Lecture 10

Forward Kinematics

Alli Nilles

Modern Robotics Chapter 4
October 1, 2019

Admin

Admin

- I am not KDC!
- Homework 4 should be demonstrated individually to your TA in lab this week or next. Next week is the last week of Lab 3.
- Homework 5 is due this Friday.
- Lab 2 is due this week.

Admin

- I am not KDC!
- Homework 4 should be demonstrated individually to your TA in lab this week or next. Next week is the last week of Lab 3.
- Homework 5 is due this Friday
- Lab 2 is due this week.

Admin

- I am not KDC!
- Homework 4 should be demonstrated individually to your TA in lab this week or next. Next week is the last week of Lab 3.
- Homework 5 is due this Friday.
- Lab 2 is due this week.

Admin

- I am not KDC!
- Homework 4 should be demonstrated individually to your TA in lab this week or next. Next week is the last week of Lab 3.
- Homework 5 is due this Friday.
- Lab 2 is due this week.

What is "Forward Kinematics"?

Kinematics: a branch of classical mechanics that describes motion of bodies without considering forces. AKA "the geometry of motion"

What is "Forward Kinematics"?

Kinematics: a branch of classical mechanics that describes motion of bodies without considering forces. AKA "the geometry of motion"

Forward kinematics: a specific problem in robotics. Given the individual state of each joint of the robot (in a local frame), what is the position of a given point on the robot in the global frame?

What is "Forward Kinematics"?

Kinematics: a branch of classical mechanics that describes motion of bodies without considering forces. AKA "the geometry of motion"

Forward kinematics: a specific problem in robotics. Given the individual state of each joint of the robot (in a local frame), what is the position of a given point on the robot in the global frame?

Assumptions

Assumptions

- Our robot is a kinematic chain, made of rigid links connected by movable joints
- No branches or loops (will discuss later)
- All joints have one degree of freedom and are revolute or prismatic

Assumptions

- Our robot is a kinematic chain, made of rigid links connected by movable joints
- No branches or loops (will discuss later)
- All joints have one degree of freedom and are revolute or prismatic

Assumptions

- Our robot is a kinematic chain, made of rigid links connected by movable joints
- No branches or loops (will discuss later)
- All joints have one degree of freedom and are revolute or prismatic

Assumptions

- Our robot is a kinematic chain, made of rigid links connected by movable joints
- No branches or loops (will discuss later)
- All joints have one degree of freedom and are revolute or prismatic

Review on Screw Motions

Figure 3.19: A screw axis \mathcal{S} represented by a point q, a unit direction \hat{s}, and a pitch h.

Review on Screw Motions

Definition 3.24 from Modern Robotics: a screw axis \mathcal{S} is written as

$$
\mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

where either

Review on Screw Motions

Definition 3.24 from Modern Robotics: a screw axis \mathcal{S} is written as

$$
\mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

where either

- $\|\omega\|=1$

Review on Screw Motions

Definition 3.24 from Modern Robotics: a screw axis \mathcal{S} is written as

$$
\mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

where either

- $\|\omega\|=1$
- where $v=-\omega \times q+h \omega$, where q is a point on the axis of the screw and h is the pitch of the screw ($h=0$ for a pure rotation about the screw axis). OR

Review on Screw Motions

Definition 3.24 from Modern Robotics: a screw axis \mathcal{S} is written as

$$
\mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

where either

- $\|\omega\|=1$
- where $v=-\omega \times q+h \omega$, where q is a point on the axis of the screw and h is the pitch of the screw ($h=0$ for a pure rotation about the screw axis). OR
- $\|\omega\|=0$ and $\|v\|=1$

Review on Screw Motions

Definition 3.24 from Modern Robotics: a screw axis \mathcal{S} is written as

$$
\mathcal{S}=\left[\begin{array}{c}
\omega \\
v
\end{array}\right] \in \mathbb{R}^{6}
$$

where either

- $\|\omega\|=1$
- where $v=-\omega \times q+h \omega$, where q is a point on the axis of the screw and h is the pitch of the screw ($h=0$ for a pure rotation about the screw axis). OR
- $\|\omega\|=0$ and $\|v\|=1$
- where the pitch of the screw is infinite and the motion is a translation along the axis defined by v.

Screw Motions as Matrix Exponential

The screw axis \mathcal{S} can be expressed in matrix form as

$$
\left[\mathcal{S}_{i}\right]=\left[\begin{array}{cc}
{\left[\omega_{i}\right]} & v \\
0 & 0
\end{array}\right] \in s e(3)
$$

where [. . .] is the skew symmetric form.

Screw Motions as Matrix Exponential

The screw axis \mathcal{S} can be expressed in matrix form as

$$
\left[\mathcal{S}_{i}\right]=\left[\begin{array}{cc}
{\left[\omega_{i}\right]} & v \\
0 & 0
\end{array}\right] \in s e(3)
$$

where [. . .] is the skew symmetric form.
To express a screw motion given a screw axis, we use the matrix exponential

Screw Motions as Matrix Exponential

The screw axis \mathcal{S} can be expressed in matrix form as

$$
\left[\mathcal{S}_{i}\right]=\left[\begin{array}{cc}
{\left[\omega_{i}\right]} & v \\
0 & 0
\end{array}\right] \in s e(3)
$$

where [. . .] is the skew symmetric form.
To express a screw motion given a screw axis, we use the matrix exponential

$$
e^{[S] \theta} \in S E(3)
$$

But why?!?

But why?!?

- Outside the scope of this course...
-"The exponential map is a map from the Lie algebra of a Lie group to the group itself"

But why?!?

- Outside the scope of this course...
- "The exponential map is a map from the Lie algebra of a Lie group to the group itself"

But why?!?

- Outside the scope of this course...
- "The exponential map is a map from the Lie algebra of a Lie group to the group itself"

You can think of the Lie algebra as related to a tangent space, so a screw vector gives us a description of instantaneous tangent motion, and the exponential function "integrates" this motion over a displacement θ.

Actual Form of Matrix Exponential

$$
e^{[\mathcal{S}] \theta}=I+[\mathcal{S}] \theta+[\mathcal{S}]^{2} \frac{\theta^{2}}{2!}+[\mathcal{S}]^{\frac{\theta^{3}}{\theta^{3}}} \frac{3!}{3!}+\cdots
$$

Actual Form of Matrix Exponential

$$
e^{[\mathcal{S}] \theta}=I+[\mathcal{S}] \theta+[\mathcal{S}]^{\frac{2}{} \frac{\theta^{2}}{2!}+[\mathcal{S}]^{3} \frac{\theta^{3}}{3!}+\cdots, ~ . \cdots ~}
$$

Proposition 3.25. Let $\mathcal{S}=(\omega, v)$ be a screw axis. If $\|\omega\|=1$ then, for any distance $\theta \in \mathbb{R}$ traveled along the axis,

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & \left(I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}\right) v \tag{3.88}\\
0 & 1
\end{array}\right] .
$$

Actual Form of Matrix Exponential

$$
e^{[\mathcal{S}] \theta}=I+[\mathcal{S}] \theta+[\mathcal{S}]^{\frac{2}{} \frac{\theta^{2}}{2!}+[\mathcal{S}]^{3} \frac{\theta^{3}}{3!}+\cdots, ~ . \cdots ~}
$$

Proposition 3.25. Let $\mathcal{S}=(\omega, v)$ be a screw axis. If $\|\omega\|=1$ then, for any distance $\theta \in \mathbb{R}$ traveled along the axis,

$$
e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
e^{[\omega] \theta} & \left(I \theta+(1-\cos \theta)[\omega]+(\theta-\sin \theta)[\omega]^{2}\right) v \tag{3.88}\\
0 & 1
\end{array}\right] .
$$

$$
\begin{aligned}
& \text { If } \omega=0 \text { and }\|v\|=1 \text {, then } \\
& \qquad e^{[\mathcal{S}] \theta}=\left[\begin{array}{cc}
I & v \theta \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Modelling Robot Joints as Screw Motions
$\mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$
case 1:

Modelling Robot Joints as Screw Motions
$\mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$
case 1:

- $\|\omega\|=1$

Modelling Robot Joints as Screw Motions

$\mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$
case 1:

- $\|\omega\|=1$
- where $v=-\omega \times q+h \omega$, where q is a point on the axis of the screw and h is the pitch of the screw ($h=0$ for a pure rotation about the screw axis).

So for revolute joints, ω is axis of
rotation and $v=-\omega \times q$

Modelling Robot Joints as Screw Motions

$\mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$
case 1:

- $\|\omega\|=1$
- where $v=-\omega \times q+h \omega$, where q is a point on the axis of the screw and h is the pitch of the screw ($h=0$ for a pure rotation about the screw axis).
- So for revolute joints, ω is axis of
 rotation and $v=-\omega \times q$

Modelling Robot Joints as Screw Motions
$\mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$
case 2 :

Modelling Robot Joints as Screw Motions
$\mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$
case 2 :

- $\|\omega\|=0$ and $\|v\|=1$

Modelling Robot Joints as Screw Motions

$\mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$
case 2 :

- $\|\omega\|=0$ and $\|v\|=1$
- where the pitch of the screw is infinite and the motion is a translation along the axis defined by v.

```
prismatic joints defined by axis of
movement v
```


Modelling Robot Joints as Screw Motions

$\mathcal{S}=\left[\begin{array}{c}\omega \\ v\end{array}\right] \in \mathbb{R}^{6}$
case 2 :

- $\|\omega\|=0$ and $\|v\|=1$
- where the pitch of the screw is infinite and the motion is a translation along the axis defined by v.
- prismatic joints defined by axis of movement v

Product of Exponentials Approach

Figure 4.1: Forward kinematics of a $3 R$ planar open chain. For each frame, the $\hat{x}-$ and \hat{y}-axis is shown; the \hat{z}-axes are parallel and out of the page.

Product of Exponentials Approach

Let each joint i have an associated parameter θ_{i} that defines its configuration (rotation angle for revolute joints, translation amount for prismatic).

Product of Exponentials Approach

Let each joint i have an associated parameter θ_{i} that defines its configuration (rotation angle for revolute joints, translation amount for prismatic).

Initialization:

Product of Exponentials Approach

Let each joint i have an associated parameter θ_{i} that defines its configuration (rotation angle for revolute joints, translation amount for prismatic).

Initialization:

Product of Exponentials Approach

Let each joint i have an associated parameter θ_{i} that defines its configuration (rotation angle for revolute joints, translation amount for prismatic).

Initialization:

- Choose a fixed, global base frame $\{s\}$
- Choose an "end effector" frame $\{b\}$ fixed to the robot
- Put all joints in "zero position"
- Let $M \in S E(3)$ be the configuration of $\{b\}$ in the $\{s\}$ frame when robot is in zero position

Product of Exponentials Approach

Let each joint i have an associated parameter θ_{i} that defines its configuration (rotation angle for revolute joints, translation amount for prismatic).

Initialization:

- Choose a fixed, global base frame $\{s\}$
- Choose an "end effector" frame $\{b\}$ fixed to the robot
- Put all joints in "zero position"
- Let $M \in S E(3)$ be the configuration of $\{b\}$ in the $\{s\}$ frame when robot is in zero position

Product of Exponentials Approach

Let each joint i have an associated parameter θ_{i} that defines its configuration (rotation angle for revolute joints, translation amount for prismatic).

Initialization:

- Choose a fixed, global base frame $\{s\}$
- Choose an "end effector" frame $\{b\}$ fixed to the robot
- Put all joints in "zero position"
- Let $M \in S E(3)$ be the configuration of $\{b\}$ in the $\{s\}$ frame when robot is in zero position

Product of Exponentials Approach

Let each joint i have an associated parameter θ_{i} that defines its configuration (rotation angle for revolute joints, translation amount for prismatic).

Initialization:

- Choose a fixed, global base frame $\{s\}$
- Choose an "end effector" frame $\{b\}$ fixed to the robot
- Put all joints in "zero position"
- Let $M \in S E(3)$ be the configuration of $\{b\}$ in the $\{s\}$ frame when robot is in zero position

Product of Exponentials Formula

For each joint i, define the screw axis.

Product of Exponentials Formula

For each joint i, define the screw axis.
For each motion of a joint, define the screw motion.

Product of Exponentials Formula

For each joint i, define the screw axis.
For each motion of a joint, define the screw motion.
This form composes nicely through multiplication, giving us the Product of Exponentials (PoE) formula!

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{S}_{n-1}\right] \theta_{n-1}} e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M
$$

Product of Exponentials Formula

For each joint i, define the screw axis.
For each motion of a joint, define the screw motion.
This form composes nicely through multiplication, giving us the Product of Exponentials (PoE) formula!

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} \ldots e^{\left[\mathcal{S}_{n-1}\right] \theta_{n-1}} e^{\left[\mathcal{S}_{n}\right] \theta_{n}} M
$$

Visualizing the Formula

Figure 4.2: Illustration of the PoE formula for an n-link spatial open chain.

Example 1

Figure 4.1: Forward kinematics of a $3 R$ planar open chain. For each frame, the $\hat{x}-$ and \hat{y}-axis is shown; the $\hat{\mathrm{z}}$-axes are parallel and out of the page.

Example 1

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{1}+L_{2}+L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 1

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{1}+L_{2}+L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

All axes:
$\omega_{i}=(0,0,1)$

Example 1

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{1}+L_{2}+L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

All axes:
$\omega_{i}=(0,0,1)$

Example 1

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{1}+L_{2}+L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

All axes:
$\omega_{i}=(0,0,1)$
For each joint:

Example 1

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{1}+L_{2}+L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

All axes:
$\omega_{i}=(0,0,1)$
For each joint:
$v_{1}=(0,0,0)$

Example 1

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{1}+L_{2}+L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

All axes:
$\omega_{i}=(0,0,1)$
For each joint:
$v_{1}=(0,0,0)$
$v_{2}=(0,-L, 0)$

Example 1

$$
M=\left[\begin{array}{cccc}
1 & 0 & 0 & L_{1}+L_{2}+L_{3} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

All axes:
$\omega_{i}=(0,0,1)$
For each joint:
$v_{1}=(0,0,0)$
$v_{2}=(0,-L, 0)$
$v_{3}=\left(0,-\left(L_{1}+L_{2}\right), 0\right)$

Example 1

Form $e^{\left[\mathcal{S}_{i}\right] \theta}$ for each joint:

$$
e^{\left[\mathcal{S}_{i}\right] \theta}=\left[\begin{array}{cc}
e^{\left[\omega_{i}\right] \theta} & \left(I \theta+\left(1-\cos (\theta)\left[\omega_{i}\right]+\left(\theta-\sin (\theta)\left[\omega_{i}\right]^{2}\right) v_{i}\right.\right. \\
0 & 1
\end{array}\right]
$$

And compose with M

$$
T(\theta)=e^{\left[\mathcal{S}_{1}\right] \theta_{1}} e^{\left[\mathcal{S}_{2}\right] \theta_{2}} e^{\left[\mathcal{S}_{3}\right] \theta_{3}} M
$$

Example 2

Figure 4.3: A 3R spatial open chain.

Example 2

First find M :

$$
M=\left[\begin{array}{cccc}
0 & 0 & 1 & L_{1} \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & -L_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 2

First find M :

$$
M=\left[\begin{array}{cccc}
0 & 0 & 1 & L_{1} \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & -L_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

For joint 1: $\omega_{1}=(0,0,1) \quad v_{1}=(0,0,0)$

Example 2

First find M :

$$
M=\left[\begin{array}{cccc}
0 & 0 & 1 & L_{1} \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & -L_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

For joint 1: $\omega_{1}=(0,0,1) \quad v_{1}=(0,0,0)$
For joint 2: $\omega_{2}=(0,-1,0) \quad q_{2}=\left(L_{1}, 0,0\right) \quad v_{2}=\left(0,0,-L_{1}\right)$

Example 2

First find M :

$$
M=\left[\begin{array}{cccc}
0 & 0 & 1 & L_{1} \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & -L_{2} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

For joint 1: $\omega_{1}=(0,0,1) \quad v_{1}=(0,0,0)$
For joint 2: $\omega_{2}=(0,-1,0) \quad q_{2}=\left(L_{1}, 0,0\right) \quad v_{2}=\left(0,0,-L_{1}\right)$
For joint 3: $\omega_{3}=(1,0,0) \quad q_{3}=\left(0,0,-L_{2}\right) \quad v_{3}=\left(0,-L_{2}, 0\right)$

Next Time

Next Time

- Product of exponentials in the end-effector frame
- Modelling robots in the Universal Robot Description Format
- Different kinds of joints
- What if my robot isn't a kinematic chain??

Next Time

- Product of exponentials in the end-effector frame
- Modelling robots in the Universal Robot Description Format
- Different kinds of joints
- What if my robot isn't a kinematic chain??

Next Time

- Product of exponentials in the end-effector frame
- Modelling robots in the Universal Robot Description Format
- Different kinds of joints
- What if my robot isn't a kinematic chain??

Next Time

- Product of exponentials in the end-effector frame
- Modelling robots in the Universal Robot Description Format
- Different kinds of joints
- What if my robot isn't a kinematic chain??

