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Cox

The Cox proportional hazards regression model

The Cox model assumes that the hazard for the ith individual
(i = 1, . . . , n) is

λi (t) = λ0(t) exp(β1Xi1 + β2Xi2 + · · ·+ βpXip)

= λ0(t) exp(β′Xi )

where β1, β2, . . . , βp are regression parameters, Xi1 is the covariate
value for covariate 1 for individual i , etc.

λ0(t) is called the baseline hazard.

Time t is the time-scale of choice, e.g. age or time since
randomization. As formulated here the only quantity depending on
time t is the baseline hazard λ0(t).
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λi (t) = λ0(t) exp(β1Xi1 + β2Xi2 + · · ·+ βpXip).

If all covariates (X ’s) are zero we get

λi (t) = λ0(t).

The interpretation of the baseline hazard is the hazard of an
individual having all covariates equal to zero.

The Cox model does not make any assumptions about the shape of
this baseline hazard, it is said to vary freely, and in the first place
we are not interested in this baseline hazard. The focus is on the
regression parameters.
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The Cox model

λi (t) = λ0(t) exp(β1Xi1 + β2Xi2 + · · ·+ βpXip)

on the log-scale

log(λi (t)) = log [(λ0(t) exp(β1Xi1 + β2Xi2 + · · ·+ βpXip)]

= log [λ0(t)] + β1Xi1 + β2Xi2 + · · ·+ βpXip.

This means that the Cox model assumes that

the effects of covariates are additive and linear on the log-rate
scale.

Let’s turn to the interpretation of the regression parameters
β1, β2, . . . , βp.
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One binary covariate

To make things simple we now study the effect of only one binary
covariate, e.g. sex on the rate of dying

Xi =

{
0 if individual i is a female

1 if individual i is a male

The Cox model is

λi (t) = λ0(t) exp(βXi ).

With Xi defined as above we get

λi (t) =

{
λfemale(t) = λ0(t) if individual i is a female

λmale(t) = λ0(t) exp(β) if individual i is a male
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Mortality Rate Ratio – Hazard Ratio

The hazard ratio (HR) between males and females is

HR =
λmale(t)

λfemale(t)
=
λ0(t) exp(β)

λ0(t)
= exp(β).

The ratio is independent of time, i.e. proportional hazards over
time. Females are the reference group. On the log-scale

log [λmale(t)]− log [λfemale(t)] = log [λ0(t) exp(β)]− log [λ0(t)]

= log [λ0(t)] + log [exp(β)]− log [λ0(t)] = β.

Thus, the proportionality assumption is the same as a constant
difference between the log-rates at any time t.
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Proportional hazards
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Proportional hazards
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HR =
λ0(t) exp(β)

λ0(t)
= exp(β)

HR < 1 (β < 0), males lower rate than females

HR = 1 (β = 0), males and females have the same rate

HR > 1 (β > 0), males higher rate than females
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Cox’s partial likelihood function

Cox’s partial likelihood function for i = 1, . . . , n is

L(β) =
n∏

i=1

( exp(βXi )∑
j∈R(ti )

exp(βXj)

)Di .

R(ti ) is the risk set at time ti , i.e. the set of individuals at risk of
just before time ti .

The partial likelihood function may be obtained from the general
likelihood function presented earlier today by profiling out the
baseline hazard function λ0(t).

Estimates of the parameters are obtained by maximizing L(β) and
the usual type of large-sample likelihood methods also apply to
partial likelihoods when censoring is independent and certain
regularity assumptions are satisfied (more later).
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Risk sets
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Time

The time-variable t is adjusted for by comparing individuals at the
same time t – think about the risk sets. If you e.g. have chosen
age as the time-variable you have automatically adjusted for age.
However, we don’t get an estimate of the effect of the
time-variable on the event, but may model interactions with time
and covariates (more later).

L(β) =
n∏

i=1

( exp(βXi )∑
j∈R(ti )

exp(βXj)

)Di .
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Math

The Cox partial likelihood is

L(β) =
n∏

i=1

( exp(βXi )∑
j∈R(ti )

exp(βXj)

)Di .

The log-likelihood is then

`(β) = log(L(β)) =
n∑

i=1

Di

(
βXi − log

∑
j∈R(ti )

exp(βXj)
)

and the score is

U(β) =
d

dβ
`(β) =

n∑
i=1

∫ ∞
0

(
Xi −

∑
j Yj(t)Xj exp(βXj)∑
j Yj(t) exp(βXj)

)
dNi (t).
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More math

When evaluated at the true parameter value (β0) and considered
as a process in t (i.e., integrating to t instead of ∞), by the
Doob-Meyer decomposition, Ut(β0) is a martingale.

This provides a way studying the large sample properties:
The martingale CLT gives asymptotic normality of the score and,
by a standard Taylor expansion argument, we get asymptotic
normality of β̂.
The variance of β̂ may be estimated from the observed information
and the distribution of standard likelihood-based tests are also
obtained.
One such test is the score test and, in fact, for a binary covariate
this score test is simply the logrank test. Thus, the logrank test is
closely related to the Cox model and, therefore, it has certain
optimality properties against proportional hazards alternatives.
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Cox in SAS – PROC PHREG

PROC PHREG DATA =pbc3;

CLASS tment;

MODEL followup*status (0)=tment / R I S K L I M I T S ;

RUN ;

PROC PHREG DATA =pbc3;

CLASS tment(ref ="0");

MODEL followup*status (0)=tment / R I S K L I M I T S ;

RUN ;
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Categorical covariates

PBC 3 trial: histological stage (1-2, 3, 4)

stage =


2 histological stage = 1 or 2

3 histological stage = 3

4 histological stage = 4

Aim is to estimate the HR between the three groups. The Cox
model will need two indicator functions, e.g.

stage3 =

{
1 histological stage = 3

0 otherwise

and

stage4 =

{
1 histological stage = 4

0 otherwise

16 / 58



Cox

We only need two indicators, because if both are zero the patient
will be in histological stage = 1 or 2, which is then the reference.
The Cox model becomes

λ(t) = λ0(t) exp(β1 · stage3 + β2 · stage4),

where index i is removed for readiness. The Cox model assumes

λ(t) =


λ0(t) exp(β1) if histological stage = 3

λ0(t) exp(β2) if histological stage = 4

λ0(t) histological stage = 1 or 2
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Categorical covariates in SAS

PROC PHREG DATA =pbc3;

CLASS stage( REF ="2");

MODEL followup*status (0)=stage / RL;

RUN ;

Likelihood ratio test and confidence intervals

PROC PHREG DATA =pbc3;

CLASS stage( REF ="2");

MODEL followup*status (0)=stage / RL= PL

TYPE3 ( LR);

RUN ;
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Categorical covariates in SAS

PROC PHREG DATA =pbc3;

CLASS tment(ref ="0") stage( REF ="2");

MODEL followup*status (0)=tment stage / RL;

RUN ;

19 / 58



Cox

Quantitative covariates

Using bilirubin measured in micromoles/L (variable bili) from the
PBC trial:

λ(t) = λ0(t) exp(β · bilirubin)

or on the log-rate scale

log(λ(t)) = log(λ0(t)) + β · bilirubin.

For all t this is a straight line with intercept log(λ0(t)) and slope
β. The log-rate increases (or decreases) with β for each unit
increase in bilirubin.

The null hypothesis β = 0, is a hypothesis of no effect of bilirubin
(slope=0).
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Having the model

λ(t) = λ0(t) exp(β · bili)

and comparing two patients with a bilirubin difference of 1
micromole/L. Let the reference have bilirubin = X micromoles/L:

HR =
λ0(t) exp(β · (X + 1))

λ0(t) exp(β · X )
= exp(β).

Comparing two patients with a bilirubin difference of 10
micromoles/L. Let the reference have bilirubin = X micromoles/L:

HR =
λ0(t) exp(β · (X + 10))

λ0(t) exp(β · X )
= exp(β · 10) = exp(β)10
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Quantitative covariates in SAS

PROC PHREG DATA =pbc3;

MODEL followup*status (0)=bili / RL;

RUN ;

PROC PHREG DATA =pbc3;

bili10=bili /10;

MODEL followup*status (0)=bili10 / RL;

RUN ;
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Interactions

Interactions between covariates follow those of other regression
models (logistic, linear) – here illustrated in SAS

PROC PHREG DATA =pbc3;

CLASS tment( REF ="0") stage( REF ="2");

MODEL followup*status (0)=tment stage

tment*stage / RL;

RUN ;

PROC PHREG DATA =pbc3;

CLASS tment( REF ="0") stage( REF ="2");

MODEL followup*status (0)=stage tment(stage) /

RL;

RUN ;
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Stratified Cox model

If the assumption of proportional hazards is violated (more on
control of this later) for a categorical covariate with K categories it
is possible to expand the Cox model to include different baseline
hazards for each category

λ(t) = λ0k(t) exp(βX ),

where λ0k(t) for k = 1, . . . ,K is the baseline hazard in each of the
K groups. These baseline hazards are allowed to depend on time,
but no other assumptions are made.

The effect of the stratified covariate is not estimated directly, but
other covariates are adjusted for the stratified covariate. The effect
of the covariates are assumed equal over strata, i.e. no interaction
between the stratifying variable and the covariates.
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Stratified Cox model
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Likelihood Function for stratified model

In a stratified model

λ(t) = λ0k(t) exp(βX ),

the partial likelihood is the product of the partial likelihood
functions for the individual strata

L(β) =
K∏

k=1

∏
i∈Ak

( exp(βXi )∑
j∈Rk (ti )

exp(βXj)

)Di ,

Rk(ti ) is the risk set for stratum k (Ak).
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Stratified Cox in SAS

PROC PHREG DATA =pbc3;

CLASS tment;

MODEL followup*status (0)=tment / R I S K L I M I T S ;

STRATA sex;

RUN ;

No need to declare the STRATA variable as a CLASS variable.
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Cox assumptions

The baseline hazard λ0(t) is non-parametric.

The effects of covariates are additive and linear on the
log-rate scale.

Proportional hazards: The ratio of the hazard rates for two
groups is constant over time.

Time t is ”automatically” adjusted for.
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The Breslow estimator

The cumulative baseline hazard Λ0(t) =
∫ t
0 λ0(s)ds from the Cox

model λi (t) = λ0(t) exp(β · Xi ) can be estimated by the Breslow
estimator

Λ̂0(t) =
∑
ti≤t

d(ti )∑
j∈R(ti )

exp(β̂ · Xj)
,

where β̂ is the maximum likelihood estimate of β, d(ti ) number of
deaths at ti , and R(ti ) is the risk set of individuals at risk and
under observation at time ti . Having no covariates, the Breslow
estimator is the Nelson-Aalen estimator

Λ̂0(t) =
∑
ti≤t

d(ti )∑
j∈R(ti )

exp(β̂ · Xj)
=
∑
ti≤t

d(ti )

Y (ti )
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Predicted probabilities from Cox model

We have the relationship between survival and hazards functions

S(t,X ) = [exp(−Λ0(t))]exp(β
′X ) = [S0(t)]exp(β

′X )

The predicted survival probabilities from a Cox model for a set of
covariates X may be estimated by

Ŝ(t,X ) = Ŝ0(t)exp(β̂
′X ),

where
Ŝ0(t) = exp(−Λ̂0(t))

using the Breslow estimator for Λ0(t) or alternative estimators for
S0(t).
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Predicted probabilities from Cox model in SAS

PROC PHREG DATA =pbc3 PLOTS = SURVIVAL ;

CLASS tment;

MODEL followup*status (0)=tment / R I S K L I M I T S ;

BASELINE / METHOD = BRESLOW ;

RUN ;

Remember, the estimated curve (probabilities) is based on the
PH-assumption and given for the reference group for tment, i.e.
on treatment.
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Predicted probabilities from Cox model in SAS

PROC PHREG DATA =pbc3 PLOTS = SURVIVAL ;

CLASS tment;

MODEL followup*status (0)=tment bili /

R I S K L I M I T S ;

BASELINE / METHOD = PL;

RUN ;

PROC PHREG DATA =pbc3 PLOTS = SURVIVAL ;

CLASS tment;

MODEL followup*status (0)=tment bili /

R I S K L I M I T S ;

BASELINE / METHOD = BRESLOW ;

RUN ;

Again remember, the estimated curve (probabilities) is based on
the PH-assumptions and for a subject with an average bilirubin
and on treatment.
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Kaplan-Meier estimator from PROC PHREG

PROC PHREG DATA =pbc3 PLOTS = SURVIVAL ;

MODEL followup*status (0)=;

STRATA tment;

BASELINE / METHOD = PL;

OUTPUT OUT =kmdata SURVIVAL =s / METHOD = PL;

RUN ;

If not specifying METHOD=PL, the ”exp(-N-Aa)” estimator is
obtained.

33 / 58



Cox

Alternative estimator for S(t) from PROC PHREG

PROC PHREG DATA =pbc3 PLOTS = SURVIVAL ;

MODEL followup*status (0)=;

STRATA tment;

BASELINE / METHOD = BRESLOW ;

OUTPUT OUT =survdata SURVIVAL =s /

METHOD = BRESLOW ;

RUN ;

The survival function is estimated using the Breslow estimator for
the integrated baseline hazard, which in the case of no covariates is
the Nelson-Aalen estimator

Ŝ0(t) = exp(−Λ̂0(t)).

The METHOD=BRESLOW is the default!
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Predicted risk difference

Without covariates, this can be estimated from the KM-estimator

Ŝ2(τ)− Ŝ1(τ).

From a Cox model with treatment variable Z and other covariates
X , the risk difference at τ between treatment groups could be
estimated by direct adjustment/standardization:

1

n

(∑
i

Ŝ(τ | Z = 1,Xi )− Ŝ(τ | Z = 0,Xi )
)

This is also known as the g-formula in (modern) causal inference.
It is summarizing the survival experience of an average patient for
a given population.
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Direct Adjusted Survival Curves – SAS

PROC PHREG DATA =pbc3 PLOTS ( OVERLAY )= SURVIVAL ;

CLASS tment( REF ="0") biligroup sex;

MODEL followup*status (0)=tment biligroup sex;

BASELINE / DIRADJ GROUP =tment;

run;

Algorithm:

1 The value of the variable tment is set to 0 for all observations
in the PBC data set.

2 The survival curve for each observation in the modified data
set is computed.

3 All the survival curves computed in step 2 are averaged.

And similar for tment set to 1.
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Delayed entry aka Left-truncation

Not often in randomised trial but often so in epidemiological
studies subjects are only becoming at risk at a certain age or time.
To be included in the sample, a subject must survive until the date
that the sample is identified. This type of incomplete observation
is denoted left-truncation or delayed entry.
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If the truncation mechanism satisfies a condition of ”independent
truncation” similar to that of ”independent censoring” then
handling of left-truncation is ”easily” done by careful control of the
risk sets R(ti ) in the likelihood function:

L(β) =
d∏

i=1

exp(βXi )∑
j∈R(ti )

exp(βXj)

Only individuals at risk and under observation is included in the
risk set R(ti ) at time ti . Remember, that the time-variable is
automatically adjusted for, which means that if the time-variable in
the Cox model is changed, so is the adjustment.

Additionally, a time of entry (e.g. age at entry) into the study will
be needed in the data.
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Left-truncation in SAS

The Counting process style of input for left-truncation

PROC PHREG DATA =epidata;

CLASS vaccine;

MODEL (inage ,outage)*dead (0)= vaccine;

RUN ;

Alternatively,

PROC PHREG DATA =epidata;

CLASS vaccine;

MODEL outage*dead (0)= vaccine / ENTRY =inage;

RUN ;
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Delayed entry, KM, logrank – SAS

As already mentioned, delayed entry has not been implemented in
PROC LIFETEST, which means that neither KM nor logrank test is
avaiable with delayed entries. However, delayed entry may be
handled using PROC PHREG, e.g. Kaplan-Meier:

PROC PHREG DATA =epidata PLOT =S;

MODEL outage*dead (0)= / ENTRY =inage;

STRATA vaccine;

BASELINE / METHOD = PL;

RUN ;

and use the score test from the Cox model

PROC PHREG DATA =epidata;

CLASS vaccine;

MODEL outage*dead (0)=vaccine / ENTRY =inage;

RUN ;

40 / 58



Cox

Time-dependent covariates

The Cox model may be expanded to include time-dependent
covariates

λi (t) = λ0(t) exp(β′X ∗i (t)).

Here X ∗i (t), is some summary of the covariate history
(X (u); u ≤ t), such as

X ∗i (t) = Xi (t), the value at time t

X ∗i (t) = I (vaccinated before t)

X ∗i (t) = Xi (0) · f (t), baseline value times a known function
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Estimation with time-dependent covariates

Coxs partial likelihood becomes

L(β) =
∏
i

( exp(β′X ∗i (ti ))∑
j∈R(ti )

exp(β′X ∗j (ti ))

)Di

.

Breslow estimator for cumulative baseline hazard:

Λ̂0(t) =
∑
ti≤t

Di∑
j∈R(ti )

exp(β̂′X ∗j (ti )
,

NB: X ∗j (ti ) should be known for all subjects at risk at event times.

Time-dependent covariates can be combined with stratified model
and strata may also be time-dependent.
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Interaction with time scale

Let X be binary (treatment,placebo). An example of
X ∗i (t) = Xi (0) · f (t) is the model

λi (t) = λ0(t) exp(β1Xi + β2Xi I (t ≥ t0)),

where

I (t ≥ t0) =

{
0 if t < t0

1 if t ≥ t0

corresponding to an interaction between time and X . The hazard
ratio (treatment vs placebo) is then

HR =

{
exp(β1) if t < t0

exp(β1 + β2) if t ≥ t0

A simple test of PH-assumption is testing β2 = 0.
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Alternative parametrisation

λ(t) = λ0(t) exp(β1 · X · I (t ≤ t0) + β2 · X · I (t > t0)),

and we get the effect of X before and after time t0, (exp(β1)) and
(exp(β2)) respectively.
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Binary time-dependent covariate in SAS (I)

Splitting up subjects in two records at followup = t0 years (e.g. 2
years):

0 t0 = 2 followup
status

period=0

period=1

event=0

event=status

Create an expanded data set and use counting process style of
input
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Time-dependent covariate in SAS (I)

DATA split; SET pbc3;

IF followup <=2 THEN DO ;

period =0;in=0; out=followup;event=status;

OUTPUT ;

END ;

IF followup >2 THEN DO ;

period =0;in=0; out =2; event =0; OUTPUT ;

period =1;in=2; out=followup;event=status;

OUTPUT ;

END ;

RUN ;

PROC PHREG DATA =split;

CLASS tment( REF ="0") period;

MODEL (in,out)*event (0)=tment | period;

H A Z A R D R A T I O tment / AT(period= ALL ) DIFF = REF ;

RUN ;
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Time-dependent covariate in SAS (II)

The programming statements re-calculate the covariates tment1

and tment2 at each event time represented by the variable
followup.

PROC PHREG DATA =pbc3;

tment1=tment*( followup <=2);

tment2=tment*( followup >2);

CLASS tment(ref ="0");

MODEL followup*status (0)=tment1 tment2 / RL;

Equality: TEST tment1=tment2;

RUN ;

For the first event time followup=0.06571 (24 days) and the
programming statements are evaluated as

tment1=tment *(0.06571 <=2);

tment2=tment *(0.06571 >2);
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The other parametrisation

PROC PHREG DATA =pbc3;

tment2=tment*( followup >2);

CLASS tment(ref ="0");

MODEL followup*status (0)=tment tment2 / RL;

CONTRAST " >2 yrs" tment 1 tment2 1 /

ESTIMATE = EXP ;

RUN ;
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Stanford Heart Transplant Data

In the Stanford Heart Transplantation Study, patients identified as
been eligible (N=103) for a heart transplant were put on a waiting
list (time 0) and followed until transplantation, death or
censorship. In total 69 received transplant during follow-up,
whereas 34 did not. On the next frame you will find the variables
in the transplant data set. Here we will discuss how to analyse and
at the exercises we will do some of the analyses.
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Stanford Heart Transplant Data variables

age age (in years) at entry into the study.

cens 0 = Censoring
1 = Dead

days number of days from entry to dead/censoring.

trans 1 = if the person had a heart transplantation
0 = otherwise.

wait number of days from entry to transplantation
NB: if trans=0 then wait=.

mismatch 1 = mismatch between HLA type in donor and patient
0 = no mismatch
NB: if trans=0 then mismatch=.
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Stanford Heart Transplant Data

Obs age cens days trans wait

54 48 1 100 1 46

55 41 1 102 0 .

56 28 0 109 1 96

57 46 1 110 1 60

58 23 0 131 1 21

59 41 1 149 0 .

60 47 1 153 1 26

61 43 1 165 1 4
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Stanford Heart Transplant Data – SAS

PROC PHREG DATA =stanford;

MODEL days*cens (0)=trans / RL;

RUN ;

What is wrong?
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Multi-state model
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Stanford Heart Transplant Data – SAS

We need a time-dependent covariate:

PROC PHREG DATA =stanford;

xtrans =(wait <days)*(wait >.);

MODEL days*cens (0)=xtrans / RL;

RUN ;
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Stanford Heart Transplant Data – SAS

Alternatively

DATA updated; SET stanford;

IF wait = . THEN DO

entry =0; exit=days;death=cens;xtrans =0; OUTPUT ;

END ;

IF wait ne . THEN DO ;

entry =0; exit=wait;death =0; xtrans =0; OUTPUT ;

entry=wait;exit=days;death=cens;xtrans =1; OUTPUT ;

END ;

RUN ;

PROC PHREG DATA =updated;

MODEL (entry ,exit)*death (0) = xtrans / RL;

RUN ;
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Prediction and time-dependent covariates

Without time-dependent covariates (and without competing risks)
the survival function at time t is:

S(t,X ) = [exp(−Λ0(t))]exp(β
′X )

When there are time-dependent covariates in the hazard model
then this need not work since the probability of surviving till time t
depends on the (stochastic) behaviour of (X (u); 0 ≤ u < t).

Covariates must be exogenous (external) for the prediction to work.

With endogenous (internal) covariates, there is extra randomness
not described by the hazard function and there is a need for joint
models.
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Checking assumptions for the linear predictor

This is not different from any other model with a linear predictor
(e.g., linear or logistic regression).

As noted earlier today, no interaction between Xi1 and Xi2 can
be tested by adding suitable interaction terms to the model

Linearity for quantitative X may be tested by adding
quadratic terms X 2 or linear splines to the model. For chosen
cut-points, say a1, a2 and add

(X − a1)I (X > a1) and (X − a2)I (X > a2)

to a model that also includes X . The dose-response
relationship between X and the log(hazard) is then a broken
straight line and coefficients for the linear splines give the
change in slope at each cut-point.
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Checking proportional hazards

This has developed into a whole ”industry” within survival analysis
and many approaches have been put forward.

Graphical methods based on the stratified model, e.g. by

ploting log(Λ̂)0j(t) against t (or log(t)) for each stratum j
and see if curves have constant vertical distance

Modeling time-dependent effects

Methods based on residuals

Martingale residuals
Score (Schoenfeld) residuals
Pseudo residuals

ASSESS statement in PROC PHREG uses several of these residuals.
Martingale residuals may also be used directly to check the
functional form of a quantitative covariate.
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