Homework 11

Due Date: February 16
In class we defined the Fibonacci numbers by the following recurrence relation:

$$
f_{0}=f_{1}=1, \text { and for } n \geq 2, f_{n}=f_{n-1}+f_{n-2} .
$$

Problem 26. Prove that $f_{0}+f_{1}+f_{2}+\cdots+f_{n}=f_{n+2}-1$.

Problem 27. Verify the statement made in class that

$$
\frac{1}{\sqrt{5}}\left(\alpha^{k+1}-\beta^{k+1}\right)+\frac{1}{\sqrt{5}}\left(\alpha^{k}-\beta^{k}\right)=\frac{1}{\sqrt{5}}\left(\alpha^{k+2}-\beta^{k+2}\right),
$$

where $\alpha=\frac{1+\sqrt{5}}{2}$ and $\beta=\frac{1-\sqrt{5}}{2}$.

Problem 28. Let $a, b \in \mathbb{Z}$. Show that if $a \mid b$ and $a \mid(b+1)$, then $a= \pm 1$.

