wide haplotype inference accuracy

We tested MML and Merlin on chromosome 6 of the RA data which has 17820 SNPs with an average inter-
marker spacing of 9586bp. The RA data consisted of 100 replicates, each with 1500 nuclear families (two
parents and two offsprings). We used 500 out of the 1500 families and averaged our results over 10 replicates.
We artificially set up to 20% genotype to missing to estimate the robustness of the methods against missing
data. (a) family dropping

0.22500.23000.23500.24000.24500.25000.2550
0.00 0.05 0.10 0.15 0.20missing ratefamily dropping Merl in (b) error rate

0.00000.00050.00100.00150.00200.0025
0.00 0.05 0.10 0.15 0.20missing rateerror rate (proportion of allele

s) Merlin* MML
(a) (b)

Fig. 8. Performance of MML and Merlin on chromosome 6 of RA data. Missing rates are 0.00, 0.05, 0.10, 0.15, 0.20. *The error
rate of Merlin is based only on the families it successfully processes.
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As shown in Fig. 8(b), MML can successfully reconstruct the haplotypes of each individual with an allele-
by-allele error rate of 0.025% (for a missing rate of 0%) to an error rate of 0.19% (for a missing rate of 20%).
Since Merlin assumes no recombination within each pre-defined segment, it fails on 25% of the 500 families
(Fig. 8(a)). On the remaining families, it happens that all recombination events have ambiguous intervals
riding across segment boundaries instead of contained completely in a single segment such that Merlin can
still find a single inheritance vector for each segment. However, the overall accuracy of MML on all families is
even better than the accuracy of Merlin on these retained families (Fig. 8(b)).

4. Conclusions

In order to reveal the human haplotypic variation on a genome-wide level, we need to overcome the computa-
tional difficulties complicated by huge numbers of markers, large pedigree and population size, and substantial
numbers of missing genotypes. We applied our previous algorithm to find and compactly represent the subset
of pedigree inheritance configurations that are consistent with the Mendelian law. We develop new techniques
to resolve recombination positions in densely marked sequences, and a quick search strategy for detecting
haplotype combinations of maximum likelihood in a population. All these techniques make it possible to han-
dle large degrees of freedom in the pedigree inheritance patterns, the uncertainty of recombination positions,
and the variety of possible haplotypes of a population. The combined exploitation of Mendelian constraints
and local population structure makes the most of the current data designs to restore the underlying haplo-
type polymorphism. Experimental results on both real and simulated populations show that our method can
successfully reconstruct the haplotypes with high accuracy and it is scalable in terms of both the pedigree
(population) size and the missing genotype rate.
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The immune response HLA class II DRB1 gene provides the major genetic contribution to Juvenile Idiopathic Arthritis (JIA), with a 
hierarchy of predisposing through intermediate to protective effects. With JIA, and the many other HLA associated diseases, it is 
difficult to identify the combinations of biologically relevant amino acid (AA) residues directly involved in disease due to the high 
level of HLA polymorphism, the pattern of AA variability, including varying degrees of linkage disequilibrium (LD), and the fact that 
most HLA variation occurs at functionally important sites. In a subset of JIA patients with the clinical phenotype oligoarticular-
persistent (OP), we have applied a recently developed novel approach to genetic association analyses with genes/proteins sub-divided 
into biologically relevant smaller sequence features (SFs), and their “alleles” which are called variant types (VTs). With SFVT 
analysis, association tests are performed on variation at biologically relevant SFs based on structural (e.g., beta-strand 1) and 
functional (e.g., peptide binding site) features of the protein. We have extended the SFVT analysis pipeline to additionally include 
pairwise comparisons of DRB1 alleles within serogroup classes, our extension of the Salamon Unique Combinations algorithm, and 
LD patterns of AA variability to evaluate the SFVT results; all of which contributed additional complementary information. With JIA-
OP, we identified a set of single AA SFs, and SFs in which they occur, particularly pockets of the peptide binding site, that account 
for the major disease risk attributable to HLA DRB1. These are (in numeric order): AAs 13 (pockets 4 and 6), 37 and 57 (both pocket 
9), 67 (pocket 7), 74 (pocket 4), and 86 (pocket 1), and to a lesser extent 30 (pockets 6 and 7) and 71 (pockets 4, 5, and 7).
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1. Introduction

Genes in the major histocompatibility complex of humans, termed HLA, are known to influence susceptibility to 
over 300 diseases. These include: complex autoimmune and inflammatory diseases such as type 1 diabetes, 
rheumatoid arthritis, ankylosing spondilitis, psoriasis, multiple sclerosis, and narcolepsy; nasopharyngeal cancer, 
Hodgkin disease and other cancers; infectious diseases including malaria, tuberculosis, and AIDS, and diseases of 
unknown etiology [1]. HLA allele or haplotype and genotype associations with specific diseases are well established; 
the most complex pattern is seen with type 1 diabetes and HLA DRB1-DQB1 haplotypes, with a hierarchy from very 
predisposing, through intermediate (“neutral”), to very protective effects, with consistent patterns in associations 
seen across ethnic groups [2]. Specific amino acid (AA) residues, as well as combinations of AAs, have been 
implicated in type 1 diabetes risk, see e.g., refs. [2-4] and references contained therein, as well as many other HLA 
associated diseases. The strong association of the HLA DRB1 “shared epitope” set of AAs 70-74 and rheumatoid 
arthritis is well established; recently autoimmunity to citrullinated protein antigens has been shown to define a 
clinically and genetically distinct subset of rheumatoid arthritis that is specifically associated with the “shared 
epitope” alleles (reviewed in [5]). The recent development of a novel approach to genetic association analyses with 
genes/proteins sub-divided into biologically relevant smaller sequence features (SFs), and their variant types (VTs) 
[6], allows a systematic search focusing on the most likely actual causative genetic variants in HLA associated 
diseases.  

HLA molecules are cell-surface proteins that present peptide fragments to T-cells to activate the recognition, 
and response to, foreign antigens. The classical class I (HLA-A, -B, and -C) and class II (HLA-DR, -DQ, and -DP) 
genes encode structurally homologous heterodimers. The processed self and foreign peptide fragments presented by 
the classical HLA molecules usually consist of 8–10 AAs (class I) or 12–20 AAs (class II), and are of either 
intracellular or extracellular origin respectively. An HLA molecule binds only to peptides conforming to certain 
structural requirements. A particular HLA allele is thus only able to present a subset of the available peptides to T-
cells. The polymorphism of many of the HLA genes is extraordinary, with over 3,000 alleles at the class I and II 
genes identified to date (www.ebi.ac.uk/imgt/hla/) (and see e.g., ref. [7]), with much of the variation present at the 
protein level and occurring at functionally important sites. The class II HLA DRB1 gene, the subject of this study, 
has 623 alleles defined at the AA level; for any specific population or disease study only a fraction of these alleles 
will be observed. There are multiple lines of evidence for the role of balancing selection (at the allele and AA levels) 
in maintaining this most polymorphic set of genes in the human genome, including relatively even allele frequency 
distributions, see e.g., refs. [7, 8] and references therein. The causal argument presented is that individuals 
heterozygous for HLA genes can more effectively defend themselves from infection by successfully responding to a 
broader range of pathogens. 

Peptide motifs important for binding to HLA molecules, including critical residues, have been defined by 
sequence analysis of naturally processed peptides eluted from HLA molecules, analysis with synthetic peptides, 
phage display libraries, and predictive inference of binding preference based on similarity of peptide-binding 
environments, see e.g., [9-11]. Specific AAs and combinations thereof have been identified as potentially causal in a 
number of HLA associated diseases. These usually rely on differential risk effects within serogroups of alleles, which 
involve a more restricted set of AAs compared to overall allele level comparisons, or identification of patterns from 
the sequence alignments of polymorphic sites at all alleles, again stratified by risk categories, e.g., DRB1 and the 
“shared epitope” set of AAs and rheumatoid arthritis discussed above. Determining the critical HLA AA residues 
involved in a specific disease can facilitate predictions about peptide epitopes, which are important for the design of 
novel vaccines and the understanding of autoimmunity.

Other analysis methods have been applied to type 1 diabetes and other diseases, and have successfully identified 
AAs important in disease risk heterogeneity, e.g., with type 1 diabetes, the Unique Combinations algorithm of 
Salamon et al. [3], and the Conditional Haplotype Method in Valdes et al. [4]. The aim with Sequence Feature 
Variant Type (SFVT) analysis [6] is to systematically perform association tests focusing on variation (VTs) at 
biologically relevant SFs, which are based on structural and functional features of the protein. The SFs include 
classical HLA allele level, and single AA, polymorphisms. The second round of SFVT analysis tests disease 
associations of temporary SFs (tSFs). These tSFs are constructed based on potentially informative combinations of 
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AAs that are identified from the first round of SFVT analysis as occurring frequently in SFs with the strongest 
associations with disease, including SFs composed of a single AA.  With systemic sclerosis, specific AAs in pockets 
4 and 7 of the peptide binding site explain much of the molecular determinant of disease risk [6].

We have applied SFVT analysis to HLA DRB1 variation and Juvenile Idiopathic Arthritis (Oligoarticular-
Persistent) (JIA-OP) data [12]. We have extended SFVT analysis by creating an automated pipeline to include
additional complementary and informative analyses (see Figure 1 and the Methods and Results Sections): including 
pairwise comparisons of HLA DRB1 alleles, and our extension of the Salamon Unique Combinations algorithm [3],
to detect single AAs and combinations thereof that uniquely define different risk categories of alleles. AAs 
implicated from these analyses are now additionally combined with those identified by the first round of SFVT 
analysis in the construction of tSFs. The calculation of linkage disequilibrium (LD) patterns of AA variability in 
controls is another addition to the SFVT pipeline, guiding our understanding of effects that may be due to high 
correlation of AA variation. The final step in the analysis pipeline, which is not yet automated, is to apply a series of 
Conditional Haplotype Method analyses to differentiate AA effects which may be directly causative in disease versus 
those whose associations can be explained by LD with a causative AA or set of AAs.

2. Data and Methods

2.1. Juvenile Idiopathic Arthritis (oligoarticular-persistent) (JIA-OP) HLA DRB1 data

HLA DRB1 high resolution (4 digit AA level variation) data on 354 JIA-OP patients and 273 controls were analyzed 
(see Table 1 later). See Hollenbach et al. [12] for details on the data set, HLA typing, standard HLA association 
studies and results, and the general background on HLA associations with JIA and its subtypes.

2.2. Sequence feature variant type (SFVTs) analysis

The 181 SFs for the HLA DRB1 gene, as well as SFs for the other classical HLA genes, are defined in Karp et al. 
[6]. These range in size from the entire polypeptide sequence to single amino acids and involve:
(a) structural features: e.g., allele level variation (SF1), beta-strand 2 (SF13);
(b) biological function: e.g., peptide antigen binding site (SF127), T-cell peptide antigen binding pocket 6 (SF136);
(c) sequence alteration: all single AA positions with sequence variation, e.g., AA position 57 (SF90); and
(d) combinational structural_functional: e.g., beta-strand 2_peptide antigen binding pocket 7 (SF152).

Each HLA DRB1 allele is defined as a vector with these 181 SFs and their respective “allelic variations”, which 
are referred to as variant types (VTs). The VTs for each SF defined in [6] use DRB1*0101 as the base; for example, 
for SF135 which is defined by AA positions 70 and 71, the VT1 (70Q_71R) is found in DRB1*0101, DRB1*0102, 
DRB1*0403, and a number of other alleles, while VT2 (70D_71E) is found in DRB1*0103, *0402, *1102 and a 
number of other alleles, etc. For the analysis of each specific SF, the VT frequencies are obtained by adding over the 
respective DRB1 alleles that carry that VT in the patient and control groups. 

The DRB1 typing system used for the JIA-OP data set is based on identification of polymorphisms within exon 
2, and hence we focus our attention on polymorphic AA variation within exon 2 (AAs 9-86). After initial analysis of 
the SFVT results, and combining information from the other analyses described below (Figure 1), so-called 
temporary SFs (tSFs), and their respective VTs, were defined based on sets of AAs with evidence of a role in 
differential disease risk.

2.3. Chi-square heterogeneity testing

A standard chi-square test was performed for heterogeneity testing of patient versus control DRB1 allele counts at 
the overall level, in pairwise comparisons, in the relative predispositional effects (RPE) analysis described below, 
and in SFVT analyses. Counts were combined in a “binned” category if the expected patient or control counts in the 
heterogeneity test were < 5. If the “binned” class had an expected control count < 5 it was not considered. The 
overall allelic effects in terms of disease risk are ranked by the standard Odds Ratio (OR) from most predisposing to 
most protective (see Table 1 later). The p-values are not corrected for multiple comparisons, since we are using these 
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primarily for the purpose of relative rankings in this exploratory analysis; note that the AAs and SFs listed in this 
analysis as important in disease risk would still be very significant after correction if it were applied.

2.4. Relative Predispositional Effects (RPE) analysis

In Relative Predispositional Effects (RPE) analysis [13], alleles are sequentially removed from the standard chi-
square heterogeneity test, starting with the strongest effects (based on the individual contribution of the allele to the 
overall chi-square), until there is no further significant heterogeneity detected either overall or for an individual 
allele. Note that this weights targeting and removal of the more common alleles; there is no intrinsic bias except for 
this factor. When there are relatively similar predisposing and protective effects—in terms of the strengths of their 
effects—in a particular round of analysis, these were both removed from the next round.

2.5. Linkage disequilibrium (LD)

The correlation measure Wn, also known as Cramer’s V statistic, is used to quantify the overall (global) strength of 
LD among SFs; each SF is considered as a separate locus (“gene”), with the VTs the “alleles” thereof as in standard 

LD estimation [14].  For two bi-allelic loci, Wn is equivalent to the correlation coefficient (
11

2
1 2 1 2r D p p q q= /  ), 

where p1 and p2 are the allele frequencies at the first locus (p1 + p2 = 1), and similarly q1 and q2 for the second locus, 
and D11 = x11 - p1 q1, where x11 is the frequency of the haplotype composed of these two alleles (D11 = D12 = D21 =

D22). The multi-allelic extension, Wn, is defined as 
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frequencies at the first and second loci with I and J alleles respectively, and the individual LD coefficients are Dij = 
xij - pi qj. Both r and Wn have a range from 0 to 1. When all Dij = 0, r = 0 for bi-allelic loci, and Wn = 0 for multi-
allelic loci, and the alleles at the two loci are randomly associated. In contract, for high LD the alleles at the two loci 
are very highly correlated, with complete correlation when r or Wn = 1. 

2.6. Salamon's Unique Combinations  algorithm

The Unique Combinations algorithm developed in [3] efficiently identifies combinations of AAs that distinguish a 
sequence or set of sequences from a set of other sequences. See Section 3.4 in Results for more details.

3. Results

3.1. Summary

Given the complexity of the integration of results and incorporation of information from within and between various 
levels of analyses, e.g., pairwise allele level comparisons, Unique Combinations analyses, LD patterns, and SFVT 
analysis (Figure 1), we summarize the findings now to aid navigation through the series of results detailed below. 
The AAs we identify as major or important in JIA-OP disease risk, always indicated in bold below are (listed in 
numeric order): AAs 13 (pockets 4 and 6), 37 and 57 (both in pocket 9), 67 (pocket 7), 74 (pocket 4), 86 (pocket 1), 
and those potentially involved in disease risk are (underlined): 30 (pockets 6 and 7), and 71 (pockets 4, 5, and 7).

3.2. HLA DRB1 allele level analyses

A total of 38 DRB1 alleles were observed: 17 were included in the “binned” category, leaving 21 frequent alleles 
(Table 1). (Note that for the SFVT analysis, the rare DRB1 alleles are always included.) As previously described 
[12] there is significant heterogeneity in allele counts between patients and controls (overall test: p < 1.1E-27). Two 
predisposing alleles: DRB1*0801 and *1104, and three protective alleles: DRB1*1501, *0701, and *0401, show 
very strong individual effects (based on their p-values), with weaker effects of DRB1*1301, *1103, *0404, and 
*0103. Note that for the rarer alleles, e.g., DRB1*1103 which has the highest OR, the 95% OR confidence interval 
(CI) spans a large range; hence conclusions from analyses that use this information are subject to this uncertainty.
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The first column of Table 1 lists 
the alleles (labeled in categories 1-3) 
which were sequentially removed in 
successive rounds in the Relative 
Predispositional Effects (RPE)
analysis until no significant 
differential effects were seen. Note 
that (as mentioned in Section 2.4) the 
higher frequency alleles are targeted 
with this analysis. In the second 
column, the more common alleles are 
divided into a set (A) of three
differential risk categories containing 
high frequency alleles: I 
(predisposing), II (neutral), and III 
(protective). The boundaries, and 
inclusion of alleles in each category, 
were predicated on evidence of 
disease risk heterogeneity between 
categories, and homogeneity within 
categories. In the third column, the 
list of alleles (set B) in each risk 
category is expanded to include some 
rarer alleles, but with the boundaries 
still delineated by more common 
alleles; inclusion in each respective 
risk category is now indicated by Ix, 
IIx, and IIIx. The rare allele 
DRB1*0403 is not included as it 
cannot be classified as predisposing 
versus neutral, similarly the four rare alleles between sets IIx and IIIx (the neutral/protective boundary). These sets A 
and B of differential risk categories are used below in the Unique Combinations analyses.

3.3. HLA DRB1 allele level pairwise within serogroup
analyses

HLA nomenclature (except for DP) is such that alleles sharing 
the same 2 first digits generally belong within the same 
serogroup. Variation in the 2 last digits indicates AA 
differences within the serogroup. For example, DRB1*0101, 
*0102, and *0103 belong to the serogroup denoted *01XX.
Alleles within the same serogroup are more closely related at 
the AA level, hence significant differences in risk within 
serogroups, and between specific pairs of alleles, may identify 
specific AAs, or a few AAs, involved in disease. Pairwise 
comparisons within serogroups of alleles with sufficient 
sample size—DRB1*01XX, *04XX, *11XX, and *13XX—
were performed; this was followed by manual inspection of 
their respective sequences for comparisons where significant 
risk heterogeneity was detected. Significant results (ordered by 
p-value) are given in Table 2. The strong evidence for the role 

Table 1. JIA-OP HLA DRB1 allele data ranked by Odds Ratio (OR)

RPEa Ab Bc DRB1 JIA-OP Controls Chi-sq. p-valued OR CI e CI e

Ix *1103 12 1 6.80 0.01 9.40 1.22 72.49
1 I Ix *0801 102 13 48.61 3.1E-12 6.90 3.83 12.43
2 I Ix *1104 57 11 20.71 5.3E-06 4.26 2.21 8.20

*0403 9 3 1.68 0.20 2.33 0.63 8.65
3 II IIx *1301 90 38 9.99 0.002 1.95 1.31 2.90

IIx *0102 9 5 0.35 0.55 1.39 0.46 4.18
II IIx *1101 60 36 1.42 0.23 1.31 0.85 2.02

IIx *0901 9 6 0.08 0.78 1.16 0.41 3.28
II IIx *0101 74 50 0.52 0.47 1.16 0.79 1.69
II IIx *0301 89 61 0.50 0.48 1.14 0.81 1.62

IIx *1201 10 8 0.006 0.94 0.96 0.38 2.46
II IIx *1302 28 23 0.05 0.82 0.94 0.53 1.64

*1303 10 9 0.11 0.74 0.86 0.34 2.12
binnedf 27 27 0.92 0.34 0.76 0.44 1.31
*1601 6 8 1.05 0.30 0.58 0.20 1.67
*1401 11 18 4.05 0.04 0.46 0.22 0.99
*1502 5 10 3.26 0.07 0.38 0.13 1.12

III IIIx *0404 7 16 6.34 0.01 0.33 0.14 0.81
1 III IIIx *1501 38 80 28.24 1.1E-07 0.33 0.22 0.49
1 III IIIx *0701 30 65 23.92 1.0E-06 0.33 0.21 0.51
2 III IIIx *0401 21 47 18.10 2.1E-05 0.33 0.19 0.55
3 IIIx *0103 4 11 5.42 0.02 0.28 0.09 0.87

TOTAL 708 546 182.1 1.1E-27
a Numbers  denote the order of removal due to largest effect(s) in the RPE analysis 
b Set  A: The common alleles are divided into mutually exclusive, and significantly different, 

predisposing (I), intermediate (II), and protective (III) categories for use in the Unique 
Combinations comparisons

c Set  B: The sets I, II, and III above are expanded to include rare alleles, while excluding 
those alleles which do not clearly fall into one of the 3 risk categories 

d The  individual p-values are biased (conservative with respect to finding significant 
effects) as the assumption of a 1 df chi-square is incorrect; the p-values can be used 
however for a relative ranking of the allelic effects 

e The  upper and lower 95% confidence intervals (CIs) for the Odds Ratio (OR) are given
f The binned category consists of all alleles with an expected value < 5 under the chi-square 

test of heterogeneity of patient and control allele counts

Table 2. JIA-OP HLA DRB1 allele pairwise comparisons

Alleles compareda p-valueb AAsc,d

*0403 vs *0401 + *0404 0.002 74
*1104 vs *1103 0.003 86
*0403 vs *0401 0.004 71, 74, or 86
*0101 vs *0103 0.02 67, 70, or 71
*1103 vs *1101 0.04 71 or 86
*1301 vs *1302 0.05 86

a Within serogroup allele comaprisons
b Uncorrected p-value from the chi-square test of 

heterogeneity
c Amino acid residues that uniquely define these specific 

alleles
d Amino acids indicated in bold are those identified as playing 

a major or important role in disease risk, those underlined as 
potentially having an effect, albeit weaker
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of AA 86 in differential disease risk is of particular interest, since with SFVT analysis this AA shows no significant 
effect (see Section 3.6 and Table 4A below). There is also evidence for a direct role of AA 74.

3.4. Unique Combinations  comparisons

In the original Unique Combinations algorithm of Salamon et al. [3], two categories of sequences are defined by the 
user: those in the “check” category are compared against those in the “group” category in order to identify 
combinations of sites that are unique between these two sets of sequences. However, when there are two or more 
sequences in the “check” category, sites that are polymorphic between these “check” sequences are excluded from 
consideration. We have extended the algorithm to allow inclusion of all sites that are polymorphic in the “check” 
category, thus expanding the utility of the method. Also, this means that the “group” and “check” categories are now 
interchangeable, whereas before there was an asymmetry.

This extension of the Unique Combinations algorithm provides an ordered list of a minimal number of 
polymorphic positions, which as a haplotype (combination of AAs on a chromosome) can differentiate between any
set of sequences of alleles in the “check” versus “group” categories. Deriving the vectors of AAs that correspond to 
the resulting minimal unique combination generates unique sequences that either belong to the “check” category or
the “group” category.

Using the subdivisions of common 
DRB1 alleles into the three categories 
defined above as sets A and B (Table 
1)—I and Ix (predisposing), II and IIx 
(intermediate), and III and IIIx 
(protective)—we performed various 
Unique Combinations comparisons of 
each risk category versus the other two 
risk categories, e.g., I versus II + III 
(Table 3). The AAs identified as 
important in the Unique Combinations 
analyses are AA 86 (as in the pairwise 
allele within serogroup analyses in 
Section 3.3 above) combined with 
AAs 13 and 37, or 13 and 67.

3.5. HLA DRB1 amino acid LD patterns

The AA LD values in the control data for exon 2 of the HLA DRB1 variation (AAs 9-86) are given in Figure 2. This 
information is used in evaluation of the SFVT data below. The LD values show a complex pattern with (using 
examples from the six AAs we have identified as most strongly implicated in disease risk): (1) “blocks” of AAs 
where adjacent sites all have high LD with each other (13 and 9-12); (2) individual AAs, each with high and 
moderate levels of LD with quite a few other AAs (13 and 37), and similarly but with lower levels of LD (57 and 
74); and (3) individual AAs with very low levels of LD with most or all other AAs (67 and 86). 

Table 3: JIA-OP HLA DRB1 Unique Combinations (UC) analyses

groupa I Ix III IIIx II IIx

checka II + III IIx + IIIx I + II Ix+IIx I + III Ix+IIIx AAsb

X 13

X 13, 67

X X 37, 67

X X X 13, 37, 86

X X X X 13, 67, 86

a The sets of predisposing (I and Ix), intermediate (II and IIx), and protective (III and IIIx) 
alleles are defined in Table 1, the group and check categories define the two groups of 
alleles compared 

b Only AAs in exon 2 that are consistently seen in all comparisons are listed in this column, 
other AAs which appear in some comparisons are: 47, 57, 70, 71, 74
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Figure 2. Linkage disequilibrium (LD) plot of polymorphic amino acids 9 - 86 of HLA DRB1 a

a The data are from the control samples; the axes give the amino acid positions and the number of residues (in parentheses) at each position

9 
( 

3)

10
 (

 3
)

11
 (

 6
)

12
 (

 2
)

13
 (

 6
)

14
 (

 2
)

16
 (

 2
)

25
 (

 2
)

2 6
 (

 3
)

28
 (

 3
)

3 0
 (

 6
)

3 1
 (

 3
)

32
 (

 2
)

3 3
 (

 2
)

37
 (

 5
)

3 8
 (

 3
)

40
 (

 2
)

4 7
 (

 2
)

57
 (

 4
)

58
 (

 2
)

6 0
 (

 3
)

67
 (

 3
)

7 0
 (

 3
)

71
 (

 4
)

7 3
 (

 2
)

7 4
 (

 5
)

7 7
 (

 2
)

78
 (

 2
)

85
 (

 2
)

86
 (

 2
)

9 ( 3) <= 1

10 ( 3) <= 0,96

11 ( 6) <= 0,93

12 ( 2) <= 0,9

13 ( 6) <= 0,86

14 ( 2) <= 0,83

16 ( 2) <= 0,8

25 ( 2) <= 0,76

26 ( 3) <= 0,73

28 ( 3) <= 0,7

30 ( 6) <= 0,66

31 ( 3) <= 0,63

32 ( 2) <= 0,6

33 ( 2) <= 0,56

37 ( 5) <= 0,53

38 ( 3) <= 0,5

40 ( 2) <= 0,46

47 ( 2) <= 0,43

57 ( 4) <= 0,39

58 ( 2) <= 0,36

60 ( 3) <= 0,33

67 ( 3) <= 0,3

70 ( 3) <= 0,26

71 ( 4) <= 0,23

73 ( 2) <= 0,19

74 ( 5) <= 0,16

77 ( 2) <= 0,13

78 ( 2) <= 0,1

85 ( 2) <= 0,06

86 ( 2) 0

366



3.6. SFVT analyses (Table 4, part A)

The SFVT data in Table 4A are ranked by the p-value of the overall chi-square heterogeneity patient versus control 
analysis of the VTs for each SF listed. Note that any attempt to draw conclusions from minor differences in p-values of 
this magnitude is an over-interpretation of the data. Also listed are the maximum (max) and minimum (min) ORs seen 
for individual VTs for each SF, for example, for SF1 (allele) (rank 5 in Table 4A), these are 9.40 and 0.28 (see Table 
1). These values are used to determine the ability of a SF to differentiate between risk categories of VTs, both with 
consideration of the max and min ORs and the range of the ORs for a particular SF. However, keep in mind, as 
mentioned above, that the highest OR of 9.40 for allele DRB1*1103 is based on a very rare allele, the next highest 
allele level OR is 6.90 for DRB1*0801 (see Table 1). 

AA 13, pockets 4 and 6: The single AA 13 (SF57) is rank 1 in the SFVT analysis (Table 4A), with a reasonable 
range in OR values (4.91 to 0.33). From Table 5, we see how AA 13 by itself partitions the disease risk (although 
certainly not perfectly): the residues G and S are only seen in the predisposing and neutral allele level disease risk 
categories, while the other 4 residues: F, R, H and Y are only seen in the neutral and protective categories. AA13 is the 
major contributor to the pocket 6 and pocket 4 associations (ranks 2 and 3). AA 30 (pocket 6) may play some role in 
disease risk, but the effect may be explained by LD. 

The effects of the single AAs 9, 10, 11, 12 and 16, which occur in the top 20 ranked SFs in Table 4A, can be 
explained by LD with AA 13 (Figure 2). These AAs are indicated in italics in Table 4A, and are not discussed 
individually below. AA 13 is chosen over these AAs since it individually has a stronger effect, based on p-values and 
OR values and range, it occurs in more top ranked SFs than do any of these AAs, and it was identified individually 
over these other AAs, in combination with AAs 37 and 86, or 67 and 86, in the Unique Combinations analyses.

AA 67, pocket 7: AA 67 (SF98, rank 14) has the second highest rank of the single AAs, and is the major 
contributor to the SFs ranked above it and below SF1 (allele) (excluding the 3 single AA SFs AAs 10, 11, and 12, see 
above), and was identified in the Unique Combinations analyses. While AA 71 (SF102, rank 22) contributes an 
additional effect to AA 67 by itself, due to greatly increasing the OR max value of pocket 7 (rank 6), this in fact is a 
minor effect (in this data set) reflecting unique identification of the very rare predisposing DRB1*1103 allele. 

AAs 13, 67, 74, and 86, and pockets 6, 4, and 7: AAs 13 and 67 together distinguish all the significant effects of 
the alleles listed in Table 1, with two exceptions which are covered by AAs 74 and 86. AA 74 (the third ranked 
highest single AA effect (SF104, rank 16)) was identified in the allele level pairwise comparisons (Table 2) as 
necessary to distinguish between the rare neutral/predisposing DRB1*0403 allele and the protective *0401 and *0404 
alleles (p < 0.002). Note that this effect of AA 74 was not picked up in the Unique Combinations analyses, since our 
inability to definitively place DRB1*0403 in either the predisposing or neutral categories precluded its consideration 
in the Unique Combinations analyses. AA 86 was identified in the allele level pairwise comparisons as necessary to 
distinguish between the predisposing DRB1*1104 and neutral *1101 effects (p < 0.003) (Table 2); it was also picked 
up in the Unique Combinations analyses. However, in the SFVT analysis (Table 4A), note that the individual effect of 
AA 86 is not significant, nor is it identified as potentially involved in disease from its presence in other SFs: it is the 
8th lowest ranked SF (SF110, rank 42), and pocket 1 (SF132) in which it occurs ranks two below this. However, as 
indicated in Table 2, AA 86 is necessary to explain significant disease risk effects. The four AAs 13, 67, 74, and 86
uniquely define all the alleles listed in Table 1 (see Table 5), not considering the very rare alleles in the binned 
category in Table 1.

AAs 37 and 57 (pocket 9): AAs 37 (SF74, rank 17) and 57 (SF90, rank 19) are the next to enter into our 
consideration. The Unique Combinations results (Table 2) implicate 13, 37, and 86 as a potential AA combination that 
can explain disease risk, along with 13, 67, and 86 as an alternate combination. Further, to jump ahead, the AA 
combination 13 and 37 together have rank 1 in the analysis of tSFs discussed below (Table 4B). The combination of 
AAs 13, 37, 74, and 86 also explains all known disease risk at the allele level, except the marginally significant allele 
pairwise comparison of DRB1*0101 (neutral) to the rare *0103 (protective) (p < 0.02); AA 67 distinguishes this risk, 
as does AA 71; as above AA 71 also further distinguishes DRB1*1103 and *1104, which in this data set are not 
significantly different in their effects. 
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Table 4. SFVT results

Rank SF # Description amino acida p-value max 
OR

min 
OR

Rank SF # Description amino acida p-value max 
OR

min 
OR

A: JIA-OP HLA DRB1 SFVT analysis with SFs ranked by overall p-values 36 66 position 28 28 0.004 1.54 0.63
1 57 position 13 13 1.8E-28 4.91 0.33 37 22 position 73 73 0.007 1.47 0.68
2 136 pocket 6 11, 13, 30 3.9E-28 7.07 0.31 38 81 position 47 47 0.03 1.28 0.78
3 134 pocket 4 13, 26, 28, 70, 71, 74, 78 5.7E-28 6.84 0.28 39 178 beta1_CD4 bind 41..56 0.03 1.28 0.78
4 151 beta1_pep ant-TCR 11, 13 9.4E-28 4.89 0.33 40 70 position 32 32 0.07 1.25 0.80
5 1 alleleb 1.1E-27 9.40 0.28 41 154 beta2_alpha chain 29, 31, 32 0.13 1.27 0.80
6 137 pocket 7 28, 30, 47, 61, 67, 71 8.9E-27 9.40 0.28 42 110 position 86 86 0.34 1.12 0.90
7 142 pep ant position 12 9, 56, 57, 60, 61, 67 4.2E-26 7.14 0.31 43 106 position 77 77 0.41 1.16 0.86
8 55 position 11 11 8.8E-25 3.15 0.33 44 132 pocket 1 82, 85, 86, (89, 90) 0.58 1.14 0.89
9 130 pep ant & T cell rec 60, 67, 70, 71, 77, 78, 85 7.0E-24 9.40 0.32 45 173 alpha4_pocket1 82, 85, 86 0.63 1.13 0.90
10 56 position 12 12 1.1E-22 3.15 0.32 46 64 position 26 26 0.67 1.16 0.93
11 54 position 10 10 1.9E-22 3.14 0.32 47 109 position 85 85 0.74 1.13 0.88
12 162 alpha2_pocket 7 67, 71 2.9E-21 9.40 0.33 48 69 position 31 31 0.86 1.03 0.97
13 19 alpha-helix 1 52..62 3.5E-18 3.92 0.44 49 75 position 38 38 0.91 1.04 0.96
14 98 position 67 67 3.0E-17 3.39 0.54
15 138 pocket 9 9, 37, 57 3.6E-16 3.92 0.33 B: JIA-OP HLA DRB1 SFVT analysis of tSFs ranked by overall p-values
16 104 position 74 74 3.8E-16 6.84 0.33 1 t201 13, 37 5.6E-30 7.04 0.37
17 74 position 37 37 3.7E-13 1.80 0.34 2 t205 13, 37, 74, 86 2.7E-29 6.69 0.37
18 59 position 16 16 5.4E-13 4.91 0.20 3 t211 13, 30, 37, 74, 86 3.4E-29 6.69 0.37
19 90 position 57 57 5.5E-13 3.92 0.44 4 t210 13, 30, 67, 74, 86 1.2E-28 6.47 0.28
20 53 position 9 9 2.3E-11 2.30 0.42 5 t206 13, 67, 74, 86 1.2E-28 6.47 0.28
21 135 pocket 5 70, 71 1.4E-10 1.79 0.33 6 t224 13, 37, 67 1.3E-28 6.84 0.28
22 102 position 71 71 1.2E-09 1.48 0.33 7 57 position 13 13 1.8E-28 4.91 0.33
23 101 position 70 70 4.5E-09 2.03 0.54 8 t225 37, 67 2.2E-28 3.90 0.31
24 71 position 33 33 3.1E-07 2.62 0.38 9 t203 13, 67 2.3E-28 6.84 0.28
25 58 position 14 14 3.6E-07 3.05 0.33 10 t204 13, 67, 86 2.5E-28 6.69 0.28
26 63 position 25 25 3.6E-07 3.05 0.33 11 t218 13, 37, 57, 67, 74, 86 3.6E-28 6.90 0.28
27 91 position 58 58 1.0E-06 2.35 0.43 12 t207 13, 37, 67, 74, 86 3.3E-28 6.47 0.28
28 24 position 78 78 3.3E-06 2.56 0.39 13 136 pocket 6 11, 13, 30 3.9E-28 7.07 0.31
29 93 position 60 60 3.5E-06 2.36 0.44 14 t212 13, 30, 37, 67, 74, 86 4.4E-28 6.47 0.28
30 68 position 30 30 2.3E-05 1.55 0.33 15 t214 13, 57, 67, 74, 86 4.5E-28 6.90 0.28
31 152 beta2_pocket 7 28, 30 4.3E-05 1.55 0.33 16 151 beta1_pep ant-

TCR
11, 13 9.4E-28 4.89 0.33

32 155 beta2_pocket 4 26, 28 4.4E-05 1.31 0.34 17 t216 13, 30, 37, 57, 67, 71, 74, 86 1.1E-27 9.40 0.28
33 141 pep ant position 4 77, 78, 81, 82, 85 7.4E-05 1.37 0.39 18 t215 13, 57, 67, 71, 74, 86 1.1E-27 9.40 0.28
34 153 beta2_pep ant bind 26, 28, 30 0.0001 1.32 0.33 19 1 allele 1.1E-27 9.40 0.28
35 13 beta-strand 2 23..32 0.0002 1.29 0.33 20 137 pocket 7 28, 30, 47, 61, 67, 71 8.9E-27 9.40 0.28

a Amino acids indicated in bold are those identified as playing a major or important role in disease risk, those underlined as potentially having an effect, albeit weaker, and for those in italics their 
effect may be explained by LD with AA 13.  
b 

SF127 (peptide antigen binding site) AAs: 9, 11, 13, 26, 28, 30, 37, 47, 56, 57, 60, 61, 67, 70, 71, 74, 77, 78, 81, 82, 85, 86, 89, 90 (not listed),  has identical VT counts as SF1 (allele)
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Other AAs: Single AAs and other SFs
listed below rank 20 in Table 4A either do not 
themselves have a wide range of OR values, 
and/or their effects may be explained by LD 
with other AAs or SFs, or they do not have a 
significant overall effect. However, we note 
that AAs 9, 10, 11, 12, 26, 28, 47, 56, 58, 60, 
and 85 also show up frequently in the top 
SFVT results, including comparisons based on 
p-values for individual VTs of each SF, and 
these should be considered in additional 
analyses.

3.7. SFVT Analysis of Temporary SFs 
(tSFs) (Table 4, part B)

The SFVT data in Table 4B are the most 
relevant data from analyses of tSFs defined by 
specific potentially informative combinations 
of the AAs 13, 37, 57, 67, 74, 86, 30, and 71
(based on the analyses above). Again, these 
are ordered by p-value, but note that the range 
of p-values in Table 4B shows only minor 
differences, and the effects we will concentrate 
on hence focus more on the max and min OR 
and the range of OR values. The SFs from 
Table 4A which include the span of p-values 
of the tSFs are also included in Table 4B for 
comparison. 

The pair of AAs 13 and 37 (SFt201, rank 1 in Table 4B) captures the JIA-OP disease risk with 11 VTs, including 
a good range of OR values, as does the pair 13 and 67 (SFt203, rank 9) with 13 VTs. Both increase the max OR, but 
barely change the min OR, compared to AA 13 by itself (SF57, rank 7, 6 VTs). The addition of AAs 74 and 86 to 
both these combinations (SFt205, rank 2: and SFt206, rank 5) adds no further discrimination based on the SFVT 
analysis, but as noted above are required to account for all disease risk heterogeneity. 

Only addition of AA 71 gives the full range of ORs seen with DRB1 allele level variation (SF1, rank 19) (see 
SFt216, rank 17 and SFt215, rank 18); as noted above, AA 71 distinguishes the rare highest predisposing risk 
DRB1*1103 allele from the predisposing (common) DRB1*1104 allele.

4. Discussion

While many HLA associations at the allelic level are well documented and consistently found, identification of the 
AAs directly involved in disease risk is difficult, due to the nature of HLA polymorphism (discussed in the 
Introduction). SFVT analysis was designed to facilitate the analysis of HLA disease associations by focusing on 
structurally and functionally important subsets of HLA variation [6]. SFVT analyses can also be informative in study 
of other highly polymorphic genes such as HIV gp160 and influenza hemagglutinin.

Our SFVT analysis of HLA DRB1 and JIA-OP, with an expanded pipeline (Figure 1) to integrate results from 
within serogroup comparisons of alleles, Unique Combinations analysis of alleles in distinct risk categories, and study 
of LD patterns of individual AAs, identified the following HLA DRB1 AAs as major or important JIA-OP risk factors 

Table 5: JIA-OP HLA DRB1 Amino Acid Residue Variation

AA position 13 67 74 86 37 57 30 71

# alleles 6 3 4 2 5 5 5 4

ORa DRB1 alleles

9.4 DRB1*1103 S F A V Y D Y E

6.9 DRB1*0801 G F L G Y S Y R

4.26 DRB1*1104 S F A V Y D Y R

2.33 DRB1*0403 H L E V Y D Y R

1.95 DRB1*1301 S I A V N D Y E

1.39 DRB1*0102 F L A V S D C R

1.31 DRB1*1101 S F A G Y D Y R

1.16 DRB1*0901 F F E G N V G R

1.16 DRB1*0101 F L A G S D C R

1.14 DRB1*0301 S L R V N D Y K

0.96 DRB1*1201 G I A V L V H R

0.94 DRB1*1302 S I A G N D Y E

0.86 DRB1*1303 S I A G Y S Y K

0.58 DRB1*1601 R F A G S D Y R

0.46 DRB1*1401 S L E V F A Y R

0.38 DRB1*1502 R I A G S D Y A

0.33 DRB1*0404 H L A V Y D Y R

0.33 DRB1*1501 R I A V S D Y A

0.33 DRB1*0701 Y I Q G F V L R

0.33 DRB1*0401 H L A G Y D Y K

0.28 DRB1*0103 F I A G S D C E
a Odds Ratio (OR), see Table 1
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(listed in numeric order): 13, 37, 57, 67, 74, and 86; with lesser effects of 30 and 71. These AAs are all contained 
within the peptide binding site, and explain the increased disease risk associated with pockets 4, 6, 7, and 9 of the 
peptide binding site. When there is high LD between AAs, it is difficult to distinguish the causative agent, e.g., AA 13
is in high LD with a number of other AAs, and further study of these AAs is required. Note however, that when the LD 
is very high it may be impossible to distinguish between highly correlated AA sites; studies in other ethnic groups 
where the LD pattern may be different are then useful. The AAs we have focused on certainly do not represent all of 
the HLA DRB1 contribution to JIA-OP. Note that defining a minimal set of AAs that describe all AA allele level 
variation does not mean that additional AAs do not have effects on disease risk.

Further study of the various combinations of the AAs we have identified and their contributions to JIA-OP risk is 
also required. Preliminary analyses, using the Conditional Haplotype Method [4, 15 and references therein] show 
significant heterogeneity, albeit with somewhat weak effects, of 13 + 37 versus 67, and 13 + 67 versus 37, i.e., neither 
of the pairwise combinations alone can explain all of the disease risk. However, the two combinations of AAs: 13, 37, 
74, 86 and 13, 67, 74, 86 (Table 5); both uniquely define all JIA-OP disease risk as well as all the alleles listed in 
Table 1, except for the non-significant effects of the predisposing DRB1*1103 (rare) and *1104 alleles, which is 
distinguished by AA 71.

We have shown the power of inclusion of complementary analyses in the SFVT pipeline (Figure 1), some AAs 
may be detected via one analysis and not another, e.g., AA 86 which was not identified in the initial SFVT results. 
There is consistency in the results from the analyses when all information is integrated.

We have fully automated all the analysis methods outlined in the pipeline in Figure 1, except for the Conditional 
Haplotype Method, which will be added in the future. At this stage, the different methods are run separately, with the 
researcher providing input when results from one method are required as input for another method. While many of 
these steps may be automated in the future, nonetheless it may not be feasible, or wise, to completely do away with 
oversight of some of these steps by the researcher.

Future studies of this JIA data set [12] will include SFVT analysis of: other common clinical subsets of JIA which
show heterogeneity in their HLA DRB1 associated alleles; HLA class II DRB1-DQA1-DQB1 data (no effect of DQB1 
is currently seen with allele and haplotype level analyses); and other classical HLA genes which via conditional 
haplotype method analysis have shown significant effects on disease risk, e.g., the class II DPB1 gene, as well as class 
I genes.
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Until fairly recently, it was believed that essentially all human cells harbor two copies of each locus in the autosomal genome. However, 

studies have now shown that there are segments of the genome that are polymorphic with regard to genomic copy number. These copy 

number variations (CNVs) have a role in various diseases such as Alzheimer disease, Crohn’s disease, autism and schizophrenia. In the 

effort to scan the entire genome for these gains and losses of DNA, single nucleotide polymorphism (SNP) arrays have emerged as an 

important tool. As such, CNV identification from SNP array data is attracting considerable attention as an algorithmic problem, and many 

methods have been published over the last few years. However, many of the existing model-based methods train their models based on 

common variations and are therefore less successful in the identification of rare CNVs, detection of which may be very important in 

personalized genomics applications. In this paper, we formulate CNV identification explicitly as an optimization problem with an objective 

function that is characterized by several adjustable parameters. These parameters can be configured based on the characteristics of the 

experimental platform and target application, so that the solution to the optimization problem is the most accurate set of CNV calls. Our 

method, termed ÇOKGEN, efficiently solves this problem using a variant of the well-known heuristic simulated annealing. We apply 

ÇOKGEN to data from hundreds of samples, and demonstrate its ability to detect known CNVs at a high level of sensitivity without 

sacrificing specificity, not only for common but also rare CNVs. Furthermore, we show that it performs better than other publicly-available 

methods. The configurability of ÇOKGEN, its computational efficiency, and its accuracy in calling rare CNVs make it particularly useful 

for personalized genomics applications. ÇOKGEN is implemented as an R package and is freely available at 

http://mendel.gene.cwru.edu/laframboiselab/software.php. 

1. Introduction  

Identification of DNA variants that contribute to disease is a central aim in human genetics research and has 

immediate applications in personalized genomics. Pinpointing these causal loci requires the ability to accurately 

assess DNA sequence variation, on a genome-wide scale. In recent years, considerable progress has been made in 

identifying and cataloging single-nucleotide polymorphisms (SNPs) in many populations [1]. Commercial SNP 

microarray platforms can now genotype, with >99% accuracy, over one million SNPs in an individual in one assay 

[2, 3]. 

The discovery of copy number variants (CNVs) as a significant source of variation has complicated the 

identification of genetic differences among humans. CNVs are defined as chromosomal segments, at least 1000 

bases (1 kb) in length that vary in number of copies from human to human [4-8]. Since their discovery, several 

high-profile studies have been published associating copy number variation in the genome with a variety of 

common diseases. Recent examples include Alzheimer disease [9], Crohn’s disease [10], autism [11], and 

schizophrenia [12]. The significance of the gains (copy number greater than two) and losses (copy number less 

than two) that comprise these variants is increasingly evident, and cataloging them and assessing their frequencies 

has become an important goal. 

SNP arrays contain hundreds of thousands of unique nucleotide probe sequences, each designed to hybridize to 

a target DNA sequence. When a DNA sample is properly prepared and applied to the array, specialized equipment 

can produce a measure of the intensity of hybridization between each probe and its target in the sample. The 
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underlying principle is that the hybridization intensity depends upon the amount of target DNA in the sample, as 

well as the affinity between target and probe. Extensive processing and analysis of these raw intensity measures 

yield estimates of some characteristic of the target sequences in the sample - either target quantity [13, 14], base 

composition [15, 16], or both. In copy number inference, the objective is to identify chromosomal regions at which 

the number of copies per cell deviates from two. These include gains and losses.  

There is now a large body of literature describing algorithms to infer copy number from SNP array data. All 

such algorithms address one or more of the three general steps: normalization, raw copy extraction, and CNV 

calling. Normalization is performed on the raw array intensity data in order to be able to compare these values 

fairly, thereby taking into account differences in overall array brightness and additional sources of nuisance 

variation. Raw copy number extraction entails converting the multiple measurements for each genomic site into a 

single raw measure of copy number. The word “raw” here indicates that measurements from surrounding loci are 

not yet taken into account, and the measure is permitted to be non-integer. However, since gains and losses occur 

in discrete segments often encompassing several such loci, true copy number is locally constant. Consequently, the 

final CNV calling step takes advantage of this fact, smoothing or segmenting the raw copy numbers into discrete 

segments of consistent copy number.  

For the Affymetrix platform, the community has largely settled upon quantile normalization [17] as a simple, 

yet effective, normalization method. The next step, raw copy number extraction, typically entails fitting some 

model to raw probe intensity data [18-21]. Methods devoted the final step – making CNV calls from raw copy 

number data – are numerous, and employ various strategies. Three commonly-used strategies are hidden Markov 

models (HMMs) [21, 22], circular binary segmentation [23, 24], and adapted weight smoothing [25, 26]. Although 

these methods appear to be quite different from one another in terms of the computational or statistical model they 

incorporate, at the core of each is an objective function whose optimum solution yields the method’s copy number 

inference for a region. Each objective function is defined by the observed data (raw copy number) and is a function 

of inferred state (copy number call). The sequence of copy number calls (states) that optimizes the objective 

function gives the CNV call for each method.  

In this paper, we describe a software tool, ÇOKGEN, which implements a novel optimization algorithm for 

identification of CNVs from raw copy number, based on an objective function that is composed of several explicitly 

formulated objective criteria. These criteria are carefully designed to quantify the desirability of a CNV assignment 

with respect to various biological insights and experimental considerations. Our general approach is to first apply a 

signal processing method to aggressively flag candidate gains and losses. The objective function is then optimized 

on each region and flanking sequence, yielding final CNV calls and boundaries. Note that the optimization process 

also filters out many candidate regions; that is, complete rejection of a candidate region is quite possible, as it is 

part of the solution space for the corresponding optimization problem. This two-step procedure has the advantages 

of drastically reducing the computational time necessary to find the set of solutions, while identifying precise 

boundaries for each putative CNV.  

A key feature of our method is that it is highly configurable, allowing researchers to define their own objective 

functions and tune parameters to emphasize relative importance of different objective criteria. We demonstrate 

with a simple objective function involving a linear combination of variability, parsimony, and length, which 

performs surprisingly well. We evaluate the performance of our method on Affymetrix 6.0 array data from 270 

HapMap individuals [1]. These samples are increasingly well characterized with regard to CNVs and include 60 

mother-father-child trios. Therefore, they serve as an excellent benchmark data set. We show via systematic in 

silico studies that it compares favorably with two methods that are currently publicly available. These results 

demonstrate the proposed method’s potential to uncover human genetic variation that other computational 

approaches may miss.  

ÇOKGEN is implemented as an R package that works from the raw binary .CEL files produced by the 

Affymetrix protocol.  It performs the steps including intensity extraction, quantile normalization, raw copy 

extraction, and CNV extraction (wherein the user may specify the desired objective function). Its graphical tools 

also allow the user to manually inspect the raw copy number data to gauge confidence in each putative aberration.  
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2. Methods 

ÇOKGEN takes as input the raw .CEL files, and produces a table of inferred gains and losses, genome-wide.  It 

provides a configurable platform for CNV identification, in that it allows users to (i) adjust the parameters of our 

default formulation to tune the behavior of the method to the target application (e.g., aggressive vs. conservative in 

calling CNVs), and (ii) specify their own target objective functions. ÇOKGEN also produces “zoomable” plots of 

raw copy number at the chromosome and sub-chromosome level for manual inspection of identified copy numbers. 

Details for each step of the framework implemented in ÇOKGEN are described in the following subsections.  

2.1.  Intensity Extraction and Normalization of Raw Data 

The raw probe intensities for each array are encoded in the binary .CEL files output by the Affymetrix instrument, 

one file for each array. As a first step, we use the R package affxparser [27] to extract the intensities for each array 

locus from .CEL files. Next, we quantile normalize [17] the intensities across all arrays in the experiment. This 

enables fair comparison of intensities, taking into account systematic non-biological differences such as overall 

array brightness. 

2.2. Raw Copy Number for SNP and CN Markers 

The genomic loci interrogated on the Affymetrix 6.0 array fall into two categories – SNP markers and copy number 

(CN) markers. The array contains 887,876 autosomal CN and 869,224 autosomal SNP markers, for a total of 

1,757,100 (we discard the X and Y chromosomes to avoid gender complications, as well as mitochondrial 

markers). The markers are ordered from i = 1 to ~1.8 million according to genomic coordinates. A SNP marker is 

interrogated by either six or eight probes – half for each of the A and B alleles – and hence produces six or eight 

normalized intensity measurements for each array. Since the vast majority of SNP markers have six probes, we 

present that case here. Let Ai1, Ai2, Ai3, Bi1, Bi2, and Bi3 denote the three A allele and three B allele measurements 

for a SNP marker i. Our aim is to produce allele-specific raw copy numbers Ai and Bi for the two alleles such that 

the distance from the origin in (A, B) Cartesian coordinates produces a raw measure of the copy number at the ith 

marker. Toward this end, we linearly rescale the intensities so that 22

ii
BA   is approximately equal to 2.0, 

regardless of genotype, for markers that are already deemed to have normal copy numbers (i.e., two copies). 

We fit the model 
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via least-squares regression, where )( A
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relationship between B allele copy number and the six probe intensities. The objective here is to capture the 

individual responsiveness of each probe to varying quantities of DNA harboring the A and B alleles. 

Note, however, that fitting the models requires a priori knowledge of the genotypes for the values of true 

allelic copy numbers )( A

i
Z and )( B

i
Z . Affymetrix’s default algorithm is quite precise (over 99.5% accurate) for 

diploid genotyping. Hence, if we were able to avoid samples with duplications and deletions, we could use the 

genotypes generated by Affymetrix as observed values of A and B copy numbers. Obviously, we cannot assume 

knowledge of which samples harbor gains and losses. However, we can utilize basic knowledge on the distribution 

of copy numbers as evidence suggests that gain and loss events almost always appear in the small minority variant 

in the population [28]. Therefore, if we define total probe intensity at marker i as 
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BAPI , we can safely 

assume in general that most of the middle two quartiles, across all samples, of PIi are from individuals with two 

copies of the chromosomal segment that contains marker i. In other words, the individuals that fall into these 

quartiles for the corresponding marker are likely to carry diploid genotypes AA, AB, or BB. Consequently, we fit 
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the model based on these samples’ genotypes. Note that, in rare cases, it is possible that the dominant allele in the 

population may deviate from copy number two. In these cases, the proposed method will still detect the CNV but 

copy number two individuals will appear as having losses or gains at those loci. 

Given the 12 parameter estimates for a SNP marker i, we generate raw estimates of A and B copy numbers for 

all samples by re-applying the model to each sample’s six probe intensities. That is, for a sample with probe 

intensity values Ai1, Ai2, Ai3, Bi1, Bi2, and Bi3, the raw A and B allele copy estimates are Ai and Bi where 
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Finally, using these estimates, we calculate the raw copy number Ri at marker i as the distance from the origin 

in the (A, B)-plane: 22
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Figure 1. Raw copy numbers for sample NA12763 in a chromosome 12 region. In (A), the raw copy numbers, Ri, for the specified region, are 

presented. (B) The identified candidate gain regions on the smooth signal Ri
*
, which is obtained by applying a low pass filter to Ri. The green colored 

markers indicate a “gain” class value assignment, whereas the red markers indicate “normal” class assignment by the edge detection algorithm. (C) 

Optimization of the objective function using simulated annealing makes the final assignments to the markers. 

Note that approximately half of the marker loci represented on the 6.0 array correspond to CN markers. Since 

these markers are each measured by only one probe, they must be treated separately. As above, we consider the 

samples within the middle two quartiles of (normalized) total probe intensity for the marker to be representative of 

individuals with copy number two. Therefore, the scaling factor
i

̂  for CN marker i is the least-squares estimate of 

the parameter 
i

  from the model 

iii
ePI  2       (4) 

fit to the middle two quartiles of the normalized probe intensities PIi. Again, 
i

e  is the error term. The raw copy 

number for a sample with CN probe intensity PIi is then calculated as
iii

PIR ̂ . 

Using these two separate procedures for SNP and CNV markers yields raw copy numbers Ri for all markers i 

from 1 to ~1.8 million. Figure 1A, which is generated by ÇOKGEN, gives an example of raw copy numbers for a 

394-marker region.  
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2.3. Copy Number Variant Detection using Optimization 

Key to our approach is the observation that CNV identification can be formulated explicitly as an optimization 

problem without any requirement of reference models or training data. Based on general knowledge of the 

microarray technology and basic biological insights on copy number variation, we specify various quantitative 

measures that gauge the suitability of copy number assignments based on observed array intensities. We then 

formulate an objective function that captures the trade-off between these measures, so that the minima of this 

function represent optimal CNV assignments. This function is characterized by user-defined parameters, allowing 

the user to tune the performance of algorithms based on the requirements of the specific application (e.g., 

minimizing false positives due to the cost of experimental verification vs. minimizing false negatives to capture 

existing variation comprehensively). 

Formally, the objective of CNV identification is to find a mapping S: {1,..., N} → C, where {1,..., N} denotes 

the ordered set of markers for the whole genome and C = {C+, C0, C−} is the set of  the gain, normal and loss 

classes, denoted respectively  as C+, C0 and C−. Thus, our objective is to assign a class value from C to each marker 

on genome based on the Ri values such that the class assignment of consecutive markers and their raw copy 

number estimates are as consistent as possible. 

In next subsections, we introduce the objective criteria that are included in the default objective function 

implemented in ÇOKGEN and the motivation behind these criteria. Researchers may wish to design an objective 

function of their choice, and indeed our software takes the objective function as an argument precisely to 

accommodate this. We describe the function as applied to a chromosome with M markers since each chromosome 

is processed separately. 

2.3.1. Variability in raw copy numbers within each copy class should be minimized 

The Ri for markers in each gain or loss region should be separable from normal regions. Therefore, CNV 

identification lends itself to a clustering-like problem – one of partitioning the Ri’s into three classes so as to 

minimize the internal variability of each class. For a given CNV assignment S, we define the set of markers 

assigned to class c on a chromosome with M markers as })(:},...,1{{)( ciSMic  and  
)(

)(

c

R
ck

k

c






  denotes 

the mean raw copy number for class c. Then, the total intra-class variability induced by this assignment is given by 
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Consequently, a desirable S is expected to minimize )(S  (subject to other constraints). Note that this 

formulation does not make any assumption about the expected raw copy numbers of the markers and therefore is 

robust to any systematic bias that might be encountered in measurement and normalization of Ri. 

2.3.2. Parsimony principle: Observed variability should be explained via minimum number of anomalies 

In general, there are relatively few regions of gain or loss in an individual's genome, relative to normal regions. 

Therefore, the CNV calls should be as contiguous as possible. Motivated by this observation, we formulate the 

parsimony principle as a criterion that seeks to minimize the total number of copy number state changes induced 

by a CNV assignment on the chromosome. Formally, for given CNV assignment S, we define total cut as the 

number of pairs of adjacent markers that are assigned different copy numbers,  




1

1

))1()(()(
M

k

kSkSIS . Here 

I(.) denotes the indicator function (i.e., it is equal to 1 if the statement being evaluated is true, and 0 otherwise). 

2.3.3. Filtering out noise by eliminating smaller regions 

Longer CNVs indicate higher confidence as it can be statistically argued that shorter sequences of markers with 

deviant raw copy numbers are more likely to be observed due to noise. Thus, we explicitly consider CNV length as 
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an additional objective criterion. To do so, we first define a CNV region, r, as a maximal set of contiguous markers 

all assigned to the same copy number state in {C+, C−}, and )(S  denotes the set of all CNV regions. Furthermore, 

we denote the number of markers in the CNV region r by l(r). We then define 
 )(

)(

1
)(

Sr
rle

S


  as an objective 

criterion that penalizes shorter CNVs (e denotes the natural logarithmic base). 

2.3.4. Filtering out noise by eliminating possible false positives 

Candidate CNVs with a median raw copy number much larger or much smaller than two indicate higher 

confidence since a CNV region with median raw copy number close to two is less likely to be valid. For this 

reason, we require that the median raw copy number of a called loss be below a certain threshold ( Tloss) and the 

median for a called gain be above a certain threshold ( Tgain). We define )(S  and )(S  as the set of all CNV 

gain and loss regions, induced by assignment S, respectively. Furthermore, median(r) denotes the median raw copy 

number value of the markers in the region r.  We now incorporate 
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  into the objective function to minimize the effects of the 

noisy signal. Here, Tgain and Tloss are user-defined parameters which basically define the upper and lower limits for 

the raw copy number of markers in the set )(
0

C  (i.e., the set of markers assigned to the normal class). As Tgain is 

increased and Tloss is decreased, candidate regions are penalized more harshly. In our experiments, we use 2.35 and 

1.65 for Tgain and Tloss respectively, since these values provide reasonable performance. 

2.3.5. Putting the pieces together: A single objective function for CNV identification 

We use a linear combination of the criteria above as an objective function. Namely, we define the optimal copy 

number assignment as the mapping S*: {1,…, N} → C = {C+, C0, C−} such that the function 

)()()()()( SkSkSkSkSf 


     (6) 

is minimized at S = S*. We briefly talk about how these parameters are adjusted in section 3.5.  

2.4. Two Phase CNV Identification 

Since the solution space of the optimal copy number assignment problem is exponential in the number of markers 

we require a good initial solution and a heuristic algorithm which iteratively improves the solution. For this 

purpose, we use a two-phase algorithm: (i) we first determine a set of candidate gain and deletion regions via a 

filtering and aggressive edge detection procedure which we consider as an initial CNV assignment, S(0); (ii) we 

employ an iterative improvement based algorithm to adjust the boundaries of duplications and deletions accurately, 

and eliminate false positives. 

In order to identify the boundaries for CNV regions, it is necessary to smooth the raw copy number signal 

since it is highly noisy. We use a simple discrete low-pass filter with filter kernel [1/3; 1/3; 1/3], i.e., the first 

filtered copy number estimate is given by 
3

11)1( 


 iii

i

RRR
R . Applying the filter for a second time, we obtain 
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R . Consequently, introducing an adjustable repetition 

parameter W, we obtain )(* W

ii
RR   as a smooth version of the copy number intensity for a user defined value of W. 

Here, larger W provides smoother signals, thereby eliminating false positives, at the cost of missing true CNVs that 

span a smaller number of markers. For the ÇOKGEN’s default value, we chose W=20, for which we obtain 

reasonable results. Figure 1B demonstrates how the raw copy numbers Ri in Figure 1A is converted into a smooth 

signal *

i
R  using the low pass filter. 
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2.4.1. Identification of Candidate CNV Regions via Edge Detection 

Based on the observation that gains and losses manifest themselves as (respectively up or down) concavities in raw 

copy number of the low-pass filtered data, an edge detection scheme, which we describe below, is a useful tool for 

the identification of initial CNV assignment S(0). Thus, after low-pass filtering, we apply our edge detection 

algorithm on the smoothed signal, first identifying high gradient markers that may correspond to transitions 

between regions with different copy numbers.  For this purpose, we interpolate the discrete signal to obtain a real-

valued function on the continuous interval ]M,0[:R̂ . This task is performed using the built-in splinefun 

function of R language, which performs cubic spline interpolation of given data points. Next, we generate two sets 

of high-gradient markers, denoted Dmax and Dmin, for which the function )(ˆ iR  attains maximum increase and 

maximum decrease, respectively. Specifically, we define 

})1('ˆ)('ˆand)1('ˆ)('ˆM,...,2{

})1('ˆ)('ˆand)1('ˆ)('ˆM,...,2{

min

max





iRiRiRiRiD

iRiRiRiRiD
   (7) 

where )(ˆ iR denotes the derivative of )(ˆ iR  at marker i. These markers are the approximate inflection points of the 

signal )(ˆ iR . 

Now let Qij denote the indices corresponding to the set of contiguous markers on the genome starting from 

marker i and ending at marker j, where i  j. Given the user defined thresholding parameter Tgain (see above), we 

designate Qij as a candidate gain region (i.e., k  Qij, S
(0)(k) = C+) if it satisfies the following conditions: 

1. i  Dmax and j  Dmin 

2. there exists at least one marker p, i   p   j, such that 
gain

)(ˆ TpR   

3. max(Qij  Dmax) < min(Qij  Dmin) 

4. Qij is a maximal set of contiguous markers satisfying the above 3 conditions. 

The first condition ensures that the region starts with a marker with locally maximal positive gradient and 

ends with a marker with locally maximal negative gradient in terms of the raw copy number values. The second 

condition guarantees that the region contains markers with copy number estimates that might indeed correspond to 

a gain. The third condition specifies that the region does not contain any interior concavities, i.e. all maximum 

positive gradient markers in Qij appear before any maximum negative gradient marker in the region. Finally, 

condition 4 ensures that Qij can be enlarged neither at the right nor the left borders. The designation of Qij as a 

candidate loss region is done in a completely analogous manner. 

All markers m that are not included in a candidate loss or gain region are preliminarily designated as 

“normal”, i.e., S(0)(m) is set to C0. As a special case, if a candidate gain/loss region identified by edge detection is 

very close to another candidate region of its type, then we merge these two candidate regions into a single region, 

since they are likely to correspond to the same aberration. 

This procedure gives us an initial CNV identification assignment S(0). As an example, two candidate gain 

regions identified by the edge detection algorithm are presented in Figure 1B. The green colored markers indicate a 

“gain” class value assignment, whereas the red markers indicate “normal” class assignment by the described 

algorithm. Note that, although there are no “loss” class valued markers in the figure, they are colored with blue by 

ÇOKGEN’s visualization tool. 

The initial solution is quite aggressive in the sense that many truly normal (copy number two) markers are 

likely to be placed in the gain or loss classes. To eliminate these false positives and obtain S*, we use an 

optimization-based algorithm to tune the boundaries of candidate gain and deletion regions as discussed in the next 

section.  

2.4.2. Fine Tuning of the Region Boundaries using Optimization with Simulated Annealing 

This phase of the algorithm begins with initial class assignments, S(0), and iteratively improves it with regard to the 

value of the objective function f by making moves in a way to quickly reach an optimum and avoid being trapped 

into undesirable local optima. Note that, while we assume here that S(0)
 is obtained using the edge detection 
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procedure presented in the previous section, the optimization procedure presented in this section can be used to 

refine boundaries generated by any initial segmentation procedure, such as [23, 24].  

For a given copy number assignment S, we define a move as the extension or contraction of a CNV region’s 

boundaries by changing the copy number states assigned to a contiguous group of markers (either inside or outside 

the region) bordering the region. In short, at each iteration of the algorithm, a random number of contiguous 

markers is selected from the right or left boundary of a candidate region )(SQ
ij

  and the corresponding move is 

defined as the assignment of these markers to either the class of neighboring markers (if the selected markers 

belong to Qij) or to Qij’s class (if the selected markers are outside of Qij). The concept of a move is illustrated in 

Figure 2. As seen in the figure, we restrict possible moves to those that can enlarge, shrink, or merge candidate 

aberrant regions, but can never create a candidate region from scratch or divide a candidate region into two 

candidate regions. Indeed, we observe that the average distance between two consecutive CNPs reported by 

McCarroll et al. [28] is 2.11 Mb, indicating that it is unlikely for edge detection to misidentify two disjoint CNVs 

as a single merged CNV.   

We quantify the quality of a potential move in terms of the 

difference between the value of the objective function before and 

after the move, commonly referred to as the gain of a move. The 

gain associated with move ν is defined as )()()( )1()(  tt SfSfv  

where S(t+1) denotes the copy number assignment if the move ν were 

made and S(t) is the current copy number assignment. While it is 

possible to find the move with maximum gain by exhaustively 

searching the valid move set, instead we use a stochastic algorithm 

that is based on simulated annealing [29]. Simulated annealing is 

an iterative improvement heuristic that proceeds by repeated moves 

to improve the quality of the solution. Key to its efficiency is the 

stochastic nature of the selection of moves. At each step, the 

algorithm first randomly chooses a candidate gain or loss region, 

Qij, from the set )(S and then chooses a move v from the set of all 

moves that are validly defined on Qij. If the gain )(v  associated 

with the candidate move is positive, then the move is made. If the 

gain is not positive, the move is still made with a certain 

probability, which is proportional to the gain and declines as a 

function of time in the course of the algorithm. Therefore, 

simulated annealing starts its course with aggressive moves to jump 

out of undesirable local optima, and becomes more conservative as 

the algorithm proceeds, smoothly converging to a locally optimum 

solution. In our application, we set an upper limit of five (in terms 

of number of markers) on the permissible expansion of a CNV 

region. The procedure is repeated until either there is no positive 

gain move left to be done on the current solution or a user-defined 

number of negative gain moves,  , are already done consecutively, 

(for our default, we use 5 ). The mapping obtained at the end of the procedure is reported as S*.  

3. Results and Discussion 

We applied our algorithm to Affymetrix 6.0 array data from 270 HapMap individuals. The HapMap samples are 

divided into African (YRI), Caucasian (CEU) and Asian (CHB/JPT) ethnicities. ÇOKGEN identified a total of 

16739 autosomal CNVs over all the samples, for an average of 62 CNVs per individual. Of the 16739 CNVs, 1033 

are singletons found uniquely in one individual. A recent study by McCarroll et al. [28] identified 1292 autosomal 

copy number polymorphism (CNP) regions in 270 HapMap samples. Nearly 25% of these CNPs were also 

Figure 2. Illustration of the concept of “move” for the 

proposed iterative improvement algorithm. A valid 

move is defined as the reassignment of the class of a 

contiguous group of markers that is within or near a 

candidate CNV region.  At each step of the algorithm, 

a valid potential move is selected randomly and it is 

done if it improves the objective function. If it does 

not improve the objective function, then it is done 

with probability inversely proportional to its cost on 

the objective function. 
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identified by ÇOKGEN The distribution of the CNVs among different ethnicities in the population, as well as the 

overlap and difference in  between the McCarroll et al. study and ÇOKGEN are presented in Table 1. 

 
Table 1. The statistics of CNVs identified by ÇOKGEN. The distribution of identified CNVs by ethnicity is shown on the four left-most columns. The 

comparison of CNPs reported by McCarroll et al. and CNVs identified by ÇOKGEN is shown on the two right-most columns. Here McCarroll ∩ 

ÇOKGEN indicates the counts of CNVs identified by both, whereas McCarroll \ ÇOKGEN indicates the counts identified only by the McCarroll 

study.  

 CEU  YRI  JPT  CHB  Total  McCarroll  

ÇOKGEN  

McCarroll \ 

ÇOKGEN 

Gains  1711  229

5  

985  786  5777  1357 6145 

Losses  3749  370

5  

172

5  

1783  10962  8972 26043 

Total  5460  600

0  

271

0  

2569  16739  10329 32188 

3.1. Trio Discordance as a CNV Detection Assessment Tool 

Although CNVs can arise in a de novo manner, it is believed that at least 99% of all CNVs in an individual’s 

genome are inherited [28]. The 60 mother-father-child trios in the HapMap data set therefore provide an 

opportunity to assess the accuracy of CNV detection algorithms by measuring the rate of Mendelian concordance. 

A CNV in a trio child is said to be Mendelian concordant if it appears in at least one of the parents. Unless the 

CNV is de novo, any discordance is either the result of a false positive call in the child or a false negative call in 

one of the parents (in rare cases, discordance could also result from a parent harboring a duplication and a deletion 

at the same locus but on different chromosomal homologs). Discordance rate, while useful, is imperfect as an 

assessment measure. In particular, it is possible for a CNV identification algorithm to have artificially low 

discordance rates by calling each CNV in a large number of samples. Even if the samples in which a gain or loss is 

called are randomly selected, frequently called CNVs will have a lower discordance rate, simply by chance.  

3.2. Performance of ÇOKGEN in Comparison to Existing Software 

We compared the performance of our algorithm with that of two other software packages. The DNA-Chip 

Analyzer (dChip) [30] is a Windows software package for high-level analysis of gene expression microarrays and 

SNP microarrays [18, 31]. Birdseye [21] is a rare CNV identification tool based on the hidden Markov models. It is 

part of the Birdsuite platform [21] ,which is a fully open-source set of tools to detect and report SNP genotypes, 

common copy number polymorphisms (CNPs), and novel, rare, or de novo CNVs in samples processed with the 

Affymetrix platform. 

ÇOKGEN outperformed both Birdseye and 

dChip in terms of general trio discordance. Overall, 

it has a 26% discordance rate whereas Birdseye and 

dChip demonstrate discordance rates of 37% and 

93%, respectively on the same array data. dChip 

was originally optimized for detecting somatic copy 

number aberrations in cancer cells from earlier 

versions of the Affymetrix platform. Therefore, 

Birdseye and ÇOKGEN’s superior performance 

compared to dChip is not surprising. For this 

reason, we restrict our assessment to ÇOKGEN and 

Birdseye for the remainder of this section. 

As discussed in previous section, the expected 

discordance rate of an algorithm approaches zero as 

it calls a CNV in more samples in a data set of trios. 

Figure 3.  Discordance rate as a function of call frequency strata. For each 

value of sample frequency threshold, the y-axis shows the average 

discordance rate for all copy number calls that are less frequent than the 

threshold. 
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At the extreme, if the algorithm identifies a CNV in all samples, the discordance rate will be zero. Therefore, a 

more precise assessment of accuracy can be achieved by stratifying discordance rate by call frequency. For this 

purpose, in Figure 3, we first examine how the discordance rate changes across call frequency strata for ÇOKGEN 

and Birdseye. As a reference, we also display the expected discordance of randomly called CNVs in this figure. 

Note that discordance rate is plotted for CNVs with frequencies at most the corresponding value on the x-axis. As 

expected, the performance of both algorithms improves when we consider more frequent CNVs. Nevertheless, it is 

clear in the Figure 3 that ÇOKGEN outperforms Birdseye significantly at all strata. Furthermore, for up to a 

frequency threshold of five samples, if the CNV calls were to be done totally at random, it is possible to obtain a 

better discordance rate than Birdseye. Similarly, for more frequent CNVs, (for frequency threshold larger than 150) 

random CNV calling performs better than Birdseye at all strata. However, ÇOKGEN performs consistently better 

than random CNV assignment at all strata which shows its superior performance is not an artifact of the frequency 

of the CNVs it calls. 

Another feature of Figure 3 is Birdseye’s sharper decline in discordance rate as the frequency threshold 

increases. This is likely due to its higher average call frequency as compared to ÇOKGEN. We find that 40% of the 

concordant CNVs identified by Birdseye have a sample frequency larger than 60, whereas only 20% of the 

concordant CNVs identified by our algorithm have frequency larger than 60. Concordant CNVs with sample 

frequency larger than 90 make up 4% of those called by our algorithm as compared to 27% for Birdseye. This 

clearly shows that ÇOKGEN does not achieve its high concordance rate by overcalling a CNV in multiple samples. 

When we analyze the density distribution of the discordant CNVs as a function sample frequency for both 

algorithms, we observe that most of the discordant CNVs for Birdseye are rare whereas more frequent CNVs called 

by our algorithm turn out to be discordant. These two observations clearly show that ÇOKGEN’s performance 

depends less on the sample frequency and demonstrate its ability to accurately detect rare events. 

3.3. Sensitivity comparison across methods 

Trio discordance is a good hybrid measure of sensitivity (recall) and specificity (precision), but these two measures 

cannot be easily decoupled based only on discordance rate. A recent study [32] assembled a “stringent dataset” 

which contains CNVs identified by at least two independent algorithms. The data set contains a total of 808 

autosomal CNV regions reported by the study to be harbored in at least one of the 270 HapMap individuals. We 

use this as a “gold standard” data set in which to evaluate the sensitivity of our method. 

ÇOKGEN detects 725 of 808 (90%) CNVs from the study presented in [32]. Birdseye obtains the best result 

by identifying 760 of 808 (94%) CNVs. dChip achieves an 89% success rate which is comparable to our method. 

Therefore, Birdseye seems slightly more sensitive than ÇOKGEN; however, as shown above, this is likely at the 

cost of a higher false positive rate. 

3.4. Experimental Validation of CNVs not Previously Reported 

To gauge the ability of ÇOKGEN to uncover novel gains and losses, we also compared the CNVs discovered by our 

method with those in the version 6 (November 2008) of Database of Genomic Variants (DGV) [33]. We used 

multiplex ligation-dependent probe amplification (MLPA) [34] to verify some of the CNVs which are not reported 

in the DGV but are identified by ÇOKGEN. The results of these experiments are shown in Table 2. As seen in the 

table, the copy numbers estimated by MLPA for each of these regions are concordant with the predictions of 

ÇOKGEN. 

 
Table 2. MLPA results for some of the copy number variantsidentified by ÇOKGEN, which were not previously reported. 

Chr Sample Bp Start Bp End Length (bp) MLPA Probe Pos. Type MLPA 

5 NA11830 59753489 59816458 62969 59766589 Gain 2.4 

5 NA10846 101261596 101308054 46458 101261461 Loss 1.35 

5 NA12144 101256012 101308054 52042 101279312 Loss 1.18 

6 NA10846 99225525 99249603 24078 99237564 Loss 1.44 
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3.5. Parameter Adjustment 

As explained in section 2.3.5, we have tunable coefficients 


kkkk ,,,  that adjust the relative importance of the 

objective criteria with respect to each other in our objective function. In our experiments, for 


k  and


k , we choose 

large values such as 105 and 106, respectively, to prohibitively eliminate candidate regions that are likely to be false 

positive during the course of the algorithm  (as opposed to filtering them out in a post-processing phase). 

The parameters 


k  and 


k  are used to adjust the apparent trade-off between the “parsimony” and the 

“variability” components of the objective function. Variability favors the genetic diversity on the genome by 

permitting many CNVs. On the other hand, according to the parsimony criterion, the variability in the raw copy 

estimates of markers should be explained via as few CNVs as possible, hence minimizing the number of 

evolutionary events that have had to occur. Without loss of generality, we require that 1


kk  to highlight the 

trade-off between these two criteria. To systematically evaluate the effect of these two parameters on performance 

and determine the best 


k  and 


k  values based on our benchmarking data, we have conducted a series of 

computational experiments on the sensitivity and trio discordance. Note that lower discordance is desirable, while 

we want to maximize sensitivity. In our experiments, we have observed that at 35.0


k  and 65.0


k , trio 

discordance curve reaches a global minimum and sensitivity starts saturating after a rapid improvement. As 


k  is 

increased, ÇOKGEN starts behaving less conservatively, which results in a larger number of identified CNVs and 

improved sensitivity. On the other hand, increased number of CNVs comes with the expense of increased rate of 

false positives and this manifests itself as a decline in the discordance rate from a certain value of 


k (in our case, 

35.0


k ). Based on these observations, we set 35.0


k   and 65.0


k  as our defaults. 

3.6. The Software Package 

Our software package, ÇOKGEN, which is implemented in R, processes each sample individually. When a new 

sample is to be processed, ÇOKGEN first normalizes its probe values to the HapMap distribution, then uses the 

coefficients obtained from HapMap samples to get raw copy numbers for the new sample. Next, candidate regions 

are identified using edge detection and marker class assignments are finalized using optimization with simulated 

annealing. ÇOKGEN is able to output its results in two forms: tabular and graphical. The tabular output is a table 

of CNV entries with columns: sample ID, chromosome number, CNV start base position, CNV stop base position, 

and the CNV type. The graphical output allows the user to visualize the results of our CNV identification 

algorithm. The user can inspect the raw copy signal at any specified part of the genome along with the assigned 

class values, color-coded (examples are shown in Figure 1). Another aspect of the graphical output is the 

visualization of the signals of a family together, in which each member represented by a different plotting symbol. 

This allows the user to see the CNV pattern for the whole family at the same locus of the genome and evaluate the 

algorithm’s trio concordance visually. 

Besides its configurability in terms of tuning of parameters, ÇOKGEN also provides the users with the ability  

to specify  their own objective criteria. With this functionality, users can construct their own objective functions 

that will best suit the characteristics and needs of their own experimental platform and application. 

4. Conclusion 

We have presented a method to detect germline copy number variants from Affymetrix 6.0 SNP Array data. Our 

approach, with its accompanying software, will be useful for researchers querying constitutional DNA for 

association of gains and losses with disease. Indeed, CNVs are emerging as important factors in a growing number 

of diseases. Although in this paper, we test the ÇOKGEN's performance on only Affymetrix 6.0 SNP array due to 

its high genome-wide resolution compared to other commercially-available platforms, our software can be easily 

applied to any platform using different raw copy extraction methods that are suitable for that platform. ÇOKGEN’s 

ability to uncover rare variants is particularly crucial in the context of personalized genomics, as individual-level 

variation may have a significant impact on human disease. The current work shows that the problem of detecting 

CNVs from raw array data may be recast as an optimization problem with an explicit objective function. The 
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objective function chosen here is quite simple and intuitive, but its effectiveness is clear. Our method is wholly 

contained in a freely-available and flexible software package [35] that efficiently processes raw probe-level .CEL 

files to produce lists of inferred gains and losses. The software allows the user to tune parameters for the desired 

specificity-sensitivity balance. With detailed experimental studies on HapMap dataset, we have demonstrated its 

sensitivity to detect both previously-reported and novel CNVs, while keeping a low false positive rate, as 

demonstrated by high Mendelian consistency in trios. 
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1. Introduction 

Synthetic biology is the new frontier of biological engineering.  Instead of incrementally altering 
living organisms, synthetic biologists propose to use biological knowledge, modular biological parts, 
and computer-aided design to quickly develop systems capable of unprecedented biochemical feats.  
Synthetic biology therefore promises dramatic improvements in green chemistry 1, alternative energy 
2, drug manufacture 3,4, and therapeutirs 5. 

There have been numerous recent advancements in synthetic biology.  The need for accuracy 
at the design and simulation stage have inspired dialogue on how to add functional characterizations 
to parts documentation in the Registry of Standard Biological parts 6,7.  In addition, a design strategy -
- constructing networks from quantitatively characterized libraries of diversified components -- has 
been proposed 8.  A synthetic network must be integrated into an engineering chassis.  To this end the 
development of evolved ribosome-mRNA pairs may be the first step towards an orthogonal cellular 
network 9 10 11 12. 

Although scientists have made significant progress in synthetic biology, the field must still 
overcome a number of challenges.  To this end, this session offers novel methodologies in three 
general areas: namely, in designing synthetic systems, in developing novel biological parts, and in 
analyzing complex networks. 

2. Session Papers  

Design principles and development strategies from other engineering disciplines must be adjusted to 
the peculiarities of biological systems.  Ball et al. propose to approach synthetic biology with 
heterogeneous design strategies that are common in other engineering fields.  Shea et al. propose and 
demonstrate a compilation strategy for building iterative arithmetic computers based on biochemical 
reactions.  Ceroni et al. propose a tool to predict the response of circuits, such as a synthetic circuit 
with inducible gene expression.  Tari et al. have developed an automated pathway synthesis method 
that uses knowledge bases and Medline abstracts to automatically synthesize pharmacokinetic 
pathways. 

The design of synthetic systems, of course, is dependent on the availability of well-
characterized biological parts.  Davidson et al. use an emulsion approach in the development of a 
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 2 
library of T7 promoters of varying strength.  Corradin et al. explore the potential of a retrovirus 

HTLV-1 gene circuit as a relaxation oscillator that is deliverable into eukaryotes. 
The complexity inherent in synthetic biology implies the need for sophisticated analytical 

tools.  Ramesh et al. employ graph clustering techniques to detect modularity in highly complex gene 
regulatory networks.  Biasiolo et al. study transcriptional and post-transcriptional networks of 
multiple myeloma samples by measuring the drop in network performance caused by deactivation of 
putative regulatory elements. 
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The concept of co-design is common in engineering, where it is necessary, for example, to determine the optimal partitioning between 
hardware and software of the implementation of a system features.  Here we propose to adapt co-design methodologies for synthetic 
biology. As a test case, we have designed an environmental sensing device that detects the presence of three chemicals, and returns an 
output only if at least two of the three chemicals are present. We show that the logical operations can be implemented in three 
different design domains: (1) the transcriptional domain using synthetically designed hybrid promoters, (2) the protein domain using 
bi-molecular fluorescence complementation, and (3) the fluorescence domain using spectral unmixing and relying on electronic 
processing. We discuss how these heterogeneous design strategies could be formalized to develop co-design algorithms capable of 
identifying optimal designs meeting user specifications. 

1. Introduction 

1.1. The need for co-design of synthetic biology systems 

A major focus in the field of synthetic biology from the field’s inception has been the design of biological “devices” 
[1]. To date, many biological analogs of common electronics parts have been developed. Some notable biological 
devices analogous to those commonly used for electronics system design include logic gates [2-4], asynchronous 
logic components [5],  switches [6-8], oscillators [8-12], memory circuits [13] and most recently genetic counters 
[14]. While these devices have been excellent proofs-of-concept for the application of traditional engineering design 
to the design of biological systems, little progress has been made in the design of larger, more complex, biological 
constructs [15]. This was seen in 2004, when Blue Heron Biotechnology did not receive a single submission to their 
Big DNA Contest, which offered free synthesis of the most “interesting” DNA construct of over 40kb in length 
(http://tinyurl.com/bigdna).  

The designs of early artificial gene networks were restricted to a single design domain: protein-DNA 
interactions regulating transcription [6,10,16]; intra-molecular interactions within RNA molecules [3,17-20], or even 
interaction between DNA molecules [21,22]. More recent publications however, report the combined use of multiple 
domains in a single design. The genetic counter [14] is a good example of a heterogeneous design combining 
circuitry operating in different domains. Two separate methodologies were used, resulting in counter devices that, 
while performing the same type of logic (being able to count to either two or three), were appropriate for different 
uses. The riboregulated transcriptional cascade (RTC) counter utilized a fast transcriptional cascade for counting. 
The DNA invertase cascade (DIC) counter used recombinases upstream of inverted promoters to count. Due to the 
dynamics of DNA recombination, these counters activate more slowly, and as such can be used only for the 
counting of low-frequency events. It is anticipated that future heterogeneous designs will also include non-biological 
elements, as well as biological circuits. One such example of this is an AND gate used to regulate protein folding, 
which utilized UV light and ATP as stimuli [23]. By including non-biological elements, the design space is 
increased, allowing for the design of more complex, and potentially better performing, constructs. In the AND gate 
example above, the wavelength and intensity of the UV light is an additional parameter that can be used to optimize 
the system. Similarly, one approach described here uses advanced detection to expand the list of viable reporters. 

As synthetic biology matures, it becomes necessary to develop more sophisticated design strategies. The design 
of an industrial application calls for a systematic comparison of different possible designs meeting the user 
specification in order to identify an optimal design maximizing one or several figures of merit. Besides the design 
correctness (the design does what it is supposed to do), its performance, development cost, manufacturing cost, or 
reconfigurability are other criteria that an engineering team may need to optimize. When developing electronic 
systems, an important design decision is the partitioning of features implemented in hardware and those 
implemented in software, which is known as the hardware/software co-design problem [24,25]. Software ensures 
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rapid time to market, design flexibility, and runs on inexpensive processors produced in large volumes. However, 
the development of application-specific circuits is needed when software running on generic processors cannot meet 
the required performance. The hardware/software co-design problem illustrates the issues arising when 
heterogeneous technologies are combined into a system. At a very high-level, the design of synthetic biology 
applications includes a wetware component (the living organisms), but also a hardware component represented by 
the instrument and software used to acquire and process signals generated by the biological component of the 
system. At a higher resolution, the wetware component is itself heterogeneous since the transcriptional, translational, 
and proteomic components of this machinery represent different design domains.. By leveraging methods acquired 
by electrical engineers to develop heterogeneous systems, the complexity, efficiency, and flexibility of synthetic 
biology applications will likely be dramatically increased, while reducing the production costs of these systems.  

1.2. An environmental sensor as test case for co-design analysis 

In the field of biosecurity there is an increasing recognition of the need for systems that can rapidly detect pollutants, 
contaminants, and biothreat agents (pathogenic bacteria, viruses and toxins) in food, agricultural products, 
pharmaceuticals, and environmental samples. For example, the safety of the US food supply is an ongoing concern 
because of potential impacts of contamination on both public health and the US economy. In addition to inadvertent 
contamination, concerns about a bioterrorism event such as the intentional introduction of pathogens and/or toxins, 
brings a new dimension to this problem. 

Cells possess innate abilities that make them ideal for environmental sensing applications. Specifically, they are 
inherently able to detect small concentrations (parts per billion) of chemicals (or combinations of chemicals) in their 
environment and respond to it, usually with an amplified signal. Cells can be programmed by identifying three 
functional layers: an input layer, an information processing layer, and an output layer [26]. This abstract 
representation of the environmental sensing chain can help design environmental sensing devices relying on 
biological systems for transforming chemical information into electrical signals that can be recorded and processed 
by computer systems. For instance, a situational awareness monitoring system will rely on a network of 
geographically dispersed sensing units communicating chemical data to a central server or to personnel operating in 
their vicinity. In this scenario, the sensing units should be capable of some basic processing of chemical data in 
order to communicate informative data.  

In many cases, the presence of individual molecules in the environment is not informative while the 
simultaneous presence of two molecules can provide valuable information worthy communicating. In the field of 
defense, many chemical agents and explosives are made from combinations of commonly available industrial 
chemicals. For example, mustard gas can be created with thiodiglycol, an industrial solvent used in dyes and other 
applications, and phosphorus trichloride, a common industrial chemical used to manufacture a wide range of organic 
phosphorous compounds. Rapid field detection of such combinations could be an important application of sensing 
devices [27]. In ecology, it is well established that levels of heavy metals can be below the safe threshold 
individually, but combine to be lethal in fish [28]. In human health, it was recently shown that the common 
herbicide Roundup is more toxic in the presence of its supposedly inert adjuvants, and has negative effects in 
pregnant women even at “safe” levels of the active ingredient [29]. These findings may lead to the elucidation of 
further chemicals that are safe alone, but unsafe together. Detection of such combinations could become important 
to assess environmental or security threats. 
 

Table 1. Logic table of the environmental sensor 

Input 1 Input 2 Input 3 Output 1 Output 2 Output 3 
‐  ‐  ‐  ‐  ‐  ‐ 

‐  ‐  +  ‐  ‐  ‐ 

‐  +  ‐  ‐  ‐  ‐ 

‐  +  +  ‐  +  ‐ 

+  ‐  ‐  ‐  ‐  ‐ 

+  ‐  +  ‐  ‐  + 

+  +  ‐  +  ‐  ‐ 

+  +  +  +  +  + 
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The following sections describe three possible methods for implementing a cell based system designed to be 

able to detect the presence of each pair of three different chemical inputs and produce three different electronic 
outputs in response. Formally, the system can be specified by a truth table (Table 1). These designs differ in where 
the logic is implemented in the system (Figure 1). In the first option, hybrid promoters that contain binding sites for 
transcription factors responsive to the inputs are used to control the expression of fluorescent proteins. Only when 
the proper inputs are present will reporter genes be expressed, thus the logic occurs at the transcriptional level. The 
second option is to implement the logic at the protein level. This is accomplished by coupling each input to the 
expression of a non-fluorescent fragment of a fluorescent protein. Only when the two proper inputs are present will 
the fragments associate to generate a fluorescent signal. A final option is to embed the logic in the electronic layer. 
In this case each input directly activates the expression of one of three different fluorescent proteins and the inputs 
present are determined by processing the pattern of fluorescence that is obtained. For all three scenarios, the 
fluorescent proteins used were cyan (CFP), yellow (YFP), and red (RFP), which are all easily separated from each 
other. 
 

 
Figure 1. Implementation of logic in different design domains. The figure gives an overview of how each approach processes the environmental 
inputs. Wavy yellow lines indicate signal transduction, and yellow boxes highlight where the logic occurs. The details of each design are 
presented in Figure 2, Figure 3, and Figure 4 

2. Solution 1: Hybrid Promoters 

2.1. Theoretical foundation 

One approach is to embed the design logic into transcriptional control with hybrid promoters. Since the input to the 
system is a set of small molecules, the first step is to sense the presence of the small molecule in the environment. In 
the described situation, these small molecules are ligands capable of binding to specific transcription factors. The 
sensor function is therefore accomplished by constitutive expression of the corresponding transcription factors. This 
sensing mechanism is conserved through each approach.  Once bound by its ligand, the behavior of each transcription 
factor is altered. For example, some ligand-bound repressors can no longer bind to their corresponding promoters 
and exert their repressive properties. Thus, each transcription factor can be thought to switch on or off depending on 
the presence or absence of ligand. 

In order to implement the design logic, the on/off state of these transcription factors must be processed. The 
hybrid promoter approach accomplishes the logic by controlling expression of a reporter gene through a promoter 
that responds to the state of pairs of transcription factors. That is, promoter A responds to the on/off state of 
transcription factors 1 and 2, promoter B to transcription factors 2 and 3, and promoter C to transcription factors 1 
and 3. Each promoter responds only when both transcription factors have been toggled by the presence of the ligand 
molecule. The name “hybrid promoters” derives from the fact that they are engineered to respond to multiple 
transcription factors. 

As a more detailed explanation, let us assume that inputs 1 and 2 are repressor proteins that repress only in the 
absence of their respective ligand. With no ligand present, both transcription factors effectively repress transcription 
of the reporter gene controlled by promoter A. In the presence of ligand 1 only, transcription factor 1 loses its ability 
to bind to promoter A, but transcription is still blocked by transcription factor 2. Likewise, if only ligand 2 is 
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present, transcription factor 1 continues to block transcription of the reporter gene. However, in the presence of both 
ligand 1 and ligand 2, neither transcription factor can bind to promoter A, and the reporter gene is freely expressed. 

The transcription factor does not have to be an inducible repressor to accomplish the appropriate logic. There 
are 4 possible transcription factor responses: (1) the transcription factor represses only in the absence of its ligand, 
(2) the transcription factor represses only in the presence of its ligand, (3) the transcription factor activates only in 
the absence of its ligand, and (4) the transcription factor activates only in the presence of its ligand. Only options (1) 
and (4) are viable for implementing the design logic because they do not invert the signal. For example, a positive 
signal from the presence of a ligand would become a negative signal if the induced transcription factor transitioned 
from an inactive repressor (therefore allowing transcription) to an active repressor (therefore blocking transcription). 
Put another way, the positive (+) input signal would be inverted by activation of the repressor (-) to block 
expression from the promoter (+/- = -). On the other hand, the positive (+) input signal would be conserved by 
inactivation of the repressor (+) to allow expression from the promoter (+/+ = +), which preserves the signal. 

Figure 2 illustrates an implementation of the logic using specific transcription factors and ligands. The rationale 
behind the choice of specific parts is described below. 

2.2. Proposed design 

A number of features need to be considered in the selection of appropriate inducible transcription factors. These 
features include: high range of control, compatibility with other transcription factors, and prior use in other 
applications. High range of control is necessary to ensure that the final signal is detected over the cellular noise. 
Compatibility with other transcription factors refers to the design of the actual promoter. For example, activators 
frequently must bind to specific promoter regions and thus may prevent the use of a second transcription factor that 
must bind an overlapping site. Last, well characterized transcription factors that have been widely used in other 
designs are preferred. 

In synthetic biology, the list of commonly used genes is small and thus selection of appropriate parts is 
restricted. The first two appropriate transcription factors that match the criteria are LacI, which is inducible by 
isopropyl β-D-1-thiogalactopyranoside (IPTG), and TetR which is inducible by anhydrotetracycline (aTc). Both 
have operator sites that can be effectively placed in multiple locations to prevent interference with other 
transcription factors and both have been shown to have a high range of control [30,31]. Furthermore, hybrid 
promoters under the simultaneous control of LacI and TetR were described previously [31] which matched our logic 
criteria. 

The selection of the third transcription factor is not as straightforward. LuxR is an attractive candidate. While 
LacI and TetR induce transcription by derepression in the presence of their respective ligand, LuxR activates 
transcription in the presence of its ligand acyl-homoserine lactone (AHL). LuxR has a high range of control for the 
wild type promoter [32]; it is described extensively in the literature, and it is commonly used in synthetic biology 
applications [26,33-35]. Although previous attempts to design hybrid promoter responding to LuxR/LacI or 
LuxR/TetR proved unsuccessful [31], a careful investigation of these LuxR hybrid promoters shows that none of 
them had spacing between the -10 box and the LuxR binding site that was identical to the wild type promoter. Given 
that this spacing has been shown to be important to ensure proper regulation of gene expression [32], we predict 
LuxR hybrid promoters can be redesigned if the suitable spacing is used. 

The first promoter for implementing the environmental sensing device uses the sequence of the promoter A90 
responding to LacI/TetR [31]. For the promoters responding to LuxR, we modified the wild type promoter for luxI 
and added lac and tet operators, respectively, downstream of the -10 box. Specifically, we replaced the sequence 
downstream of the -10 sequence in the wild type promoter with sequence downstream of the -10 box taken from 
promoters successfully responding to LacI and TetR [31]. Since the designed promoters already contain sufficient 
spacing downstream of +1, the 3 full sequences were assembled by simply adding a ribosome binding site sequence, 
a coding sequence for three different fluorescent proteins (CFP, YFP, RFP), and a terminator. Figure 1 shows the 
specific combinations of hybrid promoter and fluorescent reporter gene. 

388



 

 
Figure 2. Hybrid Promoter Approach. The system logic is implemented in the control of transcription of 3 reporter genes. See text for detailed 
explanation of how the logic is processed. Orange indicates the aTc signal, purple the IPTG signal, green the AHL signal, blue the CFP signal, 
red the RFP signal, and yellow the YFP signal. Dots indicate small molecule inducers, thick solid arrows indicate promoters with color-coded 
operator boxes inside and adjacent boxes indicating genes, thick black lines indicate production of protein from a gene, circles indicate proteins, 
dotted lines indicate fluorescence measurement, and the gray box indicates where the logic occurs. 

 

3. Solution 2: Fluorescence complementation 

3.1. Theoretical foundation 

While transcriptional logic is prevalent in the majority of synthetic biology constructs, logic can also be performed 
in the protein domain. As previously reported, the anti-parallel Leucine zipper mediated direction of protein 
reassembly allows for the reconstitution of intact and functional GFP [36]. Further research has shown the ability to 
adapt protein reassembly of fluorescent proteins to visualize protein-protein interactions in vivo [37,38]. These 
methods describe “Bimolecular Fluorescence Complementation” (BiFC) which uses non-fluorescent fragments of 
fluorescent proteins bound to separate functional proteins; when interaction between these proteins takes place the 
non-fluorescent pairs combine to produce a fluorescent complex. In this second solution, inputs are sensed in the 
same manner as in Solution 1. However, here the promoters respond to single transcription factors and therefore a 
single environmental input. Hence, they simply transmit the signal to the protein domain. The information is 
processed by coupling non-fluorescent halves of fluorescent proteins. This makes an “AND” gate from the pairing 
of non-fluorescent halves to produce a final product of fluorescence dependent on the promoters engaged. The logic 
comes not only from which fragments are produced but from the fact that only certain combinations of fragments 
will produce a detectable fluorescence output. Fragment 1 (N-terminal) of GFP combines with fragment 2 (C-
terminal) of GFP to form functional GFP, in contrast fragment 1 (N-terminal) of GFP cannot combine with fragment 
1 (N-terminal) of CFP. 

3.2. Design 

In order to implement this method of logic processing, several factors must be considered. Dissection sites of CFP, 
YFP, and a monomeric form of DsRed, a Red Fluorescent Protein variant that yield two non-fluorescent halves 
capable of reassembly into fluorescent proteins have been previously reported [37]. CFP is split into two fragments 
at amino acid 155 yielding a CFP 1-155 (N-terminal) fragment and a CFP 155-239 (C-terminal) fragment, 
subsequently referred to as CFP-N and CFP-C respectively. Similarly DsRed and YFP are split into the following 
fragments: RFP-N (residues 1-168), RFP-C (residues 169-225), and YFP-N (residues 1-154). The C-terminal of 
YFP is not required, because YFP-N can combine with CFP-C to form a species that produces yellow fluorescence 
[37,38].  
These fragments will be cloned downstream of three inducible promoters. Fragments CFP-N and RFP-C are placed 
under the control of LacI (inducible by IPTG), Fragments YFP-N and RFP-N are placed under the control of LuxR 
(inducible by AHL), and the final fragment CFP-C is placed under TetR (inducible by aTc) control. As shown in 
Figure 3, the expected outputs from this system are dependent on which fragments are expressed. Some factors 
which play a role in total fluorescence are: the concentration of the inducer, the relative strength of promoter, and 
the fragment complementation. 
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Figure 3. Fluorescence Complementation Approach. The system logic is implemented in the complementation of 3 fluorescent proteins. See text 
for detailed explanation of how the logic is processed. Orange indicates the aTc signal, purple the IPTG signal, green the AHL signal, blue the 
CFP signal, red the RFP signal, and yellow the YFP signal. Dots indicate small molecule inducers, thick solid arrows indicate promoters with 
color-coded operator boxes inside and adjacent boxes indicating genes, thick black lines indicate production of protein from a gene, circles 
indicate proteins, dotted lines indicate fluorescence measurement, and the gray box indicates where the logic occurs. 
 

Logic circuit processing may be carried out by protein reassembly mediated by inducible promoters. For future 
experimentation, synthetically designed proteins for binding novel small and macro molecules could be incorporated 
into the system outlined here for logical processing. 

 
Table 2. Previously reported fluorescent outputs generated by complementation of the different non-fluorescent protein fragments resulting in 

stable fluorescent protein complexes (given in color and name) or unstable/incompatible fragments (given by N/C “no color”) [37]. 
 

Fragment CFP-N CFP-C RFP-N RFP-C YFP-N 
CFP-N N/C BLUE N/C N/C N/C 
CFP-C BLUE N/C N/C N/C YELLOW 
RFP-N N/C N/C N/C RED N/C 
RFP-C N/C N/C RED N/C N/C 
YFP-N N/C YELLOW N/C N/C N/C 

 

4. Solution 3: Unmixing of fluorescence spectra 

4.1. Theoretical foundation 

For the simultaneous detection of 3 (or fewer) fluorescent proteins it is possible to find fluorescent proteins with 
suitably separated excitation and emission spectra, such that the 3 colors can be distinguished by the use of optical 
band-pass filters [39]. However, this becomes difficult, if not impossible, as the number of fluorescent proteins 
increases. Therefore, a spectral unmixing approach was developed for the detection of multiple fluorescent signals 
[40-42]. The use of spectral unmixing also allows the use of a wider range of fluorescent proteins, which is of great 
value when it is necessary to use fluorophores with similar properties such as maturation and degradation times.  

Spectral unmixing relies on the a priori collected emission spectra of the individual fluorescent proteins in the 
system to determine which fluorophores have contributed to the observed signal. The experimental output spectrum, 
F, can be described by the system of linear equations:  

 
F  XA,  (1) 

 
where the m data points in the output spectrum, F, and the weights of the n individual fluorophores, A are column 
vectors and Xij is the ith point in the spectrum of fluorophore j, 
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If m > n, Eq. 1 describes an overdetermined system, which can be solved for A by a least squares fitting algorithm to 
minimize F  XA .  

4.2. Design 

Biologically, spectral unmixing offers the simplest approach for implementing the logic required to detect 
combinations of environmental species, as it does not require any interactions between the various promoters or 
protein products. As illustrated in Figure 4, each input ligand triggers the production of a single fluorescent protein. 
The sensing mechanism is again the same as Solution 1. In this case, the input signal is transmitted all the way to the 
spectral detection via single-operator promoters controlling production of single fluorescent proteins. The various 
fluorescence components can be extracted by use of Eq, (1), and the concentrations of each chemical can be 
determined. 

 
Figure 4. Spectral Detection Approach. The system logic is implemented in the unmixing of the measured spectra. See text for detailed 
explanation of how the logic is processed. Orange indicates the aTc signal, purple the IPTG signal, green the AHL signal, blue the CFP signal, 
red the RFP signal, and yellow the YFP signal. Dots indicate small molecule inducers, thick solid arrows indicate promoters with color-coded 
operator boxes inside and adjacent boxes indicating genes, thick black lines indicate production of protein from a gene, circles indicate proteins, 
dotted lines indicate fluorescence measurement, and the gray box indicates where the logic occurs. 
 

4.3. Preliminary data 

A spectrofluorimeter is required to collect the needed data to unmix the contributions of multiple fluorescent 
proteins. For the experiments reported here, a NanoDrop 3300 (Thermo Scientific, Wilmington DE) was used. The 
NanoDrop System uses a small sample volume of 2 L. It contains three light-emitting diodes (LEDs) for 
fluorescence excitation: UV (peak emission at 365 nm), blue (470 nm) and white (460-650 nm). The collected 
fluorescence is dispersed over a 1024-pixel linear CCD, and allows the collection of wavelengths from 400-750 nm 
with a 4 nm resolution. Because the system does not include any optical bandpass filters, it is necessary to obtain 
spectra for blank samples, cells similar to those being used in the experiment but lacking any fluorophores. 

Preliminary experiments were performed with four constitutively expressed fluorescent proteins: EGFP [43], 
acGFP [44], vYFP [45], and Citrine [46], each in a separate cell-line, to test the ability of the spectral unmixing 
algorithm to separate fluorescent proteins with similar emission spectra. Figure 5 presents the reference spectra for 
these four fluorophores. The spectra show that this combination of fluorescent proteins can be regarded as a worst-
case scenario, as none of the four could be distinguished with the use of optical band-pass filters. 

 To account for differences in expression levels of the four different fluorescent proteins, the fluorescence 
spectra of the four cell-lines were normalized by their optical absorbance at 600 nm. The normalized spectra were 
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then used as the inputs to the unmixing algorithm, so that the extracted coefficients, such as those recorded in Table 
3, are also in units of absorbance. 
The four cell cultures were then mixed at known concentrations, and the resulting spectra shown in Figure 5b-f were 
analyzed with the spectral unmixing algorithm in order to extract the components of the mixtures. The measured 
optical densities at 600 nm for the existing cells in each mixture along with the extracted values are given Table 3. 
In all cases, there were no false-negatives. There are some false positive results, however, but their coefficients 
remained small (value less than 0.006).  

 
Figure 5: Experimentally measured emission spectra. (a) Emission profiles of cell cultures expressing 1 of the 4 fluorescent proteins. (b-f) 
Collected fluorescence spectra for mixtures of cell cultures expressing (b) EGFP and vYFP, (c) acGFP and Citrine, (d) acGFP and EGFP, (e) 
Citrine and vYFP, and (f) acGFP, Citrine, EGFP, and vYFP. 
 

There are several possible explanations for the observed discrepancies between the measured and extracted 
optical densities of the true positives listed in Table 3. First, the small sample size used (2 L) could mean that the 
cell concentrations in the measured sample did not completely reflect the concentrations of the stock solution. Also, 
as can be seen in Figure 5a, there is a sharp peak visible in the fluorescence spectrum of all of the fluorophores 
except acGFP at ~500 nm. This peak appears to be part of the spectrum of the blue LED used for exciting all of the 
fluorescent proteins, and most likely contributes to some of the errors in the extracted contributions.  
 
Table 3: Measured and Extracted optical densities of mixtures of cells expressing a single fluorescent protein. Gray boxes indicate measured 
values of 0. 

OD600 
Mix1 Mix 2 Mix 3 Mix 4 Mix 5 
Meas. Fit Meas. Fit Meas. Fit Meas. Fit Meas. Fit 

acGFP 0 0.003 0.050 0.099 0.046 0.040 0 0.004 0.030 0.062 
Citrine 0 0.006 0.070 0.039 0 0.002 0.081 0.014 0.027 0.017 
EGFP 0.053 0.040 0 0 0.048 0.060 0 0 0.032 0.011 
vYFP 0.048 0.029 0 0.006 0 0 0.082 0.100 0.027 0.037 
 

5. Discussion 

5.1. Heterogeneous solutions to a synthetic biology design problem 

We have proposed three distinct solutions to a specification, namely the detection of distinct combinations of 
chemical signals. The first proposed solution uses a set of three hybrid promoters, performing the logic at the 
transcriptional level. This transcriptional solution would quickly become intractable if the number of input chemical 
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signals is increased. While we have shown a potential solution to the problem for three input signals, the number of 
parts needed to detect combinations from four possible inputs would require more parts than are currently available.  

The second proposed solution still uses biology for the entirety of the logic, but does so in the protein domain. 
By moving the logic into the protein domain, the genetic circuitry is simplified. This allows the circuit to more 
easily be combined into a larger system, since the potential for cross-talk is decreased. Even though strategies to 
split fluorescent proteins still remain to be explored in a more systematic way, there are likely a limited number of 
fluorescent proteins that can be used in this context. So, the issue of the limited number of parts available faced in 
the transcriptional domain is also relevant in the protein domain. The assembly of the fluorescent proteins will 
increase the activation time of the system which can be an advantage or an inconvenience depending on the specific 
application of the environmental sensing device. In some cases, a fast response will be needed. In other cases, a 
longer maturation time can be used to time average the device response. 

Finally, a third solution relies on the unmixing of fluorescence spectra for identification of molecules. In this 
case, biology is being used to generate the output signals, but the logic is being done outside of the biological 
domain. By implementing the logic outside of the biological system, the number of molecules possible to distinguish 
between is greatly increased, limited only by the number of transduction mechanisms and reporters. Also, the use of 
simpler biological circuits in this implementation circumvents any possible difficulties that may arise from 
incompatibilities between biological parts in the other two design schemes. 

As we proceed with this project by physically implementing and characterizing each of these approaches, we 
will meticulously observe the differences in the difficulty of implementation and the performance of each design. As 
a result of unbalanced component behavior, each approach is likely to be improved by tweaking such elements as 
promoter strength, translational efficiency, degradation, etc. Thus, the cost and benefit of iterative designs will be 
evaluated as well. By further considering the difficulty of the design process for each solution, we will be able to 
holistically compare the strengths and weaknesses of the different approaches. Some comparative measures are 
discussed below. At this stage, it is important for the design team to acknowledge that there are multiple solutions to 
design problems and that the solutions can be implemented in different design domains. Just like the design of 
electronic systems is often a heterogeneous combination of hardware and software solutions, the design of a 
synthetic biology device can include multiple domains for the wetware component of the design as well as the 
hardware and software used to integrate the information originating from the design wetware component into a 
larger system.  

A possibility that has not been considered in this paper is the combination of solutions implemented in different 
design domains. Are there solutions that could combine hybrid promoters and fluorescence complementation? Or 
could spectral unmixing be combined with fluorescence complementation to achieve better performance? Even 
though this manuscript proposes three distinct solutions, the universe of possible solutions is large and difficult to 
explore manually.  

5.2. Enabling co-design of synthetic biology application by design automation  

In order to compare different solutions to a design problem, it is necessary to define various figures of merits that 
can be used to quantitatively compare different solutions. Sensitivity, dynamic range, response time, robustness, or 
noise can be used to characterize the design performance. The development cost could be estimated by a function of 
the number of previously characterized components that can be reused in a new design. For instance, a solution 
requiring the development of a new promoter is expected to be slower and more expensive to implement than a 
solution relying on well characterized genetic parts such as the fluorescence unmixing approach. The manufacturing 
or production cost may also be a factor. The development of Solution 3 is the simplest but it relies on a more refined 
optical components that would increase the size and manufacturing cost of the device. This option may not be 
practical if millions of sensing devices needed to be distributed over large geographic regions to detect facilities 
manufacturing chemical weapons. Each specific application will require optimizing these metrics using multi-
objective optimization algorithms [47,48]. 

Formalizing the representation of the design space is necessary to automate its exploration while searching for 
optimal designs. Fortunately, the wetware component of the system can be represented by the sequence of the 
synthetic DNA molecule implementing the design. Our group recently proposed to use formal languages to  
represent the structure of synthetic DNA sequences [49]. More recently, this original syntactic model was 
augmented with a semantic model used to predict the behavior encoded in a DNA sequence. By implementing this 
formalism in a logic programming language like Prolog [50], we were able to systematically explore a design space 
by generating structurally correct DNA sequences, compiling them into SBML files describing their behavior, and 
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simulating these files to identify solutions meeting a set of specification. Defining a distance in the design space, 
would make it possible to use optimization algorithms instead of a systematic exploration of all possible designs. In 
addition, it would be necessary to represent the non-DNA part of the designs by augmenting the language to 
represent detection systems and inputs.  

The field of Synthetic Biology is growing by systematically adapting engineering practices to the design of 
biologically-inspired systems. The development of practical synthetic biology devices will require a system-level 
analysis and a co-design approach that have yet to be explored. In this paper, we have shown that the design space of 
a real-world device is large and may combine components developed in heterogeneous design domains. Finding 
optimal designs will require the use of design automation tools [51] like GenoCAD [52]. By adapting co-design 
methods used in more mature engineering fields [25,53,54], synthetic biology will fulfill its promise in the form of 
large, “interesting” circuits that were called for in the Big DNA contest . 
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Network analysis has emerged as a powerful approach to understand complex phenomena and organization in social, technological 
and biological systems. In particular, it is increasingly recognized the role played by the topology of cellular networks, the intricate 
web of interactions among genes, proteins and other molecules regulating cell activity, in unveiling the biological mechanisms 
underlying the physiological states of living organisms. In this study, critical analysis of network components has been applied to 
inspect the transcriptional and post-transcriptional regulatory networks reconstructed from mRNA and microRNA expression data of 
multiple myeloma (MM) samples. Specifically, the importance of a gene as a putative regulatory element has been assessed 
calculating the drop in the network performance caused by its deactivation instead of quantifying its degree of connectivity. The 
application of critical analysis to transcriptional and post-transcriptional regulatory networks allowed inferring novel regulatory 
relations potentially functional in multiple myeloma. 

1. Introduction 

Systems biology elevates the study from the single entity level (e.g., genes, proteins) to higher hierarchies, such 
as entire genomic regions, groups of co-expressed genes, functional modules, and networks of interactions. The 
functioning and development of a living organism is controlled by the networks of relations among its genes (as well 
as proteins and small molecules) and the signals regulating each gene (or set of genes), therefore understanding how 
elementary biological objects act together and interact in the general context of a genome is fundamental to the 
advancement of science. As such, the scientific attention is focusing more and more on the critical levels of 
biological organization and their emerging properties rather than on the single components of the system [1]. 
However, despite the significant advances in genome sequencing and in transcription, protein and metabolite 
profiling, still significant limitations hamper the global understanding of regulatory phenomena. The control of 
biochemical processes is hierarchical and originates at the level of transcription (induction-repression mechanism 
and mRNA degradation), moving on to translation (protein activation and proteolysis) and enzyme activity through 
signaling cascades. The presence of several feedback loops among these regulatory processes makes their 
organization and functioning very complex. This level of complexity can, at least in part, be addressed using 
methods that allow the reverse engineering and the reconstruction of regulatory networks. In this context, the 
availability of high-throughput genomic data, coupled with bioinformatics tools for their analysis, represents a 
promising starting point in the identification of molecular interaction networks which will allow turning genomic 
researches into accurate biological hypotheses. 

Microarray experiments have been extensively used to detect patterns in gene expression that stem from 
regulatory interactions and lately have been applied to analyze the transcriptional activity of microRNAs (miRNAs), 
i.e. small non-coding RNAs that regulate the post-transcriptional mRNA stability by binding 3’ target sites. The 
availability of a sufficient number of matched miRNA-mRNA expression profiles represents a further opportunity to 
deepen the study of transcriptional regulation. However, standard methodologies for the analysis of gene expression 
profiles, which aim at identifying relevant genes from the statistical analysis of the microarray signals, seem to be 
severely limited in unveiling the mechanisms governing the transcriptional cascade. Although proving their 
effectiveness e.g., in identifying expression signatures for cancer diagnosis, most computational tools have fallen 
short of representing a systematic method for understanding how the transcriptional regulation process takes place. 
                                                             
* These authors equally contributed. 
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Bioinformatics and computational biology need to overcome this limitation and develop approaches to identify 
regulatory networks, through the integration of multiple types of data. These computational methods should help 
deciphering how the transcribed elements of genomes impact the molecular mechanisms of functional utilization. 

Network analysis has emerged as a powerful approach to understand complex phenomena and organization in 
social, technological and biological systems [2-4]. In particular, it is increasingly recognized the role played by the 
topology of cellular networks, the intricate web of interactions among genes, proteins and other molecules regulating 
cell activity, in unveiling the function and the evolution of living organisms [5-9]. Gene networks, in this respect, 
present a unique opportunity to employ this new type of approach [10-11]. In general, transcriptional regulatory 
networks are structures where the nodes are the genes and the edges are the interactions. A gene can be considered 
the source of a direct regulatory edge if it encodes a molecule with known regulatory function. Algorithms to infer 
the structure of gene-gene relationships take as primary input the data from a set of microarrays measuring the 
mRNA expression levels in different physiological states and use either classical statistics (e.g., Pearson 
correlation), concepts from the information theory (i.e., the mutual information as in ARACNe (Algorithm for the 
Reconstruction of Accurate Cellular Networks [12]) and CLR algorithms [13]) or probabilistic models (as in the 
Bayesian networks [14]) to reconstruct the network of transcriptional interactions. Once reconstructed, a gene 
regulatory network can be inspected and analyzed at different levels, ranging from the single gene to groups of 
genes (sub-networks) and to the whole network. Putative regulatory targets of a gene of interest can be searched at 
the single gene level with the goal of identifying previously unknown targets that can be the focus of subsequent 
experimental validation. At a higher level, the presence of groups of genes organized in sub-networks may suggest 
novel interactions and shed light on regulatory modules involving these genes or their common targets. 
Nevertheless, both strategies rely on prior knowledge to select the genes of interest, thus hampering the capacity of 
extracting de-novo knowledge from the network. To overcome this limitation, the inference algorithms used to 
reconstruct gene regulatory networks are often supplemented with methods derived from the network theory, i.e. 
borrowing analytical schemas typically used to explore communication or infrastructure networks. For instance, 
network theory recently focused on the resilience of complex networks to the malfunctioning of its component and 
to external disturbances. A key aspect of this analysis is the identification of the most critical components of the 
networks, i.e. those nodes/edges that are really crucial for the functioning of the system [15]. Specifically, the 
importance of an element is assessed considering the drop in the network performance caused by its deactivation and 
is quantified calculating the performance of the perturbed network as compared with the original one. The very same 
approach can be adopted to dissect gene regulatory networks for the identification of critical genes and interactions. 

Here, the analysis of the network critical components was applied on the nodes of transcriptional and post-
transcriptional regulatory networks reconstructed from mRNA and miRNA expression data of multiple myeloma 
samples with the aim of i) identifying genes that are critical for the structure of the networks irrespectively of the 
number of their ingoing or outgoing links, i.e. of the fact that they are hubs or not, and ii) inferring novel regulatory 
relationships. 

2. Materials and Methods 

2.1. mRNA and miRNA expression data 

Gene (mRNA) and miRNA expression data were obtained from multiple myeloma (MM) specimens. In details, 
the gene expression dataset (hereafter denoted as MM158GE) comprises 5 normal, 11 monoclonal gammopathies of 
unknown significance (MGUS), 133 MM, and 9 plasma cell leukemia (PCL) for a total of 158 samples [16]. 
Matched mRNA and miRNA expression data (hereafter denoted as MM40MGE) have been obtained for a subset of 
samples included in the MM158GE dataset. In particular, 40 MM samples representative of five translocation 
groups (9 TC1, 10 TC2, 9 TC3, 7 TC4 and 5 TC5) have been analyzed using both Affymetrix HG-U133A and 
Agilent Human miRNA Microarray V2 arrays. The Agilent Human miRNA Microarray V2 consists of 60-mer DNA 
probes synthesized in situ, which represent 723 human and 76 human viral miRNAs derived from the Sanger 
database v10.1. Gene expression signals have been quantified using RMA (affy Bioconductor package) and the 
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GeneAnnot custom Chip Definition Files [17]. Genes with low signal variability across samples were eliminated 
using an entropy-based filter. Briefly, given the expression levels wg, of gene g in sample t (t=1,…,N), the entropy of 
the expression distribution was defined as: 

  (1) 

where 

  (2) 

is the relative expression of gene g in sample t. The entropy threshold was selected in order to eliminate the 
20% of less variable data [18]. Expression signals of the miRNAs arrays have been normalized using aroma.light 
Bioconductor package. 

2.2. Network critical components analysis 

The topological structure of a network can be used to identify the components (nodes or links) that are critical 
for the functioning of the system (critical components). Network critical components analysis has been successfully 
applied in different fields as communication or transportation. For instance, critical analysis is used to identify nodes 
that must be protected from terrorist attacks in communication networks, in social networks finding critical nodes 
can be fundamental to reduce the spreading of viruses, and in biological systems, this analysis can be extremely 
helpful to understand complex phenomena and to find more powerful ways to defend the system from a disease. 
Nodes and links can be removed using various techniques and different networks exhibit different levels of 
resilience to such disturbances. Networks can be perturbed simulating the deletion of node/links chosen at random 
(error removal or failure) or targeting a specific class of nodes/links (removal through intentional attacks). Attacks 
can be addressed sorting and removing progressively the nodes in descending order of degree or betweenness or the 
links in descending order of betweenness or range [19-21]. The network robustness is usually measured by the size 
of the largest connected component and by the average node-node distance as a function of the percentage of 
nodes/links removed.  

The method used here to identify the critical components of gene regulatory networks is based on an ad-hoc 
definition of network performance, rather than on local node information such as the number of ingoing or outgoing 
links. Specifically, the importance of a node is measured by the drop in the network efficiency caused by the 
removal of that node, where the network efficiency E(G) quantifies how efficiently the nodes of the network 
exchange information [22]. The definition of E(G) requires recalling  some formalism from the graph theory.  

A network can be modeled by a graph G of nodes that are tied by one or more specific type of interdependency. 
Formally, an undirected graph G=(N, L) consists of two sets N and L such that  and L is a set of unordered 
pairs of element of N. The elements of N={n1,n2,...nM} are the nodes of the graph G while the elements of 
L={l1,l2,...,lK} are the edges. Two nodes joined by an edge are referred to as adjacent or neighboring. A graph is 
weighted when there exists a function  from edges to real numbers, such that each edge has associated a 
number that represents the strength of the connection. A graph is called m-partite if N admits a partition into m 
classes such that every edge has its ends in different classes: vertices in the same partition class must not be 
adjacent. When m=2, the graph is called bipartite. A walk from node i to node j is an alternating sequence of nodes 
and edges that begins with i and ends with j. If no node is visited more than once, the walk is called a path. A graph 
G is said to be connected if, for every pair of distinct nodes i and j, there is a path from i to j in G. The degree or 
connectivity ki of a node i is the number of edges incident with the node, i.e. the number of neighbors of that node. 
One of the most relevant topological characterizations of a graph G can be obtained from the degree distribution 
P(k), which is normally represented plotting the number of nodes having degree of connectivity k against k in a log-
log scale. A decreasing linear dependency in this plot indicates that the network has a scale-free structure, associated 
with a corresponding power-law  (Figure 1). Graphs can be further classified as assortative if knn(k), i.e., 
the average degree of the neighbors of degree k, is an increasing function of k; otherwise they are referred to as 
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disassortative. In assortative networks the nodes tend to connect to their connectivity peers, while in disassortative 
networks nodes with low degree are more likely connected with highly connected ones. 

The efficiency of G relies on the calculation of the shortest path lengths dij between two generic nodes i and j. In 
a weighted graph dij is defined as the smallest sum of the physical distances throughout all the possible paths in the 
graph from i to j, while in an un-weighted graph dij reduces to the minimum number of edges traversed to get from i 
to j. The maximum value of dij is called the diameter of the graph and the average shortest path length L is 
quantified as follows: 

  (3) 

Supposing that every node sends information along the network, through its links, the efficiency εij in the 
communication between node i and node j is assumed to be inversely proportional to their shortest distance, i.e. 

. It’s worthwhile noting that the assumption that efficiency and distance are inversely proportional is 
a reasonable approximation although sometimes other relationships might be used, especially if justified by a more 
specific knowledge of the system. By assuming , when there is no path in the graph between i and j, 

 and consistently . Consequently, the average efficiency E(G) of the graph G can be defined as: 

  (4) 

The definition of E(G) according to Eq.(4) avoids the divergence of L in case of disconnected components thus 
allowing the analysis of the entire network and not only of the biggest connected sub-graph. Since E(G) varies in the 
range  , it would be more practical to normalize E(G) in the interval [0,1]. The most natural way to normalize 
E(G) is with respect to the efficiency of a network Gideal composed of all the  possible edges: 

  (5) 

Though the maximum value E(G)=1 is reached only when there is a link between each pair of nodes, real 
networks can nevertheless assume high values of E. This definition is valid for both un-weighted and weighted 
graphs and can also be applied to disconnected graphs. 

The efficiency can be evaluated on any sub-graph G’=(N’,L’) of G=(N,L), where G’ of G is a graph such that 
 and . The sub-graph of the neighbors of a given node i, denoted as Gi, is the sub-graph induced by 

Ni, i.e., the set of nodes adjacent to i. Given ci the node cardinality of Gi, the local efficiency Eloc is defined as the 
average of the sub-graph efficiencies E(Gi) normalized with respect to the ideal sub-graphs in which all the 

 edges are present: 

  (6) 

Since , the local efficiency Eloc quantifies the efficiency of the system in tolerating faults, i.e., how 
efficient is the communication between the first neighbors of i when i is removed. Graphs that have high value of 
Eglob and Eloc, i.e., that are very efficient both in their global and local communication, are defined as small-words 
networks. 

Given the definition of E(G) and assuming that the efficiency is an appropriate quantity to characterize the 
average properties of a network, critical components can be identified considering the efficiency drop, caused by the 
deactivation of a component, as a measure of the centrality of that component. Therefore, the topological importance 
of a node α in a graph is quantified by the network relevance rα: 

  (7) 
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where Gα is the graph obtained by removing node α from G, for each α = 1,…,M. The most critical nodes are 

those whose removal causes the largest drop in efficiency, i.e., those with the highest rα (Figure 1). Although here 
the focus is on the determination of the critical nodes, the method is of general applicability to any subset (nodes, 
links and combination of nodes and links) of G [23]. 
 

 
 
Figure 1. Effect of node removal through error and attack in scale free (A., solid lines) and in random (B., dotted lines) networks. In a scale-free 
network (solid lines), the random removal (error) of even a large fraction of vertices impacts the overall connectedness of the network very little 
(black line), while targeted attack (red line) destroys the connectedness very quickly, causing a rapid drop in efficiency. On the contrary, in 
random graphs, removal of nodes through either error or attack has the same effect on the network performance. 

2.3. Transcriptional regulatory network 

The transcriptional regulatory network was reconstructed using ARACNe and the MM158GE dataset of gene 
expression signals. ARACNe utilizes information and data transmission concepts (i.e., mutual information and data 
processing inequality) to identify statistically significant co-regulations among genes from microarray expression 
profiles. Mutual information and data processing inequality allow reconstructing gene-gene relationships which 
most likely represent either direct regulatory interactions or interactions mediated by post-transcriptional modifiers. 
Briefly, the algorithm first uses the expression data to calculate pair wise Mutual Information (MI) through a 
computationally efficient Gaussian kernel estimator. ARACNe calculates the kernel width depending on the size and 
statistics of the dataset. The second step is the elimination of the interactions that are not statistically significant 
according to a p-value or a MI threshold and returns a series of irreducible statistical dependencies. The post-
processing step eliminates interactions that are likely to be indirect. The Data Processing Inequality (DPI) theorem 
removes indirect regulatory influences that appear as direct because of a high MI score due to the presence of a 
common neighbor. An additional parameter, called DPI tolerance, can be used to compensate for errors in the MI 
estimate that might affect DPI application [12]. 

The parameters of the kernel width and the Mutual Information threshold were calculated using MATLAB 
scripts. The p-value to determine the MI threshold was set at 1e-7, while the DPI tolerance was set equal to 10%. A 
list of Transcription Factors (TF) for the platform HG-U133A was also imputed as a parameter to prevent the DPI 
from removing transcriptional interactions in favor of non-transcriptional ones (interactions between two non-TFs). 
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2.4. Post-transcriptional regulatory network 

The post-transcriptional regulatory network was reconstructed calculating the Pearson correlation coefficient of 
the expression vectors of miRNA target genes in the MM40MGE dataset. In details, the procedure required to i) 
identify the miRNA target genes basing on computational predictions; ii) select the target relationships supported by 
miRNA and mRNA expression data; iii) compute the Pearson correlation coefficient of the expression levels of 
target genes sharing at least one supported miRNA-target relationship; iv) reconstruct the post-transcriptional 
regulatory network from the adjacency matrix S of regulatory relations supported by miRNA and mRNA expression 
levels. Computational prediction of miRNA targets presents significant challenges due to the lack of a sufficiently 
large group of known miRNA targets to be used as training set. As such, most computational algorithms for target 
prediction (miRanda, TargetScan, PicTar, PITA, RNAhybrid) result in a significant proportion of false positives, i.e. 
in the prediction of not-functional miRNA-mRNA interactions. Given the increasing experimental evidences 
supporting the miRNA mechanism of target degradation, the integration of in-silico predictions with miRNA and 
target gene expression profiles has been proposed as a method to select functional miRNA-mRNA relationships. 
Since miRNAs tend to down-regulate target mRNAs, the expression profiles of genuinely interacting pairs are 
expected to be anti-correlated. This integrative analysis can be performed using a variational Bayesian model [24] 
or, as in this case, through a non-heuristic methodology based on the anti-correlation between miRNA and mRNA 
matched expression profiles [25-26].  

Specifically, miRanda algorithm [27] was applied to predict miRNA targets from the human miRNA sequences 
and transcripts of miRBase Release 12.0 and ENSEMBL Release 52, respectively. Targeting predictions were 
retained if the miRanda score was higher than 160. The Pearson correlation coefficient of expression vectors was 
calculated for each miRNA-gene pair scored as potentially interacting according to the prediction of miRanda and 
used as an estimator of the functional activity of miRNAs on predicted target genes. Genes were considered genuine 
miRNA targets only if included within the top 3% of all anti-correlated pairs [25]. This selection gave rise to a final 
adjacency matrix S of regulatory relations supported by expression levels. The adjacency matrix S defined a 
bipartite directed network with two types of nodes (miRNAs and mRNAs) connected by directed edges, each 
representing a probably functional regulatory effect of a miRNA on a target gene. The same matrix S was used to 
derive a gene-only network in which genes (nodes) are connected by undirected weighted links and the edge weight 
quantifies the number of shared miRNAs regulating each gene pair. 

3. Results 

ARACNe inferred a transcriptional network with 9666 nodes (i.e. genes) and 86846 edges (i.e. interactions) 
from the MM158GE dataset. The topological characteristics of the network are reported in Table 1, in terms of 
number of nodes, number of edges, maximum kmax and average kmean connectivity (k being the degree of a node, i.e. 
the number of its interactions), diameter (representing the maximum value of dij) and global and local efficiencies. 

 
Table 1. Metrics of transcriptional and post-transcriptional networks. 

Network type Nodes (M) Edges (K) kmax kmean Diameter Eglob Eloc 
Transcriptional  9666 86846 219 17.96 8 0.279 0.150 
Post-transcriptional  6435 909324 1811 282.62 8 0.611 0.866 

 
The connectivity distribution shows a power-law tail suggesting that the underlying structure of the network is 

scale-free (Figure 2A). At low connectivity values (k<11), the degree distribution loses its linear progression 
probably as a consequence of the limited number of genes. The relationship between the average connectivity knn of 
the neighbors of a node and the node connectivity suggests an assortative behavior of the network, i.e., the nodes 
tend to connect with nodes with a similar connectivity thus partly implying a hierarchical structure of the network 
(Figures 2B). Ranking the nodes according to their connectivity allowed indentifying 27 hubs, i.e. genes with more 
than 100 interactions (data not shown). 

The miRNA-mRNA integrated analysis resulted in a post-transcriptional gene network with 6435 nodes (genes) 
and 909324 weighted edges. The network was reconstructed first refining the predicted targeting relationships of 
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MiRanda through the selection of those predictions more supported by miRNA-mRNA expression data (the 3% 
most highly anti-correlated miRNA-gene pairs). This corresponded to 23729 regulatory relations involving 692 
miRNAs and 6,435 target genes. It’s worth noting that about 48% of genes associated to an expression profile 
resulted not to be real target of any considered miRNA and 9 miRNAs were not detected as sufficiently active on 
any target gene. Then, the remaining 692 miRNAs and 6,435 target genes were employed to reconstruct a bipartite 
directed miRNAs-mRNAs regulatory network, representing the probably functional regulatory effects of all these 
miRNA to their targets in MM. The number of target genes per miRNA ranges from 1 to 440 (average 33.3 with a 
mean value of 3.7 miRNAs per gene). Finally, a weighted post-transcriptional network of 6435 genes was extracted 
from the bipartite miRNA-mRNA regulatory network with the weight of an edge representing the number of 
functional interactions with microRNAs shared by the couple of connected genes. The topological characteristics of 
the network are reported in Table 1. Similarly to the transcriptional network, the connectivity distribution and the 
relationship between average connectivity knn of the neighbors of a node and the node connectivity suggest a scale-
free, assortative structure (Figures 2C and 2D). 

 

 
 

Figure 2. Connectivity properties of transcriptional (A. and B.) and post-transcriptional (C. and D.) networks. A. Connectivity distribution P(k) of 
nodes with a specific number of incident edges (degree of connectivity k) in the transcriptional network. The connectivity distribution shows a 
power-law tail suggesting a scale-free structure of the network. B. Relationship between the average connectivity knn of the neighbors of a node 
and the node connectivity k. The linear trend suggests an assortative behavior of the transcriptional network. C. Same as A. for the post-
transcriptional network. D. Same as B. for the post-transcriptional network. 

 
The critical nodes of both the transcriptional and post-transcriptional regulatory networks have been determined 

by the static analysis of error and attack tolerance. The drop in the network efficiency caused by the node removal 
(i.e., the node relevance rα as defined in Eq. (7)) has been used as the criteria to determine the importance of a node. 
The critical analysis has been applied to the transcriptional network, to the post-transcriptional one, and, for testing 
the robustness of results, to a random graph [28]. The random network has been constructed starting from an initial 
condition of M nodes and no edges and then adding K edges between pairs of randomly selected nodes, where M and 
K were the same as in the transcriptional network. Figures 3A and 2B show the global efficiency for the 
transcriptional scale-free network and for the random graph (both with M=9666 nodes and K=86846 edges) as 
functions of the number of removed nodes through efficiency-based attacks (i.e., attacks performed removing nodes 
with the highest efficiency; red line) and random removals (errors; black line). The true transcriptional network 
shows a different behaviour with respect to attacks and errors (Figure 3A). The removal of ~30% of nodes in a 
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targeted way (attack) reduces the network efficiency to about half the initial value and removing ~60% of the nodes 
destroys completely the system. Instead, when removing nodes randomly (error), the drop of the network global 
efficiency shows a linear dependency with the number of removed nodes and even for high value of removals 
(>60%) the system maintains a considerable efficiency (Figure 3C). The fact that removing specific nodes causes a 
rapid drop in the capability of the system to communicate further supports the scale-free structure of the regulatory 
graphs and proves the existence of a discrete number of critical components, i.e. of nodes responsible for the 
specific structure of the network. As far as the random graph is concerned (Figures 3B and 3C), differences of 
tolerance to attacks and to errors are much less pronounced. In this case, in fact, there is no substantial variability in 
the efficiency and the removal of a node in a targeted or in a random way produces similar, though not equal, 
behaviours. 
 

 
 
Figure 3. Global efficiency E(G) as a function of the number of removed nodes. In both the cases, the graphs were composed of M=9666 nodes 
and K=86846 edges and the node removal simulated by errors (black line) and efficiency-based attacks (red line). A. Transcriptional network 
generated by ARACNe using gene expression data from the MM158GE dataset. B, Random graph. C. Difference of tolerance to attacks and to 
errors (i.e., difference between the drop in efficiency caused by efficiency-based attacks and error node removals) for true transcriptional 
(unbroken line) and the randomly generated networks (broken line). 

 
The analysis of critical components revealed that, in the transcriptional and post-transcriptional networks, 

critical nodes are not limited to hub genes and that also genes with a limited number of connections can be critical 
for the structure of the network. Figures 4A, 4B and 4C report the comparison between the node rankings calculated 
according to node degree (k) and node criticality (rα) in the random, transcriptional, and post-transcriptional 
networks.  

 

 
Figure 4. Comparison between the rank according to node degree k (rank degree) and the rank given by criticality rα (rank criticality) for the 
nodes of A. random, B. transcriptional, and C. post-transcriptional networks. 
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As expected, this comparison indicates that i) in random network there is no significant difference between node 

degree and node criticality (Figure 4A) and ii) the vast majority of hub genes are critical nodes, i.e., the nodes whose 
removal causes a large drop in global efficiency correspond to the most connected genes (Figures 4B and 4C). 
Nevertheless, there exist a fraction of nodes that are characterized by a higher criticality value than expectable 
according to their degree. These nodes, even if characterized by a low node degree, are indeed critical and would 
have been disregarded as putative regulatory targets due to their limited number of connections. For instance, in the 
MM transcriptional network, the B cell linker gene (BLNK) emerged as one of the most critical genes although being 
connected to only 34 other nodes (as compared to hubs characterized by >100 links). BLNK is known to be involved 
in normal B-cell development and deficiency in this protein has been shown in some cases of pre-B acute 
lymphoblastic leukemia, suggesting its putative role as a tumor suppressor gene. A search in the network for 
putative targets of BLNK allowed identifying 8 genes that, once ranked according to the mutual information, 
indicated CDKN1B (cyclin dependent kinase inhibitor, p27 kip1) as the most strongly connected target. This 
interaction was confirmed by the same analysis conducted on another MM dataset ([29]; data not shown) and by 
recent experimental evidences, which reported p27 kip1 induction by BLNK trough JAK3 [30]. Unfortunately, JAK3 
was not present in the datasets used for the network reconstruction and thus this evidence could not be further 
confirmed. 

To integrate the results of the critical analyses, a list of 5145 non redundant genes/nodes represented in both 
transcriptional and post-transcriptional networks was compiled and used to select, in each network, the top 1% 
critical nodes and the top 1% most connected nodes (hubs). The intersections of such lists could help clarifying the 
role of nodes, which are critical in terms of network efficiency, although being not highly connected (Figure 5). 

 

 
Figure 5. Venn diagram showing the intersections of four sets: CR TR (top 1% critical nodes in the transcriptional regulatory network), HUB TR 
(1% most connected nodes, hubs, in the transcriptional regulatory network), CR PTR (top 1% critical nodes in the post-transcriptional regulatory 
network) and HUB PTR (1% most connected nodes, in the post-transcriptional regulatory network). 

 
In particular, when comparing the lists of top 1% critical genes for the two networks, 2 genes emerged as 

critical for both transcriptional and post-transcriptional regulation, i.e. CHRNA4 (cholinergic receptor, nicotinic, 
alpha 4) and TMX4 (thioredoxin-related transmembrane protein 4), both known to be expressed in B cells and the 
latter involved in B cells activation and in cancer. Interestingly, CHRNA4 shares, as post-transcriptional regulators 
supported by expression data, two miRNAs (i.e., hsa-miR-15a* and hsa-miR-30c-1*) that regulate also ELAVL3 and 
MLXIPL, two genes which are hubs and critical in the transcriptional and post-transcriptional network, respectively. 
Both miR-15a and miR-30c are differentially expressed in peripheral blood cells [31] and the presence of a MYB-
miR-15a auto-regulatory feedback loop is of potential importance in human hematopoiesis [32]. In particular, miR-
15a expression inversely correlates with MYB expression in cells undergoing erythroid differentiation and the over-
expression of miR-15a blocks both erythroid and myeloid colony formation in-vitro. 
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4. Discussion 

Reconstructing regulatory network from expression data is a crucial step to understand the mechanisms 
underlying biological systems. However, the high number of genes and interactions still represents a challenging 
issue for the extraction of relevant targets and relationships from such large systems. A standard approach is 
searching targets among the most connected genes (hubs) or among sub groups of genes known to be relevant in the 
analyzed phenotype. The goal of this type of analysis is to identify previously unknown relationships that can be the 
object of a subsequent experimental validation. An alternative approach is studying the network characteristics to 
identify groups of genes organized in sub-networks, which may suggest novel interactions and shed light on 
regulatory modules involving these genes or their common targets. Although effective, both strategies rely on prior 
knowledge to select the genes of interest, thus hampering the capacity of extracting de-novo knowledge from the 
network. A way to overcome this limitation could be adapting techniques commonly used in the analysis of 
communication and infrastructure networks. In these fields, a key analysis is the resilience of the network to external 
disturbances and to malfunctioning. Network robustness strongly relies on the network structure and, in particular, 
on the existence of paths between the nodes. When nodes or links are removed, the lengths of these paths can 
increase and some nodes will become disconnected. It is therefore interesting to find the critical component of the 
network, i.e. the nodes or edges that are really important for the functioning of the network. In Latora and Marchiori, 
the authors proposed a method to evaluate the importance of a network element (that can be a node or an edge) by 
considering the drop in the network performance caused by its deactivation [15]. The performance of the perturbed 
network is compared with the original one. Iturria-Medina and colleagues applied a similar approach to investigate 
the human brain anatomical network [33]. 

Different criteria can be used to measure the performance, such as efficiency or mean flow rate of information. 
Efficiency measures how efficiently the nodes of the network exchange information. Applying this concept to 
regulatory network, critical nodes and edges are critical genes and critical regulatory interaction, respectively. 
Usually the most important nodes are considered the most connected ones (hubs), but this is not always the case 
[23]. In genetic networks a gene can be connected to many genes simply because is a transcription factor that 
normally controls many targets or a gene that is controlled by many other genes. For instance, in the analysis of the 
B cell networks, the largest hub with more than 300 interactions was a poorly characterized gene, BYSL. Instead, a 
much more interesting gene was MYC that, with only 56 neighbours, ranked 410th in terms of connectivity. MYC, a 
well-known proto-oncogene, had neighbours that were themselves genetic hubs (including BYSL), such that MYC 
could modulate a substantial percentage of all genes in the cell trough a relatively small number of neighbours [12]. 

Recently, some approaches exploited the topological features of large gene regulatory networks to identify 
individual components that are biologically relevant or to elucidate the role of each particular element in regulation. 
Patapov and co-workers introduced the pair-wise disconnectivity index to quantitatively evaluate the topological 
significance of each element (i.e., nodes and edges) in the context of all other elements of the regulatory network 
[34]. The application of this approach to the analysis of the TLR4 signal transduction network allowed identifying a 
number of key signalling and transcription regulators among the nodes top-ranking in terms of disconnectivity 
index. Differently, Emmert-Streib and Dehmer used the concept of functional robustness, originally introduced by 
Li et al. [35], to study the functional robustness of the transcriptional regulatory network in yeast [36]. The 
definition of an information theoretic measure to estimate the influence of single node perturbations on the global 
network topology allowed identifying nodes which are fragile with respect to single node knockouts and revealed 
significant differences between fragile nodes and hubs. Interestingly, the set of fragile nodes was statistically 
enriched in essential genes, i.e. in genes required to sustain vital yeast. 

Here, the critical analysis of network components has been applied to inspect the transcriptional and post-
transcriptional regulatory networks reconstructed from mRNA and miRNA expression data of multiple myeloma 
samples. The transcriptional and post-transcriptional networks were reconstructed using ARACNe and the Pearson 
correlation coefficient of the expression vectors of miRNA target genes, respectively. Both networks showed a scale 
free structure, i.e. a type of structure reported with evidence in lower organisms, but still argument of debate in 
eukaryotes. The connectivity plots of Figure 2 strengthen the hypothesis that the structure of human interaction 
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networks has a scale free nature with a saturation effect also reported for other scale-free networks, when the 
maximum connectivity range is below 1000 [12, 37-39]. Both networks are also slightly assortative, meaning that 
they tend to have an aristocratic behaviour where nodes with high degree tend to connect with nodes with similar 
degree. This suggests a hierarchical control mechanism, as also reported in [12]. The analysis of critical components 
revealed that genes with a limited number of connections could be critical for the structure of the network and that 
hubs are not necessarily critical nodes. Indeed, about one half of most connected nodes in each considered network 
were not included in the corresponding list of most critical nodes and genes like BLNK, characterized by a low node 
degree, were instead critical. These non-hub critical nodes would have been disregarded as putative regulatory 
targets due to their limited number of connections although they may provide clues to the detection of key 
regulatory circuits. Finally, the integration of the transcriptional and post-transcriptional levels allowed identifying 
critical genes for both types of regulatory interactions and dissecting direct critical relationships at transcriptional 
level from interaction that are instead indirect since mediated by post-transcriptional regulation. 
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Abstract. Synthetic biology aims to the rational design of gene circuits with predictable behaviours. Great efforts have been done so 
far to introduce in the field mathematical models that could facilitate the design of synthetic networks. Here we present a 
mathematical model of a synthetic gene-circuit with a negative feedback. The closed loop configuration allows the control of 
transcription by an inducer molecule (IPTG). Escherichia coli bacterial cells were transformed and expression of a fluorescent reporter 
(GFP) was measured for different inducer levels. Computer model simulations well reproduced the experimental induction data, using 
a single fitting parameter. Independent genetic components were used to assemble the synthetic circuit. The mathematical model here 
presented could be useful to predict how changes in these genetic components affect the behaviour of the synthetic circuit.   

 

1. Introduction  

Synthetic Biology is a novel discipline defined as the engineering of biology, i.e. the synthesis of 
systems based on biological material, which display prefixed functions. This engineering 
perspective may be applied at all hierarchical levels of biology, from individual molecules to 
whole cell, tissues and organisms (1). A major focus of the discipline is the synthesis of genetic 
components and gene circuits with predictable behaviours (2), either to endow cells with novel 
functions, or to study analogous natural systems (3). In the last years many gene circuits have 
been developed to achieve a fine regulation of gene expression and protein synthesis (4-6). 
Among them, auto-regulated networks with negative feedback loops have been invoked as a way 
to control and decrease transcriptional noise (7), conferring stability to gene expression, and high 
sensitivity to induction by an extracellular stimulus (8). A crucial element in these networks is 
the presence of promoter sequences with one or more operator sites that can be recognized by 
regulatory molecules, the transcription factors (TF). The position of the operator sequences 
inside the promoter region has a strong impact on how transcription factors control gene-
transcription. Notably, the presence of an operator downstream of the TATA box region is 
responsible for transcription repression (9). This property can be used to assemble synthetic 
promoters that are repressed by the same TF, but which have different constitutive transcriptional 
strengths. Here we present a computational study of a synthetic device where gene expression is 
controlled by regulated promoters. The device includes two parts (Fig. 1): (i) an auto-regulated 
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generator of the LacI repressor protein (LacI-supplier); and (ii) a LacI-inverter, which uses a 
GFP protein as reporter. The mathematical model describes the dynamical interactions between 
these parts and accurately reproduces the device response to IPTG induction.  

 

2. Materials and Methods 

2.1.Gene circuit scheme 

The LacI and GFP genes were placed both under the control of a synthetic promoter repressed by 
the LacI protein (Fig. 1). The promoters were designed by assembling the natural Lac operator 
sequence O2 downstream of two constitutive promoters (PLacI and PGFP), with the PGFP 
transcriptional strength greater than the PLacI one. The LacI repressor protein can bind to the 
operator site O2 preventing the binding of DNA-polymerase to the PLacI promoter. As a result, the 
LacI transcription is auto-regulated by a negative feedback. The LacI protein amount produced 
by the LacI-supplier also controls the GFP protein transcription by binding to the operator site O2 
placed downstream of the constitutive promoter PGFP. When the LacI molecule concecentraion 
increases, the GFP reporter decreases, thus this part was called the LacI-inverter. The LacI-
supplier was cloned in a medium copy number plasmid, while the LacI-inverter was cloned in a 
high copy number plasmid.  This allows the amplification of the GFP reporter. The inducer 
molecule, IPTG (Isopropyl -D-1-tiogalattopiranoside), inhibits the repressor activity for the 
operator site O2 enhancing the transcription rate of the GFP protein. The inducer is considered as 
the external input of the device and regulates GFP expression.  

 

 

 

Figure 1 Gene network scheme 

 

2.2.BioBricks and Bacterial strain  

The constitutive promoters PGFP (BBa_J23100) and PLacI (BBa_J23118) were taken from the 
Registry of standard biological parts (10, 11) and were both cloned upstream of the same natural 
Lac operator sequence O2 (aaatgtgagcgagtaacaacc). The GFP gene with a degradation tag was 
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placed under the control of the PGFP regulated promoter on a high copy number plasmid 

(pSB1A2) with Ampicillin resistance and a pUC19-derived pMB1 replication origin. The Lac 

repressor coding sequence with a degradation tag was placed under the control of the PLacI 

regulated promoter on a medium copy number plasmid (pSB3K3) with Kanamycin resistance 

and a p15A pMR101-derived replication origin. The two vectors were co-transformed in 

Escherichia coli Dh5  cells (closed loop configuration) and grown under a two antibiotic 

selection. The same cells were also transformed with the LacI-inverter plasmid only (open loop 

configuration).  

 

2.3.Growth conditions and media 

Cells were grown in flasks at 37 °C in M9 minimal medium with glucose as the main carbon 

source, supplemented with casamino acids, thiamine and the proper antibiotics. Cells were 

induced for GFP expression by overnight growth with different IPTG concentrations (1 μM, 2 

μM, 6 μM, 10 μM, 60 μM, 75 μM, 100 μM), while cultures with uninduced cells were prepared 

by overnight growth in the absence of IPTG. During each experimental run, after overnight 

growth, 100 μl from each cell culture were transferred into a multiwell plate for fluorescence 

analysis with the Victor 2 plate reader (Perkin Elmer). Wells on the plate edges were filled with 

fresh M9 medium in order to close off the samples from the external environment and to limit 

the thermal dispersion. For each well both fluorescence and optical density were measured. The 

green fluorescence protein values were estimated by normalizing the total fluorescence on the 

corresponding optical density. 

 

2.4.Mathematical Model 

The mathematical model describes gene expression from two independent co-transformed 

plasmids. The subscript  and  will be used for variables related to the LacI repressor and the 

the GFP reporter, respectively. Each plasmid can switch among three functional states: (i) bound 

to RNA-polymerase; (ii) bound to repressor protein; (iii) and free. The conservation of plasmid 

number in a single cell gives: 

 

, (1) 

 

where  and  are the plasmid numbers in each cell for the medium-copy and low-copy 

respectively;  are the number of plasmids bound to RNA polymerase, to repressor 

protein or free. When a free plasmid binds to a RNA polymerase molecule ( ), an activated 

complex ( ) forms that can initiate transcription and mRNA generation. The following 

differential equations describe the process: 
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. (2) 

 

Tables 1 and 2 summarize the variables and the parameters used in the mathematical model. The 
second expression of the differential equations was preferred because it highlights the time-
constant of the process. We hypothesized that the number of polymerase molecules available for 
heterologous transcription is constant, which gives: 

 

, (3) 

 

where  is the total number of RNA-polymerase molecules. mRNA molecule synthesis and 
degradation were described by first order equations: 

  

. (4) 

 

Equations analogous to (2), (3) and (4) were used to describe the binding of the mRNA 
molecules  and , to ribosomes and the synthesis of the two proteins  and : 

 

, (5) 
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. (6) 

 

. (7) 

 

Note that in equations (6) the symbol  is used for the repressor in place of .  is the 
number of all the repressor molecules, while  is the number of free repressors,  is the 
number of repressors bound to the high-copy number plasmids,  the repressors bound to the 
low-copy number plasmids and the repressors bound to inducer molecules. Thus: 

 

. (8) 

 

The binding process between the free repressor, , and the inducer, , was described by the 
equation: 

 

, (9) 

 

where  is the binding cooperativity.  

Finally, the following equations complete the mathematical model describing the free repressor 
binding to the operator site O2 on the plasmids: 

 

 (10) 

413



Model equations were implemented in Simulink (Mathworks), and were numerically integrated 
starting from null initial conditions for the state variables. Model parameters describe well-
characterized physical processes involving standard biological molecules, thus parameter values 
were taken from the literature (see Table 2 for details). The only parameter used to fit the 
experimental data was the repressor-operator binding constant. This was identified by fitting 
experimental data on GFP production, measured as fluorescence in the cell population. 
Parameter identification was performed by the Matlab routine fminsearch. 

 

Table 1. Model variables 

Symbol Definition 

 Free plasmids, i.e. not bound to Dna-polymerase or repressor 

 Plasmids bound to Dna-polymerase 

 Free polymerase, i.e. not bound to any plasmid 

 mRNA 

 Ribosomes bound to  

 Free ribosomes, i.e. not bound to any mRNA molecule 

 Plasmids bound to the repressor 

 Free repressor, LacI 

 IPTG bound repressor 

 Total repressor molecules, free and bound 

 Reporter protein, GFP (green fluorescence protein) 

 

 

 

 

Table 2. Model parameters 

Symbols Definition and Comments Value 

 Number of medium-copy plasmids 15 (11) 

 Number of high-copy plasmids 150 (10) 
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 Number of polymerase molecules 1500 (12) 

 Number of ribosomes 6800 (12) 

 LacI synthesis rate. The parameter was calculated as the peptide chain elongation rate multiplied 
by the number of LacI residues. 

2.85 min-1 (12) 

 GFP synthesis rate. The parameter was calculated as the peptide chain elongation rate multiplied 
by the number of GFP residues. 

1.92 min-1 (12) 

 LacI mRNA molecule synthesis rate. The parameter was calculated as the mRNA elongation 
rate multiplied by the number of nucleotides in LacI. 

3.17 min-1 (13) 

 GFP mRNA molecule synthesis rate. The parameter was calculated as the mRNA elongation 
rate multiplied by the number of nucleotides in GFP. 

4.63 min-1 (13) 

 Protein degradation rate. This parameter was estimated through experimental measurements of 
GFP degradation rate. Analogous degradation rate was assumed for the LacI protein. 

2.13*10-2 min-1 

 mRNA degradation rate 0.19 min-1 (14)  

 Forward and backward kinetic rates for the reaction between the reporter gene  mRNA 
molecules the  and ribosomes 

 

 Forward and backward kinetic rates of the reaction between the repressor protein mRNA 
molecules and the ribosomes 

 

 Forward and backward kinetic rates of the reaction between free repressor molecules and the 
operator O2 on the high-copy number plasmid 

 

 Forward and backward kinetic rates of the reaction between free repressor molecules and the 
operator O2 on the low-copy number plasmid 

 

 Forward and backward kinetic rates of the reaction between DNA polymerase molecules and the 
promoter on the low-copy number plasmids 

 

 Forward and backward kinetic rates of the reaction between DNA polymerase molecules and the 
promoter on the high-copy number plasmids 

 

 Forward and backward kinetic rates of the reaction between free repressor and inducer 
molecules 

 

   
1.7*10-3 min (8) 

 
 

 1.5*104 (15) 

 
 

The ratio between GFP expression with the two promoters, PGFP and 
PLacI, was determined experimentally as 1.4. The same ratio was 

assumed between  and  

0.7*104 

 
 

5.32 min 
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16.9 

 
 

24.6 

  
7.4*10-3 min (13) 

 
 

4.4*10-3 (13) 

 
 

47 min 

 
 

90 

 
 

134 

 
IPTG inducer binding  cooperativity   2 

  
22.4 min (16) 

 
 

1680 (17) 

  
1*10-3 min 

 
 

This is the only parameter of the mathematical model adjusted to fit the 
experimental data. 

0.3 

 

3. Results 

Figure 2 shows how GFP transcription can be modulated using different IPTG concentrations. A 
good agreement between the mathematical model and the experimental data was obtained by 
tuning the parameter , which models the binding affinity of the repressor for the operator on 
the medium-copy number plasmid. Since the same operator sequence was used both in the high 
copy number and low copy number plasmid, parameters  and  were assumed equal. The 
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fluorescence observed at different IPTG concentrations was divided by the fluorescence 
measured in the open loop configuration (bacteria transformed only with the LacI-inverter 
circuit), thus defining a normalized measurement of GFP expression levels. 

 

 

Figure 2 Dose Response curve. GFP expression was normalized to the value in the open-loop gene circuit, both for the experimental data (blue 
points, bars for standard deviation) and for the results of the numerical simulations (green line).  

 

To simulate the regulated promoter response to changes in the LacI repressor level (Fig. 3), we 
forced the model by opening the negative feedback and using  as an input.    was slowly 
increased from 0 to 1000 molecules and the quasi-static level of the reporter protein  was 
computed. Simulation shows that the regulated promoter is repressed at 50% by ~100 molecules 
of LacI (see Fig. 3).  This value closely agrees with the experimental determination of LacI 
repressor binding constant on the PLac promoter (70 molecules). 
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Figure 3. Fluorescence decresing in presence of the LacI repressor.The 50% of repression is achieved with 100 repressor molecule. 

To characterize the dynamic response of the device we considered the rise-time, (i.e. the delay 
between the initial  and half maximal production). The rise-time was estimated by simulating the 
transient of the gene-circuit from null initial conditions (  and ), in both 
open and close loop configurations (Fig. 4).  In open-loop, when the GFP promoter is 
unregulated, the circuit reaches the steady state after 180 min, while in close-loop there is an 
initial over-shoot at 20 min due to the latency in the  protein synthesis. After 80 min the 
transient is extinct. 

 

Figure 4. Dynamic response of close- and open-loop configurations. Open loop refers to the cells transformed with the Lac-inverter plasmid 
only, while closed loop configuration refers to cells co-transformed with both LacI-supply and the LacI-inverter plasmids 
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4. Discussion 

 

In recent years an increasing number of studies in synthetic biology have been focused on 
constructing simple synthetic gene circuits that exhibit desired properties. In this work, we used a 
gene network with a negative feedback, where the Lac repressor protein (LacI) is responsible for 
the repression of GFP transcription from a strong promoter on a high copy number plasmid and, 
at the same time, it prevents its own transcription from a weak promoter on a medium copy 
number plasmid, auto-regulating itself. Since the usage of the same biological parts in another 
synthetic gene network would be greatly facilitated by their mathematical modelling, we 
performed an analytical analysis of the gene circuit. After the model formulation, we have cloned 
the device in Escherichia coli to compare the experimental measurements with the computer 
model prediction. A good fitting of the experimental data was obtained (see Fig. 2) only by 
tuning the LacI repressor affinity to the operator site, whereas the other model parameters were 
assigned according to the literature. Notably, variation of the circuit genetic components can be 
simulated in-silico by changing the appropriate model parameter. As an example, after model 
identification we computed the LacI-inverter response to LacI repressor (Fig. 3). This curve can 
be used to establish the sensitivity of the LacI-inverter to LacI changes in the region with 
negative slope (-4 % for each 10 LacI molecules) as well as the amount of LacI molecules (10^3) 
needed to get a 95% GFP repression.  Moreover, the mathematical model can be used to identify 
which modifications should be introduced in the circuit to obtain a specific sensitivity to the 
inducer molecules or to change the parameter values to predict the protein expression levels from 
promoters with different transcriptional strengths.  

We used the model to compute the dynamic behaviour of the device through time. To 
characterize the dynamics we considered the rise-time, (i.e. the delay from the initiation of 
production until half maximal product concentration is reached). According to previous 
observation (18), the rise-time in negatively auto-regulated transcription circuits was shorter than 
in non-regulated transcription. Negative feedback (also termed autogenous control) reduces the 
rise-time. This may help in understanding the function of negative auto-regulation, which 
appears in over 40% of known transcription factors in E. coli. 

Mathematical modelling could prove to be useful in the design of synthetic gene networks. The 
behaviour of a gene network is highly affected by the transcription rates of the involved genes. 
The optimization of these transcription rates is usually a time-consuming task, which is a severe 
obstacle for a further evolution of synthetic biology. The gene circuit presented here does not 
only offer the possibility to tune gene expression in a predictable way by controlling the 
concentration of an extracellular inducer molecule, but it also exhibits a modular architecture, 
which is particularly useful for the control of gene transcription in synthetic biology. Different 
plasmids types, operator sequences, promoters, can be combined to obtain a set of circuits, 
whose characteristics can be described, and eventually predicted, with the same mathematical 
model, with a typically engineering approach. 
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Retrovirus HTLV-1 gene circuit is characterized by positive and negative feedback phenomena, thus candidating it as a potential 
relaxation oscillator deliverable into eukaryotes. Here we describe a model of HTLV-1 which, by providing predictions of genes and 
proteins kinetics, can be helpful for designing gene circuits for eukaryotes, or for optimizing gene therapy approaches which are 
currently carried out by means of lentiviral vectors or re-engineered adenoviruses. Oscillatory patterns of HTLV-1 gene circuit are 
predicted when positive feedback is faster than negative feedback. Techniques to mutate the retroviral genome in order to implement 
practically the above conditions are discussed. Finally, the effect of stochasticity on the system behavior is tested by means of 
Gillespie algorithm. Simulations show the difficulties to preserve synchronization in viral expression for a multiplicity of cells, while 
the long tail of the density probability function of the master regulator gene tax/rex, due to its steady state fluctuations, suggests an 
activation mechanism of HTLV-1 similar to that recently proposed for HIV1: the virus tends to latency but under certain 
circumstances, the master regulator gene reaches high values of expression, whose persistence induces the viral replication.  

1. Introduction 

Synthetic gene circuits have already been delivered into bacterial cells, proving that it is possible to design and 
implement synthetic biological systems. A genetic toggle switch, designed by Gardner et al.2 in 2000, was soon 
followed by the gene oscillator of Elowitz and Leibler3. An essential ingredient of this last work was the preliminary 
circuit characterization by modeling gene and protein expression; in particular, bifurcation analysis has allowed 
identifying the ranges of parameter values corresponding to periodic patterns. Nevertheless, the modeling strategy 
must be sound; otherwise misleading results can be obtained, which can heavily affect the subsequent circuit design. 
Recently, Kaern et al.4 supported the use of systems of differential equations based on mass action, i.e. the approach 
previously adopted by Hasty et al.5,6 for modeling the λ phage. In moving from bacteria to eukaryotes, the design of 
gene circuits becomes more difficult because of the more complex regulatory mechanisms. However, significant 
contributions have become available, e.g. Ramachandra et al.7 re-engineered adenoviruses to hit tumor cells 
selectively, i.e. without impairing the healthy cells; Bainbridge et al.8 addressed the Leber’s Congenital Amaurosis 
by means of recombinant adeno-associated virus vectors. Also, of note is that mathematical models of viral kinetics 
are potentially valuable for optimizing gene therapy approaches, in particular by improving the design of retroviral 
vectors by predicting the gene expression following their delivery. In this paper we propose a novel model of 
HTLV-1 viral kinetics9. This model is characterized by positive and negative feedback phenomena, similarly to 
synthetic relaxation oscillators delivered into prokaryotes and able to exhibit limit cycles. In order to investigate the 
potential use of HTLV-1 circuit as a novel oscillator for eukaryotes, we analyze the periodic behavior of HTLV-1 
model. This represents a preliminary step that can be instrumental for designing gene circuits to be delivered into 
eukaryotic cells, or for optimizing retroviral vector design in gene therapy. 

Results previously obtained with bacteria suggest that a deterministic model may be not adequate to predict the 
true behavior of a biological system, e.g. a remarkable variability was observed in the repressilator period of 
oscillation by Elowitz and Leibler3, Thattai et al.10 described the noise in transcription and translation whereas 
Elowitz et al.11 experimentally highlighted the effects induced by variable quantities of metabolites in the single 
cells of the same sample. On the other hand, Gillespie12 pointed out that if a system is small enough that the 
molecular populations of some reactant species are not too many orders of magnitude larger than one, discreteness 
and stochasticity may play important roles, so that the predictions coming from deterministic differential equations 
do not accurately describe the system’s true behavior. This is the case for HTLV-1 kinetics since one of the basic 
mechanisms is transactivation, i.e. the enhancement of transcription caused by the interaction between the viral 
promoter and a viral protein, and the number of promoters in a cell corresponds to the number of viral genomes 
integrated in the host cell, which is small. Thus, stochastic simulations are important for an adequate understanding 
of the system behavior.  
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In the following, after presenting an HTLV-1 model, which provides deterministic predictions about viral 
kinetics, we will discuss first the periodic patterns revealed by the bifurcation analysis, and then, the results of 
stochastic simulations performed by the Gillespie algorithm. Finally, the practical feasibility of an oscillator for 
eukaryotes will be considered, together with some recent biotechnological techniques potentially helpful to mutate 
the HTLV-1 genome so as to obtain periodic oscillations of gene and protein expression.  

2. The model 

The main mechanisms of the HTLV-1 gene circuit13 are 
summarized in Figure 1:  
1. The full-length genomic RNA of the single stranded 

retrovirus HTLV-1 encodes for the primary transcript gag 
(compartment 1) which undergoes either single or double 
splicing in the nucleus or, alternatively, remains unspliced.  

2. The doubly spliced mRNA tax/rex (compartment 2) is 
considered the master regulator of viral gene expression 
since it encodes for two distinct regulatory proteins, 
p40Tax and p27Rex (compartments 3 and 4), from ORF III 
and IV, respectively; in the following we will refer to them 
simply as Tax and Rex. 

3. Tax boosts the transcription of the primary transcript gag, 
generating a positive feedback phenomenon called 
transactivation. 

4. Rex prevents the multiple splicing of gag, causing a 
decrease in the amount of tax/rex in favor of unspliced 
and singly spliced genes, and generating a negative feedback phenomenon with respect to tax/rex.  

5. A variety of Rex-dependent viral genes deriving from the single splicing of gag were identified, e.g.  1-B, p13, 
p21Rex (compartments 5.1, 5.2… 5.n), but the mechanisms of splitting up are still unclear.  
The system of differential equations which describe the above mechanisms, based on one-step reactions and 

mass action (detailed in the Appendix), is:  
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where the state variables are the concentrations [molecules/l] of nuclear gag, tax/rex, Tax, Re corresponding to the 
compartments 1-4 of Figure 1. Initial conditions were set to zero, i.e. we supposed to deliver the HTLV-1 gene 
circuit into eukaryotic cells which were not infected previously. System parameters are: the transcription rate S [1/h], 
the concentration of viral genomes integrated in the host cell m [molecules/l], the transactivation constant  β

’
1 

(adimensional), Michaelis constant h1 (which is the product of many equilibrium constants, as described in the 
Appendix), the nuclear export rate ks [1/h], the order of Rex multimerization z (adimensional), degradation rates of 
the transcript tax/rex k02 [1/h],  of proteins Tax k03 [1/h] and Rex k04 [1/h], and parameters β’

3 and β’
4 [protein 

molecules/(transcript molecules*h)], which are the products of the Tax and Rex gains in protein translation 
multiplied for the rate constants of the translation processes (as detailed in the Appendix). The function g(·) is 
defined in Eq. 5-7: 
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Figure 1. Background knowledge on the HTLV-1 gene circuit.
Solid arrows represent fluxes, dashed arrows controls.  
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where h3 is the product of the some equilibrium constants, as described in the Appendix. Unfortunately, only k01 was 
measured by Grone et al.14 equal to 0.069/h. As concerns other parameters, approximate values can be derived from 
the literature, based on measurements of similar biological processes, reported below with the corresponding model 
parameters between brackets:  

1. Rosin-Arbesfeld et al.15 and Lewis16 reported the half-lives of about 10 and 4 minutes, respectively, for the 
nucleo-cytoplasmatic transport (ks).  

2. Weinberger and Shenk17 estimated the transactivation constant (β
’
1) in the HIV gene circuit by fitting an ODE 

model to normalized data of fluorescence intensities from single-cell measurements, obtaining a value of about 8.  
3. As regards protein degradation rates, the Tax ubiquitination was confirmed by many laboratories18 supporting the 

thesis of a ubiquitin-mediated degradation; moreover, Peloponese et al.19 proved the Tax inactivation induced by 
ubiquitin. Jeong et al.20 observed similar decays for Tax and β-Galactosidase, whose half-life was estimated in 
about 13 hours21,22. Therefore, we considered a half-life of about 10 hours for Tax, and also for Rex (k03, k04). 

4. Kugel and Goodrich23 measured the transcription rate induced by polymerase II in eukaryotes (S): 1.9e-3/s.  
As regards Michaelis constant h1, no information is available as well as for the parameter h3, thus the amount of 

Tax and Rex were scaled by h1 and h3, respectively: �'8 � ��

9�
  and � 8  � �)

9�
 ; �'8 and � 8 can be viewed as the effective 

proteins, present in the nucleus and effectively acting for transactivation and RNA nuclear export, respectively.  
Moreover, to preserve the validity of the study front of future HTLV-1-specific measurements resulting in 

different values of the transcription rate, the time t [h] was scaled by S as done in Ref. 4: τ=t*S; τ is adimensional 
because the unit of measurements of S is 1/h. After scaling, the model of differential equations became:  
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where the function >?�C� is defined in Eq. 12-14: 
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Model parameters were fixed to the following nominal values: β
’
1=10, k’

01=k01/S=0.01, k’s=ks/S=1, 
k’

02=k02/S=0.01, k’03=k03/S=0.01, all of which are adimensional. Parameter m was initially set equal to 1 molecule/l, 
to reflect the hypothesis of low multiplicity of infection, which underlies the model development (see the 
Appendix). As regards the parameters �

'
B

 and �
 

B , since no information was available in the literature, 
computational simulations of the deterministic system (Eq. 8-11) were performed, and the parameter values were 
fixed so as to obtain gene expression time course consistent with some experimental measurements24,25. This 
happened for �

'
B

 and �
 

B
 in the range [1e-3, 1e-1], thus we chose the median value �

'
B

 � �
 

B � 0.01 as the default 
value to be used for the subsequent analyses. Since it was not possible to establish if Rex forms dimers (z=2), 
pentamers (z=5), or something else, different values of z were considered. 

3. Bifurcation analysis 
We tested if the model of the HTLV-1 gene circuit (Eq.8-11), can exhibit periodic patterns by performing 
bifurcation analysis with the MatCont software package26. Among the system parameters, some were considered 
tunable on the basis of experimental observations, i.e. the protein degradation rates and the concentration m of viral 
genomes integrated in the host cell, whereas other parameters were set to their default values. The rational is that 
Tax undergoes ubiquitination18 and experimental observations support the tunability of the proteins half-life when 
their degradation involves the ubiquitin pathway27. As regards m, it can be easily regulated at the time of virus 
delivery following an estimation of the titer of viral particles.  

3.1   Periodic patterns 
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With the default parameter values the system falls into a stable steady state. By varying the ratio between the two 
protein degradation rates, RD=k’

03/k
’
04, two Hopf bifurcations were detected confirming the possibility for the 

HTLV-1 gene circuit to oscillate28; moreover, the periodic patterns were stable because both bifurcations are 
supercritical. With z=2 the critical values of RD and the Lyapunov coefficients were: RDH1=2.3, RDH2=26.2 with 
LH1=-4.6e-3 and LH2=-7.6e-4, whereas with z=5 they were: RDH1=7.0, RDH2=13.7 with LH1=-1.5e-3 and LH2=-7.6e-
4. In Figure 2a, the trajectories of the state variables gag and tax/rex for z=2 and RD=3 are shown.  

 
Figure 2. a) The trajectory of the system for z=2 and RD=3. b) Periodic patterns of tax/rex for z=2 and the following values of RD: 3,5,10,20.  

Higher values of Tax degradation rate (with respect to Rex) result in smaller amplitudes and periods of 
oscillation, as shown in Figure 2b, where the periodic patterns of tax/rex corresponding to z=2 and RD=3,5,10,20, 
respectively, are plotted. If multiplicity of infection m is increased, periodic patterns arise if RD is within specific 
limits which depends on m, as shown in Figure 3a, for z=2 and z=5. This figure suggests the relevant role of z on 
system behavior. To have a better insight on the role of z, Hopf continuation was performed by varying RD and z, 
for specific m values. Results (Figure 3b) indicate that periodic oscillations of the model state variables are 
prevented for z>5. 

 

4. Stochastic fluctuations 

Since stochasticity and discreteness can cause deviations of the true system behavior from the predictions of 
deterministic differential equations when the molecular populations are small, as is the case of the viral promoter 
sites in our model, stochastic simulations were performed by Gillespie algorithm (direct method29,30), with the 
parameter settings corresponding to the periodic patterns and to the steady state solution of the system (Eq. 8-11). 
Gillespie algorithm describes the number X(t) of molecules of chemical species involved in the reactions Rj 
characterizing the system. The key to simulate trajectories of X(t) is the probability function p(τ, j | x,t)12, which is 
the probability, given X(t) = x, that the next reaction in the system will occur in the infinitesimal time interval [t+τ, 
t+τ+dτ ), and will be an Rj reaction. This probability is related to the number of molecules composing the chemical 
species involved in the reaction as reactant. Thus, the variability concerns which reaction takes place and when this 
happens. Two software packages, providing distinct implementation of the algorithm, were considered: Dizzy31 (ver 
1.11.4) and Cain32 (ver 0.12).  

Figure 3. a)  Hopf curve continuation with free parameters RD and m, for z=2 and 5. The areas corresponding to parameter settings allowing 
periodic oscillations are signaled with the symbol PO whereas the areas corresponding to parameter settings for which the system falls into steady 
states are signaled with the symbol SS. b)  Hopf curve continuation with free parameters RD and z, for m=1 and 10.  
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4.1   Periodic patterns 

The effects of stochasticity on the periodic patterns of Figure 2b were verified by simulating 1000 trajectories of 
the state variables. Results evidenced different time points at which peaks of tax/rex rise in distinct realizations (see 
Figure 4a) causing a lack of synchronicity. Consequently, the tax/rex mean time course resulted to be leveled, as 
shown in panel b; moreover, a high variability in gene expression was observed (see panel c, where the standard 
deviations corresponding to each time point are reported). The leveling of the tax/rex mean time course appeared 
also for other values of z, as shown in panel d, where it is plotted the mean of 1000 realizations with parameter 
setting z=5 and RD=8, for which periodic oscillations arise in the deterministic system (Eq. 8-11). To verify if the 
leveling depended on m, the same simulations were repeated with m=10 and 100, instead of 1, but no better result 
was observed.  

Figure 4. Stochasticity in chemical reactions causes the lack of synchronicity and the leveling of the tax/rex mean time course.  a) 3 trajectories of 
the state variable tax/rex, b) the mean time course of 1000 realizations, and c) the standard deviations corresponding to each time point for z=2 
and RD=3. d) The tax/rex mean time course of 1000 realizations for z=5 and RD=8. 

4.2   Steady state fluctuations 

Since the addition of stochastic phenomena on the periodic patterns provided surprising results, also stochastic 
fluctuations of the steady state solution were examined by means of 10000 stochastic simulations. All state variables 
resulted to be affected by remarkable variability. In particular, tax/rex values presented a coefficient of variation 
(CV) higher than 100%, as it is shown in Figure 4, panel a and b, where the results obtained with Dizzy and Cain are 
reported. To have a better insight, we investigated the density probability function of tax/rex that resulted to be 
characterized by a long tail (see panel c). With different values of z similar distributions appeared, as shown in panel 
d, where it is plotted the density probability function of tax/rex for z=5.  

  
Figure 5. Steady state fluctuations of the steady state solution showed a high variability. a) The CVs obtained from stochastic simulations 
performed by Dizzy; b) The CVs obtained from stochastic simulations performed by Cain. For these simulations z was set to 2. Density 
probability functions of the values of tax/rex for : c) z=2, and d) z=5.   

5. Discussion and conclusions 

The gene circuit of the retrovirus HTLV-1 is characterized by positive and negative feedback phenomena, due to the 
regulatory proteins Tax and Rex, thus candidating it as a potential relaxation oscillator. To test this hypothesis, a 
model of the retroviral gene and protein kinetics was developed on the basis of well-established knowledge. The 
model incorporates the cascade of interactions involving the viral promoter and the biological processes of 
transcription, translation and degradation, assuming the former to be faster and in equilibrium with respect to the 
latter. Reasonable simplifications were introduced to limit the number of parameters, and approximate but 
reasonable numerical values were assigned to them based on information derived in the literature, with the only 
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exception of order of Rex multimerization z, which is unknown. Thus the analysis of the system behavior was for 
different values of z. To test in silico the possibility of observing periodic patterns, bifurcation analysis was 
performed on the deterministic system of differential equations, considering two model parameters as tunable on the 
basis of experimental observations: the degradation rate of regulatory proteins and the parameter m, which is related 
to the multiplicity of infection. Our results show that oscillatory behaviors take place if the kinetics of the positive 
feedback are faster than those of the negative feedback, as expected from a relaxation oscillator; moreover, higher 
values of Tax degradation rate result in smaller amplitudes and oscillation periods. Obviously, other parameters 
influence the system behavior: the values of RD compatible with oscillatory behavior depend on m as well as on z. 
In particular, periodic oscillations are prevented if z is greater than 5.  

To reach periodic oscillations, the Tax degradation rate should be increased with respect to that of Rex. Three 
recent experimental techniques support the possibility of altering protein degradation rate in practice, two based on 
enhancing the ubiquitin degradation pathway and the latter on protein tagging. Bachmair et al.33 pointed out the 
important role of the amino-terminus in stabilizing/destabilizing the proteins which undergo ubiquitination: in their 
experiments the β-Galactosidase half-life lowered from more than 20 hours to less than 3 minutes depending on the 
amino-terminus. Rogers and Rechsteiner34,35 observed the correlation between the high presence of PEST sequences 
– where PEST is the nice abbreviation of proline (P), glutamic acid (E), serine (S), and threonine (T) - and the short 
half-lives of proteins degraded by the ubiquitin pathway. Consequently, the substitution of PEST amino acids with 
more stable ones should increase the protein half-life. McGinness et al.36 suggested the import of the E.coli ClpXP 
protease into eukaryotic cells and the addition of an appropriate ssrA tag to the protein under exam to modulate its 
degradation rate. Briefly, the tag should have weak affinity for the protease so the introduction of the SspB adaptor 
protein can be used as a control lever to increase this affinity and, consequently, the proteolysis of the tagged 
proteins, induced by the ClpXP protease. However, application to the HTLV-1 gene circuit of these three methods is 
not immediate because Tax and Rex are translated from the same transcript tax/rex and, consequently, the mutation 
of one protein implies the mutation of the other. To address this problem and make Tax kinetics faster than Rex 
kinetics, a possible solution is supplied by the PEST hypothesis. Since the coding sequences of Tax and Rex are 
(4829..4832, 6951..8008) and (4773..4832, 6950..8008), respectively (data from the NCBI Reference Sequence 
NC_001436.1), the sequence (4773..4832) is present in Rex but absent in Tax. Moreover, it configures as a PEST 
region since it includes one glutamine, one serine, two threonines and five prolines out of 19 aa, which are all 
destabilizing amino acids. Therefore, their substitution with more stable amino acids, by site-directed 
mutagenesis37,38, should decrease the Rex degradation rate, allowing to obtain periodic oscillations. Conversely, 
practical applicability of the methods proposed by Bachmair et al.33 and McGinness et al.36 to our system is still an 
open issue, due to the overlapping of Rex and Tax protein sequences. 

Since stochasticity and discreteness can cause deviations of the true system behavior from the predictions of 
deterministic differential equations when the molecular populations are small, as is the case of the viral promoter 
sites in our model, the Gillespie algorithm was used to perform stochastic simulations. Simulations revealed the 
leveling of tax/rex time course essentially due to the lack of synchronization among the oscillators delivered in 
distinct cells. In particular, peaks occur at different times in the distinct realizations, as experimentally observed by 
Stricker et al.39 by measuring single-cell fluorescence trajectories. The problem of cell synchronization can be 
addressed by electroporation, but only partially, since the recently developed methodology of transfection40, which 
allows the delivery of genes of interest directly into the nuclear compartment in a time period of microseconds, does 
not guarantee the persistence of synchronization. A continuous synchronizing signal41,42 may be needed to preserve 
the forced initial synchronization over time, but currently this is not available. As a consequence, experimental 
validation is not straightforward and will require single-cell measurements of out of phase oscillators, by time-lapse 
microscopy and using GFP reporters. Recent findings support the applicability of this technique to viral genes, since 
some lentiviral vectors with GFP as reporter of the transactivator gene Tat were described for the HIV gene circuit1. 
Particularly interesting is the wild type HIV-1 with the gene Nef substituted by the GFP; a fascinating testable 
hypothesis is the realization of a reporter version of the HTLV-1 genome with tax/rex substituted by the GFP, to be 
delivered in addition to the appropriately mutated virus. We expect the RNA gag transcribed from this reporter 
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construct, be either doubly spliced into the GFP, supplying fluorescence intensities proportional to the presence of 
tax/rex, or transferred to the cytoplasm and degraded.  

Stochastic fluctuations of the steady state solution were also examined. All state variables are affected by 
remarkable variability. In particular, tax/rex values have a CV higher than 100%, with a long tail of their density 
probability function, indicating that tax/rex gene expression is likely to sometimes assume very high values because 
of stochastic fluctuations, suggesting mechanisms of retroviral activation similar to those recently proposed by 
Weinberger for HIV1. 

In conclusion, the bifurcation analysis of the proposed model of the HTLV-1 gene circuit revealed that periodic 
patterns are possible, provided that Tax kinetics is faster than Rex kinetics. The next step is the experimental 
validation of these predictions. However, the stochastic simulations pointed out the problem of cell synchronicity; 
consequently, single-cell measurements are necessary to observe oscillatory patterns of genes or proteins. Moreover, 
the high variability at steady state suggests mechanisms of retroviral activation similar to those proposed for HIV.  

Appendix 

Following Ref. 5,6, the HTLV-1 chemical reactions13 were divided into two categories: fast and slow; in particular, 
protein multimerization and complex formation were assumed to be faster than the processes of transcription, 
translation and degradation of proteins and transcripts. It is reasonable to assume that fast reactions are of the order 
of seconds, similarly to λ phage’s6 and thus, although not exactly known, much faster than protein degradation in 
eukaryotes, that is of the order of hours or days27. Therefore, faster reactions can be safely assumed to be in 
equilibrium with respect to the slower ones. In the following paragraphs, we will introduce the fast reactions and 
then the slower ones. 

A.1   Fast reactions 

In this paragraph, the following HTLV-1 biological processes13 will be described: (1) dimerization and complex 
formation, which lead to transactivation; (2) cooperative interactions, which are necessary for transcription; and (3) 
Rex multimerization.  

Dimerization and complex formation: HTLV-1 transactivation is due to the binding of a complex, composed of 
dimers of Tax and dimers of the cellular transcription factor CREB, to the Tax Responsive Element43 (TRE) in the 
viral Long Terminal Repeat, where the viral promoter is located. A set of chemical reactions are used to describe:  
1. Tax dimers formation and their transfer to the nucleus (Tax is a shuttling protein44, i.e. it transfers from the 

cytoplasm to the nucleus and viceversa, so dimers are present in the whole cell but only the nuclear fraction is 
involved in transactivation). 

2. CREB dimers formation and their transfer to the nucleus. 
3. The formation of a CREB2-TAX2 complex, which subsequently binds to the TRE inducing transactivation, and 

the alternative interaction CREB2-TRE from which the basal transcription follows. In the following we will 
indicate the transactivated promoter sites and the nontransactivated ones with the abbreviations TPrS0, and 
NTPrS0, respectively, and with TRE the inactivated viral promoter sites. Table A1 summarizes the chemical 
reactions and the corresponding equilibria. 
 

 
Table A.1. Chemical reactions and the corresponding equilibria concerning molecular dimerization and complex formation. 

Tax dimerization               K1 

2 TAX  ⇌ TAX2 
QTAX%R � K�QTAXR% 

Tax transfer to the nucleus           K2 

TAX%⇌ TAX%
X

  
QTAX%

XR � K%QTAX%R 

CREB dimerization                K3 

2 CREB ⇌ CREB2  
QCREB%R � K'QCREBR% 

CREB transfer to the nucleus              K4 

CREB2⇌ CREB%
X

  
QCREB%

XR � K QCREB%R 

CREB2-TAX 2 complex formation in 
the nucleus 

        K5 

CREB%
X 	 TAX%

X⇌ Complex 
QComplexR � K^K K'QCREBR% K%K�QTAXR% 
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Binding of the complex to TRE 
(transactivated promoter) 

                              K6T 

Complex 	 TRE⇌ TPrS$ 
QTPrS$R � K`aK^K K'QCREBR% K%K�QTAXR% QTRER 

Binding of CREB2 to TRE (non-
transactivated promoter) 

      K6NT 

CREB%
X 	 TRE⇌ NTPrS0  

QNTPrS$R � K`caK K'QCREBR% QTRER 

Cooperative interactions: viral transcription involves a cascade of co-activators and general transcription 
factors, CBP/p300, PCAF, TFIIA, TFIIB,TFIID13, whose binding reactions with the promoter regions are described 
in Table A.2. The transactivated and the non-transactivated promoter sites will be indicated with TPrSi, and NTPrSi, 
where the suffix i denotes the step in the cascade. Following the same line of reasoning which underlies the 
formulation of the well-known pseudo-first order rate equations45, the concentrations of all co-activators and general 
transcription factors are assumed to be constant or in great excess with respect to the viral promoters they interact 
with, so that the effects of the variations of their concentrations on the viral kinetics are negligible. Consistently, a 
low multiplicity of infection is assumed, i.e. we suppose that few viral genomes are integrated in the host cells. 
Table A.2 summarizes the chemical reactions and the corresponding equilibria. 
 
Table A.2. Chemical reactions and the corresponding equilibria concerning cooperative interactions. 

Binding of CBP/p300 to the non-

transactivated promoter site 

                                      Kgh 

NTPrS$ 	CBP/p300⇌ NTPrS� 
QNTPrS�R � KghQNTPrS$R QCBPR� K

ghQNTPrS$R 

Binding of PCAF to the non-

transactivated promoter site 

                           Kjh 

NTPrS� 	PCAF⇌ NTPrS% 
 QNTPrS%R � KjhQNTPrS�R QPCAFR � K

jhQNTPrS�R 

Binding of TFIIA to the non-

transactivated promoter site 

                           Kkh 

NTPrS% 	TFIIA⇌ NTPrS' 
QNTPrS'R � KkhQNTPrS%R QTFIIAR � K

khQNTPrS%R 

Binding of TFIIB to the non-
transactivated promoter site 

          K�$h 

NTPrS' 	TFIIB⇌ NTPrS  
QNTPrS R � K�$hQNTPrS'R QTFIIBR � K

�$h QNTPrS'R 

Binding of TFIID to the non-

transactivated promoter site 

                            K��h 

NTPrS 	TFIID⇌ NTPrS^ 
QNTPrS^R � K��hQNTPrS R QTFIIDR � K

��h QNTPrS R 

Binding of CBP/p300 to the 

transactivated promoter site 

                                   Kgm 

TPrS$ 	CBP/p300⇌ TPrS� 
QTPrS�R � KgmQTPrS$R QCBPR� K

gmQTPrS$R 

Binding of PCAF to the 

transactivated promoter site 

                        Kjm 

TPrS� 	PCAF⇌ TPrS%  
 QTPrS%R � KjmQTPrS�R QPCAFR � K

jmQTPrS�R 

Binding of TFIIA to the 

transactivated promoter site 

                         Kkm 

TPrS% 	TFIIA⇌ TPrS' 
QTPrS'R � KkmQTPrS%R QTFIIAR � K

kmQTPrS%R 

Binding of TFIIB to the 

transactivated promoter site 

                        K�$m 

TPrS' 	TFIIB⇌ TPrS  
QTPrS R � K�$mQTPrS'R QTFIIBR � K

�$mQTPrS'R 

Binding of TFIID to the 

transactivated promoter site 

                        K��m 

TPrS 	TFIID⇌ TPrS^ 
QTPrS^R � K��mQTPrS R QTFIIDR � K

��mQTPrS R 

Rex multimerization: protein Rex multimerizes46, but the exact kind of multimer it forms is not known; in 
particular, there is evidence that Rex at least dimerizes47, but the formation of complexes of higher orders like 
pentamers or hexamers is likely as well. To describe Rex multimerization, the Helfferich procedure for multistep 
reactions48 is applied, summarizing with K12 the ratio of the overall forward and backward kinetics constants. Like 
Tax, also Rex is a shuttling protein49 and only its nuclear fraction is involved in the nuclear export of incompletely 
spliced transcripts. Table A.3 summarizes the chemical reactions and the corresponding equilibria; with the symbol 
z we indicate the number of Rex molecules involved in the multimer formation, e.g. z=2 for dimers and z=5 for 
pentamers. 
 
Table A.3. Chemical reactions and the corresponding equilibria concerning Rex multimerization and its transfer to the nucleus. 

Rex multimerization                 K12 

z REX ⇌… ⇌REXz  
QREXoR � K�%QREXRo 

Rex  transfer to the nucleus           K13 

REXo⇌ REXo
X

  
QREXo

XR � K�'QREXoR �  K�'K�%QREXRo 

A.2   Slow reactions 

Transcription, translation and the degradation of transcripts and proteins are irreversible and slow reactions; in the 
following we will describe: (1) the transcription of the primary transcript gag; (2) the alternative splicing of gag and 
the nuclear export of mRNAs; (3) the kinetics of the transcript tax/rex; (4) the kinetics of the proteins Tax and Rex; 
and (5) the kinetics of the incompletely spliced transcripts. 
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The transcription of the primary transcript gag: gag synthesis S1(t) is due to the basal transcription S11(t) and to 
the transcription induced by transactivation S12(t). Chemical reactions of the transcription processes S11(t) and S12(t), 
with their mathematical formulations, are shown in Table A.4, where the concentration of RNA polymerase 
(RNAp), is assumed to be constant or in great excess with respect to the viral promoter sites it interacts with. In 
Table A.4, β1 indicates the gain in transcription, i.e. the number of transcripts generated by the binding of a molecule 
of RNAp to DNA and the subsequent process of gag transcription, kt is a reaction rate constant [1/h] and c0 a 
multiplicative constant. 
 
Table A.4. Chemical reactions of transcriptions and the corresponding syntheses of nuclear gag. 

Basal 
transcription 

                  kt NTPrS^ 	 RNAp→NTPrS^ 	 RNAp 	 �� nuclear Gag    
���t� � ��#rs$QNTPrS^R�+� �� ��#rs$K��hK�$hKkhKjhKghQNTPrS$R�t� 
With 
transactivation 

              c0kt TPrS^ 	 RNAp → TPrS^ 	 RNAp 	 �� nuclear Gag  
�%�t� � ��t$#rs$QTPrS^R�+� �� ��t$#rs$K��mK�$mKkmKjmKgmQTPrS$R�t� 
From the transcription processes S11(t) and S12(t), in molecules/h, of Table A.4, we derive the transcription rates 

S=β1ktp0K
’
11AK

’
10AK

’
9AK ’

8AK ’
7A and S’=β1c0ktp0K

’
11BK

’
10BK

’
9BK ’

8BK ’
7B, in 1/h, for the basal transcription and 

transcription following transactivation, and we call c1 their ratio, i.e. c1= S’/S. To have a better insight on the effects 
of the Tax-induced transactivation on the total gag synthesis S1(t), we introduce the multiplicity of infection (MOI), 
which is the mean number of viral genomes integrated in the host genome per cell. Then, we indicate with [cells] the 
cell concentration in a sample, in number of cells/l. Consequently, the concentration of retroviral genomes integrated 
in the host cells, m, equals MOI*[cells], in number of viral molecules/l. Now, making the working hypothesis that 
all the promoters are demethilated, i.e. none of them is a priori prevented from being involved in transcription, we 
derive that: 

m � QTRER�t� 	 QNTPrS$R�t� 	 QTPrS$R�t� (A.1) 

The total transcription S1(t) is the sum of S11(t) and S12(t). Therefore, by summing up we have: 


��t� � S QNTPrS$R�t�	S’ QTPrS$R�t��  
�QNTPrS0R�t� 	 c1QTPrS0R�t�" (A.2) 

where the constant c1 was introduced to obtain the right-hand side of the equation. Then, from Eq. A.1 and A.2, and 
by some algebraic passages we obtain: 


��t� � 
�m � QTRER�t� 	 �c� � 1�QTPrS$R�t�" �  
�m � QTRER�t�" w1 	 QTPrS$R�t�
m � QTRER�t� �t� � 1�x (A.3) 

Now, we focus on the term Qayz{|R���
}~Qa��R���  of Eq. A.3 and call q3(t) the Tax concentration. From Eq A.1 and 

equilibria of Table A.1 we obtain: 

QTPrS$R�t�
m � QTRER�t� � QTPrS$R�t�

QNTPrS$R�t� 	 QTPrS$R�t� �  q'�t�%
h�% 	 q'�t�% with: h�% � �`���`�

1
�^K%K� (A.4) 

Eq. A.4 shows that an elevated Tax concentration increases the number of transactivated promoter sites among 
the promoters involved in transcription, which are [TPrS0](t)+[NTPrS0](t). Then, by inserting the right term of Eq. 
A.4 in Eq. A.3 the synthesis of nuclear gag becomes: 


��t� �  
�m � QTRER�t�" 	 �m � QTRER�t�" 
 �′� ������
����������   (A.5) 

where β’
1=c1-1 is the transactivation constant (adimensional). Eq. A.5 shows a saturative effect of Tax concentration 

on gag synthesis given by the term 
������

���������� , which can be due to the limited number of integrated viral promoter 

sites; in other words once they have been all transactivated, the gag transcription S1(t) saturates and no further 
increase is possible. Now, let p1=[CREB], which is assumed to be constant or in great excess with respect to the 
viral promoter sites it interacts with, and focus on the term m-[TRE](t). From equilibria of Table A.1 and Eq. A.1, 
and by several algebraic passages we obtain: 

m � QTRER�t� � m � ;
f�p�, q'�t��  (A.6) 

where: 
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f�p� , q'�t�� � 1 	 p�
%

�%
% 	

p�
%

�%
%

1
��%

q'�t�% with h%
% �

1
�`��K K' (A.7) 

Eq. A.6 implies that if there is a lot of Tax or CREB then f�p�, q'�t�� � m  and, consequently, m � QTRER�t� � ;, 
i.e. the number of promoter sites which are not involved in transcription becomes negligible. Therefore, by inserting 
the right term of Eq. A.6 in Eq. A.5, the synthesis of gag becomes: 


��+� � 
 w; � ;
��s� , �'�+��  x 	 wm � ;

��s�, �'�+��  x 
 ��  q'�t�%
h�% 	 q'�t�% (A.8) 

The alternative splicing of gag and the transfer of mRNAs to the cytoplasm: in presence of nuclear Rex, the 
transcripts are transferred incompletely spliced to the cytoplasm whereas, in absence of Rex, gag is doubly spliced 
into tax/rex13. Quantitatively, the amount of incompletely spliced RNAs transferred to the cytoplasm depends on the 
fraction of gag molecules which interact with multimers of Rex in the nucleus. This fraction is represented by the 
function g(q��t�, � �t�, !), see Eq. A.9-11.  
 
g�q��t�, � �+�, !� � 

 �������),
�� �  �),

��-
�

��  
with �'D � �

������ If  
�),
��, . q� and q� / 0 (A.9) 

1 If  �),
��, / q�and q� / 0 (A.10) 

0 If  q� � 0 (A.11) 

where the variable q4(t) represents the Rex concentration in the sample, and the algebraic passages derive from the 
equilibria of Table A.3. The transcripts that are not transferred to the cytoplasm are degraded by the nuclear 
enzymes. Therefore, the total decay of gag in the nucleus is due to the nuclear export plus the nuclear degradation 
(see reactions in Table A.5, where ks and k01 are reaction rate constants, and c2 is a multiplicative constant; for 
simplicity, the splicing and the nuclear export are condensed into a unique reaction). 
 
Table A.5. Nuclear gag decay is due to the nuclear export of incompletely spliced RNAs (with Rex case), the splicing and nuclear export of 
doubly spliced RNAs (without Rex case) and to the nuclear degradation of the transcripts. 

with Rex 
                                 ks 
Nuclear gag + Rexz →  
→ Cytoplasmatic incompletely spliced RNA + Rexz 

L11�τ��  g�q��t�, � �+�, !� k����t� 

without Rex 
                                                         c2ks 
Nuclear gag+ ∑ �s��t��> ��t+��� � →  
→ Cytoplasmatic tax/rex +∑ �s��t��> ��t+����   

L12�τ�� �1 � g�q��t�, � �+�, !�" c% k����t� 
Nuclear 
degradation 

                      k01 
Nuclear gag→  D1�τ�� �1 � g�q��t�, � �+�, !�" k$����t� 

The sum of the three addends of Table A.5 is:  

Nuclear gag decay�t� � L���t� 	 L�%�t� 	 D��t� �   
(A.12) � g�q��t�, � �+�, !� k����+� 	 �1 � g�q��t�, � �+�, !�" c% k� ���+� 	  �1 � g�q��t�, � �+�, !�" k$����t� 

Therefore, by considering gag synthesis (Eq. A.8) and nuclear decay (Eq. A.12), the rate equation for nuclear 
gag is: 
���
�r  = 
��t� � ��t���� >�> �ecay�t� � 

(A.13) � 
 w; � ;
��s�, �'�+��  x 	 wm � ;

��s�, �'�+��  x 
 ��  q'�t�%
h�% 	 q'�t�% � g�q��t�, � �+�, !�k����t� � �1 � g�q��t�, � �t��� �c% k� 	 #$�"���t� 

where q1(t) represents the concentration of nuclear gag, in molecules/l. 
The kinetics of the transcript tax/rex: tax/rex kinetics is given in Eq. A.14, where S2(t) is the synthesis following 

the double splicing of nuclear gag, i.e. S2(t)=L12(t) (Table A.5), and D2(t) represents the degradation; the reactions 
are reported in Table A.6, where k02 is the reaction rate constant of the tax/rex degradation process. Therefore, the 
rate equation for tax/rex is: 

���
�r  = S%�t� � �%�+� �  �1 � g�q��t�, � �+�, !�"c% k� ���t� � #$% �%�t�   (A.14) 

where q2(t) represents the tax/rex concentration, in molecules/l. 
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Table A.6. Transcript tax/rex kinetics is due to two terms: synthesis, by double splicing of nuclear gag, and degradation. 

tax/rex synthesis                                                         c2ks 
Nuclear Gag+ ∑ �s��t��> ��t+��� � →  
→ Cytoplasmatic tax/rex +∑ �s��t��> ��t+����   

S2(t)= L12�τ�� �1 � g�q��t�, � �+�, !�" c% k� ���t� 
tax/rex 
degradation 

            k02 
tax/rex →  �%�+� � #$% �%�t�  

The kinetics of the proteins Tax and Rex: Tax and Rex are translated from the same transcript tax/rex; their 
synthesis reactions are shown in Table A.7, where kT3 and kT4 are reaction rate constants [1/h], β3 and β4 the gains in 
protein translations [protein molecules/transcript molecules], and β

’
3, β

’
4 their products [molecules/(molecules*h)]. 

 
Table A.7. Reactions of translation of the regulatory proteins Tax and Rex. 

Tax synthesis                 kT3 tax/rex  → tax/rex + �' Tax 
'(t) = ka' �' �%(+) = �'��(t) 
Rex synthesis               kT4 tax/rex → tax/rex + �  Rex 
 (t) = #�  �  �%(t) = � ��(t) 

Therefore, the rate equations for Tax and Rex are: 

���
�r  =
'(t) � �'(t) = �'�%(t) � #$'�'(t)       (A.15) 

��)
�r  =
 (t) � � (t) = � �%(t) � #$ � (t)          (A.16) 

where q3(t) and q4(t) represent the concentrations [molecules/l] of Tax and Rex, respectively, and k03 and k04 are the 
rate constants of the corresponding degradation reactions. 

The kinetics of the incompletely spliced transcripts: analogously to tax/rex, the rate equations of the 
incompletely spliced RNAs are:  

��� 
�r  =   
^�(t) � �^�(t) =  �̂ �g(q�(t), � (+), !) k� ��(+) � #$^�  �^�(t)  with i=1,..,n (A.17) 

where q5i(t) represent the concentrations of incompletely spliced RNAs, k05i are the rate constants of the 
corresponding degradation reactions, and �� are the fractions of nuclear gag singly spliced into each transcript (or 
remained unspliced in the case of the cytoplasmatic gag) and transferred to the cytoplasm. 

From the rate equations (Eq. 13-17), a system of differential equations was derived. To limit the complexity of 
the model, a number of assumptions were made: 

Simplification 1: Grone et al.14 observed that the total viral RNA in the sample is Rex-independent. From Eq. 
A.13, A.14 and A.17, total RNA is:  

¡ (���
�¢ + ��%

�¢ + £�
�

$
 ��^�

�¢ )�¢ = ¡ Q 
�(¢) � ��(¢) � �%(¢) � £��^�(¢)R�¢
r

$
  (A.18) 

If the nuclear degradation D1(t) is negligible with respect to the other addends, the total viral RNA does not 
depend on Rex, thus leading to k01 in Eq. A.13 much smaller than the transcript degradation rates. For simplicity, k01 
was set to 0 in Eq. A.13. 

Simplification 2: we assume that the multiplicity of infection is so low that 
¤

¥�¦�,��(r)� ≈ 0 in Eq. A.13.  Since the 

MOI can be regulated at the time of virus delivery by the titer of viral particles, this condition is attainable. 
Simplification 3: we assume that the nuclear-cytoplasmatic transport take place with the same rate for every 

transcript, i.e. ks≈c2ks in Eq. A.13.  

Simplification 4: since the kinetics of incompletely spliced RNAs do not affect the possible oscillatory behavior 
of tax/rex and gag, their kinetics were excluded from further considerations. 

From Simplifications 1-4, we obtain the system of differential equations of Eq. A.19-22: 
���
��  = m S + m 
 ��  ��(�)�

������(�)� � k���(t) (A.19) 
���
��  = �1 � g(q�(t), � (t), !)" k���(t) � #$% �%(t)   (A.20) 

���
��  = �'�%(t) � #$'�'(t) (A.21) 

���
��  = � �%(t) � #$ � (t) (A.22) 

431



 
 

 

References 

1. L. S. Weinberger, R. D. Dar, M. L. Simpson, Nat Genet 40, 466 (2008). 
2. T. S. Gardner, C. R. Cantor, J. J. Collins, Nature 403, 339 (2000). 
3. M. B. Elowitz, S. Leibler, Nature 403, 335 (2000). 
4. M. Kaern, W. J. Blake, J. J. Collins, Annu Rev Biomed Eng 5, 179 (2003). 
5. J. Hasty, J. Pradines, M. Dolnik, J. J. Collins, Proc Natl Acad Sci U S A 97, 2075 (2000). 
6. J. Hasty, F. Isaacs, M. Dolnik, D. McMillen, J. J. J. Collins, Chaos 11, 207 (2001). 
7. M. Ramachandra, et al., Nat Biotechnol 19, 1035 (2001). 
8.   J.W. Bainbridge, et al., N Engl J Med. 358,2282 (2008)  
9.  A. Corradin, et al., The 10th International Conference on Systems biology, Aug 30-Sept 4, 2009.  Stanford, 

California (accepted). 
10. M. Thattai, A. van Oudenaarden, Proc Natl Acad Sci U S A 98, 8614 (2001). 
11. M. B. Elowitz, A. J. Levine, E. D. Siggia, P. S. Swain, Science 297, 1183 (2002). 
12. D. T. Gillespie, Annu Rev Phys Chem 58, 35 (2007). 
13.  M.D.  Lairmore, G. Franchini, In Fields Virology, Fifth Edition. Ed. David M. Knipe and Peter M. Howley.  

Lippincott Williams and Wilkins, Philadelphia, pp. 2071-2106 (2007). 
14.   M. Gröne, et al., Virology 218,316 (1996). 
15.   R. Rosin-Arbesfeld, et al., EMBO J. 22,1101 (2003). 
16.   J. Lewis, Current biology : CB 13, 1398 (2003). 
17.   L. S. S. Weinberger, T. Shenk, PLoS Biol 5 (2006). 
18.   F. Kashanchi, J.N. Brady, Oncogene 24,5938(2005). 
19.   J. M. Peloponese Jr, et al. J Virol. 78,11686 (2004). 
20.   S. J. Jeong, et al., Biochem Biophys Res Commun. 381,294(2009) 
21.   N. Yildirim, M. C. Mackey, Biophys J 84, 2841 (2003). 
22.   K. D. Jacobsen, B. M.Willumsen. J. Mol. Biol. 252, 289 (1995) 
23.   J. F. Kugel, J. A. Goodrich, Proc Natl Acad Sci U S A 95,9232 (1998). 
24.   A. Corradin, et al., Proceedings of the ENFIN Symposium at the Functional Genomics & Disease Conference,    
          Oct 2-4, 2008.  Innsbruck, Austria 
25.   F. Rende, et al., Proceedings of the HERN meeting, June 1-2, 2008. Bruges, Belgium. 
26.   A. Dhooge, et al., ACM TOMS. 29,141(2003). 
27. T. S. Olson, J. F. Dice, Curr Opin Cell Biol. 1,1194 (1989). 
28.  Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer-Verlag, New York (2004). 
29.   D. T. Gillespie, Journal of Computational Physics 22, 403 (1976). 
30.   D. T. Gillespie, The Journal of Physical Chemistry 81, 2340 (1977). 
31.   S. Ramsey, D. Orrell, H. Bolouri, J Bioinform Comput Biol 3, 415 (2005). 
32.   S. Mauch, M. Stalzer, IEEE/ACM Transactions on Computational Biology and Bioinformatics 99, (5555). 
33.  A. Bachmair, D. Finley, A. Varshavsky, Science (New York, N.Y.) 234, 179 (1986). 
34.   S. Rogers, et al., Science 234,364 (1986). 
35.   M. Rechsteiner, S. W. Rogers, Trends in biochemical sciences 21, 267 (1996). 
36.   K. E. McGinness, T. A. Baker, R. T. Sauer, Mol Cell 22, 701 (2006). 
37.   T. A. Kunkel, Proc Natl Acad Sci U S A 82,488 (1985). 
38.   J. W. Taylor, et al., Nucleic Acids Res. 13,8765 (1985). 
39.   J. Stricker, et al., Nature (2008). 
40.   F. Rende, et al., Proceedings of the 14th ICHR: HTLV and Related Viruses. July 1-4, 2009. Salvador, Brazil.  
41.   J. Hasty, et al., Phys Rev Lett. 88,148101 (2002). 
42.   T. Zhou, et al., Chaos 18,037126 (2008). 
43.   F. Tie, et al., J Virol. 70,8368 (1996). 
44.   M. Burton, et al., J Virol. 74,2351 (2000). 
45.   K. A. Connors, Chemical Kinetics, the study of reaction rates in solution.VCH Publishers (1991) 
46.   L. Fu, et al., FEBS Lett. 396,47 (1996). 
47.   R. E. Smith, et al., Virolog. 237,397 (1997). 
48.   F.G. Helfferich, J. Phis. Chem. 93,6676 (1989)  
49.   D. Palmeri, M.H. Malim, J Virol. 70,6442. 

432



 

EMULSION BASED SELECTION OF T7 PROMOTERS OF VARYING ACTIVITY 

ERIC A. DAVIDSON 

Institute for Cell and Molecular Biology, University of Texas at Austin, 1 University Station A4800 
Austin, Texas 78712, United States 

THOMAS VAN BLARCOM 
Department of Chemical Engineering, University of Texas at Austin, 1 University Station C0400 

Austin, Texas 78712, United States 
 

MATTHEW LEVY 
Department of Biochemistry, Albert Einstein College of Medicine, 1301 Morris Park Avenue 

Bronx, NY 10461, United States 
  

ANDREW D. ELLINGTON 

Department of Chemistry and Biochemistry, University of Texas at Austin, 1 University Station A4800 
Austin, Texas 78712, United States 

The ability to build and control complex biological systems is greatly enhanced by the generation of related parts with varying 
strengths.  In this way, various parts can be strung together and the connectivity and expression levels can be matched for the desired 
system performance.  Engineered gene circuits, both in vivo and in vitro, often utilize the T7 RNA polymerase in tandem with the T7 
promoter for transcription.  In this work, we describe the selection of T7 promoter variants of varying strength by emulsifying in vitro 
transcription with subsequent fluorescence activated cell sorting (FACS) to enrich for active promoters.  Such variant promoters 
should be of use to synthetic biologists for both in vivo and in vitro applications. 

1. Introduction 

T7 RNA polymerase (T7 RNAP) plays an important role in the production of RNA transcripts for biotechnology 
applications.  For example, it is widely used for protein overproduction.  It has also been routinely used for 
generating large quantities of functional RNAs in vitro, such as aptamers, ribozymes, and siRNAs.  T7 RNAP has 
also played a key role in many engineered and synthetic genetic circuits1-3, at least in part because a single, 
monomeric protein can act orthogonally on a short, 17 nt promoter4.  Indeed, as scientists and engineers contemplate 
creation of an artificial, minimal cell, the T7 RNA polymerase is at the forefront of the discussion of how to power 
transcription5. 

Because of the difficulties inherent in modeling synthetic parts and circuits in organisms, the development of 
synthetic circuits in cell free settings, including artificial cell-like liposomes and water-in-oil emulsions, is an 
attractive alternative6-8.  Indeed, cell-free systems are already being used for biomolecular engineering in order to 
bypass the systemic and evolutionary constraints inherent in living cells6,9-12.  The shift from in vivo to in vitro 
circuitry may be particularly desirable for T7 RNA polymerase and its promoter, since in cells it is active to the 
point of toxicity when not exquisitely controlled (for example, see reference 13).  Typically, synthetic biologists 
have chosen to control T7 driven gene expression by controlling the production of the T7 RNA polymerase1. 

However, just as the performance of parts in vitro is not necessarily predictive of their role in vivo, it will be 
necessary to determine how well individual parts function in emulsions and other cell-like environments.  To 
generate parts for synthetic circuits and to better understand how such circuits can themselves adapt and evolve, we 
randomized the initially transcribed sequence (ITS) of the T7 promoter, which modulates transcription levels from 
the core phi10 T7 promoter, and selected for different T7 RNAP promoters with different transcription strengths in 
emulsions.  These and additional selected promoters can now be used as a parts set to contribute to the building of 
future circuits requiring a range of transcription activities. 
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A. 

 
 
B. 

 
Figure 1.  Selection scheme for transcription templates containing active promoter sequences.  A. Biotinylated template DNA and biotinylated 
capture oligonucleotides are immobilized on a streptavidin coated bead.  Each bead should one or zero templates and an excess of capture 
oligonucleotide.  Beads are suspended in a transcription reaction and emulsified to encapsulate a single bead per emulsion compartment.  RNA 
produced from the template DNA hybridizes to the bead through the capture oligonucleotide.  After breaking the emulsion, the RNA is labeled by 
a fluorescent probe oligonucleotide and then an antibody based fluorescence amplification system.  B. Individual beads are sorted on the basis of 
their fluorescent signal on an Aria FACS machine.  Highly fluorescent beads are collected and reamplified for additional FACS or 
characterization. 
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2. Results 

2.1. System design and testing 

We designed a scheme to select for active T7 promoters through emulsified transcription, fluorescence activated cell 
sorting (FACS) for active templates and then reamplification of collected templates.  This process was mediated by 
attaching biotinylated template DNA to streptavidin coated beads at a ratio of no more than a single template per 
bead (in practice, no more than a single template for every two beads was added when sorting to minimize beads 
containing multiple templates).  Transcripts produced in emulsion hybridize to the bead containing the template they 
were transcribed from through a capture oligonucleotide.  The RNA remained hybridized to the bead through the 
process of breaking the emulsion and washing the beads (data not shown).  The transcripts are finally fluorescently 
labeled and beads containing high amounts of fluorescence (and thus active templates) are collected by FACS.  The 
process of preparing beads for emulsified transcription and subsequent fluorescence labeling is presented in Figure 
1 and described in detail in the Methods section. 
 In order to test the viability of this scheme, we investigated its ability to enrich a highly active T7 promoter-
containing template from a background of weakly active T7 promoter-containing templates (the weakly active 
sequence contains +1 C and +2 C instead of +1 G and +2 G in the highly active sequence).  The highly active 
templates were added to a solution of weakly active templates at 1 part in 10 and added to beads at 1 template per 2 
beads (thus, at least 50% of the beads should contain no template).  During FACS sorting, four non-overlapping 
regions of the bead population representing nearly the entire fluorescence spectrum were sampled.  In order of 
increasing fluorescence, region P9 contained ~40% of the population, P7 contained ~50% of the population, P6 
contained ~7.6% of the population and P5 contained the most fluorescent ~1.6% of the population.  The collected  

A. 

 
B. 

 

Figure 2.  One round test selection with a two member population.  A. Histogram showing bead distribution by relative fluorescence intensity.  
The beads carry a two member mixed population of either highly active or weakly active transcription templates.  The highly active templates 
were present at 10% of the total mixed population.  Templates were added to the beads at a ratio of 1 template per 2 beads.  The total bead 
population was gated into 4 non-overlapping subpopulations named P9, P7, P6 and P5.  B. Population analysis and sequence results show that an 
increase in relative fluorescence corresponds to an increase in the fraction of highly active template sequences. 
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A. 

 
B. 

 
 

Figure 3.  A.  Histogram showing bead distribution by relative fluorescence intensity for the lib1 Round 2 population.  Beads from P5 and P6 
gates were collected and resulting sequences analyzed.  B.  Sequence and relative transcription data from select clones recovered from Round 3 of 
FACS.  Deletions from the expected sequence are represented by a tilde (~).  The region randomized in the starting sequence library is shown in 
bold (generally +1 to +6).  Transcription efficiency is shown relative to the most transcribed clone.  Sequences were selected for further 
characterization by in vitro transcription assay in order to test a variety of +1 and +2 sequence combinations.  All sequences from P5 contained +1 
purine +2 N (where N is any of the 4 standard nucleotides).  Two clones from P6 that did not contain the +1 purine and were predicted to be 
inactive were tested and found to have only trace activity. 

 
beads from these regions were amplified, cloned and 5 colonies from each region sequenced to determine the 
template distribution within the spectrum (Figure 2).  Consistent with the addition of only 1 template for every two 
beads, region P9 amplified poorly compared to the other three regions.  All 5 clones from region P5 and 4 of the 5 
clones from region P6 were the highly active template sequence.  All clones from regions P7 and P9 (together, the 
least fluorescent ~90% of the bead population) were weakly active templates.  These results show that highly active 
promoter sequences can be differentially identified from a background of weakly active templates. 

2.2. Promoter selection from randomized ITS library 

After confirming that the selection scheme was viable, we wanted to select for active promoter sequences from a 
randomized promoter library.  Starting with the core T7 phi10 promoter sequence (from -17 to -1) we completely 
randomized the first six bases of the initially transcribed region (ITS positions +1 to +6; lib1).  These bases are 
known to influence promoter strength by affecting the ability of the T7 RNA polymerase to transition from the 
promoter recognizing initiation complex to the highly processive elongation complex14.  This is a small library that 
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can be easily screened by FACS (a theoretical library size of 46 or 4096 possible unique members) but that we 
predicted would retain a broad range of activity due to the inclusion of the -17 to -1 core promoter sequence. 

Similar to the initial two member test pool, the lib1 pool was attached to beads at a ratio of 1 template per 2 
beads with excess capture oligonucleotide.  The library was emulsified for transcription and the resulting RNA 
labeled beads were fluorescently labeled.  Two rounds of FACS enrichment for the highest ~1.5% (round 1) and 
~5% (round 2) of the population yielded the Round 2 population seen in Figure 3A.  A third round of FACS was 
performed and two non-overlapping regions were collected (P6 and P5; Figure 3A).  The templates from these 
regions were cloned and 9 sequences for P5 and 10 sequences for P6 were determined.  Figure 3B contains a select 
list of sequences and relative transcription activities.  For a full list of sequences, see Appendix Table A1.   
 The templates which were tested by in vitro transcription from Round 3 region P5 (R3P5) contained a broad 
spectrum of activities down to 30% of the maximum transcription level.  The tested promoter sequences were 
chosen out of the 20 clones sequenced in order to cover clones containing the entire spectrum of nucleotides found 
at the +1 and +2 positions of the library under the theory that the +1 sequence was the most important for initiation 
followed closely by the +2 sequence.  This expectation appears to have been borne out by the presence of a purine 
at +1 in 16 out of the 20 total sequences from R3P5 and R3P6 combined.  Two of the four sequences that did not 
contain a purine at +1 were also tested by in vitro transcription and found to be inactive, suggesting that further 
enrichment of the selected pool would likely have been possible.  Interestingly, the +1 and +2 positions do not 
appear to solely control promoter strength; variants in which these residues were the same but where the +3 to +6 
sequences were different had quite different transcription activities. 

3. Discussion 

A number of synthetic genetic circuits have previously been designed and assayed in the context of organisms.  In 
many instances, the overall function of these circuits had to be optimized by varying the levels of gene expression of 
one or more specific components.  In such circuits, subtle variation of individual parts can lead to global changes in 
circuit behavior.  Anderson et al. approached this problem by randomizing the ribosome binding site and selecting 
for the desired system behavior1.  Another approach has been to screen through a small number of parts of varying 
strength to find one suitable for a specific application.  Alper et al. used this strategy to identify promoters of 
varying strength to optimize metabolic pathway output.  While library members spanned ~200 fold activity, changes 
in promoter strength of less than 10 fold were sufficient to optimize metabolite output15.  Since the performance of 
biological parts in organisms is idiosyncratic, these optimizations have so far been largely empirical.  To date, it has 
been difficult to match the actual and predicted performances of biological parts in circuits. 

This problem is further confounded for synthetic biologists because a few, highly characterized parts, such as 
the lac and tet promoters, have typically been used again and again.  More recent synthetic biology16 and metabolic 
engineering15 efforts have attempted to fine tune promoter strengths, either by screening or by design.  Even greater 
standardization has been achieved by Kelly et al.,17 who compared the activities of a series of E. coli promoters in 
the context of a single expression casette (GFP) in vivo.  The establishment of such a standardized system ultimately 
allows the direct comparison of promoters from different labs or different constructs.   

Unfortunately, such efforts will not translate to in vitro genetic circuits, and therefore we attempted to 
recapitulate such standardization in the context of in vitro compartments.  We chose to standardize transcription 
using the highly active T7 RNAP and its widely used promoter.  Given that the activities of proteins and regulatory 
sequences in emulsions can be very different from in vivo or even in vitro, we could not just assume that the 
previous rule sets for T7 RNA polymerase promoters would be operative in emulsion microvessicles.  Indeed, we 
have previously found that T7 RNA polymerase loses activity in emulsions relative to in vitro (data not shown).   

We therefore directly selected for different levels of function in vitro by modulating the short sequence of the 
initially transcribed (ITS) region and thereby the promoter strength.  Promoter variants were emulsified and 
differing transcription activities were directly selected by FACS.  We initially focused on the most highly active 
fraction of promoters, although a wide range of transcription activities is obviously possible.  The relative 
transcription activities of ten different selected promoters were determined both in emulsions (via FACS) and in 
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transcription reactions in vitro.  The strongest promoters generally had a guanine at +1 and favored G or A at +2, 
which was expected based on the known strengths of T7 TNAP promoter variants.  However, we unexpectedly 
selected two promoters that initiated with AG, as opposed to all known phi10 promoters that initiate with G.  This 
necessarily expands the rules for T7 RNAP promoter design in vitro.  The 8 most active promoters spanned a 
dynamic range of approximately 3-fold.   
 The definition of a wide range of promoters with varying sequences and activities will provide a unique tool set 
for the construction of synthetic genetic circuits in vitro.  The fact that only 6 residues need be varied to vary 
transcription is reminiscent of the varying translation by simply modulating short ribosome-binding sites, and the 
two techniques can obviously be used together to exquisitely control the strength of gene expression.  While we 
have begun to standardize, characterize, and compare these new promoter parts, their behaviors can be even more 
accurately represented once they are tested by predictive models in complex systems. 

4. Materials and Methods 

4.1. Template and library construction 

Oligonucleotides were ordered from IDT or, in the case of oligonucleotides with randomized positions, produced in 
house.  For a full list of oligonucleotide and template sequences, see Appendix Table A2.  PCR amplifications were 
performed with Taq DNA polymerase.  For bead based experiments and sorting, ED.5Bio template F and 
ED.Pt7.temp R primers were used.  For non-emulsion transcriptions and for cloning, ED.template F was substituted.  
To construct the ITS library (lib1), the template was amplified with ED.lib1 F and ED.Pt7.temp R.  The product of 
this PCR was agarose gel purified and amplified with ED.lib1build F and ED.Pt7.temp R.  The product of this PCR 
was gel purified and amplified with ED.5Bio template F and ED.Pt7.temp R for immobilization on streptavidin 
beads. 

4.2. Compartmentalized reactions 

The protocol used for this work was adapted from reference 10.  All steps prior to emulsification were performed on 
ice and all bead centrifugation steps were carried out at 4C and 6,000 RPM for 5 minutes unless otherwise specified.  
See Appendix A3 for solution recipes.   

20 microliters of 1 micrometer diameter streptavidin coated beads (or approximately 4E8 individual beads; 
Bang Laboratories) was added to 180 microliters PBSTE.  The solution was gently mixed and the beads pelleted by 
centrifugation.  The beads were resuspended in 50 microliters of PBSTE with approximately 1 template molecule 
for every 2 beads and incubated at room temperature for 15 minutes.  3 microliters of 20 micromolar 
ED.5bio.handle was added and incubated for an additional 45 minutes.  The beads were centrifuged and the pellet 
washed with 100 microliters PBSTE once.  This step was repeated two additional times but the beads were washed 
with 100 microliters of transcription wash buffer.   

The oil phase was assembled by adding 500 microliters of oil mixture to a 13mL (95 x 16.8 mm) Starstedt 
polypropylene tube containing a Spinplus (9.5 x 9.5 mm Teflon) stir bar and placed in a beaker of ice on a magnetic 
stir plate.  The bead pellet was resuspended in a 200 microliter transcription reaction immediately prior to 
emulsification.  The transcription reaction was added in ~10 microliter aliquots over 3 minutes to the stirring oil 
mixture.  The total stir time was 5 minutes.  The reaction was transferred to a 1.5 milliliter Eppendorf tube and 
incubated at 37 degrees. 

The transcription reaction was terminated by incubating the reaction on ice for 10 minutes with the addition of 
40 microliters of 500 millimolar EDTA and 160 microliters of PBSTEBB.  The emulsion was broken by the 
addition of 0.7 milliliters of diethyl-ether followed by thorough mixture and centrifugation at 13,000 RPM for 4 
minutes at 4C.  Occasionally the beads would fail to precipitate at this step and remain in the aqueous solution.  In 
this event, the ether phase was removed, 300 microliters of PBSTE was added, gently mixed and centrifuged again.  
The failure of beads to centrifuge in the first step was not seen to affect the quality of the fluorescent signal. 
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Once the beads were pelleted, the aqueous phase was removed.  The beads were washed in 100 microliters 

PBSTEBB 3 times before a final resuspension in 200 microliters of PBSTE. 

4.3. Bead labeling and FACS analysis 

3 microliters of 100 micromolar ED.5Fam3.probe was added and incubated on ice for 30 minutes.  This 
fluorescently labeled DNA oligonucleotide hybridizes to the 5' half of the RNA transcript (the 3' half of the RNA 
hybridizes to the biotinylated capture oligonucleotide).  The beads were washed twice in 100 microliters PBSTEBB 
to remove non-hybridized ED.5Fam3.probe.  The fluorescence from the first labeling was insufficient to 
differentiate active from inactive beads by FACS so an antibody based fluorescence amplification reagent was 
utilized (Alexa Fluor 488 Signal Amplification Kit, Invitrogen).  The beads were resuspended in 200 microliters 
Antibody Labeling Buffer with 10 milligrams of rabbit anti-fluorescein antibody and incubated for 20 minutes on 
ice, followed by two 100 microliter PBSTEBB washes.  The beads were then resuspended in 200 microliters 
Antibody Labeling Buffer with 10 milligrams of goat anti-rabbit IgG antibody and incubated on ice for 20 minutes.  
The beads were washed twice in 200 microliters of PBSTEBB and finally resuspended in 100 microliters PBS. 

4.4. Compartmentalized selection 

Fluorescence based bead sorting was performed on a BD FACSAria Cell Sorting System.  Beads were diluted 
additionally in PBS to an appropriate concentration for sorting.  Fractions were collected and amplified by PCR for 
additional sorting and for cloning and sequencing, as seen in Figure 2 and Figure 3. 

4.5. Cloning and sequencing 

After amplification of templates from sorted beads, PCR products were cloned using a Topo TA cloning kit 
(PCR4topo, Invitrogen).  Individual colonies were chosen for sequencing and to generate PCR templates for 
transcription analysis. 

4.6. Transcription analysis 

In vitro transcription was performed on selected clones.  Reactions were setup similar to the selection protocol, 
except 0.01 mCi of alphaP32-ATP was added, the template was not immobilized and the total reaction volume was 
20 microliters.  50 nanograms of a PCR template was added to each transcription and incubated at 37 degrees for 40 
minutes.  The reaction was stopped by adding 20 microliters of 18 millimolar EDTA in formamide and heated at 90 
degrees for 10 minutes.  Transcription products were run on a denaturing (7 M urea) 8% polyacrylamide gel which 
was then dried and analyzed using a Phosphorimager (Molecular Dynamics).  
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Appendix 

Table A1.  Sequences cloned from R3P6 and R3P5 of the Lib1 selection. 
 

R3P5
   R3P5-  9 TAATACGACTCACTATAGGCGG~TTCCCC

   R3P5-  8 TAATACGACTCACTATAGGTAGCTTCCCC

   R3P5-  1 TAATACGACTCACTATAGAGAATTTCCCC

   R3P5- 10 TAATACGACTCACTATAGACTCCTTCCCC

   R3P5-  5 TAATACGACTCACTATAGCTCA~TTCCCC

   R3P5-  6 TAATACGACTCACTATAGTGGAATTCCCC

   R3P5-  4 TAATACGACTCACTATAGTAGTATTCCCC

   R3P5-  2 TAATACGACTCACTATAAGGGGTTTCCCC

   R3P5-  7 TAATACGACTCACTATAAGATATTTCCCC

R3P6
   R3P6-  7 TAATACGACTCACTATAGGATTGTTCCCC

   R3P6-  3 TAATACGACTCACTATAGAATAATTCCCC

   R3P6-  1 TAATACGACTCACTATAGCTCACTTCCCC

   R3P6-  8 TAATACGACTCACTATAGCAACTTTCCCC

   R3P6-  9 TAATACGACTCACTATAGCACCCTTCCCC

   R3P6-  4 TAATACGACTCACTATAAGTCGCTTCCCC

   R3P6-  2 TAATACGACTCACTATACTTCCCTTCCCC

   R3P6-  6 TAATACGACTCACTGTACTTAGATTCCCC

   R3P6- 10 TAATACGACTCACTATACTTAGATTCCCC

   R3P6-  5 TAATACGACTCACTATATTCAAATTCCCC  
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Table A2.  Template and oligonucleotide sequences. 
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A3.  Solutions. 
 
 PBSTE      10mM   NaPO4  pH 7.4 
        150mM   NaCl 
        0.1%   Tween-20 
        10mM   EDTA 
 
 PBSTEB     PBSTE plus 0.1% BSA 
 
 PBSTEBB     PBSTE plus 0.1% BSA and 100uM biocytin 
 
 Antibody Labeling Buffer  PBSTE plus 100uM biocytin, 1% BSA, 100ug tRNA (1uL), 80U RNAsin (2uL) 
         and 10ug Antibody (5uL) per 200uL  
 
 Transcription Buffer   50mM   EPPS  pH 8.0 
        2mM   Spermidine 
        10mM   DTT 
        50mM   KCl 
        30mM   MgCl2 
 
 Transcription Mix   200uL total Transcription buffer plus 4U yeast pyrophosphatase, 160U RNAsin  
        Plus, 1000U T7 RNAP and 2mM NTPs  
 
 Transcription Wash Buffer  Transcription buffer plus 0.1% BSA 
 
 Oil Mixture     475uL  Mineral Oil 
        22.5uL  Span 80 
        2uL   Tween 80 
        0.25uL  Triton X-100 
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Gene regulatory networks (GRNs) learned from high throughput genomic data are often hard to visualize due to
the large number of nodes and edges involved, rendering them difficult to appreciate. This becomes an important
issue when modular structures are inherent in the inferred networks, such as in the recently proposed context-
specific GRNs.12 In this study, we investigate the application of graph clustering techniques to discern modularity
in such highly complex graphs, focusing on context-specific GRNs. Identified modules are then associated with a
subset of samples and the key pathways enriched in the module. Specifically, we study the use of Markov clustering
and spectral clustering on cancer datasets to yield evidence on the possible association amongst different tumor
types. Two sets of gene expression profiling data were analyzed to reveal context-specificity as well as modularity
in genomic regulations.

Keywords: Markov clustering; spectral clustering; cancer; gene regulatory networks; cellular context

1. Introduction

A cell maintains a specific state (such as ‘healthy’) by tightly regulating a set of molecules. When exposed
to environmental changes, the cell adjusts its regulatory mechanisms and transitions to a state (such as
‘tumor’) significantly different from the original state. Since the manner in which the system reacts to inputs
is altered, we term this as a change in cellular context.8

Kim et al.12 have proposed an algorithm which uses a probabilistic framework to learn contexts from
gene expression data. More recently, Sen et al.19 have applied this method to identify context-specific gene
regulatory networks (GRNs). Unlike conventional GRNs, edges in context-specific GRNs represent the in-
teraction conditioned on a subset of samples, i.e. their biological context, thus lending adaptability to the
model of biological regulation.

However, GRNs learned by the algorithm are often made of a few thousand nodes (genes) and tens of
thousands of interactions rendering manual curation of the edges and sub-network to identify its modular
structure and context-specificity quite difficult if not impossible. Hence, the need for the automatic extraction
and curation of relevant context clusters from these networks is critical.

Graph clustering is defined as the task of grouping the vertices of a graph in such a way that there are
many edges within a cluster and relatively few edges between the clusters.18 The most significant difference
between conventional clustering and graph clustering is in the notion of the relationship between the elements
being clustered. When similarity is expressed through whether elements “share a property” or not (such as a
regulatory relationship where genes are co-regulated), rather than the distance between the elements, graph

∗Code, scripts and supplementary information available online at http://sysbio.fulton.asu.edu/publications/2010/psb2010/
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clustering is appropriate for the problem. Moreover, as the problem of clustering GRNs is also directly related
to the connectivity between nodes, we believe that graph clustering is better suited for solving this problem.

Our work looks into the applicability of two graph clustering algorithms, namely Markov clustering
and spectral clustering in identifying the modular structure of context-specific GRNs. Markov clustering
was chosen due to its scalability and ability to automatically determine the number of clusters. Spectral
clustering was chosen due to its ability to find an optimal minimum cut while creating well-balanced clusters.
In addition, previous applications in the bioinformatics field have yielded promising results,7,10,17,23 leading
us to believe it would be well-suited for this problem.

Our paper is organized as follows. We begin with an overview of the existing applications of graph
clustering to bioinformatics. Following this, we provide a mathematical formulation of our problem and then
describe the graph clustering methods and enrichment analysis techniques that we apply. Subsequently we
demonstrate how our methods could be applied to yield insights on the underlying mechanisms of cancer.
Finally, we conclude with the future direction of our work.

2. Relevant Work

Clustering is defined as the unsupervised classification of patterns (observations, data items, or feature
vectors) into groups (clusters).11 The clustering task usually involves pattern representation, definition of
pattern proximity, clustering or grouping, data abstraction and assessment.5

Both Markov clustering and spectral clustering have been previously applied to bioinformatics. Lattimore
et al.17 have applied MCL to the analysis of microarray data using a graph constructed from the correlation
of gene expression measurement to which MCL is applied. The algorithm has been applied to a breast cancer
dataset and shown to identify underlying biological mechanisms. In a similar study,7 Freeman et al. have
used MCL in the clustering and visualization of transcription networks from microarray data. This work
focuses on applying MCL to transcription networks derived from mouse gene expression data, again using
the Pearson’s correlation coefficient.

Spectral clustering has been used in the analysis of gene expression data. Clustering has been performed
in terms of genes, samples and both dimensions. While Tritchler et al.23 apply Eigen analysis (spectral
methods) to cluster genes from gene expression data, Higham et al.10 apply spectral methods to cluster
gene expression data based on samples. Kluger et al.13 have shown that the eigenvectors in matrices of
gene expression data formed a distinct “checkerboard” pattern that can be exploited to simultaneously
cluster genes and conditions in cancer datasets. In all cases, while our method shares similar objectives, our
work differs in the sense that we apply spectral clustering to the extracted context-specific gene regulatory
networks as a graph clustering approach.

The primary contributions of our work include developing methods for clustering the recently proposed
context-specific gene regulatory networks. Context-specific gene regulatory networks provide a means to
specify genomic regulations conditioned by a subset of samples. Secondly, our work focuses on comparisons
between Markov clustering and two variants of Spectral clustering, suited for both symmetric and asymmetric
graphs. Comparisons are performed in two dimensions- using performance measures such as coverage and
performance which measure the goodness of the obtained clusters and using enrichment analysis which
allows for the biological interpretation of the results. Finally, both algorithms are applied to two cancer gene
expression datasets yielding insights on possible associations between tumor-types and several useful clinical
implications.

3. Problem Definition

A cellular context is defined as a set of genes, one or more of which function as drivers and the rest as driven
genes, exhibiting consistent transcriptional behavior across a set of samples, drawn from a cellular process
governed by tightly regulated mechanism(s) involving the set of genes. Mathematically, a context can be
represented as Ci = (Gi, Yi, Si,Mi) where Gi represents a set of driver genes, Yi represents the possible
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states of the genes (an example would be {−1, 0,+1} for a ternary quantized dataset), Si represents a set of
driven genes and Mi represents the set of samples under which consistent expression is observed.

Each context defines regulatory relationships between the driver genes and the driven genes, i.e. Gi →
g ∈ Si, specific to Mi with Gi (drivers) conditioned on a specific state Yi = yi. A driver gj in context Cj

could be driven by gi in another context Ci. When such relationships are added to the implicit driver-driven
relationships gi → gj , we obtain an interesting graphical structure representing the relationships between
contexts. We call this graph, a context-specific GRN as each regulatory relationship gi → g ∈ Si is specific
to a subset of samples Mi.

In graph theoretic terms, a context-specific GRN is a directed graph G = (V, E) where V is a set of
vertices representing genes and E is a set of edges representing context-specific driver-driven relationships.

A partition of the graph into two non-empty sets S and V \ S is called a cut and denoted by (S, V \ S).
Usually a cut is uniquely defined by a set S, and hence any sub-set of V can be called a cut. The cut-size is
the number of edges that connects vertices in S to those in V \ S.

Given a context-specific GRN G = (V,E) as defined above, our goal is to determine the clusters of the
network; where a cluster C may be defined as an induced subgraph of the graph, such that C = (Vc, Ec),
where Vc ∈ V, Ec ∈ E; (i) for every edge (u, v) ∈ Ec, u ∈ Vc and v ∈ Vc and (ii) the cut size of the cluster C

is minimal.18

4. Methods

Contexts are learned from gene expression data through the cellular context mining algorithm.12 Given a
gene gk and a cellular context cj defined by a subset of samples Mj , the algorithm uses probabilistic measures
to identify a set of genes with consistent expression levels within the context. The resulting contexts dictate
implicit driver-driven relationships. When these relationships are captured in the form of a graph, we obtain
a context-specific GRN.19 In our study, we used a variant of this context-specific GRN, where each node was
the driver of a context. The set of genes regulated by driver Sj was used in the enrichment analysis.

4.1. Markov Clustering

Markov clustering derives its inspiration from the notion of random walks in graphs. If a random walk visits a
node in a cluster, it would be likely to visit several other members of the cluster before leaving the cluster.24

The Markov clustering algorithm simulates flow using two (alternating) algebraic operations on matrices.
Expansion (identical to matrix multiplication) represents the homogenization of flow across different regions
of the graph. Inflation, mathematically equivalent to a Hadamard power followed by diagonal scaling, rep-
resents the contraction of flow, making it thicker in regions of higher current and thinner in regions of lower
current. Intuitively, expansion corresponds to augmenting the neighbors of a given vertex, and inflation cor-
responds to promoting those neighbors which have a higher transition probability from a given vertex. The
MCL process causes flow to spread out within natural clusters and disappear in between different clusters.24

The iteration is continued until a recurrent state or fixpoint is reached. The exact steps are explained in
Algorithm 4.1. The connected components of the graph induced by the non-zero entries of M provide the
required clustering. Proof of concept, mathematical properties and analyses on the complexity and scalability
of the algorithm can be found in van Dongen’s work.25 Our implementation of Markov clustering used the
publicly available tool BioLayout Express.7

4.2. Spectral Clustering

Spectral clustering uses the Eigen decomposition of matrix representations of a graph to determine the
optimal partitioning of the graph. Although, there has been extensive research in the spectral clustering field,
we used the algorithms developed by Shi and Malik20 and Meila and Pentney15 because they incorporate
information from the edges (in our case, computationally predicted biological interactions) in determining
the optimal clustering of a graph.
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Algorithm 4.1 Markov Clustering

Input: G = (V,E), expansion parameter e, inflation parameter r

while M is not fixpoint do
M ← Me

for all u ∈ V do
for all v ∈ V do

Muv ← Mr
uv

end for
for all v ∈ V do

Muv ← Muv∑
w∈V Muw

end for
end for

end while

4.2.1. Symmetric Cuts:

In graph theory, a cut is defined as

cut(A,B) =
∑

u∈A,v∈B

wuv, (1)

where A and B are the clusters resulting from the cut between vertices u and v. Finding the minimum
cut for Equation 1 could result in singletons or clusters with very few nodes, leading to poorly distributed
clusters. Thus, there exists a need to balance the clusters. Shi and Malik, have proposed a solution to
this problem by normalizing the cuts that create clusters.20 The cut cost is calculated as a fraction of the
weights of the edges in the induced sub-graphs. As finding the exact solution to the normalized minimum
cut problem is considered NP-complete, the authors have found that using the eigenvector corresponding to
the second smallest eigenvalue of the Laplacian of an undirected graph (also known as the Fiedler vector)
could efficiently provide an approximate discrete solution.20 The algorithm, referred to as the normalized
cut algorithm, recursively splits clusters thresholding the Fiedler vector of the induced sub-graphs until the
desired number of clusters are reached.

4.2.2. Asymmetric Cuts:

Meila and Pentney15 provide for the expansion of spectral clustering in multi-way cuts to directed graphs,
as the normalized cut is applicable only to undirected graphs. In gene regulation directionality could provide
useful information. The weighted cut algorithm, proposed by Meila and Pentney, mathematically transforms
a directed graph (with a non-normalized Laplacian matrix, D-A), into a symmetric Hermitian matrix15 and
finds an approximate solution to minimizing a normalized cut. Using the k eigenvectors pertaining to the
k smallest eigenvalues of the Hermitian matrix, the weighted cut algorithm applies the k-means algorithm
to cluster the graph. In addition, the algorithm allows for user input, balancing parameters T and T ′ , to
normalize the cuts produced by the algorithm. Thus the normalized minimum cut for directed graphs can
be expressed as:

MNCut(x) = min
zk∈Rnorthon

K∑

k=1

z∗kH(B)zk (2)

where B = T−
1
2 (D −A)T−

1
2 , K is the number of desired clusters and H(B) is the Hermitian matrix of B.

4.3. Enrichment Analysis

Subsequent to clustering the context-specific GRNs, it is interesting to study the pathways and phenotypic
characteristics that the resulting clusters are enriched with. To this end, we employ the following mechanisms
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to evaluate the biological significance of the obtained clusters.

4.3.1. Gene Set Enrichment Analysis:

We investigate the enrichment of each context cluster using gene sets. The hypergeometric test is used to
measure the significance of the enrichment and the p-values are corrected for False Discovery Rate (FDR)
using Benjamini and Hochberg’s method.1 The Molecular Signatures Database (MSigDB) is used as a refer-
ence knowledge source.22 MSigDB contains a collection of gene sets, including positional gene sets, curated
pathways, conserved motifs, computationally predicted expression neighborhoods (defined on 380 cancer-
associated genes) and Gene Ontology gene sets.

4.3.2. Tumor Type Enrichment Analysis:

Sample Association Score: As the context clusters derived from the clustering process consist of a set of
cellular contexts, it is relevant to study the samples that occur in more than one context within each context
cluster. Samples were scored based on their occurrence within each context, over all the contexts within the
cluster. A sample s, given a context cluster CC with m contexts C1, C2, · · · , Cm, would have the scoring

SAS(s, CC) = m

√√√√
m∏

i=1

fi(s), (3)

where fi(s) = ki/N , when s ∈ Ci and 1, otherwise.
Motivated by the differences in the number of samples in each context, a sample belonging to a larger

context would have a lesser contribution to the score than a sample belonging to a smaller context. Only
samples that had a sample association score < 0.5 were considered. Following this, the context clusters were
analyzed for enrichment of specific tumor types using the Hypergeometric test. FDR correction was applied
using Benjamini and Hochberg’s correction method.1

5. Results

We applied our methods to two gene expression datasets – the Target Now dataset and the REMBRANDT
study. In the following section, we discuss the study that was conducted, the results obtained including
biological significance and performance comparisons of the three algorithms.

5.1. Target Now Data

Our input graph constituted a variant of the context-specific GRN produced by Sen et al.19 from the Target
Now (TN) dataset; a study aimed at determining if patients with refractory cancer, who did not benefit from
the standard types of treatment, could derive benefit from therapy with a drug not normally used for their
particular form of cancer.26

The dataset consists of 17,085 unique probes (Agilent-011521 Human 1A Microarray G4110A) from 146
patients with different types of refractory cancer. We used the graphs corresponding to the relationships
derived from statistically significant contexts (using a p-value < 0.001). The graph consisted of 391 contexts
and was organized into six strongly connected components.

5.1.1. Markov Clustering

As Markov clustering has a propensity towards undirected graphs, we used the undirected version of the
context-specific GRN obtained from the filtered contexts. Clustering was performed on the graph using an
inflation value of 2.0. The inflation parameter is used to control the granularity of the clusters obtained, and
was set to 2.0 as it provided the desired granularity. Clusters with less than 3 nodes were not considered.
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Fig. 1: (a) Markov Clustering Results [TN study]. (b) Asymmetric Spectral Clustering Results [TN
study]. The following acronyms indicate enriched tumor types - BR:Breast, LNG:Lung, OV:Ovarian,
PANC:Pancreas, GALB:Gall Bladder, CART:Cartilage, CHS:Chondrosarcoma, COL:Colon, SAL:Salivary,
KDNY:Kidney. Tissue types in red indicates the type is over-represented in the corresponding context-cluster
with adjusted p-value < 0.05. Tissue types with italicized font indicate the tissue type is over-represented in
the corresponding context-cluster with p-value < 0.05.

The clusters obtained are shown in Figure 1(a). As seen in the illustration, the algorithm identified
thirteen distinct clusters, dividing the six strongly connected components into smaller clusters. Further, we
also note that within most clusters, the expression levels of all genes belonging to the cluster are similar.

Nine out of thirteen clusters were found to be enriched with several tumor types. Further discussion of
the biological significance of these results can be found in Section 5.1.3. The performance of the algorithm,
along with a discussion of the relevant MSigDB terms identified within the clusters is outlined in section 5.4.

5.1.2. Spectral Clustering

Figure 1(b) shows the clustering results obtained when the weighted cut algorithm was applied to the directed
version of the context-specific GRN. The desired number of clusters was set to 13, based on the number of
clusters obtained from the MCL study, to allow for comparisons between the two algorithms. The out-degree
was chosen to normalize the cut as interaction is known to be a key aspect of biological networks. Further
we were interested in studying if the incorporation of direction in normalizing the cut, would provide better
results compared with clustering on undirected graphs.

As seen in Figure 1(b), eight out of thirteen clusters were found to be significantly enriched with the
different tumor types. The biological significance of these results is elaborated upon in Section 5.1.3.

The normalized cut algorithm (symmetric spectral clustering) was found to produce results similar to the
MCL cluster assignments. Comparing the results from the symmetric clustering algorithms with asymmetric
spectral clustering, we note that the clusters produced by the asymmetric variant are more balanced.

It is interesting to note that the tumor type associations derived from these cluster assignments (Figures
1(a) and (b)) corroborate the evidence obtained by Sen et al.19 We augment the authors’ findings with a
further refinement of the clusters and possible associations amongst them.

5.1.3. Biological Validation

Following graph clustering, the obtained results were analyzed for tumor type and gene set enrichment using
the methods described in Section 4.3. Significant terms were considered based on an adjusted p-value cut-off
of 0.05 following which the terms were filtered based on a minimum enrichment ratio criterion of 0.1. Terms
were then grouped on the basis of the source of the annotation. Pathways, Gene Ontology associations and
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Table 1: Biological Significance of Clustering Results of the TN Dataset. Tumor types in bold indicate tumor
types enriched with an adjusted p-value < 0.05. MSigDB Terms in bold indicate terms unique to the context
cluster (when compared with other context clusters obtained using the same method). Acronyms in brackets
indicate source of annotation (G:GenMAPP, K:KEGG, B:BioCarta, T:TRANSFAC, GO BP:Gene Ontology
Biological Process, SA:SigmaAldrich, ST:Signaling Transduction KE)

Context Cluster & Tumor Type Relevant MSigDB Terms

Markov Clustering
CC2[Pancreas] Apoptosis, Purine & Pyrimidine Metabolism[G]

Gycolysis & Gluconeogenesis∗[G], Ribosome[K]
FAS Signaling Pathway∗[B]
AP2 Family TF Binding Site[T], MTA3, RAR-RXR, MTOR Pathways[B]
Oxidative phosphorylation[G], Proteasome[K]
Positive Regulation of Signal Transduction[GO BP]

CC6[Breast, Lung, Ovarian] Classic Pathway[B], Comp Pathway[B]
Complement Activation Classical[G]

CC8[Cartilage, Chondrosarcoma] Methane Metabolism[G], Cholera Infection[K]
Stilbene Coumarine and Lignin Biosynthesis[G]

CC10[Salivary, Ovarian] EI2F Pathway[B], Translation Factors[G]

Spectral Clustering Asymmetric
CC2[Pancreas] SA G1 & S Phases[SA], MTOR & PTDINS Pathway[B],

Gycolysis, RAR-RXR and MTA3 Pathway[B],
CC7[Pancreas] Gycolysis & Gluconeogenesis∗[G, K] FAS Signaling Pathway∗[ST]

Ribosome Pathway[K], Pyrimidine Metabolism, Proteasome[G],
Regulation of JAK-STAT Cascade, Nuclear Export, RNA Splicing[GO BP]

CC12[Pancreas] TNFR1, IL2 2BP Pathway[B], Starch & Sucrose Metabolism∗[G],
IL6 Pathway[B], Gycolysis Pathway∗[B], MTA3 Pathway[B]

CC13[Pancreas] Actin Y Pathway[B], Translation Factors[G], ECM Pathway[B]
I Kappa B Kinase NFKappa B Cascade[GO BP],
Glucose Catabolic Process∗[GO BP], Proteasome[G],
MTA3 Pathway, Gycolysis Pathway∗[B], Oxidative phosphorylation∗[G]

CC11[Pancreas, Salivary, ACSAL] BAD Pathway[B],
Pathogenic E.Coli Infection EHEC & EPEC[K], Gycolysis Pathway∗[B]

CC1[Gall Bladder] Ribosome Pathway[K], Proteasome Pathway[K],
mRNA Metabolic Process, mRNA processing[GO BP],
Mitochondrion, Nuclear Part[GO Cellular Component],
Oxidative phosphorylation[G]

CC6[Breast, Lung] Classic & Comp Pathway[B],, Complement Activation Classical[G]
CC9[Cartilage, Chondrosarcoma] Methane Metabolism[G], Cholera Infection[K],

Stilbene Coumarine and Lignin Biosynthesis[G]

transcription factors found to be relevant to the study, along with the context clusters in which they were
enriched are shown in Table 1. Context clusters enriched with tumor types but not significantly associated
with MSigDB terms are not listed in the table. A complete version of the results is available on our website
along with our supplementary materials.

Markov Clustering : Of the thirteen context clusters produced by MCL, CC2 and CC7 were found to be
enriched with pancreatic and kidney tumors respectively (using the adjusted p-value). We also found that
Symmetric Spectral clustering produced similar results. Upon closer examination of the contexts forming a
part of the two clustering results, we observe that more than 90 % of the cluster assignments were identical.
As seen in Table 1, CC2 (MCL) was found to be enriched with the transcription factor binding site for the
AP2 family of proteins, known to play a role in the repression of pancreatic cell proliferation.6

Asymmetric Spectral Clustering : Tumor type enrichment analysis of the cluster assignments produced
by Asymmetric Spectral Clustering yielded twelve out of the thirteen clusters enriched with different tumor
types. CC6 consists of members of the HLA family; HLA-DM, whose expression when combined with that
of HLA-DR, is considered to influence breast tumor progression and patient outcome.16 Enriched subsets of
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the genes were also found to participate in the BRG1-induced tumor arrest in breast cancer cells.9

Of the remaining clusters, CC 2, 7, 11, 12, 13 were all found to be enriched with pancreatic tumor. In
addition, CC11 was also enriched with salivary gland tumor, and ACSAL. It is of note that pancreatic cancer
and salivary gland tumor are both tumors from secretory organs which secrete certain common enzymes (eg.
Amylose). As seen in Table 1, several pathways known to play a role in tumor progression were enriched in
these clusters. The pyrimidine metabolism pathway activity seen in CC2 could indicate a subset of pancreatic
cancers which would be responsive to the agent Gemcitabine, which has been shown to improve survival for
patients with pancreatic cancer (about 5 – 14 percent patients respond).

All clusters enriched with any tumor type, contained several gene sets enriched with cancer modules and
cancer gene neighborhoods as defined by Brentani et al.3 Of particular interest is the finding of a great deal
of activation of metabolic genes (indicated in Table 1 by an asterisk), which is consistent with the linking of
tumor cell metabolism as a target in pancreatic cancer.21 The clinical implications of the results are further
elaborated in Section 5.3

5.2. REMBRANDT Data

In order to test the scalability of the algorithms, and applicability to other studies, we applied the graph clus-
tering algorithms to the REMBRANDT dataset. REpository for Molecular BRAin Neoplasia DaTa (REM-
BRANDT)14 is a knowledge base consisting of clinical and functional genomics data from clinical trials
involving patients suffering from gliomas. Gene expression data was collected from 417 different glioma
tissue samples, and analyzed using the Affymetrix HG U133 Plus 2 microarray chip.

The raw expression values were quantized on the basis of two fold changes, and then filtered to remove
transcripts with no change across all samples. Following this, the cellular context mining algorithm was
applied in order to extract meaningful contexts. Statistically significant contexts (p-value < 0.0005) were
then used in the construction of the graph. The resulting graph consisted of 1,901 nodes and 33,820 edges.

MCL was used with the same parameters and resulted in 32 clusters of varying sizes. Spectral clustering
using the normalized-cut algorithm was applied to the undirected graph and the weighted-cut algorithm
was applied to the directed graph. In both cases, the number of desired clusters was set to 32. Clusters
having fewer than three nodes were not considered. Subsequently, gene and sample enrichment analysis was
performed on the resulting clusters.

Tumor type enrichment and gene set enrichment analysis were conducted using the methods described
in Section 4.3. Significant terms were considered based on a corrected p-value cut-off of 0.05 following which
the terms were filtered based on a minimum enrichment ratio criterion of 0.1.

Table 2 shows the tumor type enrichments of the clusters obtained using MCL (on the undirected graph)
and the Spectral Weighted Cut algorithm (on the directed graph). The table lists out the context clusters
that were significantly enriched with each tumor type. It is to be noted that the numbering of context clusters
does not match across different methods. As seen in the table we note that out of the 32 context clusters that
the two algorithms produced, eleven (in the case of MCL) and ten (in the case of Spectral Asymmetric) have
been enriched with tumor type associations. Interestingly, the tumor type Astrocytoma was significantly
associated with Oligodendroglioma in at least two clusters.

An analysis of the MSigDB terms enriched in the clusters showed several MSigDB terms including
Cell Signaling Pathways, Cell Cycle, Cell Adhesion, Apoptosis, Regulation of DNA Replication, the E2F
transcription factor pathway and the ERK Pathway. These terms are linked to cell growth and proliferation
characterizing tumor behavior. The context clusters were also found to be enriched with several cancer
modules.3 Detailed results are provided on our website along with other supplementary information.

5.3. Clinical Implications of the Results

The data generated by these two graph clustering methods should be of interest to clinical investigators
because they have potential clinical implications. To begin with pancreatic cancer, it is comforting to see
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Table 2: REMBRANDT Tumor Type Enrichment (Using Context-Specific GRN with p-value < 0.0005):
Tumor types in bold indicate tumor types enriched with an adjusted p-value < 0.05. MSigDB Terms listed
consist of terms unique to the context cluster (when compared with other context clusters obtained using
the same method). Please refer to Table 1 for annotation sources. Tumor types include Glioblastoma(GBM),
Astrocytoma(Astro), Oligodendroglioma(Oligo) and Mixed.

Context Cluster & Relevant MSigDB Terms
Tumor Type

Markov Clustering
CC5[GBM] Cell Cycle, ATR- BRCA, PLK3, P27, MPR, SKP2 E2F, G1 Pathways[B], DNA Polymerase[K]

G1 to S Cell Cycle Reactome, DNA Replication[G], Pyrimidine Metabolism[K, G]
CC31[GBM] HIF Pathway[B]
CC6[Astro] IL 12, TC Apoptosis Pathway[B], Breast Cancer Estrogen Signaling[GE], Peptide GPCRS[G],

Toll Like, B Cell & T Cell Receptor Signaling Pathways[K], N Glycan Degradation[G],
Hematopoitic Cell Lineage, Cytokine Cytokine Receptor Interaction[K],
FC Epsilon RI Signaling Pathway, Natural Killer Cell Mediated Cytotoxicity[K],
JAK STAT Signaling Pathway, Arachidonic Acid Metabolism[K],
Leukocyte Transendothelial Migration, N Glycan Degradation[K]

CC7[Astro] PIP3 Signaling in B Lymphocytes[SIG], Inflam Pathway[B], IL13 Pathway[ST],
PML, AS B Cell, BB Cell, IL5, SODD Pathway[B], Glycosaminoglycan Degradation[B, K]
B Cell Receptor Complexes[SA], Eosinophils Pathway[B], BCR Pathway[B, SIG],
B Cell Antigen Receptor[ST], Interleukin 13 Pathway[ST], Alzheimer’s Disease[K],

CC12[Astro, Oligo] Keratan Sulfate Biosynthesis[K]
CC14[Astro, Oligo] RECK Pathway[B], ERK Pathway[B]
CC27[Oligo, Mixed] IL2 2BP Pathway[B], IL10 Pathway[B]

Spectral Clustering
Asymmetric
CC11[GBM] PML, Eosinophils, AS B Cell, IL5 Pathways[B], Prostaglandin Synthesis Regulation Pathway[G]
CC13[GBM] ATR BRCA, PLK3, P27, G1 Pathways[B], DNA Polymerase[K], G1 to Cell Cycle Reactome[G],

Pyrimidine Metabolism[G, K], DNA Replication Reactome[G], P53 Signaling Pathway[K],
CC19[Astro] IL12, CSK, T Cytotoxic, D4GDI, NKT, CTL Pathway[B], Eicosanoid Synthesis[G],

Monocyte, AMI, TC Apoptosis, Lymphocyte, CBL, T Helper & Neutrophil Pathways[B],
Breast Cancer Estrogen Signaling Pathway[GE], B Cell Antigen Receptor[ST], Peptide GPCRS[G],
N Glycan Degradation[G, K], GPCRDB Class B Secretin Like[G], Hematopoitic Cell Lineage[K],
Cytokine Cytokine Receptor Interaction[K], T Cell, B Cell & Toll Like Receptor Signaling Pathway[K]
FC Epsilon RI Signaling Pathway[K],JAK STAT Signaling Pathway[K],
Natural Killer Cell Mediated Cytotoxicity[K], Arachidonic Acid Metabolism[K]
Glycan Structures Degradation[K], Colorectal Cancer[K], Apoptosis[K]
Leukocyte Transendothelial Migration[K], Regulation of Actin Cytoskeleton[K]

CC28[Oligo, Astro] Regulation Cascade of Cyclin Expression[SA]
CC29[Oligo] FAS Signaling Pathway[ST]

that the pyrimidine pathway appears in the results of both methods of clustering. This appearance corre-
sponds with the pathway being a target in the disease and indeed the pathway is the target for the only drug
oncologists have with some clinical activity against pancreatic cancer (it very modestly improves survival).4

Again for pancreatic cancer the clustering data implies several metabolic pathways such as glycolysis, gluco-
neogenesis, fatty acid synthase. Since we have been so bereft of targets to go after in pancreatic cancer the
present data gives us some confidence that targeting metabolic pathways in pancreatic cancer (with drugs
such as phenformin) could be a very productive way to attack the disease.27 From the Target Now clustering
analyses, other possible leads for the clinic include methods to selectively go after tumor metabolism for
salivary and gallbladder cancers as well.

From the clustering analysis of the REMBRANDT data, the clinical implications appear to be more
limited. Concentrating on glioblastoma multiform (GBM), the worst type of brain cancer where advances
are greatly needed, a possible target that appears worthy of pursuit is polo-like kinase -3. This is an important
finding given the fact that polo-like kinase inhibitors are only now being brought into the clinic. Because of
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the findings in the current study, we can now include patients with GBM in the phase I study with the new
PLK inhibitor NMS-1286937H.

5.4. Performance Comparison

In order to evaluate the clustering results obtained and compare the algorithms, we used the performance
metrics – coverage and performance, as described by Brandes et al.2

Coverage: The coverage of a clustering C is the fraction of intra-cluster edges (m(C)) within the complete
set of edges (m), i.e

coverage(C) =
m(C)

m
=

m(C)
m(C) + m(C)

(4)

We choose this metric as it measures the wellness of a cut in a graph by taking the edges within the
cluster(s) of a graph as a fraction of all the edges. Thus, the smaller a cut, the better the coverage it would
have. Both a graph with no clusters at all and a graph with several disconnected components would have
a coverage of 1 due to the absence of inter-cluster edges. Sparsity of the graph would not influence the
coverage as long as the intra-connectivity is much higher than the inter-connectivity. Thus we anticipate
that sub-graphs created by a minimum cut would have optimal coverage.

Performance: The performance of a clustering C counts the number of “correctly interpreted” pairs of
nodes in a graph. More precisely, it is the fraction of intra-cluster edges together with non-adjacent pairs of
nodes in different clusters, within the set of all pairs of nodes, i.e.

performance(C) =
m(C) +

∑
v,w/∈E,v∈Ci,w∈Cj ,i6=j 1
1
2n(n− 1)

(5)

We choose this measure as a means to assess the connectivity within the clusters of the graph. The
fewer non-edges (pairs of nodes within the same cluster but lacking an edge between them) there are within
a graph, the higher its performance would be. Further, a graph containing several singleton nodes, as well
as a fully connected graph with a single giant cluster, would both have a performance of 1, as the number
of non-edges would be zero in both cases. The goal is to maximize connectivity within a cluster for better
performance and by maximizing intra-connectivity (approaching the number of possible edges of a graph),
one can minimize the inter-connectivity. Performance will not do well in sparsely connected large graphs and
clusters even though there may be substantially fewer edges between clusters.

Equations 4 and 5 are specific to undirected graphs. In the case of directed graphs, the maximum
number of edges possible is twice as many as the edges possible in undirected graphs and the equations are
correspondingly modified.

In our first study, we compare three spectral clustering variants – symmetric spectral clustering with
two variants of asymmetric spectral clustering, using different balancing parameters (the average cut and the
out-degree cut). The average of performance and coverage is used as a measure of the wellness of the clusters,
and is plotted against the number of clusters produced, shown in Figure 2. Spectral clustering performed
well both on undirected graphs and directed graphs. We note that the asymmetric algorithms peaked at a
higher number of clusters than the symmetric algorithm. This implies that the normalized cut algorithm
left intact large, well connected clusters until a certain threshold was reached. We also note that using the
average cut exhibits less fluctuation in performance across different cluster sizes than using the out-degree of
the nodes, explained by the fact that the average cut uses the number of nodes as the balancing parameter.
However, if in fact a GRN follows a scale-free topology then the average cut may not prove to be the most
useful in identifying biologically significant clusters because it does not take into account the interactions
within a cluster.

In our second study, we compare spectral clustering (symmetric and asymmetric) with Markov clustering.
As seen in Table 3, in terms of coverage, spectral clustering performed well over both directed and undirected
graphs. In terms of performance, we find that the asymmetric case shows a lower performance value than the
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Table 3: Performance Comparison of Markov and Spectral Clustering

Metric Dataset Spectral Asym. Spectral Sym. MCL Dataset Spectral Asym. Spectral Sym. MCL

Coverage TN 0.9533 0.9693 0.9366 REM 0.7144 0.9680 0.9386
Performance TN 0.6038 0.7930 0.7696 REM 0.8804 0.9271 0.8914

Fig. 2: Performance and Coverage Average of Spectral Clustering

other two. We also note that both MCL and symmetric spectral clustering performed well on the much larger
REMBRANDT dataset, exhibiting good scalability. Comparing these results with the enrichment analyses
(Tables 1 and 2, we conclude that well-balanced clusters need not necessarily correspond with biological
meaningful clusters. Further we also observe that incorporating directionality did not correspond with a
significant impact on the clustering, in terms of both biological significance and performance metrics.

6. Conclusion

The main contributions of our paper have been in a novel application of graph clustering, namely to identify
clusters in context-specific GRNs. We have used Markov clustering and spectral clustering to identify context
clusters in a two gene expression studies. The methods were compared to assess their ability to produce
disjoint balanced clusters and scale to large graphs. Functional annotation of the genes and sample association
studies show graph clustering to be promising in this area.

Future work includes studying the cluster enrichments obtained at increasing levels of cluster granularity,
as well as the incorporation of prior biological knowledge into the clustering framework.
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This paper presents a methodology for translating iterative arithmetic computation, specified as high-level

programming constructs, into biochemical reactions. From an input/output specification, we generate biochemical

reactions that produce output quantities of proteins as a function of input quantities, performing operations such

as addition, subtraction, and scalar multiplication. Iterative operations – “while loops” and “for” loops – are imple-

mented by transferring quantities between protein types, based on a clocking mechanism. Synthesis first is performed

at a conceptual level, in terms of abstract biochemical reactions – a task analogous to high-level program compi-

lation. Then the results are mapped onto specific biochemical reactions, selected from libraries – a task analogous

to machine language compilation. A possible experimental chassis is the mechanism of DNA strand displacement

developed by Erik Winfree’s group at Caltech. We demonstrate our approach through the compilation of a variety

of standard iterative functions: multiplication, discrete logarithms and linear transforms on time series. The designs

are validated through transient stochastic simulation of the chemical kinetics.

1. Introduction

Recent accomplishments in synthetic biology portend of a coming revolution. From Salmonella that secretes
spider silk proteins, to yeast that degrades biomass into ethanol,1 to E. coli that produces antimalarial
drugs,2 the potential impacts are far-reaching.

The scope of the field is, in fact, broader. The J. Craig Venter Institute’s team has made significant
progress toward the goal of artificial life: a living bacterial cell with fully synthetic DNA.3,4 In engineering
terms, the objective is to assemble a machine (a synthetic bacterium) in which the functionality of all the
parts (the genes, the proteins that they code for, and how these interact biochemically) are understood. If
the machine works, this vindicates the scientific understanding; if it doesn’t – and surely it won’t at first –
then new understanding can be achieved by examining where and how it breaks. Of course, with a working
blueprint for a synthetic machine, new functionality can be engineered robustly and effectively.

The set of constitutive parts that can be used for genetic manipulation in synthetic systems is vast.
Comprehensive repositories of genetic data have been assembled – some public, some commercial – cataloging
genes, their DNA sequences, and their products. A concerted effort has been made to assemble repositories
of standardized and interoperable parts for synthetic applications. The platforms used will depend on the
application, but the technology for synthesizing DNA is becoming routine: firms have started offering custom-
gene synthesis through e-commerce websites (the going rate is $0.49 per base pair). So, in a real sense, the
hardware for synthetic biology exists, i.e., the technology and infrastructure for obtaining cells with custom-
designed genes. The instruction set is, to a large extent, known, i.e., genes and their function, cataloged in
libraries. The challenge is: how can we write code with these instructions on this type of hardware?

Conceptually, the rules of biochemistry are straight-forward: each biochemical reaction is a primitive
process that specifies how and at what rate different types of proteins combine to form other types of proteins.
The complexity stems from the dynamics at play among the multitude of coupled reactions operating on
the different protein types, asynchronously and in parallel. Techniques for analyzing such processes are well
established.5 However, synthesizing computation with such mechanisms requires entirely new techniques –
and an entirely new mindset.

One of the great successes of computer engineering has been in abstracting and scaling the design
problem. The physical behavior of transistors is understood in terms of differential equations – say, with
models found in tools such as SPICE.6 However, the design of circuits proceeds at a more abstract level – in
terms of switches, gates, and functional units. Software is conceived of and validated independently of the
hardware platform. This modular approach makes the design tractable; furthermore, it permits a systematic
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exploration of different configurations, leading to optimal designs. Although driven by experimental expertise,
synthetic biology has reached a stage where it calls for a similar degree of abstraction.
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Fig. 1: Analogy between compiling code for hardware and for biochemistry.

2. Overview

Our approach brings a design perspective: we tackle the problem of synthesizing biochemical reactions
that implement specified input/output functionality. From an input/output specification in a high-level
language like C, we generate biochemical reactions that produce output quantities of proteins as a function
of input quantities, performing operations such as addition, subtraction, and scalar multiplication. Iterative
operations – “while loops” and “for loops” – are implemented by transferring quantities between protein
types, based on a clocking mechanism.

2.1. Computation with Biochemistry

Interesting biochemistry typically involves complex molecules such as proteins and enzymes. Within the
confines of a cell, the quantities of such molecules are often surprisingly small: on the order of tens, hundreds,
or thousands of molecules of each type. At this scale, individual reactions matter and the problem must be
modeled discretely.5

In our view of biochemical computation, the quantities of proteins are whole numbers (i.e., non-negative
integers). We will refer to these quantities as “registers”. Biochemical reactions alter these quantities: the
reactions fire repeatedly, modifying the protein quantities by small integer amounts. Consider the reaction

a + b
fast−→ 2c. (1)

When this reaction fires, one molecule of a is consumed, one of b is consumed, and two of c are produced.
(Accordingly, a and b are called the reactants and c the product.) Each reaction has an associated rate (listed
above the arrow in our notation). Given several reactions, the probability of each firing is proportional
both to its rate and to the quantities of its reactants present. Although we refer to rates in relative and
qualitative terms – e.g., “fast” vs. “slow” – these are, in fact, quantitative values that are either deduced
from biochemical principles or measured experimentally. The functionality of a biochemical system can be
analyzed using stochastic simulation.5,7,8

Our contribution is to tackle the problem of computation at this abstract level – working not with specific
molecular types but rather with arbitrary types (a, b, c, etc.). This is illustrated in Figure 1. For conventional
hardware, programs are specified in a high-level language like C; a compiler translates this into assembly
language; then an assembler produces the machine code. In our bio-design flow, we begin with the same
sort of high-level description (we use Verilog, a hardware description language9). Our prototype compiler
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called VERB (Verilog Elements for Register-Based Biochemistry) compiles these specification into generic
biochemical reactions. Then this design is mapped on a chemical substrate. The end result is a description
of the actual biochemistry: protein-protein reactions or DNA interactions.

2.2. Compiling the Programs into Biochemistry

A possible experimental chassis for our method is the mechanism of DNA-based computation advocated
by Erik Winfree’s group at Caltech.10 They have shown that the kinetics of arbitrary chemical reaction
networks can be implemented through DNA strand-displacement reactions. They provide an assembler that
accepts a set of arbitrary biochemical reactions with nearly any rate structure and delivers the corresponding
DNA sequences for the displacement reactions. Reaction rates are controlled by designing sequences with
different binding strengths; the binding strengths are controlled by the length and sequence composition of
toeholds.10 Accordingly, our contribution can be positioned as the “front end” of the compiilation flow; the
DNA assembler and experimental chassis described by these authors constitute the “back-end”.

3. Related Work and Context

There has been considerable research directed at the question of computation with genetic regulatory mech-
anisms.11 DNA and RNA-based computation have been explored theoretically and demonstrated experimen-
tally.12–14 Mathematical expertise from control and dynamical systems has been applied to the analysis of
biochemical systems.15 Oscillatory mechanisms, suitable for the sort of clocking used in our designs, have
been demonstrated experimentally.16 Samoilov, Arkin and Ross established a comprehensive analytic frame-
work for studying the dynamics of biological systems in terms of the signal processing functions that they
perform.17 Soloveichik, Cook, Winfree and Bruck discuss theoretical aspects of molecular computation.18

The concepts of register-based computation and clocking that we use are due to these authors.18

4. A Toolkit for Biochemical Arithmetic

Scalar Multiplication and Addition

|z| = a
b |x|+

c
d |y|

Reactions:

bx −→ az

dy −→ cz

Fig. 2: A biochemical module for addition
and scalar multiplication. When the first reac-
tion fires, it consumes b molecules of x and pro-
duces a molecules of z. When the second reaction
fires, it consumes d molecules of y and produces c

molecules of z. When both reactions have fired to
completion, the number of molecules of z will be
the scaled sum of the number molecules x plus the
number of molecules of y.

We describe elements of flexible toolkit of functional
modules. In our view of biochemical computation,
the input quantities of proteins are non-negative in-
tegers. Computation is implemented by biochemical
reactions. These fire repeatedly, modifying the pro-
tein quantities by small integer amounts; the end re-
sults are output quantities of proteins. The challenge
in setting up such computing, of course, is that the
biochemical reactions execute asynchronously and in
parallel.19

The computation that we propose in the modules
below is exact and independent of the specific val-
ues of the rates, although it requires that the rates
in different categories differ by a sufficient amount.
For instance, we assume that when a “fast” reaction
can fire it does so – repeatedly, until it runs out of
reactants – before a “slow” reaction ever fires.

4.1. Addition and Scalar Multiplication

The first and simplest of these computations is ad-
dition with scalar multiplication. We can implement this by merely choosing reactions with the correct
stoichiometry. This is shown in Figure 2. (Here and throughout we use | · | to denote the quantity of a type
of molecule.)
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4.2. Multiplication

We illustrate how to implement multiplication. This is shown in Figure 3. In this set of reactions, note that
none can fire until the first one does, producing a molecule of type i. When it does, it initiates an iteration of
a loop: the quantity of z increases as the second reaction fires repeatedly until there is no more y remaining.
Once this process terminates, the third and fourth reactions fire, ending the iteration and restoring y to its
initial value. In each iteration, the quantity of x is decremented by one and the quantity of z is incremented
by y. The final result is a quantity of z equal to the initial quantity of x times the quantity of y.

4.3. More Complex Arithmetic

Modules for computing exponentiation, discrete logarithms and raising to a power, are shown in Figures 4, 5,
and 6, respectively.19 With the latter, our scheme can be used to implement arbitrary polynomial functions;
hence, in principle, it could be used to approximate complex functions through Taylor series expansions.

Multiplication

|z| = |x| × |y|

Pseudo-code:

while x > 0 {

z = z + y

x = x - 1

}

Reactions:

x
slowest−→ i

i + y
fastest−→ i + y′ + z

i
fast−→ ∅

y′ slow−→ y

Fig. 3: A biochemical module for
multiplication. The module consumes
molecules of x one at a time, adding the
quantity of y to the quantity of z each time.
(Here i and y′ are intermediate types; it is
assumed that no molecules of these types
are present initially. The symbol ∅ as a
product indicates “nothing,” meaning that
the type degrades into products that are no
longer tracked or used.)

Exponentiation

|y| = 2|x|

Pseudo-code:

y = 1

while x > 0 {

y = 2 * y

x = x - 1

}

Reactions:

c + 2y
fast−→ c + y

c
medium−→ ∅

x
slow−→ i

i + y
faster−→ i + 2y′

i
fast−→ ∅

y′ medium−→ y

Fig. 4: A biochemical module for ex-
ponentiation. First, a pair of reactions set
the quantity of y to 1. Then molecules of x

are consumed one at a time, doubling the
quantity of y each time. (Here c and y′ are
additional types; it is assumed that initially
there is some non-zero quantity of c, and
zero quantity of y′.)

4.4. Clocking

An important constraint in our design methodology is the timing captured in the relative rates of the
biochemical reactions. With modules such as multiplication described above, there is an implicit ordering of
the reactions. To achieve this, the reaction rates must sometimes be separated by orders of magnitude: some
much faster than others, some much slower. This may be unrealistic.
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Logarithm

|y| = log2(|x|)

Pseudo-code:

while x > 1 {

x = x/2

y = y + 1

}

Reactions:

b
slow−→ a + b

a + 2x
faster−→ c + x′ + a

2c
faster−→ c

a
fast−→ ∅

x′ medium−→ x

c
medium−→ y

Fig. 5: A biochemical module for com-
puting a base-2 logarithm. The input x

repeatedly halves itself; each time it does so,
y is incremented by one. (Here a, b, c and x′

are are additional types; it is assumed that
initially there is some non-zero quantity of
b, and zero quantity of a, c and x′.)

Raising to a Power

|y| = |x||p|

Pseudo-code:

y = 1

d = 0

while p > 0 {

w = x

while w > 0 {

d = d + y

w = w - 1

}

y = d

d = 0

p = p - 1

}

Reactions:

c + 2y
fast−→ c + y

c
medium−→ ∅

p
slowest−→ a

a + x
medium−→ b + a + x′

b + y
fastest−→ y′ + d + b

b
faster−→ ∅

y′ fast−→ y

a
slow−→ e

e + y
faster−→ e

e + x′ faster−→ e + x

e
fast−→ ∅

d
slower−→ y.

Fig. 6: A biochemical module for com-
puting a raising to a power. First, a pair
of reactions set the quantity of y to 1. Then
a pair of nested loops achieves the computa-
tion: the inner loop computes |x| times the
current result (starting with 1); the outer
loop does this operation |p| times. (Here
a, b, c, d, e, x′, and y′ are are additional
types. It is assumed that that quantities of
all of these except for c are initially zero; the
quantity of c must be any non-zero value.)

To overcome this issue, we have have proposed a technique that we call “module-locking”.20 The scheme
involves adding a key requirement to each phase of the computation. Keysmiths are produced occasionally;
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if other keys are present, they quickly disappear – before they can produce their key. Only if no other keys
are present will they produce their key. This ensures that at most one type of key is present (thus allowing
only one part of the loop to fire at a time); also it ensures that only one key of that type is present (thus
allowing for re-locking). The template for reactions with this functionality is:

∀i : ∅ slow−→ keysmithi

∀i : keysmithi
slow−→ keyi

∀i : keyi
slow−→ ∅

∀i, j : keyi + keysmithj
fast−→ keyi

(2)

This is for all i, j phases of the computation, e.g., steps in an operation like multiplication. (The symbol ∅
as a reactant indicates that the reaction does not alter the quantity of the reactant types, perhaps because
the quantity of these is large or replenishable; in such cases we can assume that the quantity is simply unity
and adjust the rate accordingly). The first reaction of each phase must be modified so that it depends on
the key:

keyi + reactants → products + keyi. (3)

Typically, the key will be a catalyst, appearing as both a reactant and a product, but this need not be the
case. With locking, our method synthesizes robust computation that is nearly rate independent, requiring at
most two speeds (“fast” and “slow”). The trade-off is with respect to the size of the solution: more reactions
are needed. Further details are in.20

5. Compiling Iterative Code

By combining arithmetic operations and our clocking mechanism, we can implement iterative operations
such as linear transforms on time series. Such operations are useful for performing filtering operations.

Example 1
Consider an application that calls for biochemistry that performs a filtering operation such as computing

a moving average. Given a noisy input signal X[n], a moving average filter produces an output signal Y [n]
that is a smoother version of the input. The function is

Y [n] =
1
2
X[n] +

1
2
X[n − 1].

where the n-th value is the current value and the (n − 1)-st value is the previous value of each signal. The

iterative operation can be specified as follows (we use the syntax of Verilog9):

[1] module MA(clk, X, Y);

[2] input X;

[3] input clk;

[4] output Y;

[5] reg Xn;

[6] always

[7] begin

[8] Y= (1/2 * X) + (1/2 * Xn);

[9] Xn= X;

[10] end

[11] endmodule

We translate this specification into a set of biochemical reactions, as follows. Each operation is translated
into a biochemical reaction with the protein types that correspond to the variables. All these reactions are
keyed, according to clock phases. These reactions are show in Figure 7. For simplicity, here we omit the
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details of how the keys are generated. Key-keysmith reactions of the form of Equation 2 should be included
for key0, key1, and key2.

R1: key0 + X
fast−→ Xa + Xb + key0

R2: key0 + Y
fast−→ key0

R3: key1 + 2Xn
fast−→ Y + key1

R4: key2 + 2Xb
fast−→ Y + key2

R5: key2 + Xa
fast−→ Xn + key2

CR1: key2
slow−→ keysmith0

CR2: keysmith0
slow−→ key0

CR3: key0
slow−→ keysmith1

CR4: keysmith1
slow−→ key1

CR5: key1
slow−→ keysmith2

CR6: keysmith2
slow−→ key2

Fig. 7: Biochemistry implementing the moving-average filter.

We simulate and validate our designs with transient stochastic simulation.8 The simulation results shown
in Figure 8, illustrate the functionality of the design: the moving average smooths high-frequency noise. Here,
the input X is shown in green; it is a noisy sinusoid. The output Y is shown in red; note that it is a clearer
sinusoidal waveform.
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Fig. 8: Input and output waveforms for a biochemical moving-average filter. The input quantity X is shown
both as points from the simulation and as the ideal curve. The output Y is shown in red. The green curve
shows where the value of X is after the average delay of the system in order to be time-aligned with the red
output curve.

6. Additional Design Examples

We briefly discuss a few other designs that we synthesized with our compiler. All perform iterative arithmetic
on non-negative integer values; these integer values correspond to time-varying quantities of input and output
proteins.

• The deserializer is simply an 8-element shift register. Instead of operating on bits, it operates on
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Table 1: Compilation Results

deserializer vector matrix multiplier integrator differentiator

Reactions 27 28 14 19
Registers 23 18 4 10
Clocks 2 5 3 4

integer values. This module is useful as a starting point for convolution-based algorithms and in
signal decoding.

• The vector-matrix multiplier multiplies a 3-element input vector by a fixed 3x3 matrix to obtain
an output vector. It can be trivially expanded to higher dimensions; the only limitation is that it
has nonnegative integers for input and output.

• The integrator implements a “bipolar” encoding: its inputs and outputs are represented as as the
difference of two protein quantities. While each of these quantities is a nonnegative integer, their
difference can be any integer, positive or negative. It computes a running sum of its input values. In
order to ensure that the output quantities do not increase without bound, an “equalize” operation
is implemented. This reduces both the positive and negative output quantities by the same amount
until one is zero.

• The differentiator operates with this same bipolar encoding. It computes the running difference of
the last two values.

The parameters of the biochemical designs that our compiler produces are shown in Table 1: the number of
reactions, the number of registers and the number of clock phases, for each.

7. Discussion

This paper is forward-looking and positioned in the realm of synthetic biology; it presents concepts for
designing new functionality with realistic yet abstract mechanisms of biochemistry. Evidently, we only im-
plement of small subset of the functionality of a complete high-level language, such as C or Verilog. It is
beyond the scope to implement a full specification such a language – to attempt to do so would be besides
the point; syntactical constructs are are not germane. Rather the goal of this research is to demonstrate the
feasibility of computation with biochemistry.

Our clocked and locked design methodology for biochemical computation is the most robust and general
approach that has been suggested. With rapid progress in custom gene synthesis, it has potential applications
on the horizon in domains such as biochemical sensing, drug production, and disease treatment.

Thus far, our work has focused on computational methods and tools for the high-level compilation phase
of bio-design automation, generating designs in terms of generic biochemical reactions. We plan to implement
and validate the technology-mapping phase using the universal DNA substrate mechanisms being developed
by Erik Winfree’s group at Caltech as the experimental chassis.
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Biological pathways are seen as highly critical in our understanding of the mechanism of biological functions. To collect information 
about pathways, manual curation has been the most popular method. However, pathway annotation is regarded as heavily time-
consuming, as it requires expert curators to identify and collect information from different sources. Even with the pieces of biological 
facts and interactions collected from various sources, curators have to apply their biological knowledge to arrange the acquired 
interactions in such a way that together they perform a common biological function as a pathway. In this paper, we propose a novel 
approach for automated pathway synthesis that acquires facts from hand-curated knowledge bases. To comprehend the 
incompleteness of the knowledge bases, our approach also obtains facts through automated extraction from Medline abstracts. An 
essential component of our approach is to apply logical reasoning to the acquired facts based on the biological knowledge about 
pathways. By representing such biological knowledge, the reasoning component is capable of assigning ordering to the acquired facts 
and interactions that is necessary for pathway synthesis. We demonstrate the feasibility of our approach with the development of a 
system that synthesizes pharmacokinetic pathways. We evaluate our approach by reconstructing the existing pharmacokinetic 
pathways available in PharmGKB. Our results show that not only that our approach is capable of synthesizing these pathways but also 
uncovering information that is not available in the manually annotated pathways. 

1. Introduction  

Developing systems and algorithms to assist and guide biological researchers in reverse engineering and synthesis of 
biomolecular systems has been a long term goal for the fields of computational biology and bioinformatics. An 
important task of modeling biomolecular systems is the building of pathways for various biological processes. In 
building pathways for processes such as pharmacokinetics, the ability to collect and integrate information contained 
in existing databases and the literature is important so that partial pathways can be built. With the partial pathways, a 
researcher can identify what gap in knowledge needs to be filled. 

Several knowledge bases have been created for the need of pathway information, focusing on different aspects 
of networks and pathways. Reactome [1], KEGG [2] and HumanCyc [3] are examples of knowledge bases for 
metabolic pathways, while Biocarta1 and Panther [4] consist of knowledge bases for signaling pathways. PharmGKB 
[5] is a knowledge base for drug-oriented genomic information that includes pharmacokinetic and pharmacodynamic 
pathways. These knowledge bases rely on manual curation by experts and the pathway information is very precise 
but far from being complete due to the intensive process required in the annotation of pathways. It is therefore 
necessary to investigate another paradigm for the curation of pathways to speed up the annotation process.  

In this paper, we propose a novel approach for the automated synthesis of pharmacokinetic pathways by first 
acquiring the necessary pharmacokinetic facts and interactions of the target drug from existing curated knowledge 
bases. As the curation effort of these knowledge bases is yet to be completed, our approach includes an automated 
text extraction component that extracts facts and interactions from Medline abstracts. The inclusion of knowledge 
extracted from Medline abstracts can lead to the synthesis of more comprehensive pathways, as compared to using 
only the curated knowledge bases for building pathways. In the synthesis of pathways, it is essential to indicate the 
ordering of the interactions in a pathway, as a pathway is a series of interactions that are triggered by one another, in 
which the consequences of the interactions include the activation of certain biological functions or generation of 
products such as metabolites as a result of drug metabolism. To assign the ordering of the interactions, our approach 
includes the logical representation of the general properties and behavior of pharmacokinetic pathways. Automated 
reasoning can then be applied to the acquired knowledge so that ordering of the interactions can be assigned to 
synthesize pathways. The inclusion of such reasoning capabilities on top of mining relevant knowledge distinguishes 

                                                           
1 Biocarta – http://www.biocarta.com  
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our approach from typical data-driven and knowledge-driven approaches in pathway curation. Data can be collected 
by means of large-scale protein-protein interaction networks from experimental sources such as two-hybrid screening 
(Y2H) [6]. On the other hand, knowledge can be extracted by automated text extraction techniques to produce large-
scale interaction networks and pathways [7-10]. While these networks of interactions provide insights to biological 
discovery, it is not always straightforward to identify which interactions are indeed biologically related within a large 
network of interactions. To determine which parts of the interaction networks indeed correspond to pathways, 
pathway curators rely on visualization and pathway building tools to synthesize pathways [11]. Pathway building 
tools such as CellDesigner [12] or proprietary tools such as Ingenuity IPA2 and ActiveMotif3 based on manually 
curated databases allow curators to visualize and assemble pathways from an interaction network. Such methodology 
still heavily depends on the biological knowledge of the expert curators for pathways synthesis. An alternative is the 
use of graph-theoretic methods on interaction networks (see [13] for a survey) or network alignment methods over 
interaction networks of multiple species to uncover conserved modules as pathways [14, 15]. 

It becomes apparent that fully-automated systems for pathway synthesis are required to have the capabilities of 
acquiring various kinds of information from multiple sources, as well as assigning appropriate order to the acquired 
interactions. To automatically arrange the interactions for pathway synthesis, our work includes a reasoning 
component for this purpose. With proper representation of pathways for a particular biological process such as 
pharmacokinetics, reasoning can be applied to the acquired knowledge and automatically assigned the appropriate 
ordering of the interactions to synthesize pharmacokinetic pathways. The approach of utilizing biological domain 
knowledge has been applied to various applications, such as the generation of metabolic networks based on 
stoichiometric constraints [16] and hypothesis generation in signaling pathways [17]. The need of formulating 
biological domain knowledge and applying reasoning to infer pathways from text is highlighted as new challenges in 
[18]. In pharmacokinetic pathways, an example of a biological property is that drug metabolites are generated as a 
result of drug metabolism. In other words, a metabolized drug is a precondition for the generation of drug 
metabolites to occur, and the effect of the interaction is the production of drug metabolites. By encoding the logic 
representation in the form of pre- and post-conditions of pharmacokinetic properties that describe the course of drug 
disposition in the body, which includes drug absorption, distribution, metabolism and excretion, reasoning can be 
applied to the interactions in order to find a sequence that satisfies the pharmacokinetic properties. Finding a 
sequence of actions is known as planning in the field of artificial intelligence, and planning is considered as one kind 
of reasoning. More specifically, planning can be described as given the initial states and the goals of the problem, 
find a sequence of actions such that the goals can be achieved from the initial states. In the case of the 
pharmacokinetics effects of drugs, the initial state is when a drug is administered and the goal state is when the drug 
is eliminated after being metabolized. The expected plan is the actions required for the administered drug to be 
delivered to the systemic circulation for drug consumption. With the acquired facts and interactions and the 
biological properties of pharmacokinetics in logical representation, the reasoning component of our proposed system 
arranges the interactions so that a series of interactions is generated as a pathway model. 

The rest of the paper is outlined as follows. We describe the basic properties of pharmacokinetics that we 
encode in our system in Section 2. In Section 3, the processes of acquiring the necessary facts and interactions from 
existing knowledge bases and Medline abstracts are described. In addition, the reasoning component is illustrated in 
how the pharmacokinetic properties and behavior are encoded in order to synthesize pathways. In Section 4, we 
demonstrate the feasibility of our approach by illustrating the precision and recall of generated pathways. We 
concluded in Section 5. 

2. Pharmacokinetics 

Pharmacokinetics is concerned with the relationships between various processes during the course of the drug 
consumption in the body. The study of pharmacokinetics is important to biologists and drug designers, as the 
bioavailability of a drug, i.e. the effectiveness of a drug when it is absorbed into the systemic circulation, is heavily 
                                                           
2 Ingenuity Pathway Analysis Tool: http://www.ingenuity.com 
3 Active Motif: http://www.activemotif.com 
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dependent on the processes involved in pharmacokinetics. When a drug is taken orally, the drug is absorbed in the 
intestine, and the corresponding drug transporters distribute the drug to the appropriate cellular locations of the 
intestinal cells. The drug is then delivered to the liver through the bloodstream, and the relevant drug transporters in 
the liver cells distribute the drug for metabolism by the enzymes. Drugs that are taken intravenously would bypass 
the drug absorption phase. The pharmacokinetics of a drug includes several processes such as the distribution of a 
drug through different tissues, the metabolism of a drug, the excretion of a drug, and the absorption of a drug into 
the systemic circulation [19]. Several essential elements are involved in different processes of pharmacokinetics, 
namely drug transporters, enzymes and metabolites. The typical processes involved in pharmacokinetic pathways are 
shown in Figure 1. Drug transporters are responsible for drug distribution for absorption (as in Region B1 in Figure 1 
(left)), metabolism (Region B2 in Figure 1 (left)) and excretion (Region B3 in Figure 1 (left)), and they can be 
expressed in many tissues such as intestine and liver [20]. Once the target drug is distributed into an appropriate 
cellular location, the enzymes play the role of metabolizing the drug (as in Region A in Figure 1 (left)), which take 
place mainly in the liver. Metabolites are produced as a result of the metabolism of the drug, shown in Region C. 

Identifying the pharmacokinetic mechanism of a drug is essential in avoiding potential side effects of drug-drug 
interactions, even though in most cases the processes of drug disposition for co-administered drugs typically do not 
affect one another. However, drugs that are strong inducers or inhibitors of certain enzymes can influence the 
bioavailability of drugs that are metabolized by these enzymes [21]. The drug ketoconazole is an example of a 
powerful inhibitor that is known to inhibit CYP3A enzymes, which are responsible for the metabolism of a wide 
variety of drugs, such as midazolam. Such inhibition of CYP3A enzymes can affect the drug-metabolizing activity 
and lead to the increase of the bioavailability CYP3A substrates. On the other hand, drugs that are potent inducers of 
CYP3A enzymes, such as carbamazepine, can cause a reduction of the effect of CYP3A substrates. With the 
increasing availability of clinical drugs that are inducers or inhibitors of enzymes, the study of pharmacokinetic drug 
interactions becomes more critical [21]. While a drug can be involved in various parts of the body, our focus in the 
synthesis of pharmacokinetic pathways is on the processes involving drug absorption, distribution, metabolism and 
elimination in the intestine and liver. 

                
Figure 1 – (left) Pharmacokinetic pathway of fluvastatin. Region A: metabolism of the drug by the enzymes; Region B: drug transporters 
distribute the drug for absorption in intestine in B1, for metabolism in B2 and for elimination in B3; Region C: the drug is metabolized to 
metabolites by the enzymes. (Diagram source: PharmGKB); (right) A network representation of the drug-protein interactions for fluvastatin. 

3. Methods 

The goal of our system is to synthesize the pharmacokinetic pathway of a given drug. Our approach in constructing 
pathways can be described as a two-stage approach: (i) fact and interaction extraction from knowledge bases and 
text; (ii) inferences of pathways through reasoning with the extracted facts and interactions based on the biological 
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knowledge of pharmacokinetic pathways as described in Section 2. Figure 2 illustrates how the facts and interactions 
extracted in step (i) are utilized together with the biological background knowledge to construct pathways. 

 
Figure 2 - An overview of the system architecture. Facts and interactions are acquired from knowledge bases such as Drugbank, PharmGKB and 
Gene Ontology annotations, as well as our PTQL framework for text extraction from Medline abstracts. The shaded components correspond to 
the novel features of this paper. The facts and interactions are translated into logic facts so that together with the background knowledge, the 
logic program solver (AnsProlog solver) assigns ordering to the interactions for the synthesis of pharmacokinetic pathways. 

 
The first stage involves various kinds of fact extraction, such as identifying which proteins are drug transporters, as 
well as interaction extraction, such as finding which enzymes play a role in metabolizing the drug of interest. 
Fetching the facts and interactions alone leads to the formation of a network of interactions, but the resulting network 
lacks the information that describes which of the interactions appear ahead of the others. Using the gene-drug 
interaction network in Figure 1 (right) as an example, the outcome of the extraction process is the interactions 
between the drug fluvastatin and the proteins, such as SLCO1B1 and CYP3A4. However, with the extracted 
interactions alone, it is unclear whether the interaction between SLCO1B1 and fluvastatin should precede or follow 
the interaction between CYP3A4 and fluvastatin. In the synthesis of pathways, ordering of the interactions is 
essential, as a pathway is a series of interactions, in which the consequence of an interaction affects the subsequent 
interactions. For instance, the CYP and UGT enzymes in Figure 1 (left) are able to metabolize fluvastatin in the liver 
cells only if the drug is distributed by the drug transporters SLCO1B1, SLCO2B1 and SLCO1B3. In other words, 
distribution of the drug in the liver cells is a prerequisite for the drug metabolizing interaction to take place. In our 
approach, such kind of preconditions and postconditions of interactions are encoded as logic rules so that the 
reasoning component in step 2 assigns an ordering to the interactions extracted in step 1. We describe the details of 
each of the steps in the rest of the section. 

3.1. Fact and interaction extraction from knowledge bases 

The first stage of pathway synthesis is to identify and recognize the facts involved in the pharmacokinetic pathways 
of the drug of interest. As the pharmacokinetics of drug behaves differently depending on its dosage form, it is 
essential to obtain such information in order to synthesize pathways correctly. Drug metabolism can take place in 
different organs, and a drug that is known to be metabolized in the liver cells would have a different pathway from a 
drug that is metabolized in other cells such as the intestinal cells. DrugBank [22] is a rich resource to obtain such 
kind of facts about drugs. The field “dosage form” in DrugBank provides information such as whether a drug is 
taken orally or intravenously, and the metabolism of a drug can be obtained from the field “biotransformation”. With 
DrugBank, logic facts in the form of is_taken(Drug, Method) and metabolism(Drug, Organ) are 
generated, in which Drug is the name of drug of interest, Method is either orally or intravenously and Organ 
can be liver or intestine. Using the drug fluvastatin as an example, the facts are written as logic facts 
is_taken(fluvastatin, orally) and metabolism(fluvastatin, liver).  

To construct pharmacokinetic pathways, it is important to identify the interactions between drug and enzymes. 
Several resources are used to obtain interactions between drugs and enzymes. The DrugBank knowledge base 
provides the metabolizing enzymes as well, but the list of enzymes for each drug is not comprehensive as only the 
main enzymes are included. Other than DrugBank, PharmGKB [5] is another rich resource that provides information 
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about genes, drugs and diseases. An extensive list of interactions between drugs and proteins can be found in 
PharmGKB relationships. The interactions are categorized into several types namely “pharmacokinetics” (PK), 
“pharmacodynamics” (PD), “molecular and cellular functional assays” (FA) and “clinical outcome” (CO). For the 
purpose of the pharmacokinetic pathway synthesis, the interactions labeled as pharmacokinetics (“PK”) are utilized. 
However, obtaining the pharmacokinetic interactions is not sufficient for pathway synthesis, as it is important to 
realize whether the proteins involved in the interactions are enzymes or transporters. Such kind of information can be 
inferred from the Gene Ontology (GO) annotations [23]. 

GO is a hierarchy of controlled vocabulary that includes three independent ontologies for biological process, 
molecular function and cellular component. Standardized terms in GO describe roles of genes and gene products in 
any organism. Curators annotate the functions of proteins by assigning GO terms, and such annotation is known as 
GO annotations. The terms “metabolic process” (GO:0008152) and “transporter activity” (GO:0005215) from the 
GO “biological process” and “molecular function” sub-ontologies can be utilized to identify enzymes and proteins. 
Given a drug-protein interaction, a protein is considered as an enzyme if the protein is annotated under the 
subcategories of the term “metabolic process” according to the GO annotation. Similarly, a protein annotated in one 
of the subcategories of the term “transporter activity” is regarded as a transporter. Since the protein is obtained from 
a drug-protein interaction, the transporter is regarded as a drug transporter. With PharmGKB and GO, logic facts in 
the form of enzyme(Protein), metabolizes(Enzyme, Drug), transporter(Protein) and 
distributes(Transporter, Drug)are generated. Using the drug fluvastatin as an example, the facts and 
interactions are written into these logic facts: enzyme(cyp3a4), metabolizes(cyp3a4, fluvastatin), 
transporter(slco1b1) and distributes(slco1b1, fluvastatin).  

3.2. Automated text extraction of facts and interactions 

While the sources provide an extensive amount of information for the synthesis of pharmacokinetic pathways, much 
of the information is resided in the biomedical literature. In particular, drug transporters, drug-enzyme metabolic 
relations and the metabolites produced as a result of drug-enzyme metabolic relations can be found in Medline 
abstracts. Extraction of such facts and interactions requires the utilization of syntactic and lexical clues from 
sentences. One way of extracting metabolic relations between the target drug and enzymes from text can be 
performed based on cooccurrences of drug names, gene/protein names and the word “metabolized”. However, using 
cooccurrences is not sufficient for the precision needed in pathway synthesis. Suppose the target drug for extraction 
is fluvastatin, the relations metabolizes(CYP2C9, fluvastatin) and metabolizes(CYP3A4, 

fluvastatin) are extracted from the sentence “Fluvastatin is metabolized by CYP2C9, while simvastatin, 
lovastatin and atorvastatin are metabolized by cytochrome P450 3A4 (CYP3A4).” (PMID:16714062) based on 
cooccurrences, in which the relation  metabolizes(CYP3A4, fluvastatin) is an incorrect relation according to 
the sentence. By utilizing the syntactic pattern that a drug-enzyme metabolic relation is feasible if the word 
“metabolized” and the gene/protein mention appear in the same verb phrase, then only the correct relation 
metabolizes(CYP2C9, fluvastatin) can be extracted from the sentence. This example shows that it is 
important to extract drug-enzyme metabolic relations with the use of syntactic patterns. With the diverse extraction 
needs in the synthesis of pharmacokinetic pathways, it is not feasible to develop individual extraction systems for 
each specific extraction goal. This implies the need of a flexible system that is designed for generic extraction. 

Our PTQL framework [24, 25] provides the flexibility to perform such kind of diverse extraction. A sample list 
of logic facts that are generated through PTQL extraction is described in Table 1. The central piece of our extraction 
framework is the parse tree database, which is composed of the syntactic structures for each of the sentences in the 
entire collection of Medline abstracts. Each of the Medline abstracts is represented as a hierarchical representation 
with the syntactic and semantic information, which includes the recognition of biological entities. BANNER [26] and 
MetaMap [27] were used for gene/protein mentions and drug names, while gene/protein mentions are normalized by 
GNAT [28] for their standardized form in order to avoid name ambiguity. By storing the syntactic and semantic 
information in the database, performing extraction becomes a matter of writing extraction queries. Since standard 
relational database queries such as SQL are not ideal for expressing queries that involve linguistic patterns, we 
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developed a query language called parse tree query language (PTQL) that are used to express linguistic patterns for 
extraction. While PTQL queries are expressive, writing the queries manually for extraction is time-consuming and 
potentially limits the recall of the system. As an alternative, our PTQL framework provides a component that is 
capable of generating PTQL queries from keyword-based queries. For instance, in the extraction of drug-enzyme 
metabolic relations, we simply issue the keyword-based query 

<type:DRUG> and <class:metabolism> and <type:PROTEIN> 

where <type:DRUG> and <type:PROTEIN> correspond to matching any mentions of drug name and gene/protein 
names, and <class:metabolism> corresponds to lexical variants of the word “metabolism”, which includes 
“metabolize”, “metabolized” and “metabolizes”. Using a small corpus of Medline abstracts, the component first 
retrieves sentences that are relevant to the keyword-based query as in a typical search engine. By utilizing the parse 
tree database, grammatically similar sentences are retrieved and their common grammatical patterns are utilized in 
forming PTQL queries automatically. The resulting PTQL queries include the necessary syntactic patterns and they 
are applied to the full parse tree database that includes all Medline abstracts for extraction. This component is used 
for the extraction of (i) drug-enzyme metabolic relations; (ii) proteins responsible for drug elimination; (iii) protein 
expression in liver and intestinal cells. Extraction of these kinds of relations is essential in the synthesis of 
pharmacokinetic pathways, as existing sources such as DrugBank and PharmGKB lack such information or in a 
format that is not easily readable by computers. 

� Protein expression in liver and intestinal cells. In the synthesis of pharmacokinetic pathways, it is essential to 
find out whether a protein is expressed in the liver or intestinal cells. The following keyword-based query is used for 
the extraction of protein expression in liver cells: 

<type:PROTEIN> and <class:liver> 

The keywords “hepatic” and “liver” are used to represent <class:liver>. Similarly, <class:intestine> is 
used for the extraction of protein expression in intestinal cells, in which “intestinal”, “gastrointestinal” are used for 
<class:intestine>. With the keyword-based queries, the generated PTQL queries retrieve the sentences and 
relations as shown in Table 1. 

� Proteins responsible for drug elimination. Among the interactions between the target drug and its drug 
transporters, it is necessary to find out the roles of each of the drug transporters, as drug transporters are known to be 
involved in various roles such as drug distribution, absorption and elimination. Finding the exact roles of transporter 
is essential for the assignment of the ordering of the interactions. For instance, if a drug transporter is responsible for 
drug elimination, we know that the drug transporter cannot distribute the drug until the drug is metabolized. Using 
the keyword-based query  

<type:PROTEIN> and <class:elimination> and <type:DRUG> 

where <class:elimination> is represented by the keywords “elimination” and “excretion”, an example of 
sentences that indicate the role of drug elimination for a drug transporter is shown in Table 1. 

� Drug-metabolites relations. For the extraction of relations, typically named entity recognizers are applied to 
recognize the entities involved in the target relations. However, in the case of metabolites, the lack of dictionaries or 
training data means that we need to rely on lexical hints for the identification of metabolites. For example, the 
sentence “The antioxidative effects of the metabolites of fluvastatin (M2, M3, M4 and M7) …” indicates that M2, 
M3, M4 and M7 are the metabolites of fluvastatin based on the lexical hints “metabolites of fluvastatin”. 

 
Table 1 – Sample logic facts and evidence sentences for each type of relations that are extracted by our PTQL framework. Note that the protein 
names have been replaced with their official gene symbols in the logic facts. 

Logic facts Evidence sentences 
metabolizes(CYP3A4, fluvastatin) Fluvastatin is metabolized by CYP2C9 (PMID:16714062) 
is_expressed(ABCC2, liver) These decreases in hepatic Mrp2 may contribute to cholestasis (PMID:17959626 ) 
is_expressed(SLC15A1, intestine) PPARalpha plays critical roles in intestinal PEPT1 expression. (PMID:16751172) 
eliminates(ABCB1) Colchicine is also a substrate of P-glycoprotein, a transporter involved in cellular 

efflux and elimination of numerous drugs. (PMID:15494379) 
metabolite(desmethyldesipramine, 
desipramine) 
 

 desipramine in rats may be attributed not only to the inhibition of the 
norepinephrine transporter by desipramine but also to the inhibition of serotonin 
transporter by the active metabolite desmethyldesipramine. (PMID: 17850785) 
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3.3. Ordering of interactions through reasoning 

Once the relevant facts and interactions are acquired from knowledge bases and Medline abstracts, the last step is to 
utilize the facts and interactions to generate pharmacokinetic pathways. As the interactions themselves do not reveal 
any kind of ordering, the goal is to represent the fundamental behavior and properties of pharmacokinetics so that the 
representation can be utilized to assign ordering of the interactions through reasoning. Implementation of the 
reasoning component requires a language that is ideal in specifying what kind of reasoning to be performed rather 
than how the reasoning is performed. This is analogous to declarative programming language such as SQL, in which 
the users specify what is intended to be found rather than how the search mechanism of the database system should 
be performed to answer the queries. AnsProlog [29, 30] is a declarative language that is useful for reasoning, as well 
as capable for reasoning with incomplete information. We first describe how AnsProlog is applied to the 
representation of pharmacokinetic properties. 

The core idea of the representation of pharmacokinetics is to encode the pre- and post-conditions of 
interactions, also known as the executability and direct effects of actions. Timepoints are used to define the logical 
ordering of the interactions. Interaction I1 occurs before interaction I2 if I1 is assigned with a timepoint that is smaller 
than the timepoint for I2. Using the interaction that involves the generation of metabolites as an example, the pre-
condition of such generation is that the target drug has to be metabolized. The post-condition of the interaction is the 
production of metabolites. Such mechanism is represented by the following AnsProlog logic rules: 

o(converts(D, M),Loc, T) :- h(metabolized(D),T),    
 metabolites(D, M),  metabolism(D, Loc), not 
h(converted(D),T).   

h(converted(D),T+1) :- o(converts(D, M), Loc, T),  
 metabolites(D,M). 

The first logic rule states that the pre-conditions for the action converts(D, M) occur at timepoint T in location Loc 
(which can be either the liver or intestinal cell), denoted as o(converts(D,M),Loc,T). For instance, 
o(converts(fluvastatin,m2),liver,3) indicates that the drug fluvastatin is converted into the metabolite 
M2 in the liver cells at timepoint 3. The following are the pre-conditions, which are specified to the right of the “if” 
symbol :- in the rule, for the action converts(D, M): 

• the drug D has been metabolized at timepoint T, denoted as h(metabolized(D),T); 
• metabolite M is known to be a metabolite of D, denoted as metabolites(D, M); 
• metabolism of D is known to take place in Loc, denoted as metabolism(D, Loc); 
• it is not known that D has been converted into metabolites in the previous timepoints, denoted as not 

h(converted(D),T). 
Notice that metabolism(D, Loc) and metabolites(D, M) are logic facts that are obtained from the extraction 
of knowledge bases and text. The second logic rule states the post-condition of the action converts(D, M), which is to 
indicate the drug D is converted in the next timepoint T+1 when the action occurs at timepoint T. With the 
timepoints, we can observe that fluvstatin is converted into metabolites with h(converted(fluvastatin),4) 

and this conversion occurs as a result of the action o(converts(fluvastatin, m2), liver, 3) . 
Another example of pharmacokinetic behavior is that a drug can only be metabolized by some enzymes if the 

drug is distributed to the appropriate location in the liver by a drug transporter. In addition, elimination of the target 
drug can only take place when the drug is metabolized and metabolites are produced. Our logical representation also 
includes the fact that an orally-taken drug is transported to the intestines, and drugs that are taken intravenously are 
transported to the liver. To mimic the behavior of typical pharmacokinetic pathways, we include logic rules to ensure 
that all interactions involved in the intestinal cells have to occur ahead of the interactions in the liver cells. By 
encoding rules that represent the pharmacokinetic behavior of drugs, interactions are assigned with timepoints to 
indicate the ordering of the interactions in the pharmacokinetic pathway. With the logic rules and facts, the model, 
known as answer sets in AnsProlog, is computed by an answer set solver called clasp [31]. The resulting answer sets 
correspond to the pharmacokinetic pathway of the target drug. 
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Our approach for pathway synthesis can be summarized in the following steps: 

1. Given the drug of interest, knowledge bases that include DrugBank, PharmGKB and the Gene Ontology 
annotations are utilized to acquire information such as interactions between drug and proteins, as well as the 
enzymes and drug transporters involved in the interactions. 

2. To complement the information fetched from manually curated knowledge bases, information such as protein 
expression in liver/intestinal cells, the roles of drug transporters, drug metabolites are extracted from Medline 
abstracts using our PTQL extraction framework. 

3. With the generic logical representation of pharmacokinetic pathways, facts and interactions acquired in steps (i) 
and (ii) are utilized so that the pharmacokinetic interactions are assigned with timepoints to reveal their ordering 
in the resulting pharmacokinetic pathway. 

4. Synthesis of pharmacokinetic pathways 

In this section, we illustrate our approach with the synthesis of pharmacokinetic pathways for two drugs: repaglinide 
and parvastatin. The pathways of another 18 drugs are synthesized by our system and presented as supplementary 
material in our website: http://www.kbpathway.org/. The pharmacokinetic pathways of these drugs have been 
manually annotated and made available in PharmGKB. Our system provides the output in the form of logic facts, as 
well as GPML files that can be visualized in Cytoscape [32] with the Cerebral plug-in [33], which takes advantages 
of the protein cellular locations in generating the layout of the pathways. We evaluate the performance of our system 
based on the performance of the extraction. 

4.1. Repaglinide pharmacokinetic pathway 

The logical representation of the pathway generated by our system is shown in Table 2. The model indicates that 
repaglinide is administered orally in the initial step, represented as h(is_taken(repaglinide,orally),0). The 
drug consumption leads to the presence of the drug in the intestinal cells (h(is_present(repaglinide, 

intestine),1)), and the drug is transported to the liver cells through the bloodstream 
(o(transports(repaglinide,intestine),liver,1)). The drug repaglinide becomes present in the liver 
cells (h(is_present(repaglinide,liver),2)) and it is distributed by the hepatic drug transporter SLCO1B1 
(o(distributes(slco1b1,repaglinide),liver,2)). Metabolism of repaglinide by the enzymes CYP3A4 
and CYP2C8 (o(metabolizes(cyp3a4,repaglinide),liver,2), o(metabolizes(cyp2c8, 

repaglinide),liver,2)) occurs after the distribution, and repaglinide becomes metabolized 
(h(metabolized(repaglinide,liver),3)). As a result of the drug metabolism, metabolites M1 and M4 are 
generated (o(converts(repaglinide,m1),liver,3), o(converts(repaglinide,m4),liver,3)).  The 
last timepoint indicates that repaglinide is no longer present in the liver, represented by -h(is_present( 

repaglinide,liver),4), in which the symbol “-” corresponds to negation. 
 
Table 2 – The output of the logical representation of the pharmacokinetic pathway of repaglinide generated by our system. 

Timepoint Events 
0 h(is_taken(repaglinide,orally),0). 
1 h(is_present(repaglinide,intestine),1). o(transports(repaglinide,intestine),liver,1) 
2 -h(is_present(repaglinide,intestine),2). h(is_present(repaglinide,liver),2). 

o(distributes(slco1b1,repaglinide),liver,2). o(metabolizes(cyp3a4,repaglinide),liver,2). 
o(metabolizes(cyp2c8,repaglinide),liver,2). 

3 h(metabolized(repaglinide,liver),3). o(converts(repaglinide,m1),liver,3). o(converts(repaglinide,m4),liver,3).  
4 -h(is_present(repaglinide,liver),4). 

 
The manually annotated pathway and the version synthesized by our system are shown in Figure 3. One 

distinctive difference is that our current approach is not capable of finding which of the enzymes are responsible for 
which metabolites. Here we assume that the enzymes CYP3A4 and CYP2C8 are responsible for the metabolism of 
repaglinide, and metabolites M1 and M4 are generated in the process. In the next illustration, we show that our 
automated pathway synthesis approach is capable of uncovering components that are not described in manually 
annotated pathways. 
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Figure 3 – (left) The manually curated pharmacokinetic pathway of the drug repaglinide from PharmGKB; (right) the pharmacokinetic pathway 
of repaglinide synthesized by our system. 

4.2. Pravastatin pharmacokinetic pathway 

Here we demonstrate that our method is capable of producing extra elements in the pathways compared to the 
manually annotated pathways. We use the synthesis of pravastatin pharmacokinetic pathway as an example. The 
manually annotated pathway in Figure 4 (left) lacks the information that states which enzymes are responsible for 
metabolism and what metabolites are generated as a result of the metabolism. Such information is included in our 
synthesized version of the pathway. As shown in Figure 4 (right), enzymes CYP3A4, CYP2C8 and CYP2C9 
metabolize the drug pravastatin, and it is metabolized into the metabolites SN-38, 3alpha-hydroxy-iso-pravastatin 
and 3’alpha-iso-pravastatin. The drug-enzyme metabolic relations are originated from PMID: 17178259 according to 
the relationships in PharmGKB corresponding evidences. The resulting metabolites are extracted by our PTQL 
extraction framework, and the evidence sentences in Table 3 indicate the correctness of these facts and interactions. 
 
Table 3 – Evidence sentences for the metabolites (underlined) of pravastatin extracted by our PTQL extraction framework. 

PMID Evidence Correctness 
16027406 Plasma concentrations of pravastatin and its active metabolite, 3alpha-hydroxy-iso-pravastatin, 

were measured, and pharmacokinetics was assessed. 
Correct 

10490896 In addition, as in the liver, pravastatin was metabolized in the small intestine by sulfation and 
subsequent degradation to its main metabolite 3'alpha-iso-pravastatin. 

Correct 

16515396 These genetic variants have been shown to lead to altered pharmacokinetics of OATP1B1 
substrates, mainly pravastatin, but also the irinotecan metabolite SN-38 

Incorrect 

4.3. Evaluation and analysis 

We evaluate the performance of our pathway synthesis method by finding how many of the interactions can be 
recovered (i.e. the coverage) with respect to 20 pharmacokinetic pathways available in PharmGBK. Table 4 shows 
the coverage when each of the sources DrugBank, PharmGBK relations and PTQL extraction is utilized for pathway 
synthesis. While the use of PharmGKB relations achieves the best coverage of the three sources with 47.27%, the 
coverage for the three sources combined results in 56.97%. We further manually evaluated the extraction 
performance by our PTQL framework. As DrugBank and PharmGKB do not provide information about drug 
metabolites, it is essential for the PTQL framework to be capable of extracting metabolites. Another important 
evaluation criterion is to determine if such approach in pathway synthesis can uncover more information than 
manually annotated pathways.  Table 5 indicates that our extraction framework achieves a high precision of 84.0% 
and 82.72% for the extraction of enzymes and transporters, and metabolites. In particular, among the enzymes, 
transporters and metabolites uncovered by our method, our system produces 24 extra enzymes and transporters as 
well as 48 metabolites that are correct but not included in the 20 manually annotated pathways. The high quality of 
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extraction suggests that using PTQL framework for extraction is a valuable source to complement the existing 
knowledge bases for pathway synthesis. 

    
Figure 4 – (left) The manually curated pharmacokinetic pathway of the drug pravastatin from PharmGKB; (right) the pharmacokinetic pathway 
of pravastatin synthesized by our system. 

 
Table 4 – Coverage of each of the sources in the pharmacokinetic pathways for the 20 manually annotated pharmacokinetic pathways in 
PharmGKB. 

Sources Coverage 
DrugBank 20.61% 
PTQL extraction 34.23% 
PharmGKB 47.27% 
All 56.97% 

 
Table 5 – Precision and recall for PTQL extraction of enzymes and transporters, as well as metabolites. The ones that are not in the PharmGKB 
annotated pathways are considered as “Extra”, and their correctness is evaluated. 

 Precision Recall Extra (Precision) 
Enzymes and transporters 84.00% 34.23% 19/31 = 61.29% 
Metabolites 82.72% 65.05% 48/62 = 77.42% 

 
We further analyzed the correctness of the placement of the interactions in the synthesized pathways compared 

to 20 pharmacokinetic pathways available in PharmGKB. Our synthesized pathways are generally consistent with the 
annotated pathways. However, our synthesized pathways do not include information that specifies which enzymes 
are responsible for the production of a particular drug metabolite. Such limitation is due to the fact that metabolites 
are not found in DrugBank and PharmGKB relationships, and our current text extraction is limited to the extraction 
from individual sentences. Drug-enzyme-metabolite relations can rarely be found within individual sentences.  

Among the 20 pharmacokinetic pathways we evaluate, 2 of them are taken intravenously according to 
DrugBank, namely imipramine and irinotecan. In our logical representation of pharmacokinetics, we assume that no 
interactions occur in the intestine for drugs that are taken intravenously, unlike the orally-taken drugs that require 
absorption in the intestine. The imipramine pathway in PharmGKB only shows the interactions in liver cells, but the 
irinotecan pathway includes interactions in both the intestinal and liver cells, with the interactions in the liver cells 
appear ahead of the ones in the intestinal cells. Our current modeling of pharmacokinetic properties does not capture 
this behavior. In terms of metabolism, 17 of the drugs we evaluate are known to be metabolized in the liver cells 
according to PharmGKB, so by default we assume the metabolism of the other 3 drugs, namely atorvastatin, 
repaglinide, rosuvastatin, takes place in the liver cells. This assumption is valid except for the atorvastatin, lovastatin 
and simvastatin pathways that indicate the drugs are metabolized in both the intestinal and liver cells. In our current 
modeling, we assume that drug metabolism and drug distribution for elimination take place in the same cell. This is 
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not the case for the drugs clopidogrel, fluvastatin and pravastatin, in which the manually annotated pathways suggest 
that drug transporters take the drug from intracellular to extracellular in the intestinal cells, even metabolism of these 
drugs occur in the liver cells. Our current model also does not capture the transformation of a metabolite to another 
through enzymes, as suggested by the pathways for phenytoin and tamoxifen. 

5. Conclusion 

The study of pharmacokinetics is essential in identifying the effectiveness of drugs in the systemic circulation. In 
particular, variability in drug response is largely influenced by genetics. In this paper, we extend our previous work 
in synthesizing biological networks [25] by including a reasoning component for the synthesis of pharmacokinetic 
pathways.  The use of reasoning distinguishes our approach from existing methods in generating networks of 
interactions so that ordering of interactions can be assigned through reasoning. Such ordering is critical for the 
representation of pathways, in which the effects of interactions trigger the subsequent interactions. Our results show 
that our approach is capable of synthesizing pharmacokinetic pathways in high quality and identifying components 
that are not in the manually annotated pathways. With the partial pathways generated by our approach, curators can 
utilize the synthesized pathways as a first step of curation and add their findings to expand the pathway annotation. 
Through the synthesized pharmacokinetic pathways, drug designers can examine the impact of drug response due to 
the genetic variations of the gene products involved in the pathways. Identifying relations between drug response and 
genetic variations is a critical step in realizing personalized medicines. 

For future work, we will implement a web-based version of our approach so that pharmacokinetic pathways can 
be created based on the drugs specified by the users. Announcements will be made on our website at 
http://www.kbpathway.org when the web-based version of the implementation becomes publicly available. We also 
plan to expand our work to handle close-loop interactions, which cannot be captured in our current approach. 
Information such as drug-drug interactions will be included to identify drugs that inhibit or induce enzymes 
responsible for the metabolism of other drugs. Such information can be useful to drug designers as well as physicians 
to learn the potential side-effects of drugs due to drug-drug interactions. We also plan to apply our approach to other 
kinds of pathways, such as pharmacodynamics and signaling pathways. 
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Rather than studying existent living systems, we can increasingly produce computer models that capture the salient aspects of life. 
This provides us with unprecedented opportunities to examine, manipulate, and explore biological phenomena, allowing us to 
investigate some of the deepest issues in biology. 

1. Introduction  

It’s life, Jim, but not as we know it [1]. 
 
The organisms that we study today are the outcome of a specific, historically contingent process of billions of years 
of evolution. Over its history, biology has mostly involved the description and classification of observed life forms. 
We have made great progress in that time in expanding the scale of our observations, looking at a much wider range 
of organisms using increasingly precise and detailed measurement techniques. Especially with the increasingly data 
rich experimental techniques of genetics and molecular biology, we have coupled these investigations with 
mathematical modelling and computer simulations, developing our understanding of increasingly large and complex 
biological systems, elucidating the functions of these systems, and proposing hypotheses about their evolution.  

Despite these advances, there are severe limitations on our current techniques. Firstly, there is much information 
about living systems that is either practically or inherently difficult or impossible to obtain. We cannot measure 
systems with arbitrary precision. Many measurement techniques either look at bulk properties of large ensembles of 
components, or alternatively, measure the distinct properties of a small number of these components, rather than 
allowing us to look in a comprehensive way at distributions (including outliers). Measurement methods explore a 
limited range of timescales, and cannot be arbitrarily extended to very slow or very fast processes. It is generally 
impossible to study a system without the examination itself perturbing the object of study. Studying living systems 
are particularly difficult, as the requirements of life are incompatible with many investigative techniques. 

Conversely, there are many manipulations that we might wish to make but cannot. We cannot arbitrarily change 
environmental conditions. We cannot change the properties of the physical components that make up living systems. 
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We cannot delete species from food webs. We cannot investigate the role of stochastic fluctuations by removing 

them from the system.  
Evolutionary investigations offer their own difficulties. We cannot directly explore the process that gave rise to 

current organisms, running evolution under controlled and monitored conditions on the time scales for which 
observed organisms have evolved. We cannot know the relative importance of ‘Chance and Necessity’ [2] in 
explaining observed biology. We cannot explore avenues that evolution might have taken under different 
circumstances; we cannot ‘play the tape twice’ [3]. 

Finally, it is difficult to deduce general principles from the single example represented by the current set of 
evolutionarily related organisms. We cannot experimentally determine whether universal features found in all living 
organisms represent absolute constraints, common responses to a common situation, or a randomly chosen 
alternative maintained through a common genetic descent. We cannot address questions about what would have 
happened if it had arisen under different circumstances.  

Rather than analysing specific living systems, we can try to create artificial systems that have properties 
characteristic of natural living systems [4]. Experimentalists have had some success investigating fundamental 
issues in evolutionary biology through, for instance, directed in vivo evolution [5, 6]. Progress has also been made 
by either building up cells from non-living components [7, 8] or stripping existent cells of all but the most essential 
ingredients [9]. The experimental challenges of this work are daunting, and there remain many limitations to the 
possibilities that can be explored. 

An alternative is in silico biology, creating computational simulations of systems that embody important 
properties of biological systems, such as homeostasis, reproduction, evolution, etc. This approach allows us to 
explore, investigate, and manipulate the workings of such systems without being restricted to the particular 
examples nature has made available to us. We can explore the processes of Darwinian evolution by studying digital 
‘organisms’ on true evolutionary timescales not possible in the laboratory [10], including their origin [11-15], 
evolution [16-18], development [19, 20], behaviour [21], and interactions [22, 23]. The aim of these simulations is 
often the discovery of general or fundamental principles and organization of life, rather than purely the elucidation 
of the workings of a specific example.  

In silico biology represents a movement of biology from an analytical to a synthetic framework as we create 
artificial systems that exhibit biological behaviour. This shift has three consequences. Firstly, we can greatly expand 
our subjects of investigation beyond those that are naturally available. In this way, we can go beyond the 
idiosyncratic examples provided by nature, allowing us to generate a set that is both more varied and more 
systematic. Secondly, it is by attempting to create artificial systems that embody many of the phenomena of life that 
we most rigorously test our understanding of biology, investigate what is sufficient, what is necessary, what is 
understood, what is missing. Finally, in addition to providing a deeper theoretical foundation for biology, these 
activities can provide important tools for computer science as evidenced by the success of various evolutionary 
computational methods. 

2. Work in in silico biology 

The first investigations of in silico biology were the introduction of automata by John von Neumann in the late 40s. . 
Since then, this field has grown to include many topics, including 
•  Evolution of diversity and complexity. Evolution by natural selection has produced a biosphere with more than 

10 million species and organisms ranging in size by 10 orders of magnitude. Yet although evolution underpins 
all of biology, we do not yet understand how and why the observed diversity and complexity arises. A major 
contribution of in silico Biology is the capacity to explore our understanding of evolution by testing what 
factors are necessary to observe the emergence of complex life forms. Specifically, we are interested in 
understanding how it is possible for complex traits to emerge in an open-ended manner [24], or indeed why 
complexity emerges at all [25]. Particularly important is garnering an understanding of how and why the major 
transitions in evolution, such as the evolution of multicellularity or of sexual reproduction, have arisen [26]. 
Because these cannot be repeated, in silico techniques are particularly valuable. 
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• The evolution of evolvability: Selective pressures exist at different levels, including genetic, individual, 

kinship group, lineage and species group. In silico biology can help us to understand the relationship between 
these levels of selection [27]. Of particular interest is understanding whether the capacity for evolution is itself a 
property that evolves [28-30], and, if so, under what circumstances [17]. 

• Biological Networks: What governs the properties of networks of dynamical elements, such as those that occur 
in biochemical and gene-regulatory networks [31, 32]? How to they evolve [33]? Why are some network 
architectures much more common than would be expected at random [34, 35]? How do we understand the 
robustness and modularity observed in such networks [36]? How does gene-expression produce morphology 
[37]? How can we analyse biological networks [38]? 

• Co-evolution: How do we understand the relationship between hosts and pathogens [39]? How has this 
relationship determined our evolutionary process? How does this affect our expectations about newly emergent 
diseases? 

• Learning and Evolution: How does learning and the ability to learn affect the evolutionary process [40-44]? 
How are collections of relatively simple organisms (such as an ant colony or wasp hive) able to exhibit 
intelligent behaviour far in advance of that of the individuals? Can bacteria undertake associative learning? [45-
47]. 

• The Evolution of Communication and Signalling: How does communication arise [48, 49]? What are the 
necessary conditions for its emergence [50-52]? 

• The Origin of Life: What are the most basic features required for something to be ‘living’ [14]? How did life 
arise [26]? How did nucleotides arise [13]? What was the function of the first replicase ribozyme [53]? 

• Emergence: One theme throughout in silico biology is the important process by which complex behaviour can 
result through the interactions of a large number of relatively simple components. How can we understand 
emergence [54]?  

3. Things as they are, things as they are not 

You see things; and you say ‘Why?’ But I dream things that never were; and I say ’Why not?’ [55] 
 
The question that the Serpent asks Eve in Shaw’s play makes a distinction between ‘Why’ and ‘Why not’ questions. 
But in reality, these questions are often the same. If we wish to understand why things are the way they are, we need 
to look at alternatives and consider the reasons that these alternatives did not occur. Unfortunately, the world has 
only provided us with a limited set of highly related living organisms. In silico biology can provide further 
alternatives, giving us increased understanding regarding the conditions under which such alternatives might have 
arisen, and why the currently observed organisms arose instead.  
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The M3 workshop has, as its primary focus, the rapidly growing area of metagenomics, including the metadata standards and the 
meta-analysis approaches needed to organize, process and interpret metagenomics data.  The PSB Workshop builds on the first M3 
meeting, a Special Interest Group (SIG) meeting at ISMB 2009, organized by the Genomics Standards Consortium. 

1. M3: Metagenomics, Metadata, MetaAnalysis 

1.1. Background 

There are now thousands of genomes and metagenomes available for study (see the Genomes Online Database 
(http://www.genomesonline.org/) [1]. Interest in improved sampling of diverse environments (e.g. ocean, soil, 
sediment, and a range of hosts) combined with advances in the development and application of ultra-high 
throughput sequencing methods will vastly accelerate the pace at which new metagenomes are generated. For 
example, in 2007, the Global Ocean Survey published scientific analyses of 41 metagenomes [2], and as of October 
2008, the submission of user-generated metagenomes to the public MG-RAST annotation server surpassed 1300 [3]. 
We have entered an era of ‘mega-sequencing projects’ that now include funded projects like the Genomic 
Encyclopedia of Bacteria and Archaea (GEBA) project and the Human Microbiome Project, with many more 
equally visionary projects on the horizon.  

While a genome represents the full genetic (DNA) complement of a single organism, metagenomes represent 
the DNA of an entire community of organisms.  Metagenomes are partial samples of complex and largely unknown 
communities that can often only be poorly assembled.  Genome and metagenomes are now also being 
complemented with studies of metatranscriptomes (community transcript profiles) and metaproteomes (community 
protein profiles).  The integrative study of these datasets including those from multi-omic experiments of the same 
biological samples, bring with them the demand for new computational approaches.  These data hold the promise of 
unparalleled insights into fundamental questions across a range of fields including evolution, ecology, 
environmental biology, health and medicine.  Advances stem from improved understandings of the combinations, 
abundances and functions of the organisms in these communities and their genes and pathways.  We are just starting 
to exploit these new technologies to understand the microbial world, their role in climate and biogeochemical 
processes and potential for bioenergy sources, and their implications for human health.  The data sets will transform 
our knowledge of microbial evolution and ecology, since we have only scratched the surface in terms of sampling 
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natural microbial diversity in terms of space and time.  At the same time, the emerging science of metagenomics 

offers insight into eukaryotes by way of the roles of their microbiota, both mutualistic and pathogenic.  The rapid 
pace of genomic and metagenomic sequencing projects [4], which now include studies of microbiomes, will only 
increase as the use of ultra-high-throughput sequencing methods becomes more common place. Therefore, the role 
of standards becomes even more vital to scientific progress and data sharing. It is clear that we need new standards 
to capture additional contextual data as well as tools to support its use in downstream computational analyses. 

 

1.2. The PSB M3 Workshop 

The M3 Workshop at PSB 2010 builds directly on the past GSC workshops and the ISMB M3 SIG. Its focus is 
on comparative studies of (meta)genomes that bring these sequences into "context" (i.e., by geolocation, habitat, 
organism phenotype, etc). For example, a seminal paper, illustrating the power of this approach, has recently been 
published in PNAS [5]. It reports a study aimed at elucidating the relationships between metabolic pathways and 
environmental parameters in microbial communities using the data and metadata from the Global Ocean Survey 
(GOS), an earlier landmark paper in the history of the field of metagenomics [2]. The kick-off of the Human 
Microbiome Project and the resulting data sets will open enormous new possibilities for integration and analysis of 
metagenomic data sets in context. 

The agenda of this M3 workshop has been designed to cover the growing intersection of science and standards. 
The workshop combines talks selected from abstract submissions, and a panel discussion to give a "voice" to the 
community. Building such community-driven consensus, in the form of standards that support and accelerate 
scientific discovery in biology, is of growing importance. This is especially true given the rapid growth of 
experimental data, most notably including both genomic and metagenomic sequences. 

 

1.3. The Genomic Standards Consortium 

The establishment of the Genomic Standards Consortium in late 2005 and its growing membership and 
activities attests to the growing interest in this area and the willingness of a wider range of researchers to become 
involved in this area of work.  The GSC has largely been an activity centered in Europe to date (the UK) with strong 
involvement from the US.  We feel it is essential to encourage the involvement of researchers across Asia, especially 
given the growing investments in genomic technologies in this area of the world. The PSB offers an ideal 
opportunity to engage bioinformaticians from around the world, and notably, to begin discussions with leading 
scientists from Asia.  

The Genomic Standards Consortium (GSC) is organizing the M3 workshops as part of its goal to create richer 
descriptions of our collection of genomes and metagenomes through the development of standards and tools for 
supporting compliance and exchange of contextual information [6]. Established in September 2005, this 
international community includes representatives from the International Nucleotide Sequence Database 
Collaboration (INSDC), major genome sequencing centers, bioinformatics centers and a range of research 
institutions.  

The GSC has been responsible for promulgating the MIGS/MIMS standard (Minimal Information about 
Genomic/Metagenomics Sequences), and, at the latest GSC meeting in September 2009, a new standard MIENS 
(Minimal Information about Environment Sequences). These standards are being incorporated into the INSDC 
(International Nucleotide Sequence Database Collaboration) as part of a new “structured comment field”.  This 
development will be explored in a panel session that will be part of the workshop, involving representatives from 
EBI, Genbank and DDBJ.  The GSC has also launched a new electronic journal SIGS (Standards in Genomic 
Sciences (http://standardsingenomics.org/) in order to provide an open-access publication for the rapid dissemination  
of both genome and metagenome reports compliant with the MIGS/MIMS standards; the first issue (July 2009) 
contains reports on seven sequenced bacterial genomes. 
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2. M3 Workshop Structure 

The workshop goal is to attract experimentalists and computational researchers making "next-generation" use of 
contextual metadata. The workshop is divided into two parts – a set of contributed talks that highlight specific 
research activities, and a panel of leaders in the metagenomics community who will discuss the broad issues related 
to generation of metagenomics data, metadata standards and tools to support the metaanalysis. In addition, the 
workshop includes a poster session to highlight recent advances related to the M3 goals and GSC activities.  

The contributed talks describe comparative metagenomic studies that demonstrate the power provided by data 
curated (e.g., habitat or host) and measured (e.g. geographic location, salinity, temperature, or pH) using appropriate 
metadata standards. Likewise, we have welcomed studies describing new approaches, tools, databases, standards, 
ontologies or substantial new sets of curated metadata that aid in the integration and inter-operability of disparate 
datasets. We have also included discussion of research focused on capture and organization of metadata, for 
example through text-mining and ontology development, that enables new understanding of the interaction of 
organisms in their ecological context.  

 
The talks will cover the three “M”s: 
 
Metagenomics 

· Using 100 years of data to contextualize metagenomics in the Western English Channel. Jack Gilbert, Plymouth 
Marine Laboratory, UK 

· Metagenomics reveals functional shifts in the bovine rumen microbiota composition with propionate intake. 
Michael E. Sparks, Animal and Natural Resources Institute, USDA, Agricultural Research Service, Beltsville, 
USA 
 
Metadata 

· Gemina: Ontology and Metadata Standards Development provide core of Infectious Pathogen Surveillance and 
Geospatial Tool. Lynn Schriml, University of Maryland School of Medicine, Baltimore, USA 
 
MetaAnalysis 

·  Comparative Microbial Genomics of resistance genes in Staphylococcus aureus. Anja Stausgaard, The 
Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 

·  More accurate taxonomic assignment of short reads. Gabriel Valiente, Algorithms, Bioinformatics, Complexity 
and Formal Methods Research Group, Technical University of Catalonia, E-08034 Barcelona, Spain  

The panel will include GSC board members and metagenomic data producers, organizers from the main  
(meta)genomic databases, and tool producers. The central theme for discussion is “unifying access to our 
current collection of genomes and metagenomes.” 
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Advances in concept recognition and natural language parsing have led to the development of various tools that

enable the identification of biomedical entities and relationships between them in text. The aim of the Genotype-

Phenotype-Drug Relationship Extraction from Text workshop (or GPD-Rx workshop) is to examine the current state

of art and discuss the next steps for making the extraction of relationships between biomedical entities integral to

the curation and knowledge management workflow in Pharmacogenomics. The workshop will focus particularly on

the extraction of Genotype-Phenotype, Genotype-Drug, and Phenotype-Drug relationships that are of interest to

Pharmacogenomics. Extracting and structuring such text-mined relationships is a key to support the evaluation

and the validation of multiple hypotheses that emerge from high throughput translational studies spanning multiple

measurement modalities. In order to advance this agenda, it is essential that existing relationship extraction methods

be compared to one another and that a community wide benchmark corpus emerges; against which future methods

can be compared. The workshop aims to bring together researchers working on the automatic or semi-automatic

extraction of relationships between biomedical entities from research literature in order to identify the key groups

interested in creating such a benchmark.

Keywords: NLP; Pharmacogenomics; Entity Recognition; Event Extraction; Genotype-Phenotype-Drug Relation-

ships

1. Introduction

Research in the BioNLP community, such as BioCreative II1 and the BioNLP Shared Task’09,2 have led

to the development of efficient BioNLP methods for entity recognition and event extraction. The aim of

the GPD-Rx workshop is to discuss how results of previous shared tasks can be adapted and improved

in order to efficiently provide a detailed representation of complex pharmacogenomic processes described

in the literature. The extraction of a structured and fine-grained representation is a key to evaluate and

validate hypothesis that emerge from translational studies. The objective of the GPD-Rx workshop is thus

to advance in this direction by identifying key groups and propose corpus, standard vocabularies, knowledge

representation language and evaluation methods that would enable the comparison and the interoperability

of future results.

2. Entity Recognition

Entity recognition or named entity recognition is the task of identifying, in free text, words that mention a

known entity. Most of the efforts aimed at extracting relationships between entities start with this funda-

mental task in order to identify entities to be related.

Entity recognition has been extensively studied in the biomedical domain with varying results. Some of

the proposed methods are generic and can identify any kind of entity that is part of a dictionary provided as

a reference to the system.3,4 Other methods are specialized in the recognition of specific kinds of entities such

as genes/proteins,5 genomic variations,6,7 diseases,8 or drugs.9 Machine learning approaches are commonly

integrated with entity recognition methods to improve their results.10

The first goal of the GPD-Rx workshop is to discuss issues in the recognition of entities relevant to

pharmacogenomics.
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3. Extraction of Relationships between Entities

The second goal of the workshop is to discuss the application, in pharmacogenomics, of methods that extract

relationships between relevant entities (e.g. genomic variation, phenotype, drug).

One simple approach is based on the hypothesis that two entities which are frequently mentioned together

are associated. Entity recognition methods have been applied to search for the co-occurrences of entities

with the goal of discovering associated ones.11 This approach has been applied for the construction of gene

networks12 or the guidance of biomedical curation.13 In such co-occurance driven approaches, associations

have a higher chance to be true when the co-occurrence of entities is observed in a small amount of text (e.g.

a sentence), and a lower chance to be true when observed in larger amounts (e.g. a full section).

The development of natural language parsers have led to a second approach that enables, by providing

the grammatical structure of sentences, the extraction of relationships (or events) mentioned in the text. The

importance of learning protein-protein interactions in biology has motivated many researchers to use parsers

to extract such relations with a high accuracy. The work of Fundel et al.,14 of Rebholz-Schuhmann et al.,15

of Hunter et al.,16 and of Miyao et al.17 illustrate the latest research in extracting biomedical relationships

from text.

Similar approaches have already been developed for the extraction of Genotype-Phenotype-Drug rela-

tionships.18–21 The GPD-Rx workshop aims at identifying issues specific to this task and to using the output

of such efforts. For example, the comparison of extracted relationships, to determine agreement or to point

out a contradiction, is a key to make extracted relationships actionable.

4. Standards

We belive that BioNLP groups focused on relationship extraction tasks would have a mutual interest in using

shared standards to facilitate the comparison and the interoperability of their results. The main ones are:

• the use of unique identifier for entities involved in relationships,

• the use of a common knowledge representation language for the description of relationships,

• evaluation methods for the extraction of relationships,

• shared text corpora and vocabularies of entity names and vocabularies of relationship type,

• set of gold standard relationships.

The workshop aims to stimulate discussion for identifying, sharing and wide-spread use of such standards

when applying text-mining in the realm of pharmacogenomics.
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