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PROGRAM 
 

Unless otherwise noted, all talks are held in the BRC Auditorium (Room 103) 
 

TUESDAY, JUNE 26 
12:00 - 4:00 PM  - CONFERENCE ATTENDEE CHECK-IN  
BRC LOBBY – AUDITORUM 103 (PRE-FUNCTION SPACE) 

1:00 - 3:30 PM - TUTORIALS/PARALLEL SESSIONS 
1:00 – 3:30 PM “Introduction to Rule-Based Modeling with 

BioNetGen”  
BRC 282 

1:00 – 3:30 PM “Tutorial on StochSS: An Integrated Development 
Environment for Simulation and Analysis of 
Discrete Stochastic Biochemical Models” 

BRC 284 

4:00 - 4:30 PM Opening Remarks  
4:30 - 5:30 PM  Keynote Talk: “Thinking About the Cancer-

Immune Interaction”  
Herbert Levine, Rice University 

6:30 - 10:00 PM Night at the Museum Reception  Houston Museum of Natural 
Science 

WEDNESDAY, JUNE 27 
SESSION I 

Session Chair: Fred Mackintosh, Rice University 
9:00 - 9:30 AM Invited Talk: “Quantitative Behavior: 

Understanding What Animals Do and How Brains 
Control Them” 

Joshua Shaevitz, Princeton 
University 

9:30 - 9:50 AM Contributed Talk: “Sign Epistasis Induced by 
Ribosome Collisions During Eukaryotic mRNA 
Translation” 

Arvind Subramaniam, Fred 
Hutchinson Research Center 

9:50 - 10:10 AM Contributed Talk: “Properties of Gene Expression 
and Chromatin Structure with Mechanically 
Regulated Transcription” 

Stuart Sevier, Rice University 

10:10 - 10:30 AM Contributed Talk: “Phase Transitions and Critical 
Phenomena in Mutualistic Communities under 
Invasion” 

Bo Wang, Stanford University 

10:30 - 11:00 AM - COFFEE BREAK 
   
   
   
   
  Program continued… 
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12th Annual q-bio Conference 
PROGRAM, continued… 

   
SESSION II 

Session Chair: Oleg Igoshin, Rice University 
11:00 - 11:30 am  Invited Talk: “Evolutionary Search and Races in 

the Adaptive Immune System” 
Shenshen Wang, University of 
California, Los Angeles 

11:30 – 11:50 am Contributed Talk: “Precision in a Rush: 
Hunchback Pattern Formation in a Limited Time” 

Huy Tran, École Normale Supérieur 

11:50 - 12:20 AM - Spotlight Talk Session I 
 “Anomalous Diffusion, Spatial Coherence, and 

Viscoelasticity from the Epigenetic Energy 
Landscape of Human Chromosomes” 

Michelle Di Pierro, Rice University 

 “Quantifying Epistatic Conservation Across Genetic 
and Environmental Backgrounds” 

Andrew D. Mathis, University of 
Texas Southwestern Medical Center 

 “Modeling the Regulation of Cancer Metabolism: 
Interplay Between Glycolysis and OXPHOS” 

Dongya Jia, Rice University 

 “Antigen Recognition at Immune-Cell Interfaces: 
Probing the Role of Mechanical Forces” 

Steven M. Abel, University of 
Tennessee, Knoxville 

 “Agent-Based Model for Developmental 
Aggregation in Myxococcus xanthus Bacteria” 

Zhaoyang Zhang, Rice University 

 “Effects of Cell Cycle Noise on Excitable Circuits” William Ott, University of Houston 

12:20 - 1:30 PM – LUNCH 
 BioScience Research Collaborative, Event/Exhibition Hall, Room 120 

12:20 – 1:30 PM Special Session: “NIH Peer Review and Research 
Initiatives for Quantitative Biologists” 

Craig, N Giroux, Center for 
Scientific Review/NIH 
(10th Floor, BRC Room 1060 A/B) 

SESSION III 
Session Chair: Ido Golding, Baylor College of Medicine 

1:30 - 2:00 PM Invited Talk: “Hyaluronan Glycocalyx Physically 
Modulates Cell Adhesion and Migration” 

Jennifer Curtis, Georgia Institute of 
Technology 

2:00 - 2:30 PM Invited Talk: "Comprehensive, High-Resolution 
Binding Energy Landscapes of Transcription Factor 
Binding" 

Polly Fordyce, Stanford University 

   
   
   
   
   
   
   
   
   
   
   
  Program continued… 
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12th Annual q-bio Conference 
PROGRAM, continued… 

 
2:30 - 3:00 PM - SPOTLIGHT TALK SESSION II 

 “Using the Automated Building of Computational 
Models to Understand Cardiotoxic Drug Responses” 

Robert P. Sheehan, Harvard 
Medical School 

 “Modulation of Conjugation in Pathogenic 
Escherichia coli” 

Jonathan Bethke, Duke University 

 “The Role of Metabolic Spatiotemporal Dynamics in 
Modulating Biofilm Colony Expansion” 

Federico Bocci, Rice University 

 “Spatiotemporal Dynamics of Phage-Biofilm 
Interactions” 

Hemaa Selvakumar, Georgia 
Institute of Technology 

 “Ensemble response of immune repertoires to 
Vaccination” 

Maximilian Puelma Touzel, École 
Normale Supérieur 

 “Modularity of the Metabolic Gene Network as a 
Prognostic Biomaker for Hepatocellular Carcinoma” 

Fengdan Ye, Rice University 

3:00 - 3:30 PM - COFFEE BREAK 

SESSION IV 
Session Chair: Joshua Shaevitz, Princeton University 

3:30 - 3:50 PM 
  

Contributed Talk: “An Artificial Cell-Cycle 
System: How Network Structures Modulate the 
Clock Functions” 

Qiong Yang, University of Michigan  

3:50 - 4:10 PM 
  

Contributed Talk: “How to Model Cell Decision 
Making Errors” 

Ali Abdi, New Jersey Institute of 
Technology 

4:10 - 4:30 PM 
  

Contributed Talk: “Design principles of Binding-
Induced Selective Transport Through the nuclear 
Pore Complex” 

Loren Hough, University of 
Colorado, Boulder 

4:30 - 4:50 PM
  

Contributed Talk: “Increased Mortality Favors 
Fast-Growing Species in Microbial Communities” 

Clare Abreu, Massachusetts 
Institute of Technology, Gore Lab 

4:50 - 5:10 PM
  

Contributed Talk: “Synthetic NF-κB: A Building 
Approach to Study Complex Signaling Behaviors” 

Ping Wei, Center for Quantitative 
Biology, Peking University 

7:30 – 10:00 PM  - POSTER SESSION 
BioScience Research Collaborative, Event/Exhibition Hall, Room 120 

THURSDAY, JUNE 28 
SESSION V 

Session Chair: Linchong You, Duke University 
9:00 - 9:30 AM Invited Talk: “The Outer Membrane is an Essential 

Load-Bearing Element in Gram-Negative Bacteria” 
KC Huang, Stanford University 

9:30 -10:00 AM Invited Talk: “Ant Rafts and Maggot Flows” David Hu, Georgia Institute of 
Technology 

   
   
   
   
   
  Program continued… 

3



12th Annual q-bio Conference 
PROGRAM, continued… 

   
10:00 - 10:30 AM - SPOTLIGHT TALK SESSION III 

 “Dynamic Interrogation of the Bacillus Subtilis 
Sporulation Network using an Engineered Light-
Switchable Two-Component System” 

Sebastian Castillo-Hair, Rice 
University 

 “Temporal Precision of Regulated Gene Expression” Shivam Gupta, Purdue University 
 “Carbohydrate Storage Determines Cell Size and 

Cell Fate”  
Yanjie Liu, University of Texas 
Southwestern Medical Center 

 “Survival of the Chiral” Ashish Bino George, Boston 
University 

 “Causes and Consequences of Asynchrony in D. 
discoideum Multicellular Development” 

Ricardo Martinez-Garcia, Princeton 
University 

 “Measuring Transcription from a Single Gene Copy 
in Live Escherichia coli Cells” 

Jing Zhang, Baylor College of 
Medicine 

10:30 - 11:00 AM - COFFEE BREAK 

SESSION VI 
Session Chair: Yi Jiang, Georgia State University 

11:00 - 11:30 AM Invited Talk: “Regulatory Networks in Synthetic 
Microbial Consortia” 

Matthew Bennett, Rice University 

11:30 - 11:50 AM Contributed Talk: “Impact of a Periodic Presence 
of Antimicrobial on Resistance Evolution” 

Anne-Florence  Bitbol, Institut Curie 

11:50 - 12:10 PM Contributed Talk: “A High Throughput 
Optogenetic System to Interrogate MAPK Signaling 
Network Dynamics at the Single Cell Level” 

Coralie  Dessauges, University of 
Bern 

12:10 - 12:30 PM Contributed Talk: “In-Sequence Coding of Noise 
in Gene Expression” 

Enrique Balleza, Harvard 
University 

12:30 – 1:45 PM - LUNCH   
BioScience Research Collaborative, Event/Exhibition Hall, Room 120 

SESSION VII 
Session Chair: Elena Koslover, University of California, San Diego 

1:45 - 2:15 PM Invited Talk: “The Microbial Brain: 
Electrochemical Signaling and Higher-Order 
Coordination in Bacterial Communities” 

Gurol Suel, University of California, 
San Diego 

2:15 - 2:45 PM
  

Invited Talk: “When Things Go Wrong: A 
Breakdown of Breakdowns in Optimally Resilient 
Vascular Networks” 

Eleni Katifori, University of 
Pennsylvania 

   
   
   
   
   
   
   
  Program continued… 
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12th Annual q-bio Conference 
PROGRAM, continued… 

   
2:45 - 3:15 PM - SPOTLIGHT TALK SESSION IV 

 “Multiplexing Cell-Cell Communication” John Sexton, Rice University 
 “Role of Stochasticity in Mammalian Drug 

Resistance” 
Kevin Farquhar, Laufer Center for 
Physical and Quantitative Biology 

 “Regulation of T Cell Expansion by the Dynamics 
of Antigen Presentation” 

Andreas Mayer, Lewis-Sigler 
Institute, Princeton University 

 “Stochastic Modeling Quantifies Tumor Elimination 
and Evasion in the Setting of Immunotherapy” 

Jason George, Rice University 

 “Optimal Sensory Network for the Unfolded Protein 
Response” 

Wylie Stroberg, University of 
Michigan 

 “Intracellular Bistable Signaling in Streptococcus 
mutans Competence Regulation” 

Simon Underhill, University of 
Florida 

3:15 – 3:45 PM - COFFEE BREAK 

SESSION VIII 
Session Chair: Michael Diehl, Rice University 

3:45 - 4:05 PM
  

Contributed Talk: “Metabolic Organization 
Through Glucose-Mediated Regulation of 
Mitochondrial Transport” 

Elena Koslover, University of 
California, San Diego 

4:05 - 4:35 pm  Invited Talk: “Membrane Criticality and Ion 
Channel Function” 

Ben Machta, Yale University 

4:35 - 4:55 PM  Contributed Talk: “Emergent Versus Individual-
Based Multicellular Chemotaxis” 

Sean Fancher, Purdue University 

4:55 -5:15 PM  Contributed Talk: “Evolution of New Regulatory 
Functions” 

Tamar Friedlander, Hebrew 
University of Jerusalem 

7:30 – 10:00 PM  - POSTER SESSION 
BioScience Research Collaborative, Event/Exhibition Hall, Room 120 

FRIDAY, JUNE 29 
SESSION IX 

Session Chair: Dmitry Makarov, University of Texas 
9:00 - 9:30 am Invited Talk: “Binary Transcriptional Control of 

Pattern Formation in Development” 
Hernan Garcia, University of 
California, Berkeley 

9:30 -10:00 am Invited Talk: “Crowd Dynamics on a Lively 
Bridge” 

Igor Belykh, Georgia State 
University 

10:00 - 10:20 am Contributed Talk: “In situ Analysis of Microbial 
Communities Using Expansion Microscopy” 

Youngbin Lim, Stanford University 

10:20 -10:40 am Contributed Talk: “Homeostasis of Protein and 
mRNA Concentrations in Growing Cells” 

Jie Lin, Harvard University 

10:40 - 11:10 AM - COFFEE BREAK 

   
  Program continued… 
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12th Annual q-bio Conference 
PROGRAM, continued… 

 
SESSION X 

Session Chair: Margaret Cheung-Wyker, University of Houston 
11:10 - 11:40 am Invited Talk: “Integrating Multiplex Single-

Molecule Pull-Down (SiMPull) Data and 
Computational Modeling to Understand EGFR 
Signaling” 

Diane Lidke, University of New 
Mexico 

11:40 - 12:00 PM Contributed Talk: “Biphasic Translation During 
Viral Infection” 

Tomasz Lipniacki, Polish Academy 
of Sciences 

12:00 - 12:20 PM Contributed Talk: “Four Simple Rules That Are 
Sufficient to Generate the Mammalian Blastocyst” 

Silas Boye Nissen, Niels Bohr 
Institute 

12:20 - 1:30 PM – LUNCH 
BioScience Research Collaborative, Event/Exhibition Hall, Room 120 

SESSION XI 
Session Chair: Cecilia Clementi, Rice University 

1:30 - 2:00 PM
  

Invited Talk: “Biomolecular Folding and Dynamics 
from Single-Molecule Measurements” 

Dmitrii Makarov, University of 
Texas at Austin 

2:00 - 2:20 PM
  

Contributed Talk: “Partial Inhibition of HIV Cell-
to-Cell Spread Results in More HIV Infected Lymph 
Node Cells” 

Alex Sigal, KwaZulu-Natal 
Research Institute for Tuberculosis 
and HIV 

2:20 - 2:40 PM
  

Contributed Talk: “Quantifying Physiology-
Ecology Feedback Enables Prediction of Microbial 
Community Dynamics” 

Wenying Shou, Fred Hutchinson 
Research Center 

2:40 - 3:00 PM
  

Contributed Talk: “Predicting Influenza Vaccine 
Effectiveness from Evolution of the Dominant 
Epitope” 

Melia Bonomo, Rice University 

3:00 – 3:30 PM COFFEE BREAK 

SESSION XII 
Session Chair: Anatoly Kolomeisky, Rice University 

3:30 - 4:00 PM Invited Talk: “Bacterial Viruses Organize 
Subcellular Environments to Mediate Heterogeneous 
Development” 

Lanying Zeng, Texas A&M 
University 

4:00 - 4:20 PM
  

Contributed Talk: “Precision Measurements of 
Regulatory Energetics in Living Cells” 

Justin Kinney, Cold Spring Harbor 
Laboratory 

4:20 - 4:40 PM
  

Contributed Talk: “Cellular Sorting and 
Trafficking Mediated by Membrane Microdomains” 

Ilya Levental, University of Texas 
Health Science Center at Houston 

4:40 - 5:00 PM  Contributed Talk: “Biophysics of Adversarial 
Examples” 

Thomas Rademaker, McGill 
University 

   
6:30 - 9:30 PM Closing Banquet 

"Wisdom of Hives and Mounds: Collective Problem 
Solving by Super-Organisms" 

Rice Memorial Center -  
Banquet Speaker: 
Lakshminarayanan Mahadevan, 
Harvard University 
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12th Annual q-bio Conference 
List of Posters 

POSTER SIZE RESTRICTIONS AND MOUNTING INSTRUCTIONS 
 

All posters must not exceed 48” x 48” (4ft. x 4ft.). 
RECOMMEND poster size is 40” wide and 36” tall.  

 
All posters can be taken to the Event/Exhibition Hall (BRC 120) for mounting 

NO EARLIER than 7:00 AM on Wednesday, June 27th.   
 

All posters must be mounted  
NO LATER than 11:00 AM on Wednesday, June 27th. 

 
TO AVOID VIOLATING FIRE AND SAFETY CODES PLEASE DO NOT MOVE THE ROLLING 

POSTER BOARDS 
 

Please locate your assigned poster space based on the corresponding number in the list on the following pages. 
 ALL posters must be removed NO LATER than 11:00 AM on June 29th.  

 
POSTER PRESENTATIONS 

 
The Poster Sessions will be held in the BRC Event/Exhibition Hall, Room 120 on  

Wednesday, June 27th and Thursday, June 28th. 
ODD number posters will be presented on June 27th. 

EVEN number posters will be presented on June 28th. 
 

ALL POSTERS MUST BE REMOVED FROM BRC 120  
NO LATER THAN 11:00 AM, FRIDAY, JUNE 29TH. 
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List of q-bio Posters 
 

1. Steven M. Abel et al., Antigen Recognition at Immune-Cell Interfaces: Probing the Role of Mechanical 
Forces 

2. Torin J. Adamson et al., DockIt: Crowdsourcing Molecular Docking 
3. Kunal Aggarwal et al., Investigating Potential Mechanisms for Negative Regulation of T Cell Activation  
4. Razan Alnahhas et al., Culture Environment Impacts Synthetic Microbial Consortia Behavior  
5. Argenis Arriojas et al., Quantifying Noise in General Stochastic Models of Post-Transcriptional 

Regulation of gene expression 
6. David E. Axelrod et al., Computer Simulation of Colon Cancer Chemoprevention  
7. Jonathan Bethke et al., Modulation of Conjugation in Pathogenic Escherichia coli  
8. Ashish Bino George et al., Survival of the Chiral 
9. Federico Bocci et al., The Role of Metabolic Spatiotemporal Dynamics in Modulating Biofilm Colony 

Expansion 
10. Ryan Butcher et al., Optogenetic Investigation of B. subtilis Sporulation Network at the Single Cell 

Level 
11. Matthew Carpenter et al., Probing ER-Related Stress with Lipid Markers 
12. Sebastian Castillo-Hair et al., Dynamic Interrogation of the Bacillus Subtilis Sporulation Network Using 

an Engineered Light-Switchable Two-Component System 
13. Ankit Chandra et al., Integrative Model of Actin, Adhesion, and Signaling Dynamics at the Leading 

Edge of Migrating Cells 
14. Srikiran Chandrasekaran et al., Infection Risk of Antibiotic Resistant Bacteria  
15. Ke Chen et al., Proteome Allocation Determines Thermosensitivity of Growth and Structure of the 

Evolutionary Landscape  
16. Ryan R. Cheng et al., De novo Prediction of Human Chromosome Structures: Epigenetic Marking 

Patterns Encode Genome Architecture 
17. Sapna Chhabra et al., Role of Paracrine Signaling and Cell Movements in the Self-Organization of 

Micropatterned Human Embryonic Stem Cell Colonies 
18. Selahittin Cinar et al., Predicting Transcriptional Output of Synthetic Multi-Input Promoters 
19. Seth Coleman et al., Modeling Viral Copy Number Dynamics During Infection by Bacteriophage 

lambda 
20. Vinícius G. Contessoto et al., Protein Folding at Constant pH: Salt Concentration and pH Changing 

Protein Stability 
21. Keisha Cook et al., Decreasing the Computational Time of Biochemical Systems via Parallelism 
22. Ojan Khatib Damavandi et al., Inflationary Embryology 
23. Jon Christian L. David et al., Modeling Molecular Motor Procession 
24. Aram Davtyan et al., Unveiling Molecular Mechanisms of Kinesin-5 
25. Michele Di Pierro et al., Anomalous Diffusion, Spatial Coherence, and Viscoelasticity from the 

Epigenetic Energy Landscape of Human Chromosomes 
26. Kevin Farquhar et al., Role of Stochasticity in Mammalian Drug Resistance 
27. Daniel Gamermann et al., Caracterization of PPI and Metabolic Networks 
28. Jason George et al., Stochastic Modeling Quantifies Tumor Elimination and Evasion in the Setting of 

Immunotherapy  
8



29. Gennady Gorin et al., Simulating and Fitting Stochastic Models of RNA Transcription via the Gillespie 
Algorithm  

30. Yueyang Eric Gou et al., Characterization and Application of Fluorescent Indicators for Imaging 
Neuronal Voltage Computations 

31. Sanjana Gupta et al., Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in 
Systems Biology 

32. Shivam Gupta et al., Temporal Precision of Regulated Gene Expression 
33. Kelsey Hallinen et al., Population Dynamics of Cooperative Resistance in E. faecalis 
34. Jungmin Han et al., Merging Multiple Data Sets to Study HCV  
35. Rasoul Hekmati et al., Machine Learning to Evaluate fMRI Recordings of Brain Activity in Epileptic 

Patients  
36. R. Antonio Herrera et al., Cliffs & Canals in Waddington's Landscape 
37. Andrew J. Hirning et al., Dynamic Responses of LacI/GalR Chimera-Based Transcriptional Logic Gates 
38. Danh-Tai Hoang et al., Network Inference with Latent Variables 
39. Kabir Husain et al., Programming Fitness Landscapes by Sparse Epistasis  
40. Dumitru A. Iacobas et al., The GMR Approach of Cancer Gene Therapy 
41. Dongya Jia et al., Modeling the Regulation of Cancer Metabolism: Interplay between Glycolysis and 

OXPHOS 
42. Lavisha Jindal et al., Plasmid Behavior under Par System Control 
43. Bhargav Karamched et al., Stochastic Model of Cell Alignment in Traps 
44. Marek Kochańczyk et al., Information Processing in the NF-κB Pathway  
45. Pawel Kocieniewski et al., RAF1 Coordinates Proliferation and Motility 
46. Daria Kogut et al., Modeling miRNA-Mediated Translation Control 
47. Vivek Kohar et al., Effect of Noise and Parametric Variations on Gene Regulatory Circuit Dynamics 
48. Jesse M. Kreger et al., Mathematical Models of Virus Infections 
49. Dana Krepel et al., Deciphering the Structure of the Condensin Protein Complex 
50. Niraj Kumar et al., Stochastic Modeling of Post-Transcriptional Regulation of Gene Expression by Non-

Coding RNAs 
51. Ariel Langevin et al., Stress Introduction Rate Impacts Acquisition of Antibiotic Tolerance and 

Resistance 
52. Yerim Lee et al., Quantification of Ras Membrane Diffusion and Multimer Formation in Live Cells 
53. Kyunghyun (Katie) Lee et al., Differences Between Telomerase Activation and ALT  Based on the G-

Networks 
54. Chung Yin (Joey) Leung et al., The Synergistic Effect of Host Immunity with Phage and Probiotic 

Therapy Against Bacterial Pathogens 
55. Xuefei Li et al., Spatial Profiles of Tumor-Infiltrating T Cells 
56. Xiaona Li et al., Mechanics Before Chemistry: Tensile Stress Induced Cytoskeletal Reorganization 
57. Xingcheng Lin et al., High-resolution Prediction and Refinement of Protein Structures 
58. Yanjie Liu et al., Carbohydrate Storage Determines Cell Size and Cell Fate 
59. Zhuohe Liu et al., Automated Multimodal Screening of Fluorescent Biosensors of Membrane Potential 
60. Leonardo López-Ortiz et al., Stability and Accuracy Analysis of the Circadian Clock Couple with 

Metabolism  
61. Xiaoyu Lu et al., Structure Guided Genetically Encoded Voltage Indicator Engineering 
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62. Nan Luo et al., Stress-Induced Division of Labor Underlies Bacterial Colony Branching 
63. Sridevi Maharaj et al., BLANT: Sampling Graphlets in a Flash  
64. Ricardo Martinez-Garcia et al., Causes and Consequences of Asynchrony in D. discoideum Multicellular 

Development 
65. Andrew D. Mathis et al., Quantifying Epistatic Conservation Across Genetic and Environmental 

Backgrounds 
66. Andreas Mayer et al., Regulation of T Cell Expansion by the Dynamics of Antigen Presentation 
67. James McCormick et al., Determining the Internal Allosteric Architecture of DHFR With Saturation 

Mutagenesis 
68. Joseph P. McKenna et al., Modeling Adipose Tissue Hormone Regulation 
69. R. Tyler McLaughlin et al., Multiplexed Live-Cell Signaling Dynamics of the Cytoskeletal and 

Phospholipid Scaffold, IOGAP1 
70. Kareem Mehrabiani et al., Predicting Actin Interfaces from Genomic Data  
71. Justyna Mika et al., Does Diversity of T Cell Receptors Functionality Depend on Age and Sex?  
72. Robert Mines et al., Wnt-Notch Crosstalk Tunes Intestinal Crypt Spatial Patterning 
73. Chaitanya Mokashi et al., Cellular Responses to Dynamic Patterns of Cytokine Stimulation 
74. Thuy N. Nguyen et al., Amino Acid Sequence Constraints and Co-Evolution across a Metabolic Enzyme 

Pair 
75. Jamie Nosbisch et al., Feedback Loops at the Level of Lipid Metabolism Enhance Sensitivity and 

Robustness in Models of Chemotactic Gradient Sensing  
76. Jackson O'Brien et al., Decoding High-dimensional Temporal Dynamics in Gene-regulatory Networks  
77. William Ott et al., Effects of Cell Cycle Noise on Excitable Circuits  
78. Weerapat Pittayakanchit et al., Trade-off between Resistance to External and Internal Fluctuation in 

Biophysical Sensing 
79. Maximilian Puelma Touzel et al., Ensemble Response of Immune Repertoires to Vaccination 
80. Alberto Ramírez-Hurtado et al., Synchronization Modes of the Mechanical Response in Mouse Heart 
81. Satyajit Rao et al., Dynamics of Stress Response in Bacteria 
82. Brandon Reid et al., Tensor-Based Approximation of the Stationary Solution to the Chemical Master 

Equation  
83. Vedant Sachdeva et al., Tuning Evolution Towards Generalists by Resonant Environmental Cycling  
84. Andrew Schober et al., Collective Genetic Units in Bacterial Metabolism 
85. Hemaa Selvakumar et al., Spatiotemporal Dynamics of Phage-Biofilm Interactions 
86. John Sexton et al., Multiplexing Cell-Cell Communication 
87. Robert P. Sheehan et al., Using the Automated Building of Computational Models to Understand 

Cardiotoxic Drug Responses 
88. Jaeoh Shin et al., How to Find a Small Target on a Surface? Surface-Assisted Search Dynamics  
89. Matthew Smart et al., Population Dynamics of Epigenetic Oncogenesis  
90. Jaroslaw Smieja et al., Modeling Adjuvant Chemo- and Radiotherapy 
91. Mara P. Steinkamp et al., Quantification of Tumor Burden in Patient-Derived Orthotopic Models of 

Ovarian Cancer by Fluorescent and Bioluminescent 3-D Imaging 
92. Wylie Stroberg et al., Optimal Sensory Network for the Unfolded Protein Response  
93. Peter Suzuki and Jihwan Lee et al., High-Throughput Screening of Fluorescent Probes for in vivo 

Imaging 
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94. Tavella Franco et al., Coarse Grained Constant-pH Protein Dynamics 
95. Nihal Ezgi Temamogullari et al., A Yeast Segmentation and Tracking Algorithm 
96. Shubham Tripathi et al., Analysis of Hierarchy in Gene Expression Reveals Principles Underlying 

Metastatic Aggressiveness of Inflammatory Breast Cancer  
97. Karolina Tudelska et al., Secreted INFβ Coordinates Antiviral Response  
98. Simon Underhill et al., Intracellular Bistable Signaling in Streptococcus mutans Competence Regulation 
99. John Vastola et al., Towards a Coherent Theory of Stochastic Gene Dynamics: from Landscapes to 

Green Field Theory 
100. Qian Wang et al., Inter-Head Tension of Cytoplasmic Dynein Regulates the Coordination between Two Heads 
101. Mengyu Wang et al., Measuring Transcription at a Single Gene Copy Illuminates RNA Dynamics and Reveals 

Intracellular Correlations 
102. Huijing Wang et al., Differentially Regulated Pathway Analysis of RNA-Seq by Deep Learning 
103. Teng Wang et al., Predicting Plasmid Maintenance and Abundance in Complex Microbial Community  
104. Zikai Xu et al., Noise Analysis in Biochemical Complex Formation  
105. Fengdan Ye et al., Modularity of the Metabolic Gene Network as a Prognostic Biomaker for Hepatocellular 

Carcinoma 
106. Jin Yang et al., An Integrative Computational Approach for Engineering Genetically Encoded Voltage 

Indicators 
107. Jin Yang et al., A Synthetic Gene Circuit with Tunable Expression Level and Dosage Compensation for 

Mammalian Cells 
108. Jing Zhang et al., Measuring Transcription from a Single Gene Copy in Live Escherichia coli Cells 
109. Zhaoyang Zhang et al., Agent-based Model for Developmental Aggregation in Myxococcus xanthus 

Bacteria 
110. Maxwell De Jong et al., Tuning Spatial Profiles of Selection Pressure to Modulate the Evolution of 

Resistance 
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Several modern footbridges around the world have experienced large lateral vibrations during crowd loading events. 
The onset of large-amplitude bridge wobbling has generally been attributed to crowd synchrony; although, its role in 
the initiation of wobbling has been challenged. In this talk, we will introduce biomechanically-inspired models of
human locomotion and use them (i) to study the contribution of a single pedestrian into overall, possibly bistable,
crowd dynamics [1] and (ii) to investigate to what degree pedestrian synchrony must be present for a bridge to wobble 
significantly and what is a critical crowd size [2]. The pedestrian models can be used as “crash test dummies” when 
numerically probing a specific bridge design. This is particularly important because the U.S. code for designing 
pedestrian bridges does not contain explicit guidelines that account for the collective pedestrian behavior.

REFERENCES

[1] Belykh I, Jeter R, Belykh V (2016) Bistable gaits and wobbling induced by pedestrian-bridge interactions. Chaos 26, 116314.
[2]     Belykh I, Jeter R, Belykh V (2017) Foot force models of crowd dynamics on a wobbly bridge. Science Adv. 3, e1701512

Acknowledgements: This work was funded by NSF grant DMS-1616345.
1Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, P.O. Box 4110, Atlanta, Georgia, 30302-4110, USA. E-

mail: ibelykh@gsu.edu
2Department of Control Theory, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia

Crowd dynamics on a lively bridge  
Igor Belykh1, Russell Jeter1, and Vladimir Belykh2
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1 Department of Biosciences, Rice University, 6100 Main St., Houston, TX 77251
2 Department of Bioengineering, Rice University, Houston, TX

Synthetic biology aims to engineer biological systems for practical purposes through the manipulation of gene regulation and 
enzymatic processes within the host. The vast majority of synthetic gene circuits operate within a single cell or isogenic 
colony of bacteria. However, utilizing multiple strains or species of bacteria simultaneously greatly expands the possibilities 
of synthetic biology. These systems, called synthetic microbial consortia, more closely resemble the naturally heterogeneous 
environments of bacteria, such as gut microbiomes or biofilms. Here, I will describe our recent efforts to design, construct, 
and analyze multi-scale regulatory structures in synthetic microbial consortia. This work includes: 1) creating novel 
transcription factors and promoters that allow cells to sense and respond to complex environmental conditions; 2) 
engineering multiple intercellular signaling mechanisms to create population-level regulatory pathways; and 3) developing 
mathematical techniques that accurately model and predict the dynamics of gene regulation in competing bacterial strains. 
Using these techniques, we have been able to engineer novel synthetic microbial consortia that exhibit complex emergent 
behaviors, such as oscillations and global bistability. For example, in one system we used two different bacterial quorum 
sensing systems to construct an “activator” strain and a “repressor” strain that respectively up- and down-regulate gene 
expression in both strains. When co-cultured in a microfluidic device, the two strains form coupled positive and negative 
feedback loops at the population-level. The interacting strains exhibit robust, synchronized oscillations that are absent if 
either strain is cultured in isolation. 

.

Matthew R. Bennett1,2

Regulatory networks in synthetic microbial 
consortia
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Polymer brushes are used to tailor and engineer fundamental surface properties in a wide range of applications. Biological 
organisms may leverage the same strategy at cell surfaces via the presentation of the glycocalyx, a sugar-rich cell surface 
bound polymer matrix. In particular, we focus on the glycocalyx associated with biological processes involving cell 
dynamics and rearrangements – events that require exquisite control of cell adhesion and migration. From embryogenesis to 
wound healing to synaptogenesis to cancer metastasis, changes in the hyaluronan-rich glycocalyx and HA milieu is 
connected to these processes. Hyaluronan (HA) is a linear polyelectrolyte whose gigantic size (up to 20 microns) creates 
significant physical effects when it is bound to the cell surface. These impacts are enhanced by its binding to and potential 
for dense aggregation of bottlebrush proteoglycans. 

Our lab is interested in the consequences of maintaining a bulky sugar matrix on the surface of cells, whether it is neurons in
the brain, cancer cells in a tumor, or fibroblasts in a wound. How does the glycocalyx interfere with or alter receptor-ligand 
binding and cell-cell contacts? How is it possible that integrins manage to bind to extracellular matrix (ECM) proteins? 
When the glycocalyx is compressed at an interface after cell-ECM binding, how do the forces alter the cell adhesion 
strength? Here we present quantitative measurements demonstrating that indeed, compressed HA glycocalyx reduces cell 
adhesion strength. Further, we show how manipulating cell adhesion strength with HA glycocalyx is an independent 
parameter to tune cell migration speed. Together these data suggest that HA glycocalyx works in concert with adhesion 
receptors to modulate the strength cell adhesion thru physical repulsion. This is an interesting outcome because it provides 
evidence that cell integration into tissues – a fundamental aspect of multicellular organisms – is controlled not just via 
adhesion, but in some cases, via an interplay of adhesive and repulsive elements.
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Gene expression in vivo is regulated primarily by transcription factor (TF) proteins that bind regulatory sequences 
within genomic DNA, thereby recruiting or blocking the transcriptional machinery to either activate or repress 
transcription. However, it remains difficult to predict TF occupancy in vivo based on regulatory sequence.  
Thermodynamic models that explicitly consider TF concentrations and the change in Gibbs free energy upon 
binding have shown the greatest success; however, a scarcity of energetic data has precluded their broad 
implementation.  Although high-throughput in vitro transcription factor (TF) binding site characterization 
techniques have greatly increasing the speed of TF target site discovery, these techniques sacrifice the ability to 
measure binding energies in order to query a large sequence space. Here, we present a novel high-throughput 
experimental assay and analysis pipeline capable of estimating changes in binding energies for > 1 million 
sequences in parallel at high resolution. To demonstrate the capabilities of the assay, we took advantage of 
existing specificity information to refine the binding motifs of two model TFs from S. cerevisiae, Pho4 and Cbf1. 
By coupling the existing MITOMI microfluidic platform to a DNA sequencing-based readout and high-capacity 
neural network models, we generated comprehensive thermodynamic landscapes for an exhaustive library of all 
10-mer sequences flanking the shared Pho4 and Cbf1 consensus motif. These measurements reveal that sequence 
specificity extends far beyond the known consensus to distal flanking positions and that the extended binding 
specificity of Cbf1, in particular, is surprisingly epistatic. When combined with existing in vivo datasets, we find 
that sites occupied by TFs in vivo are both energetically and mutationally distant from the lowest-energy 
sequences, providing evidence that even small differences in binding energies can provide a basis for evolutionary 
selection.  
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During embryonic development, tightly choreographed patterns of gene expression specify cell fate. Output transcriptional 
activity is characterized by bursts of gene expression, where promoters stochastically transition between transcriptional ON 
and OFF states. Here, we quantitatively test the hypothesis that transcriptional bursts are the main drivers of pattern 
formation. We quantify the transcriptional activity that leads to the formation of the widely studied stripe 2 of the even-
skipped gene in living embryos of the fruit fly at the single cell level. We develop a novel memory-adjusted hidden Markov 
model to extract the parameters governing transcriptional bursting and show that that promoter switching dynamics cannot 
quantitatively explain pattern formation in the embryo. We discover that, in addition to bursting, the window of time over 
which genes engage in transcription is also regulated along the embryo, and that this digital regulation of when promoters 
become competent for transcription is the main driver of pattern formation. Thus, in order to reveal the molecular rules 
behind the transcriptional control of pattern formation and reach a predictive understanding of development, a non-steady-
state and quantitative description of both the regulation of promoter bursting and the transcriptional time window needs to be 
adopted. 

Binary Transcriptional Control of Pattern 
Formation in Development

Nicholas Lammers1, Vahe Galstyan2, Armando Reimer1, Sean A. Meddin3, Chris Wiggins4, and 
Hernan G. Garcia1,3,5,6
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We present two model systems for studying swarm behavior in insects.  Fire ants link their bodies together to build 
waterproof rafts to survive floods. We conduct mechanical tests to show that ant rafts can flow like a liquid or spring 
back like a solid. These properties can enhance their chance of survival on rough waters. In contrast, the black soldier 
fly larva is an insect that lives on dry land, but deals with large numbers of its neighbors as it feeds on rotting fruit 
and carcasses.  When feeding around food objects, we show that the maggots generate coherent flows, which can 
increase the average feeding rate of the colony.  In both systems, the continuous motion of insects leads to many of the
desirable properties observed.
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Gram-negative bacteria have a complex cell envelope consisting of a plasma membrane, a peptidoglycan cell wall, 
and an outer membrane. The envelope is a selective chemical barrier that defines cell shape and allows the cell to 
sustain large mechanical loads such as turgor pressure. It is widely believed that the covalently cross-linked cell wall 
grants the envelope its mechanical properties. We have recently demonstrated that the stiffness and strength of 
Escherichia coli cells are largely due to the outer membrane. Compromising the outer membrane, chemically or 
genetically, greatly increased deformation of the cell envelope in response to stretching, bending, and indentation 
forces, and induced elevated levels of cell lysis upon mechanical perturbation and L-form proliferation. Both 
lipopolysaccharides and proteins contributed to outer membrane stiffness. These findings overturn the prevailing 
dogma that the cell wall is the dominant mechanical element within the Gram-negative bacterial cell, instead 
demonstrating that the outer membrane is at least as stiff as the cell wall and that mechanical loads are often 
balanced between these structures.

The outer membrane is an essential load-
bearing element in Gram-negative bacteria

Kerwyn Casey Huang1
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Life above a certain size relies on a circulatory system for oxygen and nutrient delivery; without it, no complex 
animal would exceed a few millimeters. As a result, plants, animals and fungi have developed circulatory systems of 
striking complexity. Typically, these systems have to satisfy competing demands to operate efficiently and robustly 
while confronted with an ever-changing environment [1,2]. The architecture of these networks, as defined by the 
topology and edge weights, determines how efficiently the networks perform their function and represents a trade-off 
between optimizing power dissipation, construction cost, and tolerance to damage [3,4].  

In this work we delve further in the vascular network’s tolerance to damage. Loosely modeling ischemic strokes, we 
quantify the extent of functional disruption a vascular network undergoes when a vessel is occluded. We study how 
the topology and hierarchy of the network can influence the extent of the disruption. We find that a highly conducting 
vessel establishes a region around it where, if an occlusion where to occur, the effects on the global flow profile are 
minimized. We discuss what these results mean for the design of optimally tolerant vascular networks. 
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The world of cancer research is excitedly pursuing the idea that the immune system can be harnessed to attack cancer cells 
and thereby provide long term remission for heretofore untreatable cases [1]. In order for this work, T-lymphocytes must 
detect the cancer cell via its aberrant proteins, the T-cells must be able to infiltrate the tumor so as to reach the cancer cells, 
and the cancer cells must not be able to inhibit immune response or evolve immune resistance [2]. This talk will describe our 
initial efforts [3,4,5] to create simple models of these processes to enable the beginnings of a quantitative approach to this
entire field of study.  Along the way, we encounter many interesting examples of the application of statistical physics to both 
cellular and tissue-level biology.
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Thinking about the cancer-immune interaction
J. George, X. Li, D. Kessler and H. Levine

21



The Epidermal Growth Factor Receptor (EGFR) plays an important role in both physiological and cancer-
related processes. To study the factors that influence EGFR phosphorylation, we have coupled single-molecule 
microscopy experiments with rule-based modeling of EGFR signaling.  We have made technical improvements 
over the previously described Single-Molecule Pull-down (SiMPull) assay to facilitate direct detection of the 
phosphorylation state of thousands of individual receptors. We monitored the phosphorylation of EGFR-GFP
expressed in CHO cells.  By counting the number of GFP molecules colocalized with a red-emitting fluorescent 
antibody, the fraction of receptors phosphorylated at a specific tyrosine residue was determined.  We found that 
only a subpopulation of EGFR become phosphorylated under what is considered maximal activation conditions 
and that the extent of phosphorylation varies by tyrosine residue. Three-color imaging of EGFR-GFP with 
antibodies directed to two distinct phospho-sites revealed that multi-site phosphorylation frequently occurs. 

To better understand the implications of these results, we created a computational model of EGFR signaling. In
our model, a phosphorylated site cannot be dephosphorylated if it is bound by one of its protein binding partners,
such as the adaptor protein Grb2. Our model predicted that an increase in the abundance of Grb2 would result in 
a higher percentage of receptors phosphorylated at sites to which Grb2 binds. In agreement with this prediction, 
overexpression of Grb2 caused a dramatic increase in the phosphorylation levels of a Grb2-binding site in EGFR 
(Y1068), but not in a site which Grb2 does not bind (Y1173). These results demonstrate the importance of 
receptor:adaptor protein ratios in modulating receptor phosphorylation patterns.  Since protein abundance 
varies across cell types and is often altered in cancer, we are currently extending these studies to cancer cells lines 
with markedly different EGFR:Grb2 ratios.
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The plasma membrane surrounding animal cells is a two-dimensional liquid that is home to many of the complex 
processes that carry out biological function.  Recent experiments have demonstrated that this two-dimensional liquid 
is close to a miscibility critical point, distinguished by emergent time and length scales much larger than individual 
molecules.   I will talk about what this critical point means for the function of membrane bound proteins, and 
especially ion channels, mediating long-ranged forces, sensitive allosteric regulation and non-Markovian dynamics.  
I'll also give some qualitative comparisons to phase separation of proteins into coexisting three dimensional fluid 
phases in the cytoplasm, which has emerged as a common theme in diverse cellular processes.  I will also report on 
our recent experimental progress demonstrating that anesthetics move membranes away from criticality, and that 
anesthetic reversers also reverse effects on membrane criticality.  Our results suggest a picture in which membrane 
bound proteins are highly sensitive to the near-critical solvent properties of the membrane in which they are 
embedded

Membrane criticality and ion channel function 
Benjamin B Machta1,2 
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Biological function of proteins and other biomolecules is commonly based on their ability to undergo large conformational 
changes via activated barrier crossing. Recent single-molecule experiments achieved time resolution sufficient to catch 
biomolecules in the act of crossing free energy barriers as they fold or undergo other structural changes, offering a window 
into the elusive reaction “mechanisms”. At the same time, molecular simulations have attained timescales where they begin 
to overlap with single-molecule measurements. These developments put common models and theories of activated barrier 
crossing to test. In this talk I will describe our recent efforts to understand, using theory, simulations, and experimental 
information, what happens during the most interesting part of a single-molecule trajectory where it undergoes a large thermal 
fluctuation allowing it to transition between two distinct conformations (such as the folded and unfolded states).
.

Dmitrii E. Makarov1

Biomolecular folding and dynamics from 
single-molecule measurements
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I will present recent work from my group and our collaborators on the use of unsupervised machine learning to define and 
quantify stereotyped behaviors performed by animals. Through the use of real-time optogenetic readout and control of 
neuronal activity, we have made progress on understanding the systems that convert external stimuli into behavioral changes 
and those that allow animals to dynamically select from a suite of hundreds of unique actions.

.

Joshua W. Shaevitz 1

Quantitative Behavior: Understanding what 
animals do and how brains control them
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Abstract:
Most bacteria on our planet reside in densely packed communities, yet we have little understanding of bacterial 
behavior in such communities. My laboratory has uncovered ion channel-mediated long-range signaling within such 
bacterial communities. This electrochemical cell-to-cell signaling gives rise to unexpected emergent behaviors that are 
organized in space and time. We are working to understand the underlying electrophysiology of bacterial 
communities that allows them to cope with stress (such as antibiotic exposure) as a collective. I will discuss our recent 
efforts to develop new devices, techniques and theoretical frameworks to understand and control the 
electrophysiology and behavior of bacterial communities. 

The microbial brain:  Electrochemical signaling 
and higher-order coordination in bacterial 

communities

G. Süel1
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Biological evolution is a search process: microbes rapidly evolve to seek variants capable of surviving antibiotics; 
antibody-expressing B cells undergo accelerated Darwinian evolution to discover high-affinity mutants that bind and 
neutralize pathogens. Such rapid evolutionary search takes place in environments that are neither static nor 
completely unrelated in time, which poses a challenge to our understanding of the emergent properties of evolving 
systems. What might be useful spaces to describe adaptive “moves” in changing “landscapes”? How would 
correlation across environments impact the capacity of evolutionary novelty? Can environmental dynamics turn 
evolutionary constraints into opportunities of speedy paths? In this talk, I will present our recent attempts, using 
theoretical descriptions and numerical schemes, toward addressing these questions in the context of evolutionary 
races in the adaptive immune system, where immune repertoires evolve in a varying environment that is either
programmed or adaptively changing. We find that epistatic interactions, generally regarded as constraining the set of 
adaptive paths, may play a beneficial role in evolving generalist solutions. Furthermore, new pathways toward 
generalists – the desirable outcome of vaccine strategies – may open as a result of meeting the demands for survival 
and adaptation that operate on different time scales.

Evolutionary search and races in the adaptive 
immune system

Shenshen Wang1
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Spatial organization underpins biological processes in lifeforms. For complex organisms, body parts must develop 
properly in space, and within the cells making up these organisms, membranes separate organelles with different 
functions. Simpler organisms, like bacteria, lack intracellular membranes, but possess alternate strategies for 
organization, where certain proteins are confined to specific cellular locations to consolidate their functions. Viruses, 
among the simplest lifeforms, have also been reported to display organized development, further underscoring the 
essentiality of structure in biology.  

Bacterial viruses, known as bacteriophages or phages, are utilized as model systems for studying advanced 
cellular functions. Phage lambda infects Escherichia coli and propagates via distinct pathways, either lysis or 
lysogeny, where this fate-selection is a paradigm for cellular decision-making. Recent efforts probing decision-
making at the subcellular level have discovered that phages behave as individual interacting intracellular entities 
when processing decisions, generating considerable insights into how complex decision-making may occur [1-4]. 
However, little is known about this phage’s spatial development within its host and how spatial organization might 
affect cellular decision-making. 

Here, we characterize how phage lambda develops in subcellular space, from infection through lysis, using multiple 
fluorescence reporters targeting phage DNA replication, essential host resources, phage transcription, and phage assembly. We 
observe that these processes coalesce into distinct areas of the host cell during infection to coordinate phage development, 
reminiscent of virus factories, where multiple factories may be present in single cells. Remarkably, different intracellular 
factories quantitatively diverge at the viral DNA, mRNA and protein levels, suggesting the existence of bona-fide 
microenvironments within cells. We propose that individual viruses drive the formation of disparate territories, implying that 
phages may sense separate environments during decision-making and development. The conclusions from this work may shed 
significant light on the detailed molecular mechanisms of cell-fate bifurcation. 
 

REFERENCES 
[1] Zeng L, Skinner SO, Sippy J., Feiss M, and Golding I. (2010) Decision Making at a Subcellular Level Determines the Outcome of Bacteriophage 

Infection, Cell 141(4), 682-691.  
[2]

 
[3]

 
[4]

 

Bacterial Viruses Organize Subcellular Environments 
to Mediate Heterogeneous Development 

Lanying Zeng1 

28



 
 

 
 
 

12th Annual q-bio Conference 
Contributed Abstracts 

29



Short Abstract — Due to signal transduction noise, cells 
respond differently to similar inputs, which may result in 
incorrect cell decisions. Here we present a method for modeling 
decision making processes in cells, and apply it to an important 
signaling pathway that is involved in cell survival. Our method 
reveals that cells can make two types of incorrect decisions. We 
compute the likelihood of these decisions using single cell 
experimental data, and demonstrate how these incorrect 
decisions are affected by the noise. We also study the 
connection between information transmission capacity of the 
pathway and decision making errors using experimental data. 

Keywords — Cell decision making, noise, signaling errors, 
signaling networks, information capacity, TNF, NF- B.

I. INTRODUCTION

ACH cell continuously receives signals from its 
surrounding environment and is supposed to make 

correct decisions, i.e., respond properly to various signals 
and initiate certain cellular functions. In various organisms 
ranging from viruses to bacteria, yeast, lower metazoans and 
finally complex organisms such as mammals, various 
decisions are made in the presence of noise [1]. The noise, 
however, causes the cell to respond differently to the same 
input, which may result in incorrect (unexpected) cell 
responses [2]. Here we introduce a method for modeling and 
measurement of decision making processes in cells, using 
statistical signal processing and decision theory concepts. 
Given the importance of single cell modeling approaches to 
understand the biochemical processes in each individual cell 
[3], we use single cell experimental data [2]. 

II. THE METHOD AND THE RESULTS

Details of the method and mathematical formulation can 
be found in [4]. Analysis of the tumor necrosis factor (TNF) 
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signaling pathway which regulates the transcription factor 
Nuclear Factor B (NF- B) using this method has identified 
two types of incorrect cell decisions called false alarm and 
miss. These two events represent, respectively, declaring a 
signal which is not present and missing a signal that does 
exist. Using single cell experimental data and the developed 
method, we have computed false alarm and miss error 
probabilities in wild-type cells and have investigated how 
they depend on the signal transduction noise level [4]. 

We also have shown that in the presence of abnormalities 
in a cell, decision making processes can be significantly 
affected, compared to a wild-type cell, and the method is 
able to model and measure such effects. In the TNF-NF- B
pathway, the method has revealed changes in false alarm 
and miss probabilities in A20-deficient cells, caused by 
cell’s inability to inhibit TNF-induced NF- B response [4]. 
In biological terms, a higher false alarm metric in this 
abnormal TNF signaling system indicates perceiving more 
cytokine signals which in fact do not exist at the system 
input, whereas a higher miss metric indicates that it is highly 
likely to miss signals that actually exist. 

In addition to these findings, we have also studied how 
the developed cell decision making model relates to the 
information transmission capacity and dynamical modeling 
of the signaling pathway [4]. 

III. CONCLUSION

This study demonstrates the ability of a new method for 
computing cell decision making error probabilities under 
normal and abnormal conditions, and in the presence of 
transduction noise uncertainty. Using the method, decision 
making errors of molecular networks can be modeled. Such 
models are useful for understanding and developing 
treatments for pathological processes such as inflammation, 
various cancers and autoimmune diseases. 
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Short Abstract — One of the central problems in immunology 
involves molecular recognition at cell-cell interfaces. 
Fascinating recent experiments have revealed that mechanical 
forces regulate processes by which T cells and B cells identify 
molecular signatures of pathogens. In this work, we develop 
hybrid computational models that account for key biophysical 
properties of immune cell interfaces, including stochastic 
receptor-ligand binding kinetics, membrane mechanics, and 
actin-mediated forces on the membrane. We use these models 
to investigate how mechanical forces modulate the 
interactions of T cells and B cells with surface-presented 
antigens.  

I. INTRODUCTION

NDERSTANDING mechanical forces and dynamics at 
membranes is critical for understanding how T cells 

and B cells distinguish between self and foreign ligands,
and how they subsequently respond to antigens [1]. Both 
cell types use surface receptors to identify molecular 
signatures of pathogens. Because T cells and B cells 
physically engage other cells in direct contact, they are 
subject to a variety of mechanical forces. For example, 
their surface receptors experience forces due to membrane 
deformations, cell motion, and coupling to the dynamic 
actin cytoskeleton. Mechanical forces play important roles 
in the regulation of immune cell activation [1,2], and new 
experimental probes are beginning to provide details about 
forces at cell-cell interfaces [3]. 

II. RESULTS

In this work, we use computational and theoretical 
methods to investigate the role of mechanical forces at T 
cell and B cell surfaces. Our methods combine a continuum 
description of membranes with stochastic reaction-diffusion 
kinetics of surface receptors [4,5]. We use the methods to 
study two related problems. 

A. T cells: Force-dependent dissociation kinetics 
T cells use the T cell receptor (TCR) to identify peptide 

fragments presented by surface molecules (pMHC) on other 
cells. Experiments have shown that stimulatory TCR-
pMHC bonds behave as catch bonds [2], with an average 
bond lifetime that initially increases with an increasing 
tensile force. Because T cells are initially stimulated by 
small numbers of TCR-pMHC complexes, it is important to 
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understand how bond formation drives dynamic changes in 
membrane organization and shape, how these changes 
affect forces experienced by the bonds, and how these 
forces affect bond lifetimes. 

We characterize time-dependent forces on TCR-pMHC 
bonds in response to dynamic membrane changes [4]. We 
then determine the distributions of bond lifetimes using 
force-dependent lifetime data for TCRs bound to various 
ligands. Strong agonists, which exhibit catch bond 
behavior, are markedly more likely to remain intact than 
antagonists. Thermal fluctuations of the membrane shape 
enhance the decay of the average force on a bond, but also 
lead to fluctuations of the force. When more than one bond 
is present, the bonds experience reduced average forces, 
leading to changes in lifetimes. 

B. B cells: Membrane-dependent affinity threshold 
The activation of B cells is controlled largely by the B 

cell antigen receptor (BCR). Although B cells can be 
activated by soluble antigens, B cells in vivo are activated 
predominantly by antigen attached to membrane surfaces. 
Experiments have revealed that B cells use mechanical 
forces transmitted by the actin cytoskeleton to discriminate 
between antigens of similar binding affinity and to 
internalize portions of the antigen-presenting surface [6]. 

We study dynamics of BCRs at an intermembrane 
junction and show that the bending rigidity of the antigen-
presenting membrane influences the affinity at which 
antigens are internalized through a mechanism involving 
BCR clustering. The clustering and membrane invagination 
occur with marked stochasticity near the affinity threshold. 

Taken together, our results highlight the importance of 
forces at immune-cell interfaces, and we conclude by 
discussing our results in the context of antigen 
discrimination by T cells and B cells. 
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Short Abstract — A challenge in ecology is to understand 
how communities will change in deteriorating environments, in 
which increased mortality can result from events such as global 
warming. Simple phenomenological models predict that 
increased mortality will favor the fast-growing species, 
potentially reversing the competitive outcome. We use an 
experimental microbial system to observe reversal of pairwise 
outcomes from dominance of the slow grower to dominance of 
the fast grower, with an intermediate coexisting or bistable 
phase, consistent with expectations from theory. Our results 
show that simple models can provide insight into the effects of 
deteriorating environments on community structure.

Keywords — competition, ecology, microbial communities, 
environmental fluctuations, model system

I. PURPOSE

N the world of microbes and beyond, deteriorating 
environments have been shown to lead to biodiversity loss 

[1-2]. The consequences of a harsh environment on 
populations that do not go extinct, however, are equally 
important. Community structure can change radically as a 
result of events such as antibiotic use on gut microbiota [3],
ocean warming in reef communities [4], overfishing [5], and 
habitat loss [6]. Such disturbances can change the members 
of a community as well as their interactions. With such
examples in mind, we sought to predict how increased 
mortality would alter a community.

II. METHODS

Using an experimentally tractable model system of soil 
bacteria subject to daily growth/dilution cycles, we tuned 
environmental harshness by spanning a range of dilution 
factors. The magnitude of the dilution factor determines the
amount of added mortality, and can be incorporated into the 
Lotka-Volterra (LV) two-species competition model as a 
uniform death rate added to both species. We used this 
model to guide our intuition about how the experimental 
outcomes might change with increasing mortality. We 
determined the experimental outcome of pairwise 
competition by tracking population dynamics with daily 
plating and colony-counting.

We also explored two extensions to the pairwise 
experiments: we oscillated the environment between two
dilution factors that led to two qualitatively different 
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outcomes, and we competed multispecies communities.

III. RESULTS

Our experiments confirmed two interesting predictions 
from the model about pairwise competition. First, we saw 
that increased mortality/dilution does indeed favor the fast 
grower. The slow grower often displayed a tradeoff between 
growth and competitive ability, excluding the fast grower at 
low dilution factors (~10/day), while the fast grower 
dominated at high dilution rates (~104/day). Second, we 
observed coexistence or bistability of alternate stable states
at intermediate dilution rates (~102 – 103/day). The 
confirmation of both predictions persuaded us of the model’s 
relevance, despite its simplicity. 

After demonstrating varying outcomes across dilution 
factors, we applied environmental fluctuations. The 
simplicity of the LV model leads to a prediction that in a 
fluctuating environment, the outcome will be that of the 
time-averaged environment [7]. Thus by oscillating between 
high and low dilution factors, we expected to see the 
intermediate outcome: coexistence or alternate stable states.
This also proved true, giving the model more credibility.

Finally, we expanded from pairwise to multispecies 
competitions, including up to five species at once. Previous 
work in the lab showed that pairwise outcomes provided a
good set of rules for predicting multispecies outcomes [8].
Our new experiments recapitulated the rules’ success, 
showing that they can be applied in different environments.
Altogether, our results argue that simple models and rules 
can accurately predict microbial community states.
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Short Abstract — Molecular binding is an important part of 

many biological mechanisms including immune system 
recognition and cell signaling. However, existing methods to 
predict bound states can be computationally expensive. We 
present DockIt, a computer game where players dock ligands to 
receptor proteins and find potentially bound states. Users are 
guided both visually and with haptic feedback. Ligand state 
transition roadmaps can be constructed incrementally using 
data crowdsourced from multiple players. The game also 
supports colored surface analysis displays. Our studies have 
shown users can find low potentially docked states and 
contribute toward refining motion planning queries.

Keywords — Molecular docking, crowdsourcing

I. MOTIVATION

OLECULAR BINDING has implications in the study of 
diseases, allergic responses, and many other biological 

processes. Molecular dynamics simulations can predict 
interactions between ligand and receptor proteins accurately 
at a high computational cost [1,2]. Probabilistic roadmaps 
built for protein binding can provide results at a reduced 
cost, but still require initial low potential energy states [3]. 
In this work, we aim to find potential ligand-receptor docked 
states by collecting data from DockIt, a crowdsourced
interactive molecular docking puzzle game. The game 
allows users to fit ligands to receptors [4], where players are 
given both visual and haptic tactile feedback based on the 
potential energy between the molecules. The quality of the 
current fit is shown via a score based directly of the all-atom 
intermolecular energy. Surface analysis coloring, such as 
depicting surface electrostatics, can be implemented for use 
within the game.

II. DOCKIT

The molecular models used in DockIt were converted 
from RCSB data and assigned van der Waals and 
electrostatics parameters using the AMBER99 force field 
[2]. The all-atom model is used for potential energy 
calculation within the game but shown visually using an 
isosurface representation. Roadmaps are constructed from 
ligand states recorded as the user moves the ligand. Each 
ligand state is considered a roadmap node, and the edges 
represent transitions between two ligand states. Edge 
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weights are given based on the difference in potential energy 
between two states. Shortest path queries are performed 
between two ligand states to predict ligand motion pathways.

A. User Study
A pilot study was performed with 24 participants assigned 

to one of four input devices. Users were aged from 18 to 66, 
with an average age of 30.2 years. The number of users with 
or without a technical background (biology or computation) 
was evenly split, 12 in each group.

B. Game Mechanics
Players can translate and rotate the ligand around the 

environment, move the camera for a better view, or let the 
game perform gradient descent toward the nearest minima. 
The user can see their current score and the best score for the 
current session. The best score encourages players to 
continue finding better potentially docked ligand states.

C. Input Devices
The four input devices used in the study vary by degrees 

of freedom for input and haptic feedback. First was the 
standard mouse and keyboard lacking any haptic feedback 
and only two degrees of manipulation at one time. The game 
controller had haptic vibration feedback and two degrees of 
manipulation. The Novint Falcon is a device that allows 
three degrees of haptic force feedback and manipulation, and 
the PHANToM input device allows six degrees of haptic 
force feedback and manipulation.

III. RESULTS AND CONCLUSIONS

DockIt users were able to find low energy potentially 
docked ligand states and ligand motion queries were refined 
as more user data was incorporated. Low energy states were 
found by users of all four devices, including the commodity 
game controller input device. DockIt can be adapted for use 
on mobile devices for future crowdsourcing scale studies.
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Short Abstract — Anti-tumor T cells quickly reach a state of 

unresponsiveness to antigenic stimuli in the tumor 
microenvironment. Inhibitory receptors, also known as immune 
checkpoints, are critically linked to this anergy. Yet, a definitive 
model of T cell activation that incorporates the effects of these 
molecules has not been established. Here, we have devised a 
minimal model of T cell activation that captures the spatial 
effects of LAG3, a negative regulator of TCR signaling. We show 
that our model successfully replicates experimental observations 
and provides insights into the mechanism by which LAG3 
functions to limit T cell activity. 
 

Keywords — T Cell Activation, Immunological Synapse, 
LAG3, Exhaustion, Immunotherapy, Mathematical Modeling. 
 

T lymphocytes are a major class of immune cells 
responsible for the recognition of pathogens and other 
potentially harmful substances that may enter the body. Upon 
activation T cells proliferate, a process that is required for a 
successful defense against infections and other diseases, most 
importantly, cancer. T cell proliferation is tightly regulated 
because excessive proliferation can lead to systemic damage, 
such as occurs in auto-immune disease [1]. Inhibitory 
receptors, like PD1, CTLA4, LAG3, play a crucial role in 
regulating T cell activation. Persistent exposure to antigen in 
the tumor microenvironment can lead to a phenomenon called 
“exhaustion” [2], a state of immune cell dysfunction marked 
by sustained expression of inhibitory receptors. Exhaustion is 
thought to be an important reason anti-tumor T cells fail to 
contain tumors, making these inhibitors a potential target for 
cancer immunotherapy treatments. Here, we have developed 
a minimal spatial model, calibrated against experimental data, 
to investigate potential mechanisms for negative regulation of 
T cell activation by LAG3. 

T cells are activated following successful recognition of a 
foreign antigen on the surface of antigen-presenting cells 
(APCs) by T cell receptors (TCRs). Triggering of TCRs leads 
to phosphorylation of tyrosine residues on the cytoplasmic 
portions of the receptor subunits by the tyrosine kinases LCK 
and FYN. Considerable phosphorylation of these 
immunoreceptor tyrosine-based activation motifs (ITAMs) 
occurs only when several TCR-containing complexes 
aggregate into a condensed structure known as the 
immunological synapse [3]. Another tyrosine kinase, ZAP70, 
is recruited to phosphorylated ITAMs and is also 
phosphorylated by LCK. Phosphorylated ZAP70 (pZAP70) 
then activates a downstream signaling cascade that leads to T 
cell proliferation [4].  
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LAG3 is an activation-induced cell surface molecule [5] 
that inhibits T cell activation in a currently unknown manner. 
Our experimental data shows that LAG3 rapidly localizes to 
the synapse by associating with TCRs upon antibody 
stimulation. To understand the spatial effects of this 
reorganization, we have formulated a compartmental model 
of early T cell signaling events that models the immune 
synapse as a partition on the cell surface. We hypothesize that 
TCR-mediated aggregation of LAG3 can result in significant 
CD4-LCK dissociation in the synapse. LCK separated from 
CD4 may not be suitably positioned to phosphorylate the 
ITAMs limiting downstream signal transduction [6]. 
Furthermore, the synapse excludes the phosphatase CD45, 
allowing sustained phosphorylation of ITAMs only in this 
region [7]. We simulated the model for both WT and LAG3-
deficient cells and used pZAP70 and CD4-LCK association 
levels to calibrate our model. We also performed sensitivity 
analysis to determine the impact of various model parameters 
on pZAP70 levels. 

Our model replicated trends in pZAP70 levels across 
experimental timepoints while maintaining the appropriate 
ratio between WT and LAG3 deficient regimes. While LAG3 
is expected to cause dissociation of CD4-LCK, experimental 
findings showed that the ratio of CD4-LCK association 
increased in favor of WT cells upon stimulation. This 
counterintuitive behavior could be explained by trafficking of 
a majority of LAG3 into the synapse allowing CD4 and LCK, 
largely present outside, to form a stable association. Another 
surprising prediction of the model is that pZAP70 levels show 
a biphasic response to variation in the affinity of CD4-LCK 
binding. This behavior arises in the model because of the 
interplay between ZAP70 phosphorylation, which is 
activating on the one hand and targets it for degradation on 
the other. It is our hope that further refinement and analysis 
of the model will lead to a better understanding of the working 
of LAG3 and may lead to novel strategies for targeting it to 
boost immune responses to cancers of various types. 
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Short Abstract — In nature, microorganisms grow in 

consortia that help them adapt to changing environments by 
cooperating and communicating. Expanding traditional 
synthetic biology gene circuits to two or more bacterial strains 
can lend the same advantages. These synthetic microbial 
consortia can be used to produce desired products in an 
assembly line fashion, measure intercellular communication, 
study the evolution of natural consortia, and eventually lend 
insights to engineering probiotics. To successfully engineer 
cooperative synthetic microbial consortia, we must examine 
how engineered strains communicate and cooperate in different 
environments. 
 

Keywords — Synthetic microbial consortia, microfluidics 

I. PURPOSE 
RADITIONALLY synthetic gene circuits have been studied 
in a single engineered bacterial strain. Expanding these 

gene circuits to multiple cooperating strains in synthetic 
microbial consortia can yield more robust population level 
phenotypes, enhance bioprocessing, and reveal insights to 
the evolution of natural consortia [1, 2]. We aim to examine 
the effect of different growth environments on the 
cooperation and communication of strains in synthetic 
microbial consortia. 

Microfluidic devices allow for measuring single cell gene 
expression over time using fluorescent proteins as reporters 
[3]. However, they may introduce spatial patterns when used 
to grow multiple bacterial strains. Here, we examine which 
cell trapping regions provide a better microfluidic 
environment for synthetic microbial consortia to allow for 
cooperative growth and proper communication. The main 
attribute being overall size and shape of the cell trap. 
 In addition, we examine how the same microbial 
consortium behaves differently when grown in a fluidic 
device, in bulk culture, and on agar plates. The main 
differences that affects the population phenotype in these 
three environments is the presence of spatial patterns and any 
limitations on communication via small molecule diffusion. 
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II. RESULTS 
Multiple synthetic microbial consortia are studied in this 

work including non-communicating strains, communicating 
strains, and strains that exchange nutrients. Their growth 
rates, communication distances, and cooperation are 
measured and compared in different environments. 

A. Microfluidic devices affect strain stability and spatial 
patterning  
We used non-communicating strains to determine that 

microfluidic devices with larger cell trapping areas allow for 
greater stability of two strains over time. We also observed 
that in these larger cell traps, spatial patterns arise that 
depend on the number of cells seeded into the trap.  

B. Spatial patterns affect communication 
We then examined how these spatial patterns affect 

communicating strains in microfluidic devices. We measured 
how far quorum sensing molecules can diffuse in the cell 
trapping region to determine the necessary proximity of cells 
from different strains for proper consortia behavior. 

C. Synthetic consortia in different environments 
We grew the consortia in microfluidics, bulk culture, and 

on agar plates and compared growth, cooperation, and 
communication. While bulk culture does not allow for single 
cell measurements, it eliminates spatial patterning. In agar 
plates, we can measure population level phenotypes and 
control the spatial patterns. In each environment the distance 
of quorum sensing signaling and nutrient exchange differs. 

III. CONCLUSION 
Synthetic microbial consortia need to be grown in 

environments that allow for strain stability over time, 
intercellular communication, and exchange of nutrients. 
Microfluidic devices, bulk culture, and agar plates each have 
attributes that can affect these. Here we’ve quantified the 
limitations and strengths of each environment depending on 
the synthetic microbial consortia being evaluated. 
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Quantifying noise in general stochastic models of
post-transcriptional regulation of gene expression
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Short Abstract — Gene expression is an stochastic process,
and fluctuations in protein levels are often critical for
generating phenotypic heterogeneity within a population of
isogenic cells. There is thus considerable interest in quantifying
how fluctuations (noise) in gene expression are impacted
by cellular control mechanisms such as post-transcriptional
regulation. In previous work, a general framework for
promoter-based regulation has been developed [1], which leads
to exact results for the moments of mRNA distributions.
However, a similar framework for protein statistics in models
with post-transcriptional regulation is currently lacking. In this
work we develop an analytical framework that maps a general
class of models of post-transcriptional regulation into models
with promoter-based regulation, leading to exact analytical
results for the moments of protein distributions. This mapping
is based on the partitioning of Poisson arrivals (PPA) approach
developed in recent work [2]. The proposed framework can
be used to model complex schemes of post-transcriptional
regulation and to evaluate its effects on variability in protein
distributions.

Keywords — Gene expression, post-transcriptional regulation,
Markovian Arrival Process, stochastic modeling, promoter-
based regulation, protein variability

I. INTRODUCTION

THE stochastic nature of gene expression leads to fluc-

tuations of mRNA and protein levels among isogenic

cell populations. Modeling and quantifying this variability is

important, since it has a significant impact on the resulting

phenotypic variability of cell populations (e.g. emergence

of bacterial persisters, drug-tolerant cancer cells). To ad-

dress this, an analytical framework for mRNA distributions

have been previously developed, in particular for general

models of promoter-based transcriptional regulation [1]. In

this framework, mRNA creation is represented by a Marko-

vian Arrival Process (MAP) and obtaining exact results for

moments only requires finding solutions for linear algebraic

equations. However, a similar framework is currently lack-

ing for determining protein statistics in general models of

post-transcriptional regulation. Meanwhile, recent work has

developed a novel approach that enables to obtain exact result

for protein distributions in coarse-grained stochastic models

of gene expression. This is achieved through the so called

Partitioning of Poisson Arrivals mapping (PPA mapping)

[2]. By using this approach, we show that a general class
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of models of post-transcriptional regulation can be mapped

onto reduced models with promoter-based regulation. By

combining the two previous approaches, we have developed

a framework that can be used to derive exact analytical

expressions for the moments of protein distributions for

general models of post-transcriptional regulation.

II. MAPPING TO REDUCED MODELS

A general class of models with post-transcriptional regu-

lation can be mapped to a reduced model by means of a PPA

mapping [2, 3]. The generating function for proteins can be

written as in equation (1),

G(z, t) = lim
N→∞

exp{N [g(z, t)−1]} (1)

where g(z, t) is the generating function for proteins in the

corresponding reduced model. In the reduced model, a single

mRNA can transition through a finite set of states, with

each state having its own protein production rate. This is

now equivalent to a promoter-based model with the mRNA

transitions analogous to promoter-state transitions. Corres-

pondingly, its MAP representation can be used to determine

the moments for the protein distribution using linear algebra.

III. CONCLUSIONS

The PPA mapping is a powerful tool that can be used to

derive and compute moments of protein distributions, given

a model of post-transcriptional regulation. This general class

of models can be used for analyzing combinations of diffe-

rent processes, i.e. mRNA senescence and interactions with

different RNA-binding proteins. The developed framework is

general, and can be used to design strategies for controlling

variability of protein levels. This work is currently being

extended to consider more general cases wherein mRNA

arrivals are not a simple Poisson process (e.g. to include

production of mRNAs in bursts) and to analyze rare events

and large deviations in the rate of protein production [4].
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Short Abstract — A calibrated computer model was 
developed for cell kinetics in human colon crypts.  Simulations 
indicated that colon cancer may be prevented by intermittent 
doses of a drug that induces cell death at the top of the crypt.

Keywords — colon cancer, chemoprevention, intermittent 
treatment, adenoma, computer simulation

I. PURPOSE

Effective chemoprevention of cancer requires choices of 
(i) an agent(s) that is effective with little or no undesirable 
effects, (ii) patients who would benefit from the exposure to 
the agent, and (iii) dose intensity and dose schedules that 
maximize the prevention effect and minimize negative side 
effects. The purpose of this project was use a computer 
model of cell kinetics in human colon crypts to determine 
the maximum dose intensity and intermittent pulse dose 
schedules of a chemoprevention drug that would be effective 
in preventing colon cancer. 

II. METHODS

An agent based-computer model of cell dynamics in 
human colon crypts was developed. The model was 
calibrated with the number of quiescent stem cells, 
proliferating cells, and non-proliferating differentiated cells
measured in human biopsy specimens. Details of image 
acquisition, measurements by image analysis, reliability of 
measurements, and confirmed behavior of the model were 
previously described [1]. The “Colon Crypt Model 
031215.nlogo” is available to download at 
http://dx.doi.org/doi:107282/T3TQ638W. The model 
program runs on the open-source multi-platform NetLogo 
application version 4.1.3, or 5.3.1 available to download at 
http:ccl.northwestern.edu/netlogo/. The model allowed 
simulation of continuous and intermittent dose schedules of 
a chemoprevention drug, such as sulindac that induces 
apoptosis at the lumen surface of the crypt. Parameter 
sweeping indicated the effect of various dose durations, 
intervals, and intensities on the effectiveness of drug 
treatment in removing mutant cells before they can form an 
adenoma, while retaining crypt function. 
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III. RESULTS

In normal colon crypts, quiescent stem cells at the bottom 
of the crypt may become active stem cells and divide. The 
progeny cells move up the crypt, continue to divide, 
differentiate, and are removed at the top of the crypt. Mutant 
cells, if they have a higher probability of dividing than 
normal cells, may proliferate and fill the crypt before they 
can be removed at the top, forming an adenoma that is an 
early stage of colon cancer. Sulindac is a drug that alters 
crypts by increasing the probability that both normal cells 
and mutant cells at the top of the crypt will die by apoptosis 
and be removed. Sulindac can be applied to crypts as a 
chemopreventive drug before the appearance of mutants. It 
makes crypts inhospitable to mutant cells rather than killing
mutant cells. Simulation results indicated that treatment of a 
crypt before a mutant cell arises can decrease the probability 
that a mutant cell will proliferate, fill the crypt and form an 
adenoma. Crypts treated with intermittent pulse schedules 
have three times the maximum tolerated dose than crypts 
treated with constant dose schedules, and have a 10-year
delay in the appearance of adenomas. This results in 
chemoprevention by delay.  

  
IV. CONCLUSIONS

Intermittent pulses of a drug that induces apoptosis at the 
top of a colon crypt could allow an increased maximum 
tolerated dose compared to a constant dose, and could result 
in chemoprevention of colon cancer. 
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It is well established that, under nutrient rich conditions, 
stochastic transcription governs noise in gene expression. 
Surprisingly, we have identified a novel source of noise during 
translation elongation when bacteria grow in nutrient limited 
conditions. We demonstrate that the observed noise can be 
modulated by the choice of synonymous codons. Using a two-
color reporting system, we show that this source of noise does 
not depend on fluctuations of common resources available to 
the translation machinery. Rather, we propose that 
ultrasensitivity in the tRNA charging/discharging cycle is the 
mechanism responsible for the observed noise. 

Keywords — selective charging, nutrient limitation, gene 
expression noise 

I. BACKGROUND

ENETICALLY identical cells exposed to 
homogeneous environmental conditions can 

exhibit dramatically different levels of gene expression 
[1,2]. High quality data combined with mathematical 
modeling has now yielded a common physical 
framework for cell-to-cell variability in gene expression 
[3,4]. This variability—termed noise—was found to 
arise from Poisson statistics reflecting bursts of 
transcription. These bursts are governed by either 
small numbers of mRNA being transcribed [4] or 
infrequent activation of promoters [3,5]. In all of these 
stochastic models, it is generally assumed that 
transcription but not translation governs noise.

Unexpectedly, our results reveal that, during nutrient 
limitation, translation, and not transcription, can instead
be the dominant source of noise.

II. RESULTS

At the population level, we demonstrated that the 
usage of “robust-to-starvation” or “sensitive-to-
starvation” synonymous codons can modulate 
translation rate by up to two orders of magnitude when 
cells starve for the cognate amino acid [6]. With 
single-cell experiments, we show that not only the 
average expression changes but that there is an associated 
noise that depends on the synonymous codon and the 
concentration of the cognate amino acid. We exclude the 
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possibility that transcription noise underlies the observed 
variability with two control experiments in which, using a 
single type of robust codon and a fixed amino acid 
concentration, we change i) the translation initiation rate 
and ii) the transcription rate of a fluorescent reporter. The 
control experiments confirm the expectation that noise 
driven by transcription bursts follow Poisson statistics 
even during nutrient limitation: i) noise is independent 
from translation initiation rate and ii) noise increases as 
transcription decreases. A priori the method for changing 
translation rate should not affect the previous results. 
However, when we change translation rate by using 
different synonymous codons the associated noise varies. 
In fact, the noise associated to sensitive codons displays a 
magnitude comparable to the transcription noise obtained 
in the control experiment. 

In order to decipher the origin of the observed noise we 
used a dual-reporter: a polycistronic transcript composed 
of a “sensitive” (blue) and a “robust” (yellow) fast 
maturing fluorescent proteins [7]. We find that as the 
limiting amino acid concentration becomes lower, 
extrinsic noise dominates but decreases and, when the 
total noise is maximal, the intrinsic noise presents a 
maximum indicating that the observed single-cell 
variability comes from a codon-specific effect. 

To explain these results, we hypothesize that the
observed noise takes its origin in the ultrasensitivity of the 
tRNA charging/discharging cycle. We show that in fact the 
observed noise from a sensitive codon can be shifted to 
different amino acid concentrations by overexpressing the 
cognate tRNAs.

III. CONCLUSION

Life in resource-rich conditions is more the exception 
than the rule. Cells compete and strive in resource-limited 
environments, thus making the translation noise here 
uncovered an alternative bet-hedging strategy.  
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Abstract — As resistance outpaces new antibiotics,
evolutionary mechanisms like horizontal gene transfer 
(HGT) become targets for resistance prevention and reversal 
therapies. Discrete modulation of HGT is difficult to                                
quantify, however, because unequal fitness across mixed 
populations confounds HGT with selection dynamics. To 
address this, we present a high-throughput assay that uses 
time to optical density threshold for conjugation 
quantification. We apply this method to study antibiotic 
modulation in pathogenic E. coli strains collected from 
patient cultures. In contrast with previous literature, we find 
that sublethal antibiotics exert little to no effect on 
conjugation, although exceptions with biologically significant 
modulation may exist. 

Keywords — Horizontal gene transfer, Conjugation, 
Antibiotic, Resistance 

I. INTRODUCTION

orizontal gene transfer (HGT) is a fundamental 
process by which bacteria adapt to their environment. 

It is especially pertinent in recent decades, with sublethal 
antibiotic gradients permeating throughout diverse 
environments and selecting for antibiotic resistance genes 
(ARGs) [1]. Conjugation, the direct transfer of genetic 
material between a donor and recipient, has drawn 
particular attention for its ability to spread ARGs due to 
broad host range, high rates of transfer, and close 
association of ARGs with plasmids [2]. In certain cases, 
environmental stimuli appear to influence HGT [4].
Antibiotics may have a similar effect—accelerating their 
own demise by promoting the spread of ARGs.   
 Most antibiotics are natural in origin, multifaceted in 
purpose, and bacteria have been exposed to them for 
millions of years prior to human use [4]. Past studies have 
generally concluded that antibiotics can promote 
horizontal gene transfer [1]. However, selection dynamics 
may have overshadowed any true modulation of 
conjugation [5]. Moving forward, a framework for 
accurate and high-throughput quantification is needed to 
understand modulation of conjugation across a wide 
variety of conditions.   

II. RESULTS

In conjugation, three cell populations are at play: 
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plasmid donors (D), recipients (R), and transconjugants 
(T). We define the conjugation rate (ηc) as: 

with transconjugants being the critical measurement. To 
decouple selection from conjugation dynamics, we prevent 
growth during a limited conjugation period. This restricts 
conjugation, reduces transconjugants, and makes cell 
quantification in mixed culture more difficult.  
 We resolve these issues by taking advantage of
exponential bacterial growth: 

where the time (t) it takes to reach an optical density 
threshold (Tc) is proportional the initial inoculum (T0). A 
small initial population of transconjugants can therefore be 
amplified and easily quantified with corrections for further 
conjugation.
 As a clinically relevant model, we characterized 219 
pathogenic  strains isolated from bloodstream 
infections. Of these, 65% displayed extended spectrum 
beta-lactamase resistance and 24% were able to transfer it
to recipient . Using beta-lactamase as a marker for 
conjugation, we then tested for antibiotic modulation of 
conjugation with five classes of antibiotics at three 
sublethal concentrations. By and large, antibiotics exerted 
no significant effect on conjugation rates, although 
exceptions may exist. We follow-up on significant effects 
with whole-genome long-read sequencing capable of 
capturing difficult mobile elements and shedding light on 
potential mechanisms for modulation.  

III. CONCLUSION

Identifying and understanding factors that modulate 
conjugation is key for addressing issues of bacterial 
evolution, notably antibiotic resistance. To this end, the 
time to threshold method enables high-throughput,
selection-decoupled conjugation quantification in natural 
populations. 
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Short Abstract — A recent microfluidic experiment showed 
that the metabolic co-dependence of two cell populations 
generates a collective oscillatory dynamic during the 
expansion of a Bacillus subtilis biofilm. We develop a 
modeling framework for the spatiotemporal dynamics of the 
associated metabolic circuit for cells in a colony. We elucidate 
the role of metabolite diffusion and the need of two distinct 
cell populations to observe oscillations. Uniquely, this 
description captures the onset and thereafter stable 
oscillatory dynamics during expansion and predicts the 
existence of damping oscillations under various 
environmental conditions. 

Keywords — biofilm expansion, phenotypic differentiation, 
metabolic co-dependence, oscillations, reaction-diffusion 
system  

I. INTRODUCTION

Cell fate determination is typically regulated by biological 
networks[1][2], yet increasing evidences suggest that cell-
cell communication and environmental stresses play crucial 
roles in the behavior of a cell population[3][4]. 
The oscillatory expansion of bacterial colonies recently 
observed in a biofilm system exemplifies how intercellular 
communication plays a central role [5]. Liu et al supplied a 
B. subtilis colony with glutamate and observed a transition 
from steady expansion to oscillatory growth when the 
biofilm reached a threshold size. Detailed analysis revealed 
that the spatial regulation of the glutamate biochemical 
pathway for cell metabolism is critical for the formation of 
this specific dynamics. 

We introduced a scheme to study both temporal and 
spatial dynamics of the metabolic interactions within the 
biofilm. This model considers the diffusion of small 
metabolites by incorporating the spatial dynamics of the 
bacterial colony. Such features allow us to investigate the 
spatial organization of cells with different phenotypes, and 
directly explore the repercussions of the glutamate 
synthesis pathway on the biofilm development. 

II. RESULTS

The proposed model can explain the recurrent oscillatory 
cycles of the growth rate in terms of the space-dependent 
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interplay between the internal and peripheral phenotypes 
and reproduce the observed growth dynamics in presence of 
altered conditions of the growth media. Moreover, we show 
that he occurrence of oscillations is insensitive to the radius 
of the biofilm; instead, it is sensitive to the width of the 
peripheral layer. These findings suggest that the initial 
onset of the oscillation of the biofilm expansion rate is due 
to the switch of the bacterial cells from interior to 
peripheral phenotype, and it is specifically triggered when 
the peripheral layer increases its width to a certain level. 
Finally, various types of growth dynamics, including 
dampened, stable, dissipating dynamics, are revealed by 
varying the ratio between interior and peripheral cells in the 
biofilm and modifying the biofilm’s external conditions. 

III. CONCLUSION

This modeling scheme provides insights to understand 
how cells integrate the information from external signaling 
and cell-cell communication to determine the optimal 
survival strategy and/or maximize cell fitness in a multi-
cellular system. 
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Short Abstract — We predict influenza A(H3N2) vaccine 

effectiveness in humans using a novel measure of antigenic 
distance, pepitope, between the vaccine and circulating virus 
strains.  pepitope is based on the evolution of the hemagglutinin 
protein’s dominant epitope, which is the viral site to which an 
antibody binds.  This measure originates as an order parameter 
from our statistical mechanics model of the antibody-mediated 
response to infection following vaccination. During 2016-2017, 
our model predicts 19% effectiveness compared to 20% 
observed.  This robust tool aids vaccine selection by rapidly 
predicting human protection against all circulating strains. 

Keywords — influenza, vaccine effectiveness, pEpitope,
antigenic distance

I. BACKGROUND

EASONAL influenza constitutes a significant disease 
burden worldwide, with three to five million cases of 

severe illness and an estimated annual death toll of 290,000 
to 650,000; however, vaccination can provide protection [1]. 
For the 2016-2017 influenza season, the World Health 
Organization chose an A(H3N2) vaccine reference strain 
that was well-matched to the dominant infecting viruses. 
Results from conventional ferret models however did not 
explain why effectiveness of the manufactured vaccine was 
unusually low, at only 20± 8% for adults aged 18-64 [2].

Influenza type A viruses are primarily recognized by the 
immune system via two proteins on their surface, 
hemagglutinin (HA) and neuraminidase [3].  These viruses 
constantly evolve to evade human antibody binding, most 
notably by introducing amino acid substitutions into the HA 
binding sites.  In addition to increased antigenic distance due 
to virus evolution, the vaccine strain may also diverge from 
circulating strains due to substitutions acquired during egg 
passaging [4].  Egg adaptations have posed an issue when 
manufacturing vaccines for A(H3N2) viruses in particular.

Here we develop a comprehensive model that utilizes the 
primary protein structure of the antibody binding sites to 
quantify the vaccine’s antigenic drift [5]. We define an 
antigenic distance between influenza A(H3N2) viruses and 
vaccines based on amino acid substitutions in the dominant 
epitope to predict vaccine effectiveness. 
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II. SUMMARY OF RESULTS

We have derived a statistical mechanics model that 
captures the dynamics of human antibody-mediated response 
to viral infection following vaccination [6]. We generalize 
the model to data both from the 1971-1972 to 2015-2016
influenza seasons and from laboratory-confirmed studies 
over the past decade, and pepitope has r2 = 0.77 in both cases.

We employ this theoretical method to predict how well 
the administered A(H3N2) vaccine protects humans.  We 
identify pepitope = 0.111 and 19± 4% average effectiveness for 
the vaccine against all circulating A(H3N2) strains during 
the 2016-2017 and early 2017-2018 seasons. We establish 
that this low vaccine performance was largely caused by the 
substitutions that occurred in the dominant HA epitope B
during egg passaging of the vaccine strain.

We compare this method with the typical measure of 
antigenic distance d1, defined in ferret animal models as the 
log2 difference between vaccine antiserum titer against itself
and the vaccine antiserum titer against a strain representative 
of the dominant circulating viruses [7].  The conventional 
ferret antisera d1 has r2 = 0.42 on data since 1971, and over 
the past 10 years this has dropped to r2 = 0.23

III. CONCLUSION

Our model can rapidly calculate pepitope for a vaccine 
paired with an individual strain or averaged over many 
circulating viruses, whereas ferret models are time 
consuming and restricted to a few analysis pairs. While 
other factors influence vaccine effectiveness in humans, the 
pepitope theory has accounted for most of the variance over the 
past 10 and 45 years (r2 = 0.77).  This work showcases a 
robust tool for ensuring optimal reference strain selection 
and predicting manufactured vaccine effectiveness.   
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Optogenetic investigation of B. subtilis sporulation 
network at the single cell level 

Ryan J. Butcher1, Sebastian M. Castillo-Hair1, and Jeffrey J. Tabor1, 2

Upon starvation, Bacillus subtilis cells will employ a 
sporulation mechanism to form spores that endure harsh 
environments. This mechanism is operated by a 
phosphorelay network, culminating in the activation of a 
master regulator, Spo0A. Sporulating cells display pulses 
of Spo0A that gradually increase in amplitude, but the 
purpose of these specific dynamics is unknown. Using 
recently developed optogenetic methods from our lab, we
apply temporally varied Spo0A inputs to a population of 
cells. We assess the phenotypic response at the single cell 
level to determine the role of Spo0A pulsing in 
sporulation.  

Keywords: Sporulation, gene dynamics, optogenetics 

I. Introduction 
Cellular decision making, the process that governs whether 

or not a cell will differentiate, is governed by the dynamics of 
gene networks that process internal and external information 
[1]. One example of cellular decision making is the 
sporulation process in Bacillus subtilis, in which DNA is 
preserved in a stress-resistant spore until a favorable 
environment is found. Under limited nutrient conditions, a 
phosphorelay network gradually activates a “master 
regulator”, Spo0A [2]. Sporulation can be artificially 
triggered by chemical induction of phosphorelay components 
[2], but very high induction levels decrease sporulation 
efficiency [3]. Further studies have shown that the 
chromosomal arrangement of the components in the 
phosphorelay network results in pulses of Spo0A activation 
[4]. The amplitude and period of this pulsing have been shown 
to increase in response to decreases in cellular growth rate 
(during starvation, for example) [5]. One of the major 
questions surrounding the sporulation network is if the 
pulsing dynamics of activated Spo0A are necessary for 
sporulation or not. The purpose of this work is to probe the 
sporulation network with synthetically induced Spo0A 
dynamics to determine which temporal features are required 
to induce sporulation at the single cell level. 

Recently, our lab has developed a model to predict the 
translational output of a green and red light controlled two 
component system (TCS). We use the model to achieve a
wide variety of synthetic protein dynamics by calculating the 
light input signal needed for the desired output [6]. We have 
ported the TCS into B. subtilis, allowing us to program 
custom Spo0A dynamics. The TCS acts as a “biological 

function generator”, meaning that the gene network is 
investigated by applying various Spo0A input signals and 
assessing the overall phenotypic result or specific gene output 
via fluorescent reporters. 

II. Results 
A. Single-cell characterization of optogenetic system 

We examine the previously characterized optogenetic 
system again in singular B. subtilis cells. The output of the
system, measured on a single cell basis, determines the error 
between individual cell expression and the population mean, 
which correctly matches the programmed signal. 
B. Determining the necessity of Spo0A pulsing for successful 
sporulation 

We are studying the sporulation efficiency for static,
ramped, and pulsed Spo0A inputs. In doing so, we determine 
if linear inputs are sufficient for sporulation, or if pulsing is 
required. The sporulation failures, such as forespore 
formation without separation versus no forespore formation 
at all, provide important information about the extent that 
each type of signal can activate the network. 

III. Conclusion 
By studying the output of the optogenetic system at the 

single cell level, we gain a better understanding of what 
determines a complete or incomplete sporulation response. 
This investigation answers the question of which dynamic 
features of Spo0A input are actually required to induce 
sporulation and why. 
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Robust stress response pathways are essential for survival and 
fitness in all cells. Here we investigate a, to the best of our 
knowledge, previously uncharacterized stress response in 
budding yeast. Specifically, we observed an unexpected high-
intensity, intermittent fluorescence signal indicative of stress 
response in S. cerevisiae grown in the presence of fluorescently-
conjugated lipids. Using single cell microscopy-based analysis, 
we determined that this signal originates from the endoplasmic 
reticulum (ER), and is related to changes in membrane 
potential. Here we quantify this phenomenon with the aim to 
characterize a novel mechanism for responding to ER-
associated stress. 

I. INTRODUCTION 
TRESS response pathways enable life to persist in 
dynamic environments. An important class of stress 

responses control and maintain the homeostasis of cells’ 
cytoplasm and organelles, e.g. by controlling the intracellular 
osmolarity [1]. While responses to such stresses may be 
short-lived, manifest as severe changes in physiology and 
morphology, and even fire irregularly, failure to respond can 
be fatal. Here, we develop new methods to characterize 
stress-responses using lipid probes, and use our new methods 
to investigate what might be a novel ER-mediated stress 
response. 

II. INVESTIGATION 
Fluorescently-conjugated lipids are used as reporters in 

many different contexts and can be used to gain insight into 
the function and composition of lipid membranes, including 
in S. cerevisiae. Here we investigate the effects of 
fluorescently-conjugated lipids on yeast cells grown in its 
presence. Surprisingly, we noted that cells grown in the 
presence of the fluorescently-conjugated lipids display 
intermittent bursts of short-lived, high intensity fluorescence. 
Importantly, a minor fraction of come populations of cells 
remained in a high fluorescent state and died, as is 
characteristic of a population enduring a stress response.  

Next, we determined the subcellular localization of the 
phenomenon. Colocalization of the signal from the 
fluorescently-conjugated lipids with a signal from 
fluorescently-tagged Erg6, which served as a marker for the 
ER, clearly demonstrates that the stress and/or stress-
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response are associated with the ER. This result also 
suggests that the ER membrane, in which the fluorescently-
conjugated lipids may be incorporated, undergoes 
perturbations during this stress event. 

Interestingly, we also observed that the intermittent 
fluorescent signal was sometimes accompanied by a decrease 
in cell volume. Rapid perturbations of cell volume in yeast 
are normally seen when cells respond to changes in the 
extracellular osmolarity, a response mediated by the high-
osmolarity glycerol (HOG) pathway. To test if the HOG 
pathway also governs the observed bursts of fluorescence, 
we tagged Hog1 with a fluorescent reporter and observed its 
dynamics while cells were exposed to fluorescently-
conjugated lipids. Surprisingly, we noted that the HOG 
pathway did not appear to be induced in cells displaying the 
bursting phenotype. This suggests that we are observing a 
novel stress response. 

Since the observed fluorescence phenomenon may be 
related to cell volume changes and is localized to the ER 
membranes, we next investigated whether changes in 
membrane potential are related to the bursting phenotype. 
We found that it was possible to modulate the frequency of 
the intermittent blinking signal via incorporation of different 
ions in the media, indicating that the fluorescence 
phenomenon is indeed related to changes in membrane 
potential. 

III. FUTURE DIRECTIONS 
To understand the mechanism that controls this 

phenomenon, we will monitor major signaling/stress 
response pathways (including PKA, TORC1, etc.) to 
determine which pathway(s) control this phenomenon. Here, 
we will capitalize on our recently developed system of 
fluorescently-tagged proteins that allows us to tag and 
monitor up to six fluorophores at the same time, allowing us 
to simultaneously monitor multiple pathways in single cells. 
By quantifying this signal and its relationship with changes 
in membrane potential and signaling, we will determine 
whether this is indeed a bona fide new stress response in 
yeast. Moreover, we will characterize the spatial and 
temporal organization of important stress response pathways 
surrounding an ER-associated event and describe novel 
methods for interrogating stress response at the single cell 
level.   
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Short Abstract — Under starvation, Bacillus subtilis
differentiates into metabolically-inert spores. This process is 
triggered by master response regulator Spo0A via activity 
pulses of increasing amplitude. Simple overexpression of Spo0A 
does not result in successful spore formation, however, 
suggesting that Spo0A dynamics are important. To study this 
further, we develop the first B. subtilis optogenetic system based 
on a cyanobacterial Two-Component System (TCS), and 
demonstrate its usage in generating time-varying gene 
expression signals. We use it to express Spo0A under different 
dynamics and evaluate its effects on sporulation. This novel 
approach helps us understand the significance of Spo0A 
dynamics at an unprecedented level.

Keywords — Optogenetics, Sporulation, Synthetic Biology, 
Bacillus subtilis, Two-Component Systems, Dynamical Systems.

I. INTRODUCTION
OMPLEX, time-varying, heterogeneous gene regulation 
has been found to occur in several stages of B. subtilis

endospore formation. Initiation of this process proceeds via 
increasingly larger pulses of activity of the master response 
regulator Spo0A [1]. Interestingly, triggering sporulation via 
overexpression of a constitutively active Spo0A mutant is 
not possible [2]. It has been proposed that fast Spo0A 
activation can lead to early repression of essential 
sporulation genes, thus leading to non-viable spore formation 
[3]. To fully understand how Spo0A dynamics affect 
downstream sporulation processes, the ability to manipulate 
Spo0A dynamics is desirable.

CcaS/R is a photoreversible TCS from Synechocystis 
PCC6803, in which expression of an output gene is 
controlled by green and red light. We have previously 
transferred this system into E. coli, described its dynamic 
response using an ODE model, and showed that arbitrary 
gene expression dynamics can be precisely generated by 
using the model to calculate a corresponding green light 
intensity signal [4]. The availability of a similar system in B.
subtilis would be useful in studying not only sporulation, but 
other dynamic and heterogeneous processes such as the 
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general stress response and colony formation.

II. RESULTS
Here, we transport the CcaS/R TCS to B. subtilis,

demonstrate control of gene expression dynamics, and use it 
to investigate the effect of different Spo0A dynamics on 
different elements of the sporulation network.

A. Engineering an optogenetic tool for B. subtilis
We divide the CcaS/R system into three “modules” –

chromosomally integrated DNA sequences encoding the 
sensor kinase CcaS, the response regulator CcaR, and the 
enzymes that produce CcaS’ chromophore – and separately 
optimize expression and performance of each one. The 
resulting system can regulate gene expression in response to 
light with a 70-fold range. We measure the steady state and 
dynamic responses, and show that they can be described 
using our previously developed model [5]. Finally, we use 
this system to generate complex gene expression dynamics.

B. Dynamic Interrogation of the Sporulation Network
We use the CcaS/R system to induce expression of Spo0A 

under different dynamics, including ramps of different slopes 
and pulses. We measure the effects of these on the 
sporulation network, including expression of downstream 
genes and sporulation efficiency, and identify the mechanism 
by which Spo0A dynamics are decoded by the network.

III. CONCLUSION

Introducing time-varying perturbations to the sporulation 
network allows us to elucidate the significance of Spo0A 
dynamics. Our novel approach based on optogenetics can be 
directly applied to other B. subtilis processes as well.
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Short Abstract — We have constructed a spatiotemporal
model that incorporates adhesion, cytoskeletal and signaling
dynamics governing protrusion of lamellipodia in mesenchymal 
cells. The model includes actin polymerization at the leading 
edge and the resulting retrograde flow of the F-actin network. 
Nascent adhesions promote actin polymerization via Rac 
signaling and interact with the F-actin network to activate 
RhoA. Consequently, myosin II is activated and applies 
contractile stress on the F-actin network. Our model predicts an 
optimal adhesion density for maximal protrusion velocity. 
Moreover, myosin contractility is limited in its ability to control
protrusion velocity, unless global tension of the membrane 
boundary is considered. 

I. EXTENDED ABSTRACT

Cell migration plays a crucial role in a wide variety of 
biological processes. It is essential in wound healing, 
embryonic development, cancer metastasis as well as innate 
and adaptive immunity. Amongst the different cell migration 
phenotypes, amoeboid and mesenchymal motility modes lie 
at opposite extremes. The mesenchymal migration phenotype 
is characterized by slow locomotion, strong adhesions mostly 
with extracellular matrix (ECM), and a distinct actin 
cytoskeletal and myosin spatial profile [1]. In mesenchymal 
and epithelial cells, integrins orchestrate the dynamics of the 
actin cytoskeleton, responsible for force generation, adhesion 
complexes, responsible for force transduction, and 
biochemical regulatory networks, responsible for signal 
transduction [2]. Nascent adhesions form at the leading edge 
of migrating cells, where transmembrane integrins form 
attachments to ECM and to actin filaments during membrane 
protrusion in a myosin II-independent manner [3]. Nascent 
adhesions play an important signaling role in migrating cells. 
They activate Rac and other signaling pathways that further 
promote barbed end polymerization and protrusion, forming 
a positive feedback loop [4]. Moreover, adhesions under 
tension promote the activation of RhoA/ROCK signaling, 
which in turn activates myosin II [5]. Nascent adhesions also 
play a crucial role in force transduction. They bind with F-
actin and create a mechanical clutch, allowing polymerizing 
actin to overcome membrane stress push the membrane
forward [6]. 

Specific aspects of this system have been explored in 
previous models [7–10]. In this study, however, we have 
constructed a model that integrates and spatially resolves
adhesion, cytoskeletal, and signaling dynamics in the 
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lamellipodia of mesenchymal cells. We have modeled actin 
polymerization at the leading edge and the resulting 
retrograde flow of the F-actin network. Nascent adhesions 
promote actin polymerization via Rac signaling as well as 
interact with the F-actin network to activate RhoA.
Subsequently, active myosin II engages and applies stress to
the F-actin network. Our model predicts an optimal ECM
(adhesion) density for maximal protrusion velocity. At lower 
ECM densities, not enough adhesions are formed, and most 
of the actin polymerization results in retrograde flow. At 
higher ECM densities, competition among increased barbed 
end density for G-actin and increased myosin activity reduce 
protrusion below optimum levels. Moreover, at low ECM
densities, increasing total G-actin has limited effect on 
protrusion velocity as compared to increasing total G-actin at 
higher ECM densities. Lastly our model predicts that myosin 
is limited in its ability to limit protrusion, unless global 
tension of the membrane boundary is considered. 
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Short Abstract — Antibiotic resistant bacteria (ARB) are a 
growing problem due to rapid evolution of resistance to existing 
drugs and concomitant void in drug discovery. To estimate the 
size of their threat and manage the risk, it is useful to 
understand the probability of a person falling ill from a given 
bacterial dose. Studies producing such data involve inoculating 
volunteers with ARB and raise ethical concerns. Here we 
present a stochastic modeling approach that leverages data from 
in-vitro experiments to predict the relationship between infection 
probability and number of ARB. Specifically, we discuss results 
for E. coli and its Gentamicin resistant strain.

Keywords — Antibiotic resistant bacteria, stochastic, birth 
and death process, dose response model

I. INTRODUCTION

HE emergence of antibiotic resistance and its subsequent 
escalation is well documented. Among reasons for this

are the overuse/misuse of antibiotics (ABs) and the greater 
difficulty in discovering new drugs [1–3).

A necessary step in evaluating the size of the problem and 
predicting the efficacy of risk management measures is 
understanding the probability of a person falling ill (Pi(Nd))
from a given dose of bacteria (Nd). Models built for this 
purpose are termed dose response models (DRMs) (4). To 
understand risk in the ARB context, existing DRMs require 
data from studies where volunteers are inoculated with ARB.
Such studies are currently infeasible due to ethical and 
practical difficulties. This calls for DRMs that can effectively 
integrate data from in-vitro studies involving ARB to address 
the issue.

II. METHODS

A dose of bacteria once inoculated in a person can face one 
of two fates. Either it dies out not causing any symptoms or it 
survives, causing illness. Thus, a stochastic model of 
bacterial growth can establish a relationship between Nd and 
Pi(Nd). Such a growth model can then be extended to two 
bacterial populations, one susceptible and one resistant to
AB. The relationship between the growth constants of the 
populations can be obtained from relevant experiments done 
in-vitro. Here we apply this concept to Escherichia coli that 
causes diarrhea.
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A. Escherichia coli
A stochastic birth and death process (discrete bacterial 

numbers, continuous time) was assumed to arrive at a simple 
analytical expression (5) relating Pi(Nd) to the dose (Nd), birth 
rate ( ) and death rate ( ). Fitting of this relationship to 4 
datasets from human volunteer studies indicates that new 
model outperforms existing DRMs in 2/4 cases.

Exploratory analyses (with relevant parameters from (6))
on E.coli and Gentamicin resistant E. coli revealed the 
alarmingly small doses of the latter required to outcompete its 
susceptible counterpart in the presence of residual antibiotic 
in the body. Bayesian data fitting was performed with R(7)
and STAN(8).

III. CONCLUSION

Stochastic modeling of bacterial growth dynamics appears 
to be as good as, if not better than, current DRMs. They have 
the added advantage of extending naturally to mixed doses of 
antibiotic sensitive bacteria and ARB. 
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Short Abstract — We reconstruct an integrated genome-scale 
protein-folding network for Escherichia coli termed FoldME.
FoldME simulations delineate the multi-scale strategies cells 
use to resist unfolding stresses induced by high temperature or
destabilizing mutations in a single gene. Furthermore, FoldME 
enables sampling of the solution space with diverse genotypes, 
thus reveals the intrinsic structure of the fitness landscape 
constrained by the cost of expression for the large energy 
production protein complexes. The results provide a system-
level understanding of the regulatory relationship between
global proteome allocation and bacterial stress response. The 
method is readily extended to study cell’s complex responses to
multiple stresses simultaneously.

Keywords — Proteome Allocation, Bacterial Growth Law, 
Evolutionary Landscape, Proteostasis, Thermoadaptation, 
Genome-scale Model. 

ene expression is intimately coupled to the growth 
physiology of the cell, and regulated by global 

allocation of the cellular resource and energy. Such
relationship has been quantitatively captured by the 
empirical bacterial growth law [1], which successfully 
explain how bacterial growth is affected by a wide range of 
biological processes, including molecular crowding, protein 
overexpression, cAMP-signaling, overflow metabolism [2],
and growth transition kinetics. However, these coarse-
grained models lack the necessary details to address the 
underlying molecular mechanisms that drive regulation. It is 
not clear how to combine different regulatory mechanisms
into one composite model, describe the behavior of more 
complex systems under diverse environmental perturbations,
and provide insights into the structure of fitness landscape 
instead of simple linear physiological correlations. To 
address these challenges, an integrated genome-scale model 
is calling to connect our understanding of molecular stress 
response mechanisms with phenotypic adaptation.

We started by modeling bacterial thermoadaptation [3-5],
because temperature is one of the most important 
environmental parameters that dictate the evolution. First, 
we calculated the temperature-dependent biophysical profile 
of the proteome using thermodynamic principles based on 
protein sequences and structures [6]. This profile serves as 
an internal “sensor” to reflect the environmental and genetic 
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perturbations. Second, we design a mathematical 
formulation to describe how the molecular chaperones 
respond to the folding request of each protein [7]. Third, we 
integrate the kinetic protein folding network into the 
genome-scale reconstruction of metabolism and protein 
expression for Escherichia coli [8], by enabling competition 
among the spontaneous and multiple chaperone-assisted 
folding pathways. As such, changes in the proteostatic state 
of the cell induced by environmental and genetic 
perturbations can be calculated based on first principles, 
evaluated by the protein quality-control machinery, and 
coupled to the whole cell’s economics.  

FoldME simulations reproduce the asymmetrical 
temperature response of E. coli, and the proteomic changes
upon destabilizing mutation in a single gene [3]. The results
highlight the system-level regulatory role of chaperones 
beyond efficient folding of any single protein. Rather, 
chaperones participate in the global proteome reallocation to 
balance between the need for folding and the complex 
machinery synthesizing the proteins in response to the
perturbations. The ability of FoldME to delineate multi-level 
cellular responses to a variety of perturbations encouraged 
further sampling of the solution space using a large number 
of random genotypes. Preliminary results reveal a rugged 
fitness landscape defined by discreteness of ATP production 
strategies [9]. Overall, these results expand our view of 
cellular regulation, from targeted specific control 
mechanisms to global regulation through a web of 
nonspecific competing interactions that modulate the 
optimal reallocation of cellular resources. The methodology 
developed enables genome-scale integration of environment-
dependent protein properties and a proteome-wide study of 
cellular stress responses.
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Short Abstract — We show that this chromatin architecture 
can be predicted de novo using epigenetic data derived from 
ChIP-Seq. We exploit the idea that chromosomes encode a 1D 
sequence of chromatin types, analogous to a sequence of amino 
acids for a protein.  A neural network is used to infer the
relation between the epigenetic marks present at a locus and 
the genomic compartment in which those loci reside. The
sequence of types inferred from this neural network is used as 
an input to an energy landscape model for chromatin 
organization (MiChroM) in order to generate an ensemble of 
3D chromosome conformations.

Keywords — Epigenetics, Genome Architecture, Machine 
Learning, Energy Landscape Theory, Hi-C, FISH

I. PURPOSE

The use of high-resolution contact mapping experiments 
(Hi-C) has revealed that, at the large scale, genome structure 
is dominated by the segregation of human chromatin into
compartments. Analysis of Hi-C experiments revealed that 
loci exhibit at least six long-range contact patterns, 
indicating the presence of at least six sub-compartments (A1, 
A2, B1, B2, B3, and B4) in human lymphoblastoid cells 
(GM12878) [1]. Further, the long-range contact pattern seen 
at a locus is cell-type specific, and is strongly associated 
with particular chromatin marks. 

To model chromosome structure, an effective energy 
landscape model for chromatin structure called the Minimal 
Chromatin Model (MiChroM) was previously introduced
[2]. This model combines a generic polymer potential with 
additional interaction terms governing compartment 
formation, the local helical structural tendency of the 
chromatin filament, and the chromatin loops associated with 
the presence of CCCTC-binding factor (CTCF). The 
formation of compartments (as well as any other interaction 
in MiChroM) is assumed to operate only through direct 
protein-mediated contacts bringing about segregation of 
chromatin types through a process of phase separation. 
MiChroM shows that the compartmentalization patterns that 
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Hi-C maps reveal can be transformed into 3D models of 
genome structure at 50 kb resolution. 

We extend upon the earlier work [3] by demonstrating that 
the structure of chromosomes can be predicted, de novo, by 
inferring chromatin types from ChIP-Seq data and then 
using these inferences as an input into MiChroM.  

We first obtained ChIP-Seq profiles available from the 
ENCODE project for the GM12878 lymphoblastoid cell 
line, encompassing protein-binding experiments and histone 
marks. We then constructed a neural network to uncover the 
relationship between compartment annotations and 
epigenetic markings. This neural network allowed us to
predict the chromatin type of a locus, provided biochemical 
data for that locus.

The predicted sequence of chromatin types for a 
chromosome then serves as direct input for molecular 
dynamics simulations using the MiChroM potential, which 
generates an ensemble of 3D structures. The de novo 
prediction of chromosome architecture for human 
lymphoblastoid cells was extensively validated against 
DNA-DNA ligation and fluorescence in situ hybridization 
data, demonstrating that there is sufficient information 
encoded in the biochemical data to accurately predict 
chromosomal structures. The broad agreement between 
theory and experiment point to the existence of a sequence-
to-structure relationship between epigenetic modifications 
and chromosomal structure.

Furthermore, since the MEGABASE annotation is made
from biochemical data alone, it supports the idea that phase 
separation of distinct chromatin types is carried out by 
proteins and regulated by epigenetics. 
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Human embryonic stem cells (hESCs) offer a unique window 
into early stages of our own development. In a previous study, 
we showed that spatially confined hESCs treated with Bone 
Morphogenic Protein 4 (BMP4) ligand, self-organize to form 
spatial patterns of differentiation, thus recapitulating 
gastrulation in vitro.  In the current study, we quantitatively
examined the role of cell movements and cell communication
through paracrine signals in this self-organization. Our results 
show that waves of paracrine signals, moving from colony edge 
inwards, are essential for hESCs self-organization. Based on 
experimental results, we propose a reaction-diffusion based 
mathematical model that recapitulates the signaling wave and 
correctly predicts the self-organized patterning of spatially 
confined hESCs.   

Keywords — Embryonic development, stem cells, self-
organization

astrulation is a stage in embryonic development 
when a homogeneous population of stem cells self-
organizes into the three germ layers: endoderm, 

mesoderm, and ectoderm. These germ layers eventually 
form all the cells of the developed embryo. Despite its 
importance, the mechanisms underlying gastrulation are not 
completely understood. Genetic studies in mouse embryos 
have revealed the signaling pathways involved in 
gastrulation, however, we still do not understand how these 
signaling pathways function together to initiate differences 
in a homogeneous population of cells. The interplay between 
signaling and cell movement during gastrulation is also not 
well understood 1.

Human embryonic stem cells (hESCs) offer a good model 
to investigate the mechanisms underlying gastrulation. As an 
in vitro system, they can be used for quantitative studies,
which are very difficult to perform in a developing 
mammalian embryo. In a previous study, we showed that 
when hESCs grown in circular micropatterned colonies are 
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differentiated by Bone Morphogenic Protein 4 (BMP4) 
ligand, they self-organize to form robust spatial patterns of 
differentiation. These patterns comprise consecutive radial 
rings of differentiated cells, with cells in each ring 
representative of a distinct germ layer 2. Thus, in response to 
minimal cues - spatial confinement and BMP4, hESCs 
undergo gastrulation-like events in vitro. 

In the current study, we examined the role of cell 
movements and paracrine signaling to better understand this 
self-organized pattern formation. We computationally 
tracked sparsely labeled cells to determine their movement 
trajectories during differentiation. We also studied the 
temporal and spatial evolution of secondary paracrine 
signaling pathways, Wnt and Nodal, which are necessary for 
this self-organization. Comparing the signaling data with 
cell movement data, and coupling it with cell fates revealed 
that the spatial patterning is due to an expanding wave of 
paracrine signals than moves from the edge of the colony
towards its center and not due to the movement of cells. 
Taking cues from experimental results, we formulated a
simple mathematical model based on reaction-diffusion that 
correctly predicts the self-organized spatial patterning of 
hESCs in micropatterned colonies.
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Short Abstract — Recent advances in synthetic biology have led 
to a wealth of well characterized parts. Considering these 
developments, the potential to create novel multi-input 
inducible promoters with a greater number of inputs has 
become simpler. However, the potential combinations of inputs 
rapidly outpace our capability to fully characterize every 
possible combination. In this study, we describe two methods to 
predict the output of multi-input systems as a function of 
varying concentrations of multiple inducing ligands by
combining characterization data of single input systems. These 
methods can be used by synthetic biologists to better design 
systems that utilize multi-input promoters

I. PURPOSE

S our ability to design and construct sophisticated 
synthetic circuits continues to grow, so too must our 
ability to predict the performance of such circuits in 

silico [1]. In our poster, we will present results of two
predictive modeling frameworks. The naïve framework is 
philosophically ideal in that our naïve models accurately 
predict multi-input system responses using only single-input 
data (and knowledge of promoter architecture). The energy 
modeling framework provides an even higher level of 
accuracy but requires a small amount of multi-input data.
Importantly, both modeling frameworks scale to systems
with large numbers of inputs. In particular, the amount of
multi-input data needed to train our energy models scales
linearly with the number of inputs, while the number of
inducer combinations that such models predict scales 
exponentially: Suppose we wish to predict a D-input system,
where each input takes V possible values. Our energy 
modeling framework accurately predicts system output for 
all V input combinations, while requiring only D(V 1)+2 
values for model specification. When using a small amount 
of multi-input data to train our energy models, one natural 
question arises: How have we chosen the particular ‘one-
dimensional’ subset of the multi-input data? Would not 
another subset work just as well, or perhaps better? 
Answering the first question, by selecting the ‘one-
dimensional’ subset of multi-input data by varying one 
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inducer at a time while holding the others at full induction, 
we thereby probe the full dynamic range of each individual 
inducer. To validate our choice, we compared the error 
associated with our energy model prediction to the error
produced by using all of the multi-input data to fit the energy
model. Importantly, these error values essentially match for
all of the systems we tested. (This observation leaves open 
the possibility that other subset choices may work just as
well).

II. CONCLUSION

Practitioners should consider the following when selecting
a method. The naïve model is ideal when the user has a vast 
library of well-characterized single-input devices and wishes 
to evaluate the digital (on/off) behavior of potential designs 
without having to perform additional lab work. The naïve
framework provides predictions that will aid the user in 
narrowing down the large design space of potential multi-
input combinations and select candidates to build or analyze
further. The energy model excels when the user has already
constructed a multi-input system and wishes to probe the
entire induction space. By collecting a small set of induction
data, the rest of the induction space can be predicted to a 
high degree of accuracy. 

Our predictive energy modeling framework captures the
analog nature of the inputs/output of multi-input promoters.
Such promoters are often treated as digital devices, because
it can be too resource intensive to test the entire input space.
Digital inputs/output approximation works in certain 
situations. However, when designing microbes for complex 
environments such as the gut microbiome or soil, relevant 
signals may be in constant flux. An analog predictive
approach is therefore necessary, as it facilitates the design of
circuits that can accommodate a range of signals [2]. The
analog approach assists with the parts problem as well: 
Analog circuits can require fewer parts than their digital 
counterparts to compute a given function [3].

Overall, our predictive methodologies facilitate the design
of synthetic microbes that can operate in complex, dynamic
environments.
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Short Abstract — Infection of an E. coli cell by the 
bacteriophage (virus) lambda results in a cell-fate decision 
between two outcomes: cell death following rampant viral 
replication, or viral dormancy and integration into the host 
genome. While much attention has been focused on the effect of 
the initial number of co-infecting viruses on the decision, the 
role and regulation of post-infection replication is still poorly 
understood. We are developing a model of the post-infection 
decision focusing on regulation of replication, with the goal of 
achieving a clearer understanding of the role of viral copy 
number in the decision.

Keywords — Cell-fate decision, replication, viral copy 
number

HE infection of E. coli by the bacteriophage lambda is a 
paradigm for cell-fate decisions [1]. During infection, a 
choice is made between two pathways: rampant viral 

replication leading to cell death (lysis), or dormancy and 
passive viral replication (lysogeny) [2].

While the decision outcome is influenced by many factors
[3], the number of simultaneously infecting viruses 
(multiplicity of infection, or MOI) was one of the first 
identified [4] and remains the one of the most studied [5].
During infection, high MOI biases the decision towards 
lysogeny, whereas low MOI biases it towards lysis — a
curious reversal of the relative viral copy number levels at 
the end of the decision for each fate. However, the 
mechanism by which viral copy number is sensed and 
integrated into the decision is not well understood [6]. More
broadly, the mapping of copy number to expression 
dynamics in gene regulatory networks remains an active area 
of research [7].

We are currently developing a kinetic model to explore 
the role of viral copy number in the lambda cell-fate 
decision. The model consists of a deterministic system of 
ordinary differential equations describing a simplified 
lambda gene regulatory network, focusing on the regulation 
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of replication by key proteins, and is able to describe
infection both in wild type and replication-deficient mutants. 
After calibrating the model with experimental data 
describing viral replication kinetics, we will make testable 
predictions and elucidate the mechanism by which viral copy 
number biases the decision. The knowledge we gain from the 
lambda system may provide additional insights into how 
gene copy number affects network dynamics.
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Short Abstract — Existing stochastic simulation and tau-
leaping methods are frequently used to simulate the transient 
solutions of biochemical reaction systems. These Monte Carlo 
type methods require averaging their results over many time-
consuming runs to obtain a probability distribution. Therefore,
we want to speed up the computational time without 
compromising the accuracy of the transient solutions. By 
implementing parallel processes, we can spread the work among 
many threads simultaneously, and thereby decrease the
computational time. Here we describe some strategies used for 
that purpose.

Keywords — Stochastic Simulation Algorithm, SSA, Parallel, 
OpenMP, Tau-Leap, First Reaction Method

I. INTRODUCTION

N biochemistry, species/molecules undergo randomly 
occurring population changes due to chemical reactions. 

We want to examine the probability distribution of a system.
We explore the behavior and performance of simulation 
methods on a number of biological models. The following 
models/systems will be used in this study: Gene Toggle 
Model, Michaelis-Menten System, Schlogl Reactions, p53 
and Map-K. Examining the transient solutions of each method
offers practical insight into the behavior of the system, i.e. 
what happens to the population of molecules in a given system 
over a period of time. One simulation tells us one possible 
randomization of the given model. For this study, we run 
simulations many times in order to examine the probability 
distribution of the final population of each element. We seek 
to expand upon the well-known stochastic simulation and tau-
leaping methods [1,2]. The goal is to extend to large or stiff 
models; models that take a long time to compute. In order to 
decrease the computational time, we implement parallel 
processes. This will significantly decrease the computational 
time. 

II. BIOCHEMICAL SYSTEMS

We consider a chemical reaction system of N molecular 
species { , … , } and N reaction channels { , … , }. The 
state vector of the system is defined as X(t)={Xi(t),…,XN(t)}
where Xi(t) is the number of molecules of species  at time 
t. The propensity functions aj(x) tells us the probability that 
reaction j will occur in [t,t+ and vij gives the change in the 
population after each reaction. The system is updated by 
X(t+ x+ .

   

A. SSA
The Stochastic Simulation Algorithm (SSA) is used to 

simulate the random behavior of the species and reactions 
using one reaction at a time [1]. Multiple runs can be 
performed in parallel.

B. Tau-Leap
The Tau-Leap method speeds up the SSA by simulating 

multiple reactions in each time interval. This method starts by 
determining how many times a reaction will fire in a 
subinterval. The system is then updated after simulating the 
group of reactions [1]. Multiple runs can also be performed in 
parallel.

C. First Reaction Method
The classic SSA and Tau-Leap methods assume that the 

reaction rates are constant. When reaction rates are time 
varying, other methods such as the First Reaction Method that 
take into account variable rates are more appropriate [3].  

D. Parallel Computing
Because Monte Carlo methods such as the SSA and Tau-

Leap require many runs that are time-consuming, 
parallelizing them can spread their workload across multiple 
processors. To do so, we use the OpenMP Fortran Application 
Program Interface, which allows the use of directives to 
implement parallelism.   

III. CONCLUSION

Preliminary results show that the parallelization of 
complicated systems decreases the computational time 
significantly. Thus, allowing for larger systems with a large 
number of realizations to be simulated quickly. In the 
experiments, we use 1,2,4 and 8 processing cores. This work 
provides insight into how efficient parallelization can be 
beneficial to many different models.  
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Short Abstract — Soft tissues can build up residual stresses 
as they grow if their growth rate contains spatio-temporal 
variations due to local fluctuations in cell division rate. These
stresses in turn can feed back on the local growth resulting in 
nontrivial growth dynamics. We model the growth of epithelial 
sheets subject to local noise and mechanical feedbacks, and 
study the density correlations across the tissue.  We find that 
generically these show power law scaling.

Keywords — epithelial growth, morpho-elasticity, target 
metric, mechanical feedback

I. BACKGROUND

ROWTH of epithelial tissues often involves a level of 
stochasticity due to noise in cell division rates [1].

Local fluctuations in growth rate can lead to uneven 
accumulation of mass, which in turn can cause mechanical 
stresses to build up. It is been known that such stresses can 
affect cell growth and division rates via the Hippo pathway
[2,3]. For example, areas with high density (high 
compression) are expected to show a decreased growth rate, 
while areas with low cell density should show increased 
growth. How strong this stress response is and how much it 
affects growth in normal conditions are not entirely known. 

Experimentally, one can look at the density profile and 
correlations at different time points, or study how the shape 
of tagged clones evolves in time. Then, from the theoretical 
point of view, the question becomes, given a growing tissue 
with local noise in growth rate and a specific mechanical 
feedback, what is the time evolution of the density profile, 
and what can we predict about the shape of clones 
undergoing growth? Answering these questions can help us 
better understand the growth dynamics and possible stress 
response mechanisms underlying the development of 
epithelial tissues.

II. MODEL

We model the epithelium as a continuum, elastic sheet 
undergoing noisy, exponential growth. The challenge is that 
a non-uniform growth can lead to “incompatible” 
configurations that cannot be embedded in 3 [4,5]. Thus,
the tissue deforms into a stressed configuration. Tackling the 
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growth incompatibility is in general not an easy task. To 
make the problem tractable, we work in the target metric 
formalism [5], and linearize about the average growth rate.
We consider both isotropic and anisotropic growth.
Anisotropic growth can occur due to oriented cell divisions
[6-8], which in turn can be due to stress anisotropy.  In each 
of these two cases, we study the time evolution of density-
density correlation functions in the presence of two 
biologically sensible stress feedbacks. We also look at 
initially circular clones undergoing non-uniform growth, and 
study the clone shape statistics.

III. CONCLUSION

We find that the initial fluctuations in the tissue are 
correlated on an intrinsic length scale. These fluctuations can 
then be advected over the tissue as the tissue is dilated,
leading to a non-trivial power-law behavior for the density-
density correlators at long times. These results are 
interestingly reminiscent of inflationary cosmology where 
quantum fluctuations in the early universe are believed to 
have caused the formation of large-scale structures [9]. Our 
model also predicts specific clone shape statistics for 
isotropic and anisotropic growths. By comparing our 
predictions with experimental findings, we could constrain
the underlying mechanisms of mechanical feedback on 
growth in epithelia.  
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Short Abstract — Kinesins are molecular motors that 

transport cargo along cellular microtubules by transducing 
chemical energy into forward motion. However, the mechanism 
by which this is accomplished is not fully understood. The 
purpose of this study is to explore the kinesin stepping 
mechanism using a robotics-inspired, physics-based model. In 
this work, we model a kinesin head and a microtubule surface. 
We use a motion planning technique to generate kinesin 
conformations and calculate their respective energies. A 
transition graph is constructed and used to simulate kinesin 
dynamics, and identify low energy paths in the graph from a 
starting point to the native state. 
 

Keywords — Molecular walkers; kinesin; motion planning; 
OBPRM; energy landscape; protein-protein interaction; motor 
protein 

I. INTRODUCTION 
INESINS are molecular motor proteins that transport 
cargo while performing a hand-over-hand procession on 

the surface of microtubules. Each 8-nm step uses the energy 
of 1 ATP hydrolysis. Much work has been done to 
understand the mechanism by which these motor proteins 
convert chemical energy from ATP hydrolysis to mechanical 
energy. However, the process underlying kinesin’s 
navigation to the plus end of microtubules during cargo 
transport has not yet fully elucidated.  In our work [1], we 
explore how a kinesin motor domain traverses the molecular 
interaction energy landscape to find the low energy binding 
sites to anchor itself on the microtubule surface.  

II. METHODS 

A. Models and generating samples with OBPRM 
Kinesins are protein dimers consisting of two motor 

domains (heads) that bind to the microtubule during 
stepping, a stalk, and a cargo domain. Microtubules are 
biopolymers constituted of protofilaments of tubulin 
heterodimers. We created a model of the kinesin-microtubule 
system based on the PDB structure 4LNU that includes a 
single kinesin head interacting with a tubulin heterodimer. A 
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small patch of the microtubule surface with 9 heterodimers 
and 3 protofilaments was created by aligning the PDB 
structure with an EM map of a microtubule. Samples were 
generated using Obstacle Based Probabilistic Roadmaps 
(OBPRM) [2], in which the microtubule is treated as an 
obstacle. We produced samples at 5 Å intervals along 
vectors generated at random directions from the microtubule 
surface. The benefit of this method is that samples can follow 
the contours of the microtubule patch more closely. 

B. Energy calculations 
For each sample, we calculated the non-bonded interaction 

energy between the kinesin head and the microtubule patch 
surface based on the Amber94 force field. Both the kinesin 
and microtubule are treated as rigid bodies, so only inter-
molecular interactions are considered in the energy 
evaluation. 

C. Roadmap construction and searching for a path 
We constructed a graph from the set of samples, where 

each sample corresponds to a vertex. For each pair of 
samples that are within 5 Å of each other, we added an edge 
connecting those two vertices. We used a graph-based 
approach to search for a path from a given start state to a 
goal state, the native state in the PDB structure. Beginning 
with the start state, we chose the best vertex for a transition, 
defined as the one that maximally decreases the energy. This 
is repeated after each transition until the goal is reached.   

III. CONCLUSIONS AND FUTURE WORK 
Our energy calculations show the presence of low energy 

regions at the positions on the microtubule surface where 
kinesin is known to bind. However, we also find low energy 
regions in between binding sites, which could indicate the 
existence of metastable states. We also find that there exists 
a low energy path from a start state to the native state along a 
single protofilament with no sidestepping. Future work will 
include random walks on the roadmap and will investigate 
how adding obstacles to the model can affect the kinesin 
stepping mechanism. 

REFERENCES 
[1] Jacobson B, et al. (2017) Geometric Sampling Framework for 

Exploring Molecular Walker Energetics and Dynamics. Proc. of the 
8th ACM Int. Conf. on Bioinformatics, Computational Biology, and 
Health Informatics (ACM-BCB ’17). ACM, Boston, MA, USA, 704-
709. DOI:https://doi.acm.org/10.1145/3107411.3107503  

[2] Amato NM, et al. (1998). OBPRM: An Obstacle-Based PRM for 3D 
Workspaces. Proc. Int. Wkshp. On Alg. Found. Of Rob. (WAFR). 
pp.155-168. 

Jon Christian L. David1, Bruna Jacobson1, Mitchell C. Malone1, Kasra Manavi1, Susan R. Atlas1,2, and 
Lydia Tapia1 

Modeling Molecular Motor Procession 

K

56



1Center for Theoretical Biological Physics, Rice University, Houston, TX. E-mail: adavtyan@rice.edu
2Center for Theoretical Biological Physics, Rice University, Houston, TX. E-mail: qw9@rice.edu  
3Center for Theoretical Biological Physics, Department of Chemistry, Department of Chemical and Biomolecular Engineering, Rice University, 

Houston, TX. E-mail: tolya@rice.edu  

Short Abstract — Molecular motor protein Kinesin-5 (Eg5) 
is a member of kinesin superfamily that is critical for bipolar 
spindle assembly and spindle maintenance during mitosis. As 
a result it is a promising chemotherapeutic target for cancer 
treatment. While a number of small-molecule drugs that 
interact with Eg5 have been identified, little is known about 
the molecular mechanisms by which they inhibit Eg5 
function. Furthermore, multi-motor systems can exhibit 
qualitatively diverse behavior for different drugs, in some 
cases showing non-linear dependence of motor velocity on 

drug concentration. We study molecular mechanisms behind 
function of individual Eg5 and multi-motor systems involving 
it using computational modeling techniques. Besides apparent 
fundamental value this work has direct implications for 
clinical applications, where in depth understanding of Eg5-
drug interaction is important. 

Keywords — Motor proteins, Kinesin-5, computational 
modeling. 
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Short Abstract — Spatial heterogeneity plays an important 
role in the evolution of drug resistance. While recent studies 
have indicated that spatial gradients of selection pressure can 
accelerate resistance evolution, much less is known about 
evolution in more complex spatial profiles. Here we use a 
stochastic toy model of drug resistance to investigate how 
different spatial profiles of selection pressure impact the time to 
fixation of a resistant allele. Using mean first passage time 
calculations, we show that spatial heterogeneity accelerates 
resistance evolution when the rate of spatial migration far 
exceeds that of mutation but slows fixation when mutation 
dominates. Interestingly, there exists an intermediate regime —
characterized by comparable rates of migration and mutation 
— in which the rate of fixation can be either accelerated or 
decelerated depending on the spatial profile, even when 
spatially averaged selection pressure remains constant. Finally, 
we demonstrate that optimal tuning of the spatial profile can 
dramatically slow the spread and fixation of resistant 
subpopulations, which may lay the groundwork for optimized, 
spatially-resolved drug dosing strategies for mitigating the 
effects of drug resistance.

Keywords — antibiotic resistance, spatial heterogeneity, 
evolution, modeling, mean first passage time, master equation

I. BACKGROUND

NTIBIOTIC resistance is a central impediment to the 
treatment of microbial infections. While most of the 

work on understanding resistance has been performed at the 
molecular level, resistance is a fundamentally stochastic 
process governed by the complex interplay between 
microbial evolution and evolutionary selection. Evolution in 
natural settings takes place in heterogeneous environments 
characterized by spatial fluctuations in multiple factors, such 
as drug concentrations, pH, and host immune responses, all 
of which potentially affect cellular growth. Recent 
experimental [1] and theoretical [2] results show that
understanding evolution and ecology in such spatially-
extended systems is crucial for understanding resistance.

In this work, we use stochastic models of evolution along 
with a mean first passage time from statistical physics to 
calculate the mean time required for an initially wild-type 
population to be composed entirely of mutants. For 
tractability, we restrict our system to having three connected 
microhabitats and allow cells to replicate according to a 
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simple Moran process. Our primary interest is calculating the 
fixation time from an initially wild-type population for a
given selection pressure landscape and comparing these 
fixation times across different selection pressure landscapes 
with the spatially-averaged selection pressure fixed. In 
addition to the specific selection pressure landscape, the 
mutation rate and migration rate of the system will determine 
the fixation time. 

II. RESULTS

We find that the fixation time for a population of initially 
wild-type cells varies significantly with the spatial 
distribution of selection pressure, even when the spatially-
averaged selection pressure remains fixed. Interestingly, we 
observe that resistance can be either accelerated or 
decelerated by spatial heterogeneities in selection pressure.

We observe that there are three different regimes for our 
system. In the limit where the mutation rate is much smaller 
than the migration rate, spatial heterogeneity speeds fixation 
for the system. In the limit where the mutation rate is much 
larger than the migration rate, any spatial heterogeneity 
slows fixation. And between these two limits exists an 
intermediate regime, in which heterogeneity can either speed 
or slow fixation. While the mutation rate and migration rate 
are often inherent to the specific system of interest, the 
selection pressure landscape can potentially be modulated to 
speed or slow the evolution of resistance in the system.

We also use this method to look at fixation starting with 
an initial mutant subpopulation. We demonstrate that tuning 
the spatial distribution of selection pressure can dramatically 
slow fixation when the resistant subpopulation is not 
uniformly distributed in space.

III. CONCLUSION

Using a simple toy model to investigate the evolution of 
antibiotic resistance in a spatially-extended system, we 
demonstrate that the selection pressure landscape can be 
tuned to slow or speed the emergence of antibiotic 
resistance.
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Short Abstract — We have coupled the FGF/MAPK pathway to
an optogenetic FGF receptor and an ERK activity reporter.
This system allows us to activate the pathway with light in a 
highly automated and reproducible way and to measure ERK
signaling output in hundreds of single cells with high temporal 
resolution. By combining dynamic INPUT stimulation patterns 
together with drug and siRNA perturbations and by recording 
ERK activity OUTPUTs, we aim to identify molecular players 
and feedback wiring involved in the regulation of the MAPK
network.  

Keywords — MAPK signaling, ERK, optogenetic, single-cell 
measurements, drug perturbations, siRNA screen.

I. BACKGROUND
ECEPTOR tyrosine kinases (RTK) convert 
extracellular inputs such as a growth factor binding 
into specific cellular outputs through the activation of 

signaling networks [1]. Despite numerous studies of the 
MAPK pathway, we still miss crucial information about how 
network components are wired, and how various dynamic 
responses of the network orchestrate the cell fate choice.

Due to this complexity, we need to combine live ERK 
activity measurement with network perturbations to 
elucidate network wiring and how network components 
affect dynamic responses.  

This approach has already allowed to discover new 
pathway connections as recently demonstrated by Pertz et al. 
[2]. Mathematical models of different pathway topologies 
could be discriminated by measuring dynamic single-cell 
ERK activity responses to growth factors delivered in a 
pulsatile manner using microfluidic devices. 

II. RESULTS
To further elucidate the MAPK pathway topology, we

have built a synthetic system where the MAPK pathway can 
be activated with light of different intensity, duration, or 
stimulation pattern (single- or multi-pulse) using an 
optogenetic FGF receptor (optoFGFR1). The use of dynamic 
light input provides high temporal and spatial resolution and 
enables to fully automatize the experiments. We then 
measure ERK signaling output in hundreds of single cells at 
the same time with an ERK activity reporter (ERK-KTR).

The optoFGFR1 receptor activates specifically and
reversibly the ERK, AKT and PLCγ MAPK pathways with 
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488nm light pulses. The receptor activation is based on the 
self-dimerization of CRY2PHR, a photosensitive domain 
fused to the cytosolic part of the receptor [3]. ERK-KTR is a 
substrate of ERK that gets exported from the nucleus to the 
cytosol upon its phosphorylation by activated ERK [4]. This
translocation event is used as a proxy to measure ERK 
activity without modifying ERK protein itself. 

We generated a stable NIH3T3 cell line expressing the 
optoFGFR1 and the ERK-KTR and characterized ERK 
activity in response to light stimulations. To increase the 
throughput of our experiments, we established a pipeline to 
highly automatize the image acquisition and the 
stimulations, as well as the data processing. Using this 
pipeline, we could observe that light triggers specific and 
reproducible ERK responses depending on the pulses 
intensity and frequency. 

As a proof of concept, this system was used to study the 
effect of two well-known MEK inhibitors, UO126 and 
PD0325901, on the activation of the pathway. Using time 
series classification and clustering we could identify 
subpopulations of cells with distinct dynamic patterns 
despite high variability in ERK activation levels in response 
to the same treatment conditions.

III. CONCLUSION
Our system is a tool to study the effects of targeted system 
perturbations. It enables triggering of homogenous and 
reproducible ERK activity dynamics in hundreds of single 
cells with a high temporal resolution. Such measurements 
are essential for building and calibrating predictive 
mathematical models of the MAPK pathway.  

Combined with a highly-automatized image analysis 
workflow, this system provides the required throughput to 
screen for proteins involved in the network regulation using 
drugs and siRNAs targeting selected molecular players [5].
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Short Abstract — Chromosome architecture originates from
non-equilibrium, active processes that continuously rearrange 
chromatin over the lifetime of cells; optical experiments report 
sub-diffusive dynamics and spatially coherent motion. Using 
energy landscape theory, we built a model for chromosomes 
that takes into account biochemical interactions mediated by 
proteins and regulated by epigenetic markers. We study the 
dynamics of interphase human chromosomes as generated by 
this quasi-equilibrium energy landscape. Using numerical 
simulations of two interacting human chromosomes, we show 
that the epigenetic energy landscape naturally explains the 
physical mechanism leading to spatial coherence, viscoelasticity
and sub-diffusive behavior in interphase chromosomes as 
observed in numerous experiments. 

Abstract 

hromatin consists of DNA and hundreds of associated 
proteins. In eukaryotic nuclei, the interactions between 
proteins and DNA generate organized structures, which 

are characteristic of both cell state and type [1,2]. This 
organization is a key element of transcriptional regulation, 
and its disruption often leads to disease.

Recently, we introduced a physical model for chromatin
folding [3] that is able to predict the structural ensembles of 
human chromosomes using as input the sequence of 
epigenetic markings obtained by chromatin 
immunoprecipitation-sequencing. We exploited the idea that 
chromosomes encode a 1D sequence of chromatin structural 
types. Interactions between these chromatin types determine 
the 3D structural ensemble of chromosomes through a 
process similar to phase separation. Chromatin types are 
distinct from DNA sequence and change during cell 
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differentiation, thus constituting a link between epigenetics, 
chromosomal organization, and cell development. 

We demonstrated that it is possible to predict the sequence 
of chromatin structural types and, consequently, how a 
genome will fold, based on the epigenetic marks that 
decorate chromatin [4]. The structural ensembles resulting 
from this theory of genome folding were extensively 
validated by the results of DNA-DNA ligation assays and 
fluorescence microscopy. 

Here, we revisit the results of several experimental 
observations regarding chromatin dynamics in light of the 
new theory for genome organization outlined above. By 
using molecular simulation, we analyze the implications of 
the model without any tuning and we show that it naturally 
explains and reproduces anomalous diffusion, 
viscoelasticity, and spatially coherent dynamics as observed 
in chromosomes. All of these phenomena were previously 
analyzed only through phenomenological models. We show
that the very same interactions that account for genome 
organization in interphase also naturally explain several non-
trivial features of genome dynamics, namely, spatial 
coherence, viscoelasticity and sub-diffusivity.  
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Short Abstract — How cell-to-cell expression variability or 

noise contributes to chemotherapy survival and resistance 
independently from mean expression in cancer is unclear. As a 
model to this end, we built two synthetic noise-controlling gene 
circuits based on feedback in Chinese Hamster Ovary (CHO) 
cells. To decouple noise from mean expression, we chemically 
controlled the noise of a puromycin resistance gene at a similar 
mean. Noise delayed the adaptation time, ranging from initial 
cell death to regrowth, under low drug concentrations, while 
the opposite was true under high drug concentrations. 
Mathematical modeling explained these evolutionary dynamics 
based on the severity of cell drug-sensitivity. 

I. PURPOSE 
Chemotherapy resistance can arise from genetic 

mutations, but the role of nongenetic processes, including 
cell-to-cell gene expression variability or noise [1], in 
survival and evolution is unclear. Gene expression noise can 
aid yeast cells to survive drug treatment [2], but little 
evidence exists for subsequent evolutionary effects, 
especially in genetically-identical mammalian cells. To 
properly address this question, one must decouple noise 
(typically quantified as the standard deviation divided by the 
mean) by experimentally manipulating noise for a drug 
resistance gene at a similar mean. 

The field of synthetic biology rationally designs and 
builds gene regulatory networks from the ground-up. 
Synthetic gene circuits can then be engineered to manipulate 
noise in bacteria [3], yeast [4], and mammalian cells [5] 
using, for example, positive feedback to amplify noise [6] 
and negative feedback to minimize noise [7]. However, 
synthetic gene circuits that can control decoupled gene 
expression noise in genetically-identical mammalian cells 
are lacking.  

 Here, we constructed two synthetic gene circuits that 
 

This research was supported by the NIH Director's New Innovator 
Award Program (1DP2 OD006481-01), NIGMS MIRA 1R01GM106027-01 
and the Laufer Center for Physical and Quantitative Biology.  

1The Louis and Beatrice Laufer Center for Physical and Quantitative 
Biology, Stony Brook University, Stony Brook, New York 11794, USA. E-
mail: gabor.balazsi@stonybrook.edu 

2Graduate School of Biomedical Sciences, The University of Texas MD 
Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 
77030, USA. E-mail: kevin.s.farquhar@uth.tmc.edu 

3Department of Systems Biology, The University of Texas MD 
Anderson Cancer Center, 7435 Fannin Street, Houston, Texas 77054, USA 

4School of Biomedicine, Far Eastern Federal University, 8 Sukhanova 
Street, Vladivostok, 690950, Russia 

5Department of Biomedical Engineering, Stony Brook University, Stony 
Brook, NY, USA 

amplify or minimize gene expression noise in Chinese 
Hamster Ovary (CHO) cells based on positive or negative 
feedback. We controlled gene expression noise of a 
puromycin drug resistance gene while maintaining 
comparable means, thereby allowing a controlled study of 
noise and mean expression in mammalian drug resistance.  

II. RESULTS 
With time-lapse microscopy, we measured the adaptation 

time, spanning from initial cell death to the start of 
exponential regrowth. Noise delayed the adaptation time 
under low drug levels, while the reverse was true under high 
drug levels. A modified population genetics model [8] 
explained these drug dose- and expression noise-dependent 
evolutionary dynamics. We found that the evolutionary 
dynamics depends on the severity of cellular drug-
sensitivity. Most of the regrowing cells maintained their 
resistance after drug withdrawal. In rare cases, cells reverted 
to their pre-treatment expression levels and regained drug 
sensitivity. 

III. CONCLUSION 
Gene expression noise contributes independently of the 

mean to the timing of adaptive drug resistance in 
mammalian cells.  Cells with higher levels of noise that are 
transiently protected from drug may then acquire mutations 
leading to resistance. This synthetic system indicates that 
gene expression noise should in general contribute to cancer 
chemotherapy resistance. 
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Short Abstract — Gene expression is controlled by regulatory 
proteins interacting specifically with external signals and DNA 
regulatory sequences. These interactions force the network 
components to co-evolve to maintain functionality. Yet, existing 
evolutionary models mostly focus on isolated genetic elements. 
Here we construct a network model to study the evolutionary
expansion of gene regulatory networks via duplication and 
subsequent specialization. We synthesize a biophysical model of 
molecular interactions with the evolutionary framework to find 
the conditions and pathways by which new regulatory functions 
emerge. We show that specialization is usually slow, but is
accelerated by regulatory crosstalk and mutations that promote 
promiscuous interactions.

Keywords — biological networks, molecular evolution, gene 
regulation. 

I. INTRODUCTION

ENE regulation is flexible and its evolution is thought to 
be more rapid than the evolution of the coding 

sequences. The case that we focus on here is the divergence 
of gene regulation, via expansion of transcription factor (TF)
families. Following such expansion, a regulatory function is 
carried out by a larger number of TFs than before, allowing 
for additional fine-tuning or for an expansion of the 
regulatory scope. The main avenue for such expansions are 
TF duplications. Subsequent specialization of TFs often 
involves divergence in both their inputs (e.g., ligands) and 
outputs (regulated genes). Despite its key role, theoretical 
understanding of TF duplication is still incomplete. Existing 
models predominantly belong to two categories: gene 
duplication–differentiation models study sub-
functionalization of isolated proteins with no regulatory role;
Biophysical models use a thermodynamic description of TF–
BS (binding site) interactions accounting for the broad DNA 
binding repertoire of TFs [1], but disregard gene 
duplications. Here we synthesize these two frameworks to 
construct a biophysically realistic description of gene 
regulatory network evolution.
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II. RESULTS

We assume two TF copies, potentially responding to two 
signals and regulating two or more downstream genes. A
genotype in our model is specified by the regulatory DNA 
binding site sequences, TF binding preferences and signal 
sensitivities. Using the thermodynamic model of gene 
expression [1] we can calculate for each genotype its gene 
expression in response to the input signal(s). Genotypes
evolve via combinations of mutations affecting TF binding 
preferences, signals sensitivities or binding sites. These 
mutations are then either fixed or lost depending on their 
fitness effect, whereas fitness is determined by the network
gene expression. This defines a huge, yet finite fitness 
landscape. Using Markov chain framework, we are able to 
fully calculate its steady state, dynamics and evolutionary 
trajectories. Importantly, network functionality in our model 
is determined not by any particular sequence, but rather by 
the match or mismatch between sequences of distinct
components. This enables us to coarse-grain the huge 
genotype space into only six “macro-states” based on 
interaction intensities. Such mapping significantly simplifies
the analysis and demonstrates the huge dimensionality 
reduction between genotype to phenotype. We find two 
possible evolutionary trajectories to specialization: either 
going via intermediate configurations of partial specificity or 
via temporary loss and re-gain of TF specificity. 

As TFs and BS should co-evolve, they constrain each 
other. We find that TF evolution becomes slower and more 
constrained the more downstream genes it regulates. We 
propose that mutations that reversibly broaden the TF 
binding scope (“promiscuity-promoting”) can alleviate these 
constraints and shorten evolutionary times [2].

III. CONCLUSIONS

The novelty of our work is both conceptual and 
methodological. While most evolutionary models focus on 
single genes, here we demonstrate that network evolution is 
radically different. We develop methodologies to analyze 
high-dimensional genotype spaces and interpret network 
phenotypes, that are more broadly applicable [3].
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Caracterization of PPI and Metabolic Networks
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Short Abstract — In this work we perform a systematic sta-
tistical analysis of thousands of graphs representing metabolic
and protein-protein interaction (PPI) networks. The focus of
the analysis is to identify properties that deviate from the ex-
pected values had the networks been build by randomly linking
nodes with the same degree distributions. The survey identifies
the properties of biological networks which are not solely the re-
sult of the degree distribution of the networks, but emerge from
the evolutionary pressures under which the network evolves. We
also investigate the quality of fits obtained for the nodes degree
distributions to power-law functions.

Keywords — Graphs, biological networks, PPI networks,
Metabolic networks, scale-free networks, small-world

I - Motivation

I
T is often claimed that biological networks are scale-free

(meaning that their node’s degree distributions follow a

power-law function) though most works that fit a power-law to

the degree distribution of a given network overlook the quality

of the fit.

In the present work we study a sample of thousands of net-

works representing organisms’ metabolisms and proteomes.

We evaluate the main graph topological characteristics of the

networks and perform fits to the graphs’ degree distributions,

evaluating also the quality of the fits (p-value).

II - Data
The metabolic network for an organism is a graph repre-

senting its metabolism based on the biochemical reactions that

keep its cells (or cell) alive. Two metabolites in the graph are

connected if they appear as a substrate-product pair in any

chemical reaction in its metabolism. The PPI network of an

organism is the graph where each protein present in a pro-

teome represents a node and a link between two nodes indi-

cates the existence of some interaction between the respective

proteins.

Data from the Kyoto Encyclopedia of Genes and Genomes

(KEGG) database [1, 2] was downloaded and we successfully

reconstructed the metabolic networks for 3481 organisms.

In order to reconstruct the PPI networks, we used data from

the STRING database [3]. We reconstructed 1073 graphs rep-

resenting PPI networks.

III - Analysis
The theory on measurements related to graphs and the study

of network characteristics and parameters can be found in sev-

eral books and reviews such as, for example, [4, 5].

For each reconstructed network, we evaluated the graphs

average local and global clustering coefficients, assortativity,

average nodes distances, number of two-paths and triangles.

Also, we fitted each graph degree distribution to a power-law

function by the maximum likelihood method and we evalu-

ated the p-value for the fit with the χ2 statistic.

Moreover, for each graph, we evaluated all above men-

tioned topological characteristics for 10 randomized versions

of each network (graphs with the same degree distribution,

but with the nodes linked randomly. We then evaluated the

student’s t statistic for the difference of each parameter be-

tween the real and the randomized versions, obtaining in this

way the statistical significance of the deviations.

IV - Results

Our findings suggest that, while PPI networks have prop-

erties that differ from their expected values in their random-

ized versions with great statistical significance, the differences

for metabolic networks have a smaller statistical significance,

though it is possible to identify some drift.

About the quality of the fits obtained for the nodes degree

distributions to power-law functions, our work indicates that

metabolic networks do describe the distributions only if one

disregards nodes with degree equal to one, but in the case of

PPI networks the power-law distribution poorly describes the

data except for the far right tail covering around half or less of

the total distribution.
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Short Abstract — The origin of chirality has intrigued 

generations of scientists. The role of natural selection, however, 
has been largely overlooked. Yet, chirality in shape and motility
readily evolve in bacteria and cancer cells.  We find that cells 
gain a substantial fitness advantage by increasing their 
chirality, or switching handedness. Selection occurs via bulges 
along the colony edge in regions where cells with different 
chiralities meet.  We developed an analytical framework that
explains these bulges and their effect on selection. Overall, our 
work suggests that chirality could be an important ecological 
trait that mediates competition, invasion, and spatial structure 
in cellular populations.

Keywords — evolution, chirality, population dynamics,
cancer, range expansions, pattern formation, KPZ equation.  

I. INTRODUCTION

HIRALITY exists at all scales: from DNA and flagellar 
motion to embryogenesis and bacterial swarms. The 

classic explanation for molecular chirality is a fluctuation 
that slightly breaks the left-right symmetry, magnified by a
self-amplifying process [1]. The many chiral components in 
the cell then serves as a natural explanation for macroscopic 
chirality. This existing theory explains how, but not why, 
chirality emerges. Several lines of evidence suggest that a 
change in chirality could be advantageous. Experiments with 
Arthrospira observed switching from a right-handed to left-
handed helix following exposure to grazing by a ciliate [2].
Extensive work with Paenibacillus demonstrated that this
microbe switches between chiral and non-chiral forms to 
optimize its fitness in different environments [3]. A study of 
spatial patterns made by human and mouse cells across 
tissue types found that all cells tested produced chiral
patterns [4]. Additionally, skin cancer cells displayed a 
chirality opposite to that of human cells, including skin cells 
derived from the same patient.  

II. RESULTS

Motivated by these experimental observations, we asked 
whether chirality could be related to natural selection in the 
context of growing cellular populations. We developed a 
minimal reaction-diffusion model of chiral growth in 
compact colonies. For strains with equal chiralities, our 
model quantitatively reproduced logarithmic twisting of 
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boundaries between the strains and other spatial patterns 
observed in experiments [5]. Colonies of a chiral strain and a 
non-chiral strain expanded at the same rate when grown 
separately. However, the chiral strain was more fit when 
grown together. We found that competition always favored 
the more chiral strain when two strains with the same 
handedness, but different magnitude of chirality were 
competed. In contrast, the competition between two strains 
with different handedness often resulted in stable
coexistence. To understand our observations, we developed 
an effective theory of chiral growth. For chiral strains, the 
population dynamics is described by the chiral KPZ equation 
coupled to the Burger’s equation with multiplicative noise.  
The theory shows that selection for a specific chirality is 
mediated by bulges along the colony edge that appear in 
regions where the strains with different chiralities meet.
Additionally, we observe that strains of opposing chiralities
can overcome the effects of genetic drift which causes sharp 
boundaries between strains in growing colonies [6].  For 
sufficiently strong chirality, we observe a transition to a
completely intermixed state.

III. CONCLUSION

Using a minimal reaction-diffusion model, we captured 
experimental observations of logarithmic boundaries formed 
by chiral bacteria. Extending this, we have shown that 
selection for chirality is mediated by the formation of 
bulges. We have also shown that chirality can significantly 
alter the spatial structure within a colony. The intermixed 
phase can facilitate and stabilize interactions such as nutrient 
exchange. We developed an analytical framework to study 
the two-way coupling between selection and colony front. 
The theory could also be valuable for studies of competition 
in microbial colonies accounting for the effect of front 
undulations, which are known to fundamentally change the 
nature of competition. Our work suggests that some changes 
in cellular chirality could mediate invasion, coexistence and
spatial structure and, therefore, deserve further study.
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 Short Abstract — We propose a mathematical model 
between tumor and CD8+ T-cell adaptive immune 
compartments. This framework accurately models relevant 
empirical features, including the growth-threshold conjecture 
of immune activation, and predicts experimental observations 
including ‘sneak-through,’ wherein intermediate growth 
threats are penalized relative to their slower and faster 
counterparts. We find agreement between our model and 
AML age-dependent incidence as a function of decreasing 
immune turnover and repertoire size. Lastly, we quantify 
therapeutic efficacy of neoadjuvant immunotherapeutic 
strategies in the setting of an immune evading threat. Our 
model serves as a first attempt at modeling stochastic cancer 
evolution alongside an adaptive immune compartment.

Keywords — Cancer immunotherapy, applied probability, 
acquired immune evasion. 

I. INTRODUCTION

HE adaptive immune system plays an integral role in 
immuno-editing, and cancer progression occurs only if 

a tumor successfully evades immune detection [1].
Immunotherapy is responsible for recent breakthroughs in 
cancer treatment and encompasses strategies aimed at 
enhancing the patient's immune system via a number of 
mechanisms, including tumor antigen vaccines [2], immune 
checkpoint inhibition [3], and Chimeric Antigen Receptor 
T-cell (CAR-T) therapy [4]. 

Despite this improvement, durable clinical outcomes are 
still limited as tumors are capable of acquiring treatment-
resistant clones during disease progression [5], and cancer 
cells exploit a variety of strategies to avoid CD8+ T-cell
elimination [6], including downregulation MHC-I [7],
preventing CD8+ recognition altogether. Prior studies have 
considered systems level interactions between the tumor 
and host adaptive immune system [8,9]. An independent 
research effort has investigated acquired drug-resistance 
during clonal evolution [5,10]. At present, the time-
dynamic effect of acquired immune evasion on tumor 
development under adaptive immune surveillance remains 
uncharacterized. Understanding the successes, and failures, 
of adaptive immune system co-evolution with tumor cells 
from a population dynamical level would enhance our 
understanding of immunotherapy, enabling quantitative 
predictions of treatment success. 

Here, we describe a foundational model between cancer 
and the adaptive immune system wherein tumor cells may 
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be recognized by the immune cells but may also acquire an 
immune-evasive phenotype. We show that our model 
predicts empirically observed ‘sneak-through’ in that 
threats with large and small net growth rates have a 
preferential advantage over those with intermediate growth 
rates [11]. We characterize AML incidence as a function of 
immune turnover and repertoire diversity and conclude by 
quantifying the benefit of immunotherapy and predicting 
treatment-specific advantages based on tumor growth rates 
and immune competency. 

II. RESULTS

A. Cancer sneak-through predicted via increased 
immune evasion  
Preferential immune escape and immune evasion are 

predicted for threats with small and large growth rates over 
those of intermediate growth rates. 

B. Age-specific AML incidence characterized by 
diminishing adaptive immune system
AML incidence data is quantified by an immune system 

that diminishes in age and is therefore at increased risk of 
tumor escape and evasion. 

C. Enhanced survival predicted for immunotherapy 
We end by estimating treatment success probabilities for 

CAR-T and tumor vaccine immunotherapies. 

III. CONCLUSION

Our model is consistent with empirical observations, 
predicts the likelihood of cancer progression due to immune 
escape and evasion, and may be used in the future to 
quantify immunotherapy’s enhanced tumor control. 
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Short Abstract — Testing mechanisms of RNA transcription 
requires predictive models and experimental data. We present 
an implementation of the Gillespie algorithm that simulates the 
stochastic kinetics of nascent (actively transcribed) and mature
RNA, including two- and three-state gene regulation, RNA
synthesis initiation and stepwise elongation, release to the 
cytoplasm, and stepwise degradation. To facilitate comparison 
with experimental data, the algorithm predicts probe signals
measurable by single-cell imaging. By minimizing statistical
distance from experimental signal distributions, we can estimate 
underlying parameters.

Keywords — Transcription kinetics, single-cell imaging, 
parameter estimation.

I. BACKGROUND

HE transcription of RNA is the product of both 
stochastic and deterministic dynamical processes in the 

cell [1]. The wealth of hypotheses about these processes 
motivates the development of a modular framework to test 
proposed mechanisms and quantify their kinetic parameters. 
Due to challenges in producing closed-form solutions to 
arbitrary kinetic models [1], simulations offer an attractive 
alternative. We present a simulation platform that easily 
incorporates new mechanisms, offers a graphical user 
interface (GUI), provides outputs comparable to 
experimental measurements, and efficiently scales when
scanning kinetic parameters.

II. METHODS

We modified the Gillespie algorithm to simulate the 
kinetics of nascent and mature RNA. Stochastic reactions 
model initiation of transcription, stepwise elongation along 
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the DNA strand, release to the cytoplasm, attachment of 
RNase and stepwise degradation [2], while stochastic or
deterministic schema model gene regulation. The algorithm 
is implemented in MATLAB and can be scaled using
distributed computing, such as the Amazon Web Services 
(AWS) cloud. Probe signals predicted by the simulation are 
verified using differential equation solutions and the finite 
state projection (FSP) algorithm [3]. Parameter estimation 
uses the genetic algorithm to fit synthetic FSP data and 
single-molecule fluorescence in situ hybridization (smFISH) 
measurements of nascent and mature RNA in cells [4].

III. RESULTS

The simulation reproduces the average smFISH probe 
signals of the nascent and mature RNA populations predicted 
by the differential equation solution and the corresponding 
copy-number histograms predicted by the FSP algorithm.  It
has already been modified to incorporate multiple gene 
copies, deterministic changes in kinetic parameters, variable 
transcription speeds, co-transcriptional degradation by 
RNase, and other features. A GUI is available, enabling 
parameter input and inspection of graphical outputs.

Using cloud computation, the algorithm can generate
(within minutes to hours) time-dependent signal predictions 
for hundreds of kinetic parameter sets, each applied to 
thousands of cells. For parameter estimation, we bin the
predicted measurements to generate time-dependent 
histograms for each parameter set, calculate their statistical 
distance away from “target” histograms, and generate new 
parameter sets by using the genetic algorithm to minimize 
the statistical distance. We currently fit synthetic data to 
determine the best methods for fitting to experiments.

IV. CONCLUSION

The platform facilitates testing and fitting of transcription
models, as well as casual use via the GUI. These capabilities 
make it a useful addition to the toolbox of quantitative 
biology.
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Short Abstract — Neurons integrate inputs and generate 
outputs by regulating the voltage across their plasma membrane.
Understanding these computations requires tools to monitor
membrane potential (voltage) with high spatial and temporal 
resolution. Here, we quantitative characterize and apply a new 
generation of protein-based biosensors that report voltage 
dynamics as changes in brightness. We demonstrate that these
genetically encoded voltage indicators (GEVIs) can report 
action potential with millisecond time-scale and subcellular 
spatial resolution in cultured neurons and brain slices with 
two-photon microscopy. We also show we can track action 
potential backpropagation through dendritic arbors, an 
important step towards studying how neuronal morphology 
tunes neuronal computations. 

Keywords— Fluorescence Microscopy, Neuronal computation, 
GEVI

I. BACKGROUND

How the brain regulates behavior in response to 
environmental stimuli is a longstanding question in 
neuroscience. Neurons are generally thought to be the basic 
computational elements in the brain: they receive chemical 
signals called neurotransmitters at specialized structures 
named synapses, and integrate and transmit this information 
as voltage changes that propagate across spines, dendrites, the 
cell body, and the axon. Electrical activity at axonal termini 
can result in release of neurotransmitters, thereby activating
downstream neurons. How individual neurons integrate
multiple inputs remains poorly understood given the 
unavailability of tools to monitor voltage dynamics with 
sufficient spatiotemporal resolution [1].

Here, we describe advances in using protein-based 
indicators of voltage for monitoring computations in single 
neurons. Specifically, we propose to use Genetically Encoded 
Voltage Indicators (GEVIs) to quantitatively image
membrane potential dynamics with subcellular resolution and
millisecond-timescale resolution in genetically defined cell 
type [2-3]. We could potentially measure the membrane 
potential of tiny but critical structures of neurons such as an 
individual spine or the axon initial segment, which are
typically inaccessible by other strategies. We also can record 
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the membrane voltages of multiple locations simultaneously 
to stress how electrical signals change during propagation [4].
Voltage imaging also allows us to track long-term changes of
activities of the same neuron to investigate how development, 
aging, and disease can alter the computation properties.

II. RESULTS

We have previously reported a voltage indicator ASAP1, a 
chimeric protein with a GFP variant inserted in an avian 
voltage sensitive domain (VSD). Voltage changes result in a 
conformational change in the VSD, thereby modulating the 
brightness of the coupled GFP [5]. Here, we report an
improved voltage indicator and demonstrate that it increases 
detectability of action potentials, sub-threshold membrane 
potentials, and hyperpolarization events. We quantitatively 
characterize the performance of this new indicator in 
dissociated neurons and in brain slices under fluorescence
microscopy. We further show that this indicator can track 
backpropagating action potentials in neuronal dendrites. We 
anticipate that further development of this methodology will 
enable quantitative modelling of computations by individual 
neurons.

III. CONCLUSION

We demonstrate that we can image voltage dynamics with 
high spatiotemporal resolution and show strong potential to 
understand the role of each neuronal structure in processing 
information.
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Short Abstract — Bayesian parameter estimation (BPE) is 
popular in systems biology, where often a large number of 
correlated model parameters have to be estimated from limited 
experimental data. Commonly-used Markov chain Monte 
Carlo (MCMC) methods for BPE often suffer from slow 
convergence. Here1 we evaluate the performance of parallel 
tempering (PT), a physics-based MCMC method designed to 
accelerate convergence by swapping between multiple MCMC 
chains run in parallel at different temperatures. 

I. INTRODUCTION

Computational models are used to describe biological 
systems and make testable predictions2. Parameter 
estimation is the calibration of a model to data by searching 
for parameterizations that minimize the discrepancy between 
the data and model output. MCMC is a Bayesian parameter 
estimation method commonly used in systems biology, but 
standard algorithms such as the Metropolis-Hastings (MH) 
suffer from slow convergence. Parallel tempering (PT) is a 
physics-based method that accelerates sampling of 
probability distributions by swapping between parallel
MCMC chains run at different temperatures3. While PT has 
been commonly used in molecular dynamics simulations to 
accelerate sampling the conformational space of 
biomolecules3, it has sparsely been used in systems biology2.

In this work1 we evaluate the performance of PT relative 
to MH on six biological models of increasing complexity. 
We include a comparison with Approximate Bayesian 
Computation – Sequential Monte Carlo (ABC-SMC), 
another common Bayesian parameter estimation method.

II. METHODS

We performed all the MCMC fits using pTempEst, our 
MATLAB-based tool for parameter estimation using PT. 
The models were specified in the BioNetGen language 
(BNGL)4, and exported as ODE models in MATLAB’s 
MEX-file format that are called by pTempEst, which 
invokes the CVODE library for efficient integration of high 
dimensional models.  We used the tool ABC-SysBio to 
perform fits using ABC-SMC5. 

In our analyses we fit ODE models to synthetic data 
generated using known parameters. For smaller models (3-6
parameters), both MH and PT found the global minimum 
and we compared the algorithms using convergence time 
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and sampling efficiency. For more complex models (11-25
parameters) we did not always obtain parameter sets that fit 
the data. In this case we compared the algorithms using the 
likelihood of the best-fit parameters. 

We compared fits from ABC-SMC and PT by allowing 
each algorithm a specified number of model integrations, 
fixing the total amount of computational resource used.

III. RESULTS AND FUTURE WORK

For simple models with 3-6 parameters (Michaelis-Menten 
model, mRNA self-regulation5, simple negative feedback 
loop), PT accelerated convergence and improved sampling 
over MH. For bigger models with 12-25 parameters (calcium 
signaling, negative feedback oscillator6, growth factor 
signaling7) PT more consistently found the global optimum, 
while MH frequently got trapped in local optima. Finally, we 
found that for a fixed number of integrations, PT 
outperformed ABC-SMC for parameter sampling on a 
relatively simple ODE model of mRNA self-regulation. 

A current limitation of PT is that it is only moderately 
parallel across a small number of chains and does not fully 
leverage the large number of nodes on typical modern day 
clusters. We are currently investigating ways to increase the 
parallelizability of the algorithm, for example by running 
multiple chains at each temperature level. Another area of 
improvement that we are pursuing is in the proposal 
function, which currently does not leverage known 
parameter correlations to improve sampling efficiency.  We 
will investigate whether previous work in this area8,9 would 
benefit from a parallel tempering approach.
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Cells trigger events with high timing precision, but how do they 
so with inherently noisy molecular components remains 
unclear. We investigate this question using a first-passage-time 
approach, for an event triggered by a molecule that crosses an 
abundance threshold and that is regulated by either an 
accumulating activator or a diminishing repressor. We find 
that the optimal strategy arises from a tradeoff between 
minimizing the extrinsic noise of the regulator and minimizing 
the intrinsic noise of target molecule itself.  Our results explain 
the low noise of mig-1 gene expression in migrating neuroblast 
cells during Caenorhabditis elegans development, and suggest 
that mig-1 regulation is dominated by repression for maximal 
temporal precision.

Keywords — First-passage time | Gene regulation | Cell 
migration.

I. Background
roper timing is crucial for biological processes, including 
cell division [1], cell differentiation [2], cell migration

[3], and embryonic development [4]. These processes are 
governed by molecular events inside cells, i.e., production, 
degradation, and interaction of molecules. Molecular events 
are subject to unavoidable fluctuations, because molecule 
numbers are small and reactions occur at random times [5].
Cells combat these fluctuations using networks of regulatory 
interactions among molecular species. This raises the 
fundamental question of whether there exist regulatory 
strategies that maximize the temporal precision of molecular 
events and, in turn, cellular behaviors. A canonical 
mechanism by which a molecular event triggers a cellular 
behavior is accumulation to a threshold [2, 6]: molecules are 
steadily produced by the cell, and once the molecule number 
crosses a particular threshold, the behavior is initiated.
Recent work has investigated the impact of auto-regulation 
(i.e., feedback) on the temporal precision of threshold 
crossing [6]. Interestingly, it was found that auto-regulation 
generically decreases the temporal precision of threshold 
crossing, meaning that the optimal strategy is a linear 
increase of the molecule number over time with no auto-
regulation [6]. However, in many biological processes, such 
as the temporal control of neuroblast migration in 
Caenorhabditis elegans [3], the molecular species governing 
the behavior increases nonlinearly over time. This suggests 
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that other regulatory interactions beyond auto-regulation 
may play an important role in determining temporal 
precision. In particular, the impact of activation and 
repression on temporal precision, where the activator or 
repressor has its own stochastic dynamics, remains unclear.

II. Results
Here we investigate the temporal precision of threshold 
crossing for a molecule that is regulated by either an 
accumulating activator or a degrading repressor. Using a 
first-passage-time approach [6] and a combination of 
computational and analytic methods. We find that the 
optimal regulatory strategy for either an activator or a 
repressor corresponds to a non-linear increase in the 
regulated molecule number over time. We elucidate the 
physical mechanism behind these optimal strategies, which 
stems from a tradeoff between reducing the noise of the 
regulator and reducing the noise of the target molecule. 
Motivated by data from migrating neuroblast cells in C. 
elegans larvae [3], we also consider the effects of cell 
division, and find that activation (repression) is optimal if 
cell division occurs early (late) in the temporal process. Our 
results are quantitatively consistent with both the temporal 
precision and nonlinearity of the mig-1 mRNA dynamics in 
the macroblasts, and we predict that mig-1 regulation is 
dominated by repression for maximal temporal precision. 

III. Conclusion
We demonstrate that regulation increases the timing 
precision of threshold crossing by a target molecule beyond 
the precision achievable with constitutive expression alone.
Our minimal model is sufficient to explain both the 
nonlinearity rise in molecules and low degree of noise in 
dynamics of mig-1 in C. elegans.
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Short Abstract — E. faecalis is a gram-positive bacterial 
species among the leading causes of nosocomial infections. In 
this work, we investigate the dynamics of enzyme-mediated 
cooperative, drug resistance in E. faecalis populations exposed 
to temporally varying influx of β-lactam antibiotics. By 
combining experiments in computer-automated bioreactors 
with mathematical models, we show that drug-treated 
populations exhibit a range of dynamic behaviors, including 
bistability between population extinction and survival 
depending on the flow rate of antibiotic, the initial population 
density, and ratio of sensitive and resistant cells. 

Keywords — Population Dynamics, Cooperation, Antibiotic 
Resistance, Modeling, Chemostat

I. BACKGROUND

NTIBIOTIC resistance is an urgent threat to public health 
and has garnered significant research interest. While the 

molecular mechanisms of resistance are increasingly 
understood, the picture of how resistance determinants are 
spread in complex microbial populations remains 
incomplete. While selection driven fixation of a single 
resistance phenotype is perhaps the simplest route to a 
resistant population, recent work has highlighted that 
resistance may also be a collective phenomenon depending 
in complex ways on the competition and cooperation 
between sensitive and resistant cells [1-4].
  In this work, we investigate the population dynamics of β-
lactamase mediated drug resistance in E. faecalis, a common 
source of hospital-acquired infections. β-lactamase is 
responsible for the degradation of antibiotics of the β-lactam 
class [5-6]. Recent work has shown that drug deactivation, 
even if intracellular [4], can lead to counterintuitive 
population dynamics by promoting the survival of drug 
sensitive cells [1-4]. For example, adding an enzyme 
inhibitor to disrupt β-lactamase function may lead to 
populations increasingly dominated by enzyme-producing 
resistant cells [3]. In addition, we’ve recently shown [7] that 
the efficacy of β-lactams increases with population density 
in E. faecalis, a surprising pH-mediated effect that occurs in 
the absence of β-lactamase production. Taken altogether, 
these results indicate that β-lactamase resistance may induce 
rich dynamical behavior in bacterial populations, particularly 
in the presence of time-dependent flows of antibiotics. 

Acknowledgements: This work was supported by an NIH R35 MIRA 
and NSF CAREER to KW and NSF GRFP to KH  

1 Biophysics Program, University of Michigan, 500 S. State St, Ann 
Arbor, MI 48109. E-mail: khalline@umich.edu, karslaja@umich.edu, and 
kbwood@umich.edu  

  

II. RESULTS

Here we combine experiments using computer-automated 
bioreactors and flow cytometry with mathematical models to 
investigate β-lactamase resistance in mixed populations of 
sensitive and resistant (enzyme-producing) cells in the 
presence of time-dependent influx of antibiotic. We observe 
a wide range of dynamical behavior, including bistability 
between population extinction and survival, that depends on 
flow rate of drug, the initial (total) population density, and 
the ratio of sensitive to resistant cells. Using a simple 
mathematical model, we derive and experimentally validate 
a full phase diagram that predicts regimes of population 
survival, extinction, and bistability that arise from the 
interplay between drug degradation, temporal dosing 
dynamics, and density-dependent efficacy of the antibiotic. 
In addition, we experimentally modulate pH using different 
growth media to tease apart contributions to these dynamics 
from density-dependent drug activity (modulated by pH), 
and density-dependent drug degradation (modulated by 
enzyme production). Finally, we discuss ongoing work to 
optimize dynamical drug dosing strategies for maximizing 
population extinction. 

III. CONCLUSION

Our findings uncover rich dynamics of E. faecalis
populations exposed to β-lactams. These results underscore 
the need for quantitative understanding of cooperative 
resistance in the systematic optimization of antimicrobial 
treatment strategies. 
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Short Abstract — Hepatitis C virus (HCV) is a pervasive 
public health problem that infects three to four million every 
year worldwide, many of whom will develop cirrhosis [1]. We 
aim to better understand the key attributes of HCV infection,
which in turn may give insight into the disease prognosis. 
Here, we show how we applied similarity network fusion 
(SNF), a recently developed computational method that is 
particularly suited to obtaining a comprehensive integrated 
understanding of multiple types of measurements, to HCV 
clinical data collected from 29 patients. 

Keywords — HCV infection, similarity network fusion,
cirrhosis. 

I. PURPOSE

PPROXIMATELY 170 million people suffer from chronic 
hepatitis C infection worldwide. There is no 

preventive vaccine for HCV. Although in some the 
infection has a good prognosis, a significant number of 
infected people develop more lethal health conditions such 
as cirrhosis or liver cancer [1]. To better understand the 
pathogenesis of HCV infection, we collected a range of 
clinical data from a group of patients with a spectrum of 
disease stages. We not only measured several different 
classes of biomarkers including cytokines, metabolites, and 
bacterial genomics, but also documented the patients’ diet 
records. Given the diverse data types, it was not obvious 
how to collate embedded information and draw integrated 
conclusions. In order to overcome this challenge, we 
employed SNF, a method developed for coalescing multiple 
data sets emerged from a common source [2, 3, 4]. 
 For the preliminary analysis, we focused our attention to 
the three biomarkers mentioned above and inspected for 
any separations within the group using spectral clustering.
There was no common clustering pattern across the data 
sets. However, some of the clusters showed a positive 
association with the degree of liver damage, which 
emphasizes the necessity of an exhaustive analysis.  

II. DATA AND METHOD

The data set consisted of traces of 64 different cytokines, 
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the total of 1546 metabolites from 25 subgroups, and 
bacteria counts spanning 13 phyla. There were some 
missing entries, which were imputed using the R software 
package, softImpute [3, 5]. Since the metabolite data were 
partitioned into 25 subgroups, they required amalgamation 
into a single network through SNF, before it could be 
combined with other networks.  

For each biomarker data set, the method computes an 
affinity matrix that quantifies the global similarities 
between the subjects and a kernel matrix representing local 
similarities between k-neighboring patients. As the final 
step, the SNF method iteratively updates each affinity 
matrix through a matrix multiplication of its kernel matrix 
with the other affinity matrices to obtain a unified network 
that conveys both shared and complementary information. 
All the sets had an equal weight towards the final network. 
We then applied the spectral clustering algorithm on the 
fused network to determine clusters among patients, and the 
same method was used on each data set for the comparison. 

Figure 1. The 
clustering patterns 
within each bio-
marker data set,
which are not 
consistent across 
the whole set. The 
clusters are re-
presented in three 
colors. The last 
column shows the 
clusters identified from the converged network of all three 
data sets. The numbers on the left are patient numbers.

III. CONCLUSION

The information in the cytokine data set seems to be well 
carried through, compared to the other data sets. This 
suggests that the network structure underlying the cytokine 
data is dominant over the others. 

REFERENCES

[1] WHO (2017) Global Hepatitis Report 2017. Geneva: World Health 
Organization.

[2] Wang B, et al. (2014) Similarity network fusion for aggregating data 
types on a genomic scale. Nature methods 11, 333-337.

[3] R Core Team (2013) R: A language and environment for statistical 
computing. R Foundation for Statistical Computing, Vienna, Austria. 
ISBN 3-900051-07-0, URL http://www.R-project.org/. 

[4] Wang B, et al. (2017) SNFtool: Similarity Network Fusion. R package 
version 2.2.1. https://CRAN.R-project.org/package=SNFtool  

[5] Hastie T and Mazumder R (2015) softImpute: Matrix Completion via 
Iterative Soft-Thresholded SVD. R package version 1.4. 
https://CRAN.R-project.org/package=softImpute

Merging Multiple Data Sets to Study HCV
Jungmin Han1, Rabab Ali2, Grace Zhang2, Elizabeth Townsend2, Gabriella Quinn2, Kareen Hill2,

 Ohad Etzion2, Theo Heller2, and Vipul Periwal1

A

73



Short Abstract — We analyze fMRI recordings of brain
activity in epileptic infants. These recordings provide roughly
1500 recorded time series mapping the activity of 1500 very 
small cortex patches. The ultimate goal of our study is to 
facilitate noninvasive localization of the epileptic focus. We
have implemented several Automated Classifiers of fMRI 
recordings into 5 classes of patients. Here we outline how one 
can use a Multi-Layer Perceptron (MLP) with highly restricted 
number of nodes to mitigate the currently small number of 
diagnosed patients. We introduce a novel multiscale analysis to 
select Cortex Regions with high discriminating power between
patients classes. Another key point is our systematic use of very 
large matrices of Mutual Information (MI) between pairs of 
recorded time series. We generalize the MI concept to evaluate 
the interactivity between pairs of cortex regions of arbitrary 
size. Our MLP classifier performance is quite good, but will
need validation on larger data sets. 

Keywords — fMRI Brain Recordings, Robust Classifiers,
Deep Learning, Mutual Information, Epilepsy Focus. 

I. MUTUAL INFORMATION AND REGIONAL CORTEX 
CONNECTIVITY

n ongoing study at Texas Children’s Hospital gathers 
sequences of fMRI 3D-images recording cortex activity 

for young epileptic patients [1]. Each fMRI recording 
generates 295 3D-images algorithmically registered onto a
pre-segmented cortex atlas and thus partitioned into 780 
disjoint “parcels”, 148 “cortex regions”, and 10 “lobes”. 

For each patient, there are roughly 780 cortex parcels and 
fMRI data provide for each parcel one time series with 295 
points. To characterize brain interactivity, we compute for 
each patient the 780 x 780 matrix of Mutual Information
MI(m,n) between all pairs of time series. MI quantifies non-
linear information links between two time series and has 
often outperformed correlations in the analysis of cerebral 
activity [2].
We have 148 anatomically identified cortex regions Rj We
quantify the "connectivity" c(Rj) of any region Rj by 
computing the 75% quantile of all the MI(m,n) 
corresponding to parcels "m" and "n" belonging to Rj. This 
defines a vector V of 148 regional connectivities c(Rj). Each 
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patient Patk is characterized by its vector Vk of regional 
connectivities. 
Diagnosed patients belong to 5 classes defined by the
epileptic focus localization, positioned by neuro-surgeons 
within 5 distinct large cortex zones. Our database provides 
19 diagnosed and 13 non-diagnosed patients. This very 
restricted dataset imposes a strong parsimony for the number 
of parameters in our classifier. So even moderately large 
MLPs are not usable, because they involve large numbers of 
unknown weights. We radically reduce the input dimension 
for our MLP by selecting highly discriminating cortex 
regions. We also minimize the size of our MLP classifier to 
ensure robustness of classification. 

II. HIGHLY DISCRIMINATING CORTEX REGIONS 

Fix any two classes CLp and CLq . For any region Rj, we 
quantify its power to discriminate CLp vs CLq by comparing 
the distributions of c(Rj) values for patients in CLp and 
patients in CLq. Call Sp,q the region having highest power to 
discriminate CLp vs CLq The 10 pairs CLp vs CLq thus
generate 10 cortex regions Sp,q. For each patient, the vector 
of 10 connectivities c[Sp,q] becomes the short input for our 
MLP classifier, for which we impose a single hidden layer 
of size 5 to minimize the number of MLP parameters. After 
automatic learning the classification performance estimated 
by "leave-one-out” is 93% +/- 3%.  

III. CONCLUSION

We introduce and test efficient new methods to implement 
robust classification for fMRI recordings of brain activity. 
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Cliffs & canals in Waddington’s landscape 
R. Antonio Herrera1, Anthony Mulieri1, and Thomas MacCarthy1

Short Abstract — Mature multicellular organisms reproduce 
by transmitting genetic information onto progeny, which 
requires successful parental somatic and germline formation.
Different strategies to develop to reproductive maturity exist,
yet a common thread is that major developmental events are 
coordinated in time. Given that multiple cell fates are regulated 
by one genome, we hypothesize that temporal coordination 
arises from complex gene regulatory network (GRN) dynamics. 
To test how GRNs affect coordinated multicellular 
development, we are using a computer simulation based on a
standard model of GRN evolution to examine how dynamics 
and attractor states evolve with stabilizing selection. 

Keywords — Waddington’s Canalization, Heterochrony,
Cell Fate Acquisition, Attractor Networks, Discrete Dynamical
Systems. 

I. Background
N multicellular organisms, reproduction is ultimately 
achieved by the transmission of genetic material onto 

progeny, which depends on the successful somatic and 
germline development in parent(s). 

Although there are many strategies used during the
development towards reproductive maturity, multicellular 
organisms tend to have major life history events which are 
coordinated in time1,2. For example, gonads produce sex
hormone in vertebrates in response to long range induction 
by gonadotropin releasing hormone (GNRH), which is first 
released by neurons within the hypothalamus3. In this case, 
the capacity for the gonad to respond to GNRH is 
coordinated in time with the ability of the somatic cell to 
release GNRH. Despite the prevalence of this pattern, how 
life has evolved to exhibit temporal coordination during 
development remains unknown2,4. 

II. Hypothesis
We posit that temporal coordination is a common feature 

of developmental programs where one genome regulates cell 
fate acquisition and does so robustly from a single cell 
zygote across multiple daughter lineages. This is supported 
by the discovery of a genetic pathway in the roundworm 
nematode Caenorhabditis elegans dedicated to regulating 
the timing of larval development across multiple tissues and 
cell types5-8. In fact, many C. elegans developmental timing 
genes also participate in the onset of human pubertal timing
by regulating the GNRH release6,9-11. 

1Department of Applied Mathematics and Statistics, Stony Brook 
University. Stony Brook, NY.  E-mail: ramon.herrera@stonybrook.edu

III. Results
To test how GRNs and gene expression states affect the 

development of multiple stable cell types, we are using a
computer simulation based on a standard model of GRN 
evolution12-14. This model recapitulates how GRNs become 
more robust to perturbation (i.e. mutational &
environmental) when evolved under a stabilizing selection
regime. For our analysis, we select GRNs with multiple 
stable attractor states and impose the constraint that they 
stabilize within similar time frames. 

Here, we present data on how GRN structure and 
dynamics evolve under a stabilizing selection regime
requiring temporal coordination. Our findings indicate that 
GRNs increase in robustness when they change to take 
advantage of new inputs from the state space, sculpting,
molding, and canalizing the ancestral GRN basins of 
attraction. 
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Short Abstract — Genetically encoded logic is central to the 

function of living organisms. Synthetic biology has created 
many orthogonal genetic logic systems, but these systems are 
usually studied at steady state. We use microfluidic devices to 
study the dynamic responses of genetic logic gates. The specific 
gates in this work are constructed using chimeric 
transcriptional repressors, so logic can be created by controlling 
induction or production of these repressors. Controlling 
induction yields IMPLY or AND logic; controlling production 
yields NOT or NOR logic. We find that the speed at which gates 
reliably respond to environmental changes depends on their 
mechanism of induction. 
 

Keywords — Genetic Logic Gates, Microfluidics, Dynamics 

I. PURPOSE 
N synthetic biology, genetic logic gates have been 
constructed with applications in mind such as biological 

computing and sensors in a dynamic environment. These 
logic gates may be integrated into larger networks, mediating 
response or coupling dynamics of modular genetic circuits 
based on environmental conditions. However, less work has 
been done to understand the limitations of transcriptional 
logic gates in these applications.  It is clear that reliable logic 
gates should respond on a faster time-scale than time-varying 
environmental conditions. Therefore, we aim to measure the 
limitations on the dynamic range of transcriptional logic 
gates.  

The focus of this study is chimera-based transcriptional logic 
gates. Previous work showed that chimeric proteins derived 
from the LacI/GalR family of transcriptional repressors can 
be used to create transcriptional AND gates in vivo [1]. 
These chimeric proteins have the same operator (DNA) 
binding domain but different ligand binding domains; hence, 
they will bind to the same operator site but are induced by 
different sugars. By changing the production of the chimeras 
to inducible promoters (from constitutive promoters), NOT 
and NOR logic is implemented. 

 
. 
1Department of Biosciences, Rice University, Houston, TX Email: 

ajh7@rice.edu 
2Department of Applied Mathematics & Statistics, University of 

California, Santa Cruz, CA 
3Department of Mathematics, University of Houston, Houston, TX 
4 Department of Bioengineering, Rice University, Houston, TX 
 

II. RESULTS 
Two types of logic gates are described in this work – 

“ligand” gates (AND, IMPLY) and “inducible” gates (NOT, 
NOR). “Inducible” gates include an extra production step – 
that of the repressor – when compared to “ligand” gates. We 
find that transcriptional logic gates generally function as 
low-pass filters, responding faithfully to low frequency (long 
period) signals and unfaithfully to high frequency (short 
period) signals.  

A. “Ligand” gates respond over a wide range of driving 
frequencies 
Both AND and IMPLY gates were tested over a range of 

driving periods from 20 to 240 minutes. Both gates show 
robust output at periods from 40 to 240 minutes – that is, a 
clear threshold for ON and a clear threshold for OFF can be 
set in all these experiments. At a 20 minute driving period, 
the outputs of these gates do not reach a clear ON or OFF 
thresholds. 

B. Responses in the NOT gate are delayed compared to 
“ligand” gates 
While the AND and IMPLY gates are robust at periods 

greater than 40 minutes, the NOT gate tested here is only 
robust in its response at periods greater than 120 minutes.  
This difference in behavior is attributed to the extra time 
required to produce and degrade the repressor proteins, steps 
not required in the “ligand” gates. 

III. CONCLUSION 
While genetic logic can be implemented by controlling the 
production of a transcription factor, we show that robust 
responses are generated at faster time scales when the levels 
of regulatory proteins do not need to be controlled. 
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Short Abstract — We recently developed an entire data-
driven approach for network inference based on free energy 
minimization. The method outperformed performance with 
published methods in predicting coupling strengths of 
stochastic processes, especially in the regimes of little 
observed samples and large variance of couplings. Using 
latent variables, we extend the method to recover the network 
when only a partial system is available. Our method can infer 
accurately the states of latent variables, the coupling 
strengths and the number of latent variables.         

Keywords — Network reconstruction, kinetic Ising model, 
latent variables, neural network.

I. PURPOSE

REDICTING network connections from observed data is 
a critical topic, not only in quantitative biology but 

also in other areas, more generally, data science [1]. 
Statistical methods have been developed based on naïve 
mean field [2], Thouless-Anderson-Palmer mean field [2], 
exact mean field [3], and maximum likelihood [4]. 
However, these methods work well only in the weak-
coupling and large number of observed sample regimes. 
We recently developed an approach based on free energy 
minimization (FEM) and demonstrated that our method has 
a better performance than previous methods for strong-
coupling regimes, especially in the limit of few observed 
samples [5]. 
Our aim is to extend the FEM method to infer network 
connections when available data does not contain every
variable but some of them are unobserved.

II. METHOD
Our method combines FEM and maximum likelihood for 
latent variables and contains the following steps: (i) Assign 
the state of latent variables as random; (ii) Infer interaction 
between variables based on FEM [5]; (iii) Update the state 
of latent variables with a probability P2/(P1 + P2) where P1

and P2 represent the likelihood of systems before and after 
the updating; and (iv) Repeat steps (ii) and (iii) until the 
discrepancy of actual and its expectation value of variables 
becomes saturated. The number of latent variables can be 
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estimated from the minima of the average of the 
discrepancy over the total number of variables.

III. RESULTS
We first tested our method to infer the coupling strengths 
in the kinetic Ising model in a system of 100 variables, 
using the states of only 60 variables. We could recover 
successfully the states of the 40 latent variables and the 
coupling strengths. We then applied our method to recover 
a neural network from neuronal activities in the salamander 
retina [6]. After inferring the neural dynamics couplings 
and the external local fields and the state of latent 
variables, we recovered the neuronal activities with an 
accuracy of 80% (Figure 1).

Figure 1. Inference of neuronal activity. Raster of 100 
neuronal activities from experimental data (top) and our 
prediction (bottom).  

IV. CONCLUSION

Extending our FEM method, we proposed an iterative 
algorithm with latent variables to infer the coupling 
strengths and the configuration of latent variables. 
Applying this to neuronal data, we can infer accurately 
activities. Besides better performance, our method is 
parameter-free and generalizes to many data types.
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A key step in a wide variety of cellular signaling cascades is 
selective entry into the nucleus. This regulatory step requires 
the nuclear pore complex (NPC) to act as a selective filter 
allowing the passage of only a subset of macromolecules.   In 
many biological filters, such as mucus, binding inhibits 
transport.  In contrast, in the NPC binding of specialized 
proteins called transport factors to disordered proteins called 
FG Nups specifically enhances their transport. We developed 
a quantitative theory of the minimal ingredients sufficient for 
binding-induced selective transport. Our model provides a 
framework to study how biological filters regulate access to 
key macromolecules. 

elective filters made of biopolymers are used in 
living and synthetic systems to control the localization 

and movement of molecules, nanoparticles, viruses and 
other organisms [1].  One of these filters, the nuclear pore 
complex, or NPC, regulates access to cells’ genetic 
material. Controlled passage through the NPC to the 
nucleus is a key features of many signaling cascades.  For
example, transcription factor  activation typically includes 
its nuclear localization.  In plants, signaling can also 
directly affect properties of the nuclear pore, regulating 
nuclear access for a wide range of pathways [2]. 

Selective biopolymer filters regulate access to genetic 
material (the nuclear pore complex, or NPC), cells (the 
pericellular matrix), tissues (the extracellular matrix), and 
organs (mucus). How particle binding affects motion and 
filtering is unclear. Binding of transport factors that bind to 
proteins in the NPC move rapidly through it. In contrast, 
binding inhibits the uptake of nanoparticles that bind to 
airway mucus and many viruses minimize binding 
interactions [3]. While particle size, charge, and binding 
interactions are known to affect filtering, the physical 
principles that underlie mobility and transport in polymeric 
biomaterials are not fully understood.  

Among these filters, the NPC is tuned for selective 
passage enabled by binding. The NPC selectively filters 
molecular traffic between the nucleus and cytoplasm of 
eukaryotic cells, making it important for diverse processes 
including gene regulation and translation [4]. In particular, 
it is a key regulatory step in cellular signaling. Post 
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translational modification or the presence of binding 
partners can expose a nuclear localization signal (NLS).
This marks the protein as a cargo, recognized by a transport 
factor and so selectively transported.

Transport occurs through the central channel of the NPC,
50 nm in diameter and 100 nm long. The selective 

barrier filling the central channel is made from disordered 
proteins, the FG nucleoporins (FG Nups), which contain 
repeated phenylalanine-glycine (FG) motifs. Transport 
factors (TFs) that directly bind to the FG repeats can cross 
the NPC and carry cargo with them. Transport through the 
NPC is remarkably fast, with pore residence times 10 ms 
[5]. Binding between FG Nups and TFs shows diffusion-
limited on-rates and transient binding of individual FG 
repeats to TFs [6,7]. How the FG Nups both block passage 
(of non-binding molecules) and facilitate passage (of 
binding molecules) is not fully understood, making the 
NPC an ideal system to dissect the principles of binding-
controlled selective transport.  

We address the central contradiction of selective 
transport through the NPC: how does binding of TFs to FG 
Nups within the pore increase the flux rather than 
decreasing it? Using a biophysical model, we demonstrate 
that TF diffusion and binding are sufficient for selective 
transport, as long as binding only partially immobilizes 
TFs. Binding increases the local concentration, and these 
molecules contribute to the flux if mobile. Thermally-
driven diffusion of TFs bound to flexible tethers gives 
sufficient particle mobility to produce selectivity similar to 
experimental measurements. Tether flexibility also allows 
bound TFs to hop between tethers, further enhancing 
selectivity.  
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Programming Fitness 
Landscapes by Sparse 

Epistasis  
Kabir B Husain1 and Arvind Murugan1 

Short Abstract —The effect of a mutation in a genetic          
sequence depends on the context in which it is made. This           
phenomenon, known as epistasis, leads to rugged fitness        
landscapes that proteins explore over evolutionary timescales.       
The form of evolutionary pathways in these landscapes are not          
well characterised. Inspired by recent experimental findings,       
here we construct a class of fitness landscapes characterised         
solely by their epistatic statistics. We analyse the structure of          
mutational pathways in this space, and investigate both its         
global and local topology. Our results serve as theoretical         
baselines against which experimental data may be assessed. 
 

Keywords — Epistasis, Protein evolution, Statistical      
landscapes, Mutational pathways 

I. BACKGROUND 
Proteins evolve towards fitter variants by a process of         
mutation and selection. In principle, these local       
transformations occur in the background of a fitness        
landscape defined over an underlying sequence space.       
Global features of this landscape are therefore key in         
determining how well and how quickly proteins evolve.        
However, we do not quite understand what the defining         
structure of a `generic' or representative fitness landscape is         
-- this is related to the problem of predicting the form of the             
genotype-phenotype map.  

Nonetheless, experiments have, by exhaustive     
mutagenesis, begun to map this out. In particular, a recent          
study [1] found that the landscape could be encoded by a           
small number of appropriately-defined epistatic     
contributions. This sparsity suggests a simple but non-trivial        
structure, and leads to the question of whether particular         
mutational pathways in genotypic space can be understood        
as arising just from this underlying epistatic structure. 

II. METHODS AND RESULTS 
To address this question, we resort to a minimal, statistical          

approach. We represent a genotype as a bit string, so that the            
genotypic space is a Boolean hypercube. On this space, we          
generate an ensemble of fitness landscapes by randomly        

1Acknowledgements: KH is supported by a postdoctoral fellowship from         
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1James Franck Institute, University of Chicago. E-mail:       
kabirh@uchicago.edu 

2Same address. E-mail: amurugan@uchicago.edu 

generating a (small) number of epistatic terms; as described         
in [2], this is analogous to specifying a landscape by its           
Fourier modes. Our main control parameter is the extent of          
sparsity: the fraction of epistatic terms that we allow to be           
non-zero.  

We first consider local properties of the resulting        
ensemble, measuring correlations lengths as a function of the         
sparsity and magnitude of epistasis. We then go on to          
characterise more global properties: in particular, the       
'ruggedness' of the landscape (intuitively, the number of        
local fitness maxima), and the connectivity of mutational        
pathways in this space [3]. We contrast our results with prior           
statistical landscapes, such as the NK model, and discuss the          
effects of higher-order epistatic contributions. Finally, we       
consider potential applications to existing and future       
experiments [4]. 

III. OUTLOOK 
The form of the sequence-function map, and its        

connection with the mutational pathways undertaken by an        
evolving protein, has been a long standing puzzle. Our         
theory provides a simple prescription to generate ensembles        
of rugged landscapes, and therefore a systematic       
investigation of the link between epistasis, ruggedness, and        
evolutionary paths. Our results may be important for        
identifying a minimal, conserved set of features shared by         
diverse fitness landscapes. 
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Short Abstract — We prove that cancer nodules and 
surrounding normal tissue are governed by distinct Gene 
Master Regulators (GMR) and that smart manipulation of a 
GMR’s expression selectively affects cancer cells. The method,
consistent with our Genomic Fabric Paradigm, relies on an 
original mathematical algorithm that establishes the gene 
hierarchy from the transcriptomic profiles of tumor biopsies 
based on their Gene Commanding Height (GCH). GCH is a
composite measure of gene expression control and coordination 
with major functional pathways. We present validation of the 
approach using microarray data obtained in our NYMC 
laboratory by profiling human thyroid, kidney and prostate 
cancer samples.  

Keywords — gene master regulators, genomic fabric, 
transcriptomic topology, microarray, thyroid cancer, kidney 
cancer, prostate cancer. 

I. INTRODUCTION

UMEROUS groups race to discover the gene biomarkers 
whose alteration (as sequence or expression) alone is 

indicative of a particular disease in all humans. However, 
thousands other genes (whose contribution is neglected but 
not necessarily negligible) are affected. In each person a 
similar disease results from a unique, never-repeatable 
combination of gene alterations. As selected from the most 
frequently altered genes in large populations (indicating little 
protection by the homeostatic mechanisms like for low-key 
players) biomarkers are of little therapeutic value. Instead,
our Genomic Fabric Paradigm [1] identifies in the cancer 
nodules of each patient the GMRs whose highly protected 
expression governs major functional pathways by controlling 
the expression of numerous other genes. The genomic fabric 
is defined as the transcriptome associated with the most 
interconnected and stably expressed network of genes 
responsible for a particular functional pathway. The fabric 
exhibits specificity with respect to race/strain, sex, age, 
tissue/cell type, and lifestyle and environmental factors. It 
remodels during development, progression of a disease, and 
in response to external stimuli. GFP is powered by 
mathematically advanced analytical tools (e.g. [2]) that are 
presented together with the experimental protocol to collect 
and profile the cancer nodules from a heterogeneous tumor.

II. RESULTS 

Our experimental protocol requires that biopsies from 
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cancer nodules and surrounding normal tissue (best reference 
for malignancy) are split in four, quarters profiled separately 
as biological replicas of the same transcriptomic machinery 
subjected to slightly different local conditions. Thus, we get 
for every single gene three independent measures: average 
expression level (L), expression variability (V) and 
expression coordination (C) with each other gene. “L” is 
used to determine what gene is up/down-regulated in malign 
vs normal tissue, “V” to estimate the control of transcript 
abundance in each condition and “C” how the genes are 
networked in functional pathways to satisfy a kind of 
“transcriptomic stoichiometry” [3]. Together, these results 
are uploaded in an algorithm that constructs the genomic 
fabrics of major functional pathways [4] and their interplays 
[5], determines the GCH scores of individual genes and 
establishes the gene hierarchy in each part of the tumor. We 
have published recently proves that malign and normal 
regions of kidney [6] and thyroid [7] tissues are governed by 
different GMRs. Here, we provide additional evidence for 
several cases of prostate cancer and validate the therapeutic 
value of the GMR approach in standard cell lines of human 
cancers of thyroid, lung and blood.

III. CONCLUSION

GMR approach identifies for each patient the most 
legitimate gene targets for cancer gene therapy. Smart 
manipulation (e.g. up-regulation if pro-apoptotic or silencing 
if anti-apoptotic) of the personalized GMR would have the 
best result not for everybody but for that person. 
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Short Abstract:
Abnormal metabolism is a hallmark of cancer. In a 

traditional view, cancer cells largely utilize glycolysis for 
energy production irrespective of the presence of oxygen. 
Recently, increasing experimental evidence shows a critical 
role of actively functional mitochondria and oxidative 
phosphorylation (OXPHOS) in tumorigenesis and metastasis. 
However, how cancer cells orchestrate glycolysis and 
OXPHOS to facilitate malignancy is largely unknown. 
Through integrating mathematical modeling, bioinformatics 
with experiments, we show that cancer cells can acquire a 
stable hybrid glycolysis/OXPHOS phenotype, characterized 
by high activity of AMPK and HIF-1 and high metabolic 
activity of glycolysis and glucose/fatty acid oxidation. 

Keywords — Cancer metabolism, metabolic plasticity, 
hybrid metabolic phenotype, AMPK and HIF-1 signatures, 
gene regulatory network, metabolic pathway activity 

I. BACKGROUND

BNORMAL metabolism is an emerging hallmark of 
cancer [1]. Unlike normal cells, cancer cells largely 

depend on glycolysis to produce energy even in presence of 
oxygen. Emerging evidence shows that mitochondria are
actively functioning in cancer cells and OXPHOS may be 
specifically associated with metastasis [2,3]. However, it 
remains elusive how cancer cells take advantage of both 
glycolysis and OXPHOS to facilitate malignancy. 

To capture the two regimes of cancer metabolism, we 
develop a coarse-grained model on a core metabolism 
regulatory circuit, composed of AMPK, a master regulator 
of OXPHOS, HIF-1, a master regulator of glycolysis and 
ROS that can mediate the interplay between AMPK and 
HIF-1 [4]. Computational modeling of the AMPK:HIF:ROS 
circuit shows that in addition to the glycolysis and 
OXPHOS phenotypes, which are adopted by normal cells, 
cancer cells can acquire a hybrid glycolysis/OXPHOS 
phenotype, that can be promoted by elevated ROS 
production rate, stabilization of HIF-1 and regulation of 
oncogenes, such as MYC and c-SRC [4]. 

To quantify the activity of OXPHOS and glycolysis, we 
developed the AMPK and HIF-1 signatures by evaluating 
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the expression of their downstream targets. Strikingly, even 
though the AMPK and HIF-1 gene sets are independent, we 
observed strong anti-correlation between AMPK and HIF-1
activities in multiple cancer types. The AMPK and HIF-1 
signatures can capture the significant metabolic features of 
both bulk tumors and single cells [4]. 

To further characterize cancer metabolic activity, we 
extended our AMPK:HIF-1:ROS model by integrating three 
metabolic pathways, glucose oxidation, glycolysis and fatty 
acid oxidation. Our results unraveled a direct association 
between gene activity and metabolic pathway activity. 

II. RESULTS

A. Coupling the AMPK:HIF:ROS circuit with metabolic 
pathways 
The modeling simulation revealed the coupling between 

the AMPK/HIF-1 activity and the metabolic pathway 
activity in different metabolism phenotypes. Particularly, 
the hybrid metabolic phenotype has been shown to be 
capable of using both glycolysis and OXPHOS for ATP 
production. The model further help elucidate the similarity 
and difference of HIF-1 and ROS in regulating the stability 
of various metabolism phenotypes of cancer.   

B. Association of the AMPK/HIF-1 activity with 
metabolic pathway activity 
The modeling predicted association of the AMPK/HIF-1

activity with metabolic pathway activity were supported by 
bioinformatics analysis of gene expression and metabolite 
abundance in breast and hepatocellular carcinoma samples. 
We showed that the evaluation of metabolic pathway 
activity by enzyme gene expression has more robust 
performance than the evaluation by metabolite abundance.  

III. CONCLUSION

Our systems biology analysis provides signatures to 
assess the metabolic states of tumor samples using gene 
expression. Further studies are needed to evaluate the roles 
of the hybrid metabolic state and therapeutic strategies 
targeting the hybrid state. 
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The underlying mechanism of the ParA-ParB protein 

interaction that causes plasmid translocation and equidistant 
spacing between multiple plasmid foci has been widely 
discussed but a comprehensive study that describes how system 
parameters lead to either oscillatory behaviour or stable 
plasmid arrangements requires further explanation. In this 
study we provide a deterministic model that includes finite 
substrate size effects on protein concentrations that can 
reproduce a wide range of the observed plasmid behaviour. 

Keywords — ParA-ParB system, Plasmid translocation, 
spatial oscillations, deterministic model

I. REVIEW

 The spatial organization of low-copy plasmids in bacteria 
is mediated by the Par protein system consisting of two 
proteins, ParA and ParB, and a cis-acting centromere-like 
site on the plasmid, parS. ParB specifically binds to parS
and by interacting with ParA bound to the nucleoid, is able 
to orchestrate the movement and positioning of plasmids 
inside the cell [1]. Various theoretical models have been 
proposed that explain how plasmid translocation arises from 
ParA-ParB interactions [2,3] and recently simulations based 
on one such model have successfully achieved the required 
positioning of multiple plasmids at equi-distant locations 
along the length of the cell [3]. 
 However, live imaging has revealed complex plasmid 
behaviours ranging from pole to pole oscillations in cells 
with single plasmids, to states with stably positioned 
plasmids within cells with inhibited division [4]. Given these 
observations, it is unexplained whether the plasmids are 
undergoing sustained oscillations or settling towards fixed 
point positions within the cell. Additionally, super-resolution 
microscopy has revealed differences in the stable positions 
of F plasmids in E. Coli and chromosomal foci in B. Subtilis
both of which are controlled by the same Par system [5]. 
 It also remains to be understood how system parameters 
like cell length and plasmid number affect the organization 
and dynamics of plasmid foci. Since these parameters 
change during the cell-cycle, simulations that include cell-
cycle durations and plasmid replication events are required 
to provide a complete explanation of the observed plasmid 
behaviour in-vivo.

II. RESULTS

Previously we developed model that was able to describe 
the locomotion of an in-vitro system that was actively driven 
by the Par system [6]. Here we combine it with finite 
substrate length to obtain equi-distant plasmid positioning 
and further extend it to provide a comprehensive description 
of all factors that affect plasmid dynamics within the cell. 
These key parameters are the number of plasmids within the 

same cell, the length of the nucleoid to which ParA is bound, 
the rate at which ParA hydrolyzation is mediated by ParB, 
the rate at which ParA rebinds (closely related to total ParA 
within the cell), and the ratio of the length scale over which 
the plasmid hydrolyzes ParA to the length scale over which 
it is tugged by ParA dimers.  

From the deterministic model we are able to analytically 
calculate the boundary in parameter space that separates 
oscillatory plasmid behaviour from stable, equi-distantly 
spaced fixed points. We find important differences in the 
location of this boundary depending on whether ParA 
resources are unlimited (in-vitro) or limited (in-vivo). We 
also find that increasing the number of plasmids pushes a 
system with oscillatory behaviour towards stable fixed 
points while increasing nucleoid length has the opposite 
effect on the system. Furthermore, we outline the in-vivo 
conditions required to   observe plasmid oscillations and find 
that realistically it is impossible to observe three plasmid 
oscillation in a bacterial cell of regular size. Interestingly, 
finite size effects are observed as the distance separating two 
oscillatory plasmid trajectories is reduced as system size is 
increased. We show through simulations how plasmid 
segregation is robust to replication events during a single 
cell-cycle. Finally, we discuss the parameter ranges within 
which the plasmid positions in the super-resolved images 
provided by [5] can be obtained.

III. CONCLUSION

Our results show that plasmid number and the length of 
the nucleoid can drive the system to switch from oscillatory 
dynamics to stable equi-distantly placed fixed points along 
the cell. Bacterial systems might be poised near this 
boundary to achieve the faithful segregation of genetic 
material.  We suggest further experiments that could probe 
the changeover from oscillatory to stable plasmid dynamics. 
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Short Abstract — Experiments with E. coli cells growing in 
open-walled extended microfluidic traps with have shown that 
cells orient themselves orthogonally to the long side of the trap.  
We develop a stochastic model of cell dynamics that explains 
this phenomenon. We find that steady-state cell alignment is a 
function of the aspect ratio of the trap as well as the cells’ 
ability to sense their position within the trap. In the absence of 
this sensing, boundary effects dominate and steady-state cell 
orientation becomes exactly opposite of what is experimentally 
seen.    

Keywords — Cell Alignment, Aspect Ratio, Spatial Moran 
Model, Mean-Field Approximation, Phase Transition, 
Transcritical Bifurcation, Synthetic Biology 

EXTENDED ABSTRACT

MERGENT patterns and structures are ubiquitous in 
biology: leopards develop spotted patterns on their skin

[1], mushrooms form fairy rings, and specialized cells 
conglomerate to form tissues with specific forms.  The 
question of how these structures emerge has been a research 
focus in recent years from both the biological and 
mathematical perspectives.  Examples include the study of 
Turing instabilities [2], pattern formation on the skin of 
several animals [1], and tumor initiation and growth [3,4].

Recently, experimentalists have observed an emergent 
structure in the synthetic biology laboratory.  E. coli cells 
growing in open-walled, extended microfluidic traps as a 
monolayer align orthogonally to the long side of the trap.  In 
this synthetic setting, cellular movement is driven by the 
growth of the cells along the major axis of their capsule-like 
body. Experimental evidence also shows that growth-
induced cell movement is preferential toward the nearest 
boundary in the trap, so as to minimize the number of cells a 
given cell needs to push in order to grow.  That is, cells grow 
in directions where physical resistance is minimal.

To understand the mechanism behind this emergent 
behavior, we model the trap as an M x N lattice and treat the 
cells as oriented (vertical or horizontal) particles growing 
along their major axis on the lattice according to a spatial 
Moran process.  These are typically used as a modeling 
framework for tumor initiation and growth [3,4].  One 
differentiating factor between our Moran process 
formulation and others’ is that the growth rates for cells in 
our model are space-dependent.  This reflects a cell’s 
tendency to grow toward the nearest boundary.

Monte Carlo simulations of this model show steady-state 
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cell alignment orthogonal to the long boundary of the lattice, 
as in experiments.  That is, for M/N > 1, cells orient 
horizontally whereas for M/N < 1, cells orient vertically. In 
the interesting case where M = N, the system reaches a 
quasi-equilibrium wherein cells orient orthogonally to the 
boundary nearest them; however, cells equidistant from the 
two boundaries constantly switch between orientations.  
Specifically, the aspect ratio M/N acts as a bifurcation 
parameter for a transcritical bifurcation in the system at the 
critical value M/N = 1.  

Removing space-dependence from the growth rates yields 
steady states that have cell alignment parallel to the long 
boundary. This is due to boundary effects.  There are more 
chances for cells oriented orthogonally along the long 
boundary to exit the trap than the short boundary.  Boundary 
size dichotomy dampens cellular growth orthogonally to the 
long boundary when growth is space-independent.  Cell 
alignment at steady state is therefore a balance between 
boundary effects and growth dampening caused by physical
resistance from other cells. 

We make this balance explicit by characterizing lattice 
dynamics with Heisenberg equations [5] and invoking a 
mean field approximation to derive a single effective 
equation for the dynamics of the fraction of cells in a given 
orientation.  The latter is a logistic equation whose growth 
term reflects the tug-of-war between boundary effects and 
physical resistance between cells.  In this analytically 
tractable framework, we show the existence of critical 
parameter values that dictate a phase transition between bulk 
cell alignments at steady state.

Steady-state cell alignment in traps is the result of a 
balance between boundary effects and physical resistance to 
cellular growth.  The latter is crucial for cells to align 
orthogonally to the long side of the trap, as in experiments.
We find that even small differences in growth rate at the 
level of individual cells can translate to large differences at 
the population level.
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Transcription in all organisms is regulated by weak protein-
DNA and protein-protein interactions, but measuring these
interactions in living cells remains exceedingly difficult. Here 
we show how reporter assays can be used to measure the Gibbs 
free energy of critical regulatory interactions in vivo and with
high precision (~0.1 kcal/mol). We further demonstrate how 
this approach can be used to distinguish which kinetic steps in 
the transcription initiation pathway are regulated. The 
prospects for a massively parallel implementation of this 
approach are promising, and we will discuss ongoing work in 
this direction.

I. BACKGROUND

ESPITE an imposing arsenal of experimental techniques
for studying transcriptional regulation genome-wide, 

knowledge of what regulatory proteins actually do when 
bound to individual regulatory sequences remains highly 
limited. Indeed, an understanding of how elemental protein-
DNA and protein-protein interactions mechanistically 
control transcription has been established for only a small 
handful of intensively studied bacterial promoters. New 
experimental methods are needed if we are to understand the 
mechanistic basis for transcriptional regulation more 
broadly. 

The weak nature of regulatory interactions presents a major
experimental difficulty. Transcription is controlled by multi-
protein-DNA complexes that continually form and break 
apart due to thermal fluctuations. The dynamic nature of 
these complexes, and thus their physiological function, is 
strictly governed by the quantitative strength of the 
interactions that hold them together. For example, a
transcription factor (TF) can up-regulate transcription as 
much as 5-fold through a stabilizing interaction with RNA 
polymerase (RNAP) of as little as 1 kcal/mol (1.6 kBT at 37
C, ~1/4 of a hydrogen bond). Even a crude mechanistic 
understanding of such interactions therefore requires 
knowing their energies to a precision of substantially less 
than 1 kcal/mol. Standard biochemical methods, however,
cannot measure such interactions in living cells to this 
precision.  

II. RESULTS

Here we show how reporter assays can be used as a general 
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method for measuring protein-DNA and protein-protein 
interactions in living cells. Each Gibbs free energy is 
measured by quantifying expression from a variety of 
synthetic regulatory sequences, the activities of which form 
a one-dimensional “expression manifold” embedded in a 
two-dimensional space. Quantitative energy values are then 
obtained by mathematically modeling this manifold. This
modeling task is far simpler and more transparent than other 
model-based approaches to transcriptional biophysics (e.g., 
[1-4]). Indeed, accurate free energy values can often be 
discerned by eye from raw data.

We demonstrate this approach by measuring TF-DNA, 
RNAP-DNA, and TF-RNAP interactions in Escherichia 
coli. In doing so, we demonstrate the ability to robustly 
measure free energies to high precision (~0.1 kcal/mol). We 
find that the well-studied transcription factor CRP can 
activate transcription far more strongly than has long been 
thought [5,6]. This expression manifold strategy can further
distinguish which kinetic steps in the transcript initiation 
pathway CRP activates when bound to DNA at varying
positions upstream of RNAP. 

III. OUTLOOK

Because this approach requires only mRNA expression 
measurements, it has the potential to be applied in high 
throughput using massively parallel reporter assays in a wide 
variety of systems, including human cells [7]. Progress 
toward this goal will be discussed, as will outstanding 
challenges. The potential utility of studying expression 
manifolds in higher dimensions will also be discussed. 
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Short Abstract — RAF1 and BRAF are two main RAF kinase 
isoforms in the ERK pathway. We have constructed detailed 
computational model of the ERK pathway, accounting for the 
regulatory sites of both RAF1 and BRAF, and their effects on
assembly and coordination of RAF1-BRAF and RAF1-ROKα 
complexes, promoting respectively survival/proliferation and 
motility.

Keywords — RAF1, BRAF, isoforms, ROKα, cell fate, 
proliferation, migration, MAPK, MEK, ERK, rule-based 
modeling

I. BACKGROUND

HE RAF/ERK cascade plays a principal role in the 
signal transduction of growth factors and initiating 

proliferation. The RAF kinase possess three isoforms: RAF1, 
BRAF, and ARAF that share similar homologous regulatory 
phosphorylation sites and activation mechanism but differ in 
activity and protein-protein interactions (PPIs) [1].
Specifically, RAF1 interacts with BRAF promoting ERK 
activation and proliferation but also with ROKα, which 
promotes cytoskeleton rearrangement and cell motility.
These interactions are mutually exclusive and depend on the 
phosphorylation status of RAF1-Ser621 In this study we 
explored the coordination of the two responses [2].

II. RESULTS

A. Computational Model
We have constructed a model of the cascade that accounts

for the regulation of RAF1 and BRAF by phosphorylation 
and protein-protein interactions. The model accounts for the
phosphorylation state of the N- and C-terminal 14-3-3
binding sites, the NtA domain, and dimerization interface (by 
a negative feedback from ERK). Of particular importance is 
the N-terminal 14-3-3 binding site of RAF1 – Ser621; when 
phosphorylated 14-3-3 stabilizes RAF1-BRAF complex via 
crosslinking, or crosslinks RAF1 in an inactive form, when 
unphosphorylated RAF1 binds ROKα 
The model features a detailed mechanism of RAF1 and 
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BRAF activation by RAS-GTP recruitment, homo- and 
heterodimerization, and stabilization by 14-3-3. The model 
comprises a system of 277 ODEs generated from the system 
of 85 rules specified in BNGL. The model was manually fit 
to reproduce the observed time profiles of (1) the 
phosphorylation of RAF1 sites, (2) ERK activation, (3) 
RAF1-BRAF and RAF-ROKα complex formation and 
effects of single and multiple mutations of the regulatory 
sites of RAF1 and BRAF on the ERK activity and protein-
proteins interactions.  

B. Model Analysis
The analysis of the model demonstrated the mechanisms of 

coordinating protein-protein interactions in response to 
growth factor stimulation.. The model indicated that the 
recruitment of RAF1 to RAS-GTP dimer is critical for 
Ser621 phosphorylation and heterodimerization with BRAF.
This favors early ERK activation with maximal response at 5 
min after the stimulation, which coincides with the maximal 
level of RAF1-BRAF heterodimer and promotes cell
proliferation in the initial phase of signaling. The subsequent 
dimer disassembly and dephosphorylation at RAF1-Ser621 
promotes RAF1-ROKα complex assembly with the maximal 
level at 15 min post-stimulation, inducing cytoskeletal 
rearrangements and promoting cell motility.  

Sensitivity analysis confirmed the importance of the 
RAF1-BRAF stability and regulation thereof in determining 
the time profile of RAF1-ROKα complexes. the model 
predicts that the negative feedback from ERK to RAF 
isoforms terminates ERK activity and actively promotes
RAF1-ROKα assembly by prior disruption of RAF1-BRAF 
heterodimers, thus establishing a temporal sequence of  
cellular responses.

III. CONCLUSIONS

We have formulated and analyzed the first comprehensive 
model of the RAF/ERK cascade, accounting for the 
combinatorial complexity of the RAF1 and BRAF activation 
and interactions, and explaining coordination of 
proliferation and motility due to growth factor signaling. 
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Short Abstract — This work is concerned with modeling of 
miRNA-mediated regulation of gene expression. We propose a 
novel approach based on queuing systems theory. The model 
describes changes of probabilities of different numbers of 
ribosomes associated with a given transcript. This allows to 
compare simulation results with experimental observations of 
polysome profiles and determine the type of control exerted by 
miRNA on the translation process. 

Keywords— miRNA, translation control, queuing systems. 

I. INTRODUCTION

NE of the molecular components regulating gene 
expression is microRNA – a small (21-25 nt) single-

stranded non coding RNA molecule. The main function of 
this molecule is post-transcriptional regulation of gene 
expression through gene silencing. It is achieved either by 
inhibition of translation or by degradation of mRNA [1]. The 
detailed mechanisms employed include inhibition of 
attaching the 60s ribosomal subunit, premature ribosome 
drop-off or inhibition of protein elongation process, cleavage 
of mRNA or destabilization of mRNA [2-3].This regulation 
appears to be used in control of cellular responses to stress, 
e.g. induced by irradiation. Despite many efforts, however, 
detailed mechanisms employed in such case are still not fully 
understood. Development and analysis of mathematical 
model of miRNA-mediated mechanisms of control of gene 
expression should advance the research in this field.  

II. PREPARATION OF ABSTRACTS

In the literature, one can find several  models of regulatory 
networks, in which miRNAs are involved. Some of them 
describe specific miRNA interactions, while others attempt 
at creating a generic model of these processes [3-5]. In this 
work, a different approach is proposed, inspired by our own 
experimental results, showing different polysome profiles 
observed for reporter genes containing miRNA binding sites 
(using the technique described in [6]). The model is focused 
on the mRNA processing by the ribosome complexes, a
number of which may produce proteins from one mRNA 
template in parallel. When there is more than one ribosome 
on a mRNA, such construct is called a polysome [7]. 
Measuring polysome, together with respective protein levels 
may lead to conclusions about the type and power of 
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miRNA-mediated control specific gene expression as well as 
provide information about highly processed transcripts.

The approach proposed in this paper is based on a queuing 
systems theory. Each transcript is processed in such system, 
with ribosomes viewed as service stations. There are discrete 
events of ribosome binding, movement along a mRNA 
strand, finishing translation, thus producing a single protein 
molecule, and ribosome stop, either random or caused by 
miRNA complex attached to a respective binding site.
Binding of miRNA molecules to mRNA is also modeled as a 
discrete event, probability of which depends on the level of 
mRNA and its type.  

The system state is defined by a -dimensional vector .
Each variable ( ) represents probability of  ribosomes 
being attached to mRNA at the moment . Thus, simulation 
results can be directly compared with the experimentally 
observed distribution of polysome fractions. The dimension 
of the state vector is defined by the size of mRNA,  

III. CONCLUSION

In this work a novel approach of modeling regulatory 
mechanisms of gene expression is proposed. It consists in 
describing a process of translation within the framework of 
queuing systems theory. Stationary distribution of polysomes 
observed in biological experiments were well represented by 
the simulation results in preliminary studies.
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Short Abstract —We study the effect of both the noise and the 
parametric variations on the gene regulatory circuit (GRC)
dynamics by integrating stochastic analysis in the Random Circuit 
Perturbation (RACIPE) method. Our two sampling schemes, one 
based on constant noise simulations and the other based on
simulated annealing, enable estimation of both the basins of
attraction as well as the relative stability of different gene 
expression states of the GRC. This systematic investigation of 
various GRC topologies sheds light on noise-induced hybrid 
states.

Keywords — gene regulatory circuits, gene expression noise, 
simulated annealing, network robustness, sRACIPE.

I. INTRODUCTION

OISE or stochastic fluctuations in molecular components 
play an important role in biological systems [1-3]. The 
dynamics of a gene regulatory circuit (GRC), a functional 

regulatory network motif of a small set of interconnected 
regulators, can be modeled using different mathematical 
frameworks like stochastic simulation algorithms such as 
Gillespie algorithm, stochastic differential equation-based
methods, asynchronous random Boolean network models, and 
hybrid methods [4]. Most of these methods require a fixed set 
of kinetic parameters whose estimations are difficult and thus 
any uncertainty in these parameters limits the accuracy of the 
models as well.

Random circuit perturbation (RACIPE) is an ordinary 
differential equation-based method that overcomes the 
uncertainty in parameter estimation by generating an ensemble 
of models with random kinetic parameters [5-6]. Gene 
expression patterns obtained from the statistical analysis of 
this ensemble of models correspond to the distinct functional 
states of the GRC. To generalize the RACIPE method to 
capture the stochasticity of cellular processes, we have 
incorporated stochastic analysis in RACIPE in our method, 
sRACIPE [7]. Such stochastic analysis allows us to analyze 
changes in the gene expression patterns in different gene 
expression clusters at different noise levels. Crucially, 
sRACIPE also allows us to compare the stability of various 
states, which is not feasible in RACIPE in which all states are 
considered equally probable. This is accomplished by a 
simulated annealing-based approach where the GRC is first 
simulated at a high noise, and then the noise is decreased 
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gradually to zero. Next, we discuss the results obtained by 
application of sRACIPE to various GRCs.

II. RESULTS

Statistical analysis of sRACIPE models revealed that the 
changes in gene expression patterns due to parametric 
variations are qualitatively different from those arising due to 
stochasticity of molecular components. While parameter 
variations result in an increase in the spread of the gene 
expression clusters, large noise alters both the number of 
clusters as well as the gene expression patterns within the 
clusters. We observed merger of distinct states at high noise 
levels and creation of new hybrid states. The basin of attraction 
of the states can be estimated by using multiple initial 
conditions and simulating the GRC at a constant noise. 
Similar findings were observed for cascaded toggle switches 
and other large networks. Simulated annealing revealed 
relative stability of the states as well as the most stable state of 
a GRC as high noise enables the GRC to access all possible
states and then it gets trapped in the most stable state as the 
noise is reduced [7].

III. CONCLUSION

We have developed a method to study the gene expressions 
of stochastic GRCs and provided a publically available 
R-package for applying this method to any GRC.
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Short Abstract — Motivated by recent experimental data, we 
investigate mathematical models regarding the evolutionary 
outcomes of viral infections, specifically human 
immunodeficiency virus (HIV), in humans. We analyze how the 
interplay between multiplicity of infection, synaptic cell-to-cell 
transmission of the virus, and free virus transfer can affect the 
dynamics of an infection taking place. Finally, we will discuss 
how recombination between virus strains can change the 
evolutionary outcomes of infection and influence the course of 
disease. The overall goal of the project is to better understand 
the dynamics of viral infections, specifically HIV, and to help 
design more effective healthcare and vaccination approaches.

Keywords — HIV, recombination, synaptic cell-to-cell 
transmission, free virus transmission, multiplicity of infection. 

I. EXTENDED ABSTRACT

otivated by recent experimental data [1,2,4], we 
investigate mathematical models regarding the 

evolutionary outcomes of viral infections, specifically 
human immunodeficiency virus (HIV), in humans [5]. We 
will analyze how the interplay between synaptic cell-to-cell 
transmission of the virus and free virus transfer can affect 
the dynamics of an infection taking place. 

We consider models that take into account multiplicity of 
infection, where a cell can be infected multiple times by 
different strains of the virus. Further, we also consider 
models with competition between virus strains, characterized 
by different mutations, to see how each strain’s infection 
strategy can affect outcome. 

Finally, we will discuss how recombination between virus 
strains can change the evolutionary outcomes of infection 
and influence the course of disease. Multiple mathematical 
models for HIV including synaptic cell-to-cell transmission 
have been put forth [3], however we now make use of an 
agent based model to study recombination and the dynamics 
of recombinant strains of the virus in the presence of both 
transmission modes. We show that a combination of both 
free virus transmission and synaptic cell-to-cell transmission 
minimizes the time to recombinant virus formation. This is 
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because non-spatial free virus transmission ensures different 
strains will meet in the same cell and spatial synaptic cell-to-
cell transmission then repeatedly transmits the different 
strains together, resulting in more opportunities for 
recombination to occur.

The overall goal of the project is to better understand the 
dynamics of viral infections, specifically HIV, and to help 
design more effective healthcare and vaccination 
approaches.
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Short Abstract — Understanding chromatin organization within the 
nucleus is a key question in cell biology. Despite recent progress, 
little is known about the mechanisms underlying chromatin 
structure and how it can be established. One prominent hypothesis 
suggested is that loop-extrusion motors bind and translocate 
segments of chromatin to form structural loops. Such motors are 
proposed to be Structural Maintenance of Chromosomes (SMC) -
Kleisin protein complexes. 
Here, we use Direct Coupling Analysis (DCA) to reveal the full 
structure of the condensin protein complex. We demonstrate that 
this methodology predicts coevolved residue-residue interactions 
between the different components of the complex. These are used to 
predict the full structure of SMC complexes, for which only limited 
experimental data exists. This work serves as pioneering study to 
understand the establishment of chromatin architecture.

Keywords — condensin, cohesion, chromosome, cell 
replication, direct coupling analysis, co-evolution

I. BACKGROUND
EMBERS of the structural maintenance of 
chromosomes (SMC) and kleisin families of 

proteins are conserved in all domains of life and have key 
roles in the maintenance of chromosomes [1]. One such 
protein complex is cohesin, which has several critical 
biological roles. It has been suggested that cohesin organizes 
DNAs into chromatids by capturing small loops of DNA and 
then extruding them in a processive manner [2]. Similar to 
eukaryotes, the condensin complex in prokaryotes is also 
part of SMC-kleisin family. Condensin is formed by SMC-
kleisin proteins SMC and ScpA, respectively, and a third 
subunit, ScpB [2]. Despite major progress in recent years, 
many questions related to the structure and function of SMC-
kleisin complexes remain open. Importantly, the complete 
structure of SMC-kleisin complexes has yet to be 
established. The two main models of the structure of these 
complexes are: (1) two rings acting as a pair of molecular 
“handcuffs” in which each embrace one DNA single, or (2) a 
single ring that embraces two DNA strands. Although limited 
structural data exist for each subunit of the condensin protein 
complex [3-4], these cannot capture the dynamics and reveal 
interaction surfaces in details, and therefore are limited in 
their ability to disentangle the various controversies of the 
complex. 

II.RESULTS
Here, an integrative approached was used by combining 

previously known crystallographic data with evolutionary 

                                                          
Acknowledgements: NSF-funded Center for Theoretical Biological 

Physics (PHY-1427654)
1Center for Theoretical Biological Physics, Rice University, Houston, 

USA, Other address information. E-mail: danakrezus@rice.edu

information in order to study a series of controversial 
features of the condensin protein complex [5-6]. Combined 
with molecular dynamics (MD) simulations, we are able to 
predict the full structure of the previously unknown 
condensin complex. This allows us to: 

A. Construct the full structure of condensin

Taking advantage of existing experimental data, we use 
extract both homologous sequences and experimentally 
known structures. Direct coupling analysis (DCA) then run 
predicts a contact map, revealing the interprotein residue 
contacts between all constituents. To obtain the complete
structure of the condensin complex, we use the 
subcomponents and dock them guided by the DCA top 
contact predictions.

B. Examine the plausibility of higher-order 
stoichiometries
Having established a full DCA contact map, we examine 

whether our DCA contact predictions remain preserved in 
higher order stoichiometries of condensing while comparing 
their stability with the previously obtained structure. 

C. Reveal alternative configurations
Specific domains in the complex are suggested to serve as 

entry and exit gates for DNA, respectively. Our results 
manage to predict the rearrangement of these domains, which 
may lead to the opening of the ring in the presence of DNA. 
Moreover, the flexibility of ScpA subunit projects on the 
overall structure of the condensin complex, allowing possible 
interaction with the DNA strand and its release from the ring.

III. CONCLUSION

In this project the full all-atom structure of the condensing 
protein complex is revealed. Using our integrated 
methodology of existing experimental data with co-evolution 
information, we are able to study a series of controversial 
features of the condensin protein complex. Hence, this study 
serves as key foundation for the system-level study of the 
various SMC-kleisin protein complexes.
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Short Abstract — Stress tolerance studies are typically 

conducted in an all-or-none fashion. However, in realistic 
settings, cells may encounter stresses, including antibiotics, at 
different rates. Thus, how cells tolerate stress may depend on 
its rate of appearance. To address this, we study how the rate 
of introduction affects tolerance using a key stress response  
mechanism, efflux pumps. We found that slower rates of 
introduction provide a disproportionate benefit to efflux 
pump-containing strains, allowing cells to survive beyond 
their original inhibitory concentrations. We hypothesize cells 
surviving these stressful environments for longer periods will 
be predisposed to acquire mutations for antibiotic resistance. 

Keywords — dynamic environments, stress response, E. 
coli, antibiotics, efflux pumps 

I. BACKGROUND

NTIBIOTIC resistance has become a major public 
health concern as bacteria produce strategies to evade 

drugs, leading to recurring infections and overuse of 
antibiotics. Understanding the complex strategies bacteria 
employ to resist treatment could provide insight into 
different methods of targeting these evasive cells. Recent 
literature suggests that antibiotic resistance may be 
achieved after cells have gained tolerance in particular 
environments [1].

As a case study, we use efflux pumps to investigate how 
antibiotic resistance may be more likely to occur based on 
the environmental dynamics. Efflux pumps, such as 
AcrAB-TolC from Escherichia coli, are membrane 
transporters well known for their ability to export a wide 
variety of substrates, including antibiotics and biofuels [2-
3]. As such, efflux pumps may be able to maintain a low 
intracellular concentration in stressful environments; and by 
doing so, enable long term survival and perhaps mutations.

II. RESULTS

Our goal is to quantitatively determine the impact of 
short-term and long-term environmental dynamics on 
bacterial populations. To achieve this we co-culture cells 
with and without the efflux pumps. The relative fraction of 
cells with and without the pumps can change with time 
under variable antibiotic conditions.
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A. Short-term dynamic environments 
We hypothesized that the ideal pump expression level 

would involve a rate-dependent trade-off between the 
benefit of pumps and the cost of their expression. To test 
this, we evaluated the benefit of the AcrAB-TolC pump 
under different rates of stress introduction, including a step, 
fast ramp, and gradual ramp using the antibiotic 
chloramphenicol. A mathematical model describing these 
effects predicted the benefit as a function of the rate of 
stress introduction. [4]

B. Long-term dynamic environments 
Next, we hypothesized that long-term environmental 

perturbations enabling survival could produce permanent 
changes through mutations. Using a modular turbidostat, 
the eVOLVER, we were able to apply long-term dynamics 
to populations of bacteria [5]. We then quantify the 
population changes over several days to a week and check 
when mutations began to emerge.

III. CONCLUSION

Thus far, we have demonstrated that the benefit of efflux 
pumps depends heavily on the rate of stress introduction. 
We found that strains exposed to slower stress introduction 
rates were able to survive cumulative concentrations well 
beyond what they could survive if the stress appeared 
suddenly. This led us to investigate the long-term 
consequences of this increased tolerance through acquired 
resistance. Overall, this work will provide insight into how 
bacteria optimize the use of efflux pumps as strategic 
mechanisms for surviving and mutating in stressful 
conditions.
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The length of telomeres, protective structures at the end of 
chromosomes, positively correlates with the survival ability of 
carcinogenic cells. The length in human tumors is maintained 
by two known mechanisms, active telomerase and the 
alternative lengthening of telomeres (ALT). However it is 
known that compelled repression of telomerase-related genes
may induce the cells to use ALT for immortalization. Using the 
Abnormal Pathway Detection Algorithm based on the theory of 
G-network, our analysis shows a distinguishable pattern of the 
hTERT down-regulation in the ALT cell lines compared to the 
normal cell lines. Moreover the algorithm detects a number of 
genes positively activated by c-Myc, which is found in many 
malignant tumors in a mutated form, have significantly 
reduced mRNA expression levels in the ALT cell lines.  

I. INTRODUCTION

Telomeres, which are composed of TTAGGG repeats at 
the end of chromosomes (Blackburn, 2001), informs of
replicative senescence as they are shortened per normal cell 
division (Harley, 1991). Maintaining telomere lengths, which 
is accomplished by the activation of telomerase or ALT, is 
positively associated with one of the hallmarks of cancers
(Hirashima et al., 2013), which is resisting cell death 
(Hanahan and Weinberg, 2000). However hTERT, one of the
most important protein components of telomerase, tends to be 
suppressed in the ALT-expressed cell lines (Atkinson et al., 
2005), implying that deliberate repression of telomerase is a 
potential catalyst for cell immortalization by ALT [1].
Moreover, most genes positively interacting with c-Myc,
which is found in many malignant tumors in a mutated form,
are repressed in the ALT-expressed cell lines, suggesting that 
ALT may reduce the role of c-Myc.  

G-network [2], one of the stochastic models motivated by 
queuing theory, introduces a new notion of inhibition to 
conventional queuing theory. It allows us to explore gene 
regulatory networks using queuing models. Based on 
interactions between known gene-regulation pathways
(Metacore Analytical Suite), here we detect the significant 
abnormal pathways [3] among 29 genes present in the 
ALT-expressed cell lines. Furthermore, in order to uncover 
the roles of each targeted gene, we compare multiple gene 
regulatory networks with different combinations of genes.

II. METHODS

Identifying significant abnormal pathways using the 
G-network mainly focuses on estimation of transition 
probabilities (pij

+, pij
-), a probability that gene i activates 

*Research supported by Rice University, Houston, TX.
Kyunghyun Lee (e-mail: kl25@rice.edu) and Marek Kimmel (phone: 

713-348-5255; e-mail: kimmel@rice.edu) both are with the Department of 
Statistics, Rice University, Houston, TX 77005 USA.

gene j and a probability that gene i inhibits gene j,
respectively. We adopt and modify the algorithm illustrated 
in [3] for estimating the negative customer input rates under 
a normal condition, optimizing the transition probabilities in 
an ALT-expressed condition and determining the significant 
abnormal pathways under the steady state. Moreover the 
theory of Stochastic Automata Networks [4] and spectral 
gap are employed to explore the transient state using the 
global infinitesimal generator and the rate of convergence of 
the chain to its steady state for the last step of the analysis.  

Figure 1. The significant gene regulatory pathways consisting 13 genes.
From GSE14533 dataset in Gene Expression Omnibus, 4 normal and 18 
ALT-expressed cell lines were analyzed. Green (solid) and red (dashed) lines 
represent positive and negative interactions between two genes, respectively. 
Consistent with the result from [1], E2F1, a known repressor of hTERT, 
maintains its pathways related to c-Myc in ALT-expressed cell lines, whereas 
the association between c-Myc and hTERT was identified as being 
insignificant.
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Short Abstract — Ras small GTPases are key regulators of cell 

signaling. Recent evidence suggests a critical role of Ras dimers 
and clusters in cell signaling, but the mechanisms of how these 
structures form and function in cells remain unclear. Here we 
describe nanoscopic sites on the cell membrane that can 
transiently trap and enrich Ras to potentially facilitate dimer 
and cluster formation, as revealed by single-molecule tracking, 
quantitative trajectory analysis, and simulations. Our results 
demonstrate the importance of membrane heterogeneity in 
regulating biological processes in cells.

Keywords — single-molecule tracking, quantitative imaging, 
Ras, diffusion, dimer, membrane

I. PURPOSE

as is predominantly monomeric in solution but readily 
forms dimers and clusters in cells where it is 

membrane-bound, suggesting a role of the membrane in 
promoting Ras-Ras interaction [1,2]. To understand how Ras 
forms dimers and clusters on the membrane, we used single 
particle tracking photoactivated localization microscopy 
(spt-PALM) to quantitatively measure the diffusion of Ras in
living cells at the single-molecule and nanometer scales [3]. 
spt-PALM yields tens of thousands of single-molecule 
trajectories with 10-35 millisecond time resolution and 20-30
nm spatial precision, from which Ras membrane diffusion 
models could be inferred via statistical analysis. We 
quantified the diffusion, occupancy, and transition rates for 
each state, which were in simulations to test the hypothesis 
that Ras dimers and clusters primarily form in specialized 
membrane compartments.

II. RESULTS

A. Ras exhibits three distinctive diffusion states
The large spt-PALM dataset enabled the use of statistical 

analysis such as variational Bayes SPT to derive the diffusion 
states, occupancy, and state-transition rates unavailable 
through bulk measurements or conventional SPT [4]. We 
observed three distinctive diffusive states of Ras on living 
U2OS cell membranes as listed below (D: diffusion 
coefficient, error: standard deviation):

State 1 State 2 State 3
D (μm2/s) 0.07 ± 0.01 0.26 ± 0.05 0.84 ± 0.07

Occupancy (%) 17.4 ± 6.8 38.9 ± 9.0 43.7 ± 13.5

Further, Ras switches between the fast diffusive state (state 
3) and the immobile state (state 1) predominantly by going 
through the intermediary state (state 2).

1Department of Biomedical Engineering, Oregon Health and Science 
University. E-mail: leey@ohsu.edu

B. Membrane nanodomains trap and enrich Ras
We identified membrane regions that are about 40 nm in 

radius and are correlated with the slowest diffusive state of 
Ras; these regions are termed Ras-associated nanodomains 
(RANDs). Trajectory analysis also indicated at least two 
populations of RANDs, a transient population lasting for 1-2
s on average and a stable population lasting up to 15 minutes. 
Importantly, each RAND can contain multiple Ras 
molecules, providing a mechanism for Ras to be locally 
enriched, which potentially facilitates Ras-Ras interactions. 

C. Initial simulations show RANDs promote Ras 
multimers
To further determine the role of RANDs in facilitating Ras 

dimer and cluster formation, we have run computer 
simulations with experimentally derived Ras diffusion and 
RAND parameters to compare Ras interactions in fast and 
immobile (inside RANDs) diffusive states. Preliminary 
results suggest that in general, Ras molecules trapped in 
RANDs are more likely to yield dimers and clusters than 
those that are in the fast diffusive state. There is an optimal 
RAND to Ras ratio for maximal Ras dimer and cluster 
formation, with a low ratio yielding a low fraction of total Ras 
in RANDs and a high ratio yielding too few Ras per RAND. 
Additional simulations will be tested with the Ras diffusion 
parameters from section A.

III. CONCLUSION

Our work suggests that membrane nanodomains (RANDs) 
can increase the local concentration of Ras to potentially 
facilitate Ras dimer and cluster formation. Ras molecules can 
interact with multiple types of RANDs, indicative of parallel 
mechanisms that could regulate Ras dimer and cluster 
formation. Lastly, the majority of Ras molecules enter an 
intermediary state before interacting with RANDs, implying 
that RANDs are likely associated with specialized membrane 
compartments. The same paradigm may apply to other 
membrane molecules.
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The synergistic effect of host immunity with phage
and probiotic therapy against bacterial pathogens

Chung Yin Leung1 and Joshua S. Weitz2

Short Abstract— The rise of antibiotic resistance in bac-
terial pathogens is a major public health concern. Existing
alternatives to antibiotics include the use of phage (bacterial
viruses) and probiotic bacteria. However, these therapies have
not demonstrated consistent efficacy comparable to antibiotics,
possibly due to heterogeneity in the host immune response
against the pathogen. Through analysis of a combination of
population models and data from animal experiments, we show
that host immunity works synergistically with phage to cure an
acute respiratory infection. We extend our modeling framework
to show that the same principle of immunological synergy may
also be applicable to probiotic therapy.

Keywords— Bacteriophage, Phage therapy, Probiotics, Com-
mensal bacteria, Antibiotic resistance, Mathematical model

I. INTRODUCTION

T
He spread of antibiotic-resistant pathogens has become a

major public health crisis. Without urgent intervention

in antibiotic stewardship and development, the world may be

approaching a post-antibiotic era where common infections

can become fatal [1]. The plight of antibiotic resistance

has stimulated interest in developing alternative or adjunct

antimicrobial therapies to antibiotics, including the use of

phage (viruses that exclusively infect bacteria) [2] and com-

petitive exclusion by commensal or probiotic bacteria [3].

Unfortunately, these alternatives have yet to achieve the level

of robust efficacy on par with antibiotics.

To understand the variations in clinical outcomes of these

antimicrobial therapies, it is essential to consider contri-

butions from the host immune system, which is a critical

driver of the in vivo dynamics of pathogens. The in vivo
host-pathogen interactions as well as in vitro pathogen-

antimicrobial interactions have been relatively well studied.

However, research into the tripartite interactions between

pathogenic bacteria, antimicrobials and host immunity has

remained scarce. Recent advances in mathematical modeling

have suggested that host immunity can have a significant

effect on the pharmacodynamics of antibiotics [4]. Here, we

explore the role of host immunity in the effectiveness of

novel antimicrobial therapies including phage therapy and

probiotics therapy.

*This work is supported by Army Research Office grant W911NF-14-1-
0402.
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II. RESULTS

We propose a nonlinear population model of phage therapy

that considers the interactions between pathogenic bacteria,

phage and host immune response [5]. Our model accounts

for bacterial growth, phage predation, and immune killing

of pathogenic bacteria. Crucially, we include the key im-

munological features of saturation of the immune response

and immune evasion by bacteria. The model predicts a

synergistic effect between host immunity and phage that

eliminates bacterial pathogens, even when neither of which

can do so when acting alone. This synergism is validated

in animal experiments of acute pneumonia under different

immunological backgrounds, and adaptation of the model to

the in vivo conditions show that host immunity can prevent

the emergence of phage resistance during therapy [6].
We extend our theoretical framework to incorporate com-

petition between bacterial pathogen and commensal or pro-

biotic bacteria. Our results indicate that host immunity may

also act synergistically with probiotic therapy to prevent

and cure bacterial infections. We systematically explore

the effects of different competition strengths between the

pathogenic and probiotic bacteria, and find that host immune

killing promotes competitive exclusion of the pathogen by

stabilizing the pathogen-free state of the system.

III. CONCLUSION

We demonstrate that synergy with host immune response

can be a general mechanism of antimicrobial therapy applica-

ble to phage and probiotic therapies. Our results highlight the

need to characterize the host immune status when evaluating

the effectiveness of novel antimicrobial therapies.
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Short Abstract — Ordered membrane domains known as 
rafts are believed to serve crucial functional roles in 
mammalian cells; however, their investigation has been 
hampered by poor methodologies. We have developed a 
quantitative framework for investigating raft affinity of 
transmembrane proteins and used it to define the structural 
determinants of transmembrane protein partitioning between 
coexisting membrane phases. We relate this partitioning to 
subcellular trafficking, establishing a direct, quantitative role 
for raft domains in membrane protein sorting. We are 
establishing the molecular mechanisms of this domain-
mediated traffic using systems approaches and super-resolution 
quantitative imaging.

I. INTRODUCTION

ukaryotic cells are organized into spatially and 
functionally distinct membrane-bound organelles, whose 

functions are defined by their lipid and protein composition. 
Accurate and robust sorting of membrane components 
between these compartments is necessary for the 
maintenance of organelle identity. For most membrane 
proteins, the determinants of their steady-state subcellular 
localization remain unknown (1).

Lateral membrane domains known as lipid rafts provide 
an ideal platform for membrane sorting processes, and have 
been widely implicated in post-Golgi sorting and 
endocytosis/recycling. However, the structural determinants 
of protein association with such domains are almost entirely 
unknown. We have developed and characterized a robust 
experimental system for direct, quantitative measurements of 
raft affinity in intact plasma membranes and used it to 
explore the determinants of transmembrane protein 
recruitment into raft domains and the consequences of this 
recruitment on subcellular traffic. 

II. RESULTS

A. Structural determinants of raft affinity
Using our quantitative platform, we quantified ordered 

domain affinity for >100 transmembrane proteins and 
identified three physical features – transmembrane domain
surface area, length, and palmitoylation – that independently 
affect raft partitioning (2). Specifically, long, palmitoylated
TMDs with smaller surface areas partition efficiently to the 
more ordered raft domains. These findings were rationalized 
with a mechanistic, physical model wherein raft affinity is 
determined by the interfacial energy between a protein TMD 

and the surrounding lipid matrix. This model was shown to
be capable of correctly predicting raft affinity solely from 
protein sequence. Using bioinformatics, we generated 
proteome-wide predictions of raft affinity and observed that 
PM proteins have higher predicted raft affinity than those of 
intracellular membranes. 

B. Functional consequences of raft affinity
We established a quantitative and functional relationship 

between raft association and subcellular protein localization. 
Specifically, we observed that raft association is fully
sufficient for plasma membrane recycling of certain 
proteins, and that abrogation of raft partitioning for these 
proteins led to their degradation in the lysosomes. These 
findings support the conclusion that ordered membrane 
domains mediate recycling of specific membrane 
components from the endosomal compartments to the PM.
We have proceeded to define the molecular machinery that 
mediates raft lipid and protein sorting and recycling to the 
PM. Using a set of orthogonal transmembrane proteins as
probes of raft and non-raft domains, we developed a high 
throughput siRNA screen to dissect the molecular machinery 
and dynamics for raft-mediated sorting. We identified a 
number of validated hits including known players of the 
early endocytic traffic, but also novel players that appear to 
define a distinct class of trafficking mediators specific for 
raft-associated proteins. This pathway is not dependent on 
the classical recycling pathways, rather defining a novel 
route for PM recycling of raft-preferring cargo.  

III. CONCLUSION

Our findings define the structural features that determine 
protein association with ordered membrane microdomains, 
and validate the key role of these sub-microscopic domain in 
sub-cellular sorting and trafficking. However, vital questions 
remain unanswered regarding the underlying mechanistic 
principles and molecular mechanisms by which these 
domains serve as cellular sorting hubs. These questions can 
only be answered by quantitative microscopy and 
mechanistic modeling approaches.
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Short Abstract — Cellular remodeling in response to 
mechanical stimuli is critical for understanding mechano-signal 
transduction. We hypothesize that external stress induced 
subcellular adaption is accomplished through dynamical 
cytoskeletal reorganization.   To study the interactions between 
subcellular structures involved in transducing mechanical 
signals, we combined experimental and modeling approaches to 
measure real-time structural and mechanical adaption of the 
actin cytoskeletal network.  In vitro, we imaged the actin 
cytoskeleton as tensile stress was applied to live vascular smooth 
muscle cells (VSMC) using an ECM-functionalized atomic force 
microscope probe. In silico, we modeled the mechanochemical 
coupling of the actin cytoskeleton network. Both experimental 
and modeling results agree that under tensile stress, mechanical 
structural adaptation occurs before chemical adaptation: actin 
filaments align first, then actin polymerization takes place to 
further restructure the cytoskeleton.

Keywords — Cytoskeletal Network, Tensile Stress, Filament 
Alignment, Actin Polymerization

I. INTRODUCTION

ELLS interact with a complex microenvironment. 
Among all the microenvironmental stimuli, mechanical 

stress [1, 2] is important in many biological and physiological 
processes. Vascular smooth muscle cells (VSMC) are
subjected to the cyclic stretch of pulsatile blood pressure that 
deforms the extracellular matrix and induces axial and 
circumferential wall stresses [3]. However, how VSMC 
responds to the mechanism of axial stress in the vessel wall, 
which can be considered as tensile stress applied to cell, is not 
well-understood [4]. We combine experimental and modeling 
approaches to investigate the effects of tensile stress on the 
dynamic remodeling of the cytoskeleton network.

II. METHODS

The tensile stress was applied to live VSMC using an 
atomic force microscope probe functionalized with 
extracellular matrix proteins. Mechanical stimulation of the 
cell at low (~0.5 nN) and high (~1 nN) magnitude forces was 
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3Department of Chemistry & Biochemistry, University of Maryland,
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4Department of Biomedical Engineering, Texas A&M University, College 
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applied every 3–5 min for 20–25 min each and the actin 
cytoskeleton was imaged by spinning-disk confocal
microscopy after each force application [3].

A computational model for mechanochemical dynamics of 
active network (MEDYAN) [5] was used to simulate the actin
network with an external pulling force. The model considers 
actin fibers as semi-flexible polymers embedded in a solution 
of actin monomers, alpha-actinin cross-linking proteins, and 
non-muscle myosin II (NMII) motors. A system of 
reaction-diffusion equations describes the spatiotemporal 
dynamics of actin polymerization and actomyosin network 
formation. In a simulation volume of 1×1×1 μm3, a randomly 
initialized actin filament network was subjected to an external 
pulling force.  We varied the strength of force, and measured 
the resulting fiber alignment, polymerization, and uniformity.

III. RESULTS

Both experimental and simulation results show that tensile 
stress has significant effect on the dynamics of the 
cytoskeleton network: as the tensile stress increases, the 
fibers rearrange to increase alignment along the direction of 
the external stress, before fiber polymerization takes place. 
This result suggests mechanical structural adaptation operates 
at a shorter timescale than biochemical processes, which can 
have important implications to mechano-signal transduction.
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Short Abstract — Higher amount of tumor infiltrating T 

cells has been demonstrated to associate with better prognosis 
in various types of cancer. However, the mechanism 
underlying different infiltration levels is still not clear. Here 
we focus on charactering the spatial infiltration pattern of T 
cells around tumor-cell clusters in patients with triple 
negative breast cancer. Combining mathematical modeling 
with patient data analysis, we propose that there exists an 
undefined factor that repels T cells away from tumor-cell 
clusters. 

Keywords — tumor-infiltrating T cells, spatial profiles, 
tumor-cell clusters, repellent

I. BACKGROUND

CTIVATED T lymphocytes have been demonstrated 
to be able to kill antigen-specific cancer cells via 

various mechanisms [1]. Not-surprisingly, stronger 
infiltration of cytotoxic T cells into tumor/tumor-cell-
clusters generally associates with better prognosis, which 
has been demonstrated in various cancer [2-5]. 

There have been efforts on quantifying the distribution of 
cytotoxic T cells on the whole tumor level [6]. On the other 
hand, a solid tumor is usually composed by many tumor-
cell clusters as well as stromal contents in gaps between 
those clusters. It has been noticed that T cells can be mostly 
constrained in the stromal regions of a solid tumor [7]. 
Therefore, it is also important to quantify the spatial pattern 
of T cells on the tumor-cell cluster level and further 
investigate the mechanism underlying the observed limited 
infiltration. 

II. RESULTS

In this work, based on images of immune cells and 
cancer cells (triple negative breast cancer, patient samples), 
we developed a procedure to estimate the spatial profile of 
immune-cell density and a few properties of those spatial 
profiles were observed

A. T-cell profiles correlate well with potential Antigen-
Presenting cells 
First, we simply calculated the fraction of each type of 

immune cells inside tumor-cell clusters. The fraction of T 
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cells is plotted against that of potential antigen-presenting 
cells (two types investigated here). It is observed that the 
fraction of T cells inside tumor-cell clusters can separate 18 
patients into 2 groups, with 4 patients having the fraction 
above 0.4 and others below 0.2, whereas the fraction of 
each antigen-presenting cells is rather continuous for 
different patients. One interpretation of the plot is that the 
infiltration of T cells is bistable as a function of the 
infiltration of the potential antigen-presenting cells. 

Secondly, we further investigated the detailed spatial 
profile of those cells inside/outside tumor-cell clusters. In 
12 out of 15 patient samples analyzed, spatial profiles of T-
cells correlate very well with at least one type of potential 
antigen-presenting cells. 

B. T-cell density profile is better explained by a 
mathematical model hypothesizing a global attraction and 
local repulsion between T cells and cancer cells 
Two types of mathematical models were developed: i) 

the motility of T cells decreases around tumor-cell clusters, 
or ii) the direction of motion of T cells is manipulated by 
tumor-cell clusters. One major difference between the two 
types of models is that the second model can generate a 
steady-state profile of T cells around tumor-cell clusters, 
which is favored since we did not observe any cancer-
stage-dependent trend on the infiltration pattern. 

III. CONCLUSION

Combining data analysis with mathematical modeling, 
we propose that innate immune cells actually promote the 
infiltration of T cells into tumor-cell islands and there exist 
a factor that repels T cells away from tumor-cell islands. 
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Short Abstract — We demonstrate the utility of expansion 
microscopy (ExM) in visualizing and analyzing spatial 
distributions of microbial species in gut microbiota of several
organisms. First, we developed a new super-resolution imaging 
method to improve the photostability and brightness in expansion 
microscopy. Second, by tuning the enzymatic digestion of 
microbial cell walls, we use the expansion ratios in ExM as an in 
situ measure of bacterial physiology. This method enables 
multiplex imaging of complex bacterial communities while 
simultaneously providing spatial and cell physiological 
information.

Keywords — Expansion microscopy, Microbial community,
Bacterial physiology 

I. BACKGROUND

HERE is a global race in microbiome research to map 
spatial organization of microbial species in densely 

packed communities. This information is critical for 
understanding the physiological and molecular interactions 
among species. The rapid progress in adapting fluorescence 
microscopy [1,2] and super-resolution imaging techniques [3]
have greatly advanced the characterization of spatial structures
in microbial communities and bacterial physiology in 
individual cells at the molecular level. However, progress is 
limited in linking these two scales due to lack of methods to 
characterize the diversity in physiology of microbial species 
within a population in situ. 

II. RESULTS

Here we describe a new super-resolution imaging method, 
based on expansion microscopy (ExM) [4], to achieve 
super-resolution imaging of dense bacterial populations in two 
organisms, planarian flatworms and mice, and simultaneous 
measurement of bacterial mechano-physiology.

A. Locked expansion microscopy
Expansion microscopy is an optical imaging technique 

based on physical expansion of tissues anchored to a hydrogel.
The current method relies on a polyelectrolyte hydrogel that is 
expanded by electrostatic repulsion; as a result, the hydrogel 
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shrinks in ionic buffers. This technical limitation precludes the 
possibility of using most anti-photobleaching systems, which 
typically require buffering. This restricts the application of 
ExM in thick tissues with weak fluorescence signals, as these 
applications typically demand long imaging times and suffer 
from photobleaching. Here, we developed a novel method, 
locked ExM, in which the first expanded polyelectrolyte 
hydrogel is embedded in a second interpenetrating hydrogel 
mesh that expands through entropic forces. The second 
interpenetrating mesh retains the size of expanded tissues even 
in buffers with extreme ionic strengths. This method has 
allowed us to use anti-photobleaching systems in ExM to 
achieve sub-diffraction-limit resolution with high 
photostability in order to capture features that are otherwise 
impossible to image.

B. Differentiation of bacterial cell wall properties by 
expansion ratios in situ
In locked ExM, the mechanical properties of a specimen are 

critical to the extent of expansion. In particular, bacteria rely 
on their cell walls to bear mechanical stress and maintain cell 
shape. The mechanical property of the cell wall also reflects 
the physiological states of bacteria. We found that the 
expansion ratios of microbial species depend on their specific 
cell wall structures, which is characteristic to species and cell 
physiology. By using this information, our method allows 
multiplex imaging to identify different bacterial species, 
characterize their physiological states, and measure their
spatial organization in complex communities in vivo. We use 
this method to study the gut microbiota in two organisms: the 
planarian flatworm, as a model for regeneration, and mice.
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Short Abstract — Many experiments show that the 

concentrations of protein and mRNA fluctuate but on average 
are constant in growing cells, independent of the genome copy 
number. However, models of stochastic gene expression often 
assume constant gene expression rates that are proportional to 
the gene copy numbers, which are therefore incompatible with
experiments. Here, we construct a minimal gene expression 
model to fill this gap. We show that (1) because the ribosomes 
translate all proteins, the concentrations of proteins are 
regulated in an exponentially growing cell volume; (2) the 
competition between genes for the RNA polymerases makes the 
gene expression rate independent of the genome number; (3) 
the fluctuations in ribosome level and cell density can generate 
a global extrinsic noise in protein concentrations; (4) 
correlations between mRNA and protein levels can be 
quantified.

Keywords — Gene expression; Cell size regulation; 
Biophysics

Despite the noisy nature of gene expression [1,2], various 
aspects of single cell dynamics, such as volume growth, are 
effectively deterministic. Recent single-cell measurements 
show that the growth of cell volumes is often exponential. 
These include bacteria [3], budding yeast [4] and 
mammalian cells [5]. Moreover, the mRNA and protein 
numbers are on average proportional to the cell volume 
throughout the cell cycle [5-7]. Therefore, the homeostasis 
of mRNA concentration and protein concentration is 
maintained in an exponentially growing cell volume. The 
exponential growths of mRNA and protein number indicate 
dynamical transcription and translation rates proportional to 
the cell volume, and also independent of the genome copy 
number. However, current gene expression models often 
assume a fixed cell volume with constant transcription and 
translation rates, which are proportional to the gene copy 
number. Therefore, fixed cell volume models fail to reveal 
how cells keep constant mRNA and protein concentrations 
as the cell volume grows and the genome is replicated.

The homeostasis of protein and mRNA concentrations imply 
that there must be a regulatory mechanism in place to 
prevent the accumulation of noise over time and to maintain 
a bounded distribution of concentrations. The goal of this 
work is to identify such a mechanism by developing a 
genome-wide coarse-grained model taking into account 
explicitly cell volume growth. We will consider an idealized 
cell in which genes are constitutively expressed for 
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simplicity. The ubiquity of homeostasis suggests that the 
global machineries of gene expression, RNA polymerases 
(RNAPs) and ribosomes, should play a central role within 
the model. Indeed, the exponential growth of cell volume, 
protein and mRNA number originates from the auto-
catalytic nature of ribosomes, the limiting factor in the 
translational process. The bounded distributions of 
concentrations are a result of the fact that ribosomes make 
all proteins. The independence of the mRNA concentration 
of the genome copy number is a natural result of the limiting 
nature of RNAP in the transcriptional process in which 
genes are competing for this global resource. Furthermore, 
we attempt to identify candidates for the global extrinsic 
noise, which sets the lower bound of noise in protein 
concentrations. Within our model, the only two possibilities 
are the fluctuations in ribosome levels and cell volume 
growth rate. We show that these two mechanisms lead to 
distinct correlation patterns between protein levels, therefore 
providing a method to determine the dominant contribution 
to the global extrinsic noise from experimental data.
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Short Abstract — A precise understanding of cellular 

regulatory system hinges on an accurate prediction of protein 
structures. Although protein structures can be solved 
experimentally, de novo predictions by computers will be 
much cheaper. However, high-resolution predictions of 
protein structures have been challenging throughout the 
history. Recently, we have implemented multiple methods to 
achieve correct folds of proteins using AWSEM, a coarse-
grained model feasible for personal computers. Based on our 
initial predictions, atomistic simulations were used to further 
refine the model prediction. Our results show a further 
improvement over existing methods and indicate a new 
avenue for the prediction of protein structures. 

Keywords — Structure Prediction, AWSEM, Refinement. 

 precise understanding of cellular regulatory system 
hinges on an accurate description of the functions of 

the participating proteins, which in turn, relies on an 
accurate prediction of protein structures. Although protein 
structures can be solved experimentally, an accurate de 
novo prediction of protein by computers will be much more 
feasible and cheaper. However, a high-resolution prediction 
of protein structures has been challenging throughout the 
history of protein folding studies [1]. Especially, to reach a 
high-resolution structure, expensive computational 
resources are needed [2, 3]. Recently, we have 
implemented multiple methods to achieve high-resolution 
structures of proteins using AWSEM (The associative 
memory, water mediated, structure and energy model) [4, 
5, 6], a coarse-grained model that is computationally 
manageable for personal computers. Our initial predictions
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already reach sub-angstrom regime in the best cases. Based 
on our first-level predictions, atomistic simulations with 
multiple enhance-sampling techniques were used to further 
refine the model predictions. Our results show a further 
improvement over the existing methods, and indicate a new 
avenue for the prediction of protein structures. 
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Cell fate determination is critical for cell survival and 

development. Importantly, cell fates are shaped by the 
integration of external cues, intracellular nutrient 
storage, and the overall state of the cell. Yeast cell enters 
into meiosis/sporulation in depletion of  nitrogen and 
fermentable carbon. Even though larger yeast cells tend 
to sporulate more and that the accumulation of storage 
carbohydrates is necessary for meiosis [1], it remains 
unclear how the storage carbohydrate and size interact 
to shape the cell fate. Here we use biochemical methods, 
live cell imaging, and genetics to investigate the 
relationship between storage carbohydrates, cell size and 
cell fate.

Keywords — cell fate, meiosis/sporulation, 
carbohydrates, size, single cell

I. INTRODUCTION

n the absence of nitrogen and a fermentable carbon source, 
yeast cells starts accumulate carbohydrates and will 
eventually stop cycling and either become quiescent or 

enter meiosis/sporulation [2]. Two major factors have 
independently been implicated in this process: cell size and 
storage carbohydrates. Specifically, cells need to reach a 
certain size and accumulate trehalose and glycogen to 
sporulate.

II. RESULTS

To find the link between carbohydrates, cell size and cell 
fate, we created a library of trehalose and glycogen deficient 
mutants and determined their spore frequency, number of 
spores per ascus, spore viability, amounts and concentrations 
of trehalose and glycogen by using biochemical, genetic, and 
live-cell imaging approaches. Specifically, we found that:

A. Cell Size scales with amount of carbohydrates:

We performed size fractionation of cells by using 
sucrose gradient and measured the amount of trehalose and 
glycogen in cell fractions. Doing this we found that cell 
size scales with the amount of carbohydrates, while the 
concentration of storage carbohydrates remains
approximately constant. This result, together with the fact 
that cell size and nutrient stores can be decoupled in the 
context of the Meiosis/Quiescence decision [manuscript 
submitted] suggesting that size is passive readout of 

Acknowledgements: This work was supported by grants from CPRIT 
(RR150058) & the Welch foundation (I-1919-20170325).

Department of Cell Biology, UT Southwestern Medical Center y, 6000 
Harry Hines Blvd., Dallas, TX 75390. E-mail: 
yanjie.liu@utsouthwestern.edu

storage carbohydrates in the context of this cell fate 
decision. 

B. Glycogen and trehalose play differential role for 
sporulation:

The following attributes were measured for all strains in 
our library: the ability to generate spores, the number of 
spores, the spore viability and the ability store trehalose 
and glycogen. Doing so, we found that glycogen and
trehalose compensate to each other for sporulation. 
Furthermore, glycogen and trehalose mutants showed 
differential defects with respect to their ability to store 
carbohydrates and to initiate sporulation. Specifically, cells 
that could not produce trehalose had a higher sporulation 
frequency than cells that could not produce glycogen. On 
the other hand, glycogen mutants had larger defects with 
respect to the number of spores per ascus, i.e. a higher 
percentage of dyads and triads instead of tetrads. These 
results suggest that glycogen is more important for spore 
formation while trehalose may play a larger role ensuring 
spore viability. 

III. CONCLUSION & FUTURE PLANS

We conclude that during sporulation cell size is likely a 
readout of storage carbohydrate pools which in turns are 
necessary to reach a certain threshold for sporulation. 

We are now quantifying the cell size of carbohydrate 
mutants. We will confirm these results using a live cell 
trehalose sensor [3], in combination with markers for 
trehalose and glycogen metabolisms.
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Short Abstract — A quantitative understanding of neuronal 
computations can be achieved by monitoring membrane 
potential reported by genetically-encoded voltage indicators 
(GEVIs). The fluorescent biosensors enable recordings of 
cellular electrical activity in vivo with subcellular resolution and 
cell type specificity. However, current indicators are not
photostable and bright enough for long-term recording, and 
their sensitivity and kinetics are not satisfactory for detection of 
fast voltage dynamics. We report a high-throughput platform to 
screen mutagenesis libraries of GEVIs by analyzing microscopy 
videos of HEK293 cells during electric field stimulation. The 
platform quantitatively ranks candidate GEVIs based on 
performance scores across multimodal imaging methods. We 
anticipate that the approach can be extended to the screening of 
other fluorescent biosensors.

Keywords — Genetically-encoded voltage indicator (GEVI), 
High-throughput screening. 

I. PURPOSE

ENETICALLY encoded voltage indicator (GEVI)
provides a new scheme of probing neuron circuits by 

reporting membrane potential changes with fluorescence. 
Compared to electrophysiological methods, it enables readout 
of neuronal electrical activity with subcellular resolution. Its
ability of achieving cell-type specificity facilitates targeting 
and differentiating neurons in vivo. However, the first 
generation of GEVIs still suffer from low brightness and/or 
photostability [1], which prevent their wider applications for 
prolonged recordings. Moreover, the sensitivity and kinetics 
of GEVIs still have ample room of improvement to match that 
of the traditional electrode-based recording [2].

We have previously developed a voltage indicator, ASAP1, 
by coupling a green fluorescent protein (GFP) to the voltage 
sensitive domain (VSD) of a voltage sensitive phosphatase
[3]. Further improvements of the sensor were achieved by 
rationally introducing mutations or deletions to the sensitive 
domains of the protein [4, 5]. This approach is considered 
low-throughput because each variant must be tested by 
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labor-intensive electrophysiological methods, so we seek
faster ways of discovering new GEVIs at a rate of at least 
thousand constructs per day. 

II. RESULT

We report here the development of a high-throughput 
platform to screen mutagenesis libraries in a 96-well format. 
Our platform automatically acquires and analyzes 
multi-channel high speed microscopy videos of 
GEVI-expressing cells during electric field stimulation, and 
ranks variants quantitatively based on multiple performance 
parameters, such as sensitivity, kinetics, photostability, for 
both one-photon and two-photon excitations. We create and 
adapt HEK293 cell lines to better simulate the 
electrophysiological properties of neurons, while avoiding the 
excessive costs and labor from culturing neuron. The selected 
new GEVI candidates are further verified by gold standard 
voltage clamping. 

III. CONCLUSION

We anticipate that this new directed evolution screening 
platform will accelerate development of indicators optimized 
for accurate and sensitive detection of voltage dynamics in 
vivo, laying the foundation of optical investigation of 
population of cells. The resulting GEVIs and fluorescent 
biosensors in general should be of broad utility for elucidating
complex interactions among neurons that underlie behavior.
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Short Abstract — Circadian rhythms are near 24-hour
oscillations, these oscillations are generated by molecular 
circadian clocks formed by biochemical networks with negative 
feedback loops. However, although the coupling has been 
studied, little attention has been placed on the precision of the 
circadian clock coupled with metabolism. In this work, the 
accuracy of the circadian clock coupled with metabolism in 
hepatocyte is studied. We developed a minimal nonlinear model.
The local stability and limit cycles are studied. Our predictions 
suggest that the metabolism has an essential role in the 
performance of the daily rhythms.

Keywords — Nonlinear circadian model, Systems biology, 
Dynamics analysis, Robustness.

I. INTRODUCTION

hysiological rhythms are of vital importance to life.
These rhythms arise from nonlinear biological 

mechanisms interacting with a fluctuating environment. 
Mathematical analysis of physiological rhythms shows that 
nonlinear equations are necessary to describe it [1]. They are 
controlled by many feedback loops that enable life. Abnormal 
rhythms are associated with the disease. Many of these 
rhythms follow day and night cycle produced by the rotation 
of the earth. They are called circadian rhythms. It is well 
known that these rhythms are controlled by a molecular clock. 
It is called the circadian clock, and in mammals it is in every 
tissue with a master clock in a region of the hypothalamus 
called the suprachiasmatic nucleus (SCN). The neurons in the 
SCN are synchronized, and experimentally it has been found 
that, if they are dissociated, each cell can present autonomous 
oscillations at slightly different periods, from 20 to 28 h [2].
The architecture of the clock network is well known, consist 
of transcription-translation feedback loops that oscillate the 
concentration of proteins every 24 hours and control a wide 
variety of physiological events, including metabolism.
Energetic cycles are one type of physiological process that 
shows transcription-dependent circadian periodicity. The 
liver plays a central role in maintaining energy homeostasis.
Accordingly, the feeding and fasting cycle is a potent 
zeitgeber for the liver clock than systemic cues controlled by 
the circadian clock in the SCN [3]. Circadian clocks have
been studied with a mathematical approach. There exists a 
substantial body of literature regarding the molecular 
mechanisms of the circadian clock from mathematical point 
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of view. Recently, it has been reported a mathematical model 
that links circadian rhythm with liver metabolism [4].
However, little attention has been paid to accuracy. We use 
mathematical modeling to address the following question: 
whether the accuracy of the liver clock cells coupled with 
metabolism is sensitive to parametric variation.

II. RESULTS

We considered a reduced model of six variables and two 
coupled oscillators. Using stability analysis, we found a stable 
equilibrium point from the linearization of the proposed 
model. Then we performed simulations of the coupled model 
with a forced function that represents feeding-fasting periods 
under the effect of parametric variation. Each parameter value 
was scaled by multiplying by a factor of 0.5, 2, 10, and 50, 
one factor at a time, while the rest of the parameters was kept 
without change. Then, the period was measured and the 
accuracy evaluated based on a criterion of 10% around 24-
hour period following [5][2]. The model was strongly 
sensitive to variations in parameters associated to circadian 
but mostly with metabolic molecules.

III. CONCLUSION

According to [6] organisms are subject to a series of 
entraining agents that promote the synchronization and 
resonance of different clocks in peripheral tissues. We can 
conclude from these facts that perturbations of the metabolic 
cycles affect the accuracy of the circadian clock.
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Short Abstract — Genetically encoded voltage indicators 
(GEVIs) are protein sensors that transform cell membrane 
voltage signals into fluorescence changes. They are promising 
tools for simultaneously recording from large populations of
neurons with cell type specificity. However, currently- available 
GEVIs have insufficient brightness, photostability, response 
amplitude and kinetics. To overcome these limitations, we used 
structural approaches to identify the important residues for 
voltages sensing, mutated these positions, and screened for
variants with improved properties. We also used these screening 
results in a machine learning approach to refine our strategy for
further improvements.

Keywords — Structure guided screening, machine learning, 
Genetically encoded voltage indicators

I. BACKGROUND

ONITORING neuronal collaborations in circuits in vivo is 
a central goal in neuroscience but remains challenging. 

A critical technology gap is the lack of tools that can 
quantitatively monitor neuronal electrical (voltage) dynamics 
with single-cell or even subcellular resolution from a large and
genetically-defined populations of neurons. Genetically 
encoded voltage indicators (GEVIs) are a promising solution 
to achieving this goal, yet current versions exhibit insufficient 
in kinetics, response amplitude, brightness and photostability 
for detecting fast voltage transients in vivo [1].

Accelerated Sensor of Action Potentials 1 (ASAP1) [2] is a 
GFP-based GEVIs with a circularly permuted GFP (cpGFP)
inserted in the voltage sensitive domain. ASAP1 is a suitable
starting templates for further GEVI improvements because 
they have fast (millisecond-timescale) kinetics and 
compatibility with two photon imaging methods (ASAP2s) [3].
However, its sensitivity (response amplitude) to voltage 
transients remains small, motivating further optimization.

Since it is impossible to screen the entire sequence space, 
we turned to semi-rational screening methods, supported by 
the accumulation of sequence and structural data, and 
improvements in machine learning algorithms. For example, 
3D structural prediction using Rosetta [4] and existing
physical model on voltage-sensing domain (VSD) movements 
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during membrane depolarization [5] suggest promising 
mutation sites. By targeting specific residues, we can focus our
screening efforts on smaller and more productive screening 
libraries. Performing machine learning on screening results 
will reveal the relative importance of each position in ASAP 
and guided the rational design of new variants [6].

II. RESULTS

A. Structure-guided GEVI screening at single positions
We used 3D structure alignment to locate amino acids 

predicted to be important in physical models of orthologous 
voltage-sensing domain. Mutating these residues in voltage 
indicator ASAP1 led to mutants with larger sensitivity.

B. Structure -guided optimization of interacting residues
Using data from single-position screening, we figured out 

the positive and negative mutations at each important site. We 
did multi-position screening to combine the most promising 
variants and determined whether mutations produced additive, 
subtractive, or synergistic effects on indicator performance. 
We applied machine learning algorithms to quantify the 
relative importance of each variant on individual performance 
metrics: kinetics, response amplitude, and brightness. 

III. CONCLUSION

Using semi-rational protein engineering and 
high-throughput screening pipeline, we developed genetically 
encoded voltage indicators with improved properties, which
better meet the need for large-population voltage dynamics 
quantification in neuroscience.
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Short Abstract — Branching patterns of Pseudomonas
colonies have been shown to depend on the secretion of 
biosurfactant. Here we show that starvation induces the 
differentiation of a Pseudomonas population to slow-growing 
cells that produce biosurfactant as a public good and 
fast-growing non-producers. Mathematical modeling indicates 
that this division of labor strategy is critical for explaining the 
diverse morphologies of branching patterns observed. We 
propose that the division of labor of branching bacterial colonies 
optimizes nutrient utilization and maximizes the population 
fitness by balancing between cell growth and motility. This 
collective mechanism for colony branching implies the role of 
population heterogeneity in pattern formation. 

Keywords— Patterning, division of labor. 

I. INTRODUCTION

HE branching pattern is one of the most prevalent patterns 
found in nature [1]. How branching patterns emerge in 

living organisms has been a long standing question. The study 
of branching morphogenesis in bacterial colonies serves as a 
step stone to the understanding of branching pattern formation 
in multicellular organisms and also allows us to rationally 
design and control branching patterns using synthetic biology. 

A number of mechanistic models for branching pattern 
formation in bacterial colonies have been proposed [2-5], but 
they are either not tested by experiments or not able to account 
for the diverse patterns under different experimental 
conditions. Based on mathematical modeling and 
experimental observations, here we show that under stress, 
Pseudomonas aeruginosa cells employ a division-of-labor 
strategy, which is necessary for explaining the various 
complex branching patterns observed in experiments. 

II. RESULTS

The formation of branching patterns of Pseudomonas 
colonies has been shown to depend on the secretion of 
biosurfactants (such as rhamnolipids), which facilitates local 
cell swarming [6]. The expression of the rhamnolipid 
synthesis operon rhlAB is regulated by quorum sensing 
signaling and nutrient availability [7]. Flow cytometry of 
Pseudomonas aeruginosa PA14 cells expressing the rhlAB 
reporter showed that when nutrient was abundant, surfactant 
synthesis was turned off. Under starvation, however, a
subpopulation of Pseudomonas cells with high biosurfactant 
expression quickly emerged. The metabolic burden of 
biosurfactant synthesis suggests that the population 
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differentiates into cells producing biosurfactant as a public 
good at the expense of cell growth (Producers) and 
non-producers with higher proliferation rate (Growers). 

Based on this observation, we developed a diffusion- 
reaction model that incorporates nutrient consumption, 
surfactant production, and the spatial-temporal dynamics of 
both subpopulations, while the transition rates between the 
two cell states are modulated by environmental conditions.

Simulations reveal that the division-of-labor scheme is 
essential for reproducing the wide range of branching patterns 
of Pseudomonas colonies under different conditions, as well 
as the unexpected observation of colony expansion against a 
nutrient gradient. Future work is needed to determine the 
evolutionary significance of this strategy and we propose that 
division-of-labor underlies the efficient adaptation of bacterial 
colony to various environments and ensures optimal resource
exploitation which is manifested as colony branching.  

III. SIGNIFICANCE

Division of labor and cell differentiation within 
communities of unicellular organisms were proposed to be the 
prelude to the emergence of multicellularity [8]. The 
population-level regulation during the morphogenesis of
colony branching patterns may shed light on the design 
principles of pattern formation and provides insights to the 
control of heterogeneous cell communities such as biofilms 
and tumors.
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Abstract — BLAST is an invaluable tool to compare and 
align sequences. Its efficiency comes from k-mers–-short k-
length subsequences–-that are indexed across a larger corpus, 
which allows identical k-mers from different regions to aid 
finding longer matches. Analogously, networks could be 
indexed by k-node graphlets. Unfortunately, existing graphlet 
counting methods enumerate all the graphlets, which is 
infeasible on large networks. We introduce BLANT (Basic 
Local Alignment Network Tool) which randomly samples and 
indexes graphlets. BLANT samples millions of graphlets in 
seconds, which aids search and local alignment via indexing, 
and provides a statistical sample of both global graphlet
distribution and local orbit degree vectors. 

Keywords — biological network alignment, local network 
alignment, network database, network classification, network 
search, network function, network topology.

I. PURPOSE

Networks are used to represent biological interactions 
such as protein-protein, gene-uRNA, brain connectomes, and 
enzymes; their topology (the structure of connectivity 
between nodes) is related to function [1]. Matching local 
structures also helps identify similar functional modules in 
other larger networks. In order to find these modules and 
understand the details of their structural components, several 
graph topological features have been studied but none 
appear to give as robust results as graphlets [2]. Graphlets 
have been used to quantify the local structure of biological 
networks via global alignments, alignment-free comparison, 
analysis of brain connectomes, and in recovering functional 
and phylogenetic information [3].

Existing graphlet counting methods [4] perform 
exhaustive enumeration of graphlets and are infeasible on 
large networks. We propose that statistical sampling [5] can 
produce a satisfactory approximation. Here, we introduce 
BLANT, which samples and indexes millions of graphlets in 
seconds. We show that the sampled distribution agrees with 
the true graphlet distribution. 

II. METHOD – NODE BASED EXPANSION
A k-graphlet is an induced, connected subgraph of k nodes 

taken from a graph G(V, E). We construct a sampled k-
graphlet g as follows. Initially, we select an edge (u1, u2)
uniformly at random from G and add u1 and u2 to S, the set of 
nodes that will become g. We iteratively add nodes to S by
picking from all nodes outside S adjacent to a node inside S, 
until we have k nodes.

1,2Department of Computer Science, University of California-Irvine, 
USA. E-mail: {whayes, sridevi.m}@uci.edu

III. EXPERIMENTAL RESULTS

A. We sampled 10,000 k-graphlets (taking a fraction of a 
second) for k = {3,4,5} from a total of 1540 synthetic 
networks of Geometric, Erdös-Rényi, Scale Free, Small 

World and Sticky graphs of 
varying sizes (1000, 2000, 4000, 
6000 nodes) and densities 
(0.005, 0.0075, 0.01). We 
computed their full graphlet 
counts using ORCA [4], which 
took weeks of CPU time. Figure 
1 shows that the mean relative 

graphlet frequency from our method agrees 
well with the true mean relative graphlet frequency both in 
accuracy and intrinsic variation. 

B. We also sampled 107 7-graphlets from Enzyme, Brain-
ADHD, Gene-μRNA, and Facebook networks. Multi-
dimensional scaling on pairwise graphlet correlation 

distances obtained from our 
graphlet sample shows that 
sampling clearly distinguishes 
between different network types
(Figure 2) as well as exhaustive 
enumeration [6].

IV. CONCLUSION

Random graphlet sampling is orders of magnitude faster
than existing exhaustive enumeration methods and produces 
distributions of graphlets that are close to the true 
distribution. This promises to revolutionize network analysis
by allowing graphlet analyses on networks of arbitrary size. 
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Short Abstract — The life cycle of the social amoeba 

Dictyostelium discoideum includes a starvation-induced 
transition to aggregative multicellularity. During aggregation, 
however, amoebae do not coordinate perfectly and some of them 
remain solitary (loners). Combining experiments and modeling, 
we show that the loner-aggregator partitioning behavior is 
characteristic of each genetic variant and could be, potentially, 
shaped by natural selection. Finally, we discuss how 
interactions between partitioning behaviors could affect D. 
discoideum diversity when two genetic variants co-occur and 
develop in mixes as compared to segregated development. 
 

Keywords — Multicellular development, cell aggregation, 
quorum sensing, synchronization 

I. PURPOSE 
N the social amoebae Dictyostelium discoideum, 
starvation triggers the partitioning of a population of free-

living cells into aggregators, which ultimately develop a 
multicellular fruiting body made of dead stalk cells and 
reproductive spores, and non-aggregators, which remain as 
vegetative cells. While the emergence and functioning of the 
multicellular phase has been extensively investigated [1-3], it 
has been only recently that the asocial component, 
represented by non-aggregating (loner) cells, has captured 
some attention [4-6]. Loners are less resistant to starvation 
than spores, but they persist for some time and will 
eventually recover the multicellular stage in a subsequent 
starvation event. In addition, according to recent theoretical 
work, loners could provide selective benefits in stochastic 
environments and, when coupled with environmental 
heterogeneity (seasonality or spore dispersal across different 
patches) could contribute toward the rich diversity of D. 
discoideum observed in nature [4,7]. 
 

However, despite this potential importance of loners, the 
question of whether they are an unavoidable consequence of 
large-scale synchronization events or a heritable component 
of D. discoideum life-history remains unanswered. In this 
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presentation, I will first show, using experimental results, 
that aggregation, and therefore the population partitioning 
between aggregating and non-aggregating cells, is a heritable 
population-partitioning process, with different genetic 
variants differing in their partitioning behavior. To explain 
these experimental results, I will introduce an individual-
based model for the aggregation process, showing that the 
loner-aggregator partitioning could be the result of the 
population responding in an imperfectly synchronized 
manner during the developmental process. Finally, I will 
move the discussion to scenarios in which two genetic 
variants co-occur and mix, which results in interactions 
between their developmental programs that could profoundly 
impact the diversity of the species.  

REFERENCES 
[1] Bonner, J. T. The Social Amoebae: The Biology of Cellular Slime 

Molds. (Princeton University Press, 2009) 
[2] Gregor, T., Fujimoto, K., Masaki, N. & Sawai, S. The onset of 

collective behavior in social amoebae. Science 328, 1021–1025 
(2010). 

[3] Strassmann, J. E. & Queller, D. C. Evolution of cooperation and 
control of cheating in a social microbe. Proceedings of the National 
Academy of Sciences 108, 10855–10862 (2011). 

[4] Dubravcic, D., van Baalen, M. & Nizak, C. An evolutionarily 
significant unicellular strategy in response to starvation stress in 
Dictyostelium social amoebae. F1000Res 3, 133 (2014). 

[5] Tarnita, C. E., Washburne, A., Martinez-Garcia, R., Sgro, A. E. & 
Levin, S. A. Fitness tradeoffs between spores and nonaggregating 
cells can explain the coexistence of diverse genotypes in cellular slime 
molds. Proceedings of the National Academy of Sciences 112, 2776–
2781 (2015). 

[6] Martinez-Garcia, R. & Tarnita, C. E. Lack of Ecological and Life 
History Context Can Create the Illusion of Social Interactions in 
Dictyostelium discoideum. PLoS Comput. Biol. 12, e1005246 (2016). 

[7] Martinez-Garcia, R. & Tarnita, C. E. Seasonality can induce 
coexistence of multiple bet-hedging strategies in Dictyostelium 
discoideum via storage effect. J. Theor. Biol. 426, 104–116 (2017)

Ricardo Martinez-Garcia1, Fernando W. Rossine1, Allyson E. Sgro2,3, Thomas Gregor2, Corina E. 
Tarnita1 

Causes and consequences of asynchrony in D. 
discoideum multicellular development 

I

110



 
Short Abstract — Epistasis is a measure of how the effect of 

one gene is influenced by other genes.  Quantifying epistasis
will improve genotype-to-phenotype predictions, but our ability 
to generalize these results beyond model systems is dependent
on (1) how much epistasis is conserved and (2) the sufficiency of 
conserved epistasis to improve phenotype prediction. To 
determine this, we are measuring how epistasis varies across E. 
coli strains and nutrient conditions.  Additionally, we infer 
conserved epistasis statistically by analyzing gene co-evolution
across bacterial species.  Combining these data may point to a 
general strategy for predicting conserved epistasis and 
estimating phenotype in non-model organisms.

Keywords — Epistasis, E. coli, evolutionary statistics, genetic 
background, environmental background, genotype-to-
phenotype. 

I. Environment, genetic background, and epistasis
Epistatic interactions between genes are the basis for the 

complex traits, and a careful mapping of these genetic 
interactions is an important step towards making better 
genotype-to-phenotype predictions. Prior work has focused
on mapping epistasis computationally via flux-balance 
analysis or experimentally using high throughput cell growth 
assays [1-3].  However, it is unclear how epistasis 
measurements made in silico or within a given model 
organism will generalize across different genetic and 
environmental backgrounds. Additionally, how well can 
conserved epistatic interactions be predicted?  And is 
knowledge of only conserved epistatic interactions sufficient 
to improve genotype-to-phenotype predictions?  We are 
developing complementary experimental and computational 
strategies to address these questions.

II. Experimental measurements of variation in epistasis
We selected 22 enzymes from bacterial folate and purine

metabolism as a model system for measuring epistatic 
conservation.  Folate and purine metabolism are conserved
pathways, which allows for more powerful statistical co-
evolution analyses, and perturbations in these pathways
result in experimentally measureable growth phenotypes.  
To measure epistasis, we use CRISPR interference 
(CRISPRi) to knockdown gene expression [4].  CRISPRi 
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specificity is directed using a guide RNA (gRNA) library
that targets our 22 selected enzymes individually and in all 
possible combinations.  We then grow this library in a 
continuous culture device (turbidostat), regularly sample the 
bacterial population, and count allele frequencies using next 
generation sequencing.  Our method can resolve a 2% 
difference in relative doubling time per hour, is applicable in 
a variety of E. coli strains (and other organisms), simplifies 
targeting essential genes, and easily scales for studies in 
different environments. Additionally, we have developed a 
strategy for post hoc removal of “escapers”, which occur 
when an adaptive mutation renders CRISPRi ineffective.  
Using this method, we are currently measuring epistasis in 
seven strains of non-pathogenic E. coli and in multiple 
environmental conditions (variations in media, culture 
density) [5]. 

III. A statistical model of conserved epistasis
An alternative approach is to estimate epistatic 

interactions using quantitative statistical models of co-
evolution [6].  The basic premise is that epistatic constraints 
between genes will drive their co-evolution, leading to 
detectable statistical correlations like conserved proximity 
on the chromosome (synteny), joint presence and absence, or 
amino acid sequence covariation.  Because we search for 
these correlations in large and diverse genomic databases,
the interactions we find likely represent conserved epistasis, 
rather than background specific idiosyncrasies. We have 
conducted statistical co-evolution analyses across folate and 
purine metabolism using a database of ~2000 bacterial 
species, and hypothesize that these data will be more like the 
conserved epistatic interactions we find experimentally than 
those sampled from any single organism.
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Modeling Adipose Tissue Hormone Regulation

Joseph P. McKenna1, Xiangpeng Li2, Christopher Easley3, Vipul Periwal1

Short abstract — Motivated by global obesity
and type 2 diabetes epidemics, researchers have
realized the integral role of adipocytes in energy
balance. In addition to their role as lipid stores,
adipocytes participate in shaping the milieu of
circulating hormones in the blood. Knowledge
of adipocyte biology is therefore crucial to un-
derstanding the pathophysiology of metabolic
diseases. In this poster, we present a spatial
model of the dynamics of fatty acid uptake by
adipose tissue informed by data collected from
mouse explants using a microfluidics platform
combined with a recently developed fluorescent
reporter of fatty acids. We demonstrate that
fatty acid uptake is hormone-dependent on a
short timescale. We also address whether dif-
fusion of fatty acids through adipose tissue is
mediated through gap junctions by comparing
the model diffusion pattern to the data.

Keywords — adipocyte, hormone, insulin, glu-
cose, microfluidics, microscopy, fluorescence, fi-
nite element method.

I. BACKGROUND

As calorie stores, adipocytes are well suited to regu-
late energy balance. They play this crucial role through
a number of mechanisms such as secretion of adipose-
derived molecules (adipokines), initiation of neural sig-
nals via the peripheral nervous system, and breakdown
of fat (lipolysis) and release of fatty acids for direct use
as an energy source [1].
Although adipocyte mass represents excess energy

intake relative to energy expenditure, the rate of adi-
pogenesis is not merely proportional to ingested calo-
ries. Indeed, there are hormonal effects that complicate
a strict interpretation of energy balance by the First
Law of Thermodynamics. For example, insulin, which
is secreted by pancreatic β-cells, is required for glucose
uptake by adipose tissue and has the effect of repress-
ing lipolysis [3]. To determine the extent to which hor-
mones affect fatty acid uptake and release, Easley et
al developed a fluorescent sensor of intracellular free
fatty acid (FFA) that is used in combination with a
microfluidics platform [2].
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To quantify the rate of fatty acid uptake, they pulsed
square waves of fluorescent FFA to mouse adipose ex-
plants with various concentrations of insulin and glu-
cose in the bath. Here, we show that the rate of fatty
acid uptake can change rapidly with an increase in in-
sulin. We also address whether diffusion of fatty acids
through adipose tissue is mediated through gap junc-
tions.

II. MODEL

We model the concentration u(x, t) of fatty acid in
the microfluidic chamber containing adipocytes by

⎧⎪⎨
⎪⎩

ut + duxx = gWu B(0, R)× (0, T ]

u = f(t, x) ∂B(0, R)× (0, T ]

ux · �n = [u(ci)− u(∂Ci)]/ri ∂Ci × (0, T ] ∀i
where variables have the following meanings

• C = ∪Ci: collection of adipocyte cells,

• d > 0: fatty acid diffusion coefficient,

• g ≥ 0: gap junction fatty acid diffusion coeffi-
cient,

• W : cell coupling matrix.

To create a computational grid that mimics the ge-
ometry of the adipose explant, we segment microscopy
images and triangulate the result.

III. CONCLUSION

We constructed a model of adipose tissue informed by
experiments with state-of-the-art microscopy and flu-
orescence techniques to characterize the rate of fatty
acid uptake in various metabolic conditions. This un-
derstanding should be useful for developing interven-
tions to mitigate a global obesity epidemic.
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Short Abstract —Regulation by the scaffold protein IQGAP1
underlies the coordination of the actin cytoskeleton and 
phospholipid membranes.  Live-cell dynamics studies of 
endosomal compartments revealed a temporal sequence of 
scaffold dissociation and actin bursting events.  Domain-level 
mutations and statistical modeling have lead to an 
understanding of the multifaceted tethering modes of IQGAP1,
including mutually opposing forces mediated by two distal
protein domains.

Keywords — Scaffold proteins, live-cell protein dynamics, 
endosomes, IQGAP1, actin, phosphoinositides, fluctuation 
analysis, statistical modeling.

I. PURPOSE

NDERSTANDING the adaptive material properties of 
the eukaryotic cell and its spatiotemporal regulation by 

complex networks of signaling macromolecules remains a
major unsolved scientific problem. Full characterization of
adaptive subcellular systems requires new quantitative 
descriptions and new experimental frameworks.

The actin cytoskeleton is an adaptive, mechanical network 
known for its ability to change cell morphology.  The 
deformation of the phospholipid membrane via actin 
polymerization is crucial in cellular processes like 
phagocytosis, cell migration, and immune synapse formation.
In each of these contexts, actin is regulated by multiple 
protein species of the Rho GTPase family, whose local, 
collective spatial assembly is dependent on organelle-specific 
phospholipid signatures such as the abundant 
phosphatidylinositol (4,5)-bisphosphate (PIP2).

Also critical to the regulation of actin-membrane structures
are scaffold proteins, which function as biomolecular ‘circuit 
boards’ and template the flow of intracellular information [2].
The best studied cytoskeletal-regulating scaffold protein,
IQGAP1, binds Rho GTPases, PIP2, and filamentous actin 
through multiple protein domains, while also facilitating Raf-
MEK-ERK and PI3K-Akt-mTOR signaling pathways which 
are major signaling axes for growth and proliferation [3].

II. RESULTS

We use a combined live-cell imaging and statistical 
modeling approach to characterize the micron-scale,
endosomal recruitment dynamics of the cytoskeletal and 
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phospholipid scaffold protein, IQGAP1.

A. Actin and IQGAP1 correlations at endosomes
Through super-resolution and time lapse epifluorescent 

microscopy, we have characterized the scaffold-regulated 
maturation process of endosomes at the basal actin cortex of 
human mammary epithelial cells. Here, the dissociation of 
IQGAP1 is always followed by excitable bursts of actin 
polymerization. By analyzing multi-protein trajectories from 
time lapse movies, we found that at the 60-minute time scale, 
actin and IQGAP1 are positively correlated, whereas on 60
second timescales this pair is anti-correlated.  This suggests 
the scaffold plays activating and inhibitory roles in actin 
polymerization.

B. Domain-level contributions to dynamics
Via a series of protein domain- and residue-level mutations,

we identify the regions of IQGAP1 responsible for the anti-
correlations and endosomal tethering [5]. 

C. Statistical modeling of protein fluctuations
We construct multiple linear regression models of the 

pairwise-correlative structure of actin, membrane, and 
scaffold fluctuations.  By model selection we conclude that 
using wild type and mutant scaffolds in conjunction yields the 
best prediction of actin fluctuations, whereas a scaffold 
mutant alone sufficiently predicts membrane fluctuations [5]. 

III. CONCLUSION

Our combination of live-cell microscopy and statistical 
modeling yielded vital insights into the adversarial dynamics
of a scaffold-regulated, membrane and cytoskeletal system. 
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Short Abstract — Actin is one of the most abundant proteins 
found in eukaryotic cells. It plays a crucial role in cell motility,
division, and forms the cytoskeleton. The actin filament is a 
helical polymer and its crystal structure has yet to be solved. Low 
resolution atomic-models of the filament, constructed using 
crystallographic data and known G-actin crystal structure, 
provide useful, but limited, clues as to the interactions involved 
in filament formation and regulation. Current statistical 
modeling tools can predict residue pair coevolution from 
genomic information. Here, we utilize both structural and 
genomic data to elucidate the functional interactions of actin. 

I. PURPOSE

ctin is a highly conserved, abundant protein found in 
every eukaryotic cell where it plays a critical role in cell 

motility, flexibility, division, and forms the core of the 
cytoskeleton. It is found in two forms: globular (G) actin, 
which is unbound and undergoes random diffusion in the 
cytoplasm, and filamentous (F) actin, which forms when G-
actin polymerizes into a long filament. The filament is 
dynamically regulated by actin-binding proteins (ABPs), 
which induce viscoelastic changes to the cell. Filament 
regulation is poorly understood due to a restricted knowledge 
about its formation, which requires high-resolution structural 
information. The structure of G-actin was experimentally 
determined using x-ray crystallography [1]. Conversely, the 
crystallization of F-actin has remained a significant challenge 
because actin dimers and trimers are kinetically unstable and 
rapidly polymerize into filaments [2]. Previous groups have 
used experimental methods such as x-ray fiber diffraction [3, 
4] and cryo-electron microscopy [5] to propose various 
atomic models of F-actin. While these models have shown 
that the transition from G- to F-actin is accompanied by a 
significant structural flattening of G-actin, they are of limited 
resolution and lack the details needed regarding the 
functionally relevant DNase I binding loop (D-loop). The D-
loop has been implicated in playing a crucial role in the 
polymerization of actin as well as ensuring filament stability 
[6]. By determining a high-resolution structure of F-actin and 
its functional interfaces with ABPs, a great wealth of 
information regarding how actin functions in cells can be 
gleaned.
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Short Abstract — T lymphocytes play an essential role in 
defence of an organism against pathogens and cancers through 
their clonally distributed T cell receptors (TCR). TCR gene 
sequences, which are randomly assembled during T 
lymphocyte ontogeny, can be either functional or 
nonfunctional. Here we examined effects of age on the 
functional status of TCR genes in men and women separately. 
Our results show that the diversity of functional rearranged 
TCR sequences significantly decreases with age only in women. 
The similar, but not significant trend was observed among men. 

Keywords— TCR repertoire, ageing, immunosenescence 

I. INTRODUCTION 
 lymphocytes are one of the cells responsible for an 
adaptive immune response. Each of them expresses a 
unique heterodimeric T cell receptor (TCR) able to 

recognize a unique set of antigens. TCR genes are assembled 
from discrete V, D and J gene segments in developing 
lymphocytes. Due to the random nature of the V(D)J 
recombination process, only one-third of the rearranged 
TCR genes are functional. The remaining 2/3 are non-
functional because of the loss of an open reading frame 
between the V and J genes, or the introduction of a stop 
codon. Hence, the TCR gene repertoire comprises functional 
and non-functional genes. Upon T cell activation, naïve T 
cells proliferate and differentiate into memory T cells. The 
production of naïve T lymphocytes declines with age [1], 
causing decreased TCR repertoire diversity and impaired 
immunity [2]. On the other hand, the size of naïve T cell 
clones increases in the elderly [3]. Even though the optimal 
size of TCR repertoire required to maintain efficient 
protection is not known, a decrease of TCR diversity is 
associated with impaired immune defences in mice [4]. Age-
associated constriction of the TCR repertoire most probably 
participates in the increased susceptibility to infectious and 
non-infectious diseases in the elderly. 

Here we intend to determine the impact of age on the 
functional status of TCR sequences. Due to the different 
ageing of men and women [5] and the influence of sex 
hormones on the immune system [6], we model the TCR 
repertoire status diversity for men and women separately. 
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II. METHODS 
We used a collection of 587 human TCRB repertoires 

obtained from healthy donors [7] publically available on the 
Adaptive Biotechnologies website [8], and a dataset of TCR 
repertoires obtained from 6 donors sampled three times 10
years apart [9]. Previously proposed analysis pipeline, 
including usage of Pielou’s J index, was used to determine
functional status diversity [10]. Weighted linear regression 
was employed to model functionality status diversity in age, 
with total counts of sequences serving as weighs. Separate 
models were created for men and women for two datasets. 
T-test compared regression slopes of created models. 

III. RESULTS 
We observed a negative correlation between age and 

diversity index among women. The age has a very small, but 
significant, effect on the functional status of TCR genes; the 
slope coefficients vary from -0.0006 to -0.0007 depending 
on the model. Furthermore, the rate of decline of the 
diversity index in women for the two datasets was not 
different (p-value = 0.64). The similar dependence was not 
detected among men, although the decreasing trend was also 
noticed.

These results illustrate a new aspect of the differences in 
biological ageing of the immune system in men and women.  
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Short Abstract — The intestinal epithelium is the fastest 
regenerative tissue, yet it maintains a remarkably consistent 
structure. While Notch signaling is implicated in the formation 
of the crypt base checkerboard arrangement of stem and Paneth 
cells, recent works suggests that ß-catenin can form a complex 
with Notch Intracellular Domain (NICD) and upregulate 
expression of Hes1 on its own or through this complex. 
Additionally, numerous questions exist about short-range Wnt 
secretion by Paneth cells at the crypt base. To address these 
questions, we perform bifurcation analysis on a dynamical 
model of this gene circuit, suggesting that the crosstalk may 
facilitate transition from the stem niche to transit amplifying 
region and that short range Wnt secretion may spatially 
constrain the size of the stem niche.

Keywords — Intestinal Stem Cell, Paneth Cell, Wnt 
Signaling, Notch Signaling, Hes1, Systems Biology

I. INTRODUCTION

HE crypts of the small intestinal epithelium are the
fastest regenerating cell population in the body, turning 

over almost all cells every 2 – 6 days [1]. However, precise 
control of the crypt structure is maintained by the Wnt and
Notch pathways. They are integrated through the 
transcription factor Hes1 to control differentiation the stem
or Paneth cell type and the rate of stem cell proliferation [2].

Wnt proteins, such as mesenchymal Wnt 2b and Paneth-
produced Wnts 3 and 11, increase accumulation of ß-catenin 
which upregulates Hes1 [3]. When a stem cell’s Notch 
receptor is activated by a Paneth cell’s Delta-like ligand,
NICD translocates to the nucleus where it upregulates
production of Notch receptors (positive feedback) and of
Hes1 which inhibits the production of the cell’s own Delta
like ligands (lateral inhibition). This combined PFLI
mechanism drives the formation of the characteristic 
checkerboard pattern of stem cells and Paneth cells [4].

Recently, two intriguing observations have been made: 
First, NICD may form a complex with ß-Catenin instead of 
directly upregulating Hes1 [2]. Second, the Paneth cells 
appear to only secrete Wnt to their immediate neighbors [5].
To understand the roles of crosstalk in Hes1 regulation and
of short-range Paneth-mediated Wnt secretion, we modeled 
the integrated gene circuit considering these effects.
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II. RESULTS

To compare competing models of the pathways, we 
employed tuning parameters that allowed us to vary the 
relative control of ß-catenin and ß-catenin-NICD complex 
control over the Hes1 promoter without altering the steady 
state [2]. Additionally, three Wnt secretion models were 
considered: mesenchymal (constant), paracrine, and 
juxtacrine.

In two cell simulations, bifurcation analysis of Wnt 
production rate and percent control of the Hes1 promoter 
by the ß-cat/NICD complex was conducted. With greater 
than 80% control by the complex, the models exhibited 
bistability of cell fates at both low and supraphysiologic 
Wnt concentrations. Below 50%, the cells failed to 
differentiate. From 50 – 80%, the model exhibited
desirable switching behavior. At high Wnt concentrations 
(crypt base), the model demonstrated bistability, while at
lower concentrations (TA region) the model predicted a
monostable population. Accordingly, the mesenchyme may 
provide a constant level of Wnt to drive proliferation in the 
stem niche and TA region, but short range Wnt secretion 
by Paneth cells may exist to drive differentiation at the 
crypt base by reinforcing Hes1-mediated lateral inhibition.

Last, the models were implemented in a multi-cell 
simulation. All three models exhibited formation of a 
characteristic checkerboard pattern. While the juxtacrine 
model produces stem and Paneth cells with less variance in 
the final protein concentrations, the concentrations are less
polarized than in the constant and paracrine models, and it 
takes significantly longer to achieve steady state. 

III. CONCLUSION

Via crosstalk, short range Wnt secretion by the Paneth 
cells defines the size of the stem niche since it reinforces the 
Hes1 mediated lateral inhibition necessary to promote
differentiation in a spatially constrained region. 
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Short Abstract — Activation of NF-kB through 
exposure to inflammatory cytokines mediates signals 
for migration, differentiation, cell-cycle progression, and 
apoptosis. Time-varying properties in the concentration 
of cytokine, such as the duration of stimulus, influence 
the type of response elicited in a cell. To study the extent 
to which temporal properties of cytokine 
stimulation mediate cell fate decisions, we have 
developed a microfluidic flow system for precise control 
of cytokine concentration as a user-defined time varying 
function. By imaging cells that express reporters for NF-
kB activation and exposing them to different patterns of 
stimulation in the microfluidic system, we aim to 
understand how cells decode time-varying cues from 
their environment to make cell fate decision.

Keywords — NF-kB signaling pathway, TNF, microfluidics,
environmental cues, temporal signaling patterns

I. INTRODUCTION
Responding appropriately to molecular signals from the 
extracellular milieu, such as cytokines or growth factors, is 
essential for cellular adaptation and viability. The NF-kB 
signaling pathway, for instance, upon activation with tumor 
necrosis factor (TNF) activates transcription for a myriad of 
genes [1] responsible for anti-apoptotic and pro-inflammatory 
responses [2]. Additionally, the same pathway through its 
non-canonical branch activates genes inducing the opposite 
i.e. pro-apoptotic and anti-inflammatory response [3]. Thus, 
cells must decode and extract information from external 
signals to produce the corresponding response. It is apparent 
that time-varying properties of molecular signals play an 
important role in this information transfer. For example, 
short duration exposure to high concentrations of TNF can 
be more effective at killing than a TNF-pulse of longer 
duration [4], and the subsequent dynamics of NF-kB 
localization within the cell encodes multiple levels of 
responses that reflect the strength of stimulation[4]. Although 
these studies have begun to scratch the surface [5], cells are 
using molecular switches and dials that we do not currently 
understand to transmit information about TNF in their 
environment. Here, we develop a framework to more broadly 
define the capabilities of single cells when exposed to 
arbitrary user-defined patterns of TNF stimulation and use it 
to uncover molecular circuits that encode this information.
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II. METHODS
To explore the role of temporal dynamics of external signals 
in cellular response, precise control of extracellular 
environment is needed. We have developed a microfluidic 
system for analog control over the cellular environment, 
exposing cells to user-defined temporal patterns of 
stimulation. The system consists of a hydrostatic pump 
connected to a microfluidic cell-culture chip. The hydrostatic 
pressure and hence the flow rates of cytokine and media are 
controlled by manipulating the heights of the corresponding 
reservoirs through the Arduino microprocessor. A passive 
mixer in the chip then dilutes the cytokine concentration as
desired before the cell-culture chamber. We have developed 
a framework to control the device by a Hagen-Poiseuille 
equation based mathematical model and CFD simulations in 
Ansys-Fluent software. Given a user-defined input of 
concentration, time and position in the chip, our system
generates the corresponding positions of heights to generate 
the desired concentration profile. We use live-cell imaging to 
track single-cells expressing a GFP reporter of NF-kB and 
measure the corresponding nuclear localization as a proxy 
for response to TNF stimulation. The system can
hypothetically achieve an arbitrary-fold dynamic range in
concentration, depending on parameters of the cell-culture 
chip, and we are working on adding extra functionalities to 
our system that permit simultaneous and independent control 
of multiple cytokines in the same chip.

III. PROGRESS
We are testing a preliminary version of our system by
monitoring the NF-kB response in cells exposed to linear and 
exponential ramps of TNF stimulation. Our early results 
show that ramp stimulations produce NF-kB responses that 
are distinct from those seen after a pulse or step increase in 
TNF concentration. These results may hint at the molecular 
architecture of circuits that transmit information about 
extracellular TNF into the NF-kB system. We envision that 
our microfluidic system may be adopted with remarkably 
low cost by labs without specialized expertise to enable 
studies of cellular systems in dynamic microenvironments.
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Short Abstract — Several studies which have investigated the 

pattern of amino acid interactions between proteins in physical 
complexes show that a subset of contacting interfacial residues 
are thermodynamically coupled and co-evolve. However, it is 
less clear how the amino acid sequence of one protein is 
constrained by another protein to which it is functionally 
coupled, but does not directly bind.  Here I describe a strategy 
and initial data for experimentally quantifying the sequence 
constraints imposed by functional coupling between metabolic 
enzymes. These measurements are then compared to sequence 
variation across homologs.

Keywords — epistasis, co-evolution, statistical coupling 
analysis, fitness, saturation mutagenesis, next-generation 
sequencing

I. EPISTASIS BEYOND PHYSICAL INTERFACES
The amino acid sequence of an enzyme encodes information
necessary for it to fold, catalyze biochemical reactions, and 
interact with partners in the cell. Maintaining these 
properties over evolutionary time constrains sequence 
variation, and can drive co-evolution between functionally 
coupled (or epistatic) positions. For example, positions at the 
interface of two-component signal transduction systems are 
thermodynamically coupled and co-evolve [1,2]. However, 
epistasis between proteins is not limited to physical 
complexes. In the general case of functionally coupled, but 
not necessarily physically interacting proteins, the pattern of 
epistasis between amino acids is poorly characterized. I am 
using: (1) experimental deep mutational scanning and (2) 
statistical analysis of sequence variation to map the 
constraints introduced by coupling in metabolism. Together, 
these data will provide a comprehensive and quantitative 
illustration of how epistasis between proteins shapes amino 
acid sequence variation.

II. THE MODEL SYSTEM
To study the structural basis of epistasis, I am using the 
model system of dihydrofolate reductase (DHFR) and 
thymidylate synthase (TYMS), two enzymes in the folate 
metabolic pathway. Statistical analysis of gene 
presence/absence and synteny across 1445 bacterial 
genomes show that they are highly co-evolving with each 
other but are independent from the rest of the genome [3]. 
Though the two enzymes do not physically interact, recent 
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experimental measurements of metabolomics and epistasis 
indicate that the relative biochemical activities of DHFR and 
TYMS are constrained by a need to limit accumulation of 
the metabolic intermediate dihydrofolate (DHF) [3]. In 
particular, mutations in DHFR that reduce catalytic activity 
are buffered by loss-of-function mutations in TYMS.  

III. QUANTITATIVE MEASUREMENTS OF EPISTASIS
To determine how sequence variation in DHFR is modulated 
by the catalytic activity of TYMS, I am conducting fitness 
measurements for a saturation mutagenesis library of DHFR 
in the context of several TYMS mutants. The library 
contains all possible single point mutations at every position 
of DHFR (of 5,088 total). To assay fitness, I transform the 
library into E. coli and grow this mixed culture in continuous 
culture. I take samples of this culture during the experiment 
and use next-generation sequencing to track allelic 
frequencies of each mutant. The fitness of each mutant in the 
library is then calculated from a linear fit of the allelic 
frequency over time [3]. These data will reveal a fitness 
landscape across the entire structure of DHFR. I am 
currently repeating the assay in the background of five 
TYMS that range in catalytic activity from WT to 
catalytically dead. For each TYMS mutant, I will calculate 
epistasis from these fitness measurements and map these 
epistatic couplings onto the structure of DHFR. At the end, 
these data will reveal how the fitness landscape of DHFR is 
modulated by TYMS activity.

IV. COMPARING EPISTASIS TO CO-EVOLUTION
I am comparing the pattern of epistasis from the experiments 
described above to the pattern of co-evolution between
DHFR and TYMS homologs. To compute co-evolution, I 
am using the Statistical Coupling Analysis [4], which has 
recently been shown to reasonably estimate pair-wise 
couplings between positions in a single protein [5]. This 
comparison of experimental and statistical couplings will  
test the hypothesis that co-evolution can be used to infer 
sequence constraints linking non-binding but functionally 
coupled proteins.  
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Short Abstract — Early mammalian development is a fasci-

nating example of how deterministic spatiotemporal patterns 
emerge at the level of cell populations from highly stochastic 
regulatory components, but why is this process so successful, 
and what ensures the stability of the blastocyst? With four 
simple rules, we get cavity formation, salt and pepper pattern, 
and three distinct lineages. In addition, we get most pheno-
types by eliminating one rule at a time. Finally, we show that 
time from post-fertilization regulates the cells’ competence of 
FGF. This could provide the robustness necessary for the evo-
lutionary diversification of the preimplantation gene regula-
tory network. 

Keywords — Early embryonic development, blastocysts, cell 
polarity, cell communication, fibroblast growth factor (FGF),
segregation, differential adhesion, apoptosis. 

I. PURPOSE

ARLY mammalian development is both highly regula-
tive and self-organizing [1]. It involves the interplay of 

cell position, gene regulatory networks, and environmental 
interactions to generate the physical arrangement of the 
blastocyst with precise timing [2-3]. However, this process 
occurs in the absence of maternal information and in the 
presence of transcriptional stochasticity [4-5]. 

How does the preimplantation embryo ensure robust, re-
producible development in this context? It utilizes a versa-
tile toolbox that includes complex intracellular networks 
coupled to cell-cell communication, segregation by differ-
ential adhesion, and apoptosis. 

Here, we ask whether a minimal set of developmental 
rules based on this toolbox is sufficient for successful blas-
tocyst development, and to what extent these rules can ex-
plain mutant and experimental phenotypes. 

II. RESULTS

We implemented experimentally reported mechanisms 
for polarity, cell-cell signaling, adhesion, and apoptosis as a 
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set of four developmental rules in an agent-based in silico
model of physically interacting cells. 

First rule, surface cells develop polarity at E3.0. Second 
rule, inner cells surrounded by too many cells of the same 
type, switch fate. Third rule, primitive endoderm (PrE) pro-
genitors get less adhesion. Fourth and final rule, PrE pro-
genitors in a wrong position undergo apoptosis. 

We find that this model quantitatively reproduces specif-
ic mutant phenotypes and provides an explanation for the 
emergence of heterogeneity without requiring any initial 
transcriptional variation [6]. 

It also suggests that a fixed time point for the cells’ com-
petence of fibroblast growth factor (FGF)/extracellular sig-
nal-regulated kinase (ERK) sets an embryonic clock that 
enables certain scaling phenomena, a concept that we eval-
uate quantitatively by manipulating embryos in vitro. 

Embryos were obtained at 8-cell stage and placed in 
pairs or triplets to make aggregates. Controls were cultured 
in KSOM only, while a Mek inhibitor was added to delay 
experiments [7]. At E4.5, embryos were fixed and stained, 
and analyzed with a custom-built MATLAB script. 

III. CONCLUSION

Based on these observations, we conclude that the mini-
mal set of rules enables the embryo to experiment with sto-
chastic gene expression and could provide the robustness 
necessary for the evolutionary diversification of the preim-
plantation gene regulatory network. 
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Short Abstract — The phospholipase C (PLC)/protein kinase 
C (PKC) signaling pathway is required for chemotaxis of 
fibroblasts biased by a gradient of platelet-derived growth 
factor (PDGF), as during wound healing. Experiments further 
demonstrated that abundance of the lipid intermediate, 
diacylglycerol (DAG), is polarized in a shallow PDGF gradient. 
To identify mechanisms capable of amplifying the sensitivity of 
this signaling pathway, reaction-diffusion models were 
formulated, and simulations show that inclusion of putative 
feedback loops at the level of lipid availability and metabolism 
yields a polarization circuit that is both sensitive and robust to 
varying gradient conditions. Thus, we offer a framework for 
understanding chemotactic gradient sensing in fibroblasts and 
for designing experiments to reveal and characterize sources of 
nonlinearity.

Keywords — Reaction-diffusion modeling, cell signaling, 
polarization, chemotaxis, wound healing

I. BACKGROUND

n fibroblasts responding to gradients of platelet-derived 
growth factor (PDGF), an important chemoattractant in 

development and wound healing, signaling through the 
phospholipase C (PLC)/protein kinase C (PKC) pathway 
proved necessary for chemotaxis, whereas pathways that 
collaborate to activate the Arp2/3 complex were found to be 
dispensable [1,2]. PKC is activated through its binding to 
the lipid second messenger diacylglycerol (DAG), which is 
formed from hydrolysis of phosphatidylinositol (4,5)-
bisphosphate (PIP2) by PLC. Strikingly, in fibroblasts 
exposed to a shallow PDGF gradient, the density of DAG in 
the plasma membrane is focally enriched at the up-gradient 
leading edge [1], suggesting an internal amplification 
mechanism is at play.

In previous work, a mechanistic, reaction-diffusion model 
of the PLC/PKC signaling pathway was developed to 
identify possible mechanisms responsible for signal 
amplification [3].  We found that phosphorylation of 
myrisotylated alanine-rich C kinase substrate (MARCKS) by 
membrane-localized PKC constituted a positive feedback 
loop sufficient for local amplification of DAG and active 
PKC at the up-gradient end of the cell.  By itself, the 
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MARCKS feedback only weakly amplifies the signal in 
shallow PDGF gradients, however [3]. The system also 
lacks robustness to modest changes in the midpoint 
concentration of PDGF.

II. MODEL DEVELOPMENT AND RESULTS

The new model includes phosphatidic acid (PA), a lipid 
intermediate in the metabolism of DAG. PA is 
interconvertible with DAG by way of DAG kinases and 
phosphatidate phosphatases. Feedback loops incorporating 
PA were added to the model based on evidence that PA 
increases the rate of PIP2 hydrolysis by stabilizing the
recruitment of PLC [4] and that active PKC can enhance the 
activity of phospholipase D, another enzyme that produces
PA [5]. Model simulations show that the MARCKS
feedback mechanism synergizes with these new feedback 
loops for increased amplification even at shallow PDGF 
gradients and over an appreciable range of midpoint PDGF 
concentrations. Simulations with variations of parameter 
values or cell geometry further indicate that this signaling 
network is a highly sensitive and robust gradient sensing 
circuit.

III. CONCLUSION

Experiments will need to be performed, in concert with 
refinement of our modeling framework, to validate the 
source(s) of nonlinearity in this signaling pathway. We are 
currently exploring the effects of the cell’s geometry on the 
polarization of the signaling pathway and assessing the 
effects of stochasticity on the performance of this system.  In 
the future, this model will be linked to models describing the 
organization of the actin cytoskeleton and directionality of 
cell migration for a more comprehensive understanding of 
how fibroblast chemotaxis proceeds during physiological 
processes such as wound healing.
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Recent advances in visualization of single molecules, such
as transcription factors with temporal resolution in single
cells, have shown that information is transmitted through
time-varying dynamics of components shared between
multiple pathways. This phenomenon stands in contrast
to the typical paradigm where information is transmitted
via structurally specific interactions (e.g. the lock and key
model). Consequently, signaling through time dynamics
via shared components raises natural questions about how
such interactions can effect only the intended response. By
analyzing realistic, coarse-grained regulatory networks
informed by experimental studies, we find the design
principles for regulatory circuits that respond to specific
characteristics of an input time-series, such as frequency,
duty cycle or pulse number, while buffering variations in
other aspects. Our results show which aspects of time-
varying input patterns need to varied independently in
experiments to fully understand the signaling capacity of
a multiplexed regulatory pathway.

I.PURPOSE

CELLS are constantly exposed to a dynamically changing

environment; often survival hinges on the capability to extract
meaningful information from this environment and respond
appropriately. The capability of biochemical circuits to
respond to temporal patterns in a specific manner has been
explicitly established experimentally in a wide range of
systems, ranging from bacterial to mammalian cells [1]. Here,
we aim to understand the origins of these networks’ capability
of faithful temporal decoding mechanistically. By analyzing
experimental data and numerically simulating coarse-grained
gene-regulatory network models, we describe what aspects of
temporal data are accessible to these networks. Further, we
identify key mechanisms for recognizing specific features in
a time-series and construct explicit models capable of such
processing.

II.RESULTS

A. Dimensionality in the Yeast Msn2 System
We introduce our own model-independent quantification

of network decoding fidelity which we have termed
specificity. By calculating this quantity for a set of genes  
coupled to Msn2 dynamics [2] and operating under the
reasonable assumption of monotonicity of response to larger
doses of the input, we are able to definitively state that this
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system is able to access more than a single dimension of the
temporal input.

B. Mechanisms for Temporal Decoding
In contrast, any linear time-invariant (LTI) system must

have its integrated output proportional to the area of the
input time-series (in accordance with the Convolution
Theorem). Motivated by this divergence between LTI
systems and the observed processing in the Msn2 system, we
chose four features (amplitude, period, duty fraction, and
pulse number) to characterize a space of time-varying inputs
and built nonlinear models able to respond to each feature
independently.  

C. Temporal Decoding and Circuit Topology
In establishing our mechanisms for temporal decoding,

the importance of circuit topology was evident. For example,
adaptation was found to be central to sensing period and
pulse number, and it is known that only specific network
topologies are capable of such dynamics [3]. To generalize
our findings, we numerically optimized sets of networks
using our specificity as an objective function for the task of
decoding a fixed set of input pulse-trains with restrictions on
the type of connections allowed (thus restricting accessible
topologies over the course of the optimization procedure).
The optimum obtained is strongly dependent on both the
allowed topologies of the search and the distinguishing
features of the input pulse trains, exhibiting the critical
relationship between encoding method and decoder design.  

III.         CONCLUSIONS

By introducing specificity, a model-independent
quantification of decoding efficacy, we are able to observe
multidimensional temporal decoding in data from the Msn2
system. Informed by this, we explicitly construct models
capable of decoding in a four-dimensional space of pulsatile
inputs. Our results suggest when  
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Short Abstract — We assess the impact of cell cycle noise on 
gene circuit dynamics. For bistable genetic switches and 
excitable circuits, we find that transitions between metastable 
states most likely occur just after cell division and that this 
concentration effect intensifies in the presence of 
transcriptional delay. We explain this concentration effect with 
a 3-states stochastic model. For genetic oscillators, we quantify 
the temporal correlations between daughter cells induced by 
cell division. Temporal correlations must be captured properly 
in order to accurately quantify noise sources within gene 
networks.

Keywords — Bistable switch, cell cycle noise, excitable 
system, metastability, synthetic genetic oscillator, 
transcriptional delay

I. BACKGROUND

ELLULAR noise and transcriptional delay shape the 
dynamics of genetic regulatory circuits. Stochasticity in 

cellular processes has a variety of sources, ranging from low 
molecule numbers, to variability in the environment, 
metabolic processes, and available energy. Such fluctuations 
can drive a variety of dynamical phenomena, including 
oscillations, stochastic state-switching, and pulsing. 
Microbial and eukaryotic cells make use of such dynamics in 
probabilistic differentiation strategies to stochastically 
switch between gene expression states, and for transient 
cellular differentiation.

How cell cycle noise shapes dynamics is only partially 
understood. The cycle of cell growth and division results in a 
distinct noise pattern: Intrinsic chemical reaction noise 
decreases as cells grow before abruptly jumping following 
cell division. The partitioning of proteins and cellular 
machinery at division also induces a temporally localized, 
random perturbation in the two daughter cells. These 
perturbations are correlated, as a finite amount of cellular 
material is divided between the two descendant cells. Such 
correlations can propagate across multiple generations 
within a lineage. 
  

II. RESULTS

We find that cell cycle noise can strongly impact the 
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dynamics of bistable and excitable systems. In both cases, 
transitions out of metastable states are concentrated within a 
short time interval just after cell division. Interestingly, this 
effect intensifies as transcriptional delay (the time required 
for a regulator protein to form and signal its target promoter) 
increases. We show that this concentration effect results 
primarily from the random partitioning of cellular material 
upon cell division, and explain the underlying mechanisms 
via a 3-states reduced model.

For genetic oscillators, we find that cell cycle noise plays 
an important role in shaping temporal correlations along 
descendant lineages. In particular, for a dual feedback
genetic oscillator, we show that temporal correlations 
between daughter cells decay significantly faster when the 
cell cycle is modeled explicitly.

In models of genetic networks the effects of cell growth 
are frequently described by a simple dilution term, which 
does not capture the distinct temporal characteristics of cell 
cycle noise. We conclude that in order to accurately describe 
gene circuit dynamics, such models should include both cell 
cycle noise and transcriptional delay.

Effects of cell cycle noise on excitable circuits
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Short Abstract — Cells must extract relevant information 
from time-varying external signals while ignoring a sea of other 
irrelevant fluctuations in those signals. We find that biophysical
mechanisms that are most effective at projecting out irrelevant 
external fluctuations are most vulnerable to the internal noise 
originated from the mechanisms themselves. We show this 
trade-off relationship in biochemical receptors that measure 
ligand concentrations, in regulatory circuits that measure rate 
of concentration changes and in circadian clocks that measure 
the phase of the external day-night cycle. We trace this trade-
off to a fundamental tension in the length of time used to make a
measurement; slow measurements average out external 
fluctuations but make the system vulnerable to internal 
fluctuations and vice-versa. We show how such a trade-off 
emerges in the non-linear dynamical systems that underlie these 
diverse biological mechanisms.

Keywords — Noise, Dynamical Systems, Computation in 
Cells, Circadian clocks, Chemosensing, Adaptation

I. PURPOSE

xtracting information from a noisy external signal is 
fundamental to the survival of organisms in dynamic 

environments [1]. From yeast anticipating the length of 
starvation and bacteria estimating sugar availability, to 
dictyostelium counting cAMP pulses, organisms must often 
filter noisy irregular aspects of the environment while 
inferring parameters about a regular aspect in order to be 
well-adapted .  However, in addition to external fluctuations, 
organisms must also deal with internal fluctuations due to 
finite copy number effects, bursty transcription and other 
biomolecular fluctuations. While such the impact of noise 
has been extensively documented, it is not clear whether 
different sources of noise are equivalent and whether 
strategies to mitigate them are compatible. 

II. METHOD

We start by analytically showing the trade-off between 
resistance to external and internal fluctuation in the abstract 
context of Bayesian estimators – we consider a simple  
moving average estimator, a slope estimator, and a phase 
estimator. Then, we use simulations and theory using 
realistic biophysical mechanisms to show how such trade-
offs emerge in non-linear dynamical systems viewed as 
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Bayesian estimators.

III. RESULT

For all the cases we consider, we found the a trade-off 
along a Pareto front defined by: 

,where and are the variance of the outputs due to 
internal and external fluctuation respectively. We arrived at
this equation separately from mean estimator, slope 
estimator, and phase estimator. Here, we also present the
simulations of 3 main biological estimators in the push-pull 
network in chemoreception [3] for moving average 
estimators, the adaptive network in concentration ramp 
sensing [2] for slope estimators, and the circadian clock 
network in [4] for phase estimators.

The universal reasons that the trade-off holds in non-linear 
biological estimators as well relates to the geometry of the 
attractor system. To be robust against external fluctuation, 
the geometry of the estimator’s dynamics needs to be flat in 
the projected dimension of the information in the signal and 
curved along the direction of the external noise. However, 
this flat direction makes internal fluctuation diffuse faster, 
resulting in poor accuracy. Intuitively, the curvature of this 
flat direction relates to the time scale of the estimator’s 
measurement that trace the performance along the Pareto 
front. We discuss how result is related to gain-bandwidth 
trade-offs in some contexts and discuss speed-error trade-
offs in these systems. We find that while slow estimators are 
more accurate when subject to external fluctuations, such a 
speed-error tradeoff is absent in the context of internal 
fluctuations – fast estimators are the most accurate
estimators. 
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Short Abstract — The T-cell repertoire response to the yellow 
fever vaccine builds near total immunity. To quantify the 
response we developed a statistical model of differential T-cell 
proliferation and used it as a basis for inference from high-
throughput receptor sequencing data obtained from individuals 
pre and post vaccination. While the learned model for replicate 
statistics varies little across time points, the repertoire ensemble 
parameters vary, consistent with YF response timescales. 
Finally, we identify candidate clones responsive to the vaccine 
by their posterior expansion probability. These candidates are 
experimentally validated. 

Keywords— Immune repertoire, inference, vaccine response. 

I. BACKGROUND

HE efficacy of a vaccine depends strongly on its 
interactions with the immune repertoire: a vast set of 

receptors capable of focusing immune defenses on infectious 
agents. These interactions leave signatures in the sequences 
and relative frequencies of immune clones. High throughput 
sequencing now provides measurements of millions of 
receptors, allowing for characterizing the repertoire at the 
level of the ensemble [1]. In spite of large scale efforts [2], 
how repertoire statistics respond to infection is unknown. 
This limits our ability to predict which TCR sequence will 
respond to a given antigen. The attenuated yellow fever (YF) 
vaccine induces near total immunity in humans and serves as 
human model for acute viral infection [3]. We developed a 
methodology for identifying responding clonotypes from 
time-dependent repertoire-sequencing data and applied it to 
sequencing measurements before and after YF vaccination. 

II. METHODS

We developed accurate models of the variation in sampled 
receptors molecules between a pair of replicates. We then 
assessed functional forms for a prior on the log fold-change 
of clone frequency via the likelihood-based criterions of the 
corresponding observed marginal distribution of pair counts. 
We combined these to obtain a model of differential 
expression. Inverting this model gave the posterior log fold-
change probability of a clone given an observed count pair. 
The latter served to make inferences about the response of 
individual clones. Finally, we ran an experimental validation 
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assay and compared these to those identified by our method.  

Fig. 1. Confidence of clone contraction (left) and expansion 
(right) as a function of fold-change of the hidden clone 
frequency. Circles denote pairs of measured cell counts. Red 
circles denote clones significantly affected by vaccination. 

III. RESULTS 

A two-step replicate model best fit our data, giving similar 
parameter values across days, suggesting a unique natural 
replicate statistics. By combining this model with the best 
fitting log fold-change prior, we found correlated variation in 
the learned prior parameters values that systematically varied 
in time after vaccination. For each time point, the list of 
significantly expanded clones (see Fig. 1) correlated highly 
to the results of our experimental validation assay.    

IV. CONCLUSIONS 

Inferred changes in ensemble parameters of repertoire 
statistics reflect repertoire-level response dynamics. They are 
consistent with the known time scales of the response to YF 
and suggest temporally-sensitive ensemble features subject 
to homeostatic constraints. Finally, our validated method can 
detect significantly expanded clones by accounting for the 
natural variation in clone statistics. 
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Short Abstract — Neural networks consistently misclassify

adversarial examples, images overlaid with a small and specific 
perturbation. Similarly, immune cells misclassify agonist
ligands in the presence of antagonist ligands in a phenomenon 
called ligand antagonism. We discovered a mathematical 
relation between ligand antagonism and adversarial examples, 
and show how the decision boundary tilts and better 
approximates the true decision boundary with increasing 
nonlinearity in both the immune and the neural network.

Keywords — Machine learning, adversarial examples, 
immune recognition, ligand antagonism, decision boundary

I. BACKGROUND

N recent times, neural networks have been immensely 
successful in performing diverse tasks like object 

detection, speech recognition, and language translation [1].
Surprisingly, neural nets intrinsically suffer from blind spots, 
so-called adversarial examples [2]. An imperceptibly small,
well-designed perturbation laid over an image will cause the 
neural net to misclassify the image, while it remains
unchanged to the human eye. It has been proposed that 
adversarial examples are caused by the linearity of neural 
networks and the high-dimensionality of the data. Indeed,
small changes in many pixels can add up to a macroscopic 
change in the classifier [3]. Others have argued that 
adversarial examples exist only when the decision boundary 
lies close to the sampled data, depending on the 
regularization used during training [4]. At the decision 
boundary, images are classified with equal probability in 
either category. At the true decision boundary, images are 
ambiguous, even for us, whereas at a suboptimal decision
boundary we expect to find adversarial examples. It remains 
an open question on how precisely adversarial effects arise 
and how more robust neural nets can be designed.  

T cells are faced with similar classification tasks as neural 
networks. They specialize in triggering an immune response 
when presented with minute amounts of not self ligands 
while ignoring a vast number of self ligands. Differentiation
between ligands is based on the ligand receptor binding 
kinetics. It is known that antagonist ligands with a 
dissociation time just below the detection threshold impede 
the T cell’s response to not self ligands via a phenomenon 
called ligand antagonism [5]. Nature’s solution to overcome 
severe antagonism is to include kinetic proofreading (KPR) 
and biochemical adaptation in the immune network.
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We discovered that antagonism in immunology and 
adversarial examples in machine learning are instances of 
the same class of problems. Via an analytically tractable 
model of immune recognition, we established mathematical
connections between antagonism and adversarial examples, 
and explored consequences that until now have been
confined to a machine learning context.

II. RESULTS

We applied the Fast Gradient Sign Method [3] to the 
immune classifier and found that the maximum adversarial 
perturbation comprises a global decrease of binding times, a 
decrease in agonist number and an increase in antagonist 
number, as expected from immunology. Next, we observed 
when the decision boundary is tilted stronger, the effects of
ligand antagonism are weakened, conform [4].  

Recent work on Hopfield networks [6,7] discusses the 
implications of learning with rectified polynomials (RePns),
higher order nonlinear activation functions based on 
Rectified Linear Units. They find their analogue in immune 
networks via KPR. We showed that prototypic learning is 
enforced with high order RePns and many KPR steps.

Finally, we demonstrated how networks with higher order 
RePns or more KPR steps visually and quantitatively better 
approach the optimal decision boundary. In such networks, 
adversarial examples and mixtures of antagonists are more 
robustly classified.

III. CONCLUSIONS

Immune networks use proofreading and adaptation to 
lessen antagonistic effects. Training neural networks with 
equivalent nonlinear activation functions make them less 
sensitive to adversarial effects. Our work demonstrates how
problems in two very different fields belong to the same 
class, motivating future studies on the connection between 
machine learning and biology. 
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Short Abstract — The heart rhythm as a system of weakly 

coupled oscillators was studied recently, but little attention has 
been paid to the synchronization modes of the electrical 
stimulation-contractile response coupling in isolated mouse 
heart. This study aimed to describe with a minimalistic 
mathematical model the synchronization modes on the electrical 
stimulation-contractile response coupling in the whole heart. 
We propose a minimal linear coupled oscillator model to study 
the synchronization modes, which is validated with 
experimental results. The local stability is studied. We predict 
through in-silico experiments the presence of several 
synchronization modes, and these could be associated with 
arrhythmias. 
 

Keywords — Linear model, synchronization modes, systems 
biology, stability and complex dynamics, modeling and 
identification of nonlinear systems. 

I. INTRODUCTION 
HE cardiovascular system has been studied with a 
substantial body of mechanistic mathematical models 

[1–5]. 
Christie et al., recently modeled the cardiovascular system 

as a series of weakly coupled oscillators. The interactions 
between these oscillators generate a chaotic blood pressure 
waveform signal. A minimal linear model to identify 
different dynamical scenarios as a function of the parameters 
values is presented [6]. However, although the interaction 
between heart rate, sympathetic nervous, parasympathetic 
nervous, and respiratory systems were analyzed, little 
attention has been paid to the synchronization modes in 
electrical stimulation-contractile response coupling.  

In this paper, we propose a minimal linear mathematical 
model of the electrical stimulation-contractile response 
coupling to address the following question: whether the 
synchronization modes can be obtained with a model of 
weakly coupled oscillators. Using stability analysis, we 
found a stable equilibrium point to the proposed linear 
model. Then, we performed simulations of the coupled 
model with a forced function that represents electrical 
stimulus.  
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II. RESULTS 
The model shown in (1) where kC is the coupling 

parameter, ωE is the sinoatrial node frequency, ωM is the 
final contraction frequency, f(t) is the external electrical 
stimulation function which was chosen as a square signal 
with 10% of the duty cycle.  

 
We present five cases that describe five synchronization 

modes for different parameter settings: 
Parameter Value 

Mode 1:1 2:1 1:2 3:2 2:3 
ωE [rad / s] 37.7 

ωM [rad / s] 37.7 
kC [Hz2] 900 260 3157 1280 3680 

Z1_o [A.U.] 0.1 
Z2_o [A.U.] 0.5 1.2 0.4 3.5 3.5 

f(t) amplitude [A.U.] 16000 7020 3000 4500 390 
f(t) freq [Hz] 9 14 7 15 10 

III. CONCLUSION 
The simplicity of the model precludes it from capturing 

the molecular events at the intracellular level. We have 
illustrated how changes in the coupling parameter control the 
synchronization modes. The model reproduces 1:1, 1:2 and 
2:1 synchronization modes, experimentally obtained. The 
main prediction of the model is that 2:3 and 3:2 
synchronization modes can be obtained changing the 
coupling parameter.  
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Short Abstract — In order to successfully colonize a host, 
bacterial pathogens must sense and adapt to stress conditions 
such as damage to cell membrane. In human pathogen 
Mycobacterium tuberculosis, the disease causing agent of 
Tuberculosis, response to cell membrane damage is regulated by 
MprA/B two-component signaling system, and the alternative 
sigma factor σE. The stress regulatory network features 
multiple layers of regulation including transcriptional feedback 
and post-translational regulation. Using time-course qRT-PCR 
data for sigE and mprA genes following exposure to membrane 
damaging stress, we aim to uncover how network architecture 
shapes the observed dynamic response. 

Keywords — dynamical properties, feedback, networks. 

I. INTRODUCTION

HE pathogen  (Mtb) can 
cause a latent tuberculosis (TB) infection by 

reprogramming its metabolism and gene expression to a 
persistent, non-replicating state. To successfully colonize 
human hosts, Mtb must sense and adapt to stresses generated 
by the host immune system [1]. One such stress, damage to 
cell membrane, is regulated by transcriptional master 
regulators – MprA/B two-component system (TCS) and 
alternative sigma factor σE [2].
 Exposure of Mtb cells to membrane damaging stress leads 
to activation of the MprA/B TCS. MprA is autoregulatory, 
and upregulates the  operon. In addition, it 
activates transcription of , whose gene product σE in turn 
upregulates  [4]. This sets up a network with two 
transcriptional positive feedback loops – direct 
(autoregulation) and indirect. Further complexity is added to 
the network by post-translational sequestration of σE by its 
cognate anti-sigma factor RseA, preventing downstream 
gene activation [3].

II. RESULTS

Previous theoretical work from our lab has suggested that 
the MprA/B- σE network described above can be bistable [3]. 
Specifically, the positive feedback loops combined with 
ultrasensitivity generated by strong σE-RseA interaction give 
rise to bistability in some parameter ranges. However, a step 
change from unstressed to stressed conditions with this 
bistable model results in a large activation delay. To verify 
this experimentally, we quantified transcript abundance of 

1Department of Bioengineering, Rice University, E-mail: 
satyajit@rice.edu

2Public Health Research Institute, New Jersey Medical School, Rutgers 
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,  and (reporter for σE activity) in Mtb cells 
exposed to surfactant SDS. Time course of the transcripts 
was collected along with dose-response measurements at 
increasing and decreasing SDS doses. While time-course 
measurements reveal surprisingly rapid accumulation given 
the positive feedback circuit, dose-response measurements 
reveal hysteresis in  transcript levels between 
previously unstressed and previously stressed Mtb cells.  

Utilizing this data, we have succeeded in constructing a 
model that explains the dynamical properties of MprA/B-σE

stress response pathway. We report that a chaperone, DnaK,
known to suppress MprB autokinase activity plays a role in 
generating bistability. In absence of this chaperone 
mechanism, our models display a trade-off between short 
transcript accumulation time and hysteresis in transcript 
levels. Short transcript accumulation time is observed in 
absolute concentration robustness (ACR) regime of MprA/B 
TCS wherein, the level of phosphorylated MprA depends 
only on the signal level, provided enough MprA protein is 
present [4]. In this regime, bistability is ruled out and 
simulations do not display dose-response hysteresis. On the 
other hand, outside this regime in bistable conditions, dose-
response hysteresis is observed but the models display high 
transcript accumulation times. We report that the network 
model including DnaK-MprB interaction does not possess 
ACR. The model is bistable at intermediate SDS 
concentrations, giving rise to hysteresis in transcript levels.
Interestingly, we can still maintain short transcript 
accumulation times, avoiding the previous models’ trade-off. 

III. CONCLUSION

We find that a trade-off exists between short accumulation 
time and hysteresis in transcript levels in the classical two-
component system model. In contrast, using a DnaK-
dependent activation mechanism of MprA/B, we can explain 
the hysteresis in dose-response while avoiding the previous 
trade-off. Stress-independent, constitutive production of 
DnaK, along with positive feedback to MprA/B are critical 
for hysteretic bistability. 
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Short Abstract — We can model the dynamics of certain 

cellular processes via the chemical master equation. Analyzing 
the system becomes especially burdensome as the number of 
chemical species being tracked increases. Numerous recent 
attempts have been made to alleviate this so-called curse of 
dimensionality using tensors (i.e., multidimensional arrays), 
because tensor-based approaches have been found to scale 
linearly with species count. We develop tensor-based strategies 
to approximate the probability distribution in the long run, 
after the transient behavior of the system has dissipated, with 
an emphasis on constructing iterative methods that scale 
efficiently as more chemical species are introduced to the 
system. 
 

Keywords — chemical master equation, stationary solution, 
limiting behavior, iterative methods, tensors 

I. MOTIVATION 
HE chemical master equation yields a system of linear 
equations that is frequently represented in matrix form: 

 
Ap = ṗ 

 
where A is the n x n sparse transition rate matrix and p is an 
n x 1 vector enumerating the (time-dependent) probability of 
the n possible chemical configurations of the system. The 
derivative of the probability vector, ṗ, will simply be the 
zero vector when the system is in statistical equilibrium. 
Solving such a system using traditional methods requires 
O(n3) steps [1]. Numerous approaches have been 
implemented to arrive at a solution more efficiently, but they 
tend to suffer from the curse of dimensionality to varying 
extents.  
  

II. TENSOR APPROACH 
In recent years, tensors have been touted as a means of 

vastly reducing the computational burden involved in 
analyzing systems modeled by the chemical master equation. 
A straightforward means of converting the problem from 
matrix format to tensor format is to reconfigure p into a 
multidimensional array of dimension 

 
n1 × n2 × … × nd 
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where nj – 1 is the maximum copy number of the jth chemical 
species and d is the number of chemical species being 
tracked in the system [2-3]. The transition matrix A is 
likewise reformatted to tensor form and a multiplication 
operation relating A and p is defined accordingly. 
 Unlike the matrix formulation, tensor representation holds 
the advantage of preserving in its structure information 
concerning the underlying geometry of the system. Vast 
computational savings are realized when the 
multidimensional arrays are factored into a low-rank 
approximation using methods such as tensor train 
decomposition [4-8]. Tensor-based approaches have already 
been applied to the study of the chemical master equation’s 
stationary solution [9]. Here, we present new iterative 
techniques to approximate the stationary solution using 
tensors and compare their computational efficiency to more 
traditional methods. 
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Short Abstract —Some evolutionary conditions result in 
`generalists’ that are well-adapted to a common aspect of 
environments in evolutionary history and can thus deal with 
unseen environments. Such `generalists’ can be hard to evolve if 
they are less fit or are entropically disfavored. We show that 
time-dependent evolutionary protocols, such as environmental 
cycling on an intermediate timescale or a chirp can select for 
generalists in spite of high fitness or entropic costs. These time-
dependent strategies can be successful even when all static 
protocols fail. We show the regimes of the landscape ruggedness,
selection pressure, and other parameters in which time-
dependent protocols can discover generalist solutions.

Keywords — changing environments, immunology models, 
population genetics models

I. PURPOSE

NDERSTANDING the conditions under which a system is 
able to generalize the experience of past challenges to 

solve novel challenges is a theme at the heart of diverse fields, 
ranging from statistical learning theory to evolutionary 
biology. Arriving at such a generalist solution is especially 
difficult since `specialist’ solutions might be entropically 
favored or generally outperform (i.e., have higher fitness) any 
generalist solution. In addition, this task can be made more 
difficult by the ruggedness of the fitness landscape, as the 
system may become trapped in a local well and fail to 
successfully evolve a solution to the environment.  

The emergence of generalists has been linked to the idea of 
changing environments. Simplified models[1] of evolutionary 
dynamics in low-dimensional spaces have indicated that
environmental cycling at a specific frequency could select (or 
`localize’) a population at a `generalist’ phenotype or 
genotypes. Such emergence of generalists has also been 
thought about in the context of modularity[2,3].

Recent experiments in immunology have provided a
quantitative handle on such questions. The observed 
emergence of broadly neutralizing antibodies (bnAbs) 
suggests that by exposing the germinal center to a variety of 
mutants of a given antigen, the immune system can develop 
antibodies that succeed against mutants not previously seen in 
spite of the fact that these antibodies are not entropically 
favored. In addition, epistatic interaction between the sites 
increases the difficulty of the problem by enhancing 

1Graduate Program in Biophysical Sciences, University of Chicago E-
mail: sachdved@uchicago.edu

degeneracies of antibodies[4]. Discovery of bnAbs is 
promoted by switching between antigens, rather than 
simultaneous presentation of multiple strains of antigen [5]. 
                                                                                                                        
These examples raise critical questions about exactly what 
circumstances make the emergence of generalists difficult and 
necessitate temporal strategies. 

II. METHODS AND RESULTS 

The works above suggest three critical parameters to be 
studied: the switching rate of the environment, the cost of the 
generalist strategy relative to specialized strategies, and the 
ruggedness of the fitness landscapes. We performed Wright-
Fisher simulations and varied the above parameters.  

We find that generalists can emerge in static environments 
only if their fitness cost (relative to specialists) is below a 
critical value. For larger fitness costs, static environments or 
rapid cycling of environments cannot produce generalists. In 
parts of this regime, we find that cycling through different 
environments favors the emergence of generalists. However, 
the timescale of environmental cycling must be tuned to 
match the timescale of the evolutionary dynamics itself, set 
by the mutation rate, population size and selection pressure. 
If the environmental cycling is faster or slower, we do not 
recover generalists.  We summarize our results in the form of 
a phase diagram. 
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 Metabolic enzymes must reliably catalyze the conversion of 
substrate to product, but are also constrained to function 
properly in the context of their pathway. Here we show that 
constraint on the accumulation of a metabolic intermediate 
leads to epistasis and co-evolution of two enzymes in folate 
metabolism: Dihydrofolate reductase (DHFR) and Thymidylate 
synthase (TYMS). These two enzymes co-evolve: (1) 
experimentally during forward evolution and (2) statistically 
across 1445 bacterial genome sequences.  Moreover, these two 
enzymes evolve relatively independent from the remainder of 
the pathway.  These results motivate the development of new 
co-evolutionary analyses for examining sequence constraints 
within metabolism. 

Keywords — coevolution, statistical genomics, folate 
metabolism, dihydrofolate reductase (DHFR), epistasis, 
experimental evolution 

I. INTRODUCTION

In metabolism, the coordinated activity of multiple enzymes 
produces the substrates necessary for cell growth and 
division. Though a large body of prior work has elucidated 
the molecular components and biochemical reactions 
comprising central metabolism, it remains unclear what 
evolutionary and functional constraints act on metabolic 
enzymes. For example, if one enzyme in a pathway is 
inhibited or otherwise reduced in activity, what (if anything) 
has to happen in the rest of the pathway to compensate? And 
to what extent are the activities of metabolic enzymes 
coupled or entirely independent from one another? We chose 
folate metabolism, a well-characterized and highly conserved 
pathway, as a model system to study these questions. Our 
approach combines coevolutionary analyses, epistasis 
measurements, and experimental forward evolution in order 
to understand the evolutionary constraints on this system. 

II. RESULTS

We conducted an analysis of thirteen enzymes comprising 
the core one-carbon folate metabolic pathway across 1445 
bacterial genomes. Two measures of coevolution were 
considered: 1) synteny, the conservation of chromosomal 
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proximity between genes and 2) co-occurrence, the 
coordinated loss and gain of genes across species. The 
results indicate a sparse architecture of interactions, in which 
most genes evolve independently of one another, with 
several small groups that coevolve modularly. 

Expectedly, one of these groups is composed of the 
glycine cleavage system proteins H, P and T, which make up 
a physical complex. The second coevolving unit is made up 
of two enzymes, dihydrofolate reductase (DHFR) and 
thymidylate synthase (TYMS), which catalyze sequential 
reactions but are not known to physically bind. We chose 
DHFR and TYMS for detailed experimental study in .  
Quantitative epistasis measurements reveal that DHFR and 
TYMS are coupled such that a decrease in the activity of one 
enzyme can be compensated for by lowering the activity of 
the other. In concordance with this, metabolomic 
measurements suggest that this epistasis is driven by a 
constraint on their relative activities, which must be balanced 
to prevent the accumulation of a toxic intermediate. We
evolved wild-type  in the presence of trimethoprim, a 
competitive inhibitor of DHFR. Whole genome sequencing 
reveals that resistance is obtained by mutations in both 
DHFR and TYMS, but not other genes in the pathway.  
Thus, the enzyme pair shows a capacity for adaptation that is 
independent from the rest of folate metabolism, which is 
supported by both statistical and experimental evidence.2  

III. DISCUSSION

This work suggests that complex systems such as folate 
metabolism may be subdivided into functional units that act 
collectively and adapt relatively independent of one another. 
We provide one such example, which was predicted by 
statistical analysis of genomic data. Our results motivate a
global analysis of coevolution within metabolism, to be 
followed by comprehensive experimental testing. This 
strategy has the potential to provide important insights 
toward rationally engineering new systems, and predicting 
the combined effects of mutations.  
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Short Abstract — To coordinate complex behaviors, living 
cells transmit and receive many pieces of information with one 
another. However, a small limited number of engineered cell-
cell communication systems currently exist, limiting our ability 
to engineer multicellular behaviors. Here, we overcome this 
limitation by constructing a genetically-encoded Multiplexer-
Demultiplexer (MUX-DEMUX) system that enables Escherichia 
coli to have two separate conversations over a single chemical 
channel.

Keywords — cell-cell communication, genetically-encoded 
Multiplexer-Demultiplexer, MUX-DEMUX, multicellular 
behaviors, transcriptional logic gates, CRISPRi

I. PURPOSE

ommunication among cells enables complex 
multicellular behaviors and is employed by many natural 

systems. Examples include the Notch-Delta systems in 
animals, which coordinate multiple cellular differentiation 
processes, auxin systems in plants, which orchestrate growth
and development, and quorum-sensing systems in bacteria, 
which regulate bacterial gene expression based on population 
density. Several engineered systems have also been 
presented that utilize cell-cell communication, including a 
bacterial edge detector [1], multicellular NOR gates [2], and 
an oscillating microbial consortium [3]. However, the most 
complex engineered multicellular systems currently use at
most two communication channels, due in part to the limited 
availability of engineered cell-cell communication systems.
Expanding the effective capacity of existing cell-cell 
communication systems overcomes this limitation and 
enables increasingly complex engineered multicellular 
behaviors.

Constraints on the transmission of information are also 
prevalent in electrical systems, where digital logic devices 
are employed to manage access to finite communication 
resources. These logic devices, known as multiplexers, 
enable multiple independent conversations to occur over the 
same communication channel. A multiplexer (MUX) outputs 
one of multiple input signals based on a “select” signal. 
Similarly, a demultiplexer (DEMUX) routes a single input 
signal to one of multiple outputs based on a select signal. If a
MUX and a DEMUX are juxtaposed across a 
communication channel, they can be used to arbitrate access 
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to the channel. Furthermore, if their select signals are derived 
from the same source, the MUX-DEMUX system can select 
and transmit one of multiple simultaneous independent 
signals, effectively increasing the capacity for 
communication across the channel. We thus used standard 
logic design techniques to design a MUX circuit and a 
DEMUX circuit, and we built on existing techniques for 
constructing genetically-encoded logic circuits in living cells 
[4] to implement a MUX-DEMUX system that enables 
Escherichia coli to transmit two independent signals over a 
single chemical channel.

II. RESULTS

We have constructed a novel library of 9 orthogonal 
CRISPRi-based NOT and NOR gates, and we optimized 3 
small-molecule sensors and 1 quorum-sensing cell-cell 
communication channel to interface with them. From this 
library of parts, we assembled a chemically-inducible 
genetically-encoded 2-to-1 MUX from 3 sensors, 4 CRISPRi 
NOT gates, and 3 CRISPRi NOR gates and a chemically-
inducible genetically-encoded 1-to-2 DEMUX from 2 
sensors, 3 CRISPRi NOT gates, and 2 CRISPRi NOR gates. 
We introduced the MUX and DEMUX circuits into separate 
E. coli strains, validated the performance of every regulated 
promoter in each circuit, and cocultured both strains to show 
that two different small-molecule inducers, detected only by 
the MUX strain, can independently control the activity of 
two transcription units in the DEMUX strain. We also 
characterized the dynamics of signal propagation in the 
MUX circuit and established a gate delay time for CRISPRi 
logic circuits in E. coli.

III. CONCLUSIONS

This work represents one of the largest synthetic systems 
constructed to date with 20 regulated transcription units and 
8 layers of logic computation. This work also expands the 
capacity for communication over existing engineered cell-
cell communication systems and enables increasingly 
complex multicellular behaviors.
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A. By inferring rule context and identifying meaningful 
pathways from an assembled set of rules, we can build an 
accurate and simulatable model with minimal intervention. 

B. Automated model construction and simulation shows 
that Sorafenib perturbs regulation of PKM2 through 
phosphorylation and transcription 
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Short Abstract — Predicting microbial community dynamics 
is critical for controlling communities. It should be trivial to 
predict the growth rate of a simplified community of two cross-
feeding S. cerevisiae strains. However, a model based on 
parameters measured from batch cultures matches 
experiments poorly despite its previous success in predicting 
for example steady-state strain ratio. Here, we find that 
metabolite release rate can vary significantly with growth rate. 
Thus, we need to consider how physiology (e.g. growth rate) 
impacts ecology (e.g. metabolite release rate) in addition to how 
ecology affects physiology. Incorporating this ecology-
physiology feedback enables prediction of community 
dynamics. 

Keywords — Microbial community dynamics; Microbial 
physiology and ecology 

I. PURPOSE

Microbial communities are ubiquitous, and impact us 
and our ecosystems. Commensal gut microbiota influence 
our body weight and immune system 1. Microbial 
communities are also used in pollutant degradation 2 and in 
industrial production of important compounds 3. To control 
microbial communities, we need to understand how 
interactions between species lead to community dynamics. 

Here, we attempt to predict the growth rate of an 
engineered yeast community CoSMO (Cooperation that is 
Synthetic and Mutually Obligatory”) 4. CoSMO comprises 
two differentially-fluorescent non-mating haploid strains.
The - + strain requires adenine due to deletion of ,
and over-activates the lysine biosynthetic pathway due to a 
feedback-resistant  mutation. The - + strain requires 
lysine due to deletion of , and over-activates the 
adenine biosynthetic pathway due to a feedback-resistant 

 mutation. Overproduced metabolites are released into 
the environment. In minimal medium lacking adenine and 
lysine supplements, the two strains engage in obligatory 
cooperation.  

In a well-mixed environment, CoSMO dynamics can be 
modeled by ordinary differential equations. In our earlier 
study on CoSMO 4, we quantified some of the model 
parameters and “borrowed” others from the literature. Model
parameters correspond to strain phenotypes such as 
metabolite release rate, metabolite consumption per new 
cell, death rate, and birth rates at various concentrations of 
the required metabolite. Our model correctly predicted, for 

1Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 
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example, the steady state strain ratio 4 and qualitative 
features of community spatial organization 5. However, 
predictions on steady state CoSMO growth rate poorly 
matched experiments.  

Here, we re-measure each strain’s phenotypes in 
chemostat cultures where growth rates are set at various 
levels that span the steady state CoSMO growth rate. We 
find that both populations rapid evolve during 
measurements, and we devise methods to mitigate the effects 
of rapid evolution. 

We find that within the range of environments that 
CoSMO experiences, lysine release rate of - + varies 
significantly with growth rate. Thus, besides modeling how 
ecological interactions affect cell physiology (growth rate), 
we need to consider how cell physiology (growth rate) 
affects ecological interactions (release rates). When we 
incorporate growth rate-dependent release rate (physiology-
ecology feedback), our model agrees with experimental 
results.  

II. CONCLUSION

Quantitative prediction of microbial community dynamics 
may require quantifying physiology-ecology feedback.
When model parameters are measured (instead of 
“borrowed”), model-experiment discrepancy motivates new 
discoveries. 
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Short Abstract — HIV is known to cause cell death. In 
infections with multiple HIV transmissions per cell, partial 
inhibition may lead to increased numbers of live infected cells as
eliminating surplus viral copies reduces cell death. Using a cell 
line and lymph node cells, we observed increased numbers of 
live infected cells when infection was partially inhibited with 
the antiretroviral efavirenz or antibody. We observed more live 
infected cells, but fewer HIV DNA copies per cell, relative to no 
drug. Hence, reduction in HIV transmissions per cell may 
increase live infected cell numbers in environments where the 
force of infection is high. 

Keywords — HIV, cell-to-cell spread, multiple infections per 
cell, cell death. 

I. BACKGROUND

IV infection is known to result in extensive cell 
depletion in lymph node environments [1], where 
infection is most robust [2]. Cell death occurs by 

several mechanisms. For example, double strand breaks in 
the host DNA caused by integration of the reverse 
transcribed virus results in cell death by the DNA-PK 
mediated activation of the p53 response [3].

Multiple infections per cell have been reported in cell-to-cell 
spread of HIV  In this mode of HIV transmission, an 
interaction between the infected donor cell and the 
uninfected target results in directed transmission of large 
numbers of virions [4-7]. Here we examined the effect of 
reducing the number of HIV transmissions per cell on the 
number of live infected cells in cell-to-cell spread.  

II. RESULTS AND CONCLUSION

We introduce a model of infection where each donor to 
target transmission leads to an infection probability  and 
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death probability per infection attempt, and a number of 
infection attempts per cell . In our experimental system, one 
infection attempt is measured as one HIV DNA copy. The 
probability of a cell to be infected and not die after it has 
been exposed to  infection attempts is:  

.                              (1)                               

We experimentally measured parameter values for this
relation.  was measured by PCR to detect the number of 
reverse transcribed copies of viral DNA in the cell by 
splitting each individual infected cell over multiple wells. 

=15 in RevCEM cell line infection and 20 in primary 
human lymph node cells. We also experimentally measured 
and which were observed to be 0.28 and 0.15 respectively. 

We observed that Equation (1) resulted in a peak in live 
infected cells when the value of  was decreased from that 
measured in the absence of inhibitor. We therefore dialed 
down the number of HIV DNA copies per cell using the 
reverse transcriptase inhibitor efavirenz or a neutralizing 
antibody and obtained an increase in live infected cells with 
partial inhibition, followed by a decrease in infection once 
inhibition was further increased.   

Partial inhibition of HIV infection may therefore provide a 
surprising advantage to the virus as it may reduce infection 
mediated cell death and hence increase the number of live 
infected cells. 
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Short Abstract — The role of the tumour microenvironment 

in cancer initiation is poorly understood. We present and 
analyze a microenvironment population dynamics model 
motivated by an attractor landscape view of cellular states. Cell 
types are regarded as stable minima of a quasi-potential 
function that harbours additional spurious minima, some of 
which may be pre-cancerous. Stochastic transitions between 
healthy and mutagenic minima enable mutation acquisition at 
the population level (oncogenesis). This transition rate may be 
amplified by tumour signals, causing positive feedback. A three-
state ODE model describes this process. We analyze its 
dynamics with and without tumour feedback, discussing 
implications for cancer initiation. 

I. PURPOSE 
HE role of the tumour microenvironment in the early 
stages of cancer initiation remains poorly understood. 

We rigorously investigate its potential role using a model 
inspired by an attractor landscape view of cellular 
phenotypes. This view associates a cell’s “state” with its set 
of gene transcript levels [1,2]. Physiological cell types are 
interpreted as minima of a quasi-potential function that 
captures epigenetic regulatory interactions. Due to the high-
dimensionality of the corresponding landscape, it is generally 
the case that unexpected or “spurious” stable points will 
exist, some of which could exhibit deleterious phenotypes 
and have been hypothesized to be pre-cancerous [2,3]. 

The subset of spurious phenotypes with mutagenic 
potential (e.g. via p53 dysregulation) is hypothesized to be a 
precursor to the emergence of cells with cancer driver 
mutations [2,3]. Accordingly, the role of tumour 
microenvironment signalling is of particular interest, as 
evidence suggests tumour signals may amplify the transition 
rate from healthy to spurious cell types (e.g. via tumour 
exosomes [4]). Our modelling formalizes these hypotheses 
and investigates their effects on cancer initiation. 

II. MODEL 
A minimal three-state ODE system is constructed by 

considering three cell classes: x (the set of non-mutagenic or 
healthy attractors), y (the mutagenic spurious attractors), and 
z (cells which have acquired irreversible cancer driver 
mutations). The total population N = x + y + z is dynamically 
conserved, representing pre-cancerous metaplasia (i.e. no 
outgrowth). Cells can switch reversibly (epigenetically) 
between the x and y attractor sets, but only cells which have 
entered the y state can acquire mutations at non-negligible 
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rates. Our model accounts for state transitions, growth, 
immigration, and population-regulating cell death. 

III. ANALYSIS 
We consider the model’s behaviour in two scenarios: 1) 

fixed transition rates, and 2) positive feedback in the form of 
mutant population-dependent transition rate between x and y. 
 Without feedback there is exactly one physical and stable 
fixed point of the dynamics for all physical parameter values. 
As parameters such as the growth rates of states y or z are 
varied, the stable fixed point undergoes a continuous 
transcritical bifurcation between two regimes: “all-z” (z∞ = 
N) and “low-z” (0 ≤ z∞ < N). These regimes can be 
interpreted as pre-cancer and cancer-free states, respectively. 

Positive feedback on the x-to-y transition rate leads to rich 
dynamics, including bistability (via a pitchfork bifurcation) 
of the all-z and low-z fixed points over a wide range of 
parameters. We investigate switching between the 
monostable and bistable regimes as a function of y and z 
growth rates. The resulting “phase diagram” is reminiscent of 
a liquid-gas transition (discontinuous phase switching below 
a critical point but continuous switching beyond this point). 
Stochastic simulation of the first-passage time to acquire a 
second driver mutation in each regime indicates that small 
deviations in mutation and subpopulation growth rates can 
accelerate or inhibit tumour development.  

IV. CONCLUSION 
Analysis of our minimal population dynamics model 

reveals significant consequences of positive feedback in the 
tumour microenvironment. Namely, if tumour signals can 
induce reprogramming to spurious phenotypes in healthy 
surrounding tissue, then mutated cells can dominate the total 
population even if they grow much more slowly than healthy 
cells. In addition, mutants can fixate with a mutation rate that 
is orders of magnitude lower than what is needed in the 
absence of signalling. This suggests that blocking pro-
tumour microenvironment signals alone (i.e. without direct 
targeting of tumour cells) could inhibit tumour development. 
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Short Abstract — Surgery that removes solid tumors can be 
preceded or followed by adjuvant radio – chemo- or 
radiochemotherapy. These therapies can be administered in a 
different order. In this work we present analysis of different 
therapy protocols, aimed at finding a hypothetical optimal one 
and checking what results it yields in a heterogeneous 
population of patients. Moreover, we discuss differences in 
modeling results between a standard linear-quadratic model of 
radiotherapy and an approach that takes into account dynamic 
effects of radiation. 

Keywords — adjuvant therapy, radiotherapy, chemotherapy, 
Kaplan-Meier curves, optimal control. 

I. BACKGROUND

HE The development of adjuvant anticancer therapies is 
largely empirical, based on the outcome of a 

prospectively designed randomized clinical trials. One of the 
most intensively explored areas in the clinic is comparison 
of the effectiveness of postoperative (or preoperative) 
radiotherapy to the effectiveness of postoperative (or 
preoperative) radiotherapy combined with chemotherapy. 

Dynamical models of cancer growth employ a variety of 
modeling techniques, from ordinary differential equations to
agent-based models. Therapy is incorporated in tem in the 
form of control variable, thus facilitating formal approaches 
to optimize therapy protocols or comparison of different 
ways to model chemo- and radiotherapy [1-2]. In this work, 
we focus on two different approaches to model radiotherapy 
and include it in a combined protocol with chemotherapy. 
The comparison is based on patient survival curves  obtained 
through simulation of tumor growth for a population of 
heterogeneous patients, differentiated by parameters 
corresponding to the tumor growth rate and responsiveness 
to therapy. 

II. THE MODEL

One of the most widely used models, generally accepted 
by clinicians, is the Gompertz model. In this work, 
chemotherapy is incorporated in it in the simplest form, 
without taking into account cell-cycle specificity nor drug 
resistance phenomenon, as one of the control variables ( )
and the simplest pharmacokinetics model. The effects of 
radiation therapy are most often described by the so called 
Linear-Quadratic (LQ) model and switches in state 
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trajectory, following radiation events. While this has been 
tested as well, in an alternative model version we also take 
into account repair of radiation-induced DNA damage with 
the half time  then the decay rate , following the line of 
reasoning presented in [3]. Denoting by ( ) tumor size and 
by ( ) the radiation dose rate at time , and the system under 
consideration is described by the following set of equations: 

 (1) 

(2) 
(3) 

Where (2) represents pharmacokinetics and (3) fast repair 
mechanisms, following irradiation events. 

III. MODEL ANALYSIS AND CONCLUSIONS 

Two main questions arise in such approach to modeling:
(i) what are the differences in tumor growth dynamics under 
standard therapy protocols between standard LQ model and 
the one given by (3) and (ii) how should intertumor 
heterogeneity be incorporated for analysis of protocols 
efficacy for a given population of patients. 

In recent years many reports have showed a correlation 
between a metabolism of cancer cells and tumor malignancy 
(e.g., [6]). In the case of breast cancer it has been found that 
isoleucine, threonine, glutamine and linoleic acid, measured 
in serum before therapy had started, allow to differentiate 
patients with respect to predicted outcome of adjuvant 
chemotherapy [7]. Therefore, we used patient blood 
morphology data to create a distribution from which model 
parameters, corresponding to tumor growth rate and its 
responsiveness to therapy, were sampled. Thus, a population 
of virtual patients was created. Therapy protocols were
simulated for each patient, with a predefined threshold of 
tumor size defining patient death. Subsequently, survival 
curves were calculated. The results showed that blood 
morphology can be used to estimate parameters in tumor 
growth models, making it possible to model a heterogeneous 
population of patients. 

REFERENCES

[1] Swierniak A, et al. (2016) 
, Springer, New York. 

[2] Schättler H, Ledzewicz U (2015) Optimal Control for Mathematical 
Models of Cancer Therapies, Springer, New York. 

[3] Sachs RK, Hlatky LR, Hahnfeldt P (2001) Simple ODE model of 
tumor growth and antiangiogenic or radiation treatment. 

33, 1297-1305. 
[4] Lodi A, Ronen SM (2011) Magnetic resonance spectroscopy 

detectable metabolomic fingerprint of response to antineoplastic 
treatment, 6, e26155.

[5] Keun HC, et al. (2009) Serum molecular signatures of weight change 
during early breast cancer chemotherapy,. 15,   6716-
6723. 

Modeling adjuvant chemo- and radiotherapy  
Andrzej Swierniak1, Jaroslaw Smieja2, and Pawel Fic3

T

141



142



 
Short Abstract —Protein homeostasis requires continuous 

monitoring of stress in the endolplasmic recticulum. Stress
detection networks control protein homeostasis by mitigating 
the deleterious effects of aberrant protein accumulation, such 
as excessive unfolded protein, protein aggregates, and 
misfolded proteins, with precise modulation use of chaperone 
production. Here, we develop a coarse model of the unfolded 
protein response in yeast and use multi-objective optimization 
to determine efficient sensing and activation strategies that 
optimally balance the trade-off between unfolded protein 
accumulation and chaperone production. 

Keywords — Unfolded protein response, endoplasmic 
reticulum stress, feedback, Pareto optimization. 

I. BACKGROUND

HE unfolded protein response is a collection of 
cellular responses that maintain protein homeostasis in 

the endoplasmic reticulum (ER) [1,2]. Initiation of the 
response requires activation of transmembrane proteins that 
detect the level of stress placed on the folding machinery 
within the ER lumen. The detection of stress, and activation 
of the transcriptional responses that mitigate ER stress, are 
essential to the control of protein folding and malfunction 
of the ER stress response is related to numerous diseases 
[3]. At their most basic level, stress detection networks 
[4,5] act as controllers of protein homeostasis that seek to 
mitigate the deleterious effects of aberrant protein 
accumulation, which can lead to aggregation and 
misfolding, with a precise and efficient use of chaperone 
production [6]. Aberrant protein accumulation leads to 
protein misfolding and aggregation of toxic oligomers. 
Evidence suggests that the response is sensitive to 
concentrations of both unfolded protein and chaperone in 
the ER lumen. In this work, we employ a multi-objective 
optimization algorithm to balance the trade-off between the 
metabolic cost of chaperone production and the deleterious 
effects of unfolded protein accumulation in the ER. Using 
this framework, we analyze a set of biologically-relevant 
sensory networks that integrate signals from both unfolded 
protein and chaperone concentrations in the ER lumen to 
determine underlying rules governing the effectiveness of 
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sensing network designs. 

II. RESULTS

For a sensor that detects the level of unfolded protein 
directly, we find that the level at which the response is 
activated dictates the balance of costs, but all costs can be 
reduced if the magnitude of the response scales gradually 
with the strength of the stimulus. Additionally, we show 
that a sensing mechanism that responds to the level of free 
chaperone in the ER offers more efficient control than 
sensors that detect unfolded proteins directly. This is the 
result of the chaperone-detection mechanism having 
asymmetric activation and deactivation thresholds. Lastly, 
we demonstrate that a sensor whose activation requires a 
combination of unfolded protein and free chaperone 
provides an extra degree of freedom that the cell can use to 
further optimize homeostatic control.  

III. CONCLUSIONS

Our results suggest a strategy for the optimal design of 
stress sensors and provide a possible explanation as to why 
BiP-mitigated ER stress sensing networks have evolved. By 
unraveling the different factors regulating the control of the 
ER stress sensor, our approach can guide the design of 
homeostatic controllers in other biological contexts as well 
as synthetic biology. 
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Short Abstract — Fluorescent proteins (FPs) are commonly 

used as quantitative reporters of biological structures and 
events. However, their application in vivo is greatly limited by 
the low brightness and photostability of the current generation 
of FPs. It is therefore imperative to engineer brighter and more 
photostable FPs. FP properties measured in bacteria or in vitro 
often do not extend to their performance in mammalian cells. 
Moreover, the traditional approach to engineer new fluorescent 
proteins via directed evolution in Escherichia coli is low-
throughput. To address these issues, we developed an 
automated microscopy-based FP screening platform. We use 
Saccharomyces cerevisiae, a eukaryotic organism that is a better 
proxy for mammalian cells than bacteria, to express FP 
variants at a single cell level. FP variants are imaged and 
analyzed under a microscope and the desirable variants are 
recovered for further screening. With our method, we can 
screen thousands of variants in a well of a 96-well plate in a 
matter of minutes. We anticipate that this platform will enable 
rapid development of brighter and more photostable FPs 
across the color spectrum. 

Keywords — Fluorescent proteins, High-throughput 
screening, Saccharomyces cerevisiae

INCE the discovery and engineering of Green 
Fluorescent Protein from Aequorea victoria over 15 
years ago, fluorescent proteins (FPs) and the tags and 

sensors derived from them have become ubiquitous imaging 
tools across biology. FPs are commonly used as reporter 
proteins to study gene regulatory networks, and have also 
become integral to genetically encoded sensors such as 
genetically encoded indicators of voltage and calcium. These 
sensors allow unprecedented cellular-level resolution of 
neural activity, but are yet limited in brightness and 
photostability [5]. Given the wide array of applications,
engineering of brighter and more photostable FPs has far-
reaching impact. Directed evolution in Escherichia coli is 
the standard approach to develop new fluorescent proteins.
Bacteria are used because of their fast growth and low cost 
of maintenance. Variant libraries of FPs are created by
mutagenesis and screened for desired properties, usually by 
picking colonies on agar plates. There are several limitations 
to this approach for optimizing FPs for mammalian 
expression; the properties of FPs which are expressed in 
bacteria and characterized in vitro do not translate directly in 
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mammalian cells. Also, the current method of FP screening 
is low-throughput making the screening process slow and 
cumbersome. 

To address the limitations of current approaches,
we developed an FP screening platform that converts an
epifluorescent microscope setup into an automated high-
throughput FP screening platform. To facilitate the 
expression of the FP variants, we chose Saccharomyces 
cerevisiae (yeast) as a ‘middle ground’ between bacterial and 
mammalian systems. As eukaryotes, yeast use protein 
expression and folding machinery more closely resembling 
those in mammalian cells. Yet, yeast is also cheap and easy 
to work with it. Also, yeast can overexpress exogenous 
proteins for in vitro characterization [6]. 

To utilize the yeast system for screening, 
mutagenesis is performed using degenerate primers to create 
a library of FP variants housed in vectors designed for 
expression in yeast. Yeast-transformed cells are plated on a 
glass bottom plate and imaged under a common fluorescent 
light microscope set up. Captured images are segmented and 
analyzed, ranking cells by fluorescent intensity. Top-ranked 
cells are selected, and the corresponding X and Y locations 
of the cells are sent to the microscope. The selected cells can 
then be picked by thin glass pipettes and grown in liquid 
media. With our method, we managed to screen several 
hundred thousand of variants in a matter of minutes. This 
would be equivalent to testing a thousand 96-well plates. We 
anticipate that this platform will enable rapid development 
of brighter and more photostable FPs across the color 
palette. 
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Accurate segmentation and tracking of individual cells from 
time lapse live microscopy is essential to understand single cell 
behavior and signaling. Here we introduce a fully automated 
segmentation and tracking algorithm for budding yeast that can 
accurately segment and track individual yeast cells for at least 
60h. The algorithm does not require any specific biomarkers 
and can segment cells with arbitrary morphologies (e.g. 
sporulating, and pheromone treated cells), with high efficiency. 
In addition, the algorithm is largely independent of the specific 
imaging method (bright field / phase), objective or image 
resolution.

Keywords— Segmentation, Yeast, Watershed, Morphological 
Image Processing 

I. INTRODUCTION

ECENT technological advances enabled us to follow 
gene expression and protein dynamics in single cells 

using time-lapse microscopy. To generate such data for some 
given cell, two requirements have to be met: First, cell 
boundaries have to be identified (segmentation), and second, 
the cell has to be tracked through time (tracking).
Here, we introduce a yeast segmentation and tracking 
algorithm [1], which improves the accuracy and speed of our 
previously published method [2]. In particular, we drastically 
improve its performance with respect to yeast cells with 
irregular boundaries such as spores and pheromone treated 
cells. In addition, we introduce a novel automatized seeding 
step, which replaces the semi-automatic seeding of the 
previous method and enables us to have a fully automatic 
segmentation algorithm.

II. RESULTS

A. Seeding
Our algorithm segments images backwards in time, i.e. it
starts from the last time point and goes to the first and uses 
the segmented image of the previous image to track and 
segment the subsequent image. The first step in this process, 
called seeding, involves providing the algorithm the 
segmentation of the last image, the seed. This step was a 
bottleneck in the previous version of our algorithm since it 
was only semi-automated. 
To resolve this bottleneck, we developed a fully automated 
seeding step that (1) pre-processes the image using 
morphological image analysis and applies watershed 
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transform to the processed image, and then (2) fine-tunes the
cell boundaries and automatically corrects under- and over-
segmentation.

B. Segmentation and Tracking
In addition to automatizing seeding, we introduced the 
following improvements to our previously published 
algorithm [2]:
Parallelization
The new algorithm is fully parallelizable, which significantly 
decreases the run-time.
Cell Intersections
Imaging artifacts may create the impression that two cells are 
overlapping, which results in contiguous cells claiming the 
same area. Instead of discarding the pixels that appear to be
overlapping, in this algorithm we accurately distribute them
between cells. 
Using existing fluorescent channels 
Live cell imaging applications often have fluorescent 
channels in addition to the phase or the bright field image,
which harbor information about the cell location that the 
previous algorithm did not exploit. In this algorithm, we 
improve segmentation accuracy by using these arbitrary 
fluorescent channels to generate composite images, which 
have higher contrast between cell and non-cell pixels.
Applications
Using our algorithm, we segment and track time lapse 
movies of (1) cycling cells imaged with 40X objective and 
(2) 63X objective, (3) of sporulating cells imaged with 40X 
objective, (4) pheromone treated cells imaged with 63X 
objective, and (5) bright field images of cycling cells imaged 
with 40X objective.

III. CONCLUSION
Here we introduce a fully automated and parallelizable 

algorithm that can segment yeast cells with arbitrary 
morphologies and imaging conditions.

IV. METHODS
The algorithm is implemented in MATLAB and is 

available upon request. 
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Short Abstract —We quantified the hierarchical organization 
in the networks of collective dissemination-associated and 
inflammatory breast cancer (IBC)-associated genes in multiple 
cell lines and tumor samples. CCC, a measure of hierarchical 
organization, was found to be higher in epithelial versus 
mesenchymal cell lines and in IBC versus non-IBC breast tumor 
samples, for both sets of genes. Our results suggest a role for 
retention of some epithelial traits by disseminating tumor cells 
in the metastatic aggressiveness of IBC and a correlation of 
hierarchy in expression of collective dissemination-associated 
genes with high rates of metastatic relapse. Our analysis 
indicates that the CCC encodes additional information 
regarding the complexity of gene expression in cancer cells and 
can be a prognostic factor for IBC and other aggressive cancer 
sub-types.

Keywords — collective dissemination, inflammatory breast 
cancer, EMT, hierarchy, E/M hybrid, CCC.

I. INTRODUCTION

LUSTERS of circulating tumor cells (CTCs), despite 
being rare, may account for more than 95% of metastases

[1, 2]. Cells in these clusters do not undergo a complete 
epithelial-to-mesenchymal transition (EMT) but retain some 
epithelial traits as compared to individually disseminating 
tumor cells [3]. Determinants of single cell dissemination 
versus collective dissemination remain elusive. Inflammatory 
breast cancer (IBC), a highly aggressive breast cancer subtype 
that chiefly metastasizes via CTC clusters, is a promising 
model for studying mechanisms of collective tumor cell 
dissemination [4]. Previous studies on breast cancer and adult 
acute myeloid leukemia, motivated by a theory that suggests 
physical systems with hierarchical organization tend to be 
more adaptable, have found that the expression of metastasis 
associated genes is more hierarchically organized in cases of 
successful metastases [5, 6].

II. METHODS

We used the cophenetic correlation coefficient (CCC) to 
quantify the hierarchical organization in the expression 
networks of two distinct gene sets, collective dissemination 
associated genes and IBC associated genes, in cancer cell 
lines and in tumor samples from breast cancer patients. 
Hypothesizing that a higher CCC for collective dissemination 
associated genes and for IBC associated genes would be 
associated with a more evident epithelial phenotype and with 
worse outcomes in breast cancer patients, we evaluated the 
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correlation of CCC with different phenotypic groups.

III. RESULTS

The CCC of both gene networks, the collective 
dissemination associated gene network and the IBC 
associated gene network, was higher in (a) epithelial cell lines 
as compared to mesenchymal cell lines and (b) tumor samples 
from IBC patients, as compared to samples from non-IBC 
breast cancer patients. A higher CCC of both networks was 
also correlated with a higher rate of metastatic relapse in 
breast cancer patients. Neither the levels of CDH1 gene 
expression, nor gene set enrichment analysis could provide 
similar insights.

IV. CONCLUSIONS

These results suggest that retention of some epithelial traits 
in disseminating tumor cells as IBC progresses promotes 
successful breast cancer metastasis to distant organs. The 
CCC provides additional information regarding the 
organizational complexity of gene expression in comparison 
to differential gene expression analyses. We have shown that 
the CCC may be a useful metric for investigating the 
collective dissemination phenotype and a prognostic factor 
for IBC.
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Short Abstract — Virus-infected or poly(I:C)-stimulated cells 
secrete IFNβ, which coordinates population antiviral responses

. By combining experiments and our mathematical model of the 
NF-κB–IRF3–STAT1/2 signalling network, we show that  IFNβ 
priming increases apoptosis in MEFs responding to poly(I:C)
by  initiating activation of STAT1/2, which in turn induces
expression of antiviral components, RIG-I, PKR and OAS1A. 

I. BACKGROUND

ROGRAMMED cell death, or apoptosis, is a key cellular 
mechanism protecting against the spread of viral 

infection. Virus-infected cells can activate transcription 
factors NF-κB and IRF3, both of which are required for the 
production of IFNβ. A cell receiving secreted IFNβ responds 
by activation of transcription factor STAT1/2 and 
consequent upregulation of its antiviral components. Among 
them are RIG-I, cytosolic receptor for viral dsRNA, PKR,
inhibitor of translation, and OAS1A, functioning in mRNA 
degradation. 
Using experiments and our stochastic model of the NF-κB–
IRF3–STAT1/2 signalling network (Fig. 1), we elucidate
how IFNβ coordinates population antiviral responses to 
poly(I:C), an analog of viral dsRNA

.

Fig. 1. Simplified diagram of the mathematical model of the NF-κB–
IRF3–STAT1/2 signalling network.
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II. RESULTS

Priming MEF cells with IFNβ on its own does not activate
NF-κB or IRF3 and does not cause apoptosis (Fig. 2).
Stimulation of these cells with poly(I:C) transiently activates
NF-κB and/or IRF3 and causes apoptosis in approximately
25% of the population.

IFNβ priming followed by stimulation with poly(I:C)
increases the fraction of cells that activate both NF-κB and
IRF3, prolongs this activity, and increases the fraction of
apoptotic cells over three-fold, compared to stimulation with
poly(I:C) alone (Fig. 2).

Fig. 2. Effect of INFβ priming on responses to poly(I:C) in WT MEFs.

In addition, IFNβ priming in MEF Stat1-/- cells has no 
effect on the activation of NF-κB and/or IRF3 in response to 
poly(I:C), and no effect on the fraction of apoptotic cells, 
compared to stimulation with poly(I:C) alone [1]. Activation 
of NF-κB and/or IRF3 in response to poly(I:C) alone occurs 
in fraction of MEF Stat1-/- cells smaller than in WT MEFs 
[1].

III. CONCLUSION

IFNβ priming sensitises naïve cells to poly(I:C) through 
expression of STAT1/2-dependent genes, such as RIG-I, 
PKR and OAS1A. When subsequently activated by 
poly(I:C), their protein products override the negative 
feedbacks on NF-κB and initiate a positive feedforward to 
IRF3 (Fig. 1). As a result of prolonged activity of NF-κB
and IRF3, more cells commit to apoptosis, thus limiting 
infection spread. 

REFERENCES

[1] Czerkies M, et al. (2018) Cell fate in antiviral response arises in the 
crosstalk of IRF, NF-κB and JAK/STAT pathways, Nat Commun. 9, 
493.

Maciej Czerkies1, Zbigniew Korwek1, Wiktor Prus1, Marek Kochańczyk1, Joanna Jaruszewicz-Błońska1,
Karolina Tudelska1, Sławomir Błoński1, Marek Kimmel2,3, Allan R. Brasier4, and Tomasz Lipniacki1.

Nature Communications 9, 493 (2018).

Secreted INFβ Coordinates Antiviral Response

P

149



 

Intracellular bistable signaling in Streptococcus
mutans competence regulation 

Simon A.M. Underhill1 and Stephen J. Hagen1 

The regulation of genetic competence in the bacterium 
Streptococcus mutans is sensitive to quorum sensing signals, 
environmental factors, and stochastic gene expression.  The 
master competence regulator ComX is directly regulated by 
the comRS system, which is viewed as a novel type of Gram-
positive quorum sensing system based on a diffusible signal 
derived from ComS.  However it has also been posited that 
intracellular autofeedback in comS is a source of bistability 
in competence. We combine experiments and modeling to 
show that the comRS mechanism provides both 
intercellular and intracellular signaling, so that its quorum 
sensing is enhanced by positive feedback amplification.

Keywords – stochasticity, microfluidics, quorum sensing 

I. Background  
Bistability in gene expression, which causes a population 

of cells to form two subpopulations of different phenotype, 
is often a consequence of positive transcriptional feedback.  
In the bacterial pathogen Streptococcus mutans, entry into 
the state of genetic competence (transformability) has a 
bimodal character under certain environmental conditions.
Stimulation by exogenous CSP (the 18-residue competence 
stimulating peptide) causes a subpopulation of cells to 
activate expression of comX (also called sigX), which 
encodes a master regulator for genetic transformability (1). 
Alternativ1ely, homogenous or unimodal expression of 
comX can be induced by providing a different exogenous 
peptide, XIP (comX/sigX-inducing peptide).  The 7-residue 
XIP is the intercellular signal of a novel Gram positive 
quorum sensing system known as comRS: The XIP peptide, 
which is derived from ComS, binds with the cytosolic 
receptor ComR to form a transcriptional activator for both 
comX and comS.  Mechanisms that process ComS and 
export it as extracellular XIP remain unknown. Therefore 
the relation between the bimodal and unimodal modes of 
comX activation, the ComRS system, and intercellular XIP 
signaling have been unclear.

We have argued that bimodal comX expression can be 
understood as resulting from positive intracellular 
transcriptional feedback via comS: If ComR binds 
endogenously produced ComS (or XIP) to activate both 
comX and comS, then each individual cell can autoactivate 
(or not) comX, depending on its intracellular ComS level 
(comX bimodality). By contrast, extracellular XIP gives 
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unimodal comX expression because it readily enters the 
cell, interacts with ComR, and drives all cells in a 
population to express comX at roughly similar levels (2,3).  

Here we have combined microfluidic and single cell 
methods with quantitative modeling to test the relationship 
between intercellular XIP signaling, comS, and comX
activation.  We used signaling mutants and reporter strains 
of S. mutans in co-cultures and under microfluidic flow to 
test the efficacy of intercellular signaling and its 
dependence on environment and on the comS gene.   

II. Results 
Our data show that possession of the comS gene under 

native control has a distinct effect on the behavior of comX,
over a range of different environmental conditions and modes 
of circuit stimulation. Although extracellular XIP can 
stimulate comX, the presence of comS boosts the comX 
response of individual cells to the XIP signal. Further, 
deletion of comS impairs comX response in ways that cannot 
be fully corrected either by addition of exogenous XIP or by
overexpression of ComS from a plasmid.  These data indicate 
that the cell’s own control of endogenous ComS synthesis
always plays a role in the control of comX.  Our data also show 
that neither export nor import of extracellular XIP necessarily 
accompanies comX activation, so that intracellular signaling 
can be more important than comRS quorum sensing in 
competence.

III. CONCLUSIONS 
Our data show that a cell’s own comS generates an 

intracellular feedback signal that boosts quorum sensing 
response in the competence circuit of S. mutans. The dual role 
of ComS as an internal signal and a quorum signal provides 
positive feedback amplification (4) in the competence 
pathway.   
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Short Abstract — Introducing stochasticity into previously 
deterministic models of gene regulatory dynamics leads to a rich 
phenomenology that is qualitatively different, and has greater 
predictive power. But how should one study the effects of 
stochasticity on the Waddington landscape and cell state 
transitions? We assess the validity of stochastic differential 
equations models and associated Fokker-Planck, path integral,
and Lagrangian descriptions for analyzing stochasticity in gene 
regulation, and discuss our results on noise in simple networks 
and preexisting data. We also discuss a fascinating analogy with 
physics that may lead to a ‘green’ quantum field theory. 

Keywords — stochastic models, noise, Fokker-Planck, path 
integral, Lagrangian, quantum field theory 

I. INTRODUCTION

Gene expression dynamics is often treated as 
deterministic, and modeled using systems of coupled 
ordinary differential equations. But gene expression is 
actually stochastic, and so-called gene expression noise has 
interesting biological consequences—beyond just being 
something that must be buffered against. For example, noise 
facilitates error correction in early mammalian development 
by allowing wrongly differentiated cells to fix their identity 
via a noise-induced transition [1]. 

In stochastic differential equation (SDE) models, extrinsic 
noise seems to be well-treated by an additive stochastic term, 
while some experiments have suggested that intrinsic noise 
should be modeled by a linear multiplicative stochastic term,
which can lead to very different qualitative behavior. Even if 
we did have the data to parameterize these models, an 
important theoretical question is: what tools can one use to 
understand the influence of additive and linear multiplicative 
noise, and how does each kind of noise affect the 
Waddington landscape and cell state transitions?  

II. RESULTS

One theoretical tool associated with stochastic dynamics is 
the Fokker-Planck equation: a partial differential equation 
that describes the time evolution of the probability 
distribution associated with an ensemble of cells exploring
the Waddington landscape. We have found approximate 
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solutions for fairly general dynamics which describe how 
steady state gene expression distributions should 
qualitatively depend on both intrinsic and extrinsic noise; in 
particular, high intrinsic noise leads to non-Gaussian
behavior. We suspect that probing this non-Gaussianity in 
experimental data will allow experimentalists to determine 
the relative importance of extrinsic and intrinsic noise. 

The Fokker-Planck equation is equivalent to a path 
integral [2], a tool often used in nonequilibrium statistical 
mechanics to describe the probability of transitions between 
two states in a stochastic system. We use path integral 
methods to calculate the probability of transitions between 
different states, and the relative occupancies of those states, 
in simple models of gene regulatory network motifs like the 
bistable switch. The results agree with the results obtained 
via brute-force simulations and the Fokker-Planck equation. 

Those tools lead one to consider the idea of a Lagrangian 
describing average stochastic gene expression dynamics. We 
have identified several candidate Lagrangians, which are 
more or less equivalent, and will discuss some of the 
physical and biological principles that may be behind them. 
With them, one can begin to discuss approximately 
conserved quantities analogous to energy and momentum.
We speculate that one can draw an analogy between the 
Lagrangian/average cell description and classical mechanics; 
the Fokker-Planck/single cell description and quantum 
mechanics; and the complicated stochastic dynamics of many 
interacting cells and quantum field theory. Perhaps 
something like a quantum field theory will allow one to 
describe many cells interacting, being created, and being 
destroyed in a developmental process.  

III. CONCLUSION

We believe that SDEs with linear multiplicative noise 
terms well describe intrinsic noise, and that the 
phenomenology associated with these equations can be 
systematically studied using Fokker-Planck, path integral,
and Lagrangian descriptions. These tools all suggest 
provocative analogies with physics, which may lead to a 
quantum field theory analogue for interacting cells. 
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Short Abstract — Natural ecological communities often 
experience tipping points – where little changes can make a big, 
abrupt difference in community composition in response to 
species invasion and changing environments. The nature of 
these tipping points is still poorly understood. By analytically 
solving for species-resource interactions in a mutualistic 
community, we demonstrate these tipping points represent 
phase transitions similar to those described in many physical 
systems. The order of these transitions offers insight to the 
underlying community network and suggests strategies to 
construct barriers in combating generalized invasions such as 
antibiotic resistant pathogens and cancer cells.  

Keywords — Synthetic ecosystem, microbial communities, 
population modeling 

NTRODUCING novel species to an ecosystem is a 
fundamental problem that has many practical applications, 

including probiotic therapy, collective antibiotic resistance, 
biodiversity preservation, and ecological engineering.
Introduction of “invader” species can lead to a variety of 
outcomes, ranging from native community stabilization to 
complete community collapse and replacement by invader 
[1]. While empirical studies exist [2], it remains a challenge 
to predict invasion outcome based on species’ interaction 
network topography and invader strategy. Previous 
theoretical work on community structure have mostly 
focused on either analyzing the stability of an ecosystem 
under small perturbations around a certain equilibrium (so-
called dynamical stability) [2], or defining the range of 
parameters in which the system remains stable and always 
returns to a fixed point (so-called structural stability) [3].
However, these studies have not yet addressed how and 
when an ecosystem may switch from one stable point to 
another under strong perturbations. The challenge of species 
invasion is one obvious perturbation of such kind. 

Transitions between stable states are often characterized 
by phase transitions, a universal phenomenon in the physical 
world. Phase transitions include first-order transitions, 
during which the system can change only abruptly from one 
state to another, and second-order transitions, when systems 
can change continuously but discontinuity, or divergence, 
exists in the susceptibility of the system to external 
perturbations. The nature of the phase transition reflects the 
organization and interactions within the system. The 
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conceptual difficulty here is that physical phase transitions 
typically emerge in systems with long-range correlations,
which are difficult to capture and often analytically 
intractable with classical ecological models that primarily 
rely on pairwise species interactions [4]. Here we explore the 
impact of boundary conditions, specifically the availability 
of resources, on ecosystems under invasion. Our mechanistic 
approach builds on a simple mutualistic community that 
contains cross-feeding species with limiting resources 
explicitly modeled. This model builds on the classic 
consumer-resource model, in which resources are required 
for species growth, and no other nonlinear or long-range 
interactions are considered [2]. The stability and dynamics of 
such systems have been extensively characterized both 
theoretically and experimentally [2,4], providing a well-
defined start point to solve for their behaviors under 
invasion.  

The analytical tractability of this model enables us to show 
that community composition undergoes phase transitions in 
response to species invasion. The exact outcome can be 
predicted based on community topography and constraints of 
environmental resources. The high susceptibility of the 
system around phase boundaries also predicts nonlinear 
amplifications of variations during community assembly and 
species invasion, a phenomenon that has been widely 
reported in empirical studies [2,5]. The discontinuous nature 
of the transitions offers a new explanation for the 
unpredictability in adaptation, where small beneficial 
changes can build up to catastrophic outcomes. The observed 
phase transitions have implications in a broad practical 
problem set, including spatial patterning arising from 
ecological interactions, rejection of antibiotic resistant 
bacterial strains using commensal communities, and early 
preventive strategies to stop invasion of healthy tissue by 
cancer cells [6]. 
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Short Abstract — High throughput RNA sequencing 
technology is widely used as a tool for transcriptomic
analysis in recent years. Large network inference from 
traditional RNA-Seq differential expression analysis can 
be limited and biased by researcher subjectivity. As deep 
learning plays an advantageous role in motif recognition
and classification for big data, here we propose training
artificial neural networks (ANN) on RNA-Seq 
abundance data for studying a bacterial phenotypic 
transition into the persister state. Automated pathway 
activation recognition by ANN may potentially provide 
an efficient, accurate, and adaptive tool for network 
inference.

Keywords — High throughput, RNA-Seq, data inference,
deep learning, neural network

I. INTRODUCTION

acteria are everywhere and integral to human life. Slow 
growing pathogenic bacteria are able to tolerate 

long-term treatment without a cure because of so-called 
persister cells. Contrary to the common mechanism of 
stringent response-mediated persister formation, our lab’s 
previous findings show that a novel type of persister occurs 
in the E. coli strain B REL606 when cultured in minimal 
media containing excess lactose. This effect may arise from
fluctuations in critical metabolic pathways [1]. 

High throughput RNA sequencing technology is essential 
to biological fields such as epigenomics and transcriptomics
[2]. As machine learning (ML) has rapidly evolved into a 
popular tool in many fields, ML implementations for 
analyzing RNA-Seq are being developed for sequence 
analysis and differential expression analysis [3, 4]. However, 
no implementation of ML is available for pathway analysis, 
which is necessary for identifying regulatory and metabolic 
pathways involved in novel phenotypes such as 
lactose-mediated persister formation. We applied deep 
learning to unveil the underlying pathway dispersion 
responsible for the novel persister phenotype.

II. METHODS

Unlike image data, transcription counts are independent of
data orientation, but connected by the underlying regulatory 
network. The counts are affected by multiple factors, such as 
noise, enzyme efficiency, and gene regulation. Here we use 
TensorFlow [5], a python ML package, to create ANN for 
RNA-Seq count profile. 
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A. ANN for identifying differentially regulated pathways
(DRP)
We used two methods for DRP detection.
The first method involves using KEGG, a 

knowledge-based pathway database [6]. We trained an ANN
to identify known KEGG pathways and modules. This 
classifier probabilistically recognizes or rejects gene clusters 
that have similar transcriptional patterns without explicitly
considering regulatory network topology because the 
pathways and modules are given.

The second method considers regulatory network 
topology as a component for depicting pathway interactions. 
Without knowledge-based pathway information, we train the 
ANN to identify different network motifs with increasing 
complexity. In this way, comparing existing pathways with 
the machine-learned pathways, we can validate the ANN as 
well as potentially discover unknown pathway interactions.

B. Non-ML differential expression analysis
We also performed non-ML DRP analysis by locating 

differentially expressing genes, which might be responsible 
for bacterial phenotypic switches in known regulatory 
pathways in KEGG. This step allows us to compare our 
machine learning methods with well-established RNA-Seq 
analysis methods for large network inference.

III. CONCLUSION

Deep learning by artificial neural network is an unbiased 
method for processing high-dimensional reduction problems. 
Once a proper ANN is established for cell expression 
profiles, it can reveal hidden regulatory patterns in large 
networks, with which we expect to find clues about bacterial 
persister formation.  
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Short Abstract — Gene regulation consists of a series of 
stochastic, single-molecule events, resulting in substantial 
randomness in RNA production between individual cells, and 
even between the individual copies of the same gene within a 
single cell. To characterize the stochastic kinetics of 
transcription in E. coli at the resolution of individual gene copies,
we combine RNA and gene-locus labeling to simultaneously 
detect a gene of interest and measure its transcriptional activity, 
in individual bacteria.

Keywords— Transcription, transcription kinetics, single cell, 
single gene copy, smFISH, RNA life history, correlation, cell 
cycle. 

I. BACKGROUND

tochastic gene expression gives rise to population 
heterogeneity, which has been extensively studied using 

single-cell measurements for more than a decade [1].
However, some of the observed cell-to-cell variability may 
not be casued by stochasticity, but by deterministic factors 
such as cell size [2], gene copy number [3], correlation 
between gene copies in the same cell, and the cell-cycle phase 
[4]. Measuring these “hidden variables” will thus reveal a less 
random picture of transcription. Towards removing cellular 
hidden variables, we aimed to measure transcription from a
single gene copy in individual cells. 

II. RESULTS

A. Single-molecule FISH and gene locus detection 
To detect individual gene copies, a set of tetO operators is 

inserted near the gene of interest in the E. coli chromosome 
[5]. The RNA transcribed from the gene is labeled by a set of 
fluorophore-labeled DNA oligo probes [6]. The observed 
co-localization of RNA signal and gene signal enables us to 
measure active transcription at the resolution of individual 
gene copies, in individual cells. 

B. Kinetic model describing RNA dynamics 
We developed a theoretical model describing RNA 
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dynamics. By fitting the model (in both deterministic and 
stochastic formalisms) to our single-cell experimental data, 
we are able to obtain the kinetic parameters characterizing 
RNA life history: the probabilistic rate of promoter switching, 
transcription initiation and elongation, RNA release and 
degradation. 

C. Correlation between different copies in the same cell  
We examined the activity of individual copies of the 

lactose promoter Plac in cells having two copies of the gene. 
We found that the two copies were either highly correlated or 
almost independent, depending on the growth conditions. 

D. Correlation of gene activity to the cell cycle 
We examined the transcriptional activity of Plac and PR at 

different times along the cell cycle, at different expression 
levels and growth conditions. We found that the transcription 
of a strong "constitutive" promoter (PR) closely follows the 
gene dosage. However, for a promoter under 
tightly-repressed conditions (Plac), we observed a transient 
increase of transcriptional activity upon gene replication, as 
has been speculated before [7]. 

III. CONCLUSION

The existence of these gene-copy and cell-cycle 
correlations demonstrates the limits of mapping whole-cell 
RNA numbers to the underlying stochastic gene activity and 
instead highlights the contribution of previously hidden 
variables to the observed population heterogeneity. 
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Short Abstract — Studying the coordination between two 

heads of a motor protein is crucial to understand the walking 
mechanism of the motor protein on cytoskeletal tracks. Previous 
experiments found that inter-head tension of a cytoplasmic 
dynein was able to regulate the coordination between its two 
heads. However, the molecular origin is largely unknown. Here 
we utilized a structure-based coarse-grained model to 
investigate the conformational changes of a cytoplasmic dynein 
monomer responding to opposite forces. Our simulation 
successfully explained the experimental observations and thus 
provide a molecular basis to understand the walking pattern of 
cytoplasmic dynein. 
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Short Abstract —Predicting whether a plasmid can be 

maintained in heterogeneous microbial communities is 
challenging. This is due to the large number of subpopulations 
and complexity of conjugation networks. Here, we establish a 
general theoretical framework to describe the dynamics of 
plasmid distribution across species. With this framework, we 
derive a general metric to predict plasmid maintenance and 
abundance in arbitrary microbial community. We validate the 
predictive power of this metric with simulations of random 
conjugation networks as well as experimental data found in the 
literature.   

Keywords — plasmid abundance, conjugation, microbial 
community, segregation, growth burden, plasmid-centric model, 
species, mathematical modelling. 

I. INTRODUCTION 
lasmids are one of the most important carriers of 
accessory genes in microbial communities, and reside at 

the core of horizontal gene transfer [1,2]. A plasmid can 
replicate itself, transfer from one species to another through 
conjugation, or be incorporated into the genome of its host 
[3,4]. Whether a plasmid is maintained or lost within a 
microbial population, determines whether the functions 
carried by the plasmid, such as antibiotic resistance, are 
exhibited [4,5].  

Despite its importance, the general understanding of the 
criterion for plasmid maintenance in heterogeneous microbial 
communities is lacking. The conventional approach of 
modelling the plasmid-carrying population, which we call a 
‘population-centric model’ [3], models all possible species-
plasmid combinations. Using this approach is challenging 
because the complexity of the model increases exponentially 
with increasing numbers of plasmids. 

Here, we establish a plasmid-centric model. Compared 
with the conventional approach, this new framework greatly 
reduced the complexity of model formulation and 
mathematical simulation.  

II. MATHEMATICAL MODEL 
Four dynamic processes are described in this model: (1) 

species growth, (2) plasmid conjugation, (3) plasmid 
segregation, (4) system dilution. For a -species and -
plasmid population, the framework contains two groups of 
ordinary differentiation equations (ODEs) which describe the 
population size of each species and the abundance of each 
plasmid in each species. These equations can be combined 
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into two in the form of matrices, regardless of the numbers of 
species and plasmid in the community:  

 

 
Here,  is the Hadamard multiplication between the matrices. 

 and  are the matrices representing species sizes and 
plasmid abundance, respectively.  and  are the burden or 
benefit caused by the plasmids.  and  are the maximum 
growth rates.  is the matrix of growth capacity.  is the 
matrix of plasmid segregation rate constants.  is the matrix 
of conjugation rate constants.   

The population-centric model requires  ODEs and 
involves  conjugation pairs, while the plasmid-
centric model only requires  ODEs and  
conjugation pairs. 

III. CONCLUSIONS 
Despite the complexity of the communities, there exists a 

universal indicator, , for plasmid abundance.  is defined 
as: 

 

, ,  and  are the weighted average of the conjugation 
rates, maximum growth rates, segregation rates and burdens, 
respectively. Simulations with randomized parameters show 
that  is the criterion for plasmid maintenance, which 
provides a simple reference of the fate of each plasmid. The 
values of  correspond well with the final abundance of the 
plasmids, regardless of species number, plasmid number, 
community connectivity, or species coexistence.  
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Short Abstract — The precise dynamic features in cell

signaling play crucial roles in regulating various cellular 
functions. Due to the complexity and redundancy in natural 
cells, it remains challenging to completely understand how the 
complex temporal behaviors are programmed in parameters 
or structures of the signaling circuits. To overcome such 
problems, we took a synthetic approach to reconstitute the 
human nuclear factor B (NF- B) system in S. cerevisiae. This 
simple but highly tunable circuit allows us to systematically
explore the design principles of oscillatory signaling dynamics.  

Keywords — Signaling Dynamics, NF- B, Oscillation, 
Waveform, Frequency, Circuit, Negative Feedback, Synthetic 
Biology. 

uantitative features of cellular signaling behaviors 
have drawn much attention due to their capabilities to 

carry extra information to regulate comprehensive 
downstream cellular events [1-2]. More recently, it has been
found that different temporal behaviors or signaling
dynamics of Msn2 in yeast and p53 in mammals resulted in 
dramatically different cell fates [3-5]. Remarkably, such 
quantitative signaling behaviors were often oscillatory or 
pulsatile. The particular properties of oscillatory signaling
dynamics (e.g., amplitude, frequency) have shown great 
benefit to coordinate or differentially regulate gene 
expression in stress signaling and inflammatory response 
[6]. It remains incompletely understood how the properties 
of such oscillatory dynamics are controlled in natural 
systems and how they could be tailored synthetically.  

The NF- B in immune response is one of the well-known 
signaling systems to be highly dynamic, responding to 
various extracellular antigens or cytokines. Notably, the 
fluorescence tagged NF- B protein was found to be 
activated in a damped oscillatory fashion in response to 
tumor necrosis factor  (TNF- ) [7-8]. The core design of 
the circuit underlying this oscillator is similar to that of 
many biological oscillators; a negative feedback loop with
time delay, usually consisting of a transcription factor 
(NF- B) and an inhibitory protein (I B). However, in 
practice, because the native NF- B system exists in the 
complicated context of mammalian cells, it is difficult to 

1Center for Quantitative Biology, and Peking-Tsinghua Center for Life 
Sciences, Academy for Advanced Interdisciplinary Studies, School of Life 
Sciences, Peking University, Beijing 100871, China.  
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specifically experimentally probe and rewire the circuit 
components of such oscillatory signaling networks.  

Here, we designed and built a robust and tunable 
synthetic oscillatory signaling circuit in Saccharomyces 
cerevisiae. By recapitulating a human NF- B module in 
yeast, the design emphasized orthogonality and predictable 
tuning performances. Additionally, the circuit contains a 
synthetic promoter module that can program oscillatory 
dynamics at the transcriptional level and importantly also 
contains a synthetic phospho-degron module that allows for 
programming at the post-translational level. We initially
operated the circuit with a single negative feedback loop 
and found that the peak shape and the period of the 
oscillatory waveforms could be tuned using a combination
of three parameters, including the protein level of RelA, 
negative feedback strength, and the protein stability of 
I B . Guided by model prediction, we next found a unique 
circuit structure with two-layers of negative feedback loops 
enabled frequency-only tuning of oscillatory waveforms.  

We conclude that the signaling dynamics in such 
synthetic NF- B circuit could be quantitatively customized 
through carefully selected circuit parameters and circuit
structures. We propose that the design principles established 
here enable function-guided design of signaling controllers 
to meet the requirement of the increasing sophisticated and 
precise regulation of diverse synthetic biology applications. 
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Short Abstract — Several biological functions are carried out 

via complexes that are formed via multimerization of either a 
single species (homomers) or multiple species (heteromers). Given 
functional relevance of these complexes, it is presumably desired 
to maintain their level at a set point and minimize fluctuations 
around it. Here we consider two simple models of complex 
formation -- one for homomer and another for heteromer of two 
species -- and analyze effect of important model parameters on 
the noise in complex level. In particular, we study the effect of (i) 
sensitivity of the complex formation rate with respect to 
constituting species' abundance, and (ii) relative stability of the 
complex as compared with that of the constituents. By employing 
an approximate moment analysis, we find that for a given steady 
state level, there is an optimal sensitivity that minimizes noise 
(quantified by fano-factor; variance/mean) in the complex level. 
Furthermore, the noise becomes smaller if the complex is less 
stable than its constituents. Finally, for the heteromer case, our 
findings show that noise is enhanced if the complex is 
comparatively more sensitive to one constituent. We briefly 
discuss implications of our result for general complex formation 
processes. 

Keywords — complex noise, stochastic process, linearization   

I. INTRODUCTION 
ormation of biochemical complexes plays vital role for 
most cellular processes, including gene regulation, signal 

transduction [1]. Given their importance, it can be argued that 
their level must be closely regulated so as to achieve robust 
function. However, many species are present at low copy 
numbers in cells, and thereby stochasticity (or noise) in the 
reactions involving them is unavoidable.  Previous work 
indeed has shown that complex formation might be an 
important mechanism in control of noise in gene regulation 
[2]. 
    Here we investigate the effect of various attributes of the 
complex formation process on the noise in the complex level. 
We focus on the steady-state noise in two toy models of 
complex formation. In the first model, a single species forms a 
homomer whereas in the second model two species interact to 
form a heteromer. Not only these toy models themselves are 
appropriate for analysis of some real biological examples [3], 
but they also hint towards what behaviors might arise in more 
complicated scenarios.  
    Our strategy to analyze the noise behavior relies upon using 
moment dynamics of these toy models. Due to nonlinearities in 
these models, however, the moment dynamics is not closed 
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and we use a linear approximation of the system at its 
steady-state to estimate the noise behavior.  
   Interestingly, our analysis reveals that noise in complex level 
has a U-shape profile with respect to sensitivity for both 
homomer and heteromers. Moreover, we find that for these toy 
models, if the complex is relatively unstable (i.e., it degrades 
faster) as compared with its constituents, the overall noise 
profile shifts downwards. We also analyze the heteromer with 
different sensitivities for each species. In this case, the overall 
noise profile shifts upwards. 

II. MAIN RESULTS 
For a homomer, its steady state noise shows a 

non-monotonic behavior as the sensitivity of the complex 
formation rate to the species level is changed. Moreover, the 
noise in complex level reduces when the complex is relatively 
unstable as compared to the species. 

For a heteromer, the noise exhibits similar behavior as in the 
homomer case if sensitivities and other parameters of both 
species are exactly same. However, when the complex 
formation rate is more sensitive to one species, then noise in 
the complex increases. 

III. SUMMARY, AND FUTURE WORK  
We analyzed two simple models of biochemical complex 

formation and explored the effect of different parameters in the 
models. In the future, it would be interesting to explore 
reversible kinetics for the complex formation (i.e., dissociates 
to its constituents), and also self-regulation in production of 
the species as found in production of a range of proteins. 
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Short Abstract — Neurons compute by regulating the 
electrical potential (voltage) across their plasma membrane. 
Promising tools to quantitatively monitor voltage dynamics are 
fluorescent biosensors called Genetically Encoded Voltage 
Indicators (GEVI). However, currently available GEVIs are 
limited by combinations of factors including sensitivity, kinetics,
brightness, photostability and compatibility with two-photon
microscopy. The size of the sequence space precludes saturation 
mutagenesis across all GEVI residues, motivating the 
development of quantitative approaches to guide mutagenesis to 
those residues most likely to tune GEVI performance. Here we 
report a novel computational method to identify critical 
biosensor residues and demonstrate its application for improving 
voltage indicators. We anticipate that this methodology will be of 
broad utility for biosensor engineering.

Keywords — Genetically encoded voltage indicator, ASAP, 
Hidden Markov Model, evolutionary trace, electrostatic 
interaction, covariance

I. BACKGROUND

ONITERING neural electrical activity in vivo with single 
neuron resolution is a longstanding goal in 

neuroscience, but with the fast development of Genetically 
Encoded Voltage Indicators (GEVIs), we are getting ever 
closer to achieving that goal. However, aside from deficits in 
sensitivities and kinetics, many existing GEVIs have poor 
performance under two-photon microscopy, which limits their
application for deep tissue imaging. Indicators of the 
Accelerated Sensor of Action Potentials (ASAPs) family, on 
the other hand, shows moderate sensitivity and 
millisecond-timescale kinetics under both one-photon and 
two-photon microscopy. The most recent variant of ASAP 
family-ASAP2s demonstrates higher signal-to-noise ratio than 
ASAP1 at all frequencies but also shows slower kinetics than 
ASAP1 and thus has room for further improvement [1].

Here we report a computational approach to guide 
mutagenesis of the voltage sensing domain (VSD) of ASAPs
and thus improve their sensitivity and kinetics systematically,
enabling their application in mammalian models in vivo.
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II. RESULTS

While the crystal structures of ASAP and its underlying VSD 
are not currently available, the structure of a homologous 
domain from the sea squirt Ciona intestinalis has recently 
been solved. However, homology modeling the ASAP VSD is 
complicated by repeated patterns of positively-charged 
arginines in the fourth transmembrane helix, which makes it 
challenging to determine the correct alignment between the 
sea squirt and the ASAP VSD. Here we choose Hidden 
Markov Model, a statistical model that shows promising VSD 
alignment results previously [2].

Second, although crystallized structure for Ciona VSD is 
solved, it remains a challenge to localize functionally 
important sites [3]. Here we use evolutionary trace (ET), a 
method capable of distinguishing functionally essential 
residues from residues that regulate specific functional 
features [3], to locate candidate residues for mutation.

Third, VSD is distinct from other domain in that electrostatic 
interaction dominates preferable resting and depolarized 
conformation. Therefore, an adequate model of electrostatic 
interaction is required to predict the direction and magnitude 
of point mutation. Here we propose a model that considers
VSD charged residues in the surrounding electric field.

Fourth, single-residue mutation may disrupt the 
intramolecular interaction and thus affect protein folding. 
Here we include covariance analysis to retain proper folding.

With this integrative computational approach, we successfully 
identified residues that tune ASAP sensitivities and kinetics.

III. CONCLUSION

This integrative computational approach proves to be an 
effective method to decrease variant library size and to 
identify variants with desired features. We can generalize this 
approach to the engineering of other GEVIs to obtain 
improved variants.
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Short Abstract — The ever-expanding synthetic biology 
toolbox has seen the fast development of synthetic gene circuits 
due to their ability to implement diverse functions in living cells.
Tunable gene circuits have been given particular attention
because they enable the implementation of different output states
in response to user-defined input signals through a single circuit.
Previous studies have optimized the tunability by achieving 
linear input-output relationship [1]. The circuit, however, shows 
compromised tunability and substantial heterogeneity among 
cells under transient plasmid transfection. Transient plasmid 
transfection or viral transduction without genomic integration
usually results in a broad distribution of DNA copy number, and 
cells with higher DNA copy number tend to have undesirable
overexpression, leading to cytotoxicity and/or impaired 
transgene function. Combining experiments with computational
simulations and mathematical analysis, we developed a
second-generation linearly tunable circuit that applies to a 
broader audience with robust dosage compensation capacity to 
achieve homogeneous expression across individual cells and 
better protein localization.

Keywords — synthetic biology, tunable circuit, dosage 
compensation, expression level, linearizer, localization

I. BACKGROUND

UNABLE circuits are widely applied because they enable
the regulation of output through an external input signal.

The toggle switch circuit is one of the most well-known 
tunable circuits with the capability of switching between ON 
and OFF states depending on whether the input exceeds the
activation threshold. The tunability of the toggle switch is low 
because the output is all or none, and a ON-state optimized for 
one application may not be applicable for another, so much 
effort is often required to adapt the circuit for different 
applications. In contrast, continuously tunable circuit is more 
user-friendly and adaptable as one can obtain a continuous 
spectrum of output simply by varying the input intensity. A
linear input-output relationship can further improve the 
tunability by avoiding regions of steep change in output with 
little change in input level or vice versa. A synthetic circuit 
named the “linearizer” meets these design criteria [1].
However, the linearizer circuit showed compromised 
tunability and dosage compensation when transiently 
transfected (see Results). Therefore, we engineered a new 
version called Linearizer 2.0 with more robust linear 
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tunability and improved dosage compensation.

There is a broad application for this novel gene circuit. The
state-of-the-art gene delivery using viral vector in gene 
therapy or other applications often results in a 
non-homogenous expression profile as a function of distance 
from the injection site: cells closer to the injection site have 
higher expression level, while expression level decreases 
further away from the injection site [2]. These variations in 
expression level are typically undesirable, yielding many cells 
that exhibit either inadequate or excessive transgene 
expression. The Linearizer 2.0 circuit can be tuned to achieve 
the best balance between maximal expression and minimal 
cytotoxicity. We also demonstrate the potential of using this 
circuit to improve localization of membrane proteins that 
formed intracellular aggregation when overexpressed. 

II. RESULTS

A. Linearizer 1.0 improves the localization of membrane 
proteins when genome integrated but showed reduced 
tunability and no dosage compensation in transient 
transfection
We observed that chromosomally-integrated Linearizer 1.0
can be tuned to obtain improve plasma membrane localization 
of multiple membrane proteins including natural and 
light-gated ion channels. However, transient transfection of 
the same circuit produced large cell-to-cell variation and 
compromised tunability.

B. Development of Linearizer 2.0 
Combining experiment results with computational simulations
and mathematical analysis, we engineered an improved circuit 
design, Linearizer 2.0, that retains its linear tunability while 
achieving dosage compensation by combining negative 
feedback and incoherent feedforward loops. We will present 
the performance of this circuit under various expression 
contexts including genomic integration, transient transfection, 
and viral transduction.

III. CONCLUSION

Linearizer 2.0 is a versatile synthetic circuit for tunable 
expression level and dosage compensation. We anticipate it 
will be of broad utility in applications that benefit from 
tunable expression levels and reduced cell-to-cell variation.
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Short Abstract — Although central architectures drive 

robust oscillations, networks containing the same core vary 
drastically in their potential to oscillate. What peripheral 
structures contribute to the variation remains elusive. 
Systematically analyzing network structures and functions 
showed that, while certain core topologies are essential for 
robust oscillations, local structures substantially modulate the 
degree of robustness. Strikingly, nodes receiving incoherent or 
coherent inputs promote or attenuate the robustness, 
additively. These may explain why auxiliary structures not 
required for oscillation are evolutionarily conserved. We 
developed an artificial mitotic oscillator, combined with 
single-cell analysis and modeling, to understand how network 
structures are linked to clock functions.  

Keywords — Biological oscillators, robustness, network 
structures, motifs, microfluidics, cell cycle, synthetic circuit, 
time-lapse fluorescence microscopy. 

I. INTRODUCTION 
n principle, a single negative feedback is required and 
sufficient to generate self-sustained oscillations [1]. 

However, known biological oscillators are organized into 
more complex network structures. Some of the additional 
structures, such as positive feedback loops, are not required 
for generating oscillations but are evolutionary conserved, 
which has raised a question of what functional role they 
may play. Computational studies on several biological 
oscillators such as cell cycles have shown that adding a 
self-positive feedback loop to a core oscillatory circuit can 
increase the oscillator’s robustness [2-4]. However, whether 
positive feedback is necessary or sufficient to increase 
robustness has remained controversial. While both Wee1 
and Cdc25 form positive feedbacks in embryonic cell 
cycles, only the one from Cdc25 is critical for robustness of 
oscillation period [5]. A recent study using synthetic 
circuits [6], has shown that adding a negative feedback to 
an oscillator could also increase its robustness. These 
studies reveal the difficulty of identifying generalizable 
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mechanisms through analyzing only a subset of oscillators. 
To obtain a complete picture beyond any chosen systems, a 
comprehensive mapping from the entire topology space to 
the function space is necessary. Moreover, it is challenging 
but critical to test the computational predictions by 
experimentally dissecting clock circuit and analyzing clock 
behaviors at the single-cell level.    

II. RESULTS 
We computationally generate an atlas of oscillators and 

systematically analyzed robustness of all oscillatory 
topologies. We found that, two key local structures, 
incoherent inputs and coherent inputs, can modify a core 
topology to increase and decrease its robustness 
respectively [7] (Cell Systems 2017), underscoring the 
important role of local modifications in robustness. It also 
suggests a convenient way to design robust synthetic 
circuits. Experimentally, we develop an artificial cell-cycle 
system to mimic the real cell mitotic oscillatory processes 
in microfluidic droplets [8] (eLife 2018). With 
nanofabrication and long-term time-lapse fluorescence 
microscopy, this system has enabled high-throughput 
single-cell analysis of clock dynamics and functions. We 
now apply the experimental platform together with 
mathematical modeling to investigate how network 
structures are linked to the essential functions of early 
embryonic cell cycles, such as tunability and robustness.   
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Short Abstract — We analyzed the modular expression 

patterns of metabolism genes for 371 hepatocellular carcinoma
samples from the Cancer Genome Atlas. We found that higher 
modularity significantly correlated with glycolytic phenotype,
later tumor stages, higher metastatic potential, and cancer 
recurrence, all of which contributed to poorer prognosis.
Among patients with recurred tumor, we found the correlation 
of higher modularity with worse prognosis during early to 
mid-progression. Furthermore, we developed metrics to 
calculate individual modularity, which was shown to be 
predictive of cancer recurrence and patients’ survival. Our 
conclusion is that more aggressive HCC tumors had more 
modular expression patterns of metabolic genes.  

Keywords — modularity; metabolism; hepatocellular 
carcinoma; HCC; HIF-1; AMPK; prognosis

I. BACKGROUND

EPATOCELLULAR carcinoma (HCC) is a primary 
malignancy of the liver, and it is the third leading cause 

of cancer mortality worldwide [1]. We here aimed to analyze
cancer-associated gene networks of HCC samples to gain 
insight into the complex biological systems underlying tumor 
progression. 

We chose the previously identified AMPK and HIF-1
downstream genes to quantify the activities of the two main 
metabolism phenotypes in HCC, OXPHOS and glycolysis
[2]. Modularity was chosen to quantify the modular gene 
expression patterns. Previous theory developed by Deem 
predicts that more modular gene expression pattern 
corresponds to more aggressive tumor [3].

II. RESULTS

There existed a strong anti-correlation between the AMPK 
activity and HIF-1 activity across all 371 samples. The 
expression pattern of these genes was highly modular and 
consisted of two modules, one containing mainly
AMPK-downstream genes and the other HIF-1-downstream 
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77005, USA
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USA
6Department of Biosciences, Rice University, Houston, TX 77005, USA
*co-first authorship

genes.

A. Modularity and cancer status
Group modularity calculation showed that the OXPHOS 

group had the lowest mean modularity and glycolysis group 
had the highest mean modularity. Survival analysis showed 
that glycolysis group had the worst survival and OXPHOS 
had the best survival.

Similarly, samples at stage II-IV had higher modularity 
than those at stage I. Stage II-IV samples also had worse 
survival than stage I samples. Samples with higher metastatic 
potential had higher modularity and worse survival. Samples 
that recurred in a certain time had higher modularity and 
worse survival than those did not in the same amount of time.
Among patients with recurred tumor, there was correlation of 
higher modularity with worse prognosis during early to 
mid-progression, up until about 8 months before recurrence. 

B. Individual modularity and prediction
We defined individual modularity and correlated it with 

probability of no recurrence in 12 months and probability of 
survival within 24 months. A high value of individual 
modularity was shown to be predictive of poor prognosis. 
Individual modularity values of M > 0.6 correlated to survival 
and non-recurrence probabilities less than 0.4.

III. CONCLUSION

Higher modularity of cancer-associated gene network of
HCC samples significantly correlated with glycolytic 
phenotype, later tumor stages, higher metastatic potential, and 
cancer recurrence, all of which contributed to poorer
prognosis. Among patients with recurred tumor, higher
modularity correlated with worse prognosis during early to 
mid-progression. The developed individual modularity was
shown to be predictive of cancer recurrence and patients’ 
survival. Our conclusion is that more aggressive HCC tumors
had more modular expression patterns of metabolic genes. 
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Short Abstract — Single-cell measurements of transcriptional
activity inform our understanding of stochastic gene expression, 
but these measurements coarse-grain over the individual copies 
of the gene, where transcription and its regulation stochastically 
take place. In this study, we follow the transcriptional activity of 
individual gene copies in live E. coli cells, by labeling the gene
locus of interest and measuring its transcriptional activity at the 
same time.

Keywords — Transcription kinetics, individual gene copies, 
two-color labeling, live-cell imaging.

ene expression and its regulation are traditionally 
studied by averaging over large cell populations. These

“bulk” measurements mask the heterogeneity in gene 
expression between individual cells. Single-cell 
measurements have informed us on the inherent stochasticity 
of the reactions involved in gene regulation [1]. However, the 
whole-cell measurement is still limited in many ways: i) It 
typically represents the summation over the contributions 
from multiple copies of the same gene, each of which is 
independently regulated, and whose number doubles during 
the cell cycle [2, 3]; ii) It fails to distinguish RNA molecules
that are being transcribed from those already completed.

In this study, we set to follow the active transcription of an
individual gene copy within an individual E. coli cell in 
real-time. We hypothesized that active transcription can be 
quantified by measuring the amount of RNA that is localized 
to the transcribed gene [4]. We therefore developed a 
two-color labeling system to simultaneously mark the gene 
locus and the RNA produced from the gene. The gene locus
was labeled using the Fluorescent Repressor Operator 
System (FROS), which combines fluorescently-tagged DNA 
binding proteins with a synthetic array of cognate binding 
sites [5]. The RNA produced from the gene was tracked using 
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an analogous method, where a fluorescently-tagged MS2 
bacteriophage coat protein labels an array of MS2 binding 
sites [6]. By taking time-lapse movies, we are able to track the 
transcriptional activity of a single gene copy over multiple 
cell generations. Using automated image analysis, we can
directly measure the kinetic parameters of transcription (e.g., 
the probabilistic rate of promoter state switching). Moreover, 
this method allows us to assess the dependence of gene 
activity on the instantaneous activity of other copies of the 
same gene in the same cell, and on the event of gene 
replication during the cell cycle.
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Using a mechanistic agent-based model, we uncover the 
physical basis of behaviors that control aggregation of M.
xanthus cells into multicellular mounds. The observed bias in 
reversal times with respect to cell’s direction relative to the 
aggregates can be explained by chemotaxis but not by 
contact-dependent signaling model. On the other hand, a
combination of local alignment by steric interactions and the 
ability of cells to lay and follow slime trails explains observed 
patterns of cell orientation. Incorporating these effects in our 
model leads to the formation of stable aggregates in quantitative 
agreement with the experiments.

I. BACKGROUND

PATIAL multicellular self-organization is widely studied 
due to its biological significance across all kingdoms of 

life. is a rod-shaped soil bacterium that
serves as a simple model system to study self-organization.
Under different environmental conditions, cells 
self-organize into distinct dynamical patterns [1]. For example, 
starving cells execute a complex multicellular developmental 
program by aggregating into multicellular mounds, termed 
fruiting bodies [1,2]. Despite decades of research, the 
mechanistic basis of self-organization in is not yet 
fully understood. In particular, how cells aggregate into
fruiting bodies is still not clear.

Recently, an approach that combined fluorescence 
microscopy with data-driven modeling uncovered the set of 
cellular behaviors required for aggregation: decreased cell 
motility inside the aggregates, a biased walk toward aggregate 
centroids, and alignment among neighboring cells and in a 
radial direction to the nearest aggregate [3]. Here we use a
mechanistic agent-based model to test possible biological
mechanisms of these behaviors. 

II. RESULTS

To test aggregation mechanisms, we developed an 
agent-based model. In this model, each cell is represented by a 
point-agent characterized by its position and moving direction.
Each agent actively aligns its direction with nearby agents and 
secrete slime trails. Other agents can sense and follow these 
trails by turning towards high slime density regions. At low 
cell density, our model matches the patterns of collective 
alignment observed in experiments [3] and reproduced by 
detailed biophysical model [4]. At high cell density, the model 

Acknowledgements: Supported by NSF awards MCB-1411780 and
PHY-1427654.
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2 Department of Microbiology, University of Georgia

can efficiently simulate alternative hypotheses on cell 
behaviors. 

In the first model, we assumed that the reversal period of 
each cells is dependent on a contact dependent signal that 
conveys the direction of the surrounding cells. The model 
using this contact-based signal is unable to form stable 
aggregates, even if the parameters in this mechanism are fitted 
to the bias data [3].

In the second model, we assumed a chemotaxis mechanism, 
i.e. cells produce a diffusible chemical signal that affects the 
reversal period via an intracellular chemotaxis network with 
adaptation. Applying this mechanism into our model, we find 
that the resulting model can replicate the experimentally 
observed bias and aggregation patterns [3].

Using our chemotaxis model with local cell alignment and 
slime-trail following, we compare the simulated distributions 
of agents’ orientation with those observed in experiments [3]. 
The results are in qualitative agreement: near aggregate 
boundaries, cells move in circumferential direction rotating
around aggregates whereas further away cells align radially to
aggregate centers. These patterns are partially driven by cell 
alignment and slime trails prior to aggregation initiation.

III. CONCLUSION

We propose that cells use a chemotaxis 
mechanism to form aggregates. Combined with local 
alignment and slime-trail following, these mechanisms are 
sufficient to explain the observed aggregation patterns.
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