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PACIFIC SYMPOSIUM ON BIOCOMPUTING 2011 
 
2011 marks the 16th Pacific Symposium on Biocomputing. The impact of two major biomedical research trends are 
clearly seen in this year’s conference. First, the national push towards “translational research” for moving discovery 
from bench to bedside is manifest in the sessions on integration of biological & clinical data and on personal 
genomics. Second, the revolution in DNA sequencing similarly impacts our sessions on data integration, genome-
wide association studies, microbiomes, personal genomics and many of the others too! Thus, we present a 
conference in which biocomputation is at the forefront of work aimed at bringing the fruits of the genome projects to 
practical applications. Other sessions focus on the emerging fields of synthetic biology and multiscale modeling. It 
is an exciting time for the application of computational and informatics technologies to the key problems facing 
biomedical science.  
 
Indeed, computation has become a recognized component of virtually all major biomedical research efforts, as a 
cadre of scientists dually trained in biology & medicine as well as computer science, statistics and engineering 
approach problems of data analysis, fusion, and the generation of new knowledge. The NIH recently renewed the 
“National Centers for Biomedical Computation” program (http://www.ncbcs.org/). This program grew out of the 
1999 “BISTI Report” (Biomedical Information Science and Technology Initiative) which recommended (1) a 
National Centers program, (2) a program on the principles of information storage, curation, analysis and retrieval, 
(3) the provision of additional resources for investigators creating and apply biomedical computing tools, (4) the 
creation of a scaleable national computational infrastructure. The Centers have a dual role of performing outstanding 
research in methods for biomedical computation, while also disseminating software and data they produce to others 
via training sessions, workshops and collaborative research relationships. A key function of the centers is to provide 
a milieu in which biocomputing professional can develop. The PSB meeting is proud to also contribute to the 
creation of a cadre of skilled professional scientists and engineers, but providing pre-meeting tutorials, travel support 
for students and post-doctoral fellowships, and opportunities for “bottom up” organization of new sessions. 
 
We would like to thank our keynote speakers. Dr. Vijay Pande, Associate Professor of Chemistry will talk about 
recent progress in large scale simulation of biological macromolecules. Our keynote in the area of Ethical, Legal and 
Social Implications of Technology will be Ellen Wright Clayton, the Rosalind E. Franklin Professor of Genetics & 
Health Policy, and Professor of Law and Pediatrics, at Vanderbilt University. Professor Clayton is a leader in law 
and genetics. 
 
PSB provides sessions focusing on emerging areas in biomedical computation. These sessions are often conceived at 
the meeting as people discuss the opportunities for new and exciting sessions. The efforts of a dedicated group of 
leaders has produced an outstanding set of sessions, with associated introductory tutorials. These organizers provide 
the scientific core of PSB, and their sessions are as follows:  
 
Computational Methods Integrating Diverse Biological and Clinical Data for Translational Science 
Gurkan Bebek, Mark Chance, Mehmet Koyuturk, Nathan D. Price 
 
Genome-wide association mapping and rare alleles: from population genomics to personalized medicine 
Francisco M. De La Vega, Carlos D. Bustamante, Suzanne M. Leal 
 
Microbiome studies: Understanding how the dominant form of life affects us 
James Foster, Jason Moore 
 
Multi-scale Modelling of Biosystems: from Molecular to Mesoscale 
Julie Bernauer, Samuel Flores, Xuhui Huang, Seokmin Shin, Ruhong Zhou 
 
Personal Genomics 
Can Alkan, Emidio Capriotti, Fereydoun Hormozdiari, Eleazar Eskin, Maricel G. Kann 
 
Reverse Engineering and Synthesis of Biomolecular Systems 
Gil Alterovitz, Silvio Cavalcanti, May Wang, and Marco F. Ramoni 
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With regards to the Reverse Engineering and Synthesis of Biomolecular Systems session, we were saddened by the 
unexpected death of our friend and colleague Dr. Marco Ramoni. Marco was an internationally known computer 
scientist and Bayesian theorist whose contributions ranged from new understanding of the genetic mechanisms of 
stroke and asthma to developing novel methodologies. He was a senior faculty member of the Children's Hospital 
Informatics Program and an Associate Professor of Pediatrics and Medicine at Harvard Medical School and 
Associate Director of Bioinformatics in Harvard Partners Center for Genetics and Genomics. He will be missed. 
 
We are also pleased to present three workshops, in which investigators with a common interest come together to 
exchange results and new ideas in a format that is more informal than the peer-reviewed sessions. For this year, the 
workshops and their organizers are: 
 
Mining the Pharmacogenomics Literature 
Kevin Bretonnel Cohen, Yael Garten, Udo Hahn, Nigam H. Shah 
 
Identification of Aberrant Pathway and Network Activity from High-Throughput Data 
Michael Ochs, Rachel Karchin, Habtom Ressom, Robert Gentleman 
 
Validation and Modeling of Electron Cryo-microscopy Structures of Biological Nanomachines 
Wah Chiu, Helen Berman, Steven Ludtke, Gerard Kleywegt 
 
Finally, we are happy to welcome a new group for a birds-of-a-feather meeting on “Systems Pharmacogenomics.” 
This session is sponsored by the NIH Pharmacogenomics Research Network Statistical Analysis Resource (P-
STAR), which is lead by Dr. Marylyn Ritchie under NIH HL065962. 
 
Tiffany Murray continues expertly to manage the peer review process and assembly of the proceedings. We thank 
the National Institutes of Health and the International Society for Computational Biology (ISCB) for travel grant 
support. We are particularly grateful to BJ McKay-Morrison at ISCB for her assistance. We also acknowledge the 
many busy researchers who reviewed the submitted manuscripts on a very tight schedule. The partial list following 
this preface does not include many who wished to remain anonymous, and of course we apologize to any who may 
have been left out by mistake.  
 
We look forward to a great meeting once again.  
 
Aloha!          
 
Pacific Symposium on Biocomputing Co-Chairs,  
September 29, 2010 
 
Russ B. Altman 
Departments of Bioengineering, Genetics & Medicine, Stanford University 
 
A. Keith Dunker 
Department of Biochemistry and Molecular Biology, Indiana University School of Medicine 
 
Lawrence Hunter 
Department of Pharmacology, University of Colorado Health Sciences Center 
 
Teri E. Klein 
Department of Genetics, Stanford University 
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Thanks to the reviewers… 
 
Finally, we wish to thank the scores of reviewers. PSB requires that every paper in this volume be reviewed by at 
least three independent referees. Since there is a large volume of submitted papers, paper reviews require a great 
deal of work from many people. We are grateful to all of you listed below and to anyone whose name we may have 
accidentally omitted or who wished to remain anonymous.  
 
Gary Bader 
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1.  Introduction 

Translational research aims to bridge basic life sciences and medicine by incorporating results 
obtained from basic science to advance clinical applications, as well as driving basic science based 
on insights gained from clinical experience [3]. The recent focus on translational science has been 
prompted by the dramatic decline in the output of novel therapies, regardless of increased efforts 
and investments in research and development [4].  Improving the translation process to close the 
gap between input (investments and time) and the output (therapies, biomarkers etc.) through 
research practices and efforts has grabbed attention from scientific agencies and institutions, as 
well as researchers and patient care providers. 

The revolutionary improvements in –omics technologies present a great opportunity to 
improve human health. However, the translation of discoveries made in the laboratory bench to 
bedside is an arduous and lengthy process. The complexity that is introduced by the large scale 
and high dimensionality of high-throughput biological datasets and the specific challenges posed 
by the applications (e.g., complex diseases) are growing barriers adding to the translational 
challenge. Most importantly, models and methods that are needed to integrate and translate this 
research towards clinical applications are hard to come by. 
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The translational bridge requires computational methods to integrate large and disparate 
datasets in innovative ways. These methods would enable translational research through 
integration of various –omics (genomic sequences, gene expression, protein expression and 
modifications, protein-DNA interactions, protein-protein interactions, metabolome, etc.) and 
clinical datasets. This session targets computational approaches aimed for finding molecular 
mechanisms and therapies for disease, computational methods and algorithms for the analysis of 
molecular and clinical measurements, systems biology approaches utilizing diverse –omics 
datasets for understanding diseases, and therapies, and methods relating and representing 
molecular or subcellular phenotypes with relevance to the clinical measurements/characteristics. 

2.  Session Summary 

This session includes an invited talk, six reviewed papers contributed as oral presentations and a 
tutorial. The studies presented in this session focus on the development of computational methods 
for integrating diverse biological and clinical data for translational science. 

2.1.  Accepted Session Papers 

Understanding the relationship between phenotype and genotype of living systems is a 
fundamental problem in biology, and is also key to translational science. Wu et al. focus on the 
problem of predicting phenotype from genotype in RNA viruses (e.g., HIV, influenza, West Nile). 
Their approach is based on representing RNA sequences as clauses in disjunctive normal form 
(DNF) of binary variables and finding a minimal DNF clause that represents all sequences that are 
associated with the phenotype of interest.  They show that this approach outperforms other 
classification algorithms in predicting viral phenotype (e.g., drug resistance in HIV) and can 
provide a compact set of sequence features that are associated with the phenotype. 

Similarly, in an attempt to understand the relationship between genotype and phenotype in 
humans, Yu et al. propose an integrative approach to comprehensively study a complex human 
disease; obstructive sleep apnea (OSA). They build on existing knowledge on the genetic bases of 
OSA and integrate this knowledge with large scale SNP data from affected and control 
populations and gene expression data from various tissues, in the context of human protein-protein 
interactions (PPIs). Seeding a search of the human PPI network with known OSA genes, they 
identify sub-networks that are dysregulated at the mRNA-level in OSA samples. Furthermore, 
they identify sub-networks enriched in proteins whose coding genes have significant p-values in a 
GWAS for OSA. Integration of these sub-networks lead to the discovery of potential association 
of OSA with Phosphoinositide 3-kinase and the STAT family of proteins, which were previously 
unknown. 

Discovery of the genetic bases of complex human disease requires analysis of very high-
dimensional genomic data, which can be understood better in the light haplotypes, however 
haplotype discovery is a rather intensive computational problem. Motivated by these 
considerations, Otten and Dechter develop algorithms for parallelizing haplotype search 
algorithms. Using a novel strategy to predict problem size from the scoring function, they improve 
load balancing to obtain significant speed-up for very large problem sizes. 
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The paper by Turcan et al. is aimed developing algorithms for mining novel functional gene 

sets to address clinical problems when there is limited information available based on the 
underlying physiology. The authors propose to integrate gene expression data sets from multiple 
and diverse sources, and combine them to identify expression biclusters exhibiting consistent 
changes across training data sets, providing candidate gene sets likely to be informative under 
various clinical phenotypes. 

Sorani et al. describe a novel systems biology approach to analyze clinical trials. This is a new 
approach taken to investigate clinical trials, which relates to translational science extensively. The 
authors identify that high-profile trials have distinctive network characteristics. They also analyze 
multi-level models that integrate levels of granularity of trial conditions, interventions, and 
sponsors, and look into dynamic models of network evolution over time. 
Lee and Gonzalez describe a data integration platform for disease gene prioritization. The 
platform developed is tested on Alzheimer's disease. The paper presents an integrated method for 
gene prioritization analysis based on heterogeneous resources, and the authors evaluate the 
performance of the algorithm in comparison to other methods, demonstrating that the proposed 
method performs better than multi-source gene prioritization systems currently available. 
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TOWARDS INTEGRATIVE GENE PRIORITIZATION IN ALZHEIMER’S DISEASE

JANG H. LEE1 AND GRACIELA H. GONZALEZ2

1School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,Tempe, AZ 85287-8809
2Department of Biomedical Informatics, Arizona State University,425 N. 5th Street, Phoenix, AZ 85004

Many methods have been proposed for facilitating the uncovering of genes that underlie the pathology of different
diseases. Some are purely statistical, resulting in a (mostly) undifferentiated set of genes that are differentially ex-

pressed (or co-expressed), while others seek to prioritize the resulting set of genes through comparison against specific

known targets. Most of the recent approaches use either single data or knowledge sources, or combine the independent
predictions from each source. However, given that multiple kinds of heterogeneous sources are potentially relevant for

gene prioritization, each subject to different levels of noise and of varying reliability, each source bearing information
not carried by another, we claim that an ideal prioritization method should provide ways to discern amongst them in

a true integrative fashion that captures the subtleties of each, rather than using a simple combination of sources. Inte-

gration of multiple data for gene prioritization is thus more challenging than its single data type counterpart. What we
propose is a novel, general, and flexible formulation that enables multi-source data integration for gene prioritization

that maximizes the complementary nature of different data and knowledge sources in order to make the most use

of the information content of aggregate data. Protein-protein interactions and Gene Ontology annotations were used
as knowledge sources, together with assay-specific gene expression and genome-wide association data. Leave-one-out

testing was performed using a known set of Alzheimer’s Disease genes to validate our proposed method. We show that

our proposed method performs better than the best multi-source gene prioritization systems currently published.

1. Introduction

Of particular relevance to researchers trying to track the molecular basis of disease is to be able to increase the
selectivity and sensitivity when predicting the potential association of a phenotype or function with specific
genes, an area referred to as “gene prioritization”. Genome sizes of species of interest are typically large, and
gene prioritization is an effective means for data reduction. By ranking genes in terms of their relevance to a
disease, and with an appropriate thresholidng, a select set of genes can be generated by gene prioritization.
Time and cost considerations in disease research usually favor a reduced gene set which enables more focused
research and facilitates more effective use of the limited resources.

Over the years, many methods have been proposed for this purpose, with molecular biologists usually
favoring those that focus on the statistical analysis and consequent ranking of lists of genes from the output
data of high-throughput experiments. Thus, significance analysis of microarrays (SAM), analysis of variance
(ANOVA), empirical Bayes t-statistic, between group analysis (BGA), and other methods are used with the
help of biostatisticians, and are sometimes provided with commonly used commercial and open-source bioin-
formatics tools such as Illumina’s Genome Studio or caBIG’s geWorkbench. Knowledge about the significant
genes is sometimes provided by the tools or by sought out separately by researchers only as a way to annotate
the genes, but is not used to prioritize them. Researchers have to pick and choose using their own intuition
and experience.

Integrating multiple kinds of heterogeneous data and knowledge sources is a challenging problem for which
formulation of a flexible and general approach is sought. A number of approaches employing protein interaction
as a single knowledge source8,19,22 have been published. Other systems, the best of which are Kohler et al’s12

GeneWanderer and Aerts et al’s2 Endeavour, use heterogeneous knowledge and data sources. GeneWanderer
was shown to outperform many existing network-based gene prioritization algorithms.31 It assumes a set of
seed genes known to be disease genes as input and proposes a method where nodes in a protein interaction
network are randomly visited (restarting the walk randomly during the process), ranking candidates with
respect to their relevance to the given seed gene set. Aerts et al proposed Endeavour, a similarity-based
approach that uses heterogeneous data to calculate the similarity between a set of candidate genes and a set
of ‘training’ or seed genes. It was successfully employed in various biological studies. Candidate genes are
ranked independently by using a selection of knowledge sources. An N-dimensional order statistics is used for
combining the multiple rankings. de Bie et al6 used similarity measures and kernels corresponding to each data
source and integrated rankings from multiple sources by weighting kernels. Li et al13 employed GO-derived
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gene similarity networks and a PPI network, applied random walk with restart to each and combined the
multiple rankings by using a discounted rating system.

Albeit intended on a genomic scale, most of the currently available knowledge sources and experimental
platforms have rather low sensitivity. For example, current PPI databases are estimated to capture only 10% of
true interactions.9 Often times data and knowledge sources are orthogonal, with pieces of information absent in
one being provided in another. Thus, distinct sources tend to have a complementary nature such that a holistic
perspective on genes can be gained by appropriately complementing and integrating distinct sources. Existing
approaches for multiple sources take data and knowledge sources separately, whereby their complementarity
can be easily lost. Also, many involve rather high computational cost or assume specific types of data and
limit the applicability to other data types.

Given a known group of genes associated with a specific disease as a “seed”, we hypothesized that the degree
of association of a candidate gene with the seed genes signifies its relevance to the disease. All knowledge about
the genes was represented in a single network, which can be appropriately configured based on types of data,
availability and reliability. Here, we used protein-protein interactions (PPIs), Gene Ontology annotations,
gene expression data and SNP data from a Genome-Wide Association Study for validating our approach.
Application to a large number of diseases of distinct kinds showed uniform performance level and hence no
bias for particular kinds of diseases. We report the results of this general experiment, as well as a more extensive
evaluation using genes related to Alzheimer’s Disease (AD).

2. Material and methods

PPI and Gene Ontology associations were used as knowledge sources in building an integrated gene-gene
association network used for gene prioritization. This is what we called the base scheme (BS) for purposes of
evaluation. Additionally, gene expression and GWAS data were used as empirical data sources and incorporated
in the prioritization by adding a value (level of significance) to each node in the integrated network above. This
is what we called the incorporated scheme (IS). In the following subsections, we outline how the associations
for each component of the network are defined and integrated, and present two experimental setups (the base
scheme and the incorporated scheme) to validate the approach.

2.1. Establishing Gene Ontology associations

The Gene Ontology (GO) consists of a directed graph of terms organized under three main categories: biological
process, cellular component and molecular function. Genes are annotated with those terms that apply to them.
Resnik21 defined similarity between two GO terms t0, t1 under the same category as

sim(t0, t1) = ICms(t0, t1) = max IC(tp) (1)

where tp ∈ parents(t0, t1), and IC(t) is the information content of term t which is defined as IC(t) = −logP (t)
with P (t) being the probability of occurrence of the term across a genome.

Couto et al5 defined similarity between two genes g0, g1 with respective terms ta ∈ {terms(g0)} and
tb ∈ {terms(g1)} as

sim(g0, g1) = max
a,b

sim(ta, tb)IC(ta)IC(tb) (2)

Term similarity is a normalized quantity ranging between 0 and 1. We used GO annotations11 of the human
genome, which included a total of 14,685 genes annotated with biological process terms, with a total term
occurrence count of 60,792 for an average of 4.140 terms per gene. In establishing a gene-gene association
based on GO annotations, we varied the similarity threshold from 0.30 to 0.70 in increments of 0.10 to retain
gene pair similarity only above or equal to the given threshold, obtaining five nested sets of associations.

2.2. Protein-protein interactions

Three protein interaction databases were employed, to match those used by Kohler et al in 12 and allow a fair
comparison: HPRD,20 STRING16 and NCBI yeast protein interactions. HPRD is a manually annotated protein
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interaction data set: the one we used had 2,125 homomeric interactions and 36,631 heteromeric interactions.
The STRING database contains information from four sources (genomic context, high-throughput experiments,
coexpression, and derived from text), including direct (physical) and indirect (functional) associations. We used
version 8.3, which covers 2.6 million proteins from 630 organisms. Each interaction in STRING is assigned a
significance score (non-linear) in the range between 150 and 1000. In addition, known protein interactions in
yeast were downloaded from NCBI.17 Each yeast protein was mapped to a human ortholog using InParanoid.18

Only interactions involving protein pairs that have a 100% match score to human orthologs were retained (a
total of 39,665).

Interacting proteins were each mapped to coding genes and then a set of interacting genes were obtained.
Some common interactions in the databases derive from single experimental evidence and hence there exists a
degree of duplicity among the three databases. The three PPI networks were combined into a single network
by counting edges only once irrespective of their duplicity:

{e′(g1, g2)} = ∪{eNi
(g1, g2)}, 1 ≤ i ≤ N (3)

with e′(g1, g2) being the edge between nodes g1 and g2 in the combined network and N being the total number
of PPI networks. Five distinct sets of associations were obtained by using nested sets of interactions with
different STRING significance score thresholds (300, 400, 500, 600 and 700).

2.3. Gene expression

For this paper, we used microarray expression data sets by Webster et al,23 comprised of control and AD case
samples. Genes showing significantly distinct levels between normal and disease cells were identified by using
differential expression analysis. Wilcoxon rank sum test was applied to expression levels from the two groups
of samples and a P-value of each gene’s differential expression was obtained. The P-value threshold was set to
0.05. The significance of a gene G, S(G), from differential expression was calculated as:

S(G) = −log(P-value) (4)

2.4. Genome-wide association study

SNP genotyping is performed on genomes from normal and disease samples. Certain SNP may show distinct
presence in one group vs the other e.g., allele A constitutes 80% of disease samples at a certain locus while it
constitutes 30% in normal samples. A P-value can be calculated for each SNP and hence for a corresponding
gene if the locus of the SNP is within or close to the gene, which would imply the gene is strongly relevant to
a specific disease. If a SNP is too distant from genes (more than 20kb away upstream or 5kb downstream),
then it was not included in our experiments. Similar to expression data, disease significance P-values were
calculated and assigned to genes by using Eq 4.

2.5. Network representation

To construct the networks used for the base (BS) and incorporated (IS) schemes, the PPI and GO associations
described above were used as edges, with genes mapped to nodes. If more than one knowledge source associated
two genes g1 and g2, then the edge is weighted according to the multiplicity of the number of associating sources.
Thus, if N sources were associating the two genes then weight(e(g1, g2)) = N .

Gene g may be completely missing or may not have a P-value above a threshold in the outcome of
some experimental data, and have P-values above thresholds only in Ne number of effective sources. Given
a significance Si(g) from empirical data source i (1 ≤ i ≤ Ne) for a given disease, gene g’s overall empirical
significance is calculated as

S(g) =
Ne∑
i=1

Si(g) (5)

That is, the sum of all significance values is assigned as a combined significance score for the gene (its aggregate
experimental significance).
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2.6. Base scheme

Given a set of training seed genes {Si}, candidate gene C was scored as follows:

score(C, S) =
∀S∑

e(C, Si) (6)

where e(C, Si) is a non-zero value if an edge exists between C and S and 0 otherwise. Either only the edge
presence between C and S can be recognized for scoring, or its weight from the aggregate network can be
considered, i.e.,

e(C, S)BS1 = 1{e(C, S)} (7a)

e(C, S)BS2 = weight(e(C, S)) (7b)

with 1 being an indicator function corresponding to edge presence. If only the presence of an edge is considered,
then Eq 7a is used together with Eq 6. This will be referred to as base scheme 1 (BS1). If edge weight is
considered, then Eqs 7b and 6 are used which will be referred to as base scheme 2 (BS2). Candidate genes are
ranked according to their scores.

2.7. Empirical data incorporation scheme

The network topology used in the empirical data incorporation scheme (IS) is the same as the one in the base
scheme. Candidate gene C can have an edge to jth seed gene Tj of an overall empirical significance S(Tj).
Then Tj ’s contribution to the score of C is calculated as

e(C, Tj) + kS(Tj) (8)

where k is a scaling factor, the value of which is to be set according to data reliability. If an edge does not
exist between them, then Tj ’s contribution is 0. The contribution from each training gene Tj , 1 ≤ j ≤ |T |, in
the training set to candidate gene C is added up for its combined score:

score(C) = k1S(C) +
|T |∑
j=1

[e(C, Tj) + k2S(Tj)] (9)

where k1 and k2 are scaling factors and |T | the total number of training genes. The ranking of the candidate
genes corresponds to the combined scores of the candidate genes.

2.8. Validation

The disease gene sets from Kohler et al12 were used. Leave one out testing was performed by holding out one
disease gene as a true test gene to be (ideally) recalled from the disease gene set by taking the remainder genes
as a training gene set, and this was repeated for each gene over all disease gene sets. Sensitivity and specificity
values were calculated as defined in (2). Specifically, ranking results were aggregated and the number of true
test genes above a given ranking threshold was counted as true positives. The number of test genes below
the threshold, non-test genes below the threshold and non-test genes above the threshold were respectively
counted as false negatives, true negatives and false positives. As frequently done in literature, a narrowed-down
set of genes (e.g., 100) in closest proximity to the true test gene along its chromosome is given as a candidate
set. We also show the ranking obtained over all genes in the genome.

Current knowledge sources may involve degrees of incompleteness and incorrectness. This would correspond
to false positive and negative edges in networks. Facing this, we randomly perturbed 10% of network edges
by randomly reassigning them in an experiment. Eight such instances of randomly perturbed networks were
generated and the base scheme was applied to each of them.

7



September 21, 2010 0:50 WSPC - Proceedings Trim Size: 11in x 8.5in revis

Table 1. AD gene prioritization

Base Endeavour GeneWanderer Incorp.

Gene Rank Rk100 Rk100 Rank Rk100 Rank Rk100

APOC1 93 2 5 275 7 1 1

APOE 1 1 4 17 4 1 1
APP 382 1 4 264 1 156 1

CLU 7 1 9 102 2 17 1
CR1 437 2 44 1158 3 352 2

GAB2 202 1 31 496 3 452 2

MSRA - 100 24 6511 11 - 100
PICALM 444 1 8 978 3 95 1

PSEN1 1 1 2 14 1 1 1

PSEN2 7 1 4 84 1 25 1
PVRL2 7 1 47 67 4 15 2

RELN 439 1 43 957 5 413 1

TOMM40 1261 10 86 3319 18 34 2

3. Results

Genes implicated in AD were collected from the literature (1, 10, 15, 14, 24, 25) (Table 1). For comparison of
performance, gene prioritization based on random walk with restart (RWR) as described by Kohler et al (12)
was implemented. In RWR, nodes are navigated in a random fashion starting from a gene randomly selected
from a given set of seed genes. Gene ranking in RWR is according to the visit frequency at the conclusion of
iteration following a convergence criteria. In addition, Endeavour2 was downloaded from the authors’ website.
It randomly selects 99 genes other than true test gene to produce a 100 gene candidate set together with
the test gene. Even though the candidate gene sets used for Endeavour are different from the ones used for
base scheme and RWR, we reasoned the set size is sufficiently large from a statistical sense to facilitate sound
comparisons and show the rankings under the column name of Rk100.

The base gene prioritization scheme was applied to the AD gene set. The same set was also used for
Endeavour and GeneWanderer. When gene APOC1 was left out as a true test gene to be recalled and the
other genes were used as a training seed gene set (row 1 in Table 1), there were 92 other genes from the
human genome which ranked more significantly (column Base-Rank in Table 1). When the candidate gene set
was reduced to the 100 genes of closest proximity (Loc100 set), APOC1 ranked 2nd highest (column Base-
Rk100). Endeavour’s ranking of the gene was 5th out of 100 genes and RWR’s ranking was 275th among

Fig. 1. ROC curves of specificity vs. 1-sensitivity (a) Base scheme has a larger AUC than Endeavour and RWR. (b) Close-up of

higher sensitivity range
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Table 3. AUC difference between base scheme 1 and base scheme

2; BS1 - BS2

GO \PPI 300 400 500 600 700

30 -5.603 -12.101 -12.751 -14.561 -14.451

40 -0.265 +5.767 +9.010 +8.708 +4.035
50 +1.815 +5.567 -0.048 +6.935 +7.971

60 +0.986 +1.065 -0.157 +0.390 +0.000

70 +0.532 +0.464 +0.000 +0.165 +0.398

Units in 10−4

entire genome and 7th among Loc100 genes. Each subsequent row can be read in a similar fashion. Thus,
the base gene prioritization scheme ranked the AD set genes more significantly than RWR (signed rank test
P-value=6.836× 10−3.) and Endeavour (P-value= 2.148× 10−2).

In order to assess the applicability of the base scheme (BS1) to other diseases besides AD, we applied it
to disease gene set of Li et al13 (Li10) which was derived from the complete Kohler et al set. It includes 36
diseases and genes implicated therein. The receiver operating characteristic (ROC) curve of the base scheme
BS1 is shown in Fig 1 together with the curves of Endeavour and RWR for the same set. AUC value of the base
scheme was 0.9655 while, for Endeavour and RWR, the AUC values respectively were 0.9287 and 0.9442. The
reasonable AUC value means the base scheme is applicable to other diseases in general as well. Base schemes 1
and 2 were compared over the Li10 set and their AUC values showed a marginal difference possibly suggesting
edge multiplicity does not greatly contribute in distinguishing true test gene from the other candidate genes
(Table 3). Subsequently, we used only base scheme 1 and will refer to it as the base scheme.

Knowledge sources such as PPI or GO may entail some levels of false and missing annotations. In order to
evaluate the influence of such noise on the performance of the base scheme, 10% of the edges in the combined
network were randomly rewired. Eight such instances of the perturbed networks were generated, and then the
base scheme was applied. In all cases, AUC values decreased by small degrees, but consistently from that of
the un-perturbed network; average AUC value was 0.96070 and standard deviation 0.00223 (Fig. 2 and Table
4). Only a slight degradation in the AUC of the perturbed network means our base scheme is robust with
respect to a noticeable amount of possible mis-curations in the knowledge sources and corresponding noise in
the network.

Fig. 2. ROC’s from perturbed and unperturbed networks
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Table 4. AUC values from perturbed networks

Instance 1 2 3 4 5 6 7 8 Average St.dev.

AUC 0.96119 0.95875 0.96216 0.95869 0.96533 0.95993 0.96101 0.95908 0.96070 0.00223

Table 5. AUC values from application to different disease cat-

egories

Type Cancer Monogenic Polygenic Average

BS1 0.95727 0.96677 0.98025 0.96810

RWR 0.95414 0.90535 0.94978 0.95890
Endeavour 0.87947 0.94471 0.88191 0.90203

Diseases were categorized as belonging to one of three types by Kohler et al: cancer, monogenic and
polygenic. Cancer and polygenic categories each included 12 diseases, and monogenic 86 diseases. We chose
the 6 largest disease gene sets from each category to form categories balanced in count and applied the base
scheme, Endeavour and RWR to each. AUC values were similar across disease categories (Table 5), thus
suggesting that the base scheme is not biased to a particular category of diseases. Higher AUC values were
produced by BS throughout the different categories.

The contribution of individual knowledge sources was assessed by using either PPI or GO associations
alone and by comparing the resulting AUC values with the ones obtained with aggregate sources. Specifically,
5 sets of GO associations were produced with distinct thresholds of 0.30 to 0.70 in increments of 0.10, and
also 5 sets of PPIs with thresholds 300 to 700 in increments of 100. A total of 35 networks resulted; 5
with only GO associations as edges, 5 PPI only, and aggregate networks in 25 different combinations of
GO and PPI thresholds. The Base Scheme was applied to the Li10 set for each of the networks. The AUC
value monotonically increased as GO or PPI thresholds were lowered (resulting in more network edges) (Figs
3(a), 3(b)). The highest AUC value was produced with the aggregate network of least stringent threshold
combination (PPI 300 and GO 0.30).

The PPI network alone shows reasonable AUC values under varying thresholds (bottom-most curve of
Fig. 3(a)). Aggregation with GO network consistently improves the AUC values. However, GO networks alone
show rather low AUC values especially at high thresholds, but aggregation with PPIs, even at the highest
threshold, drastically improves AUC values. Clearly, aggregation of networks from distinct knowledge sources
is an effective way of comprehensively utilizing their respective information content, and our base scheme

Fig. 3. AUC values from different knowledge source combinations (a) AUC vs. PPI threshold (b) AUC vs. GO threshold
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indeed utilizes the higher information content.

3.1. Incorporation of empirical data

Alzheimer’s Disease GWAS and differential expression data were incorporated in the gene prioritization process
(Table 1 column Incorp.) as explained in the incorporated scheme. Improvement over the base scheme was
rather marginal (P-value=0.1934). This may be attributable to a rather low reproducibility of significant genes
between experiments, especially expression data.7,27,28 A number of approaches have been suggested for an
appropriate interpretation and extraction of useful information from experimental data including shifting of
focus towards groups of genes rather than on individual genes.29 A new formulation of the incorporated scheme
is left as a future work, which considers the difference in nature of experimental data.

4. Discussion and conclusion

Two different knowledge sources were each represented in a network and unified in a model that allows for
additional sources to be added in a similar fashion. Each independent knowledge source is likely incomplete
and missing many associations between genes.9 The proposed knowledge integration method (base scheme)
complements incomplete knowledge sources to produce a more comprehensive view of genes. For example,
among well known AD genes, APOE has edges to genes APP, CLU, PSEN1 and PSEN2 in PPI network and
lacks an edge to PICALM (Fig 4). The GO network does not have the APOE-APP edge but contains the
APOE-PICALM edge. We compared our proposed method to two of the best multi-source gene prioritization
algorithms. Endeavour utilizes knowledge sources separately and tended to produce the lowest AUC values
among the compared algorithms. The method proposed here effectively integrates individual knowledge sources
to overcome the incompleteness of each.

Fig. 4. Network aggregation

The base scheme alone showed better performance than Endeavour and RWR. Rankings based on combined
networks were consistently better than rankings based on individual networks. There is a degree of overlap
between the two knowledge sources (PPI and GO), since the same information from literature is frequently
used to annotate genes. Still there is information content in one source which is not captured in the other.
The edge formation by similarity criterion in the GO network can associate genes that are highly related in
pathways or from biological perspectives which do not directly interact through their protein products and
hence is missed in a PPI network. The described schemes rely on the association between genes to infer disease
genes from known genes. The effectiveness of this approach was shown through a series of experiments. The
information from knowledge sources and experimental data vary in reliability, degree of curation and level of
acceptance. For example, many protein interactions have been verified over time and are well accepted, while
high throughput interaction data tends to involve a high rate of false positives.

Our Gene ontology annotation of genes reflects a relatively high level of verification and curation. On the
other hand, experimental data is subject to a high level of noise and variance and has not been extensively
and thoroughly verified. Hence a network was not directly formed from experimental evidence at this stage,
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and only node significance was adjusted in accordance with the experimental significance. Our schemes are
robust against false positives and missing knowledge as shown in the perturbation experiment. Future work
will be directed at incorporating empirical data from experiments in a way that is more consistent with the
way knowledge sources are used. While particular knowledge sources and experimental data were used for
illustration, the described schemes are sufficiently general to be used with other data types as well. After the
preparation of our manuscript, a gene prioritization method30 was noted for its use of diverse data with a
Bayesian approach. While a readily accessible version of their algorithm was unavailable, it will be interesting
to perform a comparative study involving it.
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The precise molecular etiology of obstructive sleep apnea (OSA) is unknown; however recent research 

indicates that several interconnected aberrant pathways and molecular abnormalities are contributors to 

OSA. Identifying the genes and pathways associated with OSA can help to expand our understanding of the 

risk factors for the disease as well as provide new avenues for potential treatment. Towards these goals, we 

have integrated relevant high dimensional data from various sources, such as genome-wide expression data 

(microarray), protein-protein interaction (PPI) data and results from genome-wide association studies 

(GWAS) in order to define sub-network elements that connect some of the known pathways related to the 

disease as well as define novel regulatory modules related to OSA. Two distinct approaches are applied to 

identify sub-networks significantly associated with OSA. In the first case we used a biased approach based 

on sixty genes/proteins with known associations with sleep disorders and/or metabolic disease to seed a 

search using commercial software to discover networks associated with disease followed by information 

theoretic (mutual information) scoring of the sub-networks. In the second case we used an unbiased 
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approach and generated an interactome constructed from publicly available gene expression profiles and 

PPI databases, followed by scoring of the network with p-values from GWAS data derived from OSA 

patients to uncover sub-networks significant for the disease phenotype. A comparison of the approaches 

reveals a number of proteins that have been previously known to be associated with OSA or sleep. In 

addition, our results indicate a novel association of Phosphoinositide 3-kinase, the STAT family of proteins 

and its related pathways with OSA. 

1.  Introduction 

Although its precise functions are not entirely known, sleep is important for numerous 

physiological and cognitive functions. Sleep disorders can have a range of consequences, from 

minor to severe, such as untimely drowsiness, motor vehicle collisions, and workplace accidents 

as well as increase risk of hypertension, diabetes and mortality. Of the more than 70 known sleep 

disorders, obstructive sleep apnea (OSA) is one of the most common
1,2

. OSA is a complex 

disorder caused by a repetitive collapse of the upper airway during sleep, disrupting breathing 

and sleep. Repetitive episodes of obstruction cause intermittent drops in blood oxygen and 

increases in carbon dioxide levels, which can lead to frequent arousals from sleep. OSA is a 

major cause of chronic sleep deprivation and excessive daytime sleepiness. It is estimated that up 

to 5% of adults in Western countries are likely to
 
have OSA syndrome

3
. Treatments for OSA 

include behavioral therapies (such as changing sleeping positions), use of mechanical devices, 

and surgery to increase the patency of the airway. However, after decades of research the 

molecular mechanisms underlying OSA remain unclear.  

OSA is unlikely to be a simple condition associated with a few genes or proteins; instead, it 

is likely a manifestation of multiple interconnected aberrant pathways and numerous molecular 

abnormalities
4
. In addition, it is a risk factor for many other diseases and many other diseases 

increase the risk of OSA. For example, OSA is associated with inflammatory states
5-8

 and 

oxidative stress
9,10

. While obesity is one of the strongest risk factors for OSA
11

, other co-

morbidities include insulin resistance, hypertension, and cardiovascular disease
12-14

. 

Multiple studies indicate an important genetic basis for OSA, and genetic factors alone can 

explain approximately 30-40% of the variance of the apnea hypopnea index (AHI), a quantitative 

measure of OSA, defined by the number of apneas and hypopneas per hour of sleep
15,16

. OSA is 

also mediated by environmental factors, most obviously through those that link it to related traits 

such as obesity
17

, but which may include influences associated with irritant exposures, alcohol 

use and sleep deprivation. Efforts to identify genetic variants related to OSA, include family as 

well as genome-wide, case-control studies and are an important attempt to provide diagnostic 

and/or prognostic information related to the disease. In linkage analysis of families with an 

affected OSA member, Larkin et al. have identified several chromosomal regions linked to the 

AHI
18

.  Some, but not all, of the genetic pathways were believed to be obesity dependent
18

. In 

another study, based on a pre-selected gene set and SNP data, the same group found five genes 

significantly associated with OSA and the AHI
19

. Many additional genes in these and related 

genome-scale studies are likely relevant to mediating disease, but due to the multiple hypotheses 

testing problem when thousands of genes are analyzed, only a few genes with very significant p-

values are allowed to pass the relevant filters for significance. The problem of identifying as 

many biologically significant genes as possible in such an analysis remains very important.  
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Network modeling of protein-protein interactions provides a relatively new context to study 

disease and identify disease-related genes. The effectiveness of network-based approaches to the 

identification of multiple disease markers has been demonstrated in the context of various 

diseases, such as colon cancer
20

. The aim of this study is to uncover protein-protein sub-networks 

associated with OSA by integrating data from multiple high-dimensional studies, both to 

demonstrate the power of systems biology data integration in developing novel mediators of 

OSA and to use the novel data available in the field to explore and validate new computational 

approaches. To achieve these goals, we applied two approaches, 1: candidate gene approach 

integrated with adipose tissue microarray data; 2: genome-wide approach integrated with adipose 

microarray data. The first approach is based on the method proposed by Nibbe et al.
20

: we use 56 

seed proteins to drive a search of a protein-protein interaction (PPI) to discover rank-ordered 

sub-networks associated with OSA. In this method, proteins known or suspected to be associated 

with OSA and related co-morbidities are used to seed a search of a well-annotated, human PPI 

for candidate sub-networks, which are subsequently scored with gene expression data to derive 

candidate sub-networks underlying the disease phenotype. We demonstrate the utility of this 

approach, using a biased seed set, to provide interesting candidate sub-networks for further 

exploration in the etiology of OSA. 

In a second unbiased approach, we mapped p-values obtained from a case-control GWAS 

study based on OSA phenotypes to nodes of an adipose tissue-specific interactome constructed 

from gene expression data
21-23

. Subsequently, we used Cytoscape based tools to identify sub-

networks significantly associated with OSA. A novel feature of the study is that nodes that were 

highly significant along with nodes that were not the most significant in the GWAS analysis both 

provided important contributions to discovering the sub-networks that are of potential biological 

significance for the phenotype. This indicates an approach for extending the value of GWAS 

data to other complex phenotypes. By incorporating data from both approaches, sub-networks 

were identified that included targets known to be associated with OSA or sleep in general and 

also indicated that PI3K, STAT family, and related pathways may have important functional 

roles in OSA. 

2. Material and Methods 

2.1 Network construction 

Two methods to construct PPI networks were used in this study. First, 56 seed genes/proteins 

were selected based on knowledge of the underlying biology and prior genetics studies of OSA
19

. 

The list of genes is provided as supplementary material (Supplementary Table 1), and can be 

reached at website (http://proteomics.case.edu/news_events.aspx?newsid=38).  Most of the genes 

are known to be in one or more pathways representing intermediate phenotypes for OSA: 

craniofacial morphology, obesity, inflammation, and ventilatory control pathways, or across 

multiple pathways, through biologic pleiotropy. A traditional association study has been 

conducted on this set of proteins and has been recently published
19

. Ingenuity Pathway Analysis 

(IPA) software (Ingenuity® Systems, www.ingenuity.com) was used to construct networks by 

the following steps
24

:a) seed proteins are combined into networks that maximize their specific 

connectivity, which is their interconnectedness with each other relative to all molecules they are 
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connected to in the Ingenuity Knowledge Base; b) additional proteins from the Ingenuity 

Knowledge Base are added to specifically connect two or more smaller networks by merging 

them into a larger one. The networks were limited to 70 nodes each to permit ease of 

computational scoring of sub-networks using mutual information (see below). The overall 

network score is based on the number of seed proteins they contain. The two top scoring 

networks were used in the analysis (See Results and Discussion). Note that IPA will cluster a 

protein complex or protein family into a single node if a number of components or family 

members are present in the network. For scoring purposes (see below), the expression value of 

the family or complex is represented by the maximum expression value among its components. 

Second, an interactome specific to adipose tissue, which has been previously constructed by 

combining gene expression data from adipose tissues and PPI information from public databases 

and published papers
22,23,25,26

, was optimized following curation with recent next-generation 

sequencing data
23

. Briefly, mRNA expression levels from Su et al
25,26

 and Wang et al
23

, which 

are used to determine the significance of a gene to the network, were estimated by combining 

results from microarray (chip based) experiments along with next generation sequencing results 

from selected references
23,25,26

. Protein nodes with mRNA levels below a defined threshold were 

considered as absent (the threshold for data from next generation sequencing is 20 reads; in the 

case of data from microarray experiments, the threshold for normalized expression level is 

200
25,26

). Interactions between two proteins supported by at least three databases and two 

experiments were added to the interactome
22

. The adipose specific interactome in SIF format is 

provided as supplementary data (Supplementary Table 2, http://proteomics.case.edu/ 

news_events.aspx?newsid=38). Network-Analyzer is used to compute the network properties, 

such as the average shortest path length and the node degree distribution
27

. 

2.2 Gene expression data processing 

Experimentally derived mRNA expression data for subcutaneous and visceral fat tissues were 

measured by cDNA microarray using the Affymetrix Human Gene 1.0 ST Array on intra-

operative samples from 10 OSA patients and 8 controls undergoing elective ventral hernia repair 

surgery. Adipose tissue was chosen for expression studies since it is accessible and because of 

the central role of obesity in the pathogenesis of OSA.  The information about these samples, 

such as sample IDs, AHIs, are provided as supplementary data (Supplementary Table 3, 

http://proteomics.case.edu/news_events.aspx?newsid=38). Expression values were generated 

using the aroma package from bioconductor
28

. Robust multichip average (RMA) and quantile 

normalization methods were used for background correction and normalization. In an initial 

analysis, two subcutaneous and three visceral samples (i.e., five out of 36 samples) had much 

larger variances than other samples (GEGF ID 14, 15, 16, 21, 22, all of them are control samples, 

see Supplementary Table 3, http://proteomics.case.edu/news_events. aspx?newsid=38), these 

were treated as outliers, and removed.  

2.3 Subnetwork scoring and detecting using mutual information (MI) 

Once a network enriched in seed proteins is constructed, we identify dysregulated sub-networks 

within this network using mRNA expression data. The aim of this procedure is to find sets of 
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genes that exhibit coordinate differential expression, in that they can discriminate case and 

control samples when their expression profiles are considered together. For this purpose, we use 

an information-theoretic measure of coordinate dysregulation that was developed by Chuang et 

al.
29

 and was previously used to detect dysregulated subnetworks in breast cancer metastasis
29

 

and late stage colorectal cancer
20

.  This measure of sub-network dysregulation is powerful in that 

it provides a multivariate assessment of the coordination between multiple genes in their 

differential expression.  

Namely, for a given set of proteins S={g1,  g2, …, gk}, let ei denote the mRNA expression 

level of gi ϵ S. Then the subnetwork activity of S is defined as 𝑒𝑆 =  𝑒𝑖/ 𝑘
𝑘
𝑖=1 , that is the 

aggregate mRNA-level expression of the proteins in the sub-network. Subsequently, mutual 

information is used to measure the dependence of two discrete random variables: in this case the 

health status vs. subnetwork activity of S. Denoting health status vector as c (i.e., c(j) denotes the 

health status of the j
th

 sample) and quantized subnetwork activity of S as 𝑒 𝑆, (i.e.,  𝑒 𝑆(𝑗) denotes 

the aggregate expression of the gene products in S in the j
th

 sample), the dysregulation of S is 

defined as I(c,𝑒 𝑆)=H(c)-H(𝑐|𝑒 𝑆).  Here, H(c) denotes the Shannon entropy of random variable c 

(that is the uncertainty on the health status of a sample) and H(𝑐|𝑒 𝑆) denotes the entropy of 

random variable c after the observation of random variable 𝑒 𝑆 (that is the uncertainty on the 

health status of a sample given the subnetwork activity of S in that sample). Consequently, the 

mutual information (MI) I(c,𝑒 𝑆) is a measure of the expression levels of all genes in the 

subnetwork in discriminating OSA patients from control. To this end, a high MI score 

for a sub-network is an indicator of the coordinate mRNA-level dysregulation of the proteins in 

the subnetwork, i.e., although the gene coding for each protein in the sub-network may not be 

significantly differential expressed in OSA, the total mRNA-level expression of these proteins 

exhibits significant difference between OSA patients and control. This information theoretic 

formulation of coordinate dysregulation has been shown to be effective in identification of 

subnetwork markers that were powerful in prediction of breast and colon cancer metastasis 
29, 51

. 

While Chuang et al. originally used a greedy algorithm to identify subnetworks with high MI 
29

, we exhaustively searched for subnetworks of the IPA network to identify sets of genes with 

high MI. This is because the network obtained from IPA analysis is already filtered to obtain a 

concise network of proteins that are functionally associated with proteins that are already known 

to play a role in sleep apnea. Consequently, an exhaustive search for reasonably sized 

subnetworks (we search for subnetworks composed of up to 6 proteins in this study) is feasible 

on this network, which is guaranteed to find all subnetworks with a maximum MI, as opposed to 

a greedy algorithm
20

.  

2.4 Analyzing adipocyte interactome using SNP association scores from GWAS 

The Candidate Gene Association Resource (CARe) project initiated by the National Heart, Lung, 

and Blood Institute, conducted analyses of genetic variation in cardiovascular, pulmonary, 

hematological, and sleep-related traits in nine community-based cohorts
21

. Polysomnography 

data, providing objective measurements of OSA, were only available for a subset of these 

cohorts, and of these, a genome-wide assay (Affymetrix 6.0) was only performed in the African 

American participants (n=647)  in the Cleveland Family Study, which provided p-values for the 

associations between 867,496 SNPs with OSA (defined as an AHI > 15 for identifying cases).  
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We then map these p-values to proteins/nodes in the adipose tissue-specific interactome map 

as follows. For each protein gi in the network, the most significant p-value that is associated with 

a SNP located in the coding region of gi is designated as the p-value of the association of gi with 

OSA. In other words, letting p(s) denote the p-value of the association of SNP s with OSA, we 

define 𝑝𝑖 = min𝑠∈𝑅𝑖 𝑝(𝑠) where Ri denotes the set of SNPs that reside within the coding region 

of gi.
30,31

. Subsequently, we apply a Cytoscape tool, jactivemodule, to extract sub-networks of the 

adipose tissue-specific interactome map that are enriched in proteins with high total significance 

of association with OSA
31

.  

jactivemodule is a subnetwork search algorithm that was originally developed  to identify 

active subnetworks in a network of interactions, where an active subnetwork refers to a 

connected subgraph of the interactome that has high total significance of differential mRNA-

level expression with respect to a particular perturbation
32

. It takes as input p-values associated 

with each protein in the network, converts these p-values to z-scores (so that a higher z-score 

indicates more significant differential expression), and greedily identifies subnetworks with high 

aggregate z-score. More precisely, the score of a subnetwork S={g1, g2, …, gk} is defined as  

𝐴(𝑆) =  𝑧𝑖/ 𝑘
𝑘
𝑖=1 , where zi denotes the z-score corresponding to p-value pi.  

Although this method was originally developed to identify differentially expressed 

subnetworks, it can as well be used to identify disease-associated subnetworks since the p-values 

of differential expression can be replaced by p-values of association with the disease. Motivated 

by this insight, we use this algorithm to identify subnetworks that are implicated in OSA by 

GWAS. Observe also that, a high-scoring sub-network is not necessarily one that is enriched in 

proteins with very significant p-values, but it can also be comprised of many proteins with 

moderately significant p-values. Consequently, this method has the potential of uncovering 

groups of proteins that exhibit seemingly insignificant association with OSA when considered 

individually, but exhibit strong association when considered together. Since such subnetworks 

are connected by a network of interactions by the construction of the algorithm, they are likely to 

be functionally associated and therefore might be underlying a potential genetic interaction that 

underlies the manifestation of  the disease. The details of procedure can be found at the 

documentation of cytoscape (www.cytoscape.org) and in the literature
33

.  

Finally, MCODE and BiNGO were applied to analyze the sub-networks detected, e.g., 

detecting the functional modules and identifying the enrichment of GO category
34,35

. 

3. Results and Discussion 

3.1 Generating and analyzing networks from seed genes/proteins 

We used IPA to generate networks using the 56 seed proteins related to sleep disorders. The top 

two scoring networks were used for further analysis. Among 70 proteins in each network, 

network 1 (Left figure in Figure 1) contains 32 seed proteins. The enriched functions for this 

network as identified by IPA include neurological disease, organismal injury and abnormalities, 

and genetic disorders. Network 2 (Right figure of Fig. 1) includes 16 seeds, and the associated 

functions are genetic disorder, neurological disease, and respiratory disease.  

A quantitative method to detect and score sub-networks within the networks was applied to 

identify sub-networks that are highly discriminative for the OSA phenotype based on 

transcriptional dysregulation using mRNA expression data from subcutaneous and visceral fat 
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tissues
20

. To limit the computational overhead of the calculation while using exhaustive search, 

we constrained the search where sub-networks were limited to six nodes. This analysis of 

network 1 provided 108 sub-networks of 6 nodes using expression data from subcutaneous fat 

tissue, and 97 sub-networks of 6 nodes from visceral tissue that had the maximum possible 

values of MI. In case of network 2, 9 sub-networks are detected for subcutaneous tissue, and 8 

for visceral tissue. Further analyses focus on these sub-networks. 

 

       
Network 1                                                                                       Network 2 

Fig. 1 Networks generated using IPA with highest score (proteins name in blue indicates seed proteins), 

subnetworks with 6 nodes are identified by MI scores for subcutaneous and visceral fat tissues. Larger and high 

resolution picture can be found at http://proteomics.case.edu/news_events. aspx?newsid=38 

 

In order to analyze the sub-networks, we calculated the frequency of occurrence of proteins in 

these sub-networks. We assume that the proteins that appear most frequently will likely be 

significant in terms of defining differences between the OSA phenotype and control. To reduce 

the incidence of false positives, we focused on the proteins that are in the top 6 in frequency for 

both tissues, which are listed in Table 1. 

Table 1a Protein detected in subnetworks from network 1(Figure 1) and its frequency in the exhaustive search 

Protein 

(subcutaneous fat) 

Frequency Probability in 

detected subnetwork* 

Protein 

(visceral fat) 

Frequency Probability in 

detected subnetwork* 

PDGF BB 55 50.9% ERK 53 54.6% 

EDN1 43 39.8% EDN1 34 35.0% 

IL1 43 39.8% STAT 31 31.9% 

PI3K 38 35.1% PI3K 26 26.8% 

RET 27 25.0% LEP 26 26.8% 

ADCY 25 23.1% LEPR 24 24.7% 

Table 1b Protein detected in subnetworks from network 2 (Figure 1) and its frequency in the exhaustive search 

Protein 

(subcutaneous fat) 

Frequency Probability in 

detected subnetwork* 

Protein 

(visceral fat) 

Frequency Probability in 

detected subnetwork* 

P38 MAPK 5 55.6% BDNF 4 50.0% 

RGS4 4 44.4% P38 MAPK 4 50.0% 

FSH 4 44.4% NOS3 3 37.5% 

BDNF 4 44.4% FSH 3 37.5% 

IL1 3 33.3% Nos 3 37.5% 

ALP 3 33.3% IgG 3 37.5% 

    *  Calculated by Frequency/(total number of sub-networks with maximum MI) 
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Notably, 14 out of 24 proteins in table 1 are not seed proteins, and potentially indicate novel 

findings discovered by our approach. A number of proteins listed in table 1 are associated with 

OSA or other sleep phenotypes based on previous studies. For example, Endothelin 1 (EDN1), a 

potent vasoconstrictor implicated in hypertension, is both a seed protein and is ranked as second 

most frequent node for both tissues in the network 1 analysis (Table 1). Studies using knockout 

mice show that EDN1 is associated with respiratory distress
36

, and more recently, association 

studies suggests that a missense coding SNP in EDN1 is linked with OSA in a European 

American sample
19

. The phosphorylation of ERK (Extracellular Signal-Regulated Kinase), the 

most frequently identified protein in visceral fat from network 1, is correlated with sleep patterns 

in flies
37

. PDGF BB (subunit of platelet-derived growth factor) the most frequently identified 

protein in subcutaneous fat from network 1, is a growth factor that regulates cell growth and 

division. There is evidence for the role of PDGF BB in disordered breathing from the responses 

of rats to hypoxia
38-40

. Follicle-stimulating hormone (FSH), seen in both fat analyses of network 

2, is a hormone found in humans and other animals. Recent studies show that the concentration 

of FSH has a significant correlation with the obstructive apnea index in cerebrospinal fluid.
41

 

Aside from many proteins that are directly related to OSA or sleep, the sub-networks also 

contain proteins that are known to be involved in processes related to sleep, but have not been 

reported to have specific associations with OSA. P38 MAPK (a frequently observed sub-network 

member from the analysis of network 2) is a member of the mitogen-activated protein kinases 

(MAPK) that play crucial roles in signaling the inflammatory response and are involved in 

pathways that respond to oxidative stress
42,43

. As indicated above, both processes are known to 

be related to OSA
4
. Another protein, Phosphatidylinositol 3-kinases (PI3K) is ranked in the top 

four in both tissues (Table 1, network 1). PI3Ks are a group of lipid kinases that catalyze the 

phosphorylation of phosphatidylinositols and phosphoinositides. They are composed of one 85 

kDa regulatory subunit and one 110 kDa catalytic subunit. PIK3R genes (such as PIK3R1, 

PIK3R2, PIK3R3, PIK3R5, etc), encode the p85 regulatory subunit, while PIK3C genes (such as 

PIK3C3, PIK3CA, PIK3CB, PIK3CD, etc), code for the p110 catalytic subunit. It has been 

reported that PI3K is associated with fatty acid-induced insulin resistance
44

, and although OSA 

and insulin resistance may be causally related, the exact mechanism linking them has not been 

fully elucidated 
4
. Another top gene, STAT, encodes a family of transcription factors. In response 

to cytokines and growth factors, STAT family members are phosphorylated by the receptor 

associated kinases, and then translocated to the cell nucleus where they act as transcription 

activators. In a recent report, STAT4 was found to be involved in metabolic processes, especially 

in insulin resistance and inflammation in adipose tissue.
45

 

3.2 Analyzing interactome in adipose 

An interactome relevant to adipose tissue was generated from a combination of public interaction 

databases and gene expression profiles and contains 2909 proteins and 8323 interactions 

(Supplementary Table 2). Analyses of the topological parameters of the network show that it 

possesses typical properties of realistic networks,
46,47

 such as small-world properties (the average 

shortest path length is 4.5). The node degree distribution fits a power law distribution. 

We searched this interactome for OSA related sub-networks by mapping p-values from the 

GWAS study to proteins of the interactome 
21

. Then, cytoscape and its plugin jactivemodule are 

applied to detect sub-networks that are significant. The jactivemodule combines the network 

structure and associated p-value of each protein to extract potential meaningful sub-networks. A 

subnetwork with 203 proteins and 324 interactions is identified with a significant score (7.09, 
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Figure 2, subnetworks with score > 3.0 are considered as significant
32

). Similar to the whole 

interactome, this sub-network shows some typical properties, such as small-world and power-law 

distribution of node degree. Note that many of the nodes have modest p-values (low z-scores), 

and would not be seen as significant in a conventional GWAS analysis. For example, the p-value 

of hepatocyte growth factor-regulated tyrosine kinase substrate (HGS) is 0.62, but its interacting 

partners (neurofibromin 2 (NF2), signal transducing adaptor molecule (STAM and, STAM2)) 

have p-value less than 0.006, thus, it is included in the subnetwork. Other similar examples are 

minichromosome maintenance complex component 7 (MCM7, p-value: 0.97) and SHC (Src 

homology 2 domain containing) transforming protein 1 (SHC1, p-value: 0.35). 

Another cytoscape plugin MCODE was applied to explore the protein complexes or other 

modules present in the sub-network identified by jactivemodule. MCODE detects densely 

connected regions in a network that may represent functional modules. It is based on vertex 

weighting by local neighborhood density and outward traversal from a locally dense seed protein 

to isolate the dense regions. The top two clusters identified by MCODE are listed in Figure 3. 

The cluster with best score has ten proteins that are densely connected. Nine out of ten 

components are proteasome subunits. The proteasome is a large, multimeric protein complex 

with regulatory and catalytic functions. It is responsible for degrading damaged, misfolded, 

nonfunctional and potentially toxic proteins. Notably, it has been reported that the proteasome 

pathway and proteasomal activity are associated with OSA and hypoxia, a central feature of 

OSA 
48,49

. 

 

Figure 2 Network identified by jactivemodule using p-values from GWAS study, color represents the p-values and 

nodes with grey color indicate that the p-values are missing from GWAS. High resolution picture with the node 

lable can be found at http://proteomics.case.edu/news_events. aspx?newsid=38 
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To determine which Gene Ontology (GO) functional categories are statistically 

overrepresented in the sub-network, we further applied the BiNGO program to the sub-network 

of Figure 2. The detected functions include axon extension, spliceosome assembly, protein 

catabolic process, insulin receptor signaling pathway, and negative regulation of tyrosine 

phosphorylation of STAT3 proteins. Recent studies suggest that STAT3 tyrosine 

phosphorylation is critical for interleukin protein production in the inflammatory response 
45

. 

Also, STAT family members are implicated in several processes relevant to tumor growth, 

providing an additional link aside from PI3K between OSA and cancer. 

As there is an association between OSA and diabetes
50

, the functional enrichment for the 

insulin receptor-signaling pathway deserves closer investigation. Three proteins in the sub-

network are responsible for the enrichment of this function: PIK3R1, IRS2, and IGF1R. PIK3R1 

(phosphoinositide-3-kinase, regulatory subunit 1) phosphorylates the inositol ring of 

phosphatidylinositol at the 3-prime position and plays an important role in the metabolic actions 

of insulin; IRS2 (insulin receptor substrate 2) mediates effects of insulin by acting as a molecular 

adaptor between diverse receptor tyrosine kinases and downstream effectors; IGF1R (insulin-like 

growth factor 1 receptor) binds insulin-like growth factor with a high affinity and modulates 

insulin’s actions.. Notably, these three proteins plus YWHAG (tyrosine 3-

monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide) densely 

connect, forming a cluster in the subnetwork that is also detected by MCODE (Figure 3).  

 
Figure 3 Densely connected subnetworks identified using MCODE, those represent 

potentially functional module or protein complex 

3.3 Comparison and limitation of approaches 

In this study, we took two systems biology approaches to detect subnetworks which are likely 

associated with OSA. Because of the nature of two approaches (the first one is biased and based 

on prior knowledge of OSA; the second one is unbiased), it is hard to compare them, and it is not 

surprising that the results are different. These two approaches use SNP data from GWAS and 

gene expression data from microarray experiments respectively, and treat them independently. 

Also the data are from two different sources (SNP data derived from CARe project
21

, and gene 

expression data from other sources (Patel, S, et al, unpublished data).  

One limitation of our approach is that the method for detection of subnetworks using MI is 

computationally extensive, and can only be applied on small networks. Further efforts are 

necessary to improve its efficacy. Another limitation is the method to derive the significance 

level of proteins based on the SNP data. Usually, there are multiple SNPs located within the 

regions for each gene. Although several methods have been proposed to condense this 
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informaiton
30,31,52

, we applied the simple and most commonly used one: consider the most 

significant p-value among SNPs as p-value of proteins as other methods may provide conflicting 

results. 

4. Conclusion 

Our integrated analysis of mRNA expression from adipose tissues, PPI networks, and SNP data 

from genome-wide association studies provides a novel approach for combining data from 

disparate sources to identify candidate pathways for potential validation studies. Some of the 

associations identified may reflect pathways that predispose to OSA, while others may indicate 

pathways that are perturbed by OSA-related stresses which contribute to co-morbidities such as 

diabetes. The results of this initial study suggest that the PI3K, the STAT protein family, and 

insulin signaling may be associated with OSA. Further investigation is needed to elucidate the 

exact role of these genes and their gene products in OSA. In addition, our approach outlines a 

novel application of SNP data in sub-network discovery relevant to disease that is consistent with 

other well-accepted methodologies. Thus, we suggest this approach could be generally applied to 

the analysis of GWAS data that is available for over 100 other diseases. 
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General pedigrees can be encoded as Bayesian networks, where the common MPE query corresponds to
finding the most likely haplotype configuration. Based on this, a strategy for grid parallelization of a state-
of-the-art Branch and Bound algorithm for MPE is introduced: independent worker nodes concurrently solve
subproblems, managed by a Branch and Bound master node. The likelihood functions are used to predict
subproblem complexity, enabling efficient automation of the parallelization process. Experimental evaluation
on up to 20 parallel nodes yields very promising results and suggest the effectiveness of the scheme, solving
several very hard problem instances. The system runs on loosely coupled commodity hardware, simplifying
deployment on a larger scale in the future.

1. Introduction

Given a general pedigree expressing ancestral relations over a set of individuals, the haplotyping
problem is to infer the most likely ordered haplotypes for each individual from measured unordered
genotypes. This has previously been cast as solving an optimization problem over a appropriately
constructed Bayesian network,6 for which powerful inference algorithms can be exploited. Yet prac-
tical problems remain infeasible as more data becomes available, for example through SNP sequenc-
ing, suggesting a shift to parallel or distributed computation.

This paper therefore explores parallelization of combinatorial optimization tasks over such
Bayesian networks, which are typically generalized through the framework of graphical models.
Specifically, we consider one of the best exact search algorithms for solving the MPE/MAP task
over graphical models, AND/OR Branch and Bound (AOBB). AOBB, which exploits independen-
cies and unifiable subproblems, has demonstrated superior performance for these tasks compared
with other state-of the art exact solvers (e.g., it was ranked first or second in several competitions13).

To parallelize AOBB we use the established concept of parallel tree search8 where the search
space is explored centrally up to a certain depth and the remaining subtrees are solved in parallel.
For graphical models this can be implemented straightforwardly by exploring the search space of
partial instantiations up to a certain depth and solving the remaining conditioned subproblems in par-
allel. This approach has already proven successful for likelihood computation in Superlink-Online,
which parallelizes cutset conditioning for linkage analysis tasks.16 Our work differs in focusing
on optimization (e.g., MPE/MAP) and in exploiting the AND/OR paradigm, leveraging additional
subproblem independence for parallelism. Moreover, we use the power of Branch and Bound in a
central search space that manages (and prunes) the set of conditioned subproblems.

The main difference however is that, compared to likelihood computation, optimization presents
far greater challenges with respect to load balancing. Hence the primary challenge in search tree
parallelization is to determine the “cutoff”, theparallelization frontier. Namely, we need a mecha-
nism to decide when to terminate a branch in the central search space and send the corresponding
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subproblem to a machine on the network. There are two primary issues:(1) Avoid redundancies:
caching of unifiable subproblems is lost across the independently solved subproblems, hence some
work might be duplicated;(2) Maintain load balancingamong the grid resources, dividing the total
work equally and without major idling periods. While introducing redundancy into the search space
can be counterproductive for both tasks, load balancing is a far greater challenge for optimization,
since the cost function is exploited in pruning the search space. Capturing this aspect is essential in
predicting the size of a subproblem and thus the focus of this paper.

The contribution of this work is thus as follows: We suggest a parallel BaB scheme in a graphical
model context and analyze some of its design trade-offs. We devise an estimation scheme that pre-
dicts the size of future subproblems based on cost functions and learns from previous subproblems
to predict the extent of BaB pruning within future subproblems. We show that these complexity esti-
mates enable effective load distribution (which was not possible via redundancy analysis only), and
yield very good performance on several very hard practical problem instances, some of which were
never solved before. Our approach assumes the most general master-worker scenario with minimal
communication and can hence be deployed on a multitude of grid setups spanning hundreds, if not
thousands of computers worldwide. While our current empirical work is tested on up to 20 machines
so far, its potential for scaling up are very promising.

Related work: The idea of parallelized Branch and Bound in general is not new, but existing
work often assumes a shared-memory architecture or extensive inter-process communication,3,7,8 or
specific grid hierarchies.1 Earlier results on estimating the performance of search predict the size of
general backtrack tress through random probing.10,12Similar schemes have been devised for Branch
and Bound algorithms, where the algorithm is ran for a limited time and the partially explored tree
is extrapolated.4 Our method, on the other hand, is not sampling-based but only uses parameters
available a priori and information learned from past subproblems which is facilitated through the
use of depth-first branch and bound to explore the master search space.

2. Background

Our approach is based on the general framework of graphical model reasoning:

Definition 2.1 (graphical model). A graphical model is given as a set of variablesX =

{X1, . . . , Xn}, their respective finite domainsD = {D1, . . . , Dn}, a set of cost functionsF =

{f1, . . . , fm}, each defined over a subset ofX (the function’sscope), and a combination operator
(typically sum, product, or join) over functions. Together with a marginalization operator such as
minX andmaxX we obtain areasoning problem.

For instance, theMPE problem (most probable explanation) is typically posed over a Bayesian
Network structure, representing the factorization of a joint distribution into conditional probabilities,
with the goal of finding an assignment with maximum probability. In the area of constraint reasoning,
aweighted CSPis defined as minimizing the sum of a set of cost functions over the variables.

Definition 2.2 (primal graph, induced graph, induced width). The primal graphof a graphical
model is an undirected graph,G = (X,E) . It has the variables as its vertices and an edge connecting
any two variables that appear in the scope of the same function. Given an undirected graphG and an
orderingd = X1, . . . , Xn of its nodes, the width of a node is the number of neighbors that precede it
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(a) (b) (c) (d)

Fig. 1: (a) Example primal graph with six variables, (b) its induced graph along orderingd =

A,B,C,D,E, F , (c) a corresponding pseudo tree, and (d) the resulting context-minimal AND/OR
search graph.

in d . Theinduced graphG′ ofG is obtained as follows: from last to first ind , each node’s preceding
neighbors are connected to form a clique (where new edges are taken into account when processing
the remaining nodes). Theinduced widthw∗ is the maximum width over all nodes in the induced
graph along orderingd .

Figure 1(a) depicts the primal graph of an example problem with six variables. The induced graph
for the example problem along orderingd = A,B,C,D,E, F is depicted in Figure 1(b), its induced
width is 2. Note that different orderings will vary in their implied induced width; finding an ordering
of minimal induced width is known to be NP-hard, in practice heuristics likeminfill11 are used to
obtain approximations.

2.1. Encoding Pedigrees as Bayesian Networks G11p G11m

P11

G12p G12m

P12

S13p S13mG13p G13m

P13

G21p G21m

P21

G22p G22m

P22

S23p S23mG23p G23m

P23

Fig. 2: Example fragment of a
Bayesiannetwork encoding of a gen-
eral pedigree.

Expressing a particular pedigree as a Bayesian Network
utilizes three building blocks: (1) For each individual and
each locus, the two haplotypes are represented by two vari-
ables, with the possible alleles as their domain and a prob-
ability distribution conditioned on the variables represent-
ing the parents’ haplotypes at this locus. (2) The measured,
unordered genotypes are captured as phenotype variables,
which are conditioned on the corresponding pair of hap-
lotypes. (3) Auxiliary binary selector variables are linked
across loci, to capture recombination events.

Figure 2 shows a simple example of such a Bayesian
network, the displayed fragment includes three individu-
als (two parents and their child) and two loci. For instance,
G13p is the paternal haplotype of individual 3 (the child) at locus 1. It depends on the father’s
haplotypesG11p andG11m, where the inheritance is determined by the selector variableS13p i.e.,
G13p = G11p if S13p = 0 andG13p = G11m if S13p = 1 . Together with the maternal haplotypeG13m ,
G13p determines the genotype inP13. The value of the inheritance selectorS23p for the paternal
haplotype of individual 3 at locus 2 is dependent on the selectorS13p for locus 1, where the actual
probabilities are recombination fractions between these two loci, provided as input.
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With this construction, the joint distribution of the Bayesiannetwork captures the probability
over all haplotype configurations. Given a set of evidence (i.e., measurements for some or all of the
unordered genotypes), the solution to the common problem of finding the most probable explanation
(MPE) will yield the most likely haplotypes.6

2.2. AND/OR Search Spaces

The concept of AND/OR search spaces has been introduced as a unifying framework for advanced
algorithmic schemes for graphical models to better capture the structure of the underlying graph.5

Its main virtue consists in exploiting conditional independencies between variables, which can lead
to exponential speedups. The search space is defined using apseudo tree, which captures problem
decomposition:

Definition 2.3 (pseudo tree).Given an undirected graphG = (X,E) , a pseudo treeof G is a di-
rected, rooted treeT = (X,E′) with the same set of nodesX , such that every arc ofG that is not
included inE′ is a back-arc inT , namely it connects a node inT to an ancestor inT . The arcs in
E′ may not all be included inE .

AND/OR Search Trees : Given a graphical model instance with variablesX and functions
F , its primal graph(X,E) , and a pseudo treeT , the associatedAND/OR search treeconsists of
alternating levels of OR and AND nodes. OR nodes are labeledXi and correspond to the variables
in X . AND nodes are labeled〈Xi, xi〉 , or justxi and correspond to the values of the OR parent’s
variable. The structure of the AND/OR search tree is based on the underlying pseudo treeT : the
root of the AND/OR search tree is an OR node labeled with the root ofT . The children of an OR
nodeXi are AND nodes labeled with assignments〈Xi, xi〉 that are consistent with the assignments
along the path from the root; the children of an AND node〈Xi, xi〉 are OR nodes labeled with the
children ofXi in T , representing conditionally independent subproblems. It was shown that, given
a pseudo treeT of heighth , the size of the AND/OR search tree based onT is O(n · kh), wherek
bounds the domain size of variables.5

AND/OR Search Graphs : Different nodes may root identical and can be merged through
caching, yielding anAND/OR search graphof smaller size, at the expense of using additional mem-
ory during search. A mergeable nodeXi can be identified by itscontext, the partial assignment of
the ancestors ofXi which separates the subproblem belowXi from the rest of the network. Merging
all context-mergeable nodes yields thecontext minimalAND/OR search graph.5

Proposition 2.1. Given a graphical model, its primal graphG , and a pseudo treeT , the size of
the context-minimal AND/OR search graph isO(n· kw∗

) , wherew∗ is the induced width of G over a
depth-first traversal ofT andk bounds the domain size.

Example 2.1. Figure 1(c) depicts a pseudo tree extracted from the induced graph in Figure 1(b) and
Figure 1(d) shows the corresponding context-minimal AND/OR search graph. Note that the AND
nodes forB have two children each, representing independent subproblems and thus demonstrating
problem decomposition. Furthermore, the OR nodes forD (with context{B,C}) andF (context
{B,E}) have two edges converging from the AND level above them, signifying caching.
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Weighted AND/OR Search Graphs :Given an AND/OR search graph, each edge from an OR
nodeXi to an AND nodexi can be annotated byweightsderived from the set of cost functionsF
in the graphical model: the weightl(Xi, xi) is the sum of all cost functions whose scope includes
Xi and is fully assigned along the path from the root toxi , evaluated at the values along this path.
Furthermore, each node in the AND/OR search graph can be associated with avalue: the valuev(n)
of a noden is the minimal solution cost to the subproblem rooted atn , subject to the current variable
instantiation along the path from the root ton . v(n) can be computed recursively using the values of
n’s successors.5

2.3. AND/OR Branch and Bound

AND/OR Branch and Bound is a state-of-the-art algorithm for solving optimization problems over
graphical models. Assuming a minimization task, it traverses the context-minimal AND/OR graph
in a depth-first manner while keeping track of a current upper bound on the optimal solution cost. It
interleaves forward node expansion with a backward cost revision or propagation step that updates
node values (capturing the current best solution to the subproblem rooted at each node), until search
terminates and the optimal solution has been found.5

3. Setup and Parallel Scheme

We assume a very general parallel framework in which autonomous hosts are loosely connected
over some network – in our case we use ten dual-core desktop computers, with CPU speeds between
2.33 and 3.0 GHz, on a local Ethernet, thus allowing experiments with up to 20 parallel nodes. We
impose amaster-workerhierarchy on the computers in the network, where a specialmasternode
runs a central process to coordinate theworkers, which cannot communicate with each other. This
general model is chosen to accommodate a wide range of parallel resources, where direct node
communication is often either prohibitively slow or entirely impossible; it also facilitates flexible
deployment on geographically dispersed, heterogeneous resources in the future.

The setup is similar to Superlink-Online,16 which has been very successful in using large-
scale parallelism in likelihood algorithms for genetic linkage analysis, or SETI@home,2 which uses
Internet-connected PCs around the world to search through enormous amounts of radio data. Like
Superlink-Online, our system is implemented on top of theCondorgrid middleware.17

3.1. Parallel AND/OR Branch and Bound

We include here only a brief outline of the master process and refer to Ref. 15 for details and pseudo
code. As a Branch and Bound scheme, exploration and propagation alternate as follows:

Master Exploration. The master process explores the AND/OR graph in a depth-first manner
guided by the start pseudo treeTc . Upon expansion of a noden it consults a heuristic lower bound
lb(n) to make pruning decisions, where the computation of the upper boundub(n) can take into
account previous subproblem solutions. Iflb(n) ≥ ub(n), the current subtree can be pruned. Explo-
ration is halted when the parallelization frontier is reached. The master then sends the respective
subproblem, given by the subproblem root variable and its context instantiation, to a worker node.

Master Propagation.The master process also collects and processes subproblem solutions from
the worker nodes. Upon receipt of a solved subproblem, its solution is assigned as the value of the
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respective node in the master search space and recursively propagated upwards towards the root,
updating node values identical to sequential AOBB.

With a fixed number of workersp , the master initially generates only the firstp subproblems;
worker nodes solve subproblems using sequential AOBB13 and send the solution back to the master,
where it is propagated; the central exploration is then resumed to generate the next subproblem.

Example 3.1. Consider again the AND/OR search graph in Figure 1(d). Given a start pseudo tree
havingA andB, we can illustrate the parallelization scheme through Figure 3: the search space of
the master process is marked in gray, and each of the eight independent subproblems rooted atC or
E can be solved in parallel.

Fig. 3: Parallelization scheme applied to the ex-
ampleproblem: master search space (gray) and
eight independent subproblems.

The central decision is obviously where
to place theparallelization frontier, i.e., at
which point to cut off the master search
space. Preliminary experiments, conducted
with globally enforced fixed-depth cutoff,
have shown that the parallel scheme car-
ries great potential.15 It also became evident,
however, that the issue of load balancing is
crucial for the overall performance (while
structural redundancy, for instance, does not
seem to have a major impact). In particular, the scheme needs to ensure that the workload is evenly
distributed over all processing units, each of which should be utilized equally. Secondly, it is critical
to minimize overhead resulting from network communication and resource management.

In the fixed cutoff experiments we observed great variance in subproblem complexity with rela-
tive differences of up to three orders of magnitude. In the following section we will therefore focus
on estimating subproblem complexity ahead of time15 . With this the master can dynamically de-
cide at which point a given subproblem is “simple enough” for parallelization (to avoid excessively
hard tasks) and also avoid very easy subproblems, whose solution time will be dominated by the
distributed system overhead.

4. Predicting Subproblem Size Using the Cost Function

In this section we derive a scheme for estimating the size of the explored search space of a con-
ditioned subproblem using parameters associated with the problem’s cost function, allowing us to
enforce an upper bound on the complexity of subproblems.

When considering a particular subproblem rooted at noden, we propose to estimate its complex-
ity N(n) (i.e., the number of node AOBB explores to solve it) as a function of the heuristic lower
boundL(n) as well as the upper boundU(n) , which can be computed based on earlier parts of the
search space or through an approximation algorithm like local search; we will also use the height
h(n) of the subproblem pseudo tree.
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4.1. Main Assumptions

We consider a noden that roots the subproblemP (n). If the search space belown was a perfectly
balanced tree of heightD, with every node having exactlyb successors, clearly the total number of
nodes isN = (bD+1 − 1)/(b− 1) ≈ bD .

However, even if the underlying search space is balanced, the portion expanded by BaB, guided
by some heuristic evaluation function, is not: the more accurate the heuristic, the more focused
around the optimal solution paths the search space will be. In state-based search spaces it is therefore
common to measure effectiveness in post-solution analysis via theeffective branching factordefined
asb= D

√
N whereD is the length of the optimal solution path andN is the actual number of nodes

generated.14

Inspired by this approach, for a subproblem rooted atn we adopt the idea of approximating the
explored search space by a balanced tree and express its size throughN(n) = b(n)D(n) . However, in
place of the optimal solution path length (which corresponds to the pseudo tree height in our case),
we propose to interpretD(n) as the average leaf node depthD̄(n) defined as follows:

Definition 4.1 (Average leaf node depth).Let l1, . . . , lj denote the leaf nodes generated when solv-
ing subproblemP (n). We define theaverage leaf node depthof P (n) to beD̄(n) := 1

j

∑j
k=1 dn(lk) ,

wheredn(li) denotes the depth of leaf nodei relative to the subproblem rootn.

We next aim to expressb(n) andD̄(n) as functions of the subproblem parametersL(n), U(N),
andh(n) (using other parameters is subject to future research).

4.2. Estimating the Effective Branching Factor

For the sake of simplicity we assume an underlying, “true” effective branching factorb that is con-
stant for all possible subproblems. We feel this is a reasonable assumption since all subproblems are
conditioned within the same graphical model. We thus modelb(n) as a normally distributed random
variable and take its mean as the constantb , which we found to be confirmed in experiments. An ob-
vious way to learn this parameter is then to average over the effective branching factors of previous
subproblems, which is known to be the right statistic for estimating the true average of a population.

Estimating b for new Subproblem P (n) : Given a set of already solved subproblems
P (n1), . . . , P (nr), we can computēD(ni) and derive effective branching degreesb(ni) =

D̄(ni)
√

N(ni)

for all i. We then estimateb throughb∗ = 1
r

∑r
i=1 b(ni) .

4.3. Deriving and Predicting Average Leaf Depth

With each subproblemP (n) rooted at a noden we associate a lower boundL(n) based on the heuris-
tic estimate and an upper boundU(n) derived from the best solution from previous subproblemsa.
Both L(n) andU(n) are known before we start solvingP (n). We can assumeL(n) < U(n), since
otherwisen itself could be pruned andP (n) was trivially solved. We denote withlb(n′) andub(n′)

the lower and upper bounds of nodesn′ within the subproblemP (n) at the time of their expansion
and similarly assert thatlb(n′) < ub(n′) for any expanded noden′.

aWeassume a graphical model with addition as the combination operator. Adaption to multiplication is straightforward.
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Since the upper bound is derived from the best solution found sofar it can only improve through-
out the search process. Furthermore, assuming a monotonic heuristic function (that provides for any
noden′ a lower bound on the cost of the best solution path going throughn′), the lower bounds along
any path in the search space are non-decreasing and we can state that any noden′ expanded within
P (n) satisfies:

L(n) ≤ lb(n′) < ub(n′) ≤ U(n)

Consider now a single path withinP (n), from n down to leaf nodelk , and denote it byπk =

(n′

o, . . . , n
′

dn(lk)
) , wheren′

0 = n and dn(lk) is again the depth oflk with respect ton (and hence
n′

dn(lk)
= lk). We will write lbi for lb(n′

i) andubi for ub(n′

i), respectively, and can state thatlbi ≥ lbi−1

andubi ≤ ubi−1 for all 1 ≤ i ≤ dn(lk) (note thatlb0 = L(n) andub0 = U(n) ). An internal noden′ is
pruned ifflb(n′) ≥ ub(n′) or equivalentlyub(n′)− lb(n′) ≤ 0 , hence we consider the (non-increasing)
sequence of values(ubi− lbi) along the pathπk ; in particular we are interested in the average change
in value from one node to the next, which we capture as follows:

Definition 4.2 (Average path increment). Theaverage path increment ofπk withinP (n) is defined
by the expression:

inc(πk) =
1

dn(lk)

dn(lk)
∑

i=1

((ubi − lbi)− (ubi−1 − lbi−1)) (1)

If we assume(ubdn(lk) − lbdn(lk)) = 0 , the sum reduces to(U(n)− L(n)). Thus rewriting Expression
1 for dn(lk) and averaging to get̄D(n) as in Definition 4.1 yields:

D̄(n) = (U(n)− L(n))
1

j

j
∑

k=1

1

inc(πk)
(2)

We now defineinc(n) of P (n) throughinc(n)−1 = 1
j

∑j
k=1

1
inc(πk)

, with which Expression 2 becomes
D̄(n) = (U(n)− L(n)) · inc(n)−1 , namely an expression for̄D(n) as a ratio of the distance between
the initial upper and lower bounds andinc(n) . Note that in post-solution analysis̄D(n) is known
andinc(n) can be computed directly, without considering eachπj .

One more aspect that has been ignored in the analysis so far, but which is likely to have an
impact, is the actual heighth(n) of the subproblem pseudo tree. We therefore propose to scaleD̄(n)

by a factor of the formh(n)α ; in our experiments we foundα = 0.5 to yield good resultsb. The
general expression we obtain is thus:

D̄(n)

h(n)α
=

U(n)− L(n)

inc(n)
(3)

Predicting D̄(n) for New Subproblem P (n) : Given previously solved subproblems
P (n1), . . . , P (nr) , we need to estimateinc(n) in order to predictD̄(n) . Namely, we compute
inc(ni) = (U(ni)− L(ni)) · h(ni)

α · D̄(ni)
−1 for 1 ≤ i ≤ r . Assuming again thatinc(n) is a ran-

dom variable distributed normally we take the sample average to estimateinc∗ = 1
r

∑r
i=1 inc(ni) .

bEventuallyα could be subject to learning as well.
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Using Equation 3, our prediction for̄D(n) is:

D̄∗(n) =
(U(n)− L(n)) · h(n)α

inc∗
(4)

Predicting N(n) for a New Subproblem P (n) : Given the estimatesb∗ and inc∗ as derived
above, we will predict the number of nodesN(n) generated withinP (n) as:

N∗(n) = b∗ D̄∗(n) (5)

The assumption thatinc andb are constant across subproblems is clearly too strict, more complex
dependencies will be investigated in the future. For now, however, even this basic approach has
proven to yield good results, as we will demonstrate in Section 5.

4.4. Parameter Initialization

To find an initial estimate of both the effective branching factor as well as the average increment, the
master process performs 15 seconds of sequential search. It keeps track of the largest subproblem
P (n0) solved within that time limit and extractsb(no) as well asinc(n0) , which will then be used
as initial estimates for the first set of cutoff decisions. Additionally, we perform a 60 second run
of stochastic local search,9 which returns a solution that is not necessarily optimal, but in practice
usually close to it. This provides an initial lower bound for subproblem estimation and pruning.

5. Experiments

We conducted experiments with our parallel AOBB scheme using the above prediction scheme to
make the cutoff decision fully automatically. The cutoff threshold was set toT = 12 · 108, which
corresponds to roughly 20 minutes of processing time and was deemed to be a good compromise
between subproblem granularity and parallelization overhead.

Overall solution times are given in Table 1.n, k, andw denote the number of variables, max.
domain size, and induced width of the problem’s Bayesian network. For reference we include the
sequential solution timeseq and the timeparfix of the best-performing parallel run with fixed cutoff
depth from previous work.15 seq/sls is then the time of the sequential scheme prefaced by 60 seconds

Table 1: Results of the automated parallel scheme (ped:15 workers, mm:10 workers).

instance n k w seq parfix seq/sls par∗/sls

ped7 (25/20) 1068 4 32 19,114 3,352 19,369 2,843
ped13 (20/20) 1077 3 32 2,752 379 2,856 419
ped19 (15/20) 793 5 25 time 27,372 time 10,671
ped31 (25/20) 1183 5 30 77,580 15,230 37,904 3,970
ped41 (25/20) 1062 5 33 14,643 2,173 14,059 2,311
ped51 (25/20) 1152 5 39 time 65,818 time 59,975
mm3.8.5-11 3612 2 37 9,715 1,443 3,003 1,145
mm3.8.5-12 3612 2 37 7,568 1,430 2,090 1,644
mm6.8.3-00 1814 2 31 12,595 1,797 319 288
mm10.8.3-11 2558 2 47 84,920 10,044 39,821 6,906
mm10.8.3-12 2558 2 47 5,630 1,357 2,549 814
mm10.8.3-13 2558 2 46 10,385 2,413 5,397 2,208
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Fig. 4: Subproblem statistics for the first 75 subproblem of ped31 and ped51.

of stochastic local search providing an initial lower bound. Finally, columnpar∗/sls contains the
overall solution time of the automated parallel scheme (similary including SLS preprocessing).

Pedigree Networks :The first set of problems consists of some very hard pedigree networks,
encoded as Bayesian networks as described in Section 2.1, with the number of individuals and loci,
respectively, given after the instance name in Table 1. We can see that in all cases the automatic
scheme does at least as good as the best fixed cutoff, in some cases even better. Again it is important
to realize thatparfix in Table 1 is the result of trying various fixed cutoff depths and selecting the best
one, whereaspar∗/sls requires no such “trial and error”. In case of pedigree31 the SLS initialization
is quite effective for the sequential algorithm, cutting computation from 21 to approx. 10 hours –
yet the automated scheme improved upon this by a factor of almost 10, to just above one hour.
Furthermore, for ped51 and in particular ped19, both of which could not be solved sequentially,
par∗/sls marks a good improvement overparfix .

Mastermind Networks : While not as practically relevant, these hard problems encoding board
game states can provide further insight into the parallel performance. Here we find that for most
problems the automated scheme performs at least as well as the best fixed cutoff (determined after
trying various depths); in general, however, we believe that the overall problem complexity is too
close to the subproblem threshold, inhibiting better parallel performance.

5.1. Subproblem Statistics

Figures 4(a) and (b) contain detailed subproblem statistics for the first 75 subproblems generated by
the automated parallelization scheme on ped31 and ped51, respectively. Each plot shows actual and
predicted number of nodes as well as the (constant) threshold that was used in the parallelization
decision. The cutoff depth of the subproblem root is depicted against a separate scale to the right.

As expected, the scheme does not give perfect predictions, but it reliably captures the trend.
Furthermore, the actual subproblem complexities are all contained within an interval of roughly one
order of magnitude, which is significantly more balanced than the results for fixed cutoff depth.15

We also note that “perfect” load balancing is impossible to obtain in practice, because subproblem
complexity can vary greatly from one depth level to the next along a single path. In particular, if a
subproblem at depthd is deemed too complex, most of this complexity might stem from only one of
its child subproblems at depthd+1, with the remaining ones relatively simple – yet solved separately.
In light of this, we consider the above results very promising.
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5.2. Performance Scaling
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Fig. 5: Performance relative
to p = 5 workers.

At this time we only have a limited set of computational resources
at our disposal, yet we wanted to perform a preliminary evalua-
tion of how the system scales withp , the number of workers. We
hence ran the automated parallel scheme withp ∈ {5, 10, 15, 20}
workers and recorded the overall solution time in each case.

Figure 5 plots the relative overall speedup in relation top = 5

workers. For nearly all instances the behavior is as expected, at
times improving linearly with the number of workers, although
not always at a 1:1 ratio. It is evident that relatively complex
problem instances profit more from more resources; in particu-
lar ped51 sees a two-, three-, and fourfold improvement going to
twice, thrice, and four times the number of workers, respectively.
For simpler instances, we think the subproblem threshold of ap-
prox. 20 minutes is too close to the overall problem complexity, thereby inhibiting better scaling.

6. Conclusion & Future Work

This paper presents a new framework for parallelization of AND/OR Branch and Bound (AOBB),
a state-of-the-art optimization algorithm over graphical models, with applications to haplotyping
for general pedigrees. In extending the known idea of parallel tree search to AOBB, we show that
generating independent subproblems can itself be done through an AOBB procedure, where previous
subproblem solutions are dynamically used as bounds for pruning new subproblems.

The underlying parallel framework is very general and makes minimal assumptions about the
available parallel infrastructure, making this approach viable on many different parallel and dis-
tributed resource pools (e.g., a set of networked desktop computers in our case).

Experiments have shown that the central requirement for good performance lies in effective load
balancing. We have therefore derived an expression that captures subproblem complexity using an
exponential functional form using three subproblem parameters, including the cost function. We then
proposed a scheme for learning this function’s free parameters from previously solved subproblems.
We have demonstrated empirically the effectiveness of the estimates, leading to far better workload
balancing and improved solution times when computing the most likely haplotypes on a number of
hard pedigree instances.

We acknowledge that this initial estimation scheme, while justified and effective, still includes
some ad hoc aspects. We aim to advance the scheme by taking into account additional parameters
and by providing firm theoretical grounds for our approach. Besides extending the scheme itself,
future work will also more thoroughly investigate the issue of parallel scaling, using larger grid
setups than what we had access to so far (or performing simulations to that effect).

Furthermore, we plan to conduct more experiments on larger and harder problems from the
haplotyping domain. In that context we are currently also working on a more in-depth analysis
relating the size and structure of the pedigree and the number of loci in the problem to our scheme’s
performance. And while some problems may remain out of reach due to their inherent complexity,
we do believe that our scheme will scale to many instances of interest; our confidence is in part based
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on the results obtained with the Superlink Online system,16 whichexploits a very similar strategy in
the context of linkage analysis tasks and has proven very successful.

Finally, we note that in practice a small loss in accuracy can often be tolerated if it leads to
significant time savings or better scaling. To that end, we intend to extend our current exact inference
scheme to approximate reasoning; in particular, our parallel implementation should adapt very well
to the concept of anytime search.
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While networks models have often been applied to complex biological systems, they are 
increasingly being implemented to investigate clinical questions. Clinical trials have been 
studied extensively by traditional statistical methods but never, to our knowledge, using 
networks. We obtained data for 6,847 clinical trials from five "Nervous System Diseases" 
(NSD) and five "Behaviors and Mental Disorders" (BMD) from the clinicaltrials.gov registry. 
We constructed networks of diseases and interventions for visualization and analysis using 
Cytoscape software. To standardize nomenclature and enable multi-level annotation, we 
used MeSH and UMLS terms. We then constructed separate BMD and NSD networks to 
study dynamics over time. To assess how topology features related to clinical significance, 
we constructed a sub-network of Multiple Sclerosis and Alzheimer's trials and identified 
which trials had been published in high-profile medical journals. We found that the BMD 
network has evolved into a large, decentralized topology and does not distinctly reflect the 
five diseases by which it was defined, while the NSD network does, though other diseases 
and sub-phenotypes have emerged as areas of research. We also found that high-profile trials 
have distinctive network characteristics. Future work is needed to address mathematical 
questions such as scale-dependence of network features, clinical questions such as trial 
design optimization, and methodological questions such as data quality improvement. 

 
1.  Background 
 
Network models can reveal complex relationships in large data sets, and network 
topologies have been shown to share remarkably consistent features across diverse fields 
of study [1-3]. These features include scale free and small world properties, preferential 
attachment growth dynamics, vulnerability to perturbations of network hubs, and 
modularity. Network approaches are particularly revealing when they can describe 
systems in their entirety, incorporate quantitative and computable measurements, 
integrate multiple levels of detail, and capture the dynamics of a system over time [4]. 
Network models have often been applied to biological systems. For example, studies of 
gene-disease associations have interrogated genetic similarities among auto-immune 
diseases [5] and relationships between metabolic diseases and co-morbitities [6]. 
Increasingly, networks are also being implemented to investigate clinical and social 
questions. Recent studies have investigated the dynamics of infectious disease 
transmission [7], workflow in the intensive care unit [8], and collaborations resulting in 
publication [9,10]. 

Clinical trials, the gold standard of clinical research, have long been studied by 
traditional statistical methods [11-13] but never, to our knowledge, using network models. 
This is ironic since clinical collaborations have long been operated and even referred to 
as "networks" [14,15]. However, with requirements by journal editors [16] and U.S. 
Federal law [17] that certain trials be registered, and with the growth of public-access 
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registries, it is now possible to apply network models to clinical trial data. Furthermore, 
given the central role of clinical trials in translational research, network modeling may 
provide useful insights to address challenges such as designing comprehensive but non-
redundant research programs and building on existing knowledge to design new trials. 

In this study, we apply network models to characterize the dynamics and multi-level 
structure of a large set of data from clinical trials in nervous system diseases and 
behavioral and mental disorders obtained from the clinicaltrials.gov registry 
(http://www.clinicaltrials.gov). We also address challenges related to defining 
nomenclature and scope of clinical trial networks. We hypothesize that, as in other types 
of networks, hubs are functionally important, and networks grow according to a 
preferential attachment model. To test this, we describe features of these multi-level 
networks, including topological parameters, characteristics of network hubs and clusters, 
and the dynamics of clinical trial networks over time. We find that different disease types 
demonstrate divergent network topologies over time, and we observe distinct 
characteristics of clinically "influential" trials. These findings will be useful to assess 
areas of emphasis, overlap and omission in clinical research and funding programs as 
well as to identify relationships within and among disease phenotypes and therapeutic 
strategies. 
 
2.  The scope and construction of a clinical trials network 
 
As the number of nodes in a network grows, the number of edges among them can 
increase exponentially, making analyses computationally intensive. There were 91,813 
trials in clinicaltrials.gov categorized into 22 categories of diseases and conditions, as of 
6/24/2010, and in the category of "Nervous System Diseases" alone, there were 65,462 
non-unique trials in 506 specific diseases and conditions (Figure 1). To define a 
computationally tractable and clinically interpretable system, we downloaded 6,847 non-
unique trials from five conditions categorized as "Nervous System Diseases" (NSD) and 
five conditions categorized as "Behaviors and Mental Disorders" (BMD). The NSD 
conditions were "Alzheimer Disease" (AD) (687 studies), "Brain Injuries" (505), 
"Multiple Sclerosis" (MS) (536), "Parkinson Disease" (PD) (629), and "Stroke" (1070); 
the BMD conditions were "Alcoholism" (357), "Attention Deficit and Disruptive 
Behavior Disorders"(444), "Bipolar Disorder" (584), "Schizophrenia" (1271), and 
"Smoking" (764). The NSD and BMD categories had similar total numbers of trials 
(3427 v. 3420) for later comparisons. 

For each trial, we downloaded multiple parameters and performed several types of re-
coding on the data (Table 1). We obtained National Clinical Trial (NCT) ID, Recruitment 
Status, Condition, Intervention, Sponsor, Study Type, Start Date and Completion Date for 
each trial. Intervention and Sponsor data frequently contained Unicode characters which 
we converted to ASCII text. Intervention attributes were nested (e.g., Drug: Aspirin) and 
were parsed to derive an Intervention Type field (e.g., Drug). Multiple fields contained 
more than one attribute per row in a pipe ("|") delimited manner (e.g., Drug: 
Aspirin|Drug: Codeine) and were also parsed. Other parameters such as study design and 
outcome are available, but they are highly heterogeneous and not readily computable. 
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Fig. 1. Schematic representation of clinical trial data converted from tabular to graph structure. 
Clinicaltrials.gov contains disease data in a nested, partly ambiguous hierarchy. Trials are organized 
into categories such as Nervous System Diseases (NSD). These categories include standardized 
Conditions which include specific trials. Specific trials can include multiple free-form Conditions 
entered by investigators--please note the hypothetical typographical error. Since the term "Conditions" 
is used twice, we subsequently refer to the higher Conditions as "Diseases". From the tabular layout, 
files of node-edge-node triplets were generated for import into Cytoscape. 

 
Where possible, we standardized conditions to Medical Subject Headings (MeSH) 

(http://www.ncbi.nlm.nih.gov/mesh) and Unified Medical Language System (UMLS) 
(http://www.nlm.nih.gov/research/umls) nomenclature. Clinicaltrials.gov uses the term 
"Condition" for both their pre-defined diseases and the multiple free-form, mixed case 
text conditions submitted by investigators for each trial. Intervention data are also 
submitted by investigators as free-form text. For example, in multiple sclerosis, there are 
three pre-defined Diseases: "Multiple Sclerosis", "Multiple Sclerosis, Relapsing-
Remitting", and "Multiple Sclerosis, Chronic Progressive". Diseases map to MeSH terms 
and identifiers such as "Multiple Sclerosis, Chronic Progressive" [C10.314.350.500.200]. 
By contrast, there may be dozens of free-form text Conditions, some of which reflect true 
sub-phenotypes [18] and some of which are cases of inconsistent nomenclature, as shown 
in the examples related to brain injuries in Table 2. To standardize free-form text to 
UMLS Concept Unique Identifiers (CUI), we used the Batch SemRep web tool 
(http://skr.nlm.nih.gov). 

We then constructed networks for visualization and analysis using Cytoscape 
software (http://www.cytoscape.org). First, we implemented custom Python scripts 
(http://www.python.org) to convert tabular data into undirected graphs defined by node-
edge-node triplets (e.g., Trial-Condition-Trial) (Figure 1). Briefly, we iterated through all 
Conditions in all trials to identify trials that studied Conditions in common. This same 
algorithm was applied to Interventions and Sponsors and could be applied to any trial 
parameter. We also generated node attribute files defined by "node = <type>" statements 
(e.g., "Trial1 = NSD"). Once we constructed the networks, we analyzed their topologies 
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visually and quantitatively. In this study, networks are displayed using the yFiles 
(http://www.yworks.com) Organic layout. Using the Network Analyzer plug-in [19] and 
custom code, we computed common topological parameters including node degree (i.e., 
the number of edges incident to the node) and others. We also identified hubs and clusters 
in the networks. 
 
 

Table 1. Example record layout for a single trial. The Category, Disease and 
Intervention Type fields were derived from the clinicaltrials.gov primary data. 

Parameter Example value 
NCT ID NCT00167323 
"Category" BMD 
"Disease" Alcoholism 
Recruitment Status Completed 
Intervention Behavioral: Adherence therapy 
"Intervention Type" Behavioral 
Study Type Interventional 
Start Date Jul-03 
Completed Date Jul-07 
Condition Bipolar Disorder|Alcohol Use Disorder 
Sponsors University of Pittsburgh|National Institute on Alcohol 

Abuse and Alcoholism (NIAAA) 
 
 
 

Table 2. Examples of non-standard nomenclature in the Condition field of trials in the 
"Brain Injuries" category, in order of frequency. UMLS identifiers and terms were 
assigned using the Batch SemRep web tool. 

Standard UMLS term 
UMLS 

CUI Total Free-text Condition Subtotal 
Traumatic Brain Injury C0876926 173 Traumatic Brain Injury 148 
    Mild Traumatic Brain Injury 10 
    Severe Traumatic Brain Injury 9 
    TBI (Traumatic Brain Injury) 6 
Cerebral Palsy C0007789 96 Cerebral Palsy 96 
Brain Injuries C0270611 82 Brain Injury 41 
    Brain Injuries 33 
    Brain Injuries Traumatic 5 
    Acquired Brain Injury 3 
Craniocerebral Trauma C0018674 13 Craniocerebral Trauma 7 
    Head Injury 6 
Hypoxic-Ischemic 
Encephalopathy 

C0752304 12 Hypoxic Ischemic 
Encephalopathy 

7 

    Hypoxic-Ischemic 
Encephalopathy 

5 

Subarachnoid 
Hemorrhage 

C0038525 11 Subarachnoid Hemorrhage 11 
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3.  Annotation of multiple network levels 
 
A fundamental challenge in network modeling and systems biology is the integration of 
multiple "levels" of data, that is, data with different levels of granularity. We constructed 
multi-level networks to analyze trial Conditions, Interventions, and Sponsors. We defined 
four Condition levels, from the top down, as (1) the two clinicaltrials.gov categories 
(BMD and NSD) or "Both", (2) the 10 clinicaltrials.gov diseases or "Multiple", (3) the 
standardized UMLS CUIs, and (4) the free-form text Conditions. We defined three 
Intervention levels as (1) the Intervention type (e.g., "Drug" for the Intervention "Drug: 
Aspirin"), (2) the standardized CUIs of the Intervention, and (3) the free-form text 
Intervention. We defined two Sponsor levels as (1) sets of Sponsors and (2) individual 
Sponsors. 
 

 
Fig. 2. Multi-level networks. Intervention networks are colored (a) by disease category, Behaviors and 
Mental Disorders (BMD) in red, Nervous System Diseases (NSD) in green, Both in black and (b) by 
intervention type ("Multiple" in gray, "Drug" in cyan). The central cluster represents placebo-
controlled trials. There are more BMD trials represented than NSD trials and relatively few "Both" 
trials. Sponsor networks are colored (c) by category (nodes: BMD in red, NSD in green, Both in black) 
and (d) in an enlarged view of the upper right quadrant of (c), by the specific sponsor (edges: the 
National Institute of Mental Health in red, the National Institute of Neurological Disorders and Stroke 
in green). 
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To construct multi-level networks of Conditions, Interventions and Sponsors, we 
selected a subset of 2412 completed interventional trials (Figure 2).  The Conditions 
network had 2202 nodes, similar to the Interventions and Sponsors networks (Table 3) 
but had 231,813 edges, a 4-5 fold increase compared to the other networks. A clear result 
of multi-level visualization is that, especially in large networks, higher levels of 
aggregation (e.g., disease category v. individual disease) are easier to interpret. 

All networks had a large, primary connected component subdivided into more or less 
distinct sub-graphs which correspond to higher levels of aggregation, such as disease 
category. Clear clusters were also visible and correspond to lower levels of aggregation, 
such as placebo intervention or large sponsors. 
 

Table 3. Similar topology parameters of completed interventional trial networks of 
Interventions and Sponsors. The clustering coefficient is a measure of the extent to 
which nodes in a graph cluster together. 

Network Nodes Edges Clustering 
coefficient 

Diameter 

Interventions 1372 61,749 0.74 9 
Sponsors 2124 53,248 0.87 9 

 
 
4.  Assessment of network dynamics 
 
Clinical trials provide an opportunity to study network dynamics because rich 
longitudinal data is available, and because multiple behaviors can be observed including 
new node and link formation as well as "death" (e.g., when a trial is withdrawn or 
terminated). We identified all trials in the registry that started after 1980 or completed 
before 2009. We did not include trials started after 2005 to control for possible lags in 
registration. We then constructed separate networks for BMD and NSD trials to compare 
their evolution over time, visually (Figure 3) and by topology metrics.  

Trial network topologies diverged over time between BMD and NSD. Of note, for 
both the BMD and NSD networks, approximately 90% of trials in the registry began after 
2000. Before 1995, there was a core BMD component and a separate co-morbidity 
component. Between 1996-2000, the schizophrenia\bipolar disorder core component 
grew, and alcohol and smoking trial clusters began to form, while attention deficit trials 
were a separate component. Since 2000, the BMD network has become large and 
decentralized and does not distinctly reflect the five major diseases by which it was 
defined. Before 1995, there was a greater total number of trials in NSD than in BMD, 
including a large stroke trial cluster, a more sparse cognitive disorders cluster, and a 
separate MS component. Between 1996-2000, the network clusters grew and became 
more integrated. Since 2000, the NSD network's clusters reflect the five major diseases 
by which it was defined. In addition, new disease trial clusters such as cerebral palsy 
have emerged as major areas of research, other areas like MS and Parkinson's Disease 
have spawned sub-phenotypes such as Secondary Progressive MS and Idiopathic PD, and 
more rare conditions have emerged. Notably, around 2005, first in BMD and then in NSD, 
the increase in completing trials began to exceed the number of starting trials in the 
registry. 
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Fig. 3. Clinical trial network dynamics. (a) The number of trials started and completed in Behaviors 
and Mental Disorders (BMD) and Nervous System Diseases (NSD) rose slowly until about 2000 and 
then increased rapidly. (b) Sizes of both networks grew logarithmically, but the number of edges grew 
at different rates. Networks of BMD trials started (c) up until 1995, (d) between 1996-2000, and (e) 
between 2001-2005 are shown. Networks of NSD trials started (f) up until 1995, (g) between 1996-
2000, and (h) between 2001-2005 are also shown.  
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These differences were reflected in network topology parameters. The BMD 
network's clustering coefficient increased over time (0.67, 0.85, 0.92) but was unchanged 
in the NSD network (0.91, 0.9, 0.93). In contrast, the BMD network's diameter and 
characteristic path length first rose and then fell, but both metrics rose steadily in the 
NSD network (4, 10, 6 v. 3, 5, 11 and 1.6, 3, 2.2 v. 1.8, 2.4, 2.5). Finally, the BMD 
network's density was unchanged over time (0.21, 0.16, 0.18) but fell in the NSD network 
(0.29, 0.17, 0.11). 
 
5.  Network characteristics of "influential" trials 
 
We next examined how network topology features and dynamics related to clinical 
significance. First, we constructed a sub-network of the 479 MS and Alzheimer's trials in 
clinicaltrials.gov with a status of "Completed" and a reported start date. We then 
identified MS and Alzheimer's trials published in the Journal of the American Medical 
Association or the New England Journal of Medicine since 2005 to represent "influential" 
clinical trials. Figure 4 shows the topological characteristics of these influential studies 
relative to other trials in the context of Conditions, Interventions, and Sponsors networks.  
 

 
Fig. 4. Topological features of "influential" trials. (a) In the Conditions network, influential trials 
(black) are members of large disease clusters (AD, MS, Relapsing Remitting MS) near both prior (red) 
and subsequent (green) trials. (b) In the Interventions network, influential trials are in the network 
periphery, representing novel approaches, and are primarily near subsequent trials, supporting their 
influence on future studies. These include four trials in RRMS using fingolimod, interferon beta-1a, 
cladribine, and rituximab. (c) In the Sponsors network, influential trials are dispersed across various 
clusters of trials with common sponsors, which represent academic and industrial collaborations. They 
also occur primarily near prior trials, suggesting a culmination of previous efforts. (d) While the 
current degree of new nodes in the Intervention and Sponsor networks increased steadily as networks 
grew, the degree of new nodes in the Condition network started high and fell before rising again. 
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We set out to understand the dynamics of these three networks and, in particular, to 
describe when high-degree network hubs joined the networks. We first calculated degree 
distributions for the three networks in their current state. We then sorted the trials, that is 
the network nodes, by their start dates. Finally, we fit a coarse lowess spline to the three 
network series to identify trends in the data (Figure 4d). The degree of new nodes in the 
Intervention and Sponsor networks increased steadily, suggesting that early interventions 
were often abandoned and early sponsors often left the field, while later entrants formed 
more connections. The degree of new nodes in the Condition network started high, like a 
preferential attachment model, but fell before rising again, suggesting that medically 
relevant conditions were identified early and more have been defined recently. 

We have defined influential trials using just one out of a multitude of possible ways. 
The increasing number of connected components in the networks (n=1, 6 and 16, for >3 
nodes) supports the hypothesis that innovation may spread most easily among disease 
areas but may disseminate more slowly among groups studying different interventions, 
and information may flow with some difficulty across unconnected sponsor groups. 
 
6.  Discussion 
 
In this study, we present the first network-based analysis, to our knowledge, of clinical 
trial data. Using a large set of data from clinical trials in nervous system diseases and 
behavioral and mental disorders obtained from the clinicaltrials.gov registry, we examine 
the topological parameters, network features, and longitudinal dynamics of clinical trial 
conditions, interventions and sponsors. We propose solutions to defining nomenclature 
and scope for constructing clinical trial networks. We hypothesized that, as in other types 
of networks, hubs and clusters are functionally important, and networks grow according 
to a preferential attachment model. We found that the role of network hubs was more 
similar among conditions and sponsors, since those hubs had functionally dominant roles, 
whereas, aside from the placebo cluster in the interventions network, the interpretation of 
functional importance was less clear. We also found that networks of different disease 
categories grew in divergent manners, and networks demonstrated variant models of 
preferential attachment. 

Inconsistent data quality has previously been identified as an impediment to the 
construction of biological networks [20,21] and clinical databases [22,23]. One of the 
major challenges to studying human diseases computationally is the development of 
vocabularies and ontologies that realistically reflect the complex inter-relationships 
among phenotypes. Multiple solutions to this problem have been reported including 
mapping diseases to OMIM disorders [24], Medicare records [6], MeSH terms [25], ICD-
9 codes and other ontologies. Clinicaltrials.gov implements MeSH terminology at the 
upper levels of its disease classification system but allows submission of free-form text at 
the lower levels. Other attributes such as interventions are unstructured but could be 
mapped to reference data sets such as RxNorm [26] or Drugs@FDA 
(http://www.accessdata.fda.gov). Still other attributes are submitted by trial sponsors with 
limited safeguards to ensure the accuracy and consistency of terminology.  

We used clinicaltrials.gov and UMLS terms to standardize trial nomenclature and 
enable multi-level analysis. Multi-level analysis of trials may be useful when sponsors 
evaluate trials "upward" as components in an overall research program and "downward" 

46



 

as collections of individual patients. In both cases, issues of membership overlap and 
hierarchy may be encountered. Ahn et al. [27] constructed communities that incorporate 
overlap and hierarchical organization in biological and social networks. We addressed 
overlap by implementing classes such as "Both" for disease categories and "Multiple" for 
diseases. 

Understanding the dynamic "evolution" of clinical trials from a systems perspective is 
similar to a phylogenetic analysis of ecosystems and may be useful in understanding the 
emergence, persistence, diversification and modularity of clinical research, particularly 
given the "noise" we have described in this type of data [28]. Many models have been 
proposed to describe dynamics in different types of network systems. These models 
include preferential attachment and linear distance dependence in internet topology [29], 
duplication-mutation schemes in the E. coli genetic network [30], modified preferential 
attachment in sexual contact networks [31], asymmetric disassembly for contraction and 
preferential attachment for re-growth in the New York garment industry [32], and anti-
preferential attachment in protein-protein interaction [33]. In the context of clinical trials, 
one might expect that a growth model similar to preferential attachment might hold true 
for networks of conditions and sponsors, where it may be the case that "the rich get 
richer". However, for networks of interventions, one might expect an altogether different 
growth model, where it is less likely that trials will be initiated for an existing 
intervention, since an intervention will eventually either fail and disappear or succeed and 
no longer require new studies, though in both cases it might be introduced into new 
indications. 

Studying the evolution of clinical trial networks can provide insight into mechanisms 
of knowledge flow, just as studying the spatial-temporal transmission of infectious 
disease might provide insight into mechanisms of communicability. While the flow of a 
virtual entity like information through a trial network is different from the flow of a 
physical entity like electricity through a power grid, both require sources and 
connectivity. An example of a knowledge source is the release of information via 
Pubmed, clinicaltrials.gov, or perhaps a conference, highlighting the importance of 
registering and reporting results of trials, including negative studies, in a complete and 
timely manner. An example of knowledge connectivity was described in Figure 4 where 
the differing connections between components in the three networks may have 
implications on how knowledge from influential trials is disseminated. This is significant 
because the average time to take a new therapeutic compound from discovery to 
commercialization in the U.S. is nearly 13 years, up from less than eight years in the 
1960s. Opening a trial requires a median of approximately 2.5 years simply to begin 
patient accruals, not to complete the trial [34].  

The primary limitation of this study is the reliance on potentially ambiguous 
categorizations and nomenclature of study conditions. For example, there are 536 studies 
in the pre-defined "Multiple Sclerosis" category, 181 studies under "Multiple Sclerosis, 
Relapsing-Remitting", and 26 studies under "Multiple Sclerosis, Chronic Progressive". 
However, searching with the text term "Multiple Sclerosis" returns 585 studies, while 
searching for the terms independently returns 625 studies. Other recognized phenotypes 
such as Primary Progressive MS are not explicitly defined. Clearly, the definition of 
disease nomenclature is an ongoing effort. 
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There are several potential future directions for this work. We chose to take a disease-
centric approach by focusing on relationships among trials in neurological diseases. 
Alternative approaches could include expanding scope, by looking at all diseases; altering 
scope, by looking at a different set of diseases or a specific class of interventions; or 
altering the network model, by focusing on relationships using some unit other than trials. 
There are many opportunities to study other aspects of network dynamics. For example, 
in studies of corporate networks, the merging and splitting of nodes can represent 
acquisitions and spin-offs. Similarly, merging and splitting of nodes in clinical trial 
networks could reflect evolving understanding of sub-phenotypes of disease or 
differences in drug mechanisms of action. To further integrate multiple levels of detail 
into network models of clinical trials, it would be extremely useful to have patient-level 
data, but this may be difficult to obtain since such data is typically reported at a summary 
level, if at all. Other issues to investigate include scale-dependence [35] and network 
vulnerability [36]. For example, in the same way that other types of networks such as 
power grids or the Internet might experience cascading failure, what might happen to the 
practice of medicine if the findings of a "hub" trial are called into question? 

In conclusion, we have presented the first network-based analysis of public clinical 
trials data. We defined a large set of trials in neurological conditions using data from 
clinicaltrials.gov. We analyzed multi-level models that integrated levels of granularity of 
trial conditions, interventions, and sponsors. We also analyzed dynamic models of 
network evolution over time. In both cases, we performed visual and topological 
evaluations. We highlight opportunities to make trial nomenclature more consistent and 
computable, we describe divergent network topologies over time in different disease 
types, and we identify characteristics of clinically "influential" trials in neurology using 
network models. 
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Gene set analyses have become a standard approach for increasing the sensitivity of transcriptomic studies. 
However, analytical methods incorporating gene sets require the availability of pre-defined gene sets relevant 
to the underlying physiology being studied. For novel physiological problems, relevant gene sets may be 
unavailable or existing gene set databases may bias the results towards only the best-studied of the relevant 
biological processes. We describe a successful attempt to mine novel functional gene sets for translational 
projects where the underlying physiology is not necessarily well characterized in existing annotation 
databases. We choose targeted training data from public expression data repositories and define new criteria 
for selecting biclusters to serve as candidate gene sets. Many of the discovered gene sets show little or no 
enrichment for informative Gene Ontology terms or other functional annotation.  However, we observe that 
such gene sets show coherent differential expression in new clinical test data sets, even if derived from 
different species, tissues, and disease states.  We demonstrate the efficacy of this method on a human 
metabolic data set, where we discover novel, uncharacterized gene sets that are diagnostic of diabetes, and on 
additional data sets related to neuronal processes and human development.  Our results suggest that our 
approach may be an efficient way to generate a collection of gene sets relevant to the analysis of data for 
novel clinical applications where existing functional annotation is relatively incomplete. 

 
1.  Introduction 

Genome-wide expression studies are producing large quantities of experimental data 
characterizing a growing range of human diseases. Yet the biological interpretation of results 
obtained from these experiments is still a challenge, and clinical applications remain relatively 
elusive. Typically, microarray data are analyzed at the single gene level to identify transcripts with 
statistically significant differences between phenotypes, and a functional analysis is then 
performed on the gene list.  Originally, such functional annotation was performed manually1,2, but 
soon many tools to automate the process were developed3-6. 
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More recently, analysis at the level of gene sets has emerged as a powerful alternative to 
individual-gene analyses to reflect the functional relationship between genes in a set. Mootha et al. 
initially demonstrated the power of using pre-defined gene sets in a case where no individual 
gene’s expression was significantly different between normal and diabetic patients7. Since then, 
many gene set analysis methods have been developed8-14. The goal of all gene set analysis 
methods is to identify functionally related genes that display coordinated expression changes. 
Typically, gene set analysis methods can be distinguished by their statistical criteria for 
differential expression, null hypotheses, and p-value calculations15.  

However, all analytical methods incorporating gene sets depend on the knowledge of sets or 
pathways relevant to the underlying physiology. For fields such as diabetes and cancer, there has 
been considerable effort toward manual and computational curation of relevant gene function16. 
The Gene Ontology17 contains controlled descriptions of gene function that are frequently used to 
define gene sets.  Pathway databases such as KEGG18, BioCyc19, and BioCarta 
(www.biocarta.com) can also be used to generate gene sets. However, for many complex 
physiological processes, there is still a need to identify relevant groups of functionally linked 
genes.  Recent work studying gene expression in human development suggests that this area is one 
in which additional annotation is needed20.   
 Clustering approaches have long been used to find meaningful patterns in gene expression 
data and to identify functional gene sets from microarray data7,21-23. However, such methods do 
not necessarily generalize to inform the analysis of novel data sets since functionally related genes 
may be co-expressed only in a subset of conditions, and such gene sets would be missed by 
traditional clustering methods. Biclustering methods have emerged as an alternative to traditional 
clustering methods in such cases. Biclustering24 finds subgroups of genes that exhibit similar 
expression patterns over a subset of conditions.  Many biclustering algorithms have been 
proposed25,26. More sophisticated biclustering algorithms search for coherent expression changes 
within subsets of conditions27-29. Coherence of a bicluster refers to coordinated changes of the 
genes’ expression patterns across a subset of conditions (as in Figure 1).  Gene sets with coherent 
expression patterns in a data set may be functionally linked to the phenotype of interest. 
 Here, we describe a novel approach to identifying candidate gene sets using new criteria 
for selecting coherent biclusters across multiple experiments somewhat related to the desired 
clinical application.  Previous efforts have looked for coherent functional modules showing 
enrichment in a particular gene expression data set, often by incorporating network, pathway, or 
clinical information30-32. Our method differs from these approaches in that we identify gene sets 
showing coherent expression patterns across multiple related studies, and then assess the general 
relevance of our candidate sets by using them for gene set analysis of novel clinical data.  In this 
sense, our work is closest to that of Liu et al.33, who find processes dysregulated across many 
related experiments.  However, their work still requires pre-defined gene sets relevant to the 
phenotype being studied.  The goal of our method is to systematically identify novel gene sets that 
generalize well for the analysis of new data in fields where molecular annotation is sparse, such as 
development or neuronal function. We use careful dataset selection, biclustering, and filtering to 
identify novel candidate gene sets, and we observe that several of these show coherent differential 
expression patterns in clinical test data sets from different yet related physiological processes.  
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This method works even when the training data sets come from different tissues or species than 
the test data, allowing us to find clinically-applicable gene sets using existing data from model 
organisms.  Several of the gene sets differentially expressed in the test data show enrichment for 
informative Gene Ontology terms, but many others have no significant overlap with previously 
known functional categories.  Nonetheless, they can be useful as diagnostics and can help direct 
future translational research into gene-gene and gene-disease relationships, particularly in medical 
fields where the underlying molecular physiology is not yet well understood.   

2.  Methods 

2.1.  Algorithm overview 

We start by integrating publicly available gene expression data from several studies that are 
related, but not too closely related, to each other and to the test data set we wish to analyze. We 
apply a biclustering algorithm that finds coherent changes within and across studies (Figure 1) to 
the combined training data.  Subsequently, we filter out biclusters that do not meet certain quality 
criteria.  We consider the remaining biclusters as candidate gene sets, which we use for the 
analysis of human clinical gene expression test data distinct from the data used for gene set 
discovery.  Details of each of these steps in our method are discussed below.   
 

 
 

Fig 1. Heatmap of a representative bicluster that shows coherent change across samples. Samples 
from two studies on the hippocampus show lower gene expression when compared to samples from 
amygdala. Within each tissue type, coherent changes in expression are also apparent. 

2.2.  Data acquisition and normalization 

We downloaded single channel Affymetrix microarray data (as .CEL files) from the Gene 
Expression Omnibus (GEO) (Table 1). The Affymetrix CEL files for each medical area of interest 
were imported into the R statistical software (v2.8.1; http://www.R-project.org), and all training 
data for that area were normalized at once. Normalization was performed with the AffyPLM 
package in BioConductor (v2.4), using RMA background correction, quantile normalization, and 
the Tukey biweight summary method. After normalization, the variances of all probes were 
computed across all samples, and the 50% of the probes with the lowest variance were removed, 
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eliminating probes that are not expressed in the relevant tissues or whose expression does not vary 
enough to be informative for our purposes. 

2.3.  Biclustering 

Next, we biclustered the normalized, filtered gene expression data using the Iterative Signature 
Algorithm (ISA)27,34.  We have found that ISA identifies more coherent and potentially 
biologically relevant biclusters than several other biclustering methods35,36. Briefly, ISA starts 
with a random initial set of genes.  All samples are scored for coherence with respect to this gene 
set and samples are chosen for which the score exceeds a predefined condition threshold (tC). 
Next, all genes are scored across the selected samples and a new set of genes is selected based on a 
predefined gene threshold (tG). The entire procedure is repeated until it converges. We used the 
BiCAT implementation35 of the ISA algorithm with tG = 2 and tC =1, parameters recommended for 
the identification of coherent patterns in a prior study37.  

Table 1 – Selected gene expression data sets for gene set discovery. 

 
Data Set GEO 

Accession # Title Tissue Samples 

GSE5090 Polycystic ovary syndrome 
patients vs control subjects Adipose PCOS patients, 

controls 

GSE9105 Effect of acute physiologic 
hyperinsulinemia Vastus lateralis 240 mins of insulin 

infusion 
Metabolic 
(Human) 

GSE474 Obesity and fatty acid oxidation Vastus lateralis Lean, obese 
GSE6882 Embryonic ovary development Ovary Embryonic 

GSE8065 Early postnatal development of the 
small intestine Intestine Postnatal 

GSE12769 Testis developmental time course Testis Postnatal 
Developmental 
(Mouse) 

GSE13103 Early mouse embryo eye 
development Optic fissure Embryonic 

GSE9803 Striatal gene expression data Striatum wild-type 

GSE4040 Gene expression in murine 
hippocampus Hippocampus wild-type Neuronal 

(Mouse) 
GSE4034 Gene expression in amygdala and 

hippocampus 
Amygdala, 
Hippocampus wild-type 

 

2.4.  Selecting biclusters as candidate gene sets 

Although we chose the ISA biclustering approach because the algorithm is able to find 
coherent biclusters that include samples from multiple experiments, there is no guarantee that the 
resulting biclusters have the generalizable-coherence property that we want for our candidate gene 
sets.  In addition, ISA often identifies multiple overlapping biclusters.  While some degree of 
overlap between gene sets might accurately represent genes involved in more than one cellular 
process, a high degree of overlap of both genes and samples likely occurs when different random 
starting points of the iterative algorithm converge to similar solutions.  Additionally, some of the 
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resulting biclusters can be noisy and their genes’ expression patterns only poorly correlated with 
each other.  Therefore, we subject the biclusters to several quality measures before selecting 
certain ones as candidate gene sets.   

First, we remove any biclusters that do not show coherent expression changes across 
samples from two or more experiments. That is, if the samples selected for a bicluster do not come 
from at least two different source data sets, we discard the gene set as being less likely to 
generalize to new conditions and tissues.  Our experience suggests that this criterion, given an 
appropriate choice of training data, is most responsible for the applicability of these discovered 
gene sets in new contexts (data not shown).   

We next assess the overlap between the gene sets defined by the biclusters.  If any pair of 
gene sets G and H overlap such that at least 80% of the genes in G are in H and at least 80% of the 
genes in H are in G, we select only the bicluster with fewer genes.  We reason that the smaller 
bicluster contains a core group of genes with a stronger functional association with the phenotype.  
 To enforce expression homogeneity within the biclusters, we use a recently proposed 
measure of bicluster quality, the average correlation value (ACV)38, to score biclusters for 
homogeneity. The ACV measures the average pairwise expression correlation between all pairs of 
genes in a cluster.  The maximum ACV score of 1.0 denotes a highly correlated bicluster. ACV 
has been shown to be more robust than the widely-used mean squared residue score25.  We discard 
biclusters with ACV < 0.5 (though results are quite robust to varying this threshold).  Biclusters 
that remain after all of these filtering steps are considered as candidate gene sets.  
 Finally, we note that normalization in meta-analyses is an important challenge, since many 
experiment-specific factors may persist even after normalization, and over-normalization may 
suppress real signal.  In order to assess normalization bias in our resulting biclusters, we calculate 
a score called the chip correlation value (CCV). The CCV is measured by calculating the 
correlation between sample averages for genes in a given bicluster with the sample averages over 
the entire gene expression matrix. Although biclusters are not discarded based on their CCV 
scores, it should be noted that extreme correlations might reflect insufficient normalization. 
  

2.5.  Applying candidate gene sets to analyze test data 

If our novel gene sets show coherent expression changes in a new setting, we can assume that their 
genes have some functional relationship, even if the exact nature of that relationship is unknown. 
Any gene-set data analysis method can be applied to assess coherent expression changes in test 
data; here, we choose Gene Set Enrichment Analysis (GSEA)16.  GSEA is a statistical framework 
that determines if members of a given gene set show collective expression changes linked to 
sample phenotypes by calculating a Kolmogorov-Smirnov running sum called the enrichment 
score (ES). We report the normalized enrichment score (NES) because this measure accounts for 
the gene set size, thus allowing for comparison between different experiments. The magnitude of 
the NES reflects the degree of enrichment for a given gene set. We accept a gene set as 
differentially expressed using an FDR q-value cut-off of 25%, as suggested by the GSEA 
authors16.  For time series data (the developmental data sets), we used the Pearson metric for 
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ranking genes.   For the maternal blood data set20 (see Results), we used the GSEA-preranked 
option on genes ranked by the closer-to-zero (i.e., approximately the less-significant) of two t-
scores, one comparing paired antepartum and postpartum maternal blood samples, and the other 
comparing paired neonatal cord blood and postpartum maternal blood samples.   

Subsequently, in order to gain biological insight into the biclusters, we used the Database 
for Annotation, Visualization and Integrated Discovery (DAVID)39,40 (the April, 2008 release) to 
identify functional annotation terms significantly over-represented in the gene sets. A functional 
term is considered to be significantly enriched if its Benjamini-Hochberg-adjusted p-value, as 
reported by DAVID, is less than 0.05.  

2.6.  Orthology 

In some cases, we derived biclusters based on gene expression data in model organisms and 
evaluated their utility for interpreting human gene expression data from clinical samples.  In these 
cases, mouse-derived biclusters were mapped to their human gene symbols using DAVID’s Gene 
ID Conversion Tool. Further, probe sets from human Affymetrix Chips are collapsed to their gene 
symbols using GSEA. In such cases, the gene symbols are used instead of their Affymetrix probe 
set identifiers. 

3.  Results 

We applied this approach to three different functional areas to highlight its utility for functional 
interpretation of clinical data.  We start by applying our method to the well-studied metabolic field 
and follow with two other areas where annotation is relatively sparse: neuronal function and 
development. Table 2 summarizes the characteristics of the resulting biclusters from each field.   

 Table 2 – Characterization of resulting biclusters.  

 
# of genes # of conditions ACV CCV Study 
min mean max min mean max mean ± stdev mean ± stdev 

Metabolic 12 63.8 154 5 10.1 17 0.74 ± 0.12 -0.23 ± 0.30 
Neuronal 7 122.6 436 3 9.0 19 0.95 ± 0.03 0.12 ± 0.49 
Developmental 4 528.8 893 6 9.1 12 0.94 ± 0.03 0.07 ± 0.37 

3.1.  Metabolic data set 

Metabolic disorders include a broad array of medical conditions such as diabetes, obesity, 
hypertension, and insulin resistance. We compiled gene expression data from publicly available 
metabolic studies involving human tissue samples hybridized to Affymetrix GeneChip HG-
U133A arrays. The initial experiments include adipose tissue samples from polycystic ovary 
syndrome (PCOS) patients compared with control subjects (GSE5090), vastus lateralis muscle 
samples during acute physiologic hyperinsulinemia (GSE9105), and vastus lateralis muscle 
samples from obese and lean subjects.  PCOS is a common endocrine disorder that is associated 
with metabolic abnormalities including insulin resistance, increased risk for diabetes mellitus, 
obesity and hyperlipidemia41. 
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 The entire metabolic data set consisting of 53 samples and 11,141 genes was used as input 
for biclustering. Overall, ISA identified 15 biclusters for the metabolic data. Filtering resulted in 
11 biclusters selected as candidate metabolic gene sets. One bicluster was discarded based on low 
ACV; three biclusters were filtered because of high degree (>80%) of overlap (Figure 2).  In such 
cases, the biclusters with fewer genes were selected because they were likely to be more specific. 
On average, the selected biclusters contain 64 genes and 10 conditions with more than 73% 
correlation between genes. Further, average CCV is relatively low (-0.23 ± 0.3) suggesting that the 
clusters are not due to normalization artifacts (Table 2).   
 

 
 

Figure 2.  Metabolic bicluster overlap before filtering. A heatmap of overlap between biclusters from 
the metabolic study is shown. Biclusters with >80% overlap with each other are outlined in dashed boxes. 
In such cases, the bicluster with fewer genes is chosen as a candidate gene set.  Note that biclusters 7 and 
13 are both retained because the high overlap is in one direction only.  In such cases, it is possible that 
both gene sets represent interesting biological functions.    

 
 We then applied these candidate metabolic gene sets in a GSEA analysis of data from 
Mootha, et al. comparing smooth muscle gene expression in diabetic patients and healthy 
controls7.  Recall that this is the data set that was first used to demonstrate the GSEA approach; 
there are no individually differentially expressed genes, and gene sets related to oxidative 
phosphorylation were shown to be downregulated in diabetics in this data.  However, no gene sets 
were shown to be significantly upregulated in diabetes7.  In our experiments on the same data, out 
of our eleven candidate biclusters, three were significantly upregulated (FDR q-value < 0.25) in 
smooth muscle from diabetic patients: bicluster9, bicluster11 and bicluster14. The GSEA results 
for differential expression of these gene sets are summarized in Table 3A, and full functional 
enrichment results are listed in supplementary table S1 (http://bcb.cs.tufts.edu/genesetPSB11/).   
 In an attempt to interpret the functional role of these gene sets, we evaluated the enriched 
biclusters using functional annotation tools in DAVID.  However, these differentially expressed 
biclusters either showed no statistically significant overlap with current ontology classes 
(bicluster11) or overlapped only with broad GO terms such as developmental process 
(bicluster14) or multicellular organismal process and biological regulation (bicluster9).   
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 We had originally expected that any gene sets we discovered in our metabolic data would 
overlap heavily with existing functional annotation, reflecting the wealth of research about the 
molecular mechanisms of diabetes and obesity.  However, we instead discovered new gene sets 
that exhibited coherent changes across diverse experiments and that also showed significant 
coordinated upregulation in diabetics.  While the exploratory q-value cutoff suggested for GSEA 
analysis16 allows for a one-in-four false-positive rate, all three of the gene sets identified in this 
analysis had much lower q-values.  Thus, although any of these findings might be a false-positive, 
it is unlikely (probability ≤ 0.0005) that all three of them are.   We believe these results suggest 
that there may be previously unrecognized functional links among the members of each of these 
gene sets, warranting further study.   In clinical applications where diagnosis is difficult or early 
diagnosis is critical, such gene sets might also be useful as diagnostic tools even before their 
functional roles are understood.     
 

Table 3. Differential expression of candidate gene sets in test data. 

A) Metabolic biclusters 

Species Tissue Bicluster # # of genes ES NES NOM p-
val 

FDR q-val 

Bicluster14 31 0.57 1.71 0.01 0.08 
Bicluster9 39 0.54 1.64 0.03 0.07 Homo Sapiens Smooth 

Muscle 
Bicluster11 32 0.50 1.60 0.04 0.08 

B) Neuronal biclusters 

Species Tissue Bicluster # # of genes ES NES NOM p-
val 

FDR q-val 

Bicluster4 128 0.65 1.52 0.00 0.21 
Bicluster12 65 0.53 1.39 0.05 0.22 
Bicluster1 197 0.58 1.38 0.13 0.19 Homo Sapiens 

Dorsolateral 
prefrontal 
cortex Bicluster3 219 0.51 1.37 0.10 0.17 

 

C) Developmental biclusters 

Species Tissue Bicluster # # of genes ES NES NOM p-
val 

FDR q-val 

Homo Sapiens Blood Bicluster4 239 0.31 1.54 0.000 0.005 
 
 

3.2.  Neuronal data set 

Motivated by an interest in the impact of loss of nicotinic activity on cochlear synapse 
formation42, we collected gene expression data from substructures of the mouse central nervous 
system: striatum (GSE9803), hippocampus (GSE4040) and amygdala (GSE4034). Gene 
expression data from only wild-type mice were considered and all studies utilized Affymetrix 
Mouse430.2 GeneChips. This neuronal data set included 32 samples and 22,550 genes. ISA 
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initially identified 33 biclusters for the neuronal data42; filtering resulted in 25 candidate neuronal 
gene sets, whose characteristics are summarized in Table 2.   
 We applied the neuronal candidate gene sets to analyze human gene expression data from 
postmortem brains (specifically, dorsolateral prefrontal cortex) of adults with Down syndrome 
(DS) and healthy control subjects (GSE5390). In this data set bicluster4, bicluster12, bicluster1 
and bicluster3 were upregulated in DS patients (Table 3B).  

Bicluster4 showed statistically significant enrichment for the GO biological process term, 
lipid metabolic process, and several PANTHER terms including lipid, fatty acid and steroid 
metabolism; mRNA transcription regulation; voltage-gated K channel; and transferase.  
Bicluster1 is enriched for several GO categories including nervous system development, 
myelination, and regulation of action potential.  Enriched GO terms for bicluster 3 include 
developmental process, localization, cell adhesion and death.  Enriched PANTHER categories for 
this bicluster include neuronal activities, receptor mediated endocytosis, cytoskeletal protein, cell 
junction protein, and cadherin. On the other hand, bicluster12 did not exhibit statistically 
significant overlap with any functional annotation terms. 

Cadherins are proteins involved in calcium-ion-mediated cell adhesion.  Abnormalities in 
myelination, cell adhesion, and lipid classes have been implicated in DS43-45.  In addition, these 
results are consistent with our recent observation of increased oxidative stress, and apparent 
downstream disruption of ion signaling and cell structural integrity, in the DS fetus46. The 
functional roles of genes in these novel gene sets mined from diverse neuronal tissues in healthy 
mice may therefore help inform ongoing translational efforts to develop novel therapies for Down 
syndrome.   

3.3.   Developmental data set 

We collected gene expression data representing mouse developmental time courses in various 
tissues, all hybridized to Affymetrix Mouse430.2 GeneChips. We only considered data from wild-
type animals; treated samples and mutant strains were excluded. The data were derived from ovary 
(GSE6882) and optic fissure (GSE13103) during embryonic development, and intestine 
(GSE8065) and testis (GSE12769) during postnatal development. Overall, this data set contained 
24 samples and 22,550 genes. 
 Initially, ISA identified 25 biclusters on this data set.  Filtering resulted in 10 biclusters to 
be considered as candidate developmental gene sets, which are characterized in Table 2. We then 
applied these developmental biclusters to re-analyze expression data from our previous study of 
maternal and fetal gene expression20. This study confirmed the detection of fetal mRNA in 
maternal whole blood by SNP analysis after identifying candidate fetal transcripts that were 
upregulated in both antepartum maternal blood (at 37-40 weeks’ gestation) and umbilical cord 
blood compared to postpartum maternal blood.  We used the GSEA “preranked” feature so that we 
could rank the genes based on their less significant performance in these two different 
comparisons (antepartum to postpartum, and antepartum to neonatal; see Methods).   

In this analysis we found that developmental bicluster4 (Table 3C) was significantly 
upregulated (FDR q-value < 0.005) in both the antepartum mothers and the babies’ cord blood 
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compared to the postpartum mothers, and therefore would be considered likely to include fetal 
transcripts in maternal circulation.  Bicluster4 showed statistically significant overrepresentation 
of several GO terms, including digestion, lipid transport, and lipid binding.  SP_PIR (Protein 
Information Resource) terms such as intestine, glycoprotein, neuropeptide, and inflammatory 
response were also overrepresented. Given that myelin membrane synthesis relies upon lipid and 
sterol metabolism47, expression of these genes may reflect the maturing neurological system of the 
near term fetus, necessary for coordinating the complex sequence of actions needed for feeding 
and breathing; or it may simply reflect direct preparation for digestion.   In our previous analysis 
of this data20, we saw evidence of putative fetal expression of genes related to several functional 
processes likely to be needed at birth:  immunity, sensory perception, lung maturation, and 
neurological function. However, no functional over-representation of digestive or metabolic 
proteins was detected as a set.  Indeed, a painstaking manual annotation effort revealed hints that 
such proteins were among the likely fetal transcripts, but their significance was unclear. In 
contrast, the present work likely suggests that the healthy term fetus is preparing to feed.   

The fact that such transcripts are detectable in maternal circulation helps support the 
proposal to use transcriptional analysis of maternal blood as a non-invasive approach to monitor 
fetal development.  Translational applications of this work might include detecting potential 
feeding disorders before birth by identifying dysregulation of this gene set in individual fetuses.   

4.  Discussion  

4.1 Implications  
Our understanding of functional relationships among sets of genes is still in its infancy.  Discovery 
of coherent gene sets that work together in different biological processes or disease states may 
help further annotate genomes by assigning function to unknown genes or discovering previously 
unsuspected relationships.  Our method allows us to identify gene sets likely to have a common 
functional role in a given tissue or disease state.  We found that many candidate gene sets selected 
in this way show statistically significant differential expression in new test data sets, suggesting 
that such gene sets may generalize well across tissues and relevant disease states.  

Many gene set discovery methods rely upon annotation tools that utilize ontology or 
pathway databases. A potential issue with such functional enrichments is the dependency of p-
values on bicluster sizes48.  Smaller yet functionally-relevant biclusters may go unnoticed due to 
their insignificant enrichment p-values.  Our approach of searching for coherent biclusters 
spanning conditions from multiple experiments allows us to extract biological phenotype features 
that generalize well across different tissues and species, even in the absence of enrichment for 
known functional pathways.  Thus, this approach may be a way to generate a collection of gene 
sets relevant to the analysis of data from novel areas, where existing functional annotation is 
relatively incomplete. 
 The question of whether the enriched biclusters exhibit known functional coherence is 
itself of interest.  The rationale behind using metabolic disease samples in our first experiment was 
to determine whether our method would capture meaningful functional annotation in a field where 
such annotation is relatively plentiful.  Although one metabolic bicluster (Bicluster4) was enriched 
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for expected metabolic terms such as UDP-glycosyltransferase activity and carbohydrate 
metabolism (Supplemental Table S1), we found several metabolic gene sets that were not 
statistically enriched for any informative  pathway terms.  This lack of enrichment may be due to 
the relatively small size of the metabolic biclusters.  Importantly, despite the lack of enrichment, 
several of these biclusters were significantly differentially expressed in the test data.  Furthermore, 
inspection of these biclusters revealed several genes with previously assigned roles in metabolic 
disorders.  For example, consider bicluster9, which we found to be significantly upregulated in 
smooth muscles of diabetic individuals. The Phenopedia49 component of the Human Genome 
Epidemiology database (HuGE Navigator)50 suggests that several of the genes in this bicluster, 
including ADRA1A, ADRB1, APOC3, CACNA1A, MTHFR and TH, are disease susceptibility 
genes associated with cardiovascular diseases and obesity. However, no previous relationship 
between most of these genes was detected in the literature. These results suggest that our approach 
may help capture novel links among genes and between genes and phenotypes. 
 Equally important, several of our test data sets were from a different species than that of 
the original data used for biclustering. This is particularly important for biological processes such 
as development that rely on mammalian model systems. For example, for the developmental data 
set, candidate gene sets were acquired from several murine tissues: ovary, intestine, testis and 
optic fissure. Yet, orthologous gene sets were found to be upregulated during human development. 
Similarly, neuronal biclusters derived from mouse brain tissues provided information about 
expression in the dorsolateral prefrontal cortex of Down syndrome patients.  

4.2 Future work 

Future work will include obtaining a wider range of gene sets based on larger collections of 
training data, and exploring the impact of varying training set size or other parameters.  Biclusters 
identified with ISA depend on the initially chosen set of genes and the threshold parameters tG and 
tC.  By varying the threshold parameters and running ISA with different initial conditions, it is 
possible to generate a representative set of biclusters and to determine the method’s sensitivity to 
these changes.  Additionally, it is preferable to identify smaller biclusters that consist of tightly 
linked genes. This goal can be realized by either refining our smaller discovered biclusters or by 
clustering the larger ones into smaller subsets. The impact of using different biclustering methods 
should also be explored further. To expand the training data sets, integration of data from different 
microarray platforms and multiple species, though non-trivial, is feasible51,52 and desirable.  
Furthermore, it is important to determine how best to select training data to facilitate discovering 
new gene sets for the analysis of particular test data sets. Future work might explore the 
effectiveness of this approach as a function of, for example, distances between MeSH terms 
describing the training and test data.  Finally, future experiments are needed to identify and 
validate new functional relationships between genes that are suggested by our results.   
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RNA virus phenotypic changes often result from multiple alternative molecular mechanisms, where each
mechanism involves changes to a small number of key residues. Accordingly, we propose to learn genotype-
phenotype functions, using Disjunctive Normal Form (DNF) as the assumed functional form. In this study
we develop DNF learning algorithms that attempt to construct predictors as Boolean combinations of
covariates. We demonstrate the learning algorithm’s consistency and efficiency on simulated sequences, and
establish their biological relevance using a variety of real RNA virus datasets representing different viral
phenotypes, including drug resistance, antigenicity, and pathogenicity. We compare our algorithms with
previously published machine learning algorithms in terms of prediction quality: leave-one-out performance
shows superior accuracy to other machine learning algorithms on the HIV drug resistance dataset and the
UCIs promoter gene dataset. The algorithms are powerful in inferring the genotype-phenotype mapping
from a moderate number of labeled sequences, as are typically produced in mutagenesis experiments. They
can also greedily learn DNFs from large datasets. The Java implementation of our algorithms will be made
publicly available.

1. INTRODUCTION

RNA viruses (including retroviruses), such as HIV, Influenza, Dengue and West Nile, impose a very
significant disease burden throughout the world. Because of their very short generation time and
low replication fidelity,1 RNA viruses exhibit extensive variability at the nucleic acid and protein
level which results in fast adaptation rate, and great ability to evade the immune system and
antiviral drugs.2,3 For example, HIV drug resistance has developed to all available drugs,4 and some
drug resistance mutations are probably present before the start of therapy;5 Influenza resistance
to Neuraminidase Inhibitor is rare but the resistance mutations are emerging and the resistance
becoming more prevalent.6

Genotype-phenotype function learning is important first step in elucidating the mecha-
nisms responsible for various viral phenotypes. It is also a crucial step towards inferring the pheno-
type from sequence alone, which has broad uses in clinical decision making (e.g. antiviral drug choice
based on drug resistance) and in public policy (e.g. vaccine formulation based on immunogenicity
and cross-reactivity).

We believe that by appropriately exploiting domain knowledge, computational methods can
efficiently and correctly learn genotype-phenotype mapping. This can be combined with the large
and rapidly growing sequence datasets to reduce the amount of required biological experimentation.
The fast replicating RNA viruses provide us a large pool of RNA virus sequences data. There were
229,451 sequences in the HIV Sequence Database at Los Alamos National Laboratory by the end
of 2007, an increase of 17% since the year before (http://www.hiv.lanl.gov/). This abundant data
suggests a great opportunity for computational models to unveil the underlying mechanisms of
phenotype changes. Specifically, by making best usage of the domain knowledge the models could
capture the genotype-phenotype correlations and improve prediction performance. We believe that
computational tools will be essential as exploratory and interpretation systems to support clinical
decisions concerning the prediction of the phenotypes.7

RNA virus phenotypes typically result from multiple alternative mechanisms. Each mechanism
is sufficient to explain the phenotypes and is constituted of a small number of key residues; yet
each key residue alone may correlate weakly with the observed viral phenotype. This is biologically
plausible and can be seen in a variety of biological evidences. For example, drug resistance is often
a steric-structural problem, and the physical interactions with inhibitors involve more than one
part of the target molecule, e.g. Protease Inhibitors (PIs) bind to four or more binding pockets
in the protease substrate cleft of HIV viruses;8 a variety of active site properties are playing roles
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in the binding determination, such as residue types, hydrophobicity, charges, secondary structure,
cavity volume, cavity depth and area etc. Therefore, multiple, alternative potential mechanisms
exist. Each mechanism involves only a small number of mutations since it has to be “discovered”
by the virus via random mutations. Thus overall only a small number of key residues are involved.
Therefore, a short Disjunctive Normal Form (DNF, “OR” of “AND”) would be an appropriate bias
over the hypothesis space under these assumptions. DNF is a disjunction of conjunctions where
every variable or its negation is represented once in each conjunction. DNFs of proteins provide
a mapping between key residues and their phenotype, and are an informative abstraction of key
residues for the construction. Another advantage of DNF is that it is a natural form of knowledge
representation for humans to interpret.

The learning of DNFs is a machine learning technique to infer Boolean function relevant with
a class of interest. It has been extensively used in electric circuit design, information retrieve,9

chess game,10 and so on. The learnability of DNFs has been a fundamental and hard problem in
computational learning theory for more than two decades. Because of the combinatorial complexity,
exhaustive search algorithms for finding solutions require huge computational resources. Our group
has been developing algorithms for accelerating and optimizing the DNF learning for RNA virus
phenotypes, based on biologically plausible assumptions. We are also concerned with the amount of
data available and the learning efficiency of the algorithms. In this study, we develop fast exhaustive
DNF learning algorithms under biologically plausible assumptions. The algorithms can learn DNFs
either from only a few mutagenesis experiments or from large high-throughput datasets. The learning
quality is evaluated by examining the biological interpretation and prediction quality of the functions
on a variety of RNA virus datasets representing different phenotypes.

2. Related computational work

Existing work on computational and statistical inference of genotype-phenotype relationship focuses
on population genetics, using linkage analysis and association studies. Linkage analysis is not appli-
cable to our case because crossover is not a significant force in the evolution of most RNA viruses.
Similarly, association studies are not applicable here because they can only detect single-locus as-
sociations, or else require exceedingly large datasets: for a typical scenario where up to a few dozen
labeled sequences are available and the phenotype depends on 2-4 key residues that interact in a
complex fashion, there is not enough power in statistical tests to identify these residues. More specif-
ically, tests like those described in11–13 look for association between each individual residue position
and the phenotype. But if the phenotype is determined by a complex interaction among, say, four
residue positions, then there will be only moderate association between any one of these positions
and the phenotype label, and this association may not be reliably detected with the limited num-
ber of labeled sequences that are usually available. This is a weakness shared by all methods that
look for phenotypic association with individual residue positions (call these “position-specific asso-
ciation methods”). This deficiency on the real data was described in.14 Although position-specific
association methods can be expanded to look for phenotypic associations with any pair or triplet of
residues etc., the exponential growth in the number of covariates further reduces the power of the
tests. An even more serious limitation of these methods is that they assume that the labeled data
were independently sampled, a patently false assumption in most cases of interest.

Rule induction algorithms, such as simultaneous covering by decision tree algorithm,15 and
ordered list of classification rules induction16 can also mine if-then rules, but they only discover
small number of rules for efficient prediction or classification purposes. Sequence analyses using
logic regression17 and Monte Carlo Logic regression18 adaptively identify weighted logic terms that
are associated with phenotypes. These approaches do not explore the whole hypothesis space to
identify all possible solutions; hence it is not guarantee to learn the global optimal solution.

Many state-of-the-art machine learning approaches have been applied to RNA virus genotype-
phenotype mapping, such as support vector machine (SVM) regression,19 decision tree classifica-
tion,20 statistical models,21 neural network,22,23 recursive partitioning,24 linear stepwise regression,25

support vector regression,8 least-squares regression,8 and least angle regression.8 These models learn
from a training data set and then test their performance using a test data set. The effort focuses
on the prediction accuracy in a cross validation manner, but these approaches lack the intention
to learn biologically meaningful and interpretable functions. Nonetheless, we will comprehensively
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compare our DNF learning algorithms with these approaches on prediction quality.
We are not aware of any statistical or computational methods designed specifically to infer

genotype-phenotype relationship in RNA viruses or other situations dominated by point mutations
and small to moderate datasets.

3. Disjunctive Normal Form (DNF) learning algorithms

Disjunctive Normal Form (DNF) is a disjunction of conjunctions, where the conjunctions vary over
positive and negative literals. Any given boolean function f : {0, 1}d → {0, 1} can be written in an
equivalent DNF. For example, a DNF formula is of the form:

f(x1, x2, x3) = x1 ∧ x3 + x1 ∧ ¬x2 ∧ x3 + x2
where ‘∧’ denotes ‘AND’, ‘+’ denotes ‘OR’, ‘¬’ denotes negation, and ‘x’ is a binary literal. This

example formula is a 2-term 3-DNF which contains two conjunctive terms (called clauses hereafter)
with a maximum clause length of 3 literals. The size of the DNF formula is defined as the number
of clauses it contains. A DNF formula represents a logic if-then rule, which is true only if the logic
calculation of inputs is true. To adapt biological sequence data, the binary literals are extended
to positional category variables. For example, an extended literal ‘x = 5A’ means ‘x = Ind(the
sequence item at the 5th position is ‘A’)’, where ‘Ind()’ is an indicator function, and ‘A’ is the
string representation of amino acid or nucleotide acids. This extension enables us to assign labels to
any biological sequences. When a function assigns a positive label to an input sequence, we say that
the function ‘covers’ the sequence. The goal of our DNF learning algorithm is to learn the shortest
DNF(s) that cover all the positively labeled data, and do not cover any of the negatively labeled
data.

Finding the minimum size DNF formula is a well-known NP-Complete problem;26,27 hence there
is no polynomial time learning algorithm. Existing practical solutions usually sacrifice completeness
for efficiency. The existing heuristic or approximation approaches can be categorized into deter-
ministic9,28,29 and stochastic algorithms.10,30 The deterministic methods include bottom-up schemes
(learning clauses first and building DNFs in a greedy way) and top-down schemes (converting DNF
learning to a Satisfiability problem). Stochastic methods randomly walk through the solution space
to search for clauses but are not guaranteed to yield optimal solutions.

In this study, we aim to find the minimum size DNFs by making the assumption that only small
numbers of key residues are involved in determining the functions. The assumption is biologically
plausible and can be seen in a variety of RNA virus phenotypes:14 Drug resistance: In Influenza,
resistance to the M2 ion channel blockers amantadine and rimantadine is associated with two
mutations in the M2 protein;31 Immunogenicity: In HIV-1, decreased immunogenicity has been
shown to be caused by three mutations in the gag protein;32 Pathogenicity: In Avian Influenza,
dramatically increased pathogenicity was found to be associated with a small number of mutations
in the polyprotein cleavage site;33 Antigenicity: In Influenza A, the investigation of the differences
between the vaccine strain (A/Panama/2007/99) and the circulating (A/Fujian/411/02-like) virus
showed that two mutations in the hemaglutinin protein are responsible for the antigenic drift.34

Using this assumption, our method:

(1) Converts DNF learning to learning k-DNF where k ≥ 1 is the maximum size of conjunctive
clauses. (Standalone DNF learning algorithm)

(2) Exhaustively learns monotone DNF(s) after feature selection (Monotone DNF learning algo-
rithm)

(3) Greedily learns DNFs for hard problem settings.
(4) Extracts biologically meaningful solutions and better predicts phenotypes from genotypes.

3.1. Standalone DNF learning

Valiant35 showed that for every constant k ≥ 1, k term DNF can be PAC learned in polynomial
time by k-CNF, i.e. CNFs with at most k literals in each clause. K-term DNF learning is essentially
a combinatorial problem. The standalone DNF learning algorithm first learns a set of conjunctive
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clauses deterministically with the maximum clause length of k (table 1), and then constructs DNFs
from the clause pool. The construction process becomes a typical SET-COVER problem (table
2) after converting each clause into a set of sequences it covers. In response, the DNF learning
algorithm is equivalent to finding the minimum number of sets that cover all the positive sequences.
Although the SET-COVER problem is again NP-Complete, by limiting the maximum clause length,
for typical RNA virus problem settings the number of clauses is usually manageable and the SET-
COVER can be exhaustively completed. Typically, the number of possible clauses of sizek is up to
Lk, where L is the sequence length. The actual number of clauses that appear in the dataset is much
smaller than this number, especially for biologically conserved datasets. After equivalence filtering
(see Section 3.4), given the datasets we evaluated, the number of learned clauses is usually about
several hundreds.

The standalone algorithm can be extensively used to infer DNFs from small (a couple of se-
quences) to medium size (hundreds of sequences) datasets, or large conserved datasets.

Table 1. Clause learning algorithm

Clause Learning Algorithm (S, k):
Input:

A set S of already-available labeled sequences
k: assumed upper-bound length of clauses (a small positive integer)

Steps:
1. Enumerate all combination of literals to form conjunction clauses
2. Record the set of (positive and negative) sequences that each clause covers
(n+

j , n
−
j )

Output:
The set of clauses C and the corresponding sequence index sets (N+, N−)

Table 2. DNF learning algorithm

Disjunctive Normal Form Learning Algorithm(C, n+):
Input:

A set C of clauses
n+: the set of positive sequence index to be covered by the clauses

Steps:
1. Euivalence filtering (see Section 3.4)
2. Among the clauses that cover only the positive sequences, find a minimum set of
clauses that cover all the positive sequences:

2a. start from the clauses that cover the positive sequences which are rarely covered
by other clauses

2b. repeat 2a recursively until all the positive sequences n+ are covered
Output:

The set of the shortest DNFs

3.2. Monotone DNF learning after feature selection (MtDL)

In machine learning, feature selection is a technique of selecting a subset of relevant features to
build robust learning models or for prediction purposes. Here we use feature selection to choose the
set of features that we believe the solution DNFs are based on, and then construct DNFs within the
selected feature space. Note that the feature selection is only used to narrow the feature space, but
does not infer any mapping functions. The monotone DNF learning algorithm then exhaustively
builds DNFs based on the selected features. By doing this, the size of the solution space is greatly
narrowed, as a result MtDL does not need to limit the maximum length of clauses and can search
the hypothesis space more thoroughly than the standalone DNF learning algorithm.
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The Monotone DNF learning algorithm after feature selection (MtDL) is explained in table 5.
The learning algorithm first enumerates all possible literals within the selected features, and then
combines them into conjunctive clauses. MtDL differs from the standalone algorithm in that it does
not limit the maximum size of clauses but completely considers all possible combinations. Take a
typical example: L features are selected after feature selection, where L is usually much smaller
than the sequence length. In step 1 there should be at most M = 20 ∗ L possible literals in the
case of protein sequences. Because the literals from the same position will not appear in the same
conjunctive clause, we do not need to consider all 2M combinations, and instead only combinatorially
choose up to L literals from M. Hence the total number of clauses is at most N = (M choose L). In
reality, depending on the divergence and the amount of the data, the actually number of possible
literals is always much smaller than this number. Furthermore, in step 4, the N clauses will be
pre-filtered by removing the clauses that cover any negative sequences. When the clause pool is
ready, in step 5 the algorithm incrementally constructs the combination of clauses to be candidate
DNFs and examines the coverage of sequences. MtDL starts from 1 clause, and checks the next
larger number if no solution is found. The algorithm terminates when the DNFs cover all positive
sequences but not any of the negative sequences. In the result section we show that in practice
MtDL runs fast on real RNA virus datasets.

Feature selector: The choice of feature selector is critical to the MtDL algorithm. The best
feature selector for MtDL needs to guarantee that the selected feature space is a superset of the
DNF solution space, and as small as possible for fast calculation. The Combinatorial Filtering
(CF) algorithm we developed14 works seamlessly with MtDL as a feature selector. CF() efficiently
identifies the smallest set of positions that completely explains the differences between classes,
thus MtDL can definitely learn DNFs based on these positions. In the following evaluation, MtDL
always runs together with CF(). Notwithstanding, other feature selection methods, such as LASSO,
Logistic Regression with regularization, or dimension reduction methods like PCA, are also good
candidate selectors, but in these cases, the coverage threshold might need to be set (section 3.5).

Table 3. Monotone DNF learning algorithm

Monotone DNF Learner (F , S):
Input:

F: A set of selected features (by CF(), for example)
S: the labeled training datasets

Steps:
1. Construct {L}, the list of literals in the features (e.g. 5A).
2. Throw out L that does not cover any positive sequences.
3. Combinatorial construct {Clauses}, the list of conjunctive clauses from {L}, (e.g.
5A ∧ 8C). The possible combinations are |L| chooses 1, 2, .., |F |.
4. Throw out the conjunctive clauses that cover any negative sequences.
5. Incrementally construct {DNF}, the list of disjunctive normal form that covers all
positive sequences but no negative sequences: starts from 1 clause, construct DNFs
from {Clauses}, try the next larger number if no solution learned.

Output:
The set of the shortest DNFs

3.3. Greedy versions of both algorithms

As we will show in the result section, with typical RNA virus datasets, the standalone and monotone
DNF learning algorithms learn DNFs efficiently. In cases of very large dataset, both algorithms
are modified to greedy versions to learn DNFs rapidly. The greedy versions only differ from the
exhaustive versions in the DNF construction step. Instead of exhaustively combining all clauses to
construct DNFs, the greedy algorithms iteratively select the clause that covers the largest number
of the uncovered positive sequences until all the positive sequences are covered.
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3.4. Equivalence filtering

Computationally equivalent clauses cover the same set of sequences while differing in their compo-
sition literals. They are equivalent in DNF functions in the sense that replacing one clause with its
equivalent clauses will not change the predictions of the DNF on the same training set. Equivalent
clauses are very common in RNA virus datasets; therefore, during DNF learning process equivalent
clauses are filtered and only one of them is used as the representative to construct DNFs. By using
equivalence filtering the DNF learning running time is greatly reduced. Note that the equivalence
filtering is only for computational efficiency purpose. After learning DNFs, all clauses that have
equivalent clauses will be expanded to recover all the DNFs.

3.5. Avoiding over-fitting and robustness to noise

The following two techniques are used to avoid over-fitting and make the algorithms robust to noise:

(1) DNF pruning: similar to the pruning of decision tree, after learning DNFs the clauses that
only cover a small number of sequences may be pruned if removing them results in an increase
of the prediction accuracy on the test dataset. The advantages of pruning are:

• Avoiding over-fitting, because irrelevant clauses are removed.
• The DNFs are shorter, which makes them easier to understand and more biologically

meaningful.
• Robust to noise, because pruned DNFs ignore the clauses/literals rendered meaningless by

noise.

(2) Threshold setting: set thresholds of the fractions of the sequences that the learned DNF(s)
cover. The DNF learning algorithms can be easily modified to terminate when at least a fraction
p of the positive sequences are covered, and at most a fraction n of the negative sequences can be
covered by the DNFs. The thresholds p and n are determined in a cross-validation way. Similar
to pruning, the threshold setting method can also avoid over-fitting, learn shorter DNFs and
be robust to noise. One advantage of threshold setting over pruning method is that threshold
setting usually achieves better prediction quality.

3.6. Extension of literals

The literals can also be extended to negation of one amino acid or a subset of the amino acids.

3.7. Extension to multiple class data

The algorithm is applicable to multiple class data by running multiple times with each time one of
the classes is made positive class and the rest are merged as negative class.

4. RESULTS

4.1. Demonstrating DNF learning algorithms consistency

The DNF learning algorithms will first be validated on simulated protein sequences with hypotheti-
cal target functions. We will use this stage to validate the algorithms’ consistency. When generating
simulated sequences, we match the position-specific amino acid distributions to those of a real pro-
tein datasets, and then generate random phenotypic target functions (making sure they did not label
the entire dataset with the same value). We use 732 HIV-1 gp160 protein sequences (downloaded
from LANL), and assumed a variety of target functions (e.g. (70a∧9l∧11p∧70t) + (62l∧45m∧36y∧
9l) + (62P ∧ 53V ∧ 36s) + (83i∧ 45I) = +) . Each target function contains a number of clauses, and it
is used to label the sequences accordingly. Notice that this method enables us to generate as many
sequences as we want so we can test the algorithm convergence under a variety of conditions. We
repeated this process many times, and in all of these cases both standalone algorithm and MtDL
algorithm converged to the target functions with moderate number of sequences.
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Fig. 1. The evaluation of MtDL algorithm on simulated sequences. From left to right, the number of CNF
clauses, the number of DNFs, running time, prediction sensitivity and specificity are plotted as functions against the
number of key residues assumed in the target function (rows), and the number of positive sequences and negative
sequences (vertical columns and horizontal rows of small colored squares). The numerical values of the colors are
shown in the colorbar. Take the top left chart for example, when the key residues are assumed to be 2 in the target
function, with say 100 positive and 2 negative sequences used, the number of CNF clauses is about 12 (red color
means higher value as indicated in the colorbar).

4.2. Measuring inference efficiency (convergence rate as function of dataset
size)

To assess the efficiency of our learning method, we would like to understand the relationship between
the complexity of the function to be learned and the number of training examples needed to converge
to it. Namely, we would like to know the convergence rate as a function of the amount and type
of available sequences and the complexity of the genotype-phenotype mapping. This is important
because the available number of sequences vary for different datasets. Based on the convergence rate
we can assess the likelihood of convergence, and whether (and how much) further experimentation
will be needed.

To do this, we used 588 aligned sequences of HIV protease protein downloaded from the Stanford
HIV database, with an aligned length of 99. We then randomly generated putative binary target
functions, each depending on a small number (2..5) of literals. For each such target function, the
588 sequences were labeled accordingly. The DNF learning algorithm was then run 20 times, each
time assuming a different target function to produce a statistically robust result. As an illustration,
we will show the evaluation results of MtDL in the following sections, and the simulation result of
the standalone algorithm is similar.
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Convergence Rate: As described in the introduction, we are concerned with the relation
between the amount of available data and the convergence of the algorithm. It is therefore most
meaningful to compare the convergence of the hypothesis space under our algorithm with this
method. Figure 1 shows the number of DNFs learned by the algorithm as a function of the number
of literals in the target function (# of key residues, top-to-bottom), and the number of positive and
negative sequences (vertical and horizontal rows of small colored squares, respectively, with values
of 2, 5, 10, 20, 50, 100 sequences each). Blue color indicates convergence (i.e. one single DNF is
learned given the amount of data, and the learned DNF is exactly the same as the target function),
and red color indicates alternative DNFs exist. The number of DNFs reduces with more available
sequences, and in all of the cases, MtDL algorithm converges with only about 50 positively labeled
and 50 negatively labeled sequences.

Another important factor in measuring efficiency is the running time due to the combinatorial
nature of DNF learning. Recall that in MtDL, the number of candidate clauses in step 4 is bounded
by 2L and the number of DNFs is bounded by 22

L

, where L is the number of literals. L increases
when more sequences are available, and this explains why, in the “running time” column the red
color, which indicates the longest running time, is at the right bottom corner. Note that the longest
running time is still on the order of seconds in the simulation.

The prediction sensitivity and specificity showed that the algorithms converge with only mod-
erate numbers of sequences. Interestingly, the prediction quality chars are symmetric in that if we
flip the labels of the data, the prediction accuracy will remain the same. This is important because
although our DNF learning algorithms identify DNFs that only cover the whole positive space, the
sequences in both classes contribute equally to the learning.

4.3. Retrospectively validating DNF learning algorithms when ground truth is
known

We retrospectively validated the MtDL algorithm by testing it on datasets with real viral protein
sequences where the genotype-phenotype mapping is already known and assumed to be correct. We
compiled a number of datasets covering several RNA viruses with varying degree of average sequence
identity (SI) and a variety of phenotypes, including Avian Flu High/Low pathogenicity (4 mutations
in HA proteins changed the pathogenicity from low to high in H5N2 Influenza HA, SI: 95%),33

Influenza H3N2 antigenicity shift (2 mutations in HA shifted the antigenicity of Influenza H3N2, SI:
93%),34 SIV Env neutralizability (2 mutations in SIV Env proteins determined the neutralizability
of SIV, SI: 99%),36 FIV tropism in CRFG cells (2 mutations in FIV polymerase PA subunit made
it unable to replicate in CRFK cells, SI: 95%).37 These conclusions were made from mutagenesis
experiments that were chosen empirically or by domain knowledge. We applied our MtDL+CF
(using CF as the feature selector) algorithm on the same set of mutagenesis sequences to predict
the key residues for the phenotype changes. For all the tests performed, our algorithm converged to
the correct answer(s). In contrast, the conventional position-specific association method we selected
as comparison,11 can only predict positions of importance, but our MtDL+CF algorithm explicitly
learns the actually mapping functions. Even so when only comparing the positions identified, the
conventional method only correctly identifies the positions in one of the datasets, and yields high
false positive and false negative rates in the other four datasets (Table 4). This demonstrates our
arguments in section 2 that if the phenotype is determined by a complex interaction, the traditional
methods cannot detect all the key residues correctly.

4.4. The utility of DNF learning algorithms on large datasets

To demonstrate the applicability of MtDL to learn biologically meaningful results, MtDL+CF was
applied to a large, divergent dataset, the HIV drug resistance dataset (download from Stanford HIV
database). The dataset was retrieved from the Stanford HIV database, including seven Protease
Inhibitor drugs and eleven Reverse Transcriptase Inhibitor drugs. We ran the MtDL algorithm on
all the drug datasets and learned very short and interpretable DNFs (Table 5). For example, a
protein is resistant to NFV when position 9 is I or (position 63 is I and position 9 is not I and
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Table 4. Comparing DNF learning with position-specific association methods Retrospective comparisons
of the DNF learning algorithm on a variety of datasets

Data set name
(# pos/# neg seq)

Golden standard
(identified mutations)

DNF(s) learned by
MtDL

Positions identified by
Traditional method

H3N2 hema Antigenicity
shift (490pos/421neg)

145H, 146Q 145H+146Q 18, 67, 122, 145, 146

H5N2 hema Pathogenicity
(4pos/11neg)

275K, 275T, 323K, 324R,
325K

323K+324R+325K 275, 323, 324, 325

FIV tropism (3pos/7neg) 30E, 32K 30K∧32E 32
SIV Envelope Neutraliz-
ability (8pos/5neg)

179N, 337R 179N+337R 331, 348

position 87 is not N) .
The purpose of these concise DNFs is three folds: 1) to identify the key positional determinants

of drug resistance, e.g. position 89I for RTV, position 36 and 45 for APV,etc.. These positions
have been identified by experiments and reported in literatures; 2) quantitatively describe how the
residues in these positions combine to produce resistance; and 3) proposed new interpretation of
HIV drug resistance mechanisms that have potential to be validated by domain experts.

Table 5. DNFs learned from HIV drug resistance dataset

Drug type Drug DNF = sensitivity/specificity; in the DNFs, lowercases mean negation
PI NFV 9l + (63l ∧ 9i ∧ 87n) = 0.902/0.834

RTV (81i ∧ 81v) + 83i + (70a ∧ 70l ∧ 89l ∧ 70t) = 0.981/0.988
LPV (9l ∧ 53i) + (9l ∧ 45m ∧ 9h ∧ 9m) = 0.961/0.965
APV (36s ∧ 45m ∧ 36y ∧ 9l) = 0.787/0.961
IDV (70a∧9l∧11p∧70t) + (62l∧45m∧36y∧9l) + (62P ∧53V ∧36s) + (83i∧45I) = 0.965/0.982
SQV (9r∧83i)+(62q∧53i∧89l∧70l)+(45i∧89l∧70t∧70a)+(76V ∧89l∧81v∧9l) = 0.899/0.963
ATV (70a ∧ 9l) + (89l ∧ 76V ∧ 81a) = 0.833/0.910

NRTI DDI 150M + (68s ∧ 68t ∧ 68d ∧ 68n) + (74v ∧ 42n ∧ 74t) = 0.738/0.985
AZT (73v ∧ 34− ∧214t ∧ 214d) = 0.848/0.988
D4T (209l ∧ 214d ∧ 34t ∧ 214t) + (68t ∧ 34m ∧ 214d ∧ 214t) + (68T ∧ 117I ∧ 66N) = 0.797/0.956
TDF (34i∧66N ∧214t∧183v)+(68g∧19r∧214Y ∧68t)+(34V ∧68t∧214f ∧214t) = 0.784/0.980
ABC 183V + (214d ∧ 121p ∧ 209l ∧ 82k) + (82k ∧ 66d ∧ 214Y ∧ 180c) = 0.940/0.944

NNRTI NVP (102k ∧ 102r) + (189g ∧ 102n) + (180y ∧ 100e) = 0.868/1.0
DLV (210t ∧ 102N) + (180y ∧ 100q ∧ 226F ∧ 210t) = 0.915/0.994
EFV (102r ∧ 102k) + (102s ∧ 189g) = 0.871/0.997

4.5. Improved prediction performance of DNF learning algorithms on the HIV
drug resistance problem

To demonstrate the prediction power of our DNF learning algorithms, we examine the prediction
quality of both standalone and MtDL learning algorithms on two well-known Biology datasets re-
spectively: the HIV drug resistance dataset and the UCI promoter gene dataset (details in section
4.6). Many state-of-the-art machine learning models, such as Support Vector Machine, Decision
Trees, Neural Networks, Nave Bayes etc, have been tested on the datasets to learn genotype-
phenotype mapping, and the five-fold cross-validation prediction quality was reported.8 In the HIV
drug resistance dataset, drug resistance levels are defined as fold-increased resistance compared to
the wild type virus strain; therefore, for classification models the numerical resistance values were
converted to multiple class labels by setting resistance thresholds. We use the thresholds suggested
on the website, and select the sequences with significant resistant values and susceptible values
while ignoring those with weak resistance or weak susceptible labels. The five-fold cross-validation
prediction accuracies of Protease Inhibitor are shown in table 6. The standalone DNF learning al-
gorithm outperforms other machine learning algorithms in 4 out of the 7 PI datasets (Table 6). The
result suggests that by exploiting domain-knowledge to reduce the running time, the exhaustive
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Table 6. Comparing Standalone DNF learning with published machine learning algorithms on HIV
Protease Inhibitor datasets. The numbers of positively labeled and negatively labeled sequences in the
datasets are shown, as well as and the prediction accuracies of 1) Standalone DNF, 2) Z-score,11 3)
Naive Bayes (from Weka), 4) SVM (svm light software, default parameters), 5) Decision Tree (Weka,
ID3 algorithm), 6) Winnow (Weka). The highest accuracy of each drug is highlighted in bold

Prediction accuracy (%) NFV SQV IDV RTV APV LPV ATV
#pos/#neg sequences 194/211 119/321 115/279 154/244 47/308 103/142 42/111
Standalone DNF 93.5 91.8 91.7 96.1 96.1 88.2 93.3
Z-score 74.6 87.3 91.7 87.4 92.3 90.5 88.8
NaiveBayes 95.1 75.1 78.4 93.2 87.3 92.7 73.1
SVM (svm light) 77.2 74.2 83.4 92.2 87.5 86.3 72.6
DT 94.0 89.0 90.1 98.6 91.8 98.6 78.5
Winnow 91.1 84.7 89.9 94.6 91.1 94.6 85.9

Table 7. Comparing MtDL+CF with published machine learning algorithms on Promoter Gene dataset

System Errors Comments
MtDL + CF 4/106 No domain knowledge required
KBANN 4/106 A hybrid ML system that uses domain knowledge to initial the network structure
BP 8/106 Std backprop with one hidden layer
O’Neill 12/106 Ad hoc technique from the bio. lit.
Nearest neighbor 13/106 k-nearest neighbor, k = 3.
ID3 19/106 Quinlans decision-tree builder

algorithms achieve better prediction performance, and DNF turns out to be a reasonable bias on
the hypothesis space as genotype-phenotype mapping functions for HIV drug resistance.

4.6. Improved prediction performance on the UCI Promoter Gene dataset

Another dataset we use to evaluate our DNF learning algorithms’ prediction power is the popular
UCI’s promoter gene dataset, which has been studied with many machine learning models. The
task is to predict promoters from DNA sequences of nucleotides, A, C, G, or T. The dataset
contains 53 promoter sequences and 53 non-promoter DNA sequences. In Biology, the promoters
are characterized by special motifs at certain positions from the transcription starting location,
e.g. “cttgac” motif at +37 position indicates a promoter region. However, deriving all such domain
theories is impractical and not meaningful. Computationally machine learning algorithms showed
promising prediction performance on this dataset (Table 7). Among them the knowledge-based
artificial neural network (KBANN)38 achieves the best accuracy of 4 out of 106 errors in a held-out
test manner.

The KBANN model is a hybrid system of both Explanation-based learning (EBL)(a system that
corporate pre-existing knowledge) and Empirical learning system (learning solely from training
examples). In38 they argue that the hybrid system should be superior, in terms of classification
accuracy, to empirical learning systems. On the Promoter Gene dataset, KBANN learns a neural
network model and translates a set of domain theories to initial the neural network structure.
The error rate is the number of wrongly predicted examples in a leave-one-out cross-validation
(LOOCV) manner. Three other machine learning algorithms, standard back propagation, Quinlan’s
ID3, O’Neill’s ad hoc partial pattern matching, and the “nearest neighbor” are compared in Table
7.

We employed the same LOOCV method on MtDL algorithm, and selected CF() as the feature
selector. Although the prediction performance of MtDL+CF is the same as the best one KBANN,
MtDL+CF does not require any pre-existing domain knowledge, which is not always available.

5. CONCLUSIONS

We developed two efficient DNF learning algorithms under the assumption that DNF is an appropri-
ate bias over the hypothesis space for RNA virus phenotype datasets. The assumption is biologically
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plausible and very important to our algorithms, because it reduces the hypothesis space greatly to
make the computational hard problem solvable. We also demonstrated the learning efficiency and
consistency on simulated sequences, showed the strength of the methods in learning biological mean-
ingful mapping functions and showed superior prediction accuracies to positional-specific methods
and other machine learning methods.

We aimed to learn the minimum size DNFs even though the exact learning is NP-complete.
Compared to existing heuristic algorithms that only focus on learning time and learnability, we
exploit the domain knowledge and develop efficient exhaustive algorithms to learn the shortest
DNFs. We also applied a number of techniques to accelerate the DNF learning process, including
setting the maximum length of clauses in standalone algorithm, using feature selector (CF) in
MtDL to narrow down the searching space, equivalence filtering of the clauses, and extending
both algorithms to greedy versions. This enables the algorithms to run over very large datasets.
Notwithstanding, as shown in the result section, the DNF learning algorithms are also powerful in
extracting DNFs from only a small numbers of sequences.

We focus on the learning from mutagenesis data where the data is highly reliable and the
alignment is well defined. In the cases of noisy data and low quality alignment when combinatorial
algorithms usually suffer more than statistical models, we use pruning and thresholds to make the
algorithms robust to noise.

Our goal in this work has been to aid biological investigation by learning the genotype-phenotype
mapping. Since this is our focus, we compared our method to other methods designed to do the same.
Our algorithms explicitly learn genotype-phenotype mappings that are interpretable to humans, so
that the mapping functions can not only predict phenotypes from genotypes along, but also unveil
biologically meaningful explanations. The algorithms can learn DNFs from different sizes of data:
ranging from a few sequences to large high-throughput datasets, and show superior prediction
performances. In contrast, given the limited data, the positional-specific association methods would
be ineffective if they were to be applied to the full set of protein positions because there is not
enough statistical power for the inference. Given full size of dataset, our DNF learning algorithms
outperformed other published machine learning algorithms on two common datasets.

We successfully demonstrated the learning efficiency and the prediction power of our DNF
learning algorithms on RNA virus datasets, and the algorithms can be extensively used on other
domains where similar assumptions hold.
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Genome-wide associations studies (GWAS) have been very successful in identifying common 
genetic variation associated to numerous complex diseases [1]. However, most of the identified 
common genetic variants appear to confer modest risk and few causal alleles have been identified 
[2]. Furthermore, these associations account for a small portion of the total heritability of inherited 
disease variation [1]. This has led to the reexamination of the contribution of environment, gene-
gene and gene-environment interactions, and rare genetic variants in complex diseases [1, 3, 4]. 
There is strong evidence that rare variants play an important role in complex disease etiology and 
may have larger genetic effects than common variants [2].  

Currently, much of what we know regarding the contribution of rare genetic variants to disease 
risk is based on a limited number of phenotypes and candidate genes.  However, rapid 
advancement of second generation sequencing technologies will invariably lead to widespread 
association studies comparing whole exome and eventually whole genome sequencing of cases 
and controls. A tremendous challenge for enabling these “next generation” medical genomic 
studies is developing statistical approaches for correlating rare genetic variants with disease 
outcome.  

The analysis of rare variants is challenging since methods used for common variants are 
woefully underpowered. Therefore, methods that can deal with genetic heterogeneity at the trait-
associated locus have been developed to analyze rare variants.  These methods instead analyzing 
individual variants analyze variants within a region/gene as a group and usually rely on collapsing.  
They can be applied to both in cases vs. controls and quantitative trait studies are needed. The 
paper of Bansal et al. in this volume describes the application of a number of statistical methods 
for testing associations between rare variants in two genes to obesity. The authors considered the 
relative merits of the different methods as well as important implementation details, such as the 
leveraging of genomic annotations and determining p-values.  

Knowledge of haplotypes can increase the power of GWAS studies and also highlight 
associations that are impossible to detect without haplotype phase (e.g. loss of heterozygosity). 
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Even more complicated phase-dependent interactions of variants in linkage equilibrium have also 
been suggested as possible causes of missing heritability. In their work, Hallsorsson et al. 
formulate algorithmic strategies for haplotype phasing by multi-assembly of shared haplotypes 
from next-generation sequencing data. These methods would allow testing haplotypes harboring 
rare variants for association and potentially increase their explanatory power. 

Since single SNP tests are often underpowered in rare variant association analysis, Zeggini and 
Asimit propose a locus-based method that has high power in the presence of rare variants and that 
incorporate base quality scores available for sequencing data. Their results suggest that this multi-
marker approach may be best suited for smaller regions, or after some filtering to reduce the 
number of SNPs that are jointly tested to reduce loss of power due to multiple-testing adjustments. 

Finally, the paper of Zhou et al., presents a penalized regression framework for association 
testing on sequence data, in the presence of both common and rare variants. This method also 
introduces the use of weights to incorporate available biological information on the variants. 
Although these tactics improve both false positive and false negative rates, they represent an 
incremental development and there is still significant room for improvement. 

With the development of sequencing technologies and methods to detect complex trait rare 
variant associations many new and exciting discovery are imminent.  The analysis of rare variants 
is still in its infancy and the next few years promises to produce many new methods to meet the 
special demands of analyzing this type of data. 
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The contribution of collections of rare sequence variations (or ‘variants’) to phenotypic expression has begun 
to receive considerable attention within the biomedical research community. However, the best way to 
capture the effects of rare variants in relevant statistical analysis models is an open question. In this paper we 
describe the application of a number of statistical methods for testing associations between rare variants in 
two genes to obesity. We consider the relative merits of the different methods as well as important 
implementation details, such as the leveraging of genomic annotations and determining p-values.  
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1.  Introduction 

1.1.  Rare variants and the ‘hidden heritability’ of complex traits  

Genome wide association (GWA) studies have been pursued for many diseases and phenotypes. 
Although the results of these studies have been mixed, with some studies identifying more 
compelling associations than others, virtually all of these studies have resulted in the discovery of 
variants that collectively only explain a small fraction of the heritable component of the diseases 
and phenotypes they have considered [1]. This fact has not only raised important questions about 
the degree to which common variants, which are typically of focus in GWA studies, influence 
phenotypic expression, but also the best way to identify factors not detectable via current 
common-variant-based GWA study protocols [2] that contribute to a ‘hidden heritability’ behind 
phenotypic expression. 

Recently it has been argued that collections of rare variants could contribute to phenotypic 
expression over-and-above common variants [3-4]. The intuition behind this argument is that 
although each rare variant may have a small overall effect on phenotypic expression, collectively 
these variants may have a moderate or even more pronounced effect [3-4]. Rapid developments in 
high-throughput DNA sequencing technologies are likely to facilitate searches for rare variants 
that may influence phenotypic expression, but are not the only item necessary for a successful 
study of rare variants. Also needed are appropriate study designs and subject sampling methods, 
data analysis methods, and ways of validating or conceptualizing the biological influence of 
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multiple rare variants on phenotypic expression once they are found to be associated with a 
phenotype.   

In this paper we describe a number of different statistical methods for testing the hypothesis 
that collections of rare variants are associated with a qualitative phenotype in a case/control 
sampling setting. These methods build off the notion of ‘collapsing’ a number of rare variants into 
a single set whose collective frequency is contrasted between case and control groups [5-6]. Many 
approaches involve regression or regression-like models in which dummy variables indicating the 
presence (i.e., individuals assigned a dummy variable value of 1.0) or absence (0.0) of a variant 
are used. For the collapsed set of variants, an individual is ultimately assigned a value of 1.0 if 
they have any of the rare variants among a larger set and 0.0 otherwise. This collapsed dummy 
variable can then be tested for association by testing the regression coefficient associated with the 
dummy variable [7]. Other regression approaches consider the effects of each individual variant, 
no matter how rare, as well as collapsed sets of variants [8]. We apply these and other methods to 
a case/control study of obesity and compare the results of the application of each. We also 
consider extensions of the proposed statistical analysis methods.  

Before describing the data set, statistical methods, and the results of their application, 
however, we provide brief descriptions of two overarching frameworks for the study of the 
collective effects of rare variants on phenotypic expression: one leveraging functional genomic 
annotations and one considering the collective effects of variants in defined contiguous genomic 
regions.  
 
1.2.  Collapsing variants based on functional annotations  
 
Testing collections of rare variants for association to a phenotype requires some way of grouping 
or collapsing variants into a coherent set; i.e., defining the set whose collective frequency is tested 
for association. This can be approached by defining a set based on functional annotations 
associated with the genomic regions harboring the variants to be tested for association. For 
example, one could test the collective frequency differences of coding variants, non-synonymous 
coding variants, variants in known transcription factor binding sites, or conserved sites, between 
cases and controls.  Such groupings could lead to easily interpreted biological associations but, 
ultimately, would only be as good and reliable as the annotations used. 
  
1.3. Moving window analysis 
 
An alternative to defining sets of collapsed variants based on functional genomic annotations is to 
consider all the variants in a genomic subregion defined by its size and test these variants for 
association. Such subregions could then be systematically tested over the entire genomic region of 
interest. By starting at one end of a genomic region of interest, testing variants within the 
‘window’ defined by the subregion, and then moving the window to an adjacent subregion, testing 
that subregion, and continuing this process until the entire region is covered would provide a test 
of the hypothesis that some subregions within the broader region of interest harbor collections of 
variants associated with a phenotype. This moving window approach can be repeated with 
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different window sizes, including overlapping windows, but at the cost of increased type I error 
due to the multiple tests. 
 
1.4. Accommodating other sources of variation and assessing statistical significance 

 
In any test of genetic association there are a few things that need to be considered. For example, 
stratification issues need to be accommodated or controlled for. This can be done by ensuring that 
the subjects used in a study are matched for genetic background or the statistical test used is 
appropriately adjusted for potential stratification [9]. In addition, in order to assess the statistical 
significance of an association study involving multiple variants within a genomic region, 
appropriate control for multiple comparisons must be made [10]. Finally, accommodating 
covariate effects (e.g., gender, age, other genetic factors, ancestry information, etc.) in association 
analysis is important, but may not be trivial for many statistical models. Thus, gauging the ability 
of different statistical analysis models to accommodate covariates may be of particular importance 
in rare variant analysis settings. 
 
2. Sequencing the MGLL and FAAH genes in obese and control individuals 
 
2.1. DNA sequencing and sample selection 
 
Genomic intervals covering two genes that encode the endocannabinoid metabolic enzymes, 
FAAH and MGLL, were sequenced in 289 individuals of European ancestry using the Illumina 
GA sequencer. Ancestry was determined using a panel of ancestry informative markers and 
individuals with an outlying genetic background were removed from the analysis. Sequencing was 
done using 36 base pair reads. The median coverage was 60X across the individuals sequenced. 
The program MAQ was used for alignment and variant calling, resulting in 1410 high quality 
single nucleotide variants (SNVs; 228 in the FAAH gene and 1182 in the MGLL gene) which 
were used for association analysis. The sequenced regions were captured using long range PCR 
and represented a total of 188,270 nucleotides. The 289 individuals included 147 normal controls 
(Body Mass Index (BMI) <30) and 142 extremely obese cases (BMI >40).  
 
2.2. Genomic annotations, window definitions, and multiple comparisons 
 
We leveraged genome annotations from the UCSC genome browser to identify sets of variants 
that reside in functionally-relevant regions of the genome. We identified sets of variants that 
reside within 5 different functional elements within the MGLL and FAAH genes: non 
synonymous SNVs (‘NS’), H3K27 acetylation sites, Fox2 interaction sites, Amidase protein 
domains, and all transcription factor binding sites (‘TFBS’). Variants within these elements were 
collapsed and tested for association with obesity. For the moving window analyses, we considered 
window sizes of 5 kb over the two genes. In order to accommodate multiple comparisons we 
identified the effective number of independent variants based on linkage disequilibrium (LD) 
using the method discussed by Nyholt [11]. This number provides a very rough approximation for 
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the number of tests to be corrected for and was found to be 584 for our data. We assumed a 
nominal type I error rate of 0.05 in assessing statistical significance of variant associations, so our 
approximate multiple comparisons corrected p-value was 0.05/584 = 0.000086 (-log(p-value) = 
4.06). Obviously, more sophisticated strategies for correcting for multiple comparisons, including 
possibly permuting cases and controls and repeating the entire moving window and functional 
annotation-based collapsed set analyses, need to be investigated. 
 
3. Statistical methods for rare variant associations 
 
We briefly describe 11 methods that can be used to test the hypothesis that collections of rare 
variants are associated with a phenotype. We also consider 9 high-dimensional regression and data 
mining procedures that can be used to simultaneously test the association of all individual 
variants, rare and common, as well as collapsed sets of variants. We did not consider covariates in 
these analyses. Space limitations preclude an in-depth discussion of each method so we provide 
references and only the main intuitions behind each method.  
 
3.1. Single locus and general collapsed variant test-based methods 
 
The following very brief descriptions of the methods we considered. Many of the papers 
describing these methods include discussions of possible extensions or alternative formulations of 
each method. We chose what we believe is the strategy that best represents the approaches 
described in those papers. 

  Single-locus tests (SL). We considered the use of Fisher’s exact test to assess the association 
between each SNV and morbid obesity case/control status. We pursued single locus tests as a 
contrast for the multilocus-based collapsed variant tests since the power to detect an association 
involving a rare SNV is low. 

Li and Leal Collapsing Method (LL). Li and Leal [6] proposed a collapsing method for testing 
for association with multiple rare variants. Briefly, the method collapses the genotype information 
across multiple (rare) variants into a single variable for each individual. This new variable can 
then be tested for association with a phenotype using a chi-square test or the Fisher exact test. 
Given a collection of variants (grouped together based on function or position in a genomic 
region), we considered the subset of variants with a low minor allele frequency (MAF <0.02). 
Additionally, variants with virtually no difference in allele frequency between the cases and 
controls (Fisher test p-value >=0.6) were also removed. Using the remaining variants, a binary 
variable was defined for each individual as 1 if the individual had the rare allele for any of the 
variants and 0 otherwise. Fisher’s exact test was used to compute the significance of the difference 
in allele frequency of this binary variable between the cases and controls. The p-value of the 
statistic was computed by permuting the case-control status of the individuals and determining the 
fraction of permutations for which the statistic was lower than or equal to the observed statistic.  

Madsen and Browning Method (MB). We implemented the groupwise association test 
described by Madsen and Browning [12]. Given a group of variants, this method tests for the 
presence of an excess of rare SNVs in the cases as compared to the controls. Each SNV is given a 
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weight based on its minor allele frequency in the controls. A score is calculated for each 
individual using the individual genotypes and the weights of each variant. The sum of ranks of 
scores of the cases is used as the statistic (similar to Wilcoxon rank test). We computed the p-
value for each statistic using a maximum of 1000 permutations. The test was performed using the 
‘general disease’ model described by Madsen and Browning [12]. This model only allows for the 
analysis of rare variants and does not accommodate the effects of common variants. 

Subset Selection Method (SS). Recently, Bhatia et al. [13] have proposed an extension of the 
Collapsing method of Li and Leal. Instead of collapsing across all rare variants in a set, the 
method searches for a subset of variants which maximally discriminate between the cases and 
controls. The method described by Bhatia et al. [13] uses a greedy algorithm to identify a subset of 
variants for which their collective occurrence or union has a large difference in frequency between 
the case and control individuals. This model only allows for the analysis of rare variations (MAF 
< 0.02) and does not accommodate the effects of common variations. Fisher’s exact test was used 
to assess the significance of sets of variants at any point in the search for the optimal set. 

Distance-based diversity (Dis). Distances between the diploid sequences of all pairs of 
individuals in the study were calculated as one minus the identity-by-state similarity across the 
variant loci in a set. The dispersion of (i.e., variation among) the sequences within and between 
case and control groups was then compared using the ‘betadisper’ function of the ‘vegan’ package 
(version 1.17-0) in the R computing environment [14]. This function essentially implements 
Anderson's [15] PERMDISP2 procedure for the analysis of multivariate homogeneity of group 
dispersions [15]. Tests of the hypothesis that there is greater diversity among the cases or controls 
was assessed empirically via a permutation test implemented in the function ‘permutest’ in the 
PERMDISP2 package.  

Omnibus haplotype frequency test (PHap). We considered the omnibus haplotype test strategy 
outlined by Fallin et al. [16] and  Zhao et al. [17] and implemented in PLINK [18] for sets of 
variants in contiguous regions. This approach essentially tests the hypothesis that haplotype 
frequency profiles are equal between cases and controls, where the haplotypes harbor the variants 
of interest.  

Power-based diversity statistic Gst (Div). We tested the hypothesis that for any set of variants 
the cases and controls would differ in terms of the diversity they exhibited across those variants. 
To conduct an appropriate test of this hypothesis, we implemented the procedure for assessing 
population differentiation based on the measure Gst described in equation 8 of Jost [19]. 

Sequence similarity statistic leveraging MDMR (Sim). We considered the use of the 
multivariate distance matrix regression (MDMR) and Generalized Analysis of Molecular Variance 
(GAMOVA) approaches discussed by Wessel et al. [20] and Nievergelt et al. [21] to test the 
hypothesis that the multilocus genotype profiles encompassing a set of variant loci exhibited by 
the cases were more similar amongst themselves than with the controls. Distances between pairs 
of sequences were calculated by subtracting the average value of identity-by-state similarity 
across loci in each window from one. The approach was implemented by O. Libiger and M. 
Zapala in Python (script available at http://polymorphism.scripps.edu/~cabney/). Permutation tests 
were used to assess statistical significance of any differences in similarity. 
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Ridge regression (Ridge). We used ridge regression to test the hypothesis that individual 
variants and collapsed sets of variants (made into a dummy variable, as described in section 1.1 
above) were associated with obesity level. We used the approach outlined by Malo et al. [22] for 
this analysis. The method of Hoerl, Kennard, and Baldwin [23] was used to estimate the ridge 
parameter. 

Logic regression (Logic). We also considered logic regression to identify combinations of 
variants that were associated with obesity. We used the implementation of logic regression that is 
available in the R computing environment package ‘LogReg’ [24]. We fit two logic trees and 
performed a null-model permutation test to assess significance of the association between 
identified sets of variants and case/control status.  

Set based analysis (PSet). We considered variant set-based tests similar in orientation to 
Fisher’s combined p-values methodology [25]. We use the method implemented in the PLINK 
software package for this analysis [18]. PLINK default parameters were used throughout the 
analysis. Statistical significance was assessed via a permutation test. 

 
Table 4.1. P-values for tests of the association of multiple variants within five functional 

genomic regions in the FAAH and MGLL genes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2. High-dimensional regression methods 
 
As noted, we also considered the analysis of the data using high-dimensional regression and data 
mining procedures. These procedures could essentially consider all the variants, both in isolation 
or in collapsed sets, as predictors of the phenotype and were not used in moving window analyses. 

FAAH
NS H3K27 TFBS FOX2 Amidase

# of variants 5 29 4 14 5
Dispersion (Dis) 0.59 0.05 0.77 0.99 0.61
Diversity (Div) 0.43 0.42 0.81 0.33 0.46
MDMR Similarity (Sim) 0.19 0.21 0.05 0.14 0.41
Li & Leal (LL) 0.60 0.03 0.60 1.00 0.50
Subset Selection (SS) 1.00 0.01 0.60 0.75 0.60
Madsen & Browning (MB) 1.00 0.01 0.33 1.00 0.75
Logic Regression (LR) 0.23 0.18 0.39 0.22 0.48
Ridge Regresssion (RR) 0.35 0.09 0.06 0.33 0.54
PLINK Haplotype (Phap) NA 0.92 NA 0.34 0.61
PLINK Set Analysis (Pset) 1.00 1.00 0.02 1.00 1.00

MGLL
NS H3K27 TFBS FOX2 Amidase

# of variants 9 100 11 3 0
Dispersion (Dis) 0.28 0.99 0.02 0.72 NA
Diversity (Div) 0.77 0.65 0.73 0.64 NA
MDMR Similarity (Sim) 0.81 0.07 0.67 0.29 NA
Li & Leal (LL) 1.00 1.00 1.00 0.75 NA
Subset Selection (SS) 0.60 0.43 1.00 1.00 NA
Madsen & Browning (MB) 0.75 0.30 0.02 0.20 NA
Logic Regression (LR) 0.35 0.67 0.02 0.49 NA
Ridge Regresssion (RR) 0.71 0.50 0.01 0.61 NA
PLINK Haplotype (Phap) NA 0.81 0.07 NA NA
PLINK Set Analysis (Pset) 1.00 0.43 0.05 1.00 NA
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Lasso  (L). We considered the use of Lasso-based regression [26] using ‘bridge’ regression 
with the penalty parameter set to 1.0 and all other parameters set to their default value [27], as 
implemented in the ‘gpsbridge’ function of the R/GPS interface developed by Jerome Friedman 
for the R computing environment [14]. 10-fold cross validation was performed to select the best 
model.  

Generalized path seeking regression (GPS). We employed ‘bridge’ regression with all 
parameters set to their default value [27]), as implemented in the ‘gpsbridge’ function of the 
R/GPS interface developed by Jerome Friedman for the R computing environment  [14]. 10-fold 
cross validation was performed to select the optimal model and penalty value.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 4.2. Moving window analysis of the MGLL gene using 11 different methods. Note that the 
y axis provides the –log(p-value) for the association for all variants in the 5 kb window whose 
midpoint is given on the x axis. 
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Stepwise Regression (SR).  We performed stepwise linear model selection via the Akaike 
Information Criterion (AIC) for choosing associated variants and collapsed variant sets using the 
function ‘stepAIC’ from the package ‘MASS’ developed for the R computing environment [14].  

Classification and regression trees (SPM-CART). We considered the CART method originally 
described by Breiman et al. [28] and implemented in the Salford systems data mining software 
suite (http://salford-systems.com/) to identify predictors of obesity.   

Multiple adaptive regression trees (SPM-TreeNet). We also used the TreeNet procedure 
originaly described by Friedman et al. [29] and implemented in the Salford systems data mining 
software suite (http://salford-systems.com/).  

Multivariate adaptive regression splines (SPM-MARS). We implemented the MARS procedure 
originally developed by Friedman [30] and implemented in the Salford systems data mining 
software suite (http://salford-systems.com/).  

Random Forests (SPM-RF). We explored the use of the Random Forests procedure introduced 
by Breiman [31] and implemented in the Salford systems data mining software suite 
(http://salford-systems.com/).  

Conjunctive rule learner (Weka CRL). We considered the conjunctive rule learner algorithm as 
described by Witten and Frank [32] and implemented in Weka [33] with no ranking.  

Representative tree (Weka REPTree). We used the representative tree algorithm as described 
by Witten and Frank [32] and implemented in Weka [33]. 
 
4. Results 
 
4.1. Collapsed variants based on functional annotations 
 
We first considered the significance of the difference of variants within the five functional 
elements derived from annotations for the FAAH and MGLL genes discussed in section 2.2. Table 
4.1 provides the p-values associated with 10 multilocus data analysis methods described in section 
3.1 (we did not consider single locus analyses here). From Table 4.1 it can be seen that, with the 
exception of an analysis of collapsed variants within all transcription factor binding sites (the 
‘TFBS’ column in Table 4.1) for the MGLL gene, there is not consistent evidence for association 
among the different methods.  
 
4.2. Moving window analysis 
 
We considered the application of the 11 different analysis methods to a moving window analysis 
of the MGLL and FAAH genes. The analysis explored adjacent windows of size 5000 bases for 
the both the MGLL and FAAH genes. The –log(p-value) computed for each test is plotted on the 
y-axis of Figure 4.2 against the midpoint of each window. The different panels (i.e., contour plots) 
reflect different analysis methods, which are, from bottom to top: standard single locus analysis 
using Fisher’s exact test (SL); Li and Leal’s [6] method (LL); the Madsen and Browning [12] 
weighted average statistic (MB); the optimal subset selection method [13]; SS); the sequence 
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Method Dis Div Sim Ridge Logic LL MB SS
Dis 0.13 0.40 0.29 0.27 -0.01 -0.10 0.03
Div 0.13 -0.11 -0.09 -0.22 -0.01 -0.20 -0.11
Sim 0.40 -0.11 0.34 0.37 -0.06 -0.03 0.04

Ridge 0.29 -0.09 0.34 0.69 -0.08 -0.17 0.16
Logic 0.27 -0.22 0.37 0.69 -0.10 -0.23 0.00

LL -0.01 -0.01 -0.06 -0.08 -0.10 0.25 0.49
MB -0.10 -0.20 -0.03 -0.17 -0.23 0.25 0.21
SS 0.03 -0.11 0.04 0.16 0.00 0.49 0.21

distance-based diversity statistic based on the method of Anderson [15] (Dis); the sequence 
diversity statistic based on the power statistic of Jost [19] (Div); the sequence similarity based 
statistic discussed by Wessel et al. [20] and Nievergelt et al. [21] (Sim); the ridge regression 
statistic [22]) (Ridge); the Logic Regression [24]) statistic (Logic); the omnibus haplotype 
frequency test implemented in the PLINK software package [16-18] (Phap);  and the set based 
analysis method implemented in the PLINK software package [18] (Pset). As noted in section 2.2, 
a –log(p-value) of 4.06 provide some correction for an overall multiple comparisons type I error 
rate of 0.05. It does not appear that any of the windows produces a -log(p-value) that would be 
significant after multiple comparisons corrections. In addition, many of the contour plots do not 
appear to track together, suggesting that the various data analysis methods do not produce 
correlated test statistics or evidence for association. Although there is some suggestion of 
consistency of a signal in the ‘rightmost’ region of the MGLL gene, its significance is debatable. 
Similar conclusions were drawn from the analysis of the FAAH gene (data not shown). 
 
4.3. Correlations between statistics 
 
We assessed the correlations between the test statistics obtained over the moving window 
analyses of the two genes. We did not include single locus analyses or the set (Pset) and 
haplotype analysis (Phap) methods implemented in PLINK as part of this analysis. This provides 
some indication as to whether or not the different statistical methods are capturing the same 
signals. Table 4.3 provides the Spearman non-parametric correlation coefficients between the test 
statistics computed over the windows. 
 

Table 4.3. Spearman correlations between test statistics from the moving window analyses. 
 

 
 
 
 
 
 
 
 
 
 
The shaded cells within Table 4.3 reflect significant correlations (p<0.05). It should be recognized 
that the majority of test statistics computed in the window-based analyses are not themselves 
statistically significant. Therefore, the value of the test statistics that went into the calculation of 
the correlations may reflect noise which clearly will affect the correlation strength between the 
test statistics. Despite this, some of the test statistics do exhibit correlations and therefore may be 
essentially capturing the same types of collective effects. For example, Ridge and Logic 
regression are highly correlated, as are the subset selection (SS) and Li and Leal’s [6]; (LL) 
method. Many methods are not correlated, suggesting that they may either suffer from flaws, have 
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low power, or are more powerful to detect different types of effects. Obviously, simulation studies 
could be used to sort this out. 
 
4.4. High-dimensional regression analysis 
 
We also considered the use of the nine high-dimensional regression and data mining procedures 
listed in section 3.2, as well as the ridge regression procedure discussed in section 3.1, to 
simultaneously evaluate the association of each SNV, rare and common, in addition to the 10 
collapsed sets of variants within each of the two genes described in sections 1.2 and 4.1 to obesity. 
The various procedures tested are designed to identify the minimal set of factors that are 
predictive of a dependent variable and hence may have an ability to capture or identify variants 
causally associated with obesity. Table 4.4 lists the five most significant factors identified from 
the 10 different procedures in addition to providing the adjusted R-squared and the root mean 
squared error characterizing the fit of the model that includes those 5 factors. Note that individual 
SNVs are denoted by a number (e.g., 166) and the gene within which they reside (MGLL or 
FAAH) whereas collapsed sets of variants are denoted by their labels as defined in section 1.2. 
From Table 4.4 it can be seen that although some factors appear in the list of five factors for 
different methods (e.g., individual SNV 166 appears on the list for ridge regression (RR), the 
Lasso (L), and the GPS method, most of the factors identified for any method are unique to that 
method or just a few of the methods. This suggests that the different methods are likely to disagree 
about which factors are the most strongly associated with a phenotype. This may be a function of 
the purpose and design of these methods, which is for making reliable predictions and not 
necessarily detecting the strongest associations among a large set of potential predictors. 
 
Table 4.4. Top 5 chosen genomic predictors of obesity for different regression analysis methods. 

RR L GPS SR SPM-CART
166 (MGLL) 166 (MGLL) 166 (MGLL) 124 (FAAH) 1036 (MGLL)
677 (MGLL) 677 (MGLL) 677 (MGLL) 8 (FAAH) 1009 (MGLL)
581 (MGLL) 76 (MGLL) 76 (MGLL) 136 (FAAH) H3K27 (MGLL)
76 (MGLL) 581 (MGLL) 428 (MGLL) 223 (FAAH) 1136 (MGLL)
90 (FAAH) 90 (FAAH) 90 (FAAH) 200 (FAAH) H3K27 (FAAH)

adj. R2: 0.008 adj. R2: 0.008 adj. R2: 0.011 adj. R2: <0 adj. R2: 0.066
RSE: 10.56 RSE: 10.56 RSE: 10.54 RSE: 10.62 RSE: 10.25

SPM-TreeNet SPM-MARS SPM-RF Weka CRL Weka REPT
H3K27 (MGLL) 1036 (MGLL) H3K27 (MGLL) 1058 (MGLL) 1036 (MGLL)
H3K27 (FAAH) 1009 (MGLL) 1036 (MGLL) H3K27 (MGLL)
1036 (MGLL) 654 (MGLL) 634 (MGLL) 56 (FAAH)
1136 (MGLL) H3K27 (FAAH) 210 (MGLL)
1009 (MGLL) 632 (MGLL) 173 (FAAH)

adj. R2: 0.066 adj. R2: 0.076 adj. R2: 0.038 adj. R2: 0.033 adj. R2: 0.025
RSE: 10.25 RSE: 10.19 RSE: 10.4 RSE: 10.43 RSE: 10.47
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5. Conclusions and Future Directions 

Studies investigating the role of rare variants in phenotypic expression and disease susceptibility 
will be pursued routinely in the not-so-distant future as sequencing technologies improve in 
efficiency. The ability to exploit these technologies will depend critically on an ability to assemble 
and organize sequence data as well as an ability to draw reliable inferences concerning the 
statistical (and biological) significance of differences in combinations of sequence variants 
between individuals with and without a particular phenotype. We have considered a number of 
different approaches for relating collections of rare sequence variants to a phenotype. We 
compared these methods on actual sequence data obtained from two genes in a study of morbidly 
obese and control subjects. Some of these methods (e.g., Logic, MDMR, Dis) are computationally 
intensive, which may complicate their utility in very large studies. Although we did not find 
overwhelming evidence for an association with obesity, our studies suggest that different analysis 
methods, not surprisingly, do not necessarily agree on the strength of associations.  

This raises important questions as to why this is so and whether or not some statistical 
methods may be more powerful for detecting certain types of association over other approaches. 
In addition, if it is the case that one or another of the proposed methods is better at picking up a 
certain type of association signal (e.g., most methods are likely to be better for detecting multiple 
independent acting variants whereas a few, such as similarity based methods [20], may be better at 
detecting synergistically-acting variants) then a researcher might consider analyzing their data 
with different analysis methods and possibly different window sizes. This in turn raises questions 
about false positive rates due to the use of multiple analysis methods and the pursuit of multiple 
comparisons. In addition, the robustness of the methods to outliers, their level accuracy, ultimate 
power in various settings, and their ability to accommodate covariates all need to be explored. 
Many of these questions can be addressed by exploring both the theoretical derivation of different 
methods as well as their behavior in contrived, simulated data settings [34]. Such activity will be 
crucial if progress is to be made in understanding the contribution of rare variants to the genetic 
basis of complex phenotypes. 
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In this paper we propose algorithmic strategies, Lander-Waterman-like statistical estimates, and
genome-wide software for haplotype phasing by multi-assembly of shared haplotypes. Specifically, we
consider four types of results which together provide a comprehensive workflow of GWAS data sets:
(1) statistics of multi-assembly of shared haplotypes (2) graph theoretic algorithms for haplotype
assembly based on conflict graphs of sequencing reads (3) inference of pedigree structure through
haplotype sharing via tract finding algorithms and (4) multi-assembly of shared haplotypes of cases,
controls, and trios. The input for the workflows that we consider are any of the combination of: (A)
genotype data (B) next generation sequencing (NGS) (C) pedigree information.

(1) We present Lander-Waterman-like statistics for NGS projects for the multi-assembly of
shared haplotypes. Results are presented in Sec. 2. (2) In Sec. 3, we present algorithmic strategies
for haplotype assembly using NGS, NGS + genotype data, and NGS + pedigree information. (3)
This work builds on algorithms presented in Halldórsson et al.1 and are part of the same library of
tools co-developed for GWAS workflows. (4) Section 3.3.1 contains algorithmic strategies for multi-
assembly of GWAS data. We present algorithms for assembling large data sets and for determining
and using shared haplotypes to more reliably assemble and phase the data. Workflows 1-4 provide a
set of rigorous algorithms which have the potential to identify phase-dependent interactions between
rare variants in linkage equilibrium which are associated with cases. They build on our extensive
work on haplotype phasing,1–3 haplotype assembly,4,5 and whole genome assembly comparison.6

Keywords: haplotype assembly; haplotype inference; rare variants; phasing; phase inference

1. Introduction

Improving data quality is crucial, because if a human genome cannot be independently as-

sembled then the sequence data cannot be sorted into the two sets of parental chromosomes,

or haplotypes. This process – haplotype phasing – will become one of the most useful tools in

genomic medicine. – J. Craig Venter, 20107

A genome-wide association study (GWAS) is a leading approach to find genetic deter-
minants associated with a particular phenotype.8–10 GWAS proceed by identifying a set of
individuals carrying a disease or trait (cases) and a set of individuals that do not (controls).

∗corresponding authors are Bjarni V. Halldórsson bjarnivh@ru.is and Sorin Istrail sorin@cs.brown.edu
†Authors contributed equally to this work
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The cases and controls are then genotyped for a large number of common single nucleotide
polymorphism (SNP) genetic variants which are then statistically tested for association to
some disease or trait. GWAS have been successful in identifying many common genetic risk
variants to many diseases,8,11,12 but many associations appear to have no known connection
to biological mechanisms and thus cannot be targeted for clinical intervention. Furthermore,
some of these studies reveal a paradoxically encouraging and, at the same time, disappointing
theme for complex traits: a set of SNPs are found to be highly statistically significant (and
are often replicated in subsequent studies) yet individually, and in aggregate, these SNPs only
explain a very small proportion of genetic variance.13

The problem of interpreting the low explicative and predictive power of these variants has
been deemed the “missing heritability” problem. Many hypotheses have been presented to
explain the missing heritability.14 Most echo caveats frequently associated with GWAS such
as difficulties with defining phenotypes of cases and controls, cryptic population stratification,
common variation that is often left out of GWAS (copy number variation or gaps in SNP
coverage), or environmental factors.14,15 We concern ourselves with two explanations that
have received much attention recently: phase-dependent interactions and rare variation.

Knowledge of haplotypes can greatly increase the power of GWAS studies and also high-
light associations that are impossible to detect without haplotype phase (e.g. loss of heterozy-
gosity). Even more complicated phase-dependent interactions of variants in linkage equilibrium
have also been suggested as possible causes of missing heritability.14 The actual haplotypes in
the typed region can be obtained only at considerably higher experimental cost or via compu-
tational haplotype phasing for which most algorithms fail to work on genome-wide data. For
these reasons, GWAS have generally ignored phase-dependent interactions or associations.

Although the significance of phase-dependent interactions is yet to be determined, rare
variation is now accepted as playing a significant role in many common diseases16–18 as well as
rare diseases.19,20 SNP arrays used for GWAS are designed to tag common variants only, thus
rare variant associations are ignored. However, with cost of next-generation sequencing de-
creasing rapidly and the sequencing of tens of thousands of individuals already underway,21,22

GWAS are likely to develop novel approaches for association. Anticipating this data will soon
be available, we have developed algorithms to simultaneously identify rare variation and de-
termine the haplotype phase of a number of individuals using sequence reads.

The class of algorithms that use sequence reads to infer the haplotypes of a diploid organism
are called haplotype assembly algorithms.5,23 Early formulations focused on assembling the
haplotypes from the reads of one individual. Because most bases on a read are identical
regardless of the chromosome of origin, the reads can be mapped to a reference genome. After
mapping, reads are translated into haplotype fragments containing only the polymorphic (SNP)
sites. A fragment covers a site if the corresponding read contains the SNP. Fragments that
cover more than one SNP site provide valuable phase information, that is, if two SNPs co-
occur on one fragment then they exist on the same haplotype. Thus, the input to the haplotype
assembly problem is an m×n SNP matrix M whose m rows correspond to fragments f1, ..., fm
and each fragment fi covers at least 2 of the n SNP sites. Formally, we define a fragment fi as
a vector of {0, 1,−} where 0 and 1 represent the major and minor alleles at some site and ’-’
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represent a lack of information either because the read does not cover the SNP site or there
was a technical failure (e.g. in mapping or sequencing). Two fragments i and j conflict if they
cover a common SNP and have different alleles at that site (Fig. 1).

1 1 - - - - 0 1

- 1 0 - - 1 0 - - - 0 0 1 1 - -

- - 0 - - 1 0 1

0 1 - - - - 0 -

0 - - - - 1 0 0 - - 1 1 - 1 - -

- - - 1 1 - 0 -

- - 0 - - 1 0 -

0 1 1 - - 1 0 -

Haplotype A: 1 1 0 0 1 1 0 1

Haplotype B: 0 1 1 1 1 1 0 0

Fig. 1. Fragment conflict graph. Major and minor alleles are denoted by 0 and 1 respectively. Fragments from
haplotype A (11001101) appear above the dotted line while fragments from haplotype B (01111100) appear
below. The bipartition which separates the two sets of fragments is denoted by the dotted line. The haplotypes
may be reconstructed by combining the shores of the bipartite graph.

Most haplotype assembly algorithms refer to an abstraction on M called the fragment
conflict graph. The fragment conflict graph, GF (M) = (V,E), has nodes fi ∈ V ∀i and edges
{fi, fj} ∈ E if fi and fj conflict ∀i, j. Figure 1 demonstrates the translation from fragments to
the fragment conflict graph. If the data is free of errors then, for each connected component
in the fragment conflict graph, the vertices can be divided into two independent sets, that
is, the graph is bipartite. Therefore, haplotype assembly of one individual can be expressed
as: Given the fragment conflict graph GF (M), find the underlying bipartite graph whose shores
define the haplotypes of the individual.

We present a novel approach to GWAS with sequence data of assembling the haplotypes
of cases and controls using paired end sequencing reads and long range sharing information.
Multi-assembly of GWAS sequence data has the power to enhance the discrepancies between
cases and controls by phasing haplotypes using shared haplotype tracts. By assembling the
cases and controls together, we can avoid missing marginal SNP variation at the level of
misassembly that are associated with rare SNP variants. If the pedigree structure is known
or long-range sharing information can be inferred, we can strengthen the multi-assembly by
using the combined fragment coverage on the shared haplotype. First, we give a formula that
relates a number of statistics/parameters with the coverage of SNPs on the haplotypes of
many individuals. We present an efficient algorithm for finding the shared haplotype of two
individuals in the fragment conflict graph. In addition, we present an efficient algorithmic
strategy to resolve errors and assemble fragment conflict graph components that is capable
of assembling genome-wide data. We employ methods that have been previously used for
haplotype assembly as well as methods that have been applied to haplotype phasing.1

2. Multi-Assembly of Shared Haplotypes

The input for the haplotype assembly of multiple individuals problem is the same m×n matrix
M in the case of one individual with an additional annotation on the fragments denoting the
person of origin. In this section, we estimate the coverage needed to assemble haplotypes of
multiple individuals. Consider the parameters:
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G The length of the genome
S The number of SNPs in the genome
L The average length of a read
N The number of reads
c Coverage = LN

G

For these calculations we assume the distance between SNPs and sequence reads follow a
Poisson distribution (λ = 400 and λ = 10000 respectively). A read is considered a “good-read”
if it covers at least two SNPs. The intuition behind good-reads is that they determine the
haplotype phase of two or more SNPs (they are on the same haplotype). The probability
that a paired read covers at least 2 SNPs is ≥

(
L
400

)2
. L is assumed to be ≤ 400. Let si be a

SNP on chromosome i in position p. si is covered if a read starts in the interval (p − L, p] on
chromosome i. The expected number of reads starting in the interval (p−L, p] on chromosome

i is ≥ LN( L

400)
2

2G =
(
c
2

) (
L
400

)2
. The probability that no reads start in (p− L, p] is e−( c

2)( L

400)
2

.

P (> 0 reads start in (p− L, p]) = 1− e−( c

2)( L

400)
2

(1)

Thus, the number of the SNPs covered by good-reads is approximately(
1− e−( c

2)( L

400)
2
)

2S (2)

Enhanced coverage due to sharing. The coverage needed greatly depends on the probability
of a good-read. A high good-read probability may be obtained through targeted sequencing,
mate pairs, or larger read lengths. When multiple individuals are considered, the coverage
needed may be greatly reduced if the haplotype sharing is high. Sequence reads from differ-
ent individuals, but on a shared haplotype, can be considered as originating from the same
chromosome and assembled together. This increases the effective coverage in Equation 2. For
example, three unrelated individuals have 6 unique haplotypes for an effective genome size of
6G. A trio of individuals consisting of a child, mother, and father have 4 unique haplotypes
for an effective genome size of 4G. Thus, for the same amount of reads you can achieve 50%
more coverage on trios than unrelated individuals.

Building on the Lander-Waterman type of statistical analysis,24 we can estimate two im-
portant statistical parameters of haplotype assemblies that guide our algorithms: (1) What is
the coverage needed so that we cover X% of SNPs on both haplotypes of a single individual
with a good sequence read? (2) What is the coverage needed so that we cover X% of SNPs on
both haplotypes of a trio of individuals with a good sequence read? Table 1 shows estimates
of coverage needed to cover a percentage of SNPs for a single individual and trios for different
parameters.

3. Algorithmic Strategies

Finding haplotype assemblies for a single individual has been considered by several re-
searchers.2,25–27 This can be formulated as an approximate bipartition problem, where the
bipartition stems from the fact that an individual is expected to have two chromosomes of
each type and the approximation stems from the fact that some of the graph edges or vertices
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Table 1. Length of genome G = 3.2× 109. Number of SNPs S = G
400 = 8× 106.

Number of Individuals Read Length Coverage Mean % of SNPs Covered

1 100 1 3
1 100 2 6
1 100 4 12
1 100 10 27
1 100 20 46
1 200 1 12
1 200 2 22
1 200 4 39
1 200 10 71
1 200 20 92

3 (trio) 200 1 17
3 (trio) 200 2 31
3 (trio) 200 4 53
3 (trio) 200 10 85
3 (trio) 200 20 98

are spurious. Spurious edges occur when there is a genotyping error, some sort of error in the
lab protocol or an error in the mapping of reads.

Extensions of the single individual haplotype assembly include those that employ genotype
data.28–30 In these algorithms, genotype data is used to correct errors after sequence reads are
mapped. However, genotype data is prone to errors and probe common SNPs only which are
not helpful regarding rare and other non-probed variation. For multiple individuals, genotype
data can be used to infer evolutionary relationships between haplotypes where pedigree data
is not available.1,31,32

3.1. Optimization Formulations

The minimum fragment removal formulation introduced in Lancia et al.5 and minimum error
correction formulation (sometimes referred to as minimum letter flip) introduced in Lippert
et al.4 are two optimization formulations useful for the purposes of generalizing to multiple
individuals. For k individuals, Li et al. show that a fragment conflict graph is feasible if and
only if it is 2k-colorable. However, in the case of identical by descent haplotype sharing, there
are less than 2k unique haplotypes. Given some haplotype sharing is likely to exist, we can
rewrite the optimization problems for multiple individuals.

(1) Minimum Fragment Removal for k Individuals (k-MFR): Given a SNP matrix M of frag-
ments from k individuals, remove the minimum number of fragments (rows) such that the
resulting fragments can be combined to form at most 2k haplotypes.

(2) Minimum Error Correction for k Individuals (k-MEC): Given a SNP matrix M of frag-
ments from k individuals, correct the minimum number of errors in fragments such that
the resulting fragments can be combined to form at most 2k haplotypes.

92



September 30, 2010 15:30 WSPC - Proceedings Trim Size: 11in x 8.5in MultiHapAssembly

A correction of an error is defined as a flip from 0 to 1 or 1 to 0. A gapless fragment is a
fragment covering a contiguous set of SNPs. MFR, MEC, k-MFR, and k-MEC using gapless
fragments are tractable and useful problems when the read length is long enough to cover
multiple SNPs. However, given the smaller read length sizes of next-generation sequencing,
haplotype assembly is most effective with mate paired reads. MFR, MEC, k-MFR, and k-MEC
using gapped fragments have been shown to be NP-hard.5,33

3.2. Problem Formulations

Problem 3.1. Given a set of reads from k individuals, determine the minimum number of
fragments to be removed such that the remaining fragments can be assembled into 2k haplotypes.

Li et al.33 give an IP formulation and a parameterized algorithm which is exponential in
the number of individuals. The problem formulation is somewhat simplistic as it does not
assume that it is known from which individual the reads are from.

Problem 3.2. Given a set of reads from k individuals, with each read labeled with an indi-
vidual, determine the minimum number of fragments to be removed such that the remaining
fragments can be assembled into 2k haplotypes and the individual associated with the haplotypes
and fragments agree.

The equivalent IP formulation can be seen by adding the following constraint to the Li
et al.33 formulation: reads labeled with an individual must be included in the assembly of
that individual. For problem instances with no errors, the integer program has a very nice
decomposition, since the set of constraints for each individual require it to perform a bipartite
graphs. It is also likely to be quite efficient since finding bipartite graphs is easy. However,
real data contains errors from miscalls and erroneous read mappings.

Problem 3.3. Given a set of reads, each labeled with an individual, find the minimum number
of haplotypes such that (1) each individual is phased with exactly two haplotypes, (2) a mini-
mum number of fragments are removed and (3) the individual associated with the haplotypes
and fragments agree.

For general graphs, this problem is NP-hard.5,33 We suggest a heuristic algorithm which
exploits the specific signatures of sequence read errors that we can find in the data and correct.
Errors in the fragment conflict graph fall into three categories.

Category 1: A fragment would otherwise conflict with another fragment from the opposite
chromosome but, due to an error, is consistent with fragments on the opposite chromosome
but conflicts with fragments from the chromosome of origin.

Category 2: A fragment would otherwise not be included in the fragment conflict graph but
acquires an error.

Category 3: Due to an error, a fragment conflicts with fragments from both haplotypes of
the individual.

Category 1 has little effect on the fragment conflict graph. We would interpret the fragment
as belonging to the wrong haplotype but this does not remove the bipartiteness of the graph.
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Category 2 and Category 3 can remove bipartiteness of the graph and make the general
MFR and MEC problem hard. However, given a high coverage, these two cases produce
regular signatures in the fragment conflict graph; namely high degree nodes that conflict with
fragments of both haplotypes.

An algorithmic strategy based on the architecture of these errors was implemented in
Java and works well on simulations derived from HapMap and Hudson simulated data.34

The algorithm begins by attempting to create a breadth first search tree of the fragment
conflict graph. When the algorithm encounters a level of the BFS tree that does not fit in
the biparition, it computes the 3-cliques (small conflicting sub-graphs of the fragment conflict
graph) in the current BFS level and subsequent levels until zero 3-cliques are found by the
addition of a BFS level. It then removes the fragment belonging to the most 3-clique conflicts.
As a tie breaker, the algorithm removes the node with the highest degree. Since an erroneous
fragment conflicts with fragments from both chromosomes it should belong to many 3-cliques
and/or have a high degree. Also, because the number of conflicting fragments in a dataset is
usually small, the algorithm runs in speed comparable to BFS.

3.3. Assembly when Haplotype Sharing is Known

If sharing information is unknown, assembling multiple individuals can help identify Category
1 errors. If haplotype sharing information is known or can be inferred, assembling multi-
ple individuals simultaneously provides additional information on the coverage of haplotypes.
The sharing of haplotypes between individuals could be known from pedigree data35 or in-
ferred.1,31,32,36

Problem 3.4. We are given a set of individuals and for each pair of individuals, haplotype
sharing information is known or can be inferred. We are also given a set of paired end se-
quencing reads for each individual. Output a pair of haplotypes for each individual such that
each individual sharing a haplotype do so.

If haplotype sharing information is unknown, we begin by inferring pedigree information
using the tract finding algorithm1 or similar methods.31,32 We then build the fragment conflict
graph. The only edges that are informative are edges between fragments from the same indi-
vidual and other individuals who share a haplotype identical by descent (IBD).35 If a segment
of a haplotype is shared identical by state (IBS) then it is likely to conflict in other places
on the haplotype and can yield a feasible but erroneous assembly. In addition, if we interpret
these non conflicts as IBD, then can obtain the wrong coverage estimate on the haplotype
which is essential for phasing the assembly.

3.3.1. Haplotype sharing algorithm

When there are no errors in the reads of an individual the fragment reads will form a bipartite
graph.5 The fragments belonging to one of the two shores of the bipartite graph will form one of
the haplotypes and the fragments belonging to the other shore will form the other haplotype.
In the case when the bipartite graph is disconnected then each connected component may
be considered separately. Given fragments from two individuals which are known to share a
haplotype, we propose the following algorithm for the joint haplotype assembly of the two
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individuals. Let the two individuals be denoted by i and j. In our algorithm α corresponds to
the shared haplotype and β corresponds to the non-shared haplotype. We note that αi = αj,
while βi 6= βj.

Algorithm 3.1.

def Branch( s )

For each edge with an endpoint in the αs and other endpoint, e,
in H, identify the connected component, t, of Gi or Gj that contains e.

Label the color of t that is connected to e as β.
Label the other color of t as α.
H ←− H − t
Branch( t )

For each tree, t ∈ H that has a color c that has edges connecting to αs and βs
Label c as β
Label the other color as α
H ←− H − t
Branch( t )

Determine Sharing

Construct the fragment conflict graph, G. Let Gi and Gj be

the restriction of G to i and j.
Color each component Gi and Gj with two colors.

If no such coloring exists, the algorithms fails.

H ←− G
While H 6= ∅

Find connected components t, s, s.t. s ∈ Gj ∩H and t ∈ Gi ∩H or s ∈ Gi ∩H
and t ∈ Gj ∩H and a color β of s with an edge to both colors of t.

If no such tree exists, choose s arbitrarily from Gi or Gj

Arbitrarily label the colors of s as α and β.
H ←− H − s.
Branch( s)

The algorithm is motivated by the key observation that a haplotype cannot be shared if
one of its fragments is connected to a color that is shared. We may observe a connection to a
color that is shared either from the fact that the color is labeled as shared or it is connected
to both colors.

Lemma 3.1. The algorithm runs in O(n+mn) time, where n is the number of fragments and
m is the number of edges between the fragments.

Proof. The initial step of coloring of a bipartite graph of each individual can be done in time
O(n+m). The edges that lie between two individuals can then be labeled with the component
and color that they belong to. We then loop over each component of i in an outer loop and
each component of j in an inner loop, followed by a loop over each component of j in an outer
loop and each component of i in the inner loop. We determine whether there exists an edge
from the component in the outer loop to both colors of the component in the inner loop. We
observe that each edge will be visited at most as many times as there components in G. The
number of components is upper bounded by n, for a total upper bound of nm.

This algorithm presents an approach that may be generalized to more complex patterns
of haplotype sharing.
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3.4. Phasing Components in the Fragment Conflict Graph

Even with error-free data we aren’t guaranteed to be able to assemble and phase the data.
Long runs of homozygosity form disconnected components in the fragment conflict graph. Runs
of homozygosity, which are paradoxically simple to phase, cause problems when assembling
haplotypes. If the run of homozygosity is longer than the mate pair length no read can connect
the two components as there wont be any conflicts in homozygous regions (Fig. 2). The more
connected the graph is, the easier it is to phase because you have to eventually phase the
shores of each component into two haplotypes. The number of valid haplotype phasings may
therefore be large once the haplotypes of each individual have been assembled; if the haplotype
assembly of a single individual consists of k disconnected bipartite components then there
are 2k−1 unique ways to map the shores to haplotypes. Varying the mate pair read length,
increasing the read length, adding coverage, or adding more individuals who may share a
haplotype IBD help connect components together.

Fragments from haplotypes that are identical by descent can be considered when con-
structing bipartitions for both individuals. If two components need to be phased and one
haplotype is shared then we’d expect the shared haplotype to have twice the coverage of the
non-shared haplotype in both components, thus we phase the two shores with greater coverage
from different components together. For example, Fig. 2 shows fragments from two haplotypes
of two individuals one of which (10000001) is shared. The phasing of the two components is
ambiguous but we know that the shared haplotype is likely to have approximately 50% more
coverage. Therefore, it is more likely to phase the components such that we maximize the dif-
ference of cardinality between the phasings. For Fig. 2 the first phasing (10000001/00000000)
yields |6 − 3| = 3 while the second phasing (10000000/00000001) yields |5 − 4| = 1. When
phasing disconnected components where sharing is not known, the resulting phasing should
try to minimize the difference of cardinality in the overall phasing.

1 0 - - 0 0 - -
- - 0 0 - - 0 1

- - 0 0 - - 0 1

0 0 - - 0 0 - -

- - - 0 - - 0 0

- - 0 0 - - 0 0

Partial Haplotype Assemblies 
1 0 - 0 0 0 - - (3 frags)
0 0 - - 0 0 - - (1 frag).

Partial Haplotype Assemblies
- - 0 0 - - 0 1 (3 frags)
- - 0 0 - - 0 0 (2 frags)

Two Phasings
1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

and
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

1 0 - - 0 - - -
- - - 0 - - 0 1

1 - - 0 0 - - -

Fig. 2. Fragment conflict graph separated by a run of homozygosity. We assume the maximum distance
between fragments is 2 SNPs.

4. Results on Simulated Data

We ran simulations on individuals of the CEU and JPT populations from HapMapc. First
we sampled individuals randomly and then isolated a subset of the haplotype (30 SNPs for

cCEU denotes Utah residents with Northern and Western European ancestry and JPT denotes Japanese
individuals from Tokyo, Japan.
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visualization purposes). We placed the SNPs from the phased HapMap haplotypes a uni-
form distance from each other (500bp). Genome length is calculated by number of SNPs ×
distance between SNPs. The distance between sequence reads is calculated using a Poisson
distribution and is varied under different models because most NGS technologies are capable
of varying the distances between reads (e.g. Solexa or SOLiD). The average read length and
coverage are also varied. Figures 3 and 4 show simulations on two unrelated individuals (one
from CEU colored green, one from JPT colored red) while Fig. 5 shows simulations from two
related individuals.

Fig. 3. Fragment conflict graph for unrelated individuals with coverage c = 4, read length L = 50, and
distance between reads is Poisson with λ = 2000. Green vertices denote fragments originating from the CEU
individual.

Figure 3 has many disconnected components due to the low probability of a good-read and
regular distance between reads. Figure 4 shows the effect of changing the read length, coverage,
and distance between reads. Read length, coverage, and variation of mate pair length correlate
strongly with connectivity of the fragment conflict graph. In Fig. 5 two related individuals
are shown with the same parameters used in Fig 3. It is clear the more sharing existing in the
population, the easier it is to assemble and phase the data.

We also used our haplotype assembly simulator to test the accuracy and scalability of our
minimum fragment removal heuristic. The first dataset we tested is the same 30 SNP segment
from the HapMap CEU individual; the second dataset is a Hudson simulated chromosome of
length 3434 SNPs. We decided to use the ratio of the number of erroneous fragments removed
to the number of non-erroneous fragments removed as our metric. After the fragment conflict
graph is generated, it may be advantageous to remove non-erroneous fragments to minimize
our objective function. Nevertheless, this ratio is a good indicator of the quality of the output.
For 1000 runs of the 30 SNP dataset we observed an overall ratio of 6.73; and for 100 runs
of the 3434 SNP dataset we observed a ratio of 5.72. Further improvements to this type of
algorithmic strategy for this problem is the subject of future work.

We’ve presented statistical estimates of coverage needed to cover a percentage of SNPs on
a genome. These estimates could provide valuable insight when deciding sequence coverage
per individual in association studies employing NGS technology. We’ve suggested a practical
algorithmic strategy that exploits the high coverage possible with next-generation sequencing
technology and the structure of errors in the fragment conflict graph. This algorithm produces
promising results on the simulated fragment conflict graphs. We have presented an algorithm

97



September 30, 2010 15:30 WSPC - Proceedings Trim Size: 11in x 8.5in MultiHapAssembly

Fig. 4. Fragment conflict graph for two unrelated individuals. Green vertices denote fragments originating
from the CEU individual. The baseline for each graph is: Read length L = 50; Coverage c = 4; distance
between reads is Poisson with λ = 2000. From bottom left clockwise: (1) Distance between reads is Poisson
with λ = {1000, 2000, 5000, 10000} which is selected uniformly at random. (2) Coverage is changed to c = 10.
(3) Read length is changed to L = 1000. (4) Coverage is c = 10, read length is L = 1000, and distance between
reads is varied from {1000, 2000, 5000, 10000}.

Fig. 5. Fragment conflict graph for two individuals sharing one haplotype. Green and red vertices denote
fragments originating from different individuals. Read length L = 50. Coverage c = 4. The distance between
reads is Poisson with λ = 2000.

for finding and exploiting haplotype sharing in the fragment conflict graph to enable the
reliable phasing of disconnected components. We’ve also shown through simulation how various
genomic and experimental parameters impact the quality of the haplotype assembly.
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AN EVALUATION OF POWER TO DETECT LOW-FREQUENCY VARIANT
ASSOCIATIONS USING ALLELE-MATCHING TESTS THAT ACCOUNT

FOR UNCERTAINTY
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There is growing interest in the role of rare variants in multifactorial disease etiology, and increasing
evidence that rare variants are associated with complex traits. Single SNP tests are underpowered
in rare variant association analyses, so locus-based tests must be used. Quality scores at both the
SNP and genotype level are available for sequencing data and they are rarely accounted for. A
locus-based method that has high power in the presence of rare variants is extended to incorporate
such quality scores as weights, and its power is compared with the original method via a simulation
study. Preliminary results suggest that taking uncertainty into account does not improve the power.

Keywords: Allele-Matching; Rare variants;Locus-based method; Quality scores; Sequencing

1. Introduction

There is an increasing interest in the role of rare variants in multifactorial disease etiology,
while the evidence that rare variants are associated with complex traits is steadily expanding.
Although any individual rare variant exists in low frequencies, the frequency with which any
rare variant is present makes them collectively common. Under the multiple rare variant
hypothesis (MRV), the effects of multiple rare variants with moderate to high penetrance
combine to increase the risk of most common inherited diseases [1]. At the other extreme is
the common disease common variant (CDCV) hypothesis, which states that most common
complex diseases are due to a few common variants with moderately small effects [2]. The
most likely scenario is that a combination of both common and rare variants contribute to
disease risk.

In most genome-wide association (GWA) studies only variants with minor allele frequency
(MAF) greater than 1-5% are followed up, and the focus tends to be on identifying common
disease variants that are associated with complex diseases. However, this approach is limited
since only 5-10% of the heritable component of disease is explained by the many genetic
variations identified as having strong evidence of disease association in GWA studies. This
suggest that a fruitful direction is to search for associations with multiple rare variants [3].

By design, SNP genotyping panels often focus on common SNPs, so that they only contain
a relatively small number of rare variants. This leads to a common issue in rare variant
analyses, in that on most platforms there is an insufficient number of rare variants (Table 1).

There appears to be a clear difference in the effects of rare variants in comparison to SNPs
of higher frequency, with rare variants having stronger effects. According to the odds ratios
(OR) for common and rare variants identified in published studies, most common-disease
associated variants have ORs between 1.1 and 1.4 with only a few above 2, while the majority
of the identified rare variants to date have an OR greater than 2 and a mean of 3.74 [1]. In
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Table 1: Approximate low frequency/ rare variant GWAS platform content.
Platform Affymetrix Affymetrix Illumina Illumina Illumina Illumina

500k 6.0 370k 550k 610k 1.2M

MAF< 0.05 55k 106k 9k 32k 35k 62k
MAF< 0.01 17k 35k 1k 7k 8k 22k

addition, causality may more easily be fine-tuned by identifying rare variants. For most GWA-
identified loci, there is difficulty in assigning causality since high LD complicates the use of
association mapping to precisely determine which variant is functionally relevant. There are
even more complications when elucidating the effects of SNPs that map to genomic regions
with no clear role. The problem may be simplified by searching for disease-associated rare
variants in known functional genomic regions, such as genes. In addition, it might be easier
to at least infer causality at a locus that contains both common and rare disease-associated
variants.

In the analysis of the association of rare variants and disease, there is a loss of power due
to genotype misspecification. Quality scores are available for genotype and sequence-derived
data, but in rare variant analyses, the information is not usually put to use. In addition,
the 1000 Genomes reference set contains variants with MAF as low as .01, which makes the
imputation of rare variants now possible. A probability distribution for the genotype at each
variant may be estimated using the imputation method of choice. We propose methods for
rare variant analyses that take advantage of the extra information contained in quality scores
derived from sequencing and probability distributions resulting from imputation.

In section 2 we introduce an Allele Matching Empirical Locus-specific Integrated Associ-
ation test (AMELIA), which is a nonparametric and robust test that accounts for genotype
uncertainty. It is an extension of a Kernel-Based Association Test (KBAT) [4], which has been
demonstrated to have high power in the presence of rare variants. In section 3 the powers of
AMELIA and KBAT are briefly compared in a short simulation study, while a concluding
discussion is provided in section 4.

2. Allele-Matching Tests

Before providing the details of AMELIA, we first discuss the original method, KBAT. The
kernel-based association test (KBAT) [4] tests for a joint association of multiple SNPs (cor-
related or independent) with a categorical phenotype, without any assumptions on the direc-
tions of individual SNP effects. In simulation studies done by the authors, KBAT was found
to generally have more power than other multi-marker approaches (Zglobal[5] and MDMR[6]),
especially in the presence of rare causal SNPs. First, similarity scores yl(ij) between individuals
i and j in group l (e.g. 1=cases, 2=controls) are determined by using a kernel, such as the
Allele Match (AM) kernel, which is the count of common alleles between the genotypes of two
individuals. Let gi be the genotype score at a specific SNP, which is conveniently defined as
the number of reference alleles at the SNP, since knowledge of the risk allele is irrelevant. At
a given SNP, for individuals i ̸= j in group l with respective genotypes gl(i) and gl(j) , the
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similarity score is defined by

yl(ij) =


4, if gl(i) = gl(j)
2, if gl(i) = 1, gl(j)) ∈ {0, 2} or gl(j) = 1, gl(i) ∈ {0, 2}
0, otherwise

, (1)

By defining the kernel in this way, there is no need to have knowledge of the risk allele at
each SNP. Similarity scores that depend on knowledge of the risk allele are also explored in
[4]. This is general to any number of L ≥ 2 groups, where group l consists of nl individuals.

The similarity scores yl(ij) between individuals i and j in group l are modelled using a
one-way ANOVA model at each SNP:

yl(ij) = µ+ αl + εl(ij), i < j = 1, . . . , nl; l = 1, 2,

where µ is the general effect for pairs of individuals, αl is the group specific treatment effect,
and to test for disease association the null hypothesis is H0 : α1 = α2. The single SNP test
statistic at marker k is the ratio of the between group sum of squares SSBk and the within
group sum of squares SSWk, and the K-marker KBAT test statistic is∑K

k=1 SSBk∑K
k=1 SSWk

. (2)

Rather than summing over the K single SNP test statistics (ratios), the K-marker test statistic
takes the form of (2), which was found to have a higher power when the SNPs are correlated
(see [4]). Clearly the similarity scores yl(ij) are not independent Normal random variables, so
that neither the single SNP test statistics nor the KBAT test statistic (2) may be approximated
by an F -distribution. Thus, permutation is required to obtain the p-value for each locus.

Our extensions that incorporate genotype uncertainty due to quality scores at the SNP and
genotype level or imputation are introduced as AMELIA. Here, we focus on the incorporation
of the two levels of quality scores. Quality scores of SNPs and genotypes can be accounted for
by using weights. Phred quality scores at both the SNP and genotype level are transformed
into the probability of a correct call as follows, 1 − 10−q/10), where q is the quality score.
This transformation is employed in order to account for the fact that the phred quality scores
are not linear and to avoid down-weighting SNPs that are actually of acceptable quality. For
example, quality scores of 30 and 90 both translate to probabilities near 1, and by using the
phred quality scores as weights the SNP with score 30 would contribute little weight when it
is not really of poor quality.

First, (transformed) genotype quality scores are incorporated into the analysis by fitting
a weighted ANOVA model at each SNP k, where the weight for the pair of individuals (i,j)
in group l is a function of the genotype quality scores qkl(i) and qkl(j), with the simplest weight

function being wk
l(ij) = qkl(i) + qkl(j). Note that for a more suggestive notation for the quality

incorporation into the analysis we use qkl(i) to denote the transformed genotype quality score.
In the original method, KBAT, each of the similarity scores contributes a unit weight to the
SNP-level test statistic. However, with the simple weighting scheme that we consider, similarity
scores for which both genotype calls have a high probability of being correct are assigned a
weight above 1, while those with two poor scores are down-weighted to contribute a weight
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below 1. At marker k the weighted sum of squares within groups wSSWk and between groups
wSSBk may be computed as follows, where for simplicity we have dropped the k superscript,
and T̄l· is the weighted group mean of the similarity scores, T̄·· is the weighted grand mean,
and ml = nl(nl − 1)/2 is the number of similarity scores in group l:

wSSW =

L∑
l=1

ml∑
i=2

∑
j<i

wl(ij)(yl(ij) − T̄l·)
2 (3)

wSSB =

L∑
l=1

ml(T̄l· − T̄··) (4)

Components of SNP test statistic k in the sums of the K-marker test statistic can be
weighted by the SNP quality score(s) of SNP k. In the case that there is a common SNP
quality score Qk across all individuals (score at a SNP is based on reads from all individuals),
the weight for SNP k in the sums is simply the (transformed) single SNP quality score Qk. If
the quality scores at a SNP differ among individuals (score at a SNP based on multiple reads
from single individual), then the weight may be taken as the sum of these scores at the SNP.
In the latter case, the K-marker test statistic is∑K

k=1QkSSBk∑K
k=1QkSSWk

. (5)

In this form, SNPs that have a low probability of being a true variant contribute a lower
weight than the others.

2.1. Implementation

In order to increase the speed of the permutations, as suggested in [4], the similarity scores
between all possible pairs of individuals are computed, regardless of which cohort they belong
to. Then, in the permutation stage, the similarity scores for the permuted case-control samples
may be quickly extracted without further computation. However, for large cohorts (N > 1000),
this causes both AMELIA and KBAT to be memory-intensive, requiring additional memory
allocation to run. For example, when N = 1000 there are 499,500 similarity scores between
all possible pairs of individuals, which requires manipulation of a 499,500 × 499,500 array.
The time requirement for both methods also increases with the number of SNPs since a test
statistic must be computed at each SNP for each permutation.

3. Simulation Study

A brief simulation study has been run to compare the powers of KBAT [4] and our version
of AMELIA that accounts for quality scores. Genotype and quality score data are simulated
based on data from the pilot study of 1000 Genomes (68 individuals). More specifically, we
use the haplosim function of the hapsim [7] R package to simulate a population of haplotypes
that possess the same allele frequencies and pairwise LD structure as a specified chromosomal
region from the 1000 Genomes data. This approach produces realistic data that includes
variants with MAFs down to .01. A cohort of N individuals is formed by randomly pairing up
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2N haplotypes sampled from a population of 40000 simulated haplotypes. SNP and genotype
quality scores were generated by randomly sampling with replacement from the scores observed
in the 1000 Genomes data. In the simulations considered there is only one causal SNP, which
has a MAF close to a certain frequency, and is chosen randomly among the possible SNPs
that satisfy this criterion. More complicated simulations involving multiple causal SNPs are
to be explored in the near future.

Case-control status is generated by using a multiplicative model for the genotype relative
risks to compute the probability of disease given the genotype at the causal SNP and its
relative risk (RR) (for details see [4]). This probability is then used to generate a Bernoulli
random variable that ascertains an individual as a case when its value is 1, and a control
otherwise. For this reason, it is necessary to over-sample (say, 5N) the number of individuals
to ensure that the desired number of cases is attained.

In order to obtain the p-value in an efficient manner, we first obtained p-values based on
1000 permutations. If this p-value was below .02, additional permutations were run to update
the p-value on the basis of 10,000 permutations. This procedure of updating the p-value
continues up to a maximum of 1,000,000 permutations, if necessary.

In order to compare the two tests in a scenario similar to that of [4], rather than testing the
whole region we also test regions of 11 SNPs formed from the causal SNP and 10 randomly
selected SNPs among the 20 SNPs that form a neighborhood around the causal SNP (10
upstream and 10 downstream from the causal SNP) (termed the neighborhood region).

3.1. Results

In this brief simulation study, a 150 KB region from chromosome 1 of the 1000 Genomes data
was considered, which contains 342 SNPs. This region was chosen slightly arbitrarily, but also
because it has a genome-average recombination rate of approximately 1Mb/cM. All SNPs
were retained, except for those with a SNP quality of 0. We assumed a single low frequency
causal SNP (MAF=.02, RR=2), and 500 cases and 500 controls were simulated over 1000
replications.

Table 2: Power results (5% level of significance) for AMELIA and KBAT when there is one
rare causal SNP and there are 500 cases and 500 controls.

region AMELIA KBAT

whole .0871 .0953
neighborhood .1731 .2161

When jointly testing all SNPs within a region there is a slight loss of power with the use of
AMELIA in comparison to KBAT. However, both methods have a relatively low power when
there are many SNPs in the region. In a comparable scenario examined in [4], where the region
contains only 10 SNPs and the causal SNP has a MAF of .108 with RR=1.25 the power of
KBAT was .323. In our neighborhood simulations comparing AMELIA and KBAT we obtain
powers of similar magnitude (see Table 2). Thus the low powers for the entire region tests are
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likely due to the fact that our region of 150kb contains almost 350 SNPs, which are all jointly
tested. This illustrates a caveat of this multi-marker testing approach.

In order to examine type I error, a null simulation in which we set the relative risk as 1
is also examined. However, we only consider the neighborhood region due to the extremely
low power observed for the entire region. At the 5% level both methods are found to be quite
conservative, with AMELIA and KBAT having respective type I errors of .00502 and .00401.

4. Discussion

In the short simulation study presented here, a decrease in power has been observed by
incorporating quality scores of SNPs and genotypes as in AMELIA, with the difference largest
for a small number of SNPs. The relatively low power of the two methods may be due to the
fact that almost 350 SNPs are being tested jointly, of which there is only one causal SNP.
This may suggest that this multi-marker approach may be best suited for smaller regions, or
after some filtering to reduce the number of SNPs that are jointly tested. For example, when
the focus is on low-frequency variants, the analysis may include only those with a MAF below
a certain threshold, such as 0.05. It is noted that the replications that were identified only by
KBAT tend to have a causal SNP with a high SNP quality score. In such situations it may be
that by allowing for uncertainty that is not present, power to detect the signal is inadvertently
diluted. In the simple simulations examined, the power of AMELIA appears to be lower than
KBAT, and both tests are conservative with similar error rates. We are extending our methods
further to achieve greater power.
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Whole exome and whole genome sequencing are likely to be potent tools in the study of common
diseases and complex traits. Despite this promise, some very difficult issues in data management
and statistical analysis must be squarely faced. The number of rare variants identified by sequencing
is apt to be much larger than the number of common variants encountered in current association
studies. The low frequencies of rare variants alone will make association testing difficult. This article
extends the penalized regression framework for model selection in genome-wide association data
to sequencing data with both common and rare variants. Previous research has shown that lasso
penalties discourage irrelevant predictors from entering a model. The Euclidean penalties dealt with
here group variants by gene or pathway. Pertinent biological information can be incorporated by
calibrating penalties by weights. The current paper examines some of the tradeoffs in using pure lasso
penalties, pure group penalties, and mixtures of the two types of penalty. All of the computational
and statistical advantages of lasso penalized estimation are retained in this richer setting. The overall
strategy is implemented in the free statistical genetics analysis software Mendel and illustrated on
both simulated and real data.

Keywords : GWAS; penalized regression; rare variant; deep sequencing

1. Introduction

Deep resequencing is emerging as a new and potent means for mapping Mendelian disease
genes.1,2 The initial successes raise the question of whether the search for rare variants is apt

to be as promising a route to mapping genes for common complex diseases and traits. In our
opinion, the answer is likely to be in the affirmative, but too few studies have been completed

to form a strong opinion. The recent finding of an association between copy number variation
and autism is one argument in favor of the rare variant common disease hypothesis.3 This

association is not too surprising given the correlation between autism and paternal age, which
is known to increase the risk of deleterious mutations. The paternal age argument applies

to other psychiatric traits such as schizophrenia4 and bipolar disorder.5 The rare variant hy-
pothesis is also more plausible on evolutionary grounds than the common variant hypothesis

because genetic variants with a negative impact on fitness should in theory be driven to ex-
tinction. The lessons classical population genetics teaches about the balance between selection

and mutation are still relevant today. Thus, there is good reason to explore the statistics of

rare variation detection in anticipation of sequence based genetic studies.
Resequencing will deliver both rare and common variants. It would be counterproductive

to discard the common variants because in reality there is no sharp dividing line between
common and rare. Thus, statistical methods that can analyze both rare and common vari-
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ants simultaneously are preferable. Furthermore, some form of model selection is absolutely
necessary because the number of SNP predictors in most studies far exceeds the number of

participants. The rare variants uncovered in resequencing will exacerbate the excess of predic-
tors over responses. The recent papers10–13 have stressed the role of penalized estimation in

statistical genetics. Lasso penalties18–20 have the interesting capacity to force many parameter
estimates to zero. Model selection with a predetermined number of predictors can be achieved

by tuning the strength of the lasso penalty. If model fitting is carried out by coordinate ascent
or descent, then lasso penalized estimation is exceptionally fast.12,25

A particular rare disease predisposing allele may be present in only a handful of patients.

Hence, statistical tests that capture only marginal effects are doomed to low power. This sad
fact suggests focusing on disease gene discovery rather than disease variant discovery. One of

the most attractive strategies for combining signals is to group variants by gene or pathway.
Li and Leal7 proposed a group-wise test exploiting both multivariate and collapsing strategies

that possesses higher power than a simple multivariate test or simple collapsing. Madsen and
Browning8 extended the method by incorporating weights (dependent on allele frequency)

into the group-wise statistics and approximating p-values by permutations within each group.
Both methods consider rare variants with minor allele frequencies falling below a pre-specified

threshold and exclude more common variants from analysis. The pooling strategy of Price et
al9 circumvents the issue of arbitrarily chosen frequency threshold by calculating a group-wise

statistic under a variety of thresholds. Higher power is achieved at the cost of an increased
computational burden.

These methods have certain drawbacks. Environmental predictors are excluded from anal-
ysis even though they may contribute significantly to an association. Multiple testing remains

an issue. More importantly, existing methods are sensitive to the classification of variants.

If all types of variants (causal, protective, or neutral) coexist, then the various signals can
cancel one another and potentially compromise statistical power. Our recent paper11 explores

a remedy that groups variants by gene or pathway membership in penalized regression. The
encompassing multiple regression framework allows simultaneous consideration of genetic and

environmental predictors and overcomes the unfortunate cancelations of causal and protective
variants. Here we continue our exploration of group penalties, with emphasis on weighted

penalties that keep both common and rare variants in play. In accord with the notion that
variants with large deleterious effects should be rarer than variants with small deleterious

effects, lower weights should be assigned to variants with lower population frequencies.8,9

In pursuing group effects, we have attempted to retain the following advantages of lasso

penalized estimation: (a) it applies to both ordinary regression (quantitative traits) and logistic
regression (case-control studies), (b) it puts genetic and environmental predictors on the same

footing, (c) it keeps both rare and common SNP predictors in play, (d) it partially circumvents
the vexing issue of multiple comparisons, (e) it is computationally very efficient, (f) it offers

a principled approach to model selection when the number of predictors exceeds the number

of study participants, (g) it identifies protective variants as well as deleterious variants, and
(h) it is amenable to finding interactions among predictors. We have previously demonstrated

that Euclidean group penalties preserve these advantages.11 Group penalties make it easier
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for related predictors to enter a model once one of the predictors does. Lasso penalties are
retained to discourage the inclusion of neutral mutations in disease susceptibility genes. When

disease genes harbor one or more borderline-rare variants with substantial risk, a mixture of
lasso and group penalties performs well.

The major innovation in the current paper is the imposition of weights modulating lasso
and group penalties. Ideally the weights should be chosen to reflect prior biological knowledge.

In reality, we need better systems for rating the potential severity of point mutations. There is
a severity hierarchy extending from non-synonymous mutations to synonymous mutations and

ultimately to frameshift and protein truncating mutations. A non-synonymous mutation in a

highly conserved codon is more important than the corresponding mutation in a less conserved
codon. If both copies of a gene are disabled, this is a clear sign of trouble. If several genes in

a common pathway are disabled or disregulated, the pathway as whole may be compromised.
Integration of prior knowledge in penalized regression is an obvious priority, but until sequence

data becomes more widely available, it is probably premature to pursue such elaborations.
The remainder of the paper is organized as follows. Section 2 describes the penalized

regression framework with mixed lasso and group penalties, suggests a few plausible weighting
schemes, and explains how both group penalties and weights can be implemented. Fortunately,

the coordinate descent algorithms found successful in lasso penalized regression require trivial
changes. Coordinate descent is exceptionally quick and permits optimal tuning of the penalty

constant by cross-validation. Section 3 applies the mixed penalty method with weights to
simulation examples. Section 4 provides a detailed description of the user interface to our

implementation of penalized model selection in our statistical genetics program Mendel. We
illustrate the mechanics of problem definition using the breast cancer data analyzed in our

previous paper.11 Finally, the discussion mentions some strengths and weaknesses of model

selection under mixed penalties and suggests potentially helpful extensions.

2. Methods

Genome-wide association testing is one application field challenging current model selection
procedures. All generalized linear models involve an n×1 response vector y and an n×p predic-

tor matrix X. If the number of predictors p far exceeds the number of responses n, then some
form of model selection is mandatory. Indeed, the ability to estimate parameters consistently

requires the ratio p/n to tend to 0. Traditional model selection techniques include forward
and backward stepwise regression and minimization of AIC (Akaike) and BIC (Bayesian) in-

formation criteria; the latter two lead to a combinatorial search over a space with 2p possible
submodels. For this reason statisticians have substituted penalized estimation for combina-

torial search. Generally the objective function being minimized is a convex combination of
a loss function (or negative loglikelihood) and a penalty function. Penalty functions act like

priors in Bayesian statistics and must be carefully constructed to steer parameter estimates in

productive directions. The following reasons are cause for optimism in applying penalization
estimation in statistical genetics:

(a) Speed. Standard algorithms often choke when confronted with genomic-scale data. Ef-
ficient algorithms such as coordinate descent have been devised for solving convex
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optimization problems.10,12,25

(b) Flexibility. The modeling of complex biological phenomena is naturally embedded in the
design of the loss and penalty functions. In association studies, biological meaningful

units such as genes and pathways can be examined by introducing group penalties.11 In
copy number variation (CNV) reconstruction, copy number should change infrequently

along a chromosome. Such smoothness is enforced by the fused lasso penalty.15

(c) Theoretical Justification. Recent advances in theoretical statistics justify the use of penal-
ized estimation in high dimensional settings. Model selection consistency is especially

relevant to association testing. Under certain regularity conditions, the predictors sin-
gled out by penalized estimation have a high probability of coinciding with the true

predictors.16,17

(d) Empirical Justification. There are many success stories of penalized regression methods

in natural language processing, remote sensing, financial engineering, and other appli-
cation areas outside genetics.

2.1. Penalized Regression with Weights

In lasso penalized linear regression12,18,19 estimates of the intercept µ and the regression coef-
ficients βj are derived by minimizing the objective function

f(θ) =
1

2
‖y − µ−Xβ‖22 + λ‖β‖1,

where θ = (µ, β), ‖z‖2 = (
∑

j z
2
j )

1/2 is the Euclidean (ℓ2) norm, and ‖z‖1 =
∑

j |zj | is the taxicab
(ℓ1) norm. The sum of squares ‖y−µ−Xβ‖22 represents the loss function minimized in ordinary

least squares; the ℓ1 contribution ‖β‖1 is the lasso penalty function. Its multiplier λ > 0 is
the penalty constant. The order in which predictors enter a model as λ decreases is roughly

determined by their impact on the response. Exceptions to this rule occur for correlated
predictors. Because the intercept is felt to belong to any reasonable model, the lasso penalty

omits it, and the intercept freely moves off zero.
Logistic regression is handled by replacing the sum of squares by the negative loglikelihood.

The loglikelihood amounts to

L(θ) =

n
∑

i=1

[yi log pi + (1− yi) log(1− pi)] , (1)

where the success probability pi for response i is defined by

pi =
eµ+xt

iβ

1 + eµ+xt
iβ
. (2)

Here the response yi is 0 (control) or 1 (case), and xti is the ith row of the predictor matrix X.

To put the regression coefficients on an equal penalization footing, all predictors are centered
around 0 and scaled to have approximate variance 1. There is a parallel development of lasso

penalized regression for generalized linear models.20 In each case the objective function is
written as

f(θ) = L(θ)− λ‖β‖1
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as the difference between the loglikelihood and the lasso penalty. Because we now maximize
f(θ), we subtract the penalty.

To construct a weighted lasso penalty, we assign a positive weight sj to each predictor j

and substitute the sum
∑

j sj|βj | for ‖β‖1. A larger weight sj corresponds to a higher penalty

and discourages the j-th predictor from entering the model. Conversely, a smaller weight sj
exerts less penalty and encourages selection of the corresponding predictor. Eliminating a

weight (sj = 0) forces the j-th predictor to be retained in the model. In association testing,
there are several sources of prior knowledge pertinent to assigning lasso weights:

(a) Genotyping Error. Variants that cannot be typed reliably should be penalized more.

(b) Allele Frequencies. In a different context, Madsen and Browning8 propose the weight
s =

√

p(1− p) for a variant with population frequency p. This scheme assigns smaller

penalties to rarer variants as suggested by classical population genetics theory. The
more extreme weights s = p(1− p) risk giving rare variants too much influence.

(c) Properties of Point Mutations. Several programs predict the functional effects of non-

synonymous changes. The SIFT software of the Venter Institute,22 PolyPhen-2,23 and
MAPP24 represent a good start in quantifying the risk entailed by coding mutations.

(d) Conservation Across Species. Conservation scores are particularly valuable for assigning
weights to noncoding mutations not covered by SIFT.

Integrating the weights derived from different types of information is a challenge. For the sake
of simplicity, we adopt the allele frequency weights s = 2

√

p(1− p) in our examples. The factor

of 2 makes the weights scale between 0 and 1.

Yuan and Lin21 have suggested Euclidean penalties as a natural way to group predictors.
The lasso penalty ‖β‖1 and the ridge penalty ‖β‖22 separate parameters. If a parameter enters

a model, then it does not strongly encourage or inhibit other associated parameters from
entering the model. Euclidean penalties act more subtlely. Let G denote a group label and tG
a corresponding group weight. The objective function

f(θ) = L(θ)− λ
∑

G

tG‖βG‖2

incorporates a Euclidean penalty on each group. Here βG is the subvector of the regression
coefficients corresponding to group G. For the purposes of this paper, we take all tG = 1. In

studies with good candidate genes or pathways, it makes sense to reduce tG for a candidate
group. Groups with a single predictor are allowed. Singleton groups are advisable for dispersed

variants far from any gene.
Euclidean group penalties run the risk of letting in response-neutral predictors. As soon

as one predictor from a group enters a model, it opens the door for other predictors from the
group to enter the model. For this reason we favor a mixture of group and lasso penalties.11

Lasso penalties maintain the pressure for neutral mutations to be excluded, even if they occur

in causal genes or pathways. There is no need to group SNPs that occur outside coding or
obvious regulatory regions. Simultaneous imposition of lasso and Euclidean penalties has fur-

ther advantages. In addition to enforcing model parsimony and selecting relevant parameters,
both penalties improve the convergence rate in minimizing the objective function. Because
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the penalties are convex, they also increase the chances for a unique minimum point when the
loss function is non-convex.

2.2. Algorithms

Traditional algorithms such as Newton’s method and scoring falter on high-dimensional, non-
smooth problems. Cyclic coordinate ascent-descent is a better choice. Block relaxation, a

generalization of cyclic coordinate descent, cycles through disjoint blocks of parameters and

updates one block rather than one coordinate at a time. Meier et al26 use block relaxation to
fit logistic regression with purely group penalties. The extreme efficiency of cyclic coordinate

descent-ascent in penalized estimation stems from the low cost of the univariate updates and
the fact that most parameters never budge from their initial value of 0. Here we summarize

cyclic coordinate ascent-descent for linear and logistic regression with mixed lasso and group
penalties. Full algorithmic details appear in our previous papers.10–12 Adding weights imposes

trivial changes to the algorithms.
In coordinate ascent we increase f(θ) by moving one parameter at time. If a slope param-

eter βj is parked at 0, when we seek to update it, its potential to move off 0 is determined
by the balance between the increase in the loglikelihood and the decrease in the penalty. The

directional derivatives of these two functions measure these two opposing forces. The direc-
tional derivative of L(θ) is the score ∂

∂βj
L(θ) for movement to the right and the negative score

− ∂
∂βj

L(θ) for movement to the left. An easy calculation shows that the directional derivative

of λ‖βG‖2 is λ in either direction when βG = 0. In this case note that ‖βG‖2 = |βj |. If βG 6= 0,
then the partial derivative of λ‖βG‖2 with respect to βj is λβj/|βG‖2. Hence, the directional

derivatives both vanish at βj = 0. In other words, the local penalty around 0 for each member

of a group relaxes as soon as the regression coefficient for one member moves off 0.

2.2.1. Logistic Regression

In logistic regression the penalized loglikelihood with group and lasso penalties is

f(θ) = L(θ)− λL

∑

j

sj|βj | − λE

∑

G

tG‖βG‖2,

where j ranges over all variants and G ranges over all groups. In practice, we fix the ratio

of λL to λE and define λ = λL + λE. Formulas for the score vector ∇L(θ) and the expected
information matrix E[−d2L(θ)] are well known11 and need not be repeated here. The expected

and observed information matrices coincide in logistic regression.
In penalized maximum likelihood estimation, coordinate ascent is implemented by replac-

ing the loglikelihood by its local quadratic approximation based on the relevant entries of the
score and observed information. The penalty terms are likewise approximated locally by linear

or quadratic functions in the parameter being updated. The one-dimensional updates are not

exact, but they can be computed easily by Newton’s method. To update a slope parameter
βj , one resets βj = 0 and commences maximization. If the directional derivatives to the right

and left of 0 are both negative, then no progress can be made, and βj remains at 0. Otherwise,
maximization is confined to the left or right half-axis, whichever shows promise. Because the
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objective function is concave, the two directional derivatives at 0 cannot be simultaneously
positive. Newton’s method almost always converges within five iterations. At each iteration

one should check that the objective function is driven uphill. If the ascent property fails, then
the simple remedy of step halving is available.

2.2.2. Linear Regression

In ordinary linear regression, the objective function to be minimized is

f(θ) =
1

2
‖y − µ−Xβ‖22 + λL

∑

j

sj |βj |+ λE

∑

G

tG‖βG‖2.

Coordinate descent for linear regression also yields to Newton’s method. Owing to the discon-

tinuities in the penalties, once again iteration is confined to the left or right half-axis, provided
either passes the directional derivative test. In contrast to unpenalized linear regression, min-

imization takes more than a single iteration. This complication just reflects the fact that the
group penalty is neither linear nor quadratic.

2.3. Selection of Tuning Constants

In principle, cross validation can be invoked to determine the optimal values λL and λE. As we

show in our simulation, setting them equal works well. Given a fixed ratio of the two penalties,
the total penalty λ = λL + λE can be adjusted to deliver a predetermined number of genes

or SNP variants. Because the number of non-zero predictors entering a model is generally a
decreasing function of λ, a bracketing and bisection strategy is effective in finding a relevant

λ.10 Of course, the smaller the number of predictors desired, the faster the overall computation

proceeds. If computing time is not a constraint, it is helpful to optimize the objective function
over a grid of points and monitor how new predictors enter the model as λ decreases. Another

way to choose λ is to minimize either the BIC or AIC criterion as a function of λ. Recall
that the purpose of convex relaxation is to avoid the combinatorial search entailed by the

traditional application of the AIC and BIC criteria. Guiding the choice of λ by these criteria
is a better tactic.

3. Analysis of Simulated Data

Our first simulation example, admittedly a toy example, involves 1000 controls and 1000

cases under different scenarios reflecting heterogeneity in both minor allele frequencies (MAF)

and relative risks (RR). We assume 10 participating genes, each with 5 rare variants. Across
the variants the MAFs are simulated from the Wright-Fisher distribution under balancing

selection

f(p) ∝ c pαs−1(1− p)αn−1eσ(1−p),

where c is a scaling constant such that
∫ 1
0 f(p) dp = 1 and σ is a selection coefficient. We

take αs = 0.2, αn = 0.002, and σ = 15.27 For i = 1, . . . , 5, gene i has i causal rare variants.

Therefore, the model has 15 causal rare variants dispersed over 5 genes and 35 neutral rare
variants dispersed over 10 genes. All neutral variants have relative risk (RR) 1; causal variants’
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Fig. 1. Solution paths of parameter estimates under lasso penalties (top row), mixed penalties (middle row),
and group penalties (bottom row). Left column: sj ≡ 1 and tG ≡ 1 (no weighting). Right column: sj =

2
√

pj(1− pj) and tG ≡ 1.

RRs are drawn uniformly from the interval [1.2,5]. The wild-type penetrance f0 is set at 0.01.

For more details on data simulation algorithm, see our previous paper.11 Figure 1 shows the
solution paths of lasso, mixed penalty, and group penalty estimates with and without weights

sj = 2
√

pj(1− pj), where pj is the MAF estimated from the controls. All group weights are set
to 1. The pure lasso penalty (λL/λ = 1) picks up significant variants sequentially. The pure

group penalty (λL/λ = 0) picks up genes (groups) 1, 2, and 3 sequentially. The mixed group

plus lasso penalty (λL/λ = 0.50) achieves a good compromise between the two.
To discern the effects of weighted and unweighted penalized estimation, we repeat the

same simulation 100 times and plot ROC curves for selected variants and genes in Figure
2. Each point of the ROC curves records the true and false positive rates of the selected
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Fig. 2. ROC curves based on 100 simulations using the setup of Figure 1.

variants (left panel) and genes (right panel) at a specific λ value. A true positive for selection
of a gene is defined as choosing any true variant within that gene. In all three situations,

adding weights improves the selection of causal variants and genes. Indeed, the ROC curves
shift visibly toward the upper left. Also notice that for acceptable false positive rates (less

than 0.05) the mixed-weight penalty provides the best true positive rates for selection of both
variants and genes.

4. Software Implementation and Illustration of Real Data

The methods we have described are implemented in the statistical genetics software Mendel6

and will be freely available in its next public release, version 10.5 or higher. Mendel is

available for Linux, MacOS, and Windows at http://www.genetics.ucla.edu/software.
Within Mendel the SNP association option handles GWAS (genome-wide association study)

data, both simple marginal p-value calculations and the above lasso based analyses.
We previously applied mixed penalized logistic regression to a familial breast cancer

dataset11 with SNPs assigned to genes involved in double strand break repair. We now take
advantage of these data to illustrate the mechanics of our implementation in Mendel. The

data originate from genotype samples of participants enrolled in the UCLA Family Cancer reg-
istry. We performed penalized logistic regression in which the response, breast cancer status

(affected versus unaffected), is coded as a binary outcome. Our sample contains 399 Cau-
casian participants, of whom 196 were affected and 203 were unaffected. Covariates include

age, Ashkenazi Jewish heritage, and education level. We imputed missing non-genetic pre-

dictors using the mean value for a continuous variable and the most frequent category for
a categorical variable. Overall 148 SNPs from 17 genes in the DSBR pathway were typed

and grouped by gene. Missing SNP data were imputed using the SNP Imputation option of
Mendel.6 For a complete description of the data, results, and insights gained from mixed
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penalized analysis, see our companion paper.11 Mendel takes less than five seconds on a

standard desktop computer to complete all analyses on this dataset. On a more challenging
dataset with 10,000 SNPs and 2,200 individuals, Mendel completes all marginal and lasso

analyses in under 30 seconds.
The input files used for the breast cancer and other analyses adhere to the usual Mendel

conventions. In particular, the compressed SNP genotype data file conforms to the standard

binary format adopted by both Plink and Mendel. SNP group designations and weights
are optional. If they are desired, then they should be deposited in the SNP definition input

file alongside the name, chromosome, and base pair position of each SNP. If no group is
specified for a SNP, it is considered to be a singleton group. If no weight is specified for a

SNP, then the SNP is assigned the default weight 2
√

p(1− p), where p is its MAF. The user
may specify a value for the ratio λL/λ by invoking the keyword lasso proportion in the

Control file. Mendel reads all optional parameter settings from the Control file. To provide
flexible modeling, the user can force any predictor or group to be retained in the lasso model

by assigning to the keywords retained predictor or retained group the corresponding
predictor or group name. If a retained group is specified, then all predictors within that group

are retained. For example, the Control file snippet

Analysis_option = SNP_Association

Model = 2

Quantitative_trait = BC

Marginal_analysis = True

Lasso_analysis = True

Desired_predictors = 50 :: marginal

Desired_predictors = 20 :: lasso

Lasso_proportion = 0.5

Predictor = Grand :: BC

Predictor = Age :: BC

Transform = standardize :: Age

Retained_predictor = rs11571476

Retained_predictor = Age

Retained_group = XRCC4

instructs Mendel to perform SNP association analysis using cases and controls. The value 2
for the keyword Model implies logistic regression; the default value 1 implies ordinary linear

regression. The third command in the above Control file indicates that affection status pertains
to the trait BC. Both a marginal and lasso analysis will be performed, with the top 50 marginal

predictors and the top lasso set of 20 predictors reported in a Summary output file. Marginal
results on all predictors are always reported in another output file intended for plotting.

For this analysis run, the ratio λL/λ ratio is set to 0.5. If the keyword lasso proportion

is not specified, the ratio has its default value of 1. All defined SNPs are always included

as predictors unless specifically excluded in a SNP exclusion file. In this example two non-

SNPs are named as predictors for the trait BC, a mandatory grand mean and an optional
variable Age. The Transform keyword specifies that the Age variable will be normalized prior

to analysis; we recommend normalization for all quantitative predictors. Finally, the above
Control file specifies that the two predictors rs11571476 and Age and all predictors in the
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group XRCC4 should be retained in the lasso model.
As mentioned, most results are presented in a Summary output file. At the top of this file

appear the results for each predictor individually. For example, the first few rows of marginal
results might be

PREDICTOR MARGINAL REGRESSION STANDARD HARDY- MINOR GENOTYPING GROUP

NAME P-VALUE ESTIMATE ERROR WEINBERG ALLELE SUCCESS NAME

P-VALUE FREQUENCY RATE

Grand Mean - -0.03509 - - - - -

Age 0.2347E-04 0.43700 0.10660 - - - -

rs9634161 0.00760 - - 0.19917 0.15539 1.00000 RAD52

rs16889040 0.00768 - - 0.49854 0.25815 1.00000 RAD21

rs4986763 0.01123 - - 0.20101 0.37469 1.00000 BRIP1

rs16888997 0.01298 - - 0.67786 0.25815 1.00000 RAD21

rs16888927 0.01932 - - 0.17591 0.26817 1.00000 RAD21

rs1120476 0.02024 - - 0.48503 0.43233 1.00000 XRCC4

To decrease computation time, regression estimates are only calculated for predictors with
marginal p-values more significant than 0.001. This default threshold can be reset by the user.

A table of false discovery rates for the marginal p-values appears after the single predictor

summary.
The results of the lasso analysis are listed after the marginal results in the Summary file.

For example, the first few rows of lasso results might be

PREDICTOR MARGINAL LEAVE-ONE-OUT REGRESSION HARDY- MINOR GENOTYPING GROUP

NAME P-VALUE INDEX ESTIMATE WEINBERG ALLELE SUCCESS NAME

P-VALUE FREQUENCY RATE

Age 0.2347E-04 0.1645E-05 0.50391 - - - -

rs9634161 0.00760 0.00166 -0.42841 0.19917 0.15539 1.00000 RAD52

rs2061783 0.35871 0.01508 1.46004 0.2611E-10 0.03509 1.00000 XRCC4

rs10514249 0.02687 0.02757 -0.80396 0.86985 0.43985 1.00000 XRCC4

rs2075685 0.34106 0.05623 -0.38380 0.05712 0.42105 1.00000 XRCC4

rs2887531 0.50526 0.08627 -0.24576 0.11833 0.23183 1.00000 RAD52

rs11571476 0.05510 0.08633 0.30271 0.68282 0.42481 1.00000 RAD52

Since our example Control file specified that group XRCC4 should be retained, all members
of that group will be included in the complete lasso output set. The lasso output is sorted

by the leave-one-out index, which is simply the p-value of the likelihood ratio test of the
full regression model, using all predictors in the lasso set, versus the model leaving out the

specified predictor. Because of the prior selection of predictors, the leave-one-out index is not
a legitimate p-value.

5. Discussion

This paper presents penalized estimation as a framework for association testing in the presence
of both common and rare variants. Our results partially vindicate the twin strategies of mixed

group penalties and penalty weights acting at either the single predictor or the group level.

Penalty weights provide a flexible way of incorporate prior biological knowledge and have
the potential to increase power in association mapping. Even choosing to weight individual

variants by their population frequencies makes a difference in sorting through the confusion
of causal genes and neutral variants within them. Although our recommended tactics improve
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both false positive and false negative rates, they represent an incremental improvement rather
than a panacea. In our opinion, there is still room for further improvement. More progress

is apt to come through more nuanced weights or propensity scores cumulating risks across
the whole spectrum of variants within a gene or pathway. Replacing variant predictors by

group-wise propensity scores may serve to reduce the number of predictors and the need for
differential penalty weights altogether.
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Recent advances in sequencing technologies have made is possible, for the first time, to take a thorough 
census of the microbial species present in a given environment. This presents a particularly exciting 
opportunity since bacteria and archea comprise the dominant forms of life on earth, and since they are vital to 
human health and to the wellbeing of our environment. However, the bioinformatics for interpreting these 
very large sequence datasets are not fully developed. This session presents recent work supporting the 
computational analysis of microbiome data. 

1.  Introduction to Microbiome Studies 

1.1.  Producing Hard Copy Using MS-Word 

Microbes, including both eubacteria and archaea, are the dominant forms of life on earth, in 
absolute numbers, biomass, and diversity of ecosystems. During more than half of the Earth’s 3.5 
billion year biological history, only microbes were present. Microbial physiology is a dominant 
factor in carbon cycling, greenhouse gas emission, and oxygen production. In the human body 
there are ten times more microbial cells than human cells, and there are two orders of magnitude 
more microbial gene products than human gene products. Unfortunately, over 97% of microbes 
cannot be cultivated with current techniques, which has significantly biased the choice of model 
systems, as well as microbial genome sequencing and bioinformatics. Even our evolutionary and 
ecological theories and software were developed with macro-biology in mind, and often appear to 
be ill suited to studying the microbial world. Consequently, we have until recently been unable to 
fully understand and appreciate some of the most important ecological systems on earth.  

Fortunately, new sequencing and bioinformatics technologies, such as tagged barcoding, 
community genomics, pyrosequencing, and metagenomics have made it possible to study the 
structure and dynamics of microbial communities. Some natural microbiomes that have recently 
been characterized include surveys of human microbiomes and their relationship to human health 

                                                             
* This work is partially supported by NIH P20RR16448 from the NCRR IDEA/COBRE program and by NSF 

“Evolution in Action” STC DBI 0939454 
† Work partially supported by NIH R01 LM009012 and P20 RR018787. 
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in the human gut, skin, mouth, and reproductive tracts and ecological surveys of soil, air, and 
water to understand the effects of climate change and pollution. 

A crude estimate of the number of publications in microbiome studies (using a Pubmed search 
for “microbiome OR metagenome OR community genomics OR microbial ecology”) has 
exploded in recent years, growing from 248 in 2000 to 1102 in 2009, with a total of 7117 hits to 
date. Publications to date are on track to double or triple in the coming year.  

During this time, funding for microbiome studies has significantly increased, including 
signature areas such as the Human Microbiome Project from NIH. Community resources have 
become widely used (such as RDP, Greengenes/Silva, CAMERA, VAMPS, HMP DACC) and 
comprehensive bioinformatics tool suites are (such as mg-rast, mothur, catchall, and unifrac) being 
developed and widely used. Moreover, “the personal microbiome” may prove to be as important 
as “personal genomics”, the theme of PSB 2010. 

These were the considerations that led to this PSB special session on “microbiome studies”. 
Our intention is to bring the expertise of the PSB community to bear on this increasingly 
important new field. 

2.  Papers in this session 

One major challenge posed by microbial sequence data is to infer function and ecology of 
complex microbial communities from very large sequence datasets. This is the challenge 
addressed in this year’s session. 

Most of the papers in this session present tools or frameworks to facilitate interpreting 
community function or composition from 16S fragments extracted from the environment and 
analyzed directly. The 16S gene codes for the small subunit of the ribosome, which is essential to 
DNA replication. Therefore this molecule is strongly conserved even in very ancient lineages. 
Woes introduced the use of the 16S gene as a phylogenetic marker for microbes, thereby showing 
that the archea comprise a distinct third kingdom of life. It has since become standard practice to 
use the similarity of several hypervariable regions in the 16S genes of microbes to identify and 
distinguish populations of microbes.  

Holmes et al., “Visualization and Statistical Comparisons of Microbial Communities using R 
packages on Phylochip Data” introduces  packages for the very popular R statistical analysis 

package which interpret data from the PhyloChip. This is a microarray with 16S targets for 8743 
distinct bacteria and archea. Thus this paper represents a technology for identifying microbial 
communities using microarray technologies. The utility of this tool is limited by the set of targets 
on the Phylochip, of course. However, the R packages will be useful for any data from similar 
microarrays, including potentially customized arrays for specific complex screenings. 

So called “metagenomic” or “barcode pyrosequencing” techniques have been developed to 
avoid the bias inherent in microarray design, and the even stronger bias that comes from culturing 
sequences and building clone libraries. (Note, “metagenomics” has multiple meanings, and we use 
it here to refer to 16S fragment analysis.). One approach, popularized by Roche, is to attach DNA 
“barcodes” to primers and then to perform very large scale PCR in micro-droplets that contain 
nano-beads with complementary sequences attached. This makes it possible to generate over 
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million reads between 200bp and 500bp long, which is ideal for the hypervariable regions of 16S. 
Other technologies exist and are emerging that can generate far more reads, and these technologies 
are progressing rapidly.  

This much data creates a major bioinformatics challenge. Several software packages or web 
services are emerging to provide bioinformatics support for this type of data. Two are presented in 
this session. Eran et al., “A FRAMEWORK FOR ANALYSIS OF METAGENOMIC 
SEQUENCING DATA” presents a software framework that allows scientists to build custom 
workflows for their “next generation” data analysis—with a particular emphasis on 16S microbial 
community sequence data. 

The paper by Moore et al., “Human microbiome visualization using 3D technology”, addresses 
the problem of making sense of microbiome data analysis visually. Scientists often need to “play 
with” possible interpretations of very large datasets, searching for more precise hypotheses to be 
verified or just getting a handle on what the data are like. This paper presents a possible 
framework for this challenge. This differs from the many existing “pipelines” in that it enables the 
user to directly customize their software to support individual workflows.  

The paper by Bunge, “Estimating  the  Number  of  Species  With  CatchAll,”  presents  the 
newly  expanded  CatchAll  package  for  microbial  community  analysis.  Most  statistical 
techniques  for  inferring  species  richness  and  other  ecological  measure  of  diversity  are 
nonparametric  and  based  on  relatively  small  samples  from  relatively  small  populations, 
having  been  derived  to  interpret mega‐biome data  such  as  that  from  forests  or  reefs.  But 
techniques  that  work  for  hundreds  of  species  often  fail  to  work  robustly  for  thousands, 
especially  when  there  are  typically  dozens  to  hundreds  of  “rare”  species  in  the  sample. 
CatchAll provides  the classical measures of diversity, but also adds some novel parametric 
estimates  that  seem  to work  very well  for microbiome analyses.  (Note:  be  sure  to  see Dr. 
Bunge’s tutorial on ecological diversity estimations as well.) 

In summary, we are pleased with the orientation of this new PSB special session toward 
practical  solutions  to  the  very  large  data  interpretation  problems  arising  from  next 
generation sequencing and microbiome studies.  
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ESTIMATING THE NUMBER OF SPECIES WITH CATCHALL

JOHN BUNGE

Department of Statistical Science, 1198 Comstock Hall, Cornell University, Ithaca, NY 14853 , USA
E-mail: jab18@cornell.edu

In many situations we are faced with the need to estimate the number of classes in a population
from observed count data: this arises not only in biology, where we are interested in the number of
taxa such as species, but also in many other fields such as public health, criminal justice, software
engineering, etc. This problem has a rich history in theoretical statistics, dating back at least to 1943,
and many approaches have been proposed and studied. However, to date only one approach has been
implemented in readily available software, namely a relatively simple nonparametric method which,
while straightforward to program, is not flexible and can be prone to information loss. Here we present
CatchAll, a new, platform-independent, user-friendly, computationally optimized software package
which calculates a powerful and flexible suite of parametric models (based on current statistical
research) in addition to all existing nonparametric procedures. We briefly describe the software and
its mathematical underpinnings (which are treated in depth elsewhere), and we work through an
applied example from microbial ecology in detail.

Keywords: species richness; finite mixture model; abundance.

1. Introduction

In many applied settings we encounter the need to estimate the number of classes in a popu-
lation based on observed sample count data. For example, in biology it is common to collect a
sample of organisms and sort them into taxa – we will use the term “species” for these taxa,
recognizing that this may not be exact in some cases – count the number of representatives
of each species in the sample, and from this data estimate the total number of species, both
seen and unseen, in the underlying population. This is called the “species richness.” There
are many examples from other fields as well, such as veterinary medicine, where one may
wish to estimate the number of farms with animals having a certain disease, or software en-
gineering, where interest is in the number of potential types of errors in a complex software
program.1 Statisticians have been interested in this problem since the time of R. A. Fisher,2

and many approaches have been studied theoretically and tested empirically, ranging from
frequentist to Bayesian and from parametric to nonparametric.3 However, to date only one
class of statistical methods has been implemented in readily available software, namely the
(frequentist) coverage-based nonparametric estimators of Chao and colleagues.4 (This is not
the only possible class of nonparametric estimators; see Section 3 below.) These are provided
in, e.g., SPADE5 and EstimateS,6 and in some broader-use bioinformatics packages such as
mothur7 and QIIME;8 see Section 2 for details.

The coverage-based nonparametric estimators are mathematically simple and computa-
tionally straightforward, and these estimators, known as Good-Turing, Chao1, the Abundance-
Based Coverage Estimator ACE and its variants, and Chao-Bunge, can be accurate in some
situations. (The associated standard errors are more complex computationally; see Section
2.2 below.) However, it is known that these estimators are typically downwardly-biased in
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high-diversity situations9 such as arise in modern high-throughput DNA sequencing studies,
for instance. Furthermore, they are sensitive to inclusion/exclusion of outliers, i.e., species
that appear with high abundance in the sample, so it is standard practice to truncate species
abundance counts at 10 when using these estimators, that is, to ignore species with sample
counts higher than 10, adding the number of such species to the estimate ex post facto. In ad-
dition, these estimators do not admit goodness-of-fit testing or other diagnostic assessments,
and it is not clear how to graph or visualize the results.

In contrast, recent statistical research has elucidated a class of parametric finite mixture
models9 which are accurate in high-diversity populations (when the model is correct), are
relatively insensitive to outliers, and permit a broad array of diagnostic and goodness-of-fit
assessments, both quantitative and graphical. The basic idea is to “mix” several component
parametric models together (i.e., to form a convex combination of them) so that one component
fits the rare species and another the abundant ones (possibly using one or more additional
components for improved fit to the sample count data). Estimators based on these models are
not simple to compute, though, requiring multidimensional numerical search routines to obtain
maximum likelihood estimates of the parameters (based on the expectation-maximization
or EM algorithm), and model-selection procedures which are partly statistical and partly
heuristic. In addition, computation of standard errors is quite involved, requiring numerical
computation of inverse Fisher information matrices that can involve thousands of lines of code.

We originally explored the use of these models in biological applications by building a proof-
of-concept system on a cluster in Cornell’s Center for Advanced Computing using Maple,10

but while functional the system was very slow, sometimes taking a week to complete an anal-
ysis. We analyzed several hundred datasets using this system (many from microbial ecology),
and based on this experience we re-engineered our algorithms and rebuilt the system using
a combination of C# and C. The result is CatchAll, a freely downloadable, user-friendly,
platform-independent (Windows/Macintosh/Unix, single-processor/cluster, GUI/batch) soft-
ware program which computes the full suite of finite-mixture models and all known nonpara-
metric coverage-based estimates. CatchAll then compares all of these results; selects the best
in each category and the “best-of-the-best”; and returns recommended estimates to the user
along with associated standard errors, confidence intervals, and goodness-of-fit assessments.
For the GUI version there is also an Excel-based module which produces publication-quality
graphics displaying the the fit of the parametric models to the data, and the comparative
performance of the various estimators. CatchAll usually computes a complete analysis in a
minute or two on a single-processor machine.

Our purpose here is not to enter into the mathematical, statistical and computational
details of CatchAll, which are discussed elsewhere9,11 but rather to describe a complete case
study resulting in an estimate of total species richness in a particular setting. In Section 2
we discuss the data and its analysis, and Section 3 we draw conclusions and mention some
future directions for expansion of CatchAll. In the Appendix we give a brief outline of our
most important algorithm, which computes maximum likelihood estimates for the parametric
models.
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2. Analysis of a microbial diversity dataset

The International Census of Marine Microbes (ICoMM) is a large-scale research project on
microbial diversity, intended “to (1) catalogue all known diversity of single-cell organisms in-
clusive of the Bacteria, Archaea, Protista and associated viruses, (2) to explore and discover
unknown microbial diversity, and (3) to place that knowledge into appropriate ecological and
evolutionary contexts.”12 Part of the ICoMM activity consists of taking samples of marine
microbial organisms for (among other purposes) diversity evaluation. Essentially, a sample of
water is taken and microbial 16S rRNA sequences are extracted. These sequences are then
clustered into “operational taxonomic units” or OTUs; in our example below two sequences
are assigned to the same OTU if they share 97% sequence identity, but the 97% value is
conventional rather than theoretically based and can be varied at the discretion of the investi-
gator. The OTU frequencies are then counted: some OTUs contain only one member sequence
(the “singletons”), others two, others three, and so on. Finally we reorganize this information
as “frequency count” data, consisting of the number of OTUs having one member or element;
the number having two; the number having three, and so on. We note that each stage of
this process, from sampling to sequence alignment and comparison to clustering, is nontrivial
and subject to variation across labs and differing interpretation of results,13 but for our pur-
poses here we will assume that the frequency-count data is obtained in an unambiguous and
closed-ended manner.

2.1. Example dataset

The sample data analyzed below was collected on January 7, 2005, as part of the ICoMM sub-
project “Application of the 454 technology to active-but-rare biosphere in the oceans: large-
scale basin-wide comparison in the Pacific Ocean,” by Koji Hamasaki and Akito Taniguchi
of The University of Tokyo; for full details on this sub-project see the ICoMM Microbial
Oceanographic Biogeographic Information System MICROBIS.14 The complete frequency-
count data is shown in Table 1. There were 19854 sequences grouped into 3018 OTUs, with
(in particular) 2013 singleton OTUs; the maximally abundant sample OTU contained 1784
sequences. Figure 1 shows the data with the best fitted parametric curve (we explain this in
Section 2.2). We retain the original scale (rather than, say, a log-log scale) to show the steep
descent from the left, followed by the long slow decay to the right (in fact the plot is truncated
at a maximum frequency of 254, while the actual data extends to 1784). This shape is typical
of high-diversity data, which is often encountered in microbial diversity studies.

2.2. CatchAll analysis of example data

The basic idea of parametric species richness estimation is to fit a curve to the frequency
count data and to project this curve upwards and to the left, to an abscissa of zero, so as to
obtain an estimate of f0. The estimate of the total number of species, unobserved + observed,
is then f0 + f1 + f2 + .... The curve is a mixed-Poisson distribution based theoretically on an
underlying species abundance distribution. It is fitted to the data via maximum likelihood, and
the same procedure also yields standard errors, fitted values, goodness-of-fit statistics, etc.9

CatchAll fits an ordered suite or family of five parametric curves: the (ordinary or unmixed)
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Table 1. ICoMM frequency count dataset
“ABR 0005 2005 01 07.” i = frequency; fi
= # of sample OTUs with frequency i.

i fi i fi i fi i fi
1 2013 23 1 56 1 165 1
2 416 25 3 57 1 173 1
3 173 27 2 59 1 191 1
4 85 28 1 71 1 195 1
5 63 29 3 73 1 201 1
6 43 30 1 76 1 202 1
7 39 31 3 80 1 208 1
8 18 32 1 84 1 223 1
9 24 33 1 85 1 225 1
10 8 34 1 93 1 233 1
11 17 35 1 94 1 254 1
12 8 36 1 114 1 319 2
13 6 38 2 119 1 328 1
14 3 40 1 122 1 548 1
15 4 42 1 123 2 560 1
16 6 43 1 131 1 675 1
17 9 46 1 148 1 1036 1
18 2 48 1 150 1 1361 1
20 6 53 2 154 1 1526 1
22 4 54 1 155 1 1784 1

Poisson, which unrealistically stipulates equal species abundances and is useful mainly as a
lower-bound benchmark for the true richness; the (single) geometric; and mixtures of two,
three, and four geometrics. (For technical reasons these are called mixtures of exponentials in
the output and display.) The Poisson is mathematically the zero-order model in this scheme,
followed by first- (single geometric), second- (mixture of two geometrics), third- and fourth-
order mixture models. The idea, as noted above, is to mix (form a convex combination of)
several component sub-models, one component fitting the steep decline of the frequency count
data on the left, another fitting the shallow decline on the right, and possibly others fitting
intermediate parts of the data.

At this point a second issue arises. Any parametric curve is defined by a finite number
of parameters (1, 1, 3, 5 and 7 in our models of order 0, 1, 2, 3, and 4, respectively), and
consequently has finite flexibility. In most datasets it is not possible for any parametric curve
to fit the entire extent of the data from f1 to fmax (where fmax is the number of species,
i.e., the frequency count, at the largest sample frequency). It is therefore standard practice
to truncate the data on the right at some frequency, which we call τ ; the statistical analysis
is then based on f1, f2, . . . , fτ , and the number of species with frequencies greater than tau
(i.e., fτ+1 + fτ+2 + . . . + fmax) is added to the estimate ex post facto. As noted above, in the
coverage-based nonparametric methods τ is fixed at 10 (we return to this issue below). The
parametric methods are more flexible, and we wish to base the statistical analysis on as much
of the frequency count data as possible, that is, to use the largest possible τ for which we
can still obtain a good fit of the model. CatchAll therefore fits every model at every value of
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Fig. 1. Frequency count distribution of sample ICoMM data, with best fitted parametric curve.

τ and compares the results. Essentially we select the best-fitting parametric model at each
fixed τ using the small-sample-size-adjusted Akaike Information Criterion, AICc, and then
select across τ ’s using the p-values from the following two Pearson χ2 statistics. “GOF0” is
the p-value of a Pearson χ2 goodness-of-fit test based on the “raw” or unadjusted frequency
counts, and “GOF5” is the p-value of the χ2 test after concatenating adjacent frequencies to
obtain a minimum cell count of 5. We use both because the p-value of the χ2 test is based
on an asymptotic (large-sample) approximation to the distribution of the test statistic, and
the aforementioned concatenation of adjacent cells is standard practice to obtain sufficiently
large cell counts in sparse tables such as we typically have in our data (Table 1). Thus GOF0
should be regarded as a diagnostic “divergence statistic” signalling divergence from the null
hypothesis (which states that the model is correct), while GOF5 represents the p-value from
a legitimate statistical hypothesis test of model fit. In either case smaller p-values represent
evidence against the fit of the model, and larger p-values represent evidence in favor.

The final model-selection algorithm, in outline form, is as follows.
Model selection algorithm

(1) (Statistical.) Eliminate model*τ combinations for which GOF5 < 0.01.
(2) (Statistical.) For each τ , select the model with minimum AICc (Akaike Information Cri-

terion, corrected when necessary for small sample sizes).
(3) (Heuristic.) Eliminate model*τ combinations for which SE > estimate/2.
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Table 2. CatchAll analysis summary for ICoMM dataset. “Selection” = status of model,
“Model” = order of parametric model or designation of nonparametric method, τ = upper
frequency cutoff, “Est.” = estimated total species richness, “SE” = standard error of estimate,
“LCB” = lower 95% confidence bound, “UCB” = upper 95% confidence bound, “GOF0” =
unadjusted χ2 p-value, “GOF5” = adjusted χ2 p-value.

Selection Model τ Est. SE LCB UCB GOF0 GOF5
Best 3 119 15369 1322 13037 18243 0.0102 0.3199
2a 3 71 16032 1615 13231 19600 0.0704 0.0932
2b 4 254 16245 1833 13111 20352 0.0004 0.0785
2c 2 13 16604 1607 13802 20134 0.0004 0.0105

NP1 Chao1 2 7888 330 7283 8580
NP2 ACE1 10 13519 777 12104 15156

Parm τmax 3 1784 13476 810 12005 15188 0.0000
NP τmax ACE1 1784 12227106 4012967 6532741 22887348

(4) ( Heuristic.) Then:

• Best model: Select the largest τ for which GOF0 ≥ 0.01.
• Model 2a: Select the τ with maximum GOF0.
• Model 2b: Select the largest τ .
• Model 2c: Select τ as close as possible but ≤ 10.

(5) (Heuristic.) If all model*τ combinations are eliminated, relax the restrictions in (3) and
(4) and iterate.

We then report the “best-of-the-best” parametric model, along with three competing models
2a–2c, which are unordered in terms of preference.

The results of the ICoMM data analysis are shown in Table 2. The best analysis overall is
given in the first row of the table. The fitted model is a mixture of three geometric components,
one fitting the steep decline of the data on the left, one fitting the middle, and one fitting the
shallow decline to the right. This is the curve shown in Figure 1, although the three components
are of course not visible separately. The estimated total number of species is 15369 (i.e., the
estimate of f0 is 12351 so that 15369 = 12351 + 3018). The standard error associated with the
estimate of species richness is 1322. We do not form the “Wald” or Gaussian 95% confidence
interval consisting of the estimate ±1.96∗SE; rather, we use an asymmetric confidence interval
based on a lognormal approximation due to Chao,15 which is more realistic in this context.
(In the parametric modeling setting the Chao interval is an approximation to the profile
likelihood confidence interval, which though optimal is more complicated computationally
and will appear in a later version of CatchAll.) The last two columns display the goodness-
of-fit statistics GOF0 and GOF5. Both p-values exceed 0.01, indicating good fit of the model
to the data.

Note that τ = 119 for the best selected model, which, while still some distance from the
maximum frequency of 1784, represents the use of the first 53 of the 80 frequencies existing in
the data (66%). Thus the fitted curve in Figure 1 extends through 119 on the horizontal axis.
The competing models 2a, 2b, and 2c (these are unordered in terms of desirability) represent
various good but suboptimal compromises vis-à-vis goodness-of-fit, large τ , and other factors.
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Model 2a again has 3 components and better GOF0 (than the best model), but smaller τ ;
2b has four components and higher τ but GOF0< 0.01, and 2c has low τ and low GOF0.
Nevertheless their estimates, SEs and confidence intervals do not differ too much from those
of the best model.

CatchAll also computes all known coverage-based nonparametric richness estimates, in-
cluding that of Chao and Bunge.4 The best of these are reported in the results table. Table
2 first shows “NP1” (meaning the first reported, not best selected) nonparametric analysis
which is the “Chao1” statistic, a simple lower bound estimator with τ = 2. This is useful as a
cross-check or benchmark. Next, as “NP2” (the second reported nonparametric analysis), we
report either ACE or its high-diversity variant ACE1, selected according to a criterion based
on the coefficient of variation of the frequency count data.4 These both have τ fixed at 10 (as
noted above), as recommended in the original statistical research. In this connection we note
that we have also re-engineered the standard error computation algorithms for the coverage-
based nonparametric methods, yielding improved precision relative to existing software for
these methods. For the ICoMM example data we see that ACE1 returns both an estimate and
an SE that are lower than those of the parametric models, in accordance with the downward
bias in high-diversity situations mentioned above.

We also report the best parametric and the best nonparametric analysis with τ fixed at
the maximum frequency in the data, i.e., using the entire frequency count dataset. Table 2
shows that, while the parametric analysis at maximum τ differs little from the best selected
parametric analysis (reflecting the relative insensitivity to outliers referred to above), the
coverage-based nonparametric analysis “drifts off to infinity” along with its SE, when the
large outlying frequencies are included.

To display the behavior of the various models and estimators as the larger frequencies are
added to the data, the GUI version of CatchAll provides a bubble plot, shown in Figure 2.
The figure displays the increase of the nonparametric estimates and their SEs as a function
of increasing τ , compared to the relatively stable behavior of two of the parametric estimates
(3rd- and 4th-order mixtures) as functions of τ . The bubble areas are proportional to 1/2 the
associated standard error at each point. (Figure 2 has been reduced for simplicity to show
only part of the τ -range and only two of the five parametric models.) It is clear that, while
the estimators agree reasonably well at τ = 10 (as was seen in Table 2), the nonparametric
coverage-based estimates (and their error terms) diverge to infinity as τ increases, whereas
the parametric estimates decrease slightly. Thus the coverage-based nonparametric methods
can produce non-overlapping, hence contradictory, confidence intervals from the same dataset,
depending on which large “outlying” frequencies are included in the analysis. The cause of this
behavior has not yet been mathematically ascertained (although it is universally observed),
and is a topic for further theoretical research.

The final selected analysis, referring again to the first row of Table 2, is the 3rd-order
model at τ = 119, and is indicated by an arrow in Figure 2.

Several existing and widely-used programs also compute (some of) the coverage-based
nonparametric estimates. The Chao-Bunge estimator4 is produced by SPADE;5 ACE/ACE1
are produced by SPADE, EstimateS6 and mothur;7 and Chao1 is produced by SPADE, Es-
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Fig. 2. Total species richness estimates as a function of τ in ICoMM data. “Est Sp for NonParametric Model”
= total richness estimated using ACE or ACE1, “Est Sp for FourMixedExp Model” = total richness estimated
using 4th-order parametric mixture model, “Est Sp for ThreeMixedExp Model” = total richness estimated
using 3rd-order parametric mixture model.

timateS, mothur and QIIME8 (accompanied in all cases by standard errors and confidence
bounds). Thus the user will essentially find replicates of these nonparametric estimates in the
cited programs and in CatchAll. There are two notable differences, however. First, CatchAll
is unique in computing these nonparametric estimates at every value of τ , so as to reveal their
behavior as more frequency counts are included in the data. Second, the standard error and
confidence interval computations in CatchAll are based on new algorithmic representations of
the underlying mathematics, and are considerably more accurate and precise than the usual
algorithms used for this purpose.

3. Conclusions and future directions

We have presented CatchAll, a software program for parametric and nonparametric statistical
estimation of total species richness, along with visualization and comparison of competing
analyses. CatchAll is user-friendly — it requires no input other than the input data file spec-
ification from the user, that is, no options need to be set; it is freely downloadable, from
http://www.northeastern.edu/catchall/; it is platform-independent and will run under Win-
dows or the Macintosh operating system or Unix, on single- or multiple-processor machines,
in GUI or in batch mode; and it is fast, completing most analyses in a minute or two on a
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modestly-specified machine. It is the first program to implement parametric species richness
modeling in a comprehensive, integrated and accessible fashion, and it also computes all exist-
ing coverage-based nonparametric estimates (with improved standard errors). A full manual
is also provided.

In terms of future developments, we will next extend CatchAll to include a completely
novel species richness estimation method based on fitting a linear model to ratios of adjacent
frequency counts.1 We will then incorporate objective Bayesian methods using reference and
Jeffreys priors for the number of species.16 Finally we will implement nonparametric maxi-
mum likelihood estimation, another new approach in the species richness problem.9 These are
computationally intensive procedures which will take some time to program. We welcome com-
ments and suggestions regarding the current or potential future versions of CatchAll, which
may be addressed to the author.
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Appendix A. Computing the maximum likelihood estimates

We outline the expectation-maximization (EM) algorithm for computing the maximum like-
lihood estimates of the parameters in the mixture-of-two-exponentials (-geometrics) model,
when the frequency count data is truncated on the right at τ . Extending the algorithm to
higher numbers of components (three and four) is straightforward though not simple.

The observed data consists of the (nonzero) frequency counts f1, f2, . . ., where fi denotes
the number of species observed i times in the sample. The relevant part of the log-likelihood
of the data under the model is9

τ∑
i=1

fi log

(
u

(
1

t1

)(
t1

1 + t1

)i
+ (1− u)

(
1

t2

)(
t2

1 + t2

)i)
, (A.1)

where t1, t2 > 0, u ∈ (0, 1). Our objective is to find (t1, t2, u) to maximize (A.1) given f1, f2, . . ..
We initialize u as u(0) = 1/2, and t1, t2 as

t
(0)
1 =

∑b2τ/3c
i=1 ifi∑b2τ/3c
i=1 fi

− 1, t
(0)
2 =

∑τ
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− 1.
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Now suppose we are at the kth step, k = 0, 1, . . ., so that we have values t(k)1 , t
(k)
2 , u(k). Define
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Update u:
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i=1 fi

Update t1, t2:
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− 1;

t
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i=1 fi(1− z
(k)
i )

− 1.

Update z: z(k)i → z
(k+1)
i .

Iterate to convergence. This yields MLEs (t1, t2, u), which are the key quantities required for
all estimates, standard errors, fitted values, and goodness-of-fit statistics.9
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The human body is home to a diverse assemblage of microbial species. In fact, the number of microbial cells 

in each person is an order of magnitude greater than the number of cells that make up the body itself. 

Changes in the composition and relative abundance of these microbial species are highly associated with 

intestinal and respiratory disorders and diseases of the skin and mucus membranes. While cultivation-

independent methods employing PCR-amplification, cloning and sequence analysis of 16S rRNA or other 

phylogenetically informative genes have made it possible to assess the composition of microbial species in 

natural environments, until recently this approach has been too time consuming and expensive for routine 

use. Advances in high throughput pyrosequencing have largely eliminated these obstacles, reducing cost and 

increasing sequencing capacity by orders of magnitude. In fact, although numerous arithmetic and statistical 

measurements are available to assess the composition and diversity of microbial communities, the limiting 

factor has become applying these analyses to millions of sequences and visualizing the results. We introduce 

a new, easy-to-use, extensible visualization and analysis software framework that facilitates the manipulation 

and interpretation of large amounts of metagenomic sequence data. The framework automatically performs 

an array of standard metagenomic analyses using FASTA files that contain 16S rRNA sequences as input. 

The framework has been used to reveal differences between the composition of the microbiota in healthy 

individuals and individuals with diseases such as bacterial vaginosis and necrotizing enterocolitis. 

 

1.  Background 

Understanding the composition of microbial communities is important since microbes drive global 

nutrient cycles and there is a significant correlation between human microbial community 

composition, health and disease [1, 2]. Although they are not visible to the naked eye, microbes 

are ubiquitous in nature. Microbial cells constitute a large portion of the Earth’s biomass [3] and 

the human body is colonized by bacteria in the gastrointestinal tract, oral cavity, skin, airway 

passages and urogenital system [4]. The 16S rRNA gene sequence has been widely used to detect 

bacterial species in natural specimens and to establish phylogenetic relationships among them. All 

bacteria possess this gene, which has highly conserved regions that are needed to construct 
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phylogenies and are useful targets for PCR amplification and pyrosequencing analyses of 

microbial communities. The 16S rRNA gene also has hypervariable regions that are diverse 

enough to identify individual species [5]. Because of the large amount of sequence information 

associated with PCR amplification and pyrosequencing of 16S rRNA genes from microbial 

communities, a variety of statistical methods and extensive computational aid is needed for the 

analysis of the data. The primary goal of our work is to bring the analysis of large amounts of 

microbial community sequence data within reach of scientists who have only basic computer 

skills. 

2.  Framework 

There are several computational methods available to process microbial community 16S rRNA 

gene sequence data in order to understand and compare bacterial populations within them. Most of 

these were not designed to manipulate large pyrosequencing files. Preparing individual scripts in 

order to manipulate large sequencing files for each analysis is a difficult solution that requires 

extensive programming skills and experience to maintain. We present a software framework that 

overcomes many of these challenges of metagenomic sequencing data analysis and provides 

researchers with an easy way to analyze and interpret their data. 

2.1.  Motivation 

Software packages that are available to researchers to process 16S rRNA gene sequence data can 

be divided into two groups: those that are hosted on a server and used via web interfaces, and 

those that are downloaded and run locally. Both approaches have their benefits and their 

limitations. Online ribosomal sequence analysis applications and pipelines, such as Microbial 

Community Analysis (MiCA) [6] and the Ribosomal Database Project (RDP) pipeline [7], require 

researchers to upload their data over the Internet and work using web interfaces that are designed 

to be easy to operate. However online analyses usually have stringent limitations on the number of 

sequences that can be analyzed (or number of runs or permutations), primarily due to the fact that 

scarce resources, such as CPU time, memory size and network bandwidth, must be shared by 

many researchers in any centralized approach. Another limitation of this approach is that the 

software cannot be customized and enhanced for specialized analysis since it is running on another 

group’s server. On the other hand software that can be downloaded and run locally such as 

MOTHUR [8] and QIIME [9], permits researchers to use their own computational resources 

without requiring them to upload their data to another server. However, since most of these 

applications necessitate the use of command line interfaces to perform function calls, the learning 

curve for these tools is steep and a significant investment of time is required to learn and operate 

them. 

Another aspect of available 16S rRNA analysis software that limits its utility is the “pipeline” 

approach. Pipeline approaches are a model of computing where a set of applications are connected 

to each other such that output from one application becomes input to one or more applications in 

the subsequent stage. A pipeline approach is not an efficient structure for an application that is 

designed to analyze sequencing data. Applications in a pipeline cannot use previous applications’ 
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resources; these resources may need to be re-allocated or re-computed at every stage of the 

pipeline. This redundancy is not efficient use of computational resources and negatively impacts 

overall performance. In addition, the process of file upload, analysis and download, which may be 

repeated at different stages, is time consuming since the user must wait for output and must often 

upload results again for the next stage of analysis. Lastly, the preponderance of intermediate 

results from different stages of the pipeline that the user must manage is a large burden that can 

easily lead to mistakes due to human error. 

Our goal is to design an extensible, easy-to-use software framework that is liberated from 

these issues as much as possible by offering a hybrid solution. During its development, our 

framework has been tested and used by microbial community researchers studying the microbiota 

associated with various diseases such as bacterial vaginosis and necrotizing enterocolitis. 

Researchers using the framework were empowered to analyze their own samples, test hypotheses, 

and produce publication quality figures in order to communicate their results. 

2.2.  Technical Features 

The framework is developed on the Pardus Linux distribution using the Python programming 

language and open source scientific computing tools and libraries such as SciPy (http://scipy.org) 

and matplotlib (http://matplotlib.sourceforge.net/). A reliance on open source development tools 

and libraries will allow us to easily extend the framework and make it portable to non-Linux-based 

environments.  
 

 
Figure 1: Architectural overview of the framework. 
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Figure 1 shows an architectural overview of the framework with two major components: A 

multi-threaded server application that runs in the background performing data processing and core 

framework functions and interfaces for users to interact with the server. 

2.2.1.  Server 

The server performs all manner of computational tasks and figure generation. The multi-threaded 

design of the server allows it to run multiple analyses concurrently and handle queries 

simultaneously. The server exposes its functions via an application programming interface (API). 

This makes it possible for different types of clients to be written and interact with the server 

seamlessly (Figure 1). This flexibility also allows our framework to be used in both the graphical, 

user-friendly manner or invoked by scripts for automated analysis of large numbers of data sets. 

The server has more than one data processing module, and a set of core functions that is 

separated from the data. This modularity allows us to extend the server’s core functions and 

analysis capabilities to different types of inputs, such as quantitative PCR data. 

2.2.2.  Client 

Any client that can communicate via UNIX domain socket or TCP/IP protocols can query and 

submit tasks to the server through the API. The default client of the framework is a set of Django 

(http://www.djangoproject.com) powered web interfaces. The web client allows users to connect 

to and use the framework via their web browser. Thus, users can interact with the default client of 

the framework using any operating system and Internet browser they choose. 

2.3.  Implementation Status and Limitations 

The framework is still under development and currently the server analyzes 16S rRNA sequences 

only using RDP’s naïve Bayesian classifier [10] and performs all analyses based on genus level 

taxonomy assigned by RDP. However, the modular nature of the framework allows us to extend 

its capabilities easily and we are currently working on implementing other data processing 

modules for phylogenetic analysis based solely on sequence similarity. 

Currently the server is being used in house by several biological researchers for a number of 

active research projects. The most demanding project that has been analyzed on the framework 

included 166 samples with more than 2 million sequences. The framework server is installed on a 

Linux server as we work towards our first stable release. We are working to port the server to 

other platforms such as Mac OSX in order to distribute it more widely upon release. 

It is also important to note that the classification of sequence data (currently performed via the 

RDP classifier) is independent and orthogonal to the downstream analysis and visualization tools. 

In fact, any data set that contains names and associated abundance values can be slipped into the 

framework and processed through the downstream analysis and visualization. As a concrete 

example of this, we have implemented a facility for quantitative PCR data to be loaded into the 

framework and analyzed in a similar manner to classified 16S rRNA sequencing data. We intend 

to extend this facility to microarray data as well. 
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Figure 2: Basic workflow of the framework. Analysis begins with the submission of a FASTA formatted 

16S rRNA sequence file.  
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Figure 3: Example pie chart figures show bacterial composition at the genus level of three random samples 

from a bacterial vaginosis study analyzed using the framework. 

3.  Workflow 

Ease of use and extensibility are key design concerns for the framework. Hence, most of the 

analysis tasks are performed without requiring any a priori knowledge to be provided by the 

researcher. The basic workflow of the framework is illustrated in Figure 2. Readers are 

encouraged to visit http://meren.org/framework/ to view an example analysis performed with the 

framework. 

An analysis begins by submitting a FASTA formatted file containing 16S rRNA gene 

sequences. The file can contain multiple FASTA files originating from multiple environmental or 

clinical specimens. The framework then employs RDP’s naïve Bayesian classifier [10] for rapid 

assignment of sequences to the taxonomic groups at the phylum, class, order, family and genus 

levels and the framework proceeds to perform unsupervised preliminary analyses on the samples 

acquired from the RDP classifier results. These analyses include: 

 

 Calculations of total and percent abundance of bacteria in every sample, 

 Bar chart representation of the number of sequences acquired for each sample, 

 Bar chart representation of Shannon and Simpson’s diversity indices, 

 Pie chart representations of samples based on their bacterial compositions at each taxonomic 

level ranging from phylum to genus (Figure 3), 

 Rarefaction curves to illustrate the degree of diversity covered by each sample (Figure 4), 

 Hierarchical clustering dendrograms that illustrate how samples clustered based on their 

bacterial composition at different taxonomic levels (Figure 7). 

 

Once this set of unsupervised alpha-diversity analyses is completed, researchers can assign 

keys to desired samples and create subsets of samples for further investigation. The user defines 

subsets by assigning samples to groups, and then assigns a color to each of those groups for 

visualization. There is no limit on the number of subsets the user may define. The framework 

automatically ignores samples that are present in the original library if they are not assigned into 

any groups in a defined subset. 
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Figure 4: In this example set of rarefaction curves, species richness and expected number of OTUs are 

shown at different taxonomic levels of a sample that was analyzed using the framework. 

 

When the newly defined subset of samples is submitted for analysis, dot plots of every 

operational taxonomic unit (OTU) at each taxonomic level ranging from phylum to genus are 

generated. Box plots are attached alongside the dot plots to illustrate the abundance of each 

individual OTU across subsets of samples (Figure 5). Complete linkage clustering analysis is 

performed to assess similarities between microbial communities based on the percent abundance 

of the taxa they contain. These clustering results are displayed as dendrograms along with 

heatmaps illustrating the abundance of taxa in each sample (Figure 6). Heatmaps can be refined 

further to eliminate very low abundance OTUs or to use logarithmic values. 

 
Figure 5: Example dot plot of a subset of samples assigned to two categories, NEC (green) or NORMAL 

(red) showing differences in the percent abundance of three different OTUs at the phylum level. 
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Figure 6: Example heatmap generated by the framework showing how a subset of samples clustered based 

on their microbial flora at the genus level. Within this particular subset of samples, the cyan color 

represents penile skin swab samples collected from male patients and the red color represents vaginal 

swab samples gathered from female patients. The vaginal swab samples largely cluster together on the left 

of the heatmap, while the penile skin swab samples cluster together on the right side of the heatmap. 
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Figure 7: Example dendrogram generated by the framework showing how samples from a necrotizing 

enterocolitis study were clustered based on their microbial composition at the family level. Smaller 

versions of the pie chart representations of samples attached to the tree provide additional visual evidence 

for clustering results. 
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4.  Discussion and Future Work 

Many existing tools for metagenomic sequence analysis force biologists to learn application 

specific details to run various tests on their 16S rRNA sequence data. This burden may cause 

researchers to eschew new methods and tools for analysis in favor of those that they have already 

worked to become familiar with. A framework that provides ease of use and seamless integration 

of new methods as they appear will encourage researchers to try new methods. 

We plan to enhance the framework with a variety of additional components in the future. We 

are currently working to add phylogeny based beta diversity analysis methods, such as UniFrac 

[11]. It is also worth noting that the longer read lengths being produced by the Illumina Genome 

Analyzer IIe have made deep sequencing of entire metagenomes feasible. This will allow 

researchers to go beyond simple classification based on 16S rRNA and on to analysis of complete 

metagenomes. Our framework provides the infrastructure for further development of features to 

address assembly, classification and processing of broader metagenomic sequencing data while 

maintaining the ease of use through web-based client interfaces. 

Finally, our framework provides an important separation between classification of 

metagenomic sequencing data, and analysis and visualization of the classified data. We have 

currently implemented a front-end that uses the RDP classifier to interpret pyrosequencing reads 

of 16S rRNA into their taxonomic categories. We intend to enhance the utility of the framework 

by developing other front-end classifiers that may use the NCBI taxonomy or perform 

classification based solely on edit distance of sequences to further explore intra-genus and intra-

species diversity. We are also working on a facility to utilize the analysis and visualization 

features of the framework on other data types such as quantitative PCR and microarray data, 

which can be slipped into the framework past the classification front-end. 

5.  Conclusion 

Although there are a variety of tools currently available for metagenomic sequence analysis, they 

impose unnatural paradigms or restrictive limitations on biological researchers who may have only 

rudimentary computer skills. Pipeline approaches force users to select analyses to perform on their 

data instead of performing a comprehensive analysis by default. They also place a burden on the 

user for maintenance and routing of intermediate results that can lead to errors. Web based 

applications have advantages in terms of ease of use, but can be restrictive in the quantity of data 

they allow to be analyzed and the amount of user interaction required to perform an analysis. None 

of these approaches, by themselves, provide a viable alternative for microbial community 

researchers to analyze their data without scaling a significant learning curve. 

Our framework provides a scalable, hybrid approach to the problem of metagenomic sequence 

analysis. Researchers can run the framework on their own computational resources and are not 

faced with limitations on the quantity of sequences or number of analyses they can perform. They 

are also able to use familiar web-based interfaces to access the server and do not need to shepherd 

analyses through a pipeline and manage intermediate results. All of the standard analysis methods 

are run at the push of a button and the user is presented with an intuitive interface to group 

samples for further directed analyses. This flexibility and ease of use has allowed microbial 
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community researchers to perform their own analyses and generate publication quality figures to 

communicate their results with relative ease. 
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This article explains the statistical and computational methodology used to analyze species abun-
dances collected using the LNBL Phylochip in a study of Irritable Bowel Syndrome (IBS) in rats.

Some tools already available for the analysis of ordinary microarray data are useful in this type
of statistical analysis. For instance in correcting for multiple testing we use Family Wise Error rate
control and step-down tests (available in the multtest package). Once the most significant species
are chosen we use the hypergeometric tests familiar for testing GO categories to test specific phyla
and families.

We provide examples of normalization, multivariate projections, batch effect detection and in-
tegration of phylogenetic covariation, as well as tree equalization and robustification methods.

Keywords: Hypergeometric Test; PhyloChip; projections; Quality Control; R; Phylogenetic Tree

1. Introduction

We present here some examples of using robust multivariate methods for the specific challenges
of microbiome studies. We use as a running example a comparative study of microbiological
communities in healthy and IBS rats sampled at different locations in the intestine. The
results of the biological analysis have been submitted elsewhere,1 we concentrate here on the
statistical and computational challenges involved in such a project.
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1.1. IBS in humans and rats

It is believed that alterations in the microflora of humans with IBS comes from changes in
colonic fermentation patterns as has been described in King et al.2 Recently, some research
groups have been able to use culture-independent methods and deep high throughput 16S ri-
bosomal RNA gene sequencing to demonstrate significant differences in the microbiome of IBS
patients.3,4 The complexity induced by high individual variation of the microbiome suggested
that a good starting point in this comparative study would be a rodent model that mimics
the human condition. We have as our working hypothesis that the enteric microflora of adult
rats with colonic hypersensitivity would differ from that of controls. We use a comprehensive
and relatively simple way of studying the microflora using a 16S rRNA gene DNA microar-
ray called the Phylochip.5 The Phylochip has the advantage over high-throughput sequencing
assays in that it is designed to detect presence and abundance of individual species. A major
drawback of utilizing the Phylochip platform for this project was that the chip design was not
specific to the intestinal microbiome and as a consequence there is a very unequal resolution in
certain phyla, representing unequal knowledge about prokaryotic constituents of these phyla.

1.2. The data and software platform

Data were collected on the microbial community of different sections of the large bowel of
rats with colonic hypersensitivity induced by neonatal acetic acid irritation. This microar-
ray consists of 500,000 oligonucleotide probes capable of identifying 8743 of bacteria and
archaea and provides a comprehensive census for presence and relative abundance of most
known prokaryotes in a massive parallel assay. This array uses the the GeneChip (Affymetrix
Corporation) technology, thus we could use the Bioconductor6 suite of tools for annotation7

and normalization of the data in the same way as is usual for microarray studies.8 We then
used multivariate methods to visualize comparisons between different groupings of the data
enabling us to enhance our quality control of the experimental protocol.

We then separated the data into consistently present species and those presenting higher
variability. Previous computational approaches include the use of the weighted unifrac

(Wasserstein distance9) between communities.10 Here we take a geometrical approach to the vi-
sualization and detection of various multidimensional biases and changes in variability, as well
as the combination of phylogenetic and low rank information. This is more akin to Purdom11

who also combines phylogenetic and abundance data, but for PCR sequenced phylotypes.
Figure 1(a) shows a diagram of the data analysis workflow we chose to follow.

2. Details of the Data Analysis Procedures

2.1. Prefiltering and Normalization of the Microarray Data

We created and used a custom-tailored package containing the annotation of all the probes
on the Phylochip using the makecdfenv7 package. As with standard expression data, the data
need to be preprocessed to ensure that the variance was independent of the level of abundance
as described in Durbin et al12 and implemented in the vsn package8 in the Bioconductor6 suite
of R13 packages. Figure 1 (b) shows the densities of each of the arrays in the two groups after
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variance stabilizing normalization.
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(b) Density after variance stabilizing transformations.

Fig. 1: Tools were transposed from the standard microarray analyses

3. Batch Effect Detection using projections on Principal Planes

A standard principal component analysis was done on the centered and scaled abundance
data. In the first set of data, we had originally 24 samples, 12 from IBS, 12 from healthy
controls that we wanted to compare, the 12 samples for each group came from 4 locations in
the large intestine, however the first apparent differences came from batch groups. We had a
first batch of samples corresponding to analyses that were done on day 1 consisted of 6 arrays
(3 IBS/3CTL), a second batch 18 arrays (9IBS and 9CTL), done on a second date with a
different protocol and array batch. We used the additional ability provided by the projection
of supplementary group means and variance as in the function s.class in the ade414 package
to explore these batch effects in the laboratory methods used to generate the data. The ellipses
are computed using the means, variances and covariance of each group of points on both axes,
and are drawn with these parameters: the center of the ellipse is centered on the means, its
width and height are given by the variances, and the covariance sets the slope of the main axis
of the ellipse. In Figure 2, on the left we see the first two batches although both balanced with
regards to IBS and healthy rats were extremely different in variability and overall multivariate
location. In order to explore this further, a third batch was generated with the same arrays as
batch 2 but the same experimental protocol as batch 1. We see that the third group faithfully
overlaps with batch 1 thus showing that the batch effect was not due to a difference in arrays
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but to the experimental protocol. This shows the utility of PCA in quality control. After
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Fig. 2: On the left the first plane of the PCA shows the first set of data with two batches and
on the right the third set of arrays was added.

finding this particular effect we redid part of the data collection procedure, using only the
protocol used in batches 1 and 3, we analyzed 24 samples. We also added 8 samples from
mucosal linings, 4 from IBS , 4 for control in each of the 4 intestinal locations. We combined
the data into a 32 column matrix of abundance of 8364 species. Since the abundance data
were extremely variable and we had seen the sensitivity of the data to varying conditions and
protocols we decided to pair the data by location and type. For each pair we had an IBS and
a CTL rat, for a sample collected in the location and in the same way, we used the pairing
design to minimize the biases from experimental artifacts.

3.1. Ranking and Thresholding

In order to deliver a more robust statistical analysis, we ranked the species abundances within
each array: the ranks go from 1 (small) to 8364 (large). This is a standard non parametric
statistical procedure that enhances the stability of the results because a few outliers cannot
bias the analyses. We considered that there were not more than 2000 species present so we
set a threshold at 6000 (this is conservative as for instance a recent study in humans places
the estimate of numbers of species in the human gut at between 1,000 and 1,20015). We thus
suppose that all ranks smaller than 6000 were just noise and set them all to be equal to 6000.
This avoids finding large differences in ranks for species that are only present at the noise level.
We restrict the first part of our analysis here to the species that appeared present in almost
all 32 arrays, ie those that had a ranking larger than 6000 in all but one of the arrays. We
can see the distribution patterns with varying thresholds from 5000 to 8400 in Table 1. As in
microarray studies, it is important to prefilter the species so that only those yielding consistent
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#Arrays 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

# > 5000 3997 241 144 91 64 60 55 43 43 37 45 46 41 28 28 38 23
# > 6000 5180 207 136 71 62 48 32 39 38 31 34 25 25 24 24 24 22
# > 7000 6492 120 82 40 32 27 31 13 33 22 22 18 19 12 13 20 17
# > 8000 7737 70 35 25 9 9 10 12 13 12 15 14 9 11 9 11 7
# > 8400 8235 36 24 21 14 6 6 11 10 5 8 5 5 5 6 2 6

#Arrays 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

# > 5000 26 26 38 42 41 33 40 47 56 54 47 59 80 88 167 2766
# > 6000 24 20 22 20 26 28 46 43 41 41 45 40 46 72 109 1989
# > 7000 14 18 18 25 18 20 26 22 18 21 19 26 30 59 83 1204
# > 8000 11 7 11 11 11 10 9 16 9 12 13 12 18 23 38 415
# > 8400 7 2 8 4 5 7 6 13 10 5 5 5 6 16 18 112

Table 1: Tables showing the number of species present at a given level of abundance as
measured by ranks in 0,1,2,. . . ,32 arrays. We can see in particular that there are about 2,000
species present at least at the rank 6000 in all 32 arrays and about 415 which are highly
abundant (> 8000) in all arrays.

signals enter the analysis. In particular, this is important for various testing procedures we will
use later (testing for differences between IBS and CTL), where having extra non-meaningful
species costs us extra power requiring us to perform more tests than necessary. Table 1 is the
basis of most of the prefiltering presented in the paper.

4. Incorporating and adjusting the phylogenetic information

4.1. Difficulty with the Original Tree: heterogeneous levels of resolution

We entered the complete phylogeny of 16sRNA provided by GreenGenes into the R13 package
ape.16 We can see in the left tree of Figure 3 that the phylogenetic tree of all the bacteria
tested for on the microarrays is not ultra-metric. That is, not every species is at the same
distance from the root. When looking at the phylogenetic tree (Figure 3), it is evident that
some areas of the tree have much greater resolution than others. The problem with this is that
some species of bacteria are probed multiple times by the array. Therefore, they have more
chances than other bacteria of showing significance under the null hypothesis. For example, of
the 158 bacteria found to be significantly over- or under-abundant in IBS rats at the α = 0.05
level in the first dataset (excluding the mucosal samples), nine are C. leptum, ten are R.
hansenii, and ten are P. ruminicola. One of the questions that must be answered is whether
or not higher resolution in certain areas of the phylogenetic tree caused these species to be
over-represented among the bacteria of interest. We will see below that the hypergeometric
test provides a way to control the phylogenetic bias at the higher-order level, but there is a lot
of information lost when we look only at phyla. In an attempt to conserve information while
correcting for this oversampling in certain regions, we also propose a method for collapsing
the tree by merging the tips of related species with similar microarray intensities.
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Fig. 3: On the left, we have the tree of all operational taxonomic units (otus) present on the
Phylochip, we can observe that the distance to the root of many of the otus is variable, thus
indicating a heterogeneous degree of resolution. The two trees on the right are filtered trees
representing only the 400 most abundant species. The blue tree on the right was computed
by using the collapsing algorithm presented in this section, we see that the long right clade
at the bottom of the middle tree has disappeared.

The idea is to control for over-resolution by merging tips of the clades that are more
resolved, creating a more level playing field for the multiple testing. We used the length
from the root of the tree as the main parameter for collapsing tips. That is, for any two
species further from the root than the given maximum distance, we try to merge the two tips.
However, merging is only done if the microarray data from the two species are similar enough
to be merged. Tips are only merged if there is a low enough variance across the bacteria for
each microarray measurement. What is a low enough variance, however, is difficult to define.
For the purposes of the analysis here, we used a bootstrap procedure17 that estimated the
q = 0.9-quantile for a random collection of groups of size n bacteria. This served as the cutoff
of what could be considered a small enough variability within that clade. A collection of n
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bacteria is merged only when all their tips are farther than the maximum length from root
and p = 80% of the 32 variances across the collection (one for each microarray) are below the
computed thresholds. These were arbitrary thresholds that we have only evaluated empirically
by running the algorithm with varying values for n, q and p.

4.2. Consistently Abundant Species and their place on the Tree

Here we chose about the top 100 most consistently abundant species following the choice
of a threshold of about 8400 as in Table 1. Here we show how we can use the enhanced
plotting facilities in R through the Lattice compatible packages, we can plot the complete
tree, identifying the part of the tree which is covered by a subset of species.
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in CTL and IBS rats are plotted in the next two columns, the pink/blue scaled variables are
the truncated rank differences between the two groups.
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4.3. Highly variable species

We concentrate now on the species which are abundant enough to be considered consistently
present (more than 15 out of 32 arrays over 7800) but that also show high variability (standard
deviation above 150). These values were arbitrarily chosen to retain about 100 species. There
were actually 99 such species for which we had complete annotation information. We then
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Fig. 5: Principal component analysis of top most abundant and variable species, we see the
Mucosal location is the explanation for the first component, all the mucosal samples have
negative loadings on this factor.

took the results of the PCA analysis and combined them with the tree information by using
the loadings on the first two components (which account for 55% variance) and plotted them
alongside the phylogenetic sub tree of the species we had retained as most variable. This plot
is much easier to read than the projections of long species names in the two dimensional
principal plane. We have colored in red the species that are more abundant in the mucosal
samples.

4.4. Multiple Testing for finding differentially expressed species

The first set of analyses showed that the main differences were batch effects and differences
between the mucosal and other samples, so we decided to proceed by pairing the data by
location, batch and mucosal types, thus removing the extra variance due to these factors.
Thus we proceed into the testing phase using a paired design and we will use corrections made
on the paired t-test rather than the ordinary one. We will use truncated paired differences
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Eubacterium oxidoreducens
Btv.fibrisolvens_subgroup clone p−2418−5
Eubacterium plexicaudatum
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Ruc.hansenii_subgroup GA36
Ruminococcus obeum
Clostridium boltei
C.leptum_subgroup CCAJG148
C.xylanolyticum_subgroup equine intestin
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C.xylanolyticum_subgroup equine intestin
C.xylanolyticum_subgroup clone p−5263−4W
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C.thermocellum_subgroup clone p−1062−a5
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Fig. 6: Complete tree with the subtree of most variable among the consistently abundant
species and the loadings on the first two principal components.

in ranks as input to standard multiple testing programs for finding the adjusted p-values. To
control for false discovery due to multiple testing, p-values were adjusted according to the
Benjamini-Hochberg procedure, which is able to control for FDR given some assumptions on
the expression levels of the bacteria on the microarray. We used the multtest package from
Bioconductor.6

4.5. Significant differences projected onto the Tree

In order to visualize the parts of the phylogenetic tree most influenced by changes in species
abundance between groups we retained the most significantly changed species (up in IBS or
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up in CTL) on the tree and used the facilities available through the ape18 and the lattice19

packages.
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Anr.thermoterrenum_group Flexistipes sp.

p-value Species

Fig. 7: The left tree shows the complete tree on all species in black with the subtree of set
of species that show the most significantly differences between CTL and IBS in red in the
second panel. Values of abundance in CTL and IBS rats are plotted in the next two columns,
the next column shows the − log(pvalue), so the largest bars represent the most significantly
different species.

4.6. Category Based Comparisons

We chose as the list of most significant species those that had adjusted p-values lower than
0.05 in the multiple testing procedure detailed above. We created two lists, one for which
the ranked abundances were larger in the IBS, the other for which the ranked abundances
were larger in the CTL group. We wanted to find specific families or phyla that are over-
represented in either of the lists. This is a similar situation as that of testing significance
of Gene Ontology categories for expression studies. We recall that in both situations the
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relevant test is the hypergeometric and that Fisher’s exact test and the hypergeometric test
formulation are equivalent.20 We define the set of prefiltered species (species universe) as
those that passed the threshold test of being present (> 6000) in at least 31 of the arrays (see
Table 1). The chosen species (universe and significant) are then binned by phyla or families,
these categories replace the Gene Ontology categories used in microarray studies. We are
looking for overrepresentation of certain families or phyla. This method is especially relevant
here as the chip does not have equal representation of different families and phyla.

The results and details of the hypergeometric tests can be consulted in Nelson et al, 20101

where we conclude in particular that the IBS had significantly more Bacteriodetes and on the
other hand there is an overrepresentation of Firmicutes in the healthy controls. At the family
level, the results showed that the families of Oxalobacteraceae, Prevotellaceae, Burkholderi-
aceae, Sphingobacteriaceae were significantly overrepresented in IBS rat. Conversely, the most
significantly enriched family in control rats were Lachnospiraceae, including Ruminococcus sp.,
followed by Erysipelotrichaeceae and Clostridiaceae.

5. Summary

Some methods developed for standard microarray studies can be useful in Phylochip studies,
examples shown here include variance stabilization, prefiltering, multiple testing and hyper-
geometric tests.

Batch effects can be detected through multivariate projections using methods such as PCA
complemented with the projections of the relevant means, variance and covariance ellipses on
the principal planes. We concluded that the best way to counter batch effects was then to use
paired differences between subjects if a comparative design is available.

High between subject variability in bacterial abundances suggests the use of ranks is more
effective than the original intensities. This method is known to be robust in the sense that if
some of the abundance values are on very different scales, their effect on the overall outcome
can be minimized by replacing the original values by the ranks within each array. We have
provided an example of such an approach here.

Finally the integration of complex phylogenetic structure is possible through the conjoint
use of the many available packages in R for doing phylogenetics and community analysis. We
have provided an example of a complex combination of plotting trees and results from PCA.
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High-throughput sequencing technology has opened the door to the study of the human microbiome and its 

relationship with health and disease. This is both an opportunity and a significant biocomputing challenge. 

We present here a 3D visualization methodology and freely-available software package for facilitating the 

exploration and analysis of high-dimensional human microbiome data. Our visualization approach harnesses 

the power of commercial video game development engines to provide an interactive medium in the form of a 

3D heat map for exploration of microbial species and their relative abundance in different patients. The 

advantage of this approach is that the third dimension provides additional layers of information that cannot 

be visualized using a traditional 2D heat map. We demonstrate the usefulness of this visualization approach 

using microbiome data collected from a sample of premature babies with and without sepsis. 

 

1.  Introduction 

1.1.  The Human Microbiome 

The primary goal of the human microbiome project is to understand the role that symbiotic 

microorganisms play in determining health and disease [1,2]. This is a staged effort that includes 
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1) construction of draft assemblies of reference genomes, 2) creation of reference microbiome data 

sets, 3) determination of the full human microbiome and 4) determination of the global diversity 

of the human microbiome. Significant progress toward these goals has been made. For example, 

Wu et al. [3] carried out a phylogenetic analysis of 56 microbes demonstrating the need for a 

comprehensive encyclopedia of microbial genomes. A recent study reports the results of the initial 

sequencing of 178 microbial genomes that will help provide a reference for human microbiome 

studies [4]. Costello et al. [5] assayed the spatial and temporal variation of the human microbiome 

from up to 27 different sites in seven to nine subjects.  This study demonstrated that bacterial flora 

varied significantly across body sites and time. The rapid advances in the development of high-

throughput sequencing technologies will make it feasible to accomplish many of these goals over 

the next few years. 

1.2.  The Fecal Microbiome of Preterm Infants 

The ultimate goal of these baseline genomic studies is to provide the framework for relating 

microbial diversity and composition to clinical endpoints. One important application of this 

technology is to determine whether the human microbiome will be useful for predicting outcomes 

in infants born prematurely. Colonization of the neonatal intestine happens rapidly after birth, is 

dependent on delivery method [6], but may be delayed in infants born prematurely. Further, 

premature infants are more likely to be colonized by pathogenic bacteria [7-9]. Our working 

hypothesis is that the fecal microbiome of preterm infants will be useful for predicting their 

clinical course and might provide potential time points for intervention to ameliorate disease risk. 

Previous work in this area has focused, for example, on neonatal necrotizing enterocolitis (NEC) 

in preterm infants. This is an inflammatory disorder that may lead to death and has an incidence of 

one to three per 1000 live births. A study by Wang et al. [10] sequenced 16S rRNA from the fecal 

samples of 20 preterm infants and found that those with NEC had less diversity and a higher 

abundance of Gammaproteobacteria. Although not conclusive, this study provides a baseline for 

beginning to think about how the microbiome might influence susceptibility to NEC and other 

clinical endpoints in preterm infants such as sepsis. 

1.3.  A Role for Visualization in Human Microbiome Studies 

The biocomputing challenges of microbiome analysis are both diverse and numerous. This is 

partly due to the volume of sequence data that is generated and the hierarchical complexity of the 

microbial data itself.  Examples of prior biocomputing work in this area include the development 

of algorithms for identifying human gut-specific protein families [11], reference genome databases 

[4], computational inference of function using genomic context [12] and efficient taxonomic 

profiling [13]. These studies and others are providing the computational methodologies that will 

be necessary to accurately and efficiently analyze human microbiome data.  

Despite these advances, there are still many biocomputing needs. For example, a typical data 

set might include a list of hundreds of bacterial species that are hierarchically organized into 

different groups, including genus, families, orders classes and phyla. One goal is to relate 

abundance of bacteria at these different taxonomic levels to clinical endpoints.  This is further 
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complicated by information about genes and pathways that are present in each of the bacterial 

species and how these relate to various clinical endpoints. The genomic information of the host 

can also be added to the analysis. The ultimate challenge is to put these many different layers of 

information together in a statistical or machine learning analysis to identify the clinically useful 

patterns. Although not yet routine, this type of biocomputing analysis will be in high demand in 

the near future. 

The working hypothesis of the present study is that the inherent hierarchical complexity of 

human microbiome data, and the need to relate these many layers of information to clinical 

endpoints, will necessitate the development of intuitive user interfaces for visual exploration and 

analysis. In other words, the Excel-based spreadsheet paradigm will not provide the level of 

human-computer interaction that is necessary to both understand a complex data set and inform 

data mining and machine learning analyses.  The goals of the present study were to develop a 

methodology for visualizing multiple dimensions of human microbiome information using 3D 

technology that is both intuitive and interactive. We present here a three-dimensional (3D) heat 

map methodology and software that builds on the familiarity and success of the conventional two-

dimensional (2D) heat map and the power of commercial video game development engines and 

3D technology. The ultimate goal of these studies is to provide comprehensive visual analytics 

methodology and software for facilitating human microbiome analysis. 

2.  Methods 

2.1.  A 3D Heat Map 

Heat maps have become a popular and useful method for visualizing high-dimensional data 

(http://en.wikipedia.org/wiki/Heat_map) and were introduced more than fifty years ago by Sneath 

[14] for biological problems. Eisen et al. [15] popularized the heat map for visualizing the results 

of clustering genomics data. A heat map consists of a 2D grid or matrix of colored squares where 

each square represents an observation of a random variable and the color of the square is 

proportional to the value of that observation. It is common to order the squares by additional 

categorical data such as tissue of origin and gene on the two axes. Our working hypothesis is that 

adding an additional dimension (z-axis) to the traditional 2D heat map will provide the 

opportunity to visualize additional layers of information that will enhance the visual discovery 

process. To test this hypothesis we developed a 3D heat map methodology and software package 

using a commercial video game engine. We apply it here to human microbiome visualization. 

There are many reasonable platforms for developing 3D visualization software.  OpenGL 

(http://www.opengl.org) with a C++, Java or scripting front end and a user-interface toolkit has all 

the necessary elements.  A virtual reality modeling language, such as X3D 

(http://www.web3d.org/x3d), with scripting capabilities and free viewers, could also be used.  The 

“Processing” visual programming environment (http://processing.org) provides a rapid 

prototyping environment with the ability to use Java libraries. Each choice has advantages and 

disadvantages.  We chose here a video game development environment because game engines are 

explicitly designed around interactivity and immersion in a 3D environment. The ability to 

interactively explore a heat map visualization as you would a video game environment was an 
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important feature. We chose the Unity3D (http://unity3d.com) development tool because it uses 

Mono, the open-source, cross-platform .NET implementation, so we would not be limited to code 

libraries supplied by the vendor.  For a reasonable licensing fee we could distribute royalty-free 

tools that run on Windows and Macintosh machines.  Unity makes GUI code easy to write, 

enabling rapid prototyping, and the work-flow for incorporating assets from other tools such as 

Maya and Photoshop is straightforward.  An additional advantage is that Unity can use Direct3D 

on Windows machines, which allows users to employ off-the-shelf drivers to see 3D heat maps in 

stereo on suitable equipment.  Using OpenGL we would have to explicitly code the view from 

each eye to produce stereo. The ability to easily see 3D heat maps in stereo is important given the 

widespread availability of 3D televisions and computer monitors. 

 
Fig. 1.  Screenshot of the 3D heat map application showing menus for data selection (A), chart style (B) 

viewpoint (C) and chart sizing options (D). Each menu can be minimized or hidden. 

 

A potential disadvantage of the Unity framework is that it makes low-level control of the 

Graphics Processing Unit (GPU) more difficult.  If our primary objective had been to render 

massive amounts of data, we would have chosen a toolkit that allowed finer control over what is 

stored on the GPU, to minimize transfers between the CPU and GPU.  Our principle goal though 

is insight through exploration and interaction.  Unity allows us to render 120,000 data points 

(1,440,000 triangles) at 47 frames per second on a Mac Pro with two 2.8 GHz Quad-Core Intel 

Xeon processors and an ATI Radeon HD 2600 graphics card holding 256 MB of video memory. 

This scales reasonably well to about 500,000 data points corresponding to a dataset with 10,000 
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rows and 50 columns.  This allows smooth motion and very good responsiveness in exploring 

datasets of moderate size. 

Figure 1 provides a screenshot of the 3D heat map application with the various menus that 

control what data is being viewed, the style of the heat map, the viewpoint and features of the heat 

map itself. The menus can be minimized or hidden to make full use of the screen. The chart style 

menu provides options to view the heat map as ribbons where each data point is connected as in a 

time series or in the traditional tile or square view. There is an additional option (shown) to fill the 

tiles or ribbons to make solid objects.  This menu also allows the user to map different color 

schemes for different data to the tops and sides of the 3D objects. The 3D heat map application is 

freely available by request from the authors or for download from 

http://Sourceforge.net/3dheatmap. 

Figure 2 provides an example of our 3D heat map with some hypothetical data. The leftmost 

panel shows the data in 2D with a pattern visible as defined by the sorting of the columns (x-axis) 

and the rows (y-axis). The middle and rightmost panels show the same in 3D with bars on a z-axis 

that are proportional to intensity. Note that the sides of the bars are colored on a yellow to blue 

scale. This is an example of how the extra dimension can be used to visualize additional layers of 

information in parallel without needing to switch between perspectives. Further, the tops of the 

bars could be colored to represent yet another layer of information. 

 

 

Fig. 2.  3D heat map visualization of hypothetical data. Note the additional layers of information provided 

by the sides of the bars when illustrated in 3D. Note that he bottom panels are a subset of the top panels 

corresponding to the upper right corner. 
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2.2.  Application of the 3D Heat Map to Human Microbiome Visualization 

We applied our 3D heat map method and software to the visualization and interactive exploration 

of a fecal microbiome data set from infants born prematurely. IRB approval was obtained from the 

Dartmouth Center for the Protection of Human Subjects in April 2009.  Subjects’ parents provided 

informed consent.  Six very low birth-weight infants were enrolled within two days of birth for the 

study and inclusion criteria included birth weight of 501-1500 grams without major congenital or 

genetic anomalies. Serial stool samples were collected weekly, beginning with the first stool or 

meconium passed.  Stool samples were aliquotted and stored at -80C and bacterial DNA was 

extracted using the MoBio Powersoil bacterial DNA isolation kit.  DNA was quantified and then 

454 pyrosequencing was performed at the Josephine Bay Paul Marine Biological Laboratories in 

Woods Hole, Massachusetts. High throughput sequencing was performed at the Josephine Bay 

Paul Center and overseen by Dr. Mitch Sogin. Pyrosequencing was targeted at the bacterial 16S 

the Titanium Roche α-R&D 454 amlicon informatics pipeline to analyze the bacterial community 

composition of samples.  

 

Fig. 3.  3D heat map visualization of fecal microbiome data from six premature infants. The patients and 

their different time points are ordered on the x-axis while bacterial species are ordered on the y-axis with 

the species name in white text (side).  The bars in the z-axis represent relative abundance of each bacterial 

species for each specific patient and time point. The tops of the bars are colored in grayscale to also reflect 

relative abundance with lighter colors indicating higher abundance.  This corresponds to the colors used in 

the 2D heat map. The sides of bars are color-coded by patient. 

 

Our goal was to compare 2D and 3D heat map representations of the microbiome data from 

serial samples from these six patients. The 2D heat map was used to visualize relative abundance 
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of bacteria (colored squares) with patient and time on the x-axis and bacterial species on the y-

axis. For the 3D heat map we also visualized abundance of bacteria as colored squares organized 

by patient and time on the x-axis and bacterial specie on the y-axis. In addition, we extended bars 

for each colored square into the z-axis according to relative abundance with higher bars being 

more abundant. We added an additional layer of information about samples by coloring the four 

sides of the 3D bars extending into the z-axis.  This demonstrates the ability to include additional 

layers of information in 3D space to facilitate exploration and interpretation. While it is possible to 

add additional symbols to a 2D heat map, it is much easier to see and explore in 3D. Symbols and 

other shapes would also significantly enhance the 3D visualization and would be easy to 

implement within the video game development framework. 

3.  Results 

Figure 3 illustrates the 3D heat map of bacterial abundance for the six patients (x-axis and side 

color on each bar) over different time points for each bacterial species measured (y-axis). Note 

that the 3D perspective allows at least five layers of information to be visualized simultaneously. 

The five layers include the three axes, the top color of the bars and the side color of the bars. For 

example, the top color could be used to indicate the presence of sepsis in an infant at a particular 

time point. The ability to include clinical data with microbiome data will facilitate the visual 

discovery of patterns that otherwise would not be visible in a 2D heat map representation.  

Not only does the 3D heat map allow multiple dimensions of information to be displayed, the 

video game technology allows the user to interactively explore the 3D space using the keyboard or 

a 3D mouse that facilitates movement in all three dimensions. The ability to 'fly' through a 3D 

visualization allows all of the information to be easily explored from multiple different angles.  

This sort of exploration and interactive visualization is not possible with a typical 3D bar plot as 

implemented in Microsoft Excel or other similar software packages. 

Figure 4 specifically compares a 2D heat map (right panel) with the 3D heat map 

representation.  In both panels the bacterial abundance is colored in grayscale. We kept the 

grayscale color-coding of abundance on the tops of the bars in the 3D heat map in addition to 

representing abundance on the z-axis to facilitate direct comparison to the 2D heat map.  However, 

as mentioned above, the tops of the bars could be used to color-code additional information such 

as a clinical covariate. Resetting graphing parameters and assigning data to each of the dimensions 

can be done literally "on the fly" as the speed and direction of flight are unchanged by the update. 

This allows the user to explore multiple projections of the data without losing their current point 

of view. 

Figure 5 compares a specific portion of the 2D and 3D heat maps from Figure 4. Here, the 

rows highlighted with the red asterisk are for a bacterial species from the Veillonellaceae family. 

This family belongs to the order Clostridiales and are characterized by gram-negative obligate 

anaerobes. The top panel of Figure 5 shows the traditional 2D heat map of the data with lighter 

squares indicating higher relative abundance.  The bottom panel of this figure shows the same data 

in 3D with the patients color-coded on the sides of the bars.  It is clear from the 3D heat map that 

the yellow and green patients have very similar patterns of bacterial abundance across the different  
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Fig. 4.  Comparison of the 2D (right panel) and 3D (left panel) heat maps of bacterial abundance 

(grayscale in 2D and 3D and z-axis in 3D) in six premature infants. Note the additional layers of 

information that can be provided the z-axis, the bar top color and the bar side color. 
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time points. Interestingly, these two patients are twins who received the same diet (maternal 

breastmilk) and who had similar clinical courses without complications of prematurity. The 

interactive exploration provided by the 3D video game platform makes these kinds of patterns 

easy to identify and explore.  The colors associated with the additional layers of information make 

the patient-specific pattern more apparent than in the 2D heat map. 

4.  Discussion  

We have introduced here a 3D heat map method and freely available software package 

(3dheatmap) for interactive visualization of high-dimensional biomedical data.  We have 

demonstrated the ability of the 3D heat map to visualize at least three more layers of information 

that the traditional 2D heat map. In addition, the use of a commercial video game engine has made  
 

 
Fig. 5.  A zoomed portion of the 2D (top) and 3D (bottom) heat map from Figure 3 highlighting a bacterial 

species from the Veillonellaceae family that has similar levels of relative abundance across time points 

within two patients (yellow and green). 

 

it possible to harness the power of video games for interactive exploration of the 3D visualization. 

We have applied the 3D heat map method to the visualization of human microbiome data and have 

compared the results with that provided by a 2D heat map. 

While the additional layers of information and the interactive exploration of the visualization 

move well beyond traditional visualization methods, there are many additional features that need 

to be added to move this approach from the realm of 'information visualization' to that of 'visual 
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analytics'. Visual analytics is an emerging discipline that combines visualization methods with 

data analysis and human-computer interaction [16]. This is distinguished from scientific 

visualization that focuses on the mathematics and physics of visualizing 3D objects and 

information visualization that focuses on methods such as heat maps for showing high-

dimensional research results.  Heer et al. provide a thorough review of information visualization 

methods [17]. What makes visual analytics different is the integration of the visualization methods 

with data analysis.  That is, the statistical and machine learning analyses can be launched directly 

from the visualization and the visualization, in turn, can be changed in a manner that is dependent 

on the data analysis results.  This iterative and synergistic process of visualization and analysis is 

facilitated by computer hardware technology that makes it easy for the user to interact with the 

software. For example, new touch-based computer interfaces such as the Microsoft Surface 

Computer or the Apple iPad could replace the keyboard and mouse as the preferred interface for 

visual analytics. All of this combined with a 3D visualization screen or wall provides a modern 

visual analytics discovery environment that immerses the user in their data and research results. 

Our future goals are to integrate the R statistical computing platform so that analyses can be 

launched directly from the 3D heat map application. It might be of interest, for example, to 

interactively select two different families of bacterial species within the visualization and then 

launch a statistical analysis comparing the relative abundance of species in the two different 

groups. The ability to launch analyses directly from the visualization environment opens the door 

to making discoveries that are inspired by visual cues rather than pre-conceived hypotheses that 

are dependent on existing knowledge. Of course, rigorously testing this hypothesis is not easy but 

Perer and Shneiderman have presented design guidelines for evaluating visual analytics software 

[18]. Their methodology has five phases.  First, the domain expert or user is interviewed for one 

hour to determine their intentions. Second, there is a two hour training phase on use of the 

software. Third, there is a two to four week early use phase in which the users employ the software 

and the development team is available for troubleshooting and user support. Fourth, there is 

another two to four hour period of mature use where the only support that is given is for technical 

problems with the software.  Finally, there is an outcome interview to determine whether the 

visual analytics software had an impact on the research of the user. Impact can be measured in 

many different ways but might include the generation of new ideas or hypotheses or new 

knowledge leading to a scientific publication. Positive impact could also be measured in terms of 

research efficiency.  For example, the visualization approach could allow the researchers to make 

discoveries faster. 

Human microbiome data and related research questions will continue to become more 

complex. This is especially true once the DNA sequence of the host is added to the mix. 

Visualization has an important role to play in helping the investigator become familiar with their 

high-dimensional data in a way that might not be possible with a spreadsheet or database. Visual 

analytics is an emerging discipline that harnesses the power of visualization technology, data 

analysis and human-computer interaction. The 3D heat map application we have presented here 

provides a starting point for developing such a discovery system for microbiome analysis.  The 

use of video game engines and other 3D technology has the potential to make this technology 

accessible to those not skilled in bioinformatics or biostatistics. 
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16S rRNA gene sequencing has been widely used for probing the species structure of a variety of
environmental bacterial communities. Alternatively, 16S rRNA gene fragments can be retrieved from
shotgun metagenomic sequences (metagenomes) and used for species profiling. Both approaches have
their limitations—16S rRNA sequencing may be biased because of unequal amplification of species’
16S rRNA genes, whereas shotgun metagenomic sequencing may not be deep enough to detect
the 16S rRNA genes of rare species in a community. However, previous studies showed that these
two approaches give largely similar species profiles for a few bacterial communities. To investigate
this problem in greater detail, we conducted a systematic comparison of these two approaches. We
developed PHYLOSHOP, a pipeline that predicts 16S rRNA gene fragments in metagenomes, reports
the taxonomic assignment of these fragments, and visualizes their taxonomy distribution. Using
PHYLOSHOP, we analyzed 33 metagenomic datasets of human-associated bacterial communities,
and compared the bacterial community structures derived from these metagenomic datasets with
the community structure derived from 16S rRNA gene sequencing (71 datasets). Based on several
statistical tests (including a statistical test proposed here that takes into consideration differences in
sample size), we observed that these two approaches give significantly different community structures
for nearly all the bacterial communities collected from different locations on and in human body,
and that these differences cannot be be explained by differences in sample size and are likely to be
attributed by experimental method.

Keywords: Bacterial community; 16S rRNA gene sequencing; shotgun metagenomics.

1. Introduction

Metagenomics is the study of microbial communities sampled directly from their natural
environment, without prior culturing.1 There has been remarkable progress in this field of
research due to the recent advances of Next Generation Sequencing (NGS) technologies.2

Since over 99.8% of the microbes in some environments cannot be cultured,3 metagenomics
offers a path to the study of their community structures, phylogenetic composition, species
diversity, metabolic capacity, and functional diversity. A motivation for the field is medi-
cal: human microbial flora have long been recognized to be important to human disease and
health, and the human gastrointenstinal tract is one of the most thoroughly surveyed bacte-
rial ecosystems in nature,4 although this ecosystem remains incompletely characterized and
its diversity poorly defined.5 It is essential to evaluate not only the species diversity of micro-
bial communities but also to analyze how the species structures of those communities change
over time and space.6 The National Institute of Health has initiated the Human Microbiome
Project (HMP) with the mission of generating resources enabling comprehensive character-
ization of the human microbiota and the analysis of its role in human health and disease
(http://nihroadmap.nih.gov/hmp/).7

16S rRNA gene profiling has been applied to the analysis of the genetic diversity of com-
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plex bacterial populations since the middle 1990s,8 and is one of the primary steps in any
metagenomics project. The application of 16S rRNA profiling has recently been boosted by ad-
vances in DNA sequencing techniques and the application of barcoded pyrosequencing.9 NGS
technologies—including 454 and Illumina sequencers—use 16S rRNA amplification primers
targetting hypervariable regions, although it is still arguable which regions are best for species
profiling: 16S rRNA genes contain nine hypervariable regions (V1–V9) that demonstrate con-
siderable and differential sequence diversity among different bacteria. Although no single hy-
pervariable region is able to distinguish among all the bacteria,10 hypervariable regions V2
(nuceotides 137–242), V3 (nucleotides 433-497) and V6 (nucleotides 986–1043) contain the
maximum heterogeneity and provide the maximum discriminating power for analyzing bacte-
rial groups10 . Barcoded pyrosequencing can produce large 16S rRNA datasets that contain
hundreds of thousands of 16S RNAs fragments,11 enabling deep views into hundreds of bac-
terial communities simultaneously, and have revealed much greater species diversity in many
environments (e.g., soil, ocean water, and human bodies) than previously anticipated.

16S rRNA based analysis of metagenomic samples is complicated by several artifacts, in-
cluding chimeric sequences caused by PCR amplification and sequencing errors.12 According
to a study by Ashelford K.E et al, at least 1 in 20 16S rRNA sequences currently in pub-
lic repositories contains substantial anomalies,13 and it was shown in one study12 that some
metagenomics projects may overestimate the species diversity because of the presence of se-
quencing errors and chimeric sequences.

Whole genome shotgun (WGS) sequencing of environmental DNA can also be used to study
the species composition and diversity of natural bacterial communities,14–16 and an increasing
numbers of shotgun metagenomic sequencing datasets have been produced for various bac-
terial communities. Although shotgun metagenomic sequencing does not involve the biased
amplification of 16S rRNA genes, the relative organism abundances inferred from metage-
nomic sequences vary significantly depending on the DNA extraction and sequencing protocol
utilized.17 Furthermore, shotgun metagenomic sequencing is generally not deep enough to de-
tect rare species in complex communities.18 Still, previous studies have shown that these two
approaches give largely similar (although not identical in detail) pictures of the species struc-
ture for bacterial communities; for instance, Kalyuzhnaya et al18 reported that the taxonomic
distribution of 16S rRNA gene sequences derived from metagenomes is similar to distributions
inferred from PCR-amplified libraries.19

Here we carry out a systematic comparison of these two approaches. We developed PHY-
LOSHOP, a pipeline that extracts 16S rRNA gene fragments from metagenomic sequences,
reports the taxonomic assignment of the identified 16S rRNA fragments, and visualizes the
taxonomy distribution. The bacterial community of a sample inferred from the identified 16S
rRNA gene fragments can then be compared to the community derived from 16S rRNA gene
sequencing, using the UniFrac metric,20 which measures the phylogenetic distance between
two sets of taxa, one for each community, on a phylogenetic tree as the fraction of the branch
length of the tree that leads to descendants from one environment or the other. For a group of
communities, a matrix of pairwise UniFrac measures can be prepared, and further subjected
to Principal Coordinates Analysis (PCoA, a multivariate method that represents distance, or
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similarity measures, in the space of principal coordinates)21 to study the relationship between
communities. We used a P test, a commonly used phylogenetic approach to assess commu-
nity differentiation.20,22 For a given set of sequences sampled from multiple communitites, the
P test estimates the minimum number of changes (switch from one community to another)
required to explain the observed species distribution, and computes the significance of the
difference by determining the expected number of changes, under the null hypothesis that the
communities from which the sequences are sampled do not covary with phylogeny.22 Since a
significantly smaller number of 16S rRNA gene fragments can be extracted from metagenomic
datasets, as compared to a 16S rRNA gene sequencing project, we also propose a new sta-
tistical test for comparing the community diversities that are inferred from collections of 16S
rRNA gene fragments with vastly different numbers.

2. Methods

2.1. PHYLOSHOP: extracting and annotating 16S rRNA gene fragments
from metagenomes

The PHYLOSHOP pipeline (Figure 1) includes the following steps.

(a) 16S rRNA sequence calling. If the given sequences are metagenomic sequences, 16S rRNA
gene fragments are predicted by a HMMER search (see 2.1.1).23,24

(b) Chimeric sequence checking. 16S rRNA gene fragments are examined for chimeras using
ChimeraSlayer and putative chimeras are removed (see 2.1.2)

(c) Mapping of 16S rRNA gene fragments. Filtered 16Sr RNA gene fragments are mapped to
a phylogenetic tree of the Greengenes25 core set of 4,938 16S rRNA genes (as of May 2009)
using MEGABLAST (with a default E-valule cutoff of 1e-30). The tree and the sequences
of the core set were downloaded from the Fast UniFrac website (http://128.138.212.
43/fastunifrac). The taxonomic assignments of the core set sequences were obtained
from the Greengenes website (http://greengenes.lbl.gov).

(d) Taxonomic assignment of 16S rRNA gene fragments. PHYLOSHOP classifies the 16S
rRNA gene fragments based on their mapping to the phylogenetic tree of 16S rRNA
genes.

2.1.1. 16S rRNA gene fragment prediction

We used the bacterial 16S rRNA Hidden Markov Model (HMM) of Huang et al23 (downloaded
from http://tools.camera.calit2.net/camera/meta_rna/), which was constructed from
16S rRNA sequences in the European rRNA database. 16S rRNA gene fragments can then
be predicted using HMM scanner (HMMER 3.0 package26) against a dataset of metagenomic
sequences.

2.1.2. Checking chimeric sequences

ChimeraSlayer (http://microbiomeutil.sourceforge.net/) is included in PHYLOSHOP
for detecting chimeric sequences in the samples used for this analysis. As chimeric sequence
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Fig. 1. Schematic representation of the PHYLOSHOP pipeline.

checkers do not work with very short reads (e.g., 100 bps), this option is only available for
relatively long 16S rRNA gene fragments.

2.1.3. PHYLOSHOP output

PHYLOSHOP reports the following results, summarizing the taxonomic assignments of 16S
rRNA sequences at different phylogenetic levels.

(a) Extracted 16S rRNA gene fragments, if the input is a metagenome in FASTA format.
(b) Classified 16S rRNA sequences, with an option for the user to choose the taxonomy

systems—RDP,27 NCBI or Hugenholtz.28

(c) Length distribution of the 16S rRNA sequences classified/extracted in a png figure.
(d) Phylum and genus disribution of the sequences mapped to the Greengenes tree.
(e) Rooted and unrooted trees in png format, showing the number of reads mapped to each

identified species.

2.2. Comparison of bacterial communities

We used Fast UniFrac6 to compare the structure and composition of bacterial communities.

2.3. Statistical test of community structure differences by sampling

A typical 16S rRNA gene sequencing dataset contains many more 16S rRNA gene fragments
than those retrieved from a metagenome, so it is necessary to devise a measure that can be
used to test if the observed difference in species structure between bacterial communities is
statistically different, or if the difference is more likely to be caused by the dramatic difference
in the numbers of 16S rRNA fragments used for inferring the bacterial communities. We pro-
pose a significance test based on multiple random sampling of subsets of 16S rRNA sequences
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from the larger 16S rRNA dataset. Assume there is a sample that has both a metagenomic
and a 16S rRNA sequencing dataset. From the shotgun metagenomic dataset, we extract 16S
rRNA gene fragments and infer the bacterial community (denote as community-m). Denote
the community inferred from the 16S rRNA sequencing dataset as community-s0. From the
16S rRNA sequencing dataset, we generate n subsets of 16S rRNA sequences by random sam-
pling and the inferred bacterial communities are denoted as community-s1, community-s2,
and so on. We use the UniFrac metric to define the distance between two communities; de-
note the UniFrac distance between community-m and community-s0 as d0, and the distance
between the community-m and simulated community-s1, ..., community-sn as d1, d2, ..., and
dn. We define the P-value of the difference between the communities inferred from metage-
nomic sequences and from 16S rRNA sequencing dataset as the fraction of random sampling
experiments that result in distance larger than d0; this value can then be used to evaluate the
significance of observed community differences, when comparing communities that have been
characterized by separate methods.

2.4. Data sets

We analyzed 104 datasets, including 33 (32 gut and 1 oral) shotgun metagenomic datasets
and 71 (42 gut and 29 oral) 16S rRNA sequencing datasets of human-associated bacterial
communities; see Supplementary Tables 1–4 for the details of the datasets. The sequences
were downloaded from CAMERA (http://camera.calit2.net/),29 NIH Sequence Read
Archive (http://www.ncbi.nlm.nih.gov/sra), and MG–RAST (http://metagenomics.
nmpdr.org/).30 Among these datasets, the twin study16 has sequence datasets from both
techniques—shotgun and 16S rRNA sequencing—for 18 individuals (see Table 1).

3. Results

Using PHYLOSHOP, we analyzed 33 metagenomic datasets of human-associated bacterial
communities. We further compared the bacterial community structures derived from these
metagenomic datasets to community structures inferred from 16S rRNA sequencing datasets,
and observed clear differences in the inferred species structures associated with the different
approaches (shotgun metagenomics versus 16S rRNA gene sequencing), in addition to the
differences due to the different human body locations from which the samples were collected.

3.1. Evaluation of 16S rRNA gene fragment prediction

We first need to predict 16S rRNA gene fragments from metagneomic datasets. We com-
pared the performance of 16S rRNA gene prediction by HMMER search23 (implemented in
the PHYLOSHOP pipeline) to predictions from the MG-RAST server, which uses BLAST
searches against the Greengenes sequences. The comparison shows that HMMER searchs pre-
dicted slightly more 16S rRNA gene fragments in 11 out of the 17 metagenomic datasets
shown in Figure 2. The difference is not significant, but considering that the HMMER search
method is efficient and has shown high specificity and sensitivity in predicting 16S rRNA gene
fragments,23 we chose to use this method in the PHYLOSHOP pipeline. We then used 16S
rRNA gene predictions from the PHYLOSHOP pipeline for the following analysis.
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Table 1. Summary of the 18 gut samples that have both metagenomic datasets and 16S rRNA se-
quencing datasets.

Individuals Metagenomic datasets 16S rRNA datasets Significantly different?d

Readsa Lengthb 16S rRNAc Reads Length P teste Our methodf

TS1 217,386 238 464 25,140 126 Yes Yes
TS2 443,526 178 658 42,186 126 Yes Yes
TS3 510,972 201 871 17,726 126 Yes Yes
TS4 414,754 229 731 25,705 126 Yes Yes
TS5 490,776 205 1,108 26,608 126 Yes Yes
TS6 535,763 221 1,207 27,007 126 Yes Yes
TS7 555,853 243 1,310 17,469 126 Yes Yes
TS8 414,497 243 1,036 17,170 126 Yes Yes
TS9 499,499 250 1,024 14,787 126 Yes Yes
TS19 498,880 165 767 43,639 126 Yes Yes
TS20 495,039 198 1045 13,476 126 Yes Yes
TS21 413,772 215 905 23,714 126 Yes Yes
TS28 302,772 335 734 20,905 126 Yes Yes
TS29 502,399 345 1,301 15,698 126 Yes Yes
TS30 495,865 190 961 32,083 126 Yes Yes
TS49 519,072 177 1,028 22,201 126 Yes Yes
TS50 549,700 204 1,446 30,498 126 Yes Yes
TS51 434,187 187 756 22,691 126 Yes Yes

a: the total number of reads. b: the average length of reads. c: the total number of 16S rRNA gene frag-
ments extracted from the metagenomic datasets. d: statistical significance of the difference between two
communities, one inferred from the 16S rRNA sequencing dataset, and the other from the metagenomic
dataset for the same individual. e: P-values for the P test22 (computed using the Fast UniFrac website)
are 0 for all the 18 individuals. f : P-values (computed using our method; see section 2.3) are < 1e-4 for
all the 18 individuals, based on 10,000 sampling experiments for each.
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Fig. 2. Comparison of 16S rRNA prediction methods. The number of reads in each metagenome is shown
above the corresponding bars.
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Fig. 3. Phylum distributions of 18 gut-associated bacterial communities, inferred from 16S rRNA gene se-
quencing and shotgun metagenomics, in the four major (a) and other phyla (b). X-axis shows the percentage,
and the phylum distribution for each individual is shown as a horizontal bar in each plot. Note that some
communities (e.g., the communities in individual 6) have no reads assigned to the minor phya. The NCBI
taxonomy was used, and reads assigned to “Unclassified” taxa were excluded in this analysis.

3.2. 16S rRNA gene sequencing reveals more species

We analyzed the bacterial communities inferred from the 18 gut-associated individuals (see
Table 1) that have both shotgun metagenomic and 16S rRNA gene sequencing datasets. Phylo-
genetic distributions of these samples show that there are clear differences in the relative abun-
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dance of the four major phylum (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacte-
ria) (Figure 3a); e.g., for individual 12 (TS21), the 16S rRNA gene sequencing dataset contains
more reads from Firmicutes as compared to the metagenomic dataset. Figure 3b shows that,
for most of the individuals, 16S rRNA sequencing also reveals more diverse phyla than whole
genome shotgun sequencing. 16S rRNA sequencing data also found a greater diversity within
genera; e.g., 35 Firmicutes genera were identified by 16S rRNA sequencing reads, whereas only
22 genera were identified by metagenomics for individual TS1 (see Supplementary Figure 1).

3.3. Bacterial communities inferred from metagenomes are different from
those inferred from 16S rRNA sequencing reads

P tests for the 18 gut-associated samples show that, for each of these samples, the bacterial
communities inferred from the metagenome and from the corresponding 16S rRNA sequenc-
ing dataset are significantly different (see Table 1). Our sampling-based tests showed similar
results—the difference between the inferred communities can not be explained by the differ-
ent numbers of 16S rRNA sequences. Here we use individual TS50 as an example. The TS50
metagenome includes 549,700 reads with 1,446 16S rRNA gene fragments, while its 16S rRNA
gene sequencing dataset contains 30,498 16S rRNA gene fragments. The UniFrac distance
(weighted) between the communities inferred from the two methods is 0.164. We simulated
10,000 subsets of 16S rRNA gene fragments from the 16S rRNA gene sequencing dataset,
each containing the same number of 16S rRNA gene sequences as in the metagenome, and
computed the community distances between the sampled subsets and the complete 16S rRNA
gene sequencing dataset. The species structures inferred from these sampled subsets are all
significantly more similar to the structure inferred from the complete 16S rRNA gene sequenc-
ing dataset (with an average UniFrac distance of 0.021; see Figure 4 for the distribution of
the distances) than the complete data set is to the metagenomic dataset (0.164).
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Fig. 4. Distribution of the UniFrac distance between a subset and the complete set of 16S rRNA sequencing
data for the TS50 sample, based on 10,000 sampling experiments.
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3.4. Both body location and experimental technique matter

We further analyzed and compared 104 bacterial communities for different body sites inferred
from metagenomes and 16S rRNA sequences, using PCoA. All of the 16S rRNA sequences
(from the 16S rRNA gene sequencing, and extracted from metagenomes) were mapped to
the phylogenetic tree of the core gene set of Greengenes to derive phylogenetic distributions
of 16S rRNA sequences, from which UniFrac distances between any two communities can
be computed. We used both weighted and unweighted UniFrac distances (weighted UniFrac
weights the branches based on abundance information)20 to derive UniFrac distance matrices.
The PCoA results of the two matrices (Figure 5) show that there are at least two factors that
affect community clustering: the body location, and the experimental method. The separation
of the communities by experimental technique is more prominent when unweighted UniFrac
distances were used (Figure 5b). For example, gut samples derived from 16S rRNA gene
sequencing and whole genome shotgun sequencing (note there are 18 gut samples that have
both, see Table 1) are far away from each other in the two-dimensional projection of the
communities.

4. Discussion

Our comparative studies revealed significant differences in the bacterial diversities derived from
16S rRNA gene sequencing and whole genome shotgun sequencing (metagenomics) of the same
sample. These differences are not due simply to the different depths of sampling in the two
methods, and indicate that 16S rRNA gene sequencing can profile the bacterial communities
in a greater detail than can metagenomics. Our results indicate that even when corrected
for depth, conclusions derived from 16S rRNA gene sequencing and shotgun metagenome
sequencing cannot be directly compared. In addition, low abundance species are best identified
through 16S rRNA gene sequencing.

There can be other factors that cause the differences observed between bacterial communi-
ties inferred from 16S rRNA gene sequencing and metagenomics. For example, the 16S rRNA
gene fragments derived from metagenomic datasets may cover different regions as compared to
the 16S rRNA gene fragments from PCA-based pyrosequencing (which often targets a certain
region of 16S rRNA gene). And it has been shown that different regions of 16S rRNA gene
have different sequence diversity,10 and therefore a certain region may serve well for profiling
a certain spectrum of bacteria but not all. Ideally we could do the comparison using only the
16S rRNA gene fragments that cover the same region, but we were only able to extract a small
number of such 16S rRNA gene fragments from the metagenomic datasets we tested. When
bigger metagenomic datasets become available, it will be interesting and necessary to do such
a comparison, using the fragments spanning the same region of 16S rRNA gene derived from
different experimental techniques.

We focused on bacterial communities in this paper, but the PHYLOSHOP pipeline can
easily be extended by incorporating HMMs of other phyla’s RNA genes, such as archarea or
fungi. Notably, the reference tree in this analysis contains only the core set of Greengenes
16sRNA genes, and thus can be further refined. Finally, the rapidly growing numbers of
metagenomic samples in the public domain will provide a more comprehensive resource to
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Fig. 5. Two-dimensional projection of metagenomic samples by using PCoA of the weighted (a) and un-
weighted (b) UniFrac distance matrices of their bacterial communities. The labels of the samples indicate the
source (gut or oral), the research group involved (Gordon,16 Gill,31 and Kurokawa32), and the technique that
was used (shotgun metagenomics in capital letters, and 16S rRNA gene sequencing in lower case letters). For
instance, GUT (Gordon) and gut (Gordon) represent gut-associated metagenome and 16S rRNA datasets,
respectively, which were produced from the same research lab. The gut (Arizona) datasets were downloaded
from the NIH SRA website (accession number: SRP001377).
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conduct our analysis more thoroughly and elaborately, but we suggest that for the foreseeable
future metagenomic projects should be paired with 16S rRNA gene sequencing.

5. Availability

PHYLOSHOP is implemented in Python and the source codes are available for download
at http://omics.informatics.indiana.edu/mg/phyloshop. The supplementary tables and figure
also available in the same website.
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1.  Background 

Modeling of Biosystems and their representations is one of the major challenges in current 
computational biology. Topics such as Structure Prediction, Dynamics and Sampling, Mesoscale 
Modeling, Molecular Assemblies, Structural Interactions and Systems Biology are important for 
better understanding biological function. They are still computationally or experimentally 
expensive and lead to a large amount of data, with attendant analysis challenges. In the structural 
genomics and systems biology era, models are thus needed at different scales, both in space and 
time. This session focuses on multi-scale approaches to model biosystems, and in particular those 
which extend simulation size and time scales. 

Recent progress in protein structure prediction and protein folding dynamics has allowed in-
silico experiments to reach longer timescales. Knowledge-based techniques have grown in 
accuracy and efficiency, partly due to the growth in solved structures, but the physics-based 
simulation so crucial to correct kinetics and thermodynamics is still very challenging. Adequate 
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sampling and dynamics analysis at different size and time scales is thus of interest in the field and 
in this session. 

Molecular modeling techniques can now model complexes of significant size, while at the 
macroscopic scale neuromuscular and tissue modeling has gained finer and finer resolution. In the 
middle stands the mesoscale -- cellular systems which we wish to model accurately and 
economically. In this session we will exhibit structural and dynamical modeling techniques which 
represent progress towards that goal. 

Along with modeling molecules comes the challenge of understanding how they interact and 
aggregate, since a complex is often the functional unit in normal cells, or the causative agent in 
disease. The analysis of such assemblies is key in many therapeutic studies. Several 
neurodegenerative diseases are known to be correlated to protein aggregates. Understanding the 
phenomena of complex formation, aggregation, and misfolding requires the combination of 
various techniques. This session will present novel techniques and results in this field. 

A yet higher level of organization exists at the system level. The role of computer modeling at 
this level has grown in the emerging discipline of systems biology. Different physiological 
functions occur at different scales, and so this field often requires multiresolution modeling 
techniques.  Due to its crucial high-level perspective of the mesoscale, systems biology is one of 
the foci of our session.  

The Biology, Computer Science, Chemistry and Mathematics communities have a growing 
interest in multiscale modeling at or near the mesoscale. This session highlights its impact on our 
understanding of biological systems. 

2.  Session Summary 

This session includes four oral presentations and accepted articles, a tutorial and a discussion 
session. The tutorial contains two parts: a survey talk and an introduction to the multi-scale 
macromolecular modeling software RNABuilder. 

2.1.  Oral Presentations and accepted articles 

Molecular dynamics simulations of the full triple helical region of collagen type I provide 
an atomic scale view of the protein’s regional heterogeneity 

Authors: Dale L. Bodian, Randall J. Radmer, Sean Holbert and Teri E. Klein 

This article presents an all-atom explicit solvent molecular dynamics study (10 ns) of the full triple 
helical domain of collagen to gain insights on the role of variation in the sequence, structure and 
dynamics of the protein involved in fibril formation. To make this large system tractable, the 
authors split it into smaller overlapping fragments. A careful analysis of the trajectories obtained 
showed that key regions of collagen present structural heterogeneity. 

Computational generation inhibitor-bound conformers of P38 MAP kinase and comparison 
with experiments 

Authors: Ahmet Bakan and Ivet Bahar 

This study focuses on the structural dynamics of an important drug target: the p38 MAP kinase. It 
compares the dominant changes observed in the 134 structural coordinate sets that are known for 
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this protein, to molecular dynamics (MD) and elastic network model (ENM) in silico experiments. 
ENM is shown to sample the observed structural diversity well, compared to an MD simulation 
improved by inclusion of small organic molecules. The work describes the role of global modes in 
ligand binding, and suggests improvements to flexible-enzyme docking algorithms. 

New conformational search method using genetic algorithm and knot theory for proteins 

Authors: Yoshitake Sakae, Tomoyuki Hiroyasu, Mitsunori Miki, Yuko Okamoto 

In this article, a previously described conformational search and sampling method for 
biomolecules is used as a base to propose a new strategy. The authors combine parallel simulated 
annealing using genetic crossover and knot theory to generate putative protein structures. While 
the previous parallel simulated annealing and genetic crossover method led to global-minimum 
energy protein conformations that had bad conformational properties (“knots”), the new method is 
shown to perform well on protein G. 

Structural insights into pre-translocation ribosome motions 

Authors: Samuel C. Flores and Russ Altman 

Cryo-EM reconstruction and a dynamic model are used in this study to provide structural 
information on pre-translocation ribosome motions. The entire T.Thermophilus 16S and 23S 
rRNAs and most of the r-proteins are fitted in the cryo-EM map of the E.coli ribosome in the 
hybrid state.  The fitted model exhibits a contact between P/E site tRNA and the head domain that 
was predicted by coevolution; it also recovers the intersubunit bridges known to be maintained 
during the full transition. The rotation of 16S with respect to 23S, and of the head domain with 
respect to the body, is modeled subject to the constraints that the ribosome pass through three 
experimentally observed conformations and maintain the head-tRNA contact.  The results show 
that it is geometrically and sterically feasible for the head and tRNA to move in a coordinated 
fashion, and for a controversial experimentally observed intermediate to be sampled in the course 
of the motion. The method is applicable to the study of other large complexes. 

2.2.  Tutorial 

2.2.1.  Survey Talk 

One of the emerging challenges of modern computational biology is the modeling of large 
biosystems. The understanding of these systems is key to solving many fundamental biological 
problems. Our session is focused on multi-scale techniques from molecule studies to cell or 
organism level. The emphasis is on: structure prediction, dynamics and sampling, mesoscale 
modeling, molecular assemblies, aggregation and analysis of structural interactions.  These 
approaches may consist of a wide range of tools such as force fields, sampling, structure 
prediction, and dynamics methods. 
In the first part of the tutorial session, we will address the issues and background relevant to the 
multi-resolution modeling of biological systems.  We will start with an example of multi-scale 
modeling of human heart.  After that, the following three topics will be briefly discussed: (1). 
Molecular Assemblies, Aggregation and Analysis of Structural Interactions. (2) Conformational 
sampling.  (3). Multi-scale modeling of RNA structures. 
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2.2.2.  Introduction to RNABuilder 

In recent years we have seen an explosion in newly discovered RNA functions in the cell.  
However as mentioned our understanding of mechanisms of action has been hampered by a lack 
of structural information -- RNA's large size, flexibility, charge, folding time, and propensity for 
kinetic trapping challenges both experimental and computational probes of structure.  The major 
thrust of our session is to demonstrate techniques to progress towards the mesoscale in 
biocomputation.  To that end I will describe RNABuilder, a multi-resolution, internal coordinate 
dynamics code.  It gives the user control over the flexibility, sterics, and forces acting on the 
molecule. It will be shown how this approach can be used to fold moderate-sized RNAs, or model 
the dynamics of large protein-RNA complexes, in a minutes to hours on a single processor.  The 
presentation includes a short demo to show how to model a simple system. 

3.  Acknowledgements 
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The p38 MAP kinases play a critical role in regulating stress-activated pathways, and serve as molecular 

targets for controlling inflammatory diseases. Computer-aided efforts for developing p38 inhibitors have 

been hampered by the necessity to include the enzyme conformational flexibility in ligand docking 

simulations. A useful strategy in such complicated cases is to perform ensemble-docking provided that a 

representative set of conformers is available for the target protein either from computations or experiments. 

We explore here the abilities of two computational approaches, molecular dynamics (MD) simulations and 

anisotropic network model (ANM) normal mode analysis, for generating potential ligand-bound conformers 

starting from the apo state of p38, and benchmark them against the space of conformers (or the reference 

modes of structural changes) inferred from principal component analysis of 134 experimentally resolved p38 

kinase structures. ANM-generated conformations are found to provide a significantly better coverage of the 

inhibitor-bound conformational space observed experimentally, compared to MD simulations performed in 

explicit water, suggesting that ANM-based sampling of conformations can be advantageously employed as 

input structural models in docking simulations. 

 

1. Introduction 

The p38 mitogen-activated protein (MAP) kinase, referred to as p38, is a key signaling protein 

activated in response to external stress; it regulates the production of proinflammatory cytokines, 

and as such serves as an important target for the treatment of inflammatory diseases (1).  The 

structure of p38 in the presence of a variety of inhibitors/ligands has been resolved.  However, the 

intrinsic flexibility of the enzyme has been a major challenge in accurate design and docking of 

potent inhibitors, and the necessity to gain a better understanding of the conformational variability 

of p38 has been pointed out (2). Our recent analysis of a set of p38 X-ray structures suggests that 

the structural changes observed in different ligand-bound forms of the enzyme correlate with its 

conformational motions intrinsically accessible in the ligand-free form (3). Effective generation of 

a representative set of conformers that would be utilized for flexible docking appears therefore as 

a feasible task. The development of such efficient tools for generating representative subsets of 

potentially bound conformers would greatly facilitate computational efforts for drug discovery, not 

only for this particular family, but for many target proteins, especially in the absence of sufficient 

structural data on their alternative conformers (4).   

There is a multitude of approaches at different resolutions for generating conformational 

ensembles. Molecular dynamics (MD) simulations are broadly used in investigating specific 

interactions and structural changes at atomic scale, but they may be prohibitively time consuming 
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if large-scale changes are explored (5). Elastic network models (ENMs), on the other hand, 

efficiently explore large-scale changes for large systems, but this comes at the cost of losing 

atomic precision, and the observed changes are restricted to the neighborhood of the global energy 

minimum (6, 7). With the ever growing size of Protein Data Bank (PDB) (8), we are able to assess 

the utility of these methods by benchmarking them against the structural changes detected for 

well-studied proteins in the presence of different inhibitors. 

We use here an ensemble of 134 X-ray structures resolved for p38 in different forms as the 

reference for the conformational space accessible to p38 upon binding its ligands. p38 has two 

small-molecule binding sites (Fig. 1A): the ATP-binding site where competitive binding of 

inhibitors takes place, and the lipid/compound binding site at the MAPK insert, which offers 

alternative targeting strategies (9). p38 is bound to a structurally diverse set of inhibitors in this 

dataset. To gain a simplified view of the dataset structural variability, we identified dominant 

directions of structural changes (modes) via principal component analysis (PCA) (10) (Fig. 1 

panels B - E). PCA is a powerful technique for extracting recurrent modes of structural changes 

from sets of structures (11).  Its use in assessing functional dynamics is clearly demonstrated by a 

recent study of substrate-bound X-ray structures of ubiquitin (12). Hereafter, we will refer to the 

modes identified by PCA as reference modes. 

 
 

Fig. 1. p38 structure and reference modes. A. p38 structure (PDB id: 1ZYJ) is shown as a ribbon diagram colored 

by residue index from blue to red. The upper and lower lobes are referred to as the N- and C-terminal lobes. Two 

ligand-binding sites are distinguished: ATP-binding site, with the bound inhibitor shown in blue spheres; and the site 

at the MAPK insert, marked by the bound lipid (n-octyl-β-D-glucoside) in black/red space filling representation. B-E.  

Directions of PCA modes 1-4 (green arrows) retrieved from the analysis of 134 X-ray crystallographically resolved 

p38 structures in different forms.  Coloring is based on mobility along the mode directions, red being most mobile.  

 

182



We generated alternative conformations by two approaches: MD simulations, subjected to 

essential dynamics analysis (EDA), (13) and anisotropic network model (ANM) (14-16) analysis. 

MD simulations were repeated in the presence of explicit water and in solutions of water and 

probe molecules (small organic molecules to mimic the effects of drugs/inhibitors, as recently 

performed to investigate target protein druggability (17, 18)).  We examined (i) the coverage of 

reference conformational space by MD and ANM, and (ii) the correspondence of the modes 

observed in MD-EDA and predicted by ANM to those (Figure 1 B-E) inferred from experiments.  

2. Materials and Methods 

2.1. Structural data 

Using the human p38 sequence (GenBank id: CAG38743.1) in Biopython (http://biopython.org) 

protein Blast module, we retrieved from the PDB a set of 134 p38 MAP kinase isoform 

structures, with 95% or more sequence identity (human or mouse proteins). Most structures 

contained a ligand bound to ATP binding site and/or MAPK insert (Table 1). 

 

Table 1. Summary of p38 structural ensemble(*). 
 

 

(*) Counts of different forms of p38 structures are listed. Markers refer to Figs 2 and 3. 

2.2. MD simulations 

We performed two types of 20 ns simulations, each repeated twice.  The 1
st
 type contained water 

and counter ions, in addition to p38. The 2
nd

 was performed in a solution of water and small-

organic molecules at a fixed ratio of 20:1, summarized in Table 2. The ligand-free p38 structure 

resolved by Wang et al.(19) (PDB id: 1P38) was used. Missing atoms were modeled using 

PSFGEN (20). Solvent box padding distance was at least 6 Å. Solvated system coordinates were 

prepared using VMD (20).  Prior to the productive runs, probe-free systems were equilibrated for 

30 ps. For probe-containing systems were subjected to 450 ps simulated annealing to achieve 

uniform spatial distributions of probes, followed by 300 ps equilibration. All simulations were 

performed using NAMD (21) software with CHARMM (22) force field. 

 

Table 2. Description of MD simulations performed for p38 in different solvent environments. 

MD Sim Atoms(*) Water Isopropanol Isopropylamine Acetate Acetamide 

1 26454 6929 - - - - 

2 26454 6929 - - - - 

3 28515 6360 318 - - - 

4 28563 6400 224 32 32 32 

(*)protein and non-protein molecules. All simulations contained 9 sodium ions to balance the charge. 

 MAPK insert  

Unbound Lipid Compound  Total 

ATP site 
Unbound   4 ● 10 ♦   14 

Inhibitor 87 ● 20 ♦ 8▲  115 

Peptide/protein bound    5 ● 5 

Total 91 30 8 5 134 
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2.3. PCA/EDA of data from experiments/simulations 

The PCA of ensembles of structures is an orthogonal linear transformation that projects data from 

Cartesian coordinate space onto a space of collective coordinates uniquely defined by the 

examined ensemble (10). The new coordinate system is such that the greatest variance in the 

dataset lies along the first principal component (PC) axis, shortly referred to as PC1, followed by 

PC2, PC3 and so on. The method of approach is identical in the EDA of MD trajectories (13), with 

the only exception that the analyzed set of conformers consists of MD snapshots, rather than the 

experimentally resolved structures collected from the PDB.   

Both analyses are based on the cross-correlations (or covariance) observed (in experiments or 

simulations) between the fluctuations of C

-atoms. Here, we used 324 C


-atoms (residues 5-31, 

36-116, 121-168,185-352) that were structurally resolved in at least 90% of the examined dataset. 

The approach in either case is to diagonalize the covariance matrix and examine the dominant 

modes of structural changes (eigenvectors) which are associated with the largest eigenvalues. Prior 

to PCA/EDA, structures/snapshots are superposed using the Kabsch algorithm (23) in an iterative 

procedure (3). Mean positions <Ri> = [<xi> <yi> <zi>]
T
 are determined for each -carbon i. The 

departures of -carbons from their mean positions, Ri
s
 = [xi

s
 yi

s
 zi

s
]

T
 (where xi

s
 = xi

s
 –<xi >) 

are organized in a 3N-dimensional deformation vector R
s
 where (R

s
)
T
 = [(R1

s
)
T
 (R2

s
)
T 

 …. 

(RN
s
)
T
]), for each structure, s, in the dataset; and their cross-correlations, averaged over the entire 

set are organized in a 3N x 3N covariance matrix C. C may be written in terms of N x N 

submatrices C
(ij) 

(1≤ i, j ≤ N), each of size 3 x 3, given by 
 

      [

〈      〉 〈      〉 〈      〉

〈      〉 〈      〉 〈      〉

〈      〉 〈      〉 〈      〉

]   (1) 

 

Here 〈      〉 represents the cross-correlation between the x-component of Ri
s
 and the y-

component of Rj
s
 averaged over all structures (1 ≤ s  ≤  Stot) in the dataset. The trace of C

(ij) 
gives 

the cross-correlations between the fluctuations of residues i and j as tr{C
(ij)

} = <Ri •Rj >, and 

that of the i
th

 diagonal block C
(ii) 

gives the mean-square fluctuations <Ri

> of -carbon i. 

Principal/essential modes are obtained by decomposing C for the dataset of conformers 

(PDB/MD) as   ∑   
 
     p

(i)
 p

(i)T  
where p

(i)
 and i, are the i

th
 eigenvector and eigenvalue of C, 

respectively, and m is the total number of nonzero eigenvalues (m = 3N-6 if Stot > 3N-6, and m = 

Stot otherwise). 1 corresponds to the largest variance component (i.e. 1 ≥ 2 ≥ …≥ m). The 

fractional contribution of fluctuations along p
(i)

 to the overall structural variance in the dataset is 

given by fi = i /jj where the summation is performed over all m components.  

2.4. ANM analysis and sampling of conformers using ANM modes 

In contrast to PCA and EDA, the ANM analysis is performed for a single structure (e.g., the apo 

structure), not an ensemble.  In the ANM, the second-order partial derivatives of the potential 
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energy function (a sum over uniform pairwise harmonic potentials of force constant  between all 

‘connected’ residues in the network) are organized in the Hessian matrix H, which, in turn, is 

decomposed into 3N-6 nonzero eigenvalues i and corresponding eigenvectors u
i
,
 

i.e., H 

=∑   
    
    u

(i)
u

(i)T
(14, 16). 

 
H is written in terms of N x N submatrices each of size 3 x 3. The ij

th
 

submatrix is given by 

       
    

(   
 )

 [

                  

                  

                  

]   (2) 

 

and        ∑       
     . Here    

  is the equilibrium distance between the -carbons i and j, and 

Xij, Yij and Zij are its components;     is the ij
th

 element of the Kirchhoff matrix    equal to 1 if i 

and j are connected (or within a distance rcut), zero otherwise.  The ANM covariance matrix is 

CANM = H
-1

 such that 1/1 is the counterpart of the PCA 1, and u
(i)

 is the counterpart of p
(i)

.  

ANM conformations along mode i are generated using the relation            
    

  , 

where s is a scaling parameter proportional to (kBT/)
½

 (24). Thus, the structural changes along the 

slowest/softest mode (u1) are the largest in size (1 ≤ 2 ≤ …≤ 3N-6).  We generated ensembles 

around the initial conformation R
0
, using the pseudocode given in Textbox 1, with M = 3 modes 

and s = K(kBT/)
½
 where K varies as 1 ≤ K ≤ 7 and kBT/= 2Å

2
, to obtain 15

3 
= 3375 conformers, 

the spread of which matches that of the reference space.  The root-mean-square deviations 

(RMSDs) between nearest conformers along modes 1, 2 and 3, were 0.25, 0.21, and 0.14 Å, 

approximately. Calculations were repeated with different structures to confirm the robustness of 

the predicted ANM modes. Results obtained with unliganded (PDB id: 1P38 (19)) and inhibitor-

bound p38  (PDB id: 2BAJ (25)) yielded practically indistinguishable results. 

 

Textbox 1. Pseudocode for ANM sampling. 

2.6. Comparison of dominant modes from PCA, EDA and ANM 

In this section, we define the metrics for comparing the modes from ANM (predicted) and PCA 

(experiments); similar expressions hold for the comparison of EDA (simulations) and PCA modes, 

as well as EDA and ANM modes.  The overlap between ANM and PCA modes is given by the 

Initialize a list to store conformations, and append the initial conformation:  

L =  𝑹   

Do for ANM modes 1 ≤ i ≤ M 

Do for each conformation  𝑹𝐶  in L 

Initialize a list to store conformations generated at this step, L_temp = [ ] 

Do for k in [-K, -(K-1), …, -1, 1, …, K-1, K] 

 𝑹𝑘  𝑹𝑐 + 𝑘𝑠 𝜆𝑖
    

𝒖𝑖  

 Append 𝑹𝑘  to L_temp 

Append conformations in L_temp to L 
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correlation cosine Oij = p
(i)

. u
(j)

 (26). The cumulative overlap,    
 
 *∑      

  
   +

 
 ⁄
measures how 

well a subset of J low frequency ANM modes reproduces the PCA mode i(27). Note that for J = 

3N -6, COi
J
 = 1 by definition, i.e., the complete set of 3N-6 ANM eigenvectors form an 

orthonormal basis set.  Finally, the essential subspace overlap between the PCA and ANM 

subspaces spanned by top K modes is evaluated using      *
 

 
∑ ∑      

  
   

 
   +

 
 ⁄
 (13). Finally, 

the degrees of collectivity of the principal modes derived from either computations (ANM or 

EDA) or experiments (PCA) were calculated using the definition proposed by Brüschweiler (28).  

2.7. Projection of conformations onto a reference subspace and normality test   

The projection of a given conformational change R
s
 onto p

(i)
 is found from ci

s
 =(R

s
)
T
 p

(i)
. The 

points in Figs 2 and 3 represent the projections onto the subspaces spanned by PC1, PC2, PC3, 

and/or PC4. In the extreme case of (R
s
)
T 

perfectly aligned along p
(i)

, ci
s
 = ||R

s
||, where the 

double bars designate the magnitude of the enclosed vector.  The normality of projections of PDB 

structures onto the principal modes were tested using A’Agostino and Pearson’s test (29, 30) 

where skewness and kurtosis are combined into an omnibus test (using SciPy, http://scipy.org/).  

3. Results and Discussion 

3.1. p38 reference modes derived from X-ray crystallographic data 

The ensemble of 134 p38 structures provides a rich representation of the conformational space 

accessible to this enzyme under a wide variety of conditions, e.g., differences in ligands, crystal 

conditions, or mutations. The dominant changes observed in this dataset were extracted by PCA as 

described above, and displayed in Fig. 1B-E. Table 3 (columns 1-5) provides more information on 

these modes, including the size of the associated conformational variance, 
2
, their contribution to 

structural variation, and their degree of collectivity. The first mode, PC1 (Fig. 1B) for example, 

accounts for 24.5% of the structural variability in the dataset (Table 3). The fluctuations along this 

mode correspond to the anti-correlated movements of the N- and C-terminal lobes of p38. Motions 

along the PC1 axis in the positive direction (indicated by the arrows in Fig. 1B) favor ‘open’ 

conformers, and those in the negative direction favor ‘closed’ forms. Movements along PC1 thus 

directly affect the size of the ATP/inhibitor-binding pocket in the N-terminal lobe.  

 

Table 3. Properties of the reference (PCA) modes from experiments, and projection of MD snapshots onto them. 

PCA 

Mode 

PCA of PDB ensemble Sim1 Sim2 Sim3 Sim4 

σ
2(a)

 %
(b)

 p-value
(c)

 Collectivity
(d)

 µ
(e)

 σ
2(f) 

µ σ
2
 µ σ

2
 µ µ 

1 44.5 24.5 0.26 0.49 6.9 40.1 6.4 74.8 9.9 59.7 15.4 43.6 

2 37.6 20.7 0.00 0.36 6.3 30.6 9.9 46.9 11.0 43.9 8.3 31.1 

3 25.6 14.1 0.00 0.58 -8.2 25.0 -0.6 20.5 0.5 20.2 0.9 14.1 

4 11.1   6.1 0.63 0.52 9.4 20.8 3.2 27.1 0.8 19.9 2.7 12.9 
(a) Variance along the reference mode in the PDB dataset. (b) Percent of total structural heterogeneity accounted for by the reference 

mode. (c) The probability that the projection of structures along the reference mode obeys a normal distribution. (d) Degree of 

collectivity. (e) Mean position of MD snapshots along the reference mode. (f) Variance of MD snapshots along the reference mode. 
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Figure 2 displays the projections of the 134 structures, each indicated by a color/shape coded 

symbol (described in Table 1), on the subspace spanned by PC1 and PC2. The unliganded 

structures (red dots in Fig. 2A) occupy the region PC1 > 0 of the subspace, consistent with their 

tendency to assume a relatively open form. Upon inhibitor binding, p38 tends to close down.  

Normality test of the projection onto PC1 (upper bars plot in Fig. 2A) shows that an approximately 

Gaussian distribution is obtained. The ensemble is not separated into distinct clusters in this case, 

suggesting that a continuous spectrum of conformers is visited rather than two distinctive ‘open’ 

and ‘closed’ states, with the unbound structures exhibiting a tendency to be open. 

 

    
Fig. 2. Distribution of the PDB ensemble of structures on the subspaces spanned by reference modes. 134 p38 

structures are projected onto PC1-PC2 (A) and PC3-PC4 (B) subspaces. Markers are described in Table 1. The 

distributions of structures along the individual modes are shown by the histograms.. A conformation on the positive 

portion of these projections corresponds to a deformation along the direction indicated by the arrows in Fig. 1B-E. 

 

The second reference mode (PC2), on the other hand, describes the structural changes in the 

secondary lipid/compound binding pocket at the MAPK insert. This mode explains 20.7% of the 

structural variability in the dataset. As shown in Fig. 2A, this mode divides the ensemble into two 

groups: (i) structures with a bound ligand (lipid) molecule at the MAPK insert (red and blue 

diamonds, mostly clustered in the positive PC2 region), and (ii) structures with empty MAPK 

inserts (red and blue circles). Normality test confirms that the PDB structures exhibit a bimodal 

distribution along this mode. Compared to PC1, changes are slightly more localized and 

pronounced near the lipid-binding site at the C-terminal lobe. The collectivity of this mode is 

lower (0.36) compared to that of the first mode (0.49). 

The structural changes along the 3
rd

 and 4
th

 reference modes (Fig. 1D and E) account for the 

respective 14.1% and 6.1% of the total variance. Both of these modes are highly collective (Table 

2) as may also be seen from the uniform distribution of movements across the enzyme. Lipid-

bound structures (diamonds) tend to move toward the negative direction along PC3. This behavior 

is particularly distinctive in inhibitor-bound structures, which results in a skewed, non-Gaussian 

distribution. The movements along PC4, on the other hand, exhibit a normal distribution.  
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In summary, the first four modes provide a description of structural changes associated with 

binding of ligands (ATP and/or inhibitors) at the ATP-binding sites (PC1), binding of lipids to the 

MAPK insert (PC2), and the collective rearrangements of the entire enzyme to accommodate 

different bound forms (PC3 and PC4). Notably, local changes at the binding sites are coupled to 

global changes in the enzyme structure (Fig. 1 panels C and D), pointing to the functional 

significance of the global modes favored by the p38 architecture. 

3.2. Do MD snapshots provide good coverage of reference space? 

Of interest is to assess how close MD- or ANM-generated conformations are to known PDB 

structures.  In Fig. 3, we show the projection of computationally generated conformations onto the 

subspace spanned by top three reference modes (PC1-PC3). Panels A-C compare the snapshots 

from three MD runs (see Table 2), shown by the black dots, to PDB structures (indicated by the 

symbols in Table 1). In all three cases, we see that the conformations sampled during MD runs 

drift away from the large majority of the experimentally detected structures. This is also evident 

from the mean positions of MD snapshots along these three principal axes reported in Table 3. For 

example, along PC1, the mean position sampled by MD snapshots varies between 6.4 (Sim2) and 

15.4 Å (Sim4), which correspond to 0.36 and 0.85 Å RMSD. Likewise, along PC2, the average 

positions of MD snapshots depart from the experimental dataset by up to 11.0 Å (Sim3). Overall, 

four independent runs starting from a ‘central’ experimental structure ended up sampling 

conformational subspaces that do not encompass the majority of experimental structures. 

3.3. Do ANM predictions provide good coverage of reference space? 

In sharp contrast to results from MD runs, Panel D in Figure 3 shows that conformers 

generated by deforming the starting structure along ANM modes 1, 2 and 3 are able to cover the 

reference subspace of conformations comprehensively. In this case ANM sampling is performed 

using only the slowest three modes. The present comparison clearly shows that the subspace 

sampled by the three softest ANM modes overlaps with the experimentally accessed subspace of 

conformations. This remarkable coverage of reference space (from experiments) by ANM 

predictions also translates into the minimum RMSD plot shown in Fig. 4. In this plot, for each 

PDB structure, the lowest RMSDs with respect to (i) all other PDB structures (black curve with 

black dots), (ii) MD snapshots in four different runs (colored as labeled), and (iii) ANM 

conformations generated along the softest three modes (purple) are shown. The plot for pairs of 

PDB structures yields an average value of 0.4 Å; ANM sampling yields 0.6 Å. MD runs, on the 

other hand, yield an average of 1.0Å at least.  Simulations performed in the presence of probe 

molecules (Sim3 and Sim4) yield slightly better results, although the improvement is not 

significant. 
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Fig. 3. Projections of MD and ANM ensembles onto the subspace spanned by the reference modes PC1-PC3. 

Ensembles from Sim2, Sim3, Sim4, and ANM are shown in panels A, B, C, and D, respectively. PDB structures are 

marked as in Fig. 2. Conformations generated by computations are shown by gray points. The perspective is the same 

in all panels for ease of comparison. 

 

 
Fig. 4. Minimum RMSD from PDB structures. Results are shown for all PDB structures (indexed in alphabetical 

order along the abscissa). The black curve refers to the RMSDs from the PDB structures themselves (experimental 

data); the purple curve displays the min RMSDs achieved by ANM sampling; and other curves (labeled) refer to MD 

runs Mean and standard deviations are given in the legend.  

3.4. Correspondence of ANM and MD-PCA Modes to Reference Modes 

We performed the EDA of the four MD trajectories, and compared the essential modes derived 

from these runs to the reference modes obtained from the experimental dataset.  Fig. 5 panels A 

and C show for the runs Sim2, Sim3 and Sim4 the overlap (correlation cosine) between each of the 

essential 10 modes (from EDA of MD) and the top 10-ranking reference modes (from PCA of 
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PDB structures).  Panel D displays the correlation between the ANM and PCA modes. If we focus 

in particular on the top two pairs of modes, the lowest overlaps are observed in Sim2 (53% or less) 

and similar observations (not shown) were made for Sim1. In both of these two cases, the protein 

was simulated in water. In Sim3 and Sim4, the correlations with the first two reference modes 

increase to 63%. This is due to the existence of probe molecules which were able to find either 

binding pocket on p38, and assisted in the stabilization of bound conformers. 
 

 
Fig. 5. Correlations between experimentally observed and computationally obtained modes of structural 

changes. Panels A-C show the overlap between top-ranking PCA modes (from 134 PDB structures) and the modes 

yielded by MD runs EDA. Panel D displays the overlaps between ANM and PCA modes. 
 

The comparison of ANM modes with the reference modes shows, on the other hand, a much 

stronger correlation. The slowest mode (ANM1) alone exhibits an overlap of 75% with PC1. Thus, 

the most prominent conformational variation experimentally observed for p38 upon binding its 

ligands is in remarkable agreement with the softest mode of motion intrinsically accessible to the 

enzyme in the unbound state. That is, it is easiest to deform the protein along this ANM mode, or 

the protein is most likely to sample alternative conformations along this mode under native state 

conditions (presumably within time scales of the order of µs). In addition, the cumulative overlap 

between top reference mode and first three ANM modes reaches 87%. We also found significant 

overlaps between reference modes PC2, PC3, and PC4 and the low frequency ANM modes 1, 2 

and 3: PC2 overlaps with ANM1 and ANM3 by 0.49 and 0.55, respectively, yielding a cumulative 

overlap of 0.74 with these two modes. PC3 correlates with ANM2 by 57%, and PC4 correlates 

with ANM2 by 52%. It is not thus surprising to see that the alternative conformations generated 

along ANM1-3 provided a satisfactory coverage of the experimentally observed dataset (Fig. 3D). 
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Apparently, 65% of the variability in the PDB ensemble is well explained by slowest three 

ANM modes. A measure of such correspondence is the essential subspace overlap (13). Using 

three modes, we find that the essential subspace overlap between ANM and reference dataset is 

75%.  This value is 62% for MD runs Sim1 and Sim2, and increases to 67 and 68%, respectively 

for Sim3 and Sim4. This suggests that the directions of structural changes observed in MD, 

represented by EDA modes 1-3, exhibit some correlations with the PCA modes 1-3 extracted from 

experiments, but there is a drift away from the original subspace during MD runs such that the 

conformations sampled by MD deviate from the reference state, leading to the relatively high 

RMSD values shown in Figure 4.   

4. Conclusion 

We presented a detailed analysis of the structural variations in a large ensemble of p38 MAP 

kinase X-ray structures, compared to those predicted by snapshots/models generated by MD 

simulations and by ANM methodology.  Our results show that ANM is able to capture the modes 

of motion that are relevant to ligand/inhibitor/ lipid binding much better than MD simulations. The 

use of probe molecules that mimic the interactions of the protein with inhibitor molecules 

improves the ability of MD to sample the relevant modes (Fig. 5B-C). Yet, the conformers 

sampled by MD trajectories of tens of nanoseconds generally fell short of encompassing the space 

of inhibitor-bound PDB conformations (Fig. 4). MD simulations of 20 ns take about 2 weeks using 

12 processors for a typical kinase. Generating a broader MD ensemble would take longer and 

would demand considerably larger numbers of processors, and this might not prevent the drift 

away from the experimental structures. The generation of conformers along ANM soft modes, on 

the other hand, is achieved within minutes, if not seconds, and provides an accurate sampling of 

experimentally detected subspace. Notably, the latter does not necessitate expensive computations, 

nor knowledge of multiple structures. 

Our work is the most comprehensive comparative analysis of a protein kinase (p38) dynamics 

using multi-resolution methods. In a previous study, based on small sets of PDB structures for four 

different kinases, local changes in the glycine rich loop (a -hairpin that interacts with inhibitors) 

of the N-terminal lobe were observed (2), and the fast modes were deemed to be used to capture 

the conformational variability in ligand-bound structures (31). Our current and previous (3) results 

show that up to 65% of the changes experimentally observed in p38 MAP kinases are actually 

collective changes explained by 2-3 softest modes. The local motions at ligand-binding site are an 

integral part of these global movements, and the structural variations observed in different ligand-

bound conformers are well represented by the structural rearrangements along the global modes. 

These observations are in line with work of May and Zacharias (32) in which relaxing a protein 

kinase along global modes during docking simulations improved the prediction of bound 

conformers. Their approach circumvents the problem of dealing with conformations potentially 

irrelevant to ligand binding (decoys). Such decoys are generated by both computational methods, 

but eliminating ANM conformations with RMSD larger than a threshold to the initial structure can 
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improve the accuracy of sampling. Furthermore, current results are important as they suggest a key 

coupling between global motions and local binding events, which will need to be systematically 

examined for a series of proteins. The method and application set forth in the present study may be 

readily extended to perform such a critical assessment for a large set of proteins. 
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MOLECULAR DYNAMICS SIMULATIONS OF THE FULL TRIPLE HELICAL 
REGION OF COLLAGEN TYPE I PROVIDE AN ATOMIC SCALE VIEW OF THE 

PROTEIN’S REGIONAL HETEROGENEITY 
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Collagen is a ubiquitous extracellular matrix protein.  Its biological functions, including maintenance of the 
structural integrity of tissues, depend on its multiscale, hierarchical structure.  Three elongated, twisted 
peptide chains of >1000 amino acids each assemble into trimeric proteins characterized by the defining triple 
helical domain.  The trimers associate into fibrils, which pack into fibers.  We conducted a 10 ns molecular 
dynamics simulation of the full-length triple helical domain, which was made computationally feasible by 
segmenting the protein into overlapping fragments.  The calculation included ~1.8 million atoms, including 
solvent, and took approximately 11 months using the CPUs of over a quarter of a million computers. 
Specialized analysis protocols and a relational database were developed to process the large amounts of data, 
which are publicly available.  The simulated structures exhibit heterogeneity in the triple helical domain 
consistent with experimental results but at higher resolution.  The structures serve as the foundation for 
studies of higher order forms of the protein and for modeling the effects of disease-associated mutations.  

 

                                                             
† Current address: Department of Bioengineering, Stanford University, Stanford, CA 94305. 
∗ Current address: Department of Computer Science, Stanford University, Stanford, CA 94305. 

1.  Introduction 

Collagen is a ubiquitous protein found in all multicellular organisms.  Type I collagen, the most 
abundant protein in mammals, provides structural and functional integrity to bones, tendons, blood 
vessels, and other tissues.  The function of collagen relies on its multiscale, hierarchical structure.  
The type I collagen protein is composed of two α1(I) and one α2(I) peptide chains, each composed 
of >1000 amino acids.  The three chains, each with a left-handed polyproline II-like twist, 
associate into a supercoiled right-handed triple helical structure nearly 3000 Å long.1  The 
heterotrimers assemble into fibrils with a characteristic packing arrangement that is observable in 
electron micrographs as a 670 Å repeating pattern of gaps and bands.  The fibrils in turn pack into 
fibers or other suprafibrillar architectures in the extracellular matrix whose configuration varies 
with the biological tissue in which it is found.2, 3 

The primary sequence of collagen proteins is characterized by multiple repeats of the Gly-X-Y 
triplet, where X and Y can be any amino acid but are often proline and hydroxyproline.  The type I 
collagen peptide chains α1(I) and α2(I) each contain 338 uninterrupted copies of this repeat which 
form the triple helical domain in the heterotrimer.  Disruption of the structure of the triple helical 
domain by mutation, particularly of any of the invariant glycine residues, is associated with 
disease, most commonly osteogenesis imperfecta, a set of disorders characterized by brittle bones. 

Experimental studies4-7 and computational models8, 9 have revealed that, despite the repetitive 
sequence, the triple helical domain is not homogeneous and has structural and biological 
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properties that vary throughout its length.  Results from multiscale modeling suggest that variation 
in the sequence repeat impacts collagen’s mechanical properties.10, 11  Regional models have been 
proposed to delineate the heterogeneity of the observed properties, but the boundaries of the 
regions are still incompletely defined.6, 12, 13  Structural studies have been performed to 
characterize the sequence-dependence of triple helix properties in detail.14  However, because of 
collagen’s size and fibrous structure, atomic-level analysis of the full-length protein has been 
difficult.  The crystal structure of rat tail tendon collagen determined by fiber diffraction15 
provides a low resolution view of the trimer within a native fibril.  However, the Cα-only structure 
does not permit detailed analysis of the atomic interactions, and does not provide a picture of the 
dynamic properties of the triple helix.  Crystallographic and NMR studies provided atomic level 
detail of the triple helical conformation and NMR and molecular dynamics have revealed aspects 
of collagen’s dynamic behavior.14  One such finding is that less stable regions of the triple helix 
may be less tightly wound on average, with longer intermolecular backbone hydrogen bonds 
contributing to the decreased stability.16, 17  However, the sequences investigated in these studies 
are limited to those of model peptides, most of which are repeating Gly-Pro-Hyp sequences, rather 
than native collagen sequence. 

 To further our understanding of the structure and dynamics of the native collagen, we carried 
out a 10 ns molecular dynamics simulation of the complete, heterotrimeric, triple helical domain 
of human type I collagen.  We designed a relational database to store the raw and derived data and 
developed specialized analyses protocols to handle analysis of the large volume of data generated.  
The simulated structures capture structural variation consistent with experimental structural and 
biophysical studies.  Our simulations support hypotheses about collagen’s dynamic heterogeneity 
and lend insights into the properties and regions of the native collagen triple helix.  Finally, the 
simulation structures can serve as the basis for future molecular dynamics studies on the effects of 
mutations and polymorphisms on collagen structural properties and their relationship to the higher 
order forms of the protein. 

2.  Materials and Methods 

2.1.  Software and parameters 

Molecular dynamics simulations were performed with GROMACS version 3.318 and managed by 
the Folding@home distributed computing servers.19  Parameters are from the AMBER-99 force 
field20 supplemented by published values for hydroxyproline.21  Data are stored in a postgres 
version 8.1 relational database. 

2.2.  Construction of the starting structures 

The 1014 amino acid-long sequences of the peptide chains comprising the triple helical region of 
human type I collagen were taken from residues 179-1192 of GenBank entry NP_000079 for α1(I) 
and residues 91-1104 of AAB59374 for α2(I).  The chains were assembled into a heterotrimer 
with chain order α1(I)-α2(I)-α1(I).  Coordinates of an idealized triple helix were generated with 
GENCOLLAGEN22 using default parameters, with all Y-position prolines converted to 4’-
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hydroxyproline.  The initial helical symmetry parameters for the Gly-X-Y triplets were: ϕ = -74°, 
ψ = 170°, ω = 180° for glycine, ϕ = -75°, ψ = 168°, ω = 180° for the residue in the X position, and 
ϕ = -75°, ψ = 153°, ω = 180° for Y-position residues. 

The full triple helical region was split into 24 overlapping fragments to facilitate parallelization 
of the computation (Figure 1).  The termini of all fragments were capped with neutral acetyl and 
N-methylamine end groups.  All fragments include 85 residues per chain except the C-terminal 
fragment which spans 48 triple helix positions, and overlap their adjacent fragments by 42 
residues.  The starting residue of each fragment is offset from the previous fragment by 42 
residues, giving an additional overlap of one helix position between every other fragment.  For 
example, fragment 0 is residues 1-85, fragment 1 is 43-127, and fragment 2 is 85-169. 
 

 
 

Fig. 1.  Schematic representation of the molecular dynamics simulation.  The full triple helical region, 
comprised of 1014 residues per polypeptide chain with chain order α1(I) - α2(I) - α1(I), was modeled as 24 
overlapping fragments.  Each fragment is associated 50 clones, trajectories of 50 simulations performed 
for that fragment.  Simulated structures are sampled every 100 ps, yielding 101 snapshots for each clone.  
Snapshots are numbered sequentially with snapshot 0 the starting structure for that clone. 
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2.3.  Molecular Dynamics Simulations 

Periodic boundary conditions were applied and each fragment was aligned along the Z-axis and 
then solvated in a box of TIP3P water.23  A box size of 45 x 45 x 380 Å was selected for all 
fragments, giving at least 12 Å water boundary on all sides.  To equilibrate the water, position 
restraints applied to protein heavy atoms and simulations were performed for 100 ps at constant 
temperature (300°K) and pressure (1 atm). 

After equilibration, the simulation was conducted at a constant temperature of 300 °K and 
continuous pressure of 1 atm for 10 nanoseconds with no restraints.  The Nose-Hoover 
thermostat24 and isotropic Berendsen barostat25 were used for temperature and pressure control, 
respectively.  All covalent bonds that involve hydrogen atoms were constrained with the LINCS 
algorithm.26  A 2 fs time step was used for all simulations.  The total linear and angular 
momentum were removed at every time step, for protein and water separately.  Electrostatic forces 
were calculated using reaction field with a cutoff distance of 12 Å. 

Simulations for each fragment were repeated 50 times starting from the same initial coordinates 
but with different initial random velocities.  Each of the fifty simulations per fragment represents 
one 10 ns trajectory or clone (Figure 1).  Coordinates were written every 100 ps for a total of 101 
snapshots for each trajectory including the starting structure. 

2.4.  Derived Structural Metrics 

Helical radius was defined for each residue i as the distance from its Cα atom to the centroid 
defined by the Cα of residues i, i-1 and i-2 on chains A, B and C respectively.  Hydrogen bond 
lengths were calculated as the distance between the amide hydrogen atom of glycine in one chain 
and the carbonyl oxygen atom of the X-position residue in an adjacent chain for each Gly–X–Y 
triplet.  Since the large values observed in some structures suggest disruption of hydrogen 
bonding, this measure will be referred to as the HN-OC distance.  Backbone dihedral angles were 
calculated by computing the three vectors v1, v2, and v3 between C-N-Cα-C for ϕ and N-Cα-C-N 
for ψ and then taking the arc tangent of |v2| v1 • [v2 x v3], [v1 x v3] • [v2 x v3]. 

Average interchain HN-OC distance, ϕ angle, and ψ angle were calculated over all simulations, 
using ~7,500 structures from the last 5 ns of each 10 ns simulation.  Autocorrelations were 
computed using the mean values over each of the three chains computed as a function of residue 
offset. 
 
 
 
 
 
 
 
 
 
 

Fig. 2  Autocorrelation of 
glycine HN-OC distance, ϕ 
angle, and ψ angle as a 
function of residue offset.  The 
maximum offset shown is 150 
residues, which is a region 
spanned by approximately 
three simulated fragments. 
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3.  Results 

3.1.  Molecular Dynamics Simulation 

The complete triple helical region of heterotrimeric collagen type I, with 1014 amino acids per 
chain, was simulated for 10 ns.  The simulation included ~1.8 million atoms, including solvent, 
and took approximately 11 months using the CPUs of over a quarter of a million computers.  The 
calculation was parallelized by fragmenting the protein into 24 overlapping triple helical segments 
(Figure 1).  Each fragment included 85 residues per chain, the shortest length needed to minimize 
end effect issues.27  Fifty 10-ns trajectories (clones) were computed for each fragment, for a total 
of 1200 simulations. 

The overlap in the fragments means that most residues occur in two different sets of 50 clones.  
To generate a composite set of structures for subsequent analysis in which each residue is 
represented once, for each residue we used only the simulation with that residue closer to the 
center of the fragment.  This strategy eliminated potential artifacts that might have resulted from 
fraying at the ends of fragments, which had been observed previously in simulations of triple 
helical structures.28  Angles at the overlap boundaries were calculated using residues from each 
side of the boundary. 

To facilitate analysis and interpretation of the results, raw and summarized data were stored in 
a relational database along with biological annotations retrieved from the collagen database 
COLdb.29  Stored data include 5,072,422 HN-OC distances, 15,247,566 each of ϕ and ψ backbone 
dihedral angles, 15,217,266 helical radii, and 1,615 biological features.  The biological data 
encompass information from multiple scales, including: (1) thermostability of Gly-X-Y triplets, 
(2) features of the procollagen trimer, such as experimentally observed folding domains, (3) fibril-
level features, e.g. ligand interaction sites, (4) characteristics of assembled fibers, such as gaps and 
bands visible in electron micrographs, and (5) patient phenotypes associated with specific 
mutation sites.  The database and other supplementary materials are available online at simtk.org. 

3.2.  Validation of the Simulated Structures 

Several tests were performed to ensure the validity of the resulting composite structures.  First, 
visual inspection of the 1,200 trajectories confirmed the absence of artifacts resulting from use of 
periodic boundary conditions.  Significantly, the solute did not directly interact with its periodic 
image.  Second, analysis of the potential energies of the structures showed that the system was 
stable over the course of the simulation.  The potential energy averaged over all simulations for all 
fragments equilibrated at approximately -980,000 KJ/mol.  Third, the autocorrelations of HN-OC 
distance, ϕ angle, and ψ angle were calculated for each glycine to identify any periodicity resulting 
from fragmenting the protein at fixed locations (Figure 2).  No significant peak was found at 42, 
suggesting that the fragmentation did not introduce periodicity artifacts.  Interestingly, there is a 
small negative correlation between glycines separated by 30 residues.  The source of this 
correlation is unknown since known repetitive features present in the structures, such as super-
helical turns and typical fragment length, are either greater or less than 30 residues. 
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3.3.  Analysis of the Simulation Structures 

Visual inspection revealed that the composite structures generally maintained a triple helical 
conformation throughout their length.  However, the triple helical structure was not uniform, with 
some regions more tightly wound on average than others.  For example, Table 1 shows sample 
regions of type I collagen with disease-associated glycine mutations that differ in the position of 
the mutation on the α1 chain, whether multiple distinct substitutions have been observed at that 
position, and the location in the triple helix with respect to known ligand-binding sites. 

 
Table 1. Sample simulation structures of regions of native collagen encompassing observed glycine 

mutation sites in the α1(I) chain.  The mutation sites are highlighted in green.  

 
The conformations were characterized by mean ϕ and ψ angles (Figure 3).  The average ϕ 

angle ranged between -66.1° and -87.6° and the average ψ angle between 151.5° and 160°.  We 
further characterized the structural variation by computing three additional measures: HN-OC 
distance between glycines on adjacent chains, the number of residues per turn, and helical radius.  
Interchain HN-OC distance averaged 2.6 Å, with a minimum of 1.5 Å.  Average helix radius 
measured at glycine positions ranged from 2.8 Å to 7.3 Å (Figure 3).  Visual inspection of the 
structures revealed that the sharp peaks in the figure correspond to regions of unwinding of the 
triple helix.  The number of residues per turn ranged from 4.0 to 5.1, with an average of 4.9.  The 
number of residues per turn inversely correlated with helix radius and HN-OC distance, and 
deviations from the average angles corresponded to increased helix radius and hydrogen bond 
length.  Detailed data for these four measurement types are available for download at simtk.org.  
Although these measures were uniform in the ideal starting conformation, they vary along the 
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length of the triple helix as a result of the simulation, in agreement with results from experimental 
studies revealing local variations in helical twist.30, 31   
 

 
 

 
 

 
 

 
Fig. 3.  Average properties at each glycine position from the second half of the simulation.  (A) radius. (B) HN-OC 

distance.  Long distances indicate the loss of the hydrogen bond in at least a subset of structures (next page).  (C) ϕ 
angle.  (D) ψ angle. 

A 
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 Table 2 contrasts ϕ and ψ angles calculated from our simulations with the corresponding 
angles calculated from crystal structures of model collagen peptides.  The angles are organized 
based on the position of the residue within a triplet (Gly, X, or Y) and by their residue’s type 
(imino, meaning the triplet contains a proline or hydroxyproline, or amino, meaning the triplet 
contains no proline or hydroxyproline).  For most angles (10/12), the crystal structure values are 
well within ten degrees of the simulation values, and were not examined in more detail.  The two 
most interesting values are for the ϕ angles of the residues in the Gly and X locations, where the 
values differ by 13 and 16 degrees between the simulation and the crystal structure.  These 
differences correspond to opening of the canonical triple helical structure. 

 
Table 2.  Φ and Ψ angles for Amino Residue Pairs and Imino Residue Pairs 

Angle Residue Position Residue Type Crystal Structurea Simulation Difference 

ϕ Gly Amino Pair -68 -81 -13 
    Imino Pair -72 -74 -2 

  X Amino Pair -71 -87 -16 
    Imino Pair -74 -67 7 

  Y Amino Pair -66 -69 -3 
    Imino Pair -60 -55 5 

ψ Gly Amino Pair 167 173 6 
    Imino Pair 176 172 -4 

  X Amino Pair 160 155 -5 
    Imino Pair 163 156 -7 

  Y Amino Pair 148 146 -2 
    Imino Pair 152 151 -1 

 
Table 3 shows details for the ϕ angles for residues in the Gly and X positions, based on the 

type of residue occupying the Y position. The residues in the Y position are split into two groups.  
The first group consists of all γ-branched residues (Asp, Phe, His, Leu, Asn) plus glutamic acid 
and lysine (henceforth identified using their concatenated one-letter-codes, “DEFHKLN”).  The 
second group consists of all other observed residues that are not part of the first group (identified 
using their one letter codes: “AGIMOQRSTV”).  The ϕ angles for the DEFHKLN group show 
significant deviation from the values derived from the crystal structures. 

 
 
 
 
 
 
 

                                                             
a  From Rainey and Goh 32 
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Table 3. Φ angle for Helical and Helix-Breaking Residues 

Angle Residue Position Y Residue Type Crystal Structureb Simulation Difference 

ϕ Gly D,E,F,H,K,L, or N -68 -87 -19 
    A,G,I,M,O,Q,R,S,T, or V -68 -77 -9 

  X D,E,F,H,K,L, or N -71 -88 -17 
    A,G,I,M,O,Q,R,S,T, or V -71 -76 -5 

 
Figure 4 shows the frequency of observed ϕ angles for all residues in the Gly position, for each 

observed residue type in the Y position.  The seven dotted lines indicate residues types that are 
part of the DEFHKLN group described above.  The other ten lines represent members of the group 
that shows a preference for triple helices (the AGIMOQRSTV group).  Recall from Table 2 that 
the mean ϕ angle for non-imino residues in the Gly position is -68°. 

 

 
Fig. 4.  Frequency of glycine ϕ angles graphed by the residue in the Y position. 

 
Figure 5 is similar to Figure 4, but shows the frequency of observed ϕ angles for all residues in 

the X position.  The mean ϕ angle for non-imino residues in the X position is -71°. 
 

                                                             
b From Rainey and Goh 32 
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Fig. 5.  Frequency of observed ϕ angles of X-position amino acids. 

 

4.  Discussion 

We have conducted a 10 ns molecular dynamics simulation of the complete triple helical domain 
of human type I collagen as a first step towards understanding the dynamics of this critical region, 
its sequence dependence, and its relationship to higher order forms of the protein.  Due to the large 
size of the protein, the calculation was made feasible by splitting the protein into overlapping 
fragments and the analyses were facilitated by storing the results in a customized relational 
database. 

The simulated molecules capture structural variation in the triple helical domain consistent 
with experimental structural and biophysical studies and the atomic resolution of the simulations 
enables more precise definition of the region boundaries.  Residues 1-85, identified by Makareeva, 
et. al.,6 as the high stability N-anchor region, have short radius and HN-OC distance in our 
simulations.  However, this tightly wound region is interrupted at residue 55 in our simulations, 
where we see an average radius of 7.3 Å, the highest in the protein (Figure 3).  The molecular 
basis for the implied decrease in stability is unknown but may be due to electrostatic repulsion in a 
cluster of Asp residues at positions 53 and 54 in α1(I) and position 54 in α2(I).  The results also 
suggest that the high stability region may extend to glycine 91, and that the proposed adjoining 
microunfolding region, captured by long HN-OC distances, may span glycine residues 94 - 121.  
The next two areas of largest unfolding in our simulations, with maximum unwinding at glycines 
436 and 763, are contained within Makareeva, et. al.’s mid-flex and C-flex low stability regions.  
These residues may represent positions at which unfolding initiates in these areas. 

Tables 2 and 3 show how dynamic, solvated collagen molecules differ from model collagen 
crystal structures examined by Rainey and Goh.32  It is interesting that there is little difference 
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between the ϕ and ψ angles shown in Table 2, despite the difference in environment and the 
difference in sequence.  The only significant difference is in the ϕ angles for residues in the Gly 
and X positions that are part of triplets containing no proline or hydroxyproline residues.  Data 
mining showed a strong correlation between these ϕ angles and the type of residue occupying the 
Y position of the triplet (Table 3).  Five of the residues in the DEFHKLN group are γ-branched 
(Asp, Phe, His, Leu, Asn), which are known to be destabilizing in model collagen systems,33 so 
their connection with non-helical structures is not surprising.  The reason why glutamic acid and 
lysine also correlate with non-helical structures is under investigation. 

Although the calculated structures are similar to experimentally determined structures of 
collagen-like peptides, the simulation did not reproduce the microfibril conformation of the triple 
helices observed in the crystal structure conformation of rat tail tendon collagen.15  This is not 
surprising due to differences between the simulated and crystallized collagens in: primary 
sequence, scale (trimer and fibril), environment (water vs in situ), tissue source, and post-
translational modifications.  This is consistent with there being important structural differences 
between isolated (solvated) heterotrimers and the trimers in the more complex fibril structure, in 
which the collagen proteins are closely packed and associated with proteoglycans and other 
factors. 

The complexity of the hierarchical conformations of collagen has made it difficult to 
determine experimentally the structure of native collagen at high resolution, and the large size of 
the protein has previously prohibited full atomic modeling of its structure and dynamics.  We were 
able to accomplish molecular dynamics simulation of the full-length triple helix through 
technological improvements dependent on the accessibility of hundreds of thousands of 
computers.  The resulting models are an important starting point for investigating the unique 
hierarchical conformations of collagen and for studying the effects of disease-associated mutations 
on collagen structure. 
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Subsequent to the peptidyl transfer step of the translation elongation cycle, the initially formed pre-translocation 
ribosome, which we refer to here as R1, undergoes a ratchet-like intersubunit rotation in order to sample a 
rotated conformation, referred to here as RF, that is an obligatory intermediate in the translocation of tRNAs and 
mRNA through the ribosome during the translocation step of the translation elongation cycle. RF and the R1 to 
RF transition are currently the subject of intense research, driven in part by the potential for developing novel 
antibiotics which trap RF or confound the R1 to RF transition.  Currently lacking a 3D atomic structure of the RF 
endpoint of the transition, as well as a preliminary conformational trajectory connecting R1 and RF, the 
dynamics of the mechanistically crucial R1 to RF transition remain elusive. The current literature reports fitting 
of only a few ribosomal RNA (rRNA) and ribosomal protein (r-protein) components into cryogenic electron 
microscopy (cryo-EM) reconstructions of the Escherichia coli ribosome in RF.  In this work we now fit the 
entire Thermus thermophilus 16S and 23S rRNAs and most of the remaining T. thermophilus r-proteins into a 
cryo-EM reconstruction of the E. coli ribosome in RF in order to build an almost complete model of the T. 
thermophilus ribosome in RF thus allowing a more detailed view of this crucial conformation.  The resulting 
model validates key predictions from the published literature; in particular it recovers intersubunit bridges 
known to be maintained throughout the R1 to RF transition and results in new intersubunit bridges that are 
predicted to exist only in RF.  In addition, we use a recently reported E. coli ribosome structure, apparently 
trapped in an intermediate state along the R1 to RF transition pathway, referred to here as R2, as a guide to 
generate a T. thermophilus ribosome in the R2 state.  This demonstrates a multiresolution method for morphing 
large complexes and provides us with a structural model of R2 in the species of interest.  The generated 
structural models form the basis for probing the motion of the deacylated tRNA bound at the peptidyl-tRNA 
binding site (P site) of the pre-translocation ribosome as it moves from its so-called classical P/P configuration 
to its so-called hybrid P/E configuration as part of the R1 to RF transition.  We create a dynamic model of this 
process which provides structural insights into the functional significance of R2 as well as detailed atomic 
information to guide the design of further experiments.  The results suggest extensibility to other steps of 
protein synthesis as well as to spatially larger systems. 

1. Introduction 

The structure of the ribosome is surprisingly well conserved across the kingdoms of life and is thus 
biologically interesting for what its structure and, potentially, dynamics tell us about evolution.  
Multiple structures of bacterial (mostly Escherichia coli and Thermus thermophilus) ribosomes in 
complex with their tRNA substrates have been solved crystallographically [1], while others have 
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been solved at low resolution by cryogenic electron microscopy (cryo-EM) [2].  However, the 
motions connecting these static conformational states of the ribosome and its bound tRNA substrates 
are currently the subject of intense research.  In order to provide initial insight and focus further 
experiments, it would be useful to have at least a preliminary trajectory of motion connecting all of 
the states encompassing a cycle of translation, generated initially by flexible alignment or morphing.  
For this, we must translate all crystallographic structures into a single species, and fit all-atom 
models into cryo-EM density maps, and then connect the states by flexible alignment.  We show 
how the recently announced RNABuilder modeling code and other tools can be used to accomplish 
this.  We focus on the conformational changes of the ribosome as it undergoes a critical ratchet-like 
intersubunit rotation and on the associated reconfiguration of the deacylated tRNA bound at the 
peptidyl-tRNA binding site (P site) of the ribosomal pre-translocation complex from its so-called 
classical P/P configuration to its so-called hybrid P/E configuration.  We model these conformational 
changes by a flexible alignment to ribosomal structures in three presumably sequential 
conformational states. The resulting dynamic model highlights important phenomena and provides a 
structural basis for the design of further experiments.  
 

2. Background 

2.1.  Multi-resolution modeling at the mesoscale 

The ribosome, by its sheer size, challenges conventional computational techniques and calls for new 
approaches.  Multi-resolution modeling (MRM) refers to the treatment of different molecules, 
domains, spatial regions, or time spans in a system at different levels of resolution, either from the 
force field or kinematic perspective [3].  A wide variety of techniques fall under this paradigm.  
Some workers, for example, treat lipids and water using a reduced set of pseudoatoms, while 
modeling a protein inserted in the membrane at full-atomic resolution.  Others collect statistics from 
experiments or short-time Molecular Dynamics (MD) simulations at fine resolution, and use these 
statistics to parameterize a coarse-grained force field, thus separating the resolutions in time.  Still 
others run a fine and a coarse grained simulation simultaneously for the same system and exchange 
resolution from time to time, in an approach known as Resolution Exchange [3].   

Mesoscale modeling refers to the structural and dynamic study of phenomena at length scales 
between those of single molecules (which can be modeled with MD and related methods) and those 
of extended tissues (which may be best modeled using continuum mechanics approaches) [4].  Some 
examples of this are actin filament elongation, muscle function, chromatin remodeling, and mitosis.  

Internal Coordinate Mechanics (ICM) refers to a calculation in which bodies are connected to other 
bodies using mobilizers which may grant zero to six degrees of freedom [5].  In ICM, computer time 
is only spent computing the degrees of freedom granted by the mobilizers, whereas in MD reducing 
the degrees of freedom actually increases expense by adding constraint equations which must then 
be solved.  The mobilizers connect bodies in a tree structure, and the calculation of position, 
velocity, and acceleration begins at the base body and proceeds up the tree.  In an ICM framework, 
bodies may consist of one or more atoms, and the connections between atoms may permit dihedral 
angle changes but leave bond lengths and angles fixed.  This characteristic makes ICM an ideal 
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approach to MRM, because arbitrary domains, molecules, and complexes which are converged or 
uninteresting may be rigidified for economy and other modeling goals.  Note that so far we have 
only described coarse graining the kinematics; the atoms within rigidified regions can still have force 
interactions with atoms in other regions.          

RNABuilder is an ICM, MRM code which allows the user to instantiate molecules, match their 
structural coordinates to input files, control their flexibility, and apply base pairing, steric, and other 
atomic interaction forces.  The user can further control most simulation parameters, including 
temperature, run time, output frequency, and type of time integrator and thermostat.  A wide variety 
of applications are possible, such as structure prediction from base pairing contacts [6], refinement, 
threading [7], and flexible alignment.  We have instantiated RNA chains as long as 13000 residues 
[5]; we have also shown that computer time can have order-N scaling with molecule size.  This 
suggests that the presented methods are applicable to problems that approach the mesoscale.      

2.2. Progress and limitations in ribosome structure  

The past decade has seen an explosion of discoveries in ribosome structure. The state of the pre-
translocation ribosomal complex that is sampled immediately following peptidyl transfer, which we 
refer to here as R1, following the nomenclature recently introduced by Cate and co-workers[8], is 
particularly well characterized[9].  The structures of a number of other states have also been solved, 
if not crystallographically[1] then by cryo-EM [2]. The full story of ribosome function, however, 
involves the structural dynamics connecting the various observed states.  Knowing these details will 
lead to a more fundamental understanding of protein synthesis across all kingdoms of life and 
promises to guide the development of novel antibiotics which function by confounding dynamics 
crucial to function.  As a future goal, we wish to generate an all-atom trajectory of the entire 
translation cycle.  For this we face two challenges: first, structures of the various available states 
have been solved using ribosomes and biomolecular components isolated from a variety of species, 
mostly E. coli and T. thermophilus, and second, some of these structures have been solved by cryo-
EM and are available only as electron density maps.  In this work we show how to address both 
these issues with the help of RNABuilder and other packages.  

2.3. Structure of the ribosome in the fully rotated RF conformation 

Immediately following peptidyl transfer, the pre-translocation ribosome, initially in R1, undergoes a 
ratchet-like intersubunit rotation in order to sample a rotated conformation, referred to here as RF, 
that is an obligatory intermediate in the translocation of tRNAs and mRNA through the ribosome 
during the translocation step of the translation elongation cycle. Unlike R1, atomic resolution 
structures of RF remain elusive and, although considerable structural insight has come from cryo-EM 
reconstructions of RF, these workers typically only published fits of those ribosomal and/or tRNA 
components and/or fragments of components needed to answer specific structural questions. As a 
consequence, a published and widely available all-atom model of RF, based on the fitting of atomic 
resolution structures to cryo-EM reconstructions of RF, is not currently available. In this work we 
report an all-atom model of RF built by fitting atomic resolution structures to cryo-EM 
reconstructions of RF [2].  This provides structural insights not obvious from inspection of the raw 
density of the reconstruction and promises to be useful for understanding the details of intersubunit 
interactions in the context of biochemical experiments[10].   
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2.4. Structure of the ribosome in the intermediate R2 state, and the R1-R2-RF trajectory  

A recent structure of the ribosome in complex with P and A site-bound anticodon stem-loops (ASLs) 
rather than full-length tRNAs reveals a ribosome conformation that is apparently in an intermediate 
state of intersubunit rotation, referred to here as R2, that lies somewhere between R1 and RF [8].  
Interestingly, the ASLs in R2 are positioned in a way that suggests that full-length tRNAs, should 
they have been present in the ribosomal complex that was crystallized, would be in their hybrid 
configurations. Nevertheless, the lack of full-length tRNAs in the ribosomal complex used to solve 
the R2 structure and the associated lack of tRNA-ribosome interactions that would ordinarily be 
made between full-length tRNAs and the ribosome in R2,  leave open the question of how full-length 
tRNAs would be positioned within R2. The current work addresses this question by constructing 
putative trajectories of motion connecting R1, R2, and RF.  This gives us a dynamic view of the 
trajectory of motion from R1 to RF, rather than the more typical view gained by inspection of static 
structures. 

3. Method 

3.1. Creating the T.thermophilus R2 structure by morphing  

As mentioned above, the crystallographically observed R2 structure is inconvenient for our purposes 
because it was solved using E. coli ribosomes, whereas we are working with T. thermophilus 
ribosomes.  We solved this problem by morphing the T. thermophilus R1 structure onto the E. coli R2 
structure, thus copying the R2 conformation onto the T. thermophilus ribosome.                                                                                             

To generate this morph we flexibilized the neck region (which connects the head to the body 
domain) as well as the base of the beak domain on the small ribosomal subunit and the base of the 
L1 stalk domain of the large ribosomal subunit (see Figure 1 for a map of ribosomal domains and 
structural figures).  We restrained the P-site tRNA into the classical P/P configuration by enforcing 
two Watson-Crick base pairs between the aminoacyl acceptor stem of the tRNA and the 23 rRNA 
nucleotides comprising the so-called P loop within the P site of the peptidyl transferase center and 
enforcing three Watson-Crick base pairs between the anticodon stem-loop of the tRNA and the 
mRNA codon.  Likewise, we restrained the E-site tRNA into the classical E/E configuration using a 
base stacking sandwich involving the tRNA 5’ terminal residue, and by a Weld constraint to an 
apparent tRNA-binding domain on ribosomal protein S7 (the tRNA binding domain was connected 
to the rest of S7 by a flexible hinge).  The majority of ribosomal proteins were rigid and fixed to the 
corresponding domain on the 23S or 16S rRNA.  The system also included the 16S and 23S rRNA 
as well as the tRNAs from the E.coli R2 state; all of these were rigid and fixed to ground.  
Corresponding residues on 23S and 16S rRNA were then pulled together, causing flexible alignment 
of these two subunits.  

3.2. Fitting atomic resolution structures to the electron density resulting from cryo-EM 
reconstructions of RF  

RF continues to be the subject of intense structural and dynamic research. This has been primarily 
driven by: (i) the availability of atomic resolutions structures of R1; (ii) the possibility that, like R1, 
RF is a potential target for novel antibiotics; and (iii) the realization that a structural and dynamic 
understanding of RF is necessary in order to fully understand the mechanism of the R1 to RF 
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transition.  Despite the great importance of this state, however, atomic resolution structures have not 
yet been fitted into the electron density map resulting from all or even the majority of cryo-EM 
reconstructions of this conformational state of the pre-translocation ribosomal complex.  As a result, 
Molecular Dynamics studies that may assist structure-based drug design have no structural point 
from which to begin. Interpolated trajectories which could begin to elucidate the path of tRNA 
during the R1 to RF transition lack a crucial endpoint.   

In published work, structural coordinates for Elongation Factor G, the hybrid P/E configured tRNA, 
and a small number of additional components were fitted to a electron density map of the T. 
thermophilus RF (EMD-1315)[2].  In this work, we add the 16S, 23S, and 5S rRNAs and most of the 
r-proteins.  

Our main task was to fit an existing all-atom probe to a target electron density map.  The most 
general methods available allow all bonds in the probe to vary in length, angle, and dihedral during 
the course of the fitting.  One such method is Molecular Dynamics Flexible Fitting [11, 12].  
However such methods are expensive, typically requiring parallel computers and significant run 
time.  A popular alternative approach consists of three steps as follows: 

1) Begin with rigid-body fitting, under which the probe has no flexibility, and the entire 
molecule is fitted to the electron density of the target using only rigid body rotations and 
translations.  

2) If the molecule exhibits domain motions much of the flexibility can be recovered by breaking 
up the model into multiple fragments and adjusting each fragment separately into the electron 
density map.  The natural boundaries between such rigid fragments are the hinge points 
connecting rigid domains; multiple experiments and calculations have been done to locate 
these hinges in the ribosome as we will explain below.   

3) As a final step, anneal the gaps between fitted fragments belonging to a single RNA or 
protein chain; we will describe how the last structure of the R2 to RF motion provides this. 

 

For step 1, we used SITUS COLORES to do the initial rigid body fitting of the entire ribosome[13, 
14]. The next step, in which the probe is divided into fragments for adjustment into the map, requires 
a selection of hinge points.  Fortunately this topic has been well studied. The rRNA-based neck 
domain of the small ribosomal subunit, which connects the head to the body/platform domains of the 
small ribosomal subunit, has long been known to be flexible[8].  Likewise, Noller and coworkers 
have found that by Translation-Libration-Screw Motion Determination (TLSMD) that the beak 
domain of the small ribosomal subunit and the L1 stalk domain of the large ribosomal subunit have 
the highest displacements about their librational axes[15], indicating a hinge point at the base of each 
of these two domains.  Thus we divided the probe into six rigid pieces corresponding to the body, 
head, and beak domains of the small ribosomal subunit (along with their attendant proteins), the L1 
stalk domain of the large ribosomal subunit (along with r-protein L1), the remainder of the large 
ribosomal subunit, and the tRNA.  Since the probe has already been rigidly fitted at this point, the 
fragments created as described are already close to their correct positions in the electron density 
map.  Thus an exhaustive search is not required, only a local adjustment.  For this, Chimera’s[16] Fit 
in Map feature is useful.   
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In the last step of the fitting, we correct the unnatural bond geometries spanning the gaps between 
fragments.  This is done by taking the last structure resulting from the R2 to RF motion, which 
conserved bond lengths and angles throughout.  

 

Figure 1.  Choice of rigid domains for 
Cryo-EM fitting and creating 
T.thermophilus R2 structure (exploded 
view)  

For fitting to Cryo-EM density: 
Following theoretical and experimental 
results described in the text, we broke up 
16S into body (red), head (grey), and 
beak (blue).  The “neck” connecting the 
head and body is shown in green for 
reference.  The L1 stalk (orange) was 
separated from the rest of 23S (pink). 
The two tRNAs (cyan and purple) were 
independent bodies.  Proteins (not 
shown) were attached rigidly to the 
corresponding 23S or 16S domain.  The 
subunits were otherwise free to translate 
and rotate.  For creating T.thermophilus 
R2 structure:  The mentioned domains 
were left rigid as above, but instead of 
breaking 16S and 23S into fragments, 

we flexibilized hinge regions at the base of the L1 stalk, in the neck, and at the base of the beak.  

 

3.3. Generating the R1-R2-RF trajectory  

In the last stage of our work we used a variation of our morphing technique to generate a controlled 
sequence of motions transforming the R1 to R2 to RF state.  We used the R1, R2 and RF structures as 
fully-rigid, immobile templates much as before, but the aligned (or model) molecule was a ribosome 
which only one hinge – in the neck.  The 23S was completely rigid and fixed to ground.  tRNA was 
rigid (except for the 4 residues in the acceptor terminus) and could undergo rigid-body motion.  16S 
had a single flexible hinge in the neck region and could also undergo overall translation and rotation. 
16S residue 1338 has been implicated in stabilizing the P/E site tRNA [10], therefore we connected 
this residue to tRNA residue 41 using a Sugar Edge / Sugar Edge interaction force, to approximately 
maintain an interaction observed in R1, R2, and RF.  We applied collision detecting spheres (to 
approximately represent steric repulsion) to the tRNA and to segments of 16S and 23S that might 
otherwise clash with tRNA (see Discussion).       

We structurally aligned the ribosome model to R1  to generate a starting point for our trajectory.  We 
then aligned the model to R2 and inspected the motion from R1 to R2.  We then aligned the model to 
RF.  The trajectory of conformational change from R1 to R2 to RF was the source of considerable 
insight as we will discuss.    
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Since it is not known whether full-length tRNAs in R2 are in the classical or hybrid configuration, 
we generated an additional trajectory in which the tRNA remains in the classical state until 16S is 
fully rotated into the RF conformation.  The entire process is controlled with a single RNABuilder 
input file.  The model is parametric in that global variables can be changed to easily generate any 
alternative ordering of these steps.  Additional experimental information can be used to alter or 
constrain the motion, conversely the generated trajectory can help design focused experiments to 
generate further constraints.   

4. Results 

4.1. Creating the T. thermophilus R2 structure  

As mentioned a T. thermophilus ribosome in state R1 was flexibly aligned to the E.coli ribosome in 
state R2.  We observed that as desired, proteins from R1 were carried along with the RNA motion, 
and tRNAs moved in such a way as to maintain contact with their binding sites.   The RMSD 
computed based on aligned glycosidic nitrogen atoms in 16S and 23S was initially 8.1Å and dropped 
to 2.9Å after 30 minutes of computer time.  The degree of alignment can be qualitatively appreciated 
in (Figure 2).  In a demonstration of convergence, we continued the calculation for an additional 127 
minutes during which the RMSD remained nearly constant.    

1.1. Validation of the fitting of atomic resolution structures to the electron density from 
cryo-EM reconstructions of RF 

In order to validate our fitting of atomic resolution structures into the electron density from cryo-EM 
reconstructions of RF, we demonstrate that key molecular contacts expected or experimentally 
determined within RF are recapitulated in our model.  In particular, the detailed interactions of the 
tRNA aminoacyl-acceptor ends with the 23S rRNA within the peptidyl transferase center of the large 
ribosomal subunit are recovered (Figure 3).Also, the intersubunit bridges connecting the 23S rRNA 
with the body/platform of the 16S rRNA are recapitulated. Intersubunit bridge B4, which was 
predicted by Spahn (REF) and later Cate [17] to be maintained throughout the R1 to RF transition, 
indeed remains remains intact in our model (Figure 3). 
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Figure 2.  Morphing the T.thermophilus ribosome in state R1 onto the E.coli ribosome in state R2.   

The thermophilus 23S (upper subunit) and 16S (lower subunit) are in blue.  The E.coli 23S and 16S are in green.  Additional 
thermophilus RNA and protein subunits are not shown.  We included no E.coli subunits other than 23S and 16S. The thermophilus 

ribosome had hinges in the neck, base of the beak, and base of the L1 stalk. The E.coli ribosome was fully rigid and fixed to ground.  
tRNAs were attached to thermophilus P/P and E/E sites using base pairing and other forces and adjusted their positions as 16S and 23S 
moved.  Thermophilus mRNA, 5S, and protein subunits were fully rigid and fixed to the corresponding 23S or 16S domain.  Left panel:  
initial, rigid-body alignment.  Note that blue and green are misaligned by as much as a helical diameter.  Right panel:  final alignment.  
Note that blue and green are now much more closely aligned. RMSD based on aligned glycosidic nitrogen atoms in 16S and 23S was 
initially 8.1Å  (left) and converged to 2.9Å (right).    

   

Figure 3.  Intersubunit contacts.   

The fitted RF model recapitulates bridge B3  (left panel).  Bridge B4 was believed by earlier workers to 
remain in contact throughout ratcheting; the contact is maintained in our model (left-center panel).  In bridge 
B1b/B1c (right-center panel), proteins S13 and L5 are connected by substantial regions of density, and the 
fitted proteins are in range to make contact. The A/P site tRNA acceptor (cyan, right panel) makes the correct 
base-pairing contacts with the 23S P site (purple).   
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4.2. R1-R2-RF trajectory  

The trajectory of motion produced three main types of evidence which may be a source of insight.  
First, the residues to which we applied sterics (based on trial and error runs) may have functional 
importance.  The aligned R1, R2 and RF structures, even as static coordinates, may provide useful 
insight into the mechanism of motion.  Our final trajectory as well as various alternative trial 
trajectories suggest constraints on the order and correlation of the motion of domains.     

We applied sterics to H80/L80. Note that capital H indicates a helix in 23S, lowercase h indicates a 
16S helix; similarly L/l  indicates a loop and J/j indicates a junction in 23S/16S.  Note also we are 
following Yusupov numbering for helices [18].  The H80 region contacted the acceptor terminus of 
the tRNA in some runs.  In our model we left the acceptor terminus flexible so it simply sways out 
of the way.  We also applied steric spheres to H69. When no sterics were applied here, the tRNA 
dropped down in some runs as the body moved away from 23S during 16S subunit rotation (Figure 
4).  We also applied sterics to the “gate” in 16S (h24, j29-42), beyond which the tRNA ASL should 
not pass (Figure 3).  These and more possible interactions are listed in Table 1. 

 

Table 1  :  Residues needing collision-detecting spheres to prevent steric clashes. 

We used preliminary runs to determine which 16S and 23S residues tRNA would contact in its trajectory 
from P/P to P/E sites.  We applied steric spheres to the interacting residues.  The contact points are suggested 
for experimental validation.  

 

We aligned the R1 and R2 crystallographic structures and our fitted RF structure to each other based 
on 23S rRNA.   We observed that all three have tRNA anticodons very near to each other (Figure 5).  
For this reason it was quite easy for us to generate a classical-state R2 model without prohibitive 
steric clashes, while Jamie Cate’s R2 model is in the hybrid state.  The classical-state R2 structure, 
however, did not have the tRNA contact with 16S residue 1338, as we will discuss, whereas all three 
experimental structures exhibit the residue-1338 contact. 

We generated R1-R2-RF trajectories ordering the motion in various ways.  We tried moving the head, 
body, and tRNA separately; while this was sterically possible, the residue-1338 contact had to be 
broken to do it.  By moving the head and body from R1 to R2 without moving the tRNA, we 
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generated a classical-state R2 conformation, which of course did not have the 1338 contact.  We 
found the results more credible when the head, body, and tRNA were moved at the same time, 
particularly since we were able to approximately maintain the contact using the base-pairing force 

mentioned between 1338 and residue 41.  The 
reported final trajectory therefore has all three units 
moving together.  

Figure 4.  Putative motion from R1 to R2 to RF, with 23S fixed 
in space. 

Composite view of the three main stages of the conformational 
rearrangement.  The rightmost of the (red) tRNAs corresponds 
to the classical-state T.thermophilus R1 structure (Protein Data 
Bank ID: 2J02 and 2J03), followed by the hybrid-state tRNA 
fitted by Jamie Cate to the R2 structure (solved 
crystallographically in E.Coli, PDB ID: 3I1M & 3I1N, here 
modeled in T.Thermophilus).  The leftmost tRNA was fitted by 
us to the CryoEM density map of the hybrid-state RF structure 
(EMBL 3D-EM database ID EMD-1315). All three 16S 
conformations are shown superimposed (blue).  The 23S 
subunit (grey) is kept rigid and stationary throughout.  Note 
that the three  anticodon stem-loops of the tRNAs are in nearly 
the same position throughout the motion, relative to 23S.    

5. Discussion  

In this work we modeled the trajectory of conformational change as the ribosome moves from the 
classical to the hybrid state, with an emphasis on the tRNA which moved from the classical P/P to 
the hybrid P/E configuration.  Toward this end, we created a T. thermophilus ribosome in the R2 
state, as well as an all-atom fitted model of the ribosome in the RF state; these are provided as 
supplementary materials and may be useful for further studies.  The trajectory from R1 to R2 to RF  
provides insight and suggests further experiments from three perspectives:  the steric contacts, the 
aligned static structures, and the interpolated structures.   

The regions where it was necessary to apply steric spheres are suggestive of specific experiments.  In 
any of the contacting regions, one can imagine generating mutant ribosomes in which the steric 
barrier is either increased or eliminated.  For instance: the part of the gate on the head domain is 
clearly important, since it includes residue 1338.  What would happen if we eliminated the part that 
is on the body domain?  We also noticed that H69 prevents the tRNA from moving down towards 
the mRNA.  What would happen if it, too, disappeared?  What about H80, which the acceptor 
terminus must brush past?  What if the barrier were even higher?  And residue 1338—is it really 
always in contact with tRNA?  Could this be probed with a combination of mutagenesis and single-
molecule fluorescence resonance energy transfer (smFRET) experiments?   

Some interesting insight comes just from the static R1, R2, and RF structures.  First, after fitting all-
atom subunit structures to the density map of RF, we realized that the crucial 1338-41 contact is 
maintained in this state as well, thus validating the prediction of [10].  This was a key piece of 
evidence which encouraged us to enforce this contact throughout the motion.  Second, aligning R1, 
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R2, and RF structures based on 23S yielded an interesting finding—the P-site anticodons of the three 
structures are just a few angstroms apart.  Thus the 16S P-site moves little with respect to 23S rRNA 
during the intersubunit rotation.  This makes it quite easy to generate a clash-free model of R2 with a 
tRNA in the classical P/P configuration.  However, we believe that it is more likely for the tRNA to 
occupy the hybrid P/E configuration on the basis that this will maintain the 1338-41 base contact 
which is so clearly present in all three experimental static structures. 

The trajectory itself is suggestive.  First, maintaining the 1338-41 contact as we did implies a 
coordinated motion of the head and the tRNA.  Since the anticodon does not move much, the motion 
is mostly a long translation of the aminoacyl acceptor end of the tRNA.  Using this trajectory a 
donor/acceptor flurophore pair for smFRET experiments can be designed with one fluorophore 
attached to the tRNA and another to the head; we would predict that such a construct would exhibit a 
constant, static FRET value that is maintained throughout the R1 to RF transition.  Second, we did not 
directly address the twisting motion of the neck, but the trajectory can be used to optimally place 
donor/acceptor fluorophore pairs spanning the head and body.  Lastly, one can design a 
donor/acceptor fluorophore pair in order to determine how much time the ribosome spends in state 
R2—perhaps with a donor/acceptor fluorophore pair spanning 23S rRNA and the body domain.   

 

 

Figure 5.  tRNA steric barriers.  

Left panel: The acceptor terminus of tRNA (red) makes contact with H80/L80 (pink) of the 23S (grey).  In nature 
tRNA may rotate, move away from 23S, or the floppy acceptor end may simply move out of the way. Middle panel:  
Contact between tRNA and H69 (pink) of 23S.  In our model this forces tRNA to translocate laterally whereas 
without it tRNA might drop downwards to maintain contact with mRNA after body rocking.  Right panel:  Contact 
of the anticodon stem-loop with P-site barriers formed by h24 (pink) and the “gate” loop (residues 1335-1339) (also 
pink) in 16S (blue).  tRNA cannot move fully into the P/E configuration until body and head have rotated.   
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We have proposed a parallel simulated annealing using genetic crossover as one of powerful confor-
mational search methods, in order to find the global minimum energy structures for protein systems.
The simulated annealing using genetic crossover method, which incorporates the attractive features
of the simulated annealing and the genetic algorithm, is useful for finding a minimum potential energy
conformation of protein systems. However, when we perform simulations by using this method, we
often find obviously unnatural stable conformations, which have “knots” of a string of an amino-acid
sequence. Therefore, we combined knot theory with our simulated annealing using genetic crossover
method in order to avoid the knot conformations from the conformational search space. We applied
this improved method to protein G, which has 56 amino acids. As the result, we could perform the
simulations, which avoid knot conformations.

Keywords : Molecular Simulation; Simulated Annealing; Protein Folding; Genetic Algorithm; Knot
Theory

1. Introduction

Computational simulations of biomolecular systems such as proteins and DNA are performed

using molecular simulation techniques such as Monte Carlo (MC) and molecular dynamics
(MD) methods. However, as the biomolecular system has a large number of degrees of free-

dom associated with a lot of atoms and is characterized by many local minima separated by
high energy barriers, it is not yet possible to perform enough conformational searches in this
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extremely high dimensional space, and efficient sampling techniques are required.
In order to solve this problem, various sampling and optimization methods for conforma-

tions of biomolecules have been proposed such as generalized-ensemble algorithms.1 Simulated
annealing2 and genetic algorithm3,4 have been recognized by researchers as powerful tools for

difficult optimization problems. Simulated annealing mimics an annealing process in which
the temperature of a system is lowered very slowly from a sufficiently high initial temper-

ature to “freezing” temperature. This method has been applied to molecular simulations of
biomolecules5–11 (and also to various other research fields). The genetic algorithm mimics

the process of natural evolution and has been applied to various research fields and is one

of well-known techniques. The genetic algorithm uses the optimization procedures of natural
gene-based evolution, that is, mutation, crossover, and replication. For a certain optimization

problems, this algorithm has been found to be an excellent strategy to find global minima. The
conformational search or optimization approaches for biomolecules using the genetic algorithm

have also been performed.12–16

We proposed a new conformational search method, in which a simulated annealing simu-

lation is combined with genetic algorithm, namely, parallel simulated annealing using genetic
crossover (PSA/GAc),17 and applied it to be the search of the global-minimum-energy struc-

tures for protein systems.18,19 Here, the genetic crossover is one of the operations of genetic
algorithm. The conformational search using simulated annealing is based on local conforma-

tional updates. On the other hand, the genetic algorithm is based on global conformational
updates. Our method incorporates these two attractive features of the simulated annealing

and the genetic crossover. In our previous work, in order to examine the effectiveness of our
method, we compared our method with those of the conventional simulated annealing molec-

ular dynamics simulations using an α-helical miniprotein, namely, Trp-cage.20

However, in the case of the conformational search of a protein constructed by a certain
length of amino acids, we often found the lower energy conformation in spite of the completely

different structure in comparison with the native structure. The structure has a very compact
fold as if there is a knot in the string of the amino-acid sequence. For example, in Fig. 1,

two conformations, namely, a native structure and a stable conformation obtained from the
simulation by using our method, of a protein, which is the B1 domain in the immunoglobulin

G (IgG) binding domains of protein G21 and has 56 amino residues are shown. For the stable
conformation obtained from the simulation, there is one knot in the string of the protein. Knot

conformations of some proteins are already found by experiments of X-ray crystallography.22,23

However, the knotted chains in the knot conformations obtained from the simulations by using

our method have obviously different length from those of the experimental results. Although
the length of the knotted chains known by experiments is at least 35–45 amino residues, the

length of the knotted chains of the conformations obtained from the simulations is about 15
amino residues. Namely, the knot conformations obtained from the simulations are unnatural.

As the reasons of getting the unnatural knot conformations, it is thought to be causally related

to using the inaccurate force field and/or the unusual simulation technique in comparison
with the conventional MC or MD. As far as we know, knotted conformations were never

found with other conformational sampling methods, which suggests the powerfulness of our
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conformational search method.
Therefore, we propose the improved conformational search method, which can avoid the

unnatural knot conformations. In order to check whether a knot conformation or not, we
use the Kauffman polynomial24 in the mathematical theory of knots. If a trial conformation

generated by the crossover operation in the simulation has knots, the conformation is rejected
regardless of the value of the potential energy. In this paper, we performed the conformational

search of protein G by using the improved PSA/GAc and the conventional one in order to
examine the simulation results of the improved method.

In section 2 the details of our conformational search method and its improved one are given.

In section 3 the results of applications of the folding simulations of protein G are presented.
Section 4 is devoted to conclusions.

2. Method

2.1. Parallel simulated annealing molecular dynamics using genetic

crossover

Let M be the total number of individuals. In parallel simulated annealing using genetic

crossover (PSA/GAc), a crossover operation is carried out in a fixed interval of a certain time
steps of the M parallel conventional simulated annealing simulations. The entire process of

the general formalism of parallel simulated annealing using genetic crossover17–19 is illustrated
in Fig 2 (in the schematic illustration there, we have M = 6). In parallel simulated annealing

molecular dynamics using genetic crossover (PSAMD/GAc), M conventional simulated an-
nealing molecular dynamics simulations (instead of Monte Carlo simulations) are performed

in parallel. Although we employed a genetic one-point crossover in our previous study,17–19

we can employ various kinds of genetic crossover operations such as one-point crossover, two-

point crossover, etc. In this study, we employed the genetic two-point crossover, and we refer
to the entire method as PSAMD/GAc2. The crossover operation in this method exchanges a

part of dihedral angles between two conformations of a protein.
In the two-point crossover operation, the following procedure is carried out (see Fig. 3) :

(1) M/2 pairs of conformations are selected from “parental” group randomly.

(2) Consecutive amino acids of length n residues in the amino-acid sequence of the conforma-
tion are selected randomly for each pair of selected conformations.

(3) All dihedral angles (in backbone and side chains) in the selected n amino acids are ex-
changed between the selected pairs of conformations.

Note that the length n of consecutive amino-acid residues is in general different for each pair
of selected conformations. Motivated by the fragment assembly method,25 we take n to be an

integer ranging from 2 to 10. In this procedure, we obtain two new “child” conformations.
After that, we have to select two superior “chromosomes” (conformations) from the total
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of four conformations (two parental conformations and two new child conformations). We

perform the energy minimizations for these four conformations by a standard method such as
Newton-Raphson method and conjugate gradient method. We then select two lower-energy

conformations based on the four minimized energy values. Finally, using the selected two
energy-minimized conformations, the parallel simulated annealing simulations continue.

In our previous works, we did not perform the energy minimization after the genetic
crossover operation. However, the conformations generated by the genetic crossover operation

often have unusually high potential energy, because the genetic crossover operation brings

about a large global change of conformations. This leads to very low acceptance ratio of
child conformations. Therefore, in this study, we perform the energy minimization after the

genetic crossover operation in order to avoid this difficulty of low acceptance ratio. Because
the conformational change by the energy minimization is very small (in the example of a

mini-protein presented below, the root-mean-square deviations of Cα atoms between before
and after energy minimizations was only about 0.45 Å on the average), we believe that this

energy minimization does not affect the nature of the new conformational generation of the
crossover operations.

2.2. PSAMD/GAc with knot theory

In this paper, in order to check whether a trial conformation, which generated by the genetic
crossover operation, has knots or not, we use the Kauffman polynomial24 in knot theory.

2.2.1. Calculation of knot invariants

To characterize the topological properties of knots and links of strings algebraically, polyno-

mials can be used. These polynomials are knot invariants, which have been discovered and
constructed, and have been proposed several polynomials. The Kauffman polynomial F (L; a, x)

is one of them and is a two-variable (a and x) invariant.

F (L; a, x) = a−t(L̃)Λ(|L̃|; a, x). (1)

Here, L is a link. A knot is an embedding of a single circle into three-dimensional space, while
a link is an embedding of a collection of circles. The sign of | | means unoriented knots, and the

tilde˜means a link represented by a link diagram. Λ(|L̃|; a, x) is defined by the conditions and
the Skein relation, which is recursion relations relating the invariants of knots, in Fig. 4(b).

Four knots |L+|, |L−|, |L∞|, and |L−∞| in Fig. 4(b) correspond to the line configurations +, −,
∞, and −∞ in Fig. 4(a), respectively. t(L̃) is the sum of the signs of all the crossings. If a knot

is unknot (trivial knot), the knot invariant estimated by the Kauffman polynomial is equal to
1 (F = 1), if it is other knots, the knot invariant is a polynomial except 1 (F 6= 1). Namely, by

estimating the knot invariant, we can determine whether a conformation has knots or not.

2.2.2. Estimation of knotting properties of a protein

We need to construct a knot diagram from a protein conformation in order to obtain the knot
invariant. At first, the coordinate points of Cα atoms in a protein conformation are projected
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on X-Y Cartesian coordinate space. These points are connected from N-terminal to C-terminal
by lines. If two lines intersect, the crossing point is defined as a crossing on the knot diagram,

and the sign of the crossing is determined by the relation of Z Cartesian coordinates of the
crossing point on the two lines. After that, the two points of the first and last Cα atoms are

connected by as few crossings as possible. We use a collection of these lines connected by the
points of Cα atoms as a knot diagram.

2.2.3. Flow of PSAMD/GAc with knot theory

A chart of the PSAMD/GAc simulation process with knot theory is shown in Fig. 5. In
our improved simulation, the calculation of the knot invariant for a conformation is performed

after the process of crossover operations. In the conventional PSAMD/GAc simulation process,

we select two lower-energy conformations based on the four minimized energy values of four
conformations (two parental conformations and two new child conformations). On the other

hand, in the improved process, if both two new child conformations generated by genetic
crossover operations do not have knots, the simulation process is the same as the conventional

one. If one of two new child conformations has knots, we select two lower-energy conformations
based on the three minimized energy values of three conformations (two parental and one child

conformations) except one child knot conformation. If both two conformations have knots, we
do not perform the procedure of the selection, namely, two parental conformations are selected,

and after that, the simulation continues.

3. Results and Discussion

We applied our improved method to the protein G (PDB code: 1PGA).21 Protein G from

Streptococcus also binds human immunoglobulin G (IgG). This protein consists of a series of
small binding domains separated by linkers and a cell-wall anchor near the C-terminus. Two

(in some strains, three) of the domains bind IgG. The IgG-binding domains of protein G are
identified as B1, B2, etc., numbering from the N-terminus of the native protein G molecule.

We used the B1 domain which consists of a four-stranded β-sheet and an α-helix, and was
engineered for production as a 56 residue protein with N-terminal methionine (this position

was threonine in the wild type) (see Fig. 1(a)).
We incorporated PSAMD/GAc2 by modifying the TINKER program package26 modified

by us. The unit time step was set to 2.0 fs, and all bonds to hydrogen atoms at ideal bond
lengths were constrained by RATTLE method.27 Each simulation was carried out for 2.0 nsec

(hence, it consisted of 1,000,000 MD steps) with 32 individuals (M = 32) and repeated 5
times. The temperature during MD simulations was controlled by Berendsen method.28 For

each run the temperature was decreased exponentially from 1000 K to 200 K. As for the
conformational energy calculations, we used the AMBER ff96 force field.29 As for solvent

effects, we used the GB/SA model30,31 included in the TINKER program package.26 These

folding simulations were started from a fully extended conformation and different sets of ran-
domly generated initial velocities (for repetition of 5 times). The genetic crossover operations

in PSAMD/GAc2 simulation were performed 1000 times at the fixed interval of 1000 MD
steps. Moreover, we incorporated the calculation program of knot invariants by the Kauffman
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polynomial to the PSAMD/GAc2 program based on a program of Ochiai et al.32 After the

genetic crossover operation, the energy minimization by the quasi-newton method (L-BFGS)33

included in TINKER was performed. Additionally, we performed the conventional simulated

annealing molecular dynamics simulations for comparison. In order to balance the computa-
tional cost, we performed 160 simulation runs of 2 nsec in length (32 × 5 = 160). The other

simulation conditions were the same (except for with or without crossover operations).

We remark on the dependence of the frequency of knotted conformation creation on the
force fields. We found that three out of five simulations with OPLS-AA/L and one out of five

simulations with CHARMM22 created knotted conformations, while five out of five simulations
with AMBER ff96 found knotted conformations. Because AMBER ff96 gave the most number

of knotted conformations, we present the results of our knot-avoiding method with AMBER
ff96 below.

In Fig. 6, the lowest-energy final minimized conformations obtained from the normal
PSAMD/GAc2, and the improved PSAMD/GAc2 with knot theory are shown. As these

results, all the conformations obtained from the normal PSAMD/GAc2 have unnaturally
knot conformations. On the other hand, the conformations obtained from the improved

PSAMD/GAc2 with knot theory have the stable conformations without knots.
In Fig. 7, the minimized potential energy of the final 160 conformations obtained from the

normal PSAMD/GAc2, the improved PSAMD/GAc2 with knot theory, and the conventional
simulated annealing is shown. As a reference, the value for the native conformation is also

shown. Here (and in Fig. 8 below), the “native conformation” means the conformation that was

obtained as follows. A canonical MD simulation of 100 psec at a low temperature (200 K) with
the initial conformation being the native PDB conformation was first performed. The final con-

formation was then energy-minimized. The heavy-atom RMSD of this “native conformation”
from the PDB coordinates was 1.4 Å. In comparison with the conventional simulated anneal-

ing method, the potential energy is obviously lower in both the normal PSAMD/GAc2 and
the improved PSAMD/GAc2 with knot theory as a whole. The lowest energy and the average

energy obtained from the normal PSAMD/GAc2 are −2322.7 kcal/mol and −2306.6 kcal/mol,
respectively. Those obtained from the improved PSAMD/GAc2 with knot theory are −2310.4

kcal/mol and −2297.6 kcal/mol, respectively. On the other hand, those obtained from the con-
ventional simulated annealing method are −2277.3 kcal/mol and −2237.9 kcal/mol. The differ-

ences of the energy values between the normal and improved PSAMD/GAc2 are 12.3 kcal/mol
and 9.0 kcal/mol. The differences of the energy values between the normal PSAMD/GAc2 and

the conventional simulated annealing are 45.4 kcal/mol and 68.7 kcal/mol. As these results,
the conformations obtained from both the normal and improved PSAMD/GAc2 are more sta-

ble than those of the conventional simulated annealing. Namely, by incorporating the crossover

operation into the simulated annealing method, we can obtain more stable structures than the
conventional simulated annealing method. Additionally, the conformations obtained from the

normal PSAMD/GAc2 are slightly more stable than the improved PSAMD/GAc2 with knot
theory. This result shows that the more unnatural conformations with knots are more stable

than the conformations without knots. We suppose that one of the reasons is the inaccuracy
of the force field for the simulations.
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In Fig. 8, the radius of gyration of the final minimized conformations obtained from the nor-
mal PSAMD/GAc2 and the improved PSAMD/GAc2 with knot theory, and the conventional

simulated annealing are shown. These results obviously illustrate that the final conformations
obtained from both the normal PSAMD/GAc2 and the improved PSAMD/GAc2 with knot

theory become more compact conformations in comparison of those of the conventional sim-
ulated annealing on the whole. Namely, the improved method as well as the normal method

can search compact conformations.

4. Conclusions

In this article, for the parallel simulated annealing using genetic crossover (PSA/GAc), we

proposed the improved method, which can avoid the unnatural knot conformations. In order
to check whether a conformation has knots or not, we used the Kauffman polynomial in the

mathematical theory of knots and links and incorporated the check function to PSA/GAc.
As a test simulation, we applied this improved conformational search method to the protein

G. We succeeded in performing the simulations which avoided unnatural knot conformations
and could obtain stable conformations as well as the normal PSAMD/GAc2, in comparison

with the conventional simulated annealing. Additionally, the knot conformations obtained
from the normal PSAMD/GAc2 were slightly more stable than the unknoted conformations

obtained from the improved PSAMD/GAc2 with knot theory. One of the supposable reasons
is inaccuracy of the force field for the simulations. Therefore, in a future work we are going

to perform the conformational search by PSAMD/GAc2 with the force field optimized by our
optimization methods.34,35

Once all these preparations are successfully made, we will be ready to apply the present

method to multi-scale modelling of biosystems.
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(a) (b)

Fig. 1. The structure of Protein G. (a) is the native structure (PDB ID: 1PGA). (b) is the final conformation
obtained from PSAMD/GAc2.
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Fig. 2. Schematic process of the parallel simulated annealing using genetic crossover. In this method, the
crossover operation, which is shown in Fig. 3, is performed during parallel simulated annealing simulations.
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Fig. 3. Schematic process of the two-point crossover operation. In this process, all dihedral angles (in backbone
and side chains) within the randomly selected n consecutive amino acids are exchanged between a pair of
conformations. Motivated by the fragment assembly method,25 we take n to be an integer ranging from 2 to
10.
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Fig. 4. The four line configurations (a), the Skein relation (2) of (b), and the conditions (1,3) of (b) defined
by the Kauffman polynomial.
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Fig. 5. Schematic process of the simulated annealing using genetic crossover with knot theory. In this simula-
tion, the two unknotted conformations are selected by using the Kauffman polynomial after genetic crossover
operations.
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(a)

(b)

Fig. 6. The final conformations obtained from PSAMD/GAc2. (a) shows the conformations obtained from
the normal method, and (b) shows the conformations obtained from the improved method with knot theory.
The simulations were performed five times for both cases.
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Fig. 7. Comparison of the minimized potential energy of the final conformations obtained from the con-
ventional simulated annealing MD simulation (dotted line), the normal PSAMD/GAc2 (broken line), the
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(normal horizontal line).
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Fig. 8. Radius of gyration of the final minimized conformations obtained from the conventional simulated
annealing (a), the normal PSAMD/GAc2 (b), the improved PSAMD/GAc2 with knot theory (c). The radius
of gyration was caluclated with respect to all atoms. The value for the native structure is also shown (open
circle).
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1. Introduction

Our genetic identity not only determines our physical differences, but it also defines our susceptibility against

diseases. Several groups are working on various methods to exploit the power of cost efficient sequencing tech-

nologies as well as more traditional genome analysis approaches (SNP microarrays, arrayCGH, etc.) to better

perform genotype-phenotype associations, in particular to identify susceptibility to disease, and eventually

diagnose disease at its early stages. The ultimate goal is to vastly improve the field of pharmacogenomics,

which can broadly be defined as the study of the relationship between genotype and drug response and how

the drugs affect our metabolism. The abundance of new sequence data gives many opportunities to advancing

our understanding of how to optimize drug combinations for each individual’s genetic makeup. The under-

lying computational tools for such studies analyze available sequence data to identify differences between

a reference genome and high-throughput sequenced genomes and perform sequence oriented clustering and

classification to obtain both normal and disease-related phenotype associations.

This session focuses on the development of novel computational methods in all aspects of Personal

Genomics including genetic and epigenetic variation discovery, genotype-phenotype associations, indexing

and cataloguing both normal and disease-related variation, exome capture and resequencing, and personalized

medicine. This session has a broad target audience that includes algorithm developers working on sequence

analysis, genomics researchers, pharmacogeneticists, and medical geneticists.

2. Session Summary

This session includes an invited talk, six reviewed oral presentations, and a tutorial. The studies presented

in this session focus on the development of computational methods to analyze genomic data generated with

various types of methods.
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2.1. Oral Presentations

The following six talks will be presented at the Personal Genomics session:

• “Haplotype Inference from Single Short Sequence Reads Using a Population Genealogical History

Model” by Jim Zhang and Yufeng Wu,

• “Multivariate Analysis of Regulatory SNPs: Empowering Personal Genomics by Considering Cis-

Epistasis and Heterogeneity” by Stephen D. Turner and William S. Bush,

• “Visual Integration of Results from a large DNA Biobank (BIOVU) using Synthesis-View” by Sarah

Pendergrass, Scott M. Dudek, Dan M. Roden, Dana C. Crawford, and Marylyun D. Ritchie,

• “Use of Biological Knowledge to Inform the Analysis of Gene-Gene Interactions Involved in Modu-

lating Virologic Failure with Efavirenz-Containing Treatment Regimens in Art-Näıve ACTG Clin-

ical Trials Participants” by Benjamin J. Grady, Eric C. Torstenson, Paul J. Mclaren, Paul W. De

Bakker, David W. Haas, Gregory K. Robbins, Roy M. Gulick, Richard Haubrich, Heather Ribaudo

and Marylyn D. Ritchie,

• “The Reference Human Genome Demonstrates High Risk of Type 1 Diabetes and Other Disorder”

by Rong Chen and Atul J. Butte

• “Matching Cancer Genomes to Established Cell Lines for Personalized Oncology” by Joel T. Dudley,

Rong Chen, and Atul J. Butte

We are excited by the breadth of research in the field of Personal Genomics, and are hopeful that our

session will help bring together researchers in these areas. The six papers presented at our session were

selected with the help of several reviewers, whose help we gratefully acknowledge.

3. Acknowledgments

We would like to thank all the authors who submitted their work to the Personal Genomics Session. We are

also indebted to the anonymous reviewers who contributed their time and expertise to evaluate the submitted

papers.
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Personal genome resequencing has provided promising lead to personalized medicine. However, due to the 
limited samples and the lack of case/control design, current interpretation of personal genome sequences has 
been mainly focused on the identification and functional annotation of the DNA variants that are different 
from the reference genome. The reference genome was deduced from a collection of DNAs from anonymous 
individuals, some of whom might be carriers of disease risk alleles. We queried the reference genome against 
a large high-quality disease-SNP association database and found 3,556 disease-susceptible variants, including 
15 rare variants. We assessed the likelihood ratio for risk for the reference genome on 104 diseases and found 
high risk for type 1 diabetes (T1D) and hypertension. We further demonstrated that the risk of T1D was 
significantly higher in the reference genome than those in a healthy patient with a whole human genome 
sequence. We found that the high T1D risk was mainly driven by a R260W mutation in PTPN22 in the 
reference genome. Therefore, we recommend that the disease-susceptible variants in the reference genome 
should be taken into consideration and future genome sequences should be interpreted with curated and 
predicted disease-susceptible loci to assess personal disease risk. 
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1.  Introduction 

With the advance of sequencing technology and assembling tools, whole genome sequencing has 
become a commodity with 10,000 personal genomes being sequenced in the next two years. An 
urgent question is how to interpret personal genome sequences to comprehensively assess disease 
risk and optimize personalized treatment. Sixteen personal genomes (1-13) have been fully 
sequenced and described in the literature, while companies state they are sequencing as many as 
500 individuals per month. However, due to the limited samples and lack of case/control design, 
the current interpretation of these genomes had been mainly focused on the identification and 
functional annotation of the DNA variants that are different from the reference genome sequence, 
with an aim to find interesting genomic features. The reference genome was not from a single 
normal individual; instead, the reference was deduced from a collection of DNAs from anonymous 
individuals with primarily European origins and assembled into a mosaic haploid genome (14, 15). 
To our knowledge, the clinical and phenotypic information of the participants had never been 
published. Although they were very likely to be healthy at the time of study, some of them might 
be carriers of disease risk alleles. The identification of biologically and clinically important rare 
and common disease variants in the reference genome and a comprehensive disease risk 
assessment will improve our understanding of the reference to better assemble and interpret future 
genome sequences. 
 

We have previously developed a method to assess the risk of a patient for 55 diseases using a 
quantitative human disease-SNP association database, and showed that we could suggest useful 
and clinical relevant information using his personal genome sequence (16). Here, we queried the 
reference genome sequence against our database and identified 3,556 disease-susceptibility 
variants, including 15 rare variants. We comprehensively assessed the risk of the reference 
genome for 104 diseases and found high risk for type 1 diabetes (T1D) and hypertension. We 
further demonstrated that the risk of T1D was also significantly higher in the reference genome 
than in the genome of the healthy male we previously described (16). Comparing all contributing 
alleles, we found that the high T1D risk was mainly driven by a R260W mutation in the 
intracellular tyrosine phosphatase (PTPN22) in the reference genome. 

2.  Methods 

2.1 Identifying the disease susceptible/protective alleles in the reference genome 
 
We downloaded the alleles at 24.5 million SNPs (dbSNP 131 on hg19) of the reference genome 
from the UCSC genome browser (17, 18), and removed all SNPs that were mapped to multiple 
locations.  
 

As described previously (16), we manually curated quantitative human disease-SNP 
associations from the full text, figures, tables, and supplemental materials of 3,333 human genetics 
papers, and recorded more than 100 features from each paper, including the disease name (e.g. 
coronary artery disease), specific phenotype (e.g. acute coronary syndrome in coronary artery 
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disease), study population (e.g. Finnish individuals), case and control population (e.g. 2,508 
patients with coronary artery disease proven by angiography), gender distribution, genotyping 
technology, major/minor risk alleles, odds ratio, 95% confidence interval of the odds ratio, 
published p-value, and genetic model. Studies on similar diseases were categorized and mapped to 
the Concept Unique Identifiers (CUI) in the Unified Medical Language System (UMLS) (19). For 
each study, the frequency of each genotype and allele in the case and control populations was 
recorded. 
 

We queried the reference genome against this disease-SNP database using dbSNP identifiers 
(17), and identified all disease susceptible or protective alleles in the reference. We then retrieved 
the Minor Allele Frequency (MAF) from the HapMap II and III projects (20) and identified rare 
disease-susceptible alleles in the reference that had an MAF<1% in the CEU population. 
 
2.2 Assessing the risk of the reference genome on 104 diseases 
 
We had previously reported the medical assessment of a personal genome sequence from a healthy 
40-year-old male by calculating his pre-test probability, likelihood ratio (LR), and post-test 
probability across 55 diseases (16) using a curated high-quality quantitative human disease-SNP 
association database. Similarly, for each of 104 diseases, we queried the reference genome 
sequence against our database, identified all independent disease-associated loci, treated the 
genotype at each locus as an independent genetic test, and calculated the LR as the increased 
disease odds from all tests. 
 

For each disease, we identified all SNPs that had been significantly associated with the disease 
with a p value of ≤10 -6 in Genome-Wide Association Studies on more than 5000 individuals, or 
with a p value of ≤0.01 in candidate gene studies on more than 1000 individuals. We estimated 
genetic risk using a likelihood ratio for each SNP defined by the relative frequency of the 
individual’s genotype in the diseased vs. healthy control populations (e.g., given an allele “A”, LR 
= Pr(A|diseased)/Pr(A|control)). The LR incorporates both the sensitivity and specificity of the test 
and provides a direct estimate of how much a test result will change the odds of having a 
disease (21).  In addition, the likelihood ratio is taught to medical students and physicians in 
training(22).  

 
We excluded studies with diseased patients in the control group, and included studies across 

all ethnicities and genders, because the reference genome was deduced from a mixture of people 
with different ethnicities and genders. For each allele, we averaged the LRs from multiple studies 
with a weight of the square root of the sample size to give higher confidence to studies with larger 
sample size. After removing SNPs in high linkage disequilibrium (R2≥0.8 in HapMap CEU 
populations), we assumed each locus as an independent genetic test and multiplied LRs to report 
the combined LR or risk.  
 
2.3 Comparing the disease risk between the reference genome and a healthy patient 
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We plotted the log(LR) of a 40-year-old healthy male (16) against the log(LR) of the reference 
genome across 62 shared diseases to identify the diseases where the reference genome had 
significantly higher risk. All contributing SNPs were plotted for the disease to identify SNPs that 
drove the observed risk difference between the two genomes. For each SNP, its associated gene 
was identified using the NCBI Entrez dbSNP (17), and annotated using the UCSC genome 
browser (18) for its functional type and chromosome location. 

3.  Results: 

3.1 Disease susceptible and protective alleles in the reference genome 
 
The reference genome (hg19) contains 21.8 million SNPs, with 17,429 of them known to associate 
with human disease and other phenotypes, and 12,190 of them known to associate with human 
diseases (Table 1). It contains slightly more diseases-protective alleles and genotypes (4,052 SNPs 
for 381 diseases) than disease-susceptible alleles and genotypes (3,556 SNPs for 349 diseases).  
 

Table 1: Number of disease susceptible and protective alleles in the reference genome 
 SNPs Phenotypes PubMed count 
Disease/traits# 17,429 1,026 3,333 
Associated with disease 12,190 561 2,695 
Susceptibility to disease 3,556 349 1,416 
Protection from disease 4,052 381 1,600 

# Non-disease phenotypes included drug response and clinical measurements 

 
3.2 Rare disease-susceptible variants in the reference genome 
 
The reference genome carries minor alleles at 0.93 million SNPs in the CEU population, and 0.15 
million of them were rare variants with MAF<1% in the HapMap II and III projects (20). We 
found that 15 rare alleles in the reference genome are known to increase the risk of a variety of 
diseases (Table 2). For example, rs10849033 is close to the 5’ end of C12orf5, a TP53-induced 
glycolysis and apoptosis regulator. The reference genome has a rare G allele at rs10849033 with 
an MAF of 0.8%. The G allele had been found to significantly increase the risk of acute 
lymphoblastic leukemia (ALL) by 2.55 fold, with a p value of 8.5×10-6 in a study on 317 children 
with ALL and 17,958 non-ALL individuals in a control group (23). This rare ALL-susceptibility 
variant would likely be missed by recent personal genome resequencing efforts focusing on 
reporting and studying only those variants different from the reference genome.  
 

Table 2: Rare disease-susceptible variants (MAF<1%# in Caucasian) in the reference genome 
Disease Gene SNP Allele Type PubMed 
Acute lymphoblastic leukemia C12orf5 rs10849033 G near 5' 19684603 
Asthma 

 
rs10837012 G unknown 19187332 
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rs1335159 C unknown 19187332 

Breast cancer RRP1B rs9306160 T missense 19825179 
Coronary artery disease PON2 rs7493 G missense 12588779 
Focal segmental glomerulosclerosis WT1 rs2234591 T intron 15687485 
Juvenile idiopathic arthritis SLC26A2 rs30832 T missense 17393463 
Malaria FAM53B rs7076268 C intron 19465909 
Obesity 

 
rs7173766 A unknown 19584900 

Parkinson's disease 
ADH1C rs283413 A nonsense 15642852 
NUCKS1 rs823128 G intron 19915575 

Placental abruption F5 rs6025 T coding-synon 18277167 
Prostate cancer GDF15 rs1058587 C missense 16775185 
Schizophrenia 

 
rs4568102 A unknown 18347602 

Type 2 diabetes ARHGEF11 rs861086 G near 5' 17369523 
Venous thrombosis F5 rs6025 T coding-synon 17284699 

# MAF (minor allele frequency) was retrieved from the HapMap II and III projects 

 
We further found two rare variants in the reference genome increasing the risk of Parkinson’s 

disease (Table 2). One of them is rs283413, containing an A allele in the reference genome, which 
leads to the early truncation of ADH1C protein, and has been known to increase the risk of 
Parkinson’s disease by 3.25 fold (p=0.007) in multiple Swedish and Caucasian studies (24).  

 
A large survey across 17,429 disease SNPs in our database showed that the effect sizes or the 

odds ratio of disease SNP associations were consistently and negatively associated with the MAF 
in Caucasian, African, Chinese, and Japanese. This indicated that rare disease-associated SNPs 
conveyed significantly larger effect size to the observed genetic association across human 
diseases. With the discovery of several rare alleles known to be associated with disease in the 
reference genome, we suggest that whole genome resequencing would very likely identify other 
causal SNPs, possibly explaining some of the currently missing genetic heritability of complex 
diseases (25). As such, some of the other 0.15 million rare variants in the reference genome could 
also potentially be associated with disease. Comparing genome sequences against curated disease 
and rare variants would likely discover many causal variants. 
 
3.3 Risk likelihood ratio of the reference genome on 104 diseases  
 
We analyzed the risk likelihood ratio (LR) of the reference genome on 104 diseases using the 
independent test likelihood ratio model. We found that the reference genome had an increased risk 
on 48 diseases (LR>1) and a decreased risk on 56 diseases (LR<1). The LR ranged from 0.14 to 
5.14 with a mean LR close to 1.0 (p=0.39, t-test). Strikingly, T1D demonstrated the highest risk 
with a product LR of 5.14. This LR was calculated from 31 T1D-susceptible alleles and 14 T1D-
protective alleles in the reference genome. 
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The reference genome also had a high likelihood ratio of risk for hypertension with 11 risk and 

3 protective alleles. The high risk of hypertension was mainly driven by a G allele at rs3741691 in 
THAP2  with a LR of 1.26 (26), an A allele at rs2106809 in ACE2  with a LR of 1.26 (27), and an 
A risk allele at rs3761987 with a LR of 1.21 (26). Table 3 lists the LR and the number of 
susceptible and protective SNPs on just the 44 diseases with 10 or more SNPs. 

 
Table 3: Disease risk profile of the reference genome on 44 diseases with ≥10 SNPs 

Disease LR Susceptible SNPs Protective SNPs 
Type 1 diabetes 5.14 31 14 
Hypertension 2.58 10 3 
Ankylosing spondylitis  1.90 9 6 
Myocardial infarction  1.78 10 3 
Prostate cancer  1.56 22 19 
Breast cancer  1.28 17 17 
Multiple sclerosis  1.25 10 4 
Inflammatory bowel disease  1.21 7 8 
Colorectal cancer  1.20 9 12 
Lung cancer  1.03 6 5 
Parkinson's disease  1.01 14 7 
Alzheimer's disease  0.89 10 8 
Coronary artery disease  0.86 8 9 
Celiac disease  0.83 9 10 
Rheumatoid arthritis  0.76 12 11 
Bipolar disorder  0.75 5 5 
Schizophrenia  0.71 5 10 
Ulcerative colitis  0.70 6 12 
Systemic lupus erythematosus  0.66 26 29 
Type 2 diabetes  0.61 34 37 
Crohn's disease  0.55 12 17 
Glioma  0.53 4 9 
Psoriasis  0.47 11 10 
Obesity  0.43 6 14 
Basal cell carcinoma  0.33 3 8 
Melanoma  0.14 4 11 

We then plotted the histogram of log(LR) across all 198 diseases, and observed a symmetric 
distribution with no significant difference from the mean of zero (p=0.07, t-test). This suggests 
that our method is unbiased towards overcalling susceptibility or protection across all diseases. 

 
3.4 Disease risk comparison between the reference and a personal genome 
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We plotted the log(LR) of a 40-year-old healthy Caucasian male against the log(LR) of the 
reference genome across 104 shared diseases (Figure 2). Interestingly, the reference genome 
showed a strikingly increased risk on T1D than the healthy male, and a decreased risk on 
Melanoma. This indicats that the high T1D risk was likely a result of T1D-susceptible alleles in 
the reference genome instead of biased T1D-susceptible alleles in the database. Although the 
reference genome was deduced from a group of healthy persons, some of them might be carriers 
of T1D-sueceptible alleles. Therefore, the reference genome is not free of predicted disease-risk 
and these disease-susceptible alleles in the reference genome need to be taken into consideration in 
interpreting future genome sequences.  

 
Fig. 1: The disease risk comparison between the personal genome of a healthy male and the reference 
genome. Each circle represents the genetic risk of a disease for the patient and the reference genome. 

 
3.5 T1D-susceptible alleles in the reference genome 
To identity the specific alleles that led to the striking difference on predicted T1D risk between the 
reference genome and the healthy male, we plotted all contributing T1D susceptible and protective 
alleles in both the reference genome (Figure 2) and the previously studied 40 year old patient 
(Figure 3).   
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Fig. 2: Contribution of individual alleles to overall risk LR of T1D of the reference genome. Alleles and 
their associated genes are listed on the left, ordered from top to bottom by the number of studies in which 
each was published and the total sum of cohort sizes across those papers. The LR of each independent 
SNP/allele is listed.  A user of this figure could draw a horizontal line at a given threshold of belief, 
include and exclude alleles, and retrieve the accumulated LR at the right column and shown graphically in 
the middle. The central graph displays the change in accumulated LR, with darker squares representing 
more publications and larger squares representing larger sample size. 
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Fig. 3: Contribution of individual genotypes to the overall risk LR of T1D for a previously published 40-
year-old healthy Caucasian male. See Figure 3 for details on the graphical elements. 

 
Comparing Figure 2 and 3, we found that the increased T1D risk in the reference genome was 

mainly due to a highly T1D-susceptible allele A at rs2476601, causing a R260W mutation in the 
intracellular tyrosine phosphatase (PTPN22).  This SNP had been reported to increase the risk of 
T1D by 2 fold in more than nine studies (28-31). Comparing with the patient, the reference 
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genome also has increased risk of T1D due to the lack of two T1D-protective alleles at rs3087243 
in cytotoxic T-lymphocyte-associated protein 4 (CTLA4) (32) and at rs689 in the insulin (INS) 
(28). These three alleles increased the T1D risk for the reference genome by 6.8 fold comparing 
with our previously published patient. Interestingly, for rs2476601 in PTPN22, the T1D 
susceptible allele in the reference genome is the minor allele in most population. The 3,556 known 
disease-susceptible variants and many unknown ones especially rare variants could be potentially 
missed if only variants different from the reference were analyzed. 
 
3.6 Disease-susceptible alleles deleted in the reference genome 
 
The reference genome also contains a deletion at 2.7M SNPs with a dbSNP identifier in the 
dbSNP build 131 (17).  We found that 16 SNPs that are known to associate with human diseases at 
these points of deletion.  The clinical relevance of these missing base pairs is not clear. 

4.  Discussion 

We identified 3,556 disease-susceptible variants including 15 rare variants (MAF<1%) in the 
reference human genome, which provides a useful tool for the annotation of personal genome 
sequences. Using a curated high-quality quantitative human disease-SNP association database, we 
assessed the likelihood ratio of increased risk over healthy population on 104 diseases for the 
reference genome and found the high predictive T1D risk with a R260W mutation in the 
intracellular tyrosine phosphatase (PTPN22). It reminded us that the reference genome was not 
from a regular person and was certainly not disease free. Although it had dramatically accelerated 
personal genome sequencing efforts, focusing on variants different from the reference will likely 
miss many disease causal variants including rare variants.  
 

With the likely incoming deluge of 10,000 personal genome sequences arriving within the next 
two years, a method to estimate personal disease risk is urgently needed. Here, we described a 
method to estimate personal genetic risk using a likelihood ratio for each SNP as the relative 
frequency of the individual’s genotype in the diseased vs. healthy control populations. We further 
described a very simple method to treat multiple disease loci outside the linkage disequilibrium as 
independent genetic test, and estimated their combined effect. We acknowledge that assuming 
independence of tests is actually a different assumption than assuming that each variant 
contributes independently to risk.  If each measured variant is viewed as an independent test 
probing disease state, this is arguably closer to our understanding of their use as markers 
associated with disease instead of actual causal variants (22). We admit that it is likely to be too 
simple to accurately model the risk of many common diseases, especially those like T1D, which 
are also influenced by unknown environmental and gene-environmental factors, and we are 
currently investigating different models to estimate combined effects.  

 
The accurate assessment on personal disease risk is also dependent on the quality and coverage 

of the genotype/allele frequency in the disease and control population in the literature. We found 
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that many studies, including genome-wide association studies (GWAS) only reported the odds 
ratio of disease risk between genotypes/alleles, and not their frequencies in the case and control 
population, which were required for the calculation of the likelihood ratio. For studies reporting 
both the odds ratio and the minor allele frequency in the control group, we recalculated their allele 
frequencies. We excluded studies reporting only the odds ratio, and we are investigating the 
possibility of estimating the genotype/allele frequencies in the control group using the data in the 
HapMap III project (33). There have been many debates on whether the aggregated genotype 
frequency data should be published in GWASs (34). Analyses showing association of a single 
biomarker with disease typically report very detailed characteristic of the populations studied; this 
is radically different from typical genetic association studies, which often report almost nothing 
about the subjects (22). Therefore, we strongly recommend the release of the genotype frequency 
in future GWAS studies as it is critical for us to quantitatively evaluate the disease-SNP 
association, enabling an accurate personal risk assessment.  

 
We further found that many disease SNPs had been reported as the genotypes in the negative 

strand without indicating their strand directions. We had identified the strand direction by 
comparing the major/minor alleles in the study with the major/minor alleles in similar population 
in the HapMap projects. However, the identification process became difficult when the C/G or 
A/T alleles share similar frequencies. Therefore, we strongly recommend investigators to report 
the genotype frequencies in the case and control population and their strand direction in the future 
GWAS publications. With exponentially increasing personal genome sequences with phenotype 
information, we will likely to discover more rare causal variants and comprehensively predict 
personal risk on a variety of diseases. 
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The diagnosis and treatment of cancers, which rank among the leading causes of mortality in developed 
nations, presents substantial clinical challenges. The genetic and epigenetic heterogeneity of tumors can lead 
to differential response to therapy and gross disparities in patient outcomes, even for tumors originating from 
similar tissues. High-throughput DNA sequencing technologies hold promise to improve the diagnosis and 
treatment of cancers through efficient and economical profiling of complete tumor genomes, paving the way 
for approaches to personalized oncology that consider the unique genetic composition of the patient's tumor. 
Here we present a novel method to leverage the information provided by cancer genome sequencing to match 
an individual tumor genome with commercial cell lines, which might be leveraged as clinical surrogates to 
inform prognosis or therapeutic strategy. We evaluate the method using a published lung cancer genome and 
genetic profiles of commercial cancer cell lines. The results support the general plausibility of this matching 
approach, thereby offering a first step in translational bioinformatics approaches to personalized oncology 
using established cancer cell lines. 

 

                                                             
* Corresponding author: abutte@stanford.edu 

1.  Introduction 

Despite innovations in relevant diagnostics and therapeutics over the past decades, cancers remain 
among the leading causes of mortality in developed nations. Although many common molecular 
drivers of oncogenesis are known to exist, the majority of cancers are heterogeneous in their 
molecular characteristics, leading to disparities in response to standard cancer therapies. High-
throughput sequencing technologies, with promise to offer complete DNA sequence profiling of 
cancer genomes, present novel opportunities understanding the unique molecular characteristics of 
tumors profiled in clinical populations. Knowledge of the unique molecular characteristics of a 
tumor, as detailed by its genomic sequence, could inform diagnosis, prognosis and treatment, 
thereby establishing a basis for personalized oncology. 
 

In order to gain clinical utility from personal cancer genomes, the molecular characteristics 
latent in the cancer genomic sequence must be related to a broader biological context. Aberrations 
in a cancer genome, such as somatic variations in single nucleotides, copy number or novel gene 
fusions can serve as informative biomarkers that inform diagnosis, prognosis or treatment. For 
example, mutations in the epidermal growth factor receptor (EGFR) have been associated with 
response to gefitinib in non-small cell lung cancer (NSCLC)1, and mutations in KRAS are known 
to be predictive of response to cetuximab in colon cancers2.  Such markers have great clinical 
value when they are well characterized, however a complete genomics sequence of a cancer is 
likely to present many novel molecular aberrations that have minimal to no precedence in the 
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literature. Furthermore, consideration for only a subset of the markers available in a fully 
sequenced cancer genome might miss molecular and biological features important for 
individualized treatment. 

 
In order to assess functional correlates of disease progression or therapeutic susceptibility, 

approaches to personalized oncology need to consider molecular phenotypes salient in individual 
tumor biology along with the tumor’s genotype. For example, expression levels of human 
epidermal growth factor receptor 2 (HER2) are predictive of response to trastuzumab3, and various 
cellular metabolic features have been associated with tumor progression4. Ideally, it would be 
possible to functionally investigate these molecular phenotypes towards a personalized course of 
clinical care (e.g. test the response of several different chemotherapies to determine the best course 
of treatment), however it is not possible to conduct such clinical experimentation in vivo without 
placing the patient in danger of serious harm. One solution is to create autologous tumor cell lines 
from tumor tissue excised from the patient. However, the technical capacity to establish, maintain, 
and functionally test autologous cell lines is not at all common in most clinical settings, and 
therefore may not be as viable as a therapeutic option during the course of clinical care for cancer 
patients. 

 
Here we describe a method to match a personal cancer genome with commonly studied 

commercially available cancer cell lines based on shared genetic profiles. Commercial cell lines 
serve as an attractive option for personalized oncology, because they are readily and economically 
available through commercial suppliers, and the pharmacological and biochemical characteristics 
of many of the available cancer cell lines are well reported in the literature. Furthermore, it has 
been shown that large collections of cancer cell lines can serve as "systems" to functionally 
characterize the pathophysiological properties of individual tumors5. Once a personal cancer 
genome is matched to a commercial cell line, it is possible that the cell line and the prior 
knowledge around that cell line could serve as an in vitro surrogate for clinical functional 
assessment of tumor biology. We offer a profile similarity approach that matches a cancer genome 
with commercial cell lines based on profiles of shared somatic variability at multiple loci. The 
method is assessed using data from a recently published genomic sequence of a lung cancer tumor, 
which was matched to genotyped cell lines found in the GlaxoSmithKline cancer cell line genomic 
profiling data.  
 

2.  Methods 

2.1.  Data 

A set of somatic single nucleotide variants discovered in a NSCLC genome through paired 
genome sequencing in a lung cancer patient was obtained from the supplementary information 
provided by Lee et al6. Variant positions were mapped to dbSNP rsId’s by genomic location. SNP 
genotype profiles for commercial cancer cell lines were downloaded from the Cancer Biomedical 
Informatics Grid (caBIG) website (https://cabig.nci.nih.gov/caArray_GSKdata/) via FTP. Allele 
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frequency information was downloaded from data provided by the International HapMap Project 
Phase IIa7. We aggregated in vivo tumor xenograft screening data made available through the 
National Cancer Institute (NCI) Developmental Therapeutics Program (DTP) website 
(http://dtp.nci.nih.gov/webdata.html). The DTP screening data provides assessments of the anti-
tumor efficacy of a wide range of chemical compounds evaluated across various clinical endpoints 
in human tumor xenograft models8. 

2.2.  Profile similarity 

A profile similarity metric was computed by comparing common variant loci between the cancer 
genome and the cancer cell line SNP profiles. The SNP profiles for the commercial cell lines only 
represent the genotype of various primary cancer cells, and therefore offer no means to distinguish 
somatic variants from neutral variation. We used allele frequency data from the HapMap project 
as a proxy for the normal baseline genotype. In this way, a locus was said to be a cancer-
associated variation if it was not found to harbor the associated major allele for that locus found in 
the HapMap data. We then derived a multi-locus identity metric to compute a similarity score 
between to genomic profiles based on shared genotypes at somatically variant positions. For each 
locus an identity-by-similarity (IBS) score was computed based on the number of alleles shared 
between the profiles at that locus. The IBS score = 0 if no alleles are share, 1 if one allele is 
shared, or 2 if both profiles are homozygous for the same allele. The multi-locus profile identity 
score (mIS) was computed by summing the IBS scores across all shared loci and dividing by twice 
the number of common loci: 
 

 

 
Where L is the number of common variant loci between two genomic profiles i and j, and  is the 
genotype of the Ith locus in profile i, and  is the genotype of the Ith locus in profile j.  

2.3.  Matching the lung cancer genome to cell lines 

To match the NSCLC genome to cell lines we computed the mIS score between the somatic 
variants  and the SNP profiles for all cell lines found in the GSK data set. To estimate a p-value for 
mIS scores we computed a random distribution of mIS scores by constructing random genotype 
profiles by sampling randomly from the GSK data, and computing the mIS score between the 
NSCLC profile and the random genotype for one thousand iterations. The empirical p-value for an 
mIS score was computed as the proportion of mIS scores from the random distribution greater 
than the given mIS score.  
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2.4.  Clustering tumors by 
therapeutic profiles 

The DTP inhibition data was averaged 
by tumor type and compound. For each 
tumor type defined in the DTP data set, 
a chemotherapeutic profile was defined 
as the average inhibition for each 
compound against which the tumor was 
evaluated. A distance matrix was 
computed between tumors using the 
Pearson's correlation of compound 
inhibition response values. Only 
statistically significant correlations 

were retained. Hierarchical clustering was performed on the correlation distance matrix (1 - 
correlation) using the average agglomeration method. The significance of the compound inhibition 
clustering was assessed by multiscale bootstrap resampling across 1,000 bootstrap replicates using 
the pvclust package (http://www.is.titech.ac.jp/~shimo/prog/pvclust/). All computations were 
performed using the R language for statistical computing (http:// www.r-project.org). 

3.  Results 

Using genomic location information we mapped 9,754 somatic single nucleotide variants and their 
genotypes to dbSNP rsId identifiers. Among these loci we found 391 that overlapped with the 
SNPs measured on the SNP array used to profile the cancer cell lines in the GSK data set. This 
common set of loci was used to compute the profile similarity between the NSCLC genome and 
the cancer cell lines. After computing mIS profile similarity scores (see methods) between the 
NSCLC genome and all cell lines profiled in the GSK data set, we find 16 cell lines to be 
significantly associated with the personal cancer genome by genetic profile (Table 1). The 
distribution of mIS scores across the GSK data set is shown in Figure 1. The top match among the 
GSK cancer cell lines is bladder carcinoma line J82. While other lung carcinomas are found 
among the top results, we also find non-obvious associations between various leukemias and 
lymphomas.  

 
To explore the plausibility of these cell line associations, we obtained chemotherapeutic 

screening data from the NCI Developmental Therapeutics Program (DTP) and clustered tumors 
based on their response to various chemotherapies (Figure 2). Based on chemotherapy response 
profiles, we find that Lewis lung carcinomas, a model for non-small cell lung cancer, generally 
cluster with several leukemias and reticular (lymphoid) sarcoma, which is reflective of our cell 
line match results. 

 

 
Figure 1. Distribution of genetic profile similarity scores 
between the lung cancer genome and GSK cancer cell lines. 
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4.  Discussion 

In effort to relate a personal cancer genome to cancer cell lines for personalized oncology, we 
developed a profile similarity method that computes a similarity score between two genetic 
profiles based on shared alleles at somatically variant sites. We applied this method to a published 
non-small cell lung cancer genome and a set of SNP profiles from the GSK cancer genomic 
profiling data set. We found that the personal cancer genome could be significantly matched with 
16 cell lines from the GSK data set by genetic profile (Table 1). While we find a number of lung 
cancer cell lines among these significant matches, we also find equally significant matches for 
non-lung cancers, including various Hodgkin lymphomas, leukemias and bladder cancer.  
 

 It is not immediately apparent why the lung cancer genome would be associated with these 
seemingly unassociated cancers. One possible explanation is that there are many passenger 
mutations after the cancer initiation event has started9, and that the similarities are being driven by 
these mutations. Since passenger mutations are not necessarily causal, and could therefore 

Table 1.  Cancer cell lines from the GSK genomic profiling data set with genetic profiles significantly 
similar to the individual NSCLC genome based on mIS scores. 

Cancer Type Cell Line mIS score P-value 

Carcinoma of Bladder J82 0.84 2.3x10-2 
Acute T Cell Lymphoblastic Leukemia of 
Hematopoietic and lymphatic system CCRFCEM 0.83 3.3 x10-2 

Lymphoma of Hematopoietic and lymphatic system SR 0.83 3.3 x10-2 
Hodgkin Lymphoma of Hematopoietic and lymphatic 
system RPMI6666 0.83 3.3 x10-2 

Lung Adenocarcinoma NCIH1975 0.82 4.8x10-2 

Lung Adenocarcinoma NCIH2228 0.82 4.8x10-2 

Atypical Carcinoid Tumor of Lung NCIH720 0.82 4.8x10-2 

Small Cell Lung Carcinoma of Lung NCIH524 0.82 4.8x10-2 

Burkitt Lymphoma of Hematopoietic and lymphatic 
system MC116 0.82 4.8x10-2 

Burkitt Lymphoma of Hematopoietic and lymphatic 
system 1A2 0.82 4.8x10-2 

Carcinoma of Uterus KLE 0.82 4.8x10-2 

Sarcoma of Bone SW1353 0.82 4.8x10-2 

Carcinoma of Uterus RL952 0.82 4.8x10-2 

Myeloma of Hematopoietic and lymphatic system HuNS1 0.82 4.8x10-2 

Carcinoma of Breast MT3 0.82 4.8x10-2 

Acute T Cell Lymphoblastic Leukemia of  CEMC1 0.82 4.8x10-2 

 

247



 
 

confound variation based similarity metrics like the one used in this study. In this case, future 
work might involve inclusion of prior knowledge of cancer causal variants to reduce false 
positives, or look across multiple cancer genomes to understand patterns of earlier versus later 
mutations from a data-driven perspective. 

1.0 0.6 0.2
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Tumor EM (ic) in 03 - Ependymoblastoma (intracerebral) in C57BL/6 mice

Tumor EP (ic) in 1A - Ependymoblastoma (intracerebral) in B6C3F1 mice

Tumor C6 (ip) in 06 - Colon 26 Adenocarcinoma (intraperitoneal) in CD2F1 (CDF1) mice

Tumor M5 (ip) in 1A - Sarcoma M5076 (intraperitoneal) in B6C3F1 mice

Tumor LE (ip) in 06 - L1210 Leukemia (intraperitoneal) in CD2F1 (CDF1) mice

Tumor LE (ip) in 02 - L1210 Leukemia (intraperitoneal) in B6D2F1 (BDF1) mice

Tumor LE (sc) in 02 - L1210 Leukemia (subcutaneous) in B6D2F1 (BDF1) mice

Tumor LE (sc) in 06 - L1210 Leukemia (subcutaneous) in CD2F1 (CDF1) mice
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Tumor CA (sc) in 02 - Adenocarcinoma 755 (subcutaneous) in B6D2F1 (BDF1) mice

Tumor SA (sc) in 01 - Sarcoma 180 (subcutaneous) in Swiss mice

Tumor C2 (SRC) in 1D - HT29;CX-1 Human Adenocarcinoma (MER+) (intrarenal inoculation) in NU/NU Swiss (nude) mice

Tumor LK (SRC) in 1D - Human Lung LX-1 Xenograft (intrarenal inoculation) in NU/NU Swiss (nude) mice

Tumor C2 (SRC) in 1F - HT29;CX-1 Human Adenocarcinoma (MER+) (intrarenal inoculation) in NU/NU BALB/C (nude) mice

Tumor MB (SRC) in 1D - Human Mammary Carcinoma MX-1 Xenograft (intrarenal inoculation) in NU/NU Swiss (nude) mice

Tumor MB (SRC) in 1F - Human Mammary Carcinoma MX-1 Xenograft (intrarenal inoculation) in NU/NU BALB/C (nude) mice

Tumor LK (SRC) in 1F - Human Lung LX-1 Xenograft (intrarenal inoculation) in NU/NU BALB/C (nude) mice
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Tumor CD (sc) in 49 - Mammary Adenocarcinoma CD8F1 (subcutaneous) in CD8F1

88

98

91

85

80

95

97

84

48

82

93

56

92

79

88

98

83

89

91

92

94

74

84

95

96

96

100

 

Figure 2. Hierarchical clustering of tumors profiled by the National Cancer Institute Developmental 
Therapeutics Program based on their chemotherapeutic inhibition response profiles. Values at the inner nodes 
represent bootstrap p-values estimated by multiscale bootstrap resampling using 1,000 boostrap replicates. 
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Another explanation is that these associations might point towards some shared etiological or 

pathophysiological characteristics. Smoking is a well-known risk factor for lung cancers, leading 
to consistent genetic lesions observable in the genomes of lung cancer tumors. Smoking is also a 
substantial risk factor for bladder cancer10, which is the top match in our results, and is also known 
to be associated with increased risk of various leukemia’s and lymphomas11. Therefore the 
computed similarity between the lung cancer genome and these cell lines might have a basis in 

Table 2. Gene-associated variants driving the similarity score between the personal lung cancer genome profile 
and the top cell-line match bladder carcinoma (J82). Both the lung cancer genome and J82 exhibit somatic 
variation at these positions and share at least one variant allele. 

dbSNP rsID Gene region Gene symbol Gene description 

rs169124 intronic BMP6 bone morphogenetic protein 6 

rs13378247 intronic ENOX1 ecto-NOX disulfide-thiol exchanger 1 

rs11182675 intronic NELL2 NEL-like 2 (chicken) 

rs7824149 intronic NECAB1 N-terminal EF-hand calcium binding protein 1 

rs938726 intronic EIF2C2 eukaryotic translation initiation factor 2C, 2 

rs10983337 intronic ASTN2 astrotactin 2 

rs639839 intronic NRG3 neuregulin 3 

rs16907794 intronic NELL1 NEL-like 1 (chicken) 

rs2425562 intronic PTPRT protein tyrosine phosphatase, receptor type, T 

rs2837583 intronic DSCAM Down syndrome cell adhesion molecule 

rs10852799 intronic DNAH9 dynein, axonemal, heavy chain 9 

rs8024401 intronic GABRG3 gamma-aminobutyric acid (GABA) A receptor, gamma 3 

rs9555507 intronic MYO16 myosin XVI 

rs10483422 intronic NPAS3 neuronal PAS domain protein 3 

rs11158839 intronic SLC8A3 solute carrier family 8 (sodium/calcium exchanger), member 3 

rs9620769 intronic TTC28 tetratricopeptide repeat domain 28 

rs13112477 intronic C4orf22 chromosome 4 open reading frame 22 

rs6720773 intronic COL6A3 collagen, type VI, alpha 3 

rs10932540 intronic VWC2L von Willebrand factor C domain-containing protein 2-like 

rs7550703 intronic HHAT hedgehog acyltransferase 

rs1881410 intronic LOC730124 similar to hCG2041586 

rs4730038 intronic LHFPL3 lipoma HMGIC fusion partner-like 3 

rs2642484 intronic CNTNAP2 contactin associated protein-like 2 

rs7819262 intronic TUSC3 tumor suppressor candidate 3 

rs2910639 intronic ADAMTS12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 

rs16870537 intronic C7 complement component 7 
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shared common genetic lesions due to smoking. It is also known that individuals affected by 
Hodgkin’s lymphoma have an increased risk of lung cancer and non-Hodgkin lymphomas12, 
suggesting a possible shared molecular pathophysiology among the various forms of cancer. 
Therefore, despite the fact that many of the matches are not of the same tumor type as the lung 
cancer genome, it is possible that they still might serve as functional surrogates for personalized 
clinical investigation. 
 

To gain functional support 
for the plausibility of these 
cell line associations, we 
clustered tumors based on 
their response to various 
chemotherapies (Figure 2). 
Based on chemotherapy 
response profiles, we find that 
non-small cell lung cancer 
model tumors (Lewis lung) 
cluster significantly with both 
each other and other non-lung 
tumor types. A scatterplot of 
the chemotherapeutic profile 
similarity between a NSCLC 
tumor and leukemia is shown 
in Figure 3. Although the cell 
lines used in the DTP 
screening data set are not 
precise matches for the cell 
lines in the GSK data set, we 
can draw support for the 
notion that unrelated cancers 
such as lymphomas or 

leukemias could serve as functionally relevant clinical surrogates for lung cancer tumors. 
 
We find additional support for a plausible functional relationship through investigation of the 

variants driving the similarity between the lung cancer genome and cell lines. The best match in 
our data set was a bladder carcinoma cell line (J82). The gene associated variants shared between 
the lung cancer genome and the J82 cell line are shown in Table 2. Although all of these shared 
loci are intronic, it's still possible that they could be disrupting gene function through an effect on 
alternative splicing, or might serve as surrogate markers for mutational disruption of other loci in 
the same gene through linkage disequilibrium. Among these genes we find several known to be 
associated with cancers. PTPRT, a protein tyrosine phosphatase receptor, is a signaling molecule 
known to be implicated in oncogenic transformation in several different cancers13, including colon 

 
Figure 3. Comparison of the chemotherapeutic response profiles between a 
model of non-small cell lung cancer tumor model and a leukemia 
characterized in the NCI DTP data. The points represent the inhibition 
proportion (treatment/control) for a compound. 
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cancer14,15, glioma16, and melanoma17. NELL1 and NELL2, growth factor like protein thought to be 
involved in regulation of cell growth, has also been associated with multiple cancer types, 
including esophageal adenocarcinoma18, colon cancer and Burkitt's lymphoma19. TUSC3, a 
putative tumor suppressor gene, has been associated with pancreatic cancer20, prostate cancer21 
and ovarian cancer22.  It's possible that these pleiotropic oncogenes are driving the similarity 
relationship between the lung cancer genome and J82 based on common patterns of oncogenic 
mutation. Several other genes underlying this similarity are not known to be oncogenic, however 
variants in BMP6, COL6A3, C7, GABRG3 and NRG3 are known to be associated with various 
complex and Mendelian diseases.   
 

We acknowledge several limitations in our approach. Foremost, we recognize that since the 
GSK cell lines were profiled by SNP microarray, that the analysis was appreciably constrained to 
only the loci measured on the array platform. Future work might employ sophisticated imputations 
algorithms to expand the genotype profiles in the GSK data set, but ideally full genome 
sequencing data for these cell lines would likely be necessary for clinical application of this 
approach. We also acknowledge that the DTP chemotherapeutic profiling data can only offer 
indirect support for functional associations between these cell lines, as many of the cell lines 
profiled in the GSK data set are not represented in the NCI DTP screening data set. Efforts are 
needed to comprehensively characterize the chemotherapetuic response profiles of these cell lines 
and to provide a machine-readable representation of these data in the public domain. 
 

Future work in this area will incorporate improved similarity metrics that give added 
importance to somatic variations more likely to play a causal role in tumorigenesis or metastasis, 
such as mutations in evolutionary conserved regions, or in loci known to act as expression 
quantitative trait loci (eQTLs) for genes associated with oncogenesis. More importantly, future 
work should incorporate experimental validation of predicted cell line matches to test whether or 
not the predicted cell line match exhibits clinical characteristics (e.g. chemotherapeutic response) 
similar to the individual tumor genome to which it was matched. Developments in this area will 
provide novel directions in personalized oncology that leverage the clinical, economic, and 
scientific benefits of well studied and characterized commercial cancer cell lines. 

Acknowledgements 

JTD is supported by the Graduate Training in Biomedical Informatics grant (R01 LM009719) 
from the National Library of Medicine. AJB is supported by the National Cancer Institute (R01 
CA138256), the Lucile Packard Foundation for Children's Health and the Hewlett Packard 
Foundation. We thank Alex Skrenchuk and Boris Oskotsky from Stanford University for computer 
support. 
 

References 
1. Kobayashi, S., et al. EGFR mutation and resistance of non-small-cell lung cancer to 

gefitinib. N Engl J Med 352, 786-792 (2005). 

251



 
 

2. Lievre, A., et al. KRAS mutation status is predictive of response to cetuximab therapy in 
colorectal cancer. Cancer Res 66, 3992-3995 (2006). 

3. Hudis, C.A. Trastuzumab--mechanism of action and use in clinical practice. N Engl J Med 
357, 39-51 (2007). 

4. Tennant, D.A., Duran, R.V. & Gottlieb, E. Targeting metabolic transformation for cancer 
therapy. Nat Rev Cancer 10, 267-277 (2010). 

5. Neve, R.M., et al. A collection of breast cancer cell lines for the study of functionally 
distinct cancer subtypes. Cancer Cell 10, 515-527 (2006). 

6. Lee, W., et al. The mutation spectrum revealed by paired genome sequences from a lung 
cancer patient. Nature 465, 473-477 (2010). 

7. International HapMap, C. The International HapMap Project. Nature 426, 789-796 (2003). 
8. Teicher, B.A. & Andrews, P.A. Anticancer drug development guide : preclinical 

screening, clinical trials, and approval, (Humana Press, Totowa, N.J., 2004). 
9. Greenman, C., et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 

153-158 (2007). 
10. Boffetta, P. Tobacco smoking and risk of bladder cancer. Scand J Urol Nephrol Suppl, 45-

54 (2008). 
11. Willett, E.V., O'Connor, S., Smith, A.G. & Roman, E. Does smoking or alcohol modify the 

risk of Epstein-Barr virus-positive or -negative Hodgkin lymphoma? Epidemiology 18, 
130-136 (2007). 

12. van Leeuwen, F.E., et al. Increased risk of lung cancer, non-Hodgkin's lymphoma, and 
leukemia following Hodgkin's disease. J Clin Oncol 7, 1046-1058 (1989). 

13. Lee, J.W., et al. Mutational analysis of PTPRT phosphatase domains in common human 
cancers. APMIS 115, 47-51 (2007). 

14. Zhao, Y., et al. Identification and functional characterization of paxillin as a target of 
protein tyrosine phosphatase receptor T. Proc Natl Acad Sci U S A 107, 2592-2597 (2010). 

15. Ruivenkamp, C.A., et al. Ptprj is a candidate for the mouse colon-cancer susceptibility 
locus Scc1 and is frequently deleted in human cancers. Nat Genet 31, 295-300 (2002). 

16. Norman, S.A., Golfinos, J.G. & Scheck, A.C. Expression of a receptor protein tyrosine 
phosphatase in human glial tumors. J Neurooncol 36, 209-217 (1998). 

17. Yu, J., et al. Tumor-derived extracellular mutations of PTPRT /PTPrho are defective in 
cell adhesion. Mol Cancer Res 6, 1106-1113 (2008). 

18. Jin, Z., et al. Hypermethylation of the nel-like 1 gene is a common and early event and is 
associated with poor prognosis in early-stage esophageal adenocarcinoma. Oncogene 26, 
6332-6340 (2007). 

19. Kuroda, S., et al. Biochemical characterization and expression analysis of neural 
thrombospondin-1-like proteins NELL1 and NELL2. Biochem Biophys Res Commun 265, 
79-86 (1999). 

20. Bashyam, M.D., et al. Array-based comparative genomic hybridization identifies localized 
DNA amplifications and homozygous deletions in pancreatic cancer. Neoplasia 7, 556-562 
(2005). 

21. Bova, G.S., et al. Physical mapping of chromosome 8p22 markers and their homozygous 
deletion in a metastatic prostate cancer. Genomics 35, 46-54 (1996). 

22. Pils, D., et al. Five genes from chromosomal band 8p22 are significantly down-regulated 
in ovarian carcinoma: N33 and EFA6R have a potential impact on overall survival. Cancer 
104, 2417-2429 (2005). 

 
 

252



1 
 

USE OF BIOLOGICAL KNOWLEDGE TO INFORM THE ANALYSIS OF GENE-GENE 
INTERACTIONS INVOLVED IN MODULATING VIROLOGIC FAILURE WITH 

EFAVIRENZ-CONTAINING TREATMENT REGIMENS IN ART-NAÏVE ACTG CLINICAL 
TRIALS PARTICIPANTS 

 
BENJAMIN J. GRADY1, ERIC S. TORSTENSON1, PAUL J. MCLAREN2, PAUL I.W. DE BAKKER2, DAVID W. 

HAAS3, GREGORY K. ROBBINS4, ROY M. GULICK5, RICHARD HAUBRICH6, HEATHER RIBAUDO7 AND 

MARYLYN D. RITCHIE1* 
1Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232, USA 

2Broad Institute, Harvard University, Cambridge, Massachusetts 02138, USA 
3Departments of Medicine, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37232, USA 

4Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA 
5Department of Medicine, Cornell University, New York, NY 10065, USA 

6Department of Medicine, University of California, San Diego, San Diego, CA 92103, USA 
7Department of Biostatistics, Harvard University, Boston, MA 02115, USA 

*Corresponding Author Email: ritchie@chgr.mc.vanderbilt.edu  

 

Personalized medicine is a high priority for the future of health care. The idea of tailoring an individual’s wellness plan to 

their unique genetic code is one which we hope to realize through the use of pharmacogenomics. There have been 

examples of tremendous success in pharmacogenomic associations however there are many such examples in which only 

a small proportion of trait variance has been explained by the genetic variation. Although the increased use of GWAS 

could help explain more of this variation, it is likely that a significant proportion of the genetic architecture of these 

pharmacogenomic traits are due to complex genetic effects such as epistasis, also known as gene-gene interactions, as well 

as gene-drug interactions. In this study, we utilize the Biofilter software package to look for candidate epistasis 

contributing to risk for virologic failure with efavirenz-containing antiretroviral therapy (ART) regimens in treatment-

naïve participants of AIDS Clinical Trials Group (ACTG) randomized clinical trials. A total of 904 individuals from three 

ACTG trials with data on efavirenz treatment are analyzed after race-stratification into white, black, and Hispanic ethnic 

groups. Biofilter was run considering 245 candidate ADME (absorption, distribution, metabolism, and excretion) genes 

and using database knowledge of gene and protein interaction networks to produce approximately 2 million SNP-SNP 

interaction models within each ethnic group. These models were evaluated within the PLATO software package using pair 

wise logistic regression models. Although no interaction model remained significant after correction for multiple 

comparisons, an interaction between SNPs in the TAP1 and ABCC9 genes was one of the top models before correction. 

The TAP1 protein is responsible for intracellular transport of antigen to MHC class I molecules, while ABCC9 codes for a 

transporter which is part of the subfamily of ABC transporters associated with multi-drug resistance. This study 

demonstrates the utility of the Biofilter method to prioritize the search for gene-gene interactions in large-scale genomic 

datasets, although replication in a larger cohort is required to confirm the validity of this particular TAP1-ABCC9 finding. 
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1. Introduction  

1.1. The HIV pandemic 

Human Immunodeficiency Virus (HIV) Type 1 infection has been in a state of pandemic for several 
years. The 2008 UNAID report estimates that 33 million people are currently infected, with 
approximately 3 million new infections during the year of 2008 [1]. Within regions in Sub-Saharan 
Africa, the prevalence of HIV-1 infection rises as high as 25-30% [1]. Because there is no cure for 
HIV-1 infection, one of the best tools available to combat the epidemic currently is antiretroviral 
therapy (ART). ART helps with treating those individuals already infected and helps to reduce the 
chance of spreading the disease[2]. ART consists of a regimen of two or three antiretroviral drugs and 
is successful in drastically increasing the lifespan of HIV-1 infected individuals and improving their 
quality of life[3]. By reducing the amount of virus circulating freely in the blood of an infected 
person, ART also greatly decreases the probability of transmitting the virus through sexual contact[4], 
and child birth [5]. Despite the benefits of ART for its use in fighting HIV, there are unfortunately 
several issues that accompany the use of the therapy. Arguably the most significant issue among these 
is the prevalence of adverse drug reactions (ADR) and the failure of the drug to suppress viral load. 
Adverse reactions to antiretroviral drugs range from skin rash and nausea to neurologic impairment 
and fatal hypersensitivity, as is sometimes seen in response to the drug abacavir [6]. ADRs contribute 
to ineffectiveness of ART by reducing adherence to drug regimens and requiring temporary 
discontinuation of treatment [7]. The failure of a drug to suppress viral load in a patient is known as 
virologic failure [8]. Virologic failure refers either to initial inefficacious response to the drug and a 
failure to ever reach a controlled viral load or to the phenomenon whereby viral load rebounds 
subsequent to reaching a controlled level. 

1.2. Pharmacogenomics and HIV treatment 

The way in which people respond to drug treatment has been shown, in many cases, to be influenced 
by their genetics. The field of pharmacogenomics attempts to discover the exact genetic variants 
which predict success, failure or ADR in response to treatment. There have been successes in 
identifying genetic polymorphisms which explain large proportions of variance in drug response. 
Approximately 20-30% of the variance in initial dosing of the anti-coagulant warfarin, for example, 
can be explained by variation in the gene VKORC1[9], which codes for vitamin K epoxide reductase 
complex subunit 1. Vitamin K epoxide reductase creates the enzymatically active form of vitamin K 
[10] which is in turn extremely important in modulating the function of proteins involved in blood 
clotting. For this reason, it makes biological sense that a polymorphism which affects the expression 
of VKORC1 would also affect how much warfarin is necessary to prevent over-clotting. Arguably the 
most significant pharmacogenomic discovery has been made in the field of HIV ART. 
Hypersensitivity reaction (HSR) in response to the nucleoside reverse-transcriptase inhibitor (NRTI) 
abacavir, a commonly-used drug in ART regimens, has been shown to be strongly tied to HLA 
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genotype. HLA-B*5701 genotype has a 100% negative predictive value (NPV) for predicting HSR 
from abacavir [11, 12]. As a result of this relationship, HLA-B*5701 has become one of the first 
genetic tests approved by the FDA for use in determining risk prior to prescription of a drug. 
Although the abacavir story represents the pinnacle of pharmacogenomic discovery and there may not 
be another single genetic polymorphism with 100% NPV for ART in the future, there are still many 
possibilities for utilizing genetic prediction models in determination of the optimal ART drug regimen 
to prescribe in order to control HIV. It might be that a combination of genetic variants in concert 
would best predict antiretroviral drug response. 

1.3. Genetic interactions 

Decades of research into the pharmacokinetics of drug metabolism have shown that the enzymes 
which process and transport pharmaceuticals function as part of highly-interconnected networks [13]. 
For example, studies have shown that many drugs, including phenytoin [14] and irinotecan [15], can 
be metabolized, activated, or deactivated by more than one enzyme[16]. It is as a result of this 
complementation that it is reasonable to expect the necessity of multiple genetic polymorphisms to 
experience a large change in the resulting phenotype. The phenomenon of gene-gene interaction, or 
epistasis as it is often referred to in the field of genetic epidemiology, has been a subject of much 
discussion over the past decade [17-19]. Although the term epistasis was coined separately by 
Bateson [20] and Fisher [21] in the early 20th century to refer to the effect of one gene “masking” 
another’s effect or a non-additive effect of multiple elements observed simultaneously, respectively, 
the necessary technology to explore its presence has only recently been developed. The HapMap 
project, the sequencing of the human genome, and the steady increase in computational power have 
been the driving factors in the ability to analyze genetic data for gene-gene interaction effects. Despite 
the rising computational power available, genotyping technology has far out-paced the ability to 
exhaustively analyze multi-locus genetic effects for genome-wide association study (GWAS) data. To 
search exhaustively for epistasis between two single nucleotide polymorphisms (SNPs) in a current 
GWAS containing 1 million SNPs would require 5 x 1011 tests. Although it is still possible to perform 
this pair wise exploration by utilizing parallel computation, it is clear that with the advent of whole-
exome and whole-genome sequencing technology as a primary source for genetic information in 
association studies in the near future, an alternative to exhaustive searches must be found. One such 
solution is that of biasing the search using prior knowledge to search for combinations of genes that 
are likely to interact biologically. The Biofilter tool [22] was developed to use databases such as the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Protein Family database (PFAM) in 
order to build SNP-SNP models based on known interactions between genes and proteins in curated 
pathways and networks. Especially in a field such as pharmacogenomics, in which the knowledge of 
the drug metabolism networks is extensive, enriching the search for epistasis with knowledge from 
known biological interactions could prove valuable. Not only does this alleviate the issues of 
computational complexity, but it also substantially reduces the number of tests and associated 
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multiple-comparison issues. As opposed to considering 10’s or 100’s of billions of two-way 
interaction models, one would search a more reasonable subset of a few million models with a solid 
biological basis. The time necessary to perform the subsequent statistical analysis declines from days 
to hours, using a single processor. One concern of pursuing only a biologically-informed subset of 
interaction models is the possible loss of novel significant interactions during filtering. Due to long-
standing knowledge in pharmacology, the potential reduction in noise outweighs the concern. 

2. Methods  

2.1. Study population 

DNA samples in the current study come from individuals who were randomized to receive efavirenz 
(in multidrug ART regimens) in the AIDS Clinical Trials Group (ACTG) randomized clinical trials 
(RCT) ACTG 384, A5095 and A5142 and were collected under protocol A5128 [23]; study designs 
are described in depth elsewhere [24-30]. ACTG 384 [29, 30] and A5095 [24-26] were double-blind, 
multicenter RCTs designed to test the effectiveness of differing ART drug regimens. Of the 980 
individuals enrolled into ACTG 384, 526 were consented for DNA extraction and 347 of those with 
DNA available were on efavirenz-containing regimens. A5095 enrolled 1147 subjects for comparison 
of protease inhibitor-sparing regimens. Of the enrollment in A5095, a total of 600 individuals were 
available who both consented for DNA and had ART containing efavirenz. The final study used in 
this multi-study analysis was A5142 [27, 28]. This ACTG study was a Phase III comparison of 3 ART 
regimens. Of the 757 participants of A5142, 411 were randomized to receive ART containing 
efavirenz and provided DNA samples.  
 

Table 1. Sample size broken down by study and race ethnicity grouping. 

      Study   
  ACTG 384 A5095 A5142 Total 

Pre-QC Total Cases 45 124 97 266 
    Controls 302 476 314 1092 

Post-QC Total Cases 38 100 59 197 
  Controls 228 319 160 707 
  White Cases 16 34 24 74 
    Controls 116 163 78 357 
  Black Cases 18 47 30 95 
  Controls 69 97 49 215 
  Hispanic Cases 4 19 5 28 
    Controls 43 59 33 135 
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The total number of individuals available with DNA samples and GWAS genotyping across these 
three studies was 1358. Self-described ethnicity of the combined study population reveals the study 
population to consist of 45% white (N = 606), 34% non-Hispanic black (N = 459), 19% Hispanic (N 
= 265) and 2% other (N = 28). After quality control (QC) and exclusions were applied, 904 
participants remained available for analysis. Of this 904, 48% (N = 431) were non-Hispanic white, 
34% were non-Hispanic black (N = 310), and 18% (N = 163) were Hispanic. The endpoint used in 
this study was virologic failure as defined by a spike in viral load above 200 copies/mL after 
achieving viral load less than 200 copies/mL on ART. Individuals who experienced virologic failure 
on efavirenz are categorized as cases while those who did not are categorized as controls (Table 1). 

 

 

Figure 1. An outline of the analysis plan used in this study. A more detailed description of the Biofilter step is 

available in Figure 2. 
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2.2. Genotyping and quality control exclusions 

Individuals from the ACTG 384 study were genotyped on the Illumina 650Y array while those from 
A5142 and A5095 were genotyped with the Illumina Human1M-Duo platform (Illumina, Inc. San 
Diego, CA). In combining data from these two platforms, only the SNPs which overlapped were used 
for this analysis. Principal components analysis was performed referencing the HapMap phase 3 
sample data to map each individual back to one of three major ethnic groups: white, black, and 
Hispanic. There was greater than 95% concordance between self-reported ethnicity and that found 
through principal components analysis. Within each race stratum, quality control was performed to 
filter out samples and SNPs of low quality (Figure 1). Samples with low genotyping rate (<95%), 
high or low heterozygosity (inbreeding coefficient > 0.125 or < -0.125) and related individuals (IBD 
estimate > 0.1) were removed. SNPs with missingness > 2%, large deviations from Hardy-Weinberg 
equilibrium (p < 10-6) and those with differential missingness between cases and controls > 2% were 
removed from analysis.  

2.3. Biofilter 

The Biofilter[22] was developed to provide prior biological knowledge to influence the search for 
gene-gene interactions in large-scale data. Given a set of variants, Biofilter first maps the SNPs back 
to genes based on gene definitions in Ensembl and then builds models using disease-dependent (i.e. 
those biological associations previously known with respect to the trait under investigation) or 
disease-independent relationships (i.e. known biological interactions with no particular association to 
the trait under consideration). A unique option for the Biofilter is to provide a personally curated list 
of genes based on expert knowledge of the phenotype under study as a starting point, using that list to 
search both disease-dependent and disease-independent data sources to map all other genes that are 
related to the genes in the curated list.  Based on user options, the Biofilter can query the set of 
databases, which currently includes KEGG, PFAM, Reactome, DIP, PFAM, GO, and NetPath, to 
establish groups of interacting genes. Once these groups are established, SNP-SNP interaction models 
are created by exhaustively pairing two SNPs from two genes in the group. Biofilter allows flexibility 
in choosing how restrictive the creation of interaction models will be. For example, when inputting a 
list of self-curated genes, the user has the option to ensure that at least one of the SNPs comes from a 
gene in the list.  Alternatively, restrictions can be relaxed to allow models with SNPs from other 
genes in the same group or even pathway as those genes in the list. As shown in Figure 2, we 
provided a list of 245 absorption, distribution, metabolism and elimination (ADME) genes which 
were curated by the authors and allowed for the inclusion of SNPs which were within 10kb of the 
gene boundaries. Interactions were restricted to allow only those models for which at least one of the 
SNPs in the model belonged to a gene in the list – although the search was conducted in the disease-
independent databases. Two-SNP interaction models were generated separately for non-Hispanic 
white (henceforth referred to as white), non-Hispanic black (henceforth referred to as black), and 
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Hispanic ethnic groups, while those participants self-describing as other races were excluded.  We 
used all six databases currently integrated in the Biofilter to generate our SNP-SNP models. 

2.4. Statistical analysis 

All statistical analyses were performed using the Platform for the Analysis, Translation and 
Organization of large scale data (PLATO) software package 
(http://chgr.mc.vanderbilt.edu/ritchielab/subscriptions) [31].  PLATO is a scaffold which allows for 
recoding, quality control, and analysis of data as part of a pipeline. The Biofilter models were used as 
input for PLATO.  The statistical analyses performed used logistic regression to assess the risk of 
each pair of interaction models. Logistic regression models included terms for each SNP separately 
and a term for multiplicative interaction. In addition, variables deemed important with respect to the 
outcome of virologic failure were included as covariates in the model. Principal components vectors 
were utilized to adjust for population substructure within each racial group, as might exist between 
northern and southern European white individuals or African Americans. Indicator variables for 
genotyping phase and baseline viral load (≥ or < 100,000 copies/mL) were also incorporated. 
Regression analysis was performed separately within each ethnic group as defined by principal 
components analysis. 
 

 

Figure 2. A schematic of the procedure involved in a Biofilter run. 
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3. Results 

Genome-wide genotyping of 1358 AIDS Clinical Trials Group (ACTG) participants with exposure to 
the NNRTI efavirenz was conducted to elucidate the genetic basis of virologic failure. Race-
stratification was performed using principal components analysis based on HapMap phase 3 samples. 
After quality control processes, 904 individuals remained. The Biofilter software tool was used to 
take a list of 245 ADME genes and build putative gene-gene interactions based on biological 
knowledge provided by KEGG, DIP, Pfam, Net Path, Reactome, and Gene Ontology. The SNPs from 
each ethnic group were then mapped back to these ADME genes and SNP-SNP models were created 
by taking one SNP from each gene in a proposed gene-gene interaction. Running Biofilter resulted in 
2,144,157 models to evaluate in whites, 2,471,201 models in blacks, and 2,099,614 models in 
Hispanics.  These models were derived from a total of 33067, 35764 and 32698 SNPs for white, black 
and Hispanic groups respectively. If all two-way interactions between these SNPs were exhaustively 
tested, it would result in the evaluation of 546 million models for the white group and 638 million and 
534 million models for the black and Hispanic groups respectively. The differences in model number 
between ethnic groups are due to race-stratified quality control. SNP-SNP models from Biofilter were 
passed to PLATO[31] to perform logistic regression analysis. Due to the highly correlated nature of 
many of the interaction models, a Bonferroni correction would too conservative for correcting for 
multiple testing. Instead, a false-discovery rate (FDR) correction was applied using the qvalue 
package available in R. No interaction models were found to be significant at an FDR level of 0.10, 
although the most significant interactions were significant at an FDR level of 0.45. The interaction 
models with lowest p-values are shown in Table 2. 
 

Table 2. Most significant interaction models resulting from gene-gene interaction analysis. 

SNP1 SNP2 
Model  

P-value 
Interaction 

P-value 

SNP1 
Odds 
Ratio 

SNP2 
Odds 
Ratio 

Interaction 
Odds Ratio 

rs2318785 (NME2) rs2157597 (NME7) 1.69E-06 5.98E-07 0.257 0.253 4.732 
rs2318785 (NME2) rs12118611 (NME7) 1.69E-06 5.98E-07 0.253 0.257 4.732 
rs2318785 (NME2) rs12121994 (NME7) 1.68E-06 6.15E-07 0.247 0.263 4.769 
rs2318785 (NME2) rs17349439 (NME7) 3.30E-06 1.20E-06 0.265 0.277 4.487 
rs2318785 (NME2) rs6703463 (NME7) 1.48E-05 3.93E-06 0.258 0.289 3.884 
rs2318785 (NME2) rs12744184 (NME7) 7.46E-06 6.46E-06 0.253 0.306 3.821 
rs735883 (TAP1) rs1283807 (ABCC9) 4.38E-06 9.05E-06 2.245 3.236 0.154 
rs735883 (TAP1) rs1352909 (ABCC9) 4.61E-06 9.76E-06 2.231 3.205 0.155 
rs735883 (TAP1) rs4148665 (ABCC9) 4.83E-06 9.89E-06 2.230 2.850 0.172 
rs735883 (TAP1) rs1283798 (ABCC9) 1.04E-05 1.00E-05 2.395 2.482 0.240 
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4. Discussion 

As genotyping technologies progress and we move into the era of whole-genome sequencing, the 
need to improve analysis schemes is ever-present. This is especially true when gene-gene, gene-
environment, and gene-drug interactions are concerned. Allowing our biological knowledge of gene 
and protein network dynamics to guide the search for the genetic basis of disease is a promising 
solution to this dilemma. While our current state of biological knowledge is limited, and that 
knowledge-base will continue to grow and develop over time, if we develop techniques that use the 
information we have, while still exploring novel interactions, we have a greater chance for success. 
By narrowing the dimensions of the search space, the computational complexity of the problem 
becomes much more amenable to current analytical techniques. In addition, interpretation of results is 
more straightforward. We utilized a list of 245 genes involved in absorption, distribution, metabolism 
and elimination of drugs and their metabolites to focus the search for gene-gene interactions 
associated with virologic failure during HIV treatment with efavirenz. Although there were no gene-
gene interactions which remained significant after correction for multiple testing, this could be related 
to the small sample size present in this study. Due to race-stratification, the largest group in the 
analysis had 74 cases and 357 controls. But the development of this analytic pipeline and software 
tools will be immensely useful for future analyses. 

The interactions which appeared most significant in the results of the logistic regression analysis 
occur between a SNP - rs2318785 - in the NME2 gene and multiple SNPs in the NME7 gene. Both 
NME2 and NME7 are part of the NDK family, coding for nucleoside diphosphate kinase enzymes 
involved in the synthesis of non-ATP nucleoside triphosphates. Although it is not readily apparent as 
to why purine and pyrimidine metabolism would be involved in the predisposition towards virologic 
failure, it is possible that this could represent novel biological knowledge in this field. Currently 
known reasons for virologic failure include lack of adherence to drug regimen, presence of drug 
resistance mutations in the HIV strain, and drug interactions which might limit efficacy. In the 
absence of environmental heterogeneity, little is known about the etiology of virologic failure. Small 
sample size precludes our ability to draw conclusions about the role of nucleoside triphosphate 
metabolism on risk for virologic failure. Other SNP interaction models which were among the most 
significant results involve a SNP in the TAP1 gene - rs735883 - and multiple SNPs in the ABCC9 
gene. TAP1 encodes a transporter responsible for the shuttling of antigen into the endoplasmic 
reticulum for association with MHC class I while ABCC9 is part of the MRP subfamily of ABC 
transporters associated with multi-drug resistance and codes for a protein thought to be a subunit of a 
pancreatic potassium channel responsible for drug-binding modulation of the channel. It could be that 
down-regulation of TAP1 through mutation prevents proper immune response to the virus even after it 
has been affected by NNRTI action and this allows it to rebound during treatment. The results of the 
current study require validation with larger sample size before any firm conclusion can be drawn.  
The current results are meant to demonstrate the pipeline for analysis and the general approach rather 
than attempting to draw general statements regarding true biological associations with HIV therapy. 
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Despite the lack of statistical power to elucidate a significant genetic interaction, this study shows 
the promise of the use of Biofilter for focusing the search for gene-gene interactions during large-
scale genetic association studies. The number of polymorphisms typed in association studies is 
nearing our limits to perform exhaustive explorations of two-way interactions during analysis. 
Reducing the set of interesting models to evaluate presents itself as a capable alternative. Utilizing 
Biofilter to provide the set of interesting models and PLATO to perform analysis has at least three 
advantages over traditional exhaustive gene-gene interaction analysis. First, it partially alleviates 
issues of multiple comparisons. Second, interpretation of results is significantly eased due to models 
construction. Third, the use of regression framework allows for the adjustment of the analysis taking 
into account important covariates. Although the use of Biofilter might not be as promising an option 
in cases where very little biological knowledge exists on the phenotype being analyzed, in the case of 
pharmacogenomics, where extensive drug metabolism networks have been elucidated, utilizing this 
knowledge to direct the analysis is a superior alternative, particularly when epistasis is concerned. As 
the search for the genetic architecture underlying complex traits such as drug pharmacokinetics 
continues, utilities such as the Biofilter can play an important role. Drug response is a nuanced trait 
and, as such, is likely to have genetic components which are monogenic as well as those that are 
multi-locus. Now that whole-genome sequencing technology is almost ready for wide-spread 
implementation, rare genetic variation is likely also to become an important component to consider 
for pharmacogenomic traits. Due to the nature of rare variants, the same pathway knowledge which is 
exploited by Biofilter to search for epistasis should be useful to group these rare variants to look for 
patterns predicting drug response. In summary, Biofilter is a tool which is likely to prove invaluable 
for the analysis of large-scale genetic association data for complex disease, especially in 
pharmacogenomic data where the biological knowledge is extensive.    
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samples were genotyped for 21 SNPs that were previously associated with 5 diseases: atrial fibrillation, 
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1. Introduction 
 
The use of results from genome-wide association studies (GWAS) in the emerging field of 
personal genomics requires the further investigation and characterization of potentially functional 
single nucleotide polymorphisms (SNPs) originally identified in GWAS. The additional studies 
required usually characterize less than 100 SNPs, often include multiple and correlated phenotypic 
measurements, and can include data from multiple-sites, multiple-studies, as well as multiple 
race/ethnicities. The Vanderbilt University biobank (BioVU)2 aims to both characterize previously 
detected SNPs, as well as discover new associations between genetic variation and diseases and 
phenotypes.  BioVU has an “opt-out” system, whereby DNA samples are collected from blood 
remaining after routine clinical testing at Vanderbilt Medical Center.  De-identified electronic-
medical record (EMR) data, called the “synthetic-derivative” (SD) is coupled to DNA of the 
biorepository. Cases and controls for phenotype-genotype association are identified using the 
synthetic-derivative through the use of electronic phenotyping algorithms developed in by EMR 
content experts along with biomedical informaticists. 

In the Ritchie et al. study 1, the first approximately 10,000 DNA samples collected in BioVU 
were genotyped for a series of SNPs that each had a previously known and robust association with 
of one of five common diseases.  The goal of this proof-of-concept study was to demonstrate that 
EMR data can successfully be used to accurately define phenotypes that enable the investigation 
of genotype-phenotype correlations.  In this study the electronic phenotyping algorithms were 
deployed in the SD to determine cases and controls for atrial fibrillation, Crohn disease, multiple 
sclerosis, rheumatoid arthritis, and type 2 diabetes in a sample of largely European American 
descent.  A total of 9483 DNA samples were successfully genotyped, and 21 tests of association 
were performed. Significant associations (p < 0.05) were found for 8/14 tests where SNPs had a 
previously reported odds ratio (ORPR) > 1.25, and 0/7 where SNPs had a lower ORPR.  In the 
initial presentation of the results of this study, the majority of the results were provided in a 
tabular form. While tabular data provides a record of the exact results of a study, it can be 
challenging to identify and convey the trends and patterns within a set of results using a tabular 
data alone.   

Visualizing data results such as those of the BioVU study as well as other candidate-gene 
replication studies that move beyond initial GWAS findings, provides a way to interpret the 
complex and multi-layered results of these studies in a more integrated way, and allows for rapid 
comparisons of multiple forms of information not easily achievable through reviewing large tables 
of numbers. To visualize the results of these forms of studies, we developed the software tool 
“Synthesis-View” to visually synthesize the results of candidate gene and GWAS replication 
studies in stacked data-tracks, providing a single image where p-values (or other measures of 
significance), odds-ratios, allele frequencies, sample sizes, effect size, and direction of effect are 
all incorporated. While Manhattan plots already exist for the effective visualization of GWAS 
data, the results of candidate gene studies, studies investigating genetic variation in specific 
regions in detail, or even isolated GWAS results, are not often presented in visual form. Our tool 

266



 
 

provides a unique and direct way to generate accessible visual information from these kinds of 
data.   
 
2. Methods 

 
The Synthesis-View software tool used herein was developed in Ruby and utilizes the RMagick 
graphics library.  Synthesis-View is available for use through a web interface, and can alternately 
be used at the command line. Figure 1 shows a screen-capture of the web interface, which allows 
for the flexible choice of various options for Synthesis-View plots. The required and optional tab-
delimited text input file format to produce a Synthesis-View plot are briefly described here, and 
are also described in greater detail at the Synthesis-View website along with example input files. 
One file is necessary to produce a standard Synthesis-View plot, a file containing a column for 

SNP identification (such as RS number), a column for which chromosomes the SNPs map to, and 
a column for SNP genomic location information. The rest of the standard input file can optionally 
contain information on p-values, odds-ratios, allele frequencies, and sample size, with tracks 
plotted if data are present.  Other files can be provided for Synthesis-View to plot additional tracks 
of data.  If a phenotype summary file is supplied, summary information about continuous 
phenotypes will be plotted.  If a gene summary file is included, information on gene name and 
location in relation to SNPs plotted will be in a track at the top of the plot.  If a linkage 
disequilibrium file is provided that contains D′ or r2 correlation data, the data will be plotted in 
Haploview style format 3. Finally, if abbreviation definitions are provided, an additional legend 

Figure 1 – Synthesis-View web interface screen capture. 
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describing plot abbreviations will appear below OR/forest plots when “Draw Legend” is selected. 
Table 1 describes the various possible settings available in the web interface.  
 
3. Visualization of Results 

 
The focus of the proof-of-concept BioVU study was to both show and characterize the utility of 
using electronic phenotype algorithms deployed in an EMR linked to a DNA biobank. As 
described in Ritchie et al. 1, blood samples that showed poor-quality or that yielded insufficient 
DNA, blood samples from individuals < 18 years of age, a lack of consent-to-treatment form, any 
indication of opt-out, or discovery of a duplicate sample, resulted in exclusion from the study. In 
addition, 2% of samples in BioVU are randomly dropped out, further randomizing individuals not 
included in the biobank and consequent studies. After filtering for exclusions, definite cases of 
European Ancestry (EA) and probable EA were defined using the administrative information 
recorded in the EMR.  Almost a tenth of the records (9.2%) did not include ancestry information, 
or recorded the ancestry as “unknown”. The data were thus analyzed with cases and controls that 
indicated EA specifically as the race/ethnicity, and also separately analyzed with cases and 
controls defined as both EA and individuals characterized as unknown.   

To define disease state for case/control status, for one set of association tests, identification of 
case/control status was solely determined using an electronic phenotyping algorithm (see Ritchie 
et al. appendix for algorithm details).  Content experts were used to develop the algorithm that 
used disease-specific billing codes and patient encounter information, including records such as 
medication information, electrocardiogram data, and past medical history from the SD. “Definite” 
cases were defined by the algorithm as disease present, excluding those with indications of 
overlapping disease or symptoms, or lack of a clear diagnosis.  Controls were defined as those 
with clear absence of the specific disease used in the case/control association. In the case of 
multiple sclerosis, algorithm classified cases were also manually reviewed because of the small 
sample size.  In addition to the algorithm defined Definite cases, for rheumatoid arthritis and 
multiple sclerosis, a set of association tests were separately performed with both Definite cases as 
well as cases showing indications of overlapping autoimmune diseases and/or symptoms. These 
cases were described as “Probable”.  

After defining cases/controls, association tests for the 21 genotyped SNPs were performed. For 
SNPs associated with atrial fibrillation, Crohn’s disease, or Type 2 diabetes, tests of association 
were performed for both  EA with cases Definite cases and EA + Unknown with Definite cases. 
For SNPs known to be associated with rheumatoid arthritis and multiple sclerosis, tests of 
association were performed for EA with Definite cases, EA with Definite and Probable cases, EA 
+ Unknown with Definite cases, EA + Unknown with Definite and Probable cases. 

3.1 Synthesis-View Forest Plot 

The results of the association tests of the BioVU study were presented in Table 1 of the Ritchie et 
al. manuscript 1.  The results for EA alone with Definite cases were presented in a forest plot along 
with ORPR from previous studies in Figure 1 of the Ritchie et al. manuscript 1,4-10. In the current 
paper, Figure 2 is a modified forest plot using Synthesis-View to visualize the results of the 
BioVU study. From left to right in Figure 2 are tracks with various pieces of data:  
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1. The first track is a physical genome track, displaying the chromosome and relative location 

of each SNP used in the 21 association tests. Having the SNP data presented in this way 
visually shows the location of SNPs in reference to other SNPs within the same study. 
Lines lead from the relative location of each SNP to the SNP identifier.  

2. The next track is the significance track, showing the p-values of both the original ORPR as 
well as the results of the Ritchie et al. paper.  A single color consistently represents results 
for the original ORPR (in blue), as well as for the new associations: EA_D (European 
American, Definite disease classification, in red); EA+U (European American and 
Unknown, Definite disease, in orange); EA_P (European American, Definite as well as 

Table 1.  Synthesis-View plotting options 

Synthesis-View Option Description 
Title Title for Synthesis-View plot 
Larger font Produce a plot with larger sized text than the default 
Axis scaling If set to “maximum”, axes limits will start and end utilizing the range of the 

data with tick-marks at regular intervals in-between. If set to “cleaner” the 
axes will still encompass the range of the data, however the range will begin 
and end with a multiple of five or ten, and the plot tick-marks will also be a 
multiple of five or ten.  

Offset overlapping points When points overlap, this setting will include “jitter”, whereby overlapping 
points are offset horizontally to make them more distinguishable. 

Phenotype summary plot name If phenotypic summary data will be incorporated into the Synthesis-View plot, 
the title for the phenotype summary plot should be specified here. 

Include p-value plot Include plot of p-values 
Plot p-values as circles To plot p-values as circles, instead of triangles that include direction of effect, 

even if direction of effect information is supplied in the Synthesis-View 
standard input file.   

Draw line at this p-value Specification of a horizontal red line at a specific p-value of interest. 
Maximum y-axis setting for p-value 
track 

Specify the maximum y-axis value for the p-value track in order to limit the 
range of the y-axis.  Any p-value result more significant than this y-axis cutoff 
value will be plotted at the cutoff value in larger size. 

Produce forest plot To produce a forest plot in Synthesis-View from odds-ratio results 

Minimum forest plot x-axis at zero To set the minimum value of the forest plot x-axis to zero 

Plot case/control totals The total numbers of cases/controls can be plotted either in two separate tracks 
(“split plot”), or in one track where the total numbers of cases/controls are 
indicated using open/closed circles (“combined plot”).  

Plot case/control CAF The respective coded allele frequency (CAF) for cases/controls can be plotted 
either as two separate tracks (“split plot”), or in one track where cases/controls 
are indicated using open/closed circles (“combined plot”). 

Plot significant odds ratio larger Plot significant odds-ratio results in larger size 

Draw Legend When an “Abbreviation Defintions” file is provided, and Draw Legend is 
selected, an additional legend describing plot abbreviations will appear below 
OR/forest plots 

Include direction of effect track Even if direction of effect information is supplied, this setting allows for 
inclusion/exclusion of a direction of effect track. 

Effect label Choice of effect size label 

Linkage disequilibrium D-prime plot If linkage disequilibrium information is included as an input file, select this to 
include a d-prime correlation track. 

Linkage disequilibrium R-squared 
plot 

If linkage disequilibrium information is included as an input file, select this to 
include an R-squared correlation track. 

High resolution image (300 dpi) Select to produce a 300 dpi image, otherwise the image is 72 dpi 

Image format Choices of image format include PNG, JPEG, and TIFF 

Output file name Choice of file name for output Synthesis-View plot 
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Probable disease, in purple); and EA+U_P (European American and Unknown, Definite as 
well as Probable disease, in green). Applying a red line at a p-value cutoff of choice is one 
of the options of Synthesis-View, in this case the vertical red line was applied at a p-value 
of 0.05, allowing for a more quick detection of values above and below the chosen p-value. 
For two SNPs, rs6457620 and rs3135388, in studies prior to Ritchie et al. the results were 
extremely significant at 4E-18610 and 9E-816 respectively.  When these two SNPs were 
originally plotted on the same track as the rest of the p-values, there was compression of 
other p-values along the bottom of the plot due to the wide spread of the data points. 
Synthesis-View allows for the choice of a p-value cutoff, whereby any points more 
significant than that cutoff are plotted at that cutoff value with a larger sized point. Thus, 
on this plot, after choosing a p-value cutoff of 1E-50, the two points for SNPs, rs6457620 
and rs3135388 are plotted at p-value 1E-50 but are larger in size. Also of note, the various 
BioVU p-value results for each SNP were very similar, thus when initially plotted, the 
points had considerable overlap. Synthesis-View allows the application of “jitter”, where 
points that overlap are spread out vertically along the “abacus” line leading down from the 
SNP identification information. Thus the jitter option was applied, providing more visual 
discrimination between multiple overlapping points. 

3. The next four tracks are odds-ratio/forest-plot tracks.  Each track shows the individual 
odds ratio (OR) and confidence intervals for each of the separate sets of associations, such 
as those for EA_D or EA+U.  Each OR result is plotted as a square, with a line indicating 
the upper and lower 95% confidence interval. In this case a specific option in Synthesis-
View was used, whereby if the result is significant (the upper or lower boundary of the 
confidence intervals do not cross 1.0), the square is plotted in larger size. This allows for 
quick visual identification of significant results in forest plots that may show many results. 
In the case of the results for the previous studies, the confidence intervals were small 
enough they were overplotted by the OR square. As the eye moves from left to right, there 
are visible trends. Results that were not significant in the BioVU study were in the same 
direction as ORPR.  Also, it is easy to determine how similar the results were in the BioVU 
study, even with inclusion or exclusion of data from Unknown individuals and Probable 
case data. With Synthesis-View both an overview of the data as well as individual results 
are available, and a table can be used to look up exact numerical results of interest.  

4. The second to last track is the coded allele frequency track. Synthesis-View provides the 
option of either the coded allele frequencies (CAF) of both cases and controls plotted on 
the same track, with closed circles indicating cases and open circles indicating controls, or 
the allele frequencies of cases and controls can be plotted in two separate tracks. In either 
case, colors match those of the groups of the previous tracks, allowing the user to look at 
the allele frequencies between groups by eye for trends. This can aid in interpreting the 
potential lack of replication of results.  
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5. The last track is the sample size track. Like the CAF track, case/control sample size can 

either be plotted with closed circles indicating cases, and open circles indicating controls. 
The colors match those of the groups of the previous tracks, allowing the user again by eye 
to look at sample size across groups.  

 

 
 
 

3.2 Synthesis-View Standard Plot 
 
An alternative way to look at the results of the BioVU study is through stacked tracks where the 
eye moves from top to bottom (Figure 3). If the “forest-plot” option is not chosen in Synthesis-
View, the default data plot is in this format. Again the first track is the physical genome track, 
with chromosome number and the relative location of each SNP with lines leading from the 
chromosome location track to identification of each of the respective SNPs.  The next track is the 
significance track, showing p-value results across groups with an optional horizontal red line at a 
p-value of 0.05 applied. In this case, again to reduce compression of the p-value results when 
plotted, a p-value cutoff was chosen (1E-30), with larger points plotted directly at the p-value 
cutoff. SNPs rs6457620 and rs3135388 and rs2200733 had p-values of 4E-18610, 9E-816, and 
3.3E-414 respectively.  The track below the significance track is an odds-ratio track. Unlike the 
forest-plots of Figure 2, here the ORs are plotted as closed circles. If the OR results are significant, 
the OR closed circle is plotted in a larger size. So while the confidence intervals are not plotted, it 

Figure 2 - The results of using the forest-plot option in Synthesis-View and the data of the Ritchie et al. 
BioVU paper. Moving from left to right, the first track shows SNP location, the next track shows –log10(p- 
value). Each SNP identifier also has the following abbreviations for associated disease: atrial fibrillation 
(AF), Crohn disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and type 2 diabetes (TD).  

The next five tracks are odds-ratio/forest-plots. The abbreviations for these tracks are described in greater 
detail in the figure legend. The coded allele frequency (CAF) track with allele frequencies for both 

cases/controls is the second-to-last track. Sample sizes for the cases/controls are plotted in the last track. 
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is still easy to discriminate OR results that are significant. For studies where OR data are omitted, 
the OR track will not appear.  Below the OR track, there is a CAF track. Again, Synthesis-View 
provides the option of either viewing the allele frequencies of both cases and controls plotted on 
the same track, with closed circles indicating cases, and open circles indicating controls. The last 
track is a sample size track plotted in a similar fashion as the CAF track.  

There are available Synthesis-View options that were not used in this presentation of the 
BioVU results.  When summary data regarding a continuous phenotype of interest exists, there is 
an option to add on a summary data plot, which consists of the mean and standard deviation of the 
continuous phenotype for each group. Future versions of Synthesis-View will incorporate ways to 
characterize categorical/case-control phenotype summary data. Also, when linkage disequilibrium 
(LD) data is provided, a D′ or r2 correlation plot in Haploview style format 3 is plotted.  
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Figure 3 - Default format of the Synthesis-View plot with horizontal data tracks.  In red are the results of 

ORPR (OPR), in blue are results of the BioVU Ritchie et al. study.  From top to bottom, data tracks include 
the physical genome track, odds-ratio track (significant odds-ratio results are plotted larger in size), coded-

allele-frequency (CAF) track for cases and controls, and a sample-size track for cases and controls. 

 
4. Conclusions 
 
Synthesis-View was extended from the previous software “LD-Plus”.  The LD-Plus feature carried 
through to Synthesis-View is the use of multiple tracks for showing data results, as LD-Plus also 
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uses a flexible data display format of multiple data “tracks” that can be viewed 11. However, 
Synthesis-View allows for visualization of data that is not possible with LD-Plus. In Synthesis-
View, through the use of stacked data-tracks, SNP genomic location, presence of the SNP in a 
specific study or analysis, as well as related data such as genetic effect size and summary 
phenotype data, are plotted according to user preference. With Synthesis View, trends from many 
different kinds of information can be visualized in a more integrated way than by using tabular 
data alone. These multi-faceted views are important to understanding in greater depth the 
relationships between SNPs, strata, sample size, and phenotypic differences expected with the 
increasing complexity of emerging datasets.  

It is important to note here that we present one set of scenarios where Synthesis-View can be 
used; however, the software is very flexible and that there are no restrictions to how the data are 
grouped.  The Ritchie et al. paper was able to show proof-of-concept, such that the use of a 
biobank coupled with EMR data can effectively replicate previously well characterized results.  
The original results of this paper were largely presented in tabular format, and here we show the 
utility of Synthesis-View in visualizing these kinds of results. Through using Synthesis-View the 
larger picture of the data as a whole can be seen, with trends and patterns visually evident, while 
also allowing a user to determine details about individual results. Tables can then be used as a 
reference for determining specific numerical results in greater detail after areas of interest are 
located in the plotted data.  
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Understanding how genetic variants impact the regulation and expression of genes is important for forging 
mechanistic links between variants and phenotypes in personal genomics studies.  In this work, we investigate 
statistical interactions among variants that alter gene expression and identify 79 genes showing highly 
significant interaction effects consistent with genetic heterogeneity.  Of the 79 genes, 28 have been linked to 
phenotypes through previous genomic studies.  We characterize the structural and statistical nature of these 
79 cis-epistasis models, and show that interacting regulatory SNPs often lie far apart from each other and can 
be quite distant from the gene they regulate.  By using cis-epistasis models that account for more variance in 
gene expression, investigators may improve the power and replicability of their genomics studies, and more 
accurately estimate an individual's gene expression level, improving phenotype prediction. 
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1.  Introduction 

Epistasis, or gene-gene interaction, is thought to be an important component of complex, 
multifactorial diseases due to the monumental complexity of biological systems [1].  Over the past 
10 years, a wealth of data from model organisms has supported a role for epistasis [2, 3].  
Furthermore, epistasis is one way to account for the problem of “missing heritability”, where the 
analysis of single SNPs (single nucleotide polymorphisms) has explained very little of the 
heritability estimated from twin and adoption studies for complex traits [4, 5].  Accounting for 
interactions among SNPs may explain a larger portion of this heritability [6], expanding our 
understanding of the genomics of human disease and personalized medicine.           

One often cited potentially causal mechanism of gene-gene interaction is due to variation in 
multiple genes in similar pathways, protein families, or genes with similar or redundant biological 
function [7, 8]. This generally implies that interaction occurs between genes scattered throughout 
the genome due to a trans-epistasis effect. Several approaches have been applied to investigate 
these effects in genome-wide association studies [9-12].   

The occurrence of epistatic interactions, however, is not restricted to variation between distant 
genes. Epistatic interactions could also occur between genetic variants in close proximity which 
may impact transcriptional regulation. Recent work investigating the transcriptome of HapMap-
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based cell lines has led to the identification of expression quantitative trait loci (eQTLs) - genetic 
variants that influence the expression of a gene [13, 14].  Veyrieras et al. published an analysis of 
gene expression for 11,446 genes from HapMap-based lymphoblastoid cell lines leveraging 
genotypes for roughly 3 million single nucleotide polymorphisms (SNPs) to identify eQTL SNPs 
in a 500 kilobase (kb) window both upstream of the transcription start site and downstream of the 
transcription end site [15]. This work discovered 744 genes containing at least one significant 
eQTL SNP (p<7×10-6). The single-SNP analysis, however, does not assess the variance in gene 
expression that can be explained by the interaction of multiple SNPs in regulatory regions of the 
gene.  It has been shown that the underlying mechanisms of gene expression are incredibly 
complex, involving the binding of multiple factors to DNA to facilitate transcription and mRNA 
stability [16].  Furthermore, polymorphisms within the binding sites of multiple factors may alter 
binding affinities to various degrees, exerting a non-linear influence on gene expression due to 
synergistic effects [17, 18].  This principle has been demonstrated with multiple sclerosis where 
severity is impacted by functional effects of two alleles in close proximity in the MHC region [19].  
Despite the known complexity of gene regulation, multi-SNP interaction analysis has been 
previously examined only for genes having highly heritable expression but lacking single SNP 
associations [20].  As a secondary analysis of eQTLs using lymphoblastoid lines isolated from 
children with asthma, the authors successfully explain some of the missing heritability from single 
SNP analysis using interactions.  From this limited assessment, the authors conclude that genetic 
interactions may have an important role in the regulation of gene expression.  From these points, 
we hypothesize that combinations of SNPs within the 500 kb window of potential transcriptional 
influence will alter gene expression in humans in a non-linear fashion, here dubbed cis-epistasis. 

An analysis of gene expression phenotypes provides a unique opportunity to systematically 
assess the degree to which epistasis, or nonlinear interactions between genetic variants, might 
influence human traits. Linking the HapMap cell line expression data from [15] with publicly 
available genotype data on the same cell lines gives us a dense collection of genetic variants in 
regions with strong biological plausibility for non-linear multi-SNP interaction within 11,466 
quantitative expression outcomes with established main effects.  Here we leverage this data to 
investigate the nature and degree to which cis-epistasis affects gene expression in humans. 
Furthermore, if epistasis plays an important role in influencing gene regulation, then it logically 
follows that epistasis is an important part of more complex downstream human disease 
phenotypes, as these traits are often associated to SNPs that alter gene expression [21]. Finally, 
investigators could prioritize established combinations of eQTL SNPs to inform a SNP-SNP 
interaction analysis in complex human traits to reduce both the computational and multiple testing 
burdens that plague epistasis analysis in high-throughput genetic analysis. This would also 
motivate reanalysis of existing datasets for multi-SNP interactions that influence complex disease, 
many of which are publicly available at the database of genotypes and phenotypes (dbGaP) [22]. 
Put simply, if a study design which considers cis-epistasis can explain more heritability in gene 
expression, then personal genomics studies that account for cis-epistasis should be more fruitful. 
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2.  Methods 

2.1.  Genotype and Gene Expression Data 

As a starting point for these analyses, we retrieved the full eQTL results database and normalized 
gene expression data from the Veryrieras et al. analysis (available online: 
http://eqtnminer.sourceforge.net/), containing 11,966,533 results (significant and non-significant) 
from 2,437,821 distinct SNPs and 11,466 distinct microarray probes [15].  These results establish 
a mapping between eQTL SNPs and the genes they regulate using a 500kb window both upstream 
and downstream of the regulated gene. We limited all analyses to these SNPs and microarray 
probes.  Genotype data for these SNPs was retrieved from release #23 of the International HapMap 
project for 210 unrelated individuals, including 60 Yoruba (YRI) and 60 CEPH (CEU) parents, 
and 90 unrelated Chinese (CHB)  and Japanese (JPT) samples [23].  Processed gene expression 
data was retrieved from (http://eqtnminer.sourceforge.net/) that had been normalized first by 
quantile normalization within replicates and then median normalized across all HapMap 
individuals.  We then applied the normalization procedure from [15], which is a Gaussian quantile 
normalization for each gene within each population separately to avoid results confounded by 
population stratification (the distribution of expression values within each population is now the 
same). 

2.2.  Statistical Analysis 

From the Veryrieras et al. analysis results database, we extracted all SNPs with eQTL p-values 
<0.05 and their associated microarray probe - that is, all nominally significant SNPs falling within 
500 kb upstream of the transcription start site and 500 kb downstream of the transcription end site.  
Based on this data we generated all possible pair-wise combinations of associated SNPs for each 
microarray probe, constructing 12,107,627 two-SNP models in total. For each model, we 
performed a multiple linear regression analysis fitting a model with additive main effect terms 
(AA = 0, Aa = 1, aa = 2) for the two individual SNPs and a multiplicative interaction term. We 
tested for significance of interaction via a student's T-test of the interaction term coefficient.  All 
regression analyses were conducted using the 'rms'  package for the R statistical computing 
environment [24].  Statistical significance was determined by controlling the false discovery rate 
(FDR) at 0.20, using the 'qvalue' package available for R [25].  Linkage disequilibrium was 
computed using PLINK software, analyzing the combined set of 210 HapMap samples without 
phasing using the '--r2' option [26]. 

2.3.  Annotation of Results Using GWAS Catalog 

The National Human Genome Research Institute (NHGRI) actively maintains a catalog of all 
significant (p<10-5) findings from published Genome-Wide Association Studies (GWAS) 
[27](accessed March, 2010). The National Heart, Lung, and Blood Institute (NHLBI) also recently 
released comprehensive open access database of 118 GWAS studies containing 56,411 significant 
SNP-phenotype associations [28]. Illumina expression probe IDs were matched to transcripts 
within the Ensembl database (Release 49).  Transcripts were matched to Ensembl Genes which 
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have associated gene symbols within the Ensembl database.  These symbols were matched to the 
"gene" fields in the GWAS catalogs to assess the number of matches.  We also referenced the 
SNPs from our most significant results against these catalogs to determine if any single SNPs in 
the regions around our findings were known to influence any complex human phenotypes.  

3.  Results 

3.1.  Gene Expression in Humans is Influenced by Cis-Epistasis 

After exhaustively fitting two-SNP models between known eQTL SNPs surrounding each 
microarray probe (12,107,627 two-SNP models in total), we examined the distribution of the p-
values from the interaction term. The full results catalog from this analysis is available online at 
http://chgr.mc.vanderbilt.edu/bushlab/. Figure 1 is a quantile-quantile plot showing that the 
distribution of interaction term p-values deviates highly from the expected uniform distribution 
under the null hypothesis of no epistasis (diagonal line). This indicates that multi-SNP interaction 
may be common among eQTL SNPs that influence gene expression in humans. 

Fig. 1. Quantile-quantile plot showing the distribution of observed –log10(p-values) against the expected    
–log10(p-values) for the interaction term among 12,107,627 cis-epistasis models. Deviation from the 

expected uniform distribution of p-values under the null hypothesis (indicated by the red line) indicates an 
abundance of significant cis-epistatic interactions. 
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Because a large number of statistical tests were performed, we corrected for multiple testing 
using the false discovery rate (FDR) method described in the methods section. Of the ~12 million 
two-SNP interaction models tested with multiple linear regression, 706 were still significant after 
correcting for multiple testing.  It is of note that our multiple testing correction is extremely 
conservative because our tests of interaction are not independent of each other.  The deviation 
from the null hypothesis of no interaction shown in figure 1 suggests that there may be many more 
than 706 SNP-SNP interactions truly influencing gene expression that we are insufficiently 
powered to detect when applying our FDR correction.  These 706 significant SNP-SNP interaction 
models influenced the expression of 79 unique probes, representative of 79 unique genes. 706 
SNP-SNP interactions reduce to 79 genes because multiple SNP-SNP pairs are associated with the 
same gene.  This redundancy is due to LD between SNPs across models, for example when SNP 1 
of model 1 and SNP 1 of model 2 show strong correlation. However, there was relatively weak LD 
between the two SNPs participating within the interaction; i.e. SNP 1 and SNP 2 of model 1.  The 
distribution of LD statistics (measured by r²) between the SNPs in each interacting pair is shown in 
Figure 2.  The median r² was 0.043, with a median distance between each pair of 108 kb. Taken 
together, this suggests that the majority of the most significant results are indeed epistatic effects 
between independent SNPs, not simple haplotype effects.  

 
Fig. 2. Density histogram showing distribution of linkage disequilibrium (LD) values (r²) between the most 
significant interacting SNP pair influencing expression of 79 genes after correcting for multiple testing. r² 

was calculated using genotype data from the combined set of 210 HapMap samples. 
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Of the 706 interactions significant after FDR correction, we examined one interaction with the 
most significant model fit statistic for each of these 79 genes, referencing each regulated gene to 
the GWAS results catalog described in the methods section.  The GWAS results catalog contains 
SNPs that have been previously associated to a human phenotype, and the associated gene reported 
by the original GWAS publication.  We matched the significant cis-epistatic interactions to the 
GWAS results catalog in two ways: matching the 79 genes being regulated to the gene reported in 
the GWAS study, and matching SNPs participating in the 706 interactions to a SNP associated in a 
GWAS study. When matching by gene, we found that 20 of the 79 genes regulated by cis-epistasis 
have been previously reported in studies of approximately 20 human disease and morphological 
phenotypes (Table 1a).  When matching by SNP, we found 10 additional cis-interactions where 
one of the specific SNPs has been associated to one or more disease or morphological phenotypes 
in humans (Table 1b).  These data indicate that genes regulated by cis-epistasis are implicated in 
human phenotypes. 

For the majority the genes in Table 1, examining single SNP effects on expression only 
resulted in a nominal level of statistical significance (Table 1, columns "eQTL[1/2] P-value"). 
Examining the cis-epistasis interaction between the two SNPs allowed us to achieve a much 
greater degree of statistical significance (Table 1, columns "INT P-value" and "Model P-value").  
Furthermore, accounting for cis-epistasis allows us to explain a much larger proportion of the 
heritability (variance) in gene expression (Table 1, column "R²diff", which is the difference in 
variance explained by the full model accounting for the interaction, "R²full", and the reduced model 
with main effects only, "R²redu").   

3.2.  Structural Characterization of Significant Two-SNP Interactions 

3.2.1.  Genomic Structure 

Next we examined the genomic structural characteristics of the single most significant two-SNP 
epistatic interaction that impact the expression for each of these 79 genes.  Specifically, we 
examined the location of the two eQTL SNPs relative to each other and relative to the transcription 
start site (TSS) and transcription end site (TES) of the regulated gene. Based on structural 
characteristics, we defined four distinct classes of regulatory epistatic interactions:  upstream, 
where both eQTL SNPs lie upstream of the TSS of the gene; downstream, where both eQTL SNPs 
lie downstream of the TES; spanning, where one eQTL SNP is upstream of the TSS and one eQTL 
SNP is downstream of the TES; and intragenic, where at least one eQTL SNP lies within the genic 
region, and the other may be either upstream, downstream, or also in the genic region. 

We observed 25 upstream interactions (32%), 18 downstream interactions (23%), 17 spanning 
interactions (21%), and 19 intragenic interactions (24%).  Interestingly, all our significant results 
were evenly distributed among the four structural classes, as a z-test for population proportions 
revealed no significant difference from 25%.  However, this test does not account for gene size or 
SNP density in the surrounding region. Small genes are less likely to harbor spanning or intragenic 
interactions, and perhaps the fact that we observe an even distribution of genomic structural 
classes is meaningful. Figure 3 shows that the four structural classes are distributed evenly among 
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these most significant 79 cis-epistatic interactions. Figure 3 also reveals that the distribution of 
structural class does not correlate with gene size, organized vertically along the figure. 

3.2.2.  Structure of the Statistical Model 

Statistical epistasis is classically defined as the deviation from additivity in a linear model [29]. 
We have shown that there are significant nonlinear effects impacting gene expression throughout 
the genome. Next we examined the structure of the statistical models of the most significant 
interactions impacting the 79 unique genes discussed above. Specifically, we examined the 
direction of the coefficients of both main effect terms and the interaction term in each statistical 
model. 

 
Fig. 3. Transcribed regions of these 79 genes (gray boxes) are aligned by transcription start site, ordered by 
gene size. Epistatically interacting SNPs that influence the gene's expression are shown as connected hash 
marks, color coded by class: upstream (blue), downstream (green), spanning (gray) and intragenic (red). 
Analysis of the genomic structure of cis-epistatic interactions reveals that all four structural classes are 
evenly represented among the most significant cis-epistatic interactions, and that structural class does not 
correlate with gene size. 
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We found that of these 79 significant cis-epistasis interactions, the main effect coefficients in 
75 of these models were in the same direction. That is, if inheriting one copy of the minor allele of 
a single variant caused an increase in expression, the main effect of the other SNP also resulted in 
an increase in expression. Recall that we only tested for SNP-SNP interactions among eQTL SNPs 
that had an established main effect. Interestingly, of these 75 cis-epistasis models where both main 
effects were in the same direction, the statistically significant interaction term coefficient was in 
the opposite direction. That is, if the main effect of each variant alone caused an increase in 
expression by x units, inheriting both variants resulted in an expression level that is significantly 
lower than the expected 2x increase.  Of the remaining four significant cis-epistasis interactions, 
the main effects were in opposing directions.  For three of these four, the main effect coefficient of 
one SNP in the model approached zero after accounting for the interaction.  This suggests a 
classical modifier effect, where one variant only exerts an effect in the presence of another.  In all 
three of these models, the presence of the “modifier SNP” (β ≈ 0) results in a mitigation of the 
main effect of the other SNP.   

The pattern of coefficients can be seen by examining β1, β2, and βint for the models presented 
in Table 1 (showing only models related to a human phenotype from a GWAS). These results 
indicate that the overwhelming majority of significant non-additive two-SNP interactions 
influencing gene expression represent epistatic genetic heterogeneity rather than multiplicative 
effects. We consider this in greater detail in the discussion section below.  

We also investigated the possibility that aspects of the genomic structure of the model might 
impact the statistical nature of the interaction.  However these analyses revealed no significant 
relationships between genomic structure characteristics (such as class or the physical distance 
between the two SNPs) to the variance explained (R2) or magnitude of the interaction coefficient. 

4.  Discussion 

In this work we examined eQTL SNPs known to impact gene expression in humans for non-
additive epistatic effects by combining transcriptome-wide expression data from HapMap 
lymphoblastoid cell lines with genome-wide SNP data from the same cell lines. Specifically, we 
analyzed over 12 million potential two-SNP interactions for cis-epistasis among SNPs known to 
regulate transcription of a nearby gene, and found that multiple independent eQTL SNPs may 
often interact to influence gene expression non-additively. After correcting for multiple testing, we 
found 706 highly significant cis-epistasis interactions that influence the expression of 79 unique 
genes. 

We characterized the genomic and statistical structure of the most significant cis-epistasis 
model corresponding to each of these 79 genes. Here we discovered that in the vast majority of cis-
epistasis interactions (1) the main effects are in the same direction, and (2) the interaction was in 
the opposite direction. While still considered a nonlinear epistatic interaction, the structure of this 
type of model is referred to as a heterogeneity model [30, 31] rather than a multiplicative model. 
While we observe primarily heterogeneity-type models, our particular approach using linear 
regression may be underpowered to detect models of other statistical structures. Genetic 
heterogeneity is a serious concern with large-scale genetic studies, and is often cited as a reason for 
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the widespread lack of replication in GWAS studies [32, 33]. Because epistatic genetic 
heterogeneity may commonly impact regulation of gene expression, and since SNPs associated to 
complex human phenotypes often result in changes of gene expression [21], it follows that cis-
epistatic genetic heterogeneity could exert a significant influence over complex human traits and 
should be investigated as such.  Others have recently argued that epistatic genetic heterogeneity 
should be considered when analyzing genomic data for association to disease [34]. Despite the fact 
that statistical tools have been available for some time now to accomplish this [35, 36], analyses of 
genome-wide datasets accounting for the possibility of cis-epistasis is a task rarely undertaken.  
Accounting for genetic heterogeneity in gene expression may improve the replicability of existing 
personal genomics studies.   

By matching cis-epistasis interactions to the GWAS results catalogs by SNP, we discovered 
that of the 79 significant cis-epistasis interactions, 10 contained one SNP previously associated to 
a human phenotype via GWAS studies. Nearly all of these associations fall short of “genome-
wide” statistical significance [37] and thus would not be reported in the literature as a relevant 
gene for the phenotype.  Furthermore, the statistical significance of each single SNP on the 
expression of a gene is weak.  However, when we consider the joint effect of both SNPs involved 
in the cis-epistasis interaction, we see a dramatic improvement in the variance of gene expression 
explained.  As such, we hypothesize that some of these reported associations from the GWAS 
catalog would show stronger associations to the phenotype if modeled with their cis-epistasis 
partner SNP.  In light of the prevalence of cis-epistatic interactions, these examples provide 
motivation to re-examine existing datasets for cis-epistatic effects on human phenotypes.  Our 
models provide a compelling set of specific regulatory hypotheses to examine in existing data.   

Many new approaches have been recently used to examine epistasis in GWAS data [9-12].  All 
of these approaches focus on interactions among SNPs within genes related to a common 
biological mechanism, such as pathways, and structural or functional similarity.  With these 
approaches, interaction models consist of SNPs from each of two distant genes – a trans-epistasis 
effect.  In most cases, this precludes the possibility of capturing cis-epstasis effects.  While trans-
epistasis effects are likely to be important for complex disease etiology, we argue that cis-epistasis 
may be of equal or greater importance, and coupling cis- and trans-epistasis analysis methods may 
be more successful.   

Furthermore, the collection of available tools for the analysis of multi-locus interactions in 
personal genomics studies is not likely to discover the cis-epstasis effects we describe here.  
Knowledge-based approaches generally test models of trans-epistasis (as discussed above).  
Sliding window-based haplotype association approaches typically use window sizes based on a 
fixed physical distance or number of SNPs [38].  These approaches would likely not discover cis-
epstasis effects due to the variable and often large distances between the pairs of regulatory SNPs 
within the model (see Figure 3).   

Moreover, any gene-based analysis approach that uses SNP data requires mapping SNPs to 
genes.  This is exclusively done using either physical distance (base-pair proximity) or genetic 
distance (linkage disequilibrium).  The genomic window generated using these approaches is 
typically conservative, including a small region upstream and downstream of the gene region.  
Others have shown in model organisms that regulatory elements exert effects from extremely long 
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distances [39].  Likewise, the many of the single SNP eQTLs used in the examination of this study 
illustrate long range regulatory effects [15].  From our analysis, we provide additional evidence 
that SNPs can influence the regulation of a gene at great distances from the transcription start site, 
and existing SNP-to-gene mapping approaches should take this into account.   

There are several possible molecular phenomena that may underlie these statistical 
observations. SNPs upstream or downstream of the gene may alter transcription factor binding 
sites or otherwise affect the efficiency of the transcriptional machinery. SNPs may also alter the 
binding of micro RNA molecules known to regulate gene transcripts. SNPs in untranslated regions 
may affect the stability of mRNA molecules. The impact of common variation on these processes 
is, however, still largely unknown. 

We therefore suggest that the re-analysis of existing datasets and the development of new 
analysis approaches take into account the possibility that long range regulatory interactions could 
alter gene expression and thus influence human phenotypes.  By accounting for more variance in 
gene expression (thus increasing statistical power), this will improve performance of analytical 
methods and potentially improve the replicability of GWAS findings.  One basic approach would 
be to use the models we have generated as templates for the analysis of cis-epistasis in existing and 
future personal genomics studies.  The 79 genes we identified after multiple testing correction 
suggest the most compelling cases of cis-epistasis.  However, interaction models with less 
significant p-values may explain sufficient variance in a gene’s expression to resolve an 
association with a phenotype. 

One limitation of this study is that whole-transcriptome data was available for only 210 
HapMap samples.  However dense genome-wide SNP data is available for 1397 individuals in 11 
diverse human sub-populations through the HapMap project [23], so if additional gene expression 
data were collected we could improve the statistical power of this analysis to detect cis-epistasis 
effects.  Also, we only considered interactions among eQTL SNPs with a known regulatory effect 
(p < 0.05).  A reanalysis of this data including all SNPs, (even those without a known regulatory 
effect) would be straightforward, perhaps revealing additional cis-epistasis effects; however this 
would cause a power loss from the increased burden of multiple testing correction.    

In summary, we have shown that cis-epistasis is an important phenomenon regulating gene 
expression in humans.  Using this information, we suggest ways in which the performance of 
existing and future analysis approaches can be improved, and how additional insights into human 
biology and disease pathogenesis could be gained from personal genomics studies.   
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High-throughput sequencing is currently a major transforming technology in biology. In this
paper, we study a population genomics problem motivated by the newly available short reads data
from high-throughput sequencing. In this problem, we are given short reads collected from individuals
in a population. The objective is to infer haplotypes with the given reads. We first formulate the
computational problem of haplotype inference with short reads. Based on a simple probabilistic
model on short reads, we present a new approach of inferring haplotypes directly from given reads
(i.e. without first calling genotypes). Our method is finding the most likely haplotypes whose local
genealogical history can be approximately modeled as a perfect phylogeny. We show that the optimal
haplotypes under this objective can be found for many data using integer linear programming for
modest sized data when there is no recombination. We then develop a related heuristic method which
can work with larger data, and also allows recombination. Simulation shows that the performance
of our method is competitive against alternative approaches.

Keywords : High-throughput sequencing; haplotype inference; bioinformatics algorithms; population
genomics.

1. Introduction

High throughput DNA sequencing is increasingly recognized as a major transforming tech-
nology in biology. During the last decade, several novel high throughput sequencing (HTS)

technologies have been developed and commercialized (such as the Roche 454 FLX, Illumina

Genome Analyzer, and ABI SOLiD), and several more are under development. These high
throughput technologies dramatically bring down the sequencing cost and are generating huge

amount of data. Several individual genomes have been sequenced,1,2 and an effort is underway
to sequence one thousand individuals.3 Sequencing may give entire diploid genomes of individ-

uals in a population and potentially reveal all the common (and many of the rare) variations
in the sequenced region. Thus, increasingly complete sequencing using HTS technologies will

become the preferred approach to attack population genomics problems.
On the other hand, the current HTS technologies have some technical limitations. First,

the reads generated by HTS technologies are often short. Although longer sequence reads may
become available in the near future,4 it is expected that short sequence reads are likely to be

still useful in the coming years. Thus, we focus on short reads in this paper. Second, many HTS
technologies have higher error rates than the traditional Sanger sequencing. Some technologies

have error rates of 1% or even higher, which can make it difficult to distinguish between
error and population-scale variation. Additional error sources include inaccurate sequence

∗Corresponding author.
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reads mapping (i.e. locating the reads within a reference genome). Sometimes high coverage

sequencing may reduce the noise and uncertainty, but with increased cost. Therefore, robust
data analysis methods are needed to process the (somewhat noisy) HTS data.

In this paper, we focus on a population genomics problem: inference of a pair of haplo-
types for each individual in the population from the given HTS reads for diploid organisms

(such as human). Here, a haplotype refers to the DNA sequence collected from the same
chromosome, which describes the alleles at polymorphic sites on this chromosome. Collecting

haplotypes from populations is an important population genomics problem, which is evident

in the HapMap project.5,6 See Section 2 for more description on haplotypes. To formulate a
concrete computational problem, we make several assumptions:

(1) In this paper, we only consider short reads. That is, our problem is different from the
haplotype reconstruction problem based on long sequence reads (e.g. Bansal and Bafna,7

He, et al.8). Since the sequence reads are short and often the variations in a population are
relatively sparsely located along the genome, we assume that a short (single or paired-end)

read covers no more than one SNP site. When there is a read covering more than one
SNP sites, our current implementation treats this read as multiple reads, each covering one

SNP, although our implementation can be modified to use the haplotype phase information
contained in such reads.

(2) We do not consider pooling here: we know the individual a sequence read originates.
(3) In this paper, we only concern single nucleotide polymorphisms (SNPs), which can be

stated as a binary value: 0 or 1.
(4) A standard analysis step in analyzing short reads is mapping the short reads against

a reference genome (which we assume is available). We assume that reads mapping is

performed properly so that reads covering one polymorphic site are properly mapped. We
only consider reads that are uniquely mapped and remove reads that are ambiguous in

mapping. Once the reads are mapped, we can identify polymorphic genomic positions by
comparing the mapped reads with the reference genome. Thus, we assume that the SNP

sites can be determined from the mapped reads.

We are now ready to define the precise problem formulation.

Haplotype Inference with Single Short Reads. We are given a set of mapped single
short reads R, each covering a specific SNP site. That is, a sequence read reports an allele at

a polymorphic site for an individual, but we do not know which homologous chromosome it
comes from and also there is some chance the allele reported is incorrect. The goal is inferring

two haplotypes for each individuals from the reads R.
Note that our method also calls genotypes: once haplotypes are inferred, we can obtain

genotypes from the haplotypes. This problem formulation may be useful for (1) sequencing a

new population, where no previously sampled population haplotypes (such as those provided
by the HapMap project) are available, and (2) whole-genome sequencing, where we want to

infer haplotypes for all SNPs (not only common SNPs but also rare SNPs). We note that rare
variants are becoming more important in understanding genotype-phenotype association.9
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2. Background

2.1. Haplotypes and Genealogical History

An important genetic variation is the single nucleotide polymorphism (SNP). A SNP site in
the genome can generally take only two states (alleles) among the individuals in a population.

Thus, we use binary alleles (0 and 1) to represent the state at any SNP site. In this paper,
we focus on SNPs and do not consider other variations such as copy number variation (CNV)

or polymorphism (CNP). Often, we collect genetic variations data at multiple genomic sites.
We call a sequence of genetic variations at these sites a haplotype. A haplotype based on

SNPs can be represented as a binary vector. A diploid organism (such as human) has two

haplotypes per chromosome, and although these are often called ‘copies’, they are not identical.
A description of the conflated (mixed) data from the two haplotypes is called a genotype. When

both haplotypes have state 0 (resp. 1) at a site, the genotype has state 0 (resp. 2), and is called
a homozygote. Otherwise, the genotype has state 1 at that site and is called a heterozygote. We

let n be the number of individuals sampled in the population, and m be the number of SNP
sites. The genotypes of these individuals are represented by an n by m matrix with entries

0/1/2, while their haplotypes are represented by a 2n by m binary matrix. We call the two
ordered alleles from the two haplotypes at a single site of a diploid individual diploid type.

Diploid type can be 0/0, 0/1, 1/0 and 1/1. Note that there are two diploid type (0/1 and 1/0)
for the same genotype 1.

Fig. 1. A genealogical tree.

Genealogical history of sequences in a population explic-
itly shows the origin and derivation of extant sequences, the

locations of all the genomic alterations (both in the genome
and in time), and how the variants are transmitted from par-

ents to descendants. The simplest genealogical model is the

tree model, when recombination is ignored. See Figure 1 for
an illustration. A common assumption is that at most one mu-

tation occurs at any site, which is supported by the infinite

sites model10 from population genetics. We assume infinite

sites model throughout this paper. Therefore, the genealogi-
cal tree is a perfect phylogeny (see, e.g. Gusfield11). A perfect phylogeny implies that at any

two SNP sites, the four ordered pairs of alleles 00, 01, 10 and 11 (called gametes) can not be
all present (called four-gamete test in population genetics). Two sites satisfying this property

are said to be compatible. If all pairs of sites are compatible, the sequences allow a perfect
phylogeny (see e.g. Gusfield11). Note that although gamete and diploid type use similar values,

conceptually they are different: gamete means the setting of the two alleles at two sites of the
same haplotype, while diploid type is for the two alleles at the same site of an individual.

When meiotic recombination is considered, a more complex model is needed. Recombi-
nation takes two homologous chromosomes (haplotypes) and produces a third chromosome

consisting of alternating segments (usually a small number) of the two chromosomes. With

recombination, genealogical history can no longer be modeled as a single tree. Nonetheless,
sometimes we can use local trees to represent local genealogical history for a short region,

within which recombination does not affect the genealogy of the sampled sequences.
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2.2. High Throughput Sequencing (HTS)

A main application of the HTS is on resequencing. In resequencing, we want to find genetic

variations (e.g. SNPs) in a sample of individuals by sequencing the genomes of those indi-
viduals, when an existing, fully-sequenced, reference genome is already known. The general

procedure for many resequencing applications is to first find where a new sequence read orig-
inates by comparing the sequence read with the reference genome (called reads mapping).

Once the originating positions of sequence reads are found, we can then examine the mapped
reads to find variations such as SNPs.

Fig. 2. Illustration of the HTS technolo-
gies. Two thick lines are the two haplo-
types of a diploid individual. Boxes are the
genetic variations (e.g. SNPs), where col-
ors indicate different allele. The short, red
lines are the short sequence reads from this
diploid individual, which are mapped to the
proper location. The read with a dotted box
(on lower right) has a sequencing error.

The current HTS data does not contain informa-

tion on which of the two haplotypes (from a diploid
organism) a read is from. This often adds complexity

to data analysis. For example, suppose we have two
mapped sequence reads that give the same alleles as

the reference genome. We can not assert that the in-
dividual is a homozygote because the two reads may

come from the same haplotype, and yet the sequenced
individual is a heterozygote at the site. Moreover,

suppose we have two mapped reads that give allele
0 and 1 at a SNP site. The individual can still be a

homozygote 0 if the read with 1 allele is caused by
a sequencing error. See Figure 2 for an illustration of

sequencing diploid samples.

3. Haplotyping with Short Reads

Haplotype inference from given genotypes has been actively studied recently.12–15 Thus, a

straightforward approach of inferring haplotypes with short reads is a two-stage one: first
call the genotypes from the given reads (say taking the genotypes with the highest posterior

probability as described in Section 3.1) and then run a population haplotype inference program
(e.g. fastPHASE15) on the called genotypes. The main problem with this two-stage approach

is that inaccurately called genotypes may lead to haplotypes of low quality. This is especially
a concern when the sequencing coverage is low, which may lead to more noise in the called

genotypes. In this paper, we present a new method based the one-stage approach, which infers

haplotypes directly from the reads (i.e. without calling genotypes first). We note that few
published haplotype inference approaches work directly on sequence reads, with the exception

of program Beagle.16 In Section 4, we compare out method with program Beagle.

3.1. Posterior Probability of Genotypes at a Single Site

Given the reads at a SNP site, it is easy to compute the posterior probability of a genotype.

For ease of exposition, we assume each read has probability ε of reporting an incorrect allele at
the site. Note that it is straightforward to allow reads having reads-specific error probability.

Consider an individual i with genotype g at site sj. We let Ri,j be the reads covering sj for
individual i, which report ri,j,0 0-allele and ri,j,1 1-allele for sj. The single SNP genotypic
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posterior probability is the probability of observing a particular genotype g ∈ {0, 1, 2} at a
site sj given all the reads for all individuals at this site (denoted as R−,j). We define fj(g)

as the genotype frequency for genotype g at site sj . We assume that the read of interest was
obtained with equal prior probability from either haplotype. Now the posterior probability of

genotype g can be calculated b:

P (g = 0|R−,j) ∝ P (R−,j|g = 0)P (g = 0) = (1 − ε)ri,j,0εri,j,1fj(0) (1)

P (g = 1|R−,j) ∝ P (R−,j |g = 1)P (g = 1) = 0.5ri,j,0+ri,j,1fj(1) (2)

P (g = 2|R−,j) ∝ P (R−,j|g = 2)P (g = 2) = (1 − ε)ri,j,1εri,j,0fj(2) (3)

We use the Hardy-Weinberg equilibrium to estimate genotype frequency fj(g) at site sj,
from the frequency of alleles 0 and 1 in the population. Allele frequency can be estimated from

the reads R−,j from the observed alleles at site j. Once posterior probability is computed,
a simple two-stage approach calls genotypes at each locus by picking the genotypes with

maximum posterior probability, and then infer haplotypes for the called genotypes using some
population haplotype inference method. As shown in Section 4, this approach is generally not

as accurate as the one-stage approach we now present.

3.2. The Special Case: No Recombination with Small Number of SNPs

We now present an one-stage approach, which infers haplotypes from short reads directly. Our
method rely on the shared genealogical history of the sampled sequences to infer haplotypes.

To get started, we first consider the case when there is no recombination. Later, we will extend
our method to allow recombination.

When there is no recombination, the underlying genealogy is a perfect phylogeny. Gusfield13

first exploited the approach of inferring haplotypes with the perfect phylogeny model. Here,

we develop a perfect phylogeny based method for inferring haplotypes with short reads. That
is, we want to infer haplotypes that allow a perfect phylogeny. Note that perfect phylogeny

alone can not determine the haplotypes since there are many possible haplotypes allowing
perfect phylogeny. Since some haplotypes fit the given short reads better than others, a natural

objective is to find the haplotypes that allow a perfect phylogeny and the probability of short

reads given these haplotypes is maximized.
We now give the technical details. The short reads based perfect phylogeny haplotyping

is, given short reads R, finding a set of haplotypes H s.t. P (R|H) is maximized and H allows
a perfect phylogeny. We let Hi denote the i-th haplotype, where 1 ≤ i ≤ 2n. We let Hi,j denote

the allele (0 or 1) at the j-th site of Hi. As before, we let Ri,j be the set of reads that are
taken from individual i, and cover site sj. Consider a read Ri,j,k ∈ Ri,j, which reports allele

k ∈ {0, 1} for site sj. Now, P (Ri,j,k|H) depends on H2i−1,j and H2i,j. The following is related to
equations 1 to 3 in Section 3.1.

bSimilar equations have been used in Duitama, et al.,17 and also in other statistical genetics papers
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P (Ri,j,k|H) = 0.5 × (P (Ri,j,k|H2i−1,j) + P (Ri,j,k|H2i,j))

Here, P (Ri,j,k|h) = ε if k 6= h, and 1− ε otherwise. We consider all the reads covering site sj

in individual i, where there are ri,j,0 0-reads and ri,j,1 1-reads. Then, based on the assumption
that all reads are independent, we have:

logP (Ri,j |H) = ri,j,0log(P (Ri,j,0|H)) + ri,j,1log(P (Ri,j,1|H))

When H2i−1,j and H2i,j are known, these two alleles determine the diploid type d(H) ∈

{0/0, 0/1, 1/0, 1/1}. To simplify notations, we simply use d for diploid type. When d is given,
H2i−1,j and H2i,j are also known. We let wi,j,d = logP (Ri,j |H), where d is the diploid type at

site sj of individual i. We assume the reads are independent, since reads are short and thus
can be treated as independent given the haplotypes. Note, however, that in practice there may

exist other factors such as mapping bias that can make this assumption less accurate. Then,

logP (R|H) =

n∑

i=1

m∑

j=1

wi,j,d

Our goal is finding haplotypes H, s.t. H allows a perfect phylogeny and logP (R|H) is
maximized. Since logP (R|H) can be computed easily for fixed H, naively we can enumerate

all possible haplotypes H to find the ones that allow a perfect phylogeny and maximize
logP (R|H). But this is infeasible even for data of moderate size. We do not currently know

an efficient algorithm for finding the optimal solution. To develop a practical method, we use
integer linear programming (ILP) to solve the optimization problem exactly.

In our ILP formulation, we have a binary variable Di,j,d for individual i, site sj and diploid
type d ∈ {0/0, 0/1, 1/0, 1/1}, where Di,j,d = 1 if the diploid type formed by H2i−1,j and H2i,j is

d. That is, Di,j,d specifies which diploid type individual i carries at site sj. For any two sites
sj1 and sj2, we define a binary variable Gj1,j2,g. Gj1,j2,g = 1 if sites sj1 and sj2 have gamete

g ∈ {00, 01, 10, 11}. Now we give the sketch of the ILP formulation.

Objective: maximize
∑n

i=1

∑m
j=1

∑
d∈{0/0,0/1,1/0,1/1} wi,j,d × Di,j,d.

Subject to
1 Di,j,0/0 + Di,j,0/1 + Di,j,1/0 + Di,j,1/1 = 1, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m.

[We now impose constraints on Gj1,j2,d. We only give the constraints for Gj1,j2,00. The
rest are similar and thus omitted.]

2 Gj1,j2,00 + Di,j1,1/1 ≥ Di,j2,0/0, for all 1 ≤ j1 < j2 ≤ m and 1 ≤ i ≤ n.
3 Gj1,j2,00 + Di,j2,1/1 ≥ Di,j1,0/0, for all 1 ≤ j1 < j2 ≤ m and 1 ≤ i ≤ n.

4 Gj1,j2,00 + 1 ≥ Di,j1,0/1 + Di,j2,0/1, for all 1 ≤ j1 < j2 ≤ m and 1 ≤ i ≤ n.
5 Gj1,j2,00 + 1 ≥ Di,j1,0/1 + Di,j2,0/0, for all 1 ≤ j1 < j2 ≤ m and 1 ≤ i ≤ n.

6 Gj1,j2,00 + 1 ≥ Di,j1,1/0 + Di,j2,1/0, for all 1 ≤ j1 < j2 ≤ m and 1 ≤ i ≤ n.

7 Gj1,j2,00 + 1 ≥ Di,j1,1/0 + Di,j2,0/0, for all 1 ≤ j1 < j2 ≤ m and 1 ≤ i ≤ n.
[We now ensure no four gametes exists at any pair of sites]

8 Gj1,j2,00 + Gj1,j2,01 + Gj1,j2,10 + Gj1,j2,11 ≤ 3 for all 1 ≤ j1 < j2 ≤ m.
For each 1 ≤ i ≤ n, 1 ≤ j ≤ m and d ∈ {0/0, 0/1, 1/0, 1/1}, there is a binary variable Di,j,d.
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For each 1 ≤ j1 < j2 ≤ m and g ∈ {00, 01, 10, 11}, there is a binary variable Gj1,j2,g.

Briefly, constraint (1) states that each individual must take exactly one of the four diploid

type at a site. Constraints (2) to (7) relate diploid variables Di,j,d with the gamete variables

Gj1,j2,00. For example, constraint (2) states that if the diploid type at site sj1 is not 1/1 (i.e.
Di,j1,1/1 = 0) and the diploid type at site sj2 is 0/0 (i.e. Di,j2,0/0 = 1), then there exists gamete

00 at sites sj1 and sj2. Constraint (8) states that there are at most three gametes for any two
sites, which is required by the perfect phylogeny model. The constraints for the other diploid

type variables are similar. Finally, the objective function uses the diploid type variables times
the weights, which means that only the selected diploid types (i.e. Di,j,d = 1) contribute to

the objective. Once the ILP formulation is solved, the haplotypes are readily retrieved from
the values of the Di,j,d variables.

Simulation in Section 4 shows that this ILP formulation can be practically solved for many
data, especially when the number of sites (i.e. m) is relatively small (say less than 20).

3.3. The General Case: with Recombination and Larger Number of SNPs

When data size grows or recombination occurs, we can no longer directly use the ILP-based ap-
proach in Section 3.2. We now extend our approach to handle data with recombination and/or

larger number of sites. Our strategy is similar in high-level to the approach in Halperin and
Eskin:14 we first infer haplotypes using the ILP based approach in Section 3.2 on small number

of consecutive (and overlapping) SNPs (called windows); then we concatenate these overlap-
ping haplotypes to create complete haplotypes for the entire data. This approach may work

well when recombination rate is relatively low: in this case, there are relatively long genomic
regions with no recombination. Also, even when there is a small number of recombinations

within a region, perfect phylogeny may still be a good approximation of the genealogical
history of the region.

Specifically, we let the size of the sliding window (i.e. number of sites) be W , which starts
from the first site. Each time, we move the window to the right by W

2
sites to obtain haplotypes

in a list of overlapping windows by the ILP approach. Then, we concatenate the haplotypes

of the overlapped windows from the left to the right. Let h2i−1 and h2i be the haplotypes
of individual i in a window, and h′

2i−1 and h′
2i be the haplotypes in an overlapping window.

Note that the haplotypes of an individuals within two overlapped windows are obtained from
different ILP solutions, and thus the two pairs of haplotypes need to be paired up properly.

Moreover, sometimes concatenation may require changes to these haplotypes for consistency.
Here are the main steps of haplotype concatenation.

(1) First concatenate obvious haplotypes. Sometimes only one pairing between the two pairs
of haplotypes is perfect (e.g. the overlapped portions of h2i−1 and h′

2i−1 match perfectly, so

do those of h2i and h′
2i, and the other pairing of the haplotypes is not perfect). In this case,

we simply greedily choose the obvious pairing to obtain two concatenated haplotypes.
(2) The previous step often generates a set of inferred haplotypes. Now we use these already

inferred haplotypes to help to resolve the other undecided haplotype pairs. If two haplo-
types (say h2i−1 and h′

2i−1) can be merged perfectly (i.e. with no mismatches within the
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overlapped region) to generate one of the existing haplotypes, we just take this particular

pairing if the other haplotype pair is approximately consistent.
(3) Since haplotypes within a window are usually closely related through mutation and re-

combination, this provides more hints on how to concatenate the haplotypes. Suppose we
are evaluating two choices of pairing, which generate two sets of candidate haplotypes.

We compare the two sets of haplotypes and choose the ones that are closely related to
the already inferred haplotypes. A haplotype h is closely related to a set of haplotypes H

if (a) the Hamming distance between h and a haplotype h′ ∈ H is small, or (b) h can be

broken into a small number of segments, s.t. each segment appears in H. The later can
be easily evaluated by either a dynamic programming algorithm or a greedy algorithm.18

(4) Here is one more rule in deciding how to concatenate the haplotypes, which is applied
if the previous step leads to multiple equally good choices. When recombination occurs,

some pairs of sites become incompatible. However, a site is still likely to be compatible
with its neighboring sites.19 For a site s, the compatible region of s is a continuous set of

sites, each of which is compatible with s (but there may exist two incompatible sites among
these sites other than s). Based on this observation, we select the haplotype pairings that

give longer compatible regions.

4. Results

We have implemented our method in a program (called HapReads) written with C++, which

uses either CPLEX (a commercial and faster ILP solver) or GNU GLPK ILP solver. HapReads
can be downloaded from: http://www.engr.uconn.edu/˜jiz08001. Our simulation results are

from the CPLEX version. We test our method on simulated data on a 3192 MHz Intel Xeon

workstation. We use Hudson’s program ms20 to generate haplotypes for different settings on
the number of diploid individuals, the number of sites and recombination rate. Then, for

each set of haplotypes, we simulate the sequence reads by (1) deciding the number of reads
to generate based on the sequencing coverage, and (2) randomly picking the sites for the

reads and one of the two haplotypes when reporting the alleles in the reads. To simulate the
sequencing errors and other noise, we generate sequence reads with some error probability ε

(the probability of reporting a wrong allele). We generate 100 datasets for each setting.
To evaluate the accuracy of our method (and the two-stage approach using fastPHASE),

we compare the inferred haplotypes with the true simulated haplotypes. We run program
fastPHASE by letting the program to choose the number of clusters itself. We assume error

probability ε is known to both our method and fastPHASE. Different from haplotyping from
given genotypes (where there is only phasing errors), there are two types of errors: (a) genotype

errors, and (b) haplotype phase errors. Genotype errors refer to the genotypes (implied by
the inferred diploid types) that are different from the true genotypes. We define genotype

accuracy Ag as the percentage of correctly called genotypes. We define phase accuracy Ap as

the switching accuracy21 that is related to the incorrectly phased neighboring heterozygotes.
Note that calculating phase accuracy needs first correcting the genotype errors (i.e. changing

the diploid types in some ways so that the corresponding genotypes match the true genotypes).
There is a subtle issue in computing phase accuracy Ap when there are genotype errors.
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Suppose the true diploid type is 0/1 (i.e. heterozygote), while the inferred diploid type is 0/0

(i.e. homozygote). We can use either 0/1 or 1/0 to correct the genotype that may lead to
different phase accuracy. To get over this issue, we use the average phase accuracy over all

possible choices for these corrected diploid types.

4.1. Accuracy of the ILP formulation

We first evaluate the accuracy of the ILP-based approach in Section 3.2. Recall that the ILP
approach is practical when there is no recombination and the number of sites is relatively

small. In Figure 3, we show the average (genotype and phase) accuracy for various number of
individuals and sites, sequence read error rates and coverage.

(a) Genotype accuracy with 4x coverage (b) Genotype accuracy with 8x coverage

(c) Phase accuracy with 4x coverage (d) Phase accuracy with 8x coverage

Fig. 3. Accuracy of ILP-based method and fastPHASE under different reads error rates and coverage. n: the
number of individuals, m: the number of sites. I: ILP-based method (solid line). f: fastPHASE (dashed line).

Figure 3 shows that our ILP approach outperforms the two-stage approach using fast-
PHASE (or simply fastPHASE) in both genotype accuracy and phase accuracy in most

datasets of the simulations. For example, for 50 individuals, 15 sites, error rate 1% and cov-
erage 4x, the phase accuracy of our method is roughly 10% more than that of the two-stage

approach, even when the difference between genotype accuracy is about 2.5%. This suggests

that our method works well in inferring haplotypes when there is no recombination. As ex-
pected, when read error rate is higher and coverage is lower, phase accuracy tends to be lower.

One downside is that the ILP solving gets slower when the number of sites increases, which
is shown in Figure 4(a).
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(a) Our ILP-based method and fastPHASE (b) Our heuristic approach and fastPHASE

Fig. 4. Running time of ILP-based method, heuristic approach and fastPHASE. n: the number of individuals.
x: reads coverage. ε: reds error rates. ρ: recombination rate. H: our heuristic approach. f: fastPHASE.

4.2. Accuracy of the case with larger data

We now evaluate the performance of the heuristic approach in Section 3.3, which allows us to

handle problem instances that are larger or with recombination. We use 4x coverage in this
simulation. The results are obtained by inferring haplotypes from a sliding window of 10 sites,

and then concatenating the overlapped haplotypes.
Figure 5 shows that in terms of genotype accuracy and phase accuracy, our one-stage

approach is consistently more accurate. Thus, the simulation results show that our one-stage
approach outperforms the two-stage approach in general. Also, our method remains reasonably

accurate with higher sequence reads error (up to 2%) or when recombination rate increases
(up to 10). We note that genotype accuracy in our simulation is often fairly accurate. Phase

accuracy, on the other hand, is in general not very high for both methods. One reason may be

the low sequencing coverage: we use 4x coverage here and increasingly coverage may improve
the phase accuracy. Moreover, as shown in Figure 4(b), the running time of our method is

similar to the two-stage approach for the data we simulate.

4.3. Comparing with program Beagle with simulated and biological data

Program Beagle16 allows uncertain genotypes which are specified by genotype probabilities.

Thus, Beagle can be used as a one-stage approach so we compare program Beagle and our
approach. We run program Beagle with the same data sets generated by program ms in

Section 4.2. The result is given in Figure 6. For data sets with 25 individuals and 50 sites, our
method and Beagle have similar genotype accuracy and our method has slightly higher phase

accuracy, but from data sets with 50 individuals and 100 sites, our method is less accurate
than Beagle. We also test the two approaches on simulated reads for HapMap haplotypes.

We generated 100 data sets of 25 individuals by 50 sites from 100 regions on chromosome 1

of CEU population. The results are similar (results omitted, with Beagle being slightly more
accurate). One possible reason is that HapMap haplotypes are only for common SNPs, where

haplotypes within a window are less likely to allow a perfect phylogeny. More simulations are
needed to further compare the two methods. Overall, one-stage approaches appear to perform
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(a) Ag: 25 individuals and 50 sites. (b) Ag: 50 individuals and 100 sites.

(c) Ap: 25 individuals and 50 sites. (d) Ap: 50 individuals and 100 sites.

Fig. 5. Accuracy of heuristic approach and fastPHASE with different reads error rates. H refers to heuristic
approach (solid lines) and f refers to fastPHASE (dashed lines). ρ is recombination rates.

better than two-stage approaches.

Funding and Acknowledgment

The research is supported by grants from U.S. National Science Foundation (IIS-0803440,
IIS-0916948 and IIS-0953563).

References

1. S. Levy et al., PLoS Biology 5, e254+ (2007).
2. D. Wheeler et al., Nature 452, 872 (2008).
3. The 1000 genomes project consortium http://www.1000genomes.org/.
4. Pacific Biosciences http://www.pacificbiosciences.com/index.php?q=home.
5. International HapMap Consortium, Nature 426, 789 (2003).
6. International HapMap Consortium, Nature 449, p. 851861 (2007).
7. V. Bansal and V. Bafna, Bioinformatics 24, 153 (2008).
8. D. He, A. Choi, K. Pipatsrisawat, A. Darwiche and E. Eskin, Bioinformatics 26, i183 (2010).
9. T. A. Manolio, F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff, D. J. Hunter, M. I.

McCarthy, E. M. Ramos, L. R. Cardon, A. Chakravarti, J. H. Cho, A. E. Guttmacher, A. Kong,
L. Kruglyak, E. Mardis, C. N. Rotimi, M. Slatkin, D. Valle, A. S. Whittemore, M. Boehnke,
A. G. Clark, E. E. Eichler, G. Gibson, J. L. Haines, T. F. C. Mackay, S. A. McCarroll and P. M.
Visscher, Nature 461, 747 (2009).

298



September 24, 2010 19:48 WSPC - Proceedings Trim Size: 11in x 8.5in PSB11-ZhangWu

(a) Ag: 25 individuals and 50 sites. (b) Ag: 50 individuals and 100 sites

(c) Ap: 25 individuals and 50 sites. (d) Ap: 50 individuals and 100 sites

Fig. 6. Accuracy of heuristic approach (solid lines) and Beagle (dashed lines) under different reads error
rates. H refers to Heuristic approach and B refers to Beagle. ρ is recombination rates.

10. G. A. Watterson, Theoretical Population Biology 7, 256 (1975).
11. D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer Science and Computational

Biology (Cambridge University Press, Cambridge, UK, 1997).
12. M. Stephens, N. Smith and P. Donnelly, Am. J. Human Genetics 68, 978 (2001).
13. D. Gusfield, Haplotyping as Perfect Phylogeny: Conceptual Framework and Efficient Solutions

(Extended Abstract), in Proceedings of RECOMB 2002: The Sixth Annual International Con-

ference on Computational Biology , 2002.
14. E. Halperin and E. Eskin, Bioinformatics 20, 1842 (2004).
15. P. Scheet and M. Stephens, Am. J. Human Genetics 78, 629 (2006).
16. B. L. Browning and Z. Yu, American Journal of Human Genetics 85, 847 (2009).
17. J. Duitama, J. Kennedy, S. Dinakar, Y. Hernández, Y. Wu, and I. Măndoiu, Linkage Disequilib-
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1. Introduction 
Synthetic biology is the new frontier of biological engineering.  Instead of incrementally 
altering living organisms, synthetic biologists propose to use biological knowledge, modular 
biological parts, and computer-aided design to quickly develop systems capable of 
unprecedented biochemical feats.  Synthetic biology therefore promises dramatic 
improvements in green chemistry 1, alternative energy 2, drug manufacture 3,4, and 
therapeutirs 5. 

There have been numerous recent advancements in synthetic biology.  The need for 
accuracy at the design and simulation stage have inspired dialogue on how to add functional 
characterizations to parts documentation in the Registry of Standard Biological parts 6,7.  In 
addition, a design strategy -- constructing networks from quantitatively characterized libraries 
of diversified components -- has been proposed 8.  A synthetic network must be integrated 
into an engineering chassis.  To this end the development of evolved ribosome-mRNA pairs 
may be the first step towards an orthogonal cellular network 9 10 11 12. 

Although scientists have made significant progress in synthetic biology, the field must 
still overcome a number of challenges.  To this end, this session offers novel methodologies 
in three general areas: namely, in designing synthetic systems, in developing novel biological 
parts, and in analyzing complex networks. 

                                                
* Deceased 
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2. Session Papers  
Design principles and development strategies from other engineering disciplines must be 
adjusted to the peculiarities of biological systems.  Kharam et al. propose a rate independent 
scheme to implement binary counting using chemical reactions.  McDermott et al. develop 
enhanced network models to determine biological dependencies that help predict behavior of 
a system. Senum et al. present a collection of computational modules implemented with 
chemical reactions, independent of exact reaction rates. Uhlendorf et al. have proposed and 
developed a system towards in vivo control of gene expression using an experimental 
platform combining micro-fluidic device, an epi-flouresence microscope and software 
approaches. Verdicchio et al. have demonstrated how logic minimization of the collections 
of state in Boolean network basins of attraction can help identify targets for intervention.  
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This paper describes a scheme for implementing a binary counter with chemical reactions. The value
of the counter is encoded by logical values of “0” and “1” that correspond to the absence and presence
of specific molecular types, respectively. It is incremented when molecules of a trigger type are injected.
Synchronization is achieved with reactions that produce a sustained three-phase oscillation. This oscillation
plays a role analogous to a clock signal in digital electronics. Quantities are transferred between molecular
types in different phases of the oscillation. Unlike all previous schemes for chemical computation, this scheme
is dependent only on coarse rate categories for the reactions (“fast” and “slow”). Given such categories, the
computation is exact and independent of the specific reaction rates. Although conceptual for the time being,
the methodology has potential applications in domains of synthetic biology such as biochemical sensing and
drug delivery. We are exploring DNA-based computation via strand displacement as a possible experimental
chassis.

1. Introduction

In the nascent field of synthetic biology, researchers are striving to create biological systems
with functionality not seen in nature. The field aims to apply engineering methods to biology in
a deliberate way. Beyond engineering ends, such methods also provide a constructive means to
validating new science. Understanding is achieved by constructing and testing simplified systems
from the bottom up, teasing out and nailing down fundamental principles in the process.1

We bring a particular mindset to tackle the problem of synthesizing new biological functions. We
tackle synthesis at a conceptual level, working with abstract molecular types. Working at this level,
we implement computational constructs, that is to say, chemical reaction networks that compute
specific outputs as a function of inputs. Then we map the conceptual designs onto specific chemical
substrates.

We model the chemical dynamics in terms of mass-action kinetics:2,3 reaction rates are propor-
tional to (1) the quantities of the participating molecular types; and (2) reaction constants. We aim for
robust constructs: systems that compute exact results independently of specific reaction constants.
All of our designs are formulated in terms of two coarse rate categories (e.g., “fast” and “slow”).
Given such categories, the computation is exact and independent of the specific reaction rates.

The analogy for this approach is the design flow for digital electronics, where different designs
are systematically explored at a technology-independent level, in terms of Boolean functions. Once
the best design is found, it is mapped to specific technology libraries in silicon.4 An overarching
goal of the digital paradigm is robustness: digital electronics delivers voltage values that correspond
to zero and one reliably, in spite of fluctuations in the signals.

∗This work is supported by an NSF EAGER Grant, #CCF-0946601, and by an NSF CAREER Award, #0845650.
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In our prior and related work, we have described a variety of computational constructs
for chemical reaction networks: logical operations such as copying, comparing and increment-
ing/decrementing;5 programming constructs such as “for” and “while” loops;6 arithmetic operations
such as multiplication, exponentiation and logarithms;5,6 and signal processing operations such as
filtering.7

In this paper, we describe a scheme for implementing a binary counter with chemical reactions.
The value of the counter is encoded by logical values of “0” and “1” that correspond to the absence
and presence of specific molecular types, respectively. It is incremented by one every time molecules
of a trigger type are injected. Synchronization is achieved with reactions that produce a sustained
three-phase oscillation. This oscillation plays a role analogous to a clock signal in digital electronics.
Quantities are transferred between molecular types in different phases of the oscillation.

This paper is organized as follows. In Section 2, we summarize the main principles and the
basic algorithm for our implementation of the binary counter. In Section 3, we introduce some
specific concepts that we use, namely the concepts of “prereactants” and “absence indicators.” We
also introduce the essential synchronization mechanism that we use, a three-phase oscillation that
we call “red-green-blue” (RGB). Then we present the design of the molecular counter. In Section 4,
we present simulation results obtained with an ordinary differential equations (ODE) solver. Finally,
in Section 5, we discuss DNA strand-displacement reactions as a possible experimental chassis for
our method.8

2. Counting in Binary

We first review some of the algorithmic principles of counting in binary. Then we present an
intuitive description of our approach to implementing a molecular binary counter.

Z Y X

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
...

...
...

Fig. 1. Sequence of values in a
three-bit binary counter.

Molecular Binary Counter

Increment the binary 

number: produce and 

consume X, Y, and Z.

Consume Xinj.

Inject molecular type Xinj

Fig. 2. Basic functionality of the molecular counter.

303



2.1. General Principles

Figure 1 lists the binary numbers that a 3-bit binary counter cycles through, starting at “000” and
ending at “111.”

(1) Every time the binary count is incremented, the least significant (i.e., right-most) bit is flipped.
For instance, in the sequence 000 → 001 → 010 → 011 → 100 → 101, note that the least
significant bit (underlined) alternates: 0 → 1 → 0 → 1 → 0 → 1.

(2) Every time the binary count is incremented, exactly one bit changes from “0” to “1”. (However,
several bits may change from “1” to “0.”)
For instance, in the sequence 000 → 001 → 010 → 011 → 100 → 101, the bits that change from
“0” to “1” are underlined. Note that there is exactly one such bit each time. (As will be discussed
in Section 3, this principle is important for synchronizing our molecular counter.)

(3) When the binary count is incremented, a given bit changes from “0” to “1” only if all bits of
lesser significance (i.e., all bits to the right of it ) are “1.”
For instance, in the sequence 000 → 001 → 010, the second bit changes from “0” to “1” when
the first bit is “1.” In the sequence 011 → 100 → 101 the third bit changes from “0” to “1” when
the first and second bits are “1.”

2.2. Towards a Molecular Binary Counter

X0 1

Produce X

Y0 1

Produce Y

Z0 1

Produce Z

Restart 

Counter

Inject Xinj

Start Counter

Consume Y

Consume X

Consume Z

Fig. 3. Basic algorithm for the molecular counter.

Throughout this paper, the exposition will be
in terms of a three-bit binary counter. The ideas
can readily be generalized to an n-bit counter. We
encode the binary values of “0” and “1” by the
presence or absence of specific molecular types,
respectively. For the binary sequence in Figure 1,
we use the types X, Y and Z. (We will call these
“bit types.”) For instance, if types X and Z are
present, while type Y is absent, the corresponding
binary number is “101”.

Figure 2 shows the basic functionality of our
molecular counter. Every time we want to incre-
ment it, we inject some amount of a “trigger” type
Xinj. The system consumes Xinj and increments
the binary value specified by the quantities of X,
Y and Z. Once all the molecules of Xinj have been
consumed, the counter can be incremented again.

Tables 2 and 3 specify the set of chemical re-
actions for our three-bit counter. In order to eluci-
date the final design, we will provide a succession
of design refinements:

(1) We start with a simple intuitive set of reactions, ignoring issues such as synchronization (Sec-
tion 2.3).
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(2) We introduce two specific concepts that we use to implement the counter: the concept of “pre-
reactants” and that of “absence indicators” (Section 3.1).

(3) We introduce our synchronization mechanism: a three-phase chemical oscillation that we call
“red-green-blue” (RGB) (Section 3.2).

(4) Finally, we provide the full design of the counter, consisting of 24 chemical reactions (Sec-
tions 3.3).

2.3. Intuitive Model

A molecular counter cannot directly set bits to “0” or to “1”; rather the functionality must be
achieved by reactions that produce and consume the molecular types corresponding to these bits.
Call the three bits of the counter, the high, middle and low bits, encoded by the presence/absence of
types Z, Y and X, respectively. The low bit is set to “1” by producing molecules of X whenever the
type Xinj is injected into the system:

Xinj → X. (1)

The middle bit is set to “1” by producing molecules of Y whenever the type X is present:

X → Y. (2)

The high bit is set to “1” by producing molecules of Z whenever both types X and Y present:

X + Y → Z. (3)

Note that, in each of these reactions, the system consume molecules of X, Y and Z, reseting the cor-
responding bits to “0.” When molecules of all three types X, Y and Z are present, the corresponding
binary number is “111”. The counter is reset:

X + Y + Z → ∅. (4)

(The symbol ∅ as a product indicates “nothing”, meaning that the type degrades into products that
are no longer tracked or used.)

A flowchart for the algorithm that we use is given in Figure 3. In the figure, decisions to produce
and consume molecular types are made according to the presence and absence of types. (As we
refine the design, we will have to implement these “decisions” through chemical reactions.) Let us
assume the current binary number is set to “101”. This number corresponds to the absence of Y and
the presence of X and Z. Suppose that we inject the trigger type Xinj; we move to the first decision
box. Since X is present, we do not produce more of it. We consume molecules of X and move to the
next decision box. Here we check for the presence of type Y . Since Y is absent, we move to the left
and produce molecules of Y . With the absence of X and the presence of Y and Z, the binary number
has changed to “110”. Next we return to “idle state,” waiting for the next injection.

3. Synchronization

The challenge in setting up the molecular counter is that all the chemical reactions fire asyn-
chronously. Each reaction starts producing its products as soon as its reactants are available. If these
products participate as reactants in other reactions, then they immediately start getting consumed.
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Accordingly, with Reactions 1–4, we will not get a binary counter, encoded by the presence and
absence of X, Y and Z. Rather, we will get a jumble of all of these. In particular, note that with
Reaction 2, Y is produced from X. As soon as molecules of Y are available, Reaction 3 starts con-
suming molecules of X and Y to produce molecules of Z. This contradicts the second principle
described in Section 2.1: we should only change one bit from “0” to “1” in each increment opera-
tion. To mitigate against this issue, we introduce additional molecular types called “prereactants.”
We also introduce “absence indicator” types to coordinate the transfer between prereactants and
reactants.

3.1. Prereactants and Absence Indicators

X0 1

Y0

Z0 1

Inject Xinj=Xp 

Start

1

Produce X

Produce Y

Produce Z
Restart Counter

xpx aXXa +→+

ypy aYYa +→+

zpz aZZa +→+ ∅→+ pZZ

XXa

a

x

x

→+
→∅

YYa

a

y

y

→+

→∅

ZZa

a

z

z

→+
→∅

Produce Yp

pp YXX →+

Produce Zp

pp ZYY →+

Fig. 4. Modified algorithm for the molecular counter, with
prereactants and absence indicators.

We use the following notation to describe
these concepts. For each bit i of the
counter,

(1) Qi is a bit type corresponding to
ith bit. (For our three-bit molecular
counter, we have Q1 = X, Q2 = Y

and Q3 = Z.)
(2) aqi is an absence indicator type for

type Qi. (For our three-bit molecular
counter, we have aq1 = ax, aq2 = ay

and aq3 = az.)
(3) Qpi is a prereactant type for Qi. (For

our three-bit molecular counter, we
have Qp1 = Xp, Qp2 = Yp and Qp3 =
Zp.)

(4) We set Xp = Xinj: the trigger type is
the first prereactant.

All the absence indicators aqi are pro-
duced continuously at the slow rate:

∅ slow−−→ aqi; (5)

Here the symbol ∅ as a reactant indicates
that the reaction does not alter the quantity
of the reactant types, perhaps because the
quantity of these is large or replenishable.
If Qi is present, then its absence indicator
aqi is destroyed at the fast rate:

aqi + Qi
fast−−→ Qi. (6)

However, if Qi is absent, then aqi persists, so its presence indicates the absence of Qi, as required. If
both a prereactant Qpi and the absence indicator aqi for the i-th bit are present, we produce type Qi
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at the fast rate:

aqi + Qpi
fast−−→ Qi + aqi. (7)

Finally, the prereactant Qp(i+1) for the (i+1)-st bit is produced at the fast rate if both the prereactant
Qpi and the type Qi for the i-th bit are present:

Qi + Qpi
fast−−→ Qp(i+1). (8)

Table 1 lists the corresponding reactions for our three-bit counter in terms of the bit types X, Y and
Z instead of generic Qi’s. Figure 4 shows a modified version of the flowchart in Figure 3, this time
with prereactants and absence indicators.

Table 1. Reactions for the molecular counter, with prereactants and absence indicators.

# Qi Z Y X

1 ∅ slow−−→ aqi ∅ slow−−→ az ∅ slow−−→ ay ∅ slow−−→ ax

aqi + Qi
fast−−→ Qi az + Z

fast−−→ Z ay + Y
fast−−→ Y ax + X

fast−−→ X

2 aqi + Qpi
fast−−→ Qi + aqi az + Zp

fast−−→ Z + az ay + Yp
fast−−→ Y + ay ax + Xp

fast−−→ X + ax

3 Qi + Qpi
fast−−→ Qp(i+1) Z + Zp

fast−−→ ∅ Y + Yp
fast−−→ Zp X + Xp

fast−−→ Yp

3.2. Three-Phase Synchronization

Including absence indicators and prereactants establishes an order for the transfers of molecular
quantities in the counter, but we need a mechanism to ensure that each transfer completes before the
next one begins. As indicated on the left-hand side of Figure 5, we must ensure that the accumulation
or destruction of the absence indicator completes before the production of the bit type begins; in
turn, we must ensure that the production of the bit type completes before the production of the next
prereactant begins, and so on. Similarly, as indicated on the right-hand side of Figure 5, we must
ensure that the bit types X, Y and Z are not produced simultaneously. We must turn the two “dials”
shown in Figure 5 simultaneously. To do so, we introduced a synchronization mechanism based on
sustained chemical oscillation.

Chemical oscillations, such as those produced by Belousov–Zhabotinsky (BZ) system, have been
widely studied by the chemical engineering community.9 For our purposes, we require an oscillator
with a specific property: it must have three symmetric phases for synchronizing both of the “dials”
in Figure 5. To this end, we have developed a scheme for chemical oscillation that we call “Red-
Green-Blue” (RGB). A detailed analysis of the scheme is given in related work.7 Here we give only
a cursory description of it.

Like the BZ system, our scheme is a perfect oscillator, producing sustained oscillations for a wide
range of reaction rates. The scheme is illustrated in Figure 6. Reactions are “color coded” – that is to
say assigned to one of the three categories. Quantities are transferred between color categories based
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on the absence of types in the third category: red goes to green in the absence of blue; green goes
to blue in the absence of red; and blue goes to red in the absence of green. We introduce molecular
types R, G and B. Computation cycles are implemented by transferring quantities among three types
R, G and B, with following reactions:

b + R
slow−→ G + b (9) r + G

slow−→ B + r (10) g + B
slow−→ R + g (11)

We generate “absence indicators” types r, g and b corresponding to R, G and B:

∅ slow−→ r
R + r fast−→ R

(12)
∅ slow−→ g

G + g fast−→ G
(13)

∅ slow−→ b
B + b fast−→ B

(14)

The absence indicators are continually generated. However, they only persist in the absence of the
corresponding color-coded signals, since they are quickly consumed by signal molecules in their
corresponding color categories. This feature assures that as long as any reaction in a given phase has
not fired to completion, the succeeding phase cannot begin. We also include reactions that accelerate
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Fig. 8. Simulation results for RGB oscillation.

and isolate the transfers in each phase. For instance, in Reaction 15 two molecules of G combine
with one molecule of R to produce three molecules of G. The transfer will occur at a higher rate.
Simulation results illustrating the RGB oscillation are shown in Figure 8. In the next section, we
incorporate this scheme to synchronize the molecular counter, using RGB in a way analogous to a
clock signal in digital electronics.

R + 2G
slow−→ 3G (15) G + 2B

slow−→ 3B (16) B + 2R
slow−→ 3R (17)
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3.3. The Molecular Binary Counter with RGB scheme

Figure 7 shows the assignment operations to phases of the computation. Absence indicators r, g
and b are used to initiate reactions in each phase. In lieu of the generic transfer reactions 9– 11, we
use transfer reactions that produce the absence indicators ax, ay and az for X, Y and Z, respectively:

r + G
slow−−→ B + ax + r (18) g + B

slow−−→ R + ay + g (19) b + R
slow−−→ G + az + b (20)

This obviates the need for reactions of the form of Reaction 5 to generate ax, ay and az.
A set of reactions for the counter that incorporates the RGB transfer reactions is described in

Figure 9. This is nearly the final design. However, we need a few more reactions to deal with ac-
cumulation of unused absence indicators. The transfer reactions 18–20 supply absence indicators
ax, ay and az in every RGB cycle. The scheme cycles continuously, irrespective of injections of Xinj.
Accordingly, unused absence indicators ax, ay and az will accumulate. To mitigate against this, we
include “clean-up” reactions initiated in the presence of corresponding absence indicators r, g and b:

b + ax
fast−−→ b (21) r + ay

fast−−→ r (22) g + az
fast−−→ g (23)

As shown in Figure 9 the corresponding clean-up reactions always complete before the produc-
tion of ax, ay and az begins. For instance, the absence indicator az is pushed into the system by
Reaction 20 whenever the absence indicator b is present. Therefore, the clean-up Reaction 23 for az

fires in the preceding RGB phase that was initiated in the presence of absence indicator g.
Table 2 shows the final set of RGB reactions and Table 3 shows the final set of reactions for X,

Y and Z. Together, these comprise our complete design of the molecular counter.

Table 2. Final version of RGB reactions for the molecular counter.

Production of r, g, b Destruction of r, g, b Transfer reactions Speed-up reactions Clean-up reactions

∅ slow−−→ r R + r fast−−→ R b + R
slow−−→ G + az + b R + 2G

slow−−→ 3G b + ax
fast−−→ b

∅ slow−−→ g G + g fast−−→ G r + G
slow−−→ B + ax + r G + 2B

slow−−→ 3B r + ay
fast−−→ r

∅ slow−−→ b B + b fast−−→ B g + B
slow−−→ R + ay + g B + 2R

slow−−→ 3R g + az
fast−−→ g

Table 3. Final version of reactions for molecular types X , Y and Z.

Accumulation or destruction of absence indicators Production of molecules Production of prereactant

r + ax + X
fast−−→ X + r g + ax + Xp

fast−−→ X + ax + g b + X + Xp
fast−−→ Yp + b

g + ay + Y
fast−−→ Y + g b + ay + Yp

fast−−→ Y + ay + b r + Y + Yp
fast−−→ Zp + r

b + az + Z
fast−−→ Z + b r + az + Zp

fast−−→ Z + az + r g + Z + Zp
fast−−→ g
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RGB cycles all the time pushing ax, ay, and az into the system.

Clean-up reactions:

Speed-up reactions:

Counting initiated by Xinj operates synchronously with RGB cycle

rXXar fast
x +→++

gYYag fast
y +→++

bZZab fast
z +→++

rZYYr p
fast

p +→++

gZZg fast
p →++

bYXXb p
fast

p +→++

raZZar x
fast

pz ++→++

gaXXag x
fast

px ++→++

bYYab fast
py +→++

raBGr x
slow ++→+ gaRBg y

slow ++ →+ baGRb z
slow ++→+

xa

rar fast
y →+ bab fast

x →+gag fast
z →+

BBG slow 32 →+ RRB slow 32 →+ GGR slow 32 →+

ya
za

Fig. 9. Diagram for the molecular counter with RGB synchronization.

4. Simulation results

As we discuss in Section 5, we are targeting DNA strand displacement as a potential experimen-
tal chassis for our molecular counter.8 Accordingly, the constituent chemical reactions must all be
either uni- or bimolecular reactions. Thus, we split all trimoleclar reactions of the form

R1 + R2 + R3
k1−→ R4 + · · · (24)

in Table 2 and Table 3 into the sequence of bimolecular reactions

R1 + R2

k1−⇀↽−
k2

I

I + R3
k2−→ R4 + · · · .

(25)

The first step in this process is reversible: two molecules R1 and R2 can combine at a rate k1, but in
the absence of any molecules R3, the combined form will dissociate back into molecules R1 and R2

at a rate k2 which is greater than k1. In the presence of R3, the sequence of reactions will proceed,
producing R4 + · · · . The overall rate of reactions is determined by the slowest reaction and therefore
set by k1.

With such transformations into uni- and bimolecular reactions, we simulate the chemical kinetics
of our molecular counter with an ordinary differential equation (ODE) solver. We chose the param-
eters, the concentration values and reaction rates as follows. The concentrations are unitless; for an
experimental setup, these would be scaled appropriately. The initial concentration of our trigger type
Xp was set to 0.05. (Recall that we use Xp as the trigger type, so Xinj = Xp.) The initial concentration
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of G was set to a value much greater than that of Xp, namely 10. The rates of all the “slow” reactions
were set to unity. The rates of all the “fast” reactions were set five orders of magnitude higher.

Figure 10 shows the change in concentration X, Y and Z for 20 injections. We observed a stable
behavior of the molecular binary counter for 40 injections. The data from the simulation for the first
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Fig. 10. Simulation results for molecular types X , Y and Z for 20 injections.

8 injections is shown in Table 4. We see exactly the behavior that we expect for a binary counter.

• The threshold for logical “1” for the bit types X, Y and Z can be set at 97% of the injected
concentration of Xp.

• The threshold for logical “0” for the bit types X, Y and Z can be set at 3% of the injected
concentration of Xp.

Table 4. Data from the ODE simulation of the molecular counter for 8 successive incre-
ment operations.

# Injection Binary number Concentration Z Concentration Y Concentration X

0 000 0.0000 0.0000 0.0000
1 001 0.0000 0.0000 0.0499
2 010 0.0000 0.0500 0.0001
3 011 0.0000 0.0500 0.0501
4 100 0.0497 0.0003 0.0007
5 101 0.0497 0.0003 0.0507
6 110 0.0497 0.0503 0.0007
7 111 0.0490 0.0496 0.0493
8 000 0.0002 0.0004 0.0007
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5. Discussion

We have demonstrated the design of a molecular counter that is robust and accurate. Given only
rate categories of “slow” and “fast, our counter computes exact binary values. It does not matter how
fast any “fast” reaction is relative to another, or how slow any “slow” reaction is relative to another –
only that “fast” reactions are fast relative to “slow” reactions. Throughout the paper, the exposition
was in terms of a three-bit counter. In future work, we will generalize the construction to n bits.

Our contribution is to tackle the problem of synthesizing computation at a conceptual level,
working not with actual molecular types but rather with abstract types. In future work, we will
demonstrate our binary counter through in vitro experiments with DNA. It has been shown that DNA
strand displacement reactions can emulate the chemical kinetics of nearly any chemical reaction
network. Indeed, in recent work, researchers at Caltech have developed a compiler that translates
abstract chemical reactions of the sort that we design into specific DNA reactions.8

Recent work has demonstrated both the scale of computation that is possible with DNA-based
computing,10 as well as exciting applications.11 We comment that our design of a molecular counter
could be applied for the task of counting cell divisions. This task is important for the analysis of
aging and, perhaps, for the detection of cancer, where cell divisions run rampant. Also, our design
might find applications in biochemical sensing and drug delivery.
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DEFINING THE PLAYERS IN HIGHER-ORDER NETWORKS: PREDICTIVE MODELING 

FOR REVERSE ENGINEERING FUNCTIONAL INFLUENCE NETWORKS 

JASON E. MCDERMOTT1, MICHELLE ARCHULETA1, SUSAN L. STEVENS2, MARY P. STENZEL-POORE2, 
AND ANTONIO SANFILIPPO1 

1Pacific Northwest National Laboratory, Richland, WA, USA 
2Oregon Health & Science University, Portland, OR, USA 

Determining biological network dependencies that can help predict the behavior of a system given prior 
observations from high-throughput data is a very valuable but difficult task, especially in the light of the 
ever-increasing volume of experimental data. Such an endeavor can be greatly enhanced by considering 
regulatory influences on co-expressed groups of genes representing functional modules, thus constraining 
the number of parameters in the system. This allows development of network models that are predictive of 
system dynamics. We first develop a predictive network model of the transcriptomics of whole blood from 
a mouse model of neuroprotection in ischemic stroke, and show that it can accurately predict system 
behavior under novel conditions. We then use a network topology approach to expand the set of regulators 
considered and show that addition of topological bottlenecks improves the performance of the predictive 
model. Finally, we explore how improvements in definition of functional modules may be achieved 
through an integration of inferred network relationships and functional relationships defined using Gene 
Ontology similarity. We show that appropriate integration of these two types of relationships can result in 
models with improved performance. 

1. Introduction 

Stroke is currently the second leading cause of death in the Western world [1] and is estimated to 
cause 10% of deaths worldwide. Patients who do not die from a stroke suffer from neurological 
impairment that is significantly disabling in a large percentage of survivors. Preconditioning by 
induction of a small stroke or treatment with Toll-like receptor (TLR) agonists prior to induction 
of a large stroke provides a significant degree of neuroprotection in animal models [2]. To 
provide molecular level understanding of the dynamics of stroke processes we have previously 
used high-throughput transcriptomic profiling using microarrays to follow the dynamics of 
stroke and neuroprotection in a mouse model [2, 3]. Predictive models of regulatory and 
functional processes occurring during neuroprotection and stroke would offer a very powerful 
tool to investigate novel methods for prevention and treatment of this important disease. 

Models that can predict aspects of system behavior from the observation of a small number 
of system inputs or components have been largely limited to very general models [4], focused 
models that can be fully parameterized, or models for which there is a large body of existing data 
about the molecular interactions between components [5]. Inference of specific interactions 
between large numbers of system components is limited by the number of observations of the 
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system being examined. Specific interactions of interest include protein-protein interactions, 
interactions between signal transduction pathway members (e.g. phosphorylation events), and 
transcription factor mediated regulatory events (activation or repression of a gene or set of 
genes). Even with high-throughput experimental techniques most experimental designs are 
limited in their ability to produce detailed molecular networks of regulatory influences on a 
system-wide level. An alternative to determination of mechanistic networks between individual 
components is to constrain the parameter space by considering networks that describe the most 
important regulatory influences between groups of genes that represent important functions [6], 
here called functional influence networks. Functional influence networks involve regulatory 
processes that govern a specific set of system responses. The networks can be represented as 
causal influences between regulators, which mediate transitions between system states, and 
functional modules that provide the mechanism of action for the system [7]. For example, 
immune cells such as macrophages respond to certain kinds of stimuli (e.g. pathogen detection) 
by activating an inflammatory program that includes the transcriptional activation and 
subsequent release of inflammatory cytokines, pro-inflammatory effectors, and other 
components of the inflammatory program [8, 9]. These responses are regulated by a set of 
transcription factors (e.g. AP1, NFκΒ, and IRFs) that respond to pathogen associated molecular 
patterns (PAMPs) detected by TLRs. In a functional influence network the inflammatory 
response genes responding with similar dynamics would be considered to be functional modules 
and the genes that regulate their activation would be considered their regulatory influences. In 
this way the dynamic behavior of the network is simplified to facilitate modeling and represented 
only as expression patterns that represent collections of similarly behaving genes.  

Modeling the dynamic behavior of functional influence networks makes it possible to chart 
the development of a biological network through time, with reference to experimental evidence 
from gene expression data. For example, Tegner et al. (2003) have created a method that models 
the change in each gene's expression as a linear process [10]. Another algorithm created recently 
for such dynamic modeling uses an ODE model for regulatory dynamics and L1 shrinkage as a 
means of selecting parsimonious models [11, 12]. The result is a coupled set of ODEs, each ODE 
describing the expression of a set of co-regulated genes as a function of the expression of genes 
identified as being regulators. A separate model is learned for each functional module, with each 
model defining the network edge connections between that cluster and its regulators and 
assigning strengths (coefficients) to each such regulatory interaction. Thus, the approach infers 
the regulatory network structure as it builds individual dynamic models for each regulated 
functional module. 
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Despite the significance of dynamic regulatory models, the performance of many inference 

methods is highly dependent on the initial clustering techniques. Inference methods require 
determination of subtle differences in patterns of gene expression profiles to best identify co-
regulated functional modules. Unfortunately gene expression data has inherent noise and 
standard clustering techniques applied to limited sets of observations will inappropriately 
identify clusters. Existing knowledge, for example functional information about genes 
represented in the Gene Ontology (GO), can be used to augment clustering approaches. Methods 
to incorporate knowledge-driven techniques into predictive models of pathways have been 
recently proposed in which the GO is used to filter [13], enrich [14] or restructure [15] gene 
associations inferred from gene expression data through reverse engineering methods. These 
approaches have been shown to improve the biological plausibility of the network inferences 
drawn and the accuracy of the predictive models built. However, they still treat data- and 
knowledge-based inferences as incommensurable inputs, and the impact of each approach on the 
inferred network is factored in separately. 

The goal of the current study is to show how dynamic modeling using functional influence 
networks can be used to infer the important regulatory influences that drive neuroprotection or 
injury during stroke in a mammalian model system and how incorporation of data from other 
sources can be used to improve model performance. We accomplish this using clustering, 
network topology and functional associations to refine components of functional influence 
networks (regulators and functional modules). We then use a machine-learning approach to learn 
relationships between components that can be used to robustly predict system dynamics. Our 
results show that predictive modeling in complex eukaryotic systems can be a useful way of 
generating hypotheses about the high-level functional regulation of the system, even with 
relatively few observations of the system. This approach provides valuable information about the 
processes of neuroprotection and injury during stroke in a whole animal model system, and 
generates a number of interesting hypotheses that are being experimentally validated. 

2.  Methods 

2.1. Data sets 
Briefly, we used a dataset of microarray results from blood of mice in a neuroprotection study, 
and data processing was performed as previously described [3]. The dataset comprises five 
treatments; ischemic preconditioning, lipopolysaccharide (LPS) or CpG injection, or control 
treatments, saline injection and sham surgery. The samples were taken 3, 24 and 72 hours post-
preconditioning treatment, a stroke was induced at 72 hours then two more samples, 3 and 24 
hours post-stroke induction, were taken for each preconditioning treatment. 
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2.2. Co-expression networks 

We filtered this data to exclude probes that do not change significantly (p value > 0.05, fold-
change expression < 2.0) resulting in 7352 transcripts. The expression levels of these transcripts 
(fold change relative to control untreated animals) were used as input to the CLR method [16] 
and the resulting relationships were filtered to a Z score of 5.0, yielding a network with 1880 
nodes and 14205 relationship edges. We inverted the adjacency matrix for this network and 
treated it as a distance matrix for hierarchical clustering using complete linkage agglomeration 
and cut the dendrogram to generate 46 clusters to serve as initial targets for modeling. 

The igraph library in the R statistical language was used to calculate the topology of the 
inferred networks. Bottlenecks are considered to be those genes with high betweenness centrality 
measures in the network [17, 18]; the highest 2.5% in this study. 

2.3. Predictive modeling cross-validation approach 

To infer a predictive regulatory model of neuroprotection during stroke we expanded on an 
algorithm that was previously applied to transcriptomics from prokaryotes and yeast [11, 12, 19]. 
We first applied the multivariate regression method, the Inferelator, to the targets defined from 
network analysis (above) using sets of potential regulators as described in the text. This method 
infers parsimonious sets of regulatory influences between regulators and targets (functional 
modules). In the learned model the relation between the expression of a target (y) and the 
expression levels of regulators with non-null influences on y (X) is expressed as:  

€ 

τ
dy
dt

= −y + β j X j∑
 (1) 

Here, τ is the time step used in model construction and β is the weight for relationship X on y as 
determined by L1 shrinkage using least angle regression [20]. To make predictions using a 
learned model eq. 1 can be solved for y, the expression of the target cluster. Assuming 
equilibrium conditions the derivative dy/dt is 0 and so equation (1) can be represented simply as 
a linear weighted sum: 

€ 

y = β j X j∑  (2) 
and the dynamic version (for time series) is expressed for each time point (m) as: 

€ 

ym =
−ym−1 + β j Xm−1 j∑

τ
− ym−1

 (3) 
In our modeling we used a τ of 30 minutes, which is appropriate for mRNA dynamics in a 
eukaryote [21].  
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Given the limited amount of transcriptomic data available for training we wanted to ensure 

that the models being inferred were robust, that is, that they were predictive of target expression 
under novel conditions not included in the training data. To accomplish this we employed a 
cross-validation approach to evaluate the performance of inferred models using different starting 
components (sets of regulators or target clusters, as described in the text). In the cross-validation 
the transcriptomic data is divided into five sets based on the treatment (i.e., LPS, CpG or 
ischemic preconditioning pretreatment, or saline or sham control treatments; see Figure 2B), five 
models are trained on the data excluding each treatment set in turn, and the performance of each 
model is evaluated on the left out set. Performance is evaluated as the average correlation of 
observed versus predicted expression values for each target weighted by the number of genes in 
each target, to produce a weighted gene-normalized overall performance score for the model, as: 

€ 

P =
corr(predi,obsi)nii=1

T
∑

nii=1

T
∑

 (4) 

where P is the overall 
performance score, T is the 
number of targets in the model, 
pred and obs are the predicted 
and observed expression 
patterns, respectively, and n is 
the number genes in the target i. 
This cross-validation approach 
allows relatively unbiased 
assessment of model 
performance because the data 
used to evaluate the model is 
not included in the training 
data. 

2.4. Probabilistic integration of 
relationships 

Our previous results showed 
that partitioning co-regulated 
clusters of genes using either 
CLR or XOA associations 
could improve the performance 

 
 

Figure 1. Overview of iterative cross-validation predictive modeling 
approach. 1). Network inference from transcriptomic data using CLR. 
2) Definition of target clusters for modeling using several partitioning 
methods. 3) Definition of potential regulators from existing knowledge 
or topological analysis. 4) Cross-validation of predictive model: A. 
Divide expression data into related independent groups of observations 
(i.e. different treatments); B. Build a predictive model using all but one 
group with the Inferelator; C. Evaluate the performance of the model 
using the left out group; D. Repeat with next independent group. 5) Use 
the overall predictive performance to evaluate and refine methods used 
to determine the network components (targets [2] and regulators [3]). 

1. Infer coexpression network

3. De!ne regulators
3A. Transcription factors (TFs)
3B. Topological regulators (BNs) 
3C. Combined regulators (TFs+BNs)

2. De!ne target clusters
2A. Coexpression clustering (CLR)
2B. Functional based clustering (XOA)
2C. Probabilistic clustering (CLR+XOA)

4. Cross-validation approach
4A. Indepedent observation groups

4B. Build predictive model

4C. Evaluate predictive model

5. Performance of model informs 
 re!nement of components

!4D. Repeat with next independent group
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of our cross-validated model. We were interested in combining the networks generated by both 
methods. Our approach was to treat the score for association between two genes as a p value for 
each method (see below), then partition the parent target cluster into subclusters using 
hierarchical clustering. We then used the predictive model generated for the genes in the 
subclustered target to assess which approach provides the best performance. We tested several 
approaches for integrating p values: maximum p value, minimum p value, mean p value, and the 
product of p values. Associations unique to either approach were transferred into the final 
similarity matrix directly, thus creating a union set of associations. Though the product of p 
values is the appropriate probabilistic combination of p values, the other methods were used 
because they may be more appropriate for specific instances. Additionally, the p values from 
each method do not have exactly the same meaning due to the differences in assumptions used in 
generating them. For CLR p values we converted the output of CLR (Z scores for the edge 
relative to the all other edges for each interaction partner) to p values using the normal 
distribution in R.  

The p value for an XOA relationship is obtained by comparing the observed XOA score 
against the distribution of (a sample of) all possible scores obtained by computing the XOA 
similarity between all pairs of GO terms from the three subontologies. For example, the p value 
0.14 associated with the XOA score of 3.76 assessing the similarity of GO:0007179 (BP: TGF-
beta receptor signaling pathway) and GO:0016301 (MF: kinase activity) indicates that fewer than 
14% of all XOA scores have higher semantic similarity than 3.76. Higher XOA scores are 
regularly found in association with lower p values. For example, statistically relevant values (< 
0.05) typically correspond to XOA scores above 4.73. The p value across gene expresses the 
same idea, since the semantic similarity between two genes is the highest XOA score found 
pairing GO categories across the two genes: 

XOA(GP1, GP2) = max XOA(c1i, c2j) (5) 

where i=1,…,n and  j=1, …,m, GP1 and GP2 are genes, c1i is one of the GO categories 
associated with GP1, and c2j one of the GO categories associated with GP2. 

3. Results and Discussion 

3.1. Reverse-engineering by predictive modeling of transcriptomic data 

We are interested in developing a predictive model of neuroprotection in stroke at a systems 
level. There are significant gaps in knowledge about the regulation, functional mechanisms, and 
components that are involved in neuroprotection and stroke. These gaps prevent the development 
of molecular-level representations of the stroke process. We therefore have chosen to use a 
reverse-engineering approach that considers the regulatory influences and functional processes 
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that these influences induce at a more abstract level. The resulting models will still provide 
useful and interpretable predictions that can be used for further experimental or computational 
investigation.  

Our approach is to develop a predictive model of transcriptomic data using a machine-
learning approach and cross-validation, and use the ability of this model to predict behavior 
under novel conditions as a way to refine the reverse engineering process (Figure 1). The 
reverse-engineering algorithm [11, 12] uses multivariate regression to learn ordinary differential 
equations (ODEs) that describe the relationship between the expression levels of a parsimonious 
set of regulators and the target functional module. Here, we apply this approach to a higher 
eukaryotic system with observations that are focused specifically on stroke response and 
neuroprotection. 

To define functional 
modules that are the targets 
in the model we used a 
transcriptomic data set from a 
mouse stroke model to infer 
functional relationships 
between genes using the 
context likelihood of 
relatedness (CLR) method 
[16] and used hierarchical 
clustering to define targets 
(see Methods). We initially 
treated all genes annotated as 
transcription factors (85 
genes in the network) as 
potential regulators for 
reverse engineering. 

To evaluate the 
performance of the model in 
a relatively unbiased manner 
we used a cross-validation 
approach (see Figure 1) that 
allows all the observations of 
the system to be treated as 

 
Figure 2. Performance of a predictive model of neuroprotection and 
injury during stroke in a mouse model system. A. Target cluster 
performance. The coexpressed clusters used as targets for modeling are 
shown (X axis) with bar height (Y axis) indicating the performance 
(correlation of predicted versus observed expression) for that target in the 
cross-validation approach. # indicates the poorly performing cluster used in 
further partitioning and * indicates the accurately predicted cluster shown in 
panel B. B. Expression of an accurately predicted target. The observed (red 
line) versus predicted (green line) expression levels (Y axis) for one cluster 
representing 180 genes is shown over the treatments/time points (X axis). The 
independent groups used in the cross-validation are indicated in colored 
boxes, and time points post-treatment (white boxes) and post-stroke induction 
(grey boxes) are also shown. 
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‘independent’ data sets. We obtained an overall 
model performance of 0.52 (mean correlation per 
gene) observed versus predicted expression. In 
Figure 2A we show the performance (Y axis) of 
each cluster in the model (bars) ordered by 
performance. We mark the performance bar 
corresponding to the poorly performing cluster 
used for further analysis (see below) with a number 
sign and mark the bar corresponding to a well-
predicted cluster with an asterisk. In Figure 2B we 
show the predicted (green line) and observed (red 
line) expression of the well-predicted cluster 
marked in panel A, over all the conditions 
examined (Y axis). The shaded bars below the X 
axis in Fig. 2B show the independent groups used for cross-validation. This correlation between 
observed and predicted expression shows that the model is robustly predictive of the behavior of 
the majority of the genes considered. This is an important result as it shows that regulatory 
influences that act as predictors can be learned from a relatively limited set of expression data. 
We note that the model itself provides a large number of interesting predictions about regulatory 
influences and expression of particular functional groups that are the focus of future studies. In 
this study we use this output of the model (predicted target behavior) to refine the components 
and relationships that are used for model generation. 

3.2. Network topology identifies important points of regulatory control 

Many approaches for reverse-engineering regulatory networks preselect regulators based on 
sequence-based annotation, and then attempt to identify regulatory relationships between these 
sets of transcriptional regulators. Functional influence networks may be driven by mediators that 
are not transcriptional regulators, but could include effectors (e.g. immune effectors), signaling 
pathway components, metabolic enzymes, or any other component whose change mediates or 
reflects major changes in the state of the system. Previously our research has suggested the 
hypothesis that topological bottlenecks identified from transcriptional coexpression networks 
represent mediators of state transitions in systems [18, 22]. We thus tested the ability of 
topological bottlenecks to predict system behavior reasoning that true mediators of system 
transitions should be more predictive of system behavior than randomly chosen differentially 
regulated genes. 

 
Figure 3. Bottlenecks are complementary to 
transcription factors as candidate regulatory 
influences. Predictive models were constructed 
using annotated transcription factors (TFs), 
topological bottlenecks, or a combination of the two 
groups (X axis). The mean and standard deviation 
(error bar) of ten randomly selected sets of genes is 
shown as a control. Performance (Y axis) using our 
cross-validation approach indicates that bottlenecks 
are robustly predictive of system behavior. 
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We examined the ability of bottlenecks to 

serve as regulators in our cross-validated 
modeling. As a comparison we randomly 
selected ten sets of differentially expressed 
genes in the network and evaluated their 
ability to predict the behavior of the targets in 
the model. Our results (Figure 3) show the 
performance of models that include 
transcription factors only, bottlenecks only, a 
combination of bottlenecks and transcription 
factors, or the mean of ten randomly chosen 
sets of genes. Bottlenecks provide modestly 
better performance than either the 
transcription factors set used initially or 
randomly selected genes. Furthermore, 
combining the transcription factors with the list of bottlenecks further improved the ability of the 
resulting model to predict expression behavior under novel conditions. This shows that the 
expression of bottlenecks is somewhat predictive of system behavior. 

A surprising result of this analysis was that the randomly selected gene sets performed 
significantly worse than any of the selected regulator groups but the performance was still high 
(R = 0.45). This is likely to be due to the limited number of observations of the system that we 
are using for this work. Essentially the model is able to identify randomly selected genes which 
are somewhat predictive of the behavior of the targets because the dynamics of expression over 
the limited observations are relatively simple. Adding additional observations and/or data 
gathered for other purposes (TLR agonist treatment of mice, e.g.) should improve performance 
of our model. Further study is required to determine whether bottlenecks are indeed robustly 
predictive of system behavior. 

3.3. Probabilistic integration of relationships improves delineation of functional modules 

We next wanted to examine how the model could be further improved by better determination of 
target clusters. We examined how best to partition target gene clusters by combining results from 
the CLR and XOA algorithms to delineate subclusters. As a test case we focused on a 
problematic cluster with very poor performance (Figure 2A) identified in our previous study 
[15]. This cluster is made up of 335 genes and has a performance of -0.22 (correlation of 
predicted versus observed behavior) in the original model. 

 
Figure 4. Performance of CLR and XOA defined 
subclusters for prediction. The parent cluster was 
subclustered using either the CLR (red)- or XOA (blue)-
derived associations between genes into the indicated 
number of subclusters. Performance (mean correlation of 
observed versus predicted expression levels) is shown on 
the Y axis. These results support our previous 
observations that both methods can improve performance. 
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In Figure 4 we show the cross-validation performance on this cluster subdivided the cluster 

into 3-7 subclusters using either CLR (red bars) or XOA (blue bars) associations. These results 
show that using both expression-driven (CLR) or function-driven clustering can improve 
performance of the predictive model dramatically over that of the parent cluster. 

We next examined how combining the two sets of associations could improve results. We 
chose to consider the strength of the associations as p values in order to directly compare the 
scores from different algorithms. We used four simple methods for combining p values for XOA 
and CLR scores when there were overlapping associations within a cluster: the minimum XOA 
or CLR p value, the maximum XOA or CLR p value, the mean of the XOA and CLR p values, 
and the product of the XOA and CLR p values. As shown in Figure 5, either the mean p value or 
maximum p value strategy provides the best performing solution for most cluster sizes, showing 
significant, but modest, improvement for a model composed of four subclusters. These findings 
indicate that an appropriate combination of approaches can improve the performance of 
predictive transcriptomic models 

4. Conclusions 

We have presented an approach to reverse-engineering from limited, but focused, transcriptional 
datasets and used it to infer functional influence networks of mouse blood during stroke. This 
approach uses a machine-learning method to iteratively define and refine the components of the 
network, both potential regulatory influences and coexpressed functional modules that are the 
targets of prediction (Figure 1). The approach is applicable to problems in which there are not 
well-established regulatory pathways already understood, where there are a limited number of 
observations of the system available, and where there may be complex and multiscale effects that 
need to be captured by the model, but not necessarily explicitly modeled. Our results 
demonstrate that the approach can be applied to provide biological insight into a complex and 
poorly understood pathology, such as neuroprotection and injury during ischemic stroke. 

We show that a machine-learning method that employs multivariate regression techniques to 
learn ODEs describing relationships between regulators and target clusters can be applied to 
model transcriptomic dynamics from multicellular eukaryotic time course samples (Figure 2). 
This is an advance in modeling such systems that have traditionally been underrepresented in 
reverse-engineering applications due to their complexity and lack of ‘gold standard’ networks for 
validation. The results from cross-validation show that the models we produce can predict 
transcriptomic behavior of the majority of the genes considered under conditions not used to 
train the models. This approach is limited by the requirement that the gene-expression level 
changes of the regulatory influences must be indicative of their activity, an assumption that is 
clearly not true for many regulators. Additionally, regulatory influences inferred from such a 
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limited set of observations, though predictive of system behavior to a significant degree, are 
unlikely to be highly accurate. However, this approach provides the foundation for more detailed 
investigation, both computationally and experimentally. These results represent an important first 
step toward more detailed and nuanced models of complex systems. 

Using network topology we show that highly central bottlenecks are more predictive of 
system behavior than a similarly sized group of transcription factors (Figure 3). This result is 
consistent with the notion that bottlenecks from inferred networks represent mediators of 
transitions between system states [18, 22]. We further show that combining transcription factors 
and bottlenecks provides even better predictive performance. These gains are modest but 
statistically significant and we foresee that including more varied observations of the system will 
improve the results of the modeling, and should improve the definition of important mediators 
that we identify through network topology. However, the integration of such data will have to be 
undertaken carefully [23]. 

In our approach the performance of the predictive models is dependent on definition of the 
underlying functional modules used as targets for prediction. We initially define functional 
modules using hierarchical clustering based on expression profiles of genes. This approach gives 
good performance for a number of resulting clusters (Figure 2A) but does not provide accurate 
predictions for a number of significantly sized clusters. We show that further subclustering of a 
poorly performing cluster using either co-expression relationships from CLR or functional 
relationships from XOA [24] can 
dramatically improve the gene-wise 
performance of the parental cluster. Further, 
we use a probabilistic integration method 
and show that the combination of the two 
relationships can provide better 
performance than either individual method. 
This relatively simple approach has the 
advantage of being able to integrate 
arbitrary kinds of relationships between 
genes, so long as they can be associated 
with p values. We are currently examining 
what other kinds of relationships between 
genes will improve performance of the 
predictive models (e.g. protein-protein 
interactions, phylogenetic relationships). 

 
Figure 5. Comparison of subclustering methods. The 
mean performance of the methods examined (X axis) across 
different subclustering levels (3-7 clusters, as in Figure 1) is 
shown (Y axis). The error bars represent one standard 
deviation. The methods used are XOA and CLR alone, 
minimum p value (MinP), maximum p value (MaxP), mean 
of p values (MeanP) and product of p values (PxP). These 
results show that combining the CLR and XOA associations 
using probabilities can improve performance over the 
individual methods alone, but that only when non-standard 
methods (maximum p value or mean of p values) are 
employed to do so.  
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This paper presents a collection of computational modules implemented with chemical reactions:
an inverter, an incrementer, a decrementer, a copier, a comparator, and a multiplier. Unlike previous
schemes for chemical computation, ours produces designs that are dependent only on coarse rate
categories for the reactions (“fast” vs. “slow”). Given such categories, the computation is exact and
independent of the specific reaction rates. We validate our designs through stochastic simulations
of the chemical kinetics. Although conceptual for the time being, our methodology has potential
applications in domains of synthetic biology such as biochemical sensing and drug delivery. We are
exploring DNA-based computation via strand displacement as a possible experimental chassis.

Keywords: synthetic biology; molecular programming; molecular computing; chemical reaction net-
works

1. Introduction

The theory of reaction kinetics underpins our understanding of biological and chemical sys-
tems.1 It is a simple and elegant formalism: chemical reactions define rules according to which
reactants form products; each rule fires at a rate that is proportional to the quantities of
the corresponding reactants that are present. On the computational front, there has been a
wealth of research into efficient methods for simulating chemical reactions, ranging from or-
dinary differential equations (ODEs)2 to stochastic simulation.3 On the mathematical front,
entirely new branches of theory have been developed to characterize the dynamics of chemical
reaction networks.4

Most of this work is from the vantage point of analysis: a set of chemical reaction exists,
designed by nature and perhaps modified by human engineers; the objective is to understand
and characterize its behavior. Comparatively little work has been done at a conceptual level
in tackling the inverse problem of synthesis: how can one design a set of chemical reactions
that implement specific behavior?

Of course, chemical engineers, genetic engineers and other practitioners strive to create
novel functionality all the time. Generally, they begin with existing processes and pathways,
and modify these experimentally to achieve the desired new functionality.5,6 In a sense, much
of the theoretical work on the dynamics of chemical reactions also addresses the synthesis
problem by delineating the range of behaviors that are possible. For instance, theoretical work
has shown that fascinating oscillatory and chaotic behaviors can occur in chemical reaction
networks.7,8

Perhaps the most profound theoretical observation is that chemical reaction networks are,
in fact, computational processes: regardless of the complexity of the dynamics or the subtlety of

∗This research is supported an NSF CAREER Award, #0845650.
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the timing, such networks transform input quantities of chemical species into output quantities
through simple primitive operations. The question of the computational power of chemical
reactions has been considered.9 (The answer is interesting and subtle: stochastic chemical
reactions can compute any function – they are “Turing-universal” in the jargon of computer
science. However, deterministic chemical reactions are not so powerful – they are not Turing-
universal.)

One of the great successes of integrated circuit design has been in abstracting and scaling
the design problem. The physical behavior of transistors is understood in terms of differential
equations – say, with models found in tools such as SPICE.10 However, the design of circuits
occurs at more abstract levels – in terms of switches, gates, and modules. Many analogous
levels of abstraction exist for biological systems. These range from molecular dynamics, to
protein networks, to genetic regulatory networks, to signaling pathways, to complete cellular
systems, to multicellular organisms. Several authors have made implicit or explicit connections
between biochemical reactions and digital electronics.11–13

Our contribution is tackle the problem of computation with chemical reactions from a
conceptual vantage point focusing on robustness. Unlike previous schemes for chemical com-
putation, ours produces designs that are dependent only on coarse rate categories for the
reactions (“fast” and “slow”). Given such categories, the computation is exact and indepen-
dent of the specific reaction rates. In particular, it does not matter how fast any “fast” reaction
is relative to another, or how slow any “slow” reaction is relative to another – only that “fast”
reactions are fast relative to “slow” reactions.

In our prior and related work, we have described a variety of computational constructs
with chemical reaction networks, including programming constructs such as “for” and “while”
loops,14 signal processing operations such as filtering,15 and arithmetic operations such as
multiplication, exponentiation and logarithms.14

In this paper, we present designs of chemical reaction networks that implement specific
computational modules: inverters, incrementers, decrementers, copiers, comparators, and mul-
tipliers. In contrast to some of our earlier published constructs, all of these constructs depend
on only two rate categories. Although conceptual for the time being, our methodology has
potential applications in domains of synthetic biology such as biochemical sensing and drug
delivery.

2. Chemical Model

We adopt the model of discrete, stochastic chemical kinetics.3,16 Molecular quantities are
whole numbers (i.e., non-negative integers). Reactions fire and alter these quantities by integer
amounts. The reaction rates are proportional to (1) the quantities of the reacting molecular
types; and (2) rate constants. We aim for robust constructs: systems that compute exact
results independently of specific rate constants. All of our designs are formulated in terms
of two coarse rate constant categories (e.g., “fast” and “slow”). Given such categories, the
computation is exact and independent of the specific reaction rates.

Consider the reaction

X1
fast−−→ X2 + X3. (1)
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When this reaction fires, one molecule of X1 is consumed, one of X2 is produced, and one of
X3 is produced. (Accordingly, X1 is called a reactant and X2 and X3 the products.) Consider
what this reaction accomplishes from a computational standpoint. Suppose that it fires until
all molecules of X1 have been consumed. This results in quantities of X2 and X3 equal to the
original quantity of X1, and a new quantity of X1 equal to zero:

X2 = X1

X3 = X1

X1 = 0

Consider the reaction

X1 + X2
fast−−→ X3. (2)

Suppose that it fires until either all molecules of X1 or all molecules of X2 have been consumed.
This results in a quantity of X3 equal to the lesser of the two original quantities:

X3 = min(X1, X2)

X1 = X1 - min(X1, X2)

X2 = X2 - min(X1, X2)

We will present constructs different arithmetical and logical operations in this vein. Each
sets the final quantity of some molecular type as a function of the initial quantities of other
types. The challenge in setting up computation with chemical reactions is that they execute
asynchronously and at variable rates, dependent on factors such as temperature. In spite of
this, we aim to implement computation that does not depend on the rates. We will only speak
of rates in qualitative terms, e.g., “fast” vs. “slow” (in our notation, such qualitative rates are
listed above the arrows for reactions.)

We validate our designs through stochastic simulations of the chemical kinetics.17 First
proposed by Gillespie, stochastic simulation has become the workhorse of computational bi-
ology – the equivalent, one might say, of SPICE for electrical engineering.10 Such simulation
tracks integer quantities of the molecular species, executing reactions at random based on
propensity calculations. Repeated trials are performed and the probability distribution of
different outcomes is estimated by averaging the results.

3. Computational Constructs

In this section, we present a collection of constituent constructs for rate-independent com-
putation: an inverter, an incrementer/decrementer, a copier, and a comparator. In the next
section, we use some of these constructs to implement a multiplier.

An Inverter

We implement an operation that is analogous to that performed by an inverter (i.e., a NOT
gate) in a digital system: given a non-zero quantity (corresponding to logical “1”) we produce
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a zero quantity (corresponding to logical “0”). Conversely, given a zero quantity we produce
a non-zero quantity. We accomplish this with a pair of chemical types: the given type, call it
a, and a corresponding “absence indicator” type, call it aab. The reactions generating the
absence indicator are:

∅ slow−−→ aab (3)

a + aab
fast−−→ a (4)

2 aab
fast−−→ aab (5)

Here the symbol ∅ as a reactant indicates that the reaction does not alter the quantity of the
reactant types, perhaps because the quantity of these is large or replenishable.

The first reaction continuously generates molecules of aab, so in the absence of molecules
of a we will have a non-zero quantity of aab in the system. If there are molecules of a present,
then second reaction quickly clobbers any molecules of aab that are generated, so the quantity
of aab will be close to zero. The third reaction ensures that the quantity aab remains small.

We use this simple construct in many of our computational modules.15,18 In general, it can
be used to synchronize steps. Suppose that we want to perform the following:

a → b (6)

b → [operate on b] (7)

Here the second step is an operation that depends on the quantity of b. We do not want
to start consuming molecules of b until the full quantity of it is generated from a. We can
accomplish this with an absence indicator aab:

a → b (8)

aab + b → [operate on b] (9)

3.1. Increment and Decrement Operations

We describe constructs to implement incrementation and decrementation. These operations
form the basis of more complex arithmetical operations, such as multiplication. The inputs
consist of two molecular types g, the “start signal,” and x, the quantity to be incremented
or decremented. We assume that some external source injects molecules of g. Any quantity
can be injected; regardless, the quantity of x is incremented or decremented by exactly one.
The system consumes all the molecules g. Once the quantity reaches zero, another incre-
ment/decrement operation can be performed. The operations proceed as follows:

1) The system waits for the start signal g to be some non-zero quantity.
2) It transfer the quantity of x to a temporary type x′.
3) It sets g to zero.
4) It transfers all but one molecule of x′ back to x.

5a) For a decrement, it removes the last molecule x′.
5b) For an increment, it removes the last molecule of x′ and adds to two molecules to x.
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The following reactions implement this scheme. Given molecules of g, a reaction transfers
molecules of x to molecules of x′:

x + g
slow−−→ x′ + g (10)

The following reaction sets the quantity of g to zero. Using the absence indicator mechanism
described in the preceding section, it does so only once all molecules of x have been transfered
to x′:

g + xab
slow−−→ ∅ (11)

Reactions of the form of 3– 5 are needed to generated xab; we omit them here. The following
reaction transfers all but one molecule of x′ back to x. It does so by repeatedly selecting pairs
of x′. In essence, this is a repeated integer division by two. Again, using the absence indicator
mechanism, it proceeds only once all molecules of g have been removed:

g′
ab + 2 x′ fast−−→ x + x′ + x′′ (12)

This reaction also produces molecules of a supplementary type x′′. Note that this reaction is
in the “fast” category. The new type x′′ is consumed by the reaction:

x′′ slow−−→ ∅. (13)

Note that this reaction is in the “slow” category. We introduce x′′ because we cannot directly
use an absence indicator for x′ to detect when Reaction 12 has completed; here x′ is not
completed consumed. Instead, in reactions below we use an absence indicator for x′′. Again,
reactions of the form of 3– 5 are needed to generated x′′

ab; we omit them here.
In Reaction 12, we do not directly use an absence indicator for gab, since that reaction is

in the “fast” rate category. A design restriction for the absence indicator types is that they
should never be directly involved in “fast” reactions. They are produced slowly and consumed
quickly if the corresponding type is present in the system; if they were involved in a “fast”
reaction, there would be competition. We avoid this by transferring the corresponding absence
indicator gab to a secondary type g′

ab via a “slow” reaction:

∅ slow−−→ gab (14)

gab
slow−−→ g′

ab (15)

We setup the absence indicator reactions for both types:

g + gab
fast−−→ g (16)

g + g′
ab

fast−−→ g (17)

2 gab
fast−−→ gab (18)

2 g′
ab

fast−−→ g′
ab. (19)

Finally, we include the following reaction to perform a decrement:

x′′
ab + x′ + g′

ab
slow−−→ ∅ [Decrement] (20)

Or we include the following reaction to perform an increment:

x′′
ab + x′ + g′

ab
slow−−→ 2 x [Increment] (21)
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3.2. A Copier

In digital computation, one of the most basic operations is copying a quantity from one register
into another. The programming construct is “set the value of b to be the value of a”:

let b = a;

To implement an equivalent operation with chemical reactions, we could use a reaction that
simply transfers the quantity of a to b:

a → b (22)

However, this is not ideal because this reaction consumes all the molecules of a, setting its
quantity to zero. We would like a chemical construct that copies the quantity without altering
it. The following reaction does not work either:

a → a + b (23)

It just creates more and more molecules of b in the presence of a. A more sophisticated
construct is needed.

In our construct, we have a “request-to-copy” type cr. When an external source injects
molecules of cr, the copy operation proceeds. (The quantity of cr that is injected is irrelevant.)
It produces an output quantity of b equal to the input quantity of a. It leaves the quantity of
a unchanged. The reactions for the copier construct are as follows. Firstly, in the presence of
cr, a reaction transfers the quantity of a to a′:

cr + a
slow−−→ cr + a′ (24)

After all molecules of a have been transferred to a′, the system removes all the molecules of
cr:

cr + aab
slow−−→ ∅ (25)

Here, again, we are using the concept of an absence indicator. (The symbol ∅ as a product
indicates “nothing”, meaning that the type degrades into products that are no longer tracked
or used.) Removing cr ensures that a is copied exactly once. After cr has been removed, a
reaction transfers the quantity of a′ back to a and also creates this same quantity of b:

crab + a′ slow−−→ a + b (26)

We also generate absence indicators aab and crab by the method described above. We note
that, while this construct leaves the quantity of a unchanged after it has finished executing, it
temporarily consumes molecules a, transferring the quantity of these to a′, before transferring
it back. Accordingly, no other constructs should use a in the interim.

3.3. A Comparator

Using our copier construct, we can create a construct that compares the quantities of two
input types and produces an output type if one is greater than the other. For example, let us
assume that we want to compare the quantities of two types a and b:
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if (a > b) {
t = TRUE

} else {
t = FALSE

}

If the quantity of a is greater than the quantity of b, the system should produce molecules of
an output type t; otherwise, it should not produce any molecules of t.

Our construct for a comparator is as follows. First, we create temporary copies, c and d, of
the types that we wish to compare, a and b, respectively, using the copier construct described
in the previous section. (We omit these reactions; they are two verbatim copies of the copier
construct, one with a as an input and c as an output, the other with b as an input and d as
an output.) We split the copy request so that the two copiers are not competing for it:

cr
fast−−→ cr1 + cr2 (27)

Now we compare a and b via their respective copies c and d. To start, we first consume
pairs of c and d:

c + d
fast−−→ ∅ (28)

Note that this is a fast reaction; we assume that it fires to completion. The result is that there
are only molecules of c left, or only molecules of d left, or no molecules of c nor d left. Molecules
of the type that originally had a larger quantity have persisted. If the quantities were equal,
then both types were annihilated. We use absence indicators cab and dab to determine which
type was annihilated:

∅ slow−−→ cab (29)

c + cab
fast−−→ c (30)

2 cab
fast−−→ cab (31)

∅ slow−−→ dab (32)

d + dab
fast−−→ d (33)

2 dab
fast−−→ dab (34)

If a was originally greater than b, there will now be a presence of c and an absence of d. We
produce molecules of type t if this condition is met. We preserve the quantities of c and dab;
the amount t that we produce depends on the quantity of a fuel type:

fuel + c + dab
slow−−→ c + dab + t (35)

For robustness, we also add a reaction to destroy t in the case that the asserted condition is
not true:

cab + d + t
slow−−→ cab + d (36)

cab + dab + t
slow−−→ cab + dab (37)

We can readily generalize the construct to all types of logical comparisons. Table 1 lists these
operations and their corresponding reactions.
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Table 1. Logical operations via chemical reactions.

Operation Creation Destruction Operation Creation Destruction
a == b aab + bab a + bab a >= b a + bab aab + b

aab + b aab + bab

a > b a + bab aab + b a <= b aab + b a + bab

aab + bab aab + bab

a < b aab + b a + bab a != b aab + b aab + bab

aab + bab a + bab

4. A Multiplier

Building upon the constructs in the last section, we show a construct that multiplies the
quantities of two input types. Multiplication, of course, consists of iterative addition. Consider
the following lines of pseudo-code:

while x > 0 {
z = z + y
x = x - 1

}

The result is that z is equal to x times y. We implement multiplication chemically using
the constructs described in the previous sections: the line z = z + y is implemented with a
copy operation; the line x = x - 1 is implemented using a decrement operation. Only one
additional reaction is needed to handle the while statement.

Firstly, we have reactions that copy the quantity of y to z. We use a “copy-request” sa

type to synchronize iterations; it is supplied from the controlling reaction 52 below.

sa + y
slow−−→ sa + y′ (38)

sa + yab
slow−−→ ∅ (39)

saab + y′ slow−−→ y + z (40)

Secondly, we have reactions that decrement the value of x. We use sb as the signal to begin
the decrement.

x + sb
fast−−→ x′ + sb (41)

sb + xab
slow−−→ ∅ (42)

sbab
slow−−→ sb′

ab (43)

2 x′ + sb′
ab

fast−−→ x′ + x + x′′ (44)

x′′ slow−−→ ∅ (45)

x′ + x′′
ab + sb′

ab
slow−−→ ∅ (46)

2 sb′
ab

fast−−→ sb′
ab (47)

sb′
ab + sb

fast−−→ sb (48)

Thirdly, we have a controlling set of reactions to implement the while statement. This set
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generates sa and sb to begin the next iteration, preserving the quantity of x:

x + x′
ab + y′

ab
slow−−→ x + start (49)

start + x′ fast−−→ x′ (50)

start + y′ fast−−→ y′ (51)

start
slow−−→ sa + sb (52)

This set initiates the next iteration of the loop if such an iteration is not already in progress
and if there are still molecules of x in the system. The types x′ and y′ are present when we are
decrementing x or copying y, respectively; thus, they can be used to decide whether we are
currently inside the loop or not. Finally, we generate the four absence indicators according to
the template in Reactions 3– 5.

5. Simulation Results

We validated our constructs using stochastic simulation. Specifically, we performed a time
homogeneous simulation using Gillespie’s “Direct Method”3 with the software package “Cain”
from Caltech.19 In each case, the simulation was run until the quantities of all types except the
absence indicators converged to a steady state. We used a rate constant of 1 for the “slow”
reactions. We tried rate constants between two to four orders of magnitude higher for the
“fast” reactions. (We refer to the ratio of “fast” to “slow” as the rate separation.) For each
of the graphs below, the initial quantity of each type is zero, with the exception of the types
specified.

5.1. Multiplier

Graph 1 shows the output of a single simulated trajectory for our multiplier. We observe
exactly the behavior that we are looking for: the quantity of y cycles exactly 10 times as it
exchanges with y′ and is copied to z; the quantity of z grows steadily up to 100; the quantity
of x decreases once each cycle down to 0. Table 2 presents detailed simulation results, this
time tested for accuracy. Errors generally occur if the system executes too many or too few
iterations. As can be seen, the larger the quantity of x, the more accurate the result, in relative
terms. As expected, the larger the rate separation, the fewer errors we get.

Table 2. Statistical simulation results for “Multiplier” construct

Trial Rate Separation Trajectories x y z Expected z Error
1 100 100 100 50 4954.35 5000 0.91%
2 100 100 50 100 4893.18 5000 2.14%
3 1000 100 100 50 4991.56 5000 0.17%
4 1000 100 50 100 4995.78 5000 0.08%
5 10000 100 100 50 4998.69 5000 < 0.01%
6 10000 100 50 100 4999.14 5000 < 0.01%
7 10000 100 10 20 200.04 200 < 0.01%
8 10000 100 20 10 200.03 200 < 0.01%
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5.2. Copier

Graph 2 shows an average simulated trajectory for our copier. Again, we observe exactly the
behavior we expect: the quantity of a drops to 0 almost immediately as it turns into a′; this
is followed by the removal of cr from the system. When the quantity of cr drops to nearly
zero, both a and b rise steadily back to the original quantity of a. Table 3 shows additional
simulation results from our copier, this time tested for accuracy. The copier construct appears
to be quite robust to errors; however, large rate separations do not help as much as they do
for the multiplier. The system seems to prefer a larger injection quantity of cr, but whether
it is larger or smaller than the initial quantity of a is irrelevant.

Table 3. Statistical simulation results for “Copier” construct

Trial Rate Separation Trajectories cr a b Expected b Error
1 100 500 5 100 102.45 100 2.45%
2 100 500 50 100 104.826 100 4.826%
3 1000 500 5 100 100.312 100 0.312%
4 1000 500 50 100 100.516 100 0.516%
5 10000 500 5 100 100.022 100 0.022%
6 10000 500 50 100 100.034 100 0.034%
7 10000 500 5 5000 4938.39 5000 1.232%
8 10000 500 50 5000 4967.26 2 0.655%
9 10000 500 200 5000 4796.38 2 4.072%
10 10000 500 50 2 2 2 4.072%

5.3. Decrementer and Comparator

Graph 3 shows the output of a single simulated trajectory of our decrementer. Exactly twenty
peaks can be seen in the graph, including the initial peak on the far-left margin of the graph.
This is exactly the behavior we are looking for – a decrement by exactly one each cycle. Graphs
4 and 5 display simulation results from our comparator. In Graph 4, t is asserted as we would
expect; in Graph 5, t is not asserted, also as we would expect.
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Graph 1: Simulated Multiplier, x = 10, y = 10
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Graph 4: Comparator (a > b), a = 100, b = 50
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6. Discussion

Our contribution is to tackle the problem of synthesizing computation at a conceptual level,
working not with actual molecular types but rather with abstract types. One might question
whether actual chemical reactions matching our templates can be found. Certainly, engineering
complex new reaction mechanisms through genetic engineering is a formidable task; for in vivo
systems, there are likely to be many experimental constraints on the choice of reactions.20

However, we point to recent work on in vitro computation as a potential application domain
for our ideas.

Through a mechanism called DNA strand-displacement, a group at Caltech has shown
that DNA reactions can emulate the chemical kinetics of nearly any chemical reaction net-
work. Indeed, they provide a compiler that translates abstract chemical reactions of the sort
that we design into specific DNA reactions.21 Recent work has demonstrated both the scale
of computation that is possible with DNA-based computing,22 as well as exciting applica-
tions.23 While conceptual, our work suggest a de novo approach to the design of biological
functions. Potentially this approach is more general in its applicability than methods based
on appropriating and reusing existing biological modules.
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To decipher the dynamical functioning of cellular processes, the method of choice is to observe the
time response of cells subjected to well controlled perturbations in time and amplitude. Efficient
methods, based on molecular biology, are available to monitor quantitatively and dynamically many
cellular processes. In contrast, it is still a challenge to perturb cellular processes - such as gene
expression - in a precise and controlled manner. Here, we propose a first step towards in vivo control
of gene expression: in real-time, we dynamically control the activity of a yeast signaling cascade
thanks to an experimental platform combining a micro-fluidic device, an epi-fluorescence microscope
and software implementing control approaches. We experimentally demonstrate the feasibility of this
approach, and we investigate computationally some possible improvements of our control strategy
using a model of the yeast osmo-adaptation response fitted to our data.

1. Introduction

To understand biology at the system level, one has to study both the structure and the
dynamics of cellular processes [18,19,32]. On the one hand, genetic analyses are required

to analyze the structure of signaling pathways and genetic networks. On the other hand,
to access to the dynamical functioning of cellular processes, one has to observe the time

response of cells to well controlled perturbations. Hence, the information level provided by
experiments crucially depends on our capacity to observe and perturb biological systems at the

cellular level. Efficient experimental tools have been developed to monitor both quantitatively
and dynamically many cellular processes. Gene expression can be measured through micro-

arrays or quantitative RT-PCR and conveniently observed at the single cell level through the
combination of fluorescent reporter proteins and FACS techniques or microscopy [19,21,26]. In

contrast, it is still a challenge to perturb cellular processes in a precise and controlled manner. A
commonly used strategy resides on using inducible promoters to modulate the expression of a

gene of interest by the addition of a diffusible molecule in the external cellular environment [12,
16,28]. However, even if the activity of the inducible promoter can be modulated quantitatively,

there is no guarantee that the target gene will reach a desired constant expression level over a

long period of time. Indeed, variations may arise because of modifications of the physiological
state of the cell due to internal feedback loops and cellular adaptation. The expression of a

transcription factor regulating itself is even more problematic. Moreover, both theoretical [1,
15] and recent experimental [14,24] results demonstrate the need for elaborate, time-varying
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perturbations to decipher quantitatively certain dynamics features of cellular responses. This
notably includes the numerous biological processes in which the timing of gene expression

plays a central role such as the regulation of the cell cycle. To summarize, existing solutions
for the artificial control of gene expression are dissatisfying on two counts since, (i) expressing

a gene of interest in a well-controlled, sustained way cannot be conveniently realized at the
present time, and (ii) the investigation of certain dynamical properties necessitates dynamical,

time-varying perturbations of gene expression for which no solution is currently available.
Here, we propose a first step towards in vivo control of gene expression. We have imple-

mented an experimental platform for the in vivo control of a signaling pathway in Saccha-

romyces cerevisiae. We chose to control the activity of the HOG cascade which is activated in
response to hyper-osmotic perturbations and promotes the transcription of osmo-adaptative

response genes. Given a desired temporal profile, the activity of the signaling cascade is moni-
tored in real time and deviations from the desired values are dynamically corrected by varying

the osmolarity of the cellular environment (Fig. 1). This can be achieved thanks to a ded-
icated micro-fluidic device. This experimental platform is driven by software, that notably

implements control algorithms, responsible for computing how the cellular environment (os-
molarity) should be modified to correct the observed deviations from target values.

Input

Output
(protein X‐FP 
concentration)

(osmolarity)

Input

Output
(protein X‐FP
concentration)

(osmolarity)

Time [min]

Time [min]

200100 300

200100

0

0 300

Fig. 1: The control problem. (a) Schematic Input/Output description of the cell. (b) Schematic
representation of a desired output (blue), an applied input (orange) and the obtained output (blue
crosses), for two different situations. In the first case (top), the goal is to dynamically maintain the
concentration of a target protein X, fused to a fluorescent protein (FP), at a constant level. In the
second case (bottom), the goal is to create a complex perturbation signal by varying the concentration
of the protein X with time.

The work presented here differs significantly from previous applications of control the-
ory in systems and synthetic biology contexts. So far, control theory contributions consisted

essentially to shed a new light on biological phenomena, notably by suggesting underlying or-

ganization principles in biology [8,9]. An illustrative example is the use of the notion of integral
feedback control to explain the robust perfect adaptation observed in bacterial chemotaxis [34].

Other insightful examples are given in a recent textbook [15]. Control theory has also been
used in optimal experimental design applications [1,23]. But quite surprizingly, only a few
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(theoretical) studies focused on the actual control on a biomolecular process, e.g. [2,4,7,17].

Moreover, to the best of our knowledge, control theory has not yet been applied in vivo for
the actual feedback control of biological cellular processes at the single cell level.

The paper is organized as follows. In section 2, we present in details the proposed platform
for real-time control of the HOG signaling cascade activity and gene expression. In Section 3,

we present preliminary experimental results obtained when controlling the nuclear localization
of the Hog1 protein. This represents an essential first step towards controlling gene expression.

In Section 4, we discuss possible improvements of our control approach using a simple model

of the osmotic stress response. Conclusions are provided in the last section.

2. A platform for real-time control of gene expression

2.1. An integrated real-time control platform

Central to control theory is the notion of feedback control [30]. The idea is to compute the

inputs to apply at the next time instant in function of outputs previously obtained. This
way, knowledge of past errors is used to improve the control. In comparison to open loop

control where the control strategy is computed beforehand, closed loop control approaches are
generally less sensitive to model uncertainties and can compensate for external disturbances.

These two features are highly desirable for any biological application. However, performing
a control in real-time necessitates a tight integration between measurement device, control

software and actuator.
As described in Figure 2, the HOG pathway activity can be monitored at the single cell

level using time lapse fluorescent microscopy. The cellular environment can be controlled

using the micro-fluidic device developed by Hersen and colleagues [14]. Not only this device
allows a fast and well-controlled change of the cellular environment, but also, it guarantees

that with the exception of the input signal the cell environment is otherwise held constant.
We implemented algorithms for image analysis, state estimation and input computation in a

Matlab program that communicates with and drives the microscope via MicroManager [31]
and the micro-fluidic pressure controller.

2.2. Using HOG signaling cascade

To link external environmental changes to gene expression, we use a natural signaling pathway:
the Hyper Osmolar Glycerol (HOG) pathway in the yeast Saccharomyces cerevisiae. This MAP

kinase pathway is used to sense osmolar pressure changes in the environment and to trigger
osmotic stress responses that maintain water homeostasis [29]. More precisely, two osmo-sensor

proteins (Sln1 and Sho1) transduce the signal to the Hog1 protein via a phosphorylation
cascade. Once phosphorylated, Hog1 promotes the osmo-adaptative response in at least three

different ways. Firstly, Hog1 translocates into the nucleus and alters, directly or indirectly,

the expression of a large number of genes [27]. Secondly, Hog1 has also a cytoplasmic activity
since it regulates negatively glycerol export by inhibiting the activity of the Fps1 glycerol

channel [3]. Thirdly, Hog1 activates glycerol producing enzymes, notably Gpd1 [33]. Hence,
the osmo-adaptative response involves at least three natural feedback loops.
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Fig. 2: The integrated control platform. The main elements of the feedback loop are (i) a micro-
fluidic device allowing a rapid control of the cellular environment, (ii) a microscope for phase contrast
and fluorescence measurements, (iii) yeast cells with Hog1, a nuclear marker (Htb2) and the protein
of interest (X) fused to compatible fluorescent markers, and (iv) Matlab software for image analysis
and controller implementation.

Our motivation for using this pathway is triple. Firstly, it has been extensively experimen-

tally studied and quantitative models are available [6,14,20,22,24,25,35]. Second, the output of
the signal transduction pathway can be experimentally quantified. Indeed, if Hog1 is fused to

a fluorescent protein, its nuclear localization can be quantified and provides a measure of the
Hog1 activity [10]. Thirdly, it has been experimentally shown that for fast osmolarity changes,

the pathway integrates the signal: the transduction pathway acts as a low-pass filter with a
bandwidth approximatively equal to 5 × 10−3 Hz [14]. This property allows us to emulate an

analog control by rapidly switching (frequencies greater than 0.1 Hz) between two media: the

normal growth medium and a sorbitol enriched (∼ 1M) medium. For example, a two minute
osmotic stress corresponding to a 0.4M sorbitol intensity is obtained by flowing cells 12 times

with normal medium during 6 s. and with sorbitol-rich medium during 4 s.
In this paper, we use a yeast strain with Hog1 fused to GFP and the nuclear protein

Htb2 fused to mCherry [14]. The latter is used to conveniently localize the nuclear region. We
define the relative Hog1 nuclear localization h(t) as the ratio of the mean fluorescence pixel

intensities of Hog1-GFP in the nucleus and in the cytoplasm.

h(t) =
〈Pixel intensity〉nuc

〈Pixel intensity〉cyto

The normalized Hog1 nuclear localization hn(t) is then simply hn(t) = h(t)/h(t0). These defini-
tions are motivated by the fact that this gives measures that are relatively robust with respect

to fluorescent protein photo-bleaching and cell-to-cell variations.

3. Controlling transcription factor nuclear localization using a simple

control approach

In this section, we present preliminary results obtained on controlling the Hog1 nuclear local-
ization. The control of Hog1 nuclear activity is a prerequisite for utilizing the Hog pathway
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Fig. 3: Schematic representation of the HOG pathway with natural and engineered feedbacks. Solid
and dashed arrows indicate direct and indirect effects, respectively. For a detailed description, see
the main text. FP1 and FP2 in the figure denote two different fluorescent proteins.

to control gene expression. As a matter of fact, controlling the duration of activated Hog1

residence in the nucleus will lead to bursts of expression for the genes which are placed under
Hog1 dependent promoter. There are different options how to encode a certain gene expression

profile. We could either work with a constantly high signal and adjust the amount of Hog1 in
the nucleus (amplitude modulation), or we could successively activate the Hog pathway for

a short duration and control the frequency of these activations (frequency modulation). To
test these two alternative strategies, we consider two problems: maintaining a given constant

level of Hog1 nuclear localization over a long time period, or obtaining pulses of Hog1 nuclear
localization in a repeated manner. These results have been obtained using the simplest control

approach: a PID controller.

3.1. PID control

A proportional-integral-derivative (PID) controller is a generic closed-loop control algorithm,

generic meaning that is does not require any structural knowledge about the controlled sys-
tem [30]. Due to its simplicity this type of control is very often applied in engineering appli-

cations. A PID controller measures the deviations (“errors”) of measured states from target
states, and uses this information to compute the control. The applied control u at time t is

the weighted sum of the error, e(t), its derivative and the integral of past errors e(τ), τ ∈ [0, t]:

u(t) = kp · e(t) + ki ·

∫ t

0

e(τ)dτ + kd ·
d

dt
e(t)

where kp, ki and kd are the proportional, integral and derivative gains.

In our case the error e(t) is the difference between the measured normalized Hog1 nuclear

localization hn(t) and its reference value at the corresponding time point. Because we consider
tracking problems, only the recent past errors are relevant. Therefore, we integrate the error

only on the interval [t−∆, t], where ∆ is approximatively 2 minutes. We tuned the controller
gains manually using a trial and error approach. The derivative term, and to a lesser extend,
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the proportional term are responsible for implementing a fast system response to target value
changes. However large values for these parameters favor oscillations and loss of stability. In

practice, we found that setting the derivative gain to zero and using values for kp and ki

close to 2 and 1.5 leads to a good compromise between response time and stability in our

experimental setting.

3.2. Experimental results

We designed two control experiments to test the possible strategies discussed above: using

amplitude or frequency encoding. The first type of experiment is to try to maintain the
system output at a constant target level (Fig 4 left). Quantitatively, the relative Hog1 nuclear

localization should remain 20% higher than its nominal value in unstressed cells. The second
type of experiment is to try to obtain repeatedly trapezoidal motifs. The amplitude of output

variations also corresponds to a 20% increase above nominal value (Fig 4 right).
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Fig. 4: Experimental results for the control of Hog1 nuclear localization. Left: Controlling the am-
plitude of Hog1 localization does only work for short durations due to internal feedback and cellular
adaptation to sustained hyper osmotic conditions. Right: With a frequency encoded signal, the cell
is able to reset between successive shocks and follows the reference values for the whole experiment.

Our experimental results clearly show that the control is effective in yeast cells. Consider for

example the step experiment at time 2, when the target value changes. Following this change,
the controller applies an osmotic stress, resulting after a 1-2 minute delay in an increase in

the Hog1 nuclear localization. Then the system overshoots and the controller decreases the
osmolarity of the environment. Oscillations ensue around a level below the target value during

approximatively 15 minutes, during which increasing inputs are applied. Finally, even the
maximal input is not sufficient to prevent the system from drifting away towards its nominal

level.

The interpretation of these control results is simple. Because of internal natural feedbacks,
the cells adapt (notably produce glycerol) and become insensitive to high osmolarity envi-

ronments. Therefore, unless all internal feedback loops are inactivated, the amplitude-based
control strategy seems not feasible. The inability of the controller to maintain the output at the
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target value in osmo-sensitive cells can be explained by the initiation of an osmo-adaptative
response causing cells to drift away from the target value, together with the use of a rather

narrow integration window in our PID controller.
Concerning the repeated motif experiment, it is fair to say that despite time lags and a

relatively noisy behavior, the controller succeeds in producing the desired time varying output
(Fig 4 right). As it appears on the plots, the 6 minute time separation between the 8 minute

long motifs seem sufficient to fully reset the system to its normal, osmo-sensitive state. Based
on these experimental results, the frequency encoding strategy for gene expression seems

promising. However, before dealing with the actual control of gene expression, improvements

in our control approach are needed. The capacity of the controller to predict rather than just
to react -this would help dealing with the lag problem-, and the capacity to filter noise out

-this would make the control more robust- are two features of significant interest.

4. Design of an improved control approach

The major advantage of the PID controller is that it does not rely on a model of the system.

This makes it particularly easy to deploy. However, performances achieved using model-based
control approaches are generally superior. In this section, we use the simple model proposed

by Muzzey and colleagues [25], fitted to our data, to compare performances obtained with the

PID controller and a model based control approach.

4.1. Development of a simple linear model

Numerous models have been developed for the osmotic stress response [6,14,20,22,24,25,35].

Because of its capacity to capture essential aspects of the HOG pathway, including notably the
cell adaptation, and of its mathematical simplicity, we reuse the three variables linear model

developed by Muzzey and colleagues [25]. In short, the state of the system is described by three
variables, s1, s2, and s3, corresponding to the nuclear Hog1 enrichment, its time integral, and

glycerol relative concentration, respectively, and one input, u, corresponding to the external

osmolarity. Since the osmo-stresses studied in [25] are caused by a different osmolyte (salt
versus sorbitol), we introduce a factor σ to rescale the input u, if needed.

ṡ1 = kh (σ u − s3) − γh s1 (1)

ṡ2 = αd s1 (2)

ṡ3 = s2 + αi (σ u − s3) − γg s3 (3)

In the above model, σ u−s3 corresponds to the net osmolarity effectively sensed by the
cell. In hyper-osmotic conditions, the production of intracellular glycerol (s3) and the Hog1

nuclear localization (s1) are increased. The increased Hog1 nuclear localization increases s2

and hence s3. Therefore one distinguishes a direct and an indirect effect of hyper-osmotic

stress on glycerol accumulation [25].

To fit the model parameters to our system we perform two types of experiments in which
cells are exposed to hyper-osmotic stresses differing either in magnitude or duration. The first

set of experiments is used primarily to estimate the relation between osmotic stress and Hog1
localization, whereas the second set of experiments is used primarily to investigate the cell
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dynamical adaptation to osmotic stress. One should note that we experimentally measure the
normalized Hog1 nuclear localization hn(t), whereas the variable s1(t) in the Muzzey model

corresponds to the Hog1 nuclear enrichment. However, it holds that hn(t) = s1(t) + 1 [25]. In
the sequel, to allow for comparison with the experimental results of Section 3, we present all

our results -experimental and computational- using hn(t).
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Fig. 5: Cell response to different hyper-osmotic stresses. Left: Stresses of different intensities. Cyan,
red, and black plots correspond to a 0.4, 0.6, or 0.8M stress applied during 2 minutes. Right: Stresses
of different durations. Red, green and blue plots correspond to 0.6M stress applied during 2, 4, or 6
minutes. Dashed and solid lines represent experimental data and model predictions, respectively.

To find parameter values for our model, we use the state-of-the-art non-linear optimiza-

tion tool CMAES implementing a covariance matrix adaptation evolution strategy [13]. The
objective function to minimize is the sum of a mean square error term, where the error is

the difference between measured and predicted values for s1, and a penalty term enforcing
the positiveness of parameters and initial conditions. Parameter estimates are then manually

fine-tuned (see Table 1).

kh γh γg αh αg σ

1.984 0.9225 0.5950 0.1612 0.0106 0.2

Table 1: Parameter values fitted to the experimental data shown in Fig. 5. All parameter units are
min−1, excepted for the dimensionless parameter σ.

As can be seen from the plots shown in Fig. 5, the model is able to capture qualitatively,
and up to some degree, quantitatively, the behavior of yeast cells subjected to hyper-osmotic

stresses. This is commendable given the extreme simplicity of the model.

4.2. Comparison of different control approaches

Equipped with a model of our system, we can computationally simulate the system response

and compare various control approaches. Given the time-consuming aspect of experiments,
working on simulated but realistic data allows us to rapidly test alternative control approaches.

When computationally testing a model-based control approach, one uses the same model in
the simulator and in the model based controller. That is, the model based controller knows
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perfectly the system dynamics. To make fair comparisons, we assume that only the output
(and not the full state) is visible by the controller and we add (Gaussian) noise to the system

output.
We present here a model predictive control (MPC) approach. The objective of MPC is

to minimize the difference between the simulated and the target outputs by using a receding
horizon strategy: given an estimate of the current state of the system, a control strategy to be

applied during a short time horizon is searched for, and applied for a short period of time. Then,
the approach is applied again, with the estimation of the new state, and the computation of a

control strategy for a new short time horizon. This receding horizon strategy yields an effective

feedback control [11]. Because MPC applies to linear and nonlinear systems, this approach can
easily be extended to deal with future improved models. An other motivation for using MPC

rather than the conventional control approach for linear system output tracking, based on a
linear quadratic gaussian controller [30], is that simple non-linear constraints (e.g. bounded

input) can easily be integrated in this framework.
For our application, we implement an MPC approach using Kalman filtering and a simple

search strategy. The use of a Kalman filter is a standard approach to estimate the full state
of a linear system based on (noisy) observations [30]. Then, at time t, we search for three

input values, u1, u2, and u3, that when applied on the time intervals [t, t + 1], ]t + 1, t + 2], and
]t+2, t+3], respectively, minimize the squared error, again defined as the distance between the

target and the simulated outputs, on the time interval [t, t+3]. u1 is applied on [t, t+1] and the
procedure is restarted at time t + 1. At each iteration, we use CMAES, a global optimization,

tool to search for the three input osmolarities u1, u2, and u3. Naturally, in our setting, the
input (osmolarity) is necessarily positive and bounded. Therefore, we limit the search to the

interval of feasible osmolarities. The computational effort remains limited, since less than one

second is needed for each iteration. For comparison, the timestep duration of the control loop
in our experiments is 20 s. So using MPC does not challenges the real-time requirement.

We also consider here the PID controller presented in Section 3, but applied on simulated
data as explained in this section. All these computational procedures have been implemented

in Matlab.
The results obtained with the two control strategies and the for two different control

problems are shown in Figure 6. Regarding the difficulty to maintain pathway activity over
a prolonged period and the feasibility of creating repeated short time activity patterns, the

results obtained with both control approaches are fully consistent with our experimental find-
ings. The comparison of the results obtained with the PID controller on the experimental

(Fig 4) and simulated data (Fig 6) shows that the PID performs better in the second case.
This might be explained by a higher complexity of cellular variability (ie the “noise” is not just

plain Gaussian). As expected, the lag and incomplete drift compensation are also observed
on simulated data, albeit attenuated. In contrast, the model predictive results show neither.

This corroborates the fact that they originate -at least partly- from the reactive rather than

predictive nature of the PID controller. Moreover, the control is also much more regular in
the MPC experiments. Very likely, this comes from the use of Kalman filtering. One should

note that this is not due to an improper parametrization of the PID. Indeed the relatively
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Fig. 6: Comparison of PID (left) and MPC (right) control strategies for two different control problems
and on simulated data. Norm. Hog1 nuc. loc. stands for normalized Hog1 nuclear localization.

high proportional gain that causes large input changes is needed to ensure a fast response.

To summarize, the model predictive control approach is superior on all counts to the
PID controller, at the cost of a very limited computational overhead. However, one should

stress that the quality of a model based controller ultimately depends on the quality of the
model of the system. So to effectively apply MPC on yeast cells, significant modeling work

might be needed. But then one will have the effective proof that the main features of the
osmo-adaptative response are captured in sufficient details.

5. Discussion

We presented an integrated experimental platform and demonstrated the feasibility of con-

trolling the nuclear localization of the protein Hog1. Stated differently, we have shown how to
create a dynamically controlled inducible promoter. As a matter of fact, it should be possible

to place any gene under the control of a Hog1-dependent promoter and then to force its ex-
pression by controlling Hog1 nuclear localization. Consequently, this contribution describes a

first, crucial step towards real-time control of gene expression.
Using the HOG pathway has several advantages, the most important ones being its quick

activation and de-activation which are crucial to ensure efficient dynamics of the control loop,
and the established correlation between nuclear localization and activity. It is to be noted

though, that contrarily to known inducible promoters such as the Tet system, activating
the HOG pathway also affects the cell physiological state, since many genes are transcribed

to ensure proper cellular response to an hyper osmotic environment. For real applications,

one should achieve a clear separation between controlling gene expression dynamically and
altering the physiological state. This might require engineering the HOG cascade, or using

other alternative signaling pathways with similar dynamics and nuclear translocation.
Interestingly, our results suggest that for our application, it is preferable to use frequency
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encoding to control gene expression. Indeed, because of fast, non-genetic adaptation feedbacks,
the output of the signaling cascade can not be held constant over a prolonged period. A

Frequency encoding strategy is widely used by neural networks which computing activity
relies on action potential pulses. Although it is generally assumed that gene regulation is

naturally controlled by amplitude modulation, a recent study by Elowitz’s team showed that
the expression of some genes in yeast are regulated by the frequency of expression bursts led by

the transcription factor Crz1 [5]. The authors proposed that the functional role of frequency
modulation is to ease the coordination of the expression of multiple target genes. Based on

our results, one can propose an alternative role of regulation by frequency modulation: it

allows for both a rapid non-genetic response and a slower transcriptional response leading to
a complete adaptation to a given stress.

In a future work, we will use a model-based control approach to improve our results on
Hog1 nuclear localization. Moreover, we will progress towards our main goal, that is, gene

expression control, by studying a candidate gene fused to a fluorescent tag under the direct
control of Hog1. The control platform will be adapted to read as outputs both the localization

of Hog1 and the actual expression level of the gene of interest.
We anticipate that this platform to tune in real-time the level of expression of a gene

of interest will be a useful tool for the biologist to better understand living processes in
single cells. Quoting Feynman saying ‘what I cannot built, I cannot understand’, synthetic

biologists propose that building systems helps to better understand them. Here, we propose
that controlling them is an effective way to assess our understanding: what I cannot control,

I have not understood.
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Motivation: A grand challenge in the modeling of biological systems is the identification of key
variables which can act as targets for intervention. Good intervention targets are the “key players”
in a system and have significant influence over other variables; in other words, in the context of
diseases such as cancer, targeting these variables with treatments and interventions will provide the
greatest effects because of their direct and indirect control over other parts of the system. Boolean
networks are among the simplest of models, yet they have been shown to adequately model many of
the complex dynamics of biological systems. Often ignored in the Boolean network model, however,
are the so called basins of attraction. As the attractor states alone have been shown to correspond
to cellular phenotypes, it is logical to ask which variables are most responsible for triggering a path
through a basin to a particular attractor.

Results: This work claims that logic minimization (i.e. classical circuit design) of the collections
of states in Boolean network basins of attraction reveals key players in the network. Furthermore, we
claim that the key players identified by this method are often excellent targets for intervention given
a network modeling a biological system, and more importantly, that the key players identified are
not apparent from the attractor states alone, from existing Boolean network measures, or from other
network measurements. We demonstrate these claims with a well-studied yeast cell cycle network
and with a WNT5A network for melanoma, computationally predicted from gene expression data.

Keywords: Boolean Networks; Attractors; Logic Minimization; Intervention

1. Introduction

Biological systems are complex in many dimensions as endless transportation and communi-
cation networks all function simultaneously. While differential equation models are the most
comprehensive at capturing and modeling the true dynamic behaviors of a real biological sys-
tem,1 the use of such a framework requires supplying precise model parameters, most of which
are not readily measurable with current technologies.

Boolean networks are among the simplest of models, yet they have been shown to ade-
quately model many of the complex dynamics of biological systems. Their popularity is also
based on the ease of distilling our knowledge about a particular biological process to positive
and negative pair-wise relationships. Since seminal work by Stuart Kauffman in the 1960s
relating network attractor states to cell fate,2 Boolean network dynamics have been studied
and related to various biological phenomena. In addition to Boolean networks, many other
graphical models have become popular in the modeling of biological interactions, with one in-
teresting property often being the biological significance of network hubs (though this is also
a contested view3). Specifically, vertices (or nodes) in networks with high degree (also known

∗Address correspondence to dolchan@tgen.org
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as network hubs) have often been found to have higher biological significance than those less
connected nodes in the same network, especially in scale-free networks. Thus, some simple
topological analysis, including network centrality measures, can help to identify interesting
variables and possibly even targets for intervention.

Wuensche4 and others also have studied basins of attraction in Boolean network models of
genomic regulation, specifically the relationship of their structures to the stability of attractors
(cell types) in the face of perturbations. However, because of the size and transient nature of
basins of attraction, they are often neglected in analysis in favor of the attractor states.

As a basin of attraction is a collection of states leading into a corresponding attractor, i.e.
phenotype, careful analysis of these basins could reveal interesting biological characteristics
that determine cell fate. In this study we employ a logic reduction algorithm to reduce the
Boolean states comprising our basins of attraction to their minimal representations, and it is
from these minimizations that we identify intervention targets.

2. Background

Despite its simplicity, the Boolean network model has proven to be quite viable at approxi-
mating certain aspects of biological processes. For example, it has been used to simulate the
yeast cell cycle,5 which we look at closely in this work. It has also been used to simulate the
expression pattern of segment polarity genes in Drosophila melanogaster ,6 as well as the vocal
communication system of the songbird brain.7,8 Since we are investigating within a model-
ing and simulation framework, we employ the often used assumption of synchronous update;
however, studies on modeling and analysis of asynchronous update in the context of random
Boolean networks can be found.9–12

Since Kauffman’s seminal work there have been countless variations and extensions of the
use of Boolean networks for modeling biological systems, and various inference procedures have
been proposed for them.13–15 Shmulevich et al.16 pioneered work on a stochastic extension to
the model called probabilistic Boolean networks (PBNs), which share the rule-based nature
of Boolean networks but also handle uncertainty. Within this extended framework of PBNs,
studies focusing on external system control were performed by Datta et al.;17,18 studies by Pal
et al.19 and Choudhary et al.20 explored intervention in PBNs to avoid undesirable states.

One major shortcoming of Boolean networks is the exponential growth of the state space
with the number of variables, prompting others to work in the Boolean framework itself to
achieve some kind of improvement. The approach of Richardson21 attempted to shrink the
size of the state space through the careful removal of “frozen nodes” and network leaf nodes.
The smaller state space then lends itself more readily to the discovery of attractors and basins
by sampling methods. Dubrova et al.22 explored properties of random Boolean networks,
particularly their robustness in the face of topological changes and the removal of “redundant
vertices”, thus shrinking the state space. While effective in shrinking the space and removing
extraneous nodes, neither of these methods is looking for key players in a system or possible
intervention targets; in fact both methods have the chance of eliminating such variables.

In an attempt to achieve certain analysis goals, various authors modified or translated the
Boolean formalism into another framework. Saez et al.23 as well as Schlatter et al.24 converted
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their Boolean models of biological systems into hypergraphs, generalizing graphs with edges
connecting sets of vertices instead of just pairs or singletons, thus lending themselves to
representing Boolean functions. Both papers use analysis techniques to identify important
pathways, network motifs and feedback loops. The work of Schlatter et al.also mentions the
discovery of relevant hubs in the network. Steggles et al.25 employed a classic concept of
converting to a different graphical structure, Petri nets. In making this conversion, they used
the logic minimization technique we employ (discussed below), albeit in a different way.

Maji and Pradipta26 did not use a Boolean network but nonetheless work with the notion
of state transition using a related discrete model: fuzzy cellular automata. Their work uses
multi-valued logic and presents a new way of identifying attractor basins; however it does not
focus on the identification of intervention targets in the system. Mar and Quackenbush27 also
employed the notion of a state transition space without the direct use of a Boolean network.
Using their regression model they strive to classify core variables (genes in their case) as they
decompose state space trajectories. Their method, however, is dependent on time-course data,
and furthermore its primary focus is at the pathway level and not the variable level.

In this work we stay with the classical formulation of Boolean networks but concentrate
on the basins of attraction themselves to identify the key variables in the system. While
limited by the exponential complexity inherent to Boolean network state spaces, we work here
with tractible network sizes and describe plans to expand to larger networks in the future.
Recently,28 we successfully used the same yeast network as this study, a human aging network,
as well as a version of the WNT5A network for melanoma also presented here in order to study
the planning of interventions in biological networks. The intervention targets selected by the
Artificial Intelligence planning techniques in that work are in agreement with intervention
targets suggested by the methodology presented in this work.

In the coming sections we first formally define our methodology with a sample network
and example. Then, we apply our methodology to a well-studied genetic model of the yeast
cell cycle. Following this proof of concept we apply our methodology to a WNT5A network
computationally predicted from a melanoma gene expression data set. The reader is also
referred to our technical report29 for an additional application to the aforementioned human
aging network. We conclude with some comments on our current and future work.

3. Methods

In this section we formally define our methodology. We first briefly summarize the Boolean
network formalism and touch upon a basic description of logic reduction. Finally we discuss
some measures used in the identification of important variables and intervention targets and
then apply all of this to an example network. The reader is referred to our previous technical
report29 for more on the Boolean network formulation, a smaller example, as well as further
description of logic reduction; Xiao and Yufei30 also add to the description of Boolean networks.

3.1. Boolean Networks

A Boolean network B(V, f) is made of a set of binary nodes V = {x1, x2, · · · , xn}, where
xi ∈ 0, 1, and a set of functions f = {f1, f2, · · · , fn} that define a state of x at time (t + 1)
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as x(t + 1) = fi(xi1(t), xi2(t), ..., xiki
(t)), where fi is a Boolean function and ki is called the

connectivity of xi. The state transition diagram G(S,E) of a Boolean network B(V, f) with
n nodes is a directed graph where |S|= |E|= 2n. Each of the vertices represents one possible
configuration of the n variables in the network and each of the directed edges represents the
transition between two states as Boolean functions are synchronously applied to all variables.

In the absence of interventions or perturbations, beginning in any initial state, re-
peated application of transition functions will bring the network to a finite set of states,
{a1,a2, · · · ,am} ⊆ S and cycle among them forever in fixed sequence. This set of states is
known as an attractor, denoted A. An attractor with just one state is called a singleton at-
tractor and an attractor with more than one state is called a cyclic attractor. Boolean networks
may have anywhere from one cyclic attractor comprised of 2n states to 2n point attractors,
although most commonly a network will have just a handful of singleton or short-cycle at-
tractors. The complete set of states from which a network will eventually reach A is known
as the basin of attraction for A, denoted B = {b1,b2, · · · ,bM} ⊆ S. All attractors are subsets
of their basins (i.e. Ai ⊆ Bi,∀i), all basins are mutually exclusive (i.e. Bi

∩
Bj = ∅,∀i,j , i ̸= j),

and the complete state space is comprised entirely of all basins (i.e.
∪

iBi = S). In this study
we use the BN/PBN Toolbox31 for Boolean network simulation and processing.

3.2. Logic Minimization

Logic minimization (or reduction) is a classic problem from digital circuit design employed
to reduce the number of actual logic gates needed to implement a given function.32 With
careful logic minimization one can reduce the number of gates required and thus include more
functionality on a single chip. Minimization identifies variables which have no influence on the
outcome of a function and marks them appropriately as a don’t-care. As a simple example, we
take the Boolean function: (A∧B)∨ (¬A∧B) (2 signals, 4 gates). Since the role of A changes
while B remains ON with the same output, it is clear to see that the only influencing variable
is B, which can be given with just that signal itself (a single gate).

In this study, we use Espresso,33 which is a heuristic logic minimizer designed to efficiently
reduce logic complexity even for large problems. We supply as input the set of states in a
particular basin of attraction (Bi); this input comprises the ON-cover (or truth table) in
disjunctive normal form (DNF) for a Boolean function whose output is ON for the states of
Bi ({b1 ∨ b2 ∨ · · · ∨ bMi

} 7→ ON) and whose output is OFF for the states of S \Bi. Espresso
analyzes this cover and returns a minimal (though not necessarily unique) DNF set comprised
of one or more terms, denoted Ti = {t1, t2, · · · , tNi

}, where Ni ≤ Mi. These ti have some
variables set to ON, some set to OFF, and some set as don’t-care. The presence of these
don’t-care variables in some terms is what allows the reduction.

3.3. Measures: Popularity, Term Power and Variable Power

After applying logic minimization to a set of Boolean functions one is left with a minimal
DNF representation comprised of a set of terms containing ones, zeros, and don’t-cares. We
have shown how to spot important variables in a very small example,29 but a more formalized
method is needed to identify key variables and possible targets for intervention from the
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minimized terms in larger problems. To this end we introduce three simple measures. The
first is to measure how frequently a variable (v) is required to be ON or OFF across different
terms, called Popularity (p), and is defined as:

p(v) =
z(v)

Ni
, (1)

where z(v) =
∑Ni

j=1 I (v, tj), Ni is the total number of terms in Ti, and I(v, tj) is an indicator
function: 1 when v is ON or OFF in tj, 0 otherwise. Next, we define a measure to identify
terms where a few variables demonstrate supremacy over many others. These terms are pow-
erful due to the combinatorial effect of their few set variables. If a five-variable term has one
variable set and four listed as don’t-cares, that one set variable controls 16 configurations
covered by the don’t-care variables (half of the state space). This term would be more pow-
erful than a term with two variables set and three don’t-cares. Formally, Term Power (PT ) is
defined as:

PT (t) = 1− 1

n

n∑
j=1

I (vj , t), (2)

where n is the number of variables in the term (and network). Term Power is used in calculating
our third measure. Given the notion of term power, one can also consider variables which
preside over powerful terms to be potentially important and powerful intervention targets.
Variable Power (PV ) of a variable v will be defined as the average term power over the terms
in which it is explicitly configured, i.e. v is not don’t-care:

PV (v) =
1

z(v)

Ni∑
j=1

PT (tj) · I (v, tj) (3)

3.4. Other Measures to Identify Key Players

There are various network centrality measures often used in network studies, particularly con-
cerning biological networks, to identify important variables. We have already touched on the
degree of a node, but we also consider the network centrality measures of betweenness, centroid
value, and eccentricity. High betweenness indicates that a variable is crucial in maintaining
connections between other variables. The centroid value for a variable provides a weighted
centrality index. A high eccentricity measure indicates that all other nodes are in proximity.
Full definitions as well as biological explanations can be found in the supplementary informa-
tion of Scardoni et al.,34 but in short, network nodes with high values for these measures can
be correlated with biologically significant nodes, possibly even intervention targets.

For Boolean networks, there are also variable-specific measures known as Influence and
Sensitivity for a variable xi, denoted r(xi) and s(xi), respectively. The reader is referred to
Shmulevich et al.16,35 for formal definitions. In short, in biological Boolean networks, variables
with high influence have the potential to regulate the dynamics of the network, and so they
are of interest to this study. Sensitivity represents the degree to which a variable is affected
by other variables, and so of the most interest are variables with the highest influence and
the lowest sensitivity. Since our measures p and PV are specific to each basin, this presents an
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unfair advantage over the network-generality of r(xi) and s(xi). Thus, we extend the measures
shown in Shmulevich et al.16,35 to be specific to a particular basin of attraction by manipulating
the joint probability distribution of the state space; we simply assign a zero probability to any
state not in the basin and assign a uniform probability to states within.

Example: An 8-variable Boolean network:

(a) Network (b) State Transition

Fig. 1: Eight-Variable Example Boolean Network

To show these measures and also our claim regarding the utility of our methodology over
other measures, we create the 8-variable network shown in Fig. 1(a), in which we assign at
most three random inputs and random Boolean functions. Simulation resulted in two basins
of attraction, shown in Fig. 1(b). Basin 1 included 160 states converging on a cyclic attractor
of length two ([01011101] and [11011100]), and Basin 2’s remaining 96 states converged on
another cyclic attractor of length two ([00011100] and [11011101]). Logic reduction reduced
the 160 states in Basin 1 to a set of three terms, and the 96 states of Basin 2 to a set of four
terms: T1 = {[0-----00] ∨ [1-----10] ∨ [1-----01]}, T2 = {[1-----00] ∨ [0-----1-] ∨
[0------1] ∨ [------11]}, where “-” indicates a don’t-care.

After analysis with the measures defined in the previous section, we find, based on high p

and PV , g1, g7 and g8 to be of interest. Because each of g1, g7 and g8 are explicitly configured
in each of three terms for the larger basin and in 3 out of 4 terms in the smaller basin,
their scores for p and PV are each identical and overshadow the remaining variables. In this
example, we again observe that simply identifying vertices in the graph with high degree does
not necessarily reveal important variables. With self-loops removed to prevent inflation of
degree counts, the variables with the highest degree are g2 with six incident edges and g1

with four. From our analysis, g1 is one of the most important variables. However the variable
with the highest degree, g2, has been shown to have no influence at all in our analysis. When
the network centrality measures of betweenness, centroid value, eccentricity and node degree
are calculated for this toy network, we find that g8 is frequently reported with high scores,
just like our approach. r(xi), in fact, identifies g1, g7 and g8 as important, which match our
three best. However, several of the measures, including s(xi), incorrectly dismiss g7, and many
measures also elevate g2, which is shown to have no real intervention capabilities. A table
of all measures can be found on the supplementary website; an illustrated expansion of this
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example, along with a simpler one, can be also be found there, and in our previous report.29

4. Results

In this section we set out to prove the efficacy of our method on real world examples. For this
proof of concept we analyze a Boolean network model of the yeast cell cycle and identify sig-
nificant variables in the system corroborated by its original manuscript. We then demonstrate
our approach on a Boolean network not constructed manually, but rather learned from gene
expression data directly. In our technical report29 we also apply our method to the systems
biology of human aging, where we step away from genetic interactions and demonstrate the
utility of our method on our Boolean network model for human senescence.

4.1. Boolean Network Model for Yeast Cell Cycle and Its Analysis

As a proof of concept on a nonrandom network we will apply our methodology to a well-
studied Boolean network model of the yeast cell cycle5 and show that key variables described
in the manuscript are identified by our approach. In their paper, Li et al. manually construct a
Boolean network modeling the yeast cell cycle using 11 of the most important genes out of the
approximately 800 known to play a role in the process. This network is simulated and results
in seven basins of attraction, one of which is by far the largest and was studied exclusively in
the paper. In this basin of attraction, which included 1,764 states, Li et al. were able to trace
the trajectory of the yeast cell cycle from one of the fringe, or “Garden of Eden”,4 states down
to the eventual point attractor state. The Boolean network adapted from Li et al. is shown in
on the supplementary website, the original paper,5 and our technical report.29

After applying logic minimization to these 1,764 states we are left with a sum of 39
product terms. An abstraction of these terms can be seen in Table 1. In the table the terms
are seen across columns (sorted by PT ), with ones and zeros represented by black and white,
respectively, and don’t-cares shown in grey. Some variables are set frequently and others are
not. Some terms have many requirements, and others have few. The p and PV measures were
calculated for each of the eleven genes in the network. The three most popular variables are
Clb5,6, Clb1,2, and Mcm1. The most powerful variable was identified as Cln3.

Table 1: Minimized Yeast Cell Cycle Basin (Black = 1, White = 0, Grey = don’t-care)

Genes p PV s(x) r(x)

Cln3 0.05 0.82 0.00 1.00

MBF 0.31 0.63 1.50 0.88

SBF 0.38 0.65 1.50 1.50

Cln1,2 0.28 0.56 1.00 0.56

Cdh1 0.36 0.62 1.25 0.56

Swi5 0.21 0.55 1.50 0.31

Cdc20 0.46 0.62 1.00 1.75

Clb5,6 0.54 0.62 1.50 1.75

Sic1 0.46 0.62 1.88 1.00

Clb1,2 0.49 0.62 1.88 3.38

Mcm1 0.49 0.60 1.00 1.31

39 reduced terms across columns
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Starting with the most popular variable, we find that Clb5,6 is required to be in a particular
state 54 percent of the time. Furthermore we find that in each of the 21 terms in which Clb5,6
is in a specific configuration, that configuration is ON, or active. Since the Clb5 gene (part of
the Clb5,6 variable) is described as being responsible for driving the cell into the S phase (in
which the DNA is synthesized and chromosomes are replicated), it seems reasonable to find it
strongly represented in the minimized basin. If the role of Clb5 were not known beforehand,
analysis of the basin in the manner described could identify it as important (and in the ON
state) even though it is OFF in the eventual attractor state.

Next we look at one of the second-most popular variables in the reduced basin, namely
Clb1,2. The Clb2 gene (part of the Clb1,2 variable) is stated as being responsible for the tran-
sition in and out of the M phase (in which chromosomes are separated and the cell is divided
into two). Thus, like Clb5,6, it is not surprising to find it here among the most frequently
specified variables in the basin representing the cell cycle. Unlike Clb5,6, the configuration of
Clb1,2 is not consistent—it is found in the OFF configuration 7 times and in the ON configu-
ration 12 times. However, since it is the activation and subsequent degradation of Clb2 which
initiates and terminates the M phase, the split nature of the configurations seems appropriate.

There are other variables with high p which are not explicitly called out in the paper.
Given the corroboration of those which are called out in the paper, further investigation of
the roles of cyclin inhibitors Cdc20 and Sic1, and of transcription factor Mcm1 is warranted.

Finally we look at the most powerful variable, cyclin Cln3, which was described in the
paper as the trigger committing the cell to the division process. Despite its importance, we
find it only explicitly configured in 2 of the 39 terms in the reduced basin (once for OFF
and once for ON ), which ranks it lowest in the p measure. However, because these two terms
are the most powerful, Cln3’s PV score is quickly elevated. It is also interesting to find that
in these two terms, only one other variable is specifically configured, namely, Clb1,2. In fact,
these two variables are in opposite configurations in these two terms; when Cln3 is ON, Clb1,2
is OFF and when Cln3 is OFF, Clb1,2 is ON. This is interesting because Cln3 is described as
triggering the G1 phase (the starting phase), and Clb1,2 controls the entry and exit from the
M phase (the ending phase). Their opposite configurations in the reduced basin terms seem
to agree quite harmoniously with their regulatory control at extreme ends of the cell cycle.

When the network centrality measures of betweenness, centroid value, eccentricity and
node degree are calculated for this yeast network, we find that Clb1,2 and Clb5,6 are frequently
reported with high scores, just like we find using our approach. This is also the case when
r(xi) is calculated based on the Boolean network properties underlying the topology. However,
the centrality measures also report variables such as Clb1,2, SBF and MBF, which are shown
mathematically by our method to have little intervention power. Furthermore, these measures
give little consideration to other key variables, including Cln3 and Mcm1, which our approach
mathematically shows to have some intervention capabilities. Thus, our approach reports the
key variables described by Li et al. and missed by traditional measures, and avoids reporting
mathematically weak variables reported strongly by traditional measures.
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4.2. Application to WNT5A Network for Melanoma

After applying our approach to a hand-made network, we applied our methodology to a well-
studied WNT5A network computationally predicted from a melanoma data set.36–38 In our
previous work,38 the original data set was narrowed down to the ten most critical variables;
these were selected out of 587 total on the basis of their strong interactive connectivity and
either their known or likely roles in WNT5A driven induction of an invasive phenotype in
melanoma cells, or their close predictive relationship with these genes. For each of the ten
variables, we were able to identify the three most ideal predictors out of the remaining nine.
Using this connectivity and a binary quantization of the original data set, the best binary logic
functions were inferred for each target minimizing the Bayes error.39,40 From these functions,
the Boolean network attractors and basins were identified. The reader is referred to the cited
publications for detailed information on the data and connectivity, and to the supplementary
website for the functions identified, as well as elucidating figures.

Table 2: WNT5A Basin Attractor States (Black = 1, White = 0) with Basin Measures; si(x)
and ri(x) are basin-specific influence and sensitivity, which are discussed in the next subsection

B1 p PV s1(x) r1(x) p PV s2(x) r2(x) B3 p PV s3(x) r3(x) s(x) r(x)

WNT5A 0.45 0.57 1.79 2.25 0.70 0.44 1.72 1.70 1.00 0.20 1.00 2.75 1.75 2.00

S100B 0.32 0.53 1.03 0.88 0.40 0.40 0.96 0.59 1.00 0.20 1.25 1.25 1.00 0.75

RET1 0.23 0.54 0.00 1.22 0.35 0.46 0.00 1.29 0.50 0.20 0.00 1.00 0.00 1.25

MMP-3 0.50 0.55 0.00 0.51 0.60 0.48 0.00 0.47 1.00 0.20 0.00 1.00 0.00 0.50

Pho-C 0.27 0.53 0.96 0.24 0.35 0.37 0.52 0.27 0.50 0.20 0.50 0.00 0.75 0.25

MLANA 0.00 0.00 1.26 0.90 0.00 0.00 1.24 0.58 0.00 0.00 1.00 1.00 1.25 0.75

HADHB 0.32 0.50 0.81 0.74 0.55 0.41 0.64 0.77 1.00 0.20 3.00 0.50 0.75 0.75

SNCA 0.68 0.54 1.65 0.30 0.70 0.50 1.31 0.19 1.00 0.20 2.50 0.25 1.50 0.25

STC2 0.82 0.55 1.31 1.08 0.75 0.47 1.19 0.92 1.00 0.20 1.00 0.25 1.25 1.00

PIR 0.86 0.55 1.79 2.48 0.70 0.49 1.71 2.51 1.00 0.20 1.00 3.25 1.75 2.50

B2

The state space (1,024 states) was partitioned into three basins of attraction: Basin 1 had
a singleton attractor state with a total basin size of 544 states, Basin 2 has a two-state cyclic
attractor with a total basin size of 472 states, and Basin 3 had a singleton attractor with
a total basin size of just 8 states. As seen in Table 2, our measures p and PV reported the
intervention capabilities of Pirin, STC2, SNCA, and WNT5A. STC2 is known to interact with
MMP-3,41 another variable in this network, SNCA is known to be aberrantly hypermethylated
in human cancer cells,42 it is known that “cytoplasmic localization of PIR may represent a
characteristic of WNT5A network for melanoma progression”,43 and WNT5A has a known
role in human melanoma progression.37 That three of our top four intervention targets are
either melanoma-related or cancer-related speaks well for their true intervention capabilities.

When compared to the network centrality measures, as well as r(xi) and s(xi), Pirin and
WNT5A were identified by most of them. However, also among the high scoring results for
these measures was MLANA, which was shown mathematically by our results to have zero
influence on the network dynamics. This is not totally surprising, considering this network is
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derived from melanoma data in which all melanocytes should be present, and that p and PV are
basin-specific (see below). While all variables in such a small, carefully selected set will bear
some significance, even MLANA, our approach simply reveals those with true intervention
capabilities given the topology. Furthermore, some measures dismissed STC2 and SNCA by
including it among the lowest scoring variables despite its influence potential.

4.3. Usefulness of p and PV over Other Measures

We have seen the ability of p and PV to identify variables with great combinatorial control
over the state space of a Boolean network. We have further demonstrated how those variables
identified are often known to be suitable targets for intervention. In demonstrating this we
have compared p and PV to r(xi) and s(xi), as well as network centrality measures, and here
we discuss some differences in these measures.

While r(xi) and s(xi) are based on Boolean functions, p and PV are based on Boolean states.
Influence16 is computed by variable pairs in a matrix and summed by rows and columns to
get r(xi) and s(xi), where p and PV are independent measurements on variables and do not
depend on pairs. r(xi) and s(xi) are general measures, where p and PV are specific to each
basin of attraction. To level the field of comparison, we created a basin-specific version of
r(xi) and s(xi) (rk(xi) and sk(xi) for basin k), but they were not able to offer any new insight
that r(xi) and s(xi) were not already able to. To see this, observe the closeness and value and
symmetry in dynamics (based on basin size) between the measurements in Table 2 and in the
table on the supplementary website for the human aging network.

There are additional advantages over r(xi) and s(xi). p and PV are not only basin-specific,
but they are also value-specific. While we can adapt an influence matrix to be basin-specific, it
still cannot be made value-specific. Thus, with p and PV , because of the minimized terms, we
not only know where to intervene, but precisely how to do so. These values, or how we should
intervene, can be and often are different than the values in the attractor state (if we’re lucky
enough to not have a cyclic attractor where values toggle), and furthermore the same target
may be viable for more than one basin, but with different values. This kind of information is
not available with an influence matrix or the derived measures r(xi) and s(xi).

Furthermore, p and PV allow us to find the minimal effective intervention. Any computa-
tional aid to intervention studies will always be human-reviewed in the end, so it need not
give one definitive answer. We can say with mathematical certainty that setting certain vari-
ables together will force a basin (and thus attractor) to be selected. With a set of minimized
terms we can find the smallest interventions (highest PT ) using the most effective targets
(high p and/or PV ) which are suitable for intervention with current medical abilities (human
evaluation of mathematical possibilities).

5. Conclusion and Future Work

In this paper, we showed the importance of analyzing Boolean network basins of attraction
in identifying targets for intervention. Furthermore, we demonstrated that these targets are
not always evident in attractor states themselves, in the network topology, or even from
various existing measures, both graph-theoretic and Boolean-network-specific. Our use of logic
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minimization significantly reduces the representation of basins of attraction, and the proposed
measures stratify the terms, revealing both the key players and how to manipulate them.

The analysis of the yeast cell cycle network demonstrated that our methodology can iden-
tify key variables in the system. We were able to systematically identify three important
variables described specifically by the original study and propose others for further study. Our
application to the WNT5A network for melanoma demonstrated the applicability of our ap-
proach beyond hand-created networks to networks inferred from biological data; furthermore
our targets identified for intervention had been previously validated by laboratory studies.

This approach is most appropriate to smaller hand-made or high-confidence networks
due to the size complexity issues in Boolean networks. Current efforts involve overcoming
the scalability issues inherent in enumerating complete state spaces, which quickly becomes
intractable. We are investigating approximation approaches to identify attractor states and
enumerate most of their basins. We intend to take full advantage of high performance comput-
ing clusters, both in terms of memory and parallelization. We also are working on expanding
our implementations and measures to handle multi-valued logic, taking us beyond the Boolean
constraint and allowing even more levels of abstraction.

Supplementary Material

http://biocomputing.asu.edu/basinreduction/psb2011/
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Abstract: 
 
The promise of pharmacogenomics for individualized medicine is on the crest of realization as a 
result of advances that allow us to predict beneficial, non-beneficial, and deleterious drugs for 
specific individuals based on aspects of both the individual and the drug. In spite of these 
advances, information management in this field relies on fairly traditional means, which do not 
scale to the available volume of full text publications. The aim of this workshop is to bring 
together researchers working on the automatic or semi-automatic extraction of relationships 
between biomedical entities from the pharmacogenomic research literature. The workshop will 
focus particularly on methods for the extraction of genotype-phenotype, genotype-drug, and 
phenotype-drug relationships and the use of the relationships for advancing pharmacogenomic 
research. Efforts aimed at creating benchmark corpora as well as comparative evaluation of 
existing relationship extraction methods are of special interest. 

Goals of the workshop: 
 
The promise that pharmacogenomic holds for individualized medicine may be on the crest of 
realization due to technical advances such as large genotyping arrays and analytical advances 
that allow us to predict beneficial, non-beneficial, and deleterious drugs for specific individuals 
based on salient features of both the individual and the drug. 
 
However, information management in this field relies on fairly traditional means, e.g. curated 
databases, which do not scale to (1) the rapid expansion of the pharmacogenomics literature in 
recent years and (2) the increasingly available volume of full text publications, which contain 
more specific and (potentially) informative facts than Medline abstracts.   Hence, although there 
is a large demand and significant utility of text analytics to the study of pharmacogenomics, its 
potential is not fully realized; in part because the work to date has failed to bridge the two 
distinct worlds—that of (bench) molecular biology and that of (clinically oriented) 
pharmacology—and because the developers of text analytics are not fully aware of this 
challenging field. 
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Last year's workshop (Genotype-Phenotype-Drug relationship extraction from text) examined the 
current state-of–the-art and reported ongoing research of labs already involved in this area of 
research. The steady stream of work on extracting interactions from text, the increasing attention 
in the Semantic Web towards capturing facts as "nano-publications" (individual assertions that 
are attributable to authors and traceable in their publications), and representing scientific 
discourse in a structured manner, all indicate that the time seems to be ripe for research that goes 
even beyond the mere extraction of explicitly stated knowledge in documents, to linking text-
mined and database data through formal reasoning to uncover implicit and in some sense "new" 
knowledge.  In order to advance this agenda, it is essential that existing relationship extraction 
methods be compared to one another and that a community-wide sharable benchmark corpus 
emerges against which such efforts can be compared. The goal of the workshop is to utilize a 
corpus put forth by PharmGKB to compare different relationship extraction methods and the 
corresponding "new" knowledge discovery those methods might drive. 
 
This workshop aims to address the gap in coverage of text mining for pharmacogenomics. The 
technical area of the workshop will particularly focus on extraction of genotype-phenotype-drug 
relationships.  Work on named entity recognition (e.g. gene taggers) would not be considered for 
inclusion. Approaches that combine text-mining and knowledge-based systems are of special 
interest. We invite researchers working on text mining and reasoning to submit applications of 
their research efforts to the area of pharmacogenomics, and particularly genotype-phenotype-
drug relationships. Topics solicited include: 
 

• Relation extraction between genotypes, phenotypes, and drugs, and other semantic 
classes relevant to pharmacogenomics 

• Corpus development for pharmacogenomics text mining 
• Associating gene variants (mutations, alleles, rs/ss numbers) to the associated gene name 
• Work on the corpus of documents linked to by PharmGKB 
• Reasoning systems applied over the PharmGKB knowledge base 

  
We anticipate that this year’s workshop will build on the success of last year’s workshop and 
seed a community around the shared goal of computationally collecting and distributing 
pharmacogenomics knowledge. 
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The workshop focused on approaches to deduce changes in biological activity in cellular pathways
and networks that drive phenotype from high-throughput data. Work in cancer has demonstrated
conclusively that cancer etiology is driven not by single gene mutation or expression change, but by
coordinated changes in multiple signaling pathways. These pathway changes involve different genes
in different individuals, leading to the failure of gene-focused analysis to identify the full range of
mutations or expression changes driving cancer development. There is also evidence that metabolic
pathways rather than individual genes play the critical role in a number of metabolic diseases. Tools
to look at pathways and networks are needed to improve our understanding of disease and to improve
our ability to target therapeutics at appropriate points in these pathways.

Keywords: Signal pathways, metabolic pathways, disease, statistics

1. Introduction

Many complex databases are being developed and maintained to house genetic, epigenetic,
genomic, and functional genomic data. Centralized resources such as the National Center for
Biomedical Informatics (NCBI) are developing databases to integrate reads from next gen-
eration sequencing experiments, tumor-derived somatic DNA sequence variation, and single
nucleotide polymorphisms (SNPs) or haplotypes significantly associated with disease pheno-
types. Functional genomic data and methylation array data are being captured in the Gene
Expression Omnibus (GEO) and ArrayExpress data repositories. The cancer genome atlas
(TCGA) combines all these types of data together with detailed information about clinical
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phenotypes. A vast amount of open-access data now allows data analysts and informaticists
the opportunity to develop tools and perform initial demonstrations of their validity indepen-
dently of new bench experiments. These resources now provide a unique opportunity for the
development of tools suitable for analyzing data arising from complex biology.

A key focus in this workshop was the emergence of model-based analysis for high-
throughput data. As an example of previous work, Chinnaiyan’s group utilized prior knowledge
on gene expression and TF binding in prostate cancer to identify a change in a key metabolite
associated with prostate cancer progression.1 Sarcosine was one of many metabolites to show
substantial changes in levels during prostate cancer progression, however it is produced by
GNMT, a methyl transferase with an androgen receptor binding site upstream. As androgen
is known to play an important role in prostate cancer aggressiveness, this allowed prediction
that sarcosine might serve as a marker of aggressiveness and potentially even be a driver of
such aggressiveness, which was validated in cell line studies. The interactions modeled between
the molecular components in this work relied on building a simple mechanistic model of the
underlying biology, without which the discovery could not have been made. The focus in this
workshop was on efforts to integrate data and build models on a much larger scale.

A particularly promising point of integration is the role of pathways in disease. Biological
pathways provide a natural approach to the integration of multiple omics data as well as a
means to identify the mechanism through which the effects of mutations, epigenetic variation,
protein isoforms, and metabolic changes occur.

2. Pathways in Human Disease

Recognition that biological pathways are critical to understanding human disease emerged
along with the elucidation of metabolic and cell signaling pathways by molecular biologists and
biochemists. For example, the discovery of the role of MAPK kinases in response to external
signals2 and the later elucidation of the proliferation response due to signaling pathways
including these kinases3 demonstrated the role of pathways in the uncontrolled cell growth
that is typical of cancer.4 Later it was realized that many forms of specific signaling proteins
(i.e., different related kinases encoded by different genetic loci) existed, and that each member
of a family could substitute for another in specific cell types or be aberrantly expressed in
some cancers.5

In addition, multiple signaling pathways that play important roles in programmed cell
death (PI3K-AKT), proliferation (RAS-RAF), cell cycle (Rb-CDK), DNA damage response
(P53), and cell adhesion (FAK) were discovered to play roles in cancer etiology.6 Each pathway,
as with the RAS-RAF-MAPK-ERK pathway, contains multiple signaling proteins, with many
proteins having known multiple loci encoding related family members. Overall, this creates a
situation in which a single aberrant protein (e.g., an oncogene) in a pathway can activate that
pathway inappropriately, leading to escape of a cell from a checkpoint on growth. Effectively,
each viable cancer therefore has multiple hits (as first proposed by Knudson7 for the related
case of a dominant tumor suppressor), but the hits may be different (i.e., different pathway
members) in each cancer, even for cancers of the same apparent phenotype.

Validation of this new view of cancer came with studies of coordinated methylation, mu-
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tation, copy number, and expression changes in glioblastoma multiforme and pancreatic can-
cer.8–10 In these studies it was demonstrated conclusively that almost all cancers had changes
to one protein in each important pathway, but that these proteins were not the same be-
tween different individuals. This result suggested that analysis of pathways would be more
informative than analysis of genes across a population.

3. High-Throughput Data

Traditional molecular biology and biochemistry involved detailed study of one or a few genes in
tightly controlled experimental systems. This approach changed dramatically with the emer-
gence of gene expression microarrays in the mid 1990’s.11,12 These technologies soon allowed
researchers to measure levels of mRNA genome-wide and represented the first of many genome-
wide measurement technologies. Subsequent advances since the development of microarrays
for gene expression have been very rapid. Tiling arrays and array comparative genomic hy-
bridization (aCGH) have allowed increasingly fine-grained measurements of DNA variations.
Use of these arrays and custom arrays coupled with immunoprecipitation permit genome-wide
measurement of transcription factor and regulatory factor binding. SNPs are now measured
genome-wide as well, and SNP-chips also permit estimation of copy number variation (CNV)
at increasingly fine resolution. Recently miRNA chips have been developed, so that the abun-
dance of miRNA families can now routinely be measured for all known miRNAs. Coupling
microarray technology to methylation-specific precipitation allows measurement of methyla-
tion levels in the genome as well. Next-generation sequencing is replacing some of these tech-
nologies, now routinely providing genomic-, epigenomic-, and transcript-level measurements.
Emerging technologies in nuclear magnetic resonance and mass spectrometry are beginning to
provide large-scale measurements of metabolites and proteins, and antibody and reverse-phase
protein arrays have the potential to allow genome-wide measurements of protein levels in a
microarray format.

As multiple high-throughput measurements representing different molecular entities (e.g.,
DNA, mRNA, protein) are now routinely made, methods to integrate the data between these
different molecular domains are needed. These can be gene-centric, aligning measurements
to the genome for instance, or protein-centric, focusing on protein isoforms and including
alternative splicing and post-translational modifications.

4. Analysis Approaches and Tools

The simplest approach to account for the heterogeneity introduced by a pathway effect into
analysis of high-throughput data is to realize that only a subset of disease samples may harbor
a mutation or change in expression and to generate a statistic to address this. In fact, methods
to identify these outlier genes have been developed.13,14 The next step is to generate a pathway
or set statistic to replace single gene statistics, which was the focus of methods now known as
gene set analysis.15 However, a model-based analysis that directly utilizes pathway structures
to interpret high-throughput data should provide greater power for biological discovery. The
modeling methods discussed in the workshop utilized high-throughput measurements of cell
lines, model organisms, and tumors to discover novel insights into biological systems.
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Cell lines developed from primary tumors have been among the most important tools for
discovering the molecular changes underlying cancer and for drug compound screening. A
recent study of 30 breast cancer cell lines used expression and proteomics profiles, along with
mutational and copy number variation data to build a discrete, rule-based network signaling
model for each cell line,16 based on the Pathway Logic system.17 Each model has an initial state
that represents all expressed proteins in the cell line. Signaling is represented by rule sets, based
on experimentally derived protein-protein interactions, which determine a sequence of model
states. This approach involves many simplifying assumptions, in particular discretization of
data, i.e. each protein component is either present or absent in each state. However, the
simplicity makes the model interpretable and it recaptitulates known breast cancer biology
and yields useful new hypotheses about aberrant signaling in breast cancer. For example,
model analysis elucidates the role of the gene CAV1 in highly aggressive basal B breast cancers
and the relationship of PAK1 to MAPK cascade regulation. In particular, the hypothesized
importance of PAK1 led to the discovery that PAK1 over-expression may provide a potential
clinical marker for the utility of MEK inhibitors in breast cancer treatment.

Genome-scale studies of primary tumors, in increasingly larger patient cohorts, have be-
come widespread. These studies measure multiple biomolecules in tumor tissue and matched
normal samples, including gene expression, copy number variation, somatic mutations, SNPs,
and methylation level. The volume and complexity of this data requires new analysis meth-
ods to reach translational goals, such as improved prognostics and patient-specific therapies.
PARADIGM, a probabilistic graphical model that maps multiple patient-specific genome-scale
measurements onto curated cancer-related pathways, can be used to infer which components
of a pathway (broadly defined as physical entities, gene families, and abstract processes) are
activated with respect to a normal cell.18 This process yields a matrix of integrated pathway
activities (IPAs) for each patient. Based on IPA clustering, clinically relevant subgroups of
patients were identified, with the potential for improved stratification of patients for targeted
therapeutic regimens.

ResponseNet treats genetic library screening results and transcriptional changes measured
by microarray experiments within the context of the relationship between signaling protein
interactions and transcriptional regulation, integrating multiple types of data (e.g., microarray,
genetic library, ChIP-chip) from different experimental sources. It was used to successfully
identify pathways involved with α-synuclein toxicity and genes differentially regulated by
these pathways.19 This approach, however, relies on downstream transcriptional changes to
drive discovery, and thus can miss important protein interactions changes that do not drive
transcriptional change. An alternative approach, an award gathering Steiner tree, was used
to identify changes driven by protein interactions in the yeast pheromone response.20 The
Steiner tree was successful in balancing the introduction of false positive interactions from
experimental data with the loss of key interactions.

5. Conclusion

Our understanding of biological processes and their control has led to a model of biology in
which biological regulatory and metabolic pathways play the dominant role. Evolution has led
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to multiple genes in many key families in these pathways, complicating the identification of cell-
specific drivers of biological processes. When these drivers are mutated, over-expressed, lost, or
replaced by aberrant family members, disease may emerge. Understanding these pathways and
identifying the specific members causing disease is critical to elucidating the heterogeneous
molecular changes driving disease, identifying subgroups of patients with shared molecular
changes, and developing individualized therapies.
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Electron cryo-microscopy (cryoEM) is a rapidly maturing methodology in structural biology, which now 
enables the determination of 3D structures of molecules, macromolecular complexes and cellular 
components at resolutions as high as 3.5Å, bridging the gap between light microscopy and X-ray 
crystallography/NMR. In recent years structures of many complex molecular machines have been visualized 
using this method. Single particle reconstruction, the most widely used technique in cryoEM, has recently 
demonstrated the capability of producing structures at resolutions approaching those of X-ray 
crystallography,  with over a dozen structures at better than  5 Å resolution published to date .  This method 
represents a significant new source of experimental data for molecular modeling and simulation studies. 
CryoEM derived maps and models are archived through EMDataBank.org joint deposition services to the 
EM Data Bank (EMDB) and Protein Data Bank (PDB), respectively. CryoEM maps are now being routinely 
produced over the 3 - 30 Å resolution range, and a number of computational groups are developing software 
for building coordinate models based on this data and developing validation techniques to better assess map 
and model accuracy. In this workshop we will present the results of the first cryoEM modeling challenge, in 
which computational groups were asked to apply their tools to a selected set of published cryoEM structures. 
We will also compare the results of the various applied methods, and discuss the current state of the art and 
how we can most productively move forward.

1. Electron Cryo-microscopy

Electron Cryo-microscopy is a versatile experimental technique with several sub-specialties, each 
of which has its own unique strengths and weaknesses, which must be taken into account when 
modeling molecular structures or validating results. We briefly introduce each technique, 
highlighting the most important aspects of each from a modeling perspective.
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1.1. Single Particle Reconstruction

Single particle reconstruction is the most widely used of the cryoEM methodologies for 
macromolecular structure determination, responsible for over 80% of the entries in the EMDB 
(http://EMDatabank.org). In this technique, purified macromolecules in aqueous buffer are 
vitrified and imaged, yielding images of individual particles in largely random orientations in a 
layer of vitreous ice. These images are extremely noisy due to the need to avoid radiation damage. 
They represent a snapshot of the solution conformation at the time of vitrification, thus the particle 
population includes any structural variability present in solution. Images of tens of thousands to 
millions of particles are selected and processed using a complex series of algorithms which 
determines the 3D orientation of each particle, corrects for microscope artifacts, and in certain 
cases separates the particles into multiple classes based on conformation, ligand binding or other 
attributes. These particles are then used to produce one or more 3D reconstructions at resolutions 
as high as 3.5 - 4.5 Å, for example1-3.

1.2. Electron Cryotomography

Historically this technique has been used to for lower resolution studies of cellular architecture 
and subcellular structures, which, while highly interesting, is not particularly relevant to molecular 
modeling. Recently, however, a hybrid approach between tomography and single particle 
reconstruction has gained popularity. In this technique, a tomographic reconstruction is performed 
on a specimen similar to that used in single particle reconstruction. This provides extremely noisy 
3D reconstructions of individual macromolecules, which can then be aligned and averaged in 3D4. 
The advantage over traditional single particle reconstruction is the presence of 3D information for 
each particle, rather than having only a single 2D projection of each. This 3D information can be 
used to resolve ambiguities between particle orientation and changes in particle conformation. 
While this technique is very powerful for studying difficult specimens or specimens displaying 
structural variability, at present its resolution is limited to ~20-30 Å even in the best cases. Thus, 
from a modeling perspective it is suitable only for docking large X-ray structure fragments.

1.3. 2D Crystallography

Electron crystallography was used to elucidate some of the earliest membrane protein structures 5, 
and still remains a powerful technique for systems that are resistant to 3-D crystallization, but may 
naturally form 2D arrays. While this technique can produce exceptional resolution in the plane of 
the crystal, exceeding 2 Å in one case6, the resolution in the orthogonal direction is necessarily 
much worse due to the experimental geometry. Nonetheless, this remains a powerful technique 
that can produce maps amenable to standard X-ray structure model building methods.  

1.4. Helical Reconstruction

This technique determines the structure of macromolecules arranged in helical arrays. These 
arrays may be either naturally occurring or 2D crystals that have been formed on the surface of 
lipid tubes. The advantage of the helical experimental geometry is that a single filament provides 
images of the target protein and affords full 360-degree tomographic coverage. Until recently, this 
technique was capable of resolutions well beyond those achieved with single particle 
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reconstruction7. However, thanks to recent strides in single particle reconstruction, the gap has 
narrowed considerably. The best structures using this method have sufficient resolution for 
traditional X-ray model building methods.

2. Challenges of CryoEM Map Interpretation

Each of the above techniques are powerful, but each also has limitations. Here we will focus on 
interpretation of maps determined using single particle analysis, since more than 80% of deposited 
structures have been determined using this method. The fundamental challenge in any single 
particle analysis project is the high noise level present in the data owing to the need to avoid 
radiation damage. As the resolution improves, this problem becomes worse, as radiation damage 
tends to destroy high resolution features first. Single particle reconstruction intrinsically relies on 
averaging together large numbers of particles. This raises the question of how to assess the 
interpretability of reconstructed maps. Resolution in this field is a measure of the noise-levels 
present in the final reconstruction, and is quite distinct from resolvability, which can be adjusted 
without impacting measured resolution.

The standard resolution metric requires one to split the data into even and odd halves, generate 
two ‘independent’ reconstructions, then compare them by Fourier shell correlation (FSC). The 
resolution is then the point at which the FSC value falls below a threshold value. Unfortunately 
the FSC is susceptible to overestimation due to noise/model bias8 and a number of other possible 
artifacts. While there are rarely any issues with the overall accuracy of a single particle 
reconstruction, there is some uncertainty over what level of detail in any given structure can be 
safely interpreted. For example, it is possible to filter a 5 Å resolution map so apparent sidechain 
densities are visible, but it is almost certain that such densities are simply noise.  

Because cryoEM is now able to achieve resolutions that enable molecular interpretations at the 
near-atomic level, there is a critical need for model data validation tools as well as improved 
methods for map interpretation.

3. The CryoEM Modeling Challenge 2010

The idea to host a cryoEM modeling challenge (ncmi.bcm.edu/challenge) was developed in order 
to provide the modeling community with a standard set of maps to test their methods against, 
enabling comparison of results, and  to improve awareness within the cryoEM community of the 
range of available tools. Unlike a true blind test of the various computational methods as provided 
by CASP (www.predictioncenter.org/casp9), the modeling challenge utilized known structures and 
challenged any interested groups to apply their methods to one or more of the structures, with the 
goal of improving existing map interpretations or  developing new tools for map/model validation. 
The provided maps cover a range of different symmetries, particle sizes, resolutions and 
experimental methods. The challenge will conclude at the beginning of December, 2010, and 
results will be presented and discussed in this PSB workshop. After the conclusion of the 
workshop, all submitted results will be made permanently accessible to the public .
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4. Available Modeling Techniques

There are many different computational techniques that can be used to interpret cryoEM maps, 
depending on the resolution range the map falls in. Each of the following sections describes a 
category of possible submissions in the cryoEM Modeling Challenge.

4.1. Volume Interpretation

Volume interpretation represents a class of techniques that can be applied to structures where the 
resolution is insufficient for molecular modeling approaches. We have divided these techniques 
into three broad categories. The first category is map segmentation; separating a map into 
meaningful sub-regions. Segmentation may be accomplished in a variety of ways, depending on 
the available information. For example, if crystal structures of domains or components of the map 
are available, they can be docked into the cryoEM reconstruction. De novo segmentation methods 
may attempt to perform automated segmentation based on, for example, the location of low-
density regions combined with the symmetry of the structure. Validation of results remains a 
major issue for this technique.

The second technique is secondary structure element annotation. At sub-nanometer resolution, 
α-helices become resolvable, and as the resolution improves further, β-sheets become discernible, 
eventually showing strand separation. In this intermediate (~5-10 Å) resolution range, tools for 
automatic identification and localization of secondary structure elements become quite valuable, 
but again, in marginal cases there are validation issues. In addition, in this resolution range, it 
becomes possible to dock crystal structures with much higher levels of confidence.

The final technique in this class is Cα protein backbone tracing. In the 3.5-5 Å resolution 
range, it is often possible to perform unambiguous tracing of the protein backbone directly from 
the density map. Some methods for achieving this rely on additional information, such as 
sequence-based secondary structure prediction or the existence of a crystal structure of a 
homologue, to help resolve ambiguities. 

4.2. Modeling

These methods yield true atomistic models derived from cryoEM density maps. The first of the 
three methods in this class is related to rigid-body docking described above. The implementation 
of this method may take many forms, and some methods are resolution-dependent. In many cases 
where flexible modeling is considered impractical, larger models will be broken into domains, for 
example at hinge points, to attempt to elucidate more information about differences between the 
cryoEM structure and the model. Variations of this method have been used in cryoEM for decades, 
even on structures at very low resolutions. Once again, the major difficulty lies in establishing the 
reliability of the final results.

The second class of modeling techniques comprises flexible docking methods. Rather than 
simply finding the best 3D position and orientation for an atomistic model within a cryoEM map, 
in this method the atomic positions are locally adjusted to better match the experimental data. This 
can be used to model structures in various conformational states, or can make corrections to 
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homology models. However, again there are serious questions related to the level of detail at 
which such flexible docking can be trusted. For example, at ~8 Å resolution, α-helices are clearly 
resolved, but if the flexible fitting were to try to use the density map to modify sidechain 
orientations, the results would obviously be invalid. Groups developing these techniques are 
working to establish how to balance molecular modeling energy functions against the need to 
match the information content of the experimental data.

The final technique is true ab initio modeling based on cryoEM maps. This includes 
established methods for model building in X-ray crystallography. Since the typical resolution of 
cryoEM experiments is still below the levels typical for crystallographic studies, new techniques 
are being developed that hopefully allow for accurate model building at lower resolution. An 
important point, however, is that the two techniques are not entirely the same. While cryoEM and 
X-ray crystallography both produce density maps, the specific artifacts (e.g. image distortion and 
image alignment errors in the case of cryoEM and model bias in crystallography)  present in each 
are not necessarily the same, and the definitions of resolution used in the two communities are not 
entirely compatible. Accurate atomistic modeling has been performed on a number of cryoEM 
maps at ~4 Å resolution, a resolution that is generally regarded as marginal in X-ray work.

5. Conclusions

As of September 2010, there were over 50 registered participants in the modeling challenge. Many 
of the major modeling groups using physics and statistical based simulation and cryoEM density 
restraints are actively participating and applying their methods to the six cryoEM targets selected 
for the challenge. Many other groups are applying their tools for specific aspects of cryoEM map 
analysis for segmentation, secondary structure element identification and de novo modeling. 
Representatives from several groups have been invited to present their work at the workshop, and 
there will also be a panel discussion of the results. 
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