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Macromorphological and Micromorphological Identification of the Fungal Strain.
Macromorphology. Colonies on YESD attained a diameter of 30—35 mm after 14 days at 25 °C,
whereupon the colony appeared white, velvety, and showed sulcation with scalloped margins
(Figure S1). The same colony after 16—21 days showed clear, white exudate droplets; colony
reverse was yellowish in color. Colonies on MEA attained a diameter of 20—22 mm after 14 days
at 25 °C. After 14 days the colony grown on MEA was white, velvety on the margins, and slight
pinkish color inner margins. The colony formed bright red color exudate droplets with reverse
light reddish-brown. The red-brown pigment often diffused in the agar medium after 21 days.
Colonies on PDA attained a diameter of 20-25 mm after 14 days at 25 °C. It was white with
velvety margins and formed bright red color exudate droplets; colony reverse was light reddish-
brown due to soluble pigment diffusing in the agar medium after 21 days. The soluble pigment
was often seen only on MEA and PDA media.

Micromorphology. Conidiophores hyaline, short, smooth-walled arise from aerial hyphae,
strictly monoverticillate, and nonvesiculate, 13—-25 x 2—3 um; with an apical whorl of 3-5,
ampulliform phialides, 3—6 x 2—4 um. Conidia born in chains, hyaline to greenish, globose to
subglobose, smooth walled based on light microscopy, 2—3 um. Based on the morphological
identification, we assigned the fungus G85 to Penicillium restrictum (Trichocomaceae,

Eurotiales, Eurotiomycetideae, Eurotiomycetes, Ascomycota).



Figure S1. Penicillium restrictum. (A) Colonies of G85 grown on different nutrient media; 10 day old
culture; 16 day old culture; 21 day old culture in reverse. Clock-wise top panel YESD, right panel MEA,
and left panel PDA. For reverse colonies, clock-wise top panel YESD, right panel PDA, and left panel
MEA. (B) A 14 day old culture on PDA with antibiotics. (C) Close up of exudate droplets on PDA.
(D-K) Conidiophore and conidia of P. restrictum.



Molecular Identification and Phylogenetic Analysis of the Fungal Strain.

Molecular Identification. For identification of the fungal strain G85, the complete internal
transcribed spacer regions 1 & 2 and 5.8S nrDNA (ITS) along with the D1/D2 variable domains
(partial region of large subunit of the 28S nuclear ribosomal DNA, LSU) were sequenced, as
detailed previously.? For extraction of genomic DNA, mycelium from axenic cultures grown in
YESD broth was scraped with a sterile scalpel and ground to a fine powder in liquid nitrogen
using a mortar and pestle. Approximately 400 pL of AP1 buffer from the DNAeasy Plant Mini
Kit (QIAGEN, Inc.) were added to the mycelial powder, and DNA was extracted following the
manufacturer’s instructions. The DNA was finally eluted in approximately 25-30 pL distilled
water. The complete ITS region along with D1/D2 variable domains were amplified with ITS1F
and LR3 by PCR using puReTaq™ Ready-To-Go PCR beads (Amersham Biosciences Corp.)
and subsequently sequenced in 11 pL sequencing reactions with BigDye® Terminators v3.1
(Applied Biosystems) using ITS primers ITS1F and ITS4** and LSU primers LROR and LR3.>®
For PCR, the following protocol was utilized: initial denaturation at 95 °C for 5 min, followed by
35 or 40 cycles of 95 °C for 30°s, 41 or 50 °C for 15 s, and 72 °C for 1 min with a final extension
step of 72 °C for 10 min. To enhance the PCR reactions, 2.5 pL of BSA (bovine serum albumin,
New England Biolabs) and/or 2.5 uL of DMSO (dimethyl sulfoxide, Fisher Scientific) were
added. The PCR products were purified to remove excess primers, dNTPs, and nonspecific
amplification products with the QIAquick PCR Purification Kit (QIAGEN Inc.). Sequences were
generated on an Applied Biosystems 3730XL high-throughput capillary sequencer at the
University of Illinois Urbana-Champaign Biotech facility. The sequences were downloaded from
GenBank that had the closest similarity with ITS-LSU sequence of G85, and Maximum

Likelihood (ML) phylogenetic analysis was employed to determine the phylogenetic affinities



with other Penicillium spp. Multiple sequence alignment and phylogenetic analysis was
performed following programs reviewed by Schmitt and Barker.’

Phylogenetic Analysis. Based on a megablast search of NCBIs GenBank nucleotide database,
the closest hit using the ITS-LSU sequence was Penicillium restrictum (GenBank AF033459;
Identities = 1117/1122 (99 %), Gaps = 1/1122 (0 %)), followed by P. restrictum (GenBank
AF033457; ldentities = 1116/1122 (99 %), Gaps = 1/1116 (0 %)), and P. kurssanovii (GenBank
EF422849; Identities = 1111/1116 (99 %), Gaps = 0/1116 (0 %). Other members, which also had
identities with 99% similarity included, Eupenicillium katangense (GenBank AF033458);
Eupenicillium meridianum (GenBank AF03345); P. citreonigrum (GenBank AF033456); E.
alutaceum (GenBank AF033454); P. terrenum (GenBank AF033446); P. velutinum (GenBank
AF033448); P. namyslowskii (GenBank AF033463); P. citreonigrum (GenBank EF198647);
Penicillium sp. (GenBank AF125942); P. melinii (GenBank AF033449); P. toxicarum (GenBank
EF198645), and P. carylophilum (GenBank AF034457). Maximum Likelihood analysis
indicated that G85 shared phylogenetic affinities with clade 10 of section Exilicaulis Pitt * and
group 4 sensu,® which consists of predominantly monoverticillate species (Figure S2).

In addition to the ITS region, the ribosomal polymerase Il subunit 2 (RPB2) gene was
used to obtain a species level identification of G85. It was recently suggested by Peterson® that
ITS barcodes may be problematic and not yield an accurate species level identification for
certain members of the family Trichocomaceae. The RPB2 gene has been used successfully for
inferring species-level phylogenetic relationships and identifications of Penicillium sp.*
Sequence data for the RPB2 region are available in NCBI GenBank for a number type strains of
Penicillium spp. Thus, the RPB2 gene was sequenced using primers and PCR protocols using

methods outlined previously.'® Sequences were generated on an Applied Biosystems 3730XL



high-throughput capillary sequencer at the University of Illinois Urbana-Champaign Biotech
facility. For the phylogenetic analysis, RPB2 sequences of Penicillium spp. clade 10 of section
Exilicaulis Pitt* and group 4 sensu Pitt,? which consists of predominantly monoverticillate
species, were downloaded from GenBank. Multiple sequence alignment and Maximum
Likelihood analysis with RPB2 sequences were run using programs reviewed by Schmitt and
Barker.” Robustness of clades was analyzed using 1000 bootstrap replicates using evolutionary
phylogenetic analysis software MEGA.* Clades with bootstrap support >70% was considered
significant and strongly supported.*? Based on the results of phylogenetic analysis of RPB2
sequences from strain G85 with type strains of monoverticillate species, it was concluded that
G85 belonged to Penicillium restrictum. Sequences of strain G85 form a strongly supported
(96% ML bootstrap support) monophyletic clade with the neotype strain of P. restrictum (CBS

367.48)" (Figure S3).
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Solid Phase Culture Methods. A piece of a fresh culture grown in MEA medium was
transferred to a liquid medium containing 2% soy peptone, 2% dextrose and 1% yeast extract
(YESD medium). Following incubation (7 days) at 22 °C with agitation, the culture was used to
inoculate ~10 g of rice medium, to which was added ~30 mL of H,O, in a 250 mL Erlenmeyer
flask. This was replicated in a total of four Erlenmeyer flasks, and all were incubated at 22 °C

until the cultures showed good growth (14 d)."
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Figure S4. Typical semiprep-HPLC chromatograms (UV 254 nm) of guttates of P. restrictum (upper
panel) versus MeOH-CHSCN fraction from the solid phase culture (lower panel). Both samples (3 and 10
mg of guttate and MeOH-CH;CN fraction, respectively) were analyzed using a Gemini-NX (5 gm, 250 x
10 mm; Phenomenex) column via a linear gradient from 20 to 100% CH3CN in 0.1% aqueous formic acid
over 30 min at a flow rate of 3.5 mL/min.
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Methods and Characterization of Compounds.

Isolation of Compounds 1-9. The MeOH-CH3CN fraction (300 mg out of ~1 g of total
material) was dissolved in a mixture MeOH—-Dioxane (1:1) and then subjected to preparative
HPLC (Gemini NX column, 20-100% CH3CN in 0.1% aqueous formic acid over 30 min;
fractions collected every 0.5 min). Compounds 1-9 were collected as follow (see Figure 1): 1 (fr.
11-12, 2.7 mg), 2 (fr. 15-16, 27.7 mg), 3 (fr. 25-27, 19.1 mq), 4 (fr. 30, 5.5 mg), 5 (fr. 32-33, 8.4
mg), 6 (fr. 35, 4.6 mq), 7 (fr. 40, 6.1 mq), 8 (fr. 41, 4.0 mg), 9 (fr. 54, 1.0 mg).

Structure Determination of the Polyhydroxyanthraquinones 1-9. The identification of known
compounds ®-hydroxyemodin (3), emodic acid (5), and emodin (9), was based on comparisons
of NMR and HRMS data with those reported previously (see Results and Discussion section for
references and NMR spectra). The structures of the new compounds (1, 2, 4, 7, and 8) were
elucidated as delineated below. The characterization of (+)-2'S-isorhodoptilometrin (6) was also

described in detail below, since this was the first report of its absolute configuration.

Compound (1) was obtained as a red amorphous solid after final C1g HPLC purification, and its
molecular formula was established as C15HgOg by ESI-HRMS measurements (obsd [M—H]™ m/z
315.0147, calcd for C15H;0s, 315.0146) (Figure S5). The *H NMR spectrum of 1 (Table S1,
Figure S16) showed characteristic resonances for three aromatic protons at oy 7.29, 7.73 and
8.23, for H-4, H-7, and H-5, respectively. Compound 1 was clearly related to the other known
polyhydroxyanthraquinones (3, 5, 6, and 9), especially to compound 5. The lack of an aromatic
H-2 signal at oy 6.54, as observed in 5, and the HMBC correlations (Figure S6) from H-4 to C-2
(&c 138.9), C-9a (¢ 110.3) and C-10 (& 180.6); from H-7 to C-8a (&¢ 117.4), C-5 (& 119.4)

and C-1' (&¢ 168.6); and from H-5 to C-8a, C-7 (¢ 123.8), C-1', and C-10, were critical in
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determining the complete structure of 1 as a 6-substituded-1,2,3,8-tetrahydroxy anthraquinone.
Ultimately, the new compound 1 was elucidated as 1,2,3,8-tetrahydroxy-9,10-dioxo-9,10-

dihydroanthracene-6-carboxylic acid, and given the trivial name of 2-hydroxyemodic acid.

Compound 2 was isolated as a red amorphous powder. Its molecular formula, C;7H1407, was
deducted by HRESIMS ([M—H]™ obs m/z 329.0662, calcd for C;17H1307, 329.0667) (Figure S5).
The *H and *3C NMR spectra of 2 (Table S1, Figure S17) showed resonances similar to those of
compound 6, but changes in the aliphatic side were obvious. For example, the methylene at C-1'
(oc 45.2 and 64 2.78, d, J = 6.3 Hz) observed in 6 was replaced with an oxymethine (& 77.0 and
on4.51,d,J=5.2) in 2, and the oxymethine at C-2' (&¢ 67.6 and 6 4.02, m) in 6 was shifted
downfield to & 70.8 (6 3.86, qd, J = 5.7, 6.8 Hz) in 2. In the HMBC spectrum (Figure S6), key
correlations were observed from H-5 (dy 7.66, s) to C-1', C-8a (oc 114.5), C-7 (& 122.1), and C-
10 (& 181.5); from H-7 (4 7.22, s) to C-1', C-8a, C-5 (& 118.7), and C-8 (& 161.8); from H-4
(o4 7.01,d,J=2.3)to C-10 and C-9a (oc 109.0); and from H-2 (&4 6.40, d, J =2.3) to C-4 (&
108.8), and C-3 (&c 165.8) (Table S1). The oxymethines of the side chain showed HMBC
correlations from H-1'to C-3' (& 17.1), C-2' (¢ 70.8), C-5, C-7, and C-6 (oc 152.2); and from
H-2' with C-6, respectively, and the terminal methyl group CH3-3' showed correlations with C-2'
and C-1'". Finally, COSY correlations were observed between H-1' and H-2', and H-2' and CH3-
3'. The absolute configuration of 2 having a sec/sec-1,2-diol moiety was examined using the in
situ dimolybdenum CD method developed by Snatzke and Frelek.**® After the addition of
dimolybdenum tetraacetate [Mo,(AcO),] in DMSO to compound 2, a metal complex was
generated as an auxiliary chromophore. The observed sign of the Cotton effects in the induced

circular dichroism (ICD) spectrum originates solely from the chirality of the sec/sec-1,2-diol
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moiety expressed by the sign of the O—C—C-O torsion angle in the favored conformation (Figure
S14B). The positive and negative Cotton effects observed at around 310 (band IV) and 400 nm
(band I1), respectively (Figure S14A), suggested assignment of the 1'S and 2'R configuration on
the basis of the empirical rule proposed by Snatzke. The cis-diol coplanar geometry of the 1,2-
dihydroxypropyl side chain of 2 was also confirmed by reactive DESI analysis*’ using
dimethylaminophenylboronic acid (Figure S7).*® The predicted reaction product,
polyhydroxyquinone-arylboronate ester, was observed by characteristic MS? fragmentation, as
well as the loss of the aryl boronate (Figure S7). On the basis of these data, compound 2 was
elucidated as 6-(1S,2R-dihydroxypropyl)-1,6,8-trihydroxyanthracene-9,10-dione, and given the

trivial name of 1'-hydroxyisorhodoptilometrin.

Compound 4 was isolated as a red amorphous solid. The HRESIMS spectrum suggested a
formula of C17H1,07 (obsd [M—H]™ m/z 327.0511, calcd for C17H1;,07, 327.0510) (Figure S5).
The UV and *H NMR spectra suggested that 4 belonged to the same family of natural products.
The primary differences in the *H NMR (Table S1, Figure S19) spectra of 4 were the lack of the
oxymetine resonance observed at o4 3.96 (H-2") in 2, and the downfield shifted oxymethine H-1'
(04 5.20, s) and CH3-3' (64 2.15, s) resonances, the latter were both associated to the presence of
an additional carbonyl moiety at C-2' (&c 207.4). The HMBC correlations (Figure S6) from H-5
(64 7.75, 5), H-7 (84 7.32, s), and H-3' to C-1' (& 79.0); from H-1'to C-5 (& 117.3), C-7 (&
121.7), C-6 (oc 148.1), and C-2' (& 207.4); and from H-3' to C-2', confirmed the structure of the
side chain in 4. In addition, the correlations from H-2 (J4 6.50, s) to C-4 (oc 109.0), C-1 (&
165.3), and C-3 (&c 166.3); from H-4 (64 7.12, s) to C-9a (oc 108.9) and C-10 (&¢ 181.3); from

H-7 to C-5; and from H-5 to C-8a (oc 115.2), C-7, and C-10 were consistent with the location of
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the side chain as well as the 6-substituded-1,3,8-trihydroxy anthraquinone core. Accordingly,
compound 4 was established as 1,3,8-trihydroxy-6-(1-hydroxy-2-oxopropyl)anthracene-9,10-
dione and given the trivial name of 1'-hydroxy-2'-ketoisorhodoptilometrin. An attempt to

establish the absolute configuration via a modified Mosher’s ester method*® was unsuccessful

due to degradation of the compound.

(+)-2'S-Isorhodoptilometrin (6) was isolated as an orange powder with a molecular formula of
C17H1406 as determined by HRESIMS and analysis of *H NMR, **C NMR, and edited-HSQC
data (Table S1, Figures S5 and S21). The NMR data of compound 6 were found to be in
agreement with that reported of isorhodoptilometrin, a polyhydroxyanthraquinone that was
isolated from a marine-crinoid Ptilometra australis,”® a marine-derived fungus Trichoderma
aureoviride,* and a marine lichen-derived fungus Gliocladium sp.?> Compound 6, opposite to
isorhodoptilometrin isolated by Khamthong and collaborators,?* was found to be dextrorotatory.
As such, the absolute configuration of 6 was assigned as 2'S via the modified Mosher’s ester
method (Figure S$15);'° this represented the first report of the characterization of the absolute

configuration of 6.

Compound 7 was isolated as a red amorphous solid, and its molecular formula was found to be
C17H12,06 0on the basis of HRESIMS (obsd [M—H]™ m/z 311.0560, calcd for C;7H;106, 311.0561;
Figure S5), indicating 12 degrees of unsaturation, which was one greater than that of 6. The *H
and *C NMR spectroscopic data of 7 (Table S1, Figure $22) were also slightly different from
those of 6. An oxymethine moiety (ou/oc 4.02/67.6) in 6 was replaced by a ketone (&c 205.3),

indicating oxidation of the secondary alcohol in 7 relative to 6. A methyl doublet (o4/oc
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1.21/22.0) in 6 was replaced by a downfield shifted singlet methyl (ou/dc 2.18/30.5) in 7, and a
methylene doublet (du/dc 2.78/45.2) in 6 was replaced by a downfield shifted methylene singlet
(onloc 4.0/49.6) in 7. Key HMBC correlations for 7 are highlighted in Figure S6. Consequently,
compound 7 was determined to be 1,3,8-trihydroxy-6-(2-oxopropyl)anthracene-9,10-dionel,3,8-
trihydroxy-6-(2-oxopropyl)anthracene-9,10-dione and given the trivial name of desmethyl

dermoquinone.

Compound 8 was isolated as a red amorphous solid. The molecular formula of C;5H;CIO; was
established by HRESIMS, where a [M—H] ion peak at m/z 332.9803 and an [M—H+2]  isotopic
peak at m/z 334.9774 (calcd for C15Hs®Cl0O-, 332.9808 and for Cy5He'CIO;, 334.9778,
respectively; Figure S5) supported the presence of a chlorine atom. A key difference in the NMR
data of compound 8, relative to that of 5, was the absence of a signal for H-2 in the spectrum of
8. Moreover, the downfield shifted *C resonance of C-2 relative to the same position in 5
further supported the presence of C-2 chloro substitution in 8 (Table S1, Figures S20 and S23-
S25). Therefore, 8 was established as 2-chloro-1,3,8-trihydroxy-9,10-dioxo-9,10-
dihydroanthracene-2-carboxylic acid and given the trivial name of 2-chloroemodic acid. Arioka

et al.?®

reported the inhibitory activity of 8 against Trypanosoma cruzi trans-sialidase (TcTS),
however, the source and spectroscopic data for this compound were not described. Finally,
Kemami Wangun and collaborators reported the 2-bromo-derivative of 5 from a deep-water

crinoid, Holopus rangii.?*

2-Hydroxyemaodic acid (1): red amorphous solid; UV (MeOH) Anax (log €) 433 (3.54), 289

(3.79), 222 (3.79) nm; IR (diamond) vmax 2920, 1703, 1621, 1548, 1459, 1354, 1255, 1082, 1032,
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977, 819, 747 cm™; *H and **C NMR (in methanol-d, at 500 and 125 MHz, respectively), see
Table S1 and Figure S16; HRESIMS m/z 315.0147 [M—-H]" (calcd for C15H;Og, 315.0146;

Figure S5).

1'-Hydroxyisorhodoptilometrin (2): red amorphous solid; [a]4* —35 (c 0.2, MeOH); UV (MeOH)
Jmax (109 €) 437 (3.95), 290 (4.47), 253 (4.13), 223 (4.18) nm; CD (c 7.57 x 10> M, MeOH) Amax
(A€) 217 (—4.56), 233 (+5.40), 249 (-2.70), 274 (+3.33), 289 (~1.11), and 300 (+1.53) nm; IR
(diamond) Vmax 2973, 1672, 1621, 1561, 1474, 1392, 1364, 1254, 1212, 987, 759 cm™; *H and
3C NMR (in methanol-d, at 500 and 125 MHz, respectively), see Table S1 and Figure S17;

HRESIMS m/z 329.0662 [M—H] (calcd for C17H1307, 329.0667; Figure S5).

1'-Hydroxy-2'-ketoisorhodoptilometrin (4): red amorphous solid; [a]3* +6 (c 0.07, MeOH); UV
(MeOH) /max (10 &) 435 (3.69), 250 (3.84), 225 (3.90) nm:; CD (¢ 7.62 x 10°° M, MeOH) Amax

(A¢) 212 (~6.19), 229 (+6.98), 242 (~3.08), 246 (+2.28), 261 (=3.23), 280 (+2.07), 291 (=0.29),
and 300 (+1.25) nm; IR (diamond) vmax 3368, 2949, 2838, 1627, 1464, 1382, 1269, 1213, 1113,
1014, 754 cm™; *H and **C NMR (in methanol-d, at 500 and 125 MHz, respectively), see Table

S1 and Figure S19; HRESIMS m/z 327.0509 [M—H] ™ (calcd for C17H;1107, 327.0510; Figure S5).

(+)-2'S-I1sorhodoptilometrin (6): orange amorphous solid; [a]3* +30 (c 0.13, MeOH); UV
(MeOH) Amax (log &) 440 (3.72), 290 (3.85), 253 (3.85), 225 (3.84) nm; IR (diamond) Vimax 3382,
2965, 1673, 1608, 1564, 1465, 1397, 1359, 1270, 1221, 1168, 1049, 857, 755 cm™; *H and *C
NMR (in methanol-d, at 500 and 125 MHz, respectively), see Table S1 and Figure S21;
HRESIMS m/z 313.0715 [M—H] (calcd for C17H1306, 313.0718; Figure S5).
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Desmethyl dermoquinone (7): red amorphous solid; UV (MeOH) Amax (log €) 436 (3.76), 288
(3.96), 251 (3.98), 223 (4.10) nm; *H and *C NMR (in DMSO-ds at 500 and 125 MHz,
respectively), see Table S1 and Figure S22; HRESIMS m/z 311.0560 [M—H]™ (calcd for

C17H1106, 311.0561; Figure S5).

2-Chloroemadic acid (8): red amorphous solid; UV (MeOH) Amax (log ¢) 435 (3.46), 258 (3.78),
222 (3.88) nm; IR (diamond) vmax 3076, 2344, 1678, 1619, 1554, 1473, 1384, 1246, 1213, 1019,
913, 751 cm™; *H and 3C NMR (in methanol-d. at 500 and 125 MHz, respectively), see Table

S1 and Figures S23-S25; HRESIMS m/z 332.9803 [M—H]™ and m/z 334.9774 [M—H+2] (calcd

for C15HgO7*°Cl, 332.9808 and m/z 334.9778 [M—H+2] , respectively; Figure S5).

Preparation of the (R)- and (S)-MTPA ester derivatives of (+)-2'S-isorhodoptilometrin (6):
To 0.60 mg of compound 6 was added 400 pL of pyridine-ds and transferred into an NMR tube.
To initiate the reaction, 10 uL of S-(+)-a-methoxy-a-(trifluoromethyl)phenylacetyl (MTPA)
chloride was added into the NMR tube with careful shaking and then monitored immediately by
'H NMR at the following time points: 0, 5, 10, and 15 min. The reaction was found to be
complete within 5 min, yielding the mono (R)-MTPA ester derivative (6b) of 6. 'H NMR data of
6b (500 MHz, pyridine-ds): 64 1.42 (3H, d, J = 6.9, H3-3"), 3.00 (2H, d, J = 6.9, H,-1"), 5.61 (1H,
sextet, J = 6.9, H-2"). In an analogues manner, 0.60 mg of compound 6 dissolved in 400 pL
pyridine-ds was reacted in a second NMR tube with 10 pL (R)-(-)-a-MTPA chloride for 5 min,
to afford the mono (S)-MTPA ester (6a). *H NMR data of 6a (500 MHz, pyridine-ds): oy 1.34

(3H, d, J = 6.9, Hs-3"), 3.06 (2H, d, J = 6.9, Hp-1"), 5.61 (LH, sextet, J = 6.9, H-2").
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Determination of the absolute configuration of an acyclic 1,2-diol moiety in 2 using
Snatzke’s method. The absolute configuration of the acyclic 1,2-diol moiety in 2 was
determined using Snatzke’s method.’®?*% Briefly, to a 2.5 mL of 0.32 mM stock solution of
[Mo,(AcO),] in DMSO, was added 2.5 mL of 2 (0.03 mM). ECD spectra were collected

immediately after mixing every 10 min for 1 h.
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Table S1. NMR data for compounds 1, 2, 4, and 6-8 (*H and *C were run at 500 and 125
MHz, respectively) in methanol-d, for compounds 1, 2, 4, 6, and 8, and in DMSO-ds for
compound 7

1 2 4
position Jc, type Jy, mult (J in Hz) Jc, type Jn, mult (J in Hz) dc, type Jn, mult (J in Hz)
1 1515,C 165.1,C 165.3,C
2 138.9,C 107.6, CH 6.40, d (2.3) 107.7,CH 6.50, d (2.2)
3 153.2,C 165.8, C 166.3, C
4 109.3,CH 7.29,s 108.8, CH 7.01,d (2.3) 109.0, CH 7.12,d (2.2)
4a 125.6,C 135.3,C 1353,C
5 119.4,CH 8.23,s 118.7, CH 7.66, s 117.3,CH 7.75,s
6 138.3,C 152.2,C 148.1,C
7 1238,CH 7.73,s 122.1,CH 7.22,s 121.7,CH 7.32,s
8 161.8,C 161.8,C 162.1,C
8a 117.4,C 1145,C 115.2,C
9 1914, C 190.3,C 190.3,C
9a 1103.C 109.0,C 108.9,C
10 180.6, C 1815,C 181.3,C
10a 133.8,C 132.9,C 133.6,C
1 168.6, C 77.0,CH 4.51,d (5.2) 79.0, CH 5.20, s
2' 70.8,CH 3.86,qd (5.7,6.8) 207.4,C
3 17.1, CH; 1.16,d (6.3) 24.1, CH,3 2.15,s
6 7 8
position Jc, type dn, mult (J in Hz) dc, type dn, mult (J in Hz) dc, type dn, mult (J in HZ)
1 165.4,C 166.8, C 160.7,C
2 107.8, CH 6.51,d (2.9) 108.5, CH 6.54,d (2.3) 113.8,C
3 167.0,C 165.1,C 160.9, C
4 109.3, CH 7.15,d (2.9) 109.7, CH 7.09,d (2.3) 109.9% CH 7.26,s
4a 1355,C 135.6,C 132.6,C
5 120.7, CH 7.61,d(1.2) 121.7,CH 7.49,d (1.7) 119.7,CH 8.26, s
6 149.3,C 145.3,C 1415,C
7 124.5, CH 7.13,d (1.2) 125.9, CH 7.14,d (1.7) 124.2,CH 7.75,s
8 162.0,C 161.7,C 162.0,C
8a 114.0,C 114.8,C 117.3,C
9 190.4,C 190.1,C 189.7,C
9a 108.8,C 109.3,C 108.1% C
10 182.0,C 182.1,C 181.4,C
10a 133.3,C 1333,C 1334,C
1 45.2, CH, 2.78,d (6.3) 49.6, CH, 40,s 169.3% C
2' 67.6, CH 4.02, sextet (6.3) 205.3,C
3 22.0, CH; 1.21,d (6.3) 30.5, CH; 2.18,s

& Confirmed by HMBC.
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Figure S5. UPLC-(-)-ESI-HRMS data for pure compounds 1-9. For each compound, the
upper panel shows the TIC chromatogram at a specific mass range; the middle panel

shows the high resolution mass spectrum; and the bottom panel shows the UV-PDA
spectrum (200-500 nm).
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Figure S6. Key HMBC and COSY correlations for compounds 1, 2, 4, and 6-8.

— HMBC
— COSY
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Figure S7. (A) Upper: Mass spectrum of compound 2 acquired by DESI using non-reactive solvents
[DMF-CHsCN (1:1)]; Lower: Mass spectrum of compound 2 analyzed by reactive DESI using
DMF-CH;CN containing 0.3 mM 4-dimethylaminophenylboronic acid; (B) MS? fragmentation of m/z
458 corresponding to the reactive DESI product annotated mass losses and proposed fragment ion

structures.
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Figure S8. A dose response curve of w-hydroxyemodin (3) against quorum sensing reporter
strain AH2759. Growth was assessed by absorbance readings at 600 nm after 15 h incubation
(ODgo, blue), and bioluminescence was taken at that time point and plotted relative to growth
(red). These data indicated that 3 did not significantly inhibit S. aureus growth in the
concentration range tested as a quorum sensing inhibitor.
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Transverse Sectioning of P. restrictum Culture Colony and Sample Preparation for DESI-
MS Analysis. A single, mature P. restrictum colony was excised from a culture plate and
cryosectioned to afford 15 xm sections representing the transverse plane; the cryosectioned
colony was thaw mounted onto glass microscope slides. The full depth of the culture (~3 mm),
consisting of PDA medium with filamentous fungal growth along the ventral surface, was
represented in each transverse section. Imaging of the transverse sections was performed under
ambient conditions (pressure, temperature, humidity) using DESI-MS. Imaging was performed at
a spatial resolution of 200 xm using a solvent system consisting of DMF—CH3CN (1:1). Post hoc
processing of the hyperdimensional data provided 2D ion images, retaining spatial relationships
and displaying relative mass spectral abundances of particular ions. These plots represent the

spatial distributions of these compounds to be investigated with strong molecular discrimination.
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Figure S9. Terms of location used in describing the P. restrictum DESI-MS imaging experiments.
Transverse plane is defined here as being perpendicular to the anterior-posterior axis.

Imprinting Z:)q DESI-MS HI[} O lon Image

Figure S10. Schematic of imprinting experiment (from left to right): optical image of P. restrictum

culture, PTFE imprint (pre-mass spectral analysis), representative DESI mass spectrum, and a plotted ion

image corresponding to compound 2, m/z 329.1.
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Figure S11. lon images corresponding to the pseudomolecular ([M—H]") ions of
polyhydroxyanthraquinones 1-9 and optical image of PTFE imprint prior to imaging (upper left).
Relative intensities ranging from blue (least abundant) to red (most abundant). The spatial distribution of
1-9 in the ion images and the imprint optical image regions were similar within the limits of the
imprinting process. The topography of the culture caused certain regions of the fungal colonies to imprint
poorly; for example, the middle region of the upper colony. Note, lines and imaging artifacts are present
along the left side of the ion image due to variation in the surface-to-inlet distance. The image
corresponding to compound 7 was complicated by an isobaric species that was present in the background.
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Figure S12. DESI-MS ion images displaying additional ions whose spatial distribution correlate with P.
restrictum. These ions are presumed to be of fungal origin, given that they were not observed in the
analysis of guttate extracts and appear to correlate with fungal presence in the ion images.
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Figure S13. (A) Optical image of a P. restrictum section post MS imaging, stained with hematoxylin and
eosin. Fungal morphology, stained purple-blue, was detected and location of polyhydroxyanthraquinones
was verified by unique alteration in dye color due to reduction-oxidation reactions, stained purple-red. (B)
Overlay of two ions present in the mass spectrum, compound 3 (m/z 285.1) and 2 (m/z 329.1); the
coloration of compound 3 ion image reflects relative abundance, whereas m/z 329.1 is displayed in
grayscale to provide contrast. (C) Zoomed optical image of the region, indicated by red arrow,
corresponding to polyhydroxyanthraquinone signal in B.
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Figure S14. (A) ECD spectrum of compound 2 in a DMSO solution of Mo,(OAc), with inherent ECD

spectra subtracted. (B) Conformation of the Mo,** complex of 2.

Figure S15. Ady values [AS (in ppm) = ds — or] obtained for (S)- and (R)-MTPA esters (6a and 6b,
respectively) of (+)-2'S-isorhodoptilometrin (6) in pyridine-ds.
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Figure S16. *H and **C NMR spectra of compound 1 [500 MHz for *H and 125 MHz for *3C, methanol-d.].
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Figure S17. *H and *C NMR spectra of compound 2 [500 MHz for *H and 125 MHz for *C, methanol-d.].
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Figure S19. *H and *C NMR spectra of compound 4 [500 MHz for *H and 125 MHz for *C, methanol-d.].
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Figure S20. *H and *C NMR spectra of compound 5 [500 MHz for *H and 125 MHz for **C, DMSO-dg].
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Figure S21. *H and *C NMR spectra of compound 6 [500 MHz for *H and 125 MHz for *C, methanol-d.].
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Figure S22. *H and *C NMR spectra of compound 7 [500 MHz for *H and 125 MHz for **C, DMSO-dg].
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Figure S$23. *H and *C NMR spectra of compound 8 [500 MHz for *H and 125 MHz for *C, methanol-d.].
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