

MATH 3326-1

Intro to Abstract Mathematics

Spring 2011

Homework 11 Due Date: February 16

In class we defined the *Fibonacci numbers* by the following recurrence relation:

$$f_0 = f_1 = 1$$
, and for $n \ge 2$, $f_n = f_{n-1} + f_{n-2}$.

Problem 26. Prove that $f_0 + f_1 + f_2 + \dots + f_n = f_{n+2} - 1$.

Problem 27. Verify the statement made in class that

$$\frac{1}{\sqrt{5}} \left(\alpha^{k+1} - \beta^{k+1} \right) + \frac{1}{\sqrt{5}} \left(\alpha^k - \beta^k \right) = \frac{1}{\sqrt{5}} \left(\alpha^{k+2} - \beta^{k+2} \right),$$

where $\alpha = \frac{1+\sqrt{5}}{2}$ and $\beta = \frac{1-\sqrt{5}}{2}$.

Problem 28. Let $a, b \in \mathbb{Z}$. Show that if a|b and a|(b+1), then $a = \pm 1$.