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Homework 4 should be demonstrated individually to your TA in lab this
week or next. Next week is the last week of Lab 3.

Homework 5 is due this Friday.

Lab 2 is due this week.
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e QOur robot is a kinematic chain, made of rigid /inks connected by movable
Jjoints

¢ No branches or loops (will discuss later)

e All joints have one degree of freedom and are revolute or prismatic
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Review on Screw Motions

h = piteh =
linear speed/angular speed

Figure 3.19: A screw axis & represented by a point ¢, a unit direction 3, and a pitch
h.
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Review on Screw Motions

Definition 3.24 from Modern Robotics: a screw axis S is written as

w
S= [ ] €R®
v
where either
* [jwlf =1
o where v = —w X q + hw, where q is a point on the axis of the

screw and h is the pitch of the screw (h = 0 for a pure rotation
about the screw axis). OR

* |lwl] =0and [lv]| =1

o where the pitch of the screw is infinite and the motion is a
translation along the axis defined by v.
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Screw Motions as Matrix Exponential

The screw axis S can be expressed in matrix form as

8] = [[“(’;] ’g] & se(3)

where [...] is the skew symmetric form.

To express a screw motion given a screw axis, we use the matrix exponential

elS? ¢ SE(3)
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But why?!?

e Qutside the scope of this course:---

e “The exponential map is a map from the Lie algebra of a Lie group to the
group itself”

You can think of the Lie algebra as related to a tangent space, so a screw vector
gives us a description of instantaneous tangent motion, and the exponential
function “integrates” this motion over a displacement 6.
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Actual Form of Matrix Exponential

6> 07
SV = T4+[S)6+[SPo; +ISP 5+

Proposition 3.25. Let § = (w,v) be a screw axis. If |w|| = 1 then, for any
distance 6 € R traveled along the axis,

¢ (3.88)

o | €< (16 + (1 —cosf)w] + (0 — sinb)[w]?) v
N 1 '
If w=0 and ||v|| = 1, then

5 [S]6 — [ '1.-’9
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W
S = [ ] cRRS
v
case 1:
* |jwl| =1
o where v = —w X q + hw, where q is
a point on the axis of the screw and h Y 4

is the pitch of the screw (h = 0 for a

pure rotation about the screw axis).

o So for revolute joints, w is axis of

rotation and v = —w X q
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Modelling Robot Joints as Screw Motions

S = [w] cR®
v
case 2:
* |lw|| =0 and [[o]| =1

o where the pitch of the screw is infinite
and the motion is a translation along
the axis defined by wv.

o prismatic joints defined by axis of
movement v




Product of Exponentials Approach
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Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the x-
and y-axis is shown; the z-axes are parallel and out of the page.
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Product of Exponentials Approach

Let each joint ¢ have an associated parameter @; that defines its configuration
(rotation angle for revolute joints, translation amount for prismatic).

Initialization:

* Choose a fixed, global base frame {s}
* Choose an “end effector” frame {b} fixed to the robot
e Put all joints in “zero position”

e Let M € SE(3) be the configuration of {b} in the {s} frame when robot
IS In zero position
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For each joint %, define the screw axis.
For each motion of a joint, define the screw motion.
This form composes nicely through multiplication, giving us the Product of

Exponentials (PoE) formula!

T(0) = !0 | elSnalfn16lSnltn pr




Visualizing the Formula
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Figure 4.2: Illustration of the PoE formula for an n-link spatial open chain.




Example 1

Y N NN

Figure 4.1: Forward kinematics of a 3R planar open chain. For each frame, the x-
and y-axis is shown; the z-axes are parallel and out of the page.
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1 0 0 Li+Ly+ Ls]

01 0 0
M=10 0 1 0

0 0 0 1 |

All axes:

wW; = (0, 0, ].)
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Example 1

1 0 O L1—|—L2—|-L3-
0 1 0 0
M= 0 0 1 0
0 0 0 1 |
All axes:
wiZ(O,O,l)

For each joint:

v1 = (0,0,0)

vy = (0,—L,0)

v3 = (0, —(Lq + Ly),0)




Example 1

Form €59 for each joint:

S0 _ el“l? (160 + (1 — cos(8)[w;] + (6 — sin(8)[w;]?)v;

|
€ 0 1

And compose with M

T(9) = elS:101 (52162 . [S5103 1
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Figure 4.3: A 3R spatial open chain.
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Example 2

First find M :
0 0 1 Ly |
0 1 O 0
M = -1 0 1 —Ly
0 0 O 1 |

For joint 1: wy = (0,0, 1) v1 = (0,0,0)
For joint 2: we = (0, —1,0) q2 = (L1,0,0) ve = (0,0, —L4)
For joint 3: wg = (]., 0, O) q3 = (O, 0, —L2) V3 = (O, — Lo, O)
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Next Time

Product of exponentials in the end-effector frame

Modelling robots in the Universal Robot Description Format

Different kinds of joints

What if my robot isn’t a kinematic chain??




